
Reference: Building Blocks, Tables, and
Procedures

Sybase IQ
15.1

DOCUMENT ID: DC38151-01-1510-01

LAST REVISED: July 2009

Copyright © 1991-2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Reference: Building Blocks, Tables, and Procedures iii

About This Book ... xix

CHAPTER 1 File Locations and Installation Settings 1
Installation directory structure .. 2
How Sybase IQ locates files .. 3

Simple file searching ... 4
Extensive file searching... 5

Environment variables.. 5
Setting environment variables ... 6
IQDIR15 environment variable .. 7
IQPORT environment variable .. 8
IQLOGDIR15 environment variable .. 8
IQTIMEOUT environment variable .. 9
IQTMP15 environment variable... 9
LIBPATH or LD_LIBRARY_PATH environment variable 10
PATH environment variable .. 11
SACHARSET environment variable .. 11
SALANG environment variable ... 11
SQLCONNECT environment variable 12
SYBASE environment variable.. 12
$SYBASE_JRE6_32, $SYBASE_JRE6_64, $SYBASE_JRE5_64

environment variables .. 13
SYBASE_OCS environment variable...................................... 13

Registry entries .. 14
Current user and local machine settings 14
Registry structure .. 14
Registry settings on installation... 15

CHAPTER 2 SQL Language Elements.. 17
Keywords ... 17

Reserved words .. 18
Identifiers.. 21
Strings .. 22

Contents

iv Sybase IQ

Expressions.. 23
Constants in expressions .. 25
Column names in expressions .. 25
Subqueries in expressions .. 25
SQL operators ... 26
IF expressions ... 29
CASE expressions .. 29
Compatibility of expressions.. 31

Search conditions... 33
Comparison conditions.. 34
Subqueries in search conditions ... 35
ALL or ANY conditions .. 39
BETWEEN conditions ... 40
LIKE conditions ... 40
IN conditions.. 43
CONTAINS conditions... 43
EXISTS conditions .. 44
IS NULL conditions.. 44
Conditions with logical operators... 45
NOT conditions.. 45
Truth value conditions ... 45
Three-valued logic... 46
User-supplied condition hints .. 46

Special values .. 53
CURRENT DATABASE special value..................................... 53
CURRENT DATE special value .. 53
CURRENT PUBLISHER special value.................................... 53
CURRENT TIME special value ... 53
CURRENT TIMESTAMP special value 54
CURRENT USER special value .. 54
LAST USER special value... 54
SQLCODE special value ... 55
SQLSTATE special value.. 55
TIMESTAMP special value.. 56
USER special value... 56

Variables .. 56
Local variables .. 57
Connection-level variables .. 59
Global variables... 59

Comments.. 65
NULL value .. 67

CHAPTER 3 SQL Data Types ... 69
Character data types.. 69

Contents

Reference: Building Blocks, Tables, and Procedures v

Numeric data types .. 73
Binary data types ... 77
Bit data type ... 82
Date and time data types ... 82
Sending dates and times to the database...................................... 84
Retrieving dates and times from the database............................... 85
Comparing dates and times ... 85
Using unambiguous dates and times ... 86
Domains ... 87
Data type conversions.. 89
Sybase IQ binary load format... 94

CHAPTER 4 SQL Functions .. 101
Overview .. 102
Aggregate functions ... 102
Analytical functions .. 104
Data type conversion functions .. 108
Date and time functions ... 109

Date parts.. 112
HTTP functions .. 114
Numeric functions .. 114
String functions .. 115
System functions.. 118

Connection properties ... 121
Properties available for the server... 121
Properties available for each database 122

SQL and Java user-defined functions .. 122
Time series and forecasting functions.. 123

Loading the IMSL libraries for time series and forecasting functions
124

Miscellaneous functions ... 127
Alphabetical list of functions... 128

ABS function [Numeric] ... 128
ACOS function [Numeric] .. 128
ARGN function [Miscellaneous]... 129
ASCII function [String] ... 129
ASIN function [Numeric] .. 129
ATAN function [Numeric] ... 130
ATAN2 function [Numeric] ... 130
AVG function [Aggregate].. 131
BIGINTTOHEX function [Data type conversion].................... 132
BIT_LENGTH function [String] .. 132
BYTE_LENGTH function [String] .. 133
CAST function [Data type conversion] 133

Contents

vi Sybase IQ

CEIL function [Numeric] .. 134
CEILING function [Numeric] .. 135
CHAR function [String] .. 135
CHAR_LENGTH function [String].. 136
CHARINDEX function [String] ... 136
COALESCE function [Miscellaneous] 137
COL_LENGTH function [System].. 138
COL_NAME function [System] .. 138
CONNECTION_PROPERTY function [System].................... 139
CONVERT function [Data type conversion] 139
CORR function [Aggregate]... 142
COS function [Numeric]... 143
COT function [Numeric]... 143
COVAR_POP function [Aggregate]....................................... 144
COVAR_SAMP function [Aggregate] 145
COUNT function [Aggregate] .. 146
CUME_DIST function [Ranking].. 147
DATALENGTH function [System].. 148
DATE function [Date and time].. 149
DATEADD function [Date and time] 149
DATECEILING function [Date and time] 150
DATEDIFF function [Date and time]...................................... 151
DATEFLOOR function [Date and time] 153
DATEFORMAT function [Date and time]............................... 155
DATENAME function [Date and time] 156
DATEPART function [Date and time] 157
DATEROUND function [Date and time]................................. 157
DATETIME function [Date and time] 159
DAY function [Date and time] .. 159
DAYNAME function [Date and time]...................................... 160
DAYS function [Date and time].. 160
DB_ID function [System] ... 161
DB_NAME function [System] .. 162
DB_PROPERTY function [System] 162
DEGREES function [Numeric]... 163
DENSE_RANK function [Analytical] 163
DIFFERENCE function [String] ... 165
DOW function [Date and time]... 165
ERRORMSG function [Miscellaneous].................................. 166
EVENT_CONDITION function [System]................................ 166
EVENT_CONDITION_NAME function [System] 168
EVENT_PARAMETER function [System] 168
EXP function [Numeric] ... 169
EXP_WEIGHTED_AVG function [Aggregate] 170

Contents

Reference: Building Blocks, Tables, and Procedures vii

FIRST_VALUE function [Aggregate] 171
FLOOR function [Numeric] .. 173
GETDATE function [Date and time] 174
GRAPHICAL_PLAN function [String] 174
GROUPING function [Aggregate].. 177
GROUP_MEMBER function [System]................................... 177
HEXTOBIGINT function [Data type conversion].................... 178
HEXTOINT function [Data type conversion] 179
HOUR function [Date and time]... 180
HOURS function [Date and time] .. 180
HTML_DECODE function [HTTP] ... 181
HTML_ENCODE function [HTTP] ... 182
HTML_PLAN function [String] ... 183
HTTP_DECODE function [HTTP].. 185
HTTP_ENCODE function [HTTP].. 185
HTTP_HEADER function [HTTP] .. 186
HTTP_VARIABLE function [HTTP] 187
IFNULL function [Miscellaneous]... 188
INDEX_COL function [System] ... 188
INSERTSTR function [String] .. 189
INTTOHEX function [Data type conversion] 189
ISDATE function [Date and time] .. 191
ISNULL function [Miscellaneous] .. 191
ISNUMERIC function [Miscellaneous] 192
LAST_VALUE function [Aggregate] 193
LCASE function [String]... 194
LEFT function [String].. 195
LEN function [String] ... 196
LENGTH function [String] .. 197
LN function [Numeric] .. 197
LOCATE function [String] .. 198
LOG function [Numeric] ... 199
LOG10 function [Numeric] ... 200
LOWER function [String] ... 200
LTRIM function [String].. 201
MAX function [Aggregate] ... 201
MEDIAN function [Aggregate] ... 202
MIN function [Aggregate]... 203
MINUTE function [Date and time].. 204
MINUTES function [Date and time] 204
MOD function [Numeric] .. 205
MONTH function [Date and time] .. 206
MONTHNAME function [Date and time]................................ 206
MONTHS function [Date and time].. 206

Contents

viii Sybase IQ

NEWID function [Miscellaneous] ... 208
NEXT_CONNECTION function [System] 209
NEXT_DATABASE function [System] 209
NEXT_HTTP_HEADER function [HTTP] 210
NEXT_HTTP_VARIABLE function [HTTP]............................ 211
NOW function [Date and time]... 211
NTILE function [Analytical] .. 212
NULLIF function [Miscellaneous]... 213
NUMBER function [Miscellaneous] 214
OBJECT_ID function [System] .. 215
OBJECT_NAME function [System] 216
OCTET_LENGTH function [String].. 216
PATINDEX function [String] .. 217
PERCENT_RANK function [Analytical] 218
PERCENTILE_CONT function [Analytical]............................ 220
PERCENTILE_DISC function [Analytical] 222
PI function [Numeric] ... 224
POWER function [Numeric]... 224
PROPERTY function [System] .. 225
PROPERTY_DESCRIPTION function [System] 225
PROPERTY_NAME function [System].................................. 226
PROPERTY_NUMBER function [System] 227
QUARTER function [Date and time]...................................... 227
RADIANS function [Numeric] .. 228
RAND function [Numeric] .. 228
RANK function [Analytical] .. 229
REGR_AVGX function [Aggregate]....................................... 230
REGR_AVGY function [Aggregate]....................................... 232
REGR_COUNT function [Aggregate] 233
REGR_INTERCEPT function [Aggregate] 234
REGR_R2 function [Aggregate] .. 235
REGR_SLOPE function [Aggregate]..................................... 236
REGR_SXX function [Aggregate].. 237
REGR_SXY function [Aggregate].. 238
REGR_SYY function [Aggregate].. 240
REMAINDER function [Numeric]... 241
REPEAT function [String] .. 241
REPLACE function [String].. 242
REPLICATE function [String] .. 243
REVERSE function [String] ... 244
RIGHT function [String] ... 245
ROUND function [Numeric] ... 245
ROWID function [Miscellaneous]... 246
RTRIM function [String] ... 247

Contents

Reference: Building Blocks, Tables, and Procedures ix

SECOND function [Date and time] .. 248
SECONDS function [Date and time]...................................... 248
SIGN function [Numeric].. 249
SIMILAR function [String] .. 250
SIN function [Numeric] .. 250
SORTKEY function [String] ... 251
SOUNDEX function [String]... 255
SPACE function [String] .. 256
SQRT function [Numeric] .. 256
SQUARE function [Numeric] ... 257
STDDEV function [Aggregate]... 257
STDDEV_POP function [Aggregate] 258
STDDEV_SAMP function [Aggregate] 259
STR function [String] ... 260
STR_REPLACE function [String] .. 261
STRING function [String] ... 263
STRTOUUID function [String] ... 263
STUFF function [String] ... 264
SUBSTRING function [String] ... 265
SUM function [Aggregate] ... 265
SUSER_ID function [System].. 266
SUSER_NAME function [System] ... 266
TAN function [Numeric] ... 267
TODAY function [Date and time] ... 267
TRIM function [String].. 268
TRUNCNUM function [Numeric].. 268
TS_ARMA_AR function [Time Series]................................... 269
TS_ARMA_CONST function [Time Series] 272
TS_ARMA_MA function [Time Series] 276
TS_AUTOCORRELATION function [Time Series] 280
TS_AUTO_UNI_AR function [Time Series] 283
TS_BOX_COX_XFORM function [Time Series].................... 287
TS_DIFFERENCE function [Time Series] 289
TS_ESTIMATE_MISSING function [Time Series] 294
TS_LACK OF FIT function [Time Series] 297
TS_LACK OF FIT_P function [Time Series] 301
TS_MAX_ARMA_AR function [Time Series] 304
TS_MAX_ARMA_CONST function [Time Series] 308
TS_MAX_ARMA_LIKELIHOOD function [Time Series] 311
TS_MAX_ARMA_MA function [Time Series] 315
TS_OUTLIER_IDENTIFICATION function [Time Series] 318
TS_PARTIAL_AUTOCORRELATION function [Time Series] 323
TS_VWAP function [Time Series] ... 327
UCASE function [String] .. 329

Contents

x Sybase IQ

UPPER function [String] .. 329
USER_ID function [System] .. 330
USER_NAME function [System] ... 330
UUIDTOSTR function [String] ... 331
VAR_POP function [Aggregate] .. 331
VAR_SAMP function [Aggregate].. 332
VARIANCE function [Aggregate]... 333
WEEKS function [Date and time] .. 335
WEIGHTED_AVG function [Aggregate] 336
WIDTH_BUCKET function [Numerical] 337
YEAR function [Date and time].. 339
YEARS function [Date and time] ... 339
YMD function [Date and time] ... 341

CHAPTER 5 Differences from Other SQL Dialects .. 343
Sybase IQ features .. 344

CHAPTER 6 Physical Limitations .. 347
Size and number limitations ... 348

CHAPTER 7 System Procedures .. 351
System procedure overview... 352

Syntax rules for stored procedures 352
Understanding statistics reported by stored procedures 353

System stored procedures ... 353
sa_dependent_views procedure ... 353
sa_verify_password procedure ... 354
sa_get_user_status system procedure 354
sp_expireallpasswords procedure... 354
sp_iqaddlogin procedure ... 355
sp_iqbackupdetails procedure... 356
sp_iqbackupsummary procedure .. 358
sp_iqcheckdb procedure ... 359
sp_iqcheckoptions procedure.. 366
sp_iqclient_lookup procedure.. 368
sp_iqcolumn procedure ... 370
sp_iqcolumnuse procedure ... 372
sp_iqconnection procedure ... 373
sp_iqconstraint procedure ... 377
sp_iqcontext procedure ... 378
sp_iqcopyloginpolicy procedure .. 380
sp_iqcursorinfo procedure... 381

Contents

Reference: Building Blocks, Tables, and Procedures xi

sp_iqdatatype procedure... 384
sp_iqdbsize procedure .. 386
sp_iqdbspace procedure ... 388
sp_iqdbspaceinfo procedure ... 391
sp_iqdbspaceobjectinfo procedure.. 394
sp_iqdbstatistics procedure... 397
sp_iqdroplogin procedure.. 399
sp_iqemptyfile procedure .. 399
sp_iqestjoin procedure .. 400
sp_iqestdbspaces procedure .. 402
sp_iqestspace procedure .. 404
sp_iqevent procedure.. 404
sp_iqfile procedure .. 407
sp_iqhelp procedure.. 408
sp_iqindex and sp_iqindex_alt procedures 415
sp_iqindexadvice procedure.. 418
sp_iqindexfragmentation procedure 419
sp_iqindexinfo procedure .. 421
sp_iqindexmetadata procedure ... 423
sp_iqindexsize procedure.. 425
sp_iqindexuse procedure .. 426
sp_iqjoinindex procedure .. 427
sp_iqjoinindexsize procedure .. 431
sp_iqlmconfig procedure ... 432
sp_iqlocks procedure .. 434
sp_iqmodifyadmin procedure .. 437
sp_iqmodifylogin procedure .. 438
sp_iqobjectinfo procedure ... 438
sp_iqpassword procedure ... 441
sp_iqpkeys procedure ... 442
sp_iqprocedure procedure .. 443
sp_iqprocparm procedure ... 446
sp_iqrebuildindex procedure ... 450
sp_iqrename procedure .. 452
sp_iq_reset_identity procedure ... 454
sp_iqrestoreaction procedure.. 454
sp_iqrowdensity procedure ... 456
sp_iqshowpsexe procedure... 457
sp_iqspaceinfo procedure ... 459
sp_iqspaceused procedure ... 460
sp_iqstatistics procedure... 461
sp_iqstatus procedure ... 463
sp_iqsysmon procedure .. 466
sp_iqtable procedure... 472

Contents

xii Sybase IQ

sp_iqtablesize procedure .. 475
sp_iqtableuse procedure ... 477
sp_iqtransaction procedure ... 477
sp_iqunusedcolumn procedure ... 481
sp_iqunusedindex procedure .. 482
sp_iqunusedtable procedure ... 483
sp_iqversionuse procedure ... 484
sp_iqview procedure ... 486
sp_iqwho procedure .. 487
sp_iqworkmon procedure .. 490

Catalog stored procedures... 492
sa_audit_string system procedure .. 492
sa_checkpoint_execute system procedure 492
sa_conn_activity system procedure 493
sa_conn_info system procedure ... 494
sa_conn_properties system procedure 495
sa_db_info system procedure ... 496
sa_db_properties system procedure 497
sa_enable_auditing_type system procedure......................... 498
sa_eng_properties system procedure 498
sa_table_page_usage system procedure 500
sa_disable_auditing_type system procedure 500
sa_flush_cache system procedure.. 501
sa_make_object system procedure....................................... 501
sa_rowgenerator system procedure...................................... 502
sa_server_option system procedure 504
sa_set_http_header system procedure 510
sa_set_http_option system procedure 511
sa_validate system procedure... 511
sa_verify_password system procedure 512
sp_login_environment system procedure.............................. 513
sp_remote_columns system procedure 513
sp_remote_exported_keys system procedure 514
sp_remote_imported_keys system procedure 515
sp_remote_primary_keys system procedure 516
sp_remote_tables system procedure 517
sp_servercaps system procedure ... 518
sp_tsql_environment system procedure................................ 520

Adaptive Server Enterprise system and catalog procedures 522
Adaptive Server Enterprise system procedures 522
Adaptive Server Enterprise catalog procedures.................... 524

SQL Anywhere supported procedures ... 525

CHAPTER 8 System Views... 527

Contents

Reference: Building Blocks, Tables, and Procedures xiii

SYSARTICLE system view .. 532
SYSARTICLECOL system view... 532
SYSARTICLECOLS consolidated view.. 532
SYSARTICLES consolidated view ... 532
SYSCAPABILITIES consolidated view .. 533
SYSCAPABILITY system view... 533
SYSCAPABILITYNAME system view .. 533
SYSCATALOG consolidated view ... 534
SYSCHECK system view... 534
SYSCOLAUTH consolidated view ... 534
SYSCOLPERM system view.. 535
SYSCOLLATION compatibility view (deprecated) 535
SYSCOLLATIONMAPPINGS compatibility view (deprecated) 536
SYSCOLSTAT system view... 536
SYSCOLSTATS consolidated view.. 536
SYSCOLUMN compatibility view (deprecated) 537
SYSCOLUMNS consolidated view... 537
SYSCOLUMNS ASE compatibility view....................................... 537
SYSCOMMENTS ASE compatibility view.................................... 538
SYSCONSTRAINT system view .. 538
SYSDBFILE system view... 538
SYSDBSPACE system view .. 539
SYSDBSPACEPERM system view.. 539
SYSDEPENDENCY system view .. 539
SYSDOMAIN system view ... 540
SYSEVENT system view ... 540
SYSEVENTTYPE system view .. 540
SYSEXTERNENV system view ... 541
SYSEXTERNENVOBJECT system view 541
SYSEXTERNLOGIN system view.. 541
SYSFILE compatibility view (deprecated) 542
SYSFKCOL compatibility view (deprecated)................................ 542
SYSFKEY system view .. 542
SYSFOREIGNKEY compatibility view (deprecated) 543
SYSFOREIGNKEYS consolidated view....................................... 543
SYSGROUP system view .. 543
SYSGROUPS consolidated view ... 544
SYSHISTORY system view ... 544
SYSIDX system view ... 545
SYSIDXCOL system view .. 545
SYSINDEX compatibility view (deprecated)................................. 545
SYSINDEXES consolidated view... 546
SYSINDEXES ASE compatibility view ... 546
SYSINFO compatibility view (deprecated) 546

Contents

xiv Sybase IQ

SYSIQBACKUPHISTORY system view....................................... 546
SYSIQBACKUPHISTORYDETAIL system view 548
SYSIQCOLUMN system view (deprecated)................................. 549
SYSIQDBFILE system view ... 549
SYSIQDBSPACE system view .. 550
SYSIQFILE system view (deprecated)... 551
SYSIQIDX system view.. 551
SYSIQINFO system view ... 552
SYSIQJOINIDX system view ... 554
SYSIQJOININDEX system view (deprecated) 555
SYSIQJOINIXCOLUMN system view .. 555
SYSIQJOINIXTABLE system view... 556
SYSIQMPXLOGINPOLICYOPTION system view........................ 557
SYSIQMPXSERVER system view ... 557
SYSIQOBJECTS ASE compatibility view 557
SYSIQPARTITIONCOLUMN system view................................... 557
SYSIQTAB system view... 558
SYSIQTABCOL system view ... 559
SYSIQTABLE system view (deprecated)..................................... 561
SYSIQVINDEX ASE compatibility view.. 561
SYSIXCOL compatibility view (deprecated)................................. 561
SYSJAR system view... 561
SYSJARCOMPONENT system view ... 562
SYSJAVACLASS system view... 562
SYSLOGINMAP system view .. 562
SYSLOGINPOLICY system view ... 563
SYSLOGINPOLICYOPTION system view 563
SYSLOGINS ASE compatibility view ... 563
SYSMVOPTION system view .. 563
SYSMVOPTIONNAME system view.. 564
SYSOBJECT system view ... 564
SYSOBJECTS ASE compatibility view .. 564
SYSOPTION system view.. 565
SYSOPTIONS consolidated view .. 565
SYSOPTSTAT system view... 565
SYSPARTITION system view .. 566
SYSPARTITIONKEY system view ... 566
SYSPARTITIONSCHEME system view....................................... 567
SYSPHYSIDX system view.. 568
SYSPROCAUTH consolidated view .. 568
SYSPROCEDURE system view .. 568
SYSPROCPARM system view... 569
SYSPROCPARMS consolidated view ... 569
SYSPROCPERM system view... 569

Contents

Reference: Building Blocks, Tables, and Procedures xv

SYSPROCS consolidated view.. 570
SYSPROXYTAB system view.. 570
SYSPUBLICATION system view ... 570
SYSPUBLICATIONS consolidated view 571
SYSREMARK system view .. 571
SYSREMOTEOPTION system view .. 571
SYSREMOTEOPTION2 consolidated view 572
SYSREMOTEOPTIONS consolidated view 572
SYSREMOTEOPTIONTYPE system view................................... 572
SYSREMOTETYPE system view... 573
SYSREMOTETYPES consolidated view 573
SYSREMOTEUSER system view .. 573
SYSREMOTEUSERS consolidated view..................................... 574
SYSSCHEDULE system view.. 574
SYSSERVER system view... 574
SYSSOURCE system view .. 575
SYSSQLSERVERTYPE system view .. 575
SYSSUBPARTITIONKEY system view.. 575
SYSSUBSCRIPTION system view .. 575
SYSSUBSCRIPTIONS consolidated view 576
SYSSYNC system view ... 576
SYSSYNC2 consolidated view... 576
SYSSYNCPUBLICATIONDEFAULTS consolidated view............ 577
SYSSYNCS consolidated view .. 577
SYSSYNCSCRIPT system view .. 577
SYSSYNCSCRIPTS consolidated view 578
SYSSYNCSUBSCRIPTIONS consolidated view 578
SYSSYNCUSERS consolidated view .. 578
SYSTAB system view .. 579
SYSTABLE compatibility view (deprecated) 579
SYSTABAUTH consolidated view.. 579
SYSTABCOL system view ... 580
SYSTABLEPERM system view.. 580
SYSTEXTCONFIG system view .. 580
SYSTEXTIDX system view .. 581
SYSTEXTIDXTAB system view ... 581
SYSTRIGGER system view ... 581
SYSTRIGGERS consolidated view.. 582
SYSTYPEMAP system view .. 582
SYSTYPES ASE compatibility view ... 582
SYSUSER system view ... 583
SYSUSERAUTH compatibility view (deprecated)........................ 583
SYSUSERAUTHORITY system view... 583
SYSUSERLIST compatibility view (deprecated) 584

Contents

xvi Sybase IQ

SYSUSERMESSAGE system view.. 584
SYSUSEROPTIONS consolidated view 584
SYSUSERPERM compatibility view (deprecated) 585
SYSUSERPERMS compatibility view (deprecated)..................... 585
SYSUSERTYPE system view .. 585
SYSUSERS ASE compatibility view .. 586
SYSVIEW system view .. 586
SYSVIEWS consolidated view ... 586
SYSWEBSERVICE system view ... 586
Transact-SQL compatibility views .. 587

CHAPTER 9 System Tables.. 591
System table list ... 591
DUMMY system table .. 594

APPENDIX A Compatibility with Other Sybase Databases............................. 595
An overview of Transact-SQL support ... 596
Adaptive Server architectures .. 597

Servers and databases ... 598
Space allocation and device management............................ 598
System tables, catalog store, and IQ store 599
Administrative roles ... 600

Data types .. 601
Bit data type .. 602
Character data types ... 602
Binary data types... 603
Date, time, datetime, and timestamp data types 604
Numeric data types ... 605
Approximate numeric data types... 605
Text data type.. 606
Image data type... 606
Java data types ... 606

Data definition language .. 607
Creating a Transact-SQL compatible database 607
Case-sensitivity ... 607
Ensuring compatible object names 608
CREATE TABLE statement... 609
CREATE DEFAULT, CREATE RULE, and CREATE DOMAIN

statements .. 612
CREATE TRIGGER statement.. 612
CREATE INDEX statement ... 613
Users, groups, and permissions.. 614
Load formats ... 616

Contents

Reference: Building Blocks, Tables, and Procedures xvii

Setting options for Transact-SQL compatibility 616
Data manipulation language .. 616

General guidelines for writing portable SQL.......................... 617
Writing compatible queries .. 617
Subqueries .. 618
GROUP BY clause .. 619
COMPUTE clause ... 619
WHERE clause.. 619
Joins .. 620
Null comparisons... 621
Zero-length strings .. 621
HOLDLOCK, SHARED, and FOR BROWSE 621
SQL functions.. 622
OLAP functions ... 623
System functions ... 624
User-defined functions .. 625
Arithmetic expressions on dates ... 625
SELECT INTO... 626
Updatable views .. 626
FROM clause in UPDATE and DELETE 626

Transact-SQL procedure language overview............................... 626
Transact-SQL stored procedure overview............................. 627
Transact-SQL batch overview ... 627
SQL statements in procedures and batches 628

Automatic translation of stored procedures.................................. 630
Returning result sets from Transact-SQL procedures.................. 630
Variables in Transact-SQL procedures .. 631
Error handling in Transact-SQL procedures 632

Using the RAISERROR statement in procedures 633
Transact-SQL-like error handling in the Watcom-SQL dialect 634

SQL Anywhere and Sybase IQ .. 634
Server and database startup and administration................... 635
Database options .. 635
Data definition language (DDL) ... 636
Data manipulation language (DML)....................................... 637
Stored procedures... 637

Adaptive Server Enterprise and Sybase IQ 638
Stored procedures... 638
System views .. 639

Index ... 641

xviii Sybase IQ

Reference: Building Blocks, Tables, and Procedures xix

About This Book

Subject This book provides reference material for many aspects of Sybase IQ,
including SQL statements, language elements, data types, functions,
system procedures, and system tables. Other books provide more context
on how to perform particular tasks. This reference book is the place to
look for information such as available SQL syntax, parameters, and
options. For command line utility startup parameters, see the Utility
Guide.

Audience This manual is a reference for all users of Sybase IQ.

Related documents The Sybase IQ 15.1 documentation set includes:

• Release Bulletin provides information about last-minute changes to
the product and documentation.

• Installation and Configuration Guide provides platform-specific
instructions on installing, migrating to a new version, and configuring
Sybase IQ for a particular platform.

• Advanced Security in Sybase IQ covers the use of user encrypted
columns within the Sybase IQ data repository. You need a separate
license to install this product option.

• Error Messages lists Sybase IQ error messages referenced by Sybase
error code, SQLCode, and SQLState, and SQL preprocessor errors
and warnings.

• IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library
contains a concise description of the IMSL C Stat Library time series
C functions. This book is only available to RAP - The Trading
Edition™ Enterprise users.

• Introduction to Sybase IQ includes hands-on exercises for those
unfamiliar with Sybase IQ or with the Sybase Central™ database
management tool.

• Large Objects Management in Sybase IQ explains storage and
retrieval of Binary Large Objects (BLOBs) and Character Large
Objects (CLOBs) within the Sybase IQ data repository. You need a
separate license to install this product option.

xx Sybase IQ

• New Features in Sybase IQ 15.0 documents new features and behavior
changes for version 15.0.

• New Features Summary Sybase IQ 15.1 summarizes new features and
behavior changes for the current version.

• Performance and Tuning Guide describes query optimization, design, and
tuning issues for very large databases.

• Quick Start lists steps to build and query the demo database provided with
Sybase IQ for validating the Sybase IQ software installation. Includes
information on converting the demo database to multiplex.

• Reference Manual – includes two reference guides to Sybase IQ:

• Reference: Building Blocks, Tables, and Procedures (this book)
describes SQL, stored procedures, data types, and system tables that
Sybase IQ supports.

• Reference: Statements and Options describes the SQL statements and
options that Sybase IQ supports.

• System Administration Guide – includes two volumes:

• System Administration Guide: Volume 1 describes startup,
connections, database creation, population and indexing, versioning,
collations, system backup and recovery, troubleshooting, and
database repair.

• System Administration Guide: Volume 2 describes how to write and
run procedures and batches, programming with OLAP, accessing
remote data, setting up IQ as an Open Server, scheduling and event
handling, programming with XML, and debugging.

• User-Defined Functions Guide provides information about the user-
defined functions, their parameters, and possible usage scenarios.

• Using Sybase IQ Multiplex tells how to use multiplex capability, designed
to manage large query loads across multiple nodes.

• Utility Guide provides Sybase IQ utility program reference material, such
as available syntax, parameters, and options.

 About This Book

Reference: Building Blocks, Tables, and Procedures xxi

Sybase IQ and SQL Anywhere
Because Sybase IQ is an extension of SQL Anywhere®, a component of the
SQL Anywhere package, Sybase IQ supports many of the same features as
SQL Anywhere. The Sybase IQ documentation set refers you to SQL
Anywhere documentation where appropriate.

Documentation for SQL Anywhere includes:

• SQL Anywhere Server – Database Administration describes how to run,
manage, and configure SQL Anywhere databases. It describes database
connections, the database server, database files, backup procedures,
security, high availability, and replication with Replication Server®, as
well as administration utilities and options.

• SQL Anywhere Server – Programming describes how to build and deploy
database applications using the C, C++, Java, PHP, Perl, Python, and .NET
programming languages such as Visual Basic and Visual C#. This book
also describes a variety of programming interfaces such as ADO.NET and
ODBC.

• SQL Anywhere Server – SQL Reference provides reference information
for system procedures, and the catalog (system tables and views). It also
provides an explanation of the SQL Anywhere implementation of the SQL
language (search conditions, syntax, data types, and functions).

• SQL Anywhere Server – SQL Usage describes how to design and create
databases; how to import, export, and modify data; how to retrieve data;
and how to build stored procedures and triggers.

You can also refer to the SQL Anywhere documentation in the SQL Anywhere
11.0.1 collection at Product Manuals at http://www.sybase.com/support/manuals/
and in DocCommentXchange at http://dcx.sybase.com/dcx_home.php.

Documentation for Sybase Software Asset Management (SySAM) includes:

• Sybase Software Asset Management (SySAM) 2 introduces asset
management concepts and provides instructions for establishing and
administering SySAM 2 licenses.

• SySAM 2 Quick Start Guide tells you how to get your SySAM-enabled
Sybase product up and running.

• FLEXnet Licensing End User Guide explains FLEXnet Licensing for
administrators and end users and describes how to use the tools that are
part of the standard FLEXnet Licensing distribution kit from Sybase.

http://www.sybase.com/support/manuals
http://dcx.sybase.com/dcx_home.php

xxii Sybase IQ

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at http://
certification.sybase.com/ucr/search.do.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at http://
certification.sybase.com/.

http://sybooks.sybase.com
http://certification.sybase.com/ucr/search.do
http://certification.sybase.com/ucr/search.do
http://certification.sybase.com
http://certification.sybase.com

 About This Book

Reference: Building Blocks, Tables, and Procedures xxiii

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at http://www.sybase.com/
support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at http://
www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Syntax conventions This documentation uses these conventions in syntax descriptions:

• Keywords SQL keywords are shown in UPPERCASE. However,
SQL keywords are case-insensitive, so you can enter keywords in any
case; SELECT, Select, and select are equivalent.

http://www.sybase.com
http://www.sybase.com/support
http://www.sybase.com/support

xxiv Sybase IQ

• Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown in italics.

• Continuation Lines beginning with an ellipsis (...) are a continuation
of the statements from the previous line.

• Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (...). One or more list elements are
allowed. If multiple elements are specified, they must be separated by
commas.

• Optional portions Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

The square brackets indicate that the savepoint-name is optional. Do not
type the brackets.

• Options When none or only one of a list of items must be chosen, the
items are separated by vertical bars and the list enclosed in square
brackets. For example:

[ASC | DESC]

The square brackets indicate that you can choose ASC, DESC, or neither.
Do not type the brackets.

• Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces. For example:

QUOTES { ON | OFF }

The curly braces indicate that you must include either ON or OFF. Do not
type the brackets.

Typographic
conventions

Table 1 lists the typographic conventions used in this documentation.

 About This Book

Reference: Building Blocks, Tables, and Procedures xxv

Table 1: Typographic conventions

The demo database Sybase IQ includes scripts to create a demo database (iqdemo.db). Many of the
queries and code samples in this document use the demo database as a data
source.

The demo database contains internal information about a small company
(employees, departments, and financial data), as well as product (products),
and sales information (sales orders, customers, and contacts).

See the Sybase IQ installation guide for your platform or talk to your system
administrator for more information about the demo database.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Sybase IQ 15.1 and the HTML documentation have been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Configuring your accessibility tool
You might need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool for information on using screen
readers.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Item Description
Code SQL and program code appears in a monospaced (fixed-

width) font.
User entry Text entered by the user is shown in a monospaced (fixed-

width) font.
emphasis Emphasized words are shown in italic.
file names File names are shown in italic.
database objects Names of database objects, such as tables and procedures,

are shown in bold, sans serif type in print, and in italic
online.

http://www.sybase.com/accessibility

xxvi Sybase IQ

For a Section 508 compliance statement for Sybase IQ, go to Sybase
Accessibility at http://www.sybase.com/products/accessibility.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/products/accessibility

Reference: Building Blocks, Tables, and Procedures 1

C H A P T E R 1 File Locations and Installation
Settings

About this chapter This chapter describes the installation and operating system settings used
by Sybase IQ. Depending on the operating system, these settings may be
stored as environment variables, initialization file entries, or registry
entries.

Contents Topic Page
Installation directory structure 2
How Sybase IQ locates files 3
Environment variables 5
Registry entries 14

Installation directory structure

2 Sybase IQ

Installation directory structure
When you install Sybase IQ, several directories may be created. The directories
created depend on which options you choose during installation and which
directories already exist in your Sybase directory (the directory defined by
$SYBASE on UNIX or %SYBASE% on Windows). This section describes the
directory structure.

By default, Sybase IQ software is installed in a unique subdirectory under the
Sybase directory. This subdirectory is called the installation directory. Other
tools provided with Sybase IQ have unique subdirectories under the Sybase
directory. This section describes only the subdirectory structure for Sybase IQ.

The Sybase IQ
directory

By default, the Sybase IQ directory is IQ-15_1. The location of IQ-15_1 varies,
depending on where you install Sybase IQ. The IQ-15_1 directory is also
referred to by the environment variable $IQDIR15 on UNIX or %IQDIR15%
on Windows.

The Sybase IQ directory holds a number of directories and files:

• Demo directory (%ALLUSERSPROFILE%/SybaseIQ/demo) – holds the
tools required to build the iqdemo database. The iqdemo database files are
iqdemo.db, iqdemo.iq, iqdemo.iqmsg, and iqdemo.iqtmp. The demo
database itself is not shipped with Sybase IQ.

The subdirectory /demo/adata holds 15.x data to allow the creation of the
15.x iqdemo database. The subdirectory /demo/demodata holds Sybase IQ
12.7 data to allow the creation of an iqdemo database that has the same
schema layout and data as the IQ 12.7 asiqdemo database. Use /demo/
mkiqdemo.bat on Windows and demo/mkiqdemo.sh on Unix to create the
15.x iqdemo database. The iqdemo database can be used to demonstrate
problems to Technical Support.

• Scripts directory (IQ-15_1/scripts) – holds some scripts used in examples
and when creating catalog objects like stored procedures. Do not edit these
scripts. If you edit, delete, or move these scripts, the server will not operate
properly.

CHAPTER 1 File Locations and Installation Settings

Reference: Building Blocks, Tables, and Procedures 3

• Samples directories The samples directory contains SQL samples and
user-defined function (UDF) samples. %ALLUSERSPROFILE%/
SybaseIQ/samples/sqlanywhere contains 24 directories of SQL samples.
The sqlanywhere/c directory holds C++ examples that illustrate using
ESQL (embedded SQL) and C with SQL Anywhere. Because SQL
Anywhere and Sybase IQ share common code, you can modify these
examples for use with Sybase IQ. The %ALLUSERSPROFILES%/
SybaseIQ/samples/udf directory holds sample C++ scalar and aggregate
UDFs.

• Executable directories – hold executables, libraries, help files, and so on.

On UNIX, executable subdirectories include IQ-15_1 subdirectories /
bin64, /lib64, /logfiles, /res, and /tix. On Windows, these include IQ-15_1
subdirectories \h, \install, \java, and \bin32.

How Sybase IQ locates files
To start and run, Sybase IQ must find and access several types of files.
Understanding how Sybase IQ finds these files is important, to ensure that the
correct files are used. Several directories or files with identical names may
reside on a system. Sybase IQ uses both Adaptive Server™ Enterprise and
SQL Anywhere libraries. If either of these products have already been installed
on your system, note the directory where they are installed to avoid confusion.

The types of files include but are not limited to:

• Libraries – might include product libraries or system libraries. File name
extensions include .so.nnn or .so on UNIX, or .dll or .lib on Windows.
These files are required to run Sybase IQ. If an incorrect DLL is found, a
version mismatch error may occur. For example, library files might be
found in $IQDIR15/lib64 or $SYBASE/$SYBASE_OCS/lib64 on UNIX,
or %IQDIR15%\bin32 or %SYBASE\%SYBASE_OCS\dll on Windows.
An empty directory, $IQDIR15/usrlib, lets you supersede default libraries
with custom libraries and patches, because start_iq includes usrlib before
regular library directories.

• Interface files – required to run Sybase IQ. For example, .odbc.ini and
utility_db.ini on UNIX, and util_db.ini on Windows. For more information
about these files, see the System Administration Guide: Volume 1 and the
Installation and Configuration Guide.

How Sybase IQ locates files

4 Sybase IQ

• Configuration files – used to specify connection parameters. Examples
include default.cfg on Windows or iqdemo.cfg.

• Database files – store the data and metadata. For example: iqdemo.db,
iqdemo.iq, iqdemo.iqmsg, iqdemo.iqtmp.

• Log files – store information about the current session on the server and
connected database. For example, a server log might be named
%ALLUSERSPROFILE%/SybaseIQ/IQ15_1/logfiles/
yourservername.0006.srvlog. The database log (for example,
%ALLUSERSPROFILE%/SybaseIQ/IQ-15_1/demo/iqdemo.log) is
created when you connect to the database. For more information about
these files, see the Installation and Configuration Guide.

• Product scripts – are sample files that show how to create, populate, and
upgrade databases.

• User files – include flat files used with the LOAD command and SQL
scripts used with tools such as Interactive SQL.

• Temporary files – created by Sybase IQ to store temporary information for
operations like performing sorts for queries.

Some file names are specified in SQL statements and must be located at
runtime. Examples of SQL statements that use file names include the
following:

• INSTALL statement – the name of the file that holds Java classes.

• LOAD TABLE statement – the name of the file from which data should be
loaded.

• CREATE DATABASE statement – A file name is needed for this statement
and similar statements that can create files.

In some cases, Sybase IQ uses a simple algorithm to locate files. In other cases,
a more extensive search is carried out.

Simple file searching
In many SQL statements such as LOAD TABLE or CREATE DATABASE, the file
name is interpreted as relative to the current working directory of the database
server; that is, where the server was started.

Also, when a database server is started and a database file name (DBF
parameter) is supplied, the path is interpreted as relative to the directory in
which the server was started.

CHAPTER 1 File Locations and Installation Settings

Reference: Building Blocks, Tables, and Procedures 5

Extensive file searching
Sybase IQ programs, including the database server and administration utilities,
carry out extensive searches for required files, such as DLLs or shared
libraries. In these cases, Sybase IQ programs look for files in the following
order:

1 The executable directory – the directory in which the program executable
is held. Also, directories with the following paths relative to the program
executable directory:

• Parent of the executable directory.

• A child of the parent directory named scripts.

2 Current working directory – when a program is started, it has a current
working directory (the directory from which it is started). This directory is
searched for required files.

3 Location registry entry – on a Windows installation, Sybase IQ adds a
LOCATION registry entry. The indicated directory is searched, followed
by the following:

• A child named scripts

• A child with the operating system name (bin32, bin, and so on)

4 System-specific directories – this includes directories where common
operating system files are held, such as the Windows directory and the
Windows\system directory on Windows.

5 CLASSPATH directories – for Java files, directories listed in the
CLASSPATH environment variable are searched to locate files.

6 PATH directories – directories in the system path and the user’s path are
searched to locate files.

7 LIBRARY PATH directories – directories listed in the LIBPATH
environment variable are searched for shared libraries.

Environment variables
Sybase IQ uses environment variables to store various types of information;
not all variables need to be set in all circumstances.

Environment variables

6 Sybase IQ

Setting environment variables
Required environment variables are set by environment source files on UNIX
and by the Sybase IQ installation on Windows.

❖ Running UNIX environment source files

Issue the following command to set all required environment variables.

1 For the Bourne/Korn shell:

. $SYBASE/IQ-15_1/IQ-15_1.sh

2 For the C shell:

source $SYBASE/IQ-15_1/IQ-15_1.csh;
rehash

On Windows platforms, the installation program automatically sets all
environmental variables, so no changes are necessary. However, if you must set
optional variables or change defaults, use one of the following procedures, as
appropriate for your operating system.

❖ Setting environment variables on Windows

1 On your desktop, right-click My Computer and select Properties from the
submenu.

2 Click the Advanced tab.

3 Click the Environment Variables button.

The Environment Variables dialog opens.

a If the environment variable does not already exist, click New and type
the variable name and its value in the spaces provided; then click OK.

b If the variable does exist, select it from the list of System Variables or
User Variables, click Edit, and make any modifications in the Variable
Value field. Then click OK to capture the setting.

Note See the Microsoft Windows documentation for an explanation
of user variables and system variables.

❖ Setting environment variables on UNIX

1 To check the setting for an environment variable, use:
echo $variable-name

For example, to see the setting for the $SYBASE variable:

CHAPTER 1 File Locations and Installation Settings

Reference: Building Blocks, Tables, and Procedures 7

% echo $SYBASE
/server1/users/test/sybase

2 In one of your startup files (.cshrc, .shrc, .login), add a line that sets the
variable.

In some shells (such as sh, bash, ksh) the line is:

 VARIABLE=value;export VARIABLE

In other shells (such as csh, tsch) the line is:

setenv VARIABLE “value”

For details about variables Sybase IQ uses, see:

• “IQDIR15 environment variable” on page 7

• “IQPORT environment variable” on page 8

• “IQLOGDIR15 environment variable” on page 8

• “IQTIMEOUT environment variable” on page 9

• “IQTMP15 environment variable” on page 9

• “LIBPATH or LD_LIBRARY_PATH environment variable” on page 10

• “PATH environment variable” on page 11

• “SACHARSET environment variable” on page 11

• “SALANG environment variable” on page 11

• “SQLCONNECT environment variable” on page 12

• “SYBASE environment variable” on page 12

• “$SYBASE_JRE6_32, $SYBASE_JRE6_64, $SYBASE_JRE5_64
environment variables” on page 13

• “SYBASE_OCS environment variable” on page 13

IQDIR15 environment variable
Setting IQDIR15 = ${SYBASE}/IQ-15_1

Operating system (Required) Set by the environment source file or the installation program. This
default setting can be changed on Windows.

Description IQDIR15 identifies the location of the Sybase IQ directory and is the location
for other directories and files under that directory:

Environment variables

8 Sybase IQ

• $IQDIR15/bin[64]/util_db.ini holds the login ID and password for the
utility database, utility_db. The installation program lets you change these
from their default values, login ID “DBA” and password “sql.”

• $IQDIR15/logfiles is the default location for the server log and backup/
restore log (the backup history file). You can override this default by
setting the IQLOGDIR15 environment variable.

• $IQDIR15/demo is the location for the iqdemo database files.

IQPORT environment variable
Setting IQPORT = 5556

Operating system Optional. If the user did not specify IQPORT in the environment source file,
the port number defaults to 1099. You can change this default value, provided
you do so before the plug-in starts. You can set this variable as described in
“Setting environment variables” on page 6 or by supplying the -DIQPORT
argument to the scjview command when starting Sybase Central. For example:

scjview -DIQPORT=3345

Description Overrides the default value for the Sybase IQ Agent port number, which is used
for communications between the Sybase IQ plug-in and Agent.

Note Once the agent starts, you cannot change the port value.

1099 is the plug-in default value when searching for an agent process on any
given port. If the plug-in finds no agent on this port, it displays a prompt so that
you can specify the correct port value.

IQLOGDIR15 environment variable
Setting IQLOGDIR15 = path

Operating system Optional.

Description The IQLOGDIR15 environment variable is not set by the installation program.
It defines the location of various log files:

• The server log is in the file servername.nnnn.srvlog (where nnnn is the
number of times the server has been started) in the directory specified by
$IQLOGDIR15.

CHAPTER 1 File Locations and Installation Settings

Reference: Building Blocks, Tables, and Procedures 9

If IQLOGDIR15 is not set to a valid, write-enabled directory, then most
utilities, including start_iq, use the default location $IQDIR15/logfiles for all
server logs.

IQTIMEOUT environment variable
Setting IQTIMEOUT = nnn

Operating system Optional but recommended in multiplex environments. For information on
multiplex capability, see Using Sybase IQ Multiplex.

Description The Sybase IQ Agent waits indefinitely for a process to complete. Setting a
wait time is recommended when creating or synchronizing query servers for a
multiplex with a very large catalog store. Large catalog stores extend the time
needed for the dbbackup part of synchronization, and increasing the wait time
accommodates a larger synchronize.

IQTIMEOUT overrides the default wait time of five minutes, and the argument
nnn is the number of minutes for the Sybase IQ Agent to wait. For example:

• To wait 45 minutes (Korn or Bourne shell):

IQTIMEOUT=45
export IQTIMEOUT

• To wait an hour (C shell):

setenv IQTIMEOUT 60

Note Set IQTIMEOUT before you invoke the agent startup option. See
“Before you Install” and “Starting the Sybase IQ Agent” in the Installation and
Configuration Guide and “Running the Sybase IQ Agent” in Introduction to
Sybase IQ.

IQTMP15 environment variable
Setting IQTMP15 = temp_directory

Operating system Optional on UNIX. Not used on Windows platforms.

Description The IQTMP15 environment variable is not set by the installation program.
IQTMP15 is used by Sybase IQ to indicate a directory where temporary files
are kept.

Environment variables

10 Sybase IQ

The IQTMP15 environment variable should point to a local directory for those
using NFS (network file system), which permits the IQTMP15 directory to
purge directories and files that are no longer needed as client connections are
closed. Each client connection creates several directories and files in a
temporary directory. These are needed only for the duration of the connection.
The directory must have write permissions for all users who connect to the
server.

Note The temporary files whose location is defined by IQTMP15 are files used
by the client and server. This variable does not control the default location of
your IQ temporary store. For information on how Sybase IQ determines the
location of your temporary store, see the CREATE DATABASE statement in
Chapter 1, “SQL Statements,” in Reference: Statements and Options.

If you do not explicitly set IQTMP15, or if it is set to $SYBASE or $IQDIR15,
then the Sybase IQ Agent sets IQTMP15 to a subdirectory in the UNIX
directory /tmp.

If more than one database server is running on a machine, each server and
associated local client needs a separate temporary directory to avoid conflicts.
When you do not specify a port or engine number for connection, Sybase IQ
uses shared memory connectivity instead of network connectivity.

To avoid conflicts when using shared memory:

• Create a temporary directory dedicated to each server. Make sure that each
local client uses the same temporary directory as its server by setting the
IQTMP15 environment variable explicitly in both environments.

• Create a data source name in the .odbc.ini file (on UNIX) for each server
and provide detailed connection information. See the Installation and
Configuration Guide.

• Use connection strings that specify explicit parameters instead of relying
on defaults.

• Confirm connections by issuing:

SELECT "database name is" = db_name(),
"servername_is" = @@servername

LIBPATH or LD_LIBRARY_PATH environment variable
Settings For AIX:

CHAPTER 1 File Locations and Installation Settings

Reference: Building Blocks, Tables, and Procedures 11

LIBPATH = installation_path/lib

For all other UNIX/LINUX platforms:
LD_LIBRARY_PATH = installation_path/lib

Operating system Required. Variable name is platform dependent. UNIX only.

Description Specifies the directories where Sybase IQ shared libraries are located. On
UNIX, set the library path variable by running the environment source file.

PATH environment variable
Setting PATH = installation_path

Operating system Required.

Description The PATH environment variable is an operating system required variable that
includes the directories where Sybase IQ executables are located. On
Windows, the installation program modifies PATH. On UNIX, run the
environment source file to include the necessary directories.

On Windows, PATH takes the place of the LIBRARY_PATH variable, so
executables and DLLs are located using the PATH variable.

SACHARSET environment variable
Setting SACHARSET=charset

Description Charset is a character set name. For example, setting SACHARSET=cp1252
sets the default character set to cp1252.

The first of the following values set determines the default character set.

• SACHARSET environment variable

• Query the operating system

If no character set information is specified, use iso_1 for UNIX, or cp850
otherwise.

SALANG environment variable
Setting SALANG=language_code

Operating system Optional but recommended in non-English environments.

Environment variables

12 Sybase IQ

Description Language_code is the two-letter combination representing a language. For
example, setting SALANG=DE sets the default language to German.

The first of the following values set determines the default language.

• SALANG environment variable

• Registry (Windows only) as set by the installer or dblang.exe

• Query the operating system

If no language information is set, English is the default.

SQLCONNECT environment variable
Settings SQLCONNECT = parameter#value ; ...

Operating system Optional.

Description The SQLCONNECT environment variable is optional, and is not set by the
installation program.

SQLCONNECT specifies connection parameters that are used by several of
the database administration utilities, such as DBISQL, DBINFO, DBCOLLAT,
and DBSTOP, when connecting to a database server. This string is a list of
parameter settings, of the form parameter=value, delimited by semicolons.

The number sign “#” is an alternative to the equals sign; use it if you are setting
the connection parameters string in the SQLCONNECT environment variable.
Using “=” inside an environment variable setting is a syntax error. The = sign
is allowed only in Windows.

Note Specifying connection parameters in SQLCONNECT rather than on the
command line offers greater security on UNIX systems. It prevents users from
being able to display your password with the ps -ef command. This is especially
useful if you run DBISQL or other utilities in quiet mode.

See also See “Connection parameters” in Chapter 4, “Connection and Communication
Parameters,” in the System Administration Guide: Volume 1.

SYBASE environment variable
Setting SYBASE = path

CHAPTER 1 File Locations and Installation Settings

Reference: Building Blocks, Tables, and Procedures 13

Operating system Required.

Description SYBASE identifies the location of Sybase applications, such as Open Client
and Open Server. You must set the SYBASE variable before you can install
Sybase IQ on UNIX systems. This variable is required for using Sybase Central
on UNIX systems.

$SYBASE_JRE6_32, $SYBASE_JRE6_64, $SYBASE_JRE5_64
environment variables
Setting SYBASE_JRE= "${SYBASE}/shared/jre-6_0"

Description This variable specifies the location of the Java Runtime Environment used by
the Sybase Central plug-in for Sybase IQ. For Windows and UNIX, the
environment variable is $SYBASE_JRE6_32 or $SYBASE_JRE6_64. For
AIX/LinuxIBM the variable is $SYBASE_JRE5_64.

On UNIX, run the SYBASE.csh (C shell) or SYBASE.sh (Bourne or Korn shell)
environment source file. On Windows, the installation program sets the
variable when it installs Open Client Software Developer’s Kit.

SYBASE_OCS environment variable
Setting SYBASE_OCS = "OCS-15_1"

Operating system Required.

Description The SYBASE_OCS variable specifies the home directory for the Open Client
product. This variable is only used on Window. On Windows, the installation
program sets SYBASE_OCS when it installs Open Client/Server Software
Developers Kit.

Registry entries

14 Sybase IQ

Registry entries
On Windows operating systems, Sybase IQ uses several Registry settings.
These settings are made for you by the software, and in general operation, you
should not need to access the registry. The settings are provided here if you
modify your operating environment.

 Warning! Sybase recommends not modifying the Registry, as incorrect
changes might damage your system.

Current user and local machine settings
Some operating systems, such as Windows, hold two levels of system settings.
Some settings are specific to an individual user and are used only when that
user is logged on; these settings are called current user settings. Some settings
are global to the machine and are available no matter which user is logged on;
these are called local machine settings. You must have administrator
permissions on your machine to make local machine settings.

Sybase IQ permits the use of both current user and local machine settings. For
Windows, these settings are held in the HKEY_CURRENT_USER registry
and HKEY_LOCAL_MACHINE registry, respectively.

The Sybase IQ installation lets you choose whether the settings it makes are for
the current user only or at the local machine level.

If you make settings in both current user and local machine registries, the
current user setting takes precedence over the local machine setting.

When local machine
settings are needed

If you are running a Sybase IQ program as a service on Windows, ensure that
the settings are made at the local machine level.

Services can continue to run under a special account when you log off a
machine, as long as you do not shut the machine down entirely. Services can
be made independent of individual accounts and need access to local machine
settings.

In general, Sybase recommends using local machine settings.

Registry structure
On Windows, you can access the Registry directly using the Registry Editor.

CHAPTER 1 File Locations and Installation Settings

Reference: Building Blocks, Tables, and Procedures 15

To start the editor, select Start > Run and type in the Open box

regedt32

Note Read Only Mode protects your Registry data from accidental changes.
To use it, open the Registry Editor, select Edit >Permissions, and then check
Read permission.

The Sybase IQ registry entry is held in the HKEY_LOCAL_MACHINE key,
in the following location:

SOFTWARE
Sybase

IQ 15.0

Registry settings on installation
The installation program automatically makes the following registry settings in
the Sybase registry:

• Location – In the Sybase IQ registry, this entry holds the installation
directory location. For example:

Location:REG_SZ:C:\Program Files\Sybase
\IQ-15_1

The Sybase IQ registry includes other entries for installed applications. The
Sybase Central registry holds information about the Sybase Central version
and installed plug-ins.

Registry entries

16 Sybase IQ

Reference: Building Blocks, Tables, and Procedures 17

C H A P T E R 2 SQL Language Elements

About this chapter This chapter presents detailed descriptions of the language elements and
conventions of Sybase IQ SQL.

Contents

Keywords
Each SQL statement contains one or more keywords. SQL is not case-
sensitive to keywords, but throughout these manuals, keywords are
indicated in uppercase.

For example, in the following statement, SELECT and FROM are
keywords:

SELECT *
FROM Employees

The following statements are equivalent to the one above:

Select *
From Employees
select * from Employees
sELECT * FRoM Employees

Topic Page
Keywords 17
Identifiers 21
Strings 22
Expressions 23
Search conditions 33
Special values 53
Variables 56
Comments 65
NULL value 67

Keywords

18 Sybase IQ

Reserved words
Some keywords in SQL are also reserved words. To use a reserved word in a
SQL statement as an identifier, you must enclose the word in double quotes.
Many, but not all, of the keywords that appear in SQL statements are reserved
words. For example, you must use the following syntax to retrieve the contents
of a table named SELECT.

SELECT *
FROM "SELECT"

Because SQL is not case-sensitive with respect to keywords, each of the words
in Table 2-1 may appear in uppercase, lowercase, or any combination of the
two. All strings that differ only in capitalization from these words are reserved
words.

If you are using Embedded SQL, you can use the database library function
sql_needs_quotes to determine whether a string requires quotation marks. A
string requires quotes if it is a reserved word or if it contains a character not
ordinarily allowed in an identifier.

Table 2-1 lists the SQL reserved words in Sybase IQ.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 19

Table 2-1: SQL reserved words
active add all algorithm
alter and any append
as asc auto backup
begin between bigint binary
bit bottom break by
calibrate calibration call cancel
capability cascade case cast
certificate char char_convert character
check checkpoint checksum clientport
close columns comment commit
committed comparisons computes conflict
connect constraint contains continue
convert create cross cube
current current_timestamp current_user cursor
date dbspace dbspacename deallocate
debug dec decimal declare
decoupled decrypted default delay
delete deleting density desc
deterministic disable distinct do
double drop dynamic elements
else elseif enable encapsulated
encrypted end endif escape
except exception exclude exec
execute existing exists explicit
express externlogin fastfirstrow fetch
first float following for
force foreign forward from
full gb goto grant
group grouping having hidden
history holdlock identified if
in inactive index index_lparen
inner inout input insensitive
insert inserting install instead
int integer integrated intersect
into iq is isolation
jdk join kb key
lateral left like lock

Keywords

20 Sybase IQ

logging login long mb
match membership message mode
modify namespace natural new
no noholdlock nolock not
notify null numeric of
off on open optimization
option options or order
others out outer over
pages paglock partial partition
passthrough password plan preceding
precision prepare primary print
privileges proc procedure proxy
publication raiserror range raw
readcommitted readonly readpast readtext
readuncommitted readwrite real recursive
reference references release relocate
remote remove rename reorganize
repeatable repeatableread reserve resizing
resource restore restrict return
revoke right rollback rollup
root row rowlock rows
save savepoint schedule scroll
secure select sensitive serializable
service session set setuser
share smallint soapaction some
space sqlcode sqlstate start
stop subtrans subtransaction synchronize
syntax_error table tablock tablockx
tb temporary then ties
time timestamp tinyint to
top tran transaction transactional
transfer tries trigger truncate
tsequal unbounded uncommitted union
unique uniqueidentifier unknown unsigned
update updating updlock url
user utc using validate
values varbinary varchar variable
varying virtual view wait

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 21

Identifiers
Function Identifiers are names of objects in the database, such as user IDs, tables, and

columns.

Description Identifiers have a maximum length of 128 bytes. They must be enclosed in
double quotes or square brackets if any of the following conditions are true:

• The identifier contains spaces.

• The first character of the identifier is not an alphabetic character (as
defined below).

• The identifier contains a reserved word.

• The identifier contains characters other than alphabetic characters and
digits.

Alphabetic characters include the alphabet, as well as the underscore
character (_), at sign (@), number sign (#), and dollar sign ($). The
database collation sequence dictates which characters are considered
alphabetic or digit characters.

You can represent an apostrophe (single quote) inside an identifier by
following it with another apostrophe.

Identifiers have the following limitations:

• Table names cannot contain double quotes.

• User names and database names cannot contain double quote, single
quote, and semi-colon characters.

• User names and database names cannot start or end with a space.

• Dbspace names are not case-sensitive in a CASE RESPECT database.

waitfor web when where
while window with withauto
with_cube with_lparen with_rollup within
word work writeserver writetext
xlock xml

Strings

22 Sybase IQ

If the QUOTED_IDENTIFIER database option is set to OFF, double quotes are
used to delimit SQL strings and cannot be used for identifiers. However, you
can always use square brackets to delimit identifiers, regardless of the setting
of QUOTED_IDENTIFIER.

The default setting for the QUOTED_IDENTIFIER option is OFF for Open
Client and jConnect connections; otherwise the default is ON.

Examples The following are all valid identifiers.

Surname
"Surname"
[Surname]
SomeBigName
"Client Number"

See also For a complete list of reserved words, see “Reserved words” on page 18.

For information on the QUOTED_IDENTIFIER option, see “The
quoted_identifier option” on page 32.

For additional restrictions on server and database names, see “Server
command-line switches” on page 7 in Chapter 1, “Running the Database
Server” of the Utility Guide.

Strings
Strings are of the following types:

• Literal strings

• Expressions with CHAR or VARCHAR data types.

An expression with a CHAR data type might be a built-in or user-defined
function, or one of the many other kinds of expressions available.

For more information on expressions, see “Expressions” on page 23.

A literal string is any sequence of characters enclosed in apostrophes ('single
quotes'). A SQL variable of character data type can hold a string. This is a
simple example of a literal string:

'This is a string.'

Special characters in
strings

Represent special characters in strings by escape sequences, as follows:

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 23

• To represent an apostrophe inside a string, use two apostrophes in a row.
For example:

'John''s database'

• To represent a newline character, use a backslash followed by n (\n). For
example:

'First line:\nSecond line:'

• To represent a backslash character, use two backslashes in a row (\\). For
example:

'c:\\temp'

• Hexadecimal escape sequences can be used for any character, printable or
not. A hexadecimal escape sequence is a backslash followed by an x
followed by two hexadecimal digits (for example, \x6d represents the
letter m). For example:

'\x00\x01\x02\x03'

Compatibility For compatibility with Adaptive Server Enterprise, you can set the
QUOTED_IDENTIFIER database option to OFF. With this setting, you can also
use double quotes to mark the beginning and end of strings. The option is ON
by default.

Expressions
Syntax expression:

case-expression
| constant
| [correlation-name.] column-name [java-ref]
| - expression
| expression operator expression
| (expression)
| function-name (expression, …)
| if-expression
| [java-package-name.] java-class-name java-ref
| (subquery)
| variable-name [java-ref]

Parameters case-expression:
{ CASE search-condition
... WHEN expression THEN expression [, …]
... [ELSE expression]

Expressions

24 Sybase IQ

END
| CASE
... WHEN search-condition THEN expression [, …]
... [ELSE expression]
END }

constant:
{ integer | number | 'string' | special-constant | host-variable }

special-constant:
{ CURRENT { DATE | TIME | TIMESTAMP | USER }
| LAST USER
| NULL
| SQLCODE
| SQLSTATE }

if-expression:
IF condition
... THEN expression
... [ELSE expression]
ENDIF
java-ref:
{ .field-name [java-ref]
| >> field-name [java-ref]
| .method-name ([expression] [, …]) [java-ref]
| >> method-name ([expression] [, …]) [java-ref] }

operator:
{ + | - | * | / | || | % }

Usage Anywhere

Authorization Must be connected to the database

Side effects None

Description Expressions are formed from several different kinds of element, discussed in
the following sections.

Compatibility • The IF condition is not supported in Adaptive Server Enterprise.

• Java expressions are not currently supported in Adaptive Server
Enterprise.

• For other differences, see the separate descriptions of each class of
expression, in the following sections.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 25

Constants in expressions
Constants are numbers or strings. String constants are enclosed in apostrophes.
An apostrophe is represented inside the string by two apostrophes in a row.

Column names in expressions
A column name is an identifier preceded by an optional correlation name. A
correlation name is usually a table name. For more information on correlation
names, see FROM clause in Reference: Statements and Options. If a column
name has characters other than letters, digits, and underscores, the name must
be surrounded by quotation marks (“”). For example, the following are valid
column names:

Employees.Surname
City
"StartDate"

See “Identifiers” on page 21.

Subqueries in expressions
A subquery is a SELECT statement enclosed in parentheses. The SELECT
statement can contain one and only one select list item. When used as an
expression, a scalar subquery is allowed to return only zero or one value;

Within the SELECT list of the top level SELECT, or in the SET clause of an
UPDATE statement, you can use a scalar subquery anywhere that you can use a
column name. However, the subquery cannot appear inside a conditional
expression (CASE, IF, NULLIF, ARGN).

For example, the following statement returns the number of employees in each
department, grouped by department name:

SELECT DepartmentName, COUNT(*), ‘out of’,
(SELECT COUNT(*) FROM Employees)
FROM Departments AS D, Employees AS E
WHERE D.DepartmentID = E.DepartmentID
GROUP BY DepartmentName;

For other uses of subqueries, see “Subqueries in search conditions” on page
35.

Expressions

26 Sybase IQ

SQL operators
This section describes the arithmetic, string, and bitwise operators available in
Sybase IQ. For information on comparison operators, see “Search conditions”
on page 33.

The normal precedence of operations applies. Expressions in parentheses are
evaluated first; then multiplication and division before addition and
subtraction. String concatenation occurs after addition and subtraction.

Arithmetic operators
expression + expression Addition. If either expression is the NULL value,
the result is the NULL value.

expression - expression Subtraction. If either expression is the NULL
value, the result is the NULL value.

- expression Negation. If the expression is the NULL value, the result is the
NULL value.

expression * expression Multiplication. If either expression is the NULL
value, the result is the NULL value.

expression / expression Division. If either expression is the NULL value or
if the second expression is 0, the result is the NULL value.

expression % expression Modulo finds the integer remainder after a
division involving two whole numbers. For example, 21 % 11 = 10 because 21
divided by 11 equals 1 with a remainder of 10.

String operators
expression || expression String concatenation (two vertical bars). If either
string is the NULL value, the string is treated as the empty string for
concatenation.

expression + expression Alternative string concatenation. When using the
+ concatenation operator, you must ensure the operands are explicitly set to
character data types rather than relying on implicit data conversion.

The result data type of a string concatenation operator is a LONG VARCHAR. If
you use string concatenation operators in a SELECT INTO statement, you must
have a Large Objects Management option license or use CAST and set LEFT to
the correct data type and size.

See “REVERSE function [String]” on page 244 for information and usage.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 27

Standards and
compatibility

• SQL92 The || operator is the SQL92 string concatenation operator.

• Sybase The + operator is supported by Adaptive Server Enterprise.

Bitwise operators
You can use the following operators on all unscaled integer data types, in both
Sybase IQ and Adaptive Server Enterprise.

The AND operator (&)

The AND operator compares 2 bits. If they are both 1, the result is 1.

Bitwise OR (|)

The OR operator compares 2 bits. If one or the other bit is 1, the result is 1.

EXCLUSIVE OR (^)

The EXCLUSIVE OR operator results in a 1 when either, but not both, of its
two operands is 1.

Operator Description
& AND
| OR
^ EXCLUSIVE OR
~ NOT

Bit 1 Bit 2 Bit 1 & Bit 2
0 0 0
0 1 0
1 0 0
1 1 1

Bit 1 Bit 2 Bit 1 | Bit 2
0 0 0
0 1 1
1 0 1
1 1 1

Bit 1 Bit 2 Bit 1 ^Bit 2
0 0 0
0 1 1

Expressions

28 Sybase IQ

NOT (~)

The NOT operator is a unary operator that returns the inverse of its operand.

Join operators
The Transact-SQL™ outer join operators *= and =* are supported in Sybase
IQ, in addition to the SQL92 join syntax using a table expression in the FROM
clause.

Compatibility • Modulo The default value is OFF for new databases.

• String concatenation When you are using the + concatenation operator
in Sybase IQ, ensure the operands are explicitly set to strings rather than
relying on implicit data conversion. For example, the following query
returns the integer value 579:

SELECT 123 + 456

whereas the following query returns the character string 123456:

SELECT '123' + '456'

You can use the CAST or CONVERT function to explicitly convert data
types.

Note When used with BINARY or VARBINARY data types, the + operator
is concatenation, not addition.

The || concatenation operator is not supported by Adaptive Server
Enterprise.

1 0 1
1 1 0

Bit 1 Bit 2 Bit 1 ^Bit 2

Bit ~ Bit
1 0
0 1

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 29

Operator precedence
When you are using more than one operator in an expression, Sybase
recommends that you use parentheses to make the order of operation explicit,
rather than relying on an identical operator precedence between Adaptive
Server Enterprise and Sybase IQ.

IF expressions
The syntax of the IF expression is as follows:

IF condition
THEN expression1
[ELSE expression2]
ENDIF

This expression returns:

• If condition is TRUE, the IF expression returns expression1.

• If condition is FALSE, the IF expression returns expression2.

• If condition is FALSE, and there is no expression2, the IF expression
returns NULL.

• If condition is NULL, the IF expression returns NULL.

For more information about TRUE, FALSE, and UNKNOWN conditions, see
“NULL value” on page 67 and “Search conditions” on page 33.

IF statement is different from IF expression
Do not confuse the syntax of the IF expression with that of the IF statement.

See IF statement in Reference: Statements and Options.

CASE expressions
The CASE expression provides conditional SQL expressions. You can use case
expressions anywhere you can use an expression.

The syntax of the CASE expression is as follows:
CASE expression
WHEN expression THEN expression [, …]
[ELSE expression] END

Expressions

30 Sybase IQ

You cannot use a subquery as a value expression in a CASE statement.

If the expression following the CASE statement is equal to the expression
following the WHEN statement, then the expression following the THEN
statement is returned. Otherwise, the expression following the ELSE statement
is returned, if it exists.

For example, the following code uses a case expression as the second clause in
a SELECT statement.

SELECT ID,
 (CASE name
 WHEN 'Tee Shirt' THEN 'Shirt'
 WHEN 'Sweatshirt' THEN 'Shirt'
 WHEN 'Baseball Cap' THEN 'Hat'
 ELSE 'Unknown'
 END) as Type
FROM "GROUPO".Products

An alternative syntax is:
CASE
WHEN search-condition THEN expression [, …]
[ELSE expression] END

If the search condition following the WHEN statement is satisfied, the
expression following the THEN statement is returned. Otherwise the expression
following the ELSE statement is returned, if it exists.

For example, the following statement uses a case expression as the third clause
of a SELECT statement to associate a string with a search condition.

SELECT ID, name,
 (CASE
 WHEN name='Tee Shirt' THEN 'Sale'
 WHEN quantity >= 50 THEN 'Big Sale'
 ELSE 'Regular price'
 END) as Type
FROM "GROUPO".Products

NULLIF function for
abbreviated CASE
expressions

The NULLIF function provides a way to write some CASE statements in short
form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression
equals the second expression, NULLIF returns NULL. If the first expression
does not equal the second expression, NULLIF returns the first expression.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 31

Compatibility of expressions
Table 2-2 and Table 2-3 describe the compatibility of expressions and
constants between Adaptive Server Enterprise (ASE) and Sybase IQ. These
tables are a guide only, and a marking of Both may not mean that the expression
performs in an identical manner for all purposes under all circumstances. For
detailed descriptions, see the Adaptive Server Enterprise documentation and
the Sybase IQ documentation on the individual expression.

In Table 2-2, expr represents an expression, and op represents an operator.

Table 2-2: Compatibility of expressions between ASE and Sybase IQ

Table 2-3: Compatibility of constants between ASE and Sybase IQ

Default interpretation
of delimited strings

By default, Adaptive Server Enterprise and Sybase IQ give different meanings
to delimited strings: that is, strings enclosed in apostrophes (single quotes) and
in quotation marks (double quotes).

Sybase IQ employs the SQL92 convention, that strings enclosed in apostrophes
are constant expressions, and strings enclosed in quotation marks (double
quotes) are delimited identifiers (names for database objects). Adaptive Server
Enterprise employs the convention that strings enclosed in quotation marks are
constants, whereas delimited identifiers are not allowed by default and are
treated as strings.

Expression Supported by
constant Both
column name Both
variable name Both
function (expr) Both
- expr Both
expr op expr Both
(expr) Both
(subquery) Both
if-expression Sybase IQ only

Constant Supported by
integer Both
number Both
'string' Both
special-constant Both
host-variable Sybase IQ

Expressions

32 Sybase IQ

The quoted_identifier option
Both Adaptive Server Enterprise and Sybase IQ provide a quoted_identifier
option that allows the interpretation of delimited strings to be changed. By
default, the quoted_identifier option is set to OFF in Adaptive Server Enterprise,
and to ON in Sybase IQ.

You cannot use SQL reserved words as identifiers if the quoted_identifier option
is off.

For a complete list of reserved words, see Table 2-1 on page 19.

Setting the option Although the Transact-SQL SET statement is not supported for most Adaptive
Server Enterprise connection options, SET is supported for the quoted_identifier
option.

The following statement in either Sybase IQ or Adaptive Server Enterprise
changes the setting of the quoted_identifier option to ON:

SET quoted_identifier ON

With the quoted_identifier option set to ON, Adaptive Server Enterprise allows
table, view, and column names to be delimited by quotes. Other object names
cannot be delimited in Adaptive Server Enterprise.

The following statement in Sybase IQ or Adaptive Server Enterprise changes
the setting of the quoted_identifier option to OFF:

SET quoted_identifier OFF

You can choose to use either the SQL92 or the default Transact-SQL
convention in both Adaptive Server Enterprise and Sybase IQ as long as the
quoted_identifier option is set to the same value in each DBMS.

Examples If you operate with the quoted_identifier option ON (the default Sybase IQ
setting), the following statements involving the SQL keyword user are valid for
both types of DBMS.

CREATE TABLE "user" (
col1 char(5)

) ;
INSERT "user" (col1)
VALUES ('abcde') ;

If you operate with the quoted_identifier option OFF (the default Adaptive
Server Enterprise setting), the following statements are valid for both types of
DBMS.

SELECT *
FROM Employees

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 33

WHERE Surname = "Chin"

Search conditions
Function To specify a search condition for a WHERE clause, a HAVING clause, a CHECK

clause, a JOIN clause, or an IF expression.

Syntax { expression compare expression
| expression compare { ANY | SOME| ALL } (subquery)
| expression IS [NOT] NULL
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE expression [ESCAPE expression]
| expression [NOT] IN ({ expression | subquery |
... value-expr1 , value-expr2 [, value-expr3] … })
| column-name [NOT] CONTAINS (… word1 [, word2,] [, word3] …)
| EXISTS (subquery)
| NOT condition
| condition AND condition
| condition OR condition
| (condition)
| (condition , estimate)
| condition IS [NOT] { TRUE | FALSE | UNKNOWN }

Parameters compare:
{ = | > | < | >= | <= | <> | != | !< | !> }

Usage Anywhere

Authorization Must be connected to the database

Example For example, the following query retrieves the names and birth years of the
oldest employees:

SELECT Surname, BirthDate
FROM Employees
WHERE BirthDate <= ALL (SELECT BirthDate FROM
Employees);

The subqueries that provide comparison values for quantified comparison
predicates might retrieve multiple rows but can have only one column.

Side effects None

See also “Expressions” on page 23.

Description Conditions are used to choose a subset of the rows from a table, or in a control
statement such as an IF statement to determine control of flow.

Search conditions

34 Sybase IQ

SQL conditions do not follow Boolean logic, where conditions are either true
or false. In SQL, every condition evaluates as one of TRUE, FALSE, or
UNKNOWN. This is called three-valued logic. The result of a comparison is
UNKNOWN if either value being compared is the NULL value. For tables
showing how logical operators combine in three-valued logic, see “Three-
valued logic” on page 46.

Rows satisfy a search condition if and only if the result of the condition is
TRUE. Rows for which the condition is UNKNOWN do not satisfy the search
condition. For more information, see “NULL value” on page 67.

Subqueries form an important class of expression that is used in many search
conditions. For more information, see “Subqueries in search conditions” on
page 35.

The different types of search conditions are discussed in the following sections.

Comparison conditions
The syntax for comparison conditions is as follows:

expression compare expression

where compare is a comparison operator. Table 2-4 lists the comparison
operators available in Sybase IQ.

Table 2-4: Comparison operators available in Sybase IQ

Example For example, the following query retrieves the names and birth years of the
oldest employees:

SELECT Surname, BirthDate
FROM Employees
WHERE Surname <= ALL (SELECT MIN(BirthDate) FROM

Operator Description
= Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to
<> Not equal to
!> Not greater than
!< Not less than

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 35

Employees);

The subqueries that provide comparison values for quantified comparison
predicates, as in the preceding example, might retrieve multiple rows but can
only have one column.

Note All string comparisons are:

• Case-sensitive if the database was created as case respect (the default)

• Case-insensitive if the database was created as case ignore

See the “Usage” section of the CREATE DATABASE statement in Reference:
Statements and Options for more details on the results of comparisons in a
case-insensitive database.

Compatibility • Trailing blanks Any trailing blanks in character data are ignored for
comparison purposes by Adaptive Server Enterprise. The behavior of
Sybase IQ when comparing strings is controlled by the Ignore Trailing
Blanks in String Comparisons database creation option.

• Case sensitivity By default, Sybase IQ databases, like Adaptive
Server Enterprise databases, are created as case-sensitive. Comparisons
are carried out with the same attention to case as the database they are
operating on. You can control the case sensitivity of Sybase IQ databases
when creating the database.

Subqueries in search conditions
A subquery is a SELECT statement enclosed in parentheses. Such a SELECT
statement must contain one and only one select list item.

A column can be compared to a subquery in a comparison condition (for
example, >,<, or !=) as long as the subquery returns no more than one row. If
the subquery (which must have one column) returns one row, the value of that
row is compared to the expression. If a subquery returns no rows, its value is
NULL.

Subqueries that return exactly one column and any number of rows can be used
in IN conditions, ANY conditions, ALL conditions, or EXISTS conditions. These
conditions are discussed in the following sections.

Sybase IQ supports UNION only in uncorrelated subquery predicates, not in
scalar value subqueries or correlated subquery predicates.

Search conditions

36 Sybase IQ

Subqueries cannot be used inside a CONTAINS or LIKE predicate.

Sybase IQ does not support multiple subqueries in a single OR clause. For
example, the following query has two subqueries joined by an OR:

CREATE VARIABLE @ln int;

SELECT @ln = 1;select count(*) FROM lineitem

WHERE l_shipdate IN (select l_shipdate FROM lineitem
WHERE l_orderkey IN (2,4,6))

OR l_shipdate IN (select l_shipdate FROM lineitem WHERE
l_orderkey IN (1,3,5))

OR l_linenumber = @ln;

Similar subqueries joined by AND and BETWEEN are allowed.

See “Comparison conditions” on page 34.

Disjunction of subquery predicates
The SQL89 standard allows for several forms of subquery predicates. Each
subquery can appear within the WHERE or HAVING clause with other
predicates, and can be combined using the AND or OR operators. Sybase IQ
supports these subqueries, which can be correlated (contain references to a
table that appears in the outer query and cannot be evaluated independently)
and uncorrelated (do not contain references to remote tables).

The forms of subquery predicates include:

• Unquantified comparison predicates:

<scalar-expression> <comparison-operator>
<subquery>

The comparison operator is: =, <>, >, >=, <, or <=

Unquantified comparison subqueries return exactly one value. If the
subquery returns more than one value, an error message appears. This type
of query is also called a scalar subquery predicate.

• IN predicates:

<scalar-expression> [NOT] IN <subquery>

The IN subquery predicate returns a list of values or a single value. This
type is also called a quantified subquery predicate.

• Existence predicates:

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 37

[NOT] EXISTS <subquery>

The EXISTS predicate represents the existence of the subquery. The
expression EXISTS <subquery> evaluates to true only if the subquery
result is not empty. The EXISTS predicate does not compare results with
any column or expressions in the outer query block, and is typically used
with correlated subqueries.

• Quantified comparison predicates:

<scalar-expression> <comparison-operator> [ANY |
ALL] <subquery>

A quantified comparison predicate compares one or a collection of values
returned from a subquery.

The types of queries you can run include:

• Disjunction of uncorrelated scalar subqueries or IN subqueries that cannot
be executed vertically within the WHERE or HAVING clause

• Disjunction of correlated/uncorrelated EXISTS subqueries within the
WHERE or HAVING clause

• Disjunction of arbitrary correlated/uncorrelated scalar subqueries, IN or
EXISTS subqueries, or quantified comparison subqueries within the
WHERE or HAVING clause

• Arbitrary uncorrelated/correlated subquery predicates combined with
AND/OR (conjunct/disjunct) and simple predicates or subquery
predicates

• Conjunction/disjunction of subquery predicates on top of a view/derived
table

• Disjunction of subquery predicates in UPDATE, DELETE, and SELECT
INTO statements

The SUBQUERY_CACHING_PREFERENCE option lets experienced DBAs
choose which subquery caching method to use. See
SUBQUERY_CACHING_PREFERENCE option in Reference: Statements
and Options.

Examples Example 1 Disjunction of uncorrelated EXISTS and IN subqueries:

SELECT COUNT(*)
FROM supplier
WHERE s_suppkey IN (SELECT MAX(l_suppkey)

FROM lineitem
GROUP BY l_linenumber)

Search conditions

38 Sybase IQ

OR EXISTS (SELECT p_brand
FROM part
WHERE p_brand = ‘Brand#43’);

Example 2 Disjunction of uncorrelated EXISTS subqueries:

SELECT COUNT(*)
FROM supplier
WHERE EXISTS (SELECT l_suppkey

FROM lineitem
WHERE l_suppkey = 12345)

OR EXISTS (SELECT p_brand
FROM part
WHERE p_brand = ‘Brand#43’);

Example 3 Disjunction of uncorrelated scalar or IN subquery predicates:

SELECT COUNT(*)
FROM supplier
WHERE s_acctbal*10 > (SELECT MAX(o_totalprice)

 FROM orders
 WHERE o_custkey = 12345)

OR substring(s_name, 1, 6) IN (SELECT c_name
FROM Customers
WHERE c_nationkey = 10);

Example 4 Disjunction of correlated/uncorrelated quantified comparison
subqueries:

SELECT COUNT(*)
FROM lineitem
WHERE l_suppkey > ANY (SELECT MAX(s_suppkey)

FROM supplier
WHERE s_acctbal >100
GROUP BY s_nationkey)

OR l_partkey >= ANY (SELECT MAX(p_partkey)
FROM part
GROUP BY p_mfgr);

Example 5 Disjunction of any correlated subquery predicates:

SELECT COUNT(*)
FROM supplier S
WHERE EXISTS (SELECT l_suppkey

FROM lineitem
WHERE l_suppkey = S.s_suppkey)

OR EXISTS (SELECT p_brand FROM part
WHERE p_brand = ‘Brand#43’
AND p_partkey > S.s_suppkey);

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 39

Before support for disjunction of subqueries, users were required to write
queries in two parts, and then use UNION to merge the final results.

The following query illustrates a merged query that gets the same results as the
query in “Example 5” on page 38. Performance of the merged query is
suboptimal because it scans the supplier table twice and then merges the results
from each UNION to return the final result.

SELECT COUNT(*)
FROM (SELECT s_suppkey FROM supplier S

WHERE EXISTS (SELECT l_suppkey
FROM lineitem
WHERE l_suppkey = S.s_suppkey)

UNION

SELECT s_suppkey
FROM supplier S
WHERE EXISTS (SELECT p_brand

FROM part
WHERE p_brand = ‘Brand#43’
AND p_partkey > S.s_suppkey)) as UD;

ALL or ANY conditions
The syntax for ANY conditions is:

expression compare ANY (subquery)

where compare is a comparison operator.

For example, an ANY condition with an equality operator is TRUE if
expression is equal to any of the values in the result of the subquery, and
FALSE if the expression is not NULL and does not equal any of the columns
of the subquery:

expression = ANY (subquery)

 The ANY condition is UNKNOWN if expression is the NULL value, unless the
result of the subquery has no rows, in which case the condition is always
FALSE.

You can use the keyword SOME instead of ANY.

The syntax for ALL conditions is:

expression compare ALL (subquery)

where compare is a comparison operator.

Search conditions

40 Sybase IQ

Restrictions If there is more than one expression on either side of a quantified comparison
predicate, an error message is returned. For example:

Subquery allowed only one select list item

Queries of this type can always be expressed in terms of IN subqueries or scalar
subqueries using MIN and MAX set functions.

Compatibility ANY and ALL subqueries are compatible between Adaptive Server Enterprise
and Sybase IQ. Only Sybase IQ supports SOME as a synonym for ANY.

BETWEEN conditions
The syntax for BETWEEN conditions is as follows:

expr [NOT] BETWEEN start-expr AND end-expr

The BETWEEN condition can evaluate as TRUE, FALSE, or UNKNOWN.
Without the NOT keyword, the condition evaluates as TRUE if expr is between
start-expr and end-expr. The NOT keyword reverses the meaning of the
condition but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:
expr >= start-expr AND expr <= end-expr

A BETWEEN predicate is of the form “A between B and C.” Either “B” or “C”
or both “B” and “C” can be subqueries. “A” must be a value expression or
column.

Compatibility The BETWEEN condition is compatible between Sybase IQ and Adaptive
Server Enterprise.

LIKE conditions
The syntax for LIKE conditions is:

expression [NOT] LIKE pattern [ESCAPE escape-expr]

The LIKE condition can evaluate as TRUE, FALSE, or UNKNOWN. You can
use LIKE only on string data.

You cannot use subqueries inside a LIKE predicate.

LIKE predicates that start with characters other than wildcard characters may
execute faster if an HG or LF index is available.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 41

Certain LIKE predicates execute faster, if a WD index is available.

Without the NOT keyword, the condition evaluates as TRUE if expression
matches the pattern. If either expression or pattern is the NULL value, this
condition is UNKNOWN. The NOT keyword reverses the meaning of the
condition but leaves UNKNOWN unchanged.

The pattern might contain any number of wildcard characters. The wildcard
characters are:

All other characters must match exactly.

For example, the search condition:

name LIKE 'a%b_'

is TRUE for any row where name starts with the letter a and has the letter b as
its second-to-last character.

If you specify an escape-expr, it must evaluate to a single character. The
character can precede a percent, an underscore, a left square bracket, or another
escape character in the pattern to prevent the special character from having its
special meaning. When escaped in this manner, a percent matches a percent,
and an underscore matches an underscore.

All patterns of 126 characters or less are supported. Patterns of length greater
than 254 characters are not supported. Some patterns of length between 127
and 254 characters are supported, depending on the contents of the pattern.

Searching for one of a
set of characters

You can specify a set of characters to look for by listing the characters inside
square brackets. For example, the following condition finds the strings smith
and smyth:

LIKE 'sm[iy]th'

Searching for one of a
range of characters

Specify a range of characters to look for by listing the ends of the range inside
square brackets, separated by a hyphen. For example, the following condition
finds the strings bough and rough, but not tough:

LIKE '[a-r]ough'

Wildcard Matches
_ (underscore) Any one character
% (percent) Any string of zero or more characters
[] Any single character in the specified range or set
[^] Any single character not in the specified range or set

Search conditions

42 Sybase IQ

The range of characters [a-z] is interpreted as “greater than or equal to a, and
less than or equal to z,” where the greater than and less than operations are
carried out within the collation of the database. For information on ordering of
characters within a collation, see Chapter 11, “International Languages and
Character Sets” in the System Administration Guide: Volume 1.

The lower end of the range must precede the higher end of the range. For
example, a LIKE condition containing the expression [z-a] returns no rows,
because no character matches the [z-a] range.

Unless the database is created as case-sensitive, the range of characters is case-
insensitive. For example, the following condition finds the strings Bough,
rough, and TOUGH:

LIKE '[a-z]ough'

If the database is created as a case-sensitive database, the search condition is
case-sensitive also.

Combining searches
for ranges and sets

You can combine ranges and sets within square brackets. For example, the
following condition finds the strings bough, rough, and tough:

LIKE '[a-rt]ough'

The bracket [a-mpqs-z] is interpreted as “exactly one character that is either in
the range a to m inclusive, or is p, or is q, or is in the range s to z inclusive.”

Searching for one
character not in a
range

Use the caret character (^) to specify a range of characters that is excluded from
a search. For example, the following condition finds the string tough, but not
the strings rough, or bough:

LIKE '[^a-r]ough'

The caret negates the entire contents of the brackets. For example, the bracket
[^a-mpqs-z] is interpreted as “exactly one character that is not in the range a to
m inclusive, is not p, is not q, and is not in the range s to z inclusive.”

Special cases of
ranges and sets

Any single character in square brackets indicates that character. For example,
[a] matches just the character a. [^] matches just the caret character, [%]
matches only the percent character (the percent character does not act as a
wildcard character in this context), and [_] matches just the underscore
character. Also, [[] matches only the character [.

Other special cases are:

• The expression [a-] matches either of the characters a or -.

• The expression [] is never matched and always returns no rows.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 43

• The expressions [or [abp-q are ill-formed expressions, and give syntax
errors.

• You cannot use wildcard characters inside square brackets. The expression
[a%b] finds one of a, %, or b.

• You cannot use the caret character to negate ranges except as the first
character in the bracket. The expression [a^b] finds one of a, ^, or b.

Compatibility The ESCAPE clause is supported by Sybase IQ only.

IN conditions
The syntax for IN conditions is:

{ expression [NOT] IN (subquery)
| expression [NOT] IN (expression)
| expression [NOT] IN (value-expr1 , value-expr2
[, value-expr3] …) }

Without the NOT keyword, the IN condition is TRUE if expression equals any
of the listed values, UNKNOWN if expression is the NULL value, and FALSE
otherwise. The NOT keyword reverses the meaning of the condition but leaves
UNKNOWN unchanged.

The maximum number of values allowed in an IN condition list is 250,000.

Compatibility IN conditions are compatible between Adaptive Server Enterprise and Sybase
IQ.

CONTAINS conditions
The syntax for CONTAINS conditions is as follows:

{ column-name [NOT] CONTAINS ((word1 [, word2] [, word3] …)

The column-name must be a CHAR, VARCHAR, or LONG VARCHAR (CLOB)
column in a base table, and must have a WD index. The word1, word2 and
word3 expressions must be string constants no longer than 255 bytes, each
containing exactly one word. The length of that word cannot exceed the
maximum permitted word length of the word index of the column.

Search conditions

44 Sybase IQ

Without the NOT keyword, the CONTAINS condition is TRUE if column-name
contains each of the words, UNKNOWN if column-name is the NULL value,
and FALSE otherwise. The NOT keyword reverses these values but leaves
UNKNOWN unchanged.

For example, this search condition:

varchar_col CONTAINS ('cat', ‘mat’)

is TRUE if the value of varchar_col is The cat is on the mat. If the value
of varchar_col is The cat chased the mouse, this condition is FALSE.

When Sybase IQ executes a statement containing both LIKE and CONTAINS,
the CONTAINS condition takes precedence.

Avoid using the CONTAINS predicate in a view that has a user-defined function,
because the CONTAINS criteria are ignored. Use the LIKE predicate with
wildcards instead, or issue the query outside of a view.

EXISTS conditions
The syntax for EXISTS conditions is as follows:

EXISTS(subquery)

The EXISTS condition is TRUE if the subquery result contains at least one row,
and FALSE if the subquery result does not contain any rows. The EXISTS
condition cannot be UNKNOWN.

Compatibility The EXISTS condition is compatible between Adaptive Server Enterprise and
Sybase IQ.

IS NULL conditions
The syntax for IS NULL conditions is:

expression IS [NOT] NULL

Without the NOT keyword, the IS NULL condition is TRUE if the expression is
the NULL value, and FALSE otherwise. The NOT keyword reverses the
meaning of the condition.

Compatibility The IS NULL condition is compatible between Adaptive Server Enterprise and
Sybase IQ.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 45

Conditions with logical operators
Search conditions can be combined using AND, OR, and NOT.

Conditions are combined using AND as follows:
condition1 AND condition2

If both conditions are TRUE, the combined condition is TRUE. If either
condition is FALSE, the combined condition is FALSE. If otherwise, the
combined condition is UNKNOWN.

Conditions are combined using OR as follows:
condition1 OR condition2

If both conditions are TRUE, the combined condition is TRUE. If either
condition is FALSE, the combined condition is FALSE. If otherwise, the
combined condition is UNKNOWN. There is no guaranteed order as to which
condition, condition1 or condition2, is evaluated first.

See “Disjunction of subquery predicates” on page 36.

Compatibility The AND and OR operators are compatible between Sybase IQ and Adaptive
Server Enterprise.

NOT conditions
The syntax for NOT conditions is:

NOT condition1

The NOT condition is TRUE if condition1 is FALSE, FALSE if condition1 is
TRUE, and UNKNOWN if condition1 is UNKNOWN.

Truth value conditions
The syntax for truth value conditions is:

IS [NOT] truth-value

Without the NOT keyword, the condition is TRUE if the condition evaluates to
the supplied truth-value, which must be one of TRUE, FALSE, or
UNKNOWN. Otherwise, the value is FALSE. The NOT keyword reverses the
meaning of the condition but leaves UNKNOWN unchanged.

Compatibility Truth-valued conditions are supported by Sybase IQ only.

Search conditions

46 Sybase IQ

Three-valued logic
The following tables show how the AND, OR, NOT, and IS logical operators of
SQL work in three-valued logic.

AND operator

OR operator

NOT operator

IS operator

User-supplied condition hints
The Sybase IQ query optimizer uses information from available indexes to
select an appropriate strategy for executing a query. For each condition in the
query, the optimizer decides whether the condition can be executed using
indexes, and if so, the optimizer chooses which index and in what order with
respect to the other conditions on that table. The most important factor in these
decisions is the selectivity of the condition; that is, the fraction of the table’s
rows that satisfy that condition.

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

IS TRUE FALSE UNKNOWN
TRUE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE
UNKNOWN FALSE FALSE TRUE

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 47

The optimizer normally decides without user intervention, and it generally
makes optimal decisions. In some situations, however, the optimizer might not
be able to accurately determine the selectivity of a condition before it has been
executed. These situations normally occur only where either the condition is on
a column with no appropriate index available, or where the condition involves
some arithmetic or function expression and is, therefore, too complex for the
optimizer to accurately estimate.

If you have a query that is run frequently, then you may want to experiment to
see whether you can improve the performance of that query by supplying the
optimizer with additional information to aid it in selecting the optimal
execution strategy.

User-supplied condition selectivity
The simplest form of condition hint is to supply a selectivity value that will be
used instead of the value the optimizer would have computed.

Selectivity hints are supplied within the text of the query by wrapping the
condition within parentheses. Then within the parentheses, after the condition,
you add a comma and a numeric value to be used as the selectivity.

This selectivity value is expressed as a percentage of the table’s rows, which
satisfy the condition. Possible numeric values for selectivity thus range from
100.0 to 0.0.

Note In query plans, selectivity is expressed as a fraction instead of as a
percentage; so a user-supplied selectivity of 35.5 appears in that query’s plan
as a selectivity of 0.355000.

Examples • The following query provides an estimate that one and one half percent of
the ship_date values are earlier than 1994/06/30:

SELECT ShipDate
FROM SalesOrderItems
WHERE (ShipDate < '2001/06/30', 1.5)
ORDER BY ShipDate DESC

• The following query estimates that half a percent of the rows satisfy the
condition:

SELECT *
FROM Customers c, SalesOrders o
WHERE (o.SalesRepresentative > 1000.0, 0.5)

AND c.ID = o.customerID

Search conditions

48 Sybase IQ

Fractional percentages enable more precise user estimates to be specified and
can be particularly important for large tables.

Compatibility SQL Anywhere Studio supports user-supplied selectivity estimates.

Adaptive Server Enterprise does not support user-supplied selectivity
estimates.

User-supplied condition hint strings
In addition to supporting user-supplied selectivity estimates, Sybase IQ also
lets users supply additional hint information to the optimizer through a
condition hint string. These per-condition hint strings let users specify
additional execution preferences for a condition, which the optimizer follows,
if possible. These preferences include which index to use for the condition, the
selectivity of the condition, the phase of execution when the condition is
executed, and the usefulness of the condition, which affects its ordering among
the set of conditions executed within one phase of execution.

Condition hint strings, like the user-supplied selectivity estimates, are supplied
within the text of the query by wrapping the condition within parentheses. Then
within the parentheses and after the condition, you add a comma and a supply
a quoted string containing the desired hints. Within that quoted string each hint
appears as a hint type identifier, followed by a colon and the value for that hint
type. Multiple hints within the same hint string are separated from each other
by a comma, and multiple hints can appear in any order. White space is allowed
between any of two elements within a hint string.

There are four different supported hint types:

• Selectivity hints, which are equivalent to the user-supplied selectivity
estimates

• Index preference hints

• Execution phase hints

• Usefulness hints

Selectivity hints

The first hint type that can appear within a hint string is a selectivity hint. A
selectivity hint is identified by a hint type identifier of either “S” or “s”. Like
user-supplied selectivity estimates, the selectivity value is always expressed as
a percentage of the table’s rows, which satisfy the condition.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 49

Example The following example is exactly equivalent to the second example in “User-
supplied condition selectivity” on page 47.

SELECT *
FROM Customers c, SalesOrders o
WHERE (o.SalesRepresentative > 1000.0, 's: 0.5)

AND c.ID = o.CustomerID

Index preference hints

The next supported hint type is an index preference hint, which is identified by
a hint type identifier of either “I” or “i”. The value for an index preference hint
can be any integer between -10 and 10. The meaning of each positive integer
value is to prefer a specific index type, while negative values indicate that the
specific index type is to be avoided.

The effect of an index preference hint is the same as that of the
INDEX_PREFERENCE option, except that the preference applies only to the
condition it is associated with rather than all conditions within the query. An
index preference can only affect the execution of a condition if the specified
index type exists on that column and that index type is valid for use when
evaluating the associated condition; not all index types are valid for use with
all conditions. See “INDEX_PREFERENCE option,” in Chapter 2, “Database
Options,” in Reference: Statements and Options for the specific meanings of
integers between -10 and 10.

Example The following example specifies a 3 percent selectivity and indicates that, if
possible, the condition should be evaluated using an HG index:

SELECT *
FROM Customers c, SalesOrders o
WHERE (o.SalesRepresentative > 1000.0, 'S:3.00, I:+2')

AND c.ID = o.CustomerID

The next example specifies a 37.5 percent selectivity and indicates that if
possible the condition should not be evaluated using an HG index:

SELECT *
FROM Customers c, SalesOrders o
WHERE (o.SalesRepresentative > 1000.0, 'i:-2,
s:37.500')

AND c.ID = o.CustomerID

Execution phase hints

The third supported hint type is the execution phase hint, which is identified
with a hint type identifier of either “E” or “e”.

Search conditions

50 Sybase IQ

Within the Sybase IQ query engine, there are distinct phases of execution
where conditions can be evaluated: invariant, delayed, bound, and horizontal.

By default, the optimizer chooses to evaluate each condition within the earliest
phase of execution where all the information needed to evaluate that condition
is available. Every condition. therefore, has a default execution phase where it
is evaluated.

Because no condition can be evaluated before the information it needs is
available, the execution phase hint can only be used to delay the execution of
a condition to a phase after its default phase. It cannot be used to force a
condition to be evaluated within any phase earlier than its default phase.

The four phases of condition execution from earliest to latest are described as
follows:

Invariant A condition that refers to only one column (or two columns from
the same table) and that can be evaluated using an index is generally referred
to as a simple invariant condition. Simple invariant condition are normally
evaluated early within the optimization process.

This means that the number of rows satisfying all of those invariant conditions
is available to guide the optimizer’s decisions on the best join order and join
algorithms to use. Because this is the earliest phase of execution, a user can
never force a condition into this phase, but conditions can be forced out of this
phase into later phases.

Delayed Some conditions cannot be evaluated until some other part of a
query has been executed. These delayed conditions are evaluated once when
the query node to which they are attached is first fetched. These conditions fall
into two categories, uncorrelated subquery conditions and IN or
PROBABLY_IN pushdown join conditions created by the optimizer.

Bound Some conditions must be evaluated multiple times. These conditions
generally fall into two categories: conditions containing outer references
within a correlated subquery, and pushdown equality join conditions created by
the optimizer. The outer reference conditions, for example, are reevaluated
each time the outer reference value changes during the query's execution.

Horizontal Some conditions, such as those which contain more than two
columns from a table, must be evaluated one row at a time, rather than by using
an index.

An execution phase hint accepts a values that identifies in which execution
phase the user wants the condition to be evaluated. Each value is a case-
insensitive single character:

• D – Delayed

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 51

• B – Bound

• H – Horizontal

Example The following example shows a condition hint string which indicates that the
condition should be moved into the “Delayed” phase of execution, and it
indicates that if possible the condition should be evaluated using an LF index.:

SELECT *
FROM Customers c, SalesOrders o
WHERE (o.SalesRepresentative > 10000.0, 'E:D, I:1')

AND c.id = o.CustomerID

Usefulness hints

The final supported hint type is the usefulness hint, which is identified by a hint
type identifier of either “U” or “u”. The value for a usefulness hint can be any
numeric value between 0.0 and 10.0. Within the optimizer a usefulness value
is computed for every condition, and the usefulness value is then used to
determine the order of evaluation among the set of conditions to be evaluated
within the same phase of execution. The higher the usefulness value, the earlier
it appears in the order of evaluation. Supplying a usefulness hint lets users
place a condition at a particular point within the order of evaluation, but it
cannot change the execution phase within which the condition is evaluated.

Example The following example shows a condition hint string which indicates that the
condition should be moved into the “Delayed” phase of execution, and that its
usefulness should be set to 3.25 within that “Delayed” phase.

SELECT *
FROM Customers c, SalesOrders o
WHERE (co.SalesRepresentative > 10000.0, 'U: 3.25, E:
D')
AND c.id = o.CustomerID

Compatibility SQL Anywhere Studio does not support user-supplied condition hint strings.

Adaptive Server Enterprise does not support user-supplied condition hint
strings.

User-supplied hints on join equality conditions
Users can specify a join algorithm preference that does not affect every join in
the query.

Search conditions

52 Sybase IQ

Simple equality join predicates can be tagged with a predicate hint that allows
a join preference to be specified for just that one join. If the same join has more
than one join condition with a local join preference, and if those hints are not
the same value, then all local preferences are ignored for that join. Local join
preferences do not affect the join order chosen by the optimizer.

The following example requests a hash join:

AND (T.X = 10 * R.x, 'J:4')

Guidelines for usage of user-supplied condition hints
Condition hints are generally appropriate only within frequently run queries.

Only advanced users should experiment with condition hints. The optimizer
generally makes optimal decisions, except where it cannot infer accurate
information about a condition from the available indexes.

The optimizer often rewrites or simplifies the original conditions, and it also
infers new conditions from the original conditions. Condition hints are not
carried through new to conditions inferred by the optimizer, nor are they
carried through to simplified conditions.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 53

Special values
Special values can be used in expressions, and as column defaults when
creating tables.

CURRENT DATABASE special value
Function CURRENT DATABASE returns the name of the current database.

Data type STRING

See also “Expressions” on page 23

CURRENT DATE special value
Function The current year, month and day.

Data type DATE

See also “Expressions” on page 23

“Date and time data types” on page 82

CURRENT PUBLISHER special value
Function CURRENT PUBLISHER returns a string that contains the publisher user ID of

the database for SQL Remote replications.

Data type STRING

CURRENT PUBLISHER can be used as a default value in columns with
character data types.

See also “Expressions” on page 23

CURRENT TIME special value
Function The current hour, minute, second, and fraction of a second.

Data type TIME

Special values

54 Sybase IQ

Description The fraction of a second is stored to 6 decimal places, but the accuracy of the
current time is limited by the accuracy of the system clock.

See also “Expressions” on page 23

“Date and time data types” on page 82

CURRENT TIMESTAMP special value
Function Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value

containing the year, month, day, hour, minute, second and fraction of a second.
As with CURRENT TIME, the accuracy of the fraction of a second is limited by
the system clock.

CURRENT TIMESTAMP defaults to 3 digits.

Data type TIMESTAMP

See also “Expressions” on page 23

“Date and time data types” on page 82

CURRENT USER special value
Function CURRENT USER returns a string that contains the user ID of the current

connection.

Data type STRING

CURRENT USER can be used as a default value in columns with character data
types.

Description On UPDATE, columns with a default value of CURRENT USER are not
changed.

See also “Expressions” on page 23

LAST USER special value
Function The name of the user who last modified the row.

Data type STRING

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 55

LAST USER can be used as a default value in columns with character data
types.

Description On INSERT and LOAD, this constant has the same effect as CURRENT USER.
On UPDATE, if a column with a default value of LAST USER is not explicitly
modified, it is changed to the name of the current user.

When combined with the DEFAULT TIMESTAMP, a default value of LAST
USER can be used to record (in separate columns) both the user and the date
and time a row was last changed.

See also “CURRENT USER special value” on page 54

“CURRENT TIMESTAMP special value” on page 54

CREATE TABLE statement in Reference: Statements and Options

SQLCODE special value
Function Current SQLCODE value.

DATA TYPE STRING

DESCRIPTION The SQLCODE value is set after each statement. You can check the SQLCODE
to see whether or not the statement succeeded.

See also “Expressions” on page 23

Chapter 1, “SQL Statements,” in System Administration Guide: Volume 2

SQLSTATE special value
Function Current SQLSTATE value.

Data type STRING

Description The SQLSTATE value is set after each statement. You can check the SQLSTATE
to see whether or not the statement succeeded.

See also “Expressions” on page 23

Chapter 1, “SQL Statements,” in System Administration Guide: Volume 2

Variables

56 Sybase IQ

TIMESTAMP special value
Function TIMESTAMP indicates when each row in the table was last modified.

Data type TIMESTAMP

Description When a column is declared with DEFAULT TIMESTAMP, a default value is
provided for insert and load operations. The value is updated with the current
date and time whenever the row is updated.

On INSERT and LOAD, DEFAULT TIMESTAMP has the same effect as
CURRENT TIMESTAMP. On UPDATE, if a column with a default value of
TIMESTAMP is not explicitly modified, the value of the column is changed to
the current date and time.

Note Sybase IQ does not support DEFAULT values of UTC TIMESTAMP or
CURRENT UTC TIMESTAMP, nor does IQ support the database option
DEFAULT_TIMESTAMP_INCREMENT. Sybase IQ generates an error every time
an attempt is made to insert or update the DEFAULT value of a column of type
UTC TIMESTAMP or CURRENT UTC TIMESTAMP.

See also “Date and time data types” on page 82

USER special value
Function USER returns a string that contains the user ID of the current connection.

Data type STRING

USER can be used as a default value in columns with character data types.

Description On UPDATE, columns with a default value of USER are not changed.

See also “Expressions” on page 23

“CURRENT USER special value” on page 54

“LAST USER special value” on page 54

Variables
Sybase IQ supports three levels of variables:

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 57

• Local variables These are defined inside a compound statement in a
procedure or batch using the DECLARE statement. They exist only inside
the compound statement.

• Connection-level variables These are defined with a CREATE
VARIABLE statement. They belong to the current connection, and
disappear when you disconnect from the database or when you use the
DROP VARIABLE statement.

• Global variables These are variables that have system-supplied values.

Local and connection-level variables are declared by the user, and can be used
in procedures or in batches of SQL statements to hold information. Global
variables are system-supplied variables that provide system-supplied values.
All global variables have names beginning with two @ signs. For example, the
global variable @@version has a value that is the current version number of
the database server. Users cannot define global variables.

Local variables
Local variables are declared using the DECLARE statement, which can be used
only within a compound statement (that is, bracketed by the BEGIN and END
keywords). The variable is initially set as NULL. You can set the value of the
variable using the SET statement, or you can assign the value using a SELECT
statement with an INTO clause.

The syntax of the DECLARE statement is as follows:

DECLARE variable-name data-type

You can pass local variables as arguments to procedures, as long as the
procedure is called from within the compound statement.

Examples • The following batch illustrates the use of local variables:

BEGIN
DECLARE local_var INT ;
SET local_var = 10 ;
MESSAGE 'local_var = ', local_var ;
END

Running this batch from ISQL displays this message on the server
window:

local_var = 10

Variables

58 Sybase IQ

• The variable local_var does not exist outside the compound statement in
which it is declared. The following batch is invalid, and displays a column
not found error:

-- This batch is invalid.
BEGIN
DECLARE local_var INT ;
SET local_var = 10 ;
MESSAGE 'local_var = ', local_var ;
END;
MESSAGE 'local_var = ', local_var ;

• The following example illustrates the use of SELECT with an INTO clause
to set the value of a local variable:

BEGIN
DECLARE local_var INT ;
SELECT 10 INTO local_var ;
MESSAGE 'local_var = ', local_var ;
END

Running this batch from ISQL displays this message on the server
window:

local_var = 10

Compatibility • Names Adaptive Server Enterprise and Sybase IQ both support local
variables. In Adaptive Server Enterprise, all variables must be prefixed
with an @ sign. In Sybase IQ, the @ prefix is optional. To write
compatible SQL, ensure all your variables have the @ prefix.

• Scope The scope of local variables differs between Sybase IQ and
Adaptive Server Enterprise. Sybase IQ supports the use of the DECLARE
statement to declare local variables within a batch. However, if the
DECLARE is executed within a compound statement, the scope is limited
to the compound statement.

• Declaration Only one variable can be declared for each DECLARE
statement in Sybase IQ. In Adaptive Server Enterprise, more than one
variable can be declared in a single statement.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 59

Connection-level variables
Connection-level variables are declared with the CREATE VARIABLE
statement. The CREATE VARIABLE statement can be used anywhere except
inside compound statements. Connection-level variables can be passed as
parameters to procedures.

The syntax for CREATE VARIABLE is:

CREATE VARIABLE variable-name data-type

When a variable is created, it is initially set to NULL. You can set the value of
connection-level variables in the same way as local variables, using the SET
statement or using a SELECT statement with an INTO clause.

Connection-level variables exist until the connection is terminated, or until you
explicitly drop the variable using the DROP VARIABLE statement. The
following statement drops the variable con_var:

DROP VARIABLE con_var

Example • The following batch of SQL statements illustrates the use of connection-
level variables.

CREATE VARIABLE con_var INT;
SET con_var = 10;
MESSAGE 'con_var = ', con_var;

Running this batch from ISQL displays this message on the server
window:

con_var = 10

Compatibility Adaptive Server Enterprise does not support connection-level variables.

Global variables
Global variables have values set by Sybase IQ. For example, the global
variable @@version has a value that is the current version number of the
database server.

Global variables are distinguished from local and connection-level variables
by two @ signs preceding their names. For example, @@error is a global
variable. Users cannot create global variables, and cannot update the value of
global variables directly.

Variables

60 Sybase IQ

Some global variables, such as @@spid, hold connection-specific information
and therefore have connection-specific values. Other variables, such as
@@connections, have values that are common to all connections.

Global variable and
special constants

The special constants such as CURRENT DATE, CURRENT TIME, USER,
SQLSTATE, and so on are similar to global variables.

The following statement retrieves the value of the version global variable:

SELECT @@version

In procedures, global variables can be selected into a variable list. The
following procedure returns the server version number in the ver parameter.

CREATE PROCEDURE VersionProc (OUT ver
VARCHAR (100))

BEGIN
SELECT @@version
INTO ver;

END

In Embedded SQL, global variables can be selected into a host variable list.

List of global variables Table 2-5 lists the global variables available in Sybase IQ.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 61

Table 2-5: Sybase IQ global variables
Variable name Meaning
@@error Commonly used to check the error status (succeeded or

failed) of the most recently executed statement. Contains
0 if the previous transaction succeeded; otherwise,
contains the last error number generated by the system. A
statement such as if @@error != 0 return causes an exit if
an error occurs. Every SQL statement resets @@error, so
the status check must immediately follow the statement
whose success is in question.

@@fetch_status Contains status information resulting from the last fetch
statement. @@fetch_status may contain the following
values
• 0 The fetch statement completed successfully.
• -1 The fetch statement resulted in an error.
• -2 There is no more data in the result set.
This feature is the same as @@sqlstatus, except that it
returns different values. It is for Microsoft SQL Server
compatibility.

@@identity The last value inserted into an Identity/Autoincrement
column by an insert, load or update statement.
@@identity is reset each time a row is inserted into a
table. If a statement inserts multiple rows, @@identity
reflects the Identity/Autoincrement value for the last row
inserted. If the affected table does not contain an Identity/
Autoincrement column, @@identity is set to 0. The value
of @@identity is not affected by the failure of an insert,
load, or update statement, or the rollback of the
transaction that contained the failed statement.
@@identity retains the last value inserted into an
Identity/Autoincrement column, even if the statement
that inserted that value fails to commit.

@@isolation Current isolation level. @@isolation takes the value of
the active level.

@@procid Stored procedure ID of the currently executing
procedure.

@@servername Name of the current database server.
@@sqlstatus Contains status information resulting from the last

FETCH statement.
@@version Version number of the current version of Sybase IQ.

Variables

62 Sybase IQ

Compatibility Table 2-6 includes all Adaptive Server Enterprise global variables that are
supported in Sybase IQ. Adaptive Server Enterprise global variables that are
not supported by Sybase IQ are not included in the list. In contrast to Table 2-
5, this list includes all global variables that return a value, including those for
which the value is fixed at NULL, 1, -1, or 0, and might not be meaningful.

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 63

Table 2-6: ASE global variables supported in Sybase IQ
Global variable Returns
@@char_convert Returns 0.
@@client_csname In Adaptive Server Enterprise, the client’s character set

name. Set to NULL if client character set has never been
initialized; otherwise, contains the name of the most
recently used character set. Returns NULL in Sybase IQ.

@@client_csid In Adaptive Server Enterprise, the client’s character set ID.
Set to -1 if client character set has never been initialized;
otherwise, contains the most recently used client character
set ID from syscharsets. Returns -1 in Sybase IQ.

@@connections The number of logins since the server was last started.
@@cpu_busy In Adaptive Server Enterprise, the amount of time, in ticks,

that the CPU has spent performing Adaptive Server
Enterprise work since the last time Adaptive Server
Enterprise was started. In Sybase IQ, returns 0.

@@error Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. Contains 0
if the previous transaction succeeded; otherwise, contains
the last error number generated by the system. A statement
such as:

if @@error != 0 return

causes an exit if an error occurs. Every statement resets
@@error, including PRINT statements or IF tests, so the
status check must immediately follow the statement whose
success is in question.

@@identity In Adaptive Server Enterprise, the last value inserted into
an IDENTITY column by an INSERT, LOAD, or SELECT
INTO statement. @@identity is reset each time a row is
inserted into a table. If a statement inserts multiple rows,
@@identity reflects the IDENTITY value for the last row
inserted. If the affected table does not contain an IDENTITY
column, @@identity is set to 0. The value of @@identity
is not affected by the failure of an INSERT or SELECT
INTO statement, or the rollback of the transaction that
contained the failed statement. @@identity retains the last
value inserted into an IDENTITY column, even if the
statement that inserted that value fails to commit.

@@idle In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has been idle since the
server was last started. In Sybase IQ, returns 0.

Variables

64 Sybase IQ

@@io_busy In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has spent performing input
and output operations since the server was last started. In
Sybase IQ, returns 0.

@@isolation Current isolation level of the connection. In Adaptive
Server Enterprise, @@isolation takes the value of the
active level.

@@langid In Adaptive Server Enterprise, defines the local language
ID of the language currently in use. In Sybase IQ, returns 0.

@@language In Adaptive Server Enterprise, defines the name of the
language currently in use. In Sybase IQ, returns “English”.

@@maxcharlen In Adaptive Server Enterprise, maximum length, in bytes,
of a character in the Adaptive Server Enterprise default
character set. In Sybase IQ, returns 1.

@@max_
connections

For the network server, the maximum number of active
clients (not database connections, as each client can
support multiple connections). For Adaptive Server
Enterprise, the maximum number of connections to the
server.

@@ncharsize In Adaptive Server Enterprise, average length, in bytes, of
a national character. In Sybase IQ, returns 1.

@@nestlevel In Adaptive Server Enterprise, nesting level of current
execution (initially 0). Each time a stored procedure or
trigger calls another stored procedure or trigger, the nesting
level is incremented. In Sybase IQ, returns -1.

@@pack_received In Adaptive Server Enterprise, number of input packets
read by Adaptive Server Enterprise since the server was
last started. In Sybase IQ, returns 0.

@@pack_sent In Adaptive Server Enterprise, number of output packets
written by Adaptive Server Enterprise since the server was
last started. In Sybase IQ, returns 0.

@@packet_errors In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was sending
and receiving packets. In Sybase IQ, returns 0.

@@procid Stored procedure ID of the currently executing procedure.
@@servername Name of the local Adaptive Server Enterprise or Sybase IQ

server.
@@spid In Adaptive Server Enterprise, server process ID number

of the current process. In Sybase IQ, the connection handle
for the current connection. This is the same value as that
displayed by the sa_conn_info procedure.

Global variable Returns

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 65

Comments
Use comments to attach explanatory text to SQL statements or statement
blocks. The database server does not execute comments.

Several comment indicators are available in Sybase IQ:

• -- (Double hyphen) The database server ignores any remaining
characters on the line. This is the SQL92 comment indicator.

@@sqlstatus Contains status information resulting from the last FETCH
statement. @@sqlstatus may contain the following values:
• 0 – the FETCH statement completed successfully.
• 1 – the FETCH statement resulted in an error.
• 2 – there is no more data in the result set.

@@thresh_hysteresis In Adaptive Server Enterprise, change in free space
required to activate a threshold. In Sybase IQ, returns 0.

@@timeticks In Adaptive Server Enterprise, number of microseconds
per tick. The amount of time per tick is machine-
dependent. In Sybase IQ, returns 0.

@@total_errors In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was reading or
writing. In Sybase IQ, returns 0.

@@total_read In Adaptive Server Enterprise, number of disk reads by
Adaptive Server Enterprise since the server was last
started. In Sybase IQ, returns 0.

@@total_write In Adaptive Server Enterprise, number of disk writes by
Adaptive Server Enterprise since the server was last
started. In Sybase IQ, returns 0.

@@tranchained Current transaction mode of the Transact-SQL program.
@@tranchained returns 0 for unchained or 1 for chained.

@@trancount Nesting level of transactions. Each BEGIN TRANSACTION
in a batch increments the transaction count.

@@transtate In Adaptive Server Enterprise, current state of a transaction
after a statement executes. In Sybase IQ, returns -1.

@@version Information about the current version of Adaptive Server
Enterprise or Sybase IQ.

Global variable Returns

Comments

66 Sybase IQ

• // (Double slash) The double slash has the same meaning as the double
hyphen.

• /* … */ (Slash-asterisk) Any characters between the two comment
markers are ignored. The two comment markers might be on the same or
different lines. Comments indicated in this style can be nested. This style
of commenting is also called C-style comments.

• % (Percent sign) The percent sign has the same meaning as the double
hyphen. Sybase recommends that you do not use % as a comment
indicator.

Note The double-hyphen and the slash-asterisk comment styles are compatible
with Adaptive Server Enterprise.

Examples • This example illustrates the use of double-dash comments:

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
-- fullname concatenates the firstname and lastname
-- arguments with a single space between.
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ' ' || lastname;
RETURN (name);

END

• This example illustrates the use of C-style comments:

/*
Lists the names and employee IDs of employees
who work in the sales department.

*/
CREATE VIEW SalesEmployee AS
SELECT emp_id, emp_lname, emp_fname
FROM "GROUPO".Employees
WHERE DepartmentID = 200

CHAPTER 2 SQL Language Elements

Reference: Building Blocks, Tables, and Procedures 67

NULL value
Function To specify a value that is unknown or not applicable

Syntax NULL

Usage Anywhere

Permissions Must be connected to the database

Side effects None

Description The NULL value is a special value that is different from any valid value for any
data type. However, the NULL value is a legal value in any data type. The
NULL value is used to represent missing or inapplicable information. These
are two separate and distinct cases where NULL is used:

SQL allows columns to be created with the NOT NULL restriction. This means
that those particular columns cannot contain the NULL value.

The NULL value introduces the concept of three valued logic to SQL. The
NULL value compared using any comparison operator with any value
including the NULL value is UNKNOWN. The only search condition that
returns TRUE is the IS NULL predicate. In SQL, rows are selected only if the
search condition in the WHERE clause evaluates to TRUE; rows that evaluate
to UNKNOWN or FALSE are not selected.

You can also use the IS [NOT] truth-value clause, where truth-value is one of
TRUE, FALSE or UNKNOWN, to select rows where the NULL value is
involved. See “Search conditions” on page 33 for a description of this clause.

In the following examples, the column Salary contains the NULL value.

Situation Description
missing The field does have a value, but that value is unknown.
inapplicable The field does not apply for this particular row.

Condition Truth value Selected?
Salary = NULL UNKNOWN NO
Salary <> NULL UNKNOWN NO
NOT (Salary = NULL) UNKNOWN NO
NOT (Salary <> NULL) UNKNOWN NO
Salary = 1000 UNKNOWN NO
Salary IS NULL TRUE YES
Salary IS NOT NULL FALSE NO

NULL value

68 Sybase IQ

The same rules apply when comparing columns from two different tables.
Therefore, joining two tables together does not select rows where any of the
columns compared contain the NULL value.

The NULL value also has an interesting property when used in numeric
expressions. The result of any numeric expression involving the NULL value
is the NULL value. This means that if the NULL value is added to a number,
the result is the NULL value—not a number. If you want the NULL value to be
treated as 0, you must use the ISNULL(expression, 0) function. See Chapter 4,
“SQL Functions.”

Many common errors in formulating SQL queries are caused by the behavior
of NULL. Be careful to avoid these problem areas. See “Search conditions” on
page 33 for a description of the effect of three-valued logic when combining
search conditions.

Example The following INSERT statement inserts a NULL into the date_returned
column of the Borrowed_book table.

INSERT
INTO Borrowed_book
(date_borrowed, date_returned, book)
VALUES (CURRENT DATE, NULL, '1234')

Salary = 1000 IS
UNKNOWN

TRUE YES
Condition Truth value Selected?

Reference: Building Blocks, Tables, and Procedures 69

C H A P T E R 3 SQL Data Types

About this chapter This chapter describes the data types supported by Sybase IQ.

Contents

Character data types
Description For storing strings of letters, numbers and symbols.

Syntax CHAR [(max-length)]

CHARACTER [(max-length)]

CHARACTER VARYING [(max-length)]

VARCHAR [(max-length)]

UNIQUEIDENTIFIERSTR

Usage CHAR Character data of maximum length max-length bytes. If max-
length is omitted, the default is 1. The maximum size allowed is 32KB –
1. See Notes for restrictions on CHAR data greater than 255 bytes.

See the notes below on character data representation in the database, and
on storage of long strings.

Topic Page
Character data types 69
Numeric data types 73
Binary data types 77
Bit data type 82
Date and time data types 82
Sending dates and times to the database 84
Retrieving dates and times from the database 85
Comparing dates and times 85
Using unambiguous dates and times 86
Domains 87
Data type conversions 89
Sybase IQ binary load format 94

Character data types

70 Sybase IQ

All CHAR values are blank padded up to max-length, regardless of whether the
BLANK PADDING option is specified. When multibyte character strings are
held as a CHAR type, the maximum length is still in bytes, not characters.

CHARACTER Same as CHAR.

CHARACTER VARYING Same as VARCHAR.

LONG VARCHAR Arbitrary length character data. The maximum size is
limited by the maximum size of the database file (currently 2 gigabytes).

TEXT This is a user-defined data type. It is implemented as a LONG
VARCHAR allowing NULL.

VARCHAR Same as CHAR, except that no blank padding is added to the
storage of these strings, and VARCHAR strings can have a maximum length of
(32KB – 1). See Notes for restrictions on VARCHAR data greater than 255
bytes.

UNIQUEIDENTIFIERSTR Domain implemented as CHAR(36). This data
type is used for remote data access, when mapping Microsoft SQL Server
uniqueidentifier columns.

Notes

As a separately licensed option, Sybase IQ supports Character Large Object
(CLOB) data with a length ranging from zero (0) to 512TB (terabytes) for an IQ
page size of 128KB or 2PB (petabytes) for an IQ page size of 512KB. The
maximum length is equal to 4GB multiplied by the database page size. See
Large Objects Management in Sybase IQ.

Storage sizes Table 3-1 lists the storage size of character data.

Table 3-1: Storage size of character data

Character sets and
code pages

Character data is placed in the database using the exact binary representation
that is passed from the application. This usually means that character data is
stored in the database with the binary representation of the character set used
by your system. You can find documentation about character sets in the
documentation for your operating system.

Data type Column definition Input data Storage
CHARACTER,
CHAR

width of (32K – 1) bytes (32K – 1) bytes (32K – 1) bytes

VARCHAR,
CHARACTER
VARYING

width of (32K – 1) bytes (32K – 1) bytes (32K – 1) bytes

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 71

On Windows, code pages are the same for the first 128 characters. If you use
special characters from the top half of the code page (accented international
language characters), you must be careful with your databases. In particular, if
you copy the database to a different machine using a different code page, those
special characters are retrieved from the database using the original code page
representation. With the new code page, they appear on the screen to be the
wrong characters.

This problem also appears if you have two clients using the same multiuser
server, but running with different code pages. Data inserted or updated by one
client might appear incorrect to another.

This problem also shows up if a database is used across platforms.
PowerBuilder and many other Windows applications insert data into the
database in the standard ANSI character set. If non-Windows applications
attempt to use this data, they do not properly display or update the extended
characters.

This problem is quite complex. If any of your applications use the extended
characters in the upper half of the code page, make sure that all clients and all
machines using the database use the same or a compatible code page.

Indexes All index types, except DATE, TIME, and DTTM, are supported for CHAR data
and VARCHAR data less than or equal to 255 bytes in length.

VARCHAR data and
trailing blanks

Data inserted using INSERT, UPDATE, or LOAD TABLE can be:

• Enclosed in quotes

• Not enclosed in quotes

• Binary

For a column of data type VARCHAR, trailing blanks within the data being
inserted are handled as follows:

• For data enclosed in quotes, trailing blanks are never trimmed.

• For data not enclosed in quotes:

• Trailing blanks always trimmed on insert and update.

• For a LOAD statement, you can use the STRIP RTRIM/OFF LOAD
option to specify whether to have the trailing blanks trimmed. The
STRIP RTRIM/OFF option applies only to variable-length non-binary
data. For example, assume the following schema:

CREATE TABLE t(c1 VARCHAR(3));
LOAD TABLE t(c1 ',') STRIP RTRIM // trailing blanks trimmed

LOAD TABLE t(c1 ',') STRIP OFF // trailing blanks not trimmed

Character data types

72 Sybase IQ

LOAD TABLE t(c1 ASCII(3)) ... STRIP RTRIM // trailing blanks not trimmed
LOAD TABLE t(c1 ASCII(3)) ... STRIP OFF // trailing blanks trimmed

LOAD TABLE t(c1 BINARY) STRIP RTRIM // trailing blanks trimmed
LOAD TABLE t(c1 BINARY) STRIP OFF // trailing blanks trimmed

• For binary data, trailing blanks are always trimmed.

When you write your applications, do not depend on the existence of trailing
blanks in VARCHAR columns. If an application relies on trailing blanks, use a
CHAR column instead of a VARCHAR column.

Restriction on CHAR and VARCHAR data over 255 bytes

Only the default index, WD, and CMP index types are supported for CHAR and
VARCHAR columns over 255 bytes. You cannot create an LF, HG, HNG, DATE,
TIME, or DTTM index for these columns.

Compatibility

• The CHARACTER (n) alternative for CHAR is not supported in Adaptive
Server Enterprise.

• Sybase IQ does not support the NCHAR, NVARCHAR, UNICHAR, and
UNIVARCHAR data types provided by Adaptive Server Enterprise. Sybase
IQ supports Unicode in the CHAR and VARCHAR data types.

• Sybase IQ supports a longer LONG VARCHAR data type than SQL
Anywhere. See Large Objects Management in Sybase IQ.

• For compatibility between Sybase IQ and Adaptive Server Enterprise,
always specify a length for character data types.

Long strings SQL Anywhere treats CHAR, VARCHAR, and LONG VARCHAR columns all as
the same type. Values up to 254 characters are stored as short strings, with a
preceding length byte. Any values that are longer than 255 bytes are considered
long strings. Characters after the 255th are stored separate from the row
containing the long string value.

There are several functions (see SQL Functions) that will ignore the part of any
string past the 255th character. They are soundex, similar, and all of the date
functions. Also, any arithmetic involving the conversion of a long string to a
number will work on only the first 255 characters. It would be extremely
unusual to run in to one of these limitations.

All other functions and all other operators work with the full length of long
strings.

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 73

Numeric data types
Description For storing numerical data.

Syntax [UNSIGNED] BIGINT
[UNSIGNED] { INT | INTEGER }

SMALLINT
TINYINT
DECIMAL [(precision [, scale])]

NUMERIC [(precision [, scale])]

DOUBLE
FLOAT [(precision)]

REAL

Usage BIGINT A signed 64-bit integer, requiring 8 bytes of storage.

You can specify integers as UNSIGNED. By default the data type is signed. Its
range is between -9223372036854775808 and 9223372036854775807
(signed) or from 0 to 18446744073709551615 (unsigned).

INT or INTEGER A signed 32-bit integer with a range of values between
-2147483648 and 2147483647 requiring 4 bytes of storage.

The INTEGER data type is an exact numeric data type; its accuracy is preserved
after arithmetic operations.

You can specify integers as UNSIGNED; by default the data type is signed. The
range of values for an unsigned integer is between 0 and 4294967295.

SMALLINT A signed 16-bit integer with a range between -32768 and 32767,
requiring 2 bytes of storage.

The SMALLINT data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations.

TINYINT An unsigned 8-bit integer with a range between 0 and 255,
requiring 1 byte of storage.

The TINYINT data type is an exact numeric data type; its accuracy is preserved
after arithmetic operations.

Numeric data types

74 Sybase IQ

DECIMAL A signed decimal number with precision total digits and with
scale of the digits after the decimal point. The precision can equal 1 to 126, and
the scale can equal 0 up to precision value. The defaults are scale = 38 and
precision = 126. Results are calculated based on the actual data type of the
column to ensure accuracy, but you can set the maximum scale of the result
returned to the application. For more information, see the
“MAX_CLIENT_NUMERIC_SCALE option” on page 420 and the SET
OPTION statement in Reference: Statements and Options.

Table 3-2 lists the storage required for a decimal number.

Table 3-2: Storage size for a decimal number

The storage requirement in bytes for a decimal value with a precision greater
than 18 can be calculated using the following formula:

4 + 2 * (int(((prec - scale) + 3) / 4) +
int((scale + 3) / 4) + 1)

where int takes the integer portion of its argument. The storage used by a
column is based upon the precision and scale of the column. Each cell in the
column has enough space to hold the largest value of that precision and scale.
For example:

NUMERIC(18,4) takes 8 bytes per cell
NUMERIC(19,4) takes 16 bytes per cell

The DECIMAL data type is an exact numeric data type; its accuracy is preserved
to the least significant digit after arithmetic operations. Its maximum absolute
value is the number of nines defined by [precision - scale], followed by the
decimal point, and then followed by the number of nines defined by scale. The
minimum absolute nonzero value is the decimal point, followed by the number
of zeros defined by [scale - 1], then followed by a single one. For example:

NUMERIC (3,2) Max positive = 9.99 Min non-zero = 0.01
Max negative = -9.99

If neither precision nor scale is specified for the explicit conversion of NULL
to NUMERIC, the default is NUMERIC(1,0). For example,

SELECT CAST(NULL AS NUMERIC) A,
CAST(NULL AS NUMERIC(15,2)) B

Precision Storage
1 to 4 2 bytes
5 to 9 4 bytes
10 to 18 8 bytes
19 to 126 See below

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 75

is described as:

A NUMERIC(1,0)
B NUMERIC(15,2)

NUMERIC Same as DECIMAL.

DOUBLE A signed double-precision floating-point number stored in 8 bytes.
The range of absolute, nonzero values is between 2.2250738585072014e-308
and 1.797693134862315708e+308. Values held as DOUBLE are accurate to 15
significant digits, but might be subject to rounding errors beyond the fifteenth
digit.

The DOUBLE data type is an approximate numeric data type; it is subject to
rounding errors after arithmetic operations.

FLOAT If precision is not supplied, the FLOAT data type is the same as the
REAL data type. If precision supplied, then the FLOAT data type is the same as
the REAL or DOUBLE data type, depending on the value of the precision. The
cutoff between REAL and DOUBLE is platform-dependent, and it is the number
of bits used in the mantissa of single-precision floating point number on the
platform.

When a column is created using the FLOAT data type, columns on all
platforms are guaranteed to hold the values to at least the specified minimum
precision. In contrast, REAL and DOUBLE do not guarantee a platform-
independent minimum precision.

The FLOAT data type is an approximate numeric data type; it is subject to
rounding errors after arithmetic operations.

REAL A signed single-precision floating-point number stored in 4 bytes. The
range of absolute, nonzero values is 1.175494351e-38 to 3.402823466e+38.
Values held as REAL are accurate to 6 significant digits, but might be subject to
rounding errors beyond the sixth digit.

The REAL data type is an approximate numeric data type; it is subject to
rounding errors after arithmetic operations.

Notes

• The INTEGER, NUMERIC, and DECIMAL data types are sometimes called
exact numeric data types, in contrast to the approximate numeric data
types FLOAT, DOUBLE, and REAL. Only exact numeric data is guaranteed
to be accurate to the least significant digit specified after arithmetic
operations.

Numeric data types

76 Sybase IQ

• Do not fetch TINYINT columns into Embedded SQL variables defined as
CHAR or UNSIGNED CHAR, since the result is an attempt to convert the
value of the column to a string and then assign the first byte to the variable
in the program.

Indexes • The CMP and HNG index types do not support the FLOAT, DOUBLE, and
REAL data types, and the HG index type is not recommended.

• The WD, DATE, TIME, and DTTM index types do not support the numeric
data types.

Compatibility

• In embedded SQL, fetch TINYINT columns into 2-byte or 4-byte integer
columns. Also, to send a TINYINT value to a database, the C variable
should be an integer.

• Adaptive Server Enterprise 12.5.x versions do not support unsigned
integers. You can map Sybase IQ unsigned integers to Adaptive Server
Enterprise signed integers or numeric data, and the data are converted
implicitly.

• Map IQ UNSIGNED SMALLINT data to ASE INT

• If you have negative values, map IQ UNSIGNED BIGINT to ASE
NUMERIC (precision, scale)

To avoid performance issues for cross-database joins on UNSIGNED
BIGINT columns, the best approach is to cast to a (signed) BIGINT on
the Sybase IQ side.

• You should avoid default precision and scale settings for NUMERIC and
DECIMAL data types, as these differ by product:

• The FLOAT (p) data type is a synonym for REAL or DOUBLE, depending
on the value of p. For Adaptive Server Enterprise, REAL is used for p less
than or equal to 15, and DOUBLE for p greater than 15. For Sybase IQ, the
cutoff is platform-dependent, but on all platforms, the cutoff value is
greater than 22.

Database Default precision Default scale
Sybase IQ 126 38
Adaptive Server
Enterprise

18 0

SQL Anywhere 30 6

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 77

• Sybase IQ includes two user-defined data types, MONEY and
SMALLMONEY, which are implemented as NUMERIC(19,4) and
NUMERIC(10,4) respectively. They are provided primarily for
compatibility with Adaptive Server Enterprise.

Binary data types
Description For storing raw binary data, such as pictures, in a hexadecimal-like notation,

up to a length of (32K – 1) bytes. The UNIQUEIDENTIFIER data type is used for
storage of UUID (also known as GUID) values.

Syntax BINARY [(length)]

VARBINARY [(max-length)]

UNIQUEIDENTIFIER

Usage Binary data begins with the characters “0x” or “0X” and can include any
combination of digits and the uppercase and lowercase letters A through F. You
can specify the column length in bytes, or use the default length of 1 byte. Each
byte stores 2 hexadecimal digits. Even though the default length is 1 byte,
Sybase recommends that you always specify an even number of characters for
BINARY and VARBINARY column length. If you enter a value longer than the
specified column length, Sybase IQ truncates the entry to the specified length
without warning or error.

BINARY Binary data of length length bytes. If length is omitted, the default
is 1 byte. The maximum size allowed is 255 bytes. Use the fixed-length binary
type BINARY for data in which all entries are expected to be approximately
equal in length. Because entries in BINARY columns are zero-padded to the
column length length, they might require more storage space than entries in
VARBINARY columns.

VARBINARY Binary data up to a length of max-length bytes. If max-length
is omitted, the default is 1 byte. The maximum size allowed is (32K – 1) bytes.
Use the variable-length binary type VARBINARY for data that is expected to
vary greatly in length.

Notes

As a separately licensed option, Sybase IQ supports binary large object
(BLOB) data with a length ranging from zero (0) to 512TB (terabytes) for an
IQ page size of 128KB or 2PB (petabytes) for an IQ page size of 512KB. The
maximum length is equal to 4GB multiplied by the database page size. See
Large Objects Management in Sybase IQ.

Binary data types

78 Sybase IQ

For information on LONG BINARY and IMAGE data types, see “Binary data
types” on page 603.

Treatment of trailing
zeros

All BINARY columns are padded with zeros to the full width of the column.
Trailing zeros are truncated in all VARBINARY columns.

The following example creates a table with all four variations of BINARY and
VARBINARY data types defined with NULL and NOT NULL. The same data is
inserted in all four columns and is padded or truncated according to the data
type of the column.

CREATE TABLE zeros (bnot BINARY(5) NOT NULL,
bnull BINARY(5) NULL,
vbnot VARBINARY(5) NOT NULL,
vbnull VARBINARY(5) NULL);

INSERT zeros VALUES (0x12345000, 0x12345000,
0x12345000, 0x12345000);

INSERT zeros VALUES (0x123, 0x123, 0x123, 0x123);
INSERT zeros VALUES (0x0, 0x0, 0x0, 0x0);
INSERT zeros VALUES ('002710000000ae1b',
'002710000000ae1b', '002710000000ae1b',
'002710000000ae1b');
SELECT * FROM zeros;

Because each byte of storage holds 2 hexadecimal digits, Sybase IQ expects
binary entries to consist of the characters “0x” followed by an even number of
digits. When the “0x” is followed by an odd number of digits, Sybase IQ
assumes that you omitted the leading 0 and adds it for you.

Input values “0x00” and “0x0” are stored as “0x00” in variable-length binary
columns (VARBINARY). In fixed-length binary columns (BINARY), the value is
padded with zeros to the full length of the field:

INSERT zeros VALUES (0x0, 0x0, 0x0, 0x0);
SELECT * FROM zeros

bnot bnull vbnot vbnull
0x1234500000 0x1234500000 0x12345000 0x12345000
0x0123000000 0x0123000000 0x0123 0x0123
0x0000000000 0x0000000000 0x00 0x00
0x3030323731 0x3030323731 0x3030323731 0x3030323731

bnot bnull vbnot vbnull
0x0000000000 0x0000000000 0x00 0x00

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 79

If the input value does not include “0x”, Sybase IQ assumes that the value is an
ASCII value and converts it. For example:

CREATE TABLE sample (col_bin BINARY(8));
INSERT sample VALUES ('002710000000ae1b');
SELECT * FROM sample;

Note In the above example, ensure you set the string_rtruncation option to
“off”.

When you select a BINARY value, you must specify the value with the padded
zeros or use the CAST function. For example:

SELECT * FROM zeros WHERE bnot = 0x0123000000;

or :

SELECT * FROM zeros WHERE bnot = CAST(0x0123 as
binary(5));

Loading ASCII data
from a flat file

Any ASCII data loaded from a flat file into a binary type column (BINARY or
VARBINARY) is stored as nibbles. For example, if 0x1234 or 1234 is read from
a flat file into a binary column, Sybase IQ stores the value as hexadecimal
1234. Sybase IQ ignores the “0x” prefix. If the input data contains any
characters out of the range 0 – 9, a – f, and A – F, the data is rejected.

Storage size Table 3-3 lists the storage size of binary data.

Table 3-3: Storage size of binary data

Platform dependence The exact form in which you enter a particular value
depends on the platform you are using. Therefore, calculations involving
binary data might produce different results on different machines.

col_bin
0x3030323731303030

Data type Column definition Input data Storage
VARBINARY width of (32K – 1) bytes (32K – 1) bytes

binary
(32K – 1) bytes

VARBINARY width of (32K– 1) bytes (64K – 2) bytes
ASCII

(32K – 1) bytes

BINARY width of 255 bytes 255 bytes binary 255 bytes
BINARY width of 255 bytes 510 bytes ASCII 255 bytes

Binary data types

80 Sybase IQ

For platform-independent conversions between hexadecimal strings and
integers, use the INTTOHEX and HEXTOINT functions rather than the platform-
specific CONVERT function. For details, see the section “Data type conversion
functions” on page 108.

String operators The concatenation string operators || and + both support binary type data.
Explicit conversion of binary operands to character data types is not necessary
with the || operator. Explicit and implicit data conversion produce different
results, however.

Restrictions on BINARY and VARBINARY data

The following restrictions apply to columns containing BINARY and
VARBINARY data:

• You cannot use the aggregate functions SUM, AVG, STDDEV, or
VARIANCE with the binary data types. The aggregate functions MIN, MAX,
and COUNT do support the binary data types BINARY and VARBINARY.

• HNG, WD, DATE, TIME, and DTTM indexes do not support BINARY or
VARBINARY data.

• Only the default index and CMP index types are supported for VARBINARY
data greater than 255 bytes in length.

• Bit operations are supported on BINARY and VARBINARY data that is 8
bytes or less in length.

Compatibility

The treatment of trailing zeros in binary data differs between Sybase IQ, SQL
Anywhere, and Adaptive Server Enterprise:

Table 3-4: Treatment of trailing zeros

Adaptive Server Enterprise, SQL Anywhere, and Sybase IQ all support the
STRING_RTRUNCATION database option, which affects error message
reporting when an INSERT or UPDATE string is truncated. For Transact-SQL
compatible string comparisons, set the STRING_RTRUNCATION option to the
same value in both databases.

Data type Sybase IQ SQL Anywhere ASE
BINARY NOT NULL Padded Not padded Padded
BINARY NULL Padded Not padded Not padded
VARBINARY NOT NULL Truncated, not padded Truncated, not padded Truncated, not padded
VARBINARY NULL Truncated, not padded Truncated, not padded Truncated, not padded

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 81

You can also set the STRING_RTRUNCATION option ON when loading data
into a table, to alert you that the data is too large to load into the field. The
default value is ON.

Bit operations on binary type data are not supported by Adaptive Server
Enterprise. SQL Anywhere only supports bit operations against the first four
bytes of binary type data. Sybase IQ supports bit operations against the first
eight bytes of binary type data.

UNIQUEIDENTIFIER Used for storage of UUID (also known as GUID)
values. The UNIQUEIDENTIFIER data type is often used for a primary key or
other unique column to hold UUID (Universally Unique Identifier) values that
can be used to uniquely identify rows. The NEWID function generates UUID
values in such a way that a value produced on one computer does not match a
UUID produced on another computer. UNIQUEIDENTIFIER values generated
using NEWID can therefore be used as keys in a synchronization environment.

For example, the following statement updates the table mytab and sets the value
of the column uid_col to a unique identifier generated by the NEWID function,
if the current value of the column is NULL.

UPDATE mytab
SET uid_col = NEWID()

WHERE uid_col IS NULL

If you execute the following statement,

SELECT NEWID()

the unique identifier is returned as a BINARY(16). For example, the value might
be 0xd3749fe09cf446e399913bc6434f1f08. You can convert this string into a
readable format using the UUIDTOSTR() function.

UUID values are also referred to as GUIDs (Globally Unique Identifier).

The STRTOUUID and UUIDTOSTR functions are used to convert values
between UNIQUEIDENTIFIER and string representations.

UNIQUEIDENTIFIER values are stored and returned as BINARY(16).

Because UNIQUEIDENTIFIER values are large, using UNSIGNED BIGINT or
UNSIGNED INT identity columns instead of UNIQUEIDENTIFIER is more
efficient, if you do not need cross database unique identifiers.

Standards and compatibility for UNIQUEIDENTIFIER

• SQL92 Vendor extension.

• Sybase Supported by SQL Anywhere. Not supported by Adaptive
Server Enterprise.

Bit data type

82 Sybase IQ

• Backwards compatibility In databases created before Sybase IQ
version 12.7, the STRTOUUID, UUIDTOSTR, and NEWID functions were
supported through CIS functional compensation. In versions 15.1 and
later, the STRTOUUID, UUIDTOSTR, and NEWID functions are native
Sybase IQ functions.

See also

For more information related to UNIQUEIDENTIFIER:

• “NEWID function [Miscellaneous]” on page 208

• “UUIDTOSTR function [String]” on page 331

• “STRTOUUID function [String]” on page 263

Bit data type
Description For storing Boolean values.

Usage BIT stores only the values 0 or 1. Inserting any nonzero value into a BIT column
stores a 1 in the column. Inserting any zero value into a BIT column stores a 0.

Only the default index type is supported for BIT data.

Compatibility

 Adaptive Server Enterprise BIT datatypes only allow 0 or 1 values.

Date and time data types
Description For storing dates and times.

Syntax DATE
DATETIME
SMALLDATETIME
TIME
TIMESTAMP

Data type Values Supported by
BIT 0 or 1 Sybase IQ and Enterprise

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 83

Usage DATE A calendar date, such as a year, month and day. The year can be from
0001 to 9999. The day must be a nonzero value, so that the minimum date is
0001-01-01. A DATE value requires 4 bytes of storage.

DATETIME A domain, implemented as TIMESTAMP. DATETIME is provided
primarily for compatibility with Adaptive Server Enterprise. For an exception,
see “Compatibility of string to datetime conversions” on page 90.

SMALLDATETIME A domain, implemented as TIMESTAMP.
SMALLDATETIME is provided primarily for compatibility with Adaptive
Server Enterprise. For an exception, see “Compatibility of string to datetime
conversions” on page 90.

TIME Time of day, containing hour, minute, second, and fraction of a second.
The fraction is stored to 6 decimal places. A TIME value requires 8 bytes of
storage. (ODBC standards restrict TIME data type to an accuracy of seconds.
For this reason, do not use TIME data types in WHERE clause comparisons that
rely on a higher accuracy than seconds.)

TIMESTAMP Point in time, containing year, month, day, hour, minute,
second, and fraction of a second. The fraction is stored to 6 decimal places. The
day must be a nonzero value. A TIMESTAMP value requires 8 bytes of storage.

The valid range of the TIMESTAMP data type is from 0001-01-01
00:00:00.000000 to 9999-12-31 23:59:59.999999. The display of TIMESTAMP
data outside the range of 1600-02-28 23:59:59 to 7911-01-01 00:00:00 might
be incomplete, but the complete datetime value is stored in the database; you
can see the complete value by first converting it to a character string. You can
use the CAST() function to do this, as in the following example, which first
creates a table with DATETIME and TIMESTAMP columns, then inserts values
where the date is greater 7911-01-01.

create table mydates (id int, descript char(20),
datetime_null datetime, timestamp_null timestamp);

insert into mydates values (1, 'example', '7911-12-30
23:59:59','7911-12-30 06:03:44');

commit;

When you select without using CAST, hours and minutes are set to 00:00:

select * from mydates;

1, 'example', '7911-12-30 00:00:59.000', '7911-12-30

00:00:44.000'

When you select using cast, you see the complete timestamp:

select id, descript, cast(datetime_null as char(21)),
cast(timestamp_null as char(21)) from mydates;

Sending dates and times to the database

84 Sybase IQ

1, 'example', '7911-12-30 23:59:59.0', '7911-12-30
06:03:44.0'

Notes

The following index types are supported by date and time data:

• All date and time data types support the CMP, HG, HNG, and LF index
types; the WD index type is not supported.

• DATE data supports the DATE index.

• TIME data supports the TIME index.

• DATETIME and TIMESTAMP data support the DTTM index.

Sending dates and times to the database
Description You can send dates and times to the database in one of the following ways:

• Using any interface, as a string

• Using ODBC, as a TIMESTAMP structure

• Using Embedded SQL, as a SQLDATETIME structure

When you send a time to the database as a string (for the TIME data type) or as
part of a string (for TIMESTAMP or DATE data types), hours, minutes, and
seconds must be separated by colons in the format hh:mm:ss:sss, but can appear
anywhere in the string. As an option, a period can separate the seconds from
fractions of a second, as in hh:mm:ss.sss. The following are valid and
unambiguous strings for specifying times:

21:35 -- 24 hour clock if no am or pm specified
10:00pm -- pm specified, so interpreted as 12 hour clock
10:00 -- 10:00am in the absence of pm
10:23:32.234 -- seconds and fractions of a
 second included

When you send a date to the database as a string, conversion to a date is
automatic. You can supply the string in one of two ways:

• As a string of format yyyy/mm/dd or yyyy-mm-dd, which is interpreted
unambiguously by the database

• As a string interpreted according to the DATE_ORDER database option

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 85

Date format strings cannot contain any multibyte characters. Only single-byte
characters are allowed in a date/time/datetime format string, even when the
collation order of the database is a multibyte collation order like 932JPN.

Retrieving dates and times from the database
Description You can retrieve dates and times from the database in one of the following

ways:

• Using any interface, as a string

• Using ODBC, as a TIMESTAMP structure

• Using embedded SQL, as a SQLDATETIME structure

When a date or time is retrieved as a string, it is retrieved in the format
specified by the database options DATE_FORMAT, TIME_FORMAT and
TIMESTAMP_FORMAT. For descriptions of these options, see SET OPTION
statement in Reference: Statements and Options.

For information on functions dealing with dates and times, see “Date and time
data types” on page 82. The following operators are allowed on dates:

• timestamp + integer Add the specified number of days to a date or
timestamp.

• timestamp - integer Subtract the specified number of days from a date
or timestamp.

• date - date Compute the number of days between two dates or
timestamps.

• date + time Create a timestamp combining the given date and time.

Comparing dates and times
Description To compare a date to a string as a string, use the DATEFORMAT function or

CAST function to convert the date to a string before comparing. For example:

DATEFORMAT(invoice_date,'yyyy/mm/dd') = '1992/05/23'

You can use any allowable date format for the DATEFORMAT string expression.

Using unambiguous dates and times

86 Sybase IQ

Date format strings must not contain any multibyte characters. Only single-
byte characters are allowed in a date/time/datetime format string, even when
the collation order of the database is a multibyte collation order like 932JPN.

If '?' represents a multibyte character, the following query fails:

SELECT DATEFORMAT (StartDate, ‘yy?’) FROM Employees;

Instead, move the multibyte character outside of the date format string using
the concatenation operator:

SELECT DATEFORMAT (StartDate, ‘yy’) + ‘?’ FROM
Employees;

Using unambiguous dates and times
Description Dates in the format yyyy/mm/dd or yyyy-mm-dd are always recognized as dates

regardless of the DATE_ORDER setting. You can use other characters as
separators; for example, a question mark, a space character, or a comma. You
should use this format in any context where different users might be employing
different DATE_ORDER settings. For example, in stored procedures, use of the
unambiguous date format prevents misinterpretation of dates according to the
user's DATE_ORDER setting.

A string of the form hh:mm:ss.sss is also interpreted unambiguously as a time.

For combinations of dates and times, any unambiguous date and any
unambiguous time yield an unambiguous date-time value. Also, the following
form is an unambiguous date-time value:

YYYY-MM-DD HH.MM.SS.SSSSSS

You can use periods in the time only in combination with a date.

In other contexts, you can use a more flexible date format. Sybase IQ can
interpret a wide range of strings as formats. The interpretation depends on the
setting of the database option DATE_ORDER. The DATE_ORDER database
option can have the value ‘MDY’, ‘YMD’, or ‘DMY’. See SET OPTION
statement in Reference: Statements and Options. For example, to set the
DATE_ORDER option to ‘DMY’ enter:

SET OPTION DATE_ORDER = 'DMY' ;

The default DATE_ORDER setting is ‘YMD’. The ODBC driver sets the
DATE_ORDER option to ‘YMD’ whenever a connection is made.Use the SET
OPTION statement to change the value.

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 87

The database option DATE_ORDER determines whether the string 10/11/12 is
interpreted by the database as Oct 11 1912, Nov 12 1910, or Nov 10 1912. The
year, month, and day of a date string should be separated by some character (for
example “/”, “-”, or space) and appear in the order specified by the
DATE_ORDER option.

You can supply the year as either 2 or 4 digits. The value of the option
NEAREST_CENTURY affects the interpretation of 2-digit years: 2000 is added
to values less than NEAREST_CENTURY, and 1900 is added to all other values.
The default value of this option is 50. Thus, by default, 50 is interpreted as
1950, and 49 is interpreted as 2049. See the “NEAREST_CENTURY option
[TSQL]” in Reference: Statements and Options.

The month can be the name or number of the month. The hours and minutes
are separated by a colon, but can appear anywhere in the string.

Sybase recommends that you always specify the year using the 4-digit format.

With an appropriate setting of DATE_ORDER, the following strings are all valid
dates:

99-05-23 21:35
99/5/23
1999/05/23
May 23 1999
23-May-1999
Tuesday May 23, 1999 10:00pm

If a string contains only a partial date specification, default values are used to
fill out the date. The following defaults are used:

year 1900

month No default

day 1 (useful for month fields; for example, ‘May 1999’ is the date ‘1999-05-
01 00:00’)

hour, minute, second, fraction 0

Domains
Description Domains are aliases for built-in data types, including precision and scale values

where applicable.

Domains

88 Sybase IQ

Domains, also called user-defined data types, allow columns throughout a
database to be defined automatically on the same data type, with the same
NULL or NOT NULL condition. This encourages consistency throughout the
database. Domain names are case-insensitive. Sybase IQ returns an error if you
attempt to create a domain with the same name as an existing domain except
for case.

Simple domains You create domains using the CREATE DOMAIN statement. See “CREATE
DOMAIN statement” in Reference: Statements and Options.

The following statement creates a data type named street_address, which is a
35-character string:

CREATE DOMAIN street_address CHAR(35)

You can use CREATE DATATYPE as an alternative to CREATE DOMAIN, but this
is not recommended, as CREATE DOMAIN is the syntax used in the draft SQL/3
standard.

Resource authority is required to create data types. Once a data type is created,
the user ID that executed the CREATE DOMAIN statement is the owner of that
data type. Any user can use the data type, and unlike other database objects, the
owner name is never used to prefix the data type name.

The street_address data type may be used in exactly the same way as any other
data type when defining columns. For example, the following table with two
columns has the second column as a street_address column:

CREATE TABLE twocol (id INT,
street street_address)

Owners or DBAs can drop domains by issuing a COMMIT and then using the
DROP DOMAIN statement:

DROP DOMAIN street_address

You can carry out this statement only if no tables in the database are using data
type.

Constraints and
defaults with user-
defined data types

Many of the attributes associated with columns, such as allowing NULL
values, having a DEFAULT value, and so on, can be built into a user-defined
data type. Any column that is defined on the data type automatically inherits
the NULL setting, CHECK condition, and DEFAULT values. This allows
uniformity to be built into columns with a similar meaning throughout a
database.

For example, many primary key columns in the sample database are integer
columns holding ID numbers. The following statement creates a data type that
may be useful for such columns:

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 89

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT
CHECK(@col > 0)

Any column created using the data type id is not allowed to hold NULLs,
defaults to an autoincremented value, and must hold a positive number. Any
identifier could be used instead of col in the @col variable.

The attributes of the data type can be overridden if needed by explicitly
providing attributes for the column. A column created on data type id with
NULL values explicitly allowed does allow NULLs, regardless of the setting
in the id data type.

Compatibility • Named constraints and defaults In Sybase IQ, user-defined data types
are created with a base data type, and optionally, a NULL or NOT NULL
condition. Named constraints and named defaults are not supported.

• Creating data types In Sybase IQ, you can use the sp_addtype system
procedure to add a domain, or you can use the CREATE DOMAIN
statement. In Adaptive Server Enterprise, you must use sp_addtype.

Data type conversions
Description Type conversions happen automatically, or you can explicitly request them

using the CAST or CONVERT function.

If a string is used in a numeric expression or as an argument to a function
expecting a numeric argument, the string is converted to a number before use.

If a number is used in a string expression or as a string function argument, then
the number is converted to a string before use.

All date constants are specified as strings. The string is automatically
converted to a date before use.

There are certain cases where the automatic data type conversions are not
appropriate.

'12/31/90' + 5 -- Tries to convert the string to a number
'a' > 0 -- Tries to convert 'a' to a number

You can use the CAST or CONVERT function to force type conversions.

The following functions can also be used to force type conversions:

Data type conversions

90 Sybase IQ

• DATE(expression) – converts the expression into a date, and removes any
hours, minutes or seconds. Conversion errors might be reported.

• DATETIME(expression) – converts the expression into a timestamp.
Conversion errors might be reported.

• STRING(expression) – similar to CAST(value AS CHAR), except that
string(NULL) is the empty string (''), whereas CAST(NULL AS CHAR) is
the NULL value.

For information about the CAST and CONVERT functions, see “Data type
conversion functions” on page 108.

Compatibility of string
to datetime
conversions

There are some differences in behavior between Sybase IQ and Adaptive
Server Enterprise when converting strings to date and time data types.

If you convert a string containing only a time value (no date) to a date/time data
type, Sybase IQ and Adaptive Server Enterprise both use a default date of
January 1, 1900. SQL Anywhere uses the current date.

If the milliseconds portion of a time is less than 3 digits, Adaptive Server
Enterprise interprets the value differently depending on whether it was
preceded by a period or a colon. If preceded by a colon, the value means
thousandths of a second. If preceded by a period, 1 digit means tenths, 2 digits
mean hundredths, and 3 digits mean thousandths. Sybase IQ and SQL
Anywhere interpret the value the same way, regardless of the separator.

Example • Adaptive Server Enterprise converts the values below as shown.

12:34:56.7 to 12:34:56.700
12.34.56.78 to 12:34:56.780
12:34:56.789 to 12:34:56.789
12:34:56:7 to 12:34:56.007
12.34.56:78 to 12:34:56.078
12:34:56:789 to 12:34:56.789

• Sybase IQ converts the milliseconds value in the manner that Adaptive
Server Enterprise does for values preceded by a period, in both cases:

12:34:56.7 to 12:34:56.700
12.34.56.78 to 12:34:56.780
12:34:56.789 to 12:34:56.789
12:34:56:7 to 12:34:56.700
12.34.56:78 to 12:34:56.780
12:34:56:789 to 12:34:56.789

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 91

Compatibility of
exported dates

For dates in the first 9 days of a month and hours less than 10, Adaptive Server
Enterprise supports a blank for the first digit; Sybase IQ supports a zero or a
blank. For details on how to load such data from Adaptive Server Enterprise
into Sybase IQ, see Chapter 7, “Moving Data In and Out of Databases” in
System Administration Guide: Volume 1.

Conversion of BIT to
BINARY data type

Sybase IQ supports BIT to BINARY and BIT to VARBINARY implicit and explicit
conversion and is compatible with Adaptive Server Enterprise support of these
conversions. Sybase IQ implicitly converts BIT to BINARY and BIT to
VARBINARY data types for comparison operators, arithmetic operations, and
INSERT and UPDATE statements.

For BIT to BINARY conversion, bit value ‘b’ is copied to the first byte of the
binary string and the rest of the bytes are filled with zeros. For example, BIT
value 1 is converted to BINARY(n) string 0x0100...00 having 2n nibbles. BIT
value 0 is converted to BINARY string 0x00...00.

For BIT to VARBINARY conversion, BIT value ‘b’ is copied to the first byte of
the BINARY string and the remaining bytes are not used; that is, only one byte
is used. For example, BIT value 1 is converted to VARBINARY(n) string 0x01
having 2 nibbles.

The result of both implicit and explicit conversions of BIT to BINARY and BIT
to VARBINARY data types is the same. The following table contains examples
of BIT to BINARY and VARBINARY conversions.

BIT to BINARY and BIT to VARBINARY conversion examples These
examples illustrate both implicit and explicit conversion of BIT to BINARY and
BIT to VARBINARY data types.

Given the following tables and data:

CREATE TABLE tbin(c1 BINARY(9))
CREATE TABLE tvarbin(c2 VARBINARY(9))
CREATE TABLE tbar(c2 BIT)

INSERT tbar VALUES(1)
INSERT tbar VALUES(0)

Implicit conversion of BIT to BINARY:

Conversion of BIT value ‘1’ to Result
BINARY(3) 0x010000
VARBINARY(3) 0x01
BINARY(8) 0x0100000000000000
VARBINARY(8) 0x01

Data type conversions

92 Sybase IQ

INSERT tbin SELECT c2 FROM tbar

c1

0x010000000000000000 (18 nibbles)
0x000000000000000000 (18 nibbles)

Implicit conversion of BIT to VARBINARY:

INSERT tvarbin SELECT c2 FROM tbar

c2

0x01
0x00

Explicit conversion of BIT to BINARY:

INSERT tbin SELECT CONVERT (BINARY(9), c2) FROM tbar

c1

0x010000000000000000 (18 nibbles)
0x000000000000000000 (18 nibbles)

Explicit conversion of BIT to VARBINARY:

INSERT tvarbin SELECT CONVERT(VARBINARY(9), c2) FROM
tbar

c2

0x01
0x00

Conversion between
BIT and
CHAR/VARCHAR
data types

Sybase IQ supports implicit conversion between BIT and CHAR, and BIT and
VARCHAR data types for comparison operators, arithmetic operations, and
INSERT and UPDATE statements.

BIT to VARCHAR, CHAR to BIT, and VARCHAR to BIT conversion
examples These examples illustrate both implicit and explicit conversions
between BIT and CHAR, and BIT and VARCHAR data types.

Given the following tables and data:

CREATE TABLE tchar(c1 CHAR(9))
CREATE TABLE tvarchar(c2 VARCHAR(9))
CREATE TABLE tbar(c2 BIT)
CREATE TABLE tbit(c2 BIT)

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 93

INSERT tbar VALUES(1)
INSERT tbar VALUES(0)

Implicit conversion of BIT to VARCHAR / VARCHAR to BIT and implicit
conversion of BIT to VARCHAR:

INSERT tvarchar SELECT c2 FROM tbar
SELECT c2, char_length(c2) FROM tvarchar

c2,char_length(tvarchar.c2)

‘1’,1
‘0’,1

Implicit conversion of VARCHAR to BIT:

INSERT tbit SELECT c2 FROM tvarchar
SELECT c2 FROM tbit

c2
--
0
1

Explicit conversion of BIT to CHAR / CHAR to BIT and explicit conversion of
BIT to CHAR:

INSERT tchar SELECT CONVERT (CHAR(9), c2) FROM tbar
SELECT c1, char_length(c1) FROM tchar

c1,char_length(tchar.c1)

‘1’,9
‘0’,9

Explicit conversion of CHAR to BIT:

INSERT tbit SELECT CONVERT (BIT, c1) FROM tchar
SELECT c2 FROM tbit

c2
--
0
1

Explicit conversion of BIT to VARCHAR / VARCHAR to BIT and explicit
conversion of BIT to VARCHAR:

INSERT tvarchar SELECT CONVERT(VARCHAR(9), c2)
FROM tbar

Sybase IQ binary load format

94 Sybase IQ

SELECT c2, char_length(c2) FROM tvarchar

c2,char_length(tvarchar.c2)

‘1’,1
‘0’,1

Explicit conversion of VARCHAR to BIT:

INSERT tbit SELECT CONVERT (BIT, c2) FROM tvarchar
SELECT c2 FROM tbit

c2
--
0
1

Sybase IQ binary load format
Description Sybase IQ uses the FORMAT BINARY and BINARY column specification

clauses to produce data files that can be read by the LOAD TABLE statement.

To speed data loading into Sybase IQ, customers can create data files in Sybase
IQ binary format and load this data into Sybase IQ using the FORMAT BINARY
syntax of the LOAD TABLE command.

You can find instructions for creating a load script using the LOAD TABLE
syntax and specifying the load specification in Reference: Statements and
Options.

Create data files with these binary formats to load into columns with the
corresponding data types. In most cases, Sybase IQ uses the platform-specific
binary format. These data types are exceptions that use binary formats that are
specific to Sybase IQ:

• DATE

• TIME

• DATETIME

• NUMERIC

IQ binary load format
and load efficiency

The Sybase IQ binary load format is a fixed width format.

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 95

In general, fixed width loads complete faster than variable width loads. When
the load logic knows the length of a column and row, the data is processed more
efficiently. Using delimiters to separate columns and rows that vary in width
causes the load to spend time scanning the input data looking for them.

The IQ Binary Load Format is a fixed width load. The load can determine the
width of each column and length of each row from information in the table
definition.

Note Binary load format is endian-sensitive. This is because binary load
format utilizes native binary data types to represent data.

Operating system
native data types

Data for the following data types is stored in native operating system binary
format and can be written to data files directly in that format. Sybase IQ reads
the respective number of bytes directly into the associated data types without
conversion.

• BIT (1 byte)

• TINYINT (1 byte)

• SMALLINT (2 bytes)

• INT/UNSIGNED INT (4 bytes)

• BIGINT/UNSIGNED BIGINT (8 bytes)

• FLOAT (4 bytes)

• DOUBLE (8 bytes)

• CHAR/VARCHAR (character data)

• BINARY/VARBINARY (binary data)

By default, VARCHAR and VARBINARY columns are read in as many bytes as
specified by LOAD TABLE column-spec.

DATE DATE column data is stored in Sybase IQ as four bytes (a 32-bit unsigned
integer) representing the number of days since 0000-01-01. To convert a
calendar date to the Sybase IQ binary format, use:

For a given year, month, and day:

year = current_year - 1;
days_in_year_0000 = 366;
binaryDateValue = (year * 365)
+ (year / 4)
- (year / 100)

Sybase IQ binary load format

96 Sybase IQ

+ (year / 400)
days_in_year_0000
day_of_current_year
-1;

For the day_of_current_year value in the formula above, consider the
following example: February 12 is day 43.

TIME TIME data is stored as a 64-bit unsigned quantity that represents a number in
microseconds (in other words, 1.0e-6 seconds). The microsecond quantity is
computed using:

For a given hour, minute, second, and microsecond (usec):

binaryTimeValue = (hour * 3600 + minute * 60 + second +
microsecond) * 1000000

TIMESTAMP TIMESTAMP data is stored as a 64-bit unsigned integer and represents a
quantity in microseconds. You can compute a binary TIMESTAMP value using:

For a given year, month, day, hour, minute, second, and microsecond:

Compute binaryDateValue for the date as shown above.
Compute binaryTimeValue for the time as shown above.

binaryDateTimeValue = binaryDateValue *
86400000000 + binaryTimeValue

NUMERIC and
DECIMAL

Formats for NUMERIC and DECIMAL data types vary as a function of precision.
The value must be right-padded with zeroes to the full scale of the value. The
value must also be fully left-padded with zeroes, but padding happens
automatically with binary programming. Once the values are padded, the
decimal point is removed. For example, the value 12.34 looks like:

• NUMERIC(4,2): 1234

• NUMERIC(6,4): 123400

• NUMERIC(8,4): 00123400

• NUMERIC(12,6): 000012340000

• NUMERIC(16,8): 0000001234000000

After the value is padded and the decimal point is removed, the following rules
apply:

• If precision <= 4, then the binary format is identical to native operating
system binary format for 2 byte integer quantity.

• If precision is between 5 and 9, then the binary format is identical to native
operating system binary format for a 4 byte integer quantity.

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 97

• If precision is between 10 and 18, then the binary format is identical to
native operating system binary format for an 8 byte integer quantity.

• If precision >= 19, then there is a special format that uses the following
C++ struct definition:

struct {
unsigned char sign; // sign 1 for +, 0 for -
unsigned char ndig; // # digits
unsigned char exp; // exponent
unsigned short digits[80];
};

Exponent is excess-80 form, unless the value is zero. A “zero” value is
represented as:

sign = 1
ndig = 0
exp = 0

The maximum exponent value is 159. The maximum number of supported
digits is 288. “digits[0]” contains the least-significant digits. Digits are
stored in a packed representation with two digits per “unsigned short” (2-
byte) quantity. For a given “digit:”

lower order digit = digit[i] & 0x00FF

high order digit => digit[i] & 0xFF00

For example, consider the value 100 loaded into a NUMERIC(20) column.
The binary layout of this value is:

0x0101 0x5000 0x0064 0x0000 0x0000

Sign - 0x01
Number digits - 0x01
Exponent - 0x50
Digits - 0x0064

As another example, consider the value 32769:

0x0102 0x5000 0x0ad1 0x0003 0x0000 0x0000

Sign - 0x01
Number digits - 0x02
Exponent - 0x50
Digits - 0x0ad1 0x0003

If you translate the digits into base 10, you have:

0x0ad1 => 2769 0x0003 => 3

Sybase IQ binary load format

98 Sybase IQ

Inserting NULL The most expedient way to insert NULL values is to use the NULL BYTE in
the input file and specify WITH NULL BYTE in the column specification of
the LOAD TABLE statement. This is done by terminating each data field in the
input file with 'x00' or 'x01'. Terminating a data field in the input file with 'x01'
instructs the load to insert NULL into the column. For example:

create table d1 (c1 date);
load table d1 (c1 binary with null byte) from
'filename' quotes off escapes off format binary;

If the content of the load input file is 000b32cb00000b32cc00, two rows will
be loaded to the table. The first row will be May 7, 2009 and the second May
8, 2009. Notice that a NULL BYTE was added to the input file after each
binary date. If you want NULL loaded into the first row, change the value of
the NULL BYTE in the input file to 'x01'.

000b32cb01000b32cc00

The NULL portion of the column specification indicates how to treat certain
input values as NULL values, when loading into the table column. These
characters can include BLANKS, ZEROS, or any other list of literals you
define. When you specify a NULL value or read a NULL value from the source
file, the destination column must be able to contain NULLs.

ZEROS is interpreted as follows:

• The column is set to NULL if the input data is all binary zeros (not
character zeros).

• If the input data is character zero:

• NULL(ZEROS) never causes the column to be NULL.

• NULL('0') causes the column to be NULL. For example:

Load:

CREATE TABLE t1 (c1 INT, c2 INT);

View the input data file, which uses big-endian byte ordering:

od -x data.inp
3030 3030 0000 04d2

Execute:

LOAD TABLE t1 (c1 ASCII(4) NULL('0000'),
c2 BINARY)

FROM 'data.inp'
FORMAT BINARY
QUOTES OFF

CHAPTER 3 SQL Data Types

Reference: Building Blocks, Tables, and Procedures 99

ESCAPES OFF;

The results:

SELECT * FROM t1;
c1 c2
NULL 1234

• If the input data is binary zero (all bits clear):

• NULL(ZEROS) causes the column to be NULL.

• NULL('0') never causes the column to be NULL, for example:

Load:

CREATE TABLE t1 (c1 INT, C2 INT);

VIEW the input data file, which uses big-endian byte ordering:

od -x data.inp
0000 0000 0000 04d2

Execute:

LOAD TABLE t1 (c1 ASCII(4) NULL(zeros),
c2 BINARY)

FROM 'data.inp'
FORMAT BINARY
QUOTES OFF
ESCAPES OFF;

The results:

SELECT * FROM T1;
c1 c2
NULL 1234

As another example, if your LOAD TABLE statement includes col1
date('yymmdd') null(zeros) and the data to load is 000000, you
receive an error indicating that 000000 cannot be converted to a
DATE(4). To get LOAD TABLE to insert a NULL value in col1 when the
data is 000000, either write the NULL clause as null(‘000000’), or
modify the data to equal binary zeros and use NULL(ZEROS).

Another way to load NULLs during a binary load is not to supply data for the
column in the LOAD TABLE statement, if the destination column accepts null
values. For example:

CREATE TABLE t1 (c1 INT, c2 INT);
LOAD TABLE T1 (c2 BINARY) FROM 'data.inp'

FORMAT BINARY

Sybase IQ binary load format

100 Sybase IQ

QUOTES OFF
ESCAPES OFF;

SELECT * FROM T1;
c1 c2
NULL 1234
Null 1234

View the input data file, which uses big-endian byte ordering:

od -x data.inp
0000 04d2 0000 04d2

Reference: Building Blocks, Tables, and Procedures 101

C H A P T E R 4 SQL Functions

About this chapter This chapter describes the built-in functions that Sybase IQ supports.

Contents Topic Page
Overview 102
Aggregate functions 102
Analytical functions 104
Data type conversion functions 108
Date and time functions 109
HTTP functions 114
Numeric functions 114
String functions 115
System functions 118
SQL and Java user-defined functions 122
Time series and forecasting functions 123
Miscellaneous functions 127
Alphabetical list of functions 128

Overview

102 Sybase IQ

Overview
Functions return information from the database and are allowed anywhere an
expression is allowed.

When using functions with Sybase IQ:

• Unless otherwise stated, any function that receives the NULL value as a
parameter returns a NULL value.

• If you omit the FROM clause, or if all tables in the query are in the
SYSTEM dbspace, SQL Anywhere processes the query, instead of Sybase
IQ, and might behave differently, especially with regard to syntactic and
semantic restrictions and the effects of option settings. See the SQL
Anywhere documentation for rules that might apply to processing.

• If you have a query that does not require a FROM clause, you can force
Sybase IQ to process the query by adding the clause “FROM iq_dummy,”
where iq_dummy is a one-row, one-column table that you create in your
database.

Aggregate functions
Function Aggregate functions summarize data over a group of rows from the database.

The groups are formed using the GROUP BY clause of the SELECT statement.

Usage Simple aggregate functions, such as SUM(), MIN(), MAX(), AVG() and COUNT()
are allowed only in the select list and in the HAVING and ORDER BY clauses of
a SELECT statement. These functions summarize data over a group of rows
from the database. Groups are formed using the GROUP BY clause of the
SELECT statement.

A new class of aggregate functions, called window functions, provides
moving averages and cumulative measures that compute answers to queries
such as, “What is the quarterly moving average of the Dow Jones Industrial
average,” or “List all employees and their cumulative salaries for each
department.”

• Simple aggregate functions, such as AVG(), COUNT(), MAX(), MIN(), and
SUM() summarize data over a group of rows from the database. The groups
are formed using the GROUP BY clause of the SELECT statement.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 103

• Newer statistical aggregate functions that take one argument include
STDDEV(), STDDEV_SAMP(), STDDEV_POP(), VARIANCE(),
VAR_SAMP(), and VAR_POP().

Both the simple and newer categories of aggregates can be used as a
windowing function that incorporates a <WINDOW CLAUSE> in a SQL query
specification (a window) that conceptually creates a moving window over a
result set as it is processed. See “Analytical functions” on page 104.

Another class of window aggregate functions supports analysis of time series
data. Like the simple aggregate and statistical aggregate functions, you can use
these window aggregates in conjunction with a SQL query specification (or
window-spec). The time series window aggregate functions calculate
correlation, linear regression, ranking, and weighted average results:

• ANSI SQL:2008 OLAP functions for time series analysis include:
CORR(), COVAR_POP(), COVAR_SAMP(), CUME_DIST(),
FIRST_VALUE(), LAST_VALUE(), REGR_AVGX(), REGR_AVGY(),
REGR_COUNT(), REGR_INTERCEPT(), REGR_R2(), REGR_SLOPE(),
REGR_SXX(), REGR_SXY(), and REGR_SYY().

• Non-ANSI SQL:2008 OLAP aggregate function extensions used in the
database industry include FIRST_VALUE(), MEDIAN(), and LAST_VALUE().

• Weighted OLAP aggregate functions that calculate weighted moving
averages include EXP_WEIGHTED_AVG() and WEIGHTED_AVG().

Table 4-1: Aggregate functions
Aggregate function Parameters
AVG ([DISTINCT] { column-name | numeric-expr })
CORR (dependent-expression, independent-expression)
COUNT (*)
COUNT ([DISTINCT] { column-name | numeric-expr })
COVAR_POP (dependent-expression, independent-expression)
COVAR_SAMP (dependent-expression, independent-expression)
CUME_DIST ()
EXP_WEIGHTED_AV
G

(expression, period-expression)

FIRST_VALUE (expression)
LAST_VALUE (expression)
MAX ([DISTINCT] { column-name | numeric-expr })
MEDIAN (expression)
MIN ([DISTINCT] { column-name | numeric-expr })
REGR_AVGX (dependent-expression, independent-expression)

Analytical functions

104 Sybase IQ

The aggregate functions AVG, SUM, STDDEV, and VARIANCE do not support
the binary data types (BINARY and VARBINARY).

See also See the individual analytical function descriptions in this chapter for specific
details on the use of each function.

For more information about using OLAP functions, see Chapter 2, “Using
OLAP” in the System Administration Guide: Volume 2.

Analytical functions
Function Analytical functions include:

• Simple aggregates — AVG, COUNT, MAX, MIN, and SUM, STDDEV, and
VARIANCE

Note You can use all simple aggregates, except the Grouping() function,
with an OLAP windowed function.

• Window functions:

• Windowing aggregates — AVG, COUNT, MAX, MIN, and SUM.

• Ranking functions — RANK, DENSE_RANK, PERCENT_RANK, and
NTILE.

REGR_AVGY (dependent-expression, independent-expression)
REGR_COUNT (dependent-expression, independent-expression)
REGR_INTERCEPT (dependent-expression, independent-expression)
REGR_R2 (dependent-expression, independent-expression)
REGR_SLOPE (dependent-expression, independent-expression)
REGR_SXX (dependent-expression, independent-expression)
REGR_SXY (dependent-expression, independent-expression)
REGR_SYY (dependent-expression, independent-expression)
STDDEV ([ALL] expression)
SUM ([DISTINCT] { column-name | numeric-expr })
VARIANCE ([ALL] expression)
WEIGHTED_AVG (expression, period-expression

Aggregate function Parameters

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 105

• Statistical functions — STDDEV, STDDEV_SAMP, STDDEV_POP,
VARIANCE, VAR_SAMP, and VAR_POP.

• Distribution functions — PERCENTILE_CONT and
PERCENTILE_DISC.

• Numeric functions — WIDTH_BUCKET, CEIL, and LN, EXP, POWER,
SQRT, and FLOOR.

Windowing aggregate
function usage

A major feature of the ANSI SQL extensions for OLAP is a construct called a
window. This windowing extension let users divide result sets of a query (or a
logical partition of a query) into groups of rows called partitions and determine
subsets of rows to aggregate with respect to the current row.

You can use three classes of window functions with a window: ranking
functions, the row numbering function, and window aggregate functions.

Windowing extensions specify a window function type over a window name or
specification and are applied to partitioned result sets within the scope of a
single query expression. A window partition is a subset of rows returned by a
query, as defined by one or more columns in a special OVER clause:

OVER (PARTITION BY col1, col2...)

Windowing operations let you establish information such as the ranking of
each row within its partition, the distribution of values in rows within a
partition, and similar operations. Windowing also lets you compute moving
averages and sums on your data, enhancing the ability to evaluate your data and
its impact on your operations.

A window partition is a subset of rows returned by a query, as defined by one
or more columns in a special OVER() clause:

OVER (PARTITION BY col1, col2...)

Ranking functions
usage

The OLAP ranking functions let application developers compose single-
statement SQL queries that answer questions such as “Name the top 10
products shipped this year by total sales,” or “Give the top 5% of salespeople
who sold orders to at least 15 different companies.” These functions include the
ranking functions, RANK(), DENSE_RANK(), PERCENT_RANK() and NTILE()
with a PARTITION BY clause.

Rank analytical functions rank items in a group, compute distribution, and
divide a result set into a number of groupings. The rank analytical functions,
RANK, DENSE_RANK, PERCENT_RANK, and NTILE all require an OVER
(ORDER BY) clause. For example:

RANK() OVER ([PARTITION BY] ORDER BY <expression>
[ASC | DESC])

Analytical functions

106 Sybase IQ

The ORDER BY clause specifies the parameter on which ranking is performed
and the order in which the rows are sorted in each group. This ORDER BY
clause is used only within the OVER clause and is not an ORDER BY for
SELECT. No aggregation functions in the rank query are allowed to specify
DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The value expression is a sort specification that can be any valid expression
involving a column reference, aggregates, or expressions invoking these items.

The ASC or DESC parameter specifies the ordering sequence as ascending or
descending. Ascending order is the default.

Rank analytical functions are only allowed in the select list of a SELECT or
INSERT statement or in the ORDER BY clause of the SELECT statement. Rank
functions can be in a view or a union. You cannot use rank functions in a
subquery, a HAVING clause, or in the select list of an UPDATE or DELETE
statement. More than one rank analytical function is allowed per query in
Sybase IQ 15.1.

Statistical aggregate
analytic function
usage

Summarize data over a group of rows from the database. The groups are
formed using the GROUP BY clause of the SELECT statement. Aggregate
functions are allowed only in the select list and in the HAVING and ORDER BY
clauses of a SELECT statement. These functions include STDDEV,
STDDEV_POP, STDDEV_SAMP, VARIANCE, VAR_POP, and VAR_SAMP.

The OLAP functions can be used as a window function with an OVER() clause
in a SQL query specification that conceptually creates a moving window over
a result set as it is processed.

Distribution functions
usage

The inverse distribution analytical functions PERCENTILE_CONT and
PERCENTILE_DISC take a percentile value as the function argument and
operate on a group of data specified in the WITHIN GROUP clause, or operate
on the entire data set. These functions return one value per group. For
PERCENTILE_DISC, the data type of the results is the same as the data type of
its ORDER BY item specified in the WITHIN GROUP clause. For
PERCENTILE_CONT, the data type of the results is either numeric, if the
ORDER BY item in the WITHIN GROUP clause is a numeric, or double, if the
ORDER BY item is an integer or floating-point.

The inverse distribution analytical functions require a WITHIN GROUP
(ORDER BY) clause. For example:

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 107

PERCENTILE_CONT (expression1) WITHIN GROUP (ORDER BY
expression2 [ASC | DESC])

The value of expression1 must be a constant of numeric data type and range
from 0 to 1 (inclusive). If the argument is NULL, then a “wrong argument for
percentile” error is returned. If the argument value is less than 0, or greater than
1, then a “data value out of range” error is returned.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. This ORDER BY clause is used only within the WITHIN
GROUP clause and is not an ORDER BY for the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result.

The value expression2 is a sort specification that must be a single expression
involving a column reference. Multiple expressions are not allowed and no
rank analytical functions, set functions, or subqueries are allowed in this sort
expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or
descending. Ascending order is the default.

Inverse distribution analytical functions are allowed in a subquery, a HAVING
clause, a view, or a union. The inverse distribution functions can be used
anywhere the simple non analytical aggregate functions are used. The inverse
distribution functions ignore the NULL value in the data set.

Table 4-2 lists the analytical functions and their parameters. Unlike aggregate
functions in Table 4-1, you cannot specify DISTINCT in window functions.

Table 4-2: Analytical functions
Function Parameters
AVG ({ column-name | numeric-expr })
COUNT (*)
COUNT ({ column-name | expression })
DENSE_RANK ()
GROUPING * ({ GROUPING group-by-expression })

MAX ({ column-name | expression })
MIN ({ column-name | expression })
NTILE (integer)
PERCENT_RANK ()
PERCENTILE_CONT (numeric-expr)
PERCENTILE_DISC (numeric-expr)

Data type conversion functions

108 Sybase IQ

* The OLAP SQL standard allows Grouping() in GROUP BY CUBE, or GROUP
BY ROLLUP operations only.

Compatibility The ranking and inverse distribution analytical functions are not supported by
Adaptive Server Enterprise.

See also See the individual analytical function descriptions in this chapter for specific
details on the use of each function.

See Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

Data type conversion functions
Function Data type conversion functions convert arguments from one data type to

another.

Table 4-3 lists the data type conversion functions and their parameters.

RANK ()
STDDEV ([ALL] expression)
STDDEV_POP ([ALL] expression)
STDDEV_SAMP ([ALL] expression)
SUM ({ column-name | expression })
VAR_POP ([ALL] expression)
VAR_SAMP ([ALL] expression)
VARIANCE ([ALL] expression)

Function Parameters

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 109

Table 4-3: Date type conversion functions

Description The DATE, DATETIME, DATEFORMAT, and YMD functions that convert
expressions to dates, timestamps, or strings based on a date format are listed in
“Date and time functions” on page 109. The STRING function, which converts
expressions to a string, is discussed in the section “String functions” on page
115.

The database server carries out many type conversions automatically. For
example, if a string is supplied where a numerical expression is required, the
string is automatically converted to a number. For more information on
automatic data type conversions carried out by Sybase IQ, see “Data type
conversions” on page 89.

Date and time functions
Function Date and time functions perform conversion, extraction, or manipulation

operations on date and time data types and can return date and time
information.

Table 4-4 and Table 4-5 list the date and time functions and their parameters.

Data type conversion function Parameters
BIGINTTOHEX (integer-expression)
CAST (expression AS data type)
CONVERT (data type, expression [, format-style])
HEXTOBIGINT (hexadecimal-string)
HEXTOINT (hexadecimal-string)
INTTOHEX (integer-expr)
ISDATE (string)
ISNUMERIC (string)

Date and time functions

110 Sybase IQ

Syntax 1 Table 4-4: Date and time functions
Date and time functions Parameters
DATE (expression)
DATECEILING (date-part, datetime-expr, [multiple-expr])
DATEFLOOR (date-part, datetime-expr, [multiple-expr])
DATEFORMAT (datetime-expr, string-expr)
DATENAME (date-part, date-expr)
DATEROUND (date-part, datetime-expr, [multiple-expr])
DATETIME (expression)
DAY (date-expr)
DAYNAME (date-expr)
DAYS (date-expr)
DAYS (date-expr, date-expr)
DAYS (date-expr, integer-expr)
DOW (date-expr)
HOUR (datetime-expr)
HOURS (datetime-expr)
HOURS (datetime-expr, datetime-expr)
HOURS (datetime-expr, integer-expr)
ISDATE (string)
MINUTE (datetime-expr)
MINUTES (datetime-expr)
MINUTES (datetime-expr, datetime-expr)
MINUTES (datetime-expr, integer-expr)
MONTH (date-expr)
MONTHNAME (date-expr)
MONTHS (date-expr)
MONTHS (date-expr, date-expr)
MONTHS (date-expr, integer-expr)
NOW (*)
QUARTER (date-expr)
SECOND (datetime-expr)
SECONDS (datetime-expr)
SECONDS (datetime-expr, datetime-expr)
SECONDS (datetime-expr, integer-expr)
TODAY (*)
WEEKS (date-expr)
WEEKS (date-expr, date-expr)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 111

Syntax 2 Table 4-5: Transact-SQL-compatible date and time functions

Description Sybase IQ provides two classes of date and time functions that can be used
interchangeably, but have different styles. One set is Transact-SQL-
compatible.

The date and time functions listed in Table 4-4 allow manipulation of time
units. Most time units (such as MONTH) have four functions for time
manipulation, although only two names are used (such as MONTH and
MONTHS).

The functions listed in Table 4-5 are the Transact-SQL date and time functions.
They allow an alternative way of accessing and manipulating date and time
functions.

You should convert arguments to date functions to dates before used them. For
example, this is incorrect:

days ('1995-11-17', 2)

This is correct:

days (date('1995-11-17'), 2)

Sybase IQ does not have the same constants or data type promotions as SQL
Anywhere, with which it shares a common user interface. If you issue a
SELECT statement without a FROM clause, the statement is passed to SQL
Anywhere. The following statement is handled exclusively by SQL Anywhere:

WEEKS (date-expr, integer-expr)
YEAR (date-expr)
YEARS (date-expr)
YEARS (date-expr, date-expr)
YEARS (date-expr, integer-expr)
YMD (year-num, month-num, day-num)

Date and time functions Parameters

Transact-SQL
compatible date and
time functions Parameters
DATEADD (date-part, numeric-expression, date-expr)
DATEDIFF (date-part, date-expr1, date-expr2)
DATENAME (date-part, date-expr)
DATEPART (date-part, date-expr)
GETDATE ()

Date and time functions

112 Sybase IQ

SELECT WEEKS(‘1998/11/01’);

The following statement, processed by Sybase IQ, uses a different starting
point for the WEEKS function and returns a different result than the statement
above:

SELECT WEEKS(‘1998/11/01’) FROM iq_dummy;

Consider another example. The MONTHS function returns the number of
months since an “arbitrary starting date.” The “arbitrary starting date” of
Sybase IQ, the imaginary date 0000-01-01, is chosen to produce the most
efficient date calculations and is consistent across various data parts. SQL
Anywhere does not have a single starting date. The following statements, the
first processed by SQL Anywhere, the second by Sybase IQ, both return the
answer 12:

SELECT MONTHS('0001/01/01');
SELECT MONTHS('0001/01/01') FROM iq_dummy;

However, also consider these statements:

SELECT DAYS('0001/01/01');
SELECT DAYS('0001/01/01') FROM iq_dummy;

The first, processed by SQL Anywhere, yields the value 307, but the second,
processed by Sybase IQ, yields 166.

For the most consistent results, therefore, always include the table name in the
FROM clause whether you need it or not.

Note Create a dummy table with only one column and row. You can then
reference this table in the FROM clause for any SELECT statement that uses
date or time functions, thus ensuring processing by Sybase IQ, and consistent
results.

Date parts
Many of the date functions use dates built from date parts. Table 4-6 displays
allowed values of date-part.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 113

Table 4-6: Date part values

Note By default, Sunday is the first day of the week. To make Monday be the
first day, use:

set option ‘Date_First_Day_Of_Week’ = ‘1’

For more information on specifying which day is the first day of the week, see
DATE_FIRST_DAY_OF_WEEK option in Reference: Statements and
Options.

Compatibility For compatibility with Adaptive Server Enterprise, use the Transact-SQL date
and time functions.

Date part Abbreviation Values
Year yy 0001 – 9999
Quarter qq 1 – 4
Month mm 1 – 12
Week wk 1 – 54
Day dd 1 – 31
Dayofyear dy 1 – 366
Weekday dw 1 – 7 (Sun. – Sat.)
Hour hh 0 – 23
Minute mi 0 – 59
Second ss 0 – 59
Millisecond ms 0 – 999
Calyearofweek cyr Integer. The year in which the week begins.

The week containing the first few days of
the year can be part of the last week of the
previous year, depending upon which day
it begins. If the new year starts on a
Thursday through Saturday, its first week
starts on the last Sunday of the previous
year. If the new year starts on a Sunday
through Wednesday, none of its days are
part of the previous year.

Calweekofyear cwk An integer from 1 to 54 representing the
week number within the year that contains
the specified date.

Caldayofweek cdw The day number within the week (Sunday
= 1, Saturday = 7).

HTTP functions

114 Sybase IQ

HTTP functions
Function HTTP functions facilitate the handling of HTTP requests within Web services.

Table 4-7 lists all HTTP functions and their parameters.

Table 4-7: HTTP functions

Numeric functions
Function Numeric functions perform mathematical operations on numerical data types

or return numeric information.

Sybase IQ does not have the same constants or data type promotions as SQL
Anywhere, with which it shares a common user interface. If you issue a
SELECT statement without a FROM clause, the statement is passed through to
SQL Anywhere. For the most consistent results, include the table name in the
FROM clause whether you need it or not.

Note Consider creating a dummy table to use in such cases.

Table 4-8 lists numeric functions and their parameters.

HTTP function Parameters
HTML_DECODE (string)
HTML_ENCODE (string)
HTTP_DECODE (string)
HTTP_ENCODE (string)
HTTP_VARIABLE (var-name [[, instance], header-field])
NEXT_HTTP_HEADER header-name
NEXT_HTTP_VARIABLE var-name

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 115

Table 4-8: Numeric functions

String functions

Numeric function Parameters
ABS (numeric-expr)
ACOS (numeric-expr)
ASIN (numeric-expr)
ATAN (numeric-expr)
ATAN2 (numeric-expr1, numeric-expr2)
CEIL (numeric-expr)
CEILING (numeric-expr)
COS (numeric-expr)
COT (numeric-expr)
DEGREES (numeric-expr)
EXP (numeric-expr)
FLOOR (numeric-expr)
LN (numeric-expr)
LOG (numeric-expr)
LOG10 (numeric-expr)
MOD (dividend, divisor)
PI (*)
POWER (numeric-expr1, numeric-expr2)
RADIANS (numeric-expr)
RAND ([integer-expr])
REMAINDER (numeric-expr, numeric-expr)
ROUND (numeric-expr, integer-expr)
SIGN (numeric-expr)
SIN (numeric-expr)
SQRT (numeric-expr)
SQUARE (numeric-expr)
TAN (numeric-expr)
“TRUNCATE” (numeric-expr, integer-expr)
TRUNCNUM (numeric-expression, integer-expression)
WIDTH_BUCKET (expression, min_value, max_value,

num_buckets)

String functions

116 Sybase IQ

Function String functions perform conversion, extraction, or manipulation operations on
strings, or return information about strings.

When working in a multibyte character set, check carefully whether the
function being used returns information concerning characters or bytes.

Most of the string functions accept binary data (hexadecimal strings) in the
string-expr parameter, but some of the functions, such as LCASE, UCASE,
LOWER, and LTRIM, expect the string expression to be a character string.

Unless you supply a constant LENGTH argument to a function that produces a
VARCHAR result (such as SPACE or REPEAT), the default length is the
maximum allowed. See the “Field Size” column in Table 6-1 on page 348.

Sybase IQ queries containing one or more of these functions might return one
of the following errors:

ASA Error -1009080: Key doesn't fit on a single database
page: 65560(4, 1)

ASA Error -1009119: Record size too large for database
page size

For example:

SELECT COUNT(*) FROM test1 a WHERE (a.col1 + SPACE(4-
LENGTH(a.col1)) + a.col2 + space(2- LENGTH(a.col2))) IN
(SELECT (b.col3) FROM test1 b);

To avoid such errors, cast the function result with an appropriate maximum
length; for example:

SELECT COUNT(*) FROM test1 a WHERE (a.col1 +
CAST(SPACE(4-LENGTH(a.col1)) AS VARCHAR(4)) + a.col2 +
CAST(SPACE(2-LENGTH (a.col2)) AS VARCHAR(4))) IN
(SELECT (b.col3) FROM test1 b);

The errors are more likely with an IQ page size of 64K or a multibyte collation.

Table 4-9 lists string functions and their parameters.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 117

Table 4-9: String functions
String function Parameters
ASCII (string-expr)
BIT_LENGTH (column-name)
BYTE_LENGTH (string-expr)
CHAR (integer-expr)
CHAR_LENGTH (string-expr)
CHARINDEX (string-expr1, string-expr2)
DIFFERENCE (string-expr1, string-expr2)
GRAPHICAL_PLAN (string-expr)
HTML_PLAN (string-expr)
INSERTSTR (numeric-expr, string-expr1, string-expr2)
LCASE (string-expr)
LEFT (string-expr, numeric-expr)
LEN (string-expr)
LENGTH (string-expr)
LOCATE (string-expr1, string-expr2 [, numeric-expr])
LOWER (string-expr)
LTRIM (string-expr)
OCTET_LENGTH (column-name)
PATINDEX ('%pattern%', string_expr)
REPEAT (string-expr, numeric-expr)
REPLACE (original-string, search-string, replace-string)
REVERSE (expression | uchar_expr)
REPLICATE (string-expr, integer-expr)
RIGHT (string-expr, numeric-expr)
RTRIM (string-expr)
SIMILAR (string-expr1, string-expr2)
SORTKEY (string-expression

[, { collation-id
| collation-name [(collation-tailoring-string)] }]
)

SOUNDEX (string-expr)
SPACE (integer-expr)
STR (numeric_expr [, length [, decimal]])
STR_REPLACE (string_expr1, string_expr2, string_expr3)
STRING (string1 [, string2, …, string99])
STUFF (string-expr1, start, length, string-expr2)

System functions

118 Sybase IQ

System functions
Function System functions return system information.

Table 4-10 lists the system functions and their parameters.

SUBSTRING (string-expr, integer-expr [, integer-expr])
TRIM (string-expr)
UCASE (string-expr)
UPPER (string-expr)

String function Parameters

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 119

Table 4-10: System functions

Description Databases currently running on a server are identified by a database name and
a database ID number. The db_id and db_name functions provide information
on these values.

A set of system functions provides information about properties of a currently
running database, or of a connection, on the database server. These system
functions take the database name or ID, or the connection name, as an optional
argument to identify the database or connection for which the property is
requested.

System function Parameters
COL_LENGTH (table-name, column-name)
COL_NAME (table-id, column-id [, database-id])
CONNECTION_PROPERTY ({ property-id | property-name } [,

connection-id])
DATALENGTH (expression)
DB_ID ([database-name])
DB_NAME ([database-id])
DB_PROPERTY ({ property-id | property-name }

[,{database-id | database-name }])
EVENT_CONDITION (condition-name)
EVENT_CONDITION_NAME (integer)
EVENT_PARAMETER (context-name)
GROUP_MEMBER (group-name-string-expression [, user-

name-string-expression])
INDEX_COL (table-name, index-id, key_# [,user-id])
NEXT_CONNECTION ([connection-id] [, database-id])
NEXT_DATABASE ({ NULL | database-id })
OBJECT_ID (object-name)
OBJECT_NAME (object-id [, database-id])
PROPERTY ({ property-id | property-name })
PROPERTY_DESCRIPTION (property-id | property-name })
PROPERTY_NAME (property-id)
PROPERTY_NUMBER (property-name)
SUSER_ID ([user-name])
SUSER_NAME ([user-id])
USER_ID ([user-name])
USER_NAME ([user-id])

System functions

120 Sybase IQ

Performance System functions are processed differently than other Sybase IQ functions.
When queries to Sybase IQ tables include system functions, performance is
reduced.

Compatibility Table 4-11 shows the Adaptive Server Enterprise system functions and their
status in Sybase IQ:

Table 4-11: Status of ASE system functions in Sybase IQ

Notes • Some of the system functions are implemented in Sybase IQ as system
stored procedures.

• The db_id, db_name, datalength, suser_id, and suser_name functions are
implemented as built-in functions.

Function Status
col_length Implemented
col_name Implemented
db_id Implemented
db_name Implemented
index_col Implemented
object_id Implemented
object_name Implemented
proc_role Always returns 0
show_role Always returns NULL
tsequal Not implemented
user_id Implemented
user_name Implemented
suser_id Implemented
suser_name Implemented
datalength Implemented
curunreservedpgs Not implemented
data_pgs Not implemented
host_id Not implemented
host_name Not implemented
lct_admin Not implemented
reserved_pgs Not implemented
rowcnt Not implemented
used_pgs Not implemented
valid_name Not implemented
valid_user Not implemented

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 121

Connection properties
Connection properties apply to an individual connection. This section
describes how to retrieve the value of a specific connection property or the
values of all connection properties. For descriptions of all connection
properties, see “Connection properties” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration
> Configuring Your Database > Connection, database, and database server
properties.

Examples

❖ Retrieving the value of a connection property

• Use the connection_property system function. The following statement
returns the number of pages that have been read from file by the current
connection:

select connection_property ('DiskRead')

❖ Retrieving the values of all connection properties

• Use the sa_conn_properties system procedure:

call sa_conn_properties

A separate row appears for each connection, for each property.

Properties available for the server
Server properties apply across the server as a whole. This section describes
how to retrieve the value of a specific server property or the values of all server
properties. For descriptions of all server properties, see “Database server
properties” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - Database Administration > Configuring Your
Database > Connection, database, and database server properties.

Examples

❖ Retrieving the value of a server property

• Use the property system function. The following statement returns the
number of cache pages being used to hold the main heap:

select property ('MainHeapPages') from iq_dummy

❖ Retrieving the values of all server properties

• Use the sa_eng_properties system procedure:

SQL and Java user-defined functions

122 Sybase IQ

call sa_eng_properties

Properties available for each database
Database properties apply to an entire database. This section describes how to
retrieve the value of a specific database property or the values of all database
properties. For descriptions of all of the database properties, see “Database
server properties” in the SQL Anywhere documentation at SQL Anywhere
11.0.1 > SQL Anywhere Server - Database Administration > Configuring Your
Database > Connection, database, and database server properties.

Examples

❖ Retrieving the value of a database property

• Use the db_property system function. The following statement returns the
page size of the current database:

select db_property ('PageSize') from iq_dummy

❖ Retrieving the values of all database properties

• Use the sa_db_properties system procedure:

call sa_db_properties

SQL and Java user-defined functions
There are two mechanisms for creating user-defined functions in Sybase IQ.
You can use the SQL language to write the function, or you can use Java.

Note User-defined functions are processed by SQL Anywhere. They do not
take advantage of the performance features of Sybase IQ. Queries that include
user-defined functions run at least 10 times slower than queries without them.

In very few cases, differences in semantics between SQL Anywhere and
Sybase IQ can produce different results for a query if it is issued in a user-
defined function. For example, Sybase IQ treats the CHAR and VARCHAR data
types as distinct and different, while SQL Anywhere treats CHAR data as if it
were VARCHAR.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 123

User-defined functions
in SQL

You can implement your own functions in SQL using the CREATE FUNCTION
statement. The RETURN statement inside the CREATE FUNCTION statement
determines the data type of the function.

Once you have created a SQL user-defined function, you can use it anywhere
a built-in function of the same data type is used.

Note Avoid using the CONTAINS predicate in a view that has a user-defined
function, because the CONTAINS criteria is ignored. Use the LIKE predicate
instead, or issue the query outside of a view.

For more information on creating SQL functions, see Chapter 1, “Using
Procedures and Batches” in the System Administration Guide: Volume 2.

User-defined functions
in Java

Although SQL functions are useful, Java classes provide a more powerful and
flexible way of implementing user-defined functions, with the additional
advantage that you can move them from the database server to a client
application if desired.

Any class method of an installed Java class can be used as a user-defined
function anywhere a built-in function of the same data type is used.

Instance methods are tied to particular instances of a class, and so have
different behavior from standard user-defined functions.

For more information on creating Java classes, and on class methods, see “Java
support in SQL Anywhere” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - Programming > Java in the
database.

Time series and forecasting functions
Function Time series and forecasting functions are aggregate functions (see “Aggregate

functions” on page 102) designed exclusively for financial time series analysis.

Note Time series and forecasting capability is available only with RAP – The
Trading Edition™ Enterprise.

Time series and forecasting functions

124 Sybase IQ

Table 4-12: Time series functions

Loading the IMSL libraries for time series and forecasting functions
The time series and forecasting functions call two third-party external libraries.
The IMSL™ C Stat and C Math libraries, provided by Visual Numerics Inc.,
contain C functions used for financial time series and forecasting calculations.

The wrapper library libtsudf contains user-defined functions (UDFs) that
invoke functions contained in the IMSL C Stat and C Math libraries.

Time series functions Parameters
TS_ARMA_AR (timeseries_expression, ar_count,

ar_elem, method)
TS_ARMA_CONST (timeseries_expression, method)
TS_ARMA_MA (timeseries_expression, ma_count,

ma_elem, method)
TS_AUTOCORRELATION (timeseries_expression, lagmax,

lag_elem)
TS_AUTO_UNI_AR (timeseries_expression, ar_count,

ar_elem, method)
TS_BOX_COX_XFORM (timeseries_expression, power [, shift [,

inverse]])
TS_DIFFERENCE (timeseries_expression, period1 [,

period2 [, ...period 10]])
TS_ESTIMATE_MISSING (timeseries_expression, method)
TS_LACK_OF_FIT (timeseries_expression, p_value,

q_value, lagmax, [tolerance])
TS_LACK_OF_FIT_P (timeseries_expression, p_value,

q_value, lagmax, [tolerance])
TS_MAX_ARMA_AR (timeseries_expression, ar_count,

ar_elem)
TS_MAX_ARMA_CONST (timeseries_expression)
TS_MAX_ARMA_MA (timeseries_expression, ma_count,

ma_elem)
TS_MAX_ARMA_LIKELIHOOD (timeseries_expression)
TS_OUTLIER_IDENTIFICATION (timeseries_expression, p_value,

q_value, s_value, d_value, [,
delta_value[, critical_value]])

TS_PARTIAL_AUTOCORRELATION (timeseries_expression, lagmax,
lag_elem)

TS_VWAP (price_expression, volume_expression)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 125

The time series and forecasting SQL functions call the libtsudf wrapper library
automatically. Sybase IQ loads the IMSL C Stat and C Math libraries when you
call a valid user-defined aggregate function for time series and forecasting
analysis.

The names and locations of the IMSL C Stat and C Math libraries vary
depending on the platform on which Sybase IQ is installed:

Table 4-13: IMSL library locations and file names

IMSL library time series function error-handling
You can control the error-handling behavior for the time series functions that
call the IMSL libraries. If a runtime error occurs when invoking IMSL library
functions, Sybase IQ responds according to your error-handling choice. You
can choose from four error-handling options, ranging from ignoring all errors
and warnings (the default behavior), to specifying which level of error severity
causes Sybase IQ to abort a SQL statement and return an error message.

Use the following SQL statement to control error-handling:

set option PUBLIC.Time_Series_Error_Level = ‘<value>’

Valid values are:

Windows 32-bit Windows 64-bit UNIX (except AIX) AIX
Directory
where
libraries
are located

bin32 bin64 lib64 lib64

Library file
name

imslcmath_imsl_dll.dll

imslcstat_imsl_dll.dll

imslcmath_imsl_dll.dll

imslcstat_imsl_dll.dll

libimslcmath_imsl.so

libimslcstat_imsl.so

libimslcmath_imsl_r.
so

libimslcstat_imsl_r.so

Time series and forecasting functions

126 Sybase IQ

Table 4-14: IMSL library time series function error-handling

IMSL library time series function error logging
You can control how Sybase IQ logs the error messages returned by IMSL
library time series function error-handling. Four options exist for logging error
messages to the log file.

Use the following SQL statement to control error logging:

set option PUBLIC.Time_Series_Log_Level = ‘<value>’

Value Description
0 (default) All types of warnings and errors that can

be obtained while invoking an IMSL
library function are ignored. When such a
condition is encountered, the time series
function returns a NULL value.

1 If the time series function obtains a
warning or an error message while
invoking an IMSL library function, IQ
returns an error message and aborts the
SQL query.

2 If the time series function obtains a fatal
error message while invoking an IMSL
library function, IQ returns an error
message and aborts the SQL query.
However if a warning is obtained then the
time series function returns a NULL
value.

3 If the time series function obtains a
terminal error message while invoking an
IMSL library function, IQ returns an
error message and aborts the SQL query.
However if a warning or a fatal error is
obtained then the time series function
returns a NULL value.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 127

Table 4-15: IMSL library time series function error logging

Miscellaneous functions
Function Miscellaneous functions perform operations on arithmetic, string, or date/time

expressions, including the return values of other functions.

Table 4-16 lists the miscellaneous functions and their parameters.

Table 4-16: Miscellaneous functions

Compatibility Adaptive Server Enterprise supports only the COALESCE, ISNULL, and
NULLIF functions.

Value Description
0 (default) All warnings and errors returned while

invoking an IMSL library function are
ignored and not logged to the log file.

1 If the time series function returns a
warning or an error message while
invoking an IMSL library function, a
message is logged to the log file.

2 If the time series function returns a fatal
error message while invoking an IMSL
library function, a message is logged to
the log file. Warnings are not logged.

3 If the time series function returns a
terminal error message while invoking an
IMSL library function, a message is
logged to the log file. Warnings and fatal
errors are not logged.

Miscellaneous functions Parameters
ARGN (integer-expr, expression [, …)
COALESCE (expression, expression [, expression …])
IFNULL (expression1, expression2 [, expression3])
ISNULL (expression, expression [, expression …])
NULLIF (expression1, expression2)
NUMBER (*)
ROWID (table-name)

Alphabetical list of functions

128 Sybase IQ

Alphabetical list of functions
This section describes each function individually. The function type, for
example, Numeric or String, is indicated in brackets next to the function name.

Some of the results in the examples have been rounded or truncated.

The actual values of database object IDs, such as the object ID of a table or the
column ID of a column, might differ from the values shown in the examples.

ABS function [Numeric]
Function Returns the absolute value of a numeric expression.

Syntax ABS (numeric-expression)

Parameters numeric-expression The number whose absolute value is to be returned.

Example The following statement returns the value 66:

SELECT ABS(-66) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

ACOS function [Numeric]
Function Returns the arc-cosine, in radians, of a numeric expression.

Syntax ACOS (numeric-expression)

Parameters numeric-expression The cosine of the angle.

Example The following statement returns the value 1.023945:

SELECT ACOS(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “ASIN function [Numeric]” on page 129

“ATAN function [Numeric]” on page 130

“ATAN2 function [Numeric]” on page 130

“COS function [Numeric]” on page 143

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 129

ARGN function [Miscellaneous]
Function Returns a selected argument from a list of arguments.

Syntax ARGN (integer-expression, expression [, …])

Parameters integer-expression The position of an argument within a list of expressions.

expression An expression of any data type passed into the function. All
supplied expressions must be of the same data type.

Example The following statement returns the value 6:

SELECT ARGN(6, 1,2,3,4,5,6) FROM iq_dummy

Usage Using the value of integer-expression as n returns the nth argument (starting at
1) from the remaining list of arguments. While the expressions can be of any
data type, they must all be of the same data type. The integer expression must
be from one to the number of expressions in the list or NULL is returned.
Multiple expressions are separated by a comma.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

ASCII function [String]
Function Returns the integer ASCII value of the first byte in a string-expression.

Syntax ASCII (string-expression)

Parameters string-expression The string

Example The following statement returns the value 90, when the collation sequence is
set to the default ISO_BINENG:

SELECT ASCII('Z') FROM iq_dummy

Usage If the string is empty, ASCII returns zero. Literal strings must be enclosed in
quotes.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

ASIN function [Numeric]
Function Returns the arc-sine, in radians, of a number.

Alphabetical list of functions

130 Sybase IQ

Syntax ASIN (numeric-expression)

Parameters numeric-expression The sine of the angle

Example The following statement returns the value 0.546850.

SELECT ASIN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “ACOS function [Numeric]” on page 128

“ATAN function [Numeric]” on page 130

“ATAN2 function [Numeric]” on page 130

“SIN function [Numeric]” on page 250

ATAN function [Numeric]
Function Returns the arc-tangent, in radians, of a number.

Syntax ATAN (numeric-expression)

Parameters numeric-expression The tangent of the angle

Example The following statement returns the value 0.479519:

SELECT ATAN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “ACOS function [Numeric]” on page 128

“ASIN function [Numeric]” on page 129

“ATAN2 function [Numeric]” on page 130

“TAN function [Numeric]” on page 267

ATAN2 function [Numeric]
Function Returns the arc-tangent, in radians, of the ratio of two numbers.

Syntax ATAN2 (numeric-expression1, numeric-expression2)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 131

Parameters numeric-expression1 The numerator in the ratio whose arc tangent is
calculated.

numeric-expression2 The denominator in the ratio whose arc-tangent is
calculated.

Example The following statement returns the value 0.00866644968879073143:

SELECT ATAN2(0.52, 060) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase ATAN2 is not supported by Adaptive Server Enterprise

See also “ACOS function [Numeric]” on page 128

“ASIN function [Numeric]” on page 129

“ATAN function [Numeric]” on page 130

“TAN function [Numeric]” on page 267

AVG function [Aggregate]
Function Computes the average of a numeric expression for a set of rows, or computes

the average of a set of unique values.

Syntax AVG (numeric-expression | DISTINCT column-name)

Parameters numeric-expression The value whose average is calculated over a set of
rows.

DISTINCT column-name Computes the average of the unique values in
column-name. This is of limited usefulness, but is included for completeness.

Example The following statement returns the value 49988.6:

SELECT AVG (salary) FROM Employees

Usage This average does not include rows where numeric -expression is the NULL
value. Returns the NULL value for a group containing no rows.

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “COUNT function [Aggregate]” on page 146

“SUM function [Aggregate]” on page 265

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

Alphabetical list of functions

132 Sybase IQ

BIGINTTOHEX function [Data type conversion]
Function Returns the hexadecimal equivalent in VARCHAR(16) of a decimal integer.

Syntax BIGINTTOHEX (integer-expression)

Parameters integer-expression The integer to be converted to hexadecimal.

Examples The following statement returns the value 0000000000000009:

SELECT BIGINTTOHEX(9) FROM iq_dummy

The following statement returns the value FFFFFFFFFFFFFFF7:

SELECT BIGINTTOHEX (-9) FROM iq_dummy

Usage The BIGINTTOHEX function accepts an integer expression that evaluates to
BIGINT and returns the hexadecimal equivalent. Returned values are left
appended with zeros up to a maximum of 16 digits. All types of unscaled
integer data types are accepted as integer expressions.

Conversion is done automatically, if required. Constants are truncated, only if
the fraction values are zero. A column cannot be truncated, if the column is
declared with a positive scale value. If conversion fails, Sybase IQ returns an
error unless the CONVERSION_ERROR option is OFF. In that case, the result
is NULL.

Standards and
compatibility

• SQL92 Transact-SQL extension

• Sybase Compatible with Adaptive Server Enterprise

See also CONVERSION_ERROR option [TSQL] in Reference: Statements and
Options

“HEXTOBIGINT function [Data type conversion]” on page 178

“HEXTOINT function [Data type conversion]” on page 179

“INTTOHEX function [Data type conversion]” on page 189

BIT_LENGTH function [String]
Function Returns an unsigned 64-bit value containing the bit length of the column

parameter.

Syntax BIT_LENGTH(column-name)

Parameters column-name The name of a column

Usage The return value of a NULL argument is NULL.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 133

The BIT_LENGTH function supports all Sybase IQ data types.

Standards and
compatibility

Sybase Not supported by SQL Anywhere or Adaptive Server Enterprise

See also “OCTET_LENGTH function [String]” on page 216

BYTE_LENGTH function [String]
Function Returns the number of bytes in a string.

Syntax BYTE_LENGTH (string-expression)

Parameters string-expression The string whose length is to be calculated

Example The following statement returns the value 12:

SELECT BYTE_LENGTH('Test Message') FROM iq_dummy

Usage Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the BYTE_LENGTH value differs
from the number of characters returned by CHAR_LENGTH.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “CHAR_LENGTH function [String]” on page 136

“DATALENGTH function [System]” on page 148

“LENGTH function [String]” on page 197

CAST function [Data type conversion]
Function Returns the value of an expression converted to a supplied data type.

Syntax CAST (expression AS data type)

Parameters expression The expression to be converted

data type The target data type

Examples The following function ensures a string is used as a date:

CAST('2000-10-31' AS DATE)

Alphabetical list of functions

134 Sybase IQ

The value of the expression 1 + 2 is calculated, and the result cast into a single-
character string, the length the data server assigns:

CAST(1 + 2 AS CHAR)

You can use the CAST function to shorten strings:

SELECT CAST(lname AS CHAR(5)) FROM Customers

Usage If you do not indicate a length for character string types, Sybase IQ chooses an
appropriate length. If neither precision nor scale is specified for a DECIMAL
conversion, the database server selects appropriate values.

If neither precision nor scale is specified for the explicit conversion of NULL
to NUMERIC, the default is NUMERIC(1,0). For example,

SELECT CAST(NULL AS NUMERIC) A,
CAST(NULL AS NUMERIC(15,2)) B

is described as:

A NUMERIC(1,0)
B NUMERIC(15,2)

Standards and
compatibility

• SQL92 This function is SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “CONVERT function [Data type conversion]” on page 139

CEIL function [Numeric]
Function Returns the smallest integer greater than or equal to the specified expression.

CEIL is as synonym for CEILING.

Syntax CEIL (numeric-expression)

Parameters expression A column, variable, or expression with a data type that is either
exact numeric, approximate numeric, money, or any type that can be implicitly
converted to one of these types. For other data types, CEIL generates an error.
The return value has the same data type as the value supplied.

Usage For a given expression, the CEIL function takes one argument. For example,
CEIL (-123.45) returns -123. CEIL (123.45) returns 124.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “CEILING function [Numeric]” on page 135

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 135

Chapter 11, “International Languages and Character Sets” in the System
Administration Guide: Volume 1

CEILING function [Numeric]
Function Returns the ceiling (smallest integer not less than) of a number.

CEIL is as synonym for CEILING.

Syntax CEILING (numeric-expression)

Parameters numeric-expression The number whose ceiling is to be calculated

Examples The following statement returns the value 60.00000:

SELECT CEILING(59.84567) FROM iq_dummy

The following statement returns the value 123:

SELECT CEILING(123) FROM iq_dummy

The following statement returns the value 124.00:

SELECT CEILING(123.45) FROM iq_dummy

The following statement returns the value -123.00:

SELECT CEILING(-123.45) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “FLOOR function [Numeric]” on page 173

CHAR function [String]
Function Returns the character with the ASCII value of a number.

Syntax CHAR (integer-expression)

Parameters integer-expression The number to be converted to an ASCII character. The
number must be in the range 0 to 255, inclusive.

Examples The following statement returns the value “Y”:

SELECT CHAR(89) FROM iq_dummy

The following statement returns the value “S”:

SELECT CHAR(83) FROM iq_dummy

Alphabetical list of functions

136 Sybase IQ

Usage The character in the current database character set corresponding to the
supplied numeric expression modulo 256 is returned.

CHAR returns NULL for integer expressions with values greater than 255 or
less than zero.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

CHAR_LENGTH function [String]
Function Returns the number of characters in a string.

Syntax CHAR_LENGTH (string-expression)

Parameters string-expression The string whose length is to be calculated

Usage Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the CHAR_LENGTH value may be
less than the BYTE_LENGTH value.

Example The following statement returns the value 8:

SELECT CHAR_LENGTH('Chemical') FROM iq_dummy

Standards and
compatibility

• SQL92 This function is SQL92 compatible

• Sybase Compatible with Adaptive Server Enterprise

See also “BYTE_LENGTH function [String]” on page 133

CHARINDEX function [String]
Function Returns the position of the first occurrence of a specified string in another

string.

Syntax CHARINDEX (string-expression1, string-expression2)

Parameters string-expression1 The string for which you are searching. This string is
limited to 255 bytes.

string-expression2 The string to be searched. The position of the first
character in the string being searched is 1.

Example The statement:

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 137

SELECT Surname, GivenName
FROM Employees
WHERE CHARINDEX('K', Surname) = 1

returns the following values:

Usage All the positions or offsets, returned or specified, in the CHARINDEX function
are always character offsets and may be different from the byte offset for
multibyte data.

If the string being searched contains more than one instance of the specified
string, CHARINDEX returns the position of the first instance.

If the string being searched does not contain the specified string, CHARINDEX
returns zero (0).

Searching for a zero-length string returns 1.

If any of the arguments is NULL, the result is NULL.

CHARINDEX returns a 32 bit signed integer position for CHAR and VARCHAR
columns.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “SUBSTRING function [String]” on page 265

Chapter 4, “Function Support” in Large Objects Management in Sybase IQ

COALESCE function [Miscellaneous]
Function Returns the first non-NULL expression from a list.

Syntax COALESCE (expression, expression [, …])

Parameters expression Any expression

Example The following statement returns the value 34:

SELECT COALESCE(NULL, 34, 13, 0) FROM iq_dummy

Standards and
compatibility

• SQL92 SQL92

Surname GivenName
Klobucher James
Kuo Felicia
Kelly Moira

Alphabetical list of functions

138 Sybase IQ

• Sybase Compatible with Adaptive Server Enterprise.

COL_LENGTH function [System]
Function Returns the defined length of a column.

Syntax COL_LENGTH (table-name, column-name)

Parameters table-name The table name

column-name The column name

Example The following statement returns the column length 35:

SELECT COL_LENGTH ('CUSTOMERS', 'ADDRESS') FROM
iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “DATALENGTH function [System]” on page 148

COL_NAME function [System]
Function Returns the column name.

Syntax COL_NAME (table-id, column-id [, database-id])

Parameters table-id The object ID of the table

column-id The column ID of the column

database-id The database ID

Examples The following statement returns the column name lname. The object ID of the
Customers table is 100209, as returned by the OBJECT_ID function. The
column ID is stored in the column_id column of the syscolumn system table.
The database ID of the iqdemo database is 0, as returned by the DB_ID
function.

SELECT COL_NAME(100209, 3, 0) FROM iq_dummy

The following statement returns the column name city.

SELECT COL_NAME (100209, 5)FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 139

See also “DB_ID function [System]” on page 161

“OBJECT_ID function [System]” on page 215

CONNECTION_PROPERTY function [System]
Function Returns the value of a given connection property as a string.

Syntax CONNECTION_PROPERTY ({ integer-expression1 | string-expression }
 … [, integer-expression2])

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters integer-expression1 In most cases, it is more convenient to supply a string
expression as the first argument. If you do supply integer-expression1, it is the
connection property ID. You can determine this using the PROPERTY_NUMBER
function.

string-expression The connection property name. You must specify either
the property ID or the property name.

integer-expression2 The connection ID of the current database connection.
The current connection is used if this argument is omitted.

Example The following statement returns the number of prepared statements being
maintained, for example, 4:

SELECT connection_property('PrepStmt')FROM iq_dummy

Usage The current connection is used if the second argument is omitted.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “Connection properties” on page 121

“PROPERTY_NUMBER function [System]” on page 227

CONVERT function [Data type conversion]
Function Returns an expression converted to a supplied data type.

Syntax CONVERT (data-type, expression [, format-style])

Alphabetical list of functions

140 Sybase IQ

Parameters data-type The data type to which the expression is converted

expression The expression to be converted

format-style For converting strings to date or time data types and vice versa,
format-style is a style code number that describes the date format string to be
used. Table 4-17 lists the meanings of the values of the format-style argument.

Table 4-17: CONVERT format style code output

If no format-style argument is provided, style code 0 is used.

Examples The following statements illustrate the use of format styles:

SELECT CONVERT(CHAR(20), order_date, 104)
FROM sales_order

Without
century (yy)

With
century
(yyyy) Output

- 0 or 100 mmm dd yyyy hh:nnAM (or PM)
1 101 mm/dd/yy[yy]
2 102 [yy]yy.mm.dd
3 103 dd/mm/yy[yy]
4 104 dd.mm.yy[yy]
5 105 dd-mm-yy[yy]
6 106 dd mmm yy[yy]
7 107 mmm dd, yy[yy]
8 108 hh:nn:ss
- 9 or 109 mmm dd yyyy hh:nn:ss:sssAM (or PM)
10 110 mm-dd-yy[yy]
11 111 [yy]yy/mm/dd
12 112 [yy]yymmdd
13 113 dd mmm yyyy hh:nn:ss:sss (24 hour clock,

Europe default + milliseconds, 4-digit year)
14 114 hh:nn:ss (24 hour clock)
20 120 yyyy-mm-dd hh:nn:ss (24-hour clock, ODBC

canonical, 4-digit year)
21 121 yyyy-mm-dd hh:nn:ss.sss (24 hour clock, ODBC

canonical with milliseconds, 4-digit year)
- 365 yyyyjjj (as a string or integer, where jjj is the

Julian day number from 1 to 366 within the year)

order_date
16.03.1993

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 141

SELECT CONVERT(CHAR(20), order_date, 7)
FROM sales_order

The following statements illustrate the use of the format style 365, which
converts data of type DATE and DATETIME to and from either string or integer
type data:

CREATE TABLE tab
(date_col DATE, int_col INT, char7_col CHAR(7));

INSERT INTO tab (date_col, int_col, char7_col)
VALUES (‘Dec 17, 2004’, 2004352, ‘2004352’);

SELECT CONVERT(VARCHAR(8), tab.date_col, 365) FROM tab;

returns ‘2004352’

SELECT CONVERT(INT, tab.date_col, 365) from tab;

returns 2004352

SELECT CONVERT(DATE, tab.int_col, 365) FROM TAB;

returns 2004-12-17

SELECT CONVERT(DATE, tab.char7_col, 365) FROM tab;

returns 2004-12-17

The following statement illustrates conversion to an integer, and returns the
value 5.

SELECT CONVERT(integer, 5.2) FROM iq_dummy

Usage The result data type of a CONVERT function is a LONG VARCHAR. If you use
CONVERT in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set CONVERT to the correct data
type and size.

20.03.1993
23.03.1993
25.03.1993
...

order_date
mar 16, 93
mar 20, 93
mar 23, 93
mar 25, 93
...

order_date

Alphabetical list of functions

142 Sybase IQ

See “REPLACE function [String]” for more information.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise and SQL
Anywhere, except for format style 365, which is an IQ-only extension

See also “CAST function [Data type conversion]” on page 133

CORR function [Aggregate]
Function Returns the correlation coefficient of a set of number pairs.

Syntax 1 CORR (dependent-expression, independent-expression)

Syntax 2 CORR (dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent-
expression.

independent-expression The variable that influences the outcome.

Example The following example performs a correlation to discover whether age is
associated with income level. This function returns the value 0.440227:

SELECT CORR(Salary, (YEAR(NOW()) - YEAR(BirthDate
))) FROM Employees;

Usage The CORR function converts its arguments to DOUBLE, performs the
computation in double-precision floating-point, and returns a DOUBLE as the
result. If applied to an empty set, then CORR returns NULL.

dependent-expression and independent-expression are both numeric. The
function is applied to the set of (dependent-expression, independent-
expression) after eliminating the pairs for which either dependent-expression
or independent-expression is NULL. The following computation is made:

COVAR_POP (y, x) / (STDDEV_POP (x) * STDDEV_POP (y))

where x represents the dependent-expression and y represents the
independent-expression.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 143

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Standards and
compatibility

• SQL2008 SQL foundation feature outside of core SQL

• Sybase Compatible with SQL Anywhere

COS function [Numeric]
Function Returns the cosine of a number, expressed in radians.

Syntax COS (numeric-expression)

Parameters numeric-expression The angle, in radians.

Example The following statement returns the value 0.86781:

SELECT COS(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “ACOS function [Numeric]” on page 128

“COT function [Numeric]” on page 143

“SIN function [Numeric]” on page 250

“TAN function [Numeric]” on page 267

COT function [Numeric]
Function Returns the cotangent of a number, expressed in radians.

Syntax COT (numeric-expression)

Parameters numeric-expression The angle, in radians.

Example The following statement returns the value 1.74653:

SELECT COT(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “COS function [Numeric]” on page 143

Alphabetical list of functions

144 Sybase IQ

“SIN function [Numeric]” on page 250

“TAN function [Numeric]” on page 267

COVAR_POP function [Aggregate]
Function Returns the population covariance of a set of number pairs.

Syntax 1 COVAR_POP (dependent-expression, independent-expression)

Syntax 2 COVAR_POP (dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Example The following example measures the strength of association between
employee age and salary. This function returns the value 73785.840059:

SELECT COVAR_POP(Salary, (YEAR(NOW()) - YEAR(
BirthDate))) FROM Employees;

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then COVAR_POP returns NULL.

dependent-expression and independent-expression are both numeric. The
function is applied to the set of (dependent-expression, independent-
expression) after eliminating the pairs for which either dependent-expression
or independent-expression is NULL. The following computation is made:

(SUM(x*y) - SUM(x) * SUM(y) / n) / n

where x represents the dependent-expression and y represents the
independent-expression.

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 145

.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Standards and
compatibility

• SQL2008 SQL foundation feature outside of core SQL

• Sybase Compatible with SQL Anywhere

COVAR_SAMP function [Aggregate]
Function Returns the sample covariance of a set of number pairs.

Syntax 1 COVAR_SAMP (dependent-expression, independent-expression)

Syntax 2 COVAR_SAMP (dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Example The following example measures the strength of association between
employee age and salary. This function returns the value 74782.946005:

SELECT COVAR_SAMP(Salary, (2008 - YEAR(BirthDate))
) FROM Employees;

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then COVAR_SAMP returns NULL.

Both dependent-expression and independent-expression are numeric. The
function is applied to the set of (dependent-expression, independent-
expression) after eliminating the pairs for which either dependent-expression
or independent-expression is NULL.

(SUM(x*y) - SUM(x) * SUM(y) / n) / (n-1)

Alphabetical list of functions

146 Sybase IQ

where x represents the dependent-expression and y represents the
independent-expression.

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Standards and
compatibility

• SQL2008 SQL foundation feature outside of core SQL

• Sybase Compatible with SQL Anywhere

COUNT function [Aggregate]
Function Counts the number of rows in a group, depending on the specified parameters.

Syntax COUNT (* | expression | DISTINCT column-name)

Parameters * Returns the number of rows in each group.

expression Returns the number of rows in each group where expression is
not the NULL value.

DISTINCT column-name Returns the number of different values in column-
name. Rows where the value is the NULL value are not included in the count.

Example The following statement returns each unique city, and the number of rows with
that city value:

SELECT city , Count(*)
FROM Employees
GROUP BY city

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “AVG function [Aggregate]” on page 131

“SUM function [Aggregate]” on page 265

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 147

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

CUME_DIST function [Ranking]
Function The CUME_DIST function calculates the relative position of one value among

a group of rows. It returns a decimal value between 0 and 1.

Syntax CUME_DIST () OVER (window-spec)

window-spec: See the Usage section below.

Example The following example returns a result set that provides a cumulative
distribution of the salaries of employees who live in California:

SELECT DepartmentID, Surname, Salary,

CUME_DIST() OVER (PARTITION BY DepartmentID

ORDER BY Salary DESC) "Rank"

FROM Employees

WHERE State IN ('CA');

The returned result set is:

Table 4-18: CUME_DIST result set

Usage Sybase IQ calculates the cumulative distribution of a value of x in a set S of
size N using:

CUME_DIST(x) = number of values in S coming before and including x in the
specified order / N

Composite sort-keys are not currently allowed in the CUME_DIST function.
You can use composite sort-keys with any of the other rank functions.

DepartmentID Surname Salary Rank
200 Savarino 72300.000 0.333333
200 Clark 45000.000 0.666667
200 Overbey 39300.000 1.000000

Alphabetical list of functions

148 Sybase IQ

You can specify elements of window-spec either in the function syntax (inline),
or with a WINDOW clause in the SELECT statement. The window-spec must
contain the ORDER BY clause, and cannot contain a ROWS or RANGE clause.
For information on how to specify the window, see “Analytical functions” on
page 104.

Note DISTINCT is not supported.

Standards and
compatibility

• SQL2008 SQL/OLAP feature T612

• Sybase Compatible with SQL Anywhere

DATALENGTH function [System]
Function Returns the length of the expression in bytes.

Syntax DATALENGTH (expression)

Parameters expression The expression is usually a column name. If the expression is a
string constant, it must be enclosed in quotes.

Usage Table 4-19 lists the return values of DATALENGTH.

Table 4-19: DATALENGTH return values

Example The following statement returns the value 35, the longest string in the
company_name column:

SELECT MAX(DATALENGTH(company_name))
FROM Customers

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “CHAR_LENGTH function [String]” on page 136

“COL_LENGTH function [System]” on page 138

Data type DATALENGTH
SMALLINT 2
INTEGER 4
DOUBLE 8
CHAR Length of the data
BINARY Length of the data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 149

DATE function [Date and time]
Function Converts the expression into a date, and removes any hours, minutes, or

seconds.

Syntax DATE (expression)

Parameters expression The value to be converted to date format. The expression is
usually a string.

Example The following statement returns the value 1988-11-26 as a date.

SELECT DATE('1988-11-26 21:20:53') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

DATEADD function [Date and time]
Function Returns the date produced by adding the specified number of the specified date

parts to a date.

Syntax DATEADD (date-part, numeric-expression, date-expression)

Parameters date part The date part to be added to the date.

For a complete listing of allowed date parts, see “Date parts” on page 112.

numeric-expression The number of date parts to be added to the date. The
numeric-expression can be any numeric type; the value is truncated to an
integer.

date-expression The date to be modified.

Example The following statement returns the value 1995-11-02 00:00:00.000:

SELECT DATEADD(month, 102, '1987/05/02') FROM iq_dummy

Usage DATEADD is a Transact-SQL compatible data manipulation function.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

Alphabetical list of functions

150 Sybase IQ

DATECEILING function [Date and time]
Function Calculates a new date, time, or datetime value by increasing the provided value

up to the nearest larger value of the specified multiple with the specified
granularity.

Syntax DATECEILING (date-part, datetime-expression [,multiple -expression])

Parameters date part The date part to be added to the date.

The following date parts are not compatible with DATECEILING:

• DayofYear

• WeekDay

• CalYearofWeek

• CalWeekofYear

• CalDayofWeek

For a complete listing of date parts, see Date part values on page 113.

datetime-expression The date, time, or date-time expression containing the
value you are evaluating.

multiple-expression (Optional). A nonzero positive integer value
expression specifying how many multiples of the units specified by the
date_part parameter to use within the calculation. For example, you can use
multiple-expression to specify that you want to regularize your data to 10-
minute intervals. Note that if multiple-expression evaluates to zero, evaluates to
a negative number, or is an explicit NULL constant, Sybase IQ generates an
error. If this multiple-expression evaluates to a NULL, then the function result
is NULL.

Example This returns the value August 13, 2009 10:40.00.000AM:

SELECT DATECEILING(MI, 'August 13, 2009,
10:32.00.132AM', 10) FROM iq_dummy

Usage This function calculates a new date, time, or datetime value by increasing the
provided value up to the nearest larger value with the specified granularity. If
you include the optional multiple-expression parameter, then the function
increases the date and time up to the nearest specified multiple of the specified
granularity.

The data type of the calculated date and time matches the data type of the
multiple-expression parameter.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 151

If you specify a multiple-expression for the millisecond, second, minute, or hour
date parts, IQ assumes that the multiple applies from the start of the next larger
unit of granularity:

• Multiples of millisecond start from the current second

• Multiples of second start from the current minute

• Multiples of minute start from the current hour

• Multiples of hour start from the current day

For example, if you specify a multiple of two minutes, IQ applies two-minute
intervals starting at the current hour.

For the millisecond, second, minute, and hour date parts, specify a multiple-
expression value that divides evenly into the range of the specified date part:

• For milliseconds, the valid multiple-expression values are: 1, 2, 4, 5, 8, 10,
20, 25, 40, 50, 100, 125, 200, 250, 500, 1000

• For seconds and minutes, the valid multiple-expression values are: 1, 2, 3,
4, 5, 6, 10, 12, 15, 20, 30, 60

• For hours, the valid multiple-expression values are: 1, 2, 3, 4, 6, 8, 12, 24

If you specify a multiple-expression for the day, week, month, quarter, or year
date parts, IQ assumes the intervals started at the smallest date value (0000-01-
01), smallest time value (00:00:00.000000), or smallest date-time value (0000-
01-01.00:00:00.000000). For example, if you specify a multiple of 10 days,
then Sybase IQ calculates 10-day intervals starting at 0000-01-01.

For the day, week, month, quarter, or year date parts, you need not specify a
multiple that divides evenly into the next larger unit of time granularity.

If IQ rounds to a multiple of the week date part, the date value is always
Sunday.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL Anywhere

DATEDIFF function [Date and time]
Function Returns the interval between two dates.

Syntax DATEDIFF (date-part, date-expression1, date-expression2)

Parameters date-part Specifies the date part in which the interval is to be measured.

Alphabetical list of functions

152 Sybase IQ

For a complete listing of allowed date parts, see “Date parts” on page 112.

date-expression1 The starting date for the interval. This value is subtracted
from date-expression2 to return the number of date parts between the two
arguments.

date-expression2 The ending date for the interval. date-expression1 is
subtracted from this value to return the number of date parts between the two
arguments.

Examples The following statement returns 1:

SELECT DATEDIFF(hour, '4:00AM', '5:50AM') FROM
iq_dummy

The following statement returns 102:

SELECT DATEDIFF(month, '1987/05/02', '1995/11/15')
FROM iq_dummy

The following statement returns 0:

SELECT DATEDIFF(day, '00:00', '23:59') FROM iq_dummy

The following statement returns 4:

SELECT DATEDIFF(day, '1999/07/19 00:00', '1999/07/23
23:59') FROM iq_dummy

The following statement returns 0:

SELECT DATEDIFF(month, '1999/07/19', '1999/07/23')
FROM iq_dummy

The following statement returns 1:

SELECT DATEDIFF(month, '1999/07/19', '1999/08/23')
FROM iq_dummy

Usage This function calculates the number of date parts between two specified dates.
The result is a signed integer value equal to (date2 - date1), in date parts.

DATEDIFF results are truncated, not rounded, when the result is not an even
multiple of the date part.

When you use day as the date part, DATEDIFF returns the number of midnights
between the two times specified, including the second date, but not the first.
For example, the following statement returns the value 5. Midnight of the first
day 2003/08/03 is not included in the result. Midnight of the second day is
included, even though the time specified is before midnight.

SELECT DATEDIFF(day, '2003/08/03 14:00', '2003/08/08
14:00') FROM iq_dummy

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 153

When you use month as the date part, DATEDIFF returns the number of first-of-
the-months between two dates, including the second date but not the first. For
example, both of the following statements return the value 9:

SELECT DATEDIFF(month, '2003/02/01', '2003/11/15')
FROM iq_dummy;
SELECT DATEDIFF(month, '2003/02/01', '2003/11/01')
FROM iq_dummy;

The first date 2003/02/01 is a first-of-month, but is not included in the result of
either query. The second date 2003/11/01 in the second query is also a first-of-
month and is included in the result.

When you use week as the date part, DATEDIFF returns the number of Sundays
between the two dates, including the second date but not the first. For example,
in the month 2003/08, the dates of the Sundays are 03, 10, 17, 24, and 31. The
following query returns the value 4:

SELECT DATEDIFF(week, '2003/08/03', '2003/08/31')
FROM iq_dummy;

The first Sunday (2003/08/03) is not included in the result.

For smaller time units, there are overflow values:

• milliseconds 24 days.

• seconds 68 years.

• minutes 4083 years.

• others No overflow limit

.

The function returns an overflow error if you exceed these limits.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

DATEFLOOR function [Date and time]
Function Calculates a new date, time, or datetime value by reducing the provided value

down to the nearest lower value of the specified multiple with the specified
granularity.

Syntax DATEFLOOR (date-part, datetime-expression [,multiple-expression])

Parameters date part The date part to be added to the date.

Alphabetical list of functions

154 Sybase IQ

The following date parts are not compatible with DATEFLOOR:

• DayofYear

• WeekDay

• CalYearofWeek

• CalWeekofYear

• CalDayofWeek

For a complete listing of date parts, see Date part values on page 113.

datetime-expression The date, time, or date-time expression containing the
value you are evaluating.

multiple-expression (Optional). A nonzero positive integer value
expression specifying how many multiples of the units specified by the
date_part parameter to use within the calculation. For example, you can use
multiple-expression to specify that you want to regularize your data to 10-
minute intervals. Note that if multiple-expression evaluates to zero, evaluates to
a negative number, or is an explicit NULL constant, then IQ generates an error.
If multiple-expression evaluates to a NULL, then the function result is NULL.

Example The following statement returns the value August 13, 2009
10:35:00.000AM:

SELECT DATEFLOOR(MINUTE, 'August 13, 2009
10:35.22.123AM') FROM iq_dummy

Usage This function calculates a new date, time, or datetime value by reducing the
provided value down to the nearest lower value with the specified granularity.
If you include the optional multiple-expression parameter, then the function
reduces the date and time down to the nearest specified multiple of the
specified granularity.

The data type of the calculated date and time matches the data type of the
multiple-expression parameter.

If you specify a multiple-expression for the millisecond, second, minute, or hour
date parts, IQ assumes that the multiple applies from the start of the next larger
unit of granularity:

• Multiples of millisecond start from the current second

• Multiples of second start from the current minute

• Multiples of minute start from the current hour

• Multiples of hour start from the current day

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 155

For example, if you specify a multiple of two minutes, IQ applies two minute
intervals starting at the current hour.

For the millisecond, second, minute, and hour date parts, specify a multiple-
expression value that divides evenly into the range of the specified date part:

• For milliseconds, the valid multiple-expression values are: 1, 2, 4, 5, 8, 10,
20, 25, 40, 50, 100, 125, 200, 250, 500, 1000

• For seconds and minutes, the valid multiple-expression values are: 1, 2, 3,
4, 5, 6, 10, 12, 15, 20, 30, 60

• For hours, the valid multiple-expression values are: 1, 2, 3, 4, 6, 8, 12, 24

If you specify a multiple-expression for the day, week, month, quarter, or year
date parts, IQ assumes the intervals started at the smallest date value (0000-01-
01), smallest time value (00:00:00.000000), or smallest date-time value (0000-
01-01.00:00:00.000000). For example, if you specify a multiple of 10 days,
then Sybase IQ calculates 10-day intervals starting at 0000-01-01.

For the day, week, month, quarter, or year date parts, you need not specify a
multiple that divides evenly into the next larger unit of time granularity.

If IQ rounds to a multiple of the week date part, the date value is always
Sunday.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL Anywhere

DATEFORMAT function [Date and time]
Function Returns a string representing a date expression in the specified format.

Syntax DATEFORMAT (datetime-expression, string-expression)

Parameters datetime-expression The date/time to be converted. Must be a date, time,
timestamp, or character string.

string-expression The format of the converted date.

Example The following statement returns string values like “Jan 01, 1989”:

SELECT DATEFORMAT(start_date, 'Mmm dd, yyyy') from
Employees;

The following statement returns the string “Feb 19, 1987”:

SELECT DATEFORMAT(CAST (‘1987/02/19’ AS DATE), ‘Mmm
Dd, yyyy’) FROM iq_dummy

Alphabetical list of functions

156 Sybase IQ

Usage The datetime-expression to convert must be a date, time, or timestamp data
type, but can also be a CHAR or VARCHAR character string. If the date is a
character string, Sybase IQ implicitly converts the character string to date,
time, or timestamp data type, so an explicit cast, as in the example above, is
unnecessary.

Any allowable date format can be used for string-expression. Date format
strings cannot contain any multibyte characters. Only single-byte characters
are allowed in a date/time/datetime format string, even when the collation
order of the database is a multibyte collation order like 932JPN.

If '?' represents a multibyte character, then the following query fails:

SELECT DATEFORMAT (start_date, ‘yy?’) FROM Employees;

Instead, move the multibyte character outside of the date format string using
the concatenation operator:

SELECT DATEFORMAT (start_date, ‘yy’) + ‘?’ FROM
Employees;

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with SQL Anywhere

See also DATE_FORMAT option in Reference: Statements and Options

DATENAME function [Date and time]
Function Returns the name of the specified part (such as the month “June”) of a date/time

value, as a character string.

Syntax DATENAME (date-part, date-expression)

Parameters date-part The date part to be named.

For a complete listing of allowed date parts, see “Date parts” on page 112.

date-expression The date for which the date part name is to be returned. The
date must contain the requested date-part.

Example The following statement returns the value May:

SELECT datename(month , '1987/05/02') FROM iq_dummy

Usage DATENAME returns a character string, even if the result is numeric, such as 23,
for the day.

Standards and
compatibility

• SQL92 Transact-SQL extension.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 157

• Sybase Compatible with Adaptive Server Enterprise.

DATEPART function [Date and time]
Function Returns an integer value for the specified part of a date/time value.

Syntax DATEPART (date-part, date-expression)

Parameters date-part The date part to be returned.

For a complete listing of allowed date parts, see “Date parts” on page 112.

date-expression The date for which the part is to be returned. The date must
contain the date-part field.

Example The following statement returns the value 5:

SELECT DATEPART(month , '1987/05/02') FROM iq_dummy

Usage Note that the DATE, TIME, and DTTM indexes do not support some date parts
(Calyearofweek, Calweekofyear, Caldayofweek, Dayofyear, Millisecond).

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

DATEROUND function [Date and time]
Function Calculates a new date, time, or datetime value by rounding the provided value

up or down to the nearest multiple of the specified value with the specified
granularity.

Syntax DATEROUND (date-part, datetime-expression [,multiple-expression])

Parameters date part The date part to be added to the date.

The following date parts are not compatible with DATEROUND:

• DayofYear

• WeekDay

• CalYearofWeek

• CalWeekofYear

• CalDayofWeek

For a complete listing of date parts, see Date part values on page 113.

Alphabetical list of functions

158 Sybase IQ

datetime-expression The date, time, or date-time expression containing the
value you are evaluating.

multiple-expression (Optional). A nonzero positive integer value
expression specifying how many multiples of the units specified by the
date_part parameter to use within the calculation. For example, you can use
multiple-expression to specify that you want to regularize your data to 10-
minute intervals. Note that if multiple-expression evaluates to zero, evaluates to
a negative number, or is an explicit NULL constant, then IQ generates an error.
If multiple-expression evaluates to a NULL, then the function result is NULL.

Example The following statement returns the value August 13, 2009,
10:30.000AM:

SELECT DATEROUND(MI, 'August 13, 2009 10:33.123AM', 10)
FROM iq_dummy

Usage This function calculates a new date, time, or datetime value by rounding the
provided value up or down to the nearest value with the specified granularity.
If you include the optional multiple-expression parameter, then the function
rounds the date and time to the nearest specified multiple of the specified
granularity.

The data type of the calculated date and time matches the data type of the
multiple-expression parameter.

If you specify a multiple-expression for the millisecond, second, minute, or hour
date parts, IQ assumes that the multiple applies from the start of the next larger
unit of granularity:

• Multiples of millisecond start from the current second

• Multiples of second start from the current minute

• Multiples of minute start from the current hour

• Multiples of hour start from the current day

For example, if you specify a multiple of two minutes, IQ applies two minute
intervals starting at the current hour.

For the millisecond, second, minute, and hour date parts, specify a multiple-
expression value that divides evenly into the range of the specified date part:

• For milliseconds, the valid multiple-expression values are: 1, 2, 4, 5, 8, 10,
20, 25, 40, 50, 100, 125, 200, 250, 500, 1000

• For seconds and minutes, the valid multiple-expression values are: 1, 2, 3,
4, 5, 6, 10, 12, 15, 20, 30, 60

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 159

• For hours, the valid multiple-expression values are: 1, 2, 3, 4, 6, 8, 12, 24

If you specify a multiple-expression for the day, week, month, quarter, or year
date parts, IQ assumes the intervals started at the smallest date value (0000-01-
01), smallest time value (00:00:00.000000), or smallest date-time value (0000-
01-01.00:00:00.000000). For example, if you specify a multiple of 10 days,
then Sybase IQ calculates 10-day intervals starting at 0000-01-01.

For the day, week, month, quarter, or year date parts, you need not specify a
multiple that divides evenly into the next larger unit of time granularity.

If IQ rounds to a multiple of the week date part, then the date value is always
Sunday.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL Anywhere

DATETIME function [Date and time]
Function Converts an expression into a timestamp.

Syntax DATETIME (expression)

Parameters expression The expression to be converted. The expression is usually a
string. Conversion errors may be reported.

Example The following statement returns a timestamp with value 1998-09-09
12:12:12.000:

SELECT DATETIME('1998-09-09 12:12:12.000') FROM
iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

DAY function [Date and time]
Function Returns an integer from 1 to 31 corresponding to the day of the month of the

date specified.

Syntax DAY (date-expression)

Parameters date-expression The date.

Example The following statement returns the value 12:

Alphabetical list of functions

160 Sybase IQ

SELECT DAY('2001-09-12') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise.

DAYNAME function [Date and time]
Function Returns the name of the day of the week from the specified date.

Syntax DAYNAME (date-expression)

Parameters date-expression The date.

Example The following statement returns the value Saturday:

SELECT DAYNAME ('1987/05/02') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

DAYS function [Date and time]
Function Returns the number of days since an arbitrary starting date, returns the number

of days between two specified dates, or adds the specified integer-expression
number of days to a given date.

Syntax DAYS (datetime-expression)
| (datetime-expression, datetime-expression)
| (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of days to be added to the datetime-
expression. If the integer-expression is negative, the appropriate number of
days are subtracted from the date/time. If you supply an integer expression, the
datetime-expression must be explicitly cast as a date.

For information on casting data types, see “CAST function [Data type
conversion]” on page 133.

DAYS ignores hours, minutes, and seconds.

Examples The following statement returns the integer value 729948:

SELECT DAYS('1998-07-13 06:07:12') FROM iq_dummy

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 161

The following statement returns the integer value -366, which is the difference
between the two dates:

SELECT DAYS('1998-07-13 06:07:12',
'1997-07-12 10:07:12') FROM iq_dummy

The following statement returns the value 1999-07-14:

SELECT DAYS(CAST('1998-07-13' AS DATE), 366)
FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

DB_ID function [System]
Function Returns the database ID number.

Syntax DB_ID ([database-name])

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters database-name A string expression containing the database name. If
database-name is a string constant, it must be enclosed in quotes. If no
database-name is supplied, the ID number of the current database is returned.

Examples The following statement returns the value 0, if iqdemo is the only running
database:

SELECT DB_ID('iqdemo') FROM iq_dummy

The following statement returns the value 0, if executed against the only
running database:

SELECT DB_ID() FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “DB_NAME function [System]” on page 162

“OBJECT_ID function [System]” on page 215

Alphabetical list of functions

162 Sybase IQ

DB_NAME function [System]
Function Returns the database name.

Syntax DB_NAME ([database-id])

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters database-id The ID of the database. database-id must be a numeric
expression.

Example The following statement returns the database name iqdemo, when executed
against the sample database:

SELECT DB_NAME(0) FROM iq_dummy

Usage If no database-id is supplied, the name of the current database is returned.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “COL_NAME function [System]” on page 138

“DB_ID function [System]” on page 161

“OBJECT_NAME function [System]” on page 216

DB_PROPERTY function [System]
Function Returns the value of the given property.

Syntax DB_PROPERTY ({ property-id | property-name }
[, { database-id | database-name }])

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters property-id The database property ID.

property-name The database property name.

database-id The database ID number, as returned by DB_ID. Typically, the
database name is used.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 163

database-name The name of the database, as returned by DB_NAME.

Example The following statement returns the page size of the current database, in bytes.

SELECT DB_PROPERTY('PAGESIZE') FROM iq_dummy

Usage Returns a string. The current database is used if the second argument is
omitted.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “Properties available for each database” on page 122

“DB_ID function [System]” on page 161

“DB_NAME function [System]” on page 162

DEGREES function [Numeric]
Function Converts a number from radians to degrees.

Syntax DEGREES (numeric-expression)

Parameters numeric-expression An angle in radians.

Example The following statement returns the value 29.793805:

SELECT DEGREES(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

DENSE_RANK function [Analytical]
Function Ranks items in a group.

Syntax DENSE_RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters expression A sort specification that can be any valid expression involving a
column reference, aggregates, or expressions invoking these items.

Example The following statement illustrates the use of the DENSE_RANK function:

SELECT s_suppkey, DENSE_RANK()
OVER (ORDER BY (SUM(s_acctBal) DESC)
AS rank_dense FROM supplier GROUP BY s_suppkey;

Alphabetical list of functions

164 Sybase IQ

s_suppkey sum_acctBal rank_dense
supplier#011 200000 1
supplier#002 200000 1
supplier#013 123000 2
supplier#004 110000 3
supplier#035 110000 3
supplier#006 50000 4
supplier#021 10000 5

Usage DENSE_RANK is a rank analytical function. The dense rank of row R is defined
as the number of rows preceding and including R that are distinct within the
groups specified in the OVER clause or distinct over the entire result set. The
difference between DENSE_RANK and RANK is that DENSE_RANK leaves no
gap in the ranking sequence when there is a tie. RANK leaves a gap when there
is a tie.

DENSE_RANK requires an OVER (ORDER BY) clause. The ORDER BY clause
specifies the parameter on which ranking is performed and the order in which
the rows are sorted in each group. This ORDER BY clause is used only within
the OVER clause and is not an ORDER BY for the SELECT. No aggregation
functions in the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

DENSE_RANK is allowed only in the select list of a SELECT or INSERT
statement or in the ORDER BY clause of the SELECT statement. DENSE_RANK
can be in a view or a union. The DENSE_RANK function cannot be used in a
subquery, a HAVING clause, or in the select list of an UPDATE or DELETE
statement. Only one rank analytical function is allowed per query.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL Anywhere

See also “Analytical functions” on page 104

“RANK function [Analytical]” on page 229

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 165

DIFFERENCE function [String]
Function Compares two strings, evaluates the similarity between them, and returns a

value from 0 to 4. The best match is 4.

Syntax DIFFERENCE (string-expression1, string-expression2)

Parameters string-expression1 The first string to compare.

string-expression2 The second string to compare.

Examples The following statement returns the value 4:

SELECT DIFFERENCE('Smith', 'Smith') FROM iq_dummy

The following statement returns the value 4:

SELECT DIFFERENCE('Smith', 'Smyth') FROM iq_dummy

The following statement returns the value 3:

SELECT DIFFERENCE('Smith', 'Sweeney') FROM iq_dummy

The following statement returns the value 2:

SELECT DIFFERENCE('Smith', 'Jones') FROM iq_dummy

The following statement returns the value 1:

SELECT DIFFERENCE('Smith', 'Rubin') FROM iq_dummy

The following statement returns the value 0:

SELECT DIFFERENCE('Smith', 'Wilkins') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise.

See also “SOUNDEX function [String]” on page 255

DOW function [Date and time]
Function Returns a number from 1 to 7 representing the day of the week of the specified

date, with Sunday=1, Monday=2, and so on.

Syntax DOW (date-expression)

Parameters date-expression The date.

Example The following statement returns the value 5:

SELECT DOW('1998-07-09') FROM iq_dummy

Alphabetical list of functions

166 Sybase IQ

Usage See DATE_FIRST_DAY_OF_WEEK option in Reference: Statements and
Options if you need Monday (or another day) to be the first day of the week.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

ERRORMSG function [Miscellaneous]
Function Provides the error message for the current error, or for a specified SQLSTATE

or SQLCODE value.

Syntax ERRORMSG ([sqlstate | sqlcode])
sqlstate: string

sqlcode: integer

Parameters sqlstate The SQLSTATE value for which the error message is to be returned.

sqlcode The SQLCODE value for which the error message is to be returned.

Example The following statement returns the error message for SQLCODE -813:

select errormsg(-813)

Return value A string containing the error message. If no argument is supplied, the error
message for the current state is supplied. Any substitutions (such as table
names and column names) are made.

If an argument is supplied, the error message for the supplied SQLSTATE or
SQLCODE is returned, with no substitutions. Table names and column names
are supplied as placeholders ('???').

The ERRORMSG function returns SQL Anywhere and Sybase IQ error
messages.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also System Administration Guide: Volume 2

EVENT_CONDITION function [System]
Function To specify when an event handler is triggered.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 167

Syntax EVENT_CONDITION (condition-name)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters condition-name The condition triggering the event. The possible values are
preset in the database, and are case-insensitive. Each condition is valid only for
certain event types. Table 4-20 lists the conditions and the events for which
they are valid.

Table 4-20: Valid conditions for events

Example The following event definition uses the EVENT_CONDITION function:

Condition
name Units Valid for Comment
DBFreePercent N/A DBDiskSpace DBDiskSpace shows

free space in the
system database file
(.db file), not the IQ
store.

DBFreeSpace Megabytes DBDiskSpace
DBSize Megabytes GrowDB
ErrorNumber N/A RAISERROR
IdleTime Seconds ServerIdle
Interval Seconds All Time since handler

last executed.
LogFreePercent N/A LogDiskSpace
LogFreeSpace Megabytes LogDiskSpace
LogSize Megabytes GrowLog
RemainingValues Integer GlobalAutoincrement The number of

remaining values.
TempFreePercent N/A TempDiskSpace TempDiskSpace

shows free space in
the system temporary
file (pointed to by
TEMP or IQTMP15
environment
variable), not the IQ
temporary store.

TempFreeSpace Megabytes TempDiskSpace
TempSize Megabytes GrowTemp

Alphabetical list of functions

168 Sybase IQ

create event LogNotifier
type LogDiskSpace
where event_condition('LogFreePercent') < 50
handler
begin

message 'LogNotifier message'
end

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also CREATE EVENT statement in Reference: Statements and Options

EVENT_CONDITION_NAME function [System]
Function Can be used to list the possible parameters for EVENT_CONDITION.

Syntax EVENT_CONDITION_NAME (integer)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters integer Must be greater than or equal to zero.

Usage You can use EVENT_CONDITION_NAME to obtain a list of all
EVENT_CONDITION arguments by looping over integers until the function
returns NULL.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also CREATE EVENT statement in Reference: Statements and Options

EVENT_PARAMETER function [System]
Function Provides context information for event handlers.

Syntax EVENT_PARAMETER (context-name)

context-name:
'ConnectionID'

| 'User'
| 'EventName'

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 169

| 'Executions'
| 'IQDBMainSpaceName'
| 'NumActive'
| 'TableName'
| condition-name

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters context-name One of the preset strings. The strings are case-insensitive, and
carry the following information:

• ConnectionId The connection ID, as returned by

connection_property('id')

• User The user ID for the user that caused the event to be triggered.

• EventName The name of the event that has been triggered.

• Executions The number of times the event handler has been executed.

• NumActive The number of active instances of an event handler. This is
useful if you want to limit an event handler so that only one instance
executes at any given time.

• TableName The name of the table, for use with RemainingValues.

In addition, you can access any of the valid condition-name arguments to the
EVENT_CONDITION function from the EVENT_PARAMETER function.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “EVENT_CONDITION function [System]” on page 166

CREATE EVENT statement in Reference: Statements and Options

EXP function [Numeric]
Function Returns the exponential function, e to the power of a number.

Syntax EXP (numeric-expression)

Parameters numeric-expression The exponent.

Example The following statement returns the value 3269017.3724721107:

Alphabetical list of functions

170 Sybase IQ

SELECT EXP(15) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

EXP_WEIGHTED_AVG function [Aggregate]
Function Calculates an exponential weighted moving average. Weightings determine the

relative importance of each quantity that makes up the average.

Syntax EXP_WEIGHTED_AVG (expression, period-expression)

OVER (window-spec)

window-spec: See the Usage section, below.

Parameters expression A numeric expression for which a weighted value is being
computed.

period-expression A numeric expression specifying the period for which
the average is to be computed.

Usage Similar to the WEIGHTED_AVG function, the weights in
EXP_WEIGHTED_AVG decrease over time. However, weights in
WEIGHTED_AVG decrease arithmetically, whereas weights in
EXP_WEIGHTED_AVG decrease exponentially. Exponential weighting applies
more weight to the most recent values, and decreases the weight for older
values while still applying some weight.

Sybase IQ calculates the exponential moving average using:

S*C+(1-S)*PEMA

In the calculation above, IQ applies the smoothing factor by multiplying the
current closing price (C) by the smoothing constant (S) added to the product of
the previous day’s exponential moving average value (PEMA) and 1 minus the
smoothing factor.

Sybase IQ calculates the exponential moving average over the entire period
specified by the OVER clause. period-expression specifies the moving range of
the exponential moving average.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 171

You can specify elements of window-spec either in the function syntax (inline),
or with a WINDOW clause in the SELECT statement. The window-spec must
contain an ORDER BY statement and cannot contain a frame specification. For
information on how to specify the window, see “Analytical functions” on page
104.

Note ROLLUP and CUBE are not supported in the GROUP BY clause.
DISTINCT is not supported.

Example The following example returns an exponential weighted average of salaries for
employees in Florida with the salary of recently hired employees contributing
the most weight to the average. There are three rows used in the weighting:

SELECT DepartmentID, Surname, Salary,

EXP_WEIGHTED_AVG(Salary, 3) OVER (ORDER BY
YEAR(StartDate) DESC) as "W_AVG"

FROM Employees

WHERE State IN ('FL') ORDER BY StartDate DESC

The returned result set is:

Table 4-21: EXP_WEIGHTED_AVG result set

Standards and
compatibility

• SQL2008 Vendor extension

FIRST_VALUE function [Aggregate]
Function Returns the first value from a set of values.

Syntax FIRST_VALUE (expression [IGNORE NULLS | RESPECT NULLS])

DepartmentID Surname Salary W_AVG
400 Evans 68940.000 34470.000000
300 Litton 58930.000 46700.000000
200 Sterling 64900.000 55800.000000
200 Kelly 87500.000 71650.000000
400 Charlton 28300.000 49975.000000
100 Lull 87900.000 68937.500000
100 Gowda 59840.000 60621.875000
400 Francis 53870.000 61403.750000

Alphabetical list of functions

172 Sybase IQ

OVER (window-spec)

Parameters expression The expression on which to determine the first value in an
ordered set.

Usage FIRST_VALUE returns the first value in a set of values, which is usually an
ordered set. If the first value in the set is null, then the function returns NULL
unless you specify IGNORE NULLS. If you specify IGNORE NULLS, then
FIRST_VALUE returns the first non-null value in the set, or NULL if all values
are null.

The data type of the returned value is the same as that of the input value.

You cannot use FIRST_VALUE or any other analytic function for expression.
That is, you cannot nest analytic functions, but you can use other built-in
function expressions for expression.

If the window-spec does not contain an ORDER BY, then the result is arbitrary.
If there is no window-spec, the answer is arbitrary.

You can specify elements of window-spec either in the function syntax (inline),
or with a WINDOW clause in the SELECT statement. For information on how
to specify the window, see “Analytical functions” on page 104.

Note DISTINCT is not supported.

Example The following example returns the relationship, expressed as a percentage,
between each employee’s salary and that of the most recently hired employee
in the same department:

SELECT DepartmentID, EmployeeID,
100 * Salary / (FIRST_VALUE(Salary) OVER (
PARTITION BY DepartmentID ORDER BY Year(StartDate) DESC
))
AS percentage
FROM Employees order by DepartmentID DESC;

The returned result set is:

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 173

Table 4-22: FIRST_VALUE result set

In this example, employee 1658 is the first row for department 500, indicating
that employee 1658 is the most recent hire in that department, and therefore
receives a percentage of 100%. Percentages for the remaining employees in
department 500 are calculated relative to that of employee 1658. For example,
employee 1570 earns approximately 139% of what employee 1658 earns.

Standards and
compatibility

• SQL2008 SQL/OLAP feature T612

• Sybase Compatible with SQL Anywhere

FLOOR function [Numeric]
Function Returns the floor of (largest integer not greater than) a number.

Syntax FLOOR (numeric-expression)

Parameters numeric-expression The number, usually a float.

Examples The following statement returns the value 123.00:

SELECT FLOOR (123) FROM iq_dummy

The following statement returns the value 123:

SELECT FLOOR (123.45) FROM iq_dummy

DepartmentID EmployeeID Percentage
500 1658 100.000000000000000000000
500 1570 138.842709713689113761394
500 1615 110.428462434244870095972
500 1013 109.585190539292454724330
500 750 137.734409508894510701521
500 921 167.449704854836766654619
500 868 113.239368750752921334778
500 703 222.867927558928643135365
500 191 119.664297474199895594908
400 1684 100.000000000000000000000
400 1740 76.128652163477274215016
400 1751 76.353400685155687446813
400 1607 133.758100765890593292456
400 1507 77.996465120338650199655
400 1576 150.428767810774836893669

Alphabetical list of functions

174 Sybase IQ

The following statement returns the value -124.00.

SELECT FLOOR (-123.45) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “CEILING function [Numeric]” on page 135

GETDATE function [Date and time]
Function Returns the current date and time.

Syntax GETDATE ()

Example The following statement returns the system date and time.

SELECT GETDATE() FROM iq_dummy

Usage GETDATE is a Transact-SQL compatible data manipulation function.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

GRAPHICAL_PLAN function [String]
Function Returns the graphical query plan to Interactive SQL in an XML format string.

Syntax GRAPHICAL_PLAN (string-expression)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters string-expression SQL statement for which the plan is to be generated.
string-expression is generally a SELECT statement, but it can also be an
UPDATE or DELETE, INSERT SELECT, or SELECT INTO statement.

If you do not provide an argument to the GRAPHICAL_PLAN function, the
query plan is returned to you from the cache. If there is no query plan in the
cache, then this message appears:

plan not available

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 175

The behavior of GRAPHICAL_PLAN function is controlled by database options
QUERY_PLAN_TEXT_ACCESS and QUERY_PLAN_TEXT_CACHING. If
QUERY_PLAN_TEXT_ACCESS is OFF (the default), then this message
appears:

Plan not available. The database option
QUERY_PLAN_TEXT_ACCESS is OFF

If a user needs access to the plan, the DBA must set option
QUERY_PLAN_TEXT_ACCESS ON for that user.

If QUERY_PLAN_TEXT_ACCESS is ON, and the query plan for the string
expression is available in the cache maintained on the server, the query plan
from the cache is returned to you.

If the query plan is not available in the cache and you are authorized to view
plans on the client, then a query plan with optimizer estimates (query plan with
NOEXEC option ON) is generated and appears on the dbisql client plan window.

Note Sybase IQ does not support NOEXEC plan generation for SELECT,
UPDATE, DELETE, INSERT SELECT, and SELECT INTO queries.

When a user requests a query plan that has not yet been executed, the query
plan is not available in the cache. Instead, a query plan with optimizer estimates
is returned without QUERY_PLAN_AFTER_RUN statistics.

Query plans for stored procedures are not accessible using the
GRAPHICAL_PLAN function.

Users can view the query plan for cursors opened for IQ queries. A cursor is
declared and opened using DECLARE CURSOR and OPEN CURSOR
commands. To obtain the query plan for the most recently opened cursor, use:

SELECT GRAPHICAL_PLAN ();

With the QUERY_PLAN_AFTER_RUN option OFF, the plan appears after
OPEN CURSOR or CLOSE CURSOR. However, if
QUERY_PLAN_AFTER_RUN is ON, CLOSE CURSOR must be executed before
you request the plan.

Alphabetical list of functions

176 Sybase IQ

For information on viewing the query optimizer's execution plan for a SQL
statement in the Plan Viewer window in Interactive SQL, see “Viewing
graphical plans in Interactive SQL” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration >
Administering Your Database > SQL Anywhere graphical administration tools
> Using Interactive SQL > Viewing plans using the Interactive SQL Plan
Viewer.

When Interactive SQL users request plans for UPDATE, DELETE, SELECT
INTO, and INSERT SELECT queries, the NOEXEC plan is not supported. To
access the query plan, first explicitly execute the query, and then request the
plan.

Examples The following example passes a SELECT statement as a string parameter and
returns the plan for executing the query. It saves the plan in the file gplan.xml.

Note If you use the OUTPUT statement’s HEXADECIMAL clause set to ASIS to
get formatted plan output, the values of characters are written without any
escaping, even if the value contains control characters. ASIS is useful for text
that contains formatting characters such as tabs or carriage returns.

SELECT GRAPHICAL_PLAN ('SELECT * FROM
Employees');OUTPUT to 'C:\gplan.xml' HEXADECIMAL ASIS
quote '';

The following example returns the query plan from the cache, if available:

SELECT GRAPHICAL_PLAN ();

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 SQL/foundation feature outside of core SQL

• Sybase Not supported by Adaptive Server Enterprise

See also “HTML_PLAN function [String]” on page 183

“OUTPUT statement [DBISQL]” in Reference: Building Blocks, Tables, and
Procedures

“NOEXEC option,” “QUERY_PLAN_AFTER_RUN option,”
“QUERY_PLAN_AS_HTML option,” “QUERY_PLAN_TEXT_ACCESS
option,”and “QUERY_PLAN_TEXT_CACHING option” in Reference:
Statements and Options

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 177

PLAN function [Miscellaneous], EXPLANATION function, [Miscellaneous],
GRAPHICAL_ULPLAN function [Miscellaneous], LONG_ULPLAN
function [Miscellaneous], and SHORT_ULPLAN function [Miscellaneous] in
SQL Anywhere Server – SQL Reference.

GROUPING function [Aggregate]
Function Identifies whether a column in a ROLLUP or CUBE operation result set is

NULL because it is part of a subtotal row, or NULL because of the underlying
data.

Syntax GROUPING (group-by-expression)

Parameters group-by-expression An expression appearing as a grouping column in the
result set of a query that uses a GROUP BY clause with the ROLLUP or CUBE
keyword. The function identifies subtotal rows added to the result set by a
ROLLUP or CUBE operation.

Currently, Sybase IQ does not support the PERCENTILE_CONT or
PERCENTILE_DISC functions with GROUP BY CUBE operations.

Return value • 1 Indicates that group-by-expression is NULL because it is part of a
subtotal row. The column is not a prefix column for that row.

• 0 Indicates that group-by-expression is a prefix column of a subtotal row.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 SQL/foundation feature outside of core SQL

• Sybase Not supported by Adaptive Server Enterprise

See also SELECT statement in Reference: Statements and Options

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

GROUP_MEMBER function [System]
Function Identifies whether the user belongs to the specified group.

Syntax GROUP_MEMBER (group-name-string-expression[, user-name-string-
expression])

Parameters group-name-string-expression Identifies the group to be considered.

user-name-string-expression Identifies the user to be considered. If not
supplied, then the current user name is assumed.

Alphabetical list of functions

178 Sybase IQ

Return value • 0 Returns 0 if the group does not exist, if the user does not exist, or if the
user does not belong to the specified group.

• 1 Returns an integer other than 0 if the user is a member of the specified
group.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 SQL/foundation feature outside of core SQL

• Sybase Not supported by Adaptive Server Enterprise

HEXTOBIGINT function [Data type conversion]
Function Returns the BIGINT equivalent of a hexadecimal string.

Syntax HEXTOBIGINT (hexadecimal-string)

Parameters hexadecimal-string The hexadecimal value to be converted to a big integer
(BIGINT). Input can be in the following forms, with either a lowercase or
uppercase “0x” in the prefix, or no prefix:

0xhex-string
0Xhex-string
hex-string

Examples The following statements return the value 4294967287:

SELECT HEXTOBIGINT ('0xfffffff7') FROM iq_dummy
SELECT HEXTOBIGINT ('0Xfffffff7') FROM iq_dummy
SELECT HEXTOBIGINT ('fffffff7') FROM iq_dummy

Usage The HEXTOBIGINT function accepts hexadecimal integers and returns the
BIGINT equivalent. Hexadecimal integers can be provided as CHAR and
VARCHAR value expressions, as well as BINARY and VARBINARY expressions.

The HEXTOBIGINT function accepts a valid hexadecimal string, with or
without a “0x” or “0X” prefix, enclosed in single quotes.

Input of fewer than 16 digits is assumed to be left-padded with zeros.

For data type conversion failure on input, Sybase IQ returns an error unless the
CONVERSION_ERROR option is set to OFF. When CONVERSION_ERROR is
OFF, invalid hexadecimal input returns NULL.

An error is returned if a BINARY or VARBINARY value exceeds 8 bytes and a
CHAR or VARCHAR value exceeds 16 characters, with the exception of the
value being appended with ‘0x.’

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 179

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also CONVERSION_ERROR option [TSQL] in Reference: Statements and
Options

“BIGINTTOHEX function [Data type conversion]” on page 132

“HEXTOINT function [Data type conversion]” on page 179

“INTTOHEX function [Data type conversion]” on page 189

HEXTOINT function [Data type conversion]
Function Returns the unsigned BIGINT equivalent of a hexadecimal string.

Syntax HEXTOINT (hexadecimal-string)

Parameters hexadecimal-string The string to be converted to an integer. Input can be in
the following forms, with either a lowercase or uppercase “x” in the prefix, or
no prefix:

0xhex-string
0Xhex-string
hex-string

Examples The following statements return the value 420:

SELECT HEXTOINT ('0x1A4') FROM iq_dummy
SELECT HEXTOINT ('0X1A4') FROM iq_dummy
SELECT HEXTOINT ('1A4') FROM iq_dummy

Usage For invalid hexadecimal input, Sybase IQ returns an error unless the
CONVERSION_ERROR option is OFF. When CONVERSION_ERROR is OFF,
invalid hexadecimal input returns NULL.

The database option ASE_FUNCTION_BEHAVIOR specifies that output of
Sybase IQ functions, including INTTOHEX and HEXTOINT, is consistent with
the output of Adaptive Server Enterprise functions. When the
ASE_FUNCTION_BEHAVIOR option is ON:

• Sybase IQ HEXTOINT assumes input is a hexadecimal string of 8
characters; if the length is less than 8 characters long, the string is left
padded with zeros.

• Sybase IQ HEXTOINT accepts a maximum of 16 characters prefixed with
0x (a total of 18 characters); use caution, as a large input value can result
in an integer value that overflows the 32-bit signed integer output size.

Alphabetical list of functions

180 Sybase IQ

• The data type of the output of the Sybase IQ HEXTOINT function is
assumed to be a 32-bit signed integer.

• Sybase IQ HEXTOINT accepts a 32-bit hexadecimal integer as a signed
representation.

• For more than 8 hexadecimal characters, Sybase IQ HEXTOINT considers
only relevant characters.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also ASE_FUNCTION_BEHAVIOR option in Reference: Statements and Options

CONVERSION_ERROR option [TSQL] in Reference: Statements and
Options

“INTTOHEX function [Data type conversion]” on page 189

HOUR function [Date and time]
Function Returns a number from 0 to 23 corresponding to the hour component of the

specified date/time.

Syntax HOUR (datetime-expression)

Parameters datetime-expression The date/time.

Example The following statement returns the value 21:

SELECT HOUR('1998-07-09 21:12:13') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

HOURS function [Date and time]
Function Returns the number of hours since an arbitrary starting date and time, the

number of whole hours between two specified times, or adds the specified
integer-expression number of hours to a time.

Syntax HOURS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 181

integer-expression The number of hours to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of hours
are subtracted from the date/time. If you supply an integer expression, the
datetime-expression must be explicitly cast as a datetime data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 133.

Examples The following statement returns the value 17518758:

SELECT HOURS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 4, to signify the difference between
the two times:

SELECT HOURS('1999-07-13 06:07:12',
'1999-07-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-05-13 02:05:07.000:

SELECT HOURS(CAST('1999-05-12 21:05:07'
AS DATETIME), 5) FROM iq_dummy

Usage The second syntax returns the number of whole hours from the first date/time
to the second date/time. The number might be negative.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

HTML_DECODE function [HTTP]
Function Decodes special character entities that appear in HTML literal strings.

Syntax HTML_DECODE (string)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters string An arbitrary literal string used in an HTML document.

Usage This function returns the string argument after making the following set of
substitutions:

Characters Substitution
" "

Alphabetical list of functions

182 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “HTML_ENCODE function [HTTP]” on page 182

“HTTP_ENCODE function [HTTP]” on page 185

HTML_ENCODE function [HTTP]
Function Encodes special characters within strings to be inserted into HTML documents.

Syntax HTML_ENCODE (string)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters string An arbitrary literal string used in an HTML document.

Usage This function returns the string argument after making the following set of
substitutions:

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

' '
& &
< <
> >
&#xnn; character nn

Characters Substitution

Characters Substitution
" "
' '
& &
< <
> >
codes no less
than 0X20

&#xnn

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 183

See also “HTML_DECODE function [HTTP]” on page 181

“HTTP_ENCODE function [HTTP]” on page 185

HTML_PLAN function [String]
Function Returns query plans in an HTML format string.

Syntax HTML_PLAN (string-expression)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters string-expression SQL statement for which the plan is to be generated. It is
primarily a SELECT statement but can be an UPDATE or DELETE statement.

If you do not provide an argument to the HTML_PLAN function, the query plan
is returned to you from the cache. If there is no query plan in the cache, this
message appears:

No plan available

The behavior of the HTML_PLAN function is controlled by database options
QUERY_PLAN_TEXT_ACCESS and QUERY_PLAN_TEXT_CACHING. If
QUERY_PLAN_TEXT_ACCESS is OFF (the default), this message appears:

Plan not available. The database option
QUERY_PLAN_TEXT_ACCESS is OFF

If QUERY_PLAN_TEXT_ACCESS is ON, and the query plan for the string
expression is available in the cache maintained on the server, the query plan
from the cache is returned to you.

The HTML_PLAN function can be used to return query plans to Interactive SQL
using SELECT, UPDATE, DELETE, INSERT SELECT, and SELECT INTO.

Users can view the query plan for cursors opened for IQ queries. To obtain the
query plan for the most recently opened cursor, use:

SELECT HTML_PLAN ();

With QUERY_PLAN_AFTER_RUN option OFF, the plan appears after OPEN
CURSOR or CLOSE CURSOR. However, if QUERY_PLAN_AFTER_RUN is
ON, CLOSE CURSOR must be executed before you request the plan.

Alphabetical list of functions

184 Sybase IQ

For information on viewing the query optimizer's execution plan for a SQL
statement in the Plan Viewer window in Interactive SQL, see “Viewing plans
using the Interactive SQL Plan Viewer ” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - Database Administration
> Administering Your Database > SQL Anywhere graphical administration
tools > Using Interactive SQL.

When Interactive SQL users request plans for UPDATE, DELETE, SELECT
INTO, and INSERT SELECT queries, the NOEXEC plan is not supported. To
access the query plan, first explicitly execute the query, then request the plan.

When you request an HTML_PLAN for a SQL Anywhere query or for an OMNI/
CIS decomposed query, the following message is returned:

No plan. HTML_PLAN function is not supported for this
type of statement or database.

Examples The following example passes a SELECT statement as a string parameter and
returns the HTML plan for executing the query. It saves the plan in the file
hplan.html.

SELECT HTML_PLAN ('SELECT * FROM Employees');
OUTPUT to 'C:\hplan.html' HEXADECIMAL ASIS QUOTE '';

The OUTPUT TO clause HEXADECIMAL ASIS is useful for text that contains
formatting characters such as tabs or carriage returns. When set to ASIS, values
are written as is, without any escaping, even if the values contain control
characters.

The following example returns the HTML query plan from the cache, if
available.

SELECT HTML_PLAN ();

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 SQL/foundation feature outside of core SQL

• Sybase Not supported by Adaptive Server Enterprise

See also “GRAPHICAL_PLAN function [String]” on page 174

“OUTPUT statement [DBISQL]” in Reference: Building Blocks, Tables, and
Procedures

“NOEXEC option,” “QUERY_PLAN_AFTER_RUN option,”
“QUERY_PLAN_AS_HTML option,” “QUERY_PLAN_TEXT_ACCESS
option,”and “QUERY_PLAN_TEXT_CACHING option” in Reference:
Statements and Options

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 185

PLAN function [Miscellaneous], EXPLANATION function, [Miscellaneous],
GRAPHICAL_ULPLAN function [Miscellaneous], LONG_ULPLAN
function [Miscellaneous], and SHORT_ULPLAN function [Miscellaneous] in
SQL Anywhere Server – SQL Reference.

HTTP_DECODE function [HTTP]
Function Decodes special characters within strings for use with HTTP.

Syntax HTTP_DECODE (string)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters string Arbitrary string to be used in an HTTP request.

Usage This function returns the string argument after replacing all character
sequences of the form %nn, where nn is a hexadecimal value, with the
character with code nn. In addition, all plus signs (+) are replaced with spaces.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “HTML_ENCODE function [HTTP]” on page 182

“HTTP_ENCODE function [HTTP]” on page 185

HTTP_ENCODE function [HTTP]
Function Encodes special characters in strings for use with HTTP.

Syntax HTML_ENCODE (string)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters string Arbitrary string to be used in an HTTP request.

Alphabetical list of functions

186 Sybase IQ

Usage This function returns the string argument after making the following set of
substitutions. In addition, all characters with hexadecimal codes less than 1F or
greater than 7E are replaced with %nn, where nn is the character code.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “HTML_ENCODE function [HTTP]” on page 182

“HTTP_DECODE function [HTTP]” on page 185

HTTP_HEADER function [HTTP]
Function Gets the value of an HTTP header.

Syntax HTML_HEADER (field-name)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters field-name The name of an HTTP header field.

Character Substitution
space %20
" %22
%23
& %26
, %2C
; %3B
< %3C
> %3E
[%5B
\ %5C
] %5D
` %60
{ %7B
| %7C
} %7D

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 187

Usage This function returns the value of the named HTTP header field. It is used when
processing an HTTP request through a Web service.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “HTTP_VARIABLE function [HTTP]” on page 187

“NEXT_HTTP_HEADER function [HTTP]” on page 210

“NEXT_HTTP_VARIABLE function [HTTP]” on page 211

HTTP_VARIABLE function [HTTP]
Function Gets the value of an HTTP variable.

Syntax HTML_VARIABLE (var-name [[, instance] , header-field)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters var-name The name of the an HTTP variable.

instance If more than one variable has the same name, the instance number
of the field instance, or NULL to get the first one. Useful for select lists that
permit multiple selections.

header-field In a multipart request, a header field name associated with the
named field.

Usage This function returns the value of the named HTTP variable. It is used when
processing an HTTP request through a Web service.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

“HTML_DECODE function [HTTP]” on page 181

“NEXT_HTTP_HEADER function [HTTP]” on page 210

“NEXT_HTTP_VARIABLE function [HTTP]” on page 211

Alphabetical list of functions

188 Sybase IQ

IFNULL function [Miscellaneous]
Function If the first expression is the NULL value, then the value of the second

expression is returned. If the first expression is not NULL, the value of the third
expression is returned. If the first expression is not NULL and there is no third
expression, then the NULL value is returned.

Syntax IFNULL (expression1, expression2 [, expression3])

Parameters expression1 The expression to be evaluated. Its value determines whether
expression2 or expression3 is returned.

expression2 The return value if expression1 is NULL.

expression3 The return value if expression1 is not NULL.

Examples The following statement returns the value -66:

SELECT IFNULL(NULL, -66) FROM iq_dummy

The following statement returns NULL, because the first expression is not
NULL and there is no third expression:

SELECT IFNULL(-66, -66) FROM iq_dummy

Standards and
compatibility

• SQL92 Transact-SQL extension

• Sybase Not supported by Adaptive Server Enterprise

INDEX_COL function [System]
Function Returns the name of the indexed column.

Syntax INDEX_COL (table-name, index-id, key_# [, user-id])

Parameters table-name A table name.

index-id The index ID of an index of table-name.

key_# A key in the index specified by index-id. This parameter specifies the
column number in the index. For a single column index, key_# is equal to 0.
For a multicolumn index, key_# is equal to 0 for the first column, 1 for the
second column, and so on.

user-id The user ID of the owner of table-name. If user-id is not specified,
this value defaults to the caller’s user ID.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “OBJECT_ID function [System]” on page 215

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 189

INSERTSTR function [String]
Function Inserts a string into another string at a specified position.

Syntax INSERTSTR (numeric-expression, string-expression1, string-
expression2)

Parameters numeric-expression The position after which string-expression2 is to be
inserted. Use zero to insert a string at the beginning.

string-expression1 The string into which string-expression2 is to be
inserted.

string-expression2 The string to be inserted.

Note The result data type of an INSERTSTR function is a LONG VARCHAR. If
you use INSERTSTR in a SELECT INTO statement, you must have a Large
Objects Management option license or use CAST and set INSERTSTR to the
correct data type and size.

See “REPLACE function [String]” .

Example The following statement returns the value “backoffice”:

SELECT INSERTSTR(0, 'office ', 'back') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported in Adaptive Server Enterprise. The STUFF
function is equivalent and is supported in both Adaptive Server Enterprise
and Sybase IQ

See also “STUFF function [String]” on page 264

INTTOHEX function [Data type conversion]
Function Returns the hexadecimal equivalent of a decimal integer.

Syntax INTTOHEX (integer-expression)

Parameters integer-expression The integer to be converted to hexadecimal.

Examples The following statement returns the value 3B9ACA00:

SELECT INTTOHEX(1000000000) FROM iq_dummy

The following statement returns the value 00000002540BE400:

SELECT INTTOHEX (10000000000) FROM iq_dummy

Alphabetical list of functions

190 Sybase IQ

Usage If data conversion of input to INTTOHEX conversion fails, Sybase IQ returns an
error, unless the CONVERSION_ERROR option is OFF. In that case, the result
is NULL.

ASE_FUNCTION_BEHAVIOR option The database option
ASE_FUNCTION_BEHAVIOR specifies that output of IQ functions, including
INTTOHEX and HEXTOINT, be consistent with the output of Adaptive Server
Enterprise functions. The default value of ASE_FUNCTION_BEHAVIOR is
OFF.

When the ASE_FUNCTION_BEHAVIOR option is disabled (the value is OFF):

• The output of INTTOHEX is compatible with SQL Anywhere.

• Depending on the input, the output of INTTOHEX can be 8 digits or 16
digits and is left padded with zeros; the return data type is VARCHAR.

• The output of INTTOHEX does not have a ‘0x’ or ‘0X’ prefix.

• The input to INTTOHEX can be up to a 64-bit integer.

When the ASE_FUNCTION_BEHAVIOR option is enabled (the value is ON):

• The output of INTTOHEX is compatible with ASE.

• The output of INTTOHEX is always 8 digits and is left-padded with zeros;
the return data type is VARCHAR.

• The output of INTTOHEX does not have a ‘0x’ or ‘0X’ prefix.

• Sybase IQ INTTOHEX assumes input is a 32-bit signed integer; a larger
value can overflow and a conversion error can result. For example, the
statement:

SELECT INTTOHEX(1000000000) FROM iq_dummy

returns the value 3B9ACA00. But the statement:

SELECT INTTOHEX(10000000000) FROM iq_dummy

results in a conversion error.

Standards and
compatibility

• SQL92 Transact-SQL extension

• Sybase Compatible with Adaptive Server Enterprise

See also CONVERSION_ERROR option [TSQL] in Reference: Statements and
Options

ASE_FUNCTION_BEHAVIOR option in Reference: Statements and Options

“HEXTOINT function [Data type conversion]” on page 179

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 191

ISDATE function [Date and time]
Function Tests whether a string argument can be converted to a date. If a conversion is

possible, the function returns 1; otherwise, it returns 0. If the argument is null,
0 is returned.

Syntax ISDATE (string)

Parameters string The string to be analyzed to determine whether the string represents a
valid date.

Example The following example tests whether the birth_date column holds valid dates,
returning invalid dates as NULL, and valid dates in date format.

select birth_date from MyData;

1990/32/89
0101/32/89
1990/12/09

select
case when isdate(birth_date)=0 then NULL
else cast(birth_date as date)
end
from MyData;

(NULL)
(NULL)
1990-12-09

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

ISNULL function [Miscellaneous]
Function Returns the value of the first non-NULL expression in the parameter list.

Syntax ISNULL (expression, expression […, expression])

Parameters expression An expression to be tested against NULL.

At least two expressions must be passed to the function.

Example The following statement returns the value -66:

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16) FROM
iq_dummy

Alphabetical list of functions

192 Sybase IQ

Usage The ISNULL function is the same as the COALESCE function.

Standards and
compatibility

• SQL92 Transact-SQL extension

• Sybase Not supported by Adaptive Server Enterprise

See also “COALESCE function [Miscellaneous]” on page 137

ISNUMERIC function [Miscellaneous]
Function Tests whether a string argument can be converted to a numeric. If a conversion

is possible, the function returns 1; otherwise, it returns 0. If the argument is
null, 0 is returned.

Syntax ISNUMERIC (string)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters string The string to be analyzed to determine whether the string represents a
valid numeric value.

Usage For optimal performance, avoid using ISNUMERIC in predicates, where it is
processed by the SQL Anywhere portion of the product and cannot take
advantage of the performance features of Sybase IQ.

Example The following example tests whether the height_in_cms column holds valid
numeric data, returning invalid numeric data as NULL, and valid numeric data
in int format.

data height_in_cms

asde
asde
180
156

select case
when isnumeric(height_in_cms)=0
then NULL
else cast(height_in_cms as int)
end

from MyData

Standards and
compatibility

• SQL92 Vendor extension

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 193

• SQL99 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

LAST_VALUE function [Aggregate]
Function Returns the last value from a set of values.

Syntax LAST_VALUE (expression [IGNORE NULLS | RESPECT NULLS])

OVER (window-spec)

Parameters expression The expression on which to determine the last value in an
ordered set.

Usage LAST_VALUE returns the last value in a set of values, which is usually an
ordered set. If the last value in the set is null, then the function returns NULL
unless you specify IGNORE NULLS. If you specify IGNORE NULLS, then
LAST_VALUE returns the last non-null value in the set, or NULL if all values
are null.

The data type of the returned value is the same as that of the input value.

You cannot use LAST_VALUE or any other analytic function for expression.
That is, you cannot nest analytic functions, but you can use other built-in
function expressions for expression.

If the window-spec does not contain an ORDER BY then the result is arbitrary.
If there is no window-spec, then the result is arbitrary.

You can specify elements of window-spec either in the function syntax (inline),
or with a WINDOW clause in the SELECT statement. For information on how
to specify the window, see “Analytical functions” on page 104.

Note DISTINCT is not supported.

Example The following example returns the salary of each employee, plus the name of
the employee with the highest salary in their department:

SELECT GivenName + ' ' + Surname AS employee_name,
Salary, DepartmentID,
LAST_VALUE(employee_name) OVER Salary_Window AS

highest_paid
FROM Employees
WINDOW Salary_Window AS (PARTITION BY DepartmentID
ORDER BY Salary

RANGE BETWEEN UNBOUNDED PRECEDING

Alphabetical list of functions

194 Sybase IQ

AND UNBOUNDED FOLLOWING)
ORDER BY DepartmentID DESC;

The returned result set is:

Table 4-23:

Standards and
compatibility

• SQL2008 SQL/OLAP feature T612

• Sybase Compatible with SQL Anywhere

LCASE function [String]
Function Converts all characters in a string to lowercase.

Syntax LCASE (string-expression)

employee_name Salary DepartmentID highest_paid
Michael Lynch 24903.000 500 Jose Martinez
Joseph Barker 27290.000 500 Jose Martinez
Sheila Romero 27500.000 500 Jose Martinez
Felicia Kuo 28200.000 500 Jose Martinez
Jeannette Bertrand 29800.000 500 Jose Martinez
Jane Braun 34300.000 500 Jose Martinez
Anthony Rebeiro 34576.000 500 Jose Martinez
Charles Crowley 41700.000 500 Jose Martinez
Jose Martinez 55500.800 500 Jose Martinez
Doug Charlton 28300.000 400 Scott Evans
Elizabeth Lambert 29384.000 400 Scott Evans
Joyce Butterfield 34011.000 400 Scott Evans
Robert Nielsen 34889.000 400 Scott Evans
Alex Ahmed 34992.000 400 Scott Evans
Ruth Wetherby 35745.000 400 Scott Evans
...

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 195

Parameters string-expression The string to be converted to lowercase.

Note The result data type of an LCASE function is a LONG VARCHAR. If you
use LCASE in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LCASE to the correct data type
and size.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “lower case”:

SELECT LCASE('LOWER CasE') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase LCASE is not supported in Adaptive Server Enterprise; you can
use LOWER to get the same functionality

See also “LOWER function [String]” on page 200

“UCASE function [String]” on page 329

“UPPER function [String]” on page 329

LEFT function [String]
Function Returns a specified number of characters from the beginning of a string.

Syntax LEFT (string-expression, numeric-expression)

Parameters string-expression The string.

numeric-expression The number of characters to return.

Example The following statement returns the value “choco”:

SELECT LEFT('chocolate', 5) FROM iq_dummy

Alphabetical list of functions

196 Sybase IQ

Usage If the string contains multibyte characters, and the proper collation is being
used, the number of bytes returned may be greater than the specified number
of characters.

Note The result data type of a LEFT function is a LONG VARCHAR. If you use
LEFT in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LEFT to the correct data type
and size.

See “REPLACE function [String]” for more information.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “RIGHT function [String]” on page 245

Chapter 11, “International Languages and Character Sets” in the System
Administration Guide: Volume 1

LEN function [String]
Function Takes one argument as an input of type BINARY or STRING and returns the

number of characters, as defined by the database's collation sequence, of a
specified string expression, excluding trailing blanks. The result may differ
from the string’s byte length for multi-byte character sets.

BINARY and VARBINARY are also allowed, in which case LEN() returns the
number of bytes of the input.

LEN is an alias of LENGTH function

Syntax LEN (string_expr)

Parameters string_expr is the string expression to be evaluated.

Example The following example returns the value 3152:

select len(Photo) from Products

where ID = 500

Usage This function is the equivalent of CHAR_LENGTH (string_expression).

Permissions Any user can execute LEN.

Standards and
compatibility

ANSI SQL – Compliance level: Transact-SQL extension

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 197

See also Data types CHAR, NCHAR, VARCHAR, NVARCHAR.

See Chapter 3, “SQL Data Types.”

Functions “CHAR_LENGTH function [String]” on page 136 and
“STR_REPLACE function [String]” on page 261.

For general information about string functions, see “String functions” on page
115.

LENGTH function [String]
Function Returns the number of characters in the specified string.

Syntax LENGTH (string-expression)

Parameters string-expression The string.

Example The following statement returns the value 9:

SELECT LENGTH('chocolate') FROM iq_dummy

Usage If the string contains multibyte characters, and the proper collation is being
used, LENGTH returns the number of characters, not the number of bytes. If the
string is of BINARY data type, the LENGTH function behaves as
BYTE_LENGTH.

The LENGTH function is the same as the CHAR_LENGTH function.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise. Use the
CHAR_LENGTH function instead

See also “BYTE_LENGTH function [String]” on page 133

“CHAR_LENGTH function [String]” on page 136

Chapter 11, “International Languages and Character Sets” in the System
Administration Guide: Volume 1

LN function [Numeric]
Function Returns the natural logarithm of the specified expression.

Syntax LN (numeric-expression)

Alphabetical list of functions

198 Sybase IQ

Parameters expression Is a column, variable, or expression with a data type that is either
exact numeric, approximate numeric, money, or any type that can be implicitly
converted to one of these types. For other data types, the LN function generates
an error. The return value is of DOUBLE data type.

Usage LN takes one argument. For example, LN (20) returns 2.995732.

The LN function is an alias of the LOG function.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise. Use the LOG
function instead

See also “LOG function [Numeric]” on page 199

Chapter 11, “International Languages and Character Sets” in the System
Administration Guide: Volume 1

LOCATE function [String]
Function Returns the position of one string within another.

Syntax LOCATE (string-expression1, string-expression2
[, numeric-expression])

Parameters string-expression1 The string to be searched.

string-expression2 The string for which you are searching. This string is
limited to 255 bytes.

numeric-expression The character position at which to begin the search in
the string. The first character is position 1. If the starting offset is negative,
LOCATE returns the last matching string offset, rather than the first. A negative
offset indicates how much of the end of the string to exclude from the search.
The number of bytes excluded is calculated as (-1 * offset) - 1.

The numeric-expression is a 32 bit signed integer for CHAR, VARCHAR, and
BINARY columns.

Examples The following statement returns the value 8:

SELECT LOCATE('office party this week – rsvp as soon
as possible', 'party', 2) FROM iq_dummy

In the second example, the numeric-expression starting offset for the search is
a negative number.

CREATE TABLE t1(name VARCHAR(20), dirname VARCHAR(60));
INSERT INTO t1

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 199

VALUES(‘m1000’,’c:\test\functions\locate.sql’);
INSERT INTO t1

VALUES(‘m1001’,’d:\test\functions\trim.sql’);
COMMIT;

SELECT LOCATE(dirname, ‘\’, -1), dirname FROM t1;

The result is:

18 c:\test\functions\locate.sql
18 d:\test\functions\trim.sql

Usage If numeric-expression is specified, the search starts at that offset into the string
being searched.

If numeric-expression is not specified, LOCATE returns only the position of the
first instance of the specified string.

The first string can be a long string (longer than 255 bytes), but the second is
limited to 255 bytes. If a long string is given as the second argument, the
function returns a NULL value.

If any of the arguments is NULL, the result is NULL.

Searching for a zero-length string returns 1.

If the string does not contain the specified string, the LOCATE function returns
zero (0).

All the positions or offsets, returned or specified, in the LOCATE function are
always character offsets and may be different from the byte offset for multibyte
data.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also Chapter 4, “Function Support” in Large Objects Management in Sybase IQ

LOG function [Numeric]
Function Returns the natural logarithm of a number.

LN is an alias of LOG.

Syntax LOG (numeric-expression)

Parameters numeric-expression The number.

Example The following statement returns the value 3.912023:

Alphabetical list of functions

200 Sybase IQ

SELECT LOG(50) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “LOG10 function [Numeric]” on page 200

LOG10 function [Numeric]
Function Returns the base 10 logarithm of a number.

Syntax LOG10 (numeric-expression)

Parameters numeric-expression The number.

Example The following statement returns the value 1.698970.

SELECT LOG10(50) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “LOG function [Numeric]” on page 199

LOWER function [String]
Function Converts all characters in a string to lowercase.

Syntax LOWER (string-expression)

Parameters string-expression The string to be converted.

Note The result data type of a LOWER function is a LONG VARCHAR. If you
use LOWER in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LOWER to the correct data
type and size.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “lower case”:

SELECT LOWER('LOWER CasE') FROM iq_dummy

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 201

See also “LCASE function [String]” on page 194

“UCASE function [String]” on page 329

“UPPER function [String]” on page 329

LTRIM function [String]
Function Removes leading blanks from a string.

Syntax LTRIM (string-expression)

Parameters string-expression The string to be trimmed.

Note The result data type of an LTRIM function is a LONG VARCHAR. If you
use LTRIM in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LTRIM to the correct data type
and size.

See “REPLACE function [String]” on page 242 for more information.

Example The following statement returns the value “Test Message” with all leading
blanks removed:

SELECT LTRIM(' Test Message') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “RTRIM function [String]” on page 247

“TRIM function [String]” on page 268

MAX function [Aggregate]
Function Returns the maximum expression value found in each group of rows.

Syntax MAX (expression
| DISTINCT column-name)

Parameters expression The expression for which the maximum value is to be calculated.
This is commonly a column name.

DISTINCT column-name Returns the same as MAX (expression), and is
included for completeness.

Alphabetical list of functions

202 Sybase IQ

Example The following statement returns the value 138948.000, representing the
maximum salary in the Employees table:

SELECT MAX (Salary)
FROM Employees

Usage Rows where expression is NULL are ignored. Returns NULL for a group
containing no rows.

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “MIN function [Aggregate]” on page 203

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

MEDIAN function [Aggregate]
Function Returns the median of an expression.

Syntax 1 MEDIAN([ALL | DISTINCT] expression)

Syntax 2 MEDIAN([ALL | DISTINCT] expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters expression A numeric expression for which a median value is to be
computed.

Usage The median is the number separating the higher half of a sample, a population,
or a probability distribution, from the lower half.

The data type of the returned value is the same as that of the input value.
NULLs are ignored in the calculation of the median value. You can use the
optional keyword DISTINCT to eliminate duplicate values before the aggregate
function is applied. ALL, which performs the operation on all rows, is the
default.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 203

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Note The window-spec cannot contain a ROW, RANGE or ORDER BY
specification; window-spec can only specify a PARTITION clause. DISTINCT is
not supported if a WINDOW clause is used.

Example The following query returns the median salary for each department in Florida:

SELECT DepartmentID, Surname, Salary,
MEDIAN(Salary) OVER (PARTITION BY DepartmentID)
"Median"
FROM Employees
WHERE State IN ('FL')

The returned result is:

Table 4-24: MEDIAN result set

Standards and
compatibility

• SQL2008 Vendor extension

MIN function [Aggregate]
Function Returns the minimum expression value found in each group of rows.

Syntax MIN (expression
| DISTINCT column-name)

Parameters expression The expression for which the minimum value is to be calculated.
This is commonly a column name.

DepartmentID Surname Salary Median
100 Lull 87900.000 73870.000
100 Gowda 59840.000 73870.000
200 Sterling 64900.000 76200.000
200 Kelly 87500.000 76200.000
300 Litton 58930.000 58930.000
400 Francis 53870.000 3870.000
400 Charlton 28300.000 53870.000
400 Evans 68940.000 53870.000

Alphabetical list of functions

204 Sybase IQ

DISTINCT column-name Returns the same as MIN (expression), and is
included for completeness.

Example The following statement returns the value 24903.000, representing the
minimum salary in the Employees table:

SELECT MIN (Salary)
FROM Employees

Usage Rows where expression is NULL are ignored. Returns NULL for a group
containing no rows.

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “MAX function [Aggregate]” on page 201

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

MINUTE function [Date and time]
Function Returns a number from 0 to 59 corresponding to the minute component of the

specified date/time value.

Syntax MINUTE (datetime-expression)

Parameters datetime-expression The date/time value.

Example The following statement returns the value 22:

SELECT MINUTE('1998-07-13 12:22:34') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

MINUTES function [Date and time]
Function Returns the number of minutes since an arbitrary date and time, the number of

whole minutes between two specified times, or adds the specified integer-
expression number of minutes to a time.

Syntax MINUTES (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 205

integer-expression The number of minutes to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
minutes are subtracted from the date/time. If you supply an integer expression,
the datetime-expression must be explicitly cast as a datetime data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 133.

Examples The following statement returns the value 1051125487:

SELECT MINUTES('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 240, to signify the difference
between the two times:

SELECT MINUTES('1999-07-13 06:07:12',
'1999-07-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-05-12 21:10:07.000:

SELECT MINUTES(CAST('1999-05-12 21:05:07'
AS DATETIME), 5) FROM iq_dummy

Usage The second syntax returns the number of whole minutes from the first date/
time to the second date/time. The number might be negative.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

MOD function [Numeric]
Function Returns the remainder when one whole number is divided by another.

Syntax MOD (dividend, divisor)

Parameters dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

Example The following statement returns the value 2:

SELECT MOD(5, 3) FROM iq_dummy

Usage Division involving a negative dividend gives a negative or zero result. The sign
of the divisor has no effect.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported in Adaptive Server Enterprise. The % operator is
used as a modulo operator in Adaptive Server Enterprise

Alphabetical list of functions

206 Sybase IQ

See also “REMAINDER function [Numeric]” on page 241

MONTH function [Date and time]
Function Returns a number from 1 to 12 corresponding to the month of the given

date.

Syntax MONTH (date-expression)

Parameters date-expression A date/time value.

Example The following statement returns the value 7:

SELECT MONTH('1998-07-13') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

MONTHNAME function [Date and time]
Function Returns the name of the month from the specified date expression.

Syntax MONTHNAME (date-expression)

Parameters date-expression The datetime value.

Example The following statement returns the value September, when the
DATE_ORDER option is set to the default value of ymd.

SELECT MONTHNAME('1998-09-05') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also DATE_ORDER option in Reference: Statements and Options

MONTHS function [Date and time]
Function Returns the number of months since an arbitrary starting date/time or the

number of months between two specified date/times, or adds the specified
integer-expression number of months to a date/time.

Syntax MONTHS (date-expression
| date-expression, datetime-expression
| date-expression, integer-expression)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 207

Parameters date-expression A date and time.

integer-expression The number of months to be added to the date-
expression. If integer-expression is negative, the appropriate number of months
are subtracted from the date/time value. If you supply an integer expression,
the date-expression must be explicitly cast as a datetime data type.

For information on casting data types, see the section “CAST function [Data
type conversion]” on page 133.

Examples The following statement returns the value 23982:

SELECT MONTHS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 2, to signify the difference between
the two dates:

SELECT MONTHS('1999-07-13 06:07:12',
'1999-09-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-10-12 21:05:07.000:

SELECT MONTHS(CAST('1999-05-12 21:05:07'
AS DATETIME), 5) FROM iq_dummy

Usage The first syntax returns the number of months since an arbitrary starting date.
This number is often useful for determining whether two date/time expressions
are in the same month in the same year.

MONTHS(invoice_sent) = MONTHS(payment_received)

Note that comparing the MONTH function would incorrectly include a payment
made 12 months after the invoice was sent.

The second syntax returns the number of months from the first date to the
second date. The number might be negative. It is calculated from the number
of the first days of the month between the two dates. Hours, minutes and
seconds are ignored.

The third syntax adds integer-expression months to the given date. If the new
date is past the end of the month (such as MONTHS ('1992-01-31', 1)) the result
is set to the last day of the month. If integer-expression is negative, the
appropriate number of months are subtracted from the date. Hours, minutes and
seconds are ignored.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

Alphabetical list of functions

208 Sybase IQ

NEWID function [Miscellaneous]
Function Generates a UUID (Universally Unique Identifier) value. The returned UUID

value is a binary. A UUID is the same as a GUID (Globally Unique Identifier).

Syntax NEWID ()

Parameters There are no parameters associated with NEWID().

Example The following statement creates the table t1 and then updates the table, setting
the value of the column uid_col to a unique identifier generated by the NEWID
function, if the current value of the column is NULL.

CREATE TABLE t1 (uid_col int);
UPDATE t1

SET uid_col = NEWID()
WHERE uid_col IS NULL

If you execute the following statement,

SELECT NEWID()

the unique identifier is returned as a BINARY(16). For example, the value might
be 0xd3749fe09cf446e399913bc6434f1f08. You can convert this string into a
readable format using the UUIDTOSTR() function.

Usage The NEWID() function generates a unique identifier value.

UUIDs can be used to uniquely identify objects in a database. The values are
generated such that a value produced on one computer does not match that
produced on another, hence they can also be used as keys in replication and
synchronization environments.

The NEWID function is supported only in the following positions:

• SELECT list of a top level query block

• SET clause of an UPDATE statement

• VALUES clause of INSERT...VALUES

You can use a value generated by the NEWID function as a column default value
in a Sybase IQ table.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

See also “STRTOUUID function [String]” on page 263

“UUIDTOSTR function [String]” on page 331

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 209

 “Binary data types” on page 77

 “Character data types” on page 69

NEXT_CONNECTION function [System]
Function Returns the next connection number, or the first connection if the parameter is

NULL.

Syntax NEXT_CONNECTION ({NULL | connection-id })

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters connection-id An integer, usually returned from a previous call to
NEXT_CONNECTION. If connection-id is NULL, NEXT_CONNECTION returns
the first connection ID.

Examples The following statement returns an identifier for the first connection. The
identifier is an integer value like 569851433.

SELECT NEXT_CONNECTION(NULL) FROM iq_dummy

The following statement returns a value like 1661140050:

SELECT NEXT_CONNECTION(569851433) FROM iq_dummy

Usage You can use NEXT_CONNECTION to enumerate the connections to a database.
To get the first connection, pass NULL; to get each subsequent connection,
pass the previous return value. The function returns NULL when there are no
more connections.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

NEXT_DATABASE function [System]
Function Returns the next database ID number, or the first database if the parameter is

NULL.

Alphabetical list of functions

210 Sybase IQ

Syntax NEXT_DATABASE ({ NULL | database-id })

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters database-id An integer that specifies the ID number of the database.

Examples The following statement returns the value 0, the first database value:

SELECT NEXT_DATABASE(NULL) FROM iq_dummy

The following statement returns NULL, indicating that there are no more
databases on the server:

SELECT NEXT_DATABASE(0) FROM iq_dummy

Usage You can use NEXT_DATABASE to enumerate the databases running on a
database server. To get the first database, pass NULL; to get each subsequent
database, pass the previous return value. The function returns NULL when
there are no more databases.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “OBJECT_ID function [System]” on page 215

NEXT_HTTP_HEADER function [HTTP]
Function Gets the next HTTP header name.

Syntax NEXT_HTTP_HEADER (header-name)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters header-name The name of the previous header. If header-name is null, this
function returns the name of the first HTTP header.

Usage This function iterates over the HTTP headers included within a request. Calling
it with NULL causes it to return the name of the first header. Subsequent
headers are retrieved by passing the function the name of the previous header.
This function returns NULL when called with the name of the last header.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 211

Calling this function repeatedly returns all the header fields exactly once, but
not necessarily in the order in which they appear in the HTTP request.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

NEXT_HTTP_VARIABLE function [HTTP]
Function Get the next HTTP variable name.

Syntax NEXT_HTTP_VARIABLE (var-name)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters var-name The name of the previous variable. If var-name is null, this
function returns the name of the first HTTP variable.

Usage This function iterates over the HTTP variables included within a request.
Calling it with NULL causes it to return the name of the first variable.
Subsequent variables are retrieved by passing the function the name of the
previous variable. This function returns NULL when called with the name of
the final variable.

Calling this function repeatedly returns all the variables exactly once, but not
necessarily in the order in which they appear in the HTTP request. The
variables url or url1, url2, …, url10 are included if URL PATH is set to ON or
ELEMENTS, respectively.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “HTML_DECODE function [HTTP]” on page 181

“HTTP_VARIABLE function [HTTP]” on page 187

“NEXT_HTTP_HEADER function [HTTP]” on page 210

NOW function [Date and time]
Function Returns the current date and time. This is the historical syntax for CURRENT

TIMESTAMP.

Alphabetical list of functions

212 Sybase IQ

Syntax NOW (*)

Example The following statement returns the current date and time.

SELECT NOW(*) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

NTILE function [Analytical]
Function Distributes query results into a specified number of “buckets” and assigns the

bucket number to each row in the bucket.

Syntax NTILE (expression1)
OVER (ORDER BY expression2 [ASC | DESC])

Parameters expression1 A constant integer from 1 to 32767, which specifies the number
of buckets.

expression2 A sort specification that can be any valid expression involving
a column reference, aggregates, or expressions invoking these items.

Example The following example uses the NTILE function to determine the sale status of
car dealers. The dealers are divided into four groups based on the number of
cars each dealer sold. The dealers with ntile = 1 are in the top 25% for car sales.

SELECT dealer_name, sales,
NTILE(4) OVER (ORDER BY sales DESC)
FROM carSales;

dealer_name sales ntile
Boston 1000 1
Worcester 950 1
Providence 950 1
SF 940 1
Lowell 900 2
Seattle 900 2
Natick 870 2
New Haven 850 2
Portland 800 3
Houston 780 3
Hartford 780 3
Dublin 750 3
Austin 650 4
Dallas 640 4

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 213

Dover 600 4

To find the top 10% of car dealers by sales, you specify NTILE(10) in the
example SELECT statement. Similarly, to find the top 50% of car dealers by
sales, specify NTILE(2).

Usage NTILE is a rank analytical function that distributes query results into a specified
number of buckets and assigns the bucket number to each row in the bucket.
You can divide a result set into one-hundredths (percentiles), tenths (deciles),
fourths (quartiles), or other numbers of groupings.

NTILE requires an OVER (ORDER BY) clause. The ORDER BY clause specifies
the parameter on which ranking is performed and the order in which the rows
are sorted in each group. Note that this ORDER BY clause is used only within
the OVER clause and is not an ORDER BY for the SELECT. No aggregation
functions in the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

NTILE is allowed only in the select list of a SELECT or INSERT statement or in
the ORDER BY clause of the SELECT statement. NTILE can be in a view or a
union. The NTILE function cannot be used in a subquery, a HAVING clause, or
in the select list of an UPDATE or DELETE statement. Only one NTILE function
is allowed per query.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL
Anywhere.

See also “Analytical functions” on page 104

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

NULLIF function [Miscellaneous]
Function Provides an abbreviated CASE expression by comparing expressions.

Syntax NULLIF (expression1, expression2)

Parameters expression1 An expression to be compared.

Alphabetical list of functions

214 Sybase IQ

expression2 An expression to be compared.

Examples The following statement returns a:

SELECT NULLIF('a', 'b') FROM iq_dummy

The following statement returns NULL:

SELECT NULLIF('a', 'a') FROM iq_dummy

Usage NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second
expression is NULL, NULLIF returns the first expression.

The NULLIF function provides a short way to write some CASE expressions.
NULLIF is equivalent to:

CASE WHEN expression1 = expression2 THEN NULL
ELSE expression1 END

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “CASE expressions” on page 29

NUMBER function [Miscellaneous]
Function Generates numbers starting at 1 for each successive row in the results of the

query.

Syntax NUMBER (*)

Example The following statement returns this numbered list:

SELECT NUMBER(*)
FROM Departments
WHERE DepartmentID > 10

number(*)
1
2
3
4
5

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 215

Usage Use the NUMBER function only in a select list or a SET clause of an UPDATE
statement. For example, the following statement updates each row of the seq_id
column with a number 1 greater than the previous row. The number is applied
in the order specified by the ORDER BY clause.

update empl
set seq_id = number(*)
order by empl_id

In an UPDATE statement, if the NUMBER(*) function is used in the SET clause
and the FROM clause specifies a one-to-many join, NUMBER(*) generates
unique numbers that increase, but may not increment sequentially due to row
elimination.

NUMBER can also be used to generate primary keys when using the INSERT
from SELECT statement, although using IDENTITY/AUTOINCREMENT is a
preferred mechanism for generating sequential primary keys.

Note A syntax error is generated if you use NUMBER in a DELETE statement,
WHERE clause, HAVING clause, ORDER BY clause, subquery, query involving
aggregation, any constraint, GROUP BY, DISTINCT, a query containing UNION
ALL, or a derived table.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

OBJECT_ID function [System]
Function Returns the object ID.

Syntax OBJECT_ID (object-name)

Parameters object-name The name of the object.

Examples The following statement returns the object ID 100209 of the Customers table:

SELECT OBJECT_ID ('CUSTOMERS') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “COL_NAME function [System]” on page 138

“DB_ID function [System]” on page 161

Alphabetical list of functions

216 Sybase IQ

“OBJECT_NAME function [System]” on page 216

OBJECT_NAME function [System]
Function Returns the object name.

Syntax OBJECT_NAME (object-id [, database-id])

Parameters object-id The object ID.

database-id The database ID.

Examples The following statement returns the name “customer:”

SELECT OBJECT_NAME (100209) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “COL_NAME function [System]” on page 138

“DB_NAME function [System]” on page 162

“OBJECT_ID function [System]” on page 215

OCTET_LENGTH function [String]
Function Returns an unsigned 64-bit value containing the byte length of the column

parameter.

Syntax OCTET_LENGTH(column-name)

Parameters column-name The name of a column.

Usage The return value of a NULL argument is NULL.

The OCTET_LENGTH function supports all Sybase IQ data types.

Standards and
compatibility

Sybase Not supported by SQL Anywhere or Adaptive Server Enterprise.

See also “BIT_LENGTH function [String]” on page 132

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 217

PATINDEX function [String]
Function Returns the starting position of the first occurrence of a specified pattern.

Syntax PATINDEX ('%pattern%', string-expression)

Parameters pattern The pattern for which you are searching. This string is limited to 126
bytes for patterns with wildcards. If the leading percent wildcard is omitted,
PATINDEX returns one (1) if the pattern occurs at the beginning of the string,
and zero if not. If pattern starts with a percent wildcard, then the two leading
percent wildcards are treated as one.

The pattern uses the same wildcards as the LIKE comparison. Table 4-25 lists
the pattern wildcards.

Table 4-25: PATINDEX pattern wildcards

Patterns without wildcards (percent % or underscore _) can be up to 255 bytes
in length.

string-expression The string to be searched for the pattern.

Examples The following statement returns the value 2:

SELECT PATINDEX('%hoco%', 'chocolate') FROM iq_dummy

The following statement returns the value 11:

SELECT PATINDEX ('%4_5_', '0a1A 2a3A 4a5A') FROM
iq_dummy

Usage PATINDEX returns the starting position of the first occurrence of the pattern. If
the string being searched contains more than one instance of the string pattern,
PATINDEX returns only the position of the first instance.

If the pattern is not found, PATINDEX returns zero (0).

Searching for a pattern longer than 126 bytes returns NULL.

Searching for a zero-length string returns 1.

If any of the arguments is NULL, the result is zero (0).

Wildcard Matches
_ (underscore) Any one character
% (percent) Any string of zero or more characters
[] Any single character in the specified range or set
[^] Any single character not in the specified range or set

Alphabetical list of functions

218 Sybase IQ

All the positions or offsets, returned or specified, in the PATINDEX function are
always character offsets and may be different from the byte offset for multibyte
data.

PATINDEX returns a 32 bit unsigned integer position for CHAR and VARCHAR
columns.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise.

See also “LIKE conditions” on page 40

“LOCATE function [String]” on page 198

Chapter 4, “Function Support” in Large Objects Management in Sybase IQ

PERCENT_RANK function [Analytical]
Function Computes the (fractional) position of one row returned from a query with

respect to the other rows returned by the query, as defined by the ORDER BY
clause. Returns a decimal value between 0 and 1.

Syntax PERCENT_RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters expression A sort specification that can be any valid expression involving a
column reference, aggregates, or expressions invoking these items.

Example The following statement illustrates the use of the PERCENT_RANK function:

SELECT s_suppkey, SUM(s_acctBal) AS sum_acctBal,
PERCENT_RANK() OVER (ORDER BY SUM(s_acctBal) DESC)
AS percent_rank_all FROM supplier GROUP BY s_suppkey;

s_suppkey sum_acctBal percent_rank_all
supplier#011 200000 0
supplier#002 200000 0
supplier#013 123000 0.3333
supplier#004 110000 0.5
supplier#035 110000 0.5
supplier#006 50000 0.8333
supplier#021 10000 1

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 219

Usage PERCENT_RANK is a rank analytical function. The percent rank of a row R is
defined as the rank of a row in the groups specified in the OVER clause minus
one divided by the number of total rows in the groups specified in the OVER
clause minus one. PERCENT_RANK returns a value between 0 and 1. The first
row has a percent rank of zero.

The PERCENT_RANK of a row is calculated as

(Rx - 1) / (NtotalRow - 1)

where Rx is the rank position of a row in the group and NtotalRow is the total
number of rows in the group specified by the OVER clause.

PERCENT_RANK requires an OVER (ORDER BY) clause. The ORDER BY
clause specifies the parameter on which ranking is performed and the order in
which the rows are sorted in each group. This ORDER BY clause is used only
within the OVER clause and is not an ORDER BY for the SELECT. No
aggregation functions in the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

PERCENT_RANK is allowed only in the select list of a SELECT or INSERT
statement or in the ORDER BY clause of the SELECT statement.
PERCENT_RANK can be in a view or a union. The PERCENT_RANK function
cannot be used in a subquery, a HAVING clause, or in the select list of an
UPDATE or DELETE statement. Only one rank analytical function is allowed
per query.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL
Anywhere.

See also “Analytical functions” on page 104

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

Alphabetical list of functions

220 Sybase IQ

PERCENTILE_CONT function [Analytical]
Function Given a percentile, returns the value that corresponds to that percentile.

Assumes a continuous distribution data model.

Note If you are simply trying to compute a percentile, use the NTILE function
instead, with a value of 100.

Syntax PERCENTILE_CONT (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

Parameters expression1 A constant of numeric data type and range from 0 to 1
(inclusive). If the argument is NULL, a “wrong argument for percentile” error
is returned. If the argument value is less than 0 or greater than 1, a “data value
out of range” error is returned.

expression2 A sort specification that must be a single expression involving
a column reference. Multiple expressions are not allowed and no rank
analytical functions, set functions, or subqueries are allowed in this sort
expression.

Example The following example uses the PERCENTILE_CONT function to determine
the 10th percentile value for car sales in a region.

The following data set is used in the example:

sales region dealer_name
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

The following SELECT statement contains the PERCENTILE_CONT function:

SELECT region, PERCENTILE_CONT(0.1)
WITHIN GROUP (ORDER BY sales DESC)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 221

FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales
in a region:

region percentile_cont
Northeast 840
Northwest 740
South 470

Usage The inverse distribution analytical functions return a k-th percentile value,
which can be used to help establish a threshold acceptance value for a set of
data. The function PERCENTILE_CONT takes a percentile value as the function
argument, and operates on a group of data specified in the WITHIN GROUP
clause, or operates on the entire data set. The function returns one value per
group. If the GROUP BY column from the query is not present, the result is a
single row. The data type of the results is the same as the data type of its
ORDER BY item specified in the WITHIN GROUP clause. The data type of the
ORDER BY expression for PERCENTILE_CONT must be numeric.

PERCENTILE_CONT requires a WITHIN GROUP (ORDER BY) clause.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. For the PERCENTILE_CONT function, the data type of
this expression must be numeric. This ORDER BY clause is used only within
the WITHIN GROUP clause and is not an ORDER BY for the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result. The WITHIN GROUP clause must
contain a single sort item. If the WITHIN GROUP clause contains more or less
than one sort item, an error is reported.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

The PERCENTILE_CONT function is allowed in a subquery, a HAVING clause,
a view, or a union. PERCENTILE_CONT can be used anywhere the simple
nonanalytical aggregate functions are used. The PERCENTILE_CONT function
ignores the NULL value in the data set.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL
Anywhere.

See also “Analytical functions” on page 104

“NTILE function [Analytical]” on page 212

Alphabetical list of functions

222 Sybase IQ

“PERCENTILE_DISC function [Analytical]” on page 222

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

PERCENTILE_DISC function [Analytical]
Function Given a percentile, returns the value that corresponds to that percentile.

Assumes a discrete distribution data model.

Note If you are simply trying to compute a percentile, use the NTILE function
instead, with a value of 100.

Syntax PERCENTILE_DISC (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

Parameters expression1 A constant of numeric data type and range from 0 to 1
(inclusive). If the argument is NULL, then a “wrong argument for percentile”
error is returned. If the argument value is less than 0 or greater than 1, then a
“data value out of range” error is returned.

expression2 A sort specification that must be a single expression involving
a column reference. Multiple expressions are not allowed and no rank
analytical functions, set functions, or subqueries are allowed in this sort
expression.

Example The following example uses the PERCENTILE_DISC function to determine the
10th percentile value for car sales in a region.

The following data set is used in the example:

sales region dealer_name
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 223

200 South Dover

The following SELECT statement contains the PERCENTILE_DISC function:

SELECT region, PERCENTILE_DISC(0.1)
WITHIN GROUP (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales
in a region:

region percentile_cont
Northeast 900
Northwest 800
South 500

Usage The inverse distribution analytical functions return a k-th percentile value,
which can be used to help establish a threshold acceptance value for a set of
data. The function PERCENTILE_DISC takes a percentile value as the function
argument and operates on a group of data specified in the WITHIN GROUP
clause or operates on the entire data set. The function returns one value per
group. If the GROUP BY column from the query is not present, the result is a
single row. The data type of the results is the same as the data type of its
ORDER BY item specified in the WITHIN GROUP clause. PERCENTILE_DISC
supports all data types that can be sorted in Sybase IQ.

PERCENTILE_DISC requires a WITHIN GROUP (ORDER BY) clause.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. This ORDER BY clause is used only within the WITHIN
GROUP clause and is not an ORDER BY for the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result. The WITHIN GROUP clause must
contain a single sort item. If the WITHIN GROUP clause contains more or less
than one sort item, an error is reported.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

The PERCENTILE_DISC function is allowed in a subquery, a HAVING clause, a
view, or a union. PERCENTILE_DISC can be used anywhere the simple
nonanalytical aggregate functions are used. The PERCENTILE_DISC function
ignores the NULL value in the data set.

Standards and
compatibility

• SQL92 Vendor extension

Alphabetical list of functions

224 Sybase IQ

• Sybase Not supported by Adaptive Server Enterprise or SQL
Anywhere.

See also “Analytical functions” on page 104

“NTILE function [Analytical]” on page 212

“PERCENTILE_CONT function [Analytical]” on page 220

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

PI function [Numeric]
Function Returns the numeric value PI.

Syntax PI (*)

Example The following statement returns the value 3.141592653....

SELECT PI(*) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase The PI() function is supported in Adaptive Server Enterprise, but
PI(*) is not.

POWER function [Numeric]
Function Calculates one number raised to the power of another.

Syntax POWER (numeric-expression1, numeric-expression2)

Parameters numeric-expression1 The base.

numeric-expression2 The exponent.

Example The following statement returns the value 64:

SELECT Power(2, 6) FROM iq_dummy

Usage Raises numeric-expression1 to the power numeric-expresson2.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 225

PROPERTY function [System]
Function Returns the value of the specified server-level property as a string.

Syntax PROPERTY ({ property-id | property-name })

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters property-id An integer that is the property-number of the server-level
property. This number can be determined from the PROPERTY_NUMBER
function. The property-id is commonly used when looping through a set of
properties.

property-name A string giving the name of the property. See “Properties
available for the server” on page 121 for a list of server property names.

Example The following statement returns the name of the current database server:

SELECT PROPERTY('Name') FROM iq_dummy

Usage Each property has both a number and a name, but the number is subject to
change between versions, and should not be used as a reliable identifier for a
given property.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

See also “Properties available for the server” on page 121

PROPERTY_DESCRIPTION function [System]
Function Returns a description of a property.

Syntax PROPERTY_DESCRIPTION ({ property-id | property-name })

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters property-id An integer that is the property number of the property. This
number can be determined from the PROPERTY_NUMBER function. The
property-id is commonly used when looping through a set of properties.

Alphabetical list of functions

226 Sybase IQ

property-name A string giving the name of the property. For property
names, see the lists in “Connection properties” on page 121, “Properties
available for the server” on page 121, and “Properties available for each
database” on page 122.

Example The following statement returns the description “Number of index insertions:”

SELECT PROPERTY_DESCRIPTION('IndAdd') FROM iq_dummy

Usage Each property has both a number and a name, but the number is subject to
change between releases, and should not be used as a reliable identifier for a
given property.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

See also “Connection properties” on page 121

“Properties available for the server” on page 121

“Properties available for each database” on page 122

PROPERTY_NAME function [System]
Function Returns the name of the property with the supplied property number.

Syntax PROPERTY_NAME (property-id)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters property-id The property number of the property.

Example The following statement returns the property associated with property number
126. The actual property to which this refers changes from version to version.

SELECT PROPERTY_NAME(126) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

See also “Connection properties” on page 121

“Properties available for the server” on page 121

“Properties available for each database” on page 122

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 227

PROPERTY_NUMBER function [System]
Function Returns the property number of the property with the supplied property name.

Syntax PROPERTY_NUMBER (property-name)

Note CIS functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in Chapter 3,
“Optimizing Queries and Deletions,” in the Performance and Tuning Guide.

Parameters property-name A property name. For property names, see the lists in
“Connection properties” on page 121, “Properties available for the server” on
page 121, and “Properties available for each database” on page 122.

Example The following statement returns an integer value. The actual value changes
from version to version.

SELECT PROPERTY_NUMBER('PAGESIZE') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “Connection properties” on page 121

“Properties available for the server” on page 121

“Properties available for each database” on page 122

QUARTER function [Date and time]
Function Returns a number indicating the quarter of the year from the supplied date

expression.

Syntax QUARTER(date-expression)

Parameters date-expression A date.

Example With the DATE_ORDER option set to the default of ymd, the following
statement returns the value 2:

SELECT QUARTER ('1987/05/02') FROM iq_dummy

Usage Table 4-26 lists the dates in the quarters of the year.

Alphabetical list of functions

228 Sybase IQ

Table 4-26: Values of quarter of the year

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also DATE_ORDER option in Reference: Statements and Options

RADIANS function [Numeric]
Function Converts a number from degrees to radians.

Syntax RADIANS (numeric-expression)

Parameters numeric-expression A number, in degrees. This angle is converted to
radians.

Example The following statement returns a value of approximately 0.5236:

SELECT RADIANS(30) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

RAND function [Numeric]
Function Returns a DOUBLE precision, random number x, where 0 <= x <1, with an

optional seed.

Syntax RAND ([integer-expression])

Parameters integer-expression The optional seed used to create a random number. This
argument allows you to create repeatable random number sequences.

If RAND is called with a FROM clause and an argument in a query containing
only tables in IQ stores, the function returns an arbitrary but repeatable value.

Quarter Period (inclusive)
1 January 1 to March 31
2 April 1 to June 30
3 July 1 to September 30
4 October 1 to December 31

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 229

When no argument is called, RAND is a non-deterministic function. Successive
calls to RAND might return different values. The query optimizer does not
cache the results of the RAND function

Note The values returned by RAND vary depending on whether you use a
FROM clause or not and whether the referenced table was created in SYSTEM
or in an IQ store.

Examples The following statement returns a 5% sampling of a table:

SELECT AVG(table1.number_of_cars),
AVG(table1.number_of_tvs)FROM table1 WHERE
RAND(ROWID(table1)) < .05 and table1.income < 50000;

The following statement returns a value of approximately
941392926249216914:

SELECT RAND(4) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

RANK function [Analytical]
Function Ranks items in a group.

Syntax RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters expression A sort specification that can be any valid expression involving a
column reference, aggregates, or expressions invoking these items.

Example The following statement illustrates the use of the RANK function:

SELECT s_suppkey, SUM(s_acctBal) AS sum_acctBal,
RANK() OVER (ORDER BY SUM(s_acctBal) DESC)
AS rank_all FROM supplier GROUP BY s_suppkey;

s_suppkey sum_acctBal rank_all
supplier#011 200000 1
supplier#002 200000 1
supplier#013 123000 3
supplier#004 110000 4
supplier#035 110000 4
supplier#006 50000 6
supplier#021 10000 7

Alphabetical list of functions

230 Sybase IQ

Usage RANK is a rank analytical function. The rank of row R is defined as the number
of rows that precede R and are not peers of R. If two or more rows are not
distinct within the groups specified in the OVER clause or distinct over the
entire result set, then there are one or more gaps in the sequential rank
numbering. The difference between RANK and DENSE_RANK is that
DENSE_RANK leaves no gap in the ranking sequence when there is a tie. RANK
leaves a gap when there is a tie.

RANK requires an OVER (ORDER BY) clause. The ORDER BY clause specifies
the parameter on which ranking is performed and the order in which the rows
are sorted in each group. This ORDER BY clause is used only within the OVER
clause and is not an ORDER BY for the SELECT. No aggregation functions in
the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

RANK is allowed only in the select list of a SELECT or INSERT statement or in
the ORDER BY clause of the SELECT statement. RANK can be in a view or a
union. The RANK function cannot be used in a subquery, a HAVING clause, or
in the select list of an UPDATE or DELETE statement. Only one rank analytical
function is allowed per query.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise or SQL Anywhere

See also “Analytical functions” on page 104

“DENSE_RANK function [Analytical]” on page 163

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

REGR_AVGX function [Aggregate]
Function Computes the average of the independent variable of the regression line.

Syntax 1 REGR_AVGX (dependent-expression, independent-expression)

Syntax 2 REGR_AVGX (dependent-expression, independent-expression)

OVER (window-spec)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 231

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then REGR_AVGX returns NULL.

The function is applied to the set of (dependent-expression and independent-
expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where x represents the
independent-expression:

AVG (x)

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example calculates the average of the dependent variable,
employee age:

SELECT REGR_AVGX(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

Alphabetical list of functions

232 Sybase IQ

REGR_AVGY function [Aggregate]
Function Computes the average of the dependent variable of the regression line.

Syntax 1 REGR_AVGY(dependent-expression, independent-expression)

Syntax 2 REGR_AVGY(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then REGR_AVGY returns NULL.

The function is applied to the set of (dependent-expression and independent-
expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the
dependent-expression:

AVG(y)

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example calculates the average of the independent variable,
employee salary. This function returns the value 49988.6232:

SELECT REGR_AVGY(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 233

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

REGR_COUNT function [Aggregate]
Function Returns an integer that represents the number of non-NULL number pairs used

to fit the regression line.

Syntax 1 REGR_COUNT(dependent-expression, independent-expression)

Syntax 2 REGR_COUNT(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function returns an UNSIGNED BIGINT as the result.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example returns a value that indicates the number of non-NULL
pairs that were used to fit the regression line. This function returns the value 75:

SELECT REGR_COUNT(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQ.

• Sybase Compatible with SQL Anywhere

Alphabetical list of functions

234 Sybase IQ

REGR_INTERCEPT function [Aggregate]
Function Computes the y-intercept of the linear regression line that best fits the

dependent and independent variables.

Syntax 1 REGR_INTERCEPT(dependent-expression, independent-expression)

Syntax 2 REGR_INTERCEPT(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, REGR_INTERCEPT returns NULL.

The function is applied to the set of (dependent-expression and independent-
expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is made, where y represents the dependent-
expression and x represents the independent-expression:

AVG(y) - REGR_SLOPE(y, x) * AVG(x)

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example returns the value 1874.5805688517603:

SELECT REGR_INTERCEPT(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 235

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

REGR_R2 function [Aggregate]
Function Computes the coefficient of determination (also referred to as R-squared or the

goodness-of-fit statistic) for the regression line.

Syntax 1 REGR_R2(dependent-expression, independent-expression)

Syntax 2 REGR_R2(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then REGR_R2 returns NULL.

REGR_R2 is applied to the set of (dependent-expression and independent-
expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. IQ then applies the following
algorithm:

• REGR_R2 calculates VAR_POP(x) and returns NULL if VAR_POP(x) = 0;
otherwise, it calculates VAR_POP(y) and returns the value 1 if
VAR_POP(y) = 0.

• If neither VAR_POP(x) or VAR_POP(y) is zero, the return value is
POWER(CORR(y,x),2)

where y represents the dependent-expression and x represents the independent-
expression.

Alphabetical list of functions

236 Sybase IQ

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example returns the value 0.19379959710325653:

SELECT REGR_R2(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

REGR_SLOPE function [Aggregate]
Function Computes the slope of the linear regression line, fitted to non-NULL pairs.

Syntax 1 REGR_SLOPE(dependent-expression, independent-expression)

Syntax 2 REGR_SLOPE(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then REGR_SLOPE returns NULL.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 237

REGR_SLOPE is applied to the set of (dependent-expression and
independent-expression) pairs after eliminating all pairs for which either
dependent-expression or independent-expression is NULL. The function is
computed simultaneously during a single pass through the data. After
eliminating NULL values, the following computation is made, where y
represents the dependent-expression and x represents the independent-
expression:

COVAR_POP(x, y) / VAR_POP(y)

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example returns the value 935.3429749445614:

SELECT REGR_SLOPE(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

REGR_SXX function [Aggregate]
Function Computes the slope of the linear regression line, fitted to non-NULL pairs.

Syntax 1 REGR_SXX(dependent-expression, independent-expression)

Syntax 2 REGR_SXX(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section below.

Alphabetical list of functions

238 Sybase IQ

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then REGR_SXX returns NULL.

The function is applied to the set of (dependent-expression and independent-
expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is made, where y represents the dependent-
expression and x represents the independent-expression:

REGR_COUNT(y, x) * VAR_POP(x)

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example returns the value 5916.4800000000105:

SELECT REGR_SXX(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

REGR_SXY function [Aggregate]
Function Returns the sum of products of the dependent and independent variables. Use

REGR_SXY to evaluate the statistical validity of a regression model.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 239

Syntax 1 REGR_SXY(dependent-expression, independent-expression)

Syntax 2 REGR_SXY(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then it returns NULL.

The function is applied to the set of (dependent-expression and independent-
expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is made, where y represents the dependent-
expression and x represents the independent-expression:

REGR_COUNT(x, y) * COVAR_POP(x, y)

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example returns the value 5533938.004400015.

SELECT REGR_SXY(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

FROM Employees;

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

Alphabetical list of functions

240 Sybase IQ

REGR_SYY function [Aggregate]
Function Returns values that can evaluate the statistical validity of a regression model.

Syntax 1 REGR_SYY(dependent-expression, independent-expression)

Syntax 2 REGR_SYY(dependent-expression, independent-expression)

OVER (window-spec)

window-spec: See Syntax 2 instructions in the Usage section, below.

Parameters dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

Usage This function converts its arguments to DOUBLE, performs the computation
in double-precision floating-point, and returns a DOUBLE as the result. If
applied to an empty set, then REGR_SYY returns NULL.

The function is applied to the set of (dependent-expression and independent-
expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the
dependent-expression and x represents the independent-expression:

REGR_COUNT(x, y) * VAR_POP(y)

See “Mathematical formulas for the aggregate functions” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Usage > Querying and Modifying Data > OLAP support > Window
functions in SQL Anywhere > Row numbering functions.

Note ROLLUP and CUBE are not supported in the GROUP BY clause with
Syntax 1. DISTINCT is not supported.

Syntax 2 represents usage as a window function in a SELECT statement. As
such, you can specify elements of window-spec either in the function syntax
(inline), or with a WINDOW clause in the SELECT statement. For information
on how to specify the window, see “Analytical functions” on page 104.

Example The following example returns the value 26, 708, 672,843.3002:

SELECT REGR_SYY(Salary, (YEAR(NOW()) - YEAR(
BirthDate)))

FROM Employees;

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 241

Standards and
compatibility

• SQL2008 SQL foundation feature (T621) outside of core SQL

• Sybase Compatible with SQL Anywhere

REMAINDER function [Numeric]
Function Returns the remainder when one whole number is divided by another.

Syntax REMAINDER (dividend, divisor)

Parameters dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

Example The following statement returns the value 2:

SELECT REMAINDER(5, 3) FROM iq_dummy

Usage REMAINDER is the same as the MOD function.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported in Adaptive Server Enterprise. The % (modulo)
operator and the division operator can be used to produce a remainder.

See also “MOD function [Numeric]” on page 205

REPEAT function [String]
Function Concatenates a string a specified number of times.

Syntax REPEAT (string-expression, integer-expression)

Parameters string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated. If
integer-expression is negative, an empty string is returned.

Note The result data type of a REPEAT function is a LONG VARCHAR. If you
use REPEAT in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set REPEAT to the correct data
type and size.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “repeatrepeatrepeat:”

SELECT REPEAT('repeat', 3) FROM iq_dummy

Alphabetical list of functions

242 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported in Adaptive Server Enterprise, but REPLICATE
provides the same capabilities

See also “REPLICATE function [String]” on page 243

REPLACE function [String]
Function Replaces all occurrences of a substring with another substring.

Syntax REPLACE (original-string, search-string, replace-string)

Parameters If any argument is NULL, the function returns NULL.

original-string The string to be searched. This string can be any length.

search-string The string to be searched for and replaced with replace-string.
This string is limited to 255 bytes. If search-string is an empty string, the
original string is returned unchanged.

replace-string The replacement string, which replaces search-string. This
can be any length. If replace-string is an empty string, all occurrences of
search-string are deleted.

If you need to control the width of the resulting column when replace-string is
wider than search-string, use the CAST function. For example,

CREATE TABLE aa(a CHAR(5));
INSERT INTO aa VALUES(‘CCCCC’);
COMMIT;
SELECT a, CAST(REPLACE(a,’C’,’ZZ’) AS CHAR(5)) FROM aa;

Examples The following statement returns the value “xx.def.xx.ghi:”

SELECT REPLACE('abc.def.abc.ghi', 'abc', 'xx') FROM
iq_dummy

The following statement generates a result set containing ALTER PROCEDURE
statements which, when executed, repair stored procedures that reference a
table that has been renamed. (To be useful, the table name must be unique.)

SELECT REPLACE(
replace(proc_defn,'OldTableName','NewTableName'),
'create procedure',
'alter procedure')

FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE '%OldTableName%'

Use a separator other than the comma for the LIST function:

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 243

SELECT REPLACE(list(table_id), ',', '--')
FROM SYS.ISYSTAB
WHERE table_id <= 5

Usage The result data type of a REPLACE function is a LONG VARCHAR. If you use
REPLACE in a SELECT INTO statement, you must have a Large Objects
Management option license, or use CAST and set REPLACE to the correct data
type and size.

There are two ways to work around this issue:

• Declare a local temporary table, then perform an INSERT:

DECLARE local temporary table #mytable
(name_column char(10)) on commit preserve rows;

INSERT INTO #mytable SELECT REPLACE(name,'0','1')
FROM dummy_table01;

• Use CAST:

SELECT CAST(replace(name, '0', '1') AS Char(10))
into #mytable from dummy_table01;

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “SUBSTRING function [String]” on page 265

REPLICATE function [String]
Function Concatenates a string a specified number of times.

Syntax REPLICATE (string-expression, integer-expression)

Parameters string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated.

Example The following statement returns the value “repeatrepeatrepeat:”

SELECT REPLICATE('repeat', 3) FROM iq_dummy

Alphabetical list of functions

244 Sybase IQ

Usage REPLICATE is the same as the REPEAT function.

Note The result data type of a REPLICATE function is a LONG VARCHAR. If
you use REPLICATE in a SELECT INTO statement, you must have a Large
Objects Management option license or use CAST and set REPLICATE to the
correct data type and size.

See “REPLACE function [String]” on page 242 for more information.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “REPEAT function [String]” on page 241

REVERSE function [String]
Function Takes one argument as an input of type BINARY or STRING and returns the

specified string with characters listed in reverse order.

Syntax REVERSE (expression | uchar_expr)

Parameters expression is a character or binary-type column name, variable, or constant
expression of CHAR, VARCHAR, NCHAR, NVARCHAR, BINARY, or
VARBINARY type.

Example 1 select reverse("abcd")

dcba

Example 2 select reverse(0x12345000)

0x00503412

Usage • REVERSE, a string function, returns the reverse of expression.

• If expression is NULL, reverse returns NULL.

• Surrogate pairs are treated as indivisible and are not reversed.

Permissions Any user can execute REVERSE.

Standards and
compatibility

ANSI SQL – Compliance level: Transact-SQL extension

See also Functions “LOWER function [String]” on page 200 and “UPPER function
[String]” on page 329.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 245

For general information about string functions, see “String functions” on page
115.

RIGHT function [String]
Function Returns the rightmost characters of a string.

Syntax RIGHT (string-expression, numeric-expression)

Parameters string-expression The string to be left-truncated.

numeric-expression The number of characters at the end of the string to
return.

Example The following statement returns the value “olate:”

SELECT RIGHT('chocolate', 5) FROM iq_dummy

Usage If the string contains multibyte characters, and the proper collation is being
used, the number of bytes returned might be greater than the specified number
of characters.

Note The result data type of a RIGHT function is a LONG VARCHAR. If you
use RIGHT in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set RIGHT to the correct data type
and size.

See “REPLACE function [String]” on page 242 for more information.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “LEFT function [String]” on page 195

Chapter 11, “International Languages and Character Sets” in the System
Administration Guide: Volume 1

ROUND function [Numeric]
Function Rounds the numeric-expression to the specified integer-expression number of

places after the decimal point.

Syntax ROUND (numeric-expression, integer-expression)

Parameters numeric-expression The number, passed to the function, to be rounded.

Alphabetical list of functions

246 Sybase IQ

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative expression
specifies the number of significant digits to the left of the decimal point at
which to round.

Examples The following statement returns the value 123.200:

SELECT ROUND(123.234, 1) FROM iq_dummy

Additional results of the ROUND function are shown in the following table:

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “TRUNCNUM function [Numeric]” on page 268

ROWID function [Miscellaneous]
Function Returns the internal row ID value for each row of the table.

Syntax ROWID (table-name) …FROM table-name

Parameters table-name The name of the table. Specify the name of the table within the
parentheses with either no quotes or with double quotes.

Examples The following statement returns the row ID values 1 through 10:

SELECT ROWID(“PRODUCTS”) FROM PRODUCTS

Value ROUND (Value)
123.4567 round (a.n,4)
123.4570 round (a.n,3)
123.4600 round (a.n,2)
123.5000 round (a.n,1)
123.0000 round (a.n, 0)
120.0000 round (a.n,-1)
100.0000 round (a.n,-2)
0.0000 round(a.n,-3)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 247

The following statement returns the product ID and row ID value of all rows
with a product ID value less than 400:

SELECT PRODUCTS.ID, ROWID (PRODUCTS)
FROM PRODUCTS
WHERE PRODUCTS.ID < 400

The following statement deletes all rows with row ID values greater than 50:

DELETE FROM PRODUCTS
WHERE ROWID (PRODUCTS) > 50

Usage You can use the ROWID function in conjunction with other clauses to
manipulate specific rows of the table.

You must specify the FROM table-name clause.

A limitation of the ROWID function is that it cannot use a join index of that
table, eliminating any performance benefits that would normally use that join
index.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

RTRIM function [String]
Function Returns a string with trailing blanks removed.

Syntax RTRIM (string-expression)

rowid(Products)
1
2
3
.
.
.

10

ID rowid(Products)
300 1
301 2
302 3

Alphabetical list of functions

248 Sybase IQ

Parameters string-expression The string to be trimmed.

Note The result data type of an RTRIM function is a LONG VARCHAR. If you
use RTRIM in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set RTRIM to the correct data type
and size.

See “REPLACE function [String]” on page 242 for more information.

Example The following statement returns the string “Test Message” with all trailing
blanks removed.

SELECT RTRIM('Test Message ') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “LTRIM function [String]” on page 201

SECOND function [Date and time]
Function Returns a number from 0 to 59 corresponding to the second component of the

given date/time value.

Syntax SECOND (datetime-expression)

Parameters datetime-expression The date/time value.

Example The following statement returns the value 5:

SELECT SECOND('1998-07-13 08:21:05') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

SECONDS function [Date and time]
Function Returns the number of seconds since an arbitrary starting date and time, the

number of seconds between two times, or adds an integer amount of seconds
to a time.

Syntax SECONDS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 249

Parameters datetime-expression A date and time.

integer-expression The number of seconds to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
minutes are subtracted from the date/time value. If you supply an integer
expression, the datetime-expression must be explicitly cast as a datetime data
type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 133.

Examples The following statement returns the value 3600:

SELECT (SECONDS('1998-07-13 06:07:12') -
SECONDS('1998-07-13 05:07:12')) FROM iq_dummy

The following statement returns the value 14400, to signify the difference
between the two times:

SELECT SECONDS('1999-07-13 06:07:12',
'1999-07-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-05-12 21:05:12.000:

SELECT SECONDS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5) FROM iq_dummy

Usage The second syntax returns the number of whole seconds from the first date/
time to the second date/time. The number might be negative.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

SIGN function [Numeric]
Function Returns the sign of a number.

Syntax SIGN (numeric-expression)

Parameters numeric-expression The number for which the sign is to be returned.

Example The following statement returns the value -1:

SELECT SIGN(-550) FROM iq_dummy

Usage For negative numbers, SIGN returns -1.

For zero, SIGN returns 0.

For positive numbers, SIGN returns 1.

Alphabetical list of functions

250 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

SIMILAR function [String]
Function Returns an integer between 0 and 100 representing the similarity between two

strings.

Syntax SIMILAR (string-expression1, string-expression2)

Parameters string-expression1 The first string to be compared.

string-expression2 The second string to be compared.

Example The following statement returns the value 75:

SELECT SIMILAR('toast', 'coast') FROM iq_dummy

This signifies that the two values are 75% similar.

Usage The function returns an integer between 0 and 100 representing the similarity
between the two strings. The result can be interpreted as the percentage of
characters matched between the two strings. A value of 100 indicates that the
two strings are identical.

This function can be used to correct a list of names (such as customers). Some
customers might have been added to the list more than once with slightly
different names. Join the table to itself and produce a report of all similarities
greater than 90 percent but less than 100 percent.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

SIN function [Numeric]
Function Returns the sine of a number, expressed in radians.

Syntax SIN (numeric-expression)

Parameters numeric-expression The angle, in radians.

Example The following statement returns the value 0.496880:

SELECT SIN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 251

• Sybase Compatible with Adaptive Server Enterprise

See also “ASIN function [Numeric]” on page 129

“COS function [Numeric]” on page 143

“COT function [Numeric]” on page 143

“TAN function [Numeric]” on page 267

SORTKEY function [String]
Function Generates values that can be used to sort character strings based on alternate

collation rules.

Syntax SORTKEY (string-expression
[, { collation-id
| collation-name [(collation-tailoring-string)] }]
)

Parameters string-expression The string expression must contain characters that are
encoded in the character set of the database and must be STRING data type.

If string-expression is NULL, the SORTKEY function returns a null value. An
empty string has a different sort-order value than a null string from a database
column.

There is no limit on the length of the input string that the SORTKEY function
can handle. The result of SORTKEY is always limited to 1024 bytes and is
VARBINARY data type. If the actual results exceed 1024 bytes, the result
contains only the first 1024 bytes.

collation-name A string or character variable that specifies the name of the
sort order to use. You can also specify the alias char_collation, or, equivalently,
db_collation, to generate sort-keys as used by the CHAR collation in use by the
database.

Similarly, you can specify the alias NCHAR_COLLATION to generate sort-
keys as used by the NCHAR collation in use by the database. However , Sybase
IQ does not support NCHAR_COLLATION for IQ-specific objects.
NCHAR_COLLATION is supported for SQL Anywhere objects on an IQ
server.

collation-id A variable, integer constant, or string that specifies the ID
number of the sort order to use. This parameter applies only to Adaptive Server
Enterprise collations, which can be referred to by their corresponding collation
ID.

Alphabetical list of functions

252 Sybase IQ

If you do not specify a collation name or collation ID, the default is Default
Unicode multilingual.

Valid collations are as follows:

• To see collations that are supported by SQL Anywhere, listed by label,
execute dbinit -l.

• The Adaptive Server Enterprise collations are listed in the table below.

Description
Collation
name

Collation
ID

Default Unicode multilingual default 0
CP 850 Alternative: no accent altnoacc 39
CP 850 Alternative: lowercase first altdict 45
CP 850 Western European: no case,
preference

altnocsp 46

CP 850 Scandinavian dictionary scandict 47
CP 850 Scandinavian: no case, preference scannocp 48
GB Pinyin gbpinyin n/a
Binary sort binary 50
Latin-1 English, French, German dictionary dict 51
Latin-1 English, French, German no case nocase 52
Latin-1 English, French, German no case,
preference

nocasep 53

Latin-1 English, French, German no accent noaccent 54
Latin-1 Spanish dictionary espdict 55
Latin-1 Spanish no case espnocs 56
Latin-1 Spanish no accent espnoac 57
ISO 8859-5 Russian dictionary rusdict 58
ISO 8859-5 Russian no case rusnocs 59
ISO 8859-5 Cyrillic dictionary cyrdict 63
ISO 8859-5 Cyrillic no case cyrnocs 64
ISO 8859-7 Greek dictionary elldict 65
ISO 8859-2 Hungarian dictionary hundict 69
ISO 8859-2 Hungarian no accents hunnoac 70
ISO 8859-2 Hungarian no case hunnocs 71
ISO 8859-5 Turkish dictionary turdict 72
ISO 8859-5 Turkish no accents turnoac 73
ISO 8859-5 Turkish no case turnocs 74
CP 874 (TIS 620) Royal Thai dictionary thaidict 1

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 253

collation-tailoring-string (Optional) Specify collation tailoring options
(collation-tailoring-string) for additional control over sorting and comparison
of characters. These options take the form of keyword=value pairs assembled
in parentheses, following the collation name. For example,

‘UCA(locale=es;case=LowerFirst;accent=respect)’

The syntax for specifying these options is identical to the COLLATION clause
of the CREATE DATABASE statement. See collation-tailoring-string in
“CREATE DATABASE statement” in Chapter 1, “SQL Statements” of
Reference: Statements and Options.

Note All of the collation tailoring options are supported for SQL Anywhere
databases, when specifying the Unicode Collation Algorithm (UCA) collation.
For all other collations, only case sensitivity tailoring is supported.

Example The following statement queries the Employees table and returns the
FirstName and Surname of all employees, sorted by the sort-key values for the
Surname column using the dict collation (Latin-1, English, French, German
dictionary):

SELECT Surname, GivenName FROM Employees ORDER BY
SORTKEY(Surname, 'dict');

Usage The SORTKEY function generates values that can be used to order results based
on predefined sort order behavior. This allows you to work with character sort
order behaviors that may not be available from the database collation. The
returned value is a binary value that contains coded sort order information for
the input string that is retained from the SORTKEY function.

ISO 14651 ordering standard 14651 22
Shift-JIS binary order sjisbin 179
Unicode UTF-8 binary sort utf8bin 24
EUC JIS binary order eucjisbn 192
GB2312 binary order gb2312bn 137
CP932 MS binary order cp932bin 129
Big5 binary order big5bin 194
EUC KSC binary order euckscbn 161

Description
Collation
name

Collation
ID

Alphabetical list of functions

254 Sybase IQ

For example, you can store the values returned by the SORTKEY function in a
column with the source character string. The following SELECT statement
retrieves data from table T1 in the sorted order of c1 according to the Thai
dictionary:

SELECT rid, c1 from T1 ORDER BY SORTKEY(c1)

You instead store the value returned by SORTKEY in a column with the source
character string. To retrieve the character data in the required order, the
SELECT statement needs to include only an ORDER BY clause on the column
that contains the results of running the SORTKEY function:

UPDATE T1 SET shadowc1=SORTKEY(c1) FROM T1;
SELECT rid, c1 FROM T1 ORDER BY shadowc1

The SORTKEY function guarantees that the values it returns for a given set of
sort order criteria work for the binary comparisons that are performed on
VARBINARY data types.

Generating sort-keys for queries can be expensive. As an alternative for
frequently requested sort-keys, consider creating a computed column to hold
the sort-key values, and then referencing that column in the ORDER BY clause
of the query.

With respect to collation tailoring, full sensitivity is generally the intent when
creating sort-keys, so when you specify a non-UCA collation, the default
tailoring applied is equivalent to case=Respect. For example, the following two
statements are equivalent:

SELECT SORTKEY('abc', '1252LATIN1');
SELECT SORTKEY('abc', '1252LATIN1(case=Respect)');

When specifying a non-UCA collation, by default, collation tailorings are
accent and case-sensitive. However, for non-UCA collations, you can override
only the case sensitivity using a collation tailoring. For example:

SELECT SORTKEY('abc', '1252LATIN1(case=LowerFirst)');

If the database was created without specifying tailoring options, the following
two clauses may generate different sort orders, even if the database collation
name is specified for the SORTKEY function:

ORDER BY string-expression
ORDER BY SORTKEY(string-expression, database-
collation-name)

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 255

Different sort orders may be generated, because the default tailoring settings
used for database creation and for the SORTKEY function are different. To get
the same behavior from SORTKEY as for the database collation, either provide
a tailoring syntax for collation-tailoring-string that matches the settings for the
database collation, or specify db_collation for collation-name. For example:

SORTKEY(expression, 'db_collation')

For information on using collation tailoring and the SORTKEY function with a
SQL Anywhere database, see “SQL Functions” in the SQL Anywhere Server –
SQL Reference.

Note Sort-key values created using a version of Sybase IQ earlier than 15.0 do
not contain the same values created using version 15.0 and later. This may be
a problem for your applications if your pre-15.0 database has sort-key values
stored within it, especially if sort-key value comparison is required by your
application. Regenerate any sort-key values in your database that were
generated using a version of Sybase IQ earlier than 15.0.

See also “SORT_COLLATION option” in Chapter 2, “Database Options”

“String functions” on page 115

Chapter 11, “International Languages and Character Sets” in System
Administration Guide: Volume 1

SOUNDEX function [String]
Function Returns a number representing the sound of a string.

Syntax SOUNDEX (string-expression)

Parameters string-expression The string.

Example The following statement returns two numbers, representing the sound of each
name. The SOUNDEX value for each argument is 3827.

SELECT SOUNDEX('Smith'), SOUNDEX('Smythe') FROM
iq_dummy

SOUNDEX ('Smith') is equal to SOUNDEX ('Smythe').

Usage The SOUNDEX function value for a string is based on the first letter and the
next three consonants other than H, Y, and W. Doubled letters are counted as
one letter. For example:

Alphabetical list of functions

256 Sybase IQ

SOUNDEX('apples') FROM iq_dummy

is based on the letters A, P, L, and S.

Multibyte characters are ignored by the SOUNDEX function.

Although it is not perfect, SOUNDEX normally returns the same number for
words that sound similar and that start with the same letter.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise returns a CHAR(4) result and Sybase IQ returns
an integer

SPACE function [String]
Function Returns a specified number of spaces.

Syntax SPACE (integer-expression)

Parameters integer-expression The number of spaces to return.

Example The following statement returns a string containing 10 spaces:

SELECT SPACE(10) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

SQRT function [Numeric]
Function Returns the square root of a number.

Syntax SQRT (numeric-expression)

Parameters numeric-expression The number for which the square root is to be
calculated.

Example The following statement returns the value 3:

SELECT SQRT(9) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 257

SQUARE function [Numeric]
Function Returns the square of the specified expression as a float.

Syntax SQUARE (numeric-expression)

Parameters expression Is a column, variable, or expression with a data type that is either
exact numeric, approximate numeric, money, or any type that can be implicitly
converted to one of these types. For other data types, the SQUARE function
generates an error. The return value is of DOUBLE data type.

Usage SQUARE function takes one argument. For example, SQUARE (12.01) returns
144.240100.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

STDDEV function [Aggregate]
Function Returns the standard deviation of a set of numbers.

Syntax STDDEV ([ALL] expression)

Parameters expression Any numeric data type (FLOAT, REAL, or DOUBLE precision)
expression.

Examples Given this data:

SELECT Salary FROM Employees WHERE DepartmentID = 300

The following statement returns the value 32617.8446712838471:

SELECT STDDEV (Salary) FROM Employees
WHERE DepartmentID = 300

Salary
51432.000
57090.000
42300.000
43700.00
36500.000

138948.000
31200.000
58930.00
75400.00

Alphabetical list of functions

258 Sybase IQ

Given this data:

SELECT UnitPrice FROM Products WHERE Name = 'Tee Shirt'

The following statement returns the value 2.88675134594813049:

SELECT STDDEV (UnitPrice) FROM Products
WHERE Name = 'Tee Shirt'

Usage The formula used to calculate STDDEV is:

STDDEV returns a result of data type DOUBLE precision floating-point. If
applied to the empty set, the result is NULL, which returns NULL for a one-
element input set.

STDDEV does not support the keyword DISTINCT. A syntax error is returned if
you use DISTINCT with STDDEV.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “STDDEV_SAMP function [Aggregate]” on page 259

“VARIANCE function [Aggregate]” on page 333

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

STDDEV_POP function [Aggregate]
Function Computes the standard deviation of a population consisting of a numeric-

expression, as a DOUBLE.

Syntax STDDEV_POP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose population-
based standard deviation is calculated over a set of rows.

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

Name UnitPrice
Tee Shirt 9.00
Tee Shirt 14.00
Tee Shirt 14.00

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 259

SELECT year(ship_date) AS Year, quarter(ship_date)
AS Quarter, AVG(quantity) AS Average,
STDDEV_POP (quantity) AS Variance

FROM SalesOrderItems GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Usage Computes the population standard deviation of the provided value expression
evaluated for each row of the group or partition (if DISTINCT was specified,
then each row that remains after duplicates have been eliminated), defined as
the square root of the population variance.

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL.

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “Analytical functions” on page 104

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

STDDEV_SAMP function [Aggregate]
Function Computes the standard deviation of a sample consisting of a numeric-

expression, as a DOUBLE.

Note STDDEV_SAMP is an alias for STDDEV.

Syntax STDDEV_SAMP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose sample-
based standard deviation is calculated over a set of rows.

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

Year Quarter Average Variance
2000 1 25.775148 14.2794
2000 2 27.050847 15.0270
...

Alphabetical list of functions

260 Sybase IQ

SELECT year(ship_date) AS Year, quarter(ship_date)
AS Quarter, AVG(quantity) AS Average,
STDDEV_SAMP(quantity) AS Variance

FROM SalesOrderItems GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Usage Computes the sample standard deviation of the provided value expression
evaluated for each row of the group or partition (if DISTINCT was specified,
then each row that remains after duplicates have been eliminated), defined as
the square root of the sample variance.

NULL returns NULL for a one-element input set.

Standard deviations are computed according to the following formula, which
assumes a normal distribution:

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL.

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “Analytical functions” on page 104

“STDDEV function [Aggregate]” on page 257

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

STR function [String]
Function Returns the string equivalent of a number.

Syntax STR (numeric-expression [, length [, decimal]])

Parameters numeric-expression Any approximate numeric (FLOAT, REAL, or DOUBLE
precision) expression.

Year Quarter Average Variance
2000 1 25.775148 14.3218
2000 2 27.050847 15.0696
...

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 261

length The number of characters to be returned (including the decimal point,
all digits to the right and left of the decimal point, the sign, if any, and blanks).
The default is 10 and the maximum length is 255.

decimal The number of digits to the right of the decimal point to be returned.
The default is 0.

Examples The following statement returns a string of six spaces followed by 1234, for a
total of ten characters:

SELECT STR(1234.56) FROM iq_dummy

The following statement returns the result 1234.5:

SELECT STR(1234.56, 6, 1) FROM iq_dummy

Usage If the integer portion of the number cannot fit in the length specified, then the
result is NULL. For example, the following statement returns NULL:

SELECT STR(1234.56, 3) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

STR_REPLACE function [String]
Function Takes three arguments as input of type BINARY or STRING and replaces any

instances of the second string expression (string_expr2) that occur within the
first string expression (string_expr1) with a third expression (string_expr3).

STR_REPLACE is an alias of REPLACE function

Syntax REPLACE (string_expr1, string_expr2, string_expr3)

Parameters string_expr1 is the source string, or the string expression to be searched,
expressed as CHAR, VARCHAR, UNICHAR, UNIVARCHAR, VARBINARY, or
BINARY data type.

string_expr2 is the pattern string, or the string expression to find within the
first expression (string_expr1) and is expressed as CHAR, VARCHAR,
UNICHAR, UNIVARCHAR, VARBINARY, or BINARY data type.

string_expr3 is the replacement string expression, expressed as CHAR,
VARCHAR, UNICHAR, UNIVARCHAR, VARBINARY, or BINARY data type.

Example 1 Replaces the string def within the string cdefghi with yyy.

select replace("cdefghi", "def", "yyy")

Alphabetical list of functions

262 Sybase IQ

cyyyghi
(1 row(s) affected)

Example 2 Replaces all spaces with “toyota”

select str_replace ("chevy, ford, mercedes",
"","toyota")

chevy,toyotaford,toyotamercedes
(1 row(s) affected)

Example 3 Accepts NULL in the third parameter and treats it as an attempt to replace
string_expr2 with NULL, effectively turning STR_REPLACE into a “string
cut” operation. Returns “abcghijklm”:

select str_replace("abcdefghijklm", "def", NULL)

abcghijklm
(1 row affected)

Usage • Takes any data type as input and returns STRING or BINARY.

For example, an empty string passed as an argument (“”) is replaced with
one space (“ ”) before further evaluation occurs. This is true for both
BINARY and STRING types.

• All arguments can have a combination of BINARY and STRING data types.

• The result length may vary, depending upon what is known about the
argument values when the expression is compiled. If all arguments are
columns or host variables assigned to constants, Sybase IQ calculates the
result length as:

result_length = ((s/p)*(r-p)+s)
WHERE

s = length of source string
p = length of pattern string
r = length of replacement string

IF (r-p) <= 0, result length = s

• If Sybase IQ cannot calculate the result length because the argument
values are unknown when the expression is compiled, the result length
used is 255.

• RESULT_LEN never exceeds 32767.

Permissions Any user can execute STR_REPLACE.

Standards and
compatibility

ANSI SQL – Compliance level: Transact-SQL extension

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 263

See also Data types CHAR, VARCHAR, UNICHAR, UNIVARCHAR, VARBINARY, or
BINARY. See Chapter 3, “SQL Data Types.”

Function “LENGTH function [String]” on page 197.

For general information about string functions, see “String functions” on page
115.

STRING function [String]
Function Concatenates one or more strings into one large string.

Syntax STRING (string-expression [, …])

Parameters string-expression A string.

If only one argument is supplied, it is converted into a single expression. If
more than one argument is supplied, they are concatenated into a single string.

A NULL is treated as an empty string ('').

Example The following statement returns the value testing123:

SELECT STRING('testing', NULL, 123)
FROM iq_dummy

Usage Numeric or date parameters are converted to strings before concatenation. You
can also use the STRING function to convert any single expression to a string
by supplying that expression as the only parameter.

If all parameters are NULL, STRING returns NULL.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

STRTOUUID function [String]
Function Converts a string value to a unique identifier (UUID or GUID) value.

Syntax STRTOUUID (string-expression)

Parameters string-expression A string in the format xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx

Example CREATE TABLE T (
pk uniqueidentifier primary key,
c1 int);

Alphabetical list of functions

264 Sybase IQ

INSERT INTO T (pk, c1)
VALUES (STRTOUUID
('12345678-1234-5678-9012-123456789012'), 1);

Usage Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx where x
is a hexadecimal digit, to a unique identifier value. If the string is not a valid
UUID string, NULL is returned.

You can use STRTOUUID to insert UUID values into a Sybase IQ database.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “NEWID function [Miscellaneous]” on page 208

“UUIDTOSTR function [String]” on page 331

UNIQUEIDENTIFIER in “Binary data types” on page 77

STUFF function [String]
Function Deletes a number of characters from one string and replaces them with another

string.

Syntax STUFF (string-expression1, start, length, string-expression2)

Parameters string-expression1 The string to be modified by the STUFF function.

start The character position at which to begin deleting characters. The first
character in the string is position 1.

length The number of characters to delete.

string-expression2 The string to be inserted.

Example The following statement returns the value “chocolate pie”:

SELECT STUFF('chocolate cake', 11, 4, 'pie')
FROM iq_dummy

Usage To delete a portion of a string using STUFF, use a replacement string of NULL.
To insert a string using STUFF, use a length of zero.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “INSERTSTR function [String]” on page 189

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 265

SUBSTRING function [String]
Function Returns a substring of a string.

Syntax { SUBSTRING | SUBSTR } (string-expression, start [, length])

Parameters string-expression The string from which a substring is to be returned.

start The start position of the substring to return, in characters. A negative
starting position specifies a number of characters from the end of the string
instead of the beginning. The first character in the string is at position 1.

length The length of the substring to return, in characters. A positive length
specifies that the substring ends length characters to the right of the starting
position, while a negative length specifies that the substring ends length
characters to the left of the starting position.

Examples The following statement returns “back”:

SELECT SUBSTRING ('back yard', 1 , 4)
FROM iq_dummy

The following statement returns yard:

SELECT SUBSTR ('back yard', -1 , -4)
FROM iq_dummy

The following statement returns 0x2233:

SELECT SUBSTR (0x112233445566, 2, 2)
FROM iq_dummy

Usage If length is specified, the substring is restricted to that length. If no length is
specified, the remainder of the string is returned, starting at the start position.

Both start and length can be negative. Using appropriate combinations of
negative and positive numbers, you can get a substring from either the
beginning or end of the string.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase SUBSTR is not supported by Adaptive Server Enterprise. Use
SUBSTRING instead.

SUM function [Aggregate]
Function Returns the total of the specified expression for each group of rows.

Syntax SUM (expression | DISTINCT column-name)

Parameters expression The object to be summed. This is commonly a column name.

Alphabetical list of functions

266 Sybase IQ

DISTINCT column-name Computes the sum of the unique values in column-
name for each group of rows. This is of limited usefulness, but is included for
completeness.

Example The following statement returns the value 3749146.740:

SELECT SUM(salary)
FROM Employees

Usage Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “AVG function [Aggregate]” on page 131

“COUNT function [Aggregate]” on page 146

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

SUSER_ID function [System]
Function Returns an integer user identification number.

Syntax SUSER_ID ([user-name])

Parameters user-name The user name.

Examples The following statement returns the user identification number 1:

SELECT SUSER_ID ('DBA') FROM iq_dummy

The following statement returns the user identification number 0:

SELECT SUSER_ID ('SYS') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “SUSER_NAME function [System]” on page 266

“USER_ID function [System]” on page 330

SUSER_NAME function [System]
Function Returns the user name.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 267

Syntax SUSER_NAME ([user-id])

Parameters user-id The user identification number.

Examples The following statement returns the value DBA:

SELECT SUSER_NAME (1) FROM iq_dummy

The following statement returns the value SYS:

SELECT SUSER_NAME (0) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ. In Adapter Server Enterprise, SUSER_NAME returns the server user
name.

See also “SUSER_ID function [System]” on page 266

“USER_NAME function [System]” on page 330

TAN function [Numeric]
Function Returns the tangent of a number.

Syntax TAN (numeric-expression)

Parameters numeric-expression An angle, in radians.

Example The following statement returns the value 0.572561:

SELECT TAN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “COS function [Numeric]” on page 143

“SIN function [Numeric]” on page 250

TODAY function [Date and time]
Function Returns the current date. This is the historical syntax for CURRENT DATE.

Syntax TODAY (*)

Example The following statement returns the current day according to the system clock.

SELECT TODAY(*) FROM iq_dummy

Alphabetical list of functions

268 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

TRIM function [String]
Function Removes leading and trailing blanks from a string.

Syntax TRIM (string-expression)

Parameters string-expression The string to be trimmed.

Note The result data type of a TRIM function is a LONG VARCHAR. If you use
TRIM in a SELECT INTO statement, you must have a Large Objects
Management option license, or use CAST and set TRIM to the correct data type
and size.

See “REPLACE function [String]” on page 242 for more information.

Example The following statement returns the value “chocolate” with no leading or
trailing blanks.

SELECT TRIM(' chocolate ') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise. Use LTRIM and
RTRIM instead.

See also “LTRIM function [String]” on page 201

“RTRIM function [String]” on page 247

TRUNCNUM function [Numeric]
Function Truncates a number at a specified number of places after the decimal point.

Syntax TRUNCNUM (numeric-expression, integer-expression)

Parameters numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative expression
specifies the number of significant digits to the left of the decimal point at
which to round.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 269

Examples The following statement returns the value 600:

SELECT TRUNCNUM(655, -2) FROM iq_dummy

The following statement: returns the value 655.340:

SELECT TRUNCNUM(655.348, 2) FROM iq_dummy

Usage This function is the same as TRUNCATE, but does not cause keyword conflicts.

You can use combinations of ROUND, FLOOR, and CEILING to provide similar
functionality.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported in Adaptive Server Enterprise

See also “ROUND function [Numeric]” on page 245

TS_ARMA_AR function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the least-square estimates of parameters for an autoregressive
moving average (ARMA) model, and returns the requested autoregressive
estimate.

Syntax TS_ARMA_AR (timeseries_expression, ar_count, ar_elem, method)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

ar_count An integer containing the number of autoregressive values to
compute.

ar_elem An integer identifying the element in the computed AR array that
should be returned. ar_elem must be greater than 0 and less than or equal to
ar_count.

method (Optional) An integer that identifies the type of procedure used to
compute estimates. 0 (the default value) = method of least squares; 1 = method
of moments.

window-spec TS_ARMA_AR is an OLAP function requiring an OVER ()
clause.

Alphabetical list of functions

270 Sybase IQ

Usage TS_ARMA_AR time series function returns a double-precision floating-point
value containing the autoregressive estimate. TS_ARMA_AR calls the function
imsls_d_arma in the IMSL libraries.

IMSL mapping The arguments of TS_ARMA_AR map to the IMSL library function
imsls_d_arma as follows:

params = imsls_d_arma(n_objs, z, p, q, methodID, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p Maps to the user-defined aggregate function argument ar_count.

q =1.

methodID Maps to the method argument of TS_ARMA_AR. Can be set to
either IMSLS_METHOD_OF_MOMENTS or IMSLS_LEAST_SQUARES.

For detailed information on how imsls_d_arma performs time series
calculations, see IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat
Library.

Example This example shows an input data table, a SQL statement containing the
TS_ARMA_AR function, and the data values returned by the function. This
example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data.

Table 4-27: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 271

15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

rownum data

Alphabetical list of functions

272 Sybase IQ

The following SQL statement returns the first element of an autoregressive
estimate consisting of one value from the data column using the method of least
squares:

SELECT TS_ARMA_AR(data,1,1,0) OVER (ORDER BY rownum
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-28: Values returned from TS_ARMA_AR

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_ARMA_CONST function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the least-square estimates of parameters for an autoregressive
moving average (ARMA) model, and returns an estimated constant.

res
0.898793
0.898793
0.898793
0.898793
0.898793
0.898793
0.898793
0.898793
0.898793
...
0.898793

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 273

Syntax TS_ARMA_CONST (timeseries_expression, method)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

method An integer that identifies the type of procedure used to compute
estimates. 0 (the default value) = method of least squares; 1 = method of
moments.

window-spec TS_ARMA_CONST is an OLAP function requiring an OVER ()
clause.

Usage This time series function returns a double-precision floating-point value
containing the constant estimate produced by the function. TS_ARMA_CONST
calls the function imsls_d_arma in the IMSL libraries.

IMSL mapping The arguments of TS_ARMA_CONST map to the IMSL library function
imsls_d_arma as follows:

params = imsls_d_arma(n_objs, z, p, q, IMSLS_CONSTANT,
method_id, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p =1.

q =1.

MethodID Maps to the method argument of TS_ARMA_CONST.

For detailed information on how the function imsls_d_arma performs time
series calculations, see IMSL Numerical Library User’s Guide: Volume 2 of 2
C Stat Library.

Example 1 This example shows an input data table, a SQL statement containing the
TS_ARMA_CONST function, and the data values returned by the function. This
example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-29: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381

Alphabetical list of functions

274 Sybase IQ

5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 275

The following SQL statement returns an estimated constant from the data
column using the method of least squares:

SELECT TS_ARMA_CONST(data,0) OVER (ORDER BY ROWNUM rows
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-30: Values returned from TS_ARMA_CONST Example 1

Example 2 This example provides a sample query that returns estimates for the AR, MA,
and constant parameters. The first element for AR and MA in the array
contains one element. See Table 4-29 on page 273 for the DATASET table.

SELECT TS_ARMA_AR(DATA,1,1,0) OVER (ORDER BY rownum
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS ar_param, ts_arma_ma(data,1,1,0) OVER

42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
0.082077
0.082077
0.082077
0.082077
0.082077
0.082077
0.082077
0.082077
0.082077
...
0.082077

rownum data

Alphabetical list of functions

276 Sybase IQ

(ORDER BY rownum ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING) AS ma_param, ts_arma_const(data,0)
OVER (ORDER BY rownum ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) AS const_param FROM DATASET

Sybase IQ returns 50 rows of data, each containing the same three values:

Table 4-31: Values returned from TS_ARMA_CONST Example 2

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_ARMA_MA function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the least-square estimates of parameters for an autoregressive
moving average (ARMA) model, and returns the requested moving average
estimate.

Syntax TS_ARMA_MA (timeseries_expression, ma_count, ma_elem, method)

OVER (window-spec)

ar_param ma_param const_param
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
0.898793 0.105075 0.082077
...
0.898793 0.105075 0.082077

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 277

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

ma_count An integer containing the number of autoregressive values to
compute.

ma_elem An integer identifying the element to return from the computed
moving average array. The integer must be greater than 0 and less than or equal
to ma_count.

method (Optional) An integer identifying the procedure to use to calculate
estimates. 0 (the default value) = method of least squares and 1 = method of
moments.

window-spec TS_ARMA_MA is an OLAP function requiring an OVER ()
clause.

Usage This time series function returns a double-precision floating-point value
representing the moving average estimate. TS_ARMA_MA calls the function
imsls_d_arma in the IMSL libraries.

IMSL mapping The arguments of TS_ARMA_MA map to the IMSL library function
imsls_d_arma as follows:

params = imsls_d_arma(n_objs, z, p, q, method_id, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p =1.

q Maps to the user-defined aggregate function argument ma_count.

method_id Maps to the method argument of TS_ARMA_MA.

For detailed information on how the function imsls_d_arma performs time
series calculations, see IMSL Numerical Library User’s Guide: Volume 2 of 2
C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_ARMA_MA function, and the data values returned by the function. This
example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-32: Input data table DATASET
rownum data
1 0.315523
2 0.485859

Alphabetical list of functions

278 Sybase IQ

3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 279

The following SQL statement returns the first element of an array containing
one element from the data column using the method of least squares:

SELECT TS_ARMA_MA(data,1,1,0) OVER (ORDER BY rownum
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-33: Values returned from TS_ARMA_MA

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
0.105075
0.105075
0.105075
0.105075
0.105075
0.105075
0.105075
0.105075
0.105075
...
0.105075

rownum data

Alphabetical list of functions

280 Sybase IQ

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_AUTOCORRELATION function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the sample autocorrelation function of a stationary time series.

Syntax TS_AUTOCORRELATION (timeseries_expression, lagmax, lag_elem)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

lagmax An integer specifying the maximum lag of autocovariances,
autocorrelations, and standard errors of autocorrelations. The integer must be
greater than or equal to 1, and less than the number of elements in the time
series.

lag_elem An integer specifying which element in the autocorrelation array is
to be returned. The integer must be greater than zero, and less than or equal to
lagmax.

window-spec TS_AUTOCORRELATION is an OLAP function requiring an
OVER () clause.

Usage This time series function returns a double-precision floating-point value
representing the autocorrelation value. TS_AUTOCORRELATION calls the
function imsls_d_autocorrelation in the IMSL libraries.

IMSL mapping The arguments of TS_AUTOCORRELATION map to the IMSL library function
imsls_d_autocorrelation() as follows:

params = imsls_d_autocorrelation(n_objs, x[], lagmax,
0);

n_objs Contains the number of rows in the current window frame.

x[] Contains the value of timeseries_expression for the current window
frame.

lagmax Maps to the user-defined aggregate function argument lag_max.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 281

For detailed information on how the function imsls_d_autocorrelation performs
time series calculations, see IMSL Numerical Library User’s Guide: Volume 2
of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_AUTOCORRELATION function, and the data values returned by the
function. This example uses the following table (called DATASET) as its input
data. The DATASET table contains 50 rows of time series data:

Table 4-34: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423

Alphabetical list of functions

282 Sybase IQ

The following SQL statement returns the second element from an array
containing autocorrelations of the time series data from the data column:

SELECT TS_AUTOCORRELATION(data,2,2) OVER (ORDER BY
ROWNUM rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-35: Values returned from TS_AUTOCORRELATION

30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
0.803659
0.803659
0.803659
0.803659
0.803659
0.803659

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 283

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_AUTO_UNI_AR function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Performs automatic selection and fitting of a univariate autoregressive time
series model.

Syntax TS_AUTO_UNI_AR (timeseries_expression, ar_count, ar_elem, method)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

ar_count An integer containing the number of autoregressive values to
compute.

ar_elem An integer identifying which computed autoregressive value to
return. The integer must be greater than zero, and less than or equal to
ar_count.

method (Optional) An integer identifying which method to use when
computing AR coefficients, where:
0 = method of moments
1 = method of least squares (the default value)
2 = maximum likelihood.

0.803659
0.803659
0.803659
...
0.803659

res

Alphabetical list of functions

284 Sybase IQ

window-spec TS_AUTO_UNI_AR is an OLAP function requiring an OVER ()
clause.

Usage This time series function returns a double-precision floating-point number
containing the autoregressive estimate. TS_AUTO_UNI_AR calls the function
imsls_d_auto_uni_ar in the IMSL libraries.

IMSL mapping The arguments of TS_AUTO_UNI_AR map to the IMSL library function
imsls_d_auto_uni_ar as follows:

params = imsls_d_auto_uni_ar (n_objs, z[], maxlag, p,
method, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

maxlag Maps to the user-defined aggregate function argument ar_count.

p The output parameter, representing the number of autoregressive
parameters in the model with minimum AIC.

method Maps to the user-defined aggregate function argument method. If
ar_elem is greater than p, and if your IMSL library time series function error-
handling value is set to 0, IQ returns a null. If your IMSL library time series
function error-handling value is set to a value other than 0, IQ displays an error
message indicating that ar_elem is greater than p. See “IMSL library time
series function error-handling” on page 125.

For detailed information on how the function imsls_d_auto_uni_ar performs
time series calculations, see IMSL Numerical Library User’s Guide: Volume 2
of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_AUTO_UNI_AR function, and the data values returned by the function. This
example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-36: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 285

7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188

rownum data

Alphabetical list of functions

286 Sybase IQ

The following SQL statement returns the first element from an array containing
two elements from the data column:

SELECT TS_AUTO_UNI_AR(data,2,1,0) OVER (ORDER BY ROWNUM
rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-37: Values returned from TS_AUTO_UNI_AR

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
...
0.883453

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 287

TS_BOX_COX_XFORM function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Performs a forward or inverse Box-Cox power transformation.

Syntax TS_BOX_COX_XFORM (timeseries_expression, power [, shift [, inverse]
]) OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

power A double-precision floating-point value representing an exponent
parameter in the Box-Cox power transformation.

shift (Optional) A double-precision floating-point value representing a shift
parameter. The value must satisfy the relation:
min(timeseries)+shift>0

shift defaults to 0.0.

inverse (Optional) A tinyint value; if set to 1, IQ performs an inverse
transformation. If 0 or null, IQ performs a forward transformation. The default
value is 0.

window-spec TS_BOX_COX_XFORM is an OLAP function requiring an
OVER () clause with an unbounded window. TS_BOX_COX_XFORM does not
support value-based windows; for example, you cannot use a range specifier in
the OVER () clause.

Usage TS_BOX_COX_XFORM returns the corresponding calculated transformed
value for each element in the time series; it calls the function
imsls_d_box_cox_transform in the IMSL libraries.

IMSL mapping The arguments of TS_BOX_COX_XFORM map to the IMSL library function
imsls_d_box_cox_transform as follows:

params = imsls_d_box_cox_transform(n_objs, z[], power,
IMSLS_SHIFT, shift [, IMSLS_INVERSE], 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

power Maps to the user-defined aggregate function argument power.

shift Maps to the user-defined aggregate function argument shift.

Alphabetical list of functions

288 Sybase IQ

IMSLS_INVERSE If the user-defined aggregate function argument inverse is
1, IQ calls the Box-Cox transform with IMSLS_INVERSE, otherwise this
argument is left out of the function call.

For detailed information on how the function imsls_d_box_cox_transform
performs time series calculations, see IMSL Numerical Library User’s Guide:
Volume 2 of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_BOX_COX_XFORM function, and the data values returned by the function.
This example uses the following table (called BOX_COX_XFORM_DATASET)
as its input data. The BOX_COX_XFORM_DATASET table contains 13 rows of
time series data:

Table 4-38: Input data table BOX_COX_XFORM_DATASET

The following SQL statement returns the Box-Cox power transformation from
the data column:

SELECT TS_BOX_COX_XFORM(data,1.0,1.0,0) OVER (ORDER BY
rownum ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM BOX_COX_XFORM_DATASET

Sybase IQ returns the following 13 rows:

Table 4-39: Values returned from TS_BOX_COX_XFORM

rownum data
1 7
2 26
3 6
4 60
5 78.5
6 1
7 29
8 15
9 52
10 74.3
11 11
12 56
13 8

res
8
27
7

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 289

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_DIFFERENCE function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Differences a seasonal or nonseasonal time series.

Syntax TS_DIFFERENCE (timeseries_expression, period1 [, period2 [, ...period
10]]) OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series to be differenced.

period1 ... period10 Each period is an integer expression containing the
period in which the time series is to be differenced. You must specify at least
one period, and you can specify up to 10 periods.

window-spec TS_DIFFERENCE is an OLAP function requiring an OVER ()
clause with an unbounded window. This function does not support value-based
windows; for example, you cannot use a range specifier in the OVER () clause.

61
79.5
2
30
16
53
75.3
12
57
9

res

Alphabetical list of functions

290 Sybase IQ

Usage For each element in the time series, TS_DIFFERENCE returns the
corresponding calculated differenced value for the time series; it calls the
function imsls_d_difference in the IMSL libraries.

IMSL mapping The arguments of TS_DIFFERENCE map to the IMSL library function
imsls_d_difference as follows:

params = imsls_d_difference(n_objs, z[], n_differences,
periods [], 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

n_differences Maps to the period arguments defined in TS_DIFFERENCE.

period An array of the period arguments defined in TS_DIFFERENCE.

For detailed information on how the function imsls_d_difference performs time
series calculations, see IMSL C Numerical Library User’s Guide Volume 2 of
2: C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_DIFFERENCE function, and the data values returned by the function. This
example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-40: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 291

The following SQL statement differences data from the data column:

16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

rownum data

Alphabetical list of functions

292 Sybase IQ

SELECT TS_DIFFERENCE(data,1) OVER (ORDER BY ROWNUM rows
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
res FROM DATASET

Sybase IQ returns 50 rows:

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 293

Table 4-41: Values returned from TS_DIFFERENCE
res
NULL
0.170336
0.191027
1.29692
0.801743
-0.038988
-0.09424
1.61886
-1.12477
1.02925
-1.20614
-0.814478
-0.157049
-1.18213
0.027546
1.45734
-0.990302
-0.833325
-0.637229
-0.08655
-0.12594
-0.122914
-1.39596
0.919785
-0.449474
0.037273
-0.954345
-0.562983
1.98379
0.88304
-0.345265
0.934656
0.069088
-0.249428
0.795766
-1.8145

Alphabetical list of functions

294 Sybase IQ

Note The first row of results is NULL because the IMSL library returned a not
a number (NaN) value for that row.

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_ESTIMATE_MISSING function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Estimates the missing values in a time series and returns them as a new time
series, interspersed with the original time series.

Syntax TS_ESTIMATE_MISSING (timeseries_expression, method)

1.27016
1.39266
-0.141794
0.934752
0.982506
0.330772
-1.34311
1.23124
0.209869
0.791146
-0.259155
0.15124
-0.963484
0.383186

res

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 295

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series to be differenced. If a null-value is
provided, it is assumed to reflect a gap in the time series, the value of which
will be computed by the function.

method (Optional) An integer specifying the method to use when
determining missing values:

• 0 (default) — estimates the missing time series observations in a gap by
the median of the last four time series values before and the first four
values after the gap.

• 1— uses a cubic spline interpolation method to estimate missing values.
Here, the interpolation is again done over the last four time series values
before and the first four values after the gap.

• 2 — assumes that the time series before the gap can be well described by
an AR(1) process.

• 3 — uses an AR(p) model to estimate missing values by a one-step-ahead
forecast.

window-spec TS_ESTIMATE_MISSING is an OLAP function requiring an
OVER () clause with an unbounded window. This function does not support
value-based windows; for example, you cannot use a range specifier in the
OVER () clause.

Usage Use TS_ESTIMATE_MISSING to estimate any missing equidistant time points
using one of the four estimation methods. TS_ESTIMATE_MISSING calls the
function imsls_d_estimate_missing in the IMSL libraries

You cannot use TS_ESTIMATE_MISSING if more than two consecutive NULL
values exist in your set of timepoints. If the first or last two values in the set of
timepoints are NULL, the function returns NULL.

IMSL mapping The arguments of TS_ESTIMATE_MISSING map to the IMSL library function
imsls_d_estimate_missing as follows:

params = imsls_d_estimate_missing(n_objs, tpoints[],
z[], method, 0);

n_objs Contains the number of rows in the current window frame.

tpoints An array of indexes for specifying missing values in a sequence of
timepoints.

z[] The accumulated timeseries_expression, obtained during calls to
next_value.

Alphabetical list of functions

296 Sybase IQ

method Maps to the method argument defined in TS_ESTIMATE_MISSING.

For detailed information on how the function imsls_d_estimate_missing
performs time series calculations, see IIMSL Numerical Library User’s Guide:
Volume 2 of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_ESTIMATE_MISSING function, and the data values returned by the
function. This example uses the following table (called
EST_MISSING_DATASET) as its input data. The EST_MISSING_DATASET
table contains nine rows of time series data:

Table 4-42: Input data table EST_MISSING_DATASET

The following SQL statement estimates the value of the data missing from the
fourth row:

SELECT TS_ESTIMATE_MISSING(DATA,0) OVER (ORDER BY
rownum ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM EST_MISSING_DATASET

Sybase IQ returns the following nine rows, replacing the NULL value with
1.0278:

Table 4-43: Values returned from TS_ESTIMATE_MISSING

rownum data
1 2.8223
2 -0.5721
3 2.2771
4 NULL
5 1.2648
6 1.0278
7 0.6991
8 -1.7539
9 -2.8875

res
2.8223
-0.5721
2.2771
1.0278
1.2648
1.0278
0.6991

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 297

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_LACK OF FIT function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Performs the lack-of-fit test for a univariate time series or transfer function,
given the appropriate correlation function.

Syntax TS_LACK OF FIT (timeseries_expression, p_value, q_value, lagmax,
[tolerance])

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

p_value An integer containing the number of autoregressive parameters.

q_value An integer containing the number of moving average parameters.

lagmax An integer containing the maximum lag of the correlation function.

tolerance (An optional parameter). A floating-point value level used to
determine convergence of the nonlinear least-squares algorithm. The default
value is 0.

window-spec TS_LACK_OF_FIT is an OLAP function requiring an OVER ()
clause.

Usage This function returns a double-precision floating-point value containing the
lack-of-fit statistic (q) for the time series. TS_LACK_OF_FIT calls the function
imsls_d_lack_of_fit in the IMSL libraries.

-1.7539
-2.8875

res

Alphabetical list of functions

298 Sybase IQ

IMSL mapping The arguments of TS_LACK_OF_FIT map to the IMSL library function
imsls_d_lack_of_fit as follows:

params = imsls_d_arma(n_objs, z[], p, q,

IMSLS_LEAST_SQUARES,

IMSLS_CONVERGENCE_TOLERANCE, tolerance,

IMSL_RESIDUAL, &residual, 0);

correlations = imsls_d_autocorrelation(n_objs-
p+lagmax, residuals, lagmax, 0);

result = imsls_d_lack_of_fit(n_objs, correlations,
lagmax, npfree, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p Maps to the p_value argument defined in TS_LACK_OF_FIT.

q Maps to the q_value argument defined in TS_LACK_OF_FIT.

lagmax Maps to the lagmax argument defined in TS_LACK_OF_FIT.

npfree Derived from p + q.

tolerance An optional argument using
IMSLS_CONVERGENCE_TOLERANCE. If null, the IMSL library applies a
default value and does not use IMSLS_CONVERGENCE_TOLERANCE.

For detailed information on how the IMSL function imsls_d_lack_of_fit
performs time series calculations, see IMSL Numerical Library User’s Guide:
Volume 2 of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_LACK_OF_FIT function, and the data values returned by the function. This
example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-44: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 299

7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188

rownum data

Alphabetical list of functions

300 Sybase IQ

The following SQL statement returns the lack of fit statistic on data from the
data column:

SELECT TS_LACK_OF_FIT(data,1,1,5,0.225) OVER (ORDER BY
rownum ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-45: Values returned from TS_LACK_OF_FIT

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise.

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
3.96751
3.96751
3.96751
3.96751
3.96751
3.96751
3.96751
3.96751
3.96751
3.96751
...
3.96751

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 301

TS_LACK OF FIT_P function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Performs the lack-of-fit test for a univariate time series. This function is
identical to “TS_LACK OF FIT function [Time Series]” on page 297, except
that it returns the p-value of q, rather than returning q.

Syntax TS_LACK OF FIT_P (timeseries_expression, p_value, q_value, lagmax,
[tolerance])

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

p_value An integer containing the number of autoregressive parameters.

q_value An integer containing the number of moving average parameters.

lagmax An integer containing the maximum log of the correlation function.

tolerance (An optional parameter). A floating-point value level used to
determine convergence of the nonlinear least-squares algorithm. The default
value is 0.

window-spec TS_LACK_OF_FIT_P is an OLAP function requiring an OVER
() clause.

Usage This function returns a double-precision floating-point value containing the p-
value of the lack-of-fit statistic (q) for the time series. TS_LACK_OF_FIT_P
calls the function imsls_d_lack_of_fit in the IMSL libraries.

IMSL mapping The arguments of TS_LACK_OF_FIT_P map to the IMSL library function
imsls_d_lack_of_fit as follows:

params = imsls_d_arma(n_objs, z[], p, q,

IMSLS_LEAST_SQUARES,

IMSLS_CONVERGENCE_TOLERANCE, tolerance,

IMSL_RESIDUAL, &residual, 0);

correlations = imsls_d_autocorrelation(n_objs-
p+lagmax, residuals, lagmax, 0);

result = imsls_d_lack_of_fit(n_objs, correlations,
lagmax, npfree, 0);

n_objs Contains the number of rows in the current window frame.

Alphabetical list of functions

302 Sybase IQ

z[] Contains the value of timeseries_expression for the current window
frame.

p Maps to the p_value argument defined in TS_LACK_OF_FIT_P.

q Maps to the q_value argument defined in TS_LACK_OF_FIT_P.

lagmax Maps to the lagmax argument defined in TS_LACK_OF_FIT_P.

npfree Derived from p + q.

tolerance An optional argument using
IMSLS_CONVERGENCE_TOLERANCE. If null, the IMSL library applies a
default value and does not use IMSLS_CONVERGENCE_TOLERANCE.

For detailed information on how the IMSL function imsls_d_lack_of_fit
performs time series calculations, see IMSL Numerical Library User’s Guide:
Volume 2 of 2 C Stat Library.

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

Example This example shows an input data table, a SQL statement containing the
TS_LACK_OF_FIT_P function, and the data values returned by the function.
This example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-46: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 303

16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

rownum data

Alphabetical list of functions

304 Sybase IQ

The following SQL statement returns the p value of the lack of fit statistic on
data from the data column:

SELECT TS_LACK_OF_FIT_P(data,1,1,5,0.225) OVER (ORDER
BY rownum ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-47: Values returned from TS_LACK_OF_FIT_P

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_MAX_ARMA_AR function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the exact maximum likelihood estimation of the parameters in a
univariate ARMA (autoregressive moving average) time series model, and
returns the requested autoregressive estimate.

Syntax TS_MAX_ARMA_AR (timeseries_expression, ar_count, ar_elem)

OVER (window-spec)

res
0.735006
0.735006
0.735006
0.735006
0.735006
0.735006
0.735006
0.735006
0.735006
0.735006
...
0.735006

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 305

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

ar_count An integer containing the number of autoregressive values to
compute.

ar_elem An integer identifying which element in the computed
autoregressive array is to be returned. The integer must be greater than 0 and
less than or equal to ar_count.

window-spec TS_MAX_ARMA_AR is an OLAP function requiring an OVER
() clause.

Usage This function returns a double-precision floating-point value containing the
autoregressive estimate. TS_MAX_ARMA_AR calls the function
imsls_d_max_arma in the IMSL libraries.

IMSL mapping The arguments of TS_MAX_ARMA_AR map to the IMSL library function
imsls_d_max_arma as follows:

params = imsls_d_max_arma(n_objs, z[], p, q, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p Maps to the ar_count argument.

q =1.

For detailed information on how the IMSL function imsls_d_max_arma
performs time series calculations, see IMSL Numerical Library User’s Guide:
Volume 2 of 2 C Stat Library.

Example 1 This example shows an input data table, a SQL statement containing the
TS_MAX_ARMA_AR function, and the data values returned by the function.
This example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-48: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657

Alphabetical list of functions

306 Sybase IQ

7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 307

The following SQL statement returns the second element from an array
containing two autoregressive estimates of data from the data column:

SELECT TS_MAX_ARMA_AR(data,2,2) OVER (ORDER BY rownum
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-49: Values returned from TS_MAX_ARMA_AR Example 1

Example 2 This example provides a sample query that returns two columns of results from
the DATASET table—the first and second elements of the autoregressive
estimates. See Table 4-48 on page 305 for the DATASET table.

SELECT TS_MAX_ARMA_AR(data,2,1) OVER (ORDER BY rownum
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS ar_elem1, TS_MAX_ARMA_AR(data,2,2) OVER
(ORDER BY rownum ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING) AS ar_elem2 FROM DATASET

44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
0.179748
0.179748
0.179748
0.179748
0.179748
0.179748
0.179748
0.179748
0.179748
0.179748
...
0.179748

rownum data

Alphabetical list of functions

308 Sybase IQ

Sybase IQ returns 50 rows of data, each containing the same two values:

Table 4-50: Values returned from TS_MAX_ARMA_AR Example 2

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_MAX_ARMA_CONST function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the exact maximum likelihood estimation of the parameters in a
univariate ARMA (autoregressive moving average) time series model, and
returns the constant estimate.

Syntax TS_MAX_ARMA_CONST (timeseries_expression)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

ar_elem1 ar_elem2
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
0.731164 0.179748
... ...
0.731164 0.179748

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 309

window-spec TS_MAX_ARMA_CONST is an OLAP function requiring an
OVER () clause.

Usage This function returns a double-precision floating-point value containing the
constant estimate. TS_MAX_ARMA_CONST calls the function imsls_d_arma in
the IMSL libraries.

IMSL mapping The arguments of TS_MAX_ARMA_CONST map to the IMSL library function
imsls_d_arma as follows:

params = imsls_d_max_arma(n_objs, z, p, q, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p = 1.

q = 1.

For detailed information on how the IMSL function imsls_d_arma performs
time series calculations, see IMSL Numerical Library User’s Guide: Volume 2
of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_MAX_ARMA_CONST function, and the data values returned by the
function. This example uses the following table (called DATASET) as its input
data. The DATASET table contains 50 rows of time series data:

Table 4-51: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859

Alphabetical list of functions

310 Sybase IQ

15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 311

The following SQL statement returns the constant estimate of the maximum
likelihood autoregressive calculation on data from the data column:

SELECT TS_MAX_ARMA_CONST(data) OVER (ORDER BY rownum
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-52: Values returned from TS_MAX_ARMA_CONST

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_MAX_ARMA_LIKELIHOOD function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

res
0.107555
0.107555
0.107555
0.107555
0.107555
0.107555
0.107555
0.107555
0.107555
0.107555
...
0.107555

Alphabetical list of functions

312 Sybase IQ

Function Calculates the exact maximum likelihood estimation of the parameters in a
univariate ARMA (autoregressive moving average) time series model, and
returns likelihood value (ln) for the fitted model.

Syntax TS_MAX_ARMA_LIKELIHOOD (timeseries_expression)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

window-spec TS_MAX_ARMA_LIKELIHOOD is an OLAP function requiring
an OVER () clause.

Usage This function returns a double-precision floating-point value containing the
value of -2*(ln(likelihood)). TS_MAX_ARMA_LIKELIHOOD calls the function
imsls_d_max_arma in the IMSL libraries.

IMSL mapping The arguments of TS_MAX_ARMA_LIKELIHOOD map to the IMSL library
function imsls_d_max_arma as follows:

params = imsls_d_max_arma(n_objs, z, p, q,
IMSLS_LOG_LIKELIHOOD, &likelihood, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p = 1.

q = 1.

likelihood Provided by the function call. Contains the log likelihood result.

For detailed information on how the IMSL function imsls_d_max_arma
performs time series calculations, see IMSL Numerical Library User’s Guide:
Volume 2 of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_MAX_ARMA_LIKELIHOOD function, and the data values returned by the
function. This example uses the following table (called DATASET) as its input
data. The DATASET table contains 50 rows of time series data:

Table 4-53: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 313

5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422

rownum data

Alphabetical list of functions

314 Sybase IQ

The following SQL statement returns the likelihood value of the maximum
likelihood estimation on data from the data column:

SELECT TS_MAX_ARMA_LIKELIHOOD(data) OVER (ORDER BY
ROWNUM rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-54: Values returned from TS_MAX_ARMA_LIKELIHOOD

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
-11.7818
-11.7818
-11.7818
-11.7818
-11.7818
-11.7818
-11.7818
-11.7818
-11.7818
-11.7818
...
-11.7818

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 315

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_MAX_ARMA_MA function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the exact maximum likelihood estimation of the parameters in a
univariate ARMA (autoregressive moving average) time series model, and
returns the requested moving average estimate.

Syntax TS_MAX_ARMA_MA (timeseries_expression, ma_count, ma_elem)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

ma_count An integer containing the number of auto-regressive values to
compute.

ma_elem An integer specifying element in the computed moving average
array to return. The integer must be greater than zero, and less than or equal to
ma_count.

window-spec TS_MAX_ARMA_MA is an OLAP function requiring an OVER
() clause.

Usage This function returns double-precision floating-point value containing the
autoregressive estimate. TS_MAX_ARMA_MA calls the function
imsls_d_max_arma in the IMSL libraries.

IMSL mapping The arguments of TS_MAX_ARMA_MA map to the IMSL library function
imsls_d_max_arma as follows:

params = imsls_d_max_arma(n_objs, z[], p, q, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

p =1.

q Maps to the TS_MAX_ARMA_MA argument ma_count.

Alphabetical list of functions

316 Sybase IQ

For detailed information on how the IMSL function imsls_d_max_arma
performs time series calculations, see IMSL Numerical Library User’s Guide:
Volume 2 of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_MAX_ARMA_MA function, and the data values returned by the function.
This example uses the following table (called DATASET) as its input data. The
DATASET table contains 50 rows of time series data:

Table 4-55: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 317

The following SQL statement returns the moving average of the maximum
likelihood estimation on data from the data column:

SELECT TS_MAX_ARMA_MA(DATA,5,4) OVER (ORDER BY ROWNUM
rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

rownum data

Alphabetical list of functions

318 Sybase IQ

Table 4-56: Values returned from TS_MAX_ARMA_MA

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_OUTLIER_IDENTIFICATION function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Detects and determines outliers and simultaneously estimates the model
parameters in a time series where the underlying outlier-free series follows a
general seasonal or non-seasonal ARMA model.

Syntax TS_OUTLIER_IDENTIFICATION (timeseries_expression, p_value,
q_value, s_value, d_value, [, delta_value[, critical_value]])

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

res
-0.035006
-0.035006
-0.035006
-0.035006
-0.035006
-0.035006
-0.035006
-0.035006
-0.035006
-0.035006
...
-0.035006

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 319

p_value An integer containing the p-portion of the autoregressive integrated
moving average (ARIMA) (p, 0, q)x(0, d, 0)s model that the outlier free series
follows.

q_value An integer containing the q-portion of the ARIMA (p, 0, q)x(0, d,
0)s model that the outlier free series follows.

s_value An integer containing the s-portion of the ARIMA (p, 0, q)x(0, d, 0)s
model that the outlier free series follows.

d_value An integer containing the d-portion of the ARIMA (p, 0, q)x(0, d,
0)s model that the outlier free series follows.

delta_value (Optional) A double precision float value containing the
dampening effect parameter used in detecting a temporary change outlier. The
integer must be greater than 0 and less than 1. The default value is 0.7.

critical_value (Optional) A double-precision float value used as a threshold
for outlier detection. The default is 3.0.

window-spec TS_OUTLIER_IDENTIFICATION is an OLAP function
requiring an OVER () clause with an unbounded window. This function does
not support value-based windows; for example, you cannot use a range
specifier in the OVER () clause.

Usage This function returns an outlier-free time series.
TS_OUTLIER_IDENTIFICATION calls the function
imsls_d_ts_outlier_identification in the IMSL libraries.

IMSL mapping The arguments of TS_OUTLIER_IDENTIFICATION map to the IMSL library
function imsls_d_ts_outlier_identification as follows:

params = imsls_d_ts_outlier_identification(n_objs,
model[], z[], 0);

n_objs Contains the number of rows in the current window frame.

model An array containing the TS_OUTLIER_IDENTIFICATION arguments
p_value, s_value, q_value, d_value:
model[0] = p_value;
model[1] = s_value;
model[2] = q_value;
model[3] = d_value;

z[] Contains the value of timeseries_expression for the current window
frame.

If delta_value is non-null, the arguments of TS_OUTLIER_IDENTIFICATION
map to the IMSL library function imsls_d_ts_outlier_identification as follows:

Alphabetical list of functions

320 Sybase IQ

params = imsls_d_ts_outlier_identification(n_objs,
model[], z[], IMSL_DELTA, delta_value, 0);

If critical_value is non-null, the arguments of TS_OUTLIER_IDENTIFICATION
map to the IMSL library function imsls_d_ts_outlier_identification as follows:

params = imsls_d_ts_outlier_identification(n_objs,
model[], z[],IMSL_CRITICAL, critical_value, 0);

If both delta_value and critical_value are non-null, the arguments of
TS_OUTLIER_IDENTIFICATION map to the IMSL library function
imsls_d_ts_outlier_identification as follows:

params = imsls_d_ts_outlier_identification(n_objs,
model[], z[], IMSL_DELTA, delta_value, IMSL_CRITICAL,
critical_value, 0);

For detailed information on how the IMSL function
imsls_d_ts_outlier_identification performs time series calculations, see IMSL
Numerical Library User’s Guide: Volume 2 of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_OUTLIER_IDENTIFICATION function, and the data values returned by the
function. This example uses the following table (called DATASET) as its input
data. The DATASET table contains 50 rows of time series data:

Table 4-57: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 321

The following SQL statement detects and determines outliers on data from the
data column:

17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063
37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

rownum data

Alphabetical list of functions

322 Sybase IQ

SELECT TS_OUTLIER_IDENTIFICATION(data,1,1,1,1,0.7,3.0)
OVER (ORDER BY rownum ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows:

Table 4-58: Values returned from TS_OUTLIER_IDENTIFICATION
res
0.315523
0.485859
0.676886
1.97381
2.77555
2.73657
2.64233
4.26118
3.13641
4.16566
2.95952
2.14504
1.98799
0.805859
0.833405
2.29075
1.30045
0.467122
-0.170107
-0.256657
-0.382597
-0.505511
-1.90147
-0.981688
-1.43116
-1.39389
-2.34823
-2.91122
-0.927423
-0.044383
-0.389648

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 323

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_PARTIAL_AUTOCORRELATION function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function Calculates the sample partial autocorrelation function of a stationary time
series.

0.545008
0.614096
0.364668
1.16043
-0.654063
0.616094
2.00875
1.86696
2.80171
3.78422
4.11499
2.77188
4.00312
4.21298
5.00413
4.74498
4.89621
3.93273
4.31592

res

Alphabetical list of functions

324 Sybase IQ

Syntax TS_PARTIAL_AUTOCORRELATION (timeseries_expression, lagmax,
lag_elem)

OVER (window-spec)

Parameters timeseries_expression A numeric expression, generally a column name,
containing an element in a time series.

lagmax An integer containing the maximum lag of autocovariance,
autocorrelations, and standard errors of autocorrelations to be calculated. The
integer must be greater than or equal to 1, and less than the number of elements
in the time series.

lag_elem An integer identifying the element in the autocorrelation array to
return. The integer must be greater than 0 and less than or equal to lagmax.

window-spec TS_PARTIAL_AUTOCORRELATION is an OLAP function
requiring an OVER () clause.

Usage This function returns an outlier-free time series.
TS_PARTIAL_AUTOCORRELATION calls the function imsls_d_autocorrelation
and imsls_d_partial_autocorrelation in the IMSL libraries.

IMSL mapping The arguments of TS_PARTIAL_AUTOCORRELATION map to the IMSL library
functions imsls_d_autocorrelation and imsls_d_partial_autocorrelation as
follows:

params = imsls_d_autocorrelation(n_objs, z[], lagmax,
0);

result = imsls_d_partial_autocorrelation(lagmax,
params, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window
frame.

lagmax Maps to the TS_PARTIAL_AUTOCORRELATION argument lagmax.

For detailed information on how the IMSL functions imsls_d_autocorrelation
and imsls_d_partial_autocorrelation perform time series calculations, see IMSL
Numerical Library User’s Guide: Volume 2 of 2 C Stat Library.

Example This example shows an input data table, a SQL statement containing the
TS_PARTIAL_AUTOCORRELATION function, and the data values returned by
the function. This example uses the following table (called DATASET) as its
input data. The DATASET table contains 50 rows of time series data:

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 325

Table 4-59: Input data table DATASET
rownum data
1 0.315523
2 0.485859
3 0.676886
4 1.97381
5 2.77555
6 2.73657
7 2.64233
8 4.26118
9 3.13641
10 4.16566
11 2.95952
12 2.14504
13 1.98799
14 0.805859
15 0.833405
16 2.29075
17 1.30045
18 0.467122
19 -0.170107
20 -0.256657
21 -0.382597
22 -0.505511
23 -1.90147
24 -0.981688
25 -1.43116
26 -1.39389
27 -2.34823
28 -2.91122
29 -0.927423
30 -0.044383
31 -0.389648
32 0.545008
33 0.614096
34 0.364668
35 1.16043
36 -0.654063

Alphabetical list of functions

326 Sybase IQ

The following SQL statement returns the first element from an array containing
partial autocorrelations of data from the data column:

SELECT TS_PARTIAL_AUTOCORRELATION(data,1,1) OVER (ORDER
BY rownum ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-60: Values returned from TS_PARTIAL_AUTOCORRELATION

37 0.616094
38 2.00875
39 1.86696
40 2.80171
41 3.78422
42 4.11499
43 2.77188
44 4.00312
45 4.21298
46 5.00413
47 4.74498
48 4.89621
49 3.93273
50 4.31592

res
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
0.883453
...
0.883453

rownum data

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 327

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library

TS_VWAP function [Time Series]

Note This function is available only with RAP – The Trading Edition
Enterprise.

Function VWAP stands for volume-weighted average price. TS_VWAP calculates the
ratio of the value traded to the total volume traded over a particular time
horizon. VWAP is a measure of the average price of a stock over a defined
trading horizon. You can use TS_VWAP as both a simple and an OLAP-style
aggregate function.

Unlike the other time series functions, TS_VWAP does not call the IMSL
libraries.

Syntax 1 TS_VWAP (price_expression, volume_expression)

Syntax 2 TS_VWAP (price_expression, volume_expression)

OVER (window-spec)

Parameters price_expression A numeric expression specifying the price to be
incorporated into a volume-weighted average.

volume_expression A numeric expression specifying the volume to be used
in calculating a volume-weighted average.

window-spec If used with Syntax 2, TS_VWAP is an OLAP function
requiring an OVER () clause.

Usage Sybase IQ calculates TS_VWAP using the following formula:

Alphabetical list of functions

328 Sybase IQ

Figure 4-1: VWAP calculation

Pvwap = volume weighted average price
Pj = price of trade j.
Qj = quantity of trade j.
j = an individual trade that occurred during the time horizon.

Example This example shows an input data table, a SQL statement containing the
TS_VWAP function, and the data values returned by the function. This example
uses the following table (called VWAP_DATASET) as its input data. The
VWAP_DATASET table contains three rows of time series data:

Table 4-61: Input data table VWAP_DATASET

The following SQL statement calculates the volume weighted average price:

SELECT TS_VWAP(price,volume) OVER (ORDER BY rownum ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS
res FROM VWAP_DATASET

Sybase IQ returns three rows:

Table 4-62: Values returned from TS_VWAP

Standards and
compatibility

• SQL2008 Sybase extension

• Sybase Not compatible with SQL Anywhere or Adaptive Server
Enterprise

See also Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

rownum price volume
1 1 1
2 2 2
3 5 1

res
2.5
2.5
2.5

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 329

UCASE function [String]
Function Converts all characters in a string to uppercase.

Syntax UCASE (string-expression)

Parameters string-expression The string to be converted to uppercase.

See “REPLACE function [String]” on page 242 for more information.

Example The following statement returns the value “CHOCOLATE”:

SELECT UCASE('ChocoLate') FROM iq_dummy

Usage The result data type of a UCASE function is a LONG VARCHAR. If you use
UCASE in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set UCASE to the correct data
type and size.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase UCASE is not supported by Adaptive Server Enterprise, but
UPPER provides the same feature in a compatible manner

See also “LCASE function [String]” on page 194

“UPPER function [String]” on page 329

UPPER function [String]
Function Converts all characters in a string to uppercase.

Syntax UPPER (string-expression)

Parameters string-expression The string to be converted to uppercase.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “CHOCOLATE”:

SELECT UPPER('ChocoLate') FROM iq_dummy

Usage The result data type of an UPPER function is a LONG VARCHAR. If you use
UPPER in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set UPPER to the correct data
type and size.

Standards and
compatibility

• SQL92 This function is SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LCASE function [String]” on page 194

Alphabetical list of functions

330 Sybase IQ

“LOWER function [String]” on page 200

“UCASE function [String]” on page 329

USER_ID function [System]
Function Returns an integer user identification number.

Syntax USER_ID ([user-name])

Parameters user-name The user name.

Examples The following statement returns the user identification number 1:

SELECT USER_ID ('DBA') FROM iq_dummy

The following statement returns the user identification number 0:

SELECT USER_ID ('SYS') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “SUSER_ID function [System]” on page 266

“USER_NAME function [System]” on page 330

USER_NAME function [System]
Function Returns the user name.

Syntax USER_NAME ([user-id])

Parameters user-id The user identification number.

Examples The following statement returns the value “DBA”:

SELECT USER_NAME (1) FROM iq_dummy

The following statement returns the value “SYS”:

SELECT USER_NAME (0) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ. In Adapter Server Enterprise, USER_NAME returns the user name, not
the server user name.

See also “SUSER_NAME function [System]” on page 266

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 331

“USER_ID function [System]” on page 330

UUIDTOSTR function [String]
Function Converts a unique identifier value (UUID, also known as GUID) to a string

value.

Syntax UUIDTOSTR (uuid-expression)

Parameters uuid-expression A unique identifier value.

Example To convert a unique identifier value into a readable format, execute a query
similar to:

CREATE TABLE T3 (
pk uniqueidentifier primary key,c1 int);
INSERT INTO T3 (pk, c1)
values (0x12345678123456789012123456789012, 1)
SELECT UUIDTOSTR(pk) FROM T3

Usage Converts a unique identifier to a string value in the format xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx, where x is a hexadecimal digit. If the binary value is not a
valid unique identifier, NULL is returned.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

See also “NEWID function [Miscellaneous]” on page 208

“STRTOUUID function [String]” on page 263

UNIQUEIDENTIFIER in “Binary data types” on page 77

VAR_POP function [Aggregate]
Function Computes the statistical variance of a population consisting of a numeric-

expression, as a DOUBLE.

Syntax VAR_POP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose population-
based variance is calculated over a set of rows.

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

Alphabetical list of functions

332 Sybase IQ

SELECT year(ShipDate) AS Year, quarter(ShipDate)
AS Quarter, AVG(Quantity) AS Average,
VAR_POP(Quantity) AS Variance

FROM SalesOrderItems GROUP BY Year, Quarter
ORDER BY Year, Quarter

Usage Computes the population variance of the provided value expression evaluated
for each row of the group or partition (if DISTINCT was specified, then each
row that remains after duplicates have been eliminated), defined as the sum of
squares of the difference of value expression, from the mean of value
expression, divided by the number of rows (remaining) in the group or
partition.

Population-based variances are computed according to the following formula:

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “Analytical functions” on page 104

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

VAR_SAMP function [Aggregate]
Function Computes the statistical variance of a sample consisting of a numeric-

expression, as a DOUBLE.

Note VAR_SAMP is an alias of VARIANCE.

Syntax VAR_SAMP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose sample-
based variance is calculated over a set of rows.

Year Quarter Average Variance
2000 1 25.775148 203.9021
2000 2 27.050847 225.8109
...

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 333

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

SELECT year(ShipDate) AS Year, quarter(ShipDate)
AS Quarter, AVG(Quantity) AS Average,
VAR_SAMP(Quantity) AS Variance

FROM SalesOrderItems GROUP BY Year, Quarter
ORDER BY Year, Quarter

Usage Computes the sample variance of value expression evaluated for each row of
the group or partition (if DISTINCT was specified, then each row that remains
after duplicates have been eliminated), defined as the sum of squares of the
difference of value expression, from the mean of value expression, divided by
one less than the number of rows (remaining) in the group or partition.

NULL returns NULL for a one-element input set in IQ 12.7 and later. In
versions earlier than 12.7, NULL returned zero.

Variances are computed according to the following formula, which assumes a
normal distribution:

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “Analytical functions” on page 104

“VARIANCE function [Aggregate]” on page 333

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

VARIANCE function [Aggregate]
Function Returns the variance of a set of numbers.

Syntax VARIANCE ([ALL] expression)

Year Quarter Average Variance
2000 1 25.775148 205.1158
2000 2 27.050847 227.0939
...

Alphabetical list of functions

334 Sybase IQ

Parameters expression Any numeric data type (FLOAT, REAL, or DOUBLE) expression.

Examples Given this data:

SELECT Salary FROM Employees WHERE DepartmentID = 300

The following statement returns the value 1063923790.99999994:

SELECT VARIANCE (Salary) FROM Employees
WHERE DepartmentID = 300

Given this data:

SELECT UnitPrice FROM Products WHERE name = 'Tee Shirt'

The following statement returns the value 8.33333333333334327:

SELECT VARIANCE (UnitPrice) FROM Products
WHERE name = 'Tee Shirt'

Usage The formula used to calculate VARIANCE is

VARIANCE returns a result of data type double-precision floating-point. If
applied to the empty set, the result is NULL, which returns NULL for a one-
element input set.

salary
51432.000
57090.000
42300.000

43700.00
36500.000

138948.000
31200.000
58930.00
75400.00

UnitPrice
9.00

14.00
14.00

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 335

VARIANCE does not support the keyword DISTINCT. A syntax error is returned
if DISTINCT is used with VARIANCE.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “STDDEV function [Aggregate]” on page 257

“VAR_SAMP function [Aggregate]” on page 332

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

WEEKS function [Date and time]
Function Returns the number of weeks since an arbitrary starting date/time, returns the

number of weeks between two specified date/times, or adds the specified
integer-expression number of weeks to a date/time.

Syntax WEEKS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of weeks to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of weeks
are subtracted from the date/time value. Hours, minutes, and seconds are
ignored. If you supply an integer expression, the datetime-expression must be
explicitly cast as a DATETIME data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 133.

Examples The following statement returns the value 104278:

SELECT WEEKS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 9, to signify the difference between
the two dates:

SELECT WEEKS('1999-07-13 06:07:12',
'1999-09-13 10:07:12') FROM iq_dummy

The following statement returns the timestamp value 1999-06-16
21:05:07.000:

SELECT WEEKS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5) FROM iq_dummy

Alphabetical list of functions

336 Sybase IQ

Usage Weeks are defined as going from Sunday to Saturday, as they do in a North
American calendar. The number returned by the first syntax is often useful for
determining if two dates are in the same week.

WEEKS (invoice_sent) = WEEKS (payment_received) FROM
iq_dummy

In the second syntax, the value of WEEKS is calculated from the number of
Sundays between the two dates. Hours, minutes, and seconds are ignored. This
function is not affected by the DATE_FIRST_DAY_OF_WEEK option.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

WEIGHTED_AVG function [Aggregate]
Function Calculates an arithmetically (or linearly) weighted average. A weighted

average is an average in which each quantity to be averaged is assigned a
weight. Weightings determine the relative importance of each quantity that
make up the average.

Syntax WEIGHTED_AVG (expression)

OVER (window-spec)

window-spec: See the Usage section, below.

Parameters expression A numeric expression for which a weighted value is being
computed.

Usage Use the WEIGHTED_AVG function to create a weighted moving average. In a
weighted moving average, weights decrease arithmetically over time. Weights
decrease from the highest weight for the most recent data points, down to zero.

Figure 4-2: WEIGHTED_AVG calculation

To exaggerate the weighting, you can average two or more weighted moving
averages together, or use an EXP_WEIGHTED_AVG function instead.

You can specify elements of window-spec either in the function syntax (inline),
or with a WINDOW clause in the SELECT statement.

window-spec:

• Must contain an ORDER BY specifier.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 337

• Cannot contain FOLLOWING or RANGE specifiers.

• The second argument of the ROW specifier—if provided—must be
CURRENT ROW.

• Cannot contain NULL values.

• Cannot contain the DISTINCT specifier.

• UNBOUNDED PRECEDING is supported, but may result in poor
performance if used

For information on how to specify the window, see “Analytical functions” on
page 104.

Example The following example returns a weighted average of salaries by department
for employees in Florida, with the salary of recently hired employees
contributing the most weight to the average:

SELECT DepartmentID, Surname, Salary,
WEIGHTED_AVG(Salary) OVER (PARTITION BY DepartmentID
ORDER BY YEAR(StartDate) DESC) as "W_AVG"
FROM Employees
WHERE State IN ('FL') ORDER BY DepartmentID

The returned result set is:

Table 4-63: WEIGHTED_AVG result set

Standards and
compatibility

• SQL2008 Vendor extension

WIDTH_BUCKET function [Numerical]
Function For a given expression, the WIDTH_BUCKET function returns the bucket

number that the result of this expression will be assigned after it is evaluated.

DepartmentID Surname Salary W_AVG
100 Lull 87900.000 87900.000000
100 Gowda 59840.000 69193.333333
200 Sterling 64900.000 64900.000000
200 Kelly 87500.000 79966.666667
300 Litton 58930.000 58930.000000
400 Evans 68940.000 68940.000000
400 Charlton 28300.000 41846.666667
400 Francis 53870.000 47858.333333

Alphabetical list of functions

338 Sybase IQ

Syntax WIDTH_BUCKET (expression, min_value, max_value, num_buckets)

Parameters expression is the expression for which the histogram is being created. This
expression must evaluate to a numeric or datetime value or to a value that can
be implicitly converted to a numeric or datetime value. If expr evaluates to null,
then the expression returns null.

min_value An expression that resolves to the end points of the acceptable
range for expr. Must also evaluate to numeric or datetime values and cannot
evaluate to null.

max_value An expression that resolves to the end points of the acceptable
range for expr. Must also evaluate to numeric or datetime values and cannot
evaluate to null.

num_buckets Is an expression that resolves to a constant indicating the
number of buckets. This expression must evaluate to a positive integer.

Examples The following example creates a ten-bucket histogram on the credit_limit
column for customers in Massachusetts in the sample table and returns the
bucket number (“Credit Group”) for each customer. Customers with credit
limits greater than the maximum value are assigned to the overflow bucket, 11:

select EmployeeID, Surname, Salary,
WIDTH_BUCKET(Salary, 29000, 60000, 4) "Wages" from
Employees where State = 'FL' order by "Wages"

EMPLOYEEID SURNAME SALARY Wages

---------- ------- ------ -----

888 Charlton 28300.000 0

1390 Litton 58930.000 4

207 Francis 53870.000 4

266 Gowda 59840.000 4

445 Lull 87900.000 5

1021 Sterling 64900.000 5

902 Kelly 87500.000 5

1576 Evans 68940.000 5

When the bounds are reversed, the buckets are open-closed intervals. For
example: WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket
number 1 is (4000, 5000], bucket number 2 is (3000, 4000], and bucket number
5 is (0, 1000]. The overflow bucket is numbered 0 (5000, +infinity), and the
underflow bucket is numbered 6 (-infinity, 0].

Usage You can generate equiwidth histograms with the WIDTH_BUCKET function.
Equiwidth histograms divide data sets into buckets whose interval size (highest
value to lowest value) is equal. The number of rows held by each bucket will
vary. A related function, NTILE, creates equiheight buckets.

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 339

Equiwidth histograms can be generated only for numeric, date or datetime data
types; therefore, the first three parameters should be all numeric expressions or
all date expressions. Other types of expressions are not allowed. If the first
parameter is NULL, the result is NULL. If the second or the third parameter is
NULL, an error message is returned, as a NULL value cannot denote any end
point (or any point) for a range in a date or numeric value dimension. The last
parameter (number of buckets) should be a numeric expression that evaluates
to a positive integer value; 0, NULL, or a negative value will result in an error.

Buckets are numbered from 0 to (n+1). Bucket 0 holds the count of values less
than the minimum. Bucket(n+1) holds the count of values greater than or equal
to the maximum specified value.

Standards and
compatibility

• SQL03 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “NTILE function [Analytical]” on page 212, which creates equiheight
histograms.

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

YEAR function [Date and time]
Function Returns a 4-digit number corresponding to the year of the given date/time.

Syntax YEAR (datetime-expression)

Parameters datetime-expression A date and time.

Example The following statement returns the value 1998:

SELECT YEAR('1998-07-13 06:07:12') FROM iq_dummy

Usage The YEAR function is the same as the first syntax of the YEARS function.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “YEARS function [Date and time]” on page 339

YEARS function [Date and time]
Function Returns a 4-digit number corresponding to the year of a given date/time,

returns the number of years between two specified date/times, or adds the
specified integer-expression number of years to a date/time.

Alphabetical list of functions

340 Sybase IQ

Syntax YEARS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of years to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of years
are subtracted from the datetime value. If you supply an integer expression, the
datetime-expression must be explicitly cast as a DATETIME data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 133.

Examples The following statement returns the value 1998:

SELECT YEARS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 2, to signify the difference between
the two dates.

SELECT YEARS('1997-07-13 06:07:12',
'1999-09-13 10:07:12') FROM iq_dummy

The following statement returns the YEARS(cast('1999-05-12 21:05:07' as
timestamp), 5) value 2004-05-12 21:05:07.000:

SELECT YEARS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5) FROM iq_dummy

Usage The first syntax of the YEARS function is the same as the YEAR function.

The second syntax returns the number of years from the first date to the second
date, calculated from the number of first days of the year between the two
dates. The number might be negative. Hours, minutes, and seconds are ignored.
For example, the following statement returns 2, which is the number of first
days of the year between the specified dates:

SELECT YEARS ('2000-02-24', '2002-02-24') FROM
iq_dummy

The next statement also returns 2, even though the difference between the
specified dates is not two full calendar years. The value 2 is the number of first
days of the year (in this case January 01, 2001 and January 01, 2002) between
the two dates.

SELECT YEARS ('2000-02-24', '2002-02-20') FROM
iq_dummy

CHAPTER 4 SQL Functions

Reference: Building Blocks, Tables, and Procedures 341

The third syntax adds an integer-expression number of years to the given date.
If the new date is past the end of the month (such as SELECT YEARS (CAST
(‘1992-02-29’ AS TIMESTAMP), 1)), the result is set to the last day of the
month. If integer-expression is negative, the appropriate number of years is
subtracted from the date. Hours, minutes, and seconds are ignored.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “YEAR function [Date and time]” on page 339

YMD function [Date and time]
Function Returns a date value corresponding to the given year, month, and day of the

month.

Syntax YMD (integer-expression1, integer-expression2, integer-expression3)

Parameters integer-expression1 The year.

integer-expression2 The number of the month. If the month is outside the
range 1–12, the year is adjusted accordingly.

integer-expression3 The day number. The day is allowed to be any integer,
the date is adjusted accordingly.

Examples The following statement returns the value 1998-06-12:

SELECT YMD(1998, 06, 12) FROM iq_dummy

If the values are outside their normal range, the date adjusts accordingly. For
example, the following statement returns the value 1993-03-01:

SELECT YMD(1992, 15, 1) FROM iq_dummy

The following statement returns the value 1993-02-28:

SELECT YMD (1992, 15, 1-1) FROM iq_dummy

The following statement returns the value 1992-02-29:

SELECT YMD (1992, 3, 1-1) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

Alphabetical list of functions

342 Sybase IQ

Reference: Building Blocks, Tables, and Procedures 343

C H A P T E R 5 Differences from Other SQL
Dialects

About this chapter Sybase IQ conforms to the ANSI SQL89 standard, but has many
additional features that are defined in the IBM DB2 and SAA
specifications, as well as in the ANSI SQL92 standard.

This chapter describes those features of Sybase IQ that are not commonly
found in other SQL implementations.

Contents Topic Page
Sybase IQ features 344

Sybase IQ features

344 Sybase IQ

Sybase IQ features
The following Sybase IQ features are not found in many other SQL
implementations.

Dates Sybase IQ has date, time, and timestamp types that include year, month, day,
hour, minutes, seconds, and fraction of a second. For insertions or updates to
date fields, or comparisons with date fields, a free-format date is supported.

In addition, the following operations are allowed on dates:

• date + integer Add the specified number of days to a date.

• date - integer Subtract the specified number of days from a date.

• date - date Compute the number of days between two dates.

• date + time Make a timestamp out of a date and time.

Also, many functions are provided for manipulating dates and times. See
Chapter 4, “SQL Functions” for a description of these.

Integrity Sybase IQ supports both entity and referential integrity. This has been
implemented via the following two extensions to the CREATE TABLE and
ALTER TABLE commands.

PRIMARY KEY (column-name, ...)
[NOT NULL] FOREIGN KEY [role-name]

[(column-name, ...)]
REFERENCES table-name [(column-name, ...)]

[CHECK ON COMMIT]

The PRIMARY KEY clause declares the primary key for the relation. Adaptive
Server IQ will then enforce the uniqueness of the primary key, and ensure that
no column in the primary key contains the NULL value.

The FOREIGN KEY clause defines a relationship between this table and
another table. This relationship is represented by a column (or columns) in this
table which must contain values in the primary key of another table. The
system then ensures referential integrity for these columns; whenever these
columns are modified or a row is inserted into this table, these columns are
checked to ensure that either one or more is NULL or the values match the
corresponding columns for some row in the primary key of the other table. For
more information, see CREATE TABLE statement.

Joins Sybase IQ allows automatic joins between tables. In addition to the NATURAL
and OUTER join operators supported in other implementations, Sybase IQ
allows KEY joins between tables based on foreign-key relationships. This
reduces the complexity of the WHERE clause when performing joins.

CHAPTER 5 Differences from Other SQL Dialects

Reference: Building Blocks, Tables, and Procedures 345

Updates Sybase IQ allows more than one table to be referenced by the UPDATE
command. Views defined on more than one table can also be updated. Many
SQL implementations do not allow updates on joined tables.

Altering tables The ALTER TABLE command has been extended. In addition to changes for
entity and referential integrity, the following types of alterations are allowed:

ADD column data-type
MODIFY column data-type
DELETE column
RENAME new-table-name
RENAME old-column TO new-column

You can use MODIFY to change the maximum length of a character column, as
well as converting from one data type to another. See “ALTER TABLE
statement,” in “SQL Statements,”in Reference: Statements and Options.

Subqueries not
always allowed

Unlike SQL Anywhere, Sybase IQ does not allow subqueries to appear
wherever expressions are allowed. Sybase IQ supports subqueries only as
allowed in the SQL-1989 grammar, plus in the SELECT list of the top level
query block or in the SET clause of an UPDATE statement. Sybase IQ does not
support SQL Anywhere extensions.

Many SQL implementations allow subqueries only on the right side of a
comparison operator. For example, the following command is valid in Sybase
IQ but not valid in most other SQL implementations.

SELECT SurName,
BirthDate,
(SELECT DepartmentName

FROM Departments
WHERE DepartmentID = Employees.EmployeeID
AND DepartmentID = 200)

FROM Employees

Additional functions Sybase IQ supports several functions not in the ANSI SQL definition. See
Chapter 4, “SQL Functions” for a full list of available functions.

Cursors When using Embedded SQL, cursor positions can be moved arbitrarily on the
FETCH statement. Cursors can be moved forward or backward relative to the
current position or a given number of records from the beginning or end of the
cursor.

Sybase IQ features

346 Sybase IQ

Reference: Building Blocks, Tables, and Procedures 347

C H A P T E R 6 Physical Limitations

About this chapter This chapter describes the limitations on size and number of objects in
Sybase IQ databases. For limitations that apply to only one platform, see
the platform-specific documentation.

Contents Topic Page
Size and number limitations 348

Size and number limitations

348 Sybase IQ

Size and number limitations
Table 6-1 lists the limitations on size and number of objects in a Sybase IQ
database. In most cases, computer memory and disk drive are more limiting
factors.

Table 6-1: Sybase IQ database object size and number limitations
Item Limitation
Catalog file size Maximum is 1TB for all platforms except for Windows

systems with FAT 32-file systems, which have a 4GB limit.
Windows systems with NTFS support the 1TB maximum.
Sybase IQ does not support creating dbspaces on
NAS (Network Attached Storage) devices.

Database name size 250 bytes.
Database size Maximum database size approximates the number of files

times the file size on a particular platform, depending on the
maximum disk configuration.
Refer to your operating system documentation for kernel
parameters that affect the maximum number of files.

Dbspace size Raw: No limit – as large as the device allows.
Operating system files: 4TB.

Field size 255 bytes for BINARY, 32,767 bytes for VARBINARY

32,767 for CHAR, VARCHAR.

Up to 512 TB for 128 KB pages or 1 PB for 512 KB pages
for LONG BINARY, LONG VARCHAR.

IQ page size Must be between 64KB and 512KB.
Maximum key size 255 bytes for single-column index.

5300 bytes for multicolumn index.
Maximum length of SQL statement The maximum length of SQL statements is limited to the

amount of memory available for the IQ catalog, and to the
size of the catalog stack.
If your SQL statements are long, increase the catalog stack
size using -gss, and increase catalog memory cache size
using -c or a combination of -ch and -cl.
When printing the SQL statement in error messages, the
text is limited to the IQ catalog page size. To print long
commands, you can start the server with an increased -gp
setting, although in general Sybase recommends that you
use the default of -gp 4096.

Maximum length of variable-length FILLER column 512 bytes.
Maximum number of users (connected and
concurrent)

1000 on 64-bit platforms AIX, HP, Linux, and Sun Solaris.
200 on 32- and 64-bit platforms on Windows.

CHAPTER 6 Physical Limitations

Reference: Building Blocks, Tables, and Procedures 349

Maximum size of temp extract file Set by TEMP_EXTRACT_SIZEn option. Platform limits
are:
AIX & HP-UX: 0 – 64GB
Sun Solaris: 0 – 512GB
Windows: 0 – 128GB
Linux: 0 – 512GB

Number of columns per table Sybase IQ supports up to 45,000 columns in a table. You
may see performance degradation if you have more than
10,000 columns in a table.

Number of events per database 2^31 – 1 = 2 147 483 647.
Number of files per database Operating system limit that user can adjust; for example,

using NOFILE. Typically, 2047 files per database.
Number of indexes 2^32 (~4,000,000) per table.
Number of rows per table Limited by table size, upper limit 2^48.
Number of stored procedures per database 2^32 – 1 = 4 294 967 295.
Number of tables or views in a single FROM clause 16 – 64, depending on the query, with join optimizer turned

on.
Number of tables or views referenced per query 512.
Number of tables per database 4,293,918,719.
Number of tables per join index (number of tables
that can be joined in one query block)

32.

Number of tables referenced per transaction No limit.
Number of UNION branches per query 512. If each branch has multiple tables in the FROM clause,

the limit on tables per query reduces the number of UNION
branches allowed.

Number of values in an IN list 250,000.
Row size Sybase recommends a limit of half the page size.
Table size Limited by database size.

Item Limitation

Size and number limitations

350 Sybase IQ

Reference: Building Blocks, Tables, and Procedures 351

C H A P T E R 7 System Procedures

About this chapter This chapter documents the system-supplied stored procedures in Sybase
IQ databases that you can use to retrieve system information.

Contents Topic Page
System procedure overview 352
System stored procedures 353
Catalog stored procedures 492
Adaptive Server Enterprise system and catalog procedures 522
SQL Anywhere supported procedures 525

System procedure overview

352 Sybase IQ

System procedure overview
Sybase IQ includes the following kinds of system procedures:

• System functions that are implemented as stored procedures.

• Catalog stored procedures, for displaying system information in tabular
form.

• Multiplex stored procedures, which include both of the above types of
procedures, for multiplex server operations. See “System procedures” in
Appendix A, “Multiplex Reference,” in Using Sybase IQ Multiplex.

• Transact-SQL system and catalog procedures. For a list of these system
procedures, see “Adaptive Server Enterprise system and catalog
procedures” on page 522.

This chapter describes system procedures.

System stored procedures related specifically to Large Object data, including
sp_iqsetcompression and sp_iqshowcompression, are described in Chapter 5,
“Stored Procedure Support” in Large Objects Management in Sybase IQ.

Syntax rules for stored procedures
Use of parentheses and quotes in stored procedure calls varies, depending on
whether you enter the procedure name directly, as you can in Interactive SQL,
or invoke it with a CALL statement. Some variations are permitted because the
product supports both Sybase IQ SQL and Transact-SQL syntax. If you need
Transact-SQL compatibility, be sure to use Transact-SQL syntax.

See Table 7-1 for an explanation of syntax variations.

Table 7-1: Stored procedure syntax variations
Syntax Syntax type Explanation

procedure_name ('param') Sybase IQ Quotes are required if you enclose
parameters in parentheses.

procedure_name 'param' Sybase IQ Parentheses are optional if you
enclose parameters in quotes.

procedure_name param Transact-SQL If you omit quotes around parameters,
you must also omit parentheses.

procedure_name Sybase IQ or Transact-
SQL

Use this syntax if you run a procedure
with no parameters directly in
DBISQL, and the procedure has no
parameters.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 353

When you use Transact-SQL stored procedures, you must use the Transact-
SQL syntax.

Understanding statistics reported by stored procedures
Many stored procedures report information on the state of Sybase IQ at the
time the procedure executes. This means that you get a snapshot view. For
example, a report column that lists space in use by a connection shows only the
space in use at the instant the procedure executes, not the maximum space used
by that connection.

To monitor Sybase IQ usage over an extended period, use the Sybase IQ
monitor, which collects and reports statistics from the time you start the
monitor until you stop it, at an interval you specify.

System stored procedures
System stored procedures are owned by the user ID dbo. The system
procedures in this section carry out System Administrator tasks in the IQ Store.

Note By default, the maximum length of column values displayed by
DBISQLC is 30 characters. This might be inadequate for displaying output of
stored procedures such as sp_iqstatus. To avoid truncated output, increase the
length by selecting Command > Options from the dbisql menu select and enter
a higher value for Limit Display Columns, Limit Output Columns, or both.

sa_dependent_views procedure
Function Returns the list of all dependent views for a given table or view.

call procedure_name
(param=’value’)

Sybase IQ Use this syntax to call a procedure
that passes a parameter value.

Syntax Syntax type Explanation

System stored procedures

354 Sybase IQ

See “sa_dependent_views system procedure” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > System procedures > Alphabetical list of system
procedures.

sa_verify_password procedure
Function Validates the password of the current user.

See “sa_verify_password system procedure” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > System procedures > Alphabetical list of system
procedures.

sa_get_user_status system procedure
Function Allows you to determine the current status of users.

See “sa_get_user_status system procedure” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > System procedures > Alphabetical list of system
procedures.

sp_expireallpasswords procedure
Function Causes all user passwords to expire immediately.

Syntax1 call sp_expireallpasswords

Syntax2 sp_expireallpasswords

See also “sp_iqpassword procedure” on page 441

CREATE USER Statement in Chapter 1, “SQL Statements,” in Reference:
Statements and Options.

Permissions DBA authority required.

Examples Causes all user passwords to expire immediately:

call sp_expireallpasswords

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 355

sp_iqaddlogin procedure
Function Adds a new Sybase IQ user account to the specified login policy.

Syntax1 call sp_iqaddlogin (‘username_in’, ‘pwd’,
[’password_expiry_on_next_login ’] [, ’policy_name ’])

Syntax2 sp_iqaddlogin ‘username_in’, ‘pwd’,
[’password_expiry_on_next_login ’] [, ’policy_name ’]

Syntax3 sp_iqaddlogin username_in, pwd, [password_expiry_on_next_login] [,
policy_name]

Usage username_in The user’s login name. Login names must conform to the rules
for identifiers.

pwd The user’s password. Passwords must conform to rules for passwords,
that is, they must be valid identifiers.

password_expiry_on_next_login (Optional) Specifies whether user’s
password expires as soon as this user’s login is created. Default setting is OFF
(password does not expire).

policy_name (Optional) Creates the user under the named login policy. If
unspecified, user is created under the root login policy.

A username_in/pwd created using sp_iqaddlogin and set to expire in one day is
valid all day tomorrow and invalid on the following day. In other words, a login
created today and set to expire in n days are not usable once the date changes
to the (n+1)th day.

Permissions Requires DBA authority.

See also “sp_iqpassword procedure” on page 441

CREATE USER Statement in Chapter 1, “SQL Statements,” in Reference:
Statements and Options.

Description Adds a new Sybase IQ user account, assigns a login policy to the user and adds
the user to the ISYSUSER system table. If the user already has a user ID for the
database but is not in ISYSUSER, (for example, if the user ID was added using
the GRANT CONNECT statement or Sybase Central), sp_iqaddlogin adds the
user to the table.

System stored procedures

356 Sybase IQ

If you do not specify a login policy name when calling the procedure, Sybase
IQ assigns the user to the root login policy.

Note If the maximum number of logins for a login policy is unlimited, then a
user belonging to that login policy can have an unlimited number of
connections.

The first user login forces a password change and assigns a login policy to the
newly created user. Sybase recommends that you use CREATE USER to create
new users, although, for backward compatibility, sp_iqaddlogin is still
supported.

Examples These calls add the user rose with a password irk324 under the login policy
named expired_password. This example assumes the expired_password login
policy already exists.

call sp_iqaddlogin('rose', 'irk324', 'ON',
'expired_password')

sp_iqaddlogin 'rose','irk324', 'ON', 'expired_password'

sp_iqbackupdetails procedure
Function Shows all the dbfiles included in a particular backup.

Syntax sp_iqbackupdetails backup_id

Parameters backup_id Specifies the backup operation transaction identifier.

Note You can obtain the backup_id value from the
SYSIQBACKUPHISTORY table. Run the following query:
select * from sysiqbackuphistory

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description sp_iqbackupdetails returns the following:

Table 7-2: sp_iqbackupdetails columns
Column name Description
backup_id Identifier for the backup transaction.
backup_time Time of the backup.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 357

Example Sample output from sp_iqbackupdetails:

backup_id backup_time backup_type selective_type depends_on_id
883 2008-09-23 13:58:49.0 Full All inclusive 0

dbspace_id dbspace_name dbspace_rwstatus dbspace_createid
0 system ReadWrite 0

dbspace_alterid dbspace_online dbspace_size dbspace_backup_size dbfile_id
0 0 2884 2884 0

dbfile_name dbfile_rwstatus dbfile_createid dbfile_alterid dbfile_size
system ReadWrite 0 0 2884

dbfile_backup_size dbfile_path
2884 C:\\Documents and Settings\\All Users\\SybaseIQ\\demo\\iqdemo.db

backup_type Type of backup: “Full,” “Incremental since incremental,” or “Incremental since
full.”

selective_type Subtype of backup: "All inclusive", "All RW files in RW dbspaces", "Set of RO
dbspace/file."

depends_on_id Identifier for previous backup that the backup depends on.
dbspace_id Identifier for the dbspace being backed up.
dbspace_name Name of the dbspace from SYSIQBACKUPHISTORYDETAIL. If dbspace name

matches the dbspace name in SYSDBSPACE for a given dbspace_id. Otherwise
“null.”

dbspace_rwstatus “ReadWrite” or “Read Only.”
dbspace_createid Dbspace creation transaction identifier.
dbspace_alterid Alter DBSPACE read-write mode transaction identifier.
dbspace_online Status. Values are “Online” or “Offline.”
dbspace_size Size of dbspace, in KB, at time of backup.
dbspace_backup_size Size of data, in KB, backed up in the dbspace.
dbfile_id Identifier for the dbfile being backed up
dbfile_name The logical file name, if it was not renamed after the backup operation. If renamed,

“null.”
dbfile_rwstatus “ReadWrite” or “Read Only”.
dbfile_createid Dbfile creation transaction identifier.
dbfile_alterid Alter DBSPACE alter FILE read-write mode transaction identifier
dbfile_size in MB Size of the dbfile, in KB.
dbfile_backup_size Size of the dbfile backup, in KB.
dbfile_path The dbfile path from SYSBACKUPDETAIL, if it matches the physical file path

(“file_name”) in SYSDBFILE for a given dbspace_id and the dbfile_id.
Otherwise “null.”

Column name Description

System stored procedures

358 Sybase IQ

See also “SYSIQBACKUPHISTORY system view” on page 546

sp_iqbackupsummary procedure
Function Summarizes backup operations performed.

Syntax sp_iqbackupsummary [timestamp or backup_id]

Parameters timestamp or backup_id Specifies the interval for which to report backup
operations. If you specify a timestamp or a backup ID, only those records with
backup_time greater than or equal to the time you enter are returned. If you
specify no timestamp, the procedure returns all the backup records in
ISYSIQBACKUPHISTORY.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description sp_iqbackupsummary returns the following:

Table 7-3: sp_iqbackupsummary columns

Example Sample output of sp_iqbackupsummary:

backup_id backup_time backup_type selective_type virtual_type
883 2008-09-23 13:58:49.0 Full All inclusive Non virtual

Column name Description
backup_id Identifier for the backup transaction
backup_time Time of the backup
backup_type Type of backup: “Full,” “Incremental since

incremental,” or “Incremental since full”
selective_type Subtype of backup: "All Inclusive", "All RW files in

RW dbspaces", "Set of RO dbspace/file"
virtual_type Type of virtual backup: “Non-virtual,” “Decoupled,” or

“Encapsulated”
depends_on_id Identifier for backup that the backup depends on
creator Creator of the backup
backup_size Size, in KB, of the backup
user_comment User comment
backup_command The backup statement issued (minus the comment)

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 359

depends_on_id creator backup_size user_comment backup_command
0 DBA 10864 backup database to

'c:\\\\temp\\\\b1'

sp_iqcheckdb procedure
Function Checks validity of the current database. Optionally corrects allocation

problems for dbspaces or databases.

sp_iqcheckdb reads all storage in the database. On successful completion, the
database free list (an internal allocation map) is updated to reflect the true
storage allocation for the database. sp_iqcheckdb then generates a report listing
the actions it has performed.

If an error is found, sp_iqcheckdb reports the name of the object and the type
of error. sp_iqcheckdb does not update the free list if errors are detected.

sp_iqcheckdb also allows you to check the consistency of a specified table,
index, index type, or the entire database.

Note sp_iqcheckdb is the user interface to the IQ database consistency checker
(DBCC) and is sometimes referred to as DBCC.

Syntax sp_iqcheckdb 'mode target […] [resources resource-percent]'

This is the general syntax of sp_iqcheckdb. There are three modes for checking
database consistency, and one for resetting allocation maps. The syntax for
each mode is listed separately below. If mode and target are not both specified
in the parameter string, Sybase IQ returns the error message:

At least one mode and target must be specified to DBCC.

Parameters mode:
{ allocation | check | verify } | dropleaks

target:
[indextype index-type […]]
database | database resetclocks |
{ [indextype index-type] […] table table-name
[partition partition-name] […] |
index index-name | […]
dbspace dbspace-name}

Allocation mode sp_iqcheckdb 'allocation target [resources resource-percent]'

Check mode sp_iqcheckdb 'check target [resources resource-percent]'

System stored procedures

360 Sybase IQ

Verify mode sp_iqcheckdb 'verify target [resources resource-percent]'

Dropleaks mode sp_iqcheckdb 'dropleaks target [resources resource-percent]'

Usage database If the target is a database, all dbspaces must be online.

index-type One of the following index types: FP, CMP, LF, HG, HNG, WD,
DATE, TIME, DTTM.

If the specified index-type does not exist in the target, an error message is
returned. If multiple index types are specified and the target contains only some
of these index types, the existing index types are processed by sp_iqcheckdb.

index-name May contain owner and table qualifiers: [[owner.]table-
name.]index-name

If owner is not specified, current user and database owner (dbo) are substituted
in that order. If table is not specified, index-name must be unique.

table-name May contain an owner qualifier: [owner.]table-name

If owner is not specified, current user and database owner (dbo) are substituted
in that order. table-name cannot be a temporary or pre-join table.

Note If either the table name or the index name contains spaces, enclose the
table-name or index-name parameter in double quotation marks:

sp_iqcheckdb 'check index "dbo.sstab.i2" resources 75'

partition-name The partition-name parameter contains no qualifiers. If it
contains spaces, enclose it in double quotation marks.

dbspace-name The dbspace-name parameter contains no qualifiers. If it
contains spaces, enclose it in double quotation marks.

The partition filter causes sp_iqcheckdb to examine a subset of the
corresponding table’s rows that belong to that partition. A partition filter on a
table and table target without the partition filter are semantically equivalent
when the table has only one partition.

The dbspace target examines a subset of the database's pages that belong to that
dbspace. The dbspace must be online. The dbspace and database target are
semantically equivalent when the table has only one dbspace.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 361

resource-percent The input parameter resource-percent must be an integer
greater than zero. The resources percentage allows you to limit the CPU
utilization of the database consistency checker by controlling the number of
threads with respect to the number of CPUs. If resource-percent = 100 (the
default value), then one thread is created per CPU. If resource-percent > 100,
then there are more threads than CPUs, which might increase performance for
some machine configurations. The minimum number of threads is one.

Note The sp_iqcheckdb parameter string must be enclosed in single quotes and
cannot be greater than 255 bytes in length.

Allocation problems can be repaired in dropleaks mode.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description sp_iqcheckdb checks the allocation of every block in the database and saves the
information in the current session until the next sp_iqdbstatistics procedure is
issued. sp_iqdbstatistics displays the latest result from the most recent
execution of sp_iqcheckdb.

sp_iqcheckdb can perform several different functions, depending on the
parameters specified. The modes for checking and repairing database
consistency are:

Allocation mode Checks allocation with blockmap information for the
entire database, a specific index, a specific index type, a specific partition,
specific table, or a specific dbspace. Does not check index consistency.

Detects duplicate blocks (blocks for which two or more objects claim
ownership) or extra blocks (unallocated blocks owned by an object).

Detects leaked blocks (allocated blocks unclaimed by any object in the
specified target) for database or dbspace targets.

When the target is a partitioned table, allocation mode:

• Checks metadata of all the table’s partition allocation bitmaps

• Checks metadata of the tables allocation bitmap

• Verifies that blockmap entries are consistent with the table’s allocation
bitmap

• Verifies that none of the table’s partition allocation bitmaps overlap

• Checks that rows defined in the table’s partition allocation bitmaps form a
superset of the table’s existence bitmap

System stored procedures

362 Sybase IQ

• Checks that rows defined in the table’s partition allocation bitmaps form a
superset of the table’s allocation bitmap

Note sp_iqcheckdb cannot check all allocation problems if you specify the
name of a single index, index type, or table in the input parameter string.

Run in allocation mode:

• To detect duplicate or unowned blocks (use database or specific tables or
indexes as the target)

• If you encounter page header errors

The DBCC option resetclocks is used only with allocation mode. resetclocks is
used with forced recovery to convert a multiplex secondary server to a
coordinator. For information on multiplex capability, see Using Sybase IQ
Multiplex. resetclocks corrects the values of internal database versioning
clocks, in the event that these clocks are behind. Do not use the resetclocks
option for any other purpose, unless you contact Sybase IQ Technical Support.

The resetclocks option must be run in single-user mode and is allowed only
with the DBCC statement allocation database. The syntax of the resetclocks
command is:

sp_iqcheckdb 'allocation database resetclocks'

Check mode Verifies that all database pages can be read for the entire
database, specific index, specific index type, specific table, specific partition,
or specific dbspace. If the table is partitioned, then check mode will check the
table’s partition allocation bitmaps.

Run in check mode if metadata, null count, or distinct count errors are returned
when running a query.

Verify mode Verifies the contents of non-FP indexes with their
corresponding FP indexes for the entire database, a specific index, a specific
index type, specific table, specific partition, or specific dbspace. If the
specified target contains all data pages for the FP and corresponding non-FP
indexes, then verify mode detects the following inconsistencies:

• Missing key – a key that exists in the FP but not in the non-FP index.

• Extra key – a key that exists in the non-FP index but not in the FP index.

• Missing row – a row that exists in the FP but not in the non-FP index.

• Extra row – a row that exists in the non-FP index but not in the FP index
.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 363

If the specified target contains only a subset of the FP pages, then verify mode
can detect only the following inconsistencies:

• Missing key

• Missing row

If the target is a partitioned table, then verify mode also verifies that each row
in the table or table partition has been assigned to the correct partition.

Run in verify mode if metadata, null count, or distinct count errors are returned
when running a query.

Note sp_iqcheckdb does not check referential integrity or repair referential
integrity violations.

Dropleaks mode When the Sybase IQ server runs in single-node mode, you
can use dropleaks mode with either a database or dbspace target to reset the
allocation map for the entire database or specified dbspace targets. If the target
is a dbspace, then the dropleaks operation must also prevent read-write
operations on the named dbspace. All dbspaces in the database or dbspace list
must be online.

For information on running dropleaks mode on a multiplex, see Using Sybase
IQ Multiplex.

The following examples illustrate the use of the sp_iqcheckdb procedure.

Example 1 In this example, sp_iqcheckdb checks the allocation for the entire database:

sp_iqcheckdb 'allocation database'

Example 2 In the second example, sp_iqcheckdb performs a detailed check on indexes i1,
i2, and dbo.t1.i3. If you do not specify a new mode, sp_iqcheckdb applies the
same mode to the remaining targets, as shown in the following command:

sp_iqcheckdb 'verify index i1 index i2 index dbo.t1.i3'

Example 3 You can combine all modes and run multiple checks on a database in a single
session. In the following example, sp_iqcheckdb performs a quick check of
partition p1 in table t2, a detailed check of index i1, and allocation checking for
the entire database using half of the CPUs:

sp_iqcheckdb 'check table t2 partition p1 verify index
i1
allocation database resources 50'

Example 4 This example checks all indexes of the type FP in the database:

System stored procedures

364 Sybase IQ

sp_iqcheckdb 'check indextype FP database'

Example 5 The following example verifies the FP and HG indexes in the table t1 and the
LF indexes in the table t2:

sp_iqcheckdb 'verify indextype FP indextype HG table t1
indextype LF table t2'

Example 6 The following example illustrates one of the three “LVC cells” messages in the
output of sp_iqcheckdb:

sp_iqcheckdb 'check index
EFG2JKL.ASIQ_IDX_T208_C504_FP'

Index Statistics:
** Inconsistent Index:
abcd.EFG2JKL.ASIQ_IDX_T208_C504_FP ****** FP
Indexes Checked: 1
** Unowned LVC Cells: 212 ******

The sp_iqcheckdb LVC cells messages include:

• Unowned LVC cells

• Duplicate LVC cell rows

• Unallocated LVC cell rows

These messages indicate inconsistencies with a VARCHAR, VARBINARY,
LONG BINARY (BLOB), or LONG VARCHAR (CLOB) column. Unowned LVC
cells represent a small amount of unusable disk space and can safely be
ignored. Duplicate and Unallocated LVC cells are serious errors that can be
resolved only by dropping the damaged columns.

To drop a damaged column, create a new column from a copy of the old
column, then drop the original column and rename the new column to the old
column.

Note LVC is a VARCHAR or VARBINARY column with a width greater than
255. LONG BINARY (BLOB) and LONG VARCHAR (CLOB) also use LVC.

DBCC performance The execution time of DBCC varies, depending on the size of the database for
an entire database check, the number of tables or indexes specified, and the size
of the machine. Checking only a subset of the database (that is, only specified
tables, indexes, or index types) requires less time than checking an entire
database.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 365

The processing time of sp_iqcheckdb dropleaks mode depends on the number
of dbspace targets.

Table 7-4 summarizes the actions and output of the four sp_iqcheckdb modes.

Table 7-4: Actions and output of sp_iqcheckdb modes

Output Depending on the execution mode, sp_iqcheckdb output includes summary
results, errors, informational statistics, and repair statistics. The output may
contain as many as three results sets, if you specify multiple modes in a single
session. Error statistics are indicated by asterisks (*****), and appear only if
errors are detected.

The output of sp_iqcheckdb is also copied to the Sybase IQ message
file .iqmsg. If the DBCC_LOG_PROGRESS option is ON, sp_iqcheckdb sends
progress messages to the IQ message file, allowing the user to follow the
progress of the DBCC operation as it executes.

Output example The following is an example of the output you see when you run sp_iqcheckdb
'allocation database' and there is leaked space. Leaked space is a block that is
allocated according to the database free list (an internal allocation map), but
DBCC finds that the block is not part of any database object. In this example,
DBCC reports 32 leaked blocks.

Stat Value Flags
=====================================|===========================|=====
DBCC Allocation Mode Report
=====================================|===========================|=====
** DBCC Status |Errors Detected |*****
=====================================|===========================|=====

Allocation Summary | |
=====================================|===========================|=====

Blocks Total |8192 |
Blocks in Current Version |4954 |
Blocks in All Versions |4954 |
Blocks in Use |4986 |

Mode Errors detected Output Speed
Allocation Allocation errors Allocation

statistics only
4TB per hour

Check Allocation errors
Most index errors

All available
statistics

60GB per hour

Verify Allocation errors
All index errors

All available
statistics

15GB per hour

Dropleaks Allocation errors Allocation
statistics only

4TB per hour

System stored procedures

366 Sybase IQ

% Blocks in Use |60 |
** Blocks Leaked |32 |*****

| |
=====================================|===========================|=====

Allocation Statistics | |
=====================================|===========================|=====

Marked Logical Blocks |8064 |
Marked Physical Blocks |4954 |
Marked Pages |504 |
Blocks in Freelist |126553 |
Imaginary Blocks |121567 |
Highest PBN in Use |5432 |

** 1st Unowned PBN |452 |*****
Total Free Blocks |3206 |
Usable Free Blocks |3125 |
% Free Space Fragmented |2 |
Max Blocks Per Page |16 |
1 Block Page Count |97 |
3 Block Page Count |153 |
4 Block Page Count |14 |
...
9 Block Hole Count |2 |
16 Block Hole Count |194 |

| |
Database Objects Checked |1 |
B-Array Count |1 |
Blockmap Identity Count |1 |

=====================================|===========================|
=====Connection Statistics | |

sp_iqcheckoptions procedure
Function For the connected user, sp_iqcheckoptions displays a list of the current value

and the default value of database and server startup options that have been
changed from the default.

Syntax sp_iqcheckoptions

Permissions None. The DBA sees all options set on a permanent basis for all groups and
users and sees temporary options set for DBA. Users who are not DBAs see
their own temporary options. All users see nondefault server startup options.

Usage Requires no parameters. Returns one row for each option that has been changed
from the default value. The output is sorted by option name, then by user name.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 367

Description For the connected user, the sp_iqcheckoptions stored procedure displays a list
of the current value and the default value of database and server startup options
that have been changed from the default. sp_iqcheckoptions considers all
Sybase IQ and SQL Anywhere database options. Sybase IQ modifies some
SQL Anywhere option defaults, and these modified values become the new
default values. Unless the new Sybase IQ default value is changed again,
sp_iqcheckoptions does not list the option.

When sp_iqcheckoptions is run, the DBA sees all options set on a permanent
basis for all groups and users and sees temporary options set for DBA. Users
who are not DBAs see their own temporary options. All users see nondefault
server startup options.

Table 7-5: sp_iqcheckoptions columns

Examples In these examples, the temporary option APPEND_LOAD is set to ON and the
group mygroup has the option MAX_WARNINGS set to 9. The user joel has a
temporary value of 55 set for MAX_WARNINGS.

In the first example, sp_iqcheckoptions is run by the DBA.

User_name Option_name Current_value Default_value Option_type

DBA Ansi_update_constr CURSORS Off Permanent

PUBLIC Ansi_update_constr Cursors Off Permanent

DBA Append_Load ON OFF Temporary

DBA Checkpoint_time 20 60 Temporary

DBA Connection_authent Company=MyComp; Temporary

Application=DBTools;Signa

DBA Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

PUBLIC Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

mygroup Max_Warnings 9 281474976710655 Permanent

DBA Thread_count 25 0 Temporary

In the second example, sp_iqcheckoptions is run by the user joel.

Column name Description
User_name The name of the user or group for whom the option has been

set. At database creation, all options are set for the public
group. Any option that has been set for a group or user
other than public is displayed.

Option_name The name of the option.
Current_value The current value of the option.
Default_value The default value of the option.
Option_type “Temporary” for a TEMPORARY option, else

“Permanent”.

System stored procedures

368 Sybase IQ

User_name Option_name Current_value Default_value Option_type

joel Ansi_update_constr CURSORS Off Permanent

PUBLIC Ansi_update_constr Cursors Off Permanent

joel Checkpoint_time 20 60 Temporary

joel Connection_authent Company=MyComp; Temporary

Application=DBTools;Signa

joel Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

PUBLIC Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

joel Max_Warnings 55 281474976710655 Temporary

joel Thread_count 25 0 Temporary

sp_iqclient_lookup procedure
Function Allows a client application to determine the Sybase IQ user account

responsible for a particular data stream, as observed in a network analyzer
originating from a specific client IP address/port.

Syntax sp_iqclient_lookup ['IPaddress'], [Port], [UserID]

Parameters IPaddress Specifies the IP address of the originating client application.

Port Specifies the port number of the originating client application.

UserID Specifies the Sybase IQ user ID.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description The sp_iqclient_lookup procedure takes the client IP address and port number
and returns a single row containing Number (the connection ID), IPaddress,
Port, and UserID.

1> sp_iqclient_lookup '158.76.235.71',3360
2> go

Number IPaddress Port UserID
------ --------- ---- ------
15 158.76.235.71 3360 rdeniro

Optionally, you can pass a third argument to select only the UserID. If no
arguments are passed, sp_iqclient_lookup returns all current logins with their IP
addresses and port numbers. For example:

sp_iqclient_lookup

Number IPaddress Port UserID
------ --------- ---- ------
11 162.66.131.36 2082 mbrando

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 369

21 162.66.100.233 1863 apacino
22 162.66.100.206 8080 jcaan
23 162.66.100.119 6901 rduvall
24 162.66.100.125 7001 dkeaton
25 162.66.100.124 6347 jcazale

(6 rows affected)
(return status = 0)

If a client application is not using TCP/IP or for internal connections, the
address appears as 127.0.0.1.

Note This information is available for logged on users only. No historical login
data is kept on the server for this purpose.

Side effects The sp_iqclient_lookup stored procedure may impact server performance,
which varies from one installation to another. Finding the login name entails
scanning through all current active connections on the server; therefore, the
impact may be greater on servers with large numbers of connections.
Furthermore, this information cannot be cached as it is dynamic — sometimes
highly dynamic. It is, therefore, a matter for the local system administrator to
manage the use of this stored procedure, as well as monitor the effects on the
server, just as for any other client application that uses server facilities.

Examples Shows IP addresses for UserID jcazale:

sp_iqclient_lookup null, null, jcazale

Number IPaddress Port UserID
------ ---------- ---- ------
11 162.66.131.36 2082 jcazale
15 164.66.131.36 1078 jcazale

Shows IP addresses from client IP 162.66.131.36:

sp_iqclient_lookup '162.66.131.36'

Number IPaddress Port UserID
------ ---------- ---- ------
11 162.66.131.36 2082 jcazale
12 162.66.131.36 1078 jcaan

Note The result is empty when the user specifies an incorrect argument.

System stored procedures

370 Sybase IQ

sp_iqcolumn procedure
Function Displays information about columns in a database.

Syntax1 sp_iqcolumn ([table_name],[table_owner], [table_loc])

Syntax2 sp_iqcolumn
[table_name='table_name'],[table_owner='tableowner'],[table_loc='tabl
e_loc’]

Usage Syntax1 If you specify table_owner without specifying table_name, you
must substitute NULL for table_name. For example, sp_iqcolumn
NULL,DBA.

Syntax2 The parameters can be specified in any order. Enclose 'table_name'
and 'table_owner' in single quotes.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Displays information about columns in a database. Specifying the table_name
parameter returns the columns only from tables with that name. Specifying the
table_owner parameter returns only tables owned by that user. Specifying both
table_name and table_owner parameters chooses the columns from a unique
table, if that table exists. Specifying table_loc returns only tables that are
defined in that segment type. Specifying no parameters returns all columns for
all tables in a database. sp_iqcolumn does not return column information for
system tables.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 371

Table 7-6: sp_iqcolumn columns

Example The following variations in syntax both return all of the columns in the table
Departments:

sp_iqcolumn Departments
call sp_iqcolumn (table_name='Departments')

Column name Description
table_name The name of the table
table_owner The owner of the table
column_name The name of the column
domain_name The data type
width The precision of numeric data types that have precision

and scale or the storage width of numeric data types
without scale; the width of character data types

scale The scale of numeric data types
nulls 'Y' if the column can contain NULLS, 'N' if the column

cannot contain NULLS
default 'Identity/Autoincrement' if the column is an identity/

autoincrement column, null if not.
cardinality The distinct count, if known, by indexes
est_cardinality The estimated number of distinct values, set to 255

automatically if the column was created with the
MINIMIZE_STORAGE option ON, or a user-supplied
value from the IQ UNIQUE constraint specified in
CREATE TABLE

location TEMP = IQ temporary store, MAIN = IQ main store,
SYSTEM = catalog store

isPartitioned 'Y' if the column belongs to a partitioned table and has
one or more partitions whose dbspace is different from
the table partition’s dbspace, 'N' if the column’s table is
not partitioned or each partition of the column resides in
the same dbspace as the table partition.

remarks User comments added with the COMMENT statement
check the check constraint expression

System stored procedures

372 Sybase IQ

table_name table_owner column_name domain_name width scale nulls default
Departments GROUPO DepartmentID integer 4 0 N (NULL)
Departments GROUPO DepartmentName char 40 0 N (NULL)
Departments GROUPO DepartmentHead integer 4 0 Y (NULL)

cardinality est_cardinality location isPartitioned remarks check
5 5 Main N (NULL) (NULL)
0 5 Main N (NULL) (NULL)
5 5 Main N (NULL) (NULL)

The following variation in syntax returns all of the columns in all of the tables
owned by table owner DBA.

sp_iqcolumn table_owner='DBA'

sp_iqcolumnuse procedure
Function Reports detailed usage information for columns accessed by the workload.

Syntax sp_iqcolumnuse

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Columns from tables created in SYSTEM are not reported.

Table 7-7: sp_iqcolumnuse columns

**UID is a number assigned by the system that uniquely identifies the instance
of the column (where instance is defined when an object is created).

Example Sample output from the sp_iqcolumnuse procedure:

TableName ColumnName Owner UID LastDT NRef
orders o_orderdate DBA 151 20070917 22:41:22.. 13
orders o_shippriority DBA 154 20070917 22:41:22.. 13
lineitem l_orderkey DBA 186 20070917 22:41:22.. 13
lineitem l_extendedp.. DBA 191 20070917 22:41:22.. 13
lineitem l_discount DBA 192 20070917 22:41:22.. 13
lineitem l_shipdate DBA 196 20070917 22:41:22.. 13

Column name Description
TableName Table name
ColumnName Column name
Owner Username of column owner
UID** Column Unique Identifier
LastDT Date/time of last access
NRef Number of query references

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 373

#tmp1 expression DBA 10000000001218 20070917 22:57:36.. 1
#tmp1 expression DBA 10000000001222 20070917 22:41:58.. 1
...

Note The long numbers in the example above are temporary IDs.

See also “Monitoring workloads,” in Chapter 3, “Optimizing Queries and Deletions,”
in the Performance and Tuning Guide.

“sp_iqdbspace procedure” on page 388, “sp_iqindexadvice procedure” on
page 418, “sp_iqindexuse procedure” on page 426, “sp_iqtableuse procedure”
on page 477, “sp_iqunusedcolumn procedure” on page 481,
“sp_iqunusedindex procedure” on page 482, “sp_iqunusedtable procedure”
on page 483, and “sp_iqworkmon procedure” on page 490

“INDEX_ADVISOR option” in Chapter 2, “Database Options,” in Reference:
Statements and Options

sp_iqconnection procedure
Function Shows information about connections and versions, including which users are

using temporary dbspace, which users are keeping versions alive, what the
connections are doing inside Sybase IQ, connection status, database version
status, and so on.

Syntax sp_iqconnection [connhandle]

Usage The input parameter connhandle is equal to the Number connection property
and is the ID number of the connection. The connection_property system
function returns the connection ID:

SELECT connection_property ('Number')

When called with an input parameter of a valid connhandle, sp_iqconnection
returns the one row for that connection only.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

System stored procedures

374 Sybase IQ

Description sp_iqconnection returns a row for each active connection. The columns
ConnHandle, Name, Userid, LastReqTime, ReqType, CommLink, NodeAddr,
and LastIdle are the connection properties Number, Name, Userid,
LastReqTime, ReqType, CommLink, NodeAddr, and LastIdle respectively,
and return the same values as the system function sa_conn_info. The additional
columns return connection data from the Sybase IQ side of the Sybase IQ
engine. Rows are ordered by ConnCreateTime.

The column MPXServerName stores information related to multiplex
internode communication (INC), as shown in Table 7-8:

Table 7-8: MPXServerName column values

For information on multiplex capability, see Using Sybase IQ Multiplex.

In Java applications, specify Sybase IQ-specific connection properties from
TDS clients in the RemotePWD field. This example, where myconnection
becomes the IQ connection name, shows how to specify IQ specific connection
parameters:

p.put(“RemotePWD“,“,,CON=myconnection”);

For more details about using the RemotePWD parameter, see “Specifying a
database on a server” in the SQL Anywhere documentation at SQL Anywhere
11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data Access
APIs > SQL Anywhere JDBC driver > Using the jConnect JDBC driver >
Supplying a URL to the driver.

Table 7-9: sp_iqconnection columns

Server where run MPXServerName column content
Simplex server NULL (all connections are local/user

connections).
Multiplex coordinator • NULL for local/user connections.

• Contains value of secondary node’s
server name (source of connection)
for every INC connection (either on-
demand or dedicated heartbeat
connection.

Multiplex secondary • NULL for local/user connections.
• Contains value of coordinator’s

server name (source of connection).

Column name Description
ConnHandle The ID number of the connection.
Name The name of the server.
Userid The user ID for the connection.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 375

LastReqTime The time at which the last request for the specified connection started.
ReqType A string for the type of the last request.
IQCmdType The current command executing on the Sybase IQ side, if any. The command type

reflects commands defined at the implementation level of the engine. These
commands consists of transaction commands, DDL and DML commands for data in
the IQ store, internal IQ cursor commands, and special control commands such as
OPEN and CLOSE DB, BACKUP, RESTORE, and others.

LastIQCmdTime The time the last IQ command started or completed on the IQ side of the Sybase IQ
engine on this connection.

IQCursors The number of cursors open in the IQ store on this connection.
LowestIQCursorState The IQ cursor state, if any. If multiple cursors exist on the connection, the state

displayed is the lowest cursor state of all the cursors; that is, the furthest from
completion. Cursor state reflects internal Sybase IQ implementation detail and is
subject to change in the future. For this version, cursor states are: NONE,
INITIALIZED, PARSED, DESCRIBED, COSTED, PREPARED, EXECUTED,
FETCHING, END_OF_DATA, CLOSED and COMPLETED. As suggested by the
names, cursor state changes at the end of the operation. A state of PREPARED, for
example, indicates that the cursor is executing.

IQthreads The number of Sybase IQ threads currently assigned to the connection. Some threads
may be assigned but idle. This column can help you determine which connections are
using the most resources.

TxnID The transaction ID of the current transaction on the connection. This is the same as
the transaction ID displayed in the .iqmsg file by the BeginTxn, CmtTxn, and
PostCmtTxn messages, as well as the Txn ID Seq logged when the database is opened.

ConnCreateTime The time the connection was created.
TempTableSpaceKB The number of kilobytes of IQ temporary store space in use by this connection for data

stored in IQ temp tables.
TempWorkSpaceKB The number of kilobytes of IQ temporary store space in use by this connection for

working space such as sorts, hashes, and temporary bitmaps. Space used by bitmaps
or other objects that are part of indexes on Sybase IQ temporary tables are reflected
in TempTableSpaceKB.

IQConnID The 10-digit connection ID displayed as part of all messages in the .iqmsg file. This
is a monotonically increasing integer unique within a server session.

satoiq_count An internal counter used to display the number of crossings from the SQL Anywhere
side to the IQ side of the Sybase IQ engine. This might be occasionally useful in
determining connection activity. Result sets are returned in buffers of rows and do not
increment satoiq_count or iqtosa_count once per row.

iqtosa_count An internal counter used to display the number of crossings from the IQ side to the
SQL Anywhere side of the Sybase IQ engine. You might find this column to be
occasionally useful in determining connection activity.

CommLink The communication link for the connection. This is one of the network protocols
supported by Sybase IQ, or is local for a same-machine connection.

Column name Description

System stored procedures

376 Sybase IQ

Example An example of sp_iqconnection output:

ConnHandle Name Userid LastReqTime ReqType
========== ================= ====== ======================== =======

9 'IQ_MPX_SERVER_H' 'dbo' '2008-11-18 13:15:00.035' 'EXEC'
11 'IQ_MPX_SERVER_H' 'dbo' '2008-11-18 13:15:00.046' 'EXEC'

13 'IQ_MPX_SERVER_H' 'dbo' '2008-11-18 14:52:55.003' 'EXEC'
15 'IQ_MPX_SERVER_H' 'dbo' '2008-11-18 14:53:25.005' 'EXEC'
17 'SQL_DBC_49450e8 'DBA' '2008-11-18 14:59:45.680' 'OPEN'
44 'Sybase Central 1 'DBA' '2008-11-18 14:59:45.023' 'CLOSE

IQCmdType LastIQCmdTime IQCursors LowestIQCursorState
========= ====================== ========= ===================
'NONE' 2008-11-18 13:15:00.0 0 'NONE'
'NONE' 2008-11-18 13:15:00.0 0 'NONE'
'NONE' 2008-11-18 14:52:55.0 0 'NONE'
'NONE' 2008-11-18 14:53:25.0 0 'NONE'
'IQUTILITYOPENCURSOR' 2008-11-18 14:59:45.0 0 'NONE'
'NONE' 2008-11-18 14:43:33.0 0 'NONE'

IQthreads TxnID ConnCreateTime TempTableSpaceKB TempWorkSpaceKB
========= ===== ==================== ================ ==============
1 0 2008-11-18 13:14:09.0 0 0
1 0 2008-11-18 13:14:34.0 0 0
1 0 2008-11-18 13:14:55.0 0 0
1 0 2008-11-18 13:15:25.0 0 0
1 50024 2008-11-18 13:28:08.0 0 0
1 50545 2008-11-18 14:03:50.0 0 0

IQconnID satoiq_count iqtosa_count CommLink NodeAddr LastIdle MPXServerName
======== ============ ============ ======== ======== ========= ===========
23198 28 12 'local' '' 2977 'mpx0631_r1'
23202 28 12 'local' '' 1503 'mpx0631_r2'
23207 127 12 'local' '' 10000 'mpx0631_w1'
23212 127 12 'local' '' 10000 'mpx0631_w2'
23267 658 66 'TCPIP''10.18.60.181' 9375
23443 510 54 'local' '' 1238

NodeAddr The node for the client in a client/server connection.
LastIdle The number of ticks between requests.
MPXServerName If an INC connection, the varchar(128) value contains the name of the multiplex

server where the INC connection originates. NULL if not an INC connection.

Column name Description

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 377

sp_iqconstraint procedure
Function Lists referential integrity constraints defined using CREATE TABLE or ALTER

TABLE for the specified table or column.

Syntax sp_iqconstraint ['table-name', 'column-name', 'table-owner']

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description If table name and column name are omitted, reports all referential integrity
constraints for all tables including temporary ones in the current connected
database. The information includes unique or primary key constraint,
referential constraint, and associated role name that are defined by the CREATE
TABLE and/or ALTER TABLE statements.

Example This is sample output that displays all primary key/foreign key pairs where
either the candidate key or foreign key contains column ck1 for owner bob in
all tables:

call sp_iqconstraint('','ck1','bob')

PTAB1 bob ASIQ_IDX_T27_HG unique ck1,ck2 selftab bob CK6FK3 Y

ASIQ_IDX_T42_HG ck1,ck2

PTAB2 bob ASIQ_IDX_T27_HG unique ck1,ck2 selftab bob CK6FK4 Y
ASIQ_IDX_T206_I42_HG ck1,ck2

selftab bob ASIQ_IDX_T26_HG unique ck1,ck2 selftab bob CK3FK1 Y

ASIQ_IDX_T206_I42_HG ck1,ck2

The columns displayed are:

• Primary enforced table

• Table owner

• Candidate key index

• Primary key or Unique

• Primary key columns

• Foreign table

• Foreign table owner

• Foreign key role name

• Enforced status (“Y” for enforced, “N” for unenforced)

• Foreign key index

• Foreign key columns

System stored procedures

378 Sybase IQ

• Location (“TEMP,” “MAIN,” or “SYSTEM”)

sp_iqcontext procedure
Function Tracks and displays, by connection, information about statements that are

currently executing.

Syntax sp_iqcontext [connhandle]

Usage The input parameter connhandle is equal to the Number connection property
and is the ID number of the connection.

When called with an input parameter of a valid connhandle, sp_iqcontext
returns the information only for that connection.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description sp_iqcontext lets the DBA determine what statements are running on the system
at any given moment, and identify the user and connection that issued the
statement. With this information, you can use this utility to:

• Match the statement text with the equivalent line in sp_iqconnection to get
resource usage and transactional information about each connection

• Match the statement text to the equivalent line in the SQL log created
when the -zr server option is set to ALL or SQL

• Use connection information to match the statement text in sp_iqcontext to
the equivalent line in the .iqmsg file, which includes the query plan, when
Sybase IQ can collect it

• Match statement text to an IQ stack trace (stktrc-yyyymmdd-hhnnss_#.iq),
if one is produced

• Collate this information with an operating system stack trace that might be
produced, such as pstack on Sun Solaris

The maximum size of statement text collected is the page size of the catalog
store.

Table 7-10: sp_iqcontext columns
Column name Description
ConnOrCursor CONNECTION or CURSOR.
ConnHandle The ID number of the connection.
Name The name of the server.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 379

Userid The user ID for the connection or cursor.
numIQCursors If column 1 is CONNECTION, the number of cursors

open on this connection.
If column 1 is CURSOR, a number assigned
sequentially to cursors associated with this connection.

IQthreads The number of IQ threads currently assigned to the
connection. Some threads may be assigned but idle.

TxnID The transaction ID of the current transaction.
ConnOrCurCreateTime The time this connection or cursor was created.
IQConnID The 10-digit connection ID displayed as part of all

messages in the .iqmsg file. This is a monotonically
increasing integer unique within a server session.

IQGovernPriority A value that indicates the order in which the queries of a
user are queued for execution. 1 indicates high priority,
2 (the default) medium priority, and 3 low priority. A
value of -1 indicates that IQGovernPriority does not
apply to the operation. Set the IQGovernPriority value
with the database option IQGOVERN_PRIORITY. See
“Setting query priority” in Chapter 3, “Optimizing
Queries and Deletions” of the Performance and Tuning
Guide.

CmdLine First 4096 characters of the user command being
executed.

Column name Description

System stored procedures

380 Sybase IQ

Example The following example shows an excerpt from output when sp_iqcontext is
issued with no parameter, producing results for all current connections.

CONNECTION 701773517 dba7 DBA 6 1 1324 2009-06-04 09:24:17.000 4 NO COMMAND

CURSOR 701773517 dba7 DBA 1 0 1324 2009-06-04 09:24:46.000 4 2 select * from foo1

CURSOR 701773517 dba7 DBA 2 0 1324 2009-06-04 09:24:47.000 4 2 select a from foo1

...

CURSOR 701773517 dba7 DBA 6 0 1324 2009-06-04 09:24:47.000 4 2 select e from foo1

CONNECTION 1271624950 dba7 DBA 0 12 1377 2009-06-04 09:24:12.000 3 2 sp_iqcheckdb

CONNECTION 1841476383 dba7 DBA 10 1 1337 2009-06-04 09:24:19.000 5 2 call sp_iqcontext()

CURSOR 1841476383 dba7 DBA 1 0 1337 2009-06-04 09:24:47.000 5 2 select * from foo

...

CURSOR 1841476383 dba7 DBA 10 0 1337 2009-06-04 09:24:48.000 5 2 select i from foo

The first line of output shows connection 701773517 (IQ connection ID 4).
This connection is on server dba7, user DBA. It has six active cursors and one
IQ thread, and was created from transaction 1324. This connection was not
executing a command when sp_iqcontext was issued. The next six lines of
output list cursors in use by this connection (only three are shown here.)

Two connections are running stored procedures. Connection 1271624950 is
running sp_iqcheckdb directly from dbisql, has no active cursors but is using
12 IQ threads. Connection 1841476383 has called sp_iqcontext as a procedure,
is using only 1 IQ thread, and has 10 active cursors (only the first and last are
shown here.) In both cases, the name of the stored procedure appears but not
the line of code executing within it.

The connection handle (701773517 for the first connection in this example)
identifies results in the -zr log. The IQ connection ID (4 for the first connection
in this example) identifies results in the .iqmsg file. On UNIX systems, you can
use the grep command to locate all instances of the connection handle or
connection ID, making it easy to correlate information from all sources. The 2
before the user command fragment indicates that this is a medium priority
query.

sp_iqcopyloginpolicy procedure
Function Creates a new login policy by copying an existing one.

Syntax1 call sp_iqcopyloginpolicy (‘existing-policy-name’, ‘new-policy-name’)

Syntax2 sp_iqcopyloginpolicy ‘existing-policy-name’, ‘new-policy-name’

Syntax3 sp_iqcopyloginpolicy existing-policy-name, new-policy-name
policy_name]

Usage existing policy name The login policy to copy.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 381

new policy name Name of the new login policy to create (CHAR(128)).

Permissions Requires DBA authority.

See also “sp_iqpassword procedure” on page 441

CREATE USER Statement in Chapter 1, “SQL Statements,” in Reference:
Statements and Options

Examples The following stored procedure creates a new login policy named lockeduser
by copying the login policy option values from the existing login policy named
root.

call sp_iqcopyloginpolicy ('root','lockeduser')

sp_iqcursorinfo procedure
Function Displays detailed information about cursors currently open on the server.

Syntax sp_iqcursorinfo [cursor-name] [, conn-handle]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage cursor-name The name of the cursor. If only this parameter is specified,
sp_iqcursorinfo returns information about all cursors that have the specified
name in all connections.

conn-handle An integer representing the connection ID. If only this
parameter is specified, sp_iqcursorinfo returns information about all cursors in
the specified connection.

The sp_iqcursorinfo procedure can be invoked without any parameters. If no
parameters are specified, sp_iqcursorinfo returns information about all cursors
currently open on the server. If both parameters are specified, sp_iqcursorinfo
reports information about all of the cursors that have the specified name and
are in the specified connection.

If you do not specify the first parameter, but specify the second parameter, you
must substitute NULL for the omitted parameter. For example,
sp_iqcursorinfo NULL, 1.

System stored procedures

382 Sybase IQ

Table 7-11: sp_iqcursorinfo usage examples

Description The sp_iqcursorinfo stored procedure displays detailed information about
cursors currently open on the server. The sp_iqcursorinfo procedure enables
database administrators to monitor cursor status using just one stored
procedure and view statistics such as how many rows have been updated,
deleted, and inserted.

If you specify one or more parameters, the result is filtered by the specified
parameters. For example, if cursor-name is specified, only information about
the specified cursor is displayed. If conn-handle is specified, sp_iqcursorinfo
returns information only about cursors in the specified connection. If no
parameters are specified, sp_iqcursorinfo displays information about all cursors
currently open on the server.

The sp_iqcursorinfo procedure returns information in the following columns:

Table 7-12: sp_iqcursorinfo columns

Syntax Output
sp_iqcursorinfo Displays information about all cursors currently

open on the server
sp_iqcursorinfo ‘cursor1’ Displays information about the all cursors named

cursor1 in all connections
sp_iqcursorinfo NULL, 3 Displays information about all cursors in

connection 3
sp_iqcursorinfo ‘cursor2’, 4 Displays information about all the cursors named

cursor2 in connection 4

Column name Description
Name The name of the cursor
ConnHandle The ID number of the connection
IsUpd Y: the cursor is updatable; N otherwise
IsHold Y: the cursor is a hold cursor; N otherwise
IQConnID The ten digit connection ID displayed as part of all messages in

the .iqmsg file. This number is a monotonically increasing
integer unique within a server session.

UserID User ID (or user name) for the user who created and ran the
cursor

CreateTime The time of cursor creation
CurrentRow The current position of the cursor in the result set
NumFetch The number of times the cursor fetches a row. The same row can

be fetched more than once.
NumUpdate The number of times the cursor updates a row, if the cursor is

updatable. The same row can be updated more than once.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 383

NumDelete The number of times the cursor deletes a row, if the cursor is
updatable.

NumInsert The number of times the cursor inserts a row, if the cursor is
updatable.

RWTabOwner The owner of the table that is opened in RW mode by the cursor.
RWTabName The name of the table that is opened in RW mode by the cursor.
CmdLine The first 4096 characters of the command the user executed

Column name Description

System stored procedures

384 Sybase IQ

Example Display information about all cursors currently open on the server:

sp_iqcursorinfo

Name ConnHandle IsUpd IsHold IQConnID UserID

crsr1 1 Y N 118 DBA
crsr2 3 N N 118 DBA

CreateTime CurrentRow NumFetch NumUpdate
--
2009-06-26 15:24:36.000 19 100000000 200000000
2009-06-26 15:38:38.000 20000 200000000

NumDelete NumInsert RWTabOwner RWTabName CmdLine
--
20000000 3000000000 DBA test1 call proc1()

call proc2()

See also Reference: Statements and Options: DECLARE CURSOR statement [ESQL]
[SP], DECLARE CURSOR statement [T-SQL], UPDATE (positioned)
statement [ESQL] [SP] and DELETE (positioned) statement [ESQL] [SP],
FORCE_NO_SCROLL_CURSORS option, and
FORCE_UPDATABLE_CURSORS option

“Using cursors in procedures” in Chapter 1, “Using Procedures and Batches,”
in the System Administration Guide: Volume 2

“Cursors in transactions” in Chapter 10, “Transactions and Versioning” in the
System Administration Guide: Volume 1

sp_iqdatatype procedure
Function Displays information about system data types and user-defined data types.

Syntax sp_iqdatatype [type-name], [type-owner], [type-type]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage type-name The name of the data type.

type-owner The name of the creator of the data type.

type-type The type of data type. Allowed values are:

• SYSTEM: displays information about system defined data types (data
types owned by user SYS or dbo) only

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 385

• ALL: displays information about user and system data types

• Any other value: displays information about user data types

The sp_iqdatatype procedure can be invoked without any parameters. If no
parameters are specified, only information about user-defined data types (data
types not owned by dbo or SYS) is displayed by default.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqdatatype NULL, NULL, SYSTEM and
sp_iqdatatype NULL, user1.

Table 7-13: sp_iqdatatype usage examples

Description The sp_iqdatatype stored procedure displays information about system and
user-defined data types in a database. User-defined data types are also referred
to as domains. Predefined domain names are not included in the sp_iqdatatype
output.

Syntax Output
sp_iqdatatype Displays information about all user-defined data

types in the database
sp_iqdatatype address Displays information about the user-defined data

type named address

sp_iqdatatype
non_existing_type

No rows returned, as the data type
non_existing_type does not exist

sp_iqdatatype NULL, DBA Displays information about all user-defined data
types owned by DBA

sp_iqdatatype address, DBA Displays information about the data type address
owned by DBA

sp_iqdatatype rowid rowid is a system-defined data type. If there is no
user-defined data type also named rowid, no rows
are returned. (By default, only user-defined data
types are returned.)

sp_iqdatatype rowid, SYS No rows returned, as the data type rowid is not a
user-defined data type (by default, only user-
defined data types are returned)

sp_iqdatatype NULL, NULL,
SYSTEM

Displays information about all system defined
data types (owned by dbo or SYS)

sp_iqdatatype rowid, NULL,
SYSTEM

Displays information about the system data type
rowid

sp_iqdatatype NULL, NULL,
'ALL'

Displays information about the rowid data type

System stored procedures

386 Sybase IQ

If you specify one or more parameters, the sp_iqdatatype result is filtered by the
specified parameters. For example, if type-name is specified, only information
about the specified data type is displayed. If type-owner is specified,
sp_iqdatatype only returns information about data types owned by the specified
owner. If no parameters are specified, sp_iqdatatype displays information about
all the user-defined data types in the database.

The sp_iqdatatype procedure returns information in the following columns:

Table 7-14: sp_iqdatatype columns

Example Display information about the user-defined data type address:

sp_iqdatatype address

type_name creator nulls width scale “default” “check”
address DBA Y 5 0 (NULL) (NULL)

See also CREATE DOMAIN statement in Reference: Statements and Options

Chapter 3, “SQL Data Types”

sp_iqdbsize procedure
Function Displays the size of the current database.

Syntax sp_iqdbsize(

[main]

)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Column name Description
type_name The name of the data type
creator The owner of the data type
nulls Y indicates the user-defined data type allows nulls; N indicates

the data type does not allow nulls.
width Displays the length of string columns, the precision of numeric

columns, and the number of bytes of storage for all other data
types

scale Displays the number of digits after the decimal point for numeric
data type columns and zero for all other data types

“default” The default value for the data type
“check” The CHECK condition for the data type

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 387

Description Returns the total size of the database. Also returns the number of pages
required to hold the database in memory and the number of IQ pages when the
database is compressed (on disk).

Table 7-15: sp_iqdbsize columns

Descriptions of sp_iqdbsize columns:

Database The path name of the current database file.

Physical Blocks An IQ database consists of one or more dbspaces. Each
dbspace has a fixed size, which is originally specified in units of megabytes.
This megabyte quantity is converted to blocks using the IQ page size and the
corresponding block size for that IQ page size. The Physical Blocks column
reflects the cumulative total of each Sybase IQ dbspace size, represented in
blocks.

For the correspondence between IQ page size and block size, see Chapter 4,
“Managing System Resources” in the Performance and Tuning Guide.

KBytes The total size of the database in kilobytes. This value is the total size
of the database in blocks (Physical Blocks in the previous sp_iqdbsize column)
multiplied by the block size. The block size depends on the IQ page size.

Pages The total number of IQ pages necessary to represent in memory all of
the data stored in tables and join indexes, as well as the metadata for these
objects. This value is always greater than or equal to the value of Compressed
Pages (the next sp_iqdbsize column).

Compressed Pages The total number of IQ pages necessary to store on disk
the data in tables and join indexes as well as the metadata for these objects. This
value is always less than or equal to the value of Pages (the previous
sp_iqdbsize column), because Sybase IQ compresses pages when the IQ page
is written from memory to disk. The sp_iqdbsize Compressed Pages column
represents the number of compressed pages.

Column name Description
Database The path name of the database file.
Physical Blocks Total database size in blocks.
KBytes Total database size in kilobytes.
Pages Total number of IQ pages.
Compressed Pages Total number of IQ pages that are compressed (on disk).

Subset of Pages.
NBlocks Total size, in IQ blocks, used to store the data in tables

and join indexes.
Catalog Blocks Total size, in IQ blocks, used to store the metadata for

tables and join indexes. Subset of NBlocks.

System stored procedures

388 Sybase IQ

NBlocks The total size in blocks used to store the data in tables and join
indexes. This value is always less than or equal to the sp_iqdbsize Physical
Blocks value.

Catalog Blocks The total size in blocks used to store the metadata for tables
and join indexes.

Example Displays size information for the database iqdemo:

sp_iqdbsize

Database
PhysicalBlocks KBytes Pages CompressedPages NBlocks CatalogBlocks
============== ====== ===== =============== ======= =============
/system1/sybase/IQ-15_1/demo/iqdemo.db

1280 522 688 257 1119 18

See also “Specifying page size” in “Overview of memory use” in Chapter 4,
“Managing System Resources” in the Performance and Tuning Guide

“Working with database objects” in Chapter 5, “Working with Database
Objects” in the System Administration Guide: Volume 1

sp_iqdbspace procedure
Function Displays detailed information about each IQ dbspace.

Syntax sp_iqdbspace [dbspace-name]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description You can use the information from iqdbspace to determine whether data must be
moved, and for data that has been moved, whether the old versions have been
deallocated. sp_iqdbspace displays this information:

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 389

Table 7-16: sp_iqdbspace columns

Table 7-17 lists the values of the block type identifiers.

Column name Description
DBSpaceName Name of the dbspace as specified in the CREATE

DBSPACE statement. Dbspace names are case-insensitive
for databases created with CASE RESPECT.

DBSpaceType Type of the dbspace (MAIN or TEMPORARY only).
Writable T (writable) or F (not writable).
Online T (online) or F (offline).
Usage Percent of dbspace currently in use by all files in the

dbspace.
TotalSize Total size of all files in the dbspace in the units B (bytes),

K (kilobytes), M (megabytes), G (gigabytes), T
(terabytes), or P (petabytes).

Reserve Total reserved space that can be added to all files in the
dbspace.

NumFiles Number of files in the dbspace.
NumRWFiles Number of read/write files in the dbspace.
Stripingon T (On) or F (Off).
StripeSize Amount of data written to the dbspace before moving to

the next dbspace, if disk striping is on.
BlkTypes Space used by both user data and internal system structures

(see Table 7-17).
OkToDrop ‘Y’ indicates the dbspace can be dropped; otherwise ‘N’.

System stored procedures

390 Sybase IQ

Table 7-17: sp_iqdbspace block types

*The multiplex commit identity block (actually 128 blocks) exists in all IQ
databases, even though it is not used by simplex databases. For information on
multiplex capability, see Using Sybase IQ Multiplex.

Example The following output displays information about dbspaces.

sp_iqdbspace;

Identifier Block type
A Active Version
B Backup Structures
C Checkpoint Log
D Database Identity
F Free list
G Global Free list Manager
H Header Blocks of the free list
I Index advice storage
M Multiplex CM*
O Old Version
T Table use
U Index use
N Column use
X Drop at checkpoint

DBSpace
Name

DBSpac
eType

Writa
ble

Onl
ine

Us
ag
e

Tot
al
Siz
e

Res
erve

Nu
m
Fil
es

Num
RWFi
les

Stripi
ngon

Str
ipe
Siz
e

Blk
Typ
es

Ok
To
Dr
op

IQ_MAIN MAIN T T 55 75M 200
M

1 1 T 1K 1H,
5169
A,
190

N

IQ__
SYSTEM_
MAIN

MAIN T T 21 300
M

50M 1 1 F 8K 1H,
7648
F,
32D,
128
M

N

IQ_SYSTE
M_
TEMP

TEMPOR
ARY

T T 1 100
M

50M 1 1 F 8K 1H,
64F,
32A

N

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 391

See also “sp_iqdbspaceinfo procedure” on page 391

“sp_iqdbspaceobjectinfo procedure” on page 394

“sp_iqindexinfo procedure” on page 421

sp_iqdbspaceinfo procedure
Function Displays the size of each object and subobject used in the specified table or join

index.

Syntax sp_iqdbspaceinfo [dbspace-name] [, owner_name] [,
object_name] [, object-type]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage dbspace_name If specified, sp_iqdbspaceinfo displays one line for each
table that has any component in the specified dbspace. Otherwise, the
procedure shows information for all dbspaces in the database.

owner_name Owner of the object. If specified, sp_iqdbspaceinfo displays
output only for tables and join indexes with the specified owner. If not
specified, sp_iqdbspaceinfo displays information on tables and join indexes for
all users in the database.

object_name Name of the table or join index . If not specified,
sp_iqdbspaceinfo displays information on all tables and join indexes in the
database.

object_type Valid object types are table (for table information) or joinindex
(for join index information). If unspecified, object type defaults to table.

All parameters are optional and any parameter may be supplied independent of
another parameter’s value.

The sp_iqdbspaceinfo stored procedure supports wildcard characters for
interpreting dbspace_name, object_name, and owner_name. It shows
information for all dbspaces that match the given pattern in the same way the
LIKE clause matches patterns inside queries.

Description sp_iqdbspaceinfo shows the DBA the amount of space used by objects that
reside on each dbspace. The DBA can use this information to determine which
objects must be relocated before a dbspace can be dropped. The sub-object
columns display sizes reported in integer quantities followed by the suffix B,
K, M, G, T, or P, representing bytes, kilobytes, megabytes, gigabytes, terabytes,
and petabytes, respectively.

System stored procedures

392 Sybase IQ

For tables, sp_iqdbspaceinfo displays sub-object sizing information for all sub-
objects (using integer quantities with the suffix B, K, M, G, T, or P). For join
indexes, the procedure displays sizing information for the join index and all of
its associated sub-objects. The output is sorted by dbspace_name,
object_name, and owner_name.

Table 7-18: sp_iqdbspaceinfo columns

Note
If you run sp_iqdbspaceinfo against a server you have started with the -r switch
(read-only), you see the error Msg 13768, Level 14, State 0: SQL
Anywhere Error -757: Modifications not permitted for read-

only database. This behavior is expected. The error does not occur on other
stored procedures such as sp_iqdbspace, sp_iqfile, sp_iqdbspaceobjectinfo or
sp_iqobjectinfo.

Examples Displays the size of all objects and sub-objects in all tables in all dbspaces in
the database:

sp_iqdbspaceinfo

dbspace_name object_type owner object_name object_id id columns

Column name Description
dbspace_name Name of the dbspace.
object_type Type of the object (table or joinindex only).
owner Name of the owner of the object.
object_name Name of the object (of type tables and join indexes only)

located on the dbspace.
object_id Global object ID of the object.
id Table id or join-index ID of the object.
columns Size of column storage space on the given dbspace.
indexes Size of index storage space on the given dbspace. Does

not use sytem-generated indexes (for example, HG
indexes in unique constraints or FP indexes).

metadata Size of storage space for metadata objects on the given
dbspace.

primary_key Size of storage space for primary key related objects on
the given dbspace.

unique_constraint Size of storage space for unique constraint-related objects
on the given dbspace.

foreign_key Size of storage space for foreign-key-related objects on
the given dbspace.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 393

iq_main table DBA emp1 3689 741 96K
iq_main table DBA iq_dummy 3686 740 24K
iq_main table DBA sale 3698 742 96K
iq_main table GROUPO Contacts 3538 732 288K
iq_main table GROUPO Customers 3515 731 240K
iq_main table GROUPO Departments 3632 738 72K
iq_main table GROUPO Employees 3641 739 408K
iq_main table GROUPO FinancialCodes 3612 736 72K
iq_main table GROUPO FinancialData 3621 737 96K
iq_main table GROUPO Products 3593 735 272K
iq_main table GROUPO SalesOrderItems 3580 734 120K
iq_main table GROUPO SalesOrders 3565 733 144K

indexes metadata primary_key unique_constraint foreign_key
0B 1.37M 0B 0B 0B
0B 464K 0B 0B 0B
0B 1.22M 0B 0B 0B
0B 5.45M 24K 0B 48K
48K 4.63M 24K 0B 0B
0B 1.78M 24K 0B 48K
0B 8.03M 24K 0B 48K
0B 1.53M 24K 0B 0B
0B 2.19M 24K 0B 48K
192K 4.67M 24K 0B 0B
0B 2.7M 24K 0B 104K
0B 3.35M 24K 0B 144K

Displays the size of all objects and sub-objects owned by a specified user in a
specified dbspace in the database:

sp_iqdbspaceinfo iq_main,GROUPO

dbspace_name object_type owner object_name object_id id columns
iq_main table GROUPO Contacts 3538 732 288K
iq_main table GROUPO Customers 3515 731 240K
iq_main table GROUPO Departments 3632 738 72K
iq_main table GROUPO Employees 3641 739 408K
iq_main table GROUPO FinancialCodes 3612 736 72K
iq_main table GROUPO FinancialData 3621 737 96K
iq_main table GROUPO Products 3593 735 272K
iq_main table GROUPO SalesOrderItems 3580 734 120K
iq_main table GROUPO SalesOrders 3565 733 144K

indexes metadata primary_key unique_constraint foreign_key
0B 5.45M 24K 0B 48K
48K 4.63M 24K 0B 0B
0B 1.78M 24K 0B 48K
0B 8.03M 24K 0B 48K
0B 1.53M 24K 0B 0B
0B 2.19M 24K 0B 48K
192K 4.67M 24K 0B 0B

System stored procedures

394 Sybase IQ

0B 2.7M 24K 0B 104K
0B 3.35M 24K 0B 144K

Displays the size of a specified object and its sub-objects owned by a specified
user in a specified dbspace in the database:

sp_iqdbspaceinfo iq_main,GROUPO,Departments

dbspace_name object_type owner object_name object_id id columns
iq_main table GROUPO Departments 3632 738 72K

indexes metadata primary_key unique_constraint foreign_key
0B 1.78M 24K 0B 48K

See also “sp_iqdbspace procedure” on page 388 and “sp_iqindexinfo procedure” on
page 421

sp_iqdbspaceobjectinfo procedure
Function Lists objects of type table and join index and their sub-objects (columns,

indexes, metadata, primary keys, unique constraints, foreign keys, and
partitions) for a given dbspace.

Syntax sp_iqdbspaceobjectinfo [dbspace-name] [, owner_name] [,
object_name] [, object-type]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage dbspace-name If specified, sp_iqdbspaceobjectinfo displays output only for
the specified dbspace. Otherwise, it shows information for all dbspaces in the
database.

owner-name Owner of the object. If specified, sp_iqdbspaceobjectinfo
displays output only for tables and join indexes with the specified owner. If not
specified, sp_iqdbspaceobjectinfo displays information for tables and join
indexes for all users in the database.

object-name Name of the table or join index. If not specified,
sp_iqdbspaceobjectinfo displays information for all tables and join indexes in
the database.

object-type Valid object types are table (for table information) or joinindex
(for join index information). If unspecified, object type defaults to table.

All parameters are optional and any parameter may be supplied independent of
the value of other parameters.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 395

The sp_iqdbspaceobjectinfo stored procedure supports wildcard characters for
interpreting dbspace_name, object_name, and owner_name. It displays
information for all dbspaces that match the given pattern in the same way as
the LIKE clause matches patterns inside queries.

Description For tables, sp_iqdbspaceobjectinfo displays summary information for all
associated sub-objects. For join indexes, it displays sizing information for the
join index and for all of its associated sub-objects. The output of the stored
procedure is sorted by dbspace_name, owner and object_name.

sp_iqdbspaceobjectinfo displays the following information, based on the input
parameter values:

Table 7-19: sp_iqdbspaceobjectinfo columns
Column name Description
dbspace_name Name of the dbspace.
object_type Table or join index.
owner Name of the owner of the object.
object_name Name of the object (of type tables and join indexes only) located on the

dbspace.
object_id Global object id of the object.
id Table id or join-index id of the object.
columns Number of table columns which are located on the given dbspace. If a column

or one of the column-partitions is located on a dbspace, it is counted to be
present on that dbspace. The result is displayed in the form n/N (n out of total
N columns of the table are on the given dbspace).

indexes Number of user defined indexes on the table which are located on the given
dbspace. Displayed in the form n/N (n out of total N indexes on the table are
on the given dbspace). This does not contain indexes which are system
generated, such as FP indexes and HG indexes in the case of unique
constraints.

metadata Boolean field (Y/N) to denote if the metadata information of the sub-object is
also located on this dbspace.

primary_key Boolean field (1/0) to denote if the primary key of the table, if any, is located
on this dbspace.

unique_constraint Number of unique constraints on the table which are located on the given
dbspace. Displayed in the form n/N (n out of total N unique constraints on the
table are in the given dbspace).

foreign_key Number of foreign_keys on the table which are located on the given dbspace.
Displayed in the form n/N (n out of total N foreign keys on the table are in the
given dbspace).

System stored procedures

396 Sybase IQ

Examples Displays information about a specific dbspace in the database:

sp_iqdbspaceobjectinfo iq_main

dbspace_name object_type owner object_name object_id id columns
iq_main table DBA emp1 3689 741 4/4
iq_main table DBA iq_dummy 3686 740 1/1
iq_main table DBA sale 3698 742 4/4
iq_main table GROUPO Contacts 3538 732 12/12
iq_main table GROUPO Customers 3515 731 10/10
iq_main table GROUPO Departments 3632 738 3/3
iq_main table GROUPO Employees 3641 739 21/21
iq_main table GROUPO FinancialCodes 3612 736 3/3
iq_main table GROUPO FinancialData 3621 737 4/4
iq_main table GROUPO Products 3593 735 8/8
iq_main table GROUPO SalesOrderItems 3580 734 5/5
iq_main table GROUPO SalesOrders 3565 733 6/6

indexes metadata primary_key unique_constraint foreign_key partitions
0/0 Y 0 0/0 0/0 0/0
0/0 Y 0 0/0 0/0 0/0
0/0 Y 0 0/0 0/0 0/0
0/0 Y 1 0/0 1/1 0/0
1/1 Y 1 0/0 0/0 0/0
0/0 Y 1 0/0 1/1 0/0
0/0 Y 1 0/0 1/1 0/0
0/0 Y 1 0/0 0/0 0/0
0/0 Y 1 0/0 1/1 0/0
4/4 Y 1 0/0 0/0 0/0
0/0 Y 1 0/0 2/2 0/0
0/0 Y 1 0/0 3/3 0/0

Displays information about the objects owned by a specific user in a specific
dbspace in the database:

sp_iqdbspaceobjectinfo iq_main,GROUPO

dbspace_name object_type owner object_name object_id id columns
iq_main table GROUPO Contacts 3538 732 12/12
iq_main table GROUPO Customers 3515 731 10/10
iq_main table GROUPO Departments 3632 738 3/3
iq_main table GROUPO Employees 3641 739 21/21
iq_main table GROUPO FinancialCodes 3612 736 3/3
iq_main table GROUPO FinancialData 3621 737 4/4
iq_main table GROUPO Products 3593 735 8/8

partitions Number of partitions of the table which are located on the given dbspace.
Displayed in the form n/N (n out of total N partitions of the table are in the
given dbspace).

Column name Description

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 397

iq_main table GROUPO SalesOrderItems 3580 734 5/5
iq_main table GROUPO SalesOrders 3565 733 6/6

indexes metadata primary_key unique_constraint foreign_key partitions
0/0 Y 1 0/0 1/1 0/0
1/1 Y 1 0/0 0/0 0/0
0/0 Y 1 0/0 1/1 0/0
0/0 Y 1 0/0 1/1 0/0
0/0 Y 1 0/0 0/0 0/0
0/0 Y 1 0/0 1/1 0/0
4/4 Y 1 0/0 0/0 0/0
0/0 Y 1 0/0 2/2 0/0
0/0 Y 1 0/0 3/3 0/0

Uses sp_iqdbspaceobjectinfo to construct commands that can be used to move
objects. In this example, the commands move all tables on dbspace_x to
dbspace_y.

SELECT 'ALTER TABLE ' || owner || '.' ||
object_name || ' MOVE TO dbspace_y;'
FROM sp_iqdbspaceobjectinfo()
WHERE object_type = 'table' AND
dbspace_name = 'dbspace_x';

The following ALTER TABLE commands are the result:

ALTER TABLE DBA.dt1 MOVE TO dbspace_y;
ALTER TABLE DBA.dt2 MOVE TO dbspace_y;
ALTER TABLE DBA.dt3 MOVE TO dbspace_y;

See also “sp_iqdbspace procedure” on page 388 and “sp_iqindexinfo procedure” on
page 421

sp_iqdbstatistics procedure
Function Reports results of the most recent sp_iqcheckdb.

Syntax sp_iqdbstatistics

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Displays the database statistics collected by the most recent execution of
sp_iqcheckdb.

Example The following example shows the output from sp_iqdbstatistics. For this
example, the most recent execution of sp_iqcheckdb was the command
sp_iqcheckdb 'allocation database'.

System stored procedures

398 Sybase IQ

 DB Statistics Value Flags
=====================================|===========================|=====
DBCC Allocation Mode Report | |
=====================================|===========================|=====
** DBCC Status |Errors Detected |*****

DBCC Work units Dispatched |163 |
DBCC Work units Completed |163 |

=====================================|===========================|=====
Allocation Summary | |
=====================================|===========================|=====

Blocks Total |8192 |
Blocks in Current Version |4954 |
Blocks in All Versions |4954 |
Blocks in Use |4986 |
% Blocks in Use |60 |

** Blocks Leaked |32 |*****
| |

=====================================|===========================|=====
Allocation Statistics | |
=====================================|===========================|=====

Blocks Created in Current TXN |382 |
Blocks To Drop in Current TXN |382 |
Marked Logical Blocks |8064 |
Marked Physical Blocks |4954 |
Marked Pages |504 |
Blocks in Freelist |126553 |
Imaginary Blocks |121567 |
Highest PBN in Use |5432 |

** 1st Unowned PBN |452 |*****
Total Free Blocks |3206 |
Usable Free Blocks |3125 |
% Free Space Fragmented |2 |
Max Blocks Per Page |16 |
1 Block Page Count |97 |
3 Block Page Count |153 |
4 Block Page Count |14 |
...
9 Block Hole Count |2 |
16 Block Hole Count |194 |

| |
Database Objects Checked |1 |
B-Array Count |1 |
Blockmap Identity Count |1 |

=====================================|===========================|=====
Connection Statistics | |
=====================================|===========================|=====

See also For more information on the use of sp_iqcheckdb and the interpretation of the
sp_iqcheckdb output, see Chapter 13, “System Recovery and Database
Repair,” in the System Administration Guide: Volume 1.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 399

sp_iqdroplogin procedure
Function Drops a Sybase IQ user account.

Syntax1 call sp_iqdroplogin (‘userid’)

Syntax2 sp_iqdroplogin ‘userid’

Syntax3 sp_iqdroplogin userid

Syntax4 sp_iqdroplogin (‘userid’)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage userid User ID of the user to drop.

Description sp_iqdroplogin drops the specified user.

Examples The following stored procedure calls remove the user rose.

sp_iqdroplogin 'rose'

sp_iqdroplogin rose

call sp_iqdroplogin ('rose')

See also “sp_iqaddlogin procedure” on page 355

REVOKE statement in Reference: Statements and Options

Chapter 8, “Managing User IDs and Permissions,” in System Administration
Guide: Volume 1

sp_iqemptyfile procedure
Function Empties a dbspace file and moves the objects in the file to another available

read-write dbpace file.

Syntax sp_iqemptyfile (logical-file--name)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

System stored procedures

400 Sybase IQ

Description sp_iqemptyfile empties a dbspace file. The dbspace must be read-only before
you can execute the sp_iqemptyfile procedure. The procedure moves the objects
in the file to another available read-write dbspace file. If there is not other read-
write dbspace file available, then Sybase IQ displays an error message.

Note In a multiplex environment, you can run sp_iqemptyfile only on the
coordinator.

There must be one read-write dbspace available in order for the procedure to
succeed.

Example The following empties dbspace dbspace1:

sp_iqemptyfile 'dbspace1'

sp_iqestjoin procedure
Function Estimates the space needed to create join indexes for the tables you specify.

Syntax sp_iqestjoin (table1_name, table1_row_#, table2_name,
table2_row_#, relation, iq_page_size)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns the amount of space a join index uses based on the tables being joined.
This procedure assumes that the database was created with the default block
size for the specified IQ page size (or else the estimate is incorrect).

If you specify unqualified table names, then ensure that you are the owner of
the tables being joined. If you are not the table owner, then provide a qualified
table name for each table, such as 'owner.tablename'.

Table 7-20 lists the sp_iqestjoin parameters.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 401

Table 7-20: sp_iqestjoin parameters

Example call sp_iqestjoin ('Customers', 1500000,
'SalesOrders', 15000000, 'one>>many', 65536)

Name Datatype Description
table1_name char(256) Name of the first table in the join.
table1_row_# int Number of rows in the first table that

participates in the join.
table2_name char(256) Name of the second table in the join.
table2_row_# int Number of rows in the second table that

participates in the join.
relation char(9) Type of join, which can be “one>>many” or

“one>>one” (do not leave any spaces between
the words and the operator). The default is
“one>>many”.

iq_page_size smallint The page size defined for the IQ segment of the
database (must be a power of 2 between 1024
and 524288; the default is 131072).

Cases Indexsize Create time Msg
Table1:Customers
Rows: 1500000
Columns:
8
Width:
223
Table2: SalesOrders
Rows: 15000000
Columns:
9
Width:
134
IQpagesize:
65536
Min Case 48001024 3h0m/CPU
Max Case 95449088 9h6m/CPU
Avg Case 70496256 5h53m/CPU

System stored procedures

402 Sybase IQ

sp_iqestdbspaces procedure
Function Estimates the number and size of dbspaces needed for a given total index size.

Syntax sp_iqestdbspaces (db_size_in_bytes, iq_page_size,
min_#_of_bytes, max_#_of_bytes)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Displays information about the number and size of dbspace segments based on
the size of the database, the IQ page size, and the range of bytes per dbspace
segment. This procedure assumes that the database was created with the default
block size for the specified IQ page size (or else the estimate is incorrect).
Table 7-21 lists the sp_iqestdbspaces parameters.

Table 7-21: sp_iqestdbspaces parameters

Usage sp_iqestdbspaces displays four types of recommendations, depending on how
much of the data is unique:

min If there is little variation in data, you can choose to create only the
dbspace segments of the sizes recommended as min. These recommendations
reflect the best possible compression on data with the least possible variation.

avg If your data has an average amount of variation, create the dbspace
segments recommended as min, plus additional segments of the sizes
recommended as avg.

max If your data has a high degree of variation (many unique values), create
the dbspace segments recommended as min, avg, and max.

spare If you are uncertain about the number of unique values in your data,
create the dbspace segments recommended as min, avg, max, and spare. You
can always delete unused segments after loading your data, but creating too
few can cost you some time.

Name Datatype Description
db_size_in_bytes decimal(16) Size of the database in bytes.
iq_page_size smallint The page size defined for the IQ segment of

the database (must be a power of 2 between
65536 and 524288; the default is 131072).

min_#_of_bytes int The minimum number of bytes per dbspace
segment. The default is 20,000,000
(20MB).

max_#_of_bytes int The maximum number of bytes per dbspace
segment. The default is 2,146,304,000
(2.146GB).

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 403

❖ Using sp_iqestdbspaces with other system stored procedures

1 Run sp_iqestjoin for all the table pairs you expect to join frequently.

2 Select one of the suggested index sizes for each pair of tables.

3 Total the index sizes you selected for all tables.

4 Run sp_iqestspace for all tables.

5 Total all of the RAW DATA index sizes returned by sp_iqestspace.

6 Add the total from step 3 to the total from step 5 to determine total index
size.

7 Use the total index size calculated in step 6 as the db_size_in_bytes
parameter in sp_iqestdbspaces.

Results of sp_iqestdbspaces are only estimates, based on the average size of an
index. The actual size depends on the data stored in the tables, particularly on
how much variation there is in the data.

Sybase strongly recommends that you create the spare dbspace segments,
because you can delete them later if they are unused.

Example sp_iqestdbspaces 12000000000, 65536, 500000000,
2146304000

This example estimates the size and number of dbspace segments needed for a
12GB database. Sybase IQ recommends that you create a minimum of 3
segments (listed as min) for the best compression, if you expect little
uniqueness in the data. If the data has an average amount of variation, 1 more
segment (listed as avg) should be created. Data with a lot of variation (many
unique values, requiring extensive indexing), may require 1 more segment
(listed as max). You can ensure that your initial load succeeds by creating a
spare segment of 1200001024 bytes. Once you have loaded the database, you
can delete any unused dbspace segments.

dbspace files Type Size Msg
1 min 2146304000
2 min 2146304000
3 min 507392000
4 avg 2146304000
5 max 2053697536
6 spare 1200001024

System stored procedures

404 Sybase IQ

sp_iqestspace procedure
Function Estimates the amount of space needed to create an index based on the number

of rows in the table.

Syntax sp_iqestspace (table_name, #_of_rows, iq_page_size)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Displays the amount of space that a database requires based on the number of
rows in the underlying database tables and on the database IQ page size. This
procedure assumes that the database was created with the default block size for
the specified IQ page size (or else the estimate is incorrect). Table 7-22 lists the
sp_iqestspace parameters.

Table 7-22: sp_iqestspace parameters

sp_iqevent procedure
Function Displays information about system and user-defined events.

Syntax sp_iqevent [event-name], [event-owner], [event-type]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage event-name The name of the event.

event-owner The owner of the event.

event-type The type of event. Allowed values are:

• SYSTEM: displays information about system events (events owned by user
SYS or dbo) only

• ALL: displays information about user and system events

• Any other value: displays information about user events

Name Datatype Description
table_name char(256) Name of the table
#_of_rows int Number of rows in the table
iq_page_size smallint The page size defined for the IQ segment of

the database (must be a power of 2 between
65536 and 524288; the default is 131072)

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 405

The sp_iqevent procedure can be invoked without any parameters. If no
parameters are specified, only information about user events (events not owned
by dbo or SYS) is displayed by default.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqevent NULL, NULL, SYSTEM and
sp_iqevent NULL, user1.

Table 7-23: sp_iqevent usage examples

Description The sp_iqevent stored event displays information about events in a database. If
you specify one or more parameters, the result is filtered by the specified
parameters. For example, if event-name is specified, only information about
the specified event is displayed. If event-owner is specified, sp_iqevent only
returns information about events owned by the specified owner. If no
parameters are specified, sp_iqevent displays information about all the user
events in the database.

The sp_iqevent procedure returns information in the following columns:

Syntax Output
sp_iqevent Displays information about all user events in the

database
sp_iqevent e1 Displays information about the event e1

sp_iqevent
non_existing_event

No rows returned, as the event non_existing_event
does not exist

sp_iqevent NULL, DBA Displays information about all events owned by
DBA

sp_iqevent e1, DBA Displays information about the event e1 owned by
DBA

sp_iqevent ev_iqbegintxn ev_iqbegintxn is a system-defined event. If there is
no user-defined event also named ev_iqbegintxn,
no rows are returned. (By default only user-
defined events are returned.)

sp_iqevent ev_iqbegintxn, dbo No rows returned, as the event ev_iqbegintxn is not
a user event (by default only user events returned)

sp_iqevent NULL, NULL,
SYSTEM

Displays information about all system events
(owned by dbo or SYS)

sp_iqevent ev_iqbegintxn,
NULL, SYSTEM

Displays information about the system event
ev_iqbegintxn

sp_iqevent ev_iqbegintxn,
dbo, ALL

Displays information about the system event
ev_iqbegintxn owned by dbo

System stored procedures

406 Sybase IQ

Table 7-24: sp_iqevent columns

Examples Display information about the user-defined event e1:

sp_iqevent e1

event_name event_owner event_type enabled action
e1 DBA (NULL) Y (NULL)

condition location remarks
(NULL) A (NULL)

Display information about all system events:

sp_iqevent NULL, NULL, SYSTEM

event_name event_owner event_type enabled action
ev_iqbegintxn dbo IQTLVAvailable Y begin call

dbo.sp_iqlog...
ev_iqmpxcompact dbo (NULL) N begin Declare

_Catalog...

condition location remarks
(NULL) A (NULL)
(NULL) A (NULL)

See also CREATE EVENT statement in Reference: Statements and Options

Chapter 6, “Automating Tasks Using Schedules and Events” in the System
Administration Guide: Volume 2

Column name Description
event_name The name of the event
event_owner The owner of the event
event_type For system events, the event type as listed in the

SYSEVENTTYPE system table
enabled Indicates whether or not the event is allowed to fire (Y/N)
action The event handler definition
condition The WHERE condition used to control firing of the event handler
location The location where the event is allowed to fire:

• C = consolidated
• R = remote
• A = all

remarks A comment string

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 407

sp_iqfile procedure
Function Displays detailed information about each dbfile in a dbspace.

Syntax sp_iqfile [dbspace-name]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description sp_iqfile displays the usage, properties, and types of data in each dbfile in a
dbspace. You can use this information to determine whether data must be
moved, and for data that has been moved, whether the old versions have been
deallocated.

sp_iqfile displays the following information:

Table 7-25: sp_iqfile columns

Table 7-26 lists the values of the block type identifiers.

Column name Description
DBSpaceName Name of the dbspace as specified in the CREATE

DBSPACE statement. Dbspace names are case-
insensitive for databases created with CASE RESPECT.

DBFileName Logical file name.
Path Location of the physical file or raw partition.
SegmentType Type of dbspace (MAIN or TEMPORARY).
RWMode Mode of the dbspace: read-write (RW) or read-only

(RO).
Online T (online) or F (offline).
Usage Percent of dbspace currently in use by this file in the

dbspace.
DBFileSize Current size of the file or raw partition. For a raw

partition, this size value can be less than the physical
size.

Reserve Reserved space that can be added to this file in the
dbspace.

StripeSize Amount of data written to the file before moving to the
next file, if disk striping is on.

BlkTypes Space used by both user data and internal system
structures (see Table 7-26 for identifier values).

FirstBlk First IQ block number assigned to the file.
LastBlk Last IQ block number assigned to the file.
OkToDrop ‘Y’ indicates the file can be dropped; otherwise ‘N’.

System stored procedures

408 Sybase IQ

Table 7-26: sp_iqfile block types

*The multiplex commit identity block (actually 128 blocks) exists in all IQ
databases, even though it is not used by simplex databases.

Example Displays information about the files in the dbspaces:

sp_iqfile;

DBSpace DBFile Path Segment RWMode
Name Name Type

IQ_SYSTEM_MAIN IQ_SYSTEM_MAIN /sunopt/users/user1/iqdemo.iq MAIN RW
IQ_SYSTEM_TEMP IQ_SYSTEM_TEMP /sunopt/users/user1/iqdemo.iqtmp TEMPORARY RW

Online Usage DBFileSize Reserve Stripesize BlkTypes FirstBlk LastBlk OkToDrop
T 21 300M 50M 8K 1H,7648F, 1 38400 N

32D,128M
T 1 100M 50M 8K 1H,64F,16A 1 12800 N

See also “sp_iqdbspaceinfo procedure” on page 391, and “sp_iqindexinfo procedure”
on page 421

Chapter 5, “Working with Database Objects,” in the Sybase IQ System
Administration Guide

sp_iqhelp procedure
Function Displays information about system and user-defined objects and data types.

Identifier Block Type
A Active Version
B Backup Structures
C Checkpoint Log
D Database Identity
F Free list
G Global Free list Manager
H Header Blocks of the Free List
I Index Advice Storage
M Multiplex CM*
O Old Version
T Table Use
U Index Use
N Column Use
X Drop at Checkpoint

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 409

Syntax sp_iqhelp [obj-name], [obj-owner], [obj-category], [obj-type]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage obj-name The name of the object.

obj-owner The owner of the object.

obj-category An optional parameter that specifies the category of the object.

Table 7-27: sp_iqhelp obj-category parameter values

Columns, constraints, and indexes are associated with tables and cannot be
queried directly. When a table is queried, the information about columns,
indexes, and constraints associated with that table is displayed.

If the specified object category is not one of the allowed values, an “Invalid
object category” error is returned.

obj-type The type of object. Allowed values are:

• SYSTEM: displays information about system objects (objects owned by
user SYS or dbo) only

• ALL: displays information about all objects

By default, only information about non-system objects is displayed. If the
specified object type is not SYSTEM or ALL, an “Invalid object type”
error is returned.

The sp_iqhelp procedure can be invoked without any parameters. If no
parameters are specified, sp_iqhelp displays information about all independent
objects in the database, that is, base tables, views, stored procedures, functions,
events, and data types.

If you do not specify any of the first three parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqhelp NULL, NULL, NULL, SYSTEM and
sp_iqhelp NULL, user1, “table”.

Enclose the obj-category parameter in single or double quotes., except when
NULL.

object-type parameter Specifies
“table” The object is a base table
“view” The object is an view
“procedure” The object is a stored procedure or function
“event” The object is an event
“datatype” The object is a system or user-defined data type

System stored procedures

410 Sybase IQ

If sp_iqhelp does not find an object in the database that satisfies the specified
description, the error “No object found for the given description”
is returned.

Table 7-28: sp_iqhelp usage examples

Description The sp_iqhelp stored procedure displays information about system and user-
defined objects and data types in an IQ database. Objects supported by
sp_iqhelp are tables, views, columns, indexes, join indexes, constraints, stored
procedures, functions, events, and data types.

Syntax Output
sp_iqhelp Displays summary information about all user-

defined tables, views, procedures, events, and data
types in the database

sp_iqhelp t1, u1, “table” Displays information about table t1 owned by user
u1 and the columns, indexes, and constraints
associated with t1

sp_iqhelp NULL, u1, “view” Displays information about view v1 owned by user
u1 and the columns associated with v1

sp_iqhelp sp2 Displays information about the procedure sp2 and
the parameters of sp2

sp_iqhelp e1 Displays information about the event e1

sp_iqhelp dt1 Displays information about the data type dt1

sp_iqhelp NULL, NULL,
NULL, SYSTEM

Displays summary information about all system
objects (owned by dbo or SYS)

sp_iqhelp non_existing_obj Error “Object ‘non_existing_obj’ not
found” returned, as the object non_existing_obj
does not exist

sp_iqhelp NULL,
non_existing_user

Error “User ‘non_existing_user’ not
found” returned, as the user non_existing_user
does not exist

sp_iqhelp t1, NULL, “apple” Error “Invalid object category
‘apple’” returned, as “apple” is not an allowed
value for obj-category

sp_iqhelp t1, NULL, NULL,
“USER”

Error “Invalid object type ‘USER’”
returned, as “USER” is not an allowed value for
obj-type

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 411

If you specify one or more parameters, the result is filtered by the specified
parameters. For example, if obj-name is specified, only information about the
specified object is displayed. If obj-owner is specified, sp_iqhelp returns
information only about objects owned by the specified owner. If no parameters
are specified, sp_iqhelp displays summary information about all user-defined
tables, views, procedures, events, and data types in the database.

The sp_iqhelp procedure returns either summary or detailed information,
depending on whether the specified parameters match multiple objects or a
single object. The output columns of sp_iqhelp are similar to the columns
displayed by the stored procedures sp_iqtable, sp_iqindex, sp_iqview, and
sp_iqconstraint.

When multiple objects match the specified sp_iqhelp parameters, sp_iqhelp
displays summary information about those objects.

Table 7-29: sp_iqhelp summary information

When a single object matches the specified sp_iqhelp parameters, sp_iqhelp
displays detailed information about the object.

Object type Columns displayed
base table table_name, table_owner, server_type, location,

table_constraints, remarks
view view_name, view_creator, view_def, server_type, location,

remarks
stored procedure proc_name, proc_creator, proc_defn, replicate, srvid,

remarks
function proc_name, proc_creator, proc_defn, replicate, remarks
event event_name, event_creator, enabled, location, event_type,

action, external_action, condition, remarks
system and user-
defined data types

type_name, creator, nulls, width, scale, default, check

System stored procedures

412 Sybase IQ

Table 7-30: sp_iqhelp detailed information

For descriptions of the individual output columns listed in Table 7-30, refer to
the descriptions of the following stored procedures:

• table: “sp_iqtable procedure” on page 472

Object type Description Columns
 table Displays information about the specified

base table, its columns, indexes,
constraints, and join indexes (if the table
participates in any join indexes)

• Table columns: table_name, table_owner,
server_type, location, table_constraints, remarks

• Column columns: column_name, domain_name,
width, scale, nulls, default, check, pkey,
user_type, cardinality, est_cardinality, remarks

• Index columns: index_name, column_name,
index_type, unique_index, location, remarks

• Constraint columns: constraint_name (role),
column_name, index_name, constraint_type,
foreigntable_name, foreigntable_owner,
foreigncolumn_name, foreignindex_name,
location

• Join index columns: joinindex_name, creator,
left_table_name, left_table_owner,
left_column_name, join_type, right_table_name,
right_table_owner, right_column_name,
key_type, valid, remarks

view Displays information about the specified
view and its columns

• View columns: view_name, view_creator,
view_def, server_type, location, remarks

• Column columns: column_name, domain_name,
width, scale, nulls, default, check, pkey,
user_type, cardinality, est_cardinality, remarks

stored procedure Displays information about the specified
procedure and its parameters

• Procedure columns: proc_name, proc_creator,
proc_defn, replicate, srvid, remarks

• Parameter columns: parameter_name, type,
width, scale, default, mode

function Displays information about the specified
function and its parameters

• Function columns: proc_name, proc_creator,
proc_defn, replicate, srvid, remarks

• Parameter columns: parameter_name, type,
width, scale, default, mode

event Displays information about the specified
event

• Event columns: event_name, event_creator,
enabled, location, event_type, action,
external_action, condition, remarks

data type Displays information about the specified
data type

• Data type columns: type_name, creator, nulls,
width, scale, default, check

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 413

• column: “sp_iqcolumn procedure” on page 370

• index: “sp_iqindex and sp_iqindex_alt procedures” on page 415

• constraint: “sp_iqconstraint procedure” on page 377

• join index: “sp_iqjoinindex procedure” on page 427

• view: “sp_iqview procedure” on page 486 and the Adaptive Server
Enterprise catalog procedure sp_columns (for view columns)

• stored procedure and function: “sp_iqprocedure procedure” on page 443
and “sp_iqprocparm procedure” on page 446 (for procedure parameters)

• event: “sp_iqevent procedure” on page 404

• data type: “sp_iqdatatype procedure” on page 384

Adaptive Server Enterprise compatibility The Sybase IQ sp_iqhelp stored
procedure is similar to the Adaptive Server Enterprise sp_help procedure,
which displays information about any database object listed in the
SYSOBJECTS system table and about system and user-defined data types.

Sybase IQ has some architectural differences from Adaptive Server in terms of
types of objects supported and the namespace of objects. In Adaptive Server,
all objects (tables, views, stored procedures, logs, rules, defaults, triggers,
check constraints, referential constraints, and temporary objects) are stored in
the SYSOBJECTS system table and are in the same namespace. The objects
supported by Sybase IQ (tables, views, stored procedures, events, primary
keys, and unique, check, and referential constraints) are stored in different
system tables and are in different namespaces. For example, in Sybase IQ a
table can have the same name as an event or a stored procedure.

Because of the architectural differences between Sybase IQ and Adaptive
Server, the types of objects supported by and the syntax of Sybase IQ sp_iqhelp
are different from the supported objects and syntax of Adaptive Server sp_help;
however, the type of information about database objects that is displayed by
both stored procedures is similar.

System stored procedures

414 Sybase IQ

Examples Display detailed information about the table sale:

sp_iqhelp sale

 Table_name Table_owner Server_type Location dbspace_id isPartitioned
table_constraints

========== =========== ========== ======= == ======= =============

 sale DBA IQ Main 16387 N

Remarks table_constraints
======= ==================

(NULL) (NULL)

column_name domain_name width scale nulls default cardinality
========== =========== ===== ===== ===== ======= ===========
prod_id integer 4 0 Y (NULL) 0
month_num integer 4 0 Y (NULL) 0
rep_id integer 4 0 Y (NULL) 0
sales integer 4 0 Y (NULL) 0

est_cardinality isPartitioned remarks check
============== ============= ======= =====
0 N (NULL) (NULL)
0 N (NULL) (NULL)
0 N (NULL) (NULL)
0 N (NULL) (NULL)

index_name column_name index_type unique_index location
========== =========== =========== =========== ========
ASIQ_IDX_T463_C2_FP month_num FP N Main
ASIQ_IDX_T463_C1_FP prod_id FP N Main
ASIQ_IDX_T463_C3_FP rep_id FP N Main
ASIQ_IDX_T463_C4_FP sales FP N Main

remarks
=======
(NULL)
(NULL)
(NULL)
(NULL)

Display detailed information about the procedure sp_customer_list:

sp_iqhelp sp_customer_list

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 415

proc_name proc_owner proc_defn
========== =========== =========
sp_customer_list DBA create procedure DBA.sp_customer_list()

result(id integer company_name char(35))
begin
select id company_name from Customers
end

replicate srvid remarks
========= ===== =======
N (NULL) (NULL)

parm_name parm_type parm_mode domain_name width scale
========= ========= ========= =========== ===== =====
id result out integer 4 0
company_name result out char 35 0

default
=======
(NULL)

sp_iqindex and sp_iqindex_alt procedures
Function Lists information about indexes.

Syntax 1 sp_iqindex ([table_name],[column_name],[table_owner])

Syntax 2 sp_iqindex [table_name='tablename'],
[column_name='columnname'],[table_owner='tableowner']

Syntax 3 sp_iqindex_alt ([table_name],[column_name],[table_owner])

Syntax 4 sp_iqindex_alt [table_name='tablename'],
[column_name='columnname'],[table_owner='tableowner']

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage Syntax1 If you do not specify either of the first two parameters, but specify
the next parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqindex NULL,NULL,DBA and sp_iqindex
Departments,NULL,DBA.

Syntax2 You can specify the parameters in any order. Enclose them in single
quotes.

Syntax 3 and 4 Produces slightly different output when a multicolumn index
is present. Allows the same options as Syntax 1 and 2.

System stored procedures

416 Sybase IQ

Description Displays information about indexes in the database. Specifying one of the
parameters returns the indexes from only that table, column, or tables owned
by the specified user. Specifying more than one parameter filters the results by
all of the parameters specified. Specifying no parameters returns all indexes for
all tables in the database.

Table 7-31: sp_iqindex and sp_iqindex_alt columns

sp_iqindex always produces one line per index. sp_iqindex_alt produces one
line per index per column if there is a multicolumn index.

Examples The following variations in syntax both return all indexes on columns with the
name DepartmentID:

call sp_iqindex (NULL,'DepartmentID')
sp_iqindex column_name='DepartmentID'

The following variations in syntax both return all indexes in the table
Departments that is owned by table owner GROUPO:

sp_iqindex Departments,NULL,GROUPO
sp_iqindex table_name='Departments',table_owner='DBA'

Column name Description
table_name The name of the table
table_owner The owner of the table
column_name The name of the column; multiple names can appear in

a multicolumn index
index_type The abbreviated index type (for example, HG, LF)
index_name The name of the index
unique_index 'U' indicates the index is a unique index; otherwise, 'N'
location TEMP = IQ temporary store, MAIN = IQ store,

SYSTEM = catalog store
remarks User comments added with the COMMENT statement

table_
name

table
_
owne
r

column
_
name

index
_
type index_name

unique
_
index

locatio
n

dbspac
e_id

remark
s

Departme
nts

GRO
UPO

Departm
entID

FP ASIQ_IDX_T201_C1_
FP

N Main 16387 (NULL)

Departme
nts

GRO
UPO

Departm
entID

HG ASIQ_IDX_T201_C1_
HG

U Main 16387 (NULL)

Employee
s

GRO
UPO

Departm
entID

FP ASIQ_IDX_T202_C5_
FP

N Main 16387 (NULL)

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 417

The following variations in syntax for sp_iqindex_alt both return indexes on the
table Employees that contain the column City. The index emp_loc is a
multicolumn index on the columns City and State. sp_iqindex_alt displays one
row per column for a multicolumn index.

sp_iqindex_alt Employees,City
sp_iqindex_alt table_name='Employees',

column_name='City'

The output from sp_iqindex for the same table and column is slightly different:

sp_iqindex Employees,City
sp_iqindex table_name='Employee',column_name='City'

table_
name

table
_
owne
r

column_
name

index
_
type index_name

unique
_
index

locatio
n

dbspa
ce_id

remark
s

Departme
nts

GRO
UPO

Department
HeadID

FP ASIQ_IDX_T201_C3_
FP

N Main 16387 (NULL)

Departme
nts

GRO
UPO

Department
ID

FP ASIQ_IDX_T201_C1_
FP

N Main 16387 (NULL)

Departme
nts

GRO
UPO

Department
ID

HG ASIQ_IDX_T201_C1_
HG

U Main 16387 (NULL)

Departme
nts

GRO
UPO

Department
Name

FP ASIQ_IDX_T201_C2_
FP

N Main 16387 (NULL)

table_
name

table_
owner

column_
name

index
_
type index_name

unique_
index

dbspac
e_id

remark
s

Employees GROUP
O

City FP ASIQ_IDX_T452_C7_F
P

N 16387 (NULL)

Employees GROUP
O

City HG emp_loc N 16387 (NULL)

Employees GROUP
O

State HG emp_loc N 16387 (NULL)

table_
name

table
_
owne
r

column_
name

index
_
type index_name

unique
_
index

dbspa
ce_id

locatio
n

remark
s

Employe
es

GRO
UPO

City FP ASIQ_IDX_T452_C7_
FP

N 16387 Main (NULL)

System stored procedures

418 Sybase IQ

See also “FP_LOOKUP_SIZE option,” “INDEX_ADVISOR option,” and
“MINIMIZE_STORAGE option” in Chapter 2, “Database Options” in
Reference: Statements and Options

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

sp_iqindexadvice procedure
Function Displays stored index advice messages. Optionally clears advice storage.

Syntax sp_iqindexadvice ([resetflag])

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage resetflag Lets the caller clear the index advice storage. If resetflag is
nonzero, all advice is removed after the last row has been retrieved.

Description Allows users to query aggregated index advisor messages using SQL.
Information can be used to help decide which indexes or schema changes will
affect the most queries.

Table 7-32 lists INDEX_ADVISOR columns.

Table 7-32: sp_iqindexadvice columns

Examples Table 7-33 illustrates sample output from the sp_iqindexadvice procedure.

Employe
es

GRO
UPO

City,State HG emp_loc N 16387 Main (NULL)

table_
name

table
_
owne
r

column_
name

index
_
type index_name

unique
_
index

dbspa
ce_id

locatio
n

remark
s

Column name Description
Advice Unique advice message
NInst Number of instances of message
LastDT Last date/time advice was generated

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 419

Table 7-33: Sample sp_iqindexadvice output

See also “sp_iqcolumnuse procedure” on page 372, “sp_iqdbspace procedure” on page
388, “sp_iqindexuse procedure” on page 426, “sp_iqtableuse procedure” on
page 477, “sp_iqunusedcolumn procedure” on page 481, “sp_iqunusedindex
procedure” on page 482, “sp_iqunusedtable procedure” on page 483, and
“sp_iqworkmon procedure” on page 490

“FP_LOOKUP_SIZE option,” “INDEX_ADVISOR option,” and
“MINIMIZE_STORAGE option” in Chapter 2, “Database Options” in
Reference: Statements and Options

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

sp_iqindexfragmentation procedure
Function Reports information about the percentage of page space taken up within the B-

trees, garrays, and bitmap structures in Sybase IQ indexes.

For garrays, the fill percentage calculation does not take into account the
reserved space within the garray groups, which is controlled by the
GARRAY_FILL_FACTOR_PERCENT option.

Syntax dbo.sp_iqindexfragmentation (‘target ‘)

target: table table-name | index index-name [...]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage table-name Target table table-name reports on all nondefault indexes in the
named table.

index-name Target index index-name reports on the named index. Each
index-name is a qualified index name. You can specify multiple indexes within
the table, but you must repeat the index keyword with each index specified.

Advice NInst LastDT
Add a CMP index on DBA.tb (c2, c3)
Predicate: (tb.c2 = tb.c3)

2073 2009-04-07 16:37:31.000

Convert HG index on DBA.tb.c4 to a unique
HG

812 2009-04-06 10:01:15.000

Join Key Columns DBA.ta.c1 and DBA.tb.c1
have mismatched data types

911 2009-02-25 20:59:01.000

System stored procedures

420 Sybase IQ

Example Reports the internal index fragmentation for nonunique HG index cidhg in table
Customers:

dbo.sp_iqindexfragmentation (‘index customers.cidhg ‘)

According to this output, of the 182 B-tree pages in nonunique HG index cidhg,
2 are between 61% and 70% full, 138 are 71% to 80% full, 24 are 81% - 90%
full, and 18 are 91% - 100% full. Usage for garray and bitmap pages is reported
in the same manner. All percentages are truncated to the nearest percentage
point. HG indexes also display the value of option
GARRAY_FILL_FACTOR_PERCENT. Those index types that use a B-tree also
display the number of node (nonleaf) pages. These are HG, LF, WD, DATE, and
DTTM.

If an error occurred during execution of the stored procedure for this index, the
SQLCODE would be nonzero.

See also “GARRAY_FILL_FACTOR_PERCENT option” and
“GARRAY_PAGE_SPLIT_PAD_PERCENT option,” Chapter 2, “Database
Options,” in Reference: Building Blocks, Tables, and Procedures.

“FP_LOOKUP_SIZE option,” “INDEX_ADVISOR option,” and
“MINIMIZE_STORAGE option” in Chapter 2, “Database Options” in
Reference: Statements and Options

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

Index Index type btree node pages GARRAY_FILL_FAC
TOR_PERCENT

dba.customers.cidhg HG 3 75
SQLCODE 0

Fill Percent btree pages garray pages bitmap pages
0 - 10% 0 0 0
11 - 20% 0 0 0
21 - 30% 0 0 0
31-40% 0 0 22
41 - 50% 0 0 0
51 - 60% 0 0 10
61 - 70% 2 0 120
71 - 80% 138 3 64
81 - 90% 24 122 14
91 - 100% 18 1 0

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 421

sp_iqindexinfo procedure
Function Displays the number of blocks used per index per main dbspace for a given

object. If the object resides on several dbspaces, sp_iqindexinfo returns the
space used in all dbspaces, as shown in the example.

Syntax sp_iqindexinfo ‘{ database
| [table table-name | index index-name] [...] }
[resources resource-percent]’

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage You can request index information for the entire database, or you can specify
any number of table or index parameters. If a table name is specified,
sp_iqindexinfo returns information on all indexes in the table. If an index name
is specified, only the information on that index is returned.

You cannot specify a join index by name. Use the database keyword to display
join indexes.

If the specified table-name or index-name is ambiguous or the object cannot be
found, an error is returned.

By default in a multiplex database, sp_iqindexinfo displays information about
the shared IQ store on a secondary node. If individual tables or indexes are
specified, the store to display is automatically selected .

resource-percent must be an integer greater than 0. The resources percentage
allows you to limit the CPU utilization of the sp_iqindexinfo procedure by
specifying the percent of total CPUs to use.

Description sp_iqindexinfo shows the DBA on which dbspaces a given object resides. The
DBA can use this information to determine which dbspaces must be given
relocate mode to relocate the object.

The results of sp_iqindexinfo are from the point of view of the version seen by
the transaction running the command. Blocks used by other versions are not
shown.

Table 7-34: sp_iqindexinfo columns
Column name Description
Object Table, index, or join index name
Dbspace_name Name of the dbspace
ObjSize Size of data for this object on this dbspace
DBSpPct Percent of dbspace used by this object
MinBlk First block used by this object on this dbspace

System stored procedures

422 Sybase IQ

MaxBlk Last block used by this object on this dbspace; useful for
determining which objects must be relocated before the dbspace
is resized to a smaller size

Column name Description

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 423

Examples Displays index information about the table t2:

sp_iqindexinfo 'table t2';

See also “sp_iqdbspace procedure” on page 388, “sp_iqdbspaceinfo procedure” on
page 391, “sp_iqspaceinfo procedure” on page 459.

Chapter 5, “Working with Database Objects” in the System Administration
Guide: Volume 1

Appendix A, “Multiplex Reference” in Using Sybase IQ Multiplex.

sp_iqindexmetadata procedure
Function Displays index metadata for a given index. You can optionally restrict the

output to only those indexes on a specified table, and to only those indexes
belonging to a specified owner.

Syntax dbo.sp_iqindexmetadata {'index-name'
[, 'table-name' [, 'owner-name']] }

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage Specifying a table name limits output to those indexes belonging to that table.
Specifying an owner name limits output to indexes owned by that owner.
Omitted parameters default to NULL. You can specify only one index per
procedure.

Description The first row of output is the owner name, table name, and index name for the
index.

Subsequent rows of output are specific to the type of index specified.

Object dbspace_name ObjSize DBSpPct MinBlk MaxBlk
t2 IQ_SYSTEM_MAIN 32K 1 84 107
t2 dbspacedb2 160K 2 1045495 1045556
t2 dbspacedb3 8K 1 2090930 2090930
t2.DBA.ASIQ_IDX_T430_C1_FP IQ_SYSTEM_MAIN 136K 2 126 321
t2.DBA.ASIQ_IDX_T430_C1_FP dbspacedb3 152K 2 2091032 2091053
t2.DBA.t2c1hng dbspacedb2 136K 2 1045537 1045553

System stored procedures

424 Sybase IQ

Table 7-35: sp_iqindexmetadata output rows

Examples The following command displays index information about the HG index
hg_index_col54:

sp_iqindexmetadata 'hg_index_col54' , 'metal' , 'DBA';

See also “sp_iqindex and sp_iqindex_alt procedures” on page 415,
“sp_iqindexfragmentation procedure” on page 419, “sp_iqindexinfo
procedure” on page 421, and “sp_iqindexsize procedure” on page 425

Chapter 5, “Working with Database Objects” and Chapter 6, “Using Sybase
IQ Indexes” in System Administration Guide: Volume 1 in the System
Administration Guide: Volume 1

“FP_LOOKUP_SIZE option” and “MINIMIZE_STORAGE option” in
Chapter 2, “Database Options” in Reference: Statements and Options.

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

Index type Metadata returned
CMP, DATE,
DTTM, TIME

Type, Version

FP Type, Version, LookupPages, Style, LookupEntries,
1stLookupPage, LargeLOBs, SmallLOBs, IQ Unique, LOB
Compression (only if column datatype is LONG VARCHAR or
LONG BINARY)

HG Type, Version, Distinct Keys
HNG Type, Version, BitsPerBlockmap, NumberOfBits
LD Type, Version<ld>, Version, Distinct Keys
LF Type, Version, IndexStatus, NumberOfBlockmaps,

BitsPerBlockmap, Distinct Keys
WD Type, Version, KeySize, Delimiters, DelimiterCount,

MaxKeyWordLength, PermitEmptyWord

'DBA', 'metal' 'hg_index_col54'
'Type', 'HG', ''
'Version', '2', ''
'Distinct Keys', '0', ''

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 425

sp_iqindexsize procedure
Function Gives the size of the specified index.

Syntax sp_iqindexsize [[owner.] table.] index_name

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Table 7-36: sp_iqindexsize columns

Returns the total size of the index in bytes and kilobytes, and an Info column
that describes the component of the IQ index for which the KBytes, Pages, and
Compressed Pages are reported. The components described vary by index type.
For example, the default (FP) index includes BARRAY (barray) and Bitmap
(bm) components. The Low_Fast (LF) index includes B-tree (bt) and Bitmap
(bm) components.

Also returns the number of pages required to hold the object in memory and the
number of IQ pages when the index is compressed (on disk).

You must specify the index_name parameter with this procedure. To restrict
results to this index name in a single table, include owner.table. when
specifying the index.

Example sp_iqindexsize ASIQ_IDX_T452_C19_FP

Column name Description
Username Index owner.
Indexname Index for which results are returned, including the table

name.
Type Index type.
Info Component of the IQ index for which the KBytes,

Pages, and Compressed Pages are being reported. The
components vary by index type. For example, the default
(FP) index includes BARRAY (barray) and Bitmap (bm)
components. The Low_Fast (LF) index includes B-tree
(bt) and Bitmap (bm) components.

KBytes Physical object size in KB.
Pages Number of IQ pages needed to hold the object in

memory.
Compressed Pages Number of IQ pages when the object is compressed (on

disk).

Username Indexname Type Info KBytes Pages
Compressed
Pages

DBA Employees.ASIQ_IDX_T452_C19_FP FP Total 288 4 2

System stored procedures

426 Sybase IQ

See also Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

“FP_LOOKUP_SIZE option” and “MINIMIZE_STORAGE option” in
Chapter 2, “Database Options” in Reference: Statements and Options.

sp_iqindexuse procedure
Function Reports detailed usage information for secondary (non-FP) indexes accessed

by the workload.

Syntax sp_iqindexuse

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Each secondary index accessed by the workload displays a row. Indexes that
have not been accessed do not appear. Index usage is broken down by
optimizer, constraint, and query usage.

Indexes from tables created in SYSTEM are not reported.

DBA Employees.ASIQ_IDX_T452_C19_FP FP vdo 0 0 0
DBA Employees.ASIQ_IDX_T452_C19_FP FP bt 0 0 0
DBA Employees.ASIQ_IDX_T452_C19_FP FP garray 0 0 0
DBA Employees.ASIQ_IDX_T452_C19_FP FP bm 136 2 1
DBA Employees.ASIQ_IDX_T452_C19_FP FP barray 152 2 1
DBA Employees.ASIQ_IDX_T452_C19_FP FP dpstore 0 0 0
DBA Employees.ASIQ_IDX_T452_C19_FP FP largelob 0 0 0

Username Indexname Type Info KBytes Pages
Compressed
Pages

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 427

Table 7-37: sp_iqindexuse columns

**UID is a number assigned by the system that uniquely identifies the instance
of the index (where instance is defined when an object is created).

Example Sample output from the sp_iqindexuse procedure.

IndexName TableName Owner UID Type LastDT NOpt NQry NConstraint

n_nationkey_hg nation DBA 29 HG 20070917 22:08:06~ 12 0 12
n_regionkey_hg nation DBA 31 HG 20070917 22:08:06~ 12 0 0
r_regionkey_hg region DBA 47 HG 20070917 22:08:06~ 12 0 12
s_suppkey_hg supplier DBA 64 HG 20070917 22:08:06~ 12 0 12
p_partkey_hg part DBA 87 HG 20070917 22:08:06~ 6 0 6
s_suppkey_hg supplier DBA 64 HG 20070917 22:08:06~ 12 0 12
...

See also “Monitoring workloads,”Chapter 3, “Optimizing Queries and Deletions,” in
the Performance and Tuning Guide.

“sp_iqcolumnuse procedure” on page 372, “sp_iqdbspace procedure” on page
388, “sp_iqindexadvice procedure” on page 418, “sp_iqtableuse procedure”
on page 477, “sp_iqunusedcolumn procedure” on page 481,
“sp_iqunusedindex procedure” on page 482, “sp_iqunusedtable procedure”
on page 483, and “sp_iqworkmon procedure” on page 490

“INDEX_ADVISOR option” in Chapter 2, “Database Options,” in Reference:
Statements and Options

sp_iqjoinindex procedure
Function Displays information about join indexes.

Syntax sp_iqjoinindex [left-table-name], [left-column-name], [left-table-
owner], [right-table-name], [right-column-name], [right-table-owner]

Column name Description
IndexName Index name
TableName Table name
Owner User name of index owner
UID** Index unique identifier
Type Index type
LastDT Date/time of last access
NOpt Number of metadata/uniqueness accesses
NQry Number of query accesses
NConstraint Number of accesses for unique or referential integrity checks

System stored procedures

428 Sybase IQ

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage left-table-name The name of the table that forms the left side of the join
operation.

left-column-name The name of the column that is part of the left side of the
join.

left-table-owner The owner of the table that forms the left side of the join
operation.

right-table-name The name of the table that forms the right side of the join
operation.

right-column-name The name of the column that is part of the right side of
the join.

right-table-owner The owner of the table that forms the right side of the join
operation.

The sp_iqjoinindex procedure can be invoked without any parameters. If no
parameters are specified, sp_iqjoinindex displays information about all join
indexes on IQ base tables. Note that join index tables are always IQ base tables.
Join index tables cannot be temporary tables, remote tables, or proxy tables.

If you do not specify any of the first five parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqjoinindex NULL, NULL, NULL, t2, n2,
DB’ and sp_iqjoinindex t1, NULL, NULL, t2.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 429

Table 7-38: sp_iqjoinindex usage examples

See also CREATE JOIN INDEX statement in Reference: Statements and Options

Chapter 6, “Using Sybase IQ Indexes” in the System Administration Guide:
Volume 1

Description The sp_iqjoinindex stored procedure displays information about join indexes in
a database. If you specify one or more parameters, the result is filtered by the
specified parameters. For example, if left-table-name is specified,
sp_iqjoinindex displays all the join indexes in which that table forms the left
side of the join. If left-table-owner is specified, sp_iqjoinindex only returns join
indexes in which the left table is owned by the specified owner. If no
parameters are specified, sp_iqjoinindex displays information about all join
indexes in the database.

The sp_iqjoinindex procedure returns information in the following columns:

Syntax Output
sp_iqjoinindex Displays information about all the join indexes
sp_iqjoinindex t1, NULL,
DBA

Displays information about all join indexes in
which t1 owned by DBA forms the left side of the
operation

sp_iqjoinindex t2, n1, DBA Displays join index information with column n1 of
table t2 owned by DBA as left side of the join

sp_iqjoinindex NULL, NULL,
DBA, NULL, NULL, DBA

Displays information about all join indexes in
which the left and right side tables are owned by
DBA

sp_iqjoinindex NULL, NULL,
NULL, t2, NULL, NULL

Displays information about all join indexes in
which the table t2 is on the right side of the join
operation

sp_iqjoinindex t1, n1, DBA,
t2, n1, DBA

Displays information about join indexes in which
the left side is column n1 of table t1 owned by DBA
and the right side is column n1 of table t2 owned
by DBA

sp_iqjoinindex
non_existing_table

No rows returned, as the table non_existing_table
does not exist

sp_iqjoinindex NULL, NULL,
non_existing_user

No rows returned, as the user non_existing_user
does not exist

System stored procedures

430 Sybase IQ

Table 7-39: sp_iqjoinindex columns

Examples Displays information about the join index in which table t1 forms the left side
of the join operation:

sp_iqjoinindex t1

joinnidex_name creator left_table_name left_table_owner left_column_name
join_type right_table_name right_table_owner right_column_name key_type
valid dbspace_id remarks
t1_t2_t3_join DBA t1 DBA n1
= t2 DBA n1 NATURAL
Y 16387 (NULL)

Displays information about the join index in which table t2 forms the left side
of the join operation:

sp_iqjoinindex t2

Column name Description
joinindex_name The name of the join index.
creator The owner of the join index.
left_table_name The name of the table that forms the left side of the join

operation.
left_table_owner The name of the owner of the table that forms the left side of

the join operation.
left_column_name The name of the column that is part of the left side of the join.
join_type The only currently supported value is “=”.
right_table_name The name of the table that forms the right side of the join

operation.
right_table_owner The name of the owner of the table that forms the right side

of the join operation.
right_column_name The name of the column that is part of the right side of the

join.
key_type Defines the type of join on the keys:

• NATURAL: a natural join
• KEY: a key join
• ON: a left outer/right outer/full join

valid Indicates whether this join index needs to be synchronized.
‘Y’ means that it does not require synchronization; ‘N’ means
that it does require synchronization.

remarks A comment string.
dbspace_id Name of the dbspace in which specified join indexes reside.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 431

joinnidex_name creator left_table_name left_table_owner left_column_name
join_type right_table_name right_table_owner right_column_name key_type
valid dbspace_id remarks
t1_t2_t3_join DBA t2 DBA n1
= t3 DBA n1 NATURAL
Y (NULL)
t1_t2_t3_join DBA t2 DBA name
= t3 DBA name NATURAL
Y 16387 ((NULL)

Displays information about join indexes in which the left side is column name
of table t2 owned by DBA and the right side is column name of table t3 owned
by DBA:

sp_iqjoinindex t2, name, DBA, t3, name, DBA

joinindex_name creator left_table_name left_table_owner left_column_name
join_type right_table_name right_table_owner right_column_name key_type
valid dbspace_id remarks
t1_t2_t3_join DBA t2 DBA name
= t3 DBA name NATURAL
Y 16387 ((NULL)

sp_iqjoinindexsize procedure
Function Gives the size of the specified join index.

Syntax sp_iqjoinindexsize (join_index_name)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns the total size of the index in bytes, KBytes,and NBlocks (IQ blocks).
Also returns the number of pages required to hold the join index in memory and
the number of IQ pages when the join index is compressed (on disk). You must
specify the join_index_name parameter with this procedure.

System stored procedures

432 Sybase IQ

Table 7-40: sp_iqjoinindexsize columns

Example sp_iqjoinindexsize ('t1t2')

sp_iqlmconfig procedure
Function Controls license management configurations, displays and sets license type

and status.

Syntax 1 sp_iqlmconfig ’edition’, { ’SE’ | ’SA’ | ’EE’ }

Table 7-41: Summary information for "edition" parameter

Syntax 2 sp_iqlmconfig ’license type’, { ’CP’ | ’DT’ | ’SF’ | ’AC’ | ’BC’ | 'CH' | 'DH' |
'SH' | 'AH' | 'BH' }

Column name Description
Username Owner of the join index
JoinIndexName Join index for which results are returned
Number of Tables Number of tables in the join index
KBytes Physical object size in KB
Pages Number of IQ pages needed to hold the object in

memory
Compressed Pages Number of IQ pages when the object is compressed (on

disk)
NBlocks Number of IQ blocks

Username JoinIndexName
Number of
Tables KBytes Pages

Compressed
Pages NBlocks

DBA t1t2 2 13 15 4 26

Topic Value
Default ’EE’ (Enterprise Edition)
Range of values ’SE’ (Small Business)

’SA’ (Single Application)
’EE’ (Enterprise Edition)

Status Static

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 433

Table 7-42: Summary information for "license type" parameter

Syntax 3 sp_iqlmconfig ’email severity’, { ’ERROR’ | ’WARNING’ |
’INFORMATIONAL’ | ’NONE’ }

NONE designates that e-mail notification is disabled.

Syntax 4 sp_iqlmconfig ’smtp host’, ’<hostname>’ | ’

hostname Specifies SMTP host used for e-mail notification.

Syntax 5 sp_iqlmconfig ’email sender’, ’<email address>’ |

<email address> Specifies the sender’s e-mail address used for e-mail
notification.

Syntax 6 sp_iqlmconfig ’email recipients’, ’<email recipients>’ |

<email recipients> Specifies a comma-separated list of e-mail addresses to
whom e-mail notifications will be sent.

Syntax 7 sp_iqlmconfig |

Permissions DBA permissions necessary.

Usage At startup, sp_iqlmconfig checks the edition type and license type of the license
specified.

• If the specified license is not found, the server falls to grace mode.

• The specified license type becomes valid only when a non-null edition
value is specified.

• If sp_iqlmconfig is called with no parameters (Syntax 3), it displays all the
information above, as well as other information, such as:

Topic Value
Default ’DT’ (Development and Testing)
Range of values ’AC’ (OEM CPU License)

’AH’ (OEM CPU License Chip)
’BC’ (OEM Standby License)
’BH’ (OEM Standby License Chip)
’CP’ (CPU License)
’CH’ (CPU License Chip)
’DH’ (Development and Testing
License Chip)
’DT’ (Development and Testing)
’EV’ (Evaluation)
’SF’ (Standby CPU License)
’SH’ (Standby CPU License Chip)

Status Static

System stored procedures

434 Sybase IQ

• Product Edition and License Type

• Which of the optional licenses are in use

• License count

• E-mail information

• General information about the license

sp_iqlocks procedure
Function Shows information about locks in the database, for both the IQ store and the

catalog store.

Syntax sp_iqlocks ([connection,] [[owner.]table_name] max_locks,]
[sort_order])

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage Table 7-43 lists the optional sp_iqlocks parameters you can specify to restrict
results.

Table 7-43: Optional sp_iqlocks parameters
Name Data type Description
connection integer Connection ID. With this option, the procedure

returns information about locks for the specified
connection only. Default is zero, which returns
information about all connections.

owner.table_
name

char (128) Table name. With this option, the procedure returns
information about locks for the specified table only.
Default is NULL, which returns information about
all tables in the database. If you do not specify
owner, it is assumed that the caller of the procedure
owns the table.

max_locks integer Maximum number of locks for which to return
information. Default is 0, which returns all lock
information.

sort_order char(1) Order in which to return information:
• C sorts by connection (default)
• T sorts by table_name

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 435

Description Displays information about current locks in the database. Depending on the
options you specify, you can restrict results to show locks for a single
connection, a single table, or a specified number of locks.

sp_iqlocks displays the following information, sorted as specified in the
sort_order parameter:

System stored procedures

436 Sybase IQ

Table 7-44: sp_iqlocks columns

If sp_iqlocks cannot find the connection ID or user name of the user who has a
lock on a table, it displays a 0 (zero) for the connection ID and User
unavailable for the user name.

Note Exclusive, phantom, or antiphantom locks can be placed on SQL
Anywhere tables, but not on Sybase IQ tables. Unless you have explicitly taken
out locks on a table in the catalog store, you never see these types of locks (or
their qualifiers T, *, and nnn) in a Sybase IQ database. For information on how

Column Description
conn_name The name of the current connection.
conn_id Connection ID that has the lock.
user_id User associated with this connection ID.
table_type The type of table. This type is either BASE for a table,

GLBTMP for global temporary table, or MVIEW for a
materialized view.

creator The owner of the table.
table_name Table on which the lock is held.
index_id The index ID or NULL
lock_class String of characters indicating the type of lock:

S – share.
SW – share and write.
EW – exclusive and write.
E – exclusive.
P – phantom.
A – antiphantom.
W – write.

All locks listed have one of S, E, EW, or SW, and may also
have P, A, or both. Phantom and antiphantom locks also
have a qualifier of T or *:

T – the lock is with respect to a sequential scan.
* – the lock is with respect to all scans.
nnn – Index number; the lock is with respect to a
particular index.

Sybase IQ obtains a share lock before a write lock. If
a connection has exclusive lock, share lock does not
appear. For write locks, if a connection has all-
exclusive, share, and write locks, it is EW.

lock_type Value identifying the lock (dependent on the lock class)
row_identifier The identifier for the row or NULL.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 437

locking works in SQL Anywhere tables, see SQL Anywhere Server – SQL
Usage.

Examples The example shows the sp_iqlocks procedure call and its output in a Sybase IQ
database. The procedure is called with all default options, so that the output
shows all locks, sorted by connection.

call sp_iqlocks()

conn_name conn_id user_id table_type creator table_name
========= ======= ======= ========== ======= ==========
con1 70187172 'mary' BASE DBA t1

index_id lock_class lock_duration lock_type row_identifier
======== ========== ============= ========= ==============
ASIQ_IDX_T452_C19_FP Table Position Table 1

sp_iqmodifyadmin procedure
Function Sets an option on a named login policy to a certain value. If no login policy is

specified, the option is set on the root policy. In a multiplex, sp_iqmodifyadmin
takes an optional parameter that is the multiplex server name.

Syntax1 call sp_iqmodifyadmin (‘policy_option_name’,
‘value_in’ ,[’login_policy_name’])

Syntax2 sp_iqmodifyadmin ‘policy_option_name’,
‘value_in’ ,’login_policy_name ’

Syntax3 sp_iqmodifyadmin policy_option_name, value_in, ,login_policy_name

Syntax 4 sp_iqmodifyadmin ‘policy_option_name’,
‘value_in’ ,’login_policy_name ’ ,’server_name ’

Usage policy_option_name The login policy option to be changed.

value_in New value for the login policy option.

login_policy_name Name of the login policy whose login policy option
needs to be changed.

Permissions Requires DBA authority.

See also “sp_iqpassword procedure” on page 441

ALTER LOGIN POLICY statement in Chapter 1, “SQL Statements,” in
Reference: Statements and Options.

System stored procedures

438 Sybase IQ

Examples Example 1 Sets the login option locked to ON for the policy named
lockeduser.

call sp_iqmodifyadmin ('locked','on','lockeduser')

Example 2 Sets the login option locked to ON for the policy named
lockeduser on the multiplex server named Writer1.

call sp_iqmodifyadmin
('locked','on','lockeduser','Writer1')

sp_iqmodifylogin procedure
Function Assigns a user to a login policy.

Syntax1 call sp_iqmodifylogin 'userid', ['login_policy_name']

Syntax2 sp_iqmodifylogin 'userid', ['login_policy_name']

Permissions DBA authority required.

Usage userid Variable that holds the name of the account to modify.

login_policy_name (Optional) Specifies the name of the login policy to
which the user will be assigned. If no login policy name is specified, the user
is assigned to the root login policy.

Examples Example 1 Assigns user joe to a login policy named expired_password:

sp_iqmodifylogin 'joe', 'expired_password'

Example 2 Assigns user joe to the root login policy:

call sp_iqmodifylogin ('joe')

See also “sp_iqmodifyadmin procedure” on page 437

sp_iqobjectinfo procedure
Function Returns partitions and dbspace assignments of database objects and sub-

objects.

Syntax sp_iqobjectinfo [owner_name] [, object_name] [, object-type]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 439

Usage owner_name Owner of the object. If specified, sp_iqobjectinfo displays
output only for tables and join indexes with the specified owner. If not
specified, sp_iqobjectinfo displays information on tables and join indexes for all
users in the database.

object_name Name of the table or join index. If not specified, sp_iqobjectinfo
displays information on all tables and join indexes in the database.

object-type Valid object types are table (the default) or joinindex.

If the object-type is a table, it must be enclosed in quotation marks.

All parameters are optional, and any parameter may be supplied independent
of the value of another parameter.

Sybase recommends that you use input parameters with sp_iqobjectinfo; you
can query the results of the sp_iqobjectinfo and it performs better if you use
input parameters rather than using predicates in the WHERE clause of the
query. For example, Query A is written as:

SELECT COUNT(*) FROM sp_iqobjectinfo()
WHERE owner = 'DBA'
AND object_name = 'tab_case510'
AND object_type = 'table'
AND sub_object_name is NULL
AND dbspace_name = 'iqmain7'
AND partition_name = 'P1'

Query B is Query A rewritten to use sp_iqobjectinfo input parameters:

SELECT COUNT(*) FROM
sp_iqobjectinfo('DBA','tab_case510','table')
WHERE sub_object_name is NULL
AND dbspace_name = 'iqmain7'
AND PARTITION_NAME = 'P1'

Query B returns results faster than Query A. When the input parameters are
passed to sp_iqobjectinfo, the procedure compares and joins fewer records in
the system tables, thus doing less work compared to Query A. In Query B, the
predicates are applied in the procedure itself and the procedure returns a
smaller result set, so a smaller number of predicates is applied in the query.

The sp_iqobjectinfo stored procedure supports wildcard characters for
interpreting owner_name, object_name, and object_type. It shows information
for all dbspaces that match the given pattern in the same way the LIKE clause
matches patterns inside queries.

System stored procedures

440 Sybase IQ

Description Returns all the partitions and the dbspace assignments of a particular or all
database objects (of type table and join index only) and its sub-objects. The
sub-objects are columns, indexes, primary key, unique constraints, and foreign
keys.

Table 7-45: sp_iqobjectinfo columns

Examples Displays information about partitions and dbspace assignments of a specific
database object and sub-objects owned by a specific user:

sp_iqobjectinfo GROUPO,Departments

owner object_name sub_object_name object_type object_id id
GROUPO Departments (NULL) table 3632 738
GROUPO Departments DepartmentID column 3633 738
GROUPO Departments DepartmentName column 3634 738
GROUPO Departments DepartmentHeadID column 3635 738
GROUPO Departments DepartmentsKey primary key 83 738
GROUPO Departments FK_DepartmentHeadID_EmployeeID foreign key 92 738

dbspace_name partition_name
iq_main (NULL)
iq_main (NULL)
iq_main (NULL)
iq_main (NULL)
iq_main (NULL)
iq_main (NULL)

Displays information about partitions and dbspace assignments of a specific
database object and sub-objects owned by a specific user for object-type table:

sp_iqobjectinfo DBA,sale,'table'

Column name Description
owner Name of the owner of the object.
object_name Name of the object (of type table and join index only)

located on the dbspace.
sub_object_name Name of the object located on the dbspace.
object_type Type of the object (column, index, primary key, unique

constraint, foreign key, partition, join index or table).
object_id Global object id of the object.
id Table id or join-index id of the object.
dbspace_name Name of the dbspace on which the object resides. The

string “[multiple]” is displayed for a special meta row
for partitioned objects. The [multiple] row indicates that
multiple rows follow in the output to describe the table
or column.

partition_name Name of the partition for the given object.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 441

owner object_name sub_object_name object_type object_id id
DBA sale (NULL) table 3698 742
DBA sale prod_id column 3699 742
DBA sale month_num column 3700 742
DBA sale rep_id column 3701 742
DBA sale sales column 3702 742

dbspace_name partition_name
iq_main (NULL)
iq_main (NULL)
iq_main (NULL)
iq_main (NULL)
iq_main (NULL)

sp_iqpassword procedure
Function Changes a user’s password. The preferred way to create a user is by using the

CREATE USER statement. See “CREATE USER statement,” in Chapter 1,
“SQL Statements,” in Reference: Statements and Options.

Syntax1 call sp_iqpassword (‘caller_password’, ‘new_password’ [, ‘user_name’])

Syntax2 sp_iqpassword ‘caller_password’, ‘new_password’ [, ‘user_ name’]

Permissions None to set your own password; DBA authority required to set other users’
passwords.

Usage caller_password Your password. When you are changing your own
password, this is your old password. When the DBA is changing another user’s
password, caller_password is the DBA’s password.

new_password New password for the user, or for loginname.

user_name Login name of the user whose password is being changed by the
DBA. Do not specify user_name when changing your own password.

Description Any user can change his or her own password using sp_iqpassword. The DBA
can change the password of any existing user.

Examples Example 1 Changes the password of the logged in user from irk103 to
exP984:

sp_iqpassword 'irk103', 'exP984'

Example 2 Changes the password of user joe from eprr45 to pdi032 only if
the logged in user has DBA privileges or the user is joe himself:

call sp_iqpassword ('eprr45', 'pdi932', 'joe')

System stored procedures

442 Sybase IQ

sp_iqpkeys procedure
Function Displays information about primary keys and primary key constraints by table,

column, table owner, or for all Sybase IQ tables in the database.

Syntax sp_iqpkeys { [table-name], [column-name], [table-owner] }

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage table-name The name of a base or global temporary table. If specified, the
procedure returns information about primary keys defined on the specified
table only.

column-name The name of a column. If specified, the procedure returns
information about primary keys on the specified column only.

table-owner The owner of a table or table. If specified, the procedure returns
information about primary keys on tables owned by the specified owner only.

One or more of the parameters can be specified. If you do not specify either of
the first two parameters, but specify the next parameter in the sequence, you
must substitute NULL for the omitted parameters. If none of the parameters are
specified, a description of all primary keys on all tables in the database is
displayed. If any of the specified parameters is invalid, no rows are displayed
in the output.

Table 7-46: sp_iqpkeys usage examples

Description The sp_iqpkeys stored procedure displays the following information about
primary keys on base and global temporary tables in a database:

Syntax Output
sp_iqpkeys sales Displays information about primary keys

defined on table sales

sp_iqpkeys sales, NULL, DBA Displays information about primary keys
defined on table sales owned by DBA

sp_iqpkeys sales, store_id, DBA Displays information about primary key
defined on column store_id of table sales
owned by DBA

sp_iqpkeys NULL, NULL, DBA Displays information about primary keys
defined on all tables owned by DBA

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 443

Table 7-47: sp_iqpkeys columns

Note The sp_iqpkeys stored procedure exists only in databases created with
Sybase IQ version 12.6 or later.

Examples Display the primary keys defined on columns of table sales1:

sp_iqpkeys sales1

table_name table_owner column_name column_id constraint_name constraint_id

sales1 DBA store_id 1 MA114 114

Display the primary keys defined on columns of table sales2:

sp_iqpkeys sales2

table_name table_owner column_name column_id constraint_name constraint_id

sales2 DBA store_id, 1,2 MA115 115

order_num

Display the primary keys defined on the column store_id of table sales2:

sp_iqpkeys sales2, store_id

table_name table_owner column_name column_id constraint_name constraint_id

sales2 DBA store_id 1 MA115 115

See also “sp_iqindex and sp_iqindex_alt procedures” on page 415

“sp_iqcolumn procedure” on page 370

sp_iqprocedure procedure
Function Displays information about system and user-defined procedures.

Syntax sp_iqprocedure [proc-name], [proc-owner], [proc-type]

Column name Description
table_name The name of the table
table_owner The owner of the table
column_name The name of the column(s) on which the primary key is defined
column_id The column ID
constraint_name The name of the primary key constraint
constraint_id The primary key constraint ID

System stored procedures

444 Sybase IQ

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage proc-name The name of the procedure.

proc-owner The owner of the procedure.

proc-type The type of procedure. Allowed values are:

• SYSTEM: displays information about system procedures (procedures
owned by user SYS or dbo) only

• ALL: displays information about user and system procedures

• Any other value: displays information about user procedures

The sp_iqprocedure procedure can be invoked without any parameters. If no
parameters are specified, only information about user-defined procedures
(procedures not owned by dbo or SYS) is displayed by default.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqprocedure NULL, NULL, SYSTEM and
sp_iqprocedure NULL, user1.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 445

Table 7-48: sp_iqprocedure usage examples

Description The sp_iqprocedure stored procedure displays information about procedures in
a database. If you specify one or more parameters, the result is filtered by the
specified parameters. For example, if proc-name is specified, only information
about the specified procedure is displayed. If proc-owner is specified,
sp_iqprocedure returns only information about procedures owned by the
specified owner. If no parameters are specified, sp_iqprocedure displays
information about all the user-defined procedures in the database.

The sp_iqprocedure procedure returns information in the following columns:

Syntax Output
sp_iqprocedure Displays information about all procedures in the

database not owned by dbo or SYS

sp_iqprocedure sp_test Displays information about the procedure sp_test

sp_iqprocedure
non_existing_proc

No rows returned, as the procedure
non_existing_proc does not exist

sp_iqprocedure NULL, DBA Displays information about all procedures owned
by DBA

sp_iqprocedure sp_test, DBA Displays information about the procedure sp_test
owned by DBA

sp_iqprocedure sp_iqtable The procedure sp_iqtable is not a system
procedure. If there is no user-defined procedure
also named sp_iqtable, no rows are returned. (By
default only user-defined procedures are returned.)

sp_iqprocedure sp_iqtable,
dbo

No rows returned, as the procedure sp_iqtable is
not a user procedure (by default only user
procedures returned)

sp_iqprocedure NULL,
NULL, SYSTEM

Displays information about all system procedures
(owned by dbo or SYS)

sp_iqprocedure sp_iqtable,
NULL, ‘YSTEM

Displays information about the system procedure
sp_iqtable

sp_iqprocedure sp_iqtable,
dbo, ALL

Displays information about the system procedure
sp_iqtable owned by dbo

System stored procedures

446 Sybase IQ

Table 7-49: sp_iqprocedure columns

Examples Displays information about the user-defined procedure sp_test:

sp_iqprocedure sp_test

proc_name proc_owner proc_defn replicate srvid remarks

sp_test DBA create procedure N (NULL) (NULL)

DBA.sp_test(in n1

integer)

begin message‘sp_test’end

Displays information about all procedures owned by user DBA:

sp_iqprocedure NULL, DBA

proc_name proc_owner proc_defn replicate srvid remarks

sp_test DBA create procedure N (NULL) (NULL)

DBA.sp_test(in n1

integer)

begin message‘sp_test’end

sp_dept DBA create procedure N (NULL) (NULL)

DBA.sp_dept() begin end

See also “CREATE USER statement,” in Chapter 1, “SQL Statements,” in Reference:
Statements and Options

sp_iqprocparm procedure
Function Displays information about stored procedure parameters, including result set

variables and SQLSTATE/SQLCODE error values.

Syntax sp_iqprocparm [proc-name], [proc-owner], [proc-type]

Column name Description
proc_name The name of the procedure
proc_owner The owner of the procedure
proc_defn The command used to create the procedure. For hidden

procedures, the keyword ‘HIDDEN’ is displayed.
replicate Displays Y if the procedure is a primary data source in a

Replication Server installation; N if not.
srvid Indicates the remote server, if the procedure is on a remote

database server
remarks A comment string

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 447

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage proc-name The name of the procedure.

proc-owner The owner of the procedure.

proc-type The type of procedure. Allowed values are:

• SYSTEM: displays information about system procedures (procedures
owned by user SYS or dbo) only

• ALL: displays information about user and system procedures

• Any other value: displays information about user procedures

You can invoke sp_iqprocparm without parameters. If you do not specify any
parameters, input/output and result parameters of user-defined procedures
(procedures not owned by dbo or SYS) appear.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqprocparm NULL, NULL, SYSTEM and
sp_iqprocparm NULL, user1.

System stored procedures

448 Sybase IQ

Table 7-50: sp_iqprocparm usage examples

Description The sp_iqprocparm stored procedure displays information about stored
procedure parameters, including result set variables and SQLSTATE/
SQLCODE error values. If you specify one or more parameters, the result is
filtered by the specified parameters. For example, if proc-name is specified,
only information about parameters to the specified procedure displays. If proc-
owner is specified, sp_iqprocparm only returns information about parameters to
procedures owned by the specified owner. If no parameters are specified,
sp_iqprocparm displays information about parameters to all the user-defined
procedures in the database.

The sp_iqprocparm procedure returns information in the following columns:

Syntax Output
sp_iqprocparm Displays parameters for all procedures in the

database not owned by dbo or SYS

sp_iqprocparm sp_test Displays information about the procedure sp_test

sp_iqprocparm
non_existing_proc

No rows returned, as the procedure
non_existing_proc does not exist

sp_iqprocparm NULL, DBA Displays parameters for all procedures owned by
DBA

sp_iqprocparm sp_test, DBA Displays parameters for the procedure sp_test
owned by DBA

sp_iqprocparm sp_iqtable sp_iqtable is a system procedure. If there is no
user-defined procedure also named sp_iqtable, no
rows are returned. (By default, only user-defined
procedures are returned.)

sp_iqprocparm sp_iqtable, dbo No rows returned, as the procedure sp_iqtable is
not a user procedure. (By default, only user
procedures are returned.)

sp_iqprocparm NULL, NULL,
SYSTEM

Displays parameters for all system procedures
(owned by dbo or SYS)

sp_iqprocparm sp_iqtable,
NULL, SYSTEM

Displays parameters of the system procedure
sp_iqtable

sp_iqprocparm sp_iqtable,
dbo, ALL

Displays parameters of the system procedure
sp_iqtable owned by dbo

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 449

Table 7-51: sp_iqprocparm columns

Examples Display information about the parameters of the user-defined procedure
sp_test:

sp_iqprocparm sp_test

proc_name proc_owner parm_name parm_type parm_mode domain_name width scale default

sp_test DBA ID normal in integer 4 0 (NULL)

Display information about the parameters of the system procedure
sp_iqshowcompression:

sp_iqprocparm sp_iqshowcompression, dbo, system

proc_name proc_owner parm_name parm_type parm_mode

domain_name width scale default

Column name Description
proc_name The name of the procedure
proc_owner The owner of the procedure
parm_name The name of the parameter
parm_type The type of parameter is one of the following values:

• normal parameter (variable)
• result variable: used with procedures that return result sets
• SQLSTATE error value
• SQLCODE error value

parm_mode The mode of the parameter: whether a parameter supplies a
value to the procedure, returns a value, does both, or does
neither. Parameter mode is one of the following:
• in: parameter supplies a value to the procedure
• out: parameter returns a value
• inout: parameter supplies as well as returns a value
• NULL: parameter neither supplies nor returns a value

domain_name The name of the data type of the parameter as listed in the
SYSDOMAIN system table

width The length of string parameters, the precision of numeric
parameters, and the number of bytes of storage for all other data
types

scale The number of digits after the decimal point for numeric data
type parameters and zero for all other data types

default The default value of the parameter, held as a string

System stored procedures

450 Sybase IQ

sp_iqshowcompression dbo @owner_name normal in

char 128 0 (NULL)

sp_iqshowcompression dbo @table_name normal in

char 128 0 (NULL)

sp_iqshowcompression dbo @column_name normal in

char 128 0 (NULL)

sp_iqshowcompression dbo Column result out

char 128 0 (NULL)

sp_iqshowcompression dbo Compression result out

char 3 0 (NULL)

See also CREATE PROCEDURE statement in Chapter 1, “SQL Statements,” in
Reference: Statements and Options

sp_iqrebuildindex procedure
Function Rebuilds one or more indexes on a table with the original IQ UNIQUE value

specified in the CREATE TABLE statement, or a new IQ UNIQUE value to
change storage required and/or query performance. To rebuild an index other
than the default index, specify the index name.

Syntax sp_iqrebuildindex (table_name, index_clause)

Permissions You must have INSERT permission on a table to rebuild an index on that table.

Usage table_name Partial or fully qualified table name on which the index rebuild
process takes place. If the user both owns the table and executes the procedure,
a partially qualified name may be used; otherwise, the table name must be fully
qualified.

index_clause One or more of the following strings, separated by spaces:

column column_name [count]

[dbspace dbspace_name]

index index_name

[dbspace dbspace_name]

Each column_name or index_name must refer to a column or index on the
specified table. If you specify a column_name or index_name multiple times,
the procedure returns an error and no index is rebuilt.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 451

The count is a nonnegative number that represents the IQ UNIQUE value. In a
CREATE TABLE statement, IQ UNIQUE (count) approximates how many
distinct values can be in a given column. The number of distinct values affects
query speed and storage requirements. For details, see “Optimizing storage
and query performance,” in Chapter 5, “Working with Database Objects” in
the System Administration Guide: Volume 1.

You must specify the keywords column and index. The keyword dbspace is
optional. These keywords are not case-sensitive.

Sybase IQ rebuilds the column or index in the same dbspace where the original
resided unless you specify dbspace dbspace-name.

See also “sp_iqindexfragmentation procedure” on page 419, and “sp_iqrowdensity
procedure” on page 456.

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

“FP_LOOKUP_SIZE option” and “MINIMIZE_STORAGE option” in
Chapter 2, “Database Options” in Reference: Statements and Options.

Description If you specify a column name, the procedure rebuilds the default index for that
column, and no index name is needed. Specifying the name of the default index
assigned by Sybase IQ in addition to the column name in this situation returns
an error. If you omit count after the column_name, value 0 (zero) is used as the
default.

If the default index is a one-byte index, sp_iqrebuildindex always rebuilds it as
a one-byte index no matter what IQ UNIQUE value the user specified.

For one-byte default indexes, if the specified value in column_name (count) is
0 or greater than 256, the column’s cardinality value is used to update the
approx_unique_count column in SYS.SYSIQCOLUMN.

If the column has the data type VARCHAR or VARBINARY greater than 255
bytes, sp_iqrebuildindex will not rebuild a default index.

sp_iqrebuildindex rebuilds a WD index on a column of data type LONG
VARCHAR (CLOB).

If the default index is a two-byte index, and the specified count is 0 or greater
than 65536, the column’s cardinality value determines whether to rebuild the
default into a one-byte or two-byte index, and that value is used to update the
approx_unique_count column in SYS.SYSIQCOLUMN.

If you specify a nonzero IQ UNIQUE value, the default index is rebuilt as a one-
byte, two-byte, or flat default index, with exceptions described above.

System stored procedures

452 Sybase IQ

If you specify an IQ UNIQUE value of zero or no IQ UNIQUE value, the
MINIMIZE_STORAGE option controls how the index is rebuilt:

• If MINIMIZE_STORAGE option is set ON, the index is rebuilt as a one-byte
default index first, and converted to two-byte or flat if necessary.

• If MINIMIZE_STORAGE is set OFF, the index is rebuilt using the default
for the data type. For more information, see “Sybase IQ index types”
Chapter 7, “System Procedures” in the System Administration Guide:
Volume 1.

Examples Rebuilds the default index on column Surname:

sp_iqrebuildindex ‘emp1‘, ‘column dept_id‘

or:

call sp_iqrebuildindex (‘empl1‘, ‘column dept_id‘)

Creates a flat default index on column c1:

CREATE TABLE mytable (c1 int IQ UNIQUE 1000000000)

Converts the default one-byte index to a two-byte index:

sp_iqrebuildindex ‘mytable‘, ‘column c1 1024‘

or:

call sp_iqrebuildindex (‘mytable‘, ‘column c1 1024‘)

See also “sp_iqindexfragmentation procedure” on page 419, and “sp_iqrowdensity
procedure” on page 456.

“FP_LOOKUP_SIZE option” and “MINIMIZE_STORAGE option” in
Chapter 2, “Database Options” in Reference: Statements and Options.

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

sp_iqrename procedure
Function Renames user-created tables, columns, indexes, constraints (unique, primary

key, foreign key, and check), stored procedures, and functions.

Syntax sp_iqrename object-name, new-name [, object-type]

Permissions Must be the owner of the table or have DBA authority or alter permission on
the object. Requires exclusive access to the object.

Usage object-name The original name of the user-created object.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 453

Optionally, owner-name can be specified as part of object-name as owner-
name.object-name, where owner-name is the name of the owner of the object
being renamed. If owner-name is not specified, the user calling sp_iqrename is
assumed to be the owner of the object. Note that the object is successfully
renamed only if the user calling sp_iqrename has the required permissions to
rename the object.

If the object to be renamed is a column, index, or constraint, you must specify
the name of the table with which the object is associated. For a column, index,
or constraint, object-name can be of the form table-name.object-name or
owner-name.table-name.object-name.

new-name The new name of the object. The name must conform to the rules
for identifiers and must be unique for the type of object being renamed.

object-type An optional parameter that specifies the type of the user-created
object being renamed, that is, the type of the object object-name. The object-
type parameter can be specified in either upper or lowercase.

Table 7-52: sp_iqrename object-type parameter values

 Warning! You must change appropriately the definition of any dependent
object (procedures, functions, and views) on an object being renamed by
sp_iqrename. The sp_iqrename procedure does not automatically update the
definitions of dependent objects. You must change these definitions manually.

Description The sp_iqrename stored procedure renames user-created tables, columns,
indexes, constraints (unique, primary key, foreign key, and check), and
functions.

If you attempt to rename an object with a name that is not unique for that type
of object, sp_iqrename returns the message “Item already exists.”

sp_iqrename does not support renaming a view, a procedure, an event or a data
type. The message “Feature not supported.” is returned by sp_iqrename, if you
specify event or datatype as the object-type parameter.

object-type parameter Specifies
column The object being renamed is a column
index The object being renamed is an index
constraint The object being renamed is a unique, primary key,

check, or referential (foreign key) constraint
procedure The object being renamed is a function
 object-type not specified The object being renamed is a table

System stored procedures

454 Sybase IQ

Examples Renames the table titles owned by user shweta to books:

sp_iqrename shweta.titles, books

Renames the column id of the table books to isbn:

sp_iqrename shweta.books.id, isbn, column

Renames the index idindex on the table books to isbnindex:

sp_iqrename books.idindex, isbnindex, index

Renames the primary key constraint prim_id on the table books to prim_isbn:

sp_iqrename books.prim_id, prim_isbn, constraint

See also ALTER TABLE statement RENAME clause and ALTER INDEX statement
RENAME clause in Reference: Statements and Options

sp_iq_reset_identity procedure
Function Sets the seed of the Identity/Autoincrement column associated with the

specified table to the specified value.

Syntax sp_iq_reset_identity (table_name, table_owner, value)

Usage Syntax You must specify table_name, table owner, and value.

Permissions None required.

Description The Identity/Autoincrement column stores a number that is automatically
generated. The values generated are unique identifiers for incoming data. The
values are sequential, are generated automatically, and are never reused, even
when rows are deleted from the table. The seed value specified replaces the
default seed value and persists across database shutdowns and failures.

Example The following example creates an Identity column with a starting seed of 50.:

CREATE TABLE mytable(c1 INT identity)
call sp_iq_reset_identity('mytable', 'dba', 50)

See also “sp_iqcolumn procedure” on page 370

sp_iqrestoreaction procedure
Function Shows what restore actions are needed to bring database to a consistent state

with a given past date.

Syntax sp_iqrestoreaction [timestamp]

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 455

Parameters timestamp Specifies the past date target.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description sp_iqrestoreaction returns an error if the database cannot be brought to a
consistent state for the timestamp. Otherwise, suggests restore actions that will
return the database to a consistent state.

The common point to which the database can be restored coincides with the last
backup time that backed up read-write files just before the specified timestamp.
The backup may be all-inclusive or read-write files only.

Output may not be in exact ascending order based on backup time. If a backup
archive consists of multiple read-only dbfiles, it may contain multiple rows
(with the same backup time and backup id).

If you back up a read-only dbfile or dbspace multiple times, the restore uses the
last backup. The corresponding backup time could be after the specified
timestamp, as long as the dbspace/dbfile alter ID matches the dbspace/dbfile
alter ID recorded in the last read-write backup that is restored.

sp_iqrestoreaction returns the following:

Table 7-53: sp_iqrestoreaction columns

Example Sample output of sp_iqrestoreaction:

sequence_number backup_id backup_archive_list backup_time
1 1192 c:\\\\temp\\\\b1 2008-09-23 14:47:40.0
2 1201 c:\\\\temp\\\\b2.inc 2008-09-23 14:48:05.0l
3 1208 c:\\\\temp\\\\b3.inc 2008-09-23 14:48:13.0

virtual_type restore_dbspace restore_dbfile backup_comment
Nonvirtual

Column name Description
sequence_number Orders the steps to be taken
backup_id Identifier for the backup transaction
backup_archive_list List of archive files in the backup
backup_time Time of the backup taken
virtual_type Type of virtual backup: “Non-virtual,” “Decoupled,”

or “Encapsulated”
restore_dbspace Can be empty. Indicates that all dbspaces are to be

restored from the backup archive
restore_dbfile Could be empty. Indicates that all dbfiles in the given

dbspace are to be restored from the backup archive
backup_comment User comment

System stored procedures

456 Sybase IQ

Nonvirtual
Nonvirtual

sp_iqrowdensity procedure
Function Reports information about the internal row fragmentation for a table at the FP

index level.

Syntax dbo.sp_iqrowdensity (‘target ‘)

target:(table table-name | (column column-name (...))

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage table-name Target table table-name reports on all columns in the named
table.

column-name Target column column-name reports on the named column in
the target table. You may specify multiple target columns, but must repeat the
keyword each time.

You must specify the keywords table and column. These keywords are not case-
sensitive.

Description sp_iqrowdensity measures row fragmentation at the default index level. Density
is the ratio of the minimum number of pages required by an index for existing
table rows to the number of pages actually used by the index. This procedure
returns density as a number such that 0 < density < 1. For example, if an index
that requires 8 pages minimum storage occupies 10 pages, its density is .8.

The density reported does not indicate the number of disk pages that may be
reclaimed by re-creating or reorganizing the default index.

This procedure displays information about the row density of a column, but
does not recommend further action. You must determine whether or not to re-
create, reorganize, or rebuild an index.

Example Reports the row density on column ID in table SalesOrders:

sp_iqrowdensity('column groupo.SalesOrders.ID')

See also “FP_LOOKUP_SIZE option” and “MINIMIZE_STORAGE option” in
Chapter 2, “Database Options” in Reference: Statements and Options.

Tablename ColumnName IndexType Density
'GROUPO.SalesOr
ders'

'ID' 'Flat style FP' '1.0'

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 457

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

sp_iqshowpsexe procedure
Function Displays information about the settings of database options that control the

priority of tasks and resource usage for connections.

Syntax sp_iqshowpsexe [connection-id]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage connection-id An integer representing the connection ID.

If connection-id is specified, sp_iqshowpsexe returns information only about
the specified connection. If connection-id is not specified, sp_iqshowpsexe
returns information about all connections.

If the specified connection-id does not exist, sp_iqshowpsexe returns no rows.

Description The sp_iqshowpsexe stored procedure displays information about the settings
of database options that control the priority of tasks and resource usage for
connections, which is useful to database administrators for performance
tuning.

System stored procedures

458 Sybase IQ

Table 7-54: sp_iqshowpsexe columns

Note The AppInfo property may not be available from Open Client or jConnect
applications such as the Java version of Interactive SQL (dbisql) or Sybase
Central. If the AppInfo property is not available, the application column is blank.

Column name Description
connectionid The connection ID
application Information about the client application that opened the

connection. Includes the AppInfo connection property
information:
HOST: the host name of the client machine
EXE: the name of the client executable (Windows only)
APPINFO: the APPINFO in the client connection string,
if specified

userid Login name of the user that opened the connection
iqgovern_priority Value of the database option IQGOVERN_PRIORITY that

assigns a priority to each query waiting in the -iqgovern
queue. By default, this option has a value of 2
(MEDIUM). The values 1, 2, and 3 are shown as HIGH,
MEDIUM, and LOW, respectively.

max_query_time Value of the database option MAX_QUERY_TIME that
sets a limit, so that the optimizer can disallow very long
queries. By default, this option is disabled and has a
value of 0.

query_row_limit Value if the database option
QUERY_ROWS_RETURNED_LIMIT that sets the row
threshold for rejecting queries based on the estimated
size of the result set. The default is 0, which means there
is no limit.

query_temp_space_limit Value of the database option
QUERY_TEMP_SPACE_LIMIT (in MB) that constrains
the use of temporary IQ dbspace by user queries. The
default value is 2000MB.

max_cursors Value of the database option MAX_CURSOR_COUNT
that specifies a resource governor to limit the maximum
number of cursors a connection can use at once. The
default value is 50. A value of 0 implies no limit.

max_statements Value of the database option
MAX_STATEMENT_COUNT that specifies a resource
governor to limit the maximum number of prepared
statements that a connection can use at once. The default
value is 100. A value of 0 implies no limit.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 459

Example Display information about the settings of database options that control the
priority of tasks and resource usage for connection ID 2:

sp_iqshowpsexe 2

connectionid application
2 HOST=GOODGUY-XP;EXE=C:\\Program Files\\Sybase\\

IQ-15_1\\bin32\\dbisqlg.exe;

userid iqgovern_priority max_query_time query_row_limit
DBA MEDIUM 0 0

query_temp_space_limit max_statements max_cursors
2000 50 100

See also In Chapter 7, “System Procedures”: “sp_iqconnection procedure” on page
373, “sp_iqcontext procedure” on page 378, and “sa_conn_info system
procedure” on page 494

“CONNECTION_PROPERTY function [System]” on page 139

In Chapter 2, “Database Options” in Reference: Statements and Options:
IQGOVERN_MAX_PRIORITY option, IQGOVERN_PRIORITY option,
IQGOVERN_PRIORITY_TIME option, MAX_QUERY_TIME option,
QUERY_ROWS_RETURNED_LIMIT option,
QUERY_TEMP_SPACE_LIMIT option, MAX_CURSOR_COUNT option,
and MAX_STATEMENT_COUNT option

“AppInfo connection parameter [App]” in Chapter 4, “Connection and
Communication Parameters” in the System Administration Guide: Volume 1

sp_iqspaceinfo procedure
Function Displays the number of blocks used by each object in the current database and

the name of the dbspace in which the object is located.

Syntax sp_iqspaceinfo [‘main
| [table table-name | index index-name] [...] ‘]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description For the current database, displays the object name, number of blocks used by
each object, and the name of the dbspace. sp_iqspaceinfo requires no
parameters.

The information returned by sp_iqspaceinfo is helpful in managing dbspaces.

System stored procedures

460 Sybase IQ

Example The following output is from the sp_iqspaceinfo stored procedure run on the
iqdemo database. Output for some tables and indexes have been removed in
this example.

Name NBlocks dbspace_name
Contacts 19 IQ_SYSTEM_MAIN
SalesOrderItems.DBA.ASIQ_IDX_T205_C5_FP 56 IQ_SYSTEM_MAIN
Contacts.DBA.ASIQ_IDX_T206_C10_FP 55 IQ_SYSTEM_MAIN
Contacts.DBA.ASIQ_IDX_T206_C1_FP 61 IQ_SYSTEM_MAIN
...
Contacts.DBA.ASIQ_IDX_T206_C9_FP 55 IQ_SYSTEM_MAIN
Contacts.DBA.ASIQ_IDX_T206_I11_HG 19 IQ_SYSTEM_MAIN
Customers 20 IQ_SYSTEM_MAIN
Customers.DBA.ASIQ_IDX_T207_C1_FP 61 IQ_SYSTEM_MAIN
Customers.DBA.ASIQ_IDX_T207_C2_FP 55 IQ_SYSTEM_MAIN
...
Customers.DBA.ASIQ_IDX_T207_I10_HG 19 IQ_SYSTEM_MAIN
...

See also “sp_iqindexinfo procedure” on page 421, “sp_iqdbspace procedure” on page
388, and “sp_iqdbspaceinfo procedure” on page 391

Chapter 5, “Working with Database Objects” in the System Administration
Guide: Volume 1

sp_iqspaceused procedure
Function Shows information about space available and space used in the IQ store and IQ

temporary store.

Syntax sp_iqspaceused(out mainKB unsigned bigint,
 out mainKBUsed unsigned bigint,
 out tempKB unsigned bigint,
 out tempKBUsed unsigned bigint)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage sp_iqspaceused returns four values as unsigned bigint out parameters. This
system stored procedure can be called by user-defined stored procedures to
determine the amount of main and temporary IQ store space in use.

Description sp_iqspaceused returns a subset of the information provided by sp_iqstatus, but
allows the user to return the information in SQL variables to be used in
calculations.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 461

Table 7-55: sp_iqspaceused columns

Example sp_iqspaceused requires four output parameters. The following example
shows the creation of a user-defined stored procedure myspace that declares the
four output parameters and then calls sp_iqspaceused:

create procedure dbo.myspace()
begin
 declare mt unsigned bigint;
 declare mu unsigned bigint;
 declare tt unsigned bigint;
 declare tu unsigned bigint;
 call sp_iqspaceused(mt,mu,tt,tu);
 select cast(mt/1024 as unsigned bigint) as mainMB,
 cast(mu/1024 as unsigned bigint) as mainusedMB,
 mu*100/mt as mainPerCent,
 cast(tt/1024 as unsigned bigint) as tempMB,
 cast(tu/1024 as unsigned bigint) as tempusedMB,
 tu*100/tt as tempPerCent;
end

To display the output of sp_iqspaceused, run the procedure myspace:

myspace

sp_iqstatistics procedure
Function Returns serial number, name, description, value, and unit specifier for each

available statistic, or a specified statistic.

Syntax sp_iqstatistics [stat_name]

Parameters stat_name (Optional) VARCHAR parameter specifying the name of a
statistic.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Column name Description
mainKB The total IQ main store space in kilobytes.
mainKBUsed The number of kilobytes of IQ main store space

used by the database.
tempKB The total IQ temporary store space in kilobytes.
tempKBUsed The number of kilobytes of IQ temporary store

space in use by the database.

System stored procedures

462 Sybase IQ

Description When stat_name is provided, sp_iqstatistics returns one row for the given
statistic, or zero rows if the name is invalid. When invoked without any
parameter, sp_iqstatistics returns all statistics.

Result set

The following statistics may be returned:

Column name Data type Description
stat_num UNSIGNED INTEGER Serial number of a

statistic
stat_name VARCHAR(255) Name of statistic
stat_desc VARCHAR(255) Description of

statistic
stat_value LONG VARCHAR Value of statistic
stat_unit VARCHAR(128) Unit specifier

stat_
num stat_name stat_desc stat_unit
0 CpuTotalTime Total CPU time in seconds consumed by the

IQ server since last server startup
Second

1 CpuUserTime CPU user time in seconds consumed by the
IQ server since last server startup

Second

2 CpuSystemTime CPU system time in seconds consumed by
the IQ server since last server startup

Second

3 ThreadsFree Number of IQ threads free N/A
4 ThreadsInUse Number of IQ threads in use N/A
5 MemoryAllocated Allocated memory in megabytes MB
6 MemoryMaxAllocated Max allocated memory in megabytes MB
7 MainCacheCurrentSize Main cache current size in megabytes MB
8 MainCacheFinds Main cache total number of lookup requests N/A
9 MainCacheHits Main cache total number of hits N/A
10 MainCachePagesPinned Main cache number of pages pinned Page
11 MainCachePagesPinnedPercentage Percentage of main cache pages pinned %
12 MainCachePagesDirtyPercentage Percentage of main cache pages dirtied %
13 MainCachePagesInUsePercentage Percentage of main cache pages in use %
14 TempCacheCurrentSize Temporary cache current size in megabytes MB
15 TempCacheFinds Temporary cache total number of lookup

requests
N/A

16 TempCacheHits Temporary cache total number of hits N/A
17 TempCachePagesPinned Temporary cache number of pages pinned Page

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 463

Examples Example 1 Displays a single statistic, the total CPU time:

sp_iqstatistics 'CPUTotalTime'

Example 2 Displays all statistics for MainCache%:

SELECT * from sp_iqstatistics() WHERE stat_name LIKE
'MainCache%'

sp_iqstatus procedure
Function Displays a variety of Sybase IQ status information about the current database.

Syntax sp_iqstatus

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Shows status information about the current database, including the database
name, creation date, page size, number of dbspace segments, block usage,
buffer usage, I/O, backup information, and so on.

18 TempCachePagesPinnedPercentage Percentage of temporary cache pages
pinned

%

19 TempCachePagesDirtyPercentage Percentage of temporary cache pages dirtied %
20 TempCachePagesInUsePercentage Percentage of temporary cache pages in use %
21 MainStoreDiskReads Number of kilobytes read from main store KB
22 MainStoreDiskWrites Number of kilobytes written to main store KB
23 TempStoreDiskReads Number of kilobytes read from main store KB
24 TempStoreDiskWrites Number of kilobytes written to main store KB
25 ConnectionsTotalConnections Total number of connections since server

startup
N/A

26 ConnectionsTotalDisonnections Total number of disconnections since server
startup

N/A

27 ConnectionsActive Number of active connections N/A
28 OperationsWaiting Number of operations waiting for IQ

resource governor
N/A

29 OperationsActive Number of active concurrent operations
admitted by IQ resource governor

N/A

30 OperationsActiveLoadTableStatements Number of active LOAD TABLE
statements

N/A

stat_
num stat_name stat_desc stat_unit

System stored procedures

464 Sybase IQ

sp_iqstatus displays an out-of-space status for main and temporary stores. If a
store runs into an out-of-space condition, sp_iqstatus shows Y in the store’s out-
of-space status display value.

sp_iqspaceused returns a subset of the same information as provided by
sp_iqstatus, but allows the user to return the information in SQL variables to be
used in calculations. See “sp_iqspaceused procedure” on page 460.

To display space that can be reclaimed by dropping connections, use
sp_iqstatus and add the results from the two returned rows:

(DBA)> select * from sp_iqstatus() where name like
'%Versions:%'
Execution time: 6.25 seconds
Name Value

Other Versions: 2 = 1968Mb
Active Txn Versions: 1 = C:2175Mb/D:2850Mb

(First 2 rows)

The above example output shows that one active write transaction created
2175MB and destroyed 2850 MB of data. The total data consumed in
transactions and not yet released is 4818MB, or 1968MB + 2850MB =
4818MB.

sp_iqstatus does not show blocks that will be deallocated at the next
checkpoint. These blocks do however, appear in sp_iqdbspace output as type
X.

Example The following output is from the sp_iqstatus stored procedure:

Sybase IQ (TM) Copyright (c) 1992-2009 by Sybase, Inc.
All rights reserved.

Version: 15.1.0/090416/P/MS/Windows/2003/
32bit/2009-04-16 02:11:41

Time Now: 2009-04-21 13:48:22.319
Build Time: 2009-04-16 02:15:39
File Format: 23 on 03/18/1999
Server mode: IQ Server
Catalog Format: 2
Stored Procedure Revision: 1
Page Size: 131072/8192blksz/16bpp
Number of Main DB Files : 2
Main Store Out Of Space: N
Number of Temp DB Files : 1
Temp Store Out Of Space: N
DB Blocks: 1-3200 IQ_SYSTEM_MAIN
DB Blocks: 1045440-1055039 iq_main
Temp Blocks: 1-1600 IQ_SYSTEM_TEMP

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 465

Create Time: 2009-04-03 11:30:20.674
Update Time: 2009-04-03 11:34:33.040
Main IQ Buffers: 255, 32Mb
Temporary IQ Buffers: 191, 24Mb
Main IQ Blocks Used: 5915 of 11200, 52%=46Mb, Max Block#:105278
Temporary IQ Blocks Used: 65 of 800, 8%=0Mb, Max Block#: 0
Main Reserved Blocks Available: 1600 of 1600, 100%=6Mb
Temporary Reserved Blocks Available: 6400 of 6400, 100%=50Mb
IQ Dynamic Memory: Current: 69mb, Max: 70mb
Main IQ Buffers: Used: 17, Locked: 0
Temporary IQ Buffers: Used: 4, Locked: 0
Main IQ I/O: I: L1581/P14 O: C3/D163/P161 D:34 C:97.1
Temporary IQ I/O: I: L6627/P0 O: C1086/D1166/P83

D:1082 C:100.0
Other Versions: 0 = 0Mb
Active Txn Versions: 0 = C:0Mb/D:0Mb
Last Full Backup ID: 0
Last Full Backup Time:
Last Backup ID: 0
Last Backup Type: None
Last Backup Time:
DB Updated: 1
Blocks in next ISF Backup: 0 Blocks: =0Mb
Blocks in next ISI Backup: 0 Blocks: =0Mb
DB File Encryption Status: OFF

The following is a key to understanding the Main IQ I/O and Temporary
IQ I/O output codes:

• I: Input

• L: Logical pages read (“Finds”)

• P: Physical pages read

• O: Output

• C: Pages created

• D: Pages dirtied

• P: Physically written

• D: Pages destroyed

• C: Compression ratio

See also sp_iqtransaction procedure and sp_iqversionuse procedure

System stored procedures

466 Sybase IQ

sp_iqsysmon procedure
Function Monitors multiple components of Sybase IQ, including the management of

buffer cache, memory, threads, locks, I/O functions, and CPU utilization.

Batch mode syntax sp_iqsysmon start_monitor
sp_iqsysmon stop_monitor [, “section(s)”]
or
sp_iqsysmon “time-period” [, “section(s)”]

File mode syntax sp_iqsysmon start_monitor, ‘filemode’ [, ”monitor-options”]
sp_iqsysmon stop_monitor

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Batch mode usage start_monitor Starts monitoring.

stop_monitor Stops monitoring and displays the report.

time-period The time period for monitoring. Must be in the form
HH:MM:SS.

section(s) The abbreviation for one or more sections to be displayed by
sp_iqsysmon. When more than one section is specified, the section
abbreviations must be separated by spaces and the list must be enclosed in
single or double quotes. The default is to display all sections.

For the sections related to IQ store, you can specify main or temporary store by
prefixing the section abbreviation with “m” or “t”, respectively. See Table 7-
56. Without the prefix, both stores are monitored. For example, if you specify
“mbufman”, only the IQ main store buffer manager is monitored. If you specify
“mbufman tbufman” or “bufman”, both the main and temporary store buffer
managers are monitored.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 467

Table 7-56: sp_iqsysmon report section abbreviations

Note The Sybase IQ components Disk I/O and lock manager are not currently
supported by sp_iqsysmon.

File mode usage start_monitor Starts monitoring.

stop_monitor Stops monitoring and writes the remaining output to the log
file.

filemode Specifies that sp_iqsysmon is running in file mode. In file mode, a
sample of statistics is displayed for every interval in the monitoring period. By
default, the output is written to a log file named dbname.connid-iqmon. Use the
file_suffix option to change the suffix of the output file. See the monitor_options
parameter for a description of the file_suffix option.

monitor_options The monitor _options string can include one or more of the
following options:

• -interval seconds
Specifies the reporting interval in seconds. A sample of monitor statistics
is output to the log file after every interval. The default is every 60
seconds, if the -interval option is not specified. The minimum reporting
interval is 2 seconds. If the interval specified for this option is invalid or
less than 2 seconds, the interval is set to 2 seconds.

Report section or IQ component Abbreviation
Buffer manager (m/t)bufman
Buffer pool (m/t)bufpool
Prefetch management (m/t)prefetch
Free list management (m/t)freelist
Buffer allocation (m/t)bufalloc
Memory management memory
Thread management threads
CPU utilization cpu
Transaction management txn
Server context statistics server
Catalog statistics catalog

System stored procedures

468 Sybase IQ

The first display shows the counters from the start of the server.
Subsequent displays show the difference from the previous display. You
can usually obtain useful results by running the monitor at the default
interval of 60 seconds during a query with performance problems or
during a time of day with performance problems. A very short interval
may not provide meaningful results. The interval should be proportional
to the job time; 60 seconds is usually more than enough time.

• -file_suffix suffix
Creates a monitor output file named dbname.connid-suffix. If you do not
specify the -file_suffix option, the suffix defaults to iqmon. If you specify
the -file_suffix option and do not provide a suffix or provide a blank string
as a suffix, no suffix is used.

• -append or -truncate
Directs sp_iqsysmon to append to the existing output file or truncate the
existing output file, respectively. Truncate is the default. If both options
are specified, the option specified later in the string is effective.

• -section section(s)
Specifies the abbreviation of one or more sections to write to the monitor
log file. The default is to write all sections. The abbreviations specified in
the sections list in file mode are the same abbreviations used in batch
mode. See Table 7-56 for a list of abbreviations. When more than one
section is specified, spaces must separate the section abbreviations.

If the -section option is specified with no sections, none of the sections are
monitored. An invalid section abbreviation is ignored and a warning is
displayed in the IQ message file.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 469

Usage syntax
examples

Table 7-57: sp_iqsysmon usage examples

Description The sp_iqsysmon stored procedure monitors multiple components of Sybase
IQ, including the management of buffer cache, memory, threads, locks, I/O
functions, and CPU utilization.

The sp_iqsysmon procedure supports two modes of monitoring:

• Batch mode

In batch mode, sp_iqsysmon collects the monitor statistics for the period
between starting and stopping the monitor or for the time period specified
in the time-period parameter. At the end of the monitoring period,
sp_iqsysmon displays a list of consolidated statistics.

sp_iqsysmon in batch mode is similar to the Adaptive Server Enterprise
procedure sp_sysmon.

• File mode

In file mode, sp_iqsysmon writes the sample statistics in a log file for every
interval period between starting and stopping the monitor.

Note that the first display in file mode shows the counters from the start of
the server. Subsequent displays show the difference from the previous
display.

sp_iqsysmon in file mode is similar to the IQ UTILITIES command START
MONITOR and STOP MONITOR interface.

Batch mode examples Prints monitor information after 10 minutes:

sp_iqsysmon “00:10:00”

Syntax Result
sp_iqsysmon start_monitor
sp_iqsysmon stop_monitor

Starts the monitor in batch mode and
displays all sections for main and temporary
store

sp_iqsysmon start_monitor
sp_iqsysmon stop_monitor
“mbufman mbufpool”

Starts the monitor in batch mode and
displays the Buffer Manager and Buffer
Pool statistics for main store

sp_iqsysmon “00:00:10”, “mbufpool
memory”

Runs the monitor in batch mode for 10
seconds and displays the consolidated
statistics at the end of the time period

sp_iqsysmon start_monitor,
‘filemode’, “-interval 5 -sections
mbufpool memory”
sp_iqsysmon stop_monitor

Starts the monitor in file mode and writes to
the log file every 5 seconds the statistics for
Main Buffer Pool and Memory Manager

System stored procedures

470 Sybase IQ

Prints only the Memory Manager section of the sp_iqsysmon report after 5
minutes:

sp_iqsysmon “00:05:00”, memory

Starts the monitor, executes two procedures and a query, stops the monitor, then
prints only the Buffer Manager section of the report:

sp_iqsysmon start_monitor
go
execute proc1
go
execute proc2
go
select sum(total_sales) from titles
go
sp_iqsysmon stop_monitor, bufman
go

Prints only the Main Buffer Manager and Main Buffer Pool sections of the
report after 20 minutes:

sp_iqsysmon “00:02:00”, “mbufman mbufpool”

File mode examples Truncates and writes information to the log file every 2 seconds between
starting the monitor and stopping the monitor:

sp_iqsysmon start_monitor, ‘filemode’, ‘-interval 2’
.
.
.
sp_iqsysmon stop_monitor

Appends output for only the Main Buffer Manager and Memory Manager
sections to an ASCII file with the name dbname.connid-testmon. For the
database iqdemo, writes results in the file iqdemo.2-testmon:

sp_iqsysmon start_monitor, ‘filemode’,
“-file_suffix testmon -append -section mbufman memory”
.
.
.
sp_iqsysmon stop_monitor

Example Run the monitor in batch mode for 10 seconds and display the consolidated
statistics at the end of the time period

sp_iqsysmon “00:00:10”, “mbufpool memory”

==============================

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 471

Buffer Pool (Main)
==============================
STATS-NAME TOTAL NONE BTREEV BTREEF BV VDO DBEXT DBID SORT
MovedToMRU 0 0 0 0 0 0 0 0 0
MovedToWash 0 0 0 0 0 0 0 0 0
RemovedFromLRU 0 0 0 0 0 0 0 0 0
RemovedFromWash 0 0 0 0 0 0 0 0 0
RemovedInScanMode 0 0 0 0 0 0 0 0 0

STORE GARRAY BARRAY BLKMAP HASH CKPT BM TEST CMID RIDCA LOB
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

STATS-NAME VALUE
Pages 127 (100.0 %)
InUse 4 (3.1 %)
Dirty 1 (0.8 %)
Pinned 0 (0.0 %)
Flushes 0
FlushedBufferCount 0
GetPageFrame 0
GetPageFrameFailure 0
GotEmptyFrame 0
Washed 0
TimesSweepersWoken 0

washTeamSize 0
WashMaxSize 26 (20.5 %)
washNBuffers 4 (3.1 %)
washNDirtyBuffers 1 (0.8 %)

washSignalThreshold 3 (2.4 %)
washNActiveSweepers 0
washIntensity 1

==============================
Memory Manager
==============================
STATS-NAME VALUE
MemAllocated 43616536 (42594 KB)
MemAllocatedMax 43735080 (42710 KB)
MemAllocatedEver 0 (0 KB)
MemNAllocated 67079
MemNAllocatedEver 0

System stored procedures

472 Sybase IQ

MemNTimesLocked 0
MemNTimesWaited 0 (0.0 %)

See also IQ UTILITIES statement in Chapter 1, “SQL Statements,” in Reference:
Statements and Options

Chapter 5, “Monitoring and Tuning Performance” in the Performance and
Tuning Guide

sp_iqtable procedure
Function Displays information about tables in the database.

Syntax1 sp_iqtable ([table_name],[table_owner],[table_type])

Syntax2 sp_iqtable [table_name='tablename'],
[table_owner='tableowner'],[table_type='tabletype']

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage Syntax1 If you do not specify either of the first two parameters, but specify
the next parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqtable NULL,NULL,TEMP and sp_iqtable
NULL,dbo,SYSTEM.

Note The table_type values ALL and VIEW must be enclosed in single quotes
in Syntax1.

Syntax2 The parameters can be specified in any order. Enclose them in single
quotes.

Table 7-58 lists the allowed values for the table_type parameter:

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 473

Table 7-58: sp_iqtable table_type values

Description Specifying one parameter returns only the tables that match that parameter.
Specifying more than one parameter filters the results by all of the parameters
specified. Specifying no parameters returns all Sybase IQ tables in the
database. There is no method for returning the names of local temporary tables.

table_type value Information displayed
SYSTEM System tables
TEMP Global temporary tables
VIEW Views
ALL IQ tables, system tables, and views
any other value IQ tables

System stored procedures

474 Sybase IQ

Table 7-59: sp_iqtable columns

Examples The following variations in syntax both return information about the table
Departments:

sp_iqtable ('Departments')
sp_iqtable table_name='Departments'

The following variations in syntax both return all tables that are owned by table
owner GROUPO:

Column name Description
table_name The name of the table.
table_type BASE – a base table.

MAT VIEW - a materialized view.
GBL TEMP - a global temporary table.
PARTITION - a table partition (this table is for internal
use only and cannot be used by Sybase IQ users).
VIEW – a view.
JVT – a join virtual table.

table_owner The owner of the table
server_type IQ – an object created in the IQ store.

SA – an object created in the SA store.
All views are created in the SA store.

location TEMP – IQ temporary store.
MAIN – IQ store.
SYSTEM – catalog store.

dbspace_id Name of the dbspace where the table resides.
isPartitioned 'Y' if the column belongs to a partitioned table and has

one or more partitions whose dbspace is different from
the table partition’s dbspace, 'N' if the column’s table is
not partitioned or each partition of the column resides in
the same dbspace as the table partition.

remarks User comments added with the COMMENT statement.
table_constraints Constraints against the table.

Table_name Table_type Table_owner Server_type location
Departments BASE GROUPO IQ Main

dbspace_id isPartitioned Remarks table_constraints
16387 N (NULL) (NULL)

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 475

sp_iqtable NULL,GROUPO
sp_iqtable table_owner='GROUPO'

sp_iqtablesize procedure
Function Returns the size of the specified table.

Syntax sp_iqtablesize (table_owner.table_name)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns the total size of the table in KBytes and NBlocks (IQ blocks). Also
returns the number of pages required to hold the table in memory, and the
number of IQ pages that are compressed when the table is compressed (on
disk). You must specify the table_name parameter with this procedure. If you
are the owner of table_name, then you do not have to specify the table_owner
parameter.

Table_name Table_type Table_owner Server_type location
Contacts BASE GROUPO IQ Main
Customers BASE GROUPO IQ Main
Departments BASE GROUPO IQ Main
Employees BASE GROUPO IQ Main
FinancialCodes BASE GROUPO IQ Main
FinancialData BASE GROUPO IQ Main
Products BASE GROUPO IQ Main
SalesOrders BASE GROUPO IQ Main
SalesOrderItems BASE GROUPO IQ Main

dbspace_id isPartitioned Remarks table_constraints
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)
16387 N (NULL) (NULL)

System stored procedures

476 Sybase IQ

Table 7-60: sp_iqtablesize columns

Pages is the total number of IQ pages for the table. The unit of measurement
for pages is IQ page size. All in-memory buffers (buffers in the IQ buffer
cache) are the same size.

IQ pages on disk are compressed. Each IQ page on disk uses 1 to 16 blocks. If
the IQ page size is 128KB, then the IQ block size is 8KB. In this case, an
individual on-disk page could be 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96,
104, 112, 120, or 128 KB.

If you divide the KBytes value by page size, you see the average on-disk page
size.

Note Sybase IQ always reads and writes an entire page, not blocks. For
example, if an individual page compresses to 88K, then IQ reads and writes the
88K in one I/O. The average page is compressed by a factor of 2 to 3.

NBlocks is Kbytes divided by IQ block size.

CompressedPages is the number of pages that are compressed. For example, if
Pages is 1000 and CompressedPages is 992, this means that 992 of the 1000
pages are compressed. CompressedPages divided by Pages is usually near
100%, because most pages compress. An empty page is not compressed, since
Sybase IQ does not write empty pages. IQ pages compress well, regardless of
the fullness of the page.

Example call sp_iqtablesize ('dba.emp1')

Column name Description
Ownername Name of owner
Tablename Name of table
Columns Number of columns in the table
KBytes Physical table size in KB
Pages Number of IQ pages needed to hold the table in memory
CompressedPages Number of IQ pages that are compressed, when the table

is compressed (on disk)
NBlocks Number of IQ blocks

Ownername Tablename Columns KBytes Pages CompressedPages NBlocks
DBA emp1 4 1504 24 14 188

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 477

sp_iqtableuse procedure
Function Reports detailed usage information for tables accessed by the workload.

Syntax sp_iqtableuse

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Tables created in SYSTEM are not reported.

Table 7-61: sp_iqtableuse columns

**UID is a number assigned by the system that uniquely identifies the instance
of the table (where instance is defined when an object is created).

See also “Monitoring workloads,”Chapter 3, “Optimizing Queries and Deletions,” in
the Performance and Tuning Guide.

“sp_iqcolumnuse procedure” on page 372, “sp_iqdbspace procedure” on page
388, “sp_iqindexadvice procedure” on page 418, “sp_iqindexuse procedure”
on page 426, “sp_iqunusedcolumn procedure” on page 481,
“sp_iqunusedindex procedure” on page 482, “sp_iqunusedtable procedure”
on page 483, and “sp_iqworkmon procedure” on page 490

“INDEX_ADVISOR option” in Chapter 2, “Database Options,” in Reference:
Statements and Options

sp_iqtransaction procedure
Function Shows information about transactions and versions.

Syntax sp_iqtransaction

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Column name Description
TableName Table name
Owner Username of table owner
UID** Table unique identifier
LastDT Date/time of last access
NRef Number of query references

System stored procedures

478 Sybase IQ

Description sp_iqtransaction returns a row for each transaction control block in the Sybase
IQ transaction manager. The columns Name, Userid, and ConnHandle are the
connection properties Name, Userid, and Number, respectively. Rows are
ordered by TxnID.

sp_iqtransaction output does not contain rows for connections that do not have
a transaction started. To see all connections, use sp_iqconnection.

Note Although you can use sp_iqtransaction to identify users who are blocking
other users from writing to a table, sp_iqlocks is a better choice for this purpose.

Table 7-62: sp_iqtransaction columns
Column name Description
Name The name of the application.
Userid The user ID for the connection.
TxnID The transaction ID of this transaction control block. The transaction ID is

assigned during begin transaction. This is the same as the transaction ID
displayed in the .iqmsg file by the BeginTxn, CmtTxn and PostCmtTxn messages
as well as the Txn ID Seq logged when the database is opened.

CmtID The ID assigned by the transaction manager when the transaction commits. It is
zero for active transactions.

VersionID In simplex databases, the VersionID is the same as the TxnID. For the multiplex
coordinator, the VersionID is the same as the TxnID of the active transaction and
VersionID is the same as the CmtID of a committed transaction. In multiplex
secondary servers, the VersionID is the CmtID of the transaction that created the
database version on the multiplex coordinator. It is used internally by the Sybase
IQ in-memory catalog and the IQ transaction manager to uniquely identify a
database version to all nodes within a multiplex database.

State The state of the transaction control block. This variable reflects internal Sybase
IQ implementation detail and is subject to change in the future. At the time of this
writing, transaction states are NONE, ACTIVE, ROLLING_BACK,
ROLLED_BACK, COMMITTING, COMMITTED, and APPLIED.

ConnHandle The ID number of the connection.
IQConnID The ten-digit connection ID displayed as part of all messages in the .iqmsg file.

This is a monotonically increasing integer unique within a server session.
MainTableKBCr The number of kilobytes of IQ store space created by this transaction.
MainTableKBDr The number of kilobytes of IQ store space dropped by this transaction, but which

persist on disk in the store because the space is visible in other database versions
or other savepoints of this transaction.

TempTableKBCr The number of kilobytes of IQ temporary store space created by this transaction
for storage of IQ temporary table data.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 479

Example Here is an example of sp_iqtransaction output:

Name Userid TxnID CmtID VersionID State ConnHandle IQConnID
======= ===== ====== ====== ========= ========== =========== ========
red2 DBA 10058 10700 10058 COMMITTED 419740283 14
blue1 DBA 10568 0 10568 ACTIVE 640038605 17

DBA 10604 0 10604 ACTIVE 2094200996 18
fromSCJ DBA 10619 0 10619 ACTIVE 954498130 20
blue2 DBA 10634 10677 10634 COMMITTED 167015670 21
ntJava2 DBA 10676 0 10676 ACTIVE 1779741471 24
blue2 DBA 10678 0 10678 ACTIVE 167015670 21

TempTableKBDr The number of kilobytes of IQ temporary table space dropped by this transaction,
but which persist on disk in the IQ temporary store because the space is visible to
IQ cursors or is owned by other savepoints of this transaction.

TempWorkSpaceKB For ACTIVE transactions, this is a snapshot of the work space in use at this
instant by this transaction, such as sorts, hashes, and temporary bitmaps. The
number varies depending on when you run sp_iqtransaction. For example, the
query engine might create 60MB in the temporary cache but release most of it
quickly, even though query processing continues. If you run sp_iqtransaction
after the query finishes, this column shows a much smaller number. When the
transaction is no longer active, this column is zero.
For ACTIVE transactions, this column is the same as the TempWorkSpaceKB
column of sp_iqconnection.

TxnCreateTime The time the transaction began. All Sybase IQ transactions begin implicitly as
soon as an active connection is established or when the previous transaction
commits or rolls back.

CursorCount The number of open Sybase IQ cursors that reference this transaction control
block. If the transaction is ACTIVE, it indicates the number of open cursors
created within the transaction. If the transaction is COMMITTED, it indicates the
number of HOLD cursors that reference a database version owned by this
transaction control block.

SpCount The number of savepoint structures that exist within the transaction control block.
Savepoints may be created and released implicitly. Therefore, this number does
not indicate the number of user-created savepoints within the transaction.

SpNumber The active savepoint number of the transaction. This is an implementation detail
and might not reflect a user-created savepoint.

MPXServerName The value indicates if an active transaction is from an inter-node communication
(INC) connection. If from INC connection, the value is the name of the multiplex
server where the transaction originates. NULL if not from an INC connection.
Always NULL if the transaction is not active.

GlobalTxnID The value indicates the global transaction ID associated with the current
transaction. Zero if there is no associated global transaction.

Column name Description

System stored procedures

480 Sybase IQ

nt1 DBA 10699 0 10699 ACTIVE 710225777 28
red2 DBA 10701 0 10701 ACTIVE 419740283 14

DBA 16687 0 16687 ACTIVE 1306718536 23

MainTableKBCr MainTableKBDr TempTableKBCr TempTableKBDr
============= ================== ================================

0 0 65824 0
0 0 0 0
0 0 0 0
0 0 0 0

3960 152 0 0
0 0 0 0

2400 1992 0 0
0 0 0 0
0 0 2912 22096
0 0 0 0

TempWorkSpaceKB TxnCreateTime CursorCount SpCount SpNumber
============== ================== ========== ====== ======

0 2009-06-26 13:17:27.612 1 3 2
102592 2009-06-26 13:27:28.491 1 1 0

0 2009-06-26 13:30:27.548 0 1 0
0 2009-06-26 13:31:27.151 0 24 262
0 2009-06-26 13:35:02.128 0 0 0
0 2009-06-26 13:43:58.805 0 39 408

128 2009-06-26 13:45:28.379 0 1 0
0 2009-06-26 14:05:15.759 0 42 413

680 2009-06-26 14:57:51.104 1 2 20
0 2009-06-26 15:09:30.319 0 1 0

MPXServerName GlobalTxnID
============= ===========

(NULL) 0
(NULL) 0
(NULL) 0
(NULL) 0
(NULL) 0
(NULL) 0
(NULL) 0
(NULL) 0
(NULL) 0
(NULL) 0

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 481

sp_iqunusedcolumn procedure
Function Reports IQ columns that were not referenced by the workload.

Syntax sp_iqunusedcolumn

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Columns from tables created in SYSTEM or local temporary tables are not
reported.

Table 7-63: sp_iqunusedcolumn columns

Example Sample output from the sp_iqunusedcolumn procedure:

TableName ColumnName Owner

SalesOrders ID GROUPO

SalesOrders CustomerID GROUPO

SalesOrders OrderDate GROUPO

SalesOrders FinancialCode GROUPO

SalesOrders Region GROUPO

SalesOrders SalesRepresentative GROUPO

SalesOrderItems ID GROUPO

SalesOrderItems LineID GROUPO

SalesOrderItems ProductID GROUPO

SalesOrderItems Quantity GROUPO

SalesOrderItems ShipDate GROUPO

Contacts ID GROUPO

Contacts Surname GROUPO

Contacts GivenName GROUPO

...

See also “Monitoring workloads,”Chapter 3, “Optimizing Queries and Deletions,” in
the Performance and Tuning Guide.

“sp_iqcolumnuse procedure” on page 372, “sp_iqdbspace procedure” on page
388, “sp_iqindexadvice procedure” on page 418, “sp_iqindexuse procedure”
on page 426, “sp_iqtableuse procedure” on page 477, “sp_iqunusedindex
procedure” on page 482, “sp_iqunusedtable procedure” on page 483, and
“sp_iqworkmon procedure” on page 490

Column name Description
TableName Table name
ColumnName Column name
Owner Username of column owner

System stored procedures

482 Sybase IQ

“INDEX_ADVISOR option” in Chapter 2, “Database Options,” in Reference:
Statements and Options

sp_iqunusedindex procedure
Function Reports IQ secondary (non-FP) indexes that were not referenced by the

workload.

Syntax sp_iqunusedindex

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Indexes from tables created in SYSTEM or local temporary tables are not
reported.

Table 7-64: sp_iqunusedindex columns

Example Sample output from the sp_iqunusedindex procedure:

Column name Description
IndexName Index name
TableName Table name
Owner User name of index owner
IndexType Index type

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 483

IndexName TableName Owner IndexType

ASIQ_IDX_T450_I7_HG SalesOrders GROUPO HG

ASIQ_IDX_T450_C6_HG SalesOrders GROUPO HG

ASIQ_IDX_T450_C4_HG SalesOrders GROUPO HG

ASIQ_IDX_T450_C2_HG SalesOrders GROUPO HG

ASIQ_IDX_T451_I6_HG SalesOrderItems GROUPO HG

ASIQ_IDX_T451_C3_HG SalesOrderItems GROUPO HG

ASIQ_IDX_T451_C1_HG SalesOrderItems GROUPO HG

ASIQ_IDX_T452_I11_HG Contacts GROUPO HG

ASIQ_IDX_T453_I10_HG Contacts GROUPO HG

ASIQ_IDX_T454_I4_HG FinancialCodes GROUPO HG

ASIQ_IDX_T455_I5_HG FinancialData GROUPO HG

ASIQ_IDX_T455_C3_HG FinancialData GROUPO HG

ASIQ_IDX_T456_I8_HG Products GROUPO HG

ASIQ_IDX_T457_I4_HG Departments GROUPO HG

ASIQ_IDX_T457_C3_HG Departments GROUPO HG

ASIQ_IDX_T458_I21_HG Departments GROUPO HG

ASIQ_IDX_T458_C5_HG Departments GROUPO HG

See also “Monitoring workloads,”Chapter 3, “Optimizing Queries and Deletions,” in
the Performance and Tuning Guide.

“sp_iqcolumnuse procedure” on page 372, “sp_iqdbspace procedure” on page
388, “sp_iqindexadvice procedure” on page 418, “sp_iqindexuse procedure”
on page 426, “sp_iqtableuse procedure” on page 477, “sp_iqunusedcolumn
procedure” on page 481, “sp_iqunusedtable procedure” on page 483, and
“sp_iqworkmon procedure” on page 490

“INDEX_ADVISOR option” in Chapter 2, “Database Options,” in Reference:
Statements and Options

sp_iqunusedtable procedure
Function Reports IQ tables that were not referenced by the workload.

Syntax sp_iqunusedtable

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Tables created in SYSTEM and local temporary tables are not reported.

System stored procedures

484 Sybase IQ

Table 7-65: sp_iqunusedtable columns

Example The following table illustrates sample output from the sp_iqunusedtable
procedure.

TableName Owner

FinancialCodes GROUPO

Contacts GROUPO

Employees GROUPO

emp1 DBA

SalesOrders GROUPO

FinancialData GROUPO

Departments GROUPO

SalesOrderItems GROUPO

Products GROUP

iq_dummy DBA

Customers GROUPO

sale DBA

See also “Monitoring workloads,”Chapter 3, “Optimizing Queries and Deletions,” in
the Performance and Tuning Guide.

“sp_iqcolumnuse procedure” on page 372, “sp_iqdbspace procedure” on page
388, “sp_iqindexadvice procedure” on page 418, “sp_iqindexuse procedure”
on page 426, “sp_iqtableuse procedure” on page 477, “sp_iqunusedcolumn
procedure” on page 481, “sp_iqunusedindex procedure” on page 482, and
“sp_iqworkmon procedure” on page 490

“INDEX_ADVISOR option” in Chapter 2, “Database Options,” in Reference:
Statements and Options

sp_iqversionuse procedure
Function Displays version usage for the IQ main store.

Syntax sp_iqversionuse

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Column name Description
TableName Table name
Owner Username of table owner

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 485

Description The sp_iqversionuse system stored procedure helps troubleshoot situations
where the databases uses excessive storage space due to multiple table
versions.

If out-of-space conditions occur or sp_iqstatus shows a high percentage of
main blocks in use on a multiplex server, run sp_iqversionuse to find out which
versions are being used and the amount of space that can be recovered by
releasing versions. For information on multiplex capability, see Using Sybase
IQ Multiplex.

The amount of space is expressed as a range because the actual amount
typically depends on which other versions are released. The actual amount of
space released can be anywhere between the values of MinKBRelease and
MaxKBRelease. The oldest version always has MinKBRelease equal to
MaxKBRelease.

WasReported indicates whether version usage information has been sent from
the secondary server to the coordinator. WasReported is 0 initially on a
coordinator for new versions. WasReported changes to 1 once SQL Remote
replicates version usage information back to the coordinator. If WasReported
is 0 for an extended period, SQL Remote might be stopped.

Note The WasReported column is used in a multiplex setting. For more
information on multiplex, see Using Sybase IQ Multiplex.

Table 7-66: sp_iqversionuse columns

Example The following table illustrates sample output from the sp_iqversionuse system
procedure:

VersionID Server IQConnID WasReported
========= ====== ======== ===========

0 ab2ab_iqdemo 9 0

Column name Description
VersionID The version identifier
Server The server to which users of this version are connected
IQConnID The connection ID using this version
WasReported Indicates whether the server has received usage

information for this version
MinKBRelease The minimum amount of space returned once this

version is no longer in use
MaxKBRelease The maximum amount of space returned once this

version is no longer in use

System stored procedures

486 Sybase IQ

MinKBRelease MaxKBRelease
============ ============

0 0

sp_iqview procedure
Function Displays information about views in a database.

Syntax1 sp_iqview ([view_name],[view_owner],[view_type])

Syntax2 sp_iqview [view_name='viewname'],
[view_owner='viewowner'],[view_type='viewtype']

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage Syntax1 sp_iqview NULL,NULL,SYSTEM If you do not specify either of the
first two parameters, but specify the next parameter in the sequence, you must
substitute NULL for the omitted parameters. For example: sp_iqview
NULL,NULL,SYSTEM and sp_iqview deptview,NULL,'ALL'.

Note The view_type value ALL must be enclosed in single quotes in Syntax1.

Syntax2 The parameters can be specified in any order. Enclose them in single
quotes.

Table 7-67 lists the allowed values for the view_type parameter.

Table 7-67: sp_iqview view_type values

Description Specifying one of the parameters returns only the views with the specified view
name or views that are owned by the specified user. Specifying more than one
parameter filters the results by all of the parameters specified. Specifying no
parameters returns all user views in a database.

view_type value Information displayed
SYSTEM System views
ALL User and system views
any other value User views

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 487

Table 7-68: sp_iqview columns

sp_iqview returns a view definition greater than 32K characters without
truncation.

Examples The following variations in syntax both return information about the view
deptview:

call sp_iqview('ViewSalesOrders')
sp_iqview view_name='ViewSalesOrders'

The following variations in syntax both return all views that are owned by view
owner GROUPO:

sp_iqview NULL,GROUPO
sp_iqview view_owner='GROUPO'

sp_iqwho procedure
Function Displays information about all current users and connections, or about a

particular user or connection.

Syntax sp_iqwho [{ connhandle | user-name } [, arg-type]]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description The sp_iqwho stored procedure displays information about all current users and
connections, or about a particular user or connection.

Column name Description
view_name The name of the view
view_owner The owner of the view
view_def The view definition as specified in the CREATE VIEW

statement
remarks User comments added with the COMMENT statement

view_name view_owner view_def remarks
ViewSalesOrd
ers

GROUPO Create views GROUPO ,
ViewSalesOrders(ID, LineID,
ProductID, Quantity, OrderDate,
ShipDate, Region,
SalesRepresentativeName

(NULL)

System stored procedures

488 Sybase IQ

Table 7-69: sp_iqwho columns

Adaptive Server Enterprise compatibility The Sybase IQ sp_iqwho stored
procedure incorporates the Sybase IQ equivalents of columns displayed by the
Adaptive Server Enterprise sp_who procedure. Some Adaptive Server
Enterprise columns are omitted, as they are not applicable to Sybase IQ. Table
7-70 maps the Adaptive Server Enterprise sp_who columns to the columns
displayed by sp_iqwho.

Column name Description
ConnHandle The SA connection handle
IQConnID The Sybase IQ specific connection ID
Userid The name of the user that opened the connection

“ConnHandle”
BlockedOn The connection on which a particular connection is blocked; 0

if not blocked on any connection
BlockUserid The owner of the blocking connection; NULL if there is no

blocking connection
ReqType The type of the request made through the connection;

DO_NOTHING if no command is issued
IQCmdType The type of Sybase IQ command issued from the connection;

NONE if no command is issued
IQIdle The time in seconds since the last Sybase IQ command was

issued through the connection; in case of no last Sybase IQ
command, the time since ‘01-01-2000’ is displayed

SAIdle The time in seconds since the last SA request was issued
through the connection; in case of no last SA command, the
time since ‘01-01-2000’ is displayed

IQCursors The number of active cursors in the connection; 0 if no cursors
IQThreads The number of threads with the connection. At least one thread

is started as soon as the connection is opened, so the minimum
value for IQThreads is 1.

TempTableSpaceK
B

The size of temporary table space in kilobytes; 0 if no
temporary table space is used

TempWorkSpaceK
B

The size of temporary workspace in kilobytes; 0 if no
temporary workspace is used

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 489

Table 7-70: Mapping of sp_who and sp_iqwho columns

Usage connhandle An integer representing the connection ID. If this parameter is
specified, sp_iqwho returns information only about the specified connection. If
the specified connection is not open, no rows are displayed in the output.

user-name A char(255) parameter representing a user login name. If this
parameter is specified, sp_iqwho returns information only about the specified
user. If the specified user has not opened any connections, no rows are
displayed in the output. If the specified user name does not exist in the
database, sp_iqwho returns the error message ”User user-name does not
exist”

arg-type The arg-type parameter is optional and can be specified only when
the first parameter has been specified. The only value for arg-type is “user”. If
the arg-type value is specified as “user”, sp_iqwho interprets the first parameter
as a user name, even if the first parameter is numeric. If any value other than
“user” is specified for arg-type, sp_iqwho returns the error

“Invalid parameter.”

Enclose the arg-type value in double quotes.

If no parameters are specified, sp_iqwho displays information about all
currently active connections and users.

Either a connection handle or a user name can be specified as the first sp_iqwho
parameter. The parameters connhandle and user-name are exclusive and
optional. Only one of these parameters can be specified at a time. By default,
if the first parameter is numeric, the parameter is assumed to be a connection
handle. If the first parameter is not numeric, it is assumed to be a user name.

sp_who column sp_iqwho column
fid Family to which a lock belongs; omitted, as not applicable to

Sybase IQ
spid ConnHandle, IQConnID
status IQIdle, SAIdle
loginame Userid
origname User alias; omitted, as not applicable to Sybase IQ
hostname Name of the host on which the server is running; currently not

supported
blk_spid BlockedOn
dbname Omitted, as there is one server and one database for Sybase IQ

and they are the same for every connection
cmd ReqType, IQCmdType
block_xloid BlockUserid

System stored procedures

490 Sybase IQ

Sybase IQ allows numeric user names. The arg-type parameter directs
sp_iqwho to interpret a numeric value in the first parameter as a user name. For
example:

sp_iqwho 1, “user”

When the arg-type “user” is specified, sp_iqwho interprets the first parameter
1as a user name, not as a connection ID. If a user named 1 exists in the
database, sp_iqwho displays information about connections opened by user 1.

Table 7-71: sp_iqwho usage examples

Example Display all active connections:

ConnHandle IQConnID Userid ReqType IQCmdType BlockedOn BlockUserid IQCursors

IQThreads IQIdle SAIdle TempTableSpaceKB TempWorkSpaceKB

12 118 DBA CURSOR_OPEN IQUTILITYOPENCURSOR 0 (NULL) 0

1 1 0 0 0

13 119 shweta DO_NOTHING NONE 0 (NULL) 0

1 16238757 470 0 0

See also “sp_iqconnection procedure” on page 373

“sa_conn_info system procedure” on page 494

sp_iqworkmon procedure
Function Controls collection of workload monitor usage information, and reports

monitoring collection status.

Syntax sp_iqworkmon [‘action’] [, ‘mode’]

action = ‘start’ , ‘stop’ , ’status’ , ‘reset’

mode = ‘index’ , ‘table’ , ‘column’ , ‘all’

Syntax Output
sp_iqwho Displays all active connections
sp_iqwho 3 Displays information about connection 3
sp_iqwho “DBA” Displays connections opened by user DBA

sp_iqwho 3, “user” Interprets 3 as a user name and displays connections
opened by user 3. If user 3 does not exist, returns the
error “User 3 does not exist”

sp_iqwho non-existing-user Returns error “User non-existing-user
does not exist”

sp_iqwho 3, “xyz” Returns the error “Invalid parameter: xyz”

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 491

For example:

sp_iqworkmon ‘start’ , ‘all’

If one argument is specified, it can only be action. For example:
sp_iqworkmon ‘stop’

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Usage action Specifies the control action to apply. A value of start starts monitoring
for the specified mode immediately. A value of stop stops monitoring
immediately. A value of reset clears all collected usage information. A value
of status (the default) displays the current status without changing state.

mode Specifies the type of monitoring to control. The INDEX, TABLE, and
COLUMN keywords individually control monitoring of index usage, table
usage, and column usage respectively. The default ALL keyword controls
monitoring of all usage monitoring features simultaneously.

There is always a result set when you execute sp_iqworkmon. If you specify a
specific mode (such as index), only the row for that mode appears.

Usage is collected only for SQL statements containing a FROM clause; for
example, SELECT, UPDATE, and DELETE.

Table 7-72: sp_iqworkmon columns

Example Sample output from the sp_iqworkmon procedure:

MonMode Status Rowcount

index started 15

table started 10

column started 31

See also “Monitoring workloads,”Chapter 3, “Optimizing Queries and Deletions,” in
the Performance and Tuning Guide.

“sp_iqcolumnuse procedure” on page 372, “sp_iqindexadvice procedure” on
page 418, “sp_iqdbspace procedure” on page 388, “sp_iqindexuse procedure”
on page 426, “sp_iqtableuse procedure” on page 477, “sp_iqunusedcolumn
procedure” on page 481, “sp_iqunusedindex procedure” on page 482, and
“sp_iqunusedtable procedure” on page 483

Column name Description
MonMode Table, index, or column
Status Started or stopped
Rowcount Current number of rows collected

Catalog stored procedures

492 Sybase IQ

“INDEX_ADVISOR option” in Chapter 2, “Database Options,” in Reference:
Statements and Options

Catalog stored procedures
The following catalog store stored procedures return result sets displaying
database server, database, and connection properties in tabular form. These
procedures are owned by the dbo user ID. The PUBLIC group has EXECUTE
permission on them.

sa_audit_string system procedure
Function Adds a string to the transaction log.

Syntax sa_audit_string (string)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description If auditing is turned on, this system procedure adds a comment into the audit
log. The string can be a maximum of 200 bytes long.

Example The following call adds a comment into the audit log:

CALL sa_audit_string('Auditing test')

sa_checkpoint_execute system procedure
Function Allows the execution of shell commands during a checkpoint.

Syntax sa_checkpoint_execute 'shell_commands'

Parameters shell_commands One or more user commands to be executed in a system
shell. The shell commands are specific to the system shell. Commands are
separated by a semicolon (;).

Permissions None.

Description Allows users to execute shell commands to copy a running database from the
middle of a checkpoint operation, when the server is quiescent. The copied
database can be started and goes through normal recovery, similar to recovery
following a system failure.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 493

sa_checkpoint_execute initiates a checkpoint, and then executes a system shell
from the middle of the checkpoint, passing the user commands to the shell. The
server then waits for the shell to complete, creating an arbitrary size time
window during which to copy database files. Most database activity stops
while the checkpoint is executing, so the duration of the shell commands
should be limited to acceptable user response time.

If the shell commands return a nonzero status, sa_checkpoint_execute returns
an error.

Do not use the sa_checkpoint_execute with interactive commands, as the server
must wait until the interactive command is killed. Supply override flags to
disable prompting for any shell commands that might become interactive; in
other words, the COPY, MOVE, and DELETE commands might prompt for
confirmation.

The intended use of sa_checkpoint_execute is with disk mirroring, to split
mirrored devices.

When using sa_checkpoint_execute to copy iqdemo.* files to another directory,
all files are copied except the .db and .log files. Error -910 is returned.

This error not a product defect but a Windows limitation; the Windows copy
command cannot copy catalog files while they are open by the database.

Example Assuming you have created a subdirectory named backup, the following
statement issues a checkpoint, copies all of the iqdemo database files to the
backup subdirectory, and completes the checkpoint:

sa_checkpoint_execute 'cp iqdemo.* backup/'

sa_conn_activity system procedure
Function Returns the most recently prepared SQL statement for each connection to

databases on the server.

Syntax sa_conn_activity

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Side effects None

Description The sa_conn_activity procedure returns a result set consisting of the most
recently prepared SQL statement for each connection if the server has been told
to collect the information. To obtain the result set, specify the -zl option when
starting the database server or execute the following:

Catalog stored procedures

494 Sybase IQ

CALL sa_server_option('Remember_last_statement','ON')

This procedure is useful when the database server is busy and you want to
obtain information about what SQL statement is prepared for each connection.
This feature can be used as an alternative to request-level logging.

For information on the LastStatement property from which these values are
derived, see SQL Anywhere Server – Database Administration.

For information about the -zl command line option, see Chapter 1, “Running
the Database Server” in Utility Guide.

For information about the remember_last_statement setting, see
“sa_server_option system procedure” on page 504.

sa_conn_info system procedure
Function Reports connection property information.

Syntax sa_conn_info ([connection-id])

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns a result set consisting of the following connection properties for the
supplied connection. If no connection-id is supplied, information for all current
connections to databases on the server is returned.

• Number

• Name

• Userid

• DBNumber

• LastReqTime

• ReqType

• CommLink

• NodeAddr

• ClientPort

• ServerPort

• BlockedOn

• LockRowID

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 495

• LockIndexID

• LockTable

• UncommitOps

In a deadlock situation, the BlockedOn value returned by this procedure allows
you to check which users are blocked, and who they are blocked on.

Example sa_conn_info

569851433,'','DBA',0,'','0.0',1,
'CURSOR_OPEN','local','',6821,0,0,1008

sa_conn_properties system procedure
Function Reports connection property information.

Syntax sa_conn_properties ([connection-id])

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns the connection ID as Number, PropNum, PropName, PropDescription,
and Value for each available connection property. Omitting the connection-id
produces results for all connections.

For a listing of available connection properties, see “Connection properties” in
the SQL Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere
Server - Database Administration > Configuring Your Database >
Connection, database, and database server properties

Example sa_conn_properties

Number PropNum PropName PropDescription Value

1,2,'BytesReceived','Bytes received by server','4157'

1,3,'BytesReceivedUncomp','Bytes received after decompression','4241'

1,4,'BytesSent','Bytes sent to client','15192'

1,10,'CacheHits','Cache Hits','1291'

1,11,'CacheReadIndInt','Cache index interior reads','58'

1,12,'CacheReadIndLeaf','Cache index leaf reads','121'

1,15,'CacheRead','Cache reads','1318'

1,19,'CacheReadTable','Cache table reads','387'

1,20,'CacheReadWorkTable','Cache work table reads','4'

1,21,'CarverHeapPages','Cache pages used for carvers','0'

1,39,'ClientStmtCacheHits','Number of prepares not required because of

Catalog stored procedures

496 Sybase IQ

the client statement cache','0'

1,40,'ClientStmtCacheMisses','Number of prepares in the client

statement cache which were prepared again','0'

1,41,'Commit','Number of commit requests','1'

1,48,'Cursor','Declared cursors','4'1,41,'Commit','Number of commit

requests','1'

Note To get cache hit statistics for the entire cache, use sa_eng_properties, and
see the output lines for CacheHitsEng, CacheReadEng, and DiskReadEng. If
you run the same query on the catalog store repeatedly, the first time you
should see reads increase but no cache hits; as you repeat the query, cache hits
increase in step with cache reads.

sa_db_info system procedure
Function Reports database property information.

Syntax sa_db_info ([database-id])

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns a single row containing the Number, Alias, File, ConnCount,
PageSize, and LogName for the specified database.

Example • The following statement returns a single row describing the current
database. Table 7-73 lists sample values.

sa_db_info

0,'iqdemo','
/sys1/users/test/sybase/IQ-15_1/demo/iqdemo.db',
1,4096,'/sys1/users/test/sybase/IQ-15_1/demo/
iqdemo.log'

Table 7-73: sa_db_info sample values
Property Value
Number 0
Alias iqdemo
File C:\Documents and Settings\All

Users\SybaseIQ\demo\iqdemo.db
ConnCount 1
PageSize 4096

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 497

See also “sa_db_properties system procedure” on page 497

sa_db_properties system procedure
Function Reports database property information.

Syntax sa_db_properties ([database-id])

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns the database ID number and the Number, PropNum, PropName,
PropDescription, and Value, for each property returned by the sa_db_info
system procedure.

Example sa_db_properties

0,10,'CacheHits','Cache Hits','4660'

0,11,'CacheReadIndInt','Cache index interior reads','334'

0,12,'CacheReadIndLeaf','Cache index leaf reads','1117'

0,15,'CacheRead','Cache reads','4887'

0,19,'CacheReadTable','Cache table reads','2025'

0,20,'CacheReadWorkTable','Cache work table reads','4'

0,22,'ChkptFlush','Checkpoint flushed pages','64'/

0,23,'ChkptPage','Checkpoint log page images saved','64'

0,24,'CheckpointUrgency','Checkpoint Urgency','7'

0,25,'Chkpt','Checkpoints','2'

0,26,'CheckpointLogBitmapSize','Checkpoint log bitmap

size','0'

'0,27,'CheckpointLogBitmapPagesWritten','Checkpoint log

writes to bitmap','0'

0,28,'CheckpointLogCommitToDisk','Checkpoint log commit to

disk','8

0,29,'CheckpointLogPageInUse','Checkpoint log pages in

use','62'

0,30,'CheckpointLogPagesRelocated','Checkpoint log pages

relocated','0'

0,31,'CheckpointLogSavePreimage','Checkpoint log save

preimage','64

See also “sa_db_info system procedure” on page 496

LogName C:\Documents and Settings\All
Users\SybaseIQ\demo\iqdemo.log

Property Value

Catalog stored procedures

498 Sybase IQ

sa_enable_auditing_type system procedure
Function Enables auditing and specifies which events to audit.

Syntax sa_enable_auditing_type(['string])

Parameters string is a comma-delimited string.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description sa_enable_auditing_type works with the PUBLIC.AUDITING option to enable
auditing of specific types of information.

If you set the PUBLIC.AUDITING option to ON, and do not specify which type
of information to audit, the default setting (all) takes effect. In this case, all
types of auditing information are recorded.

If you set the PUBLIC.AUDITING option to ON, and disable all types of auditing
using sa_disable_auditing_type, no auditing information is recorded. To re-
establish auditing, use sa_enable_auditing_type to specify which type of
information you want to audit.

If you set the PUBLIC.AUDITING option to OFF, then no auditing information
is recorded, regardless of the sa_enable_auditing_type setting.

Example To enable only option auditing:

sa_disable_auditing_type('all')

sa_enable_auditing_type('options')

See also AUDITING option [database] in Chapter 2, “Database Options,” in
Reference: Statements and Options

sa_eng_properties system procedure
Function Reports database server property information.

Syntax sa_eng_properties

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Returns the PropNum, PropName, PropDescription, and Value for each
available server property.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 499

Table 7-74: sa_eng_properties result sets

For a listing of available database server properties, see “System functions” in
SQL Anywhere Server – SQL Reference. See also “Server-level properties” in
SQL Anywhere Server – Database Administration.

Examples The following statement returns a set of available server properties:

call sa_eng_properties()

The following statement returns a set of available server properties:

sa_eng_properties

0,'ActiveReq','Active requests','1'

1,'AvailIO','Number of available I/O control blocks','255'

2,'BytesReceived','Bytes received by server','85898'

3,'BytesReceivedUncomp','Bytes received after

decompression','85898'

4,'BytesSent','Bytes sent to client','145053'

5,'BytesSentUncomp','Bytes sent before compression','145053'

6,'CacheAllocated','Cache pages that have been allocated for

server data structures','546'

7,'CacheFile','Cache pages used to hold data from database

files','600'

8,'CacheFileDirty','Cache pages that are dirty (needing a

write)','2'

9,'CacheFree','Number of cache pages not being used','270'

13,'CachePanics','Number of times the cache manager has failed

to find a page to allocate','0'

14,'CachePinned','Pinned cache pages','591'

15,'CacheRead','Cache reads','456801'

16,'CacheReplacements','Cache replacements','0'

17,'CacheScavengeVisited','Number of pages visited while

scavenging for a page to allocate','1416'

18,'CacheScavenges','Number of times the cache manager has

Column name Data type Description
PropNum integer The database server property number
PropName varchar(255) The database server property name
PropDescription varchar(255) The database server property description
Value long varchar The database server property value

PropNum PropName ...
1 IdleWrite ...
2 IdleChkPt ...
...

Catalog stored procedures

500 Sybase IQ

scavenged for a page to allocate','1416'

21,'CarverHeapPages','Cache pages used for carvers','0'

39,'ClientStmtCacheHits','Number of prepares not required

because of the client statement cache','23'

40,'ClientStmtCacheMisses','Number of prepares in the client

statement cache which were prepared again','3'

44,'CurrentCacheSize','Current cache size in

kilobytes','49152'

51,'DiskRead','Disk reads','938'

54,'DiskReadHintScatterLimit','Imposed limit on the size (in

bytes) of a scatter read hint','0'

55,'DiskRetryRead','Disk read retries','0'

sa_table_page_usage system procedure
Function Reports information about the usage of database tables.

Syntax sa_table_page_usage

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description The results include the same information provided by the Information utility.

sa_disable_auditing_type system procedure
Function Disables auditing of specific events.

Syntax sa_disable_auditing_type(['string])

Parameters string is a comma-delimited string containing one or more of:

all enables all types of auditing.

connect enables auditing of both successful and failed connection attempts.

connectFailed enables auditing of failed connection attempts.

DDL enables auditing of DDL statements.

options enables auditing of public options.

permission enables auditing of permission checks, user checks, and setuser
statements.

permissionDenied enables auditing of failed permission and user checks.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 501

triggers enables auditing after a trigger event.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description You can use the sa_disable_auditing_type system procedure to disable auditing
of one or more categories of information.

Setting this option to all disables all auditing. You can also disable auditing by
setting the public.auditing option to OFF.

sa_flush_cache system procedure
Function Empties all pages in the database server cache.

Syntax sa_flush_cache

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Database administrators can use this procedure to empty the contents of the
database server cache. This procedure affects the catalog store. It is of use in
performance measurement to ensure repeatable results.

sa_make_object system procedure
Function Used in a SQL script, ensures that a skeletal instance of an object exists before

executing an ALTER statement that provides the actual definition.

Syntax sa_make_object (objtype, objname [, owner [, tabname])

object-type: ‘procedure’ | ‘function’ | ‘view’ | ‘trigger’

Permissions Resource authority required to create or modify database objects.

Description This procedure is particularly useful in scripts or command files that are run
repeatedly to create or modify a database schema. A common problem in such
scripts is that the first time they are run, a CREATE statement must be executed,
but subsequent times an ALTER statement must be executed. This procedure
avoids the necessity of querying the system tables to find out whether the
object exists.

To use the procedure, follow it by an ALTER statement that contains the entire
object definition.

Catalog stored procedures

502 Sybase IQ

You can also use the sa_make_object system procedure to add a skeleton Web
service.

CALL sa_make_object('service','my_web_service')

Table 7-75 lists the meaning of the sa_make_object parameters.

Table 7-75: sa_make_object options

Examples • The following statements ensure that a skeleton procedure definition is
created, define the procedure, and grant permissions on it. A command file
containing these instructions can be run repeatedly against a database
without error.

CALL sa_make_object('procedure','myproc');
ALTER PROCEDURE myproc(in p1 int, in p2 char(30))
BEGIN

// ...
END;
GRANT EXECUTE ON myproc TO public;

• The following example uses the sa_make_object system procedure to add
a skeleton Web service.

CALL sa_make_object('service','my_web_service')

See also “sa_db_info system procedure” on page 496

sa_rowgenerator system procedure
Function Returns a result set with rows between a specified start and end value.

Syntax sa_rowgenerator ([rstart [, rend [, rstep]]])

Parameters • rstart This optional integer parameter specifies the starting value. The
default value is 0.

Option name Values
objtype The type of object being created. The parameter

must be one of 'procedure', 'function', 'view', 'service',
or 'trigger'.

objname The name of the object to be created.
owner The owner of the object to be created. The default

value is CURRENT USER.
tabname Required only if objtype is 'trigger', in which case it

specifies the name of the table on which the trigger
is to be created.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 503

• rend This optional integer parameter specifies the ending value. The
default value is 100.

• rstep This optional integer parameter specifies the increment by which
the sequence values are increased. The default value is 1.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Result sets

Remarks The sa_rowgenerator procedure can be used in the FROM clause of a query to
generate a sequence of numbers. This procedure is an alternative to using the
RowGenerator system table. You can use sa_rowgenerator for such tasks as:

• Generating test data for a known number of rows in a result set.

• Generating a result set with rows for values in every range. For example,
you can generate a row for every day of the month, or you can generate
ranges of PostalCodes.

• Generating a query that has a specified number of rows in the result set.
This may be useful for testing the performance of queries.

You can emulate the behavior of the RowGenerator table with the following
statement:

SELECT row_num FROM sa_rowgenerator(1255)

Side effects None

Example The following query returns a result set containing one row for each day of the
current month:

SELECT dateadd(day,row_num-1,
ymd(datepart(year,CURRENT DATE),
datepart(month,CURRENT DATE), 1)) AS
day_of_month FROM sa_RowGenerator(1,31,1) WHERE
datepart(month,day_of_month) =
datepart(month,CURRENT DATE) ORDER BY row_num

The following query shows how many employees live in zip code ranges (0-
9999), (10000-19999), ..., (90000-99999). Some of these ranges have no
employees, which causes the warning Null value eliminated in
aggregate function (-109). The sa_rowgenerator procedure can be used
to generate these ranges, even though no employees have a PostalCode in the
range.

Column name Data type Description
row_num integer Sequence

number.

Catalog stored procedures

504 Sybase IQ

SELECT row_num AS r1, row_num+9999 AS r2,
count(PostalCode) AS zips_in_range
FROM sa_rowgenerator(0,99999,10000) D LEFT JOIN
employees ON PostalCode
BETWEEN r1 AND r2 GROUP BY r1, r2 ORDER BY 1

The following example generates 10 rows of data and inserts them into the emp
table:

INSERT INTO emp1(dept_id, salary, name) SELECT row_num,
CAST(rand() * 1000 AS INTEGER), 'Mary' FROM
sa_rowgenerator(1, 10)

sa_server_option system procedure
Function Overrides a database server command line option while the database server is

running.

Syntax sa_server_option (option_name, option_value)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Database administrators can use this procedure to override some database
server options without restarting the database server.

You can reset these options:

Option name Values Default
Disable_connections ON or OFF OFF
IQMsgMaxSize Integer 0 – 2047

(inclusive) in
megabytes

0

IQMsgNumFiles Integer 0 – 64
(inclusive)

0

Liveness_timeout Integer, in seconds 120
Main_Cache_Cemory_M
B

1 – 4294967295 (232 -
1)

32MB

Temp_Cache_Memory_M
B

1 – 4294967295 (232 -
1)

24MB

Procedure_profiling ON, OFF, RESET,
CLEAR

OFF

Profile_filter_conn connection-id
Profile_filter_user user-id
Quitting_time Valid date and time

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 505

disable_connections When set to ON, no other connections are allowed to
any databases on the database server.

IQMsgMaxSize Limits the maximum size of the message log. IQMsgMaxSize
is an integer 0-2047 (inclusive), in megabytes. The default value is 0, which
specifies that there is no limit on message log size. IQMsgMaxSize corresponds
to the -iqmsgsz server switch and takes precedence over the value of -iqmsgsz.

A IQMsgMaxSize value n greater than 0 means that the message log can grow
up to n megabytes in size. For example, the following statement limits the size
of the message log to 50MB:

CALL sa_server_option('IQMsgMaxSize','50')

A -iqmsgsz value n greater than 0 means that the message log can grow up to n
megabytes in size. For example, the following command limits the size of the
message log to 100MB:

start_iq -n iqdemo iqdemo.db ... <other options> ...
-iqmsgsz 100

For information on the -iqmsgsz server startup switch, see “Starting the
database server” in Chapter 1, “Running the Database Server” of the Utility
Guide.

For information on message log management, see “Message logging” in
Chapter 1, “Overview of Sybase IQ System Administration” of the System
Administration Guide: Volume 1.

IQMsgNumFiles Specifies the number of archives of the old message log
maintained by the server. The value of IQMsgNumFiles takes effect only if the
IQMsgMaxSize server property or the -iqmsgsz server startup switch is non-
zero. IQMsgNumFiles corresponds to the -iqmsgnum server switch and takes
precedence over the value of -iqmsgnum.

IQMsgNumFiles is an integer 0-64 (inclusive). The default value is 0, which
means that messages are wrapped in the main message log file.

Remember_last_statement ON or OFF OFF
Request_level_log_file Filename
Request_level_log_size File-size, in bytes,
Request_level_logging ALL, SQL, NONE,

SQL+hostvars
NONE

Requests_for_connection connection-id, -1
Requests_for_database database-id, -1

Option name Values Default

Catalog stored procedures

506 Sybase IQ

A IQMsgNumFiles value n greater than 0 means that the server maintains n
message log archives. For example, the following statement specifies that the
server maintain 5 archives of the message log:

CALL sa_server_option('IQMsgNumFiles','5')

For information on the -iqmsgnum server startup switch, see “Starting the
database server” in Chapter 1, “Running the Database Server” of the Utility
Guide.

For information on message log management, see “Message logging” in
Chapter 1, “Overview of Sybase IQ System Administration” of the System
Administration Guide: Volume 1.

liveness_timeout A liveness packet is sent periodically across a client/
server TCP/IP or SPX network to confirm that a connection is intact. If the
network server runs for a liveness_timeout period without detecting a liveness
packet, the communication is severed.

For information on the -tl command line option, see “Limiting inactive
connections” in Chapter 2, “Running Sybase IQ” in System Administration
Guide: Volume 1.

main_cache_memory_mb Changes the default of the main shared memory
buffer cache dynamically. This option can be set on a running server but cannot
change cache size on a running database. If two databases need to run with
different cache sizes, set the option before starting each database. If the cache
size is set using the -iqmc server startup switch, Sybase IQ uses the specified
value for all databases started on that server unless sa_server_option specifies
a new value. For more information, see “Buffer caches and physical memory”
in Chapter 4, “Managing System Resources,” in the Performance and Tuning
Guide.

procedure_profiling Controls procedure profiling for stored procedures,
functions, events, and triggers. Procedure profiling shows you how long it
takes your stored procedures, functions, events, and triggers to execute, as well
as how long each line takes to execute. You can also set procedure profiling
options on the Database property sheet in Sybase Central. Collected
information appears on the Profile tab in the right pane of Sybase Central.

• ON enables procedure profiling for the database you are currently
connected to.

• OFF disables procedure profiling and leaves the profiling data available
for viewing.

• RESET returns the profiling counters to zero, without changing the ON
or OFF setting.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 507

• CLEAR returns the profiling counters to zero and disables procedure
profiling.

Once profiling is enabled, you can use the sa_procedure_profile_summary and
sa_procedure_profile stored procedures to retrieve profiling information from
the database. For more information about these procedures, see SQL Anywhere
Server – SQL Reference.

For more information about viewing procedure profiling information in Sybase
Central, see “Profiling database procedures” in the Performance and Tuning
Guide.

profile_filter_conn Instructs the database server to capture profiling
information for a specific connection ID.

profile_filter_user Instructs the database server to capture profiling
information for a specific user ID.

quitting_time Instructs the database server to shut down at the specified
time.

For more information on quitting_time, see the -tq server option in Chapter 1,
“Running the Database Server” in the Utility Guide.

remember_last_statement Instructs the database server to capture the most
recently prepared SQL statement for each connection to databases on the
server. For stored procedure calls, only the outermost procedure call appears,
not the statements within the procedure.

You can obtain the current value of the remember_last_statement setting using
the RememberLastStatement property function as follows:

SELECT property('RememberLastStatement')

For more information, see -zl server option in Chapter 1, “Running the
Database Server” in the Utility Guide.

When remember_last_statement is turned on, the following statement returns
the most recently prepared statement for the specified connection.

SELECT connection_property('LastStatement', conn_id)

The stored procedure sa_conn_activity returns this same information for all
connections.

request_level_log_file The name of the file used to record logging
information. A name of NULL stops logging to file. Any backslash characters
in the file name must be doubled, as this is a SQL string.

request_level_log_size The maximum size of the file used to record logging
information, in bytes.

Catalog stored procedures

508 Sybase IQ

When the request-level log file reaches the size specified by either the
sa_server_option system procedure or the -zs server option, the file is renamed
with the extension .old appended (replacing an existing file with the same
name if one exists). The request-level log file is then restarted.

request_level_logging The logging options can be ALL, SQL, NONE,
HOSTVARS, PLAN, PROCEDURES, and TRIGGERS, separated by “+”. ON and
ALL are equivalent. OFF and NONE are equivalent. This call turns on logging
of individual SQL statements sent to the database server, for use in
troubleshooting, in conjunction with the database server -zr and -zo options.

SQL includes basic SQL statement related requests. ALL includes SQL requests,
plus other requests, which can significantly increase the size of the log. ALL
also enables recording of host variable values. If TRIGGERS is specified, all
stored procedure statements (including those in triggers) are recorded in the
request log.

The settings request_level_debugging and request_level_logging are equivalent.

When you set request_level_logging to OFF, the request-level log file is
closed.

If you select SQL, only the following types of request are recorded:

• START DATABASE

• STOP ENGINE

• STOP DATABASE

• Statement preparation

• Statement execution

• EXECUTE IMMEDIATE statements

• Option settings

• COMMIT statements

• ROLLBACK statements

• PREPARE TO COMMIT operations

• Connections

• Disconnections

• Beginnings of transactions

• DROP STATEMENT statement

• Cursor explanations

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 509

• Cursor closings

• Cursor resume

• Errors

Setting request_level_logging to SQL+HOSTVARS outputs both SQL (as
though you specified request_level_logging=SQL) and host variable
values to the log.

You can find the current value of the request_level_logging setting using
property('RequestLogging').

For more information, see the -z, -zr, -zs, -zo, and -o command line options in
Chapter 1, “Running the Database Server” in the Utility Guide.

See “-zr level” on page 30 in the Utility Guide for a list of requests that are
logged by SQL request-level logging. See “Logging server requests” in
Chapter 14, “Troubleshooting Hints” of System Administration Guide: Volume
1 for more information on using request logging. See also “Request logging”
in SQL Anywhere Server – SQL Usage > Monitoring and Improving Database
Performance > Improving database performance > Other diagnostic tools and
techniques.

requests_for_connection Filter the request-level logging information so
that only information for a particular connection is logged. This can help
reduce the size of the request-level log file when monitoring a server with
many active connections or multiple databases. You can obtain the connection
ID by executing the following:

CALL sa_conn_info()

To specify a specific connection to be logged once you have obtained the
connection ID, execute the following:

CALL sa_server_option('requests_for_connection',
connection-id)

Filtering remains in effect until it is explicitly reset, or until the database server
is shut down. To reset filtering, use the following statement:

CALL sa_server_option('requests_for_connection', -1)

requests_for_database Filter the request-level logging information so that
only information for a particular database is logged. This can help reduce the
size of the request-level log file when monitoring a server with many active
connections or multiple databases. You can obtain the database ID by
executing the following statement when you are connected to the desired
database:

Catalog stored procedures

510 Sybase IQ

SELECT connection_property('DBNumber')

To specify that only information for a particular database is to be logged,
execute the following:

CALL sa_server_option('requests_for_database',
database-id)

Filtering remains in effect until it is explicitly reset, or until the database server
is shut down. To reset filtering, use the following statement:

CALL sa_server_option('requests_for_database', -1)

temp_cache_memory_mb Changes the default size of the temporary shared
memory buffer cache dynamically. This option can be set on a running server
but cannot change cache size on a running database. If two databases need to
run with different cache sizes, set the option before starting each database. If
the cache size is set using the -iqtc server startup switch, Sybase IQ uses the
specified value for all databases started on that server unless sa_server_option
specifies a new value. For more information, see “Buffer caches and physical
memory” in Chapter 4, “Managing System Resources,” in the Performance
and Tuning Guide.

Examples The following statement disallows new connections to the database server.

call sa_server_option('disable_connections', 'ON')

The following statement changes the size of the main shared memory buffer
cache:

call sa_server_option('main_cache_memory_mb', '200')

You must restart the database for the new size to take effect.

See also “sa_get_request_profile system procedure,” “sa_get_request_times system
procedure,” and “sa_statement_text system procedure” in SQL Anywhere
Server – SQL Reference.

sa_set_http_header system procedure
Function Permits a Web service to set an HTTP header in the result.

Syntax sa_set_http_header (field-name, value)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description call dbo.sa_set_http_header('Content-Type', 'text/
html')

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 511

Setting the special header field @HttpStatus sets the status code returned with
the request. For example, the following command sets the status code to 404
Not Found.

dbo.sa_set_http_header('@HttpStatus', '404')

The body of the error message is inserted automatically. Only valid HTTP error
codes can be used. Setting the status to an invalid code causes an SQL error.

See also “sa_set_http_option system procedure” on page 511

sa_set_http_option system procedure
Function Permits a Web service to set an HTTP option in the result.

Syntax sa_set_http_option (option-name, value)

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Use this procedure within statements or procedures that handle Web services
to set options within an HTTP result set.

Currently only one option is supported:

• CharsetConversion Controls whether the result set is to be
automatically converted from the character set of the database to the
character set of the client. The only permitted values are ON and OFF. The
default value is ON.

See also “sa_set_http_header system procedure” on page 510

sa_validate system procedure
Function Validates all tables in the catalog store.

Syntax sa_validate [tbl_name,] [owner_name,] [check_type]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description This procedure validates each SQL Anywhere table or index in the catalog
store.

For more information, see “Validation utility (dbvalid)” in Chapter 3,
“Database Administration Utilities” in the Utility Guide.

Catalog stored procedures

512 Sybase IQ

Table 7-76 lists the meaning of the sa_validate parameters.

Table 7-76: sa_validate options

Values for the tbl_name, owner_name, and check_type parameters are strings
and must be enclosed in quotes.

The procedure returns a single column, named Messages. If all tables are valid,
the column contains:

No errors detected

 Warning! Validate a table or the entire catalog store while no connections are
making changes to the database; otherwise, spurious errors might be reported,
indicating some form of database corruption even though no corruption
actually exists.

Example The following statement validates all of the catalog store tables with an index
check owned by the DBA:

CALL sa_validate (owner_name='DBA', check_type =
'index')

sa_verify_password system procedure
Function Validates the password of the current user.

Syntax sa_verify_password (string)

Parameters • string This char(128) parameter specifies the password of the current
database user.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Option name Values
tbl_name Validate only the specified table. When NULL (the

default), validate all tables.
owner_name Validate only the tables owned by the specified user.

When NULL (the default), validate tables for all users.
check_type When NULL (the default), each table is checked without

additional checks. The check_type value can be one of
the following: data, express, full, index, or checksum.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 513

Remarks This procedure is used by sp_password. If the password matches, the procedure
simply returns. If it does not match, the error string returned by the procedure
is returned.

Side effects None.

sp_login_environment system procedure
The sp_login_environment system procedure is a SQL Anywhere system
procedure. See “sp_login_environment system procedure” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Reference > System Objects > System procedures.

sp_remote_columns system procedure
Function Produces a list of the columns on a remote table, and a description of those

columns. For each column, the procedure returns its database, owner, table,
column, domain ID, width, scale, and nullability.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Note You cannot capture output from this procedure in a file. If you use the
redirection operator, you receive the message “Cursor is restricted to Fetch
Next operations.”

Syntax sp_remote_columns servername [, tablename] [, owner] [, database]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description If you are entering a CREATE EXISTING statement and you are specifying a
column list, it might be helpful to get a list of the columns that are available on
a remote table. sp_remote_columns produces a list of the columns on a remote
table and a description of those data types.

Example Gets a list of the columns in the sysobjects table in the production database in
an Adaptive Server server named asetest:

sp_remote_columns asetest, sysobjects,
null, production

Catalog stored procedures

514 Sybase IQ

Standards and
compatibility

Sybase Supported by Open Client/Open Server.

See also Chapter 5, “Server Classes for Remote Data Access” and Chapter 4,
“Accessing Remote Data” in the System Administration Guide: Volume 2

CREATE SERVER statement in Reference: Statements and Options

sp_remote_exported_keys system procedure
Function Provides information about tables with foreign keys on a specified primary key

table.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_exported_keys @server_name , @sp_name
[, @sp_owner] [, @sp_qualifier]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description The sp_remote_exported_keys result set includes the database, owner, table,
column, and name for both the primary and the foreign key, as well as the
foreign-key sequence for the foreign-key column. The result set might vary
because of the underlying ODBC and JDBC calls, but information about the
table and column for a foreign key is always returned.

To use sp_remote_exported_keys, your database must be created or upgraded
using version 12.4.3 or higher of Sybase IQ.

Parameters Table 7-77 lists the sp_remote_exported_keys parameters.

Table 7-77: sp_remote_exported_keys parameters

Example To get information about the remote tables with foreign keys on the sysobjects
table, in the production database, in a server named asetest:

call sp_remote_exported_keys

Name Data type Description
@server_name varchar Server on which the primary-key table

is located. Required.
@sp_name varchar(30) Table containing the primary key.

Required.
@sp_owner varchar Owner of primary-key table. Optional.
@sp_qualifier varchar Database containing the primary-key

table. Optional.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 515

(@server_name='asetest', @sp_name='sysobjects',
@sp_qualifier='production')

See also Chapter 4, “Accessing Remote Data” and Chapter 5, “Server Classes for
Remote Data Access” in the System Administration Guide: Volume 2

CREATE SERVER statement in Reference: Statements and Options

sp_remote_imported_keys system procedure
Function Provides information about remote tables with primary keys that correspond to

a specified foreign key.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_imported_keys @server_name , @sp_name [,
@sp_owner] [, @sp_qualifier]

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Foreign keys reference a row in a separate table that contains the corresponding
primary key. This procedure allows you to obtain a list of the remote tables
with primary keys that correspond to a particular foreign key table. The
sp_remote_imported_keys result set includes the database, owner, table,
column, and name for both the primary and the foreign key, as well as the
foreign key sequence for the foreign key column. The result set might vary
because of the underlying ODBC and JDBC calls, but information about the
table and column for a primary key is always returned.

To use sp_remote_exported_keys, your database must be created or upgraded
using version 12.4.3 or higher of Sybase IQ.

Parameters Table 7-78 lists the sp_remote_imported_keys parameters.

Catalog stored procedures

516 Sybase IQ

Table 7-78: sp_remote_imported_keys parameters

Example Gets information about the tables with primary keys that correspond to a
foreign key on the sysobjects table, owned by “fred”, in the asetest server:

call sp_remote_imported_keys
(@server_name='asetest', @sp_name='sysobjects',
@sp_qualifier='production')

See also Chapter 4, “Accessing Remote Data” and Chapter 5, “Server Classes for
Remote Data Access” in the System Administration Guide: Volume 2.

CREATE SERVER statement in Reference: Statements and Options

sp_remote_primary_keys system procedure
Function Provides primary key information about remote tables using remote data

access.

Syntax sp_remote_primary_keys @server_name [, @table_name]
[, @table_owner] [, @table_qualifier]

Accepts these parameters:

@server_name Selects the server on which the remote table is located.

@table_name Selects the remote table.

@table_owner Selects the owner of the remote table.

@table_qualifier Selects the database.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Side effects None

Name Data type Description
@server_name varchar Server on which the foreign-key table

is located. Required.
@sp_name varchar(30) Table containing the foreign key.

Required.
@sp_owner varchar Owner of foreign-key table. Optional.
@sp_qualifier varchar Database containing the foreign-key

table. Optional.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 517

Description Because of differences in the underlying ODBC/JDBC calls, the information
returned differs slightly in terms of the catalog/database value, depending upon
the remote data access class that is specified for the server. However, the
important information (for example, column name) is as expected.

Standards and
compatibility

Sybase Supported by Open Client/Open Server.

sp_remote_tables system procedure
Function Returns a list of the tables on a server.

Syntax sp_remote_tables servername [, tablename] [, owner]
[, table_qualifier] [, with_table_type]

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description It might be helpful when configuring your database server to get a list of the
remote tables available on a particular server. sp_remote_tables returns a list of
the tables on a server.

The procedure accepts five parameters:

server_name Selects the server the remote table is located on.

table_name Selects the remote table.

table_owner Selects the owner of the remote table.

table_qualifier Selects the database.

with_table_type Selects the type of remote table. This parameter is a bit type
and accepts two values, 0 (the default) and 1. You must enter the value 1 if you
want the result set to include a column that lists table types.

The with_table_type parameter is available only for databases created in SQL
Anywhere 7.0.2 and higher. If you use this parameter with an older database,
the following error message is returned:

Wrong number of parameters to function 'sp_remote_tables'

Catalog stored procedures

518 Sybase IQ

If a table, owner, or database name is given, the list of tables is limited to only
those that match the parameters.

Note You cannot capture output from this procedure in a file. If you use the
redirection operator, you receive the message “Cursor is restricted to Fetch
Next operations.”

Examples • Lists all the Microsoft Excel worksheets available from an ODBC data
source named “exce”:

sp_remote_tables excel

• Lists all the tables in the production database in an Adaptive Server
Enterprise server named asetest, owned by user fred:

sp_remote_tables asetest, null, fred, production

Standards and
compatibility

Sybase Supported by Open Client/Open Server.

See also CREATE SERVER statement in Reference: Statements and Options

Chapter 4, “Accessing Remote Data” and Chapter 5, “Server Classes for
Remote Data Access” in the System Administration Guide: Volume 2

sp_servercaps system procedure
Function Displays information about a remote server’s capabilities.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_servercaps servername

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description Sybase IQ uses capability information to determine how much of a SQL
statement can be forwarded to a remote server. The system tables that contain
server capabilities are not populated until after Sybase IQ connects to the
remote server. This information comes from syscapability and
syscapabilityname system tables. The servername specified must be the same
server name used in the CREATE SERVER statement.

Example Displays information about the remote server testiq (output has been
truncated):

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 519

sp_servercaps testiq

1,’Alter table with add’,’T’
2,’Alter table with drop’,’T’
3,’Owner supported’,’T’
4,’Primary key requires index’,’F’
5,’Create table constraints’,’T’
6,’Truncate table’,’T’
7,’Create index’,’T’ 7,’Create index’,’T’
8,’Create unique index’,’T’
9,’Syscapability system table initialized’,’T’
10,’Subquery’,’T’
11,’Subquery in group by’,’T’
12,’Subquery in comparison’,’T’
13,’Subquery in exist’,’T’
14,’Subquery in IN’,’T’
15,’Subquery correlated’,’T’
16,’Subquery in select list’,’T’
17,’Subquery in update’,’T’
20,’Order by’,’T’
21,’Order by expressions’,’T’
22,’Order by column not in select list’,’T’
23,’Order by allowed in update’,’T’
25,’Joins’,’T’
26,’Outer joins’,’T’
27,’Full outer joins’,’T’
28,’Multiple outer joins’,’T’
29,’Logical operators in outer join’,’T’
30,’Outer joins mixed with normal joins’,’T’
31,’ANSI join syntax’,’T’
32,’TSQL join syntax’,’F’
33,’ODBC outer join syntax’,’F’
34,’Unrestricted ANSI ON’,’T’
40,’Group by’,’T’
41,’Group by ALL’,’T’
45,’Aggregates’,’T’
46,’Aggregates with column name’,’T’
50,’And’,’T’
51,’Or’,’T’
52,’Like’,’T’
53,’Like - TSQL’,’T’
54,’Distinct’,’T’
55,’In’,’T’

Standards and
compatibility

Sybase Supported by Open Client/Open Server.

See also CREATE SERVER statement in Reference: Statements and Options

Catalog stored procedures

520 Sybase IQ

Chapter 4, “Accessing Remote Data” and Chapter 5, “Server Classes for
Remote Data Access” in the System Administration Guide: Volume 2

sp_tsql_environment system procedure
Function To set connection options when users connect from jConnect or Open Client

applications.

Syntax sp_tsql_environment

Permissions DBA authority required. Users without DBA authority must be granted
EXECUTE permission to run the stored procedure.

Description If the connection uses the TDS communication protocol (that is, if it is an Open
Client connection), sp_login_environment calls sp_tsql_environment.

This procedure sets database options so that they are compatible with default
Sybase Adaptive Server Enterprise behavior.

To change the default behavior, create new procedures and alter your
LOGIN_PROCEDURE option to point to these new procedures.

For more information about setting LOGIN_PROCEDURE to the name of a new
procedure, see Chapter 3, “Sybase IQ as a Data Server” in the System
Administration Guide: Volume 2.

Here is the text of sp_tsql_environment:

create procedure dbo.sp_tsql_environment()
begin
if db_property('IQStore') = 'Off' then

 -- ASA datastore
set temporary option close_on_endtrans = 'OFF'
end if;
set temporary option ansinull = 'OFF';
set temporary option tsql_variables = 'ON';
set temporary option ansi_blanks = 'ON';
set temporary option chained = 'OFF';
set temporary option quoted_identifier = 'OFF';
set temporary option allow_nulls_by_default = 'OFF';
set temporary option on_tsql_error = 'CONTINUE';
set temporary option isolation_level = '1';
set temporary option date_format = 'YYYY-MM-DD';
set temporary option timestamp_format = 'YYYY-MM-DD
HH:NN:SS.SSS';
set temporary option time_format = 'HH:NN:SS.SSS';

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 521

set temporary option date_order = 'MDY';
set temporary option escape_character = 'OFF'
end

See also LOGIN_PROCEDURE option in Chapter 2, “Database Options,” in
Reference: Statements and Options

Adaptive Server Enterprise system and catalog procedures

522 Sybase IQ

Adaptive Server Enterprise system and catalog
procedures

Adaptive Server Enterprise provides system and catalog procedures to carry
out many administrative functions and to obtain system information. Sybase
IQ has implemented support for some of these procedures.

System procedures are built-in stored procedures used for getting reports from
and updating system tables. Catalog stored procedures retrieve information
from the system tables in tabular form.

Note While these procedures perform the same functions as they do in
Adaptive Server Enterprise and pre-version 12 Sybase IQ, they are not
identical. If you have preexisting scripts that use these procedures, you might
want to examine the procedures. To see the text of a stored procedure, run:

sp_helptext 'owner.procedure_name'

For all system stored procedures delivered by Sybase, the owner is dbo. To see
the text of a stored procedure of the same name owned by a different user, you
must specify that user, for example:

sp_helptext 'myname.myprocedure'

Adaptive Server Enterprise system procedures
Table 7-79 describes the Adaptive Server Enterprise system procedures
provided in Sybase IQ.

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 523

Table 7-79: ASE system procedures provided in Sybase IQ

Note Procedures like sp_dropuser provide minimal compatibility with
Adaptive Server Enterprise stored procedures. If you are accustomed to
Adaptive Server Enterprise (or Sybase IQ 11.x) stored procedures, compare
their text with Sybase IQ 12 procedures before using the procedure in dbisql.
To compare, use the command:

sp_helptext 'owner.procedure_name'

For system stored procedures delivered by Sybase, the owner is always dbo. To
see the text of a stored procedure of the same name owned by a different user,
you must specify that user, for example:

System procedure Description
sp_addgroup group-name Adds a group to a database
sp_addlogin userid,
password[, defdb [,
deflanguage [, fullname]]]

Adds a new user account to a database

sp_addmessage message-
num, message_text [,
language]

Adds user-defined messages to
SYSUSERMESSAGES for use by stored procedure
PRINT and RAISERROR calls

sp_addtype typename, data-
type, [, "identity" | nulltype]

Creates a user-defined data type. Sybase IQ does
not support IDENTITY columns.

sp_adduser userid [,
name_in_db [, grpname]]

Adds a new user to a database

sp_changegroup new-group-
name, userid

Changes a user's group or adds a user to a group

sp_dboption [dbname,
optname, {true | false}]

Displays or changes database options

sp_dropgroup group-name Drops a group from a database
sp_droplogin userid Drops a user from a database
sp_dropmessage message-
number [, language]

Drops user-defined messages

sp_droptype typename Drops a user-defined data type
sp_dropuser userid Drops a user from a database
sp_getmessage message-num,
@msg-var output [, language]

Retrieves stored message strings from
SYSUSERMESSAGES for PRINT and
RAISERROR statements.

sp_helptext 'owner.object-
name'

Displays the text of a system procedure or view

sp_password caller_passwd,
new_passwd [, userid]

Adds or changes a password for a user ID

Adaptive Server Enterprise system and catalog procedures

524 Sybase IQ

sp_helptext 'myname.myprocedure'

Adaptive Server Enterprise catalog procedures
Sybase IQ implements most of the Adaptive Server Enterprise catalog
procedures with the exception of the sp_column_privileges procedure. The
implemented catalog procedures are described in Table 7-80. Sybase IQ also
has similar customized stored procedures for some of these Adaptive Server
catalog procedures.

Table 7-80: ASE catalog procedures implemented in Sybase IQ

The following Adaptive Server Enterprise catalog procedures are not
supported:

• sp_column_privileges

• sp_databases

• sp_datatype_info

• sp_server_info

ASE catalog procedure Description IQ procedure
sp_columns table-name [, table-owner] [, table-
qualifier] [, column-name]

Returns the data types of the specified
column

sp_fkeys pktable_name [, pktable-owner][,
pktable-qualifier] [, fktable-name] [,
fktable_owner] [, fktable-qualifier]

Returns foreign-key information about the
specified table

sp_pkeys table-name [, table_owner] [,
table_qualifier]

Returns primary-key information for a
single table

sp_iqpkeys

sp_special_columns table_name [, table-owner]
[, table-qualifier] [, col-type]

Returns the optimal set of columns that
uniquely identify a row in a table

sp_sproc_columns proc-name [, proc_owner] [,
proc-qualifier] [, column-name]

Returns information about the input and
return parameters of a stored procedure

sp_iqprocparm

sp_stored_procedures [sp-name] [, sp-owner]
[, sp-qualifier]

Returns information about one or more
stored procedures

sp_iqprocedure

sp_tables table-name [, table-owner] [, table-
qualifier] [, table-type]

Returns a list of objects that can appear in a
FROM clause

CHAPTER 7 System Procedures

Reference: Building Blocks, Tables, and Procedures 525

SQL Anywhere supported procedures
Sybase IQ supports the SQL Anywhere procedures listed in “Alphabetical list
of system procedures ” in the SQL Anywhere documentation at SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > System Objects > System
procedures.

Note In the section “System extended stored procedures” in SQL Anywhere
Server – SQL Reference, the documentation states that users must be granted
EXECUTE permission or have DBA authority. Several of the subsequent
procedures, however, show permissions listed as none.

The procedure below requires DBA authority.

• xp_cmdshell – system extended procedure that allows a database server to
execute external shell commands

SQL Anywhere supported procedures

526 Sybase IQ

Reference: Building Blocks, Tables, and Procedures 527

C H A P T E R 8 System Views

About this chapter This chapter lists predefined views for Sybase IQ system tables.

About system views The system tables are designed for internal use. To view the contents of
the system tables, use the system views. A number of predefined system
views are provided that present the information in the system tables in a
readable format.

The definitions for the system views are included with their descriptions.
Some of these definitions are complicated, but you do not need to
understand them to use the views. They serve as good examples of what
can be accomplished using the SELECT command and views.

About consolidated views Consolidated views provide data in a form more frequently required by
users. For example, consolidated views often provide commonly needed
joins. Consolidated views differ from system views in that they are not just
a straightforward view of raw data in an underlying system table. For
example, many of the columns in the system views are unintelligible ID
values, whereas in the consolidated views, they are readable names.

Consolidated views such as SYSCATALOG and SYSINDEXES are common
to both Sybase IQ and SQL Anywhere. For definitions of these and other
consolidated views, see “Consolidated views” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views.

About compatibility views Compatibility views are deprecated views provided for compatibility with
earlier versions of SQL Anywhere and Sybase IQ. Where possible, use
system views and consolidated views instead of compatibility views, as
support for compatibility views may be eliminated in future versions of
Sybase IQ.

For detailed information on compatibility views, see “Compatibility
views” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views.

About ASE T-SQL
compatibility views

Sybase IQ provides a set of views owned by the special user DBO, which
correspond to the Adaptive Server Enterprise system tables and views.
See “Transact-SQL compatibility views” on page 587.

528 Sybase IQ

Contents Topic Page
SYSARTICLE system view 532
SYSARTICLECOL system view 532
SYSARTICLECOLS consolidated view 532
SYSARTICLES consolidated view 532
SYSCAPABILITIES consolidated view 533
SYSCAPABILITY system view 533
SYSCAPABILITYNAME system view 533
SYSCATALOG consolidated view 534
SYSCHECK system view 534
SYSCOLAUTH consolidated view 534
SYSCOLPERM system view 535
SYSCOLLATION compatibility view (deprecated) 535
SYSCOLLATIONMAPPINGS compatibility view (deprecated) 536
SYSCOLSTAT system view 536
SYSCOLSTATS consolidated view 536
SYSCOLUMN compatibility view (deprecated) 537
SYSCOLUMNS consolidated view 537
SYSCOLUMNS ASE compatibility view 537
SYSCOMMENTS ASE compatibility view 538
SYSCONSTRAINT system view 538
SYSDBFILE system view 538
SYSDBSPACE system view 539
SYSDBSPACEPERM system view 539
SYSDEPENDENCY system view 539
SYSDOMAIN system view 540
SYSEVENT system view 540
SYSEVENTTYPE system view 540
SYSEXTERNENV system view 541
SYSEXTERNENVOBJECT system view 541
SYSEXTERNLOGIN system view 541
SYSFILE compatibility view (deprecated) 542
SYSFKCOL compatibility view (deprecated) 542
SYSFKEY system view 542
SYSFOREIGNKEY compatibility view (deprecated) 543
SYSFOREIGNKEYS consolidated view 543
SYSGROUPS consolidated view 544

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 529

SYSHISTORY system view 544
SYSIDX system view 544
SYSIDXCOL system view 545
SYSINDEX compatibility view (deprecated) 545
SYSINDEXES consolidated view 546
SYSINDEXES ASE compatibility view 546
SYSINFO compatibility view (deprecated) 546
SYSIQBACKUPHISTORY system view 546
SYSIQBACKUPHISTORYDETAIL system view 548
SYSIQCOLUMN system view (deprecated) 549
SYSIQDBFILE system view 549
SYSIQDBSPACE system view 550
SYSIQFILE system view (deprecated) 551
SYSIQIDX system view 551
SYSIQINFO system view 552
SYSIQJOINIDX system view 554
SYSIQJOININDEX system view (deprecated) 555
SYSIQJOINIXCOLUMN system view 555
SYSIQJOINIXTABLE system view 556
SYSIQMPXLOGINPOLICYOPTION system view 557
SYSIQMPXSERVER system view 557
SYSIQOBJECTS ASE compatibility view 557
SYSIQPARTITIONCOLUMN system view 557
SYSIQTAB system view 558
SYSIQTABCOL system view 559
SYSIQTABLE system view (deprecated) 561
SYSIQVINDEX ASE compatibility view 561
SYSIXCOL compatibility view (deprecated) 561
SYSJAR system view 561
SYSJARCOMPONENT system view 562
SYSJAVACLASS system view 562
SYSLOGINMAP system view 562
SYSLOGINPOLICY system view 563
SYSLOGINPOLICYOPTION system view 563
SYSLOGINS ASE compatibility view 563
SYSMVOPTION system view 563
SYSMVOPTIONNAME system view 564

Topic Page

530 Sybase IQ

SYSOBJECT system view 564
SYSOBJECTS ASE compatibility view 564
SYSOPTION system view 565
SYSOPTIONS consolidated view 565
SYSOPTSTAT system view 565
SYSPARTITION system view 566
SYSPARTITIONKEY system view 566
SYSPARTITIONSCHEME system view 567
SYSPHYSIDX system view 568
SYSPROCAUTH consolidated view 568
SYSPROCEDURE system view 568
SYSPROCPARM system view 569
SYSPROCPARMS consolidated view 569
SYSPROCPERM system view 569
SYSPROCS consolidated view 570
SYSPROXYTAB system view 570
SYSPUBLICATION system view 570
SYSPUBLICATIONS consolidated view 571
SYSREMARK system view 571
SYSREMOTEOPTION system view 571
SYSREMOTEOPTION2 consolidated view 572
SYSREMOTEOPTIONS consolidated view 572
SYSREMOTEOPTIONTYPE system view 572
SYSREMOTETYPE system view 573
SYSREMOTETYPES consolidated view 573
SYSREMOTEUSER system view 573
SYSREMOTEUSERS consolidated view 574
SYSSCHEDULE system view 574
SYSSERVER system view 574
SYSSOURCE system view 575
SYSSQLSERVERTYPE system view 575
SYSSUBPARTITIONKEY system view 575
SYSSUBSCRIPTION system view 575
SYSSUBSCRIPTIONS consolidated view 576
SYSSYNC system view 576
SYSSYNC2 consolidated view 576
SYSSYNCPUBLICATIONDEFAULTS consolidated view 577

Topic Page

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 531

SYSSYNCS consolidated view 577
SYSSYNCSCRIPT system view 577
SYSSYNCSCRIPTS consolidated view 578
SYSSYNCSUBSCRIPTIONS consolidated view 578
SYSSYNCUSERS consolidated view 578
SYSTAB system view 579
SYSTABLE compatibility view (deprecated) 579
SYSTABAUTH consolidated view 579
SYSTABCOL system view 580
SYSTABLEPERM system view 580
SYSTEXTCONFIG system view 580
SYSTEXTIDX system view 581
SYSTEXTIDXTAB system view 581
SYSTRIGGER system view 581
SYSTRIGGERS consolidated view 582
SYSTYPEMAP system view 582
SYSTYPES ASE compatibility view 582
SYSUSER system view 583
SYSUSERAUTH compatibility view (deprecated) 583
SYSUSERAUTHORITY system view 583
SYSUSERLIST compatibility view (deprecated) 584
SYSUSERMESSAGE system view 584
SYSUSEROPTIONS consolidated view 584
SYSUSERPERM compatibility view (deprecated) 585
SYSUSERPERMS compatibility view (deprecated) 585
SYSUSERTYPE system view 585
SYSUSERS ASE compatibility view 586
SYSVIEW system view 586
SYSVIEWS consolidated view 586
SYSWEBSERVICE system view 586
Transact-SQL compatibility views 587

Topic Page

SYSARTICLE system view

532 Sybase IQ

SYSARTICLE system view
Each row of the SYSARTICLE system view describes an article in a
publication. The underlying system table for this view is ISYSARTICLE.

The SYSARTICLE view is a SQL Anywhere system view. See
“SYSARTICLE system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSARTICLECOL system view
Each row of the SYSARTICLECOL system view identifies a column in an
article. The underlying system table for this view is ISYSARTICLECOL.

The SYSARTICLECOL view is a SQL Anywhere system view. See
“SYSARTICLECOL system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSARTICLECOLS consolidated view
Each row in the view identifies a column in an article.

The SYSARTICLECOLS view is a SQL Anywhere consolidated view. See
“SYSARTICLECOLS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSARTICLES consolidated view
Each row in the SYSARTICLES view describes an article in a publication.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 533

The SYSARTICLES view is a SQL Anywhere consolidated view. See
“SYSARTICLES consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSCAPABILITIES consolidated view
Each row in the SYSCAPABILITIES view describes a capability. This view
gets its data from the ISYSCAPABILITY and ISYSCAPABILITYNAME
system tables.

The SYSCAPABILITIES view is a SQL Anywhere consolidated view. See
“SYSCAPABILITIES consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSCAPABILITY system view
Each row of the SYSCAPABILITY system view identifies a capability of a
remote server. The underlying system table for this view is
ISYSCAPABILITY.

The SYSCAPABILITY view is a SQL Anywhere system view. See
“SYSCAPABILITY system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSCAPABILITYNAME system view
Each row in the SYSCAPABILITYNAME system view names a capability
that is defined in the SYSCAPABILITY system view.

SYSCATALOG consolidated view

534 Sybase IQ

The SYSCAPABILITYNAME view is a SQL Anywhere system view. See
“SYSCAPABILITYNAME system view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > System views.

SYSCATALOG consolidated view
Each row in the SYSCATALOG view describes a system table.

The SYSCATALOG view is a SQL Anywhere consolidated view. See
“SYSCATALOG consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSCHECK system view
Each row in the SYSCHECK system view provides the definition for a named
check constraint in a table. The underlying system table for this view is
ISYSCHECK.

The SYSCHECK view is a SQL Anywhere system view. See “SYSCHECK
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSCOLAUTH consolidated view
Each row in the SYSCOLAUTH view describes the set of privileges
(UPDATE, SELECT, or REFERENCES) granted on a column. The
SYSCOLAUTH view provides a user-friendly presentation of data in the
SYSCOLPERM system view.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 535

The SYSCOLAUTH view is a SQL Anywhere consolidated view. See
“SYSCOLAUTH consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSCOLPERM system view
The GRANT statement can give UPDATE, SELECT, or REFERENCES
permission to individual columns in a table. Each column with UPDATE,
SELECT, or REFERENCES permission is recorded in one row of the
SYSCOLPERM system view. The underlying system table for this view is
ISYSCOLPERM.

The SYSCOLPERM view is a SQL Anywhere system view. See
“SYSCOLPERM system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSCOLLATION compatibility view (deprecated)
The SYSCOLLATION compatibility view contains the collation sequence
information for the database. It is obtainable via built-in functions and is not
kept in the catalog.

The SYSCOLLATION view is a SQL Anywhere compatibility view. See
“SYSCOLLATION compatibility view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Views > Compatibility views.

SYSCOLLATIONMAPPINGS compatibility view (deprecated)

536 Sybase IQ

SYSCOLLATIONMAPPINGS compatibility view
(deprecated)

The SYSCOLLATIONMAPPINGS compatibility view contains only one row
with the database collation mapping. It is obtainable via built-in functions and
is not kept in the catalog.

The SYSCOLLATIONMAPPINGS view is a SQL Anywhere compatibility
view. See “SYSCOLLATIONMAPPINGS compatibility view” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Reference > System Objects > Views > Compatibility views.

SYSCOLSTAT system view
The SYSCOLSTAT system view contains the column statistics, including
histograms, that are used by the optimizer. The contents of this view are best
retrieved using the sa_get_histogram stored procedure or the Histogram utility.
The underlying system table for this view is ISYSCOLSTAT.

The underlying system table for this view is always encrypted to protect the
data from unauthorized access

The SYSCOLSTAT view is a SQL Anywhere system view. See
“SYSCOLSTAT system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSCOLSTATS consolidated view
The SYSCOLSTATS view contains the column statistics that are stored as
histograms and used by the optimizer.

The SYSCOLSTATS view is a SQL Anywhere consolidated view. See
“SYSCOLSTATS consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 537

SYSCOLUMN compatibility view (deprecated)
The SYSCOLUMN view is provided for compatibility with older versions of
Sybase IQ that offered a SYSCOLUMN system table. However, the previous
SYSCOLUMN table has been replaced by the ISYSTABCOL system table,
and its corresponding SYSTABCOL system view, which you should use
instead.

The SYSCOLUMN view is a SQL Anywhere compatibility view. See
“SYSCOLUMN compatibility view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Compatibility views.

SYSCOLUMNS consolidated view
Each row in the SYSCOLUMNS view describes one column of each table and
view in the catalog.

The SYSCOLUMNS view is a SQL Anywhere consolidated view. See
“SYSCOLUMNS consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSCOLUMNS ASE compatibility view
This view is owned by user DBO. syscolumns contains one row for every
column in every table and view, and a row for each parameter in a procedure.
See Table 8-1 on page 588.

SYSCOMMENTS ASE compatibility view

538 Sybase IQ

SYSCOMMENTS ASE compatibility view
This view is owned by user DBO. syscomments contains entries for each view,
rule, default, trigger, table constraint, partition, procedure, computed column,
function-based index key, and other forms of compiled objects. The text
column contains the original definition statements. If the text column is longer
than 255 bytes, the entries span rows. Each object can occupy as many as
65,025 rows. See Table 8-1 on page 588.

SYSCONSTRAINT system view
Each row in the SYSCONSTRAINT system view describes a named constraint
in the database. The underlying system table for this view is
ISYSCONSTRAINT.

The SYSCONSTRAINT view is a SQL Anywhere system view. See
“SYSCONSTRAINT system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSDBFILE system view
Each row in the SYSDBFILE system view describes a dbspace file. The
underlying system table for this view is ISYSDBFILE.

Note This view replaces the deprecated system view SYSFILE.

The SYSDBFILE view is a SQL Anywhere system view. See “SYSDBFILE
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 539

SYSDBSPACE system view
Each row in the SYSDBSPACE system view describes a dbspace file. The
underlying system table for this view is ISYSDBSPACE.

Note This view replaces the deprecated system view SYSFILE.

The SYSDBSPACE view is a SQL Anywhere system view. See
“SYSDBSPACE system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSDBSPACEPERM system view
Each row in the SYSDBSPACEPERM system view describes a permission on
a dbspace file. The underlying system table for this view is
ISYSDBSPACEPERM.

The SYSDBSPACEPERM view is a SQL Anywhere system view. See
“SYSDBFILE system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSDEPENDENCY system view
Each row in the SYSDEPENDENCY system view describes a dependency
between two database objects. The underlying system table for this view is
ISYSDEPENDENCY.

A dependency exists between two database objects when one object references
another object in its definition. For example, if the query specification for a
view references a table, the view is said to be dependent on the table. The
database server tracks dependencies of views on tables, views, materialized
views, and columns

SYSDOMAIN system view

540 Sybase IQ

The SYSDEPENDENCY view is a SQL Anywhere system view. See
“SYSDEPENDENCY system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSDOMAIN system view
The SYSDOMAIN system view records information about built-in data types
(also called domains). The contents of this view does not change during normal
operation. The underlying system table for this view is ISYSDOMAIN.

The SYSDOMAIN view is a SQL Anywhere system view. See
“SYSDOMAIN system view” in theSQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSEVENT system view
Each row in the SYSEVENT system view describes an event created with
CREATE EVENT. The underlying system table for this view is ISYSEVENT.

The SYSEVENT view is a SQL Anywhere system view. See “SYSEVENT
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSEVENTTYPE system view
The SYSEVENTTYPE system view defines the system event types that can be
referenced by CREATE EVENT.

The SYSEVENTTYPE view is a SQL Anywhere system view. See
“SYSEVENT system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 541

SYSEXTERNENV system view
Sybase IQ includes support for six external runtime environments. These
include embedded SQL and ODBC applications written in C/C++, and
applications written in Java, Perl, PHP, or languages such as C# and Visual
Basic that are based on the Microsoft .NET Framework Common Language
Runtime (CLR).

Each row in the SYSEXTERNENV system view describes the information
needed to identify and launch each of the external environments. The
underlying system table for this view is ISYSEXTERNENV.

The SYSEXTERNENV view is a SQL Anywhere system view. See
“SYSEXTERNENV system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSEXTERNENVOBJECT system view
Sybase IQ includes support for six external runtime environments. These
include embedded SQL and ODBC applications written in C/C++, and
applications written in Java, Perl, PHP, or languages such as C# and Visual
Basic that are based on the Microsoft .NET Framework Common Language
Runtime (CLR).

Each row in the SYSEXTERNENVOBJECT system view describes an
installed external object. The underlying system table for this view is
ISYSEXTERNENVOBJECT.

The SYSEXTERNENVOBJECT view is a SQL Anywhere system view. See
“SYSEXTERNENVOBJECT system view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > System views.

SYSEXTERNLOGIN system view
Each row in the SYSEXTERNLOGIN system view describes an external login
for remote data access. The underlying system table for this view is
ISYSEXTERNLOGIN.

SYSFILE compatibility view (deprecated)

542 Sybase IQ

The SYSEXTERNLOGIN view is a SQL Anywhere system view. See
“SYSEXTERNLOGIN system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSFILE compatibility view (deprecated)
Each row in the SYSFILE system view describes a dbspace for a database.
Every database consists of one or more dbspaces; each dbspace corresponds to
an operating system file.

The SYSFILE view is a SQL Anywhere compatibility view. See “SYSFILE
compatibility view” in the SQL Anywhere documentation at SQL Anywhere
11.0.1 > SQL Anywhere Server - SQL Reference > System Objects > Views >
System views.

SYSFKCOL compatibility view (deprecated)
Each row of SYSFKCOL describes the association between a foreign column
in the foreign table of a relationship and the primary column in the primary
table. This view is deprecated; use the SYSIDX and SYSIDXCOL system
views instead.

The SYSFKCOL view is a SQL Anywhere compatibility view. See
“SYSFKCOL compatibility view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSFKEY system view
Each row in the SYSFKEY system view describes a foreign key constraint in
the system. The underlying system table for this view is ISYSFKEY.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 543

The SYSFKEY view is a SQL Anywhere system view. See “SYSFKEY
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSFOREIGNKEY compatibility view (deprecated)
The SYSFOREIGNKEY view is provided for compatibility with older
versions of Sybase IQ that offered a SYSFOREIGNKEY system table.
However, the previous SYSFOREIGNKEY system table has been replaced by
the ISYSFKEY system table, and its corresponding SYSFKEY system view,
which you should use instead.

The SYSFOREIGNKEY view is a SQL Anywhere consolidated view. See
“SYSFOREIGNKEY consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSFOREIGNKEYS consolidated view
Each row in the SYSFOREIGNKEYS view describes one foreign key for each
table in the catalog.

The SYSFOREIGNKEYS view is a SQL Anywhere consolidated view. See
“SYSFOREIGNKEYS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSGROUP system view
There is one row in the SYSGROUP system view for each member of each
group. This view describes the many-to-many relationship between groups and
members. A group may have many members, and a user may be a member of
many groups. The underlying system table for this view is ISYSGROUP.

SYSGROUPS consolidated view

544 Sybase IQ

The SYSGROUP view is a SQL Anywhere system view. See “SYSGROUP
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSGROUPS consolidated view
There is one row in the SYSGROUPS view for each member of each group.
This view describes the many-to-many relationship between groups and
members. A group may have many members, and a user may be a member of
many groups.

The SYSGROUPS view is a SQL Anywhere consolidated view. See
“SYSGROUPS consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSHISTORY system view
Each row in the SYSHISTORY system view records a system operation on the
database, such as a database start, a database calibration, and so on. The
underlying system table for this view is ISYSHISTORY.

The SYSHISTORY view is a SQL Anywhere system view. See
“SYSHISTORY system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 545

SYSIDX system view
Each row in the SYSIDX system view defines a logical index in the database.
The underlying system table for this view is ISYSIDX.

Note This view replaces the deprecated system view SYSINSDEX.

The SYSIDX view is a SQL Anywhere system view. See “SYSIDX system
view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 > SQL
Anywhere Server - SQL Reference > System Objects > Views > System views.

SYSIDXCOL system view
Each row in the SYSIDXCOL system view describes one column of an index
described in the SYSIDX system view. The underlying system table for this
view is ISYSIDXCOL.

The SYSIDXCOL view is a SQL Anywhere system view. See “SYSIDXCOL
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSINDEX compatibility view (deprecated)
The SYSINDEX view is provided for compatibility with older versions of
Sybase IQ that offered a SYSINDEX system table. However, the SYSINDEX
system table has been replaced by the ISYSIDX system table, and its
corresponding SYSIDX system view, which you should use instead.

The SYSINDEX view is a SQL Anywhere compatibility view. See
“SYSINDEX compatibility view (deprecated)” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Compatibility views.

SYSINDEXES consolidated view

546 Sybase IQ

SYSINDEXES consolidated view
Each row in the SYSINDEXES view describes one index in the database. As
an alternative to this view, you could also use the SYSIDX and SYSIDXCOL
system views.

The SYSINDEXES view is a SQL Anywhere consolidated view. See
“SYSINDEXES consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSINDEXES ASE compatibility view
This view is owned by user DBO. sysindexes contains one row for each
clustered index, one row for each nonclustered index, one row for each table
that has no clustered index, and one row for each table that contains text or
image columns.This table also contains one row for each function-based index
or index created on a computed column. See Table 8-1 on page 588.

SYSINFO compatibility view (deprecated)
The SYSINFO view indicates the database characteristics, as defined when the
database was created. It always contains only one row. This view is obtainable
via built-in functions and is not kept in the catalog.

The SYSINFO view is a SQL Anywhere compatibility view. See “SYSINFO
compatibility view (deprecated)” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > Compatibility views.

SYSIQBACKUPHISTORY system view
This view presents group information from ISYSIQBACKUPHISTORY in a
readable format. Each row in this view describes a particular backup operation
that finished successfully.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 547

The view SYSIQBACKUP projects equivalent string values for columns type,
subtype, and bkp_virtual.

Constraints on underlying system table

Primary key (bu_id)

Column name Column type Column constraint Description
bu_id unsigned bigint NOT NULL Transaction identifier of

the checkpoint of the
operation. Backup ID for
backup operations.

bu_time timestamp NOT NULL Time of backup operation
that is recorded in backup
record.

type tinyint NOT NULL Backup type:
0 = FULL
1 = INCREMENTAL
2 = INCREMENTAL
SINCE FULL

selective_type tinyint NOT NULL Backup subtype:
0 = ALL (backs up all
dbfiles)
1 = READ/WRITE
ONLY (backs up all read-
write files)
2 = READ ONLY (backs
up a particular read-only
file)

virtual_type tinyint NOT NULL Backup virtual type:
0 = NONE
1 = DECOUPLED
2 = ENCAPSULATED

dependson_id unsigned bigint NULL NULL for FULL backup
cmd long varchar NOT NULL Full text of command
creator char(128) NOT NULL User who issued backup

command
version unsigned int NOT NULL Backup version

SYSIQBACKUPHISTORYDETAIL system view

548 Sybase IQ

SYSIQBACKUPHISTORYDETAIL system view
This view describes all the dbfile records present in the database at backup
time. Each row in this view describes a particular backup operation that
finished successfully. It presents group information from
ISYSIQBACKUPHISTORYDETAIL in a readable format. The column constraint
for each column is NOT NULL.

Column name Column type Description
bu_id unsigned bigint Transaction identifier of

the checkpoint of the
operation. Backup ID for
backup operation

dbspace_id smallint The dbspace ID of which
this dbfile record is
associated.

dbfile_id smallint The dbfile ID present in
dbspace during ongoing
backup operation

dbspace_rwstatus char(1) T indicates read-write
dbspace_createid unsigned bigint The transaction ID of the

transaction that created
the dbspace

dbspace_alterid unsigned bigint Transaction ID that
marked the dbspace RO.
If not marked, then the
create ID

dbspace_online char(1) T indicates online
dbfile_rwstatus char(1) T indicates read-write
dbfile_createid unsigned bigint The transaction ID of the

transaction that created
this dbfile

dbfile_alterid unsigned bigint The transaction ID of the
transaction that last
altered the read-write
status of this dbfile

is_backed_up char(1) Indicates that the dbfile is
backed up in this backup

start_block unsigned bigint Start block for the dbfile
num_blocks unsigned bigint Total number of blocks in

dbfile
num_blocks_backed_up unsigned bigint Total number of blocks

backed up

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 549

Constraints on underlying system table

Primary key (bu_id, dbfile_id)

Foreign key (txn_id) references SYS.ISYSBACKUPHISTORY

SYSIQCOLUMN system view (deprecated)
SYSIQCOLUMN has been replaced by the SYSIQTABCOL system view. See
“SYSIQTABCOL system view” on page 559.

SYSIQDBFILE system view
Presents group information from ISYSIQDBFILE in a readable format.

Note This view replaces the deprecated system view SYSIQFILE.

dbspace_name char(128) Dbspace name
dbfile_name char(128) Logical file name of the

dbfile
dbfile_path long varchar Physical path of the file

Column name Column type Description

Column name Column type Description
dbfile_id small int Unique ID for the dbfile
start_block rowid Number of the first block
block_count rowid Number of blocks for this

file (dbspace)
reserve_size rowid Preallocated file system

space for the dbspace
allocated char(1) Defines whether the

segment is preallocated
(T) or autoallocated (F)

SYSIQDBSPACE system view

550 Sybase IQ

Constraints on underlying system table

Foreign key (server_id) references SYS.ISYSIQMPXSERVER

Unique (server_id, file_name)

SYSIQDBSPACE system view
Presents group information from ISYSIQDBSPACE in a readable format.

data_offset unsigned int Identifies the byte
location of where the
Sybase IQ data starts,
relative to the beginning
of the raw partition

create_time timestamp Date and time the file was
created

last_modified timestamp Date and time the file was
last modified

read_write char(1) T indicates read-write
online char(1) T indicates online
create_txn_id xact_id Transaction ID that

created the dbfile
alter_txn_id xact_id Transaction ID that last

modified read_write
status

server_id unsigned int Multiplex server name
file_name text the IQ dbspace name used

by the multiplex server to
open the IQ dbspace

Column name Column type Description

Column name Column type Description
dbspace_id small int Each dbspace in a database

is assigned a unique
number (dbspace ID)

last_modified timestamp Time at which the
dbspace's read-write status
was last modified

segment_type char(8) Segment type: Main, Temp
or Msg

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 551

Constraints on underlying system table

Primary key (dbspace_id)

Foreign key (dbspace_id) references SYS.ISYSDBSPACE(dbspace_id)

SYSIQFILE system view (deprecated)
SYSIQFILE has been replaced by the SYSIQDBFILE system view. See
“SYSIQDBFILE system view” on page 549.

SYSIQIDX system view
Presents group information from ISYSIQIDX in a readable format. Each row in
the SYSIQIDX view describes an IQ index.

Note This view replaces the deprecated system view SYSIQINDEX.

read_write char(1) 'T' – read writable, 'F' –
read only

online char(1) 'T' – online; 'F' – offline
create_txn_id xact_id Transaction ID that create

the dbspace
alter_txn_id xact_id Transaction ID that last

modified read_write status
striping_on char(1) 'T' – disk striping on; 'F' –

disk striping off
stripe_size_kb unsigned int Number of kilobytes

written to each file of the
dbspace before the disk
striping algorithm moves to
the next dbfile

Column name Column type Description

SYSIQINFO system view

552 Sybase IQ

Constraints on underlying system table

Primary key (table_id, index_id)

Foreign key (table_id, index_id) references SYS.ISYIDX

Foreign key (link_table_id, link_index_id, table_id, index_id) references
SYS.ISYSIDX

SYSIQINFO system view
Presents group information from ISYSIQINFO in a readable format.

Column name Column type Description
table_id unsigned int The table number

uniquely identifies the
table to which this index
applies

index_id unsigned int Each index for one
particular table is assigned
a unique index number

index_type char(4) Index type
index_owner char(4) Index owner
max_key unsigned int For internal use
identity_location hs_vdorecid For internal use
identity_size unsigned int For internal use
identity_location_size unsigned int For internal use
link_table_id unsigned int For internal use
link_index_id unsigned int For internal use
delimited_by varchar(1024) (WD indexes only) List of

separators used to parse a
column’s string into the
words to be stored in that
column’s WD index

limit unsigned int (WD indexes only)
Maximum word length for
WD index

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 553

The ISYSIQINFO system table indicates the database characteristics as
defined when the Sybase IQ database was created using CREATE DATABASE.
It always contains only one row. The multiplex_name and last_multiplex_mode
columns were added for Sybase IQ 15.0.

Column name Column type Description
create_time TIMESTAMP NOT

NULL
Date and time that the
database was created.

update_time TIMESTAMP NOT
NULL

Date and time of the last
update.

file_format_version UNSIGNED INT NOT
NULL

File format number of
files for this database.

cat_format_version UNSIGNED INT NOT
NULL

Catalog format number
for this database.

sp_format_version UNSIGNED INT NOT
NULL

Stored procedure format
number for this database.

block_size UNSIGNED INT NOT
NULL

Block size specified for
the database.

chunk_size UNSIGNED INT NOT
NULL

Number of blocks per
page as determined by the
block size and page size
specified for the database.

file_format_date CHAR(10) NOT NULL Date when file format
number was last changed.

dbsig BINARY(136) NOT
NULL

Used internally by
catalog.

commit_txn_id xact_id For internal use.
rd_commit_txn_id xact_id For internal use.
multiplex name CHAR(128) NULL Name of the multiplex

that this database is a
member of.

last_multiplex_mod
e

TINYINT NULL (Column unused in
Sybase IQ 15.1) Mode of
the server that last opened
the catalog read-write.
One of the following
values.
• 0 – Single Node.
• 1 – Reader.
• 2 – Coordinator.
• 3 – Writer.

SYSIQJOINIDX system view

554 Sybase IQ

SYSIQJOINIDX system view
Presents group information from ISYSIQJOINIDX in a readable format. Each
row in the SYSIQJOINIDX view describes an IQ join index.

Note This view replaces the deprecated system view SYSIQJOININDEX.

Constraints on underlying system table

Primary key (joinindex_id)

Foreign key (jvt_id) references SYS.ISYSTAB

Foreign key (dbspace_id) references SYS.ISYSDBSPACE

Column name Column type Description
joinindex_id unsigned int Each join index is

assigned a unique number
that is the primary key.

jvt_id unsigned int For internal use.
dbspace_id smallint ID of the dbspace.
joinindex_name char(128) Defines the name of the

join index.
joinindex_type char(12) For internal use.
creator unsigned int The number of the user

that created the join index.
join_info_location hs_vdorecid For internal use.
join_info_loc_size unsigned int For internal use.
join_info_size unsigned int For internal use.
block_map hs_blockmapidentity For internal use.
block_map_size unsigned int For internal use.
vdo hs_vdoidentity For internal use.
vdo_size unsigned_int For internal use.
commit_txn_id xact_id For internal use.
txn_id xact_id For internal use.
valid char(1) Indicates whether this join

index needs to be
synchronized. Y indicates
that it does not require
synchronization, N
indicates that it does
require synchronization.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 555

Foreign key (creator) references SYS.ISYSUSER

Unique (jvt_id, commit_txn_id, txn_id)

SYSIQJOININDEX system view (deprecated)
SYSIQJOININDEX has been replaced by the SYSIQJOINIDX system view.
See “SYSIQJOINIDX system view” on page 554.

SYSIQJOINIXCOLUMN system view
ALTER VIEW "SYS"."SYSIQJOINIXCOLUMN"
as select * from SYS.ISYSIQJOINIXCOLUMN

Presents group information from ISYSIQJOINIXCOLUMN in a readable format.
Each row in the SYSIQJOINIXCOLUMN view describes an IQ join index.

Column name Column type Description
joinindex_id unsigned bigint Corresponds to a join

index value in
SYSIQJOINIDX.

left_table_id unsigned int Corresponds to a table
value in SYSTAB that
forms the left side of the
join operation.

left_column_id unsigned int Corresponds to a column
value in SYSTABCOL
that is part of the left side
of the join.

join_type char(4) Only value currently
supported is “=”.

right_table_id unsigned int Corresponds to a table
value in SYSTAB that
forms the right side of the
join operation

right_column_id unsigned int Corresponds to a column
value in SYSTABCOL
that is part of the right side
of the join.

SYSIQJOINIXTABLE system view

556 Sybase IQ

Constraints on underlying system table

Primary key (joinindex_id, left_table_id, left_column_id, right_table_id,
right_column_id)

Foreign key (joinindex_id) references SYS.ISYSIQJOINIDX

Foreign key (left_table_id, column_id) references SYS.ISYSTABCOL

Foreign key (right_table_id, column_id) references SYS.ISYSTABCOL

SYSIQJOINIXTABLE system view
ALTER VIEW "SYS"."SYSIQJOINIXTABLE"
as select * from SYS.ISYSIQJOINIXTABLE

Presents group information from ISYSIQJOINIXTABLE in a readable format.
Each row in the SYSIQJOINIXTABLE view describes an IQ join index.

Constraints on underlying system table

order_num unsigned int For internal use.
left_order_num unsigned int For internal use.
right_order_num unsigned int For internal use.
key_type char(8) Defines the type of join on

the keys. ‘NATURAL’ is a
natural join, ‘KEY’ is a
key join, ‘ON’ is a left
outer/right outer/full join.

coalesce char(1) Not used.

Column name Column type Description

Column name Column type Description
table_id unsigned int Corresponds to a table

value in SYSTAB that is
included in a join
operation.

joinindex_id unsigned bigint Corresponds to a join
index value in
SYSIQJOINIDX.

active unsigned int Defines the number of
times the table is used in
the join index.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 557

Primary key (table_id, joinindex_id)

Foreign key (table_id) references SYS.ISYSTAB

Foreign key (joinindex_id) references SYS.ISYSIQJOINIDX

SYSIQMPXLOGINPOLICYOPTION system view
See “SYSIQMPXLOGINPOLICYOPTION system view” in Appendix A,
“Multiplex Reference,” in Using Sybase IQ Multiplex.

SYSIQMPXSERVER system view
See “SYSIQMPXSERVER system view,” in Appendix A, “Multiplex
Reference,” in Using Sybase IQ Multiplex.

SYSIQOBJECTS ASE compatibility view
SYSIQOBJECTS presents one row for each system table, user table, view,
procedure, trigger, event, join index, constraint, domain (sysdomain), domain
(sysusertype), column, and index. This view is owned by user DBO. See
Table 8-1 on page 588.

SYSIQPARTITIONCOLUMN system view
ALTER VIEW "SYS"."SYSIQPARTITIONCOLUMN"
as select * from SYS.ISYSIQPARTITIONCOLUMN

SYSIQTAB system view

558 Sybase IQ

Presents group information from ISYSIQPARTITIONCOLUMN in a readable
format. Each row in the SYSIQPARTITIONCOLUMN view describes a column
in a partition described in the SYSIQPARTITION view in a partitioned table
described in the SYSPARTITIONSCHEME view. SYSIQPARTITIONCOLUMN
only describes partitions of columns that are not stored on the dbspace of the
partition.

Constraints on underlying system table

Primary key (partitioned_object_id, partition_id, column_id)

Foreign key (partitioned_object_id, partition_id) references
SYS.ISYSPARTITION

Foreign key (dbspace_id) references SYS.ISYSDBSPACE

SYSIQTAB system view
ALTER VIEW "SYS"."SYSIQTAB"
as select * from SYS.ISYSIQTAB

Presents group information from ISYSIQTAB in a readable format. Each row in
the SYSIQTAB view describes an IQ table.

Note This view replaces the deprecated system view SYSIQTABLE.

Column name Column type Description
partitioned_object_id unsigned bigint Unique ID assigned to each

partitioned object (table)
partition_id unsigned int Identifies a partition in a partitioned

table.
column_id unsigned int The column ID of the column.
dbspace_id smallint The dbspace ID of the dbspace where

this column of the partition is stored.

Column name Column type Description
table_id unsigned int Each table is assigned a

unique number (the table
number) that is the
primary key.

block_map hs_blockmapidentity For internal use.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 559

Constraints on underlying system table

Primary key (table_id)

SYSIQTABCOL system view
ALTER VIEW "SYS"."SYSIQTABCOL"
as select * from SYS.ISYSIQTABCOL

Presents group information from ISYSIQTABCOL in a readable format. Each
row in the SYSIQTABCOL view describes a column in an IQ table.

Note This view replaces the deprecated system view SYSIQCOLUMN.

block_map_size unsigned int For internal use.
vdo hs_vdoidentity For internal use.
vdoid_size unsigned int For internal use.
info_location hs_vdorecid Not used. Always zero.
info_recid_size unsigned int Not used. Always zero.
info_location_size unsigned int Not used. Always zero.
commit_txn_id xact_id For internal use.
txn_id xact_id For internal use.
join_id unsigned int For internal use.
update_time timestamp Last date and time the IQ

table was modified.

Column name Column type Description

Column name Column type Description
table_id unsigned int The table number

uniquely identifies the
table to which this column
belongs. It corresponds to
the table_id column of
SYSTAB.

SYSIQTABCOL system view

560 Sybase IQ

Constraints on underlying system table

Primary key (table_id)

column_id unsigned int Each table starts
numbering columns at 1.
The order of column
numbers determines the
order that columns are
displayed in the command
select * from table.

link_table_id unsigned int For internal use.
link_column_id unsigned int For internal use.
max_length unsigned int Indicates the maximum

length allowed by the
column.

approx_unique_count rowid Approximate number of
unique values
(cardinality) of this
column.

cardinality rowid The actual number of
unique values
(cardinality) of this
column.

has_data char(1) Indicates that the column
contains data (T/F).

has_original char(1) Indicates the join index
has the original data (T/F).

original_not_null char(1) Indicates the join index
column with the original
data was NOT NULL (T/
F).

original_unique char(1) Indicates the join index
column with the original
data was UNIQUE (T/F).

Column name Column type Description

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 561

SYSIQTABLE system view (deprecated)
SYSIQTABLE has been replaced by the SYSIQTAB system view. See
“SYSIQTAB system view” on page 558.

SYSIQVINDEX ASE compatibility view
SYSIQVINDEX provides one row for each non-FP IQ index. This view is
owned by user DBO. See Table 8-1 on page 588.

SYSIXCOL compatibility view (deprecated)
The SYSIXCOL view is provided for compatibility with older versions of
Sybase IQ that offered a SYSIXCOL system table. However, the SYSIXCOL
system table has been replaced by the ISYSIDXCOL system table, and its
corresponding SYSIDXCOL system view.

The SYSIXCOL view is a SQL Anywhere compatibility view. See
“SYSIXCOL compatibility view (deprecated)” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Compatibility views.

SYSJAR system view
Each row in the SYSJAR system view defines a JAR file stored in the database.
The underlying system table for this view is ISYSJAR.

The SYSJAR view is a SQL Anywhere system view. See “SYSJAR system
view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 > SQL
Anywhere Server - SQL Reference > System Objects > Views > System views.

SYSJARCOMPONENT system view

562 Sybase IQ

SYSJARCOMPONENT system view
Each row in the SYSJARCOMPONENT system view defines a JAR file
component. The underlying system table for this view is
ISYSJARCOMPONENT.

The SYSJARCOMPONENT view is a SQL Anywhere system view. See
“ISYSJARCOMPONENT system view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSJAVACLASS system view
Each row in the SYSJAVACLASS system view describes one Java class stored
in the database. The underlying system table for this view is
ISYSJAVACLASS.

The SYSJAVACLASS view is a SQL Anywhere system view. See
“SYSJAVACLASS system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSLOGINMAP system view
The SYSLOGINMAP system view contains one row for each user that can
connect to the database using either an integrated login, or a Kerberos login. As
a security measure, only users with DBA authority can view the contents of this
view. The underlying system table for this view is ISYSLOGINMAP.

The SYSLOGINMAP view is a SQL Anywhere system view. See
“SYSLOGINMAP system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 563

SYSLOGINPOLICY system view
The underlying system table for this view is ISYSLOGINPOLICY.

The SYSLOGINPOLICY view is a SQL Anywhere system view. See
“SYSLOGINPOLICY system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSLOGINPOLICYOPTION system view
The underlying system table for this view is ISYSLOGINPOLICYOPTION.

The SYSLOGINPOLICYOPTION view is a SQL Anywhere system view. See
“SYSLOGINPOLICYOPTION system view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > System views.

SYSLOGINS ASE compatibility view
This view is owned by user DBO. syslogins contains one row for each valid
Adaptive Server user account. See Table 8-2 on page 590.

SYSMVOPTION system view
Each row in the SYSMVOPTION system view describes the setting of one
option value for a materialized view at the time of its creation. However, the
description does not contain the option name. The underlying system table for
this view is ISYSMVOPTION.

The SYSMVOPTION view is a SQL Anywhere system view. See
“SYSMVOPTION system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSMVOPTIONNAME system view

564 Sybase IQ

SYSMVOPTIONNAME system view
Each row in the SYSMVOPTIONNAME system view contains the name of an
option defined in the SYSMVOPTION system view. The underlying system
table for this view is ISYSMVOPTIONNAME.

The SYSMVOPTIONNAME view is a SQL Anywhere system view. See
“SYSMVOPTIONNAME system view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSOBJECT system view
Each row in the SYSOBJECT system view describes a database object. The
underlying system table for this view is ISYSOBJECT.

The SYSOBJECT view is a SQL Anywhere system view. See “SYSOBJECT
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSOBJECTS ASE compatibility view
This view is owned by user DBO. sysobjects contains one row for each table,
view, stored procedure, extended stored procedure, log, rule, default, trigger,
check constraint, referential constraint, computed column, function-based
index key, and temporary object, and other forms of compiled objects. It also
contains one row for each partition condition ID when object type is N. See
Table 8-1 on page 588.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 565

SYSOPTION system view
The SYSOPTION system view contains one row for each option setting stored
in the database. Each user can have their own setting for a given option. In
addition, settings for the PUBLIC user ID define the default settings to be used
for users that do not have their own setting. The underlying system table for
this view is ISYSOPTION.

The SYSOPTION view is a SQL Anywhere system view. See “SYSOPTION
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSOPTIONS consolidated view
Each row in the SYSOPTIONS view describes one option that was created
using the SET command. Each user can have their own setting for each option.
In addition, settings for the PUBLIC user define the default settings to be used
for users that do not have their own setting.

The SYSOPTIONS view is a SQL Anywhere consolidated view. See
“SYSOPTIONS consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSOPTSTAT system view
The SYSOPTSTAT system view stores the cost model calibration information
as computed by the ALTER DATABASE CALIBRATE statement. The contents of
this view are for internal use only and are best accessed via the sa_get_dtt
system procedure. The underlying system table for this view is
ISYSOPTSTAT.

The SYSOPTSTAT view is a SQL Anywhere system view. See
“SYSOPTSTAT system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSPARTITION system view

566 Sybase IQ

SYSPARTITION system view
ALTER VIEW "SYS"."SYSPARTITION"
as select * from SYS.ISYSPARTITION

Presents group information from ISYSPARTITION in a readable format. Each
row in the SYSPARTITION view describes a partitioned object (table or index)
in the database.

Constraints on underlying system table

Primary key (partitioned_object_id, partition_id)

Unique (partition_object_id, position)

Foreign key (partition_object_id) references SYS.ISYSOBJECT

Foreign key (partitioned_object_id) references SYS.ISYSOBJECT

SYSPARTITIONKEY system view
ALTER VIEW "SYS"."SYSPARTITIONKEY"
as select * from SYS.ISYSPARTITIONKEY

Presents group information from ISYSPARTITIONKEY in a readable format.
Each row in the SYSPARTITIONKEY view describes a partitioned object (table
or index) in the database.

Column name Column type Description
partitioned_object_id unsigned bigint Unique number assigned to each

partitioned object (table)
partition_id unsigned int Identifies a partition in a partitioned

table.
partition_object_id unsigned bigint Each table partition is an object itself

and is assigned a unique number from
the table object or index object.

partition_values long varchar Contains the upper bound for this
range partition.

position unsigned int Ordinal number of partition.
partition_name char(128) Name of partition

Column name Column type Description
partitioned_object_id unsigned bigint Each partitioned object (table) is

assigned a unique object number.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 567

Constraints on underlying system table

Primary key (partitioned_object_id, column_id)

Foreign key (partitioned_object_id) references SYS.ISYSOBJECT

SYSPARTITIONSCHEME system view
ALTER VIEW "SYS"."SYSPARTITIONSCHEME"
as select * from SYS.ISYSPARTITIONSCHEME

Presents group information from ISYSPARTITIONSCHEME in a readable
format. Each row in the SYSPARTITIONSCHEME view describes a partitioned
object (table or index) in the database.

Constraints on underlying system table

Primary key (partitioned_object_id)

Foreign key (partitioned_object_id) references SYS.ISYSOBJECT

column_id unsigned int The column ID identifies the table
column as part of the partitioning key.

position smallint Position of this column in the
partitioning key. Position is 0 based. A
position of 0 indicates the 1st column
in the partitioning key.

Column name Column type Description

Column name Column type Description
partitioned_object_id unsigned bigint Each partitioned object (table) is

assigned a unique number
partition_method tinyint The partitioning method for this table.

Valid values:
1– for range
Sybase IQ supports only range
partitioning.

subpartition_method tinyint Reserved for future use.

SYSPHYSIDX system view

568 Sybase IQ

SYSPHYSIDX system view
Each row in the SYSPHYSIDX system view defines a physical index in the
database. The underlying system table for this view is ISYSPHYSIDX.

The SYSPHYSIDX view is a SQL Anywhere system view. See
“SYSPHYSIDX system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSPROCAUTH consolidated view
Each row in the SYSPROCAUTH view describes a set of privileges granted on
a procedure. As an alternative, you can also use the SYSPROCPERM system
view.

The SYSPROCAUTH view is a SQL Anywhere consolidated view. See
“SYSPROCAUTH consolidated view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSPROCEDURE system view
Each row in the SYSPROCEDURE system view describes one procedure in
the database. The underlying system table for this view is ISYSPROCEDURE.

The SYSPROCEDURE view is a SQL Anywhere system view. See
“SYSPROCEDURE system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 569

SYSPROCPARM system view
Each row in the SYSPROCPARM system view describes one parameter to a
procedure in the database. The underlying system table for this view is
ISYSPROCPARM.

The SYSPROCPARM view is a SQL Anywhere system view. See
“SYSPROCPARM system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSPROCPARMS consolidated view
Each row in the SYSPROCPARMS view describes a parameter to a procedure
in the database.

The SYSPROCPARMS view is a SQL Anywhere consolidated view. See
“SYSPROCPARMS consolidated view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSPROCPERM system view
Each row of the SYSPROCPERM system view describes a user who is granted
permission to execute a procedure. Only users who have been granted
permission can execute a procedure. The underlying system table for this view
is ISYSPROCPERM.

The SYSPROCPERM view is a SQL Anywhere system view. See
“SYSPROCPERM system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSPROCS consolidated view

570 Sybase IQ

SYSPROCS consolidated view
The SYSPROCS view shows the procedure or function name, the name of its
creator and any comments recorded for the procedure or function.

The SYSPROCS view is a SQL Anywhere consolidated view. See
“SYSPROCS consolidated view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > Consolidated views.

SYSPROXYTAB system view
Each row of the SYSPROXYTAB system view describes the remote
parameters of one proxy table. The underlying system table for this view is
ISYSPROXYTAB.

The SYSPROXYTAB view is a SQL Anywhere system view. See
“SYSPROXYTAB system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSPUBLICATION system view
Each row in the SYSPUBLICATION system view describes a SQL Remote or
MobiLink publication. The underlying system table for this view is
ISYSPUBLICATION.

The SYSPUBLICATION view is a SQL Anywhere system view. See
“SYSPUBLICATION system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 571

SYSPUBLICATIONS consolidated view
Each row in the SYSPUBLICATIONS view describes a SQL Remote or
MobiLink publication.

The SYSPUBLICATIONS view is a SQL Anywhere consolidated view. See
“SYSPUBLICATIONS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSREMARK system view
Each row in the SYSREMARK system view describes a remark (or comment)
for an object. The underlying system table for this view is ISYSREMARK.

The SYSREMARK view is a SQL Anywhere system view. See
“SYSREMARK system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSREMOTEOPTION system view
Each row in the SYSREMOTEOPTION system view describes the value of a
SQL Remote message link parameter. The underlying system table for this
view is ISYSREMOTEOPTION.

Some columns in this view contain potentially sensitive data. For that reason,
access to this view is restricted to users with DBA authority. The
SYSREMOTEOPTION2 view provides public access to the data in this view
except for the potentially sensitive columns.

The SYSREMOTEOPTION view is a SQL Anywhere system view. See
“SYSREMOTEOPTION system view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSREMOTEOPTION2 consolidated view

572 Sybase IQ

SYSREMOTEOPTION2 consolidated view
Presents, in a readable format, the columns from SYSREMOTEOPTION and
SYSREMOTEOPTIONTYPE that do not contain sensitive data.

The SYSREMOTEOPTION2 view is a SQL Anywhere consolidated view. See
“SYSREMOTEOPTION2 consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSREMOTEOPTIONS consolidated view
Each row of the SYSREMOTEOPTIONS view describes the values of a SQL
Remote message link parameter. Some columns in this view contain
potentially sensitive data. For that reason, access to this view is restricted to
users with DBA authority. The SYSREMOTEOPTION2 view provides public
access to the insensitive data.

The SYSREMOTEOPTIONS view is a SQL Anywhere consolidated view. See
“SYSREMOTEOPTIONS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSREMOTEOPTIONTYPE system view
Each row in the SYSREMOTEOPTIONTYPE system view describes one of
the SQL Remote message link parameters. The underlying system table for this
view is ISYSREMOTEOPTIONTYPE.

The SYSREMOTEOPTIONTYPE view is a SQL Anywhere system view. See
“SYSREMOTEOPTIONTYPE system view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > System views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 573

SYSREMOTETYPE system view
The SYSREMOTETYPE system view contains information about SQL
Remote. The underlying system table for this view is ISYSREMOTETYPE.

The SYSREMOTETYPE view is a SQL Anywhere system view. See
“SYSREMOTETYPE system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSREMOTETYPES consolidated view
Each row of the SYSREMOTETYPES view describes one of the SQL Remote
message types, including the publisher address.

The SYSREMOTETYPES view is a SQL Anywhere consolidated view. See
“SYSREMOTETYPES consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSREMOTEUSER system view
Each row in the SYSREMOTEUSER system view describes a user ID with
REMOTE permissions (a subscriber), together with the status of SQL Remote
messages that were sent to and from that user. The underlying system table for
this view is ISYSREMOTEUSER.

The SYSREMOTEUSER view is a SQL Anywhere system view. See
“SYSREMOTEUSER system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSREMOTEUSERS consolidated view

574 Sybase IQ

SYSREMOTEUSERS consolidated view
Each row of the SYSREMOTEUSERS view describes a user ID with
REMOTE permissions (a subscriber), together with the status of SQL Remote
messages that were sent to and from that user.

The SYSREMOTEUSERS view is a SQL Anywhere consolidated view. See
“SYSREMOTEUSERS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSSCHEDULE system view
Each row in the SYSSCHEDULE system view describes a time at which an
event is to fire, as specified by the SCHEDULE clause of CREATE EVENT.
The underlying system table for this view is ISYSSCHEDULE.

The SYSSCHEDULE view is a SQL Anywhere system view. See
“SYSREMOTEUSER system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSSERVER system view
Each row in the SYSSERVER system view describes a remote server. The
underlying system table for this view is ISYSSERVER.

The SYSSERVER view is a SQL Anywhere system view. See
“SYSREMOTEUSER system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 575

SYSSOURCE system view
Each row in the SYSSOURCE system view contains the source code, if
applicable, for an object listed in the SYSOBJECT system view.

The SYSSOURCE view is a SQL Anywhere system view. See “SYSSOURCE
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSSQLSERVERTYPE system view
The SYSSQLSERVERTYPE system view contains information relating to
compatibility with Adaptive Server Enterprise. The underlying system table
for this view is ISYSSQLSERVERTYPE.

The SYSSQLSERVERTYPE view is a SQL Anywhere system view. See
“SYSSQLSERVERTYPE system view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSSUBPARTITIONKEY system view
This view is reserved for future use. Sybase IQ 15.1 does not support
subpartitioning.

SYSSUBSCRIPTION system view
Each row in the SYSSUBSCRIPTION system view describes a subscription
from one user ID (which must have REMOTE permissions) to one publication.
The underlying system table for this view is ISYSSUBSCRIPTION.

SYSSUBSCRIPTIONS consolidated view

576 Sybase IQ

The SYSSUBSCRIPTION view is a SQL Anywhere system view. See
“SYSSUBSCRIPTION system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSSUBSCRIPTIONS consolidated view
Each row describes a subscription from one user ID (which must have
REMOTE permissions) to one publication.

The SYSSUBSCRIPTIONS view is a SQL Anywhere consolidated view. See
“SYSSUBSCRIPTIONS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSSYNC system view
The SYSSYNC system view contains information relating to MobiLink
synchronization. Some columns in this view contain potentially sensitive data.
For that reason, access to this view is restricted to users with DBA authority.
The SYSSYNC2 view provides public access to the data in this view except for
the potentially sensitive columns. The underlying system table for this view is
ISYSSYNC.

The SYSSYNC view is a SQL Anywhere system view. See “SYSSYNC
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSSYNC2 consolidated view
The SYSSYNC2 view provides public access to the data found in the
SYSSYNC system view—information relating to MobiLink
synchronization—without exposing potentially sensitive data.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 577

The SYSSYNC2 view is a SQL Anywhere consolidated view. See
“SYSSYNC2 consolidated view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > Consolidated views.

SYSSYNCPUBLICATIONDEFAULTS consolidated view
The SYSSYNCPUBLICATIONDEFAULTS view provides the default
synchronization settings associated with publications involved in MobiLink
synchronization.

The SYSSYNCPUBLICATIONDEFAULTS view is a SQL Anywhere
consolidated view. See “SYSSYNCPUBLICATIONDEFAULTS consolidated
view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 > SQL
Anywhere Server - SQL Reference > System Objects > Views > Consolidated
views.

SYSSYNCS consolidated view
The SYSSYNCS view contains information relating to MobiLink
synchronization. Some columns in this view contain potentially sensitive data.
For that reason, access to this view is restricted to users with DBA authority.

The SYSSYNCS view is a SQL Anywhere consolidated view. See
“SYSSYNCS consolidated view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > Consolidated views.

SYSSYNCSCRIPT system view
Each row in the SYSSYNCSCRIPT system view identifies a stored procedure
for MobiLink scripted upload. This view is almost identical to the
SYSSYNCSCRIPTS view, except that the values in this view are in their raw
format. To see them in their human-readable format, see “SYSSYNCSCRIPTS
consolidated view”.

SYSSYNCSCRIPTS consolidated view

578 Sybase IQ

The SYSSYNCSCRIPT view is a SQL Anywhere system view. See
“SYSSYNCSCRIPT system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSSYNCSCRIPTS consolidated view
Each row in the SYSSYNCSCRIPTS view identifies a stored procedure for
MobiLink scripted upload. This view is almost identical to the
SYSSYNCSCRIPT system view, except that the values are in human-readable
format, as opposed to raw data.

The SYSSYNCSCRIPTS view is a SQL Anywhere consolidated view. See
“SYSSYNCSCRIPTS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

SYSSYNCSUBSCRIPTIONS consolidated view
The SYSSYNCSUBSCRIPTIONS view contains the synchronization settings
associated with MobiLink synchronization subscriptions.

The SYSSYNCSUBSCRIPTIONS view is a SQL Anywhere consolidated
view. See “SYSSYNCSUBSCRIPTIONS consolidated view” in the SQL
Anywhere documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server -
SQL Reference > System Objects > Views > Consolidated views.

SYSSYNCUSERS consolidated view
A view of synchronization settings associated with MobiLink synchronization
users.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 579

The SYSSYNCUSERS view is a SQL Anywhere consolidated view. See
“SYSSYNCUSERS consolidated view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSTAB system view
Each row of the SYSTAB system view describes one table or view in the
database. Additional information for views can be found in the SYSVIEW
system view. The underlying system table for this view is ISYSTAB.

The SYSTAB view is a SQL Anywhere system view. See “SYSTAB system
view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 > SQL
Anywhere Server - SQL Reference > System Objects > Views > System views.

SYSTABLE compatibility view (deprecated)
The SYSTABLE view is provided for compatibility with older versions of
Sybase IQ that offered a SYSTABLE system table. However, the SYSTABLE
system table has been replaced by the ISYSTAB system table, and its
corresponding SYSTAB system view.

The SYSTABLE view is a SQL Anywhere compatibility view. See
“SYSTABLE compatibility view (deprecated)” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Compatibility views.

SYSTABAUTH consolidated view
The SYSTABAUTH view contains information from the SYSTABLEPERM
system view, but in a readable format.

SYSTABCOL system view

580 Sybase IQ

The SYSTABAUTH view is a SQL Anywhere consolidated view. See
“SYSTABAUTH consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSTABCOL system view
The SYSTABCOL system view contains one row for each column of each
table and view in the database. The underlying system table for this view is
ISYSTABCOL.

The SYSTABCOL view is a SQL Anywhere system view. See “SYSTABCOL
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSTABLEPERM system view
Permissions given by the GRANT statement are stored in the
SYSTABLEPERM system view. Each row in this view corresponds to one
table, one user ID granting the permission (grantor) and one user ID granted
the permission (grantee). The underlying system table for this view is
ISYSTABLEPERM.

The SYSTABLEPERM view is a SQL Anywhere system view. See
“SYSTABLEPERM system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSTEXTCONFIG system view
Each row in the SYSTEXTCONFIG system view describes one text
configuration object, for use with the full text search feature. The underlying
system table for this view is ISYSTEXTCONFIG.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 581

The SYSTEXTCONFIG view is a SQL Anywhere system view. See
“SYSTEXTCONFIG system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSTEXTIDX system view
Each row in the SYSTEXTIDX system view describes one text index. The
underlying system table for this view is ISYSTEXTIDX.

The SYSTEXTIDX view is a SQL Anywhere system view. See
“SYSTEXTIDX system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSTEXTIDXTAB system view
Each row in the SYSTEXTIDXTAB system view describes a generated table
that is part of a text index. The underlying system table for this view is
ISYSTEXTIDXTAB.

The SYSTEXTIDXTAB view is a SQL Anywhere system view. See
“SYSTEXTIDXTAB system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSTRIGGER system view
Each row in the SYSTRIGGER system view describes one trigger in the
database. This view also contains triggers that are automatically created for
foreign-key definitions that have a referential triggered action (such as ON
DELETE CASCADE). The underlying system table for this view is
ISYSTRIGGER.

SYSTRIGGERS consolidated view

582 Sybase IQ

The SYSTRIGGER view is a SQL Anywhere system view. See
“SYSTRIGGER system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSTRIGGERS consolidated view
Each row in the SYSTRIGGERS view describes one trigger in the database.
This view also contains triggers that are automatically created for foreign key
definitions which have a referential triggered action (such as ON DELETE
CASCADE).

The SYSTRIGGERS view is a SQL Anywhere consolidated view. See
“SYSTRIGGERS consolidated view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > Consolidated views.

SYSTYPEMAP system view
The SYSTYPEMAP system view contains the compatibility mapping values
for entries in the SYSSQLSERVERTYPE system view. The underlying
system table for this view is ISYSTYPEMAP.

The SYSTYPEMAP view is a SQL Anywhere system view. See
“SYSTYPEMAP system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSTYPES ASE compatibility view
This view is owned by user DBO. systypes contains one row for each system-
supplied and user-defined datatype. Domains (defined by rules) and defaults
are given, if they exist.You cannot alter the rows that describe system-supplied
datatypes. See Table 8-1 on page 588

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 583

SYSUSER system view
Each row in the SYSUSER system view describes a user in the system. The
underlying system table for this view is ISYSUSER.

The SYSUSER view is a SQL Anywhere system view. See “SYSUSER system
view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 > SQL
Anywhere Server - SQL Reference > System Objects > Views > System views.

SYSUSERAUTH compatibility view (deprecated)
The SYSUSERAUTH view is provided for compatibility with older versions
of Sybase IQ. Use the SYSUSERAUTHORITY system view instead.

The SYSUSERAUTH view is a SQL Anywhere compatibility view. See
“SYSUSERAUTH compatibility view (deprecated)” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Compatibility views.

SYSUSERAUTHORITY system view
Each row of SYSUSERAUTHORITY system view describes an authority
granted to one user ID. The underlying system table for this view is
ISYSUSERAUTHORITY.

The SYSUSERAUTHORITY view is a SQL Anywhere system view. See
“SYSUSERAUTHORITY system view” in the SQL Anywhere documentation
at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSUSERLIST compatibility view (deprecated)

584 Sybase IQ

SYSUSERLIST compatibility view (deprecated)
The SYSUSERLIST view is provided for compatibility with older versions of
Sybase IQ. Each row of the SYSUSERLIST view describes a user, without
exposing their user_id and password. Each user is identified by their user
name.

The SYSUSERLIST view is a SQL Anywhere compatibility view. See
“SYSUSERLIST compatibility view (deprecated)” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Compatibility views.

SYSUSERMESSAGE system view
Each row in the SYSUSERMESSAGE system view holds a user-defined
message for an error condition. The underlying system table for this view is
ISYSUSERMESSAGE.

The SYSUSERMESSAGE view is a SQL Anywhere system view. See
“SYSUSERMESSAGE system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

SYSUSEROPTIONS consolidated view
The SYSUSEROPTIONS view contains the option settings that are in effect
for each user. If a user has no setting for an option, this view displays the public
setting for the option.

The SYSUSEROPTIONS view is a SQL Anywhere consolidated view. See
“SYSUSEROPTIONS consolidated view” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Consolidated views.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 585

SYSUSERPERM compatibility view (deprecated)
This view is deprecated because it only shows the authorities and permissions
available in previous versions. Change your application to use the
SYSUSERAUTHORITY system view instead. Each row of the
SYSUSERPERM view describes one user ID.

The SYSUSERPERM view is a SQL Anywhere compatibility view. See
“SYSUSERPERM compatibility view (deprecated)” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Compatibility views.

SYSUSERPERMS compatibility view (deprecated)
This view is deprecated because it only shows the authorities and permissions
available in previous versions. Change your application to use the
SYSUSERAUTHORITY system view instead. Similar to the
SYSUSERPERM view, each row of the SYSUSERPERMS view describes one
user ID. However, password information is not included. All users are allowed
to read from this view.

The SYSUSERPERMS view is a SQL Anywhere compatibility view. See
“SYSUSERPERMS compatibility view (deprecated)” in the SQL Anywhere
documentation at SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL
Reference > System Objects > Views > Compatibility views.

SYSUSERTYPE system view
Each row in the SYSUSERTYPE system view holds a description of a user-
defined data type. The underlying system table for this view is
ISYSUSERTYPE.

The SYSUSERTYPE view is a SQL Anywhere system view. See
“SYSUSERTYPE system view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > System views.

SYSUSERS ASE compatibility view

586 Sybase IQ

SYSUSERS ASE compatibility view
This view is owned by user DBO. sysusers contains one row for each user
allowed in the database, and one row for each group or roles. See Table 8-1 on
page 588

SYSVIEW system view
Each row in the SYSVIEW system view describes a view in the database. You
can find additional information about views in the SYSTAB system view. The
underlying system table for this view is ISYSVIEW.

You can also use the sa_materialized_view_info system procedure for a
readable format of the information for materialized views.

The SYSVIEW view is a SQL Anywhere system view. See “SYSVIEW
system view” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 >
SQL Anywhere Server - SQL Reference > System Objects > Views > System
views.

SYSVIEWS consolidated view
Each row of the SYSVIEWS view describes one view, including its view
definition.

The SYSVIEWS view is a SQL Anywhere consolidated view. See
“SYSVIEWS consolidated view” in the SQL Anywhere documentation at SQL
Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System Objects
> Views > Consolidated views.

SYSWEBSERVICE system view
Each row in the SYSWEBSERVICE system view holds a description of a web
service.

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 587

The SYSWEBSERVICE view is a SQL Anywhere system view. See
“SYSWEBSERVICE system view” in the SQL Anywhere documentation at
SQL Anywhere 11.0.1 > SQL Anywhere Server - SQL Reference > System
Objects > Views > System views.

Transact-SQL compatibility views
Adaptive Server Enterprise and Sybase IQ have different system catalogs,
reflecting the different uses for the two products.

In Adaptive Server Enterprise, there is a single master database containing a set
of system tables holding information that applies to all databases on the server.
Many databases may exist within the master database, and each has additional
system tables associated with it.

In Sybase IQ, each database exists independently, and contains its own system
tables. There is no master database that contains system information on a
collection of databases. Each server may run several databases at a time,
dynamically loading and unloading each database as needed.

The Adaptive Server Enterprise and Sybase IQ system catalogs are different.
The Adaptive Server Enterprise system tables and views are owned by the
special user dbo, and exist partly in the master database, partly in the
sybsecurity database, and partly in each individual database; the Sybase IQ
system tables and views are owned by the special user SYS and exist separately
in each database.

To assist in preparing compatible applications, Sybase IQ provides a set of
views owned by the special user dbo, which correspond to the Adaptive Server
Enterprise system tables and views. Where architectural differences make the
contents of a particular Adaptive Server Enterprise table or view meaningless
in a Sybase IQ context, the view is empty, containing only the column names
and data types.

Table 8-1, Table 8-2, and Table 8-3 list the Adaptive Server Enterprise system
tables and their implementation in the Sybase IQ system catalog. The owner of
all tables is dbo in each DBMS.

Transact-SQL compatibility views

588 Sybase IQ

Tables in each
Adaptive Server
Enterprise database

Table 8-1: Tables in each ASE database

Table name Description Data?
Supported
by IQ?

sysalternates One row for each user mapped to a
database user

No No

syscolumns One row for each column in a table
or view, and for each parameter in a
procedure.
In Sybase IQ, use the owner name
dbo when querying, i.e.
dbo.syscolumns.

Yes Yes

syscomments One or more rows for each view,
rule, default, and procedure, giving
SQL definition statement.

Yes Yes

sysconstraints One row for each referential and
check constraint associated with a
table or column.

No No

sysdepends One row for each procedure, view,
or table that is referenced by a
procedure, view.

No No

sysindexes One row for each clustered or
nonclustered index, and one row for
each table with no indexes, and an
additional row for each table
containing text or image data.
In Sybase IQ, use the owner name
dbo when querying, i.e.
dbo.sysindexes.

Yes Yes

sysiqobjects One row for each system table, user
table, view, procedure, trigger,
event, join index, constraint,
domain (sysdomain), domain
(sysusertype), column, and index.

Yes Yes

sysiqvindex One row for each non-fp iq index. Yes Yes
syskeys One row for each primary, foreign,

or common key; set by user (not
maintained by Adaptive Server
Enterprise).

No No

syslogs Transaction log. No No
sysobjects One row for each table, view,

procedure, rule, default, log, and (in
tempdb only) temporary object.

Contains
compatible
data only

Yes

CHAPTER 8 System Views

Reference: Building Blocks, Tables, and Procedures 589

sysprocedures One row for each view, rule,
default, and procedure, giving
internal definition.

No No

sysprotects User permissions information. No No
sysreferences One row for each referential

integrity constraint declared on a
table or column.

No No

sysroles Maps server-wide roles to local
database groups.

No No

syssegments One row for each segment (named
collection of disk pieces).

No No

systhresholds One row for each threshold defined
for the database.

No No

systypes One row for each system-supplied
and user-defined data type.

Yes Yes

sysusers One row for each user allowed in
the database.

Yes Yes

Table name Description Data?
Supported
by IQ?

Transact-SQL compatibility views

590 Sybase IQ

Tables in the Adaptive
Server Enterprise
master database

Table 8-2: ASE master database tables

Tables in the Adaptive
Server Enterprise
sybsecurity database

Table 8-3: ASE sybsecurity database tables

Table name Description Data?
Supported
by IQ?

syscharsets One row for each character set or sort
order

No No

sysconfigures One row for each configuration
parameter that can be set by a user

No No

syscurconfigs Information about configuration
parameters currently being used by
the server

No No

sysdatabases One row for each database on the
server

No No

sysdevices One row for each tape dump device,
disk dump device, disk for databases,
and disk partition for databases

No No

sysengines One row for each server currently
online

No No

syslanguages One row for each language (except
U.S. English) known to the server

No No

syslocks Information about active locks No No
sysloginroles One row for each server login that

possesses a system-defined role
No No

syslogins One row for each valid user account Yes Yes
sysmessages One row for each system error or

warning
No No

sysprocesses Information about server processes No No
sysremotelogins One row for each remote user No No
syssrvroles One row for each server-wide role No No
sysservers One row for each remote server No No
sysusages One row for each disk piece

allocated to a database
No No

Table name Description Data?
Supported
by IQ?

sysaudits One row for each audit record No No
sysauditoptions One row for each global audit option No No

Reference: Building Blocks, Tables, and Procedures 591

C H A P T E R 9 System Tables

About this chapter The structure of every Sybase IQ database is described in a number of
system tables.

The DUMMYsystem table is the only system table you are permitted to
access directly. For all other system tables, you access their underlying
data via their corresponding views. See Chapter 8, “System Views.”

Contents

System table list
Table 9-1 lists all Sybase IQ system tables.

Topic Page
System table list 591
DUMMY system table 594

System table list

592 Sybase IQ

Table 9-1: List of system tables
System table Internal use only?
DUMMY No
ISYSARTICLE Yes
ISYSARTICLECOL Yes
ISYSATTRIBUTE Yes
ISYSATTRIBUTENAME Yes
ISYSCAPABILITY Yes
ISYSCHECK Yes
ISYSCOLPERM Yes
ISYSCOLSTAT Yes
ISYSCONSTRAINT Yes
ISYSDBFILE Yes
ISYSDBSPACE Yes
ISYSDBSPACEPERM Yes
ISYSDEPENDENCY Yes
ISYSDOMAIN Yes
ISYSEVENT Yes
ISYSEXTERNENV Yes
ISYSEXTERNENVOBJECT Yes
ISYSEXTERNLOGIN Yes
ISYSFKEY Yes
ISYSGROUP Yes
ISYSHISTORY Yes
ISYSIDX Yes
ISYSIDXCOL Yes
ISYSIQBACKUPHISTORY Yes
ISYSIQBACKUPHISTORYDETAIL Yes
ISYSIQDBFILE Yes
ISYSIQDBSPACE Yes
ISYSIQIDX Yes
ISYSIQINFO Yes
ISYSIQJOINIDX Yes
ISYSIQJOINIXCOLUMN Yes
ISYSIQMPXLOGINPOLICYOPTION Yes
ISYSIQMPXSERVER Yes
ISYSIQPARTITIONCOLUMN Yes
ISYSIQTAB Yes

CHAPTER 9 System Tables

Reference: Building Blocks, Tables, and Procedures 593

ISYSIQTABCOL Yes
ISYSJAR Yes
ISYSJARCOMPONENT Yes
ISYSJAVACLASS Yes
ISYSLOGINMAP Yes
ISYSLOGINPOLICY Yes
ISYSLOGINPOLICYOPTION Yes
ISYSMVOPTION Yes
ISYSMVOPTIONNAME Yes
ISYSOBJECT Yes
ISYSOPTION Yes
ISYSOPTSTAT Yes
ISYSPARTITION Yes
ISYSPARTITIONKEY Yes
ISYSPARTITIONSCHEME Yes
ISYSPHYSIDX Yes
ISYSPROCEDURE Yes
ISYSPROCPARM Yes
ISYSPROCPERM Yes
ISYSPROXYTAB Yes
ISYSPUBLICATION Yes
ISYSREMARK Yes
ISYSREMOTEOPTION Yes
ISYSREMOTEOPTIONTYPE Yes
ISYSREMOTETYPE Yes
ISYSREMOTEUSER Yes
ISYSSCHEDULE Yes
ISYSSERVER Yes
ISYSSOURCE Yes
ISYSSQLSERVERTYPE Yes
ISYSSUBPARTITIONKEY Yes
ISYSSUBSCRIPTION Yes
ISYSSYNC Yes
ISYSSYNCPROFILE Yes
ISYSSYNCSCRIPT Yes
ISYSTAB Yes
ISYSTABCOL Yes

System table Internal use only?

DUMMY system table

594 Sybase IQ

DUMMY system table
The DUMMY table is provided as a table that always has exactly one row. This
can be useful for extracting information from the database, as in the following
example that gets the current user ID and the current date from the database.

SELECT USER, today(*) FROM SYS.DUMMY

The DUMMY table is a SQL Anywhere system table. For detailed information,
including a link to its SQL Anywhere system view see “DUMMY system
table” in the SQL Anywhere documentation at SQL Anywhere 11.0.1 > SQL
Anywhere Server - SQL Reference > System Objects > Tables > System tables.

ISYSTABLEPERM Yes
ISYSTEXTCONFIG Yes
ISYSTEXTIDX Yes
ISYSTEXTIDXTAB Yes
ISYSTRIGGER Yes
ISYSTYPEMAP Yes
ISYSUSER Yes
ISYSUSERAUTHORITY Yes
ISYSUSERMESSAGE Yes
ISYSUSERTYPE Yes
ISYSVIEW Yes
ISYSWEBSERVICE Yes

System table Internal use only?

Reference: Building Blocks, Tables, and Procedures 595

A P P E N D I X A Compatibility with Other
Sybase Databases

About this appendix The information in this appendix is intended to simplify migration to
Sybase IQ from other Sybase databases, and to serve as a guide for
creating Sybase IQ applications that are compatible with Adaptive Server
Enterprise or SQL Anywhere. Beginning with an overview of Transact-
SQL, it compares these databases in several areas to be aware of when you
are moving to Sybase IQ:

• Architecture

• Data types

• Data definition language

• Data manipulation language

• Stored procedure language

Compatibility features are addressed in each new version of Sybase IQ.
This appendix compares Sybase IQ 15.1 with Adaptive Server Enterprise
15.0.3 (and earlier releases), and SQL Anywhere 11.0.1.

Topics Topic Page
An overview of Transact-SQL support 596
Adaptive Server architectures 597
Data types 601
Data definition language 607
Data manipulation language 616
Transact-SQL procedure language overview 626
Automatic translation of stored procedures 630
Returning result sets from Transact-SQL procedures 630
Variables in Transact-SQL procedures 631
Error handling in Transact-SQL procedures 632
SQL Anywhere and Sybase IQ 634
Adaptive Server Enterprise and Sybase IQ 638

An overview of Transact-SQL support

596 Sybase IQ

Compatibility information
elsewhere in this book

You can find additional compatibility information in the following
chapters:

• Chapter 2, “Database Options,” in Reference: Statements and
Options. See Transact-SQL compatibility options.

• Chapter 3, “SQL Data Types.” See compatibility information for each
data type; also see Data type conversions on page 89.

• Reference: Statements and Options. See the compatibility
information in each command.

A note about SQL
Anywhere

Sybase IQ is an extension of SQL Anywhere. In most cases, SQL syntax,
functions, options, utilities, procedures, and other features are common to
both products. There are, however, important differences. Do not assume
that features described in SQL Anywhere documentation are supported for
Sybase IQ.

The Sybase IQ documentation set calls many, but not all differences.
Sybase IQ documentation always supersedes the SQL Anywhere
documentation. Except for topics where the Sybase IQ documentation
refers you to SQL Anywhere documentation, always refer to the
documentation listed as “Documentation for Sybase IQ” in “About This
Book,” immediately after the Table of Contents in each Sybase IQ book.

An overview of Transact-SQL support
Sybase IQ, like SQL Anywhere, supports a large subset of Transact-SQL,
which is the dialect of SQL supported by Sybase Adaptive Server
Enterprise.

The goal of Transact-SQL support in Sybase IQ is to provide application
portability. Many applications, stored procedures, and batch files can be
written for use with both Adaptive Server Enterprise and Sybase IQ
databases.

The aim is to write applications to work with both Adaptive Server
Enterprise and Sybase IQ. Existing Adaptive Server Enterprise
applications generally require some changes to run on SQL Anywhere or
Sybase IQ databases.

Transact-SQL support in Sybase IQ takes the following form:

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 597

• Most SQL statements are compatible between Sybase IQ and
Adaptive Server Enterprise.

• For some statements, particularly in the procedure language used in
procedures and batches, a separate Transact-SQL statement is
supported along with the syntax supported in earlier versions of
Sybase IQ. For these statements, SQL Anywhere and Sybase IQ
support two dialects of SQL. In this appendix, we name those dialects
Transact-SQL and Watcom-SQL.

• A procedure or batch is executed in either the Transact-SQL or
Watcom-SQL dialect. You must use control statements from one
dialect only throughout the batch or procedure. For example, each
dialect has different flow control statements.

Similarities and differences Sybase IQ supports a high percentage of Transact-SQL language
elements, functions, and statements for working with existing data.

Further, Sybase IQ supports a very high percentage of the Transact-SQL
stored procedure language (CREATE PROCEDURE syntax, control
statements, and so on), and many, but not all, aspects of Transact-SQL data
definition language statements.

There are design differences in the architectural and configuration
facilities supported by each product. Device management, user
management, and maintenance tasks such as backups tend to be system-
specific. Even here, however, Sybase IQ provides Transact-SQL system
tables as views, where the tables that are not meaningful in Sybase IQ have
no rows. Also, Sybase IQ provides a set of system procedures for some of
the more common administrative tasks.

Adaptive Server architectures
Adaptive Server Enterprise, SQL Anywhere, and Sybase IQ are
complementary products, with architectures designed to suit their distinct
purposes. Sybase IQ is a high-performance decision-support server
designed specifically for data warehousing and analytic processing. SQL
Anywhere works well as a workgroup or departmental server requiring
little administration, and as a personal database. Adaptive Server
Enterprise works well as an enterprise-level server for large databases,
with a focus on transaction processing.

Adaptive Server architectures

598 Sybase IQ

This section describes architectural differences among the three products.
It also describes the Adaptive Server Enterprise-like tools that Sybase IQ
and SQL Anywhere include for compatible database management.

Servers and databases
The relationship between servers and databases is different in Adaptive
Server Enterprise from Sybase IQ and SQL Anywhere.

In Adaptive Server Enterprise, each database exists inside a server, and
each server can contain several databases. Users can have login rights to
the server, and can connect to the server. They can then connect to any of
the databases on that server, provided that they have permissions. System-
wide system tables, held in a master database, contain information
common to all databases on the server.

In Sybase IQ, there is nothing equivalent to the Adaptive Server Enterprise
master database. Instead, each database is an independent entity,
containing all of its system tables. Users can have connection rights to a
database, rather than to the server. When a user connects, he or she
connects to an individual database. There is no system-wide set of system
tables maintained at a master database level. Each Sybase IQ database
server can dynamically start and stop a database, to which users can
maintain independent connections. Sybase strongly recommends that you
run only one Sybase IQ database per server.

SQL Anywhere and Sybase IQ provide tools in their Transact-SQL
support and Open Server support to allow some tasks to be carried out in
a manner similar to Adaptive Server Enterprise. There are differences,
however, in exactly how these tools are implemented.

See the System Administration Guide: Volume 2, Chapter 3, “Sybase IQ
as a Data Server,” for details on how to use isql to connect to a specific
database on a server with multiple databases.

Space allocation and device management
All three products use different models for managing devices and
allocating disk space initially and later, reflecting the different uses for the
products. For example:

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 599

• In Adaptive Server Enterprise, you allocate space in database devices
initially using DISK INIT and then create a database on one or more
database devices. You can add more space using ALTER DATABASE
or automatically, using thresholds.

• In Sybase IQ, you initially allocate space by listing raw devices in the
CREATE DATABASE statement. You can add more space manually
using CREATE DBSPACE. Although you cannot add space
automatically, you can create events to warn the DBA before space is
actually needed. Sybase IQ can also use file system space. Sybase IQ
does not support Transact-SQL DISK statements, such as DISK INIT,
DISK MIRROR, DISK REFIT, DISK REINIT, DISK REMIRROR, and
DISK UNMIRROR.

• SQL Anywhere is similar to Sybase IQ, except that the initial
CREATE DATABASE statement takes a single file system file instead
of a list of raw devices. SQL Anywhere also lets you initialize its
databases using a command utility dbinit, which Sybase IQ does not
support.

For information on disk management, see the System Administration
Guide: Volume 1.

System tables, catalog store, and IQ store
An IQ database is a joint data store consisting of:

• The catalog store includes system tables and stored procedures, and
resides in a set of tables that are compatible with SQL Anywhere.

• The permanent IQ store is the set of Sybase IQ tables. Table data is
stored in indexes.

• The temporary store consists of a set of temporary tables which the
database server uses for sorting and other temporary processing.

Catalog distinctions and compatibility features include:

• SQL Anywhere and Sybase IQ use a different schema from Adaptive
Server Enterprise for the catalog (tables, columns, and so on).

Adaptive Server architectures

600 Sybase IQ

• SQL Anywhere and Sybase IQ provide compatibility views that
mimic relevant parts of the Adaptive Server Enterprise system tables,
although there are performance implications when using them. For a
list and individual descriptions, see Chapter 8, “System Views” and
Chapter 9, “System Tables.” For a complete list of SQL Anywhere
compatibility views, see SQL Anywhere Server – SQL Reference.

• In Adaptive Server Enterprise, the database owner (user ID dbo) owns
the catalog objects.

• In SQL Anywhere and Sybase IQ, the system owner (user ID SYS)
owns the catalog objects.

Note A dbo user ID owns the Adaptive Server Enterprise-compatible
system views provided by Sybase IQ. The dba user ID owns a small
number of Sybase IQ system tables, used for Sybase IQ user and
multiplex administration.

Administrative roles
Adaptive Server Enterprise has a more elaborate set of administrative roles
than either SQL Anywhere or Sybase IQ. In Adaptive Server Enterprise,
there is a set of distinct roles, although more than one login account on an
Adaptive Server Enterprise can be granted any role, and one account can
possess more than one role.

In Adaptive Server Enterprise, distinct roles include:

• System administrator Responsible for general administrative tasks
unrelated to specific applications; can access any database object.

• System security officer Responsible for security-sensitive tasks in
Adaptive Server Enterprise, but has no special permissions on
database objects.

• Database owner Has full permissions on objects inside the
database he or she owns, can add users to a database and grant other
users the permission to create objects and execute commands within
the database.

• Data definition statements Permissions can be granted to users for
specific data definition statements, such as CREATE TABLE or
CREATE VIEW, enabling the user to create database objects.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 601

• Object owner Each database object has an owner who may grant
permissions to other users to access the object. The owner of an object
automatically has all permissions on the object.

In SQL Anywhere and Sybase IQ, the following database-wide
permissions have administrative roles:

• Database Administrator (DBA authority) Has, like the Adaptive
Server Enterprise Database Owner, full permissions on all objects
inside the database (other than objects owned by SYS) and can grant
other users the permission to create objects and execute commands
within the database. The default database administrator is user ID
DBA.

• RESOURCE permission Allows a user to create any kind of object
within a database. This is in place of the Adaptive Server Enterprise
scheme of granting permissions on individual CREATE statements.

• Object owner Sybase IQ has object owners in the same way
Adaptive Server Enterprise does. The owner of an object
automatically has all permissions on the object, including the right to
grant permissions.

For seamless access to data held in both Adaptive Server Enterprise and
Sybase IQ, create user IDs with appropriate permissions in the database
(RESOURCE in Sybase IQ, or permission on individual CREATE
statements in Adaptive Server Enterprise) and create objects from that user
ID. If you use the same user ID in each environment, object names and
qualifiers can be identical in the two databases, providing compatible
access.

Data types
This section discusses compatibility information for data types. For details
of Sybase IQ data types, see Chapter 3, “SQL Data Types.”

Note Data types that are not included in this section are currently
supported by all three products.

Data types

602 Sybase IQ

Bit data type
All three products support the BIT data type, with these differences:

• SQL Anywhere permits only 0 or 1.

• Adaptive Server Enterprise and Sybase IQ implicitly convert integral
data types to BIT. Nonzero values are stored as 1 (TRUE).

Character data types
All three products permit CHAR and VARCHAR data, but each product
treats these types differently.

• SQL Anywhere treats all strings as VARCHAR, even in a blank-
padded database.

• Adaptive Server Enterprise and Sybase IQ differentiate between
CHAR (fixed-length) and VARCHAR (variable-length) data.

Adaptive Server Enterprise trims trailing blank spaces from
VARCHAR values. Sybase IQ trims trailing blanks from VARCHAR
values depending on the form of the data and the operation. See
"Character data types" in Chapter 3, “SQL Data Types.”

When inserting into CHAR or VARCHAR:

• SQL Anywhere permits inserting integral data types into CHAR or
VARCHAR (implicit conversion).

• Adaptive Server Enterprise and Sybase IQ require explicit
conversion.

The maximum size of a column is determined as follows:

• Adaptive Server Enterprise CHAR and VARCHAR depend on the
logical page size, which can be 2K, 4K, 8K, and 16K. For example:

• 2K page size allows a column as large as a single row, about 1962
bytes.

• 4K page size allows a column as large as about 4010 bytes.

• SQL Anywhere supports up to 32K-1 with CHAR and VARCHAR, and
up to 2GB with LONG VARCHAR.

• SQL Anywhere supports the name LONG VARCHAR and its synonym
TEXT, while Adaptive Server Enterprise supports only the name
TEXT, not the name LONG VARCHAR.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 603

• Sybase IQ supports CHAR and VARCHAR up to 32K-1 bytes.

Sybase IQ also supports up to 512TB (with an IQ page size of 128KB)
and 2PB (with an IQ page size of 512KB) with LONG VARCHAR. For
information on the LONG VARCHAR data type in Sybase IQ, see
Large Objects Management in Sybase IQ.

• Adaptive Server Enterprise supports NCHAR, NVARCHAR, UNICHAR,
UNIVARCHAR data types. N is for multibyte character sets; UNI is for
single-byte character sets.

• SQL Anywhere and Sybase IQ support Unicode in the CHAR and
VARCHAR data types, rather than as a separate data type.

• For compatibility between Sybase IQ and Adaptive Server Enterprise,
always specify a length for character data types.

Binary data types
The following table summarizes binary data type support.

Table A-1: Binary data type supported sizes

*For information on the LONG BINARY data type in Sybase IQ, see Large
Objects Management in Sybase IQ. This feature requires a separate
license.

Adaptive Server Enterprise and SQL Anywhere display binary data
differently when projected:

• Sybase IQ supports both Adaptive Server Enterprise and SQL
Anywhere display formats.

• If ‘123’ is entered in a BINARY field the SQL Anywhere display
format is by bytes, as ‘123’; the Adaptive Server Enterprise display
format is by nibbles, as ‘0x616263’.

Data type

Adaptive
Server
Enterprise

SQL
Anywhere Sybase IQ

BINARY < page size 32KB - 1 255
VARBINARY < page size 32KB - 1 32KB - 1
LONG
BINARY*

not supported 2GB - 1 512TB (IQ page size 128KB)
2PB (IQ page size 512KB)

IMAGE 2GB 2GB - 1 use LONG BINARY*

Data types

604 Sybase IQ

Date, time, datetime, and timestamp data types
Although all three products support some form of date and time data, there
are some differences.

• SQL Anywhere and Sybase IQ support the 4-byte date and time data
types.

• Adaptive Server Enterprise supports an 8-byte datetime type, and
timestamp as a user-defined data type (domain) implemented as
binary (8).

• SQL Anywhere and Sybase IQ support an 8-byte timestamp type, and
an 8-byte datetime domain implemented as timestamp. The
millisecond precision of the Anywhere/Sybase IQ datetime data type
differs from that of Adaptive Server Enterprise.

Display formats for dates have different defaults:

• Adaptive Server Enterprise defaults to displaying dates in the format
“MMM-DD-YYYY” but can be changed by setting an option.

• SQL Anywhere and Sybase IQ default to the ISO “YYYY-MM-DD”
format but can be changed by setting an option.

Time conversions are as follows:

• Adaptive Server Enterprise varies the way it converts time stored in a
string to an internal time, depending on whether the fraction part of
the second was delimited by a colon or a period.

• SQL Anywhere and Sybase IQ convert times in the same way,
regardless of the delimiter.

When you insert a time into a DATETIME column:

• Adaptive Server Enterprise and Sybase IQ default to supplying 1st
January 1900.

• SQL Anywhere defaults to supplying the current date.

TIME and DATETIME values retrieved from an Adaptive Server Enterprise
database change when inserted into a Sybase IQ table with a DATETIME
column using INSERT…LOCATION. The INSERT…LOCATION statement
uses Open Client, which has a DATETIME precision of 1/300 of a second.

For example, assume that the following value is stored in a table column
in an Adaptive Server Enterprise database:

2004-11-08 10:37:22.823

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 605

When you retrieve and store it in a Sybase IQ table using
INSERT...LOCATION, the value becomes:

2004-11-08 10:37:22.823333

Compatibility of datetime
and time values from ASE

A DATETIME or TIME value retrieved from an Adaptive Server Enterprise
database using INSERT...LOCATION can have a different value due to the
datetime precision of Open Client.

For example, the DATETIME value in the Adaptive Server Enterprise
database is ‘2004-11-08 10:37:22.823’ as retrieved using
INSERT...LOCATION is ‘2004-11-08 10:37:22.823333’.

Numeric data types
Adaptive Server Enterprise, SQL Anywhere, and Sybase IQ have different
default precision and scale:

• In Adaptive Server Enterprise, the default is precision 18 scale 0.

• In SQL Anywhere, the default is precision 30 scale 6.

• In Sybase IQ, the default is precision 126 scale 38. Because these
defaults are too large for TDS and for some client tools, always
specify a precision and scale for Sybase IQ exact numeric types.

Approximate numeric data types
Adaptive Server Enterprise differs from SQL Anywhere and Sybase IQ in
how the FLOAT(precision) data type is interpreted: that is, when to create a
4-byte data type and when to create an 8-byte data type.

REAL values are four bytes, DOUBLE values are eight bytes. Turning on
the FLOAT_AS_DOUBLE option makes the FLOAT keyword behave
like Adaptive Server Enterprise's FLOAT keyword when a precision is not
specified. Since Adaptive Server Enterprise treats its own FLOAT values
as DOUBLE, enabling the option makes Sybase IQ to treat FLOAT values
in the same way Adaptive Server Enterprise treats FLOAT values.

Turning off the FLOAT_AS_DOUBLE option makes the FLOAT
keyword behave like a Sybase IQ and SQL Anywhere four byte REAL
value.

Data types

606 Sybase IQ

For Adaptive Server Enterprise, the precision specified in
FLOAT(precision) means decimal precision. For SQL Anywhere and
Sybase IQ, precision is an integer expression that specifies the number of
bits used in the mantissa of the floating point number.

For more information on the Sybase IQ FLOAT data type, see "Numeric
data types" in Chapter 3, “SQL Data Types.”

Text data type
Support for TEXT data is currently implemented as follows:

• Adaptive Server Enterprise and SQL Anywhere support up to 2GB
with LONG VARBINARY and TEXT.

• Sybase IQ supports up to 32KB - 1 with VARCHAR. Sybase IQ also
supports up to 512TB (with an IQ page size of 128KB) and 2PB (with an
IQ page size of 512KB) with LONG VARCHAR. For information on the
LONG VARCHAR data type in Sybase IQ, see Large Objects
Management in Sybase IQ.

Image data type
Support for IMAGE data is currently implemented as follows:

• Adaptive Server Enterprise and SQL Anywhere support up to 2GB
with IMAGE.

• Sybase IQ supports up to 512TB (with an IQ page size of 128KB) and 2PB
(with an IQ page size of 512KB) with LONG BINARY. For information on
the LONG BINARY data type in Sybase IQ, see Large Objects
Management in Sybase IQ.

Java data types
Adaptive Server Enterprise allows Java data types in the database. SQL
Anywhere and Sybase IQ do not.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 607

Data definition language
This section discusses compatibility information for creating database
objects. See also “System tables, catalog store, and IQ store” on page 599
and “Space allocation and device management” on page 598 for related
information.

Creating a Transact-SQL compatible database
This section describes choices you must make when creating or rebuilding
a database.

Here are the basic steps you need to take to create a Transact-SQL
compatible database. The remainder of the section describes which
options you need to set.

❖ Creating a Transact-SQL compatible database from Sybase Central

1 One page of the Create Database wizard is named Default Database
Attributes.

2 To emulate Adaptive Server Enterprise, choose “Emulate Adaptive
Server Enterprise” which automatically selects case-sensitivity for
string comparisons and case-sensitivity for passwords.

❖ Creating a Transact-SQL compatible database using the CREATE
DATABASE statement

• Type the following statement, for example, in Interactive SQL:

CREATE DATABASE 'db-name.db'

CASE RESPECT BLANK PADDING ON

Case-sensitivity
Case-sensitivity in databases refers to:

• Data The case-sensitivity of the data is reflected in indexes, in the
results of queries, and so on.

• Identifiers Identifiers include table names, column names, user IDs,
and so on.

• Passwords Case-sensitivity of passwords is treated differently
from other identifiers.

Data definition language

608 Sybase IQ

Case-sensitivity of data You decide the case-sensitivity of Sybase IQ data in comparisons when
you create the database. By default, Sybase IQ databases are case-sensitive
in comparisons, although data is always held in the case in which you enter
it.

Adaptive Server Enterprise sensitivity to case depends on the sort order
installed on the Adaptive Server Enterprise system. You can change case-
sensitivity for single-byte character sets by reconfiguring the Adaptive
Server Enterprise sort order.

Case-sensitivity of
identifiers

Sybase IQ does not support case-sensitive identifiers. In Adaptive Server
Enterprise, the case-sensitivity of identifiers follows the case-sensitivity of
the data.

In Adaptive Server Enterprise, user-defined data type names are case-
sensitive. In Sybase IQ, they are case-insensitive.

User IDs and passwords In Sybase IQ and SQL Anywhere, all passwords in newly-created
databases are case-sensitive, regardless of the case-sensitivity of the
database. The default user ID is DBA and the password for this user is
lowercase sql.

When you rebuild an existing database, Sybase IQ and SQL Anywhere
determine the case-sensitivity of the password as follows:

• If the database was originally entered in a case-insensitive database,
the password remains case-insensitive.

• If the password was originally entered in a case-sensitive database,
uppercase and mixed-case passwords remain case-sensitive. If the
password was entered in all lowercase, then the password becomes
case-insensitive.

• Changes to both existing passwords and new passwords are case-
sensitive.

In Adaptive Server Enterprise, the case-sensitivity of user IDs and
passwords follows the case-sensitivity of the server.

Ensuring compatible object names
Each database object must have a unique name within a certain name
space. Outside this name space, duplicate names are allowed. Some
database objects occupy different name spaces in Adaptive Server
Enterprise as compared to SQL Anywhere and Sybase IQ.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 609

Table name uniqueness Table name uniqueness requirements apply within a database:

• For Sybase IQ and SQL Anywhere, table names must be unique
within a database for a given owner. For example, both user1 and
user2 can create a table called employee; uniqueness is provided by
the fully qualified names, user1.employee and user2.employee.

• For Adaptive Server Enterprise, table names must be unique within
the database and to the owner.

Index name uniqueness Index name uniqueness requirements apply within a table. In all three
products, indexes are owned by the owner of the table on which they are
created. Index names must be unique on a given table, but any two tables
can have an index of the same name, even for the same owner. For
example, in all three products, tables t1 and t2 can have indexes of the
same name, whether they are owned by the same or different users.

Renaming indexes and
foreign keys

Sybase IQ allows you to rename explicitly created indexes, foreign key
role names of indexes, and foreign keys, using the ALTER INDEX
statement. Adaptive Server Anywhere allows you to rename indexes,
foreign key role names, and foreign keys, using the ALTER INDEX
statement. Adaptive Server Enterprise does not allow you to rename these
objects.

CREATE TABLE statement
When creating tables for compatibility, be aware of the following items.

NULL in columns For compatible treatment of NULL:

• SQL Anywhere and Sybase IQ assume that columns can be null
unless NOT NULL is stated in the column definition. You can change
this behavior by setting the database option
ALLOW_NULLS_BY_DEFAULT to the Transact-SQL compatible
setting of OFF.

• SQL Anywhere assumes that BIT columns only cannot be NULL.

• Adaptive Server Enterprise assumes that columns cannot be null
unless NULL is stated.

Check constraints Sybase IQ enforces check constraints on base, global temporary, and local
temporary tables, and on user-defined data types. Users can log check
integrity constraint violations and specify the number of violations that
can occur before a LOAD statement rolls back.

Data definition language

610 Sybase IQ

Sybase IQ does not allow the creation of a check constraint that it cannot
evaluate, such as those composed of user-defined functions, proxy tables,
or non-Sybase IQ tables. Constraints that cannot be evaluated are detected
the first time the table on which the check constraint is defined is used in
a LOAD, INSERT, or UPDATE statement. Sybase IQ does not allow check
constraints containing:

• Subqueries

• Expressions specifying a host language parameter, a SQL parameter,
or a column as the target for a data value

• Set functions

• Invocations of nondeterministic functions or functions that modify
data

Adaptive Server Enterprise and SQL Anywhere enforce CHECK
constraints. SQL Anywhere allows subqueries in check constraints.

Sybase IQ supports user-defined data types that allow constraints to be
encapsulated in the data type definition.

Referential integrity
constraints

Sybase IQ enforces referential integrity as described in Chapter 9,
“Ensuring Data Integrity” in the System Administration Guide: Volume 1.

Actions for enforcing integrity are supported as follows:

• SQL Anywhere supports all ANSI actions: SET NULL, CASCADE,
DEFAULT, RESTRICT.

• Adaptive Server Enterprise supports two of these actions: SET
NULL, DEFAULT.

Note You can achieve CASCADE in Adaptive Server Enterprise by
using triggers instead of referential integrity.

• Sybase IQ supports the RESTRICT action only.

• Sybase IQ does not support NOT NULL FOREIGN KEY.

• Sybase IQ has the restriction that a column cannot be both a candidate
key and a foreign key at the same time.

Default values in a column Default value support differs as follows:

• Adaptive Server Enterprise and SQL Anywhere support specifying a
default value for a column.

• Only SQL Anywhere supports DEFAULT UTC TIMESTAMP.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 611

• Sybase IQ supports specifying a default value for a column, except for
the special values DEFAULT UTC TIMESTAMP and DEFAULT
CURRENT UTC TIMESTAMP. Sybase IQ also ignores settings for
the DEFAULT_TIMESTAMP_INCREMENT database option.

Identity columns Identity column support differs as follows:

• Sybase IQ supports IDENTITY or DEFAULT AUTOINCREMENT as a
default value. Sybase IQ supports identity columns of any numeric
type with any precision and scale 0, and the column can be NULL.
Sybase IQ identity columns must be positive and are limited by the
range of the data type. Sybase IQ supports a single identity column
per table, and requires database option IDENTITY_INSERT set to a
table name for explicit inserts and updates. To drop a table with an
IDENTITY column, you cannot have IDENTITY_INSERT set to that
table. The table can contain data when adding an identity column.
Tables derived using SELECT INTO do not have Identity/
Autoincrement columns. Sybase IQ views cannot contain IDENTITY/
DEFAULT AUTOINCREMENT columns.

• SQL Anywhere supports the AUTOINCREMENT default value. SQL
Anywhere supports identity columns of any numeric type with any
allowable scale and precision. The identity column value can be
positive, negative, or zero, limited by the range of the data type. SQL
Anywhere supports any number of identity columns per table, and
does not require identity_insert for explicit inserts, drops, and
updates. The table must be empty when adding identity columns. SQL
Anywhere identity columns can be altered to be nonidentity columns,
and vice versa. You can add or drop AUTOINCREMENT columns from
SQL Anywhere views.

• Adaptive Server Enterprise supports a single identity column per
table. ASE identity columns are restricted to only numeric data type
scale 0, maximum precision 38. They must be positive, are limited by
the range of the data type, and cannot be null. Adaptive Server
Enterprise requires identity_insert for explicit inserts and drops, but
not for updates to the identity column. The table can contain data
when you add an identity column. ASE users cannot explicitly set the
next value chosen for an identity column. ASE views cannot contain
IDENTITY/AUTOINCREMENT columns. When using SELECT INTO
under certain conditions, ASE allows Identity/Autoincrement
columns in the result table if they were in the table being selected
from.

Computed columns Computed column support differs as follows:

Data definition language

612 Sybase IQ

• SQL Anywhere supports computed columns that can be indexed.

• Adaptive Server Enterprise and Sybase IQ do not.

Temporary tables You can create a temporary table by placing a pound sign (#) without an
owner specification in front of the table name in a CREATE TABLE
statement. These temporary tables are Sybase IQ-declared temporary
tables and are available only in the current connection. For information
about declared temporary tables in Sybase IQ, see the "DECLARE
LOCAL TEMPORARY TABLE statement" in Reference: Statements and
Options.

See the "CREATE TABLE statement" in Reference: Statements and
Options.

Locating tables Physical placement of a table is carried out differently in Adaptive Server
Enterprise and Sybase IQ. Sybase IQ supports the ON segment-name
clause, but segment-name refers to a Sybase IQ dbspace.

CREATE DEFAULT, CREATE RULE, and CREATE DOMAIN
statements

Sybase IQ provides an alternative means of incorporating rules:

• Adaptive Server Enterprise supports the Create Default and Create
Rule statements to create named defaults.

• SQL Anywhere and Sybase IQ support the CREATE DOMAIN
statement to achieve the same objective.

CREATE TRIGGER statement
Support for triggers differs as follows:

• SQL Anywhere supports both row-level and statement-level triggers.

• Adaptive Server Enterprise supports only statement-level triggers.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 613

• Sybase IQ does not support triggers.

Note A trigger is effectively a stored procedure that is run automatically
either immediately before or immediately after an INSERT, UPDATE, or
DELETE as part of the same transaction, that can be used to cause a
dependent change (for example, to automatically update the name of an
employee’s manager when the employee is moved to a different
department). It can also be used to write an audit trail to identify which
modifications made which changes to the database, and at what time.

CREATE INDEX statement
CREATE INDEX syntax differs slightly among the three products:

• Adaptive Server Enterprise and SQL Anywhere support clustered or
nonclustered indexes, using the following syntax:

CREATE [UNIQUE] [CLUSTERED] INDEX name
ON table (column,...)
ON dbspace

Adaptive Server Enterprise also allows the NONCLUSTERED
keyword, but for both products the default is NONCLUSTERED.

• Adaptive Server Enterprise CREATE INDEX statements work in SQL
Anywhere because SQL Anywhere allows, but ignores, the keywords
FILLFACTOR, IGNORE_DUP_KEY, SORTED_DATA,
IGNORE_DUP_ROW, and ALLOW_DUP_ROW.

• SQL Anywhere CREATE INDEX syntax supports the VIRTUAL
keyword for use by its Index Consultant, but not for actual query
executions.

• Sybase IQ supports seven specialized index types: LF, HG, HNG,
DATE, TIME, DTTM, and WD. Sybase IQ also supports a CMP index on
the relationship between two columns of identical data type,
precision, and scale. Sybase IQ defaults to creating an HG index
unless the index type is specified in the CREATE INDEX statement:

CREATE [UNIQUE] [type] INDEX name

Data definition language

614 Sybase IQ

ON table (column,...)

Note Sybase IQ also supports CREATE JOIN INDEX, which lets you create
a prejoined index on a certain set of columns that are joined consistently
and frequently in queries.

See Chapter 6, “Using Sybase IQ Indexes” in the System Administration
Guide: Volume 1.

Users, groups, and permissions
There are some differences between the Adaptive Server Enterprise and
SQL Anywhere and Sybase IQ models of users and groups.

How users connect In Adaptive Server Enterprise, users connect to a server, and each user
requires a login ID and password to the server as well as a user ID for each
database they want to access on that server.

SQL Anywhere and Sybase IQ users do not require a server login ID. All
SQL Anywhere and Sybase IQ users receive a user ID and password for a
database.

User groups All three products support user groups, so you can grant permissions to
many users at one time. However, there are differences in the specifics of
groups:

• Adaptive Server Enterprise allows each user to be a member of only
one group.

• SQL Anywhere and Sybase IQ allow users to be members of multiple
groups, and group hierarchies are allowed.

All three products have a public group, for defining default permissions.
Every user automatically becomes a member of the public group.

Database object
permissions

GRANT and REVOKE statements for granting permissions on individual
database objects are very similar in all three products.

• All three products allow SELECT, INSERT, DELETE, UPDATE, and
REFERENCES permissions on database tables and views, and
UPDATE permissions on selected columns of database tables.

For example, the following statement is valid in all three products:

GRANT INSERT, DELETE
ON TITLES

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 615

TO MARY, SALES

This statement grants permission to use the INSERT and DELETE
statements on the TITLES table to user MARY and to the SALES group.

• All three products allow EXECUTE permissions to be granted on
stored procedures.

• Adaptive Server Enterprise also supports GRANT and REVOKE on
additional items:

• Objects: columns within tables, columns within views, and
stored procedures

• User abilities: CREATE DATABASE, CREATE DEFAULT, CREATE
PROCEDURE, CREATE RULE, CREATE TABLE, CREATE VIEW

• SQL Anywhere and Sybase IQ require a user to have RESOURCE
authority to create database objects. (A closely corresponding
Adaptive Server Enterprise permission is GRANT ALL, used by a
Database Owner.)

• All three products support the WITH GRANT OPTION clause, allowing
the recipient of permissions to grant them in turn, although Sybase IQ
does not permit WITH GRANT OPTION to be used on a GRANT
EXECUTE statement.

Database-wide
permissions

Adaptive Server Enterprise uses a different model for database-wide user
permissions.

• SQL Anywhere and Sybase IQ employ DBA permissions to allow a
user full authority within a database.

• The System Administrator in Adaptive Server Enterprise enjoys this
permission for all databases on a server. However, DBA authority on
a Sybase IQ database is different from the permissions of an Adaptive
Server Enterprise Database Owner, who must use the Adaptive Server
Enterprise SETUSER statement to gain permissions on objects owned
by other users.

Adding users Adaptive Server Enterprise requires a two-step process to add a user:
sp_addlogin followed by sp_add_user.

SQL Anywhere and Sybase IQ add users in a single step.

Sybase IQ Login Management stored procedures, although not required to
add or drop users, allow DBAs to add or drop Sybase IQ user accounts.
When Sybase IQ User Administration is enabled, these Sybase IQ user
accounts let DBAs control user connections and password expirations.

Data manipulation language

616 Sybase IQ

See Chapter 8, “Managing User IDs and Permissions” in System
Administration Guide: Volume 1 and Chapter 3, “Sybase IQ as a Data
Server” in the System Administration Guide: Volume 2.

Although SQL Anywhere and Sybase IQ allow Adaptive Server
Enterprise system procedures for managing users and groups, the exact
syntax and function of these procedures differs in some cases. For more
information, see Chapter 7, “System Procedures,” including “Adaptive
Server Enterprise system procedures” on page 522.

Load formats
Load format support in the three products is as follows:

• Sybase IQ handles ASCII, BINARY, and BCP load formats.

• SQL Anywhere, in addition to ASCII and BINARY, also lets you
import dBase, Excel, FoxPro, and Lotus file formats.

• Adaptive Server Enterprise handles ASCII and BINARY load formats
through BCP.

Note The syntax of the Sybase IQ and SQL Anywhere LOAD statement is
based on BCP and designed to offer exactly the same functionality.

Setting options for Transact-SQL compatibility
Set Sybase IQ database options using the SET OPTION statement. See
“Transact-SQL compatibility options” in “Database Options,” Reference:
Statements and Options, for a list of option settings required for
compatible behavior.

Data manipulation language
This section provides some general guidelines for writing portable queries,
then discusses specific query requirements.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 617

General guidelines for writing portable SQL
When writing SQL for use on more than one database management
system, make your SQL statements as explicit as possible. Even if more
than one server supports a given SQL statement, it might be a mistake to
assume that default behavior is the same on each system. General
guidelines applicable to writing compatible SQL include:

• Spell out all of the available options, rather than using default
behavior.

• Use parentheses to make the order of execution within statements
explicit, rather than assuming identical default order of precedence
for operators.

• Use the Transact-SQL convention of an @ sign preceding variable
names for Adaptive Server Enterprise portability.

• Declare variables and cursors in procedures and batches immediately
following a BEGIN statement. Sybase IQ requires this, although
Adaptive Server Enterprise allows declarations to be made anywhere
in a procedure or batch.

• Do not use reserved words from either Adaptive Server Enterprise or
Sybase IQ as identifiers in your databases.

Writing compatible queries
There are two criteria for writing a query that runs on both Sybase IQ and
Adaptive Server Enterprise databases:

• The data types, expressions, and search conditions in the query must
be compatible.

• The syntax of the SELECT statement itself must be compatible.

Sybase IQ supports the following subset of the Transact-SQL SELECT
statement.

Syntax SELECT [ALL | DISTINCT] select-list
…[INTO #temporary-table-name]
…[FROM table-spec,
… table-spec, …]
…[WHERE search-condition]
…[GROUP BY column-name, …]
…[HAVING search-condition]

Data manipulation language

618 Sybase IQ

…| [ORDER BY expression [ASC | DESC], …] |
 | [ORDER BY integer [ASC | DESC], …] |

Parameters select-list:
{ table-name.* }…
{ * }…
{ expression }…
{ alias-name = expression }…
{ expression as identifier }…
{ expression as T_string }…

table-spec:
[owner.]table-name

… [[AS] correlation-name]
…

alias-name:
identifier | 'string' | “string"

For a full description of the SELECT statement, see "SELECT statement"
in Reference: Statements and Options.

The sections that follow provide details on several items to be aware of
when writing compatible queries.

Subqueries
Sybase IQ currently provides support for subqueries that is somewhat
different from that provided by Adaptive Server Enterprise and SQL
Anywhere. Adaptive Server Enterprise and SQL Anywhere support
subqueries in the ON clause; Sybase IQ does not currently support this.

UNION in subqueries is supported as follows:

• SQL Anywhere supports UNION in both correlated and uncorrelated
subqueries.

• Sybase IQ supports UNION only in uncorrelated subqueries.

• Adaptive Server Enterprise does not support UNION in any
subqueries.

SQL Anywhere supports subqueries in many additional places that a scalar
value might appear in the grammar. Adaptive Server Enterprise and
Sybase IQ follow the ANSI standard as to where subqueries can be
specified.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 619

GROUP BY clause
GROUP BY ALL support is as follows:

• Adaptive Server Enterprise supports GROUP BY ALL, which returns
all possible groups including those eliminated by the WHERE clause
and HAVING clause. These have the NULL value for all aggregates.

• SQL Anywhere does not support the GROUP BY ALL Transact-SQL
extension.

ROLLUP and CUBE in the GROUP BY clause are supported as follows:

• Sybase IQ and SQL Anywhere support ROLLUP and CUBE in the
GROUP BY clause.

• Adaptive Server Enterprise does not currently support ROLLUP and
CUBE.

Adaptive Server Enterprise supports projecting nongrouped columns in
the SELECT clause. This is known as extended group by semantics and
returns a set of values. Sybase IQ supports and SQL Anywhere do not
support extended group by semantics. Only SQL Anywhere supports the
List() aggregate to return a list of values.

For information about using GROUP BY with OLAP functions, see
Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2.

COMPUTE clause
COMPUTE clause support is as follows:

• Adaptive Server Enterprise supports the Transact-SQL COMPUTE
clause.

• SQL Anywhere and Sybase IQ do not support the Transact-SQL
COMPUTE clause since it is not in the ANSI standard and this
functionality is provided by most third-party front-end tools.

WHERE clause
The WHERE clause differs in support for the Contains() predicate, and
treatment of trailing white space in the Like() predicate.

Data manipulation language

620 Sybase IQ

• Sybase IQ supports the Contains() predicate for word searches in
character data (similar to Contains in MS SQL Server and Verity).
Sybase IQ uses WORD indexes to optimize these, if possible.

• SQL Anywhere and Adaptive Server Enterprise do not support
Contains().

Joins
This section discusses support for Transact-SQL outer joins and ANSI
joins.

Transact-SQL outer joins
Supported syntax for outer joins can be summarized as follows:

• Adaptive Server Enterprise fully supports *= and =* Transact-SQL
syntax for outer joins.

• SQL Anywhere and Sybase IQ support Transact-SQL outer joins, but
reject some complex Transact-SQL outer joins that are potentially
ambiguous.

• Sybase IQ does not support chained (nested) Transact-SQL outer
joins. Use ANSI syntax for this type of multiple outer join.

Note Transact-SQL outer join syntax is deprecated in SQL Anywhere and
Sybase IQ.

ANSI joins
Support for ANSI join syntax can be summarized as follows:

• Sybase IQ does not currently support subqueries in the ON clause.

• Adaptive Server Enterprise and SQL Anywhere support subqueries in
the ON clause.

Full outer join support is as follows:

• SQL Anywhere and Sybase IQ support FULL OUTER JOIN.

• Adaptive Server Enterprise does not support FULL OUTER JOIN.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 621

More information on outer joins
For detailed information on Transact-SQL outer joins, including ANSI
syntax alternatives, see the white paper “Semantics and Compatibility of
Transact-SQL Outer Joins,” from MySybase at http://www.sybase.com/
support/. Although written for SQL Anywhere, the information in this
document also applies to Sybase IQ.

Null comparisons
Adaptive Server Enterprise has Transact-SQL extensions that permit
predicates to compare the null value. For example, {col} = Null means
{col} Is Null.

SQL Anywhere and Sybase IQ use ANSI semantics for null comparisons
unless the ANSINULL option is set to OFF, in which case such comparisons
are Adaptive Server Enterprise-compatible.

Note SQL Anywhere 8.0 and later adds support for the
TDS_EMPTY_STRING_AS_NULL to offer Adaptive Server Enterprise
compatibility in mapping empty strings to the null value.

Zero-length strings
Zero-length strings are treated as follows:

• Adaptive Server Enterprise treats zero-length strings as the null value.

Adaptive Server Enterprise users store a single space for blank
strings.

• SQL Anywhere and Sybase IQ follow ANSI semantics for zero-
length strings, that is, a zero-length string is a real value; it is not null.

HOLDLOCK, SHARED, and FOR BROWSE
Support for this syntax is as follows:

• Adaptive Server Enterprise supports HOLDLOCK, SHARED, and
FOR BROWSE syntax.

http://www.sybase.com

Data manipulation language

622 Sybase IQ

• SQL Anywhere supports HOLDLOCK but does not support
SHARED or FOR BROWSE.

• Sybase IQ does not support these keywords.

SQL functions
Sybase IQ supports most of the same functions as SQL Anywhere and
Adaptive Server Enterprise, with these differences:

• Adaptive Server Enterprise supports the USING CHARACTERS |
USING BYTES syntax in PatIndex(); SQL Anywhere and Sybase IQ do
not.

• Adaptive Server Enterprise supports the Reverse() function; SQL
Anywhere and Sybase IQ do not.

• Adaptive Server Enterprise supports Len() as alternative syntax for
Length(); SQL Anywhere does not support this alternative.

• Adaptive Server Enterprise supports the Square() and Str_Replace()
Microsoft compatibility functions; SQL Anywhere does not.

• Sybase IQ supports Str_Replace().

• Adaptive Server Enterprise and SQL Anywhere support TSEQUAL()
to compare two timestamps for modification time; Sybase IQ does not
support TSEQUAL(). (TSEQUAL is not relevant in the Sybase IQ table-
level versioning model.)

• Sybase IQ supports ROWID(); Adaptive Server Enterprise and SQL
Anywhere do not.

• SQL Anywhere and Sybase IQ support Cast() in addition to Adaptive
Server Enterprise’s Convert() for data type conversions.

Note Cast() is the ANSI-compliant name.

• SQL Anywhere and Sybase IQ support Lcase() and Ucase() as
synonyms of Lower() and Upper(); Adaptive Server Enterprise does
not.

• SQL Anywhere and Sybase IQ support the Locate() string function;
Adaptive Server Enterprise does not.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 623

• SQL Anywhere supports the IsDate() and IsNumeric() function to test
the ability to convert a string to the respective data type; Adaptive
Server Enterprise does not. Sybase IQ supports IsDate(). You can use
IsNumeric in Sybase IQ, but CIS functional compensation
performance considerations apply.

• SQL Anywhere supports the NEWID, STRTOUID, and UUIDTOSTR
functions; Adaptive Server Enterprise does not. These are native
functions in Sybase IQ, so CIS functional compensation performance
considerations do not apply.

Note Some SQL functions, including SOUNDEX and DIFFERENCE string
functions, and some date functions operate differently in Sybase IQ and
SQL Anywhere. The Sybase IQ database option
ASE_FUNCTION_BEHAVIOR specifies that output of some of the Sybase
IQ data type conversion functions, including HEXTOINT and INTTOHEX,
is consistent with the output of Adaptive Server Enterprise functions.

OLAP functions
Sybase IQ currently supports these OLAP functions:

• Corr()

• Covar_Pop()

• Covar_Samp()

• Cume_Dist

• Dense_Rank()

• Exp_Weighted_Avg

• First_Value

• Last_Value

• Median

• Ntile()

• Percent_Rank()

• Percentile_Cont()

• Percentile_Disc()

Data manipulation language

624 Sybase IQ

• Rank()

• Regr_Avgx()

• Regr_Avgy()

• Regr_Intercept()

• Regr_R2

• Regr_Slope()

• Regr_Sxx()

• Regr_Sxy()

• Regr_Syy()

• StdDev()

• Stddev_Pop

• Stddev_Samp

• Var_Pop

• Var_Samp

• Variance()

• Weighted_Avg

SQL Anywhere supports all of the Sybase IQ OLAP functions.

Currently, Adaptive Server Enterprise does not support OLAP functions.

CIS functional compensation does not support OLAP functions.

Note Support for OLAP functions is a rapidly evolving area of Sybase
product development. See Chapter 4, “SQL Functions.” Also see Chapter
2, “Using OLAP” in the System Administration Guide: Volume 2.

System functions
SQL Anywhere and Sybase IQ do not support the following Adaptive
Server Enterprise system functions:

• curunreservedpgs() – number of pages free on a dbspace.

• data_pgs() – number of pages used by a table or index.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 625

• host_id() – UNIX pid of the server process.

• hos_name() – name of the machine on which the server is running.

• lct_admin() – manages the “last chance threshold” for the Transaction
manager.

• reserved_pgs() – number of pages allocated to a table or index.

• rowcnt() – number of rows in the specified table.

• valid_name() – whether a name would be a valid name if used, for
example, for a table.

• valid_user() – returns TRUE if that user has connect permissions.

• ptn_data_pgs() – number of data pages in a partition.

• index_colorder() – returns the column order in an index.

User-defined functions
User-defined function (UDF) support varies as follows:

• SQL Anywhere supports UDFs in SQL, Java, and C.

• Adaptive Server Enterprise supports UDFs written only in Java .

• Sybase IQ offers support for UDFs via CIS query decomposition, but
there are performance implications.

Arithmetic expressions on dates
SQL Anywhere and Sybase IQ interpret arithmetic expressions on dates as
shorthand notation for various date functions. Adaptive Server Enterprise
does not.

• Date +/- integer is equivalent to Dateadd().

• Date – date is equivalent to Datediff().

• Date + time creates a timestamp from the two.

Transact-SQL procedure language overview

626 Sybase IQ

SELECT INTO
There are differences in the types of tables permitted in a statement like
the following:

select into table1 from table2

• Adaptive Server Enterprise permits table1 to be permanent,
temporary or a proxy table. Adaptive Server Enterprise also supports
SELECT INTO EXISTING TABLE.

• SQL Anywhere and Sybase IQ permit table1 to be a permanent or a
temporary table. A permanent table is created only when you select
into table and specify more than one column. SELECT INTO #table,
without an owner specification, always creates a temporary table,
regardless of the number of columns specified. SELECT INTO table
with just one column selects into a host variable.

Updatable views
Adaptive Server Enterprise and SQL Anywhere are more liberal than
ANSI permits on the view definitions that are updatable when the WITH
CHECK option is not requested.

SQL Anywhere offers the ANSI_UPDATE_CONSTRAINTS option to
control whether updates are restricted to those supported by SQL92, or a
more liberal set of rules.

Sybase IQ permits UPDATE only on single-table views that can be
flattened. Sybase IQ does not support WITH CHECK.

FROM clause in UPDATE and DELETE
All three products support the FROM clause with multiple tables in
UPDATE and DELETE.

Transact-SQL procedure language overview
The stored procedure language is the part of SQL used in stored
procedures and batches.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 627

SQL Anywhere and Sybase IQ support a large part of the Transact-SQL
stored procedure language in addition to the Watcom-SQL dialect based
on SQL92.

Transact-SQL stored procedure overview
Because it is based on the ISO/ANSI draft standard, the SQL Anywhere
and Sybase IQ stored procedure language differs from the Transact-SQL
dialect in many ways. Many of the concepts and features are similar, but
the syntax is different. SQL Anywhere and Sybase IQ support for
Transact-SQL takes advantage of the similar concepts by providing
automatic translation between dialects. However, you must write a
procedure exclusively in one of the two dialects, not in a mixture of the
two.

There are a variety of aspects to SQL Anywhere and Sybase IQ support for
Transact-SQL stored procedures, including:

• Passing parameters

• Returning result sets

• Returning status information

• Providing default values for parameters

• Control statements

• Error handling

Transact-SQL batch overview
In Transact-SQL, a batch is a set of SQL statements submitted together and
executed as a group, one after the other. Batches can be stored in command
files. The ISQL utility in SQL Anywhere and Sybase IQ and the isql utility
in Adaptive Server Enterprise provide similar capabilities for executing
batches interactively.

The control statements used in procedures can also be used in batches.
SQL Anywhere and Sybase IQ support the use of control statements in
batches and the Transact-SQL-like use of nondelimited groups of
statements terminated with a GO statement to signify the end of a batch.

Transact-SQL procedure language overview

628 Sybase IQ

For batches stored in command files, SQL Anywhere and Sybase IQ
support the use of parameters in command files. Adaptive Server
Enterprise does not support parameters.

For information on parameters, see "PARAMETERS statement
[DBISQL]" in Reference: Statements and Options.

SQL statements in procedures and batches
Some SQL statements supported by Sybase IQ are part of one dialect, but
not the other. You cannot mix the two dialects within a procedure or batch.
This means that:

• You can include Transact-SQL-only statements with statements that
are part of both dialects in a batch or procedure.

• You can include statements not supported by Adaptive Server
Enterprise with statements that are supported by both servers in a
batch or procedure.

• You cannot include Transact-SQL–only statements with Sybase IQ—
only statements in a batch or procedure.

SQL statements not separated by semicolons are part of a Transact-SQL
procedure or batch. See Reference: Statements and Options for details of
individual statements.

Expression subqueries in IF statements
Adaptive Server Enterprise and SQL Anywhere support comparisons
between a variable and a scalar value returned by an expression subquery.
For example:

create procedure testIf ()
begin
declare var4 int;

set var4 = 10;
if var4 = (select MIN (a_i1) from a) then set

 var4 = 100;
end if;
end;

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 629

CASE statement
Permitted usage of the CASE statement differs in Sybase IQ and SQL
Anywhere.

The CASE statement is not supported in Adaptive Server Enterprise,
which supports case expressions only.

For a detailed comparison of case expression support in Sybase IQ and
Adaptive Server Enterprise, see “Expressions” on page 23.

Row-level cursor operations
All three products support the use of cursors with UPDATE and DELETE as
follows:

UPDATE WHERE CURRENT OF {cursor}

DELETE WHERE CURRENT OF {cursor}

In Sybase IQ, updatable cursors are asensitive only, for one table only, and
chained only. Updatable hold cursors are not permitted. Updatable cursors
in Sybase IQ get a table lock.

Print command
The effect of the PRINT command depends on the client:

• Adaptive Server Enterprise PRINT always sends a message to the
client.

• In SQL Anywhere and Sybase IQ, PRINT sends a message to the
client for Open Client and JDBC connections.

• Adaptive Server Enterprise stored procedures that rely on PRINT
work in Sybase IQ using DBISQL.

Note Sybase IQ users might prefer dbisql with JDBC, rather than the
iAdaptive Server Anywhere JDBC driver (formerly called the JDBC-
ODBC bridge).

Automatic translation of stored procedures

630 Sybase IQ

Automatic translation of stored procedures
In addition to supporting Transact-SQL alternative syntax, SQL
Anywhere and Sybase IQ provide aids for translating statements between
the Watcom-SQL and Transact-SQL dialects. Functions returning
information about SQL statements and enabling automatic translation of
SQL statements include:

• SQLDialect(statement) Returns Watcom-SQL or Transact-SQL.

• WatcomSQL(statement) Returns the Watcom-SQL syntax for the
statement.

• TransactSQL(statement) Returns the Transact-SQL syntax for the
statement.

These are functions and thus can be accessed using a SELECT statement
from ISQL. For example, the following statement returns the value
Watcom-SQL:

SELECT SqlDialect('select * from Employees')

Returning result sets from Transact-SQL procedures
SQL Anywhere and Sybase IQ use a RESULT clause to specify returned
result sets. In Transact-SQL procedures, column names or alias names of
the first query are returned to the calling environment.

Example of Transact-SQL
procedure

The following Transact-SQL procedure illustrates how Transact-SQL
stored procedures return result sets:

CREATE PROCEDURE showdept (@deptname varchar(30))
AS

SELECT Employees.Surname, Employees.GivenName
FROM Departments, Employees
WHERE Departments.DepartmentName = @deptname
AND Departments.DepartmentID =

Employees.DepartmentID

Example of Watcom-SQL
procedure

The following is the corresponding SQL Anywhere or Sybase IQ
procedure:

CREATE PROCEDURE showdept(in deptname varchar(30))
RESULT (lastname char(20), firstname char(20))
BEGIN

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 631

SELECT Employees.Surname, Employees.GivenName
FROM Departments, Employees
WHERE Departments.DepartmentName = deptname
AND Departments.DepartmentID =

Employee.DepartmentID
END

Multiple result sets There are minor differences in the way the three Sybase client tools
present multiple results to the client:

• ISQL displays all results in a single stream.

• DBISQL presents each result set on a separate tab. You must enable
this functionality in the Option menu. Make it a permanent change,
then restart or reconnect to DBISQL.

• DBISQLC provides the RESUME command to display each
successive result set.

For more information about procedures and results, see Chapter 1, “Using
Procedures and Batches” in the System Administration Guide: Volume 2.

Variables in Transact-SQL procedures
SQL Anywhere and Sybase IQ use the SET statement to assign values to
variables in a procedure. In Transact-SQL, values are assigned using the
SELECT statement with an empty table list. The following simple
procedure illustrates how the Transact-SQL syntax works:

CREATE PROCEDURE multiply
@mult1 int,
@mult2 int,
@result int output

AS
SELECT @result = @mult1 * @mult2

This procedure can be called as follows:

CREATE VARIABLE @product int
go
EXECUTE multiply 5, 6, @product OUTPUT
go

The variable @product has a value of 30 after the procedure executes.

Error handling in Transact-SQL procedures

632 Sybase IQ

Order and persistence of
variables

There are some differences in order and persistence of variable
declarations:

• In Adaptive Server Enterprise, you can declare variables anywhere in
the body of a stored procedure. Variables persist for the duration of the
procedure.

• In SQL Anywhere and Sybase IQ, you must declare variables at the
beginning of a compound statement (that is, immediately after BEGIN
in a BEGIN...END pair). Variables persist only for the duration of the
compound statement.

For more information on using the SELECT statement to assign variables,
see “Writing compatible queries” on page 617. For more information on
using the SET statement to assign variables, see "SET statement [ESQL]"
in Reference: Statements and Options.

Error handling in Transact-SQL procedures
Default procedure error handling is different in the Watcom-SQL and
Transact-SQL dialects. By default, Watcom-SQL dialect procedures exit
when they encounter an error, returning SQLSTATE and SQLCODE
values to the calling environment.

You can build explicit error handling into Watcom-SQL stored procedures
using the EXCEPTION statement, or you can instruct the procedure to
continue execution at the next statement when it encounters an error, using
the ON EXCEPTION RESUME statement.

When a Transact-SQL dialect procedure encounters an error, execution
continues at the following statement. The global variable @@error holds
the error status of the most recently executed statement. You can check this
variable following a statement to force return from a procedure. For
example, the following statement causes an exit if an error occurs:

IF @@error != 0 RETURN

When the procedure completes execution, a return value indicates the
success or failure of the procedure. This return status is an integer, and can
be accessed as follows:

DECLARE @status INT
EXECUTE @status = proc_sample
IF @status = 0

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 633

PRINT 'procedure succeeded'
ELSE

PRINT 'procedure failed'

Table A-2 describes the built-in procedure return values and their
meanings:

Table A-2: Built-in procedure return values

The RETURN statement can be used to return other integers, with their
own user-defined meanings.

Using the RAISERROR statement in procedures
The RAISERROR statement is a Transact-SQL statement for generating
user-defined errors. It has a similar function to the SIGNAL statement.

For a description of the RAISERROR statement, see "RAISERROR
statement [T-SQL]" in Reference: Statements and Options.

By itself, RAISERROR does not cause an exit from the procedure, but it
can be combined with a RETURN statement or a test of the @@error global
variable to control execution following a user-defined error.

Value Meaning
0 Procedure executed without error
-1 Missing object
-2 Data type error
-3 Process was chosen as deadlock victim
-4 Permission error
-5 Syntax error
-6 Miscellaneous user error
-7 Resource error, such as out of space
-8 Nonfatal internal problem
-9 System limit was reached
-10 Fatal internal inconsistency
-11 Fatal internal inconsistency
-12 Table or index is corrupt
-13 Database is corrupt
-14 Hardware error

SQL Anywhere and Sybase IQ

634 Sybase IQ

If you set the ON_TSQL_ERROR database option to CONTINUE,
RAISERROR no longer signals an execution-ending error. Instead, the
procedure completes and stores the RAISERROR status code and message,
and returns the most recent RAISERROR. If the procedure causing the
RAISERROR was called from another procedure, RAISERROR returns
after the outermost calling procedure terminates.

You lose intermediate RAISERROR statuses and codes when the procedure
terminates. If, at return time, an error occurs along with RAISERROR, the
error information is returned and you lose the RAISERROR information.
The application can query intermediate RAISERROR statuses by
examining @@error global variable at different execution points.

Transact-SQL-like error handling in the Watcom-SQL dialect
You can make a Watcom-SQL dialect procedure handle errors in a
Transact-SQL-like manner by supplying the ON EXCEPTION RESUME
clause to the CREATE PROCEDURE statement:

CREATE PROCEDURE sample_proc()
ON EXCEPTION RESUME
BEGIN

...
END

The presence of an ON EXCEPTION RESUME clause prevents explicit
exception handling code from being executed, so avoid using these two
clauses together.

SQL Anywhere and Sybase IQ
The preceding sections, while focused on compatibility with Transact-
SQL, also clarify many of the distinctions between Sybase IQ and SQL
Anywhere.

This section points out other differences and shared functionality between
Sybase IQ and SQL Anywhere.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 635

For additional information, always refer to the Sybase IQ documentation
set when using the product. Refer to the SQL Anywhere documentation set
when using SQL Anywhere, or when the Sybase IQ documentation refers
to SQL Anywhere documentation for specific functionality only.

Server and database startup and administration
Note the following differences in starting and managing databases and
servers:

• Sybase IQ uses the server startup command start_iq, instead of the
SQL Anywhere network server startup command.

• Sybase IQ does not support personal servers.

• Sybase IQ supports many SQL Anywhere server command line
options, but not all. Other server options are supported for Sybase IQ
but not for SQL Anywhere.

• Sybase IQ provides the stop_iq utility to shut down servers.

• Clauses permitted in the BACKUP and RESTORE statements differ in
Sybase IQ and SQL Anywhere.

• SQL Remote is supported in Sybase IQ only for multiplex operations.

Sybase IQ supports many SQL Anywhere database administration
utilities, but not all:

• The following SQL Anywhere utilities are not supported by Sybase
IQ: backup, compression, console, initialization, license, log transfer, log
translation, rebuild, spawn, some transaction log options (-g, -il, -ir, -n,
-x, -z), uncompression, unload, upgrade, and write file.

• Sybase IQ supports the SQL Anywhere validation utility only on the
catalog store. To validate the IQ store, use sp_iqcheckdb.

Database options
Some SQL Anywhere database options are not supported by Sybase IQ,
including DEFAULT_TIMESTAMP_INCREMENT.

Some database options apply only to the catalog store, including:
FOR_XML_NULL_TREATMENT, ISOLATION_LEVEL, PREFETCH,
PRECISION, and SCALE.

SQL Anywhere and Sybase IQ

636 Sybase IQ

Options with differences in behavior, default, or allowed values include
DELAYED_COMMITS, TIME_FORMAT, TIMESTAMP_FORMAT.

Sybase IQ also includes many options that SQL Anywhere does not
support. See Chapter 2, “Database Options.” in Reference: Statements and
Options.

Data definition language (DDL)
In addition to the DDL differences discussed previously:

• In a DELETE/DROP or PRIMARY KEY clause of an ALTER TABLE
statement, Sybase IQ takes the RESTRICT action (reports an error if
there are associated foreign keys). SQL Anywhere always takes the
CASCADE action.

• Similarly, DROP TABLE statement reports an error in Sybase IQ if
there are associated foreign-key constraints.

• Sybase IQ does not support these DDL statements: CREATE
COMPRESSED DATABASE, CREATE TRIGGER, SETUSER.

• Sybase IQ supports referential integrity at the statement level, rather
than the transaction-level integrity that SQL Anywhere supports with
the CHECK ON COMMIT clause of the CREATE TABLE statement.

• A Sybase IQ table cannot have a foreign key that references a SQL
Anywhere (or catalog) table, and a SQL Anywhere table cannot have
a foreign key that references a Sybase IQ table.

• In a Sybase IQ database, publications can only be created on SQL
Anywhere tables.

• In CREATE DATABASE, the defaults for case-sensitivity and collation
differ. The defaults for Sybase IQ are CASE RESPECT and the
ISO_BINENG collation; for SQL Anywhere, the defaults are CASE
IGNORE, and collation inferred from the language and character set
of the operating system.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 637

Data manipulation language (DML)
• Sybase IQ does not support these DML and procedural statements:

EXPLAIN, GET DATA, INPUT, PREPARE TO COMMIT, PUT,
READTEXT, ROLLBACK TRIGGER, SYSTEM, UNLOAD TABLE,
VALIDATE TABLE.

Note A set of extraction options perform a role similar to UNLOAD
TABLE; for details, see the section “Data extraction options” in
Chapter 7, “Moving Data In and Out of Databases” in the System
Administration Guide: Volume 1.

• Sybase IQ supports the INSERT...LOCATION syntax; SQL Anywhere
does not.

• LOAD TABLE options differ in Sybase IQ and SQL Anywhere.

• OPEN statement in Sybase IQ does not support BLOCK and
ISOLATION LEVEL clauses.

• Sybase IQ does not support triggers.

• Use of transactions, isolation levels, checkpoints, and automatically
generated COMMITs, as well as cursor support, is different in Sybase
IQ and SQL Anywhere. See Chapter 10, “Transactions and
Versioning” in the System Administration Guide: Volume 1.

• When you SELECT from a stored procedure in Sybase IQ, CIS
functional compensation performance considerations apply. See
“Conditions that cause processing by SQL Anywhere” in
Performance and Tuning Guide.

• Sybase IQ ignores the database name qualifier in fully qualified
names in Adaptive Server Enterprise SELECT statements, such as a
FROM clause with <database name>.<owner>.<table name>.
For example, Sybase IQ interprets the query SELECT * FROM
XXX..TEST as SELECT * FROM TEST.

Stored procedures
See “SQL Anywhere supported procedures” on page 525.

Obsolete procedures and views are removed from databases created in
versions earlier than Sybase IQ 12.6 ESD #2 when you run the ALTER
DATABASE UPGRADE command using Sybase IQ 12.6 ESD #2 or later.

Adaptive Server Enterprise and Sybase IQ

638 Sybase IQ

If you do not run ALTER DATABASE UPGRADE, the procedures remain in
the database.

Adaptive Server Enterprise and Sybase IQ
This section points out other differences and shared functionality between
Sybase IQ and Adaptive Server Enterprise.

For additional information, always refer to the Sybase IQ documentation
set when using the product. Refer to the Adaptive Server Enterprise
documentation set when using Adaptive Server Enterprise, or when the
Sybase IQ documentation refers to Adaptive Server Enterprise
documentation for specific functionality only.

Stored procedures
Sybase IQ no longer supports these Adaptive Server stored procedures:

• sp_addserver

• sp_configure

• sp_estspace

• sp_help

• sp_helpuser

• sp_who

Sybase IQ no longer supports the following catalog procedures:

• sp_column_privileges

• sp_databases

• sp_datatype_info

• sp_server_info

Obsolete procedures and views are removed from databases created prior
to Sybase IQ 15.1 ESD #2 when you run the ALTER DATABASE UPGRADE
command using Sybase IQ 15.1 ESD #2 or higher.

APPENDIX A Compatibility with Other Sybase Databases

Reference: Building Blocks, Tables, and Procedures 639

If you do not run ALTER DATABASE UPGRADE, the procedures remain in
the database.

System views
Sybase IQ no longer supports these Adaptive Server Enterprise views:

• sysalternates

• sysaudits

• sysauditoptions

• sysconstraints

• syscharsets

• sysconfigures

• syscurconfigs

• sysdatabases

• sysdepends

• sysdevices

• sysengines

• syskeys

• syslanguages

• syslocks

• syslogs

• sysloginroles

• sysmessages

• sysprocedures

• sysprocesses

• sysprotects

• sysreferences

• sysremotelogins

• sysroles

Adaptive Server Enterprise and Sybase IQ

640 Sybase IQ

• syssegments

• sysservers

• syssrvroles

• systhresholds

• sysusages

Column name differences The column name used in the Adaptive Server Enterprise view
SYSTYPES is “allownulls”. The column name used in the Sybase IQ view
SYSTYPES is “allowsnulls”.

Reference: Building Blocks, Tables, and Procedures 641

A
ABS function 128
absolute value 128
ACOS function 128
Adaptive Server Enterprise

compatibility 595
advice

clearing 418
displaying 418
storing 418

aggregate functions 102
AVG 131
COUNT 146
MAX 201
MIN 203
STDDEV 257
STDDEV_POP 258
STDDEV_SAMP 259
SUM 265
VAR_POP 331
VAR_SAMP 332
VARIANCE 333

ALL
conditions 39

allocation map
resetting 363

alphabetic characters
defined 21

analytic functions
DENSE_RANK 163
NTILE 212
PERCENT_RANK 218
PERCENTILE_CONT 220
PERCENTILE_DISC 222
RANK 229

analytical functions 104
AND conditions 45
ANY

conditions 39

apostrophe
in strings 22

approximate numeric data types
compatibility 605

arc-cosine 128
architectures

Adaptive Server 597
arc-sine 129
arc-tangent 130
arc-tangent ratio 130
ARGN function 129
argument selection 129
arithmetic expressions 26

on dates 625
ASCII function 129
ASCII value 129, 135
ASIN function 129
ATAN function 130
ATAN2 function 130
auditing

adding comments 492
audits

disabling 500
enabling 498

automatic joins
and foreign keys 344

average 131
AVG function 131

B
backslashes

not allowed in SQL identifiers 21
backup history file

location 8
backup operations

summary 358
backups

during checkpoint 492

Index

Index

642 Sybase IQ

during low activity 492
batches

Transact-SQL overview 627
writing 627

BETWEEN conditions 40
BIGINTTOHEX function 132
binary data

compatibility 603
BINARY data type 77
binary load format

data file 94
LOAD TABLE 94

BIT data type
compatibility 602
Transact-SQL 82

bit length 132
BIT_LENGTH function 132
bitwise operators 27
blanks

trimming trailing 71, 602
brackets

database objects 21
SQL identifiers 21

buffer cache
monitoring with sp_iqsysmon 466

byte length 216
BYTE_LENGTH function 133

C
cache

flushing 501
main 506
temporary 510

CASE expression 29
NULLIF function 213

case sensitivity
and pattern matching 41
comparison conditions 34
data 608
databases 607
identifiers 608
passwords 608
Transact-SQL compatibility 607
user IDs 608

user-defined data types 607, 608
CAST function 89, 133
catalog

Adaptive Server Enterprise compatibility 599
system tables 591

catalog store
IQ 599
monitoring with 466
validating 511

CEIL function 134
CEILING function 135
chained outer joins 620
CHAR data type

about 69
CHAR function 135
CHAR_LENGTH function 136
character data

compatibility 602
CHARACTER data type

about 70
character sets

specifying 11
CHARACTER VARYING data type

about 70
trimming trailing blanks 71, 602

CHARINDEX function 136
CHECK conditions

Transact-SQL 609
check constraints 609

enforced 609
Transact-SQL compatibility 609

CHECKPOINT statement
backup during checkpoint 492

clauses
ON EXCEPTION RESUME 634

COALESCE function 137
code pages

and data storage 70
COL_LENGTH function 138
COL_NAME function 138
collation

SORTKEY function 251
column default

not supported 610
column length 138
column name 138

Index

Reference: Building Blocks, Tables, and Procedures 643

columns
and user-defined data types 88
naming 25
SYSCOLUMNS system view 537

command-line options
overriding 504

comments
comment indicators 65

comparing dates and times 85
comparisons

about 33
compatibility

Adaptive Server Enterprise 595
approximate numeric data 605
referential integrity constraints 610

COMPUTE clause
Transact-SQL 619

computed columns
not supported 611

concatenating strings 26
condition hint strings 48
conditions

user-supplied for queries 46
connecting

IMSL library 124
connection information

sp_iqcontext 378
connection property value 139
CONNECTION_PROPERTY function 139
connection-level variables

about 59
connections

determining ID number 209
displaying information about 487
number of 373
properties 121

consistency checking
partitions 360

consistent state
restoring 454

constants
in expressions 25
Transact-SQL 31

CONTAINS conditions 43
CONVERT function 89, 139

date to integer conversion 141

date to string conversion 141
integer to date conversion 141
string to date conversion 141

CORR function 142
COS function 143
cosine 143
COT function 143
cotangent 143
COUNT function 146
COVAR_POP function 144
COVAR_SAMP function 145
CPU utilization

database consistency checker 361
CREATE DEFAULT statement

unsupported 612
CREATE DOMAIN statement

Transact-SQL compatibility 612
using 87

CREATE EXISTING TABLE statement
proxy tables 513

CREATE INDEX statement
IQ 613
Transact-SQL 613

CREATE RULE statement
unsupported 612

CREATE TABLE statement
Transact-SQL 609

CREATE TRIGGER
not supported 612

creating
data types 87

CUBE operation
GROUPING function 177

CUME_DIST function 147
CURRENT DATABASE

special value 53
CURRENT DATE

default 53
special value 53

CURRENT PUBLISHER
default 53
special value 53

CURRENT TIME
default 53
special value 53

CURRENT TIMESTAMP

Index

644 Sybase IQ

default 54
special value 54

CURRENT USER
default 54
special value 54

current user
environment settings 14

cursors
displaying information about 381
row-level in IQ 629
Transact-SQL 629

D
data

case sensitivity 608
data type compatibility

approximate numeric data 605
binary data 603
bit data 602
character data 602
date and time data 604
datetime and time data 605
IMAGE data 606
Java data 606
numeric data 605
TEXT data 606

data type conversion
about 89
BIT to BINARY 91
BIT to CHAR 92
BIT to VARBINARY 91
BIT to VARCHAR 92
CHAR to BIT 92
functions 108
VARCHAR to BIT 92

data type conversion functions 108
BIGINTTOHEX 132
CAST 133
CONVERT 139
HEXTOBIGINT 178
HEXTOINT 179
INTTOHEX 189

data types
about 69

Adaptive Server Enterprise 601
and compatibility 90
and roundoff errors 75
binary 77
character 69
date and time 82
displaying information about 384, 408
FLOAT 605
IMAGE 78, 603, 606
IQ 601
LONG BINARY 78, 603, 606
numeric 73
SQL Anywhere 601
TEXT 70, 602, 606
UNIQUEIDENTIFIERSTR 69
user-defined 87

database administrator
roles 601

database object
determining ID 215
determining name 216
identifying 21

database options
DATE_ORDER 86
FLOAT_AS_DOUBLE 605
QUOTED_IDENTIFIER 32

database server
overriding command-line options 504

databases
case sensitivity 607
determining ID number 161, 209
determining name 162
properties 122
property value 162
system procedures 351
system tables 591
validating catalog store 511

DATALENGTH function 148
date and time data types

compatibility 604
date and time functions 109

DATE 149
DATEADD 149
DATECEILING 150
DATEDIFF 151
DATEFLOOR 153

Index

Reference: Building Blocks, Tables, and Procedures 645

DATEFORMAT 155
DATENAME 156
DATEPART 157
DATEROUND 157
DATETIME 159
DAY 159
DAYNAME 160
DAYS 160
DOW 165
GETDATE 174
getting consistent results 111
HOUR 180
HOURS 180
IQ features 344
MINUTE 204
MINUTES 204
MONTH 206
MONTHNAME 206
MONTHS 206
NOW 211
QUARTER 227
SECOND 248
SECONDS 248
TODAY 267
WEEKS 335
YEAR 339
YEARS 339
YMD 341

DATE data type 83
DATE function 149
DATE_ORDER option 86
DATEADD function 149
DATECEILING function 150
DATEDIFF function 151
DATEFLOOR function 153
DATEFORMAT function 155
DATENAME function 156
DATEPART function 157
DATEROUND function 157
dates

arithmetic expressions 625
determining current 211, 267
interpreting strings as dates 86
queries 85

datetime and time data types
compatibility 605

DATETIME function 159
DAY function 159
day of the week (DOW) 165
DAYNAME function 160
DAYS function 160
DB_ID function 161
DB_NAME function 162
DB_PROPERTY function 162
DBCC

database verification 359
output 365
performance 364
time to run 364

dbcc
thread usage 361

DBCC_LOG_PROGRESS option 365
dbinit

not supported 598
dbspaces

managing 598
preventing read-write operations 363

DDL
SQL Anywhere 636

DECIMAL data type 73
default values

CURRENT DATABASE 53
CURRENT PUBLISHER 53
CURRENT USER 54
LAST USER 54
not supported 610
TIMESTAMP 56
USER 56

defaults
CURRENT DATE 53
CURRENT PUBLISHER 53
CURRENT TIME 53
CURRENT TIMESTAMP 54
CURRENT USER 54
Transact-SQL 612

defining a window 105
DEGREES function 163
delimiting SQL strings 21
DENSE_RANK function 163
devices

managing 598
DIFFERENCE function 165

Index

646 Sybase IQ

directory structure 2
disjunction of subquery predicates 36
disjunctionof subqueries 37
DISK statements

unsupported 598
distribution functions 105
DML

SQL Anywhere 637
documentation

SQL Anywhere xxi
domains

about 87
DOUBLE data type 75
double quotes

database objects 21
not allowed in SQL identifiers 21

DOW function 165
dropleaks mode 363
dummy IQ table 102

getting consistent results 111
DUMMY table 594

E
ELSE

IF expression 29
ENDIF

IF expression 29
environment variables

about 5
IQLOGDIR15 8
IQPORT 8
IQTIMEOUT 9
PATH 11
SQLCONNECT 12
SYBASE 12
SYBASE_JRE 13
SYBASE_OCS 13

error handling
IMSL library 125

error logging
IMSL library 126

error messages
ERRORMSG function 166
getting text 166

ERRORMSG function
SQL syntax 166

errors
Transact-SQL 632, 634

estimates
optimizer 47

EVENT_CONDITION function 166
EVENT_CONDITION_NAME function 168
EVENT_PARAMETER function 168
events

displaying information about 404, 408
EVENT_CONDITION function 166
EVENT_CONDITION_NAME function 168
EVENT_PARAMETER function 168

execution phase hints 49
EXISTS conditions 44
EXP function 169
EXP_WEIGHTED_AVG function 170
exponential function 169
expression

converting to timestamp 159
length in bytes 148

expression subqueries
in IF statements 628

expressions 23
CASE 29
Transact-SQL 31

F
files

location 3
FIRST_VALUE function 171
FLOAT data type 75
FLOAT_AS_DOUBLE option 605
FLOOR function 173
FOR BROWSE syntax

Transact-SQL 621
foreign keys

system views 542, 543
FP indexes

verifying 362
FROM clause 114

UPDATE and DELETE 626
functions 101

Index

Reference: Building Blocks, Tables, and Procedures 647

ABS function 128
ACOS function 128
Adaptive Server Enterprise system functions 120
aggregate 102
alphabetical list 128
analytical 104
ARGN function 129
ASCII function 129
ASIN function 129
ATAN function 130
ATAN2 function 130
AVG function 131
BIGINTTOHEX function 132
BIT_LENGTH function 132
BYTE_LENGTH function 133
CAST function 133
CEIL function 134
CEILING function 135
CHAR function 135
CHAR_LENGTH function 136
CHARINDEX function 136
COALESCE function 137
COL_LENGTH function 138
COL_NAME function 138
CONNECTION_PROPERTY function 139
consistent results 114
CONVERT function 139
CORR function 142
COS function 143
COT function 143
COUNT function 146
COVAR_POP function 144
COVAR_SAMP function 145
CUME_DIST function 147
data type conversion 108
DATALENGTH function 148
date and time 109
DATE function 149
DATEADD function 149
DATECEILING function 150
DATEDIFF function 151
DATEFLOOR function 153
DATEFORMAT function 155
DATENAME function 156
DATEPART function 157
DATEROUND function 157

DATETIME function 159
DAY function 159
DAYNAME function 160
DAYS function 160
DB_ID function 161
DB_NAME function 162
DB_PROPERTY function 162
DEGREES function 163
DENSE_RANK function 163
DIFFERENCE function 165
distribution 105
DOW function 165
ERRORMSG function SQL syntax 166
EVENT_CONDITION function 166
EVENT_CONDITION_NAME function 168
EVENT_PARAMETER function 168
EXP function 169
EXP_WEIGHTED_AVG function 170
FIRST_VALUE function 171
FLOOR function 173
GETDATE function 174
GRAPHICAL_PLAN 174
GROUP_MEMBER function SQL syntax 177
GROUPING function SQL syntax 177
HEXTOBIGINT function 178
HEXTOINT function 179
HOUR function 180
HOURS function 180
HTML_DECODE function 181
HTML_ENCODE function 182
HTML_PLAN function 183
HTTP 114
HTTP_DECODE function 185
HTTP_ENCODE function 185
HTTP_HEADER function 186
HTTP_VARIABLE function 187
IFNULL function 188
INDEX_COL function 188
INSERTSTR function 189
INTTOHEX function 189
IQ extensions 345
ISDATE function SQL syntax 191
ISNULL function 191
ISNUMERIC function SQL syntax 192
LAST_VALUE 193
LCASE function 194

Index

648 Sybase IQ

LEFT function 195
LEN function SQL syntax 196
LENGTH function 197
LOCATE function 198
LOG function 199
LOG10 function 200
LOWER function 200
LTRIM function 201
MAX function 201
MEDIAN function 202
MIN function 203
MINUTE function 204
MINUTES function 204
miscellaneous 127
MOD function 205
MONTH function 206
MONTHNAME function 206
MONTHS function 206
NEWID function SQL syntax 208
NEXT_CONNECTION function 209
NEXT_DATABASE function 209
NEXT_HTTP_HEADER function 210
NEXT_HTTP_VARIABLE function 211
NOW function 211
NTILE function 212
NULLIF function 213
NUMBER function 214
numeric 105, 114
OBJECT_ID function 215
OBJECT_NAME function 216
OCTET_LENGTH function 216
PATINDEX function 217
PERCENT_RANK function 218
PERCENTILE_CONT function 220
PERCENTILE_DISC function 222
PI function 224
POWER function 224
PROPERTY function 225
PROPERTY_DESCRIPTION function 225
PROPERTY_NAME function 226
PROPERTY_NUMBER function 227
QUARTER function 227
RADIANS function 228
RAND function 228
RANK function 229
ranking 104

REGR_AVGX function 230
REGR_AVGY function 232
REGR_COUNT function 233
REGR_INTERCEPT function 234
REGR_R2 function 235
REGR_SLOPE function 236
REGR_SXX function 237
REGR_SXY function 238
REGR_SYY function 240
REMAINDER function 241
REPEAT function 241
REPLACE function 242
REPLICATE function 243
REVERSE function SQL syntax 244
RIGHT function 245
ROUND function 245
ROWID function 246
RTRIM function 247
SECOND function 248
SECONDS function 248
SIGN function 249
SIMILAR function 250
SIN function 250
SORTKEY function 251
SOUNDEX function 255
SPACE function 256
SQRT function 256
SQUARE function 257
statistical 105
STDDEV function 257
STDDEV_POP function 258
STDDEV_SAMP function 259
STR function 260
STR_REPLACE function SQL syntax 261
string 115
STRING function 263
STRTOUUID function SQL syntax 263
STUFF function 264
SUBSTR function 265
SUBSTRING function 265
SUM function 265
SUSER_ID function 266
SUSER_NAME function 266
TAN function 267
time series 123
today 594

Index

Reference: Building Blocks, Tables, and Procedures 649

TODAY function 267
Transact-SQL 622
TRIM function 268
TRUNCNUM function 268
TS_ARMA_AR function 269
TS_ARMA_CONST function 272
TS_ARMA_MA function 276
TS_AUTO_UNI_AR function 283
TS_AUTOCORRELATION function 280
TS_BOX_COX_XFORM function 287
TS_DIFFERENCE function 289
TS_ESTIMATE_MISSING function 294
TS_LACK OF FIT function 297
TS_LACK OF FIT_P function 301
TS_MAX_ARMA_AR function 304
TS_MAX_ARMA_CONST function 308
TS_MAX_ARMA_LIKELIHOOD function 311
TS_MAX_ARMA_MA function 315
TS_OUTLIER_IDENTIFICATION function 318
TS_PARTIAL_AUTOCORRELATION function

323
TS_VWAP function 327
UCASE function 329
UPPER function 329
USER_ID function 330
USER_NAME function 330
user-defined 122
UUIDTOSTR function SQL syntax 331
VAR_POP function 331
VAR_SAMP function 332
VARIANCE function 333
WEEKS function 335
WEIGHTED_AVG function 336
WIDTH_BUCKET function 337
windowing aggregate 104
YEAR function 339
YEARS function 339
YMD function 341

functions, aggregate
GROUPING 177

functions, data type conversion
ISDATE 191

functions, miscellaneous
ERRORMSG 166
ISNUMERIC 192
NEWID 208

functions, string 183, 196, 244, 261
STRTOUUID 263
UUIDTOSTR 331

G
GETDATE function 174
global variables

about 57, 59
compatibility 62
list of 60

globally unique identifiers
SQL syntax for NEWID function 208

GRAPHICAL_PLAN function 174
GROUP BY

compatibility 619
GROUP_MEMBER function

SQL syntax 177
GROUPING function 177
groups

Adaptive Server Enterprise 614
GUIDs

SQL syntax for NEWID function 208
SQL syntax for STRTOUUID function 263
SQL syntax for UUIDTOSTR function 331

H
HEXTOBIGINT function 178
HEXTOINT function 179

ASE_FUNCTION_BEHAVIOR option 179
hints

execution phase 49, 51
index preference 49

HOLDLOCK syntax
Transact-SQL 621

HOUR function 180
HOURS function 180
HTML_DECODE function 181
HTML_ENCODE function 182
HTML_PLAN 183
HTML_PLAN function 183
HTTP

setting headers 510

Index

650 Sybase IQ

setting options 511
HTTP functions 114

HTML_DECODE 181
HTML_ENCODE 182
HTTP_DECODE 185
HTTP_ENCODE 185
HTTP_HEADER 186
HTTP_VARIABLE 187
NEXT_HTTP_HEADER 210
NEXT_HTTP_VARIABLE 211

HTTP_DECODE function 185
HTTP_ENCODE function 185
HTTP_HEADER function 186
HTTP_VARIABLE function 187

I
identifiers

about 21
case sensitivity 608
maximum length in SQL Anywhere 21
SQL syntax 21
uniqueness 608

identity columns
compatibility 611
supported as default value 611

IF expression 29
IFNULL function 188
IMAGE data type 78, 603

compatibility 606
IMSL library

connecting 124
error handling 125
error logging 126

IN conditions 43
index preference hints 49
INDEX_COL function 188
indexes

Adaptive Server Enterprise 613
IQ 613
SQL Anywhere 613
system views 546
Transact-SQL 608

inserts
SQL Anywhere 637

INSERTSTR function 189
installation directory

about 2
INTEGER data type 73
INTTOHEX function 189

ASE_FUNCTION_BEHAVIOR option 190
IQ Agent

port 8
wait time 9

IQ store 599
iq_dummy table 102
IQDIR15 environment variable 7
IQLOGDIR15 environment variable 8
IQMsgMaxSize server option 505
IQMsgNumFiles server option 505
IQPORT environment variable 8
IQTIMEOUT environment variable

specifying IQ Agent wait time 9
IQTMP15 environment variable 9
IS NULL conditions 44
ISDATE function

SQL syntax 191
ISNULL function 191
ISNUMERIC function

SQL syntax 192

J
Java

user-defined functions 123
Java data types

compatibility 606
Java Runtime Environment

setting 13
join equality conditions 51
join indexes

displaying information about 427
number of tables

queries
number of tables per block

349
join operators

ANSI 620
Transact-SQL 620

Index

Reference: Building Blocks, Tables, and Procedures 651

joins
automatic 344
outer operators 28
Transact-SQL 620

K
keys

displaying information about 442
verifying 362

keywords
listing 18
SQL 17

L
languages

specifying 11
LAST USER

special value 54
LAST_VALUE function 193
LCASE function 194
LD_LIBRARY_PATH environment variable 10
LEFT function 195
LEN function

SQL syntax 196
LENGTH function 197
LIBPATH environment variable 10
library

IMSL error handling 125
IMSL error logging 126

LIKE conditions 40
literal strings 22, 25
liveness timeout

database server 504
load formats

Transact-SQL and SQL Anywhere 616
LOAD TABLE

BINARY 94
BINARY FORMAT 94
binary format data file 94

local machine
environment settings 14

local variables

about 57
LOCATE function 198
locks

displaying 434
LOG function 199
LOG10 function 200
logarithm (base 10) 200
logarithm of a number 199
login management

sp_expireallpasswords 354
sp_iqaddlogin 355
sp_iqcopyloginpolicy 380, 437

login policies
assigning user to 438
copying 380, 437

LONG BINARY data type 78, 603, 606
LOWER function 200
LTRIM function 201
LVC cells 364

M
main_cache_memory_mb

sa_server_option parameter 506
master database

unsupported 598
mathematical expressions 26
MAX function 201
MEDIAN function 202
memory

monitoring with sp_iqsysmon 466
message log

specifying number of archives 505
specifying size 505

MIN function 203
MINUTE function 204
MINUTES function 204
miscellaneous functions 127

ARGN 129
COALESCE 137
IFNULL 188
ISNULL 191
NULLIF 213
NUMBER 214
ROWID 246

Index

652 Sybase IQ

MOD function 205
MONEY data type 76
monitor

sp_iqsysmon procedure 466
MONTH function 206
MONTHNAME function 206
MONTHS function 206
MPXServerName column 374
multiplex

synchronizing query servers 9
system procedures 373

N
name spaces

indexes 608
nested outer joins 620
NEWID function

SQL syntax 208
NEXT_CONNECTION function 209
NEXT_DATABASE function 209
NEXT_HTTP_HEADER function 210
NEXT_HTTP_VARIABLE function 211
NOT conditions 45
NOW function 211
NTILE function 212
NULL

Transact-SQL compatibility 609
null comparisons

Transact-SQL 621
NULL value

about 67
NULLIF function 30, 213
NUMBER function 214
number of connections

determining 373
numbers 25
NUMERIC 75
numeric data types

compatibility 605
numeric functions 105, 114

ABS 128
ACOS 128
ASIN 129
ATAN 130

ATAN2 130
CEIL 134
CEILING 135
consistent results 114
COS 143
COT 143
DEGREES 163
EXP 169
FLOOR 173
LOG 199
LOG10 200
MOD 205
PI 224
POWER 224
RADIANS 228
RAND 228
REMAINDER 241
ROUND 245
SIGN 249
SIN 250
SQRT 256
SQUARE 257
TAN 267
TRUNCNUM 268
WIDTH_BUCKET 337

O
object

defining 501
determining ID 215
determining name 216
displaying information about 408
renaming 452

OBJECT_ID function 215
OBJECT_NAME function 216
OCTET_LENGTH function 216
OLAP

DENSE_RANK function 163
distribution functions 105
GROUPING function 177
NTILE function 212
numeric functions 105
PERCENT_RANK function 218
PERCENTILE_CONT function 220

Index

Reference: Building Blocks, Tables, and Procedures 653

PERCENTILE_DISC function 222
RANK function 229
ranking functions 104
statistical functions 105
STDDEV function 257
VARIANCE function 333
window function type 105
window functions 105
window name 105
window specification 105
windows aggregate functions 104

OLAP functions
compatibility 623

OLAP OVER clause 105
ON EXCEPTION RESUME clause

Transact-SQL 634
Open Client setting 13
operators

comparison operators 34
precedence of 29

optimizer
estimates 47
user-defined selectivity 47

options
DBCC_LOG_PROGRESS 365
FLOAT_AS_DOUBLE 605
QUOTED_IDENTIFIER 32
SQL Anywhere 635
system views 565, 584

OR keyword 45
outer joins

and subqueries 25
chained 620
nested 620
operators 28
Transact-SQL 620

OVER clause 105

P
partitioned tables

verifying 363
partitions

consistency checking 360
passwords

adding or modifying 441
case sensitivity 608
expiring 354
sa_verify_password system procedure 354, 512

PATH environment variable 11
PATINDEX function 217
pattern matching

about 40
and collations 41
limits 41

PERCENT_RANK function 218
percentile

computing with NTILE function 212
PERCENTILE_CONT function 220
PERCENTILE_DISC function 222
performance

monitoring 466
sp_iqshowpsexe connection information 457
sp_iqsysmon procedure 466

permissions
Adaptive Server Enterprise 614
SYSCOLAUTH system view 534
system views 579

PI function 224
population variance function 331
portable SQL 617
POWER function 224
precedence of operators 29
predicates

about 33
disjunction of 36

prefetching
monitoring with sp_iqsysmon 466

primary keys
displaying information about 442
generating unique values 208
generating unique values using UUIDs 208
UUIDs and GUIDs 208

PRINT command
Transact-SQL 629

procedure language
overview 626

procedures
displaying information about 408, 443
displaying parameter information 446
error handling 632, 634

Index

654 Sybase IQ

return values 633
Transact-SQL 630
Transact-SQL overview 627
translation 630

properties
connection 121
databases 122
description of ID 225
determining name 226
determining number 227
server 121
server level 225

PROPERTY function 225
PROPERTY_DESCRIPTION function 225
PROPERTY_NAME function 226
PROPERTY_NUMBER function 227
publisher

SQL Remote 53

Q
QUARTER function 227
queries

Transact-SQL 617
query servers

synchronizing 9
quitting time

database server 504
quotation marks

database objects 21
SQL identifiers 21

QUOTED_IDENTIFIER option 32
quotes

strings 22

R
RADIANS function 228
RAISERROR statement

ON EXCEPTION RESUME 634
Transact-SQL 633

RAND function 228
RANK function 229
ranking functions 104

referential integrity constraints
CASCADE not supported 610
compatibility 610

registry entries
about 14

REGR_AVGX function 230
REGR_AVGY function 232
REGR_COUNT function 233
REGR_INTERCEPT function 234
REGR_R2 function 235
REGR_SLOPE function 236
REGR_SXX function 237
REGR_SXY function 238
REGR_SYY function 240
REMAINDER function 241
remote servers

capabilities 518
remote tables

columns 513, 514, 515
listing 517

rename objects
sp_iqrename procedure 452

REPEAT function 241
REPLACE function 242

in SELECT INTO statement 26, 141, 189, 195,
196, 200, 201, 241, 243, 244, 245, 248, 268, 329

REPLICATE function 243
request_level_debugging

about 504
request-level logging

about 504
enabling from Interactive SQL 508

reserved words 18
listing 18

resetclocks
sp_iqcheckdb option 362

restore operations
consistent state 454

result sets
Transact-SQL 630

return values
procedures 633

REVERSE function
SQL syntax 244

RIGHT function 245
roles

Index

Reference: Building Blocks, Tables, and Procedures 655

Adaptive Server Enterprise 600
ROLLUP operation

GROUPING function 177
ROUND function 245
ROWID function 246
rows

counting 146
RTRIM function 247
rules

Transact-SQL 612

S
sa_audit_string system procedure 492
sa_checkpoint_execute system procedure 492
sa_conn_activity system procedure

syntax 493
sa_conn_info system procedure 494
sa_conn_properties system procedure 495
sa_db_info system procedure 496
sa_db_properties system procedure 497
sa_dependent_views system procedure 353
sa_disable_auditing_type system procedure 500
sa_enable_auditing_type system procedure 498
sa_eng_properties system procedure 498
sa_flush_cache system procedure 501
sa_make_object system procedure 501
sa_rowgenerator system procedure

syntax 502
sa_server_option system procedure 504
sa_set_http_header system procedure 510
sa_set_http_option system procedure 511
sa_table_page_usage system procedure 500
sa_validate system procedure

syntax 511
sa_verify_password system procedure 354
SACHARSET environment variable 11
SALANG environment variable 11
sample variance function 332
search conditions

about 33
ALL or ANY conditions 39
BETWEEN conditions 40
comparison conditions 34
CONTAINS conditions 43

EXISTS conditions 44
IN conditions 43
IS NULL conditions 44
LEADING SUBSTRING SEARCH conditions 40
LIKE conditions 40
NOT conditions 45
subqueries 35
three-valued logic 46
truth value conditions 45

SECOND function 248
SECONDS function 248
SELECT INTO

Transact-SQL 626
using REPLACE function 26, 141, 189, 195, 196,

200, 201, 241, 243, 244, 245, 248, 268, 329
SELECT statement

examples 527
Transact-SQL 617

selectivity
explicit 47
hints 48
user-supplied conditions 47

server
properties 121

server administration
SQL Anywhere and IQ 635

services
registry entries 14

SET OPTION statement
Transact-SQL 616

SHARED syntax
Transact-SQL 621

SIGN function 249
SIGNAL statement

Transact-SQL 633
SIMILAR function 250
SIN function 250
SMALLDATETIME data type 83
SMALLINT data type 73
SMALLMONEY data type 76
SOME conditions 39
SORTKEY function 251
SOUNDEX function 255
sp_expireallpasswords system procedure 354
sp_iq_reset_identity system procedure 454
sp_iqaddlogin system procedure 355

Index

656 Sybase IQ

sp_iqbackupdetails stored procedure 356
sp_iqbackupsummary stored procedure 358
sp_iqbrestoreaction stored procedure 454
sp_iqcheckdb

allocation mode 361
check mode 362
DBCC_LOG_PROGRESS option 365
dropleaks mode 363
output 365
performance 364
resetclocks option 362
sample output 365
syntax 359
time to run 364
verify mode 362

sp_iqcheckdb system procedure 359
sp_iqcheckoptions system procedure 366
sp_iqcolumn system procedure 370
sp_iqcolumnuse system procedure 372
sp_iqconnection system procedure 373
sp_iqcontext system procedure 378
sp_iqcopyloginpolicy system procedure 380, 437
sp_iqcursorinfo system procedure 381
sp_iqdatatype system procedure 384
sp_iqdbsize system procedure 386
sp_iqdbspace system procedure 388
sp_iqdbspaceinfo system procedure 391
sp_iqdbspaceobjectinfo system procedure 394
sp_iqdbstatistics system procedure 397
sp_iqdroplogin system procedure 399
sp_iqemptyfile system procedure 399
sp_iqestdbspaces system procedure 402
sp_iqestjoin system procedure 400
sp_iqestspace system procedure 404
sp_iqevent system procedure 404
sp_iqfile system procedure 407
sp_iqhelp system procedure 408
sp_iqindex system procedure 415
sp_iqindex_alt system procedure 415
sp_iqindexadvice system procedure 418
sp_iqindexfragmentation system procedure 419
sp_iqindexinfo

displaying index information 423, 424
sp_iqindexinfo system procedure 421
sp_iqindexmetadata system procedure 423
sp_iqindexsize system procedure 425

sp_iqindexuse system procedure 426
sp_iqjoinindex system procedure 427
sp_iqjoinindexsize system procedure 431
sp_iqlocks system procedure 434
sp_iqmodifylogin 438
sp_iqmodifylogin system procedure 438
sp_iqobjectinfo system procedure 438
sp_iqpassword system procedure 441
sp_iqpkeys system procedure 442
sp_iqprocedure system procedure 443
sp_iqprocparm system procedure 446
sp_iqrebuildindex system procedure 450, 456
sp_iqrename system procedure 452
sp_iqsetcompression system procedure 352
sp_iqshowcompression system procedure 352
sp_iqshowpsexe system procedure 457
sp_iqspaceinfo system procedure 459

sample output 460
sp_iqspaceused system procedure 460
sp_iqstatistics system procedure 461
sp_iqstatus system procedure 463

sample output 464
sp_iqsysmon system procedure 466
sp_iqtable system procedure 472
sp_iqtablesize system procedure 475
sp_iqtableuse system procedure 477
sp_iqtransaction system procedure 477
sp_iqunusedcolumn system procedure 481
sp_iqunusedindex system procedure 482
sp_iqunusedtable system procedure 483
sp_iqversionuse system procedure 484
sp_iqview system procedure 486
sp_iqwho system procedure 487
sp_iqworkmon system procedure 490
sp_login_environment system procedure 513
sp_remote_columns system procedure 513
sp_remote_exported_keys system procedure 514, 515
sp_remote_primary_keys system procedure

syntax 516
sp_remote_tables system procedure 517
sp_servercaps system procedure 518
sp_tsql_environment system procedure 520
SPACE function 256
special characters

in strings 22
special values

Index

Reference: Building Blocks, Tables, and Procedures 657

CURRENT DATABASE 53
CURRENT DATE 53
CURRENT PUBLISHER 53
CURRENT TIME 53
CURRENT TIMESTAMP 54
CURRENT USER 54
LAST USER 54
SQLCODE 55
SQLSTATE 55
TIMESTAMP 56
USER 56

SQL
IQ dialect differences 343
user-defined functions 123

SQL Anywhere 596
administrative roles 600
documentation xxi
referential integrity constraints 610

SQL functions
compatibility 622
ERRORMSG function syntax 166
GRAPHICAL_PLAN function syntax 174
GROUP_MEMBER function syntax 177
GROUPING function syntax 177
HTML_PLAN function syntax 183
ISDATE function syntax 191
ISNUMERIC function syntax 192
LEN function syntax 196
NEWID function syntax 208
REVERSE function syntax 244
STR_REPLACE function syntax 261
STRTOUUID function syntax 263
UUIDTOSTR function syntax 331

SQL syntax
CURRENT DATABASE special value 53
CURRENT PUBLISHER special value 53
CURRENT USER special value 54
identifiers 21
LAST USER special value 54
TIMESTAMP special value 56
USER special value 56

SQL92 conformance 343
SQLCODE

special value 55
SQLCONNECT environment variable 12
SQLSTATE

special value 55
SQRT function 256
square brackets

database objects 21
SQL identifiers 21

SQUARE function 257
square root function 256, 257
standard deviation

function 257
of a popular function 258
of a sample function 259

statements
CREATE DEFAULT 612
CREATE DOMAIN 612
CREATE RULE 612
CREATE TABLE 609
DISK INIT 598
DISK MIRROR 598
DISK REFIT 598
DISK REINIT 598
DISK REMIRROR 598
DISK UNMIRROR 598
RAISERROR 633, 634
SELECT 617
SIGNAL 633

statistical functions 105
STDDEV function 257
STDDEV_POP function 258
STDDEV_SAMP function 259
stored procedure language

overview 626
stored procedures

Adaptive Server Enterprise 638
sa_dependent_views 353
sa_rowgenerator 502
sa_verify_password 354, 512
sp_iqbackupdetails 356
sp_iqbackupsummary 358
sp_iqclient_lookup 368
sp_iqrestoreaction 454
SQL Anywhere 637
xp_cmdshell 525

STR function 260
STR_REPLACE function

SQL syntax 261
string

Index

658 Sybase IQ

insert 189
length 133, 136
position 136

STRING function 263
string functions 115

ASCII 129
BIT_LENGTH 132
BYTE_LENGTH 133
CHAR 135
CHAR_LENGTH 136
CHARINDEX 136
DIFFERENCE 165
INSERTSTR 189
LCASE 194
LEFT 195
LENGTH 197
LOCATE 198
LOWER 200
LTRIM 201
OCTET_LENGTH 216
PATINDEX 217
REPEAT 241
REPLACE 242
REPLICATE 243
RIGHT 245
RTRIM 247
SIMILAR 250
SORTKEY 251
SOUNDEX 255
SPACE 256
STR 260
STRING 263
STUFF 264
SUBSTR 265
SUBSTRING 265
TRIM 268
UCASE 329
UPPER 329

strings
about 22
concatenating 26, 243, 263
concatenation operators 26
constants 22, 25
converting to lowercase 194, 200
converting to uppercase 329
delimiter 31

determining length 197
determining similarity 250
literal strings 22
removing blanks 268
removing leading blanks 201
removing trailing blanks 247
replacing substrings 242
returning a substring 265
SOUNDEX function 255
special characters 22
Transact-SQL 31

STRTOUUID function
SQL syntax 263

STUFF function 264
subqueries

Adaptive Server Enterprise 618
disjunction of 36
in expressions 25
in search conditions 35
IQ 618
IQ implementation 345
SQL Anywhere 618

subqueries, disjunction of 37
SUBSTR function 265
SUBSTRING function 265
SUM function 265
summary 356
SUSER_ID function 266
SUSER_NAME function 266
SYBASE environment variable 12
Sybase IQ User Administration

sp_iqdroplogin 399
SYBASE_JRE environment variable 13
SYBASE_OCS environment variable 13
syntax

CURRENT DATABASE special value 53
CURRENT PUBLISHER special value 53
CURRENT USER special value 54
LAST USER special value 54
SQL identifiers 21
TIMESTAMP special value 56
USER special value 56

SYSIQBACKUPHISTORY system view 546
SYSIQBACKUPHISTORYDETAIL system view

548
SYSIQDBFILE system view 549

Index

Reference: Building Blocks, Tables, and Procedures 659

SYSIQDBSPACE system view 550
SYSIQIDX system view 551
SYSIQJOINIDX system view 554
SYSIQJOINIXCOLUMN system view 555
SYSIQJOINIXTABLE system view 556
SYSIQPARTITIONCOLUMNS system view 557
SYSIQTAB system view 558
SYSPARTITION system view 566
SYSPARTITIONKEY system view 566
SYSPARTITIONSCHEME system view 567
SYSSUBPARTITIONKEY system view 575
system administrator

Adaptive Server Enterprise 600
system calls

from stored procedures 525
xp_cmdshell system procedure 525

system catalog 534
Adaptive Server Enterprise compatibility 599
Transact-SQL 587

system functions 118
COL_LENGTH 138
COL_NAME 138
CONNECTION_PROPERTY 139
DATALENGTH 148
DB_ID 161
DB_NAME 162
DB_PROPERTY 162
EVENT_CONDITION 166
EVENT_CONDITION_NAME 168
EVENT_PARAMETER 168
INDEX_COL 188
NEXT_CONNECTION 209
NEXT_DATABASE 209
OBJECT_ID 215
OBJECT_NAME 216
PROPERTY 225
PROPERTY_DESCRIPTION 225
PROPERTY_NAME 226
PROPERTY_NUMBER 227
SUSER_ID 266
SUSER_NAME 266
Transact-SQL 624
USER_ID 330
USER_NAME 330

system procedures
about 351

displaying information about 408
sa_audit_string 492
sa_checkpoint_execute 492
sa_conn_activity 493
sa_conn_info 494
sa_conn_properties 495
sa_db_info 496
sa_db_properties 497
sa_dependent_views 353
sa_disable_auditing_type 500
sa_enable_auditing_type 498
sa_eng_properties 498
sa_flush_cache 501
sa_make_object 501
sa_rowgenerator 502
sa_server_option 504
sa_set_http_header 510
sa_set_http_option 511
sa_table_page_usage 500
sa_validate 511
sa_verify_password 354, 512
sp_expireallpasswords 354
sp_iqaddlogin 355
sp_iqbackupdetails 356
sp_iqbackupsummary 358
sp_iqcheckdb 359
sp_iqcheckoptions 366
sp_iqclient_lookup 368
sp_iqcolumn 370
sp_iqcolumnuse 372
sp_iqconnection 373
sp_iqcontext 378
sp_iqcopyloginpolicy 380, 437
sp_iqcursorinfo 381
sp_iqdatatype 384
sp_iqdbsize 386
sp_iqdbspaceobjectinfo 394
sp_iqdbstatistics 397
sp_iqdroplogin 399
sp_iqemptyfile 399
sp_iqestdbspaces 402
sp_iqestjoin 400
sp_iqestspace 404
sp_iqevent 404
sp_iqfile 407
sp_iqhelp 408

Index

660 Sybase IQ

sp_iqindex 415
sp_iqindex_alt 415
sp_iqindexadvice 418
sp_iqindexsize 425
sp_iqindexuse 426
sp_iqjoinindex 427
sp_iqjoinindexsize 431
sp_iqmodifylogin 438
sp_iqobjectinfo 438
sp_iqpassword 441
sp_iqpkeys 442
sp_iqprocedure 443
sp_iqprocparm 446
sp_iqrename 452
sp_iqrestoreaction 454
sp_iqsetcompression 352
sp_iqshowcompression 352
sp_iqshowpsexe 457
sp_iqspaceinfo 459
sp_iqspaceused 460
sp_iqstatistics 461
sp_iqstatus 463
sp_iqsysmon 466
sp_iqtable 472
sp_iqtablesize 475
sp_iqtableuse 477
sp_iqtransaction 477
sp_iqunusedcolumn 481
sp_iqunusedindex 482
sp_iqunusedtable 483
sp_iqversionuse 484
sp_iqview 486
sp_iqwho 487
sp_iqworkmon 490
sp_login_environment 513
sp_remote_columns 513
sp_remote_exported_keys 514, 515
sp_remote_primary_keys 516
sp_remote_tables 517
sp_servercaps 518
sp_tsql_environment 520
xp_cmdshell 525

system security officer
Adaptive Server Enterprise 600

System tables
about 591

Adaptive Server Enterprise compatibility 599
displaying information 408
DUMMY 594

system variables 59
system views

Adaptive Server Enterprise 639
consolidated 527
SYSARTICLE 532
SYSARTICLECOL 532
SYSARTICLECOLS 532
SYSARTICLES 532
SYSCAPABILITIES 533
SYSCAPABILITY 533
SYSCAPABILITYNAME 533
SYSCATALOG 534
SYSCHECK 534
SYSCOLAUTH 534
SYSCOLLATION 535
SYSCOLLATIONMAPPINGS 536
SYSCOLPERM 535
SYSCOLSTAT 536
SYSCOLSTATS 536
SYSCOLUMN 537
SYSCOLUMNS 537
SYSCOLUMNS ASE compatibility view 537
SYSCONSTRAINT 538
SYSDBFILE 538
SYSDBSPACE 539
SYSDBSPACEPERM 539
SYSDEPENDENCY 539
SYSDOMAIN 540
SYSEVENT 540
SYSEVENTTYPE 540
SYSEXTERNALLOGIN 541
SYSEXTERNENV 541
SYSEXTERNENVOBJECT 541
SYSFILE 542
SYSFKCOL 542
SYSFKEY 542
SYSFOREIGNKEY 543
SYSFOREIGNKEYS 543
SYSGROUP 543
SYSGROUPS 544
SYSHISTORY 544
SYSIDX 545
SYSIDXCOL 545

Index

Reference: Building Blocks, Tables, and Procedures 661

SYSINDEX 545
SYSINDEXES 546
SYSINDEXES ASE compatibility view 546
SYSINFO 546
SYSIQBACKUPHISTORY 546
SYSIQBACKUPHISTORYDETAIL 548
SYSIQCOLUMN 549
SYSIQDBFILE 549
SYSIQDBSPACE 550
SYSIQFILE 551
SYSIQIDX 551
SYSIQINFO 552
SYSIQITAB 558
SYSIQJOINIDX 554
SYSIQJOININDEX 555
SYSIQJOINIXCOLUMN 555
SYSIQJOINIXTABLE 556
SYSIQMPXLOGINPOLICYOPTION 557
SYSIQMPXSERVER 557
SYSIQOBJECTS ASE compatibility view 557
SYSIQPARTITIONCOLUMN 557
SYSIQTABCOL 559
SYSIQTABLE system view 561
SYSIQVINDEX ASE compatibility view 561
SYSIXCOL compatibility view 561
SYSJAR 561
SYSJARCOMPONENT 562
SYSJAVACLASS 562
SYSLOGINMAP 562
SYSLOGINPOLICY 563
SYSLOGINPOLICYOPTION 563
SYSLOGINS ASE compatibility view 563
SYSMVOPTION 563
SYSOBJECTS ASE compatibility view 564
SYSOPTIONS 565
SYSPARTITION 566
SYSPARTITIONKEY 566
SYSPARTITIONSCHEME 567
SYSPHYSIDX 568
SYSPROCAUTH 568
SYSPROCEDURE 568
SYSPROCPARMS 569
SYSPROCPERM 569
SYSPROCS 570
SYSPROXYTAB 570
SYSPUBLICATION 570

SYSPUBLICATIONS 571
SYSREMARK 571
SYSREMOTEOPTION 571
SYSREMOTEOPTION2 572
SYSREMOTEOPTIONS 572
SYSREMOTEOPTIONTYPE 572
SYSREMOTETYPE 573
SYSREMOTETYPES 573
SYSREMOTEUSER 573
SYSREMOTEUSERS 574
SYSSCHEDULE 574
SYSSOURCE 575
SYSSQLSERVERTYPE 575
SYSSUBPARTITIONKEY 575
SYSSUBSCRIPTION 575
SYSSUBSCRIPTIONS 576
SYSSYNC 576
SYSSYNCPROFILE 577
SYSSYNCS 577
SYSSYNCSUBSCRIPTIONS 578
SYSSYNCUSERS 578
SYSTAB 579
SYSTABAUTH 579
SYSTABCOL 580
SYSTABLE 579
SYSTABLEPERM 580
SYSTEXTCONFIG 580
SYSTEXTIDX 581
SYSTEXTIDXTAB 581
SYSTRIGGER 581
SYSTRIGGERS 582
SYSTYPEMAP 582
SYSTYPES ASE compatibility view 582
SYSUSER 583
SYSUSERAUTH 583
SYSUSERAUTHORITY 583
SYSUSERLIST 584
SYSUSERMESSAGE 584
SYSUSEROPTIONS 584
SYSUSERPERM 585
SYSUSERPERMS 585
SYSUSERS ASE compatibility view 586
SYSUSERTYPE 585
SYSVIEW 586
SYSVIEWS 586
SYSWEBSERVICE 586

Index

662 Sybase IQ

T
tables

displaying information about 408
iq_dummy 102
number per join index 349
Transact-SQL 609

TAN function 267
tangent 267
temp_cache_memory_mb

sa_server_option parameter 510
temporary tables

Transact-SQL 612
TEXT data type 70, 602

compatibility 602, 606
THEN

IF expression 29
threads

dbcc 361
three-valued logic

about 46
NULL value 67

TIME data type 83
Time Series functions 124

error handling 125
error logging 126
IMSL library 124

time series functions 123
times

queries 85
TIMESTAMP

converting an expression 159
data type 83
data type compatibility 604, 605
special value 56

TINYINT data type 73
TODAY function 267, 594
trailing blanks

trimming 71, 602
transaction log

adding string 492
transaction management

monitoring with sp_iqsysmon 466
Transact-SQL

about 595
batches 627
bitwise operators 27

comparison conditions 35
constants 31
creating compatible databases 607
expressions 31
joins 620
local variables 58
outer join operators 28
overview 596
procedure language overview 626
procedures 627
referential integrity constraints 610
result sets 630
strings 31
system catalog 587
user-defined data types 89
variables 631
writing portable SQL 617

Transact-SQL compatibility
databases 607

triggers
not supported 612

TRIM function 268
trimming trailing blanks 71, 602
troubleshooting

logging operations 508
request_level_logging 504

TRUNCNUM function 268
TS_ARMA_AR function 269
TS_ARMA_CONST function 272
TS_ARMA_MA function 276
TS_AUTO_UNI_AR function 283
TS_AUTOCORRELATION function 280
TS_BOX_COX_XFORM function 287
TS_DIFFERENCE function 289
TS_ESTIMATE_MISSING function 294
TS_LACK OF FIT function 297
TS_LACK OF FIT_P function 301
TS_MAX_ARMA_AR function 304
TS_MAX_ARMA_CONST function 308
TS_MAX_ARMA_LIKELIHOOD function 311
TS_MAX_ARMA_MA function 315
TS_OUTLIER_IDENTIFICATION function 318
TS_PARTIAL_AUTOCORRELATION function 323
TS_VWAP function 327
type conversions 89
types

Index

Reference: Building Blocks, Tables, and Procedures 663

about data types 69

U
UCASE function 329
UNION

in subqueries 618
UNIQUEIDENTIFIER data type 81
UNIQUEIDENTIFIERSTR data type

about 69
universally unique identifiers

SQL syntax for NEWID function 208
UPPER function 329
usefulness hints 51
USER

special constant 594
special value 56

user administration. see login management
user IDs

Adaptive Server Enterprise 614
case sensitivity 608
determining from user name 266, 330

user name
determining from user ID 266, 330

USER_ID function 330
USER_NAME function 330
user-defined data types

about 87
case-sensitivity 608
Transact-SQL 89

user-defined functions 122
compatibility 625

users
adding 355
displaying information about 487
dropping 399
modifying 438
number of connections 373

user-supplied condition hint strings 48
user-supplied condition hints, guidelines and usage

52
user-supplied condition selectivity 47
user-supplied conditions

for queries 46, 47
user-supplied hints on join equality conditions 51

utilities
SQL Anywhere 635

UUIDs
SQL syntax for NEWID function 208
SQL syntax for STRTOUUID function 263
SQL syntax for UUIDTOSTR function 331

UUIDTOSTR function
SQL syntax 331

V
validating

catalog store 511
VAR_POP function 331
VAR_SAMP function 332
VARBINARY data type 77
VARCHAR data type

about 69, 70
trimming trailing blanks 71, 602

variables
about 56
connection-level 59
global 57, 59
local 57
Transact-SQL 631

VARIANCE function 333
verifying

indexes 362
keys 362
partitioned tables 363
passwords 354, 512

views
displaying information about 408
system views 586
updatable 626

W
WEEKS function 335
WEIGHTED_AVG function 336
WHERE clause

Transact-SQL 619
WIDTH_BUCKET function 337
window functions

Index

664 Sybase IQ

window function type 105
window name or specification 105
window partition 105

window functions, defining 105
window name 105
window specification 105
window type 105
windows aggregate functions 104
WITHIN GROUP clause 106

X
xp_cmdshell system procedure

syntax 525

Y
YEAR function 339
YEARS function 339
YMD function 341

Z
zero-length strings

Transact-SQL 621

	Reference: Building Blocks, Tables, and Procedures
	About This Book
	CHAPTER 1 File Locations and Installation Settings
	Installation directory structure
	How Sybase IQ locates files
	Simple file searching
	Extensive file searching

	Environment variables
	Setting environment variables
	IQDIR15 environment variable
	IQPORT environment variable
	IQLOGDIR15 environment variable
	IQTIMEOUT environment variable
	IQTMP15 environment variable
	LIBPATH or LD_LIBRARY_PATH environment variable
	PATH environment variable
	SACHARSET environment variable
	SALANG environment variable
	SQLCONNECT environment variable
	SYBASE environment variable
	$SYBASE_JRE6_32, $SYBASE_JRE6_64, $SYBASE_JRE5_64 environment variables
	SYBASE_OCS environment variable

	Registry entries
	Current user and local machine settings
	Registry structure
	Registry settings on installation

	CHAPTER 2 SQL Language Elements
	Keywords
	Reserved words

	Identifiers
	Strings
	Expressions
	Constants in expressions
	Column names in expressions
	Subqueries in expressions
	SQL operators
	Arithmetic operators
	String operators
	Bitwise operators
	Join operators
	Operator precedence

	IF expressions
	CASE expressions
	Compatibility of expressions
	The quoted_identifier option

	Search conditions
	Comparison conditions
	Subqueries in search conditions
	Disjunction of subquery predicates

	ALL or ANY conditions
	BETWEEN conditions
	LIKE conditions
	IN conditions
	CONTAINS conditions
	EXISTS conditions
	IS NULL conditions
	Conditions with logical operators
	NOT conditions
	Truth value conditions
	Three-valued logic
	User-supplied condition hints
	User-supplied condition selectivity
	User-supplied condition hint strings
	User-supplied hints on join equality conditions
	Guidelines for usage of user-supplied condition hints

	Special values
	CURRENT DATABASE special value
	CURRENT DATE special value
	CURRENT PUBLISHER special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	CURRENT USER special value
	LAST USER special value
	SQLCODE special value
	SQLSTATE special value
	TIMESTAMP special value
	USER special value

	Variables
	Local variables
	Connection-level variables
	Global variables

	Comments
	NULL value

	CHAPTER 3 SQL Data Types
	Character data types
	Numeric data types
	Binary data types
	Bit data type
	Date and time data types
	Sending dates and times to the database
	Retrieving dates and times from the database
	Comparing dates and times
	Using unambiguous dates and times
	Domains
	Data type conversions
	Sybase IQ binary load format

	CHAPTER 4 SQL Functions
	Overview
	Aggregate functions
	Analytical functions
	Data type conversion functions
	Date and time functions
	Date parts

	HTTP functions
	Numeric functions
	String functions
	System functions
	Connection properties
	Properties available for the server
	Properties available for each database

	SQL and Java user-defined functions
	Time series and forecasting functions
	Loading the IMSL libraries for time series and forecasting functions
	IMSL library time series function error-handling
	IMSL library time series function error logging

	Miscellaneous functions
	Alphabetical list of functions
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATAN2 function [Numeric]
	AVG function [Aggregate]
	BIGINTTOHEX function [Data type conversion]
	BIT_LENGTH function [String]
	BYTE_LENGTH function [String]
	CAST function [Data type conversion]
	CEIL function [Numeric]
	CEILING function [Numeric]
	CHAR function [String]
	CHAR_LENGTH function [String]
	CHARINDEX function [String]
	COALESCE function [Miscellaneous]
	COL_LENGTH function [System]
	COL_NAME function [System]
	CONNECTION_PROPERTY function [System]
	CONVERT function [Data type conversion]
	CORR function [Aggregate]
	COS function [Numeric]
	COT function [Numeric]
	COVAR_POP function [Aggregate]
	COVAR_SAMP function [Aggregate]
	COUNT function [Aggregate]
	CUME_DIST function [Ranking]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATECEILING function [Date and time]
	DATEDIFF function [Date and time]
	DATEFLOOR function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATEROUND function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DB_ID function [System]
	DB_NAME function [System]
	DB_PROPERTY function [System]
	DEGREES function [Numeric]
	DENSE_RANK function [Analytical]
	DIFFERENCE function [String]
	DOW function [Date and time]
	ERRORMSG function [Miscellaneous]
	EVENT_CONDITION function [System]
	EVENT_CONDITION_NAME function [System]
	EVENT_PARAMETER function [System]
	EXP function [Numeric]
	EXP_WEIGHTED_AVG function [Aggregate]
	FIRST_VALUE function [Aggregate]
	FLOOR function [Numeric]
	GETDATE function [Date and time]
	GRAPHICAL_PLAN function [String]
	GROUPING function [Aggregate]
	GROUP_MEMBER function [System]
	HEXTOBIGINT function [Data type conversion]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	HTML_DECODE function [HTTP]
	HTML_ENCODE function [HTTP]
	HTML_PLAN function [String]
	HTTP_DECODE function [HTTP]
	HTTP_ENCODE function [HTTP]
	HTTP_HEADER function [HTTP]
	HTTP_VARIABLE function [HTTP]
	IFNULL function [Miscellaneous]
	INDEX_COL function [System]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Date and time]
	ISNULL function [Miscellaneous]
	ISNUMERIC function [Miscellaneous]
	LAST_VALUE function [Aggregate]
	LCASE function [String]
	LEFT function [String]
	LEN function [String]
	LENGTH function [String]
	LN function [Numeric]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MEDIAN function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NEWID function [Miscellaneous]
	NEXT_CONNECTION function [System]
	NEXT_DATABASE function [System]
	NEXT_HTTP_HEADER function [HTTP]
	NEXT_HTTP_VARIABLE function [HTTP]
	NOW function [Date and time]
	NTILE function [Analytical]
	NULLIF function [Miscellaneous]
	NUMBER function [Miscellaneous]
	OBJECT_ID function [System]
	OBJECT_NAME function [System]
	OCTET_LENGTH function [String]
	PATINDEX function [String]
	PERCENT_RANK function [Analytical]
	PERCENTILE_CONT function [Analytical]
	PERCENTILE_DISC function [Analytical]
	PI function [Numeric]
	POWER function [Numeric]
	PROPERTY function [System]
	PROPERTY_DESCRIPTION function [System]
	PROPERTY_NAME function [System]
	PROPERTY_NUMBER function [System]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	RAND function [Numeric]
	RANK function [Analytical]
	REGR_AVGX function [Aggregate]
	REGR_AVGY function [Aggregate]
	REGR_COUNT function [Aggregate]
	REGR_INTERCEPT function [Aggregate]
	REGR_R2 function [Aggregate]
	REGR_SLOPE function [Aggregate]
	REGR_SXX function [Aggregate]
	REGR_SXY function [Aggregate]
	REGR_SYY function [Aggregate]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	REVERSE function [String]
	RIGHT function [String]
	ROUND function [Numeric]
	ROWID function [Miscellaneous]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SORTKEY function [String]
	SOUNDEX function [String]
	SPACE function [String]
	SQRT function [Numeric]
	SQUARE function [Numeric]
	STDDEV function [Aggregate]
	STDDEV_POP function [Aggregate]
	STDDEV_SAMP function [Aggregate]
	STR function [String]
	STR_REPLACE function [String]
	STRING function [String]
	STRTOUUID function [String]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	SUSER_ID function [System]
	SUSER_NAME function [System]
	TAN function [Numeric]
	TODAY function [Date and time]
	TRIM function [String]
	TRUNCNUM function [Numeric]
	TS_ARMA_AR function [Time Series]
	TS_ARMA_CONST function [Time Series]
	TS_ARMA_MA function [Time Series]
	TS_AUTOCORRELATION function [Time Series]
	TS_AUTO_UNI_AR function [Time Series]
	TS_BOX_COX_XFORM function [Time Series]
	TS_DIFFERENCE function [Time Series]
	TS_ESTIMATE_MISSING function [Time Series]
	TS_LACK OF FIT function [Time Series]
	TS_LACK OF FIT_P function [Time Series]
	TS_MAX_ARMA_AR function [Time Series]
	TS_MAX_ARMA_CONST function [Time Series]
	TS_MAX_ARMA_LIKELIHOOD function [Time Series]
	TS_MAX_ARMA_MA function [Time Series]
	TS_OUTLIER_IDENTIFICATION function [Time Series]
	TS_PARTIAL_AUTOCORRELATION function [Time Series]
	TS_VWAP function [Time Series]
	UCASE function [String]
	UPPER function [String]
	USER_ID function [System]
	USER_NAME function [System]
	UUIDTOSTR function [String]
	VAR_POP function [Aggregate]
	VAR_SAMP function [Aggregate]
	VARIANCE function [Aggregate]
	WEEKS function [Date and time]
	WEIGHTED_AVG function [Aggregate]
	WIDTH_BUCKET function [Numerical]
	YEAR function [Date and time]
	YEARS function [Date and time]
	YMD function [Date and time]

	CHAPTER 5 Differences from Other SQL Dialects
	Sybase IQ features

	CHAPTER 6 Physical Limitations
	Size and number limitations

	CHAPTER 7 System Procedures
	System procedure overview
	Syntax rules for stored procedures
	Understanding statistics reported by stored procedures

	System stored procedures
	sa_dependent_views procedure
	sa_verify_password procedure
	sa_get_user_status system procedure
	sp_expireallpasswords procedure
	sp_iqaddlogin procedure
	sp_iqbackupdetails procedure
	sp_iqbackupsummary procedure
	sp_iqcheckdb procedure
	sp_iqcheckoptions procedure
	sp_iqclient_lookup procedure
	sp_iqcolumn procedure
	sp_iqcolumnuse procedure
	sp_iqconnection procedure
	sp_iqconstraint procedure
	sp_iqcontext procedure
	sp_iqcopyloginpolicy procedure
	sp_iqcursorinfo procedure
	sp_iqdatatype procedure
	sp_iqdbsize procedure
	sp_iqdbspace procedure
	sp_iqdbspaceinfo procedure
	sp_iqdbspaceobjectinfo procedure
	sp_iqdbstatistics procedure
	sp_iqdroplogin procedure
	sp_iqemptyfile procedure
	sp_iqestjoin procedure
	sp_iqestdbspaces procedure
	sp_iqestspace procedure
	sp_iqevent procedure
	sp_iqfile procedure
	sp_iqhelp procedure
	sp_iqindex and sp_iqindex_alt procedures
	sp_iqindexadvice procedure
	sp_iqindexfragmentation procedure
	sp_iqindexinfo procedure
	sp_iqindexmetadata procedure
	sp_iqindexsize procedure
	sp_iqindexuse procedure
	sp_iqjoinindex procedure
	sp_iqjoinindexsize procedure
	sp_iqlmconfig procedure
	sp_iqlocks procedure
	sp_iqmodifyadmin procedure
	sp_iqmodifylogin procedure
	sp_iqobjectinfo procedure
	sp_iqpassword procedure
	sp_iqpkeys procedure
	sp_iqprocedure procedure
	sp_iqprocparm procedure
	sp_iqrebuildindex procedure
	sp_iqrename procedure
	sp_iq_reset_identity procedure
	sp_iqrestoreaction procedure
	sp_iqrowdensity procedure
	sp_iqshowpsexe procedure
	sp_iqspaceinfo procedure
	sp_iqspaceused procedure
	sp_iqstatistics procedure
	sp_iqstatus procedure
	sp_iqsysmon procedure
	sp_iqtable procedure
	sp_iqtablesize procedure
	sp_iqtableuse procedure
	sp_iqtransaction procedure
	sp_iqunusedcolumn procedure
	sp_iqunusedindex procedure
	sp_iqunusedtable procedure
	sp_iqversionuse procedure
	sp_iqview procedure
	sp_iqwho procedure
	sp_iqworkmon procedure

	Catalog stored procedures
	sa_audit_string system procedure
	sa_checkpoint_execute system procedure
	sa_conn_activity system procedure
	sa_conn_info system procedure
	sa_conn_properties system procedure
	sa_db_info system procedure
	sa_db_properties system procedure
	sa_enable_auditing_type system procedure
	sa_eng_properties system procedure
	sa_table_page_usage system procedure
	sa_disable_auditing_type system procedure
	sa_flush_cache system procedure
	sa_make_object system procedure
	sa_rowgenerator system procedure
	sa_server_option system procedure
	sa_set_http_header system procedure
	sa_set_http_option system procedure
	sa_validate system procedure
	sa_verify_password system procedure
	sp_login_environment system procedure
	sp_remote_columns system procedure
	sp_remote_exported_keys system procedure
	sp_remote_imported_keys system procedure
	sp_remote_primary_keys system procedure
	sp_remote_tables system procedure
	sp_servercaps system procedure
	sp_tsql_environment system procedure

	Adaptive Server Enterprise system and catalog procedures
	Adaptive Server Enterprise system procedures
	Adaptive Server Enterprise catalog procedures

	SQL Anywhere supported procedures

	CHAPTER 8 System Views
	SYSARTICLE system view
	SYSARTICLECOL system view
	SYSARTICLECOLS consolidated view
	SYSARTICLES consolidated view
	SYSCAPABILITIES consolidated view
	SYSCAPABILITY system view
	SYSCAPABILITYNAME system view
	SYSCATALOG consolidated view
	SYSCHECK system view
	SYSCOLAUTH consolidated view
	SYSCOLPERM system view
	SYSCOLLATION compatibility view (deprecated)
	SYSCOLLATIONMAPPINGS compatibility view (deprecated)
	SYSCOLSTAT system view
	SYSCOLSTATS consolidated view
	SYSCOLUMN compatibility view (deprecated)
	SYSCOLUMNS consolidated view
	SYSCOLUMNS ASE compatibility view
	SYSCOMMENTS ASE compatibility view
	SYSCONSTRAINT system view
	SYSDBFILE system view
	SYSDBSPACE system view
	SYSDBSPACEPERM system view
	SYSDEPENDENCY system view
	SYSDOMAIN system view
	SYSEVENT system view
	SYSEVENTTYPE system view
	SYSEXTERNENV system view
	SYSEXTERNENVOBJECT system view
	SYSEXTERNLOGIN system view
	SYSFILE compatibility view (deprecated)
	SYSFKCOL compatibility view (deprecated)
	SYSFKEY system view
	SYSFOREIGNKEY compatibility view (deprecated)
	SYSFOREIGNKEYS consolidated view
	SYSGROUP system view
	SYSGROUPS consolidated view
	SYSHISTORY system view
	SYSIDX system view
	SYSIDXCOL system view
	SYSINDEX compatibility view (deprecated)
	SYSINDEXES consolidated view
	SYSINDEXES ASE compatibility view
	SYSINFO compatibility view (deprecated)
	SYSIQBACKUPHISTORY system view
	SYSIQBACKUPHISTORYDETAIL system view
	SYSIQCOLUMN system view (deprecated)
	SYSIQDBFILE system view
	SYSIQDBSPACE system view
	SYSIQFILE system view (deprecated)
	SYSIQIDX system view
	SYSIQINFO system view
	SYSIQJOINIDX system view
	SYSIQJOININDEX system view (deprecated)
	SYSIQJOINIXCOLUMN system view
	SYSIQJOINIXTABLE system view
	SYSIQMPXLOGINPOLICYOPTION system view
	SYSIQMPXSERVER system view
	SYSIQOBJECTS ASE compatibility view
	SYSIQPARTITIONCOLUMN system view
	SYSIQTAB system view
	SYSIQTABCOL system view
	SYSIQTABLE system view (deprecated)
	SYSIQVINDEX ASE compatibility view
	SYSIXCOL compatibility view (deprecated)
	SYSJAR system view
	SYSJARCOMPONENT system view
	SYSJAVACLASS system view
	SYSLOGINMAP system view
	SYSLOGINPOLICY system view
	SYSLOGINPOLICYOPTION system view
	SYSLOGINS ASE compatibility view
	SYSMVOPTION system view
	SYSMVOPTIONNAME system view
	SYSOBJECT system view
	SYSOBJECTS ASE compatibility view
	SYSOPTION system view
	SYSOPTIONS consolidated view
	SYSOPTSTAT system view
	SYSPARTITION system view
	SYSPARTITIONKEY system view
	SYSPARTITIONSCHEME system view
	SYSPHYSIDX system view
	SYSPROCAUTH consolidated view
	SYSPROCEDURE system view
	SYSPROCPARM system view
	SYSPROCPARMS consolidated view
	SYSPROCPERM system view
	SYSPROCS consolidated view
	SYSPROXYTAB system view
	SYSPUBLICATION system view
	SYSPUBLICATIONS consolidated view
	SYSREMARK system view
	SYSREMOTEOPTION system view
	SYSREMOTEOPTION2 consolidated view
	SYSREMOTEOPTIONS consolidated view
	SYSREMOTEOPTIONTYPE system view
	SYSREMOTETYPE system view
	SYSREMOTETYPES consolidated view
	SYSREMOTEUSER system view
	SYSREMOTEUSERS consolidated view
	SYSSCHEDULE system view
	SYSSERVER system view
	SYSSOURCE system view
	SYSSQLSERVERTYPE system view
	SYSSUBPARTITIONKEY system view
	SYSSUBSCRIPTION system view
	SYSSUBSCRIPTIONS consolidated view
	SYSSYNC system view
	SYSSYNC2 consolidated view
	SYSSYNCPUBLICATIONDEFAULTS consolidated view
	SYSSYNCS consolidated view
	SYSSYNCSCRIPT system view
	SYSSYNCSCRIPTS consolidated view
	SYSSYNCSUBSCRIPTIONS consolidated view
	SYSSYNCUSERS consolidated view
	SYSTAB system view
	SYSTABLE compatibility view (deprecated)
	SYSTABAUTH consolidated view
	SYSTABCOL system view
	SYSTABLEPERM system view
	SYSTEXTCONFIG system view
	SYSTEXTIDX system view
	SYSTEXTIDXTAB system view
	SYSTRIGGER system view
	SYSTRIGGERS consolidated view
	SYSTYPEMAP system view
	SYSTYPES ASE compatibility view
	SYSUSER system view
	SYSUSERAUTH compatibility view (deprecated)
	SYSUSERAUTHORITY system view
	SYSUSERLIST compatibility view (deprecated)
	SYSUSERMESSAGE system view
	SYSUSEROPTIONS consolidated view
	SYSUSERPERM compatibility view (deprecated)
	SYSUSERPERMS compatibility view (deprecated)
	SYSUSERTYPE system view
	SYSUSERS ASE compatibility view
	SYSVIEW system view
	SYSVIEWS consolidated view
	SYSWEBSERVICE system view
	Transact-SQL compatibility views

	CHAPTER 9 System Tables
	System table list
	DUMMY system table

	APPENDIX A Compatibility with Other Sybase Databases
	An overview of Transact-SQL support
	Adaptive Server architectures
	Servers and databases
	Space allocation and device management
	System tables, catalog store, and IQ store
	Administrative roles

	Data types
	Bit data type
	Character data types
	Binary data types
	Date, time, datetime, and timestamp data types
	Numeric data types
	Approximate numeric data types
	Text data type
	Image data type
	Java data types

	Data definition language
	Creating a Transact-SQL compatible database
	Case-sensitivity
	Ensuring compatible object names
	CREATE TABLE statement
	CREATE DEFAULT, CREATE RULE, and CREATE DOMAIN statements
	CREATE TRIGGER statement
	CREATE INDEX statement
	Users, groups, and permissions
	Load formats
	Setting options for Transact-SQL compatibility

	Data manipulation language
	General guidelines for writing portable SQL
	Writing compatible queries
	Subqueries
	GROUP BY clause
	COMPUTE clause
	WHERE clause
	Joins
	Transact-SQL outer joins
	ANSI joins
	More information on outer joins

	Null comparisons
	Zero-length strings
	HOLDLOCK, SHARED, and FOR BROWSE
	SQL functions
	OLAP functions
	System functions
	User-defined functions
	Arithmetic expressions on dates
	SELECT INTO
	Updatable views
	FROM clause in UPDATE and DELETE

	Transact-SQL procedure language overview
	Transact-SQL stored procedure overview
	Transact-SQL batch overview
	SQL statements in procedures and batches
	Expression subqueries in IF statements
	CASE statement
	Row-level cursor operations
	Print command

	Automatic translation of stored procedures
	Returning result sets from Transact-SQL procedures
	Variables in Transact-SQL procedures
	Error handling in Transact-SQL procedures
	Using the RAISERROR statement in procedures
	Transact-SQL-like error handling in the Watcom-SQL dialect

	SQL Anywhere and Sybase IQ
	Server and database startup and administration
	Database options
	Data definition language (DDL)
	Data manipulation language (DML)
	Stored procedures

	Adaptive Server Enterprise and Sybase IQ
	Stored procedures
	System views

	Index

