TS_PARTIAL_AUTOCORRELATION function [Time Series]

NoteThis function is available only with RAP – The Trading Edition Enterprise.

Function

Calculates the sample partial autocorrelation function of a stationary time series.

Syntax

TS_PARTIAL_AUTOCORRELATION (timeseries_expression, lagmax, lag_elem)
OVER (window-spec)

Parameters

timeseries_expression A numeric expression, generally a column name, containing an element in a time series.

lagmax An integer containing the maximum lag of autocovariance, autocorrelations, and standard errors of autocorrelations to be calculated. The integer must be greater than or equal to 1, and less than the number of elements in the time series.

lag_elem An integer identifying the element in the autocorrelation array to return. The integer must be greater than 0 and less than or equal to lagmax.

window-spec TS_PARTIAL_AUTOCORRELATION is an OLAP function requiring an OVER () clause.

Usage

This function returns an outlier-free time series. TS_PARTIAL_AUTOCORRELATION calls the function imsls_d_autocorrelation and imsls_d_partial_autocorrelation in the IMSL libraries.

IMSL mapping

The arguments of TS_PARTIAL_AUTOCORRELATION map to the IMSL library functions imsls_d_autocorrelation and imsls_d_partial_autocorrelation as follows:

params = imsls_d_autocorrelation(n_objs, z[], lagmax, 0);
result = imsls_d_partial_autocorrelation(lagmax, params, 0);

n_objs Contains the number of rows in the current window frame.

z[] Contains the value of timeseries_expression for the current window frame.

lagmax Maps to the TS_PARTIAL_AUTOCORRELATION argument lagmax.

For detailed information on how the IMSL functions imsls_d_autocorrelation and imsls_d_partial_autocorrelation perform time series calculations, see IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library.

Example

This example shows an input data table, a SQL statement containing the TS_PARTIAL_AUTOCORRELATION function, and the data values returned by the function. This example uses the following table (called DATASET) as its input data. The DATASET table contains 50 rows of time series data:

Table 4-59: Input data table DATASET

rownum

data

1

0.315523

2

0.485859

3

0.676886

4

1.97381

5

2.77555

6

2.73657

7

2.64233

8

4.26118

9

3.13641

10

4.16566

11

2.95952

12

2.14504

13

1.98799

14

0.805859

15

0.833405

16

2.29075

17

1.30045

18

0.467122

19

-0.170107

20

-0.256657

21

-0.382597

22

-0.505511

23

-1.90147

24

-0.981688

25

-1.43116

26

-1.39389

27

-2.34823

28

-2.91122

29

-0.927423

30

-0.044383

31

-0.389648

32

0.545008

33

0.614096

34

0.364668

35

1.16043

36

-0.654063

37

0.616094

38

2.00875

39

1.86696

40

2.80171

41

3.78422

42

4.11499

43

2.77188

44

4.00312

45

4.21298

46

5.00413

47

4.74498

48

4.89621

49

3.93273

50

4.31592

The following SQL statement returns the first element from an array containing partial autocorrelations of data from the data column:

select ts_partial_autocorrelation(data,1,1) over (order by rownum rows between unbounded preceding and unbounded following) as res FROM DATASET

Sybase IQ returns 50 rows, each containing the same value:

Table 4-60: Values returned from TS_PARTIAL_AUTOCORRELATION

res

0.883453

0.883453

0.883453

0.883453

0.883453

0.883453

0.883453

0.883453

0.883453

0.883453

...

0.883453

Standards and compatibility

See also

Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2

IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library