TS_ARMA_CONST function [Time Series]

NoteThis function is available only with RAP – The Trading Edition Enterprise.

Function

Calculates the least-square estimates of parameters for an autoregressive moving average (ARMA) model, and returns an estimated constant.

Syntax

TS_ARMA_CONST (timeseries_expression, method)
OVER (window-spec)

Parameters

timeseries_expression A numeric expression, generally a column name, containing an element in a time series.

method An integer that identifies the type of procedure used to compute estimates. 0 (the default value) = method of least squares; 1 = method of moments.

window-spec TS_ARMA_CONST is an OLAP function requiring an OVER () clause.

Usage

This time series function returns a double-precision floating-point value containing the constant estimate produced by the function. TS_ARMA_CONST calls the function imsls_d_arma in the IMSL libraries.

IMSL mapping

The arguments of TS_ARMA_CONST map to the IMSL library function imsls_d_arma as follows:

params = imsls_d_arma(n_objs, z, p, q, IMSLS_CONSTANT, method_id, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window frame.

p =1.

q =1.

MethodID Maps to the method argument of TS_ARMA_CONST.

For detailed information on how the function imsls_d_arma performs time series calculations, see IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library.

Example 1

This example shows an input data table, a SQL statement containing the TS_ARMA_CONST function, and the data values returned by the function. This example uses the following table (called DATASET) as its input data. The DATASET table contains 50 rows of time series data:

Table 4-29: Input data table DATASET

rownum

data

1

0.315523

2

0.485859

3

0.676886

4

1.97381

5

2.77555

6

2.73657

7

2.64233

8

4.26118

9

3.13641

10

4.16566

11

2.95952

12

2.14504

13

1.98799

14

0.805859

15

0.833405

16

2.29075

17

1.30045

18

0.467122

19

-0.170107

20

-0.256657

21

-0.382597

22

-0.505511

23

-1.90147

24

-0.981688

25

-1.43116

26

-1.39389

27

-2.34823

28

-2.91122

29

-0.927423

30

-0.044383

31

-0.389648

32

0.545008

33

0.614096

34

0.364668

35

1.16043

36

-0.654063

37

0.616094

38

2.00875

39

1.86696

40

2.80171

41

3.78422

42

4.11499

43

2.77188

44

4.00312

45

4.21298

46

5.00413

47

4.74498

48

4.89621

49

3.93273

50

4.31592

The following SQL statement returns an estimated constant from the data column using the method of least squares:

SELECT TS_ARMA_CONST(data,0) OVER (ORDER BY ROWNUM rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-30: Values returned from TS_ARMA_CONST Example 1

res

0.082077

0.082077

0.082077

0.082077

0.082077

0.082077

0.082077

0.082077

0.082077

...

0.082077

Example 2

This example provides a sample query that returns estimates for the AR, MA, and constant parameters. The first element for AR and MA in the array contains one element. See Table 4-29 for the DATASET table.

select ts_arma_ar(data,1,1,0) over (order by rownum rows between unbounded preceding and unbounded following) as ar_param, ts_arma_ma(data,1,1,0) over (order by rownum rows between unbounded preceding and unbounded following) as ma_param, ts_arma_const(data,0) over (order by rownum rows between unbounded preceding and unbounded following) as const_param FROM DATASET

Sybase IQ returns 50 rows of data, each containing the same three values:

Table 4-31: Values returned from TS_ARMA_CONST Example 2

ar_param

ma_param

const_param

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

0.898793

0.105075

0.082077

...

...

...

0.898793

0.105075

0.082077

Standards and compatibility

See also

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library