This function is available only with RAP – The Trading Edition Enterprise.
Calculates the sample partial autocorrelation function of a stationary time series.
TS_PARTIAL_AUTOCORRELATION (timeseries_expression, lagmax, lag_elem)
OVER (window-spec)
timeseries_expression A numeric expression, generally a column name, containing an element in a time series.
lagmax An integer containing the maximum lag of autocovariance, autocorrelations, and standard errors of autocorrelations to be calculated. The integer must be greater than or equal to 1, and less than the number of elements in the time series.
lag_elem An integer identifying the element in the autocorrelation array to return. The integer must be greater than 0 and less than or equal to lagmax.
window-spec TS_PARTIAL_AUTOCORRELATION is an OLAP function requiring an OVER () clause.
This function returns an outlier-free time series. TS_PARTIAL_AUTOCORRELATION calls the function imsls_d_autocorrelation and imsls_d_partial_autocorrelation in the IMSL libraries.
The arguments of TS_PARTIAL_AUTOCORRELATION map to the IMSL library functions imsls_d_autocorrelation and imsls_d_partial_autocorrelation as follows:
params = imsls_d_autocorrelation(n_objs, z[], lagmax, 0);
result = imsls_d_partial_autocorrelation(lagmax, params, 0);
n_objs Contains the number of rows in the current window frame.
z[] Contains the value of timeseries_expression for the current window frame.
lagmax Maps to the TS_PARTIAL_AUTOCORRELATION argument lagmax.
For detailed information on how the IMSL functions imsls_d_autocorrelation and imsls_d_partial_autocorrelation perform time series calculations, see IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library.
This example shows an input data table, a SQL statement containing the TS_PARTIAL_AUTOCORRELATION function, and the data values returned by the function. This example uses the following table (called DATASET) as its input data. The DATASET table contains 50 rows of time series data:
rownum |
data |
---|---|
1 |
0.315523 |
2 |
0.485859 |
3 |
0.676886 |
4 |
1.97381 |
5 |
2.77555 |
6 |
2.73657 |
7 |
2.64233 |
8 |
4.26118 |
9 |
3.13641 |
10 |
4.16566 |
11 |
2.95952 |
12 |
2.14504 |
13 |
1.98799 |
14 |
0.805859 |
15 |
0.833405 |
16 |
2.29075 |
17 |
1.30045 |
18 |
0.467122 |
19 |
-0.170107 |
20 |
-0.256657 |
21 |
-0.382597 |
22 |
-0.505511 |
23 |
-1.90147 |
24 |
-0.981688 |
25 |
-1.43116 |
26 |
-1.39389 |
27 |
-2.34823 |
28 |
-2.91122 |
29 |
-0.927423 |
30 |
-0.044383 |
31 |
-0.389648 |
32 |
0.545008 |
33 |
0.614096 |
34 |
0.364668 |
35 |
1.16043 |
36 |
-0.654063 |
37 |
0.616094 |
38 |
2.00875 |
39 |
1.86696 |
40 |
2.80171 |
41 |
3.78422 |
42 |
4.11499 |
43 |
2.77188 |
44 |
4.00312 |
45 |
4.21298 |
46 |
5.00413 |
47 |
4.74498 |
48 |
4.89621 |
49 |
3.93273 |
50 |
4.31592 |
The following SQL statement returns the first element from an array containing partial autocorrelations of data from the data column:
select ts_partial_autocorrelation(data,1,1) over (order by rownum rows between unbounded preceding and unbounded following) as res FROM DATASET
Sybase IQ returns 50 rows, each containing the same value:
res |
---|
0.883453 |
0.883453 |
0.883453 |
0.883453 |
0.883453 |
0.883453 |
0.883453 |
0.883453 |
0.883453 |
0.883453 |
... |
0.883453 |
Chapter 2, “Using OLAP” in the System Administration Guide: Volume 2
IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library