TS_MAX_ARMA_AR function [Time Series]

NoteThis function is available only with RAP – The Trading Edition Enterprise.

Function

Calculates the exact maximum likelihood estimation of the parameters in a univariate ARMA (autoregressive moving average) time series model, and returns the requested autoregressive estimate.

Syntax

TS_MAX_ARMA_AR (timeseries_expression, ar_count, ar_elem)
OVER (window-spec)

Parameters

timeseries_expression A numeric expression, generally a column name, containing an element in a time series.

ar_count An integer containing the number of autoregressive values to compute.

ar_elem An integer identifying which element in the computed autoregressive array is to be returned. The integer must be greater than 0 and less than or equal to ar_count.

window-spec TS_MAX_ARMA_AR is an OLAP function requiring an OVER () clause.

Usage

This function returns a double-precision floating-point value containing the autoregressive estimate. TS_MAX_ARMA_AR calls the function imsls_d_max_arma in the IMSL libraries.

IMSL mapping

The arguments of TS_MAX_ARMA_AR map to the IMSL library function imsls_d_max_arma as follows:

params = imsls_d_max_arma(n_objs, z[], p, q, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window frame.

p Maps to the ar_count argument.

q =1.

For detailed information on how the IMSL function imsls_d_max_arma performs time series calculations, see IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library.

Example 1

This example shows an input data table, a SQL statement containing the TS_MAX_ARMA_AR function, and the data values returned by the function. This example uses the following table (called DATASET) as its input data. The DATASET table contains 50 rows of time series data:

Table 4-48: Input data table DATASET

rownum

data

1

0.315523

2

0.485859

3

0.676886

4

1.97381

5

2.77555

6

2.73657

7

2.64233

8

4.26118

9

3.13641

10

4.16566

11

2.95952

12

2.14504

13

1.98799

14

0.805859

15

0.833405

16

2.29075

17

1.30045

18

0.467122

19

-0.170107

20

-0.256657

21

-0.382597

22

-0.505511

23

-1.90147

24

-0.981688

25

-1.43116

26

-1.39389

27

-2.34823

28

-2.91122

29

-0.927423

30

-0.044383

31

-0.389648

32

0.545008

33

0.614096

34

0.364668

35

1.16043

36

-0.654063

37

0.616094

38

2.00875

39

1.86696

40

2.80171

41

3.78422

42

4.11499

43

2.77188

44

4.00312

45

4.21298

46

5.00413

47

4.74498

48

4.89621

49

3.93273

50

4.31592

The following SQL statement returns the second element from an array containing two autoregressive estimates of data from the data column:

select ts_max_arma_ar(data,2,2) over (order by rownum rows between unbounded preceding and unbounded following) as res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-49: Values returned from TS_MAX_ARMA_AR Example 1

res

0.179748

0.179748

0.179748

0.179748

0.179748

0.179748

0.179748

0.179748

0.179748

0.179748

...

0.179748

Example 2

This example provides a sample query that returns two columns of results from the DATASET table—the first and second elements of the autoregressive estimates. See Table 4-48 for the DATASET table.

select ts_max_arma_ar(data,2,1) over (order by rownum rows between unbounded preceding and unbounded following) as ar_elem1, ts_max_arma_ar(data,2,2) over (order by rownum rows between unbounded preceding and unbounded following) as ar_elem2 FROM DATASET

Sybase IQ returns 50 rows of data, each containing the same two values:

Table 4-50: Values returned from TS_MAX_ARMA_AR Example 2

ar_elem1

ar_elem2

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

0.731164

0.179748

...

...

0.731164

0.179748

Standards and compatibility

See also

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library