
UltraLite®
M-Business Anywhere Programming

Published: October 2006

Copyright and trademarks
Copyright © 2006 iAnywhere Solutions, Inc. Portions copyright © 2006 Sybase, Inc. All rights reserved.

iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

iAnywhere grants you permission to use this document for your own informational, educational, and other non-commercial purposes; provided
that (1) you include this and all other copyright and proprietary notices in the document in all copies; (2) you do not attempt to "pass-off" the
document as your own; and (3) you do not modify the document. You may not publish or distribute the document or any portion thereof without
the express prior written consent of iAnywhere.

This document is not a commitment on the part of iAnywhere to do or refrain from any activity, and iAnywhere may change the content of
this document at its sole discretion without notice. Except as otherwise provided in a written agreement between you and iAnywhere, this
document is provided “as is”, and iAnywhere assumes no liability for its use or any inaccuracies it may contain.

iAnywhere®, Sybase®, and the marks listed at http://www.ianywhere.com/trademarks are trademarks of Sybase, Inc. or its subsidiaries. ®
indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.ianywhere.com/trademarks

Contents

About This Manual ... v

SQL Anywhere documentation ... vi
Documentation conventions ... ix
Finding out more and providing feedback ... xiii

Introduction to UltraLite for M-Business Anywhere 1

UltraLite for M-Business Anywhere features .. 2
UltraLite for M-Business Anywhere architecture ... 3

Understanding UltraLite for M-Business Anywhere Development 5

UltraLite for M-Business Anywhere Quick Start ... 6
Connecting to an UltraLite database ... 10
Maintaining connections and application state across pages 11
Persistent names in M-Business Anywhere applications 12
Database encryption and obfuscation .. 15
Working with data using SQL ... 16
Working with data using the table API .. 20
Accessing schema information ... 26
Handling errors .. 27
Authenticating users ... 28
Synchronizing data ... 29
Deploying UltraLite for M-Business Anywhere applications 32

Tutorial: A Sample Application for M-Business Anywhere 35

Introduction .. 36
Lesson 1: Create project architecture ... 37
Lesson 2: Create the application files ... 39
Lesson 3: Set up the M-Business Anywhere Server and Client 41
Lesson 4: Add startup code to your application .. 43
Lesson 5: Add inserts to your application .. 46

Copyright © 2006, iAnywhere Solutions, Inc. iii

Lesson 6: Add navigation to your application .. 49
Lesson 7: Add updates and deletes to your application 50
Lesson 8: Add synchronization to your application .. 52

UltraLite for M-Business Anywhere API Reference 55

Data types in UltraLite for M-Business Anywhere ... 56
Class AuthStatusCode .. 57
Class Connection .. 58
Class ConnectionParms ... 66
Class CreationParms .. 68
Class DatabaseManager ... 70
Class DatabaseSchema .. 73
Class IndexSchema ... 78
Class PreparedStatement ... 81
Class PublicationSchema ... 91
Class ResultSet ... 92
Class ResultSetSchema .. 108
Class SQLError .. 112
Class SQLType .. 120
Class SyncParms .. 122
Class SyncResult .. 133
Class TableSchema ... 139
Class ULTable .. 150
Class UUID ... 175

Index .. 177

UltraLite® - M-Business Anywhere Programming

iv Copyright © 2006, iAnywhere Solutions, Inc.

About This Manual
Subject

This manual describes UltraLite for M-Business Anywhere. With UltraLite for M-Business Anywhere you
can develop and deploy web-based database applications to handheld, mobile, or embedded devices, running
Palm OS, Windows CE, or Windows XP.

M-Business Anywhere is the iAnywhere platform for developing and deploying mobile web-based
applications. The previous name for the product was AvantGo M-Business Server.

Audience
This manual is intended for application developers who want to take advantage of the performance, resource
efficiency, robustness, and security of an UltraLite relational database for data storage and synchronization.

Copyright © 2006, iAnywhere Solutions, Inc. v

SQL Anywhere documentation
This book is part of the SQL Anywhere documentation set. This section describes the books in the
documentation set and how you can use them.

The SQL Anywhere documentation
The complete SQL Anywhere documentation is available in two forms: an online form that combines all
books, and as separate PDF files for each book. Both forms of the documentation contain identical
information and consist of the following books:

♦ SQL Anywhere 10 - Introduction This book introduces SQL Anywhere 10—a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

♦ SQL Anywhere 10 - Changes and Upgrading This book describes new features in SQL Anywhere
10 and in previous versions of the software.

♦ SQL Anywhere Server - Database Administration This book covers material related to running,
managing, and configuring SQL Anywhere databases. It describes database connections, the database
server, database files, security, backup procedures, security, and replication with Replication Server, as
well as administration utilities and options.

♦ SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

♦ SQL Anywhere Server - SQL Reference This book provides a complete reference for the SQL
language used by SQL Anywhere. It also describes the SQL Anywhere system views and procedures.

♦ SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, and Java programming languages, as well as Visual Studio .NET. Users
of tools such as Visual Basic and PowerBuilder can use the programming interfaces provided by those
tools.

♦ SQL Anywhere 10 - Error Messages This book provides a complete listing of SQL Anywhere error
messages together with diagnostic information.

♦ MobiLink - Getting Started This manual introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

♦ MobiLink - Server Administration This manual describes how to set up and administer MobiLink
applications.

♦ MobiLink - Client Administration This manual describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases.

♦ MobiLink - Server-Initiated Synchronization This manual describes MobiLink server-initiated
synchronization, a feature of MobiLink that allows you to initiate synchronization or other remote actions
from the consolidated database.

About This Manual

vi Copyright © 2006, iAnywhere Solutions, Inc.

♦ QAnywhere This manual describes QAnywhere, which defines a messaging platform for mobile and
wireless clients as well as traditional desktop and laptop clients.

♦ SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

♦ SQL Anywhere 10 - Context-Sensitive Help This manual provides context-sensitive help for the
Connect dialog, the Query Editor, the MobiLink Monitor, the SQL Anywhere Console utility, the Index
Consultant, and Interactive SQL.

♦ UltraLite - Database Management and Reference This manual introduces the UltraLite database
system for small devices.

♦ UltraLite - AppForge Programming This manual describes UltraLite for AppForge. With UltraLite
for AppForge you can develop and deploy database applications to handheld, mobile, or embedded
devices, running Palm OS, Symbian OS, or Windows CE.

♦ UltraLite - .NET Programming This manual describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

♦ UltraLite - M-Business Anywhere Programming This manual describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows CE, or Windows XP.

♦ UltraLite - C and C++ Programming This manual describes UltraLite C and C++ programming
interfaces. With UltraLite you can develop and deploy database applications to handheld, mobile, or
embedded devices.

Documentation formats
SQL Anywhere provides documentation in the following formats:

♦ Online documentation The online documentation contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product, and is the most complete and
up-to-date source of documentation.

To access the online documentation on Windows operating systems, choose Start ► Programs ► SQL
Anywhere 10 ► Online Books. You can navigate the online documentation using the HTML Help table
of contents, index, and search facility in the left pane, as well as using the links and menus in the right
pane.

To access the online documentation on Unix operating systems, see the HTML documentation under
your SQL Anywhere installation or on your installation CD.

♦ PDF files The complete set of SQL Anywhere books is provided as a set of Adobe Portable Document
Format (pdf) files, viewable with Adobe Reader.

On Windows, the PDF books are accessible from the online books via the PDF link at the top of each
page, or from the Windows Start menu (Start ► Programs ► SQL Anywhere 10 ► Online Books - PDF
Format).

SQL Anywhere documentation

Copyright © 2006, iAnywhere Solutions, Inc. vii

On Unix, the PDF books are accessible on your installation CD.

About This Manual

viii Copyright © 2006, iAnywhere Solutions, Inc.

Documentation conventions
This section lists the typographic and graphical conventions used in this documentation.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in uppercase, like the words ALTER TABLE in the following
example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers or expressions are shown like
the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of the list followed by an ellipsis
(three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. In this example, if more than one is specified, they must be
separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

♦ Options When none or only one of a list of items can be chosen, vertical bars separate the items and
the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in curly
braces and a bar is used to separate the options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The brackets and braces should not
be typed.

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. ix

File name conventions

The documentation generally adopts Windows conventions when describing operating-system dependent
tasks and features such as paths and file names. In most cases, there is a simple transformation to the syntax
used on other operating systems.

♦ Directories and path names The documentation typically lists directory paths using Windows
conventions, including colons for drives and backslashes as a directory separator. For example,

MobiLink\redirector

On Unix, Linux, and Mac OS X, you should use forward slashes instead. For example,

MobiLink/redirector
♦ Executable files The documentation shows executable file names using Windows conventions, with

the suffix .exe. On Unix, Linux, and Mac OS X, executable file names have no suffix. On NetWare,
executable file names use the suffix .nlm.

For example, on Windows, the network database server is dbsrv10.exe. On Unix, Linux, and Mac OS
X, it is dbsrv10. On NetWare, it is dbsrv10.nlm.

♦ install-dir The installation process allows you to choose where to install SQL Anywhere, and the
documentation refers to this location using the convention install-dir.

After installation is complete, the environment variable SQLANY10 specifies the location of the
installation directory containing the SQL Anywhere components (install-dir). SQLANYSH10 specifies
the location of the directory containing components shared by SQL Anywhere with other Sybase
applications.

For more information on the default location of install-dir, by operating system, see “File Locations and
Installation Settings” [SQL Anywhere Server - Database Administration].

♦ samples-dir The installation process allows you to choose where to install the samples that are
included with SQL Anywhere, and the documentation refers to this location using the convention
samples-dir.

After installation is complete, the environment variable SQLANYSAMP10 specifies the location of the
directory containing the samples (samples-dir). From the Windows Start menu, choosing
Programs ► SQL Anywhere 10 ► Sample Applications and Projects opens a Windows Explorer window
in this directory.

For more information on the default location of samples-dir, by operating system, see “The samples
directory” [SQL Anywhere Server - Database Administration].

♦ Environment variables The documentation refers to setting environment variables. On Windows,
environment variables are referred to using the syntax %envvar%. On Unix, Linux, and Mac OS X,
environment variables are referred to using the syntax $envvar or ${envvar}.

About This Manual

x Copyright © 2006, iAnywhere Solutions, Inc.

Unix, Linux, and Mac OS X environment variables are stored in shell and login startup files, such
as .cshrc or .tcshrc.

Graphic icons
The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as SQL Anywhere.

♦ An UltraLite application.

♦ A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

♦ A Sybase Replication Server

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. xi

♦ A programming interface.

Interface

About This Manual

xii Copyright © 2006, iAnywhere Solutions, Inc.

Finding out more and providing feedback
Finding out more

Additional information and resources, including a code exchange, are available at the iAnywhere Developer
Network at http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere Solutions newsgroups listed
below.

When you write to one of these newsgroups, always provide detailed information about your problem,
including the build number of your version of SQL Anywhere. You can find this information by entering
dbeng10 -v at a command prompt.

The newsgroups are located on the forums.sybase.com news server. The newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.
iAnywhere Solutions Technical Advisors as well as other staff assist on the newsgroup service when they
have time available. They offer their help on a volunteer basis and may not be available on a regular basis
to provide solutions and information. Their ability to help is based on their workload.

Feedback
We would like to receive your opinions, suggestions, and feedback on this documentation.

You can email comments and suggestions to the SQL Anywhere documentation team at
iasdoc@ianywhere.com. Although we do not reply to emails sent to that address, we read all suggestions
with interest.

In addition, you can provide feedback on the documentation and the software through the newsgroups listed
above.

Finding out more and providing feedback

Copyright © 2006, iAnywhere Solutions, Inc. xiii

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

CHAPTER 1

Introduction to UltraLite for M-Business
Anywhere

Contents
UltraLite for M-Business Anywhere features .. 2
UltraLite for M-Business Anywhere architecture ... 3

About this chapter
This chapter introduces UltraLite for M-Business Anywhere. It assumes that you are familiar with the
features of UltraLite, as described in “Introducing UltraLite” [UltraLite - Database Management and
Reference].

Copyright © 2006, iAnywhere Solutions, Inc. 1

UltraLite for M-Business Anywhere features
UltraLite for M-Business Anywhere is a relational data management system for mobile devices. It has the
performance, resource efficiency, robustness, and security required by business applications. UltraLite also
provides synchronization with enterprise data stores.

System requirements and supported platforms

Development platforms
To develop applications using UltraLite for M-Business Anywhere, you require the following:

♦ M-Business Anywhere is the new name for AvantGo M-Business Server. This software requires M-
Business Server 5.3 or later, and the corresponding M-Business Anywhere client.

Target platforms
UltraLite for M-Business Anywhere supports the following target platforms:

♦ Windows CE 3.0 and higher, with Pocket PC on the ARM processor, including Windows Mobile 5.0.

♦ Palm OS version 5.0 and higher.

♦ Windows XP, starting with M-Business Anywhere 5.5.

F For more information, see the UltraLite table in UltraLite Deployment Option for SQL Anywhere.

Introduction to UltraLite for M-Business Anywhere

2 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite for M-Business Anywhere architecture
The UltraLite programming interface exposes a set of objects for data manipulation using an UltraLite
database. The following figure describes the object hierarchy.

DatabaseManager

Connection DatabaseSchema

PublicationSchema

SyncParms

SyncResult

Table

TableSchema

IndexSchema

Prepared Statement

ResultSetConnectionParms

ResultSetSchemaCreationParms

The following list describes some of the more commonly-used high-level objects.

♦ DatabaseManager manages connections to UltraLite databases.

For more information, see “Class DatabaseManager” on page 70.

♦ ConnectionParms holds a set of connection parameters.

For more information, see “Class ConnectionParms” on page 66.

♦ CreationParms holds a set of database creation parameters.

For more information, see “Class CreationParms” on page 68.

♦ Connection represents a database connection, and governs transactions.

For more information, see “Class Connection” on page 58.

♦ PreparedStatement, ResultSet, and ResultSetSchema manage database requests and their
results using SQL.

For more information, see “Class PreparedStatement” on page 81, “Class ResultSet” on page 92, and
“Class ResultSetSchema” on page 108.

UltraLite for M-Business Anywhere architecture

Copyright © 2006, iAnywhere Solutions, Inc. 3

♦ Table manages data using a table-based API.

For more information, see “Class ULTable” on page 150.

♦ SyncParms and SyncResult manage synchronization through the MobiLink synchronization
server.

For more information about synchronization with MobiLink, see “UltraLite Clients” [MobiLink - Client
Administration].

Introduction to UltraLite for M-Business Anywhere

4 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 2

Understanding UltraLite for M-Business
Anywhere Development

Contents
UltraLite for M-Business Anywhere Quick Start ... 6
Connecting to an UltraLite database ... 10
Maintaining connections and application state across pages 11
Persistent names in M-Business Anywhere applications 12
Database encryption and obfuscation .. 15
Working with data using SQL ... 16
Working with data using the table API .. 20
Accessing schema information ... 26
Handling errors .. 27
Authenticating users ... 28
Synchronizing data ... 29
Deploying UltraLite for M-Business Anywhere applications 32

About this chapter
This chapter describes application development using UltraLite for M-Business Anywhere.

Copyright © 2006, iAnywhere Solutions, Inc. 5

UltraLite for M-Business Anywhere Quick Start
The following procedures describe how to run the supplied CustDB and Simple sample applications.

Before you start, ensure that you have M-Business Anywhere 6.0 or later installed and running, and that you
have administrative privileges on the server. You must also have a supported handheld device.

♦ To install and run M-Business Anywhere samples

1. Copy the UltraLite for M-Business Anywhere sample files to your installation directory for deployment.

a. Open a command prompt and change directory to the samples-dir
\UltraLiteForMBusinessAnywhere\CustDB subdirectory of your SQL Anywhere installation.

b. Run the following command:

build.bat deploy-dir

where deploy-dir is the directory where the CustDB and UltraLite files are to be deployed. For
example, you may choose C:\tutorial\mba

The batch file copies the required files to the location you specify. To see what files are being
copied, examine the file samples-dir\UltraLiteForMBusinessAnywhere\CustDB\build.bat using a
text editor.

2. Create a virtual directory in your web server that points to the directory deploy-dir specified in step 1.
The following instructions are for Microsoft IIS:

a. Open the IIS management tool.

b. Right-click your web site and choose New ► Virtual Directory. Name this virtual directory
CustDB and specify your deployment directory deploy-dir as the content directory. Leave the other
settings at their default values.

c. Right-click the new virtual directory and choose Properties. In the HTTP Headers tab, click File
Types and register the following file extensions as the type application/octet-stream:

♦ For Windows and Windows CE: cab, dll
♦ For Palm OS: pdb, prc
♦ udb

d. Make a note of the URL that accesses the file main.htm in this virtual directory. In a default
installation this would be http://localhost/CustDB/main.htm.

3. Add users to M-Business Anywhere.

There are three ways to add new users to M-Business Anywhere: by creating new user profiles, by
allowing users to self-register, and by importing a CSV file. These instructions describe how to create
a new user profile. For more information, see the M-Business Anywhere documentation.

a. Log in to M-Business Anywhere as an administrator.

Understanding UltraLite for M-Business Anywhere Development

6 Copyright © 2006, iAnywhere Solutions, Inc.

The default administrator account settings are a user ID of Admin and an empty password.

b. In the left panel, click Users.

c. Click Create User. The Create User page appears.

d. Type a unique user name in the User Name field.

e. Type the same password in the Password and the Confirm Password fields.

f. Click Save to add the user.

4. Deploy the M-Business Anywhere Client to a handheld device or PC.

a. Click the Download Client Software Only link on the M-Business Anywhere login page. Run the
installation to install the client.

b. On the handheld device or PC, configure M-Business Connect to synchronize with the M-Business
Anywhere server.

Enter the user ID and password of the new M-Business user account you created.

c. Synchronize to the M-Business Anywhere server at least.

If you have connection problems at this stage, specify the IP number rather than the host name as
the host to avoid name resolution issues with some versions of ActiveSync.

F For more information, see your M-Business Anywhere documentation.

5. Add a group to M-Business Anywhere.

The group will be used to test UltraLite for M-Business Anywhere.

a. From a web browser, connect to M-Business Anywhere.

The default URL is http://localhost or http://localhost:8091.

b. Log in using the administrator account.

c. Click the Groups option in the left navigation panel, and click Create Group.

d. Name your group UltraLite Samples.

6. Configure the M-Business Anywhere channel settings.

a. Add the user you created in step 3 to the group UltraLite Samples using the Users option in the
left panel under Edit Group.

b. Use the group's "Channels" option in the left navigation panel to create the following channel:

Setting Value

Channel Name CustDB

Location http://localhost/CustDB/main.htm or the URL from step 2.

UltraLite for M-Business Anywhere Quick Start

Copyright © 2006, iAnywhere Solutions, Inc. 7

Setting Value

Size 1000

Link depth 3

Allow binary distribution Yes (checked)

Hidden No (unchecked)

After setting the Location value, click View to confirm that you have entered the value correctly.

7. Synchronize your client.

The initial synchronization downloads the UltraLite for M-Business Anywhere files onto your handheld
device.

♦ To verify your setup

1. Check that the required files are present.

♦ On Pocket PC, after you have synchronized the device, check that the following files are in the
\Program Files\AvantGo\Pods folder:

♦ ulpod10.dll
♦ custdb.udb

If any of these files is missing, you may have to manually copy them over to the device.

♦ On Palm OS, after you have synchronized your device, check Palm OS App Info for the presence
of the following:

♦ ulpod
♦ custdb

If any of these are missing, you may have to use the Palm install utility to install the UltraLite for
M-Business Anywhere runtime .prc and sample schemas .pdb files to the device.

♦ On Windows XP, after you have synchronized your device, check that the following files are in the
AvantGo\Pods subdirectory of your AvantGo Connect folder:

♦ ulpod10.dll
♦ custdb.udb

If any of these files are missing, you may have to manually copy them over to the device.

2. Launch M-Business Client.

On your handheld device or PC, check that the About screen displays the UltraLite for M-Business
Anywhere version number. This confirms that UltraLite for M-Business Anywhere is successfully
installed.

Understanding UltraLite for M-Business Anywhere Development

8 Copyright © 2006, iAnywhere Solutions, Inc.

3. Run the CustDB sample application.

a. Start the MobiLink server on your desktop.

From the Start menu, choose Programs ► SQL Anywhere 10 ► MobiLink ► Synchronization
Server Sample.

b. Start the CustDB application on your M-Business Client.

The CustDB application is a link on your M-Business home page.

c. Enter your user ID.

The default value is 50.

d. Synchronize.

Either answer Yes to the prompt "Do you have a network connection now?" or, in the CustDB
application, click Synchronize. This synchronizes data with MobiLink, and is a separate operation
from synchronizing with M-Business Anywhere.

You should now see data in the CustDB fields. You can now explore the CustDB application.

F For information about the CustDB sample application, see “Exploring the CustDB Sample for
MobiLink” [MobiLink - Getting Started].

HotSync with multiple databases

Each UltraLite database on a Palm OS device must have a distinct creator ID to work properly with HotSync.
In addition, an application with that creator ID must exist on the Palm OS device.

The HotSync Manager uses each application's creator ID as an identifier to handle synchronization. It hands
each properly configured UltraLite application to the MobiLink conduit for synchronization. The conduit
searches for and synchronizes a database with the same creator ID as the application.

F For information about configuring the conduit, see “HotSync synchronization overview” [MobiLink -
Client Administration].

All UltraLite for M-Business Anywhere applications inherit the creator ID of the M-Business client, which
is AvGo. This inheritance means that only one UltraLite database with creator ID AvGo can be synchronized,
and that if you assign a distinct creator ID to your database, HotSync will not find it because there is no
application with a corresponding creator ID.

This limitation is not an issue for the two sample applications (CustDB and Simple), as they share a common
database schema. The only side effect is that when you synchronize the CustDB database, the Simple sample
is also synchronized.

F For information on resolving this problem, see “Registering the Palm creator ID” [UltraLite - C and C
++ Programming].

UltraLite for M-Business Anywhere Quick Start

Copyright © 2006, iAnywhere Solutions, Inc. 9

Connecting to an UltraLite database
UltraLite applications must connect to a database before carrying out operations on the data in it.

Here is the simplest way to establish a connection. Extensions to this technique are given in the following
sections.

var DatabaseMgr;
var Connection;
DatabaseMgr = CreateObject("iAnywhere.UltraLite.DatabaseManager.CustDB");
Connection = DatabaseMgr.openConnection("dbf=" + DatabaseMgr.directory + "\
\mydb.udb");

Using the Connection object
The following properties of the Connection object govern global application behavior.

F For more information about the Connection object, see “Class Connection” on page 58.

♦ Commit behavior By default, UltraLite applications are in AutoCommit mode. Each insert, update,
or delete statement is committed to the database immediately. Set Connection.AutoCommit to false to
build transactions into your application. Turning AutoCommit off and performing commits directly can
improve the performance of your application.

For more information, see “Method commit” on page 60.

♦ User authentication You can change the user ID and password for the application from the default
values of DBA and sql by using the grantConnectTo and revokeConnectFrom methods.

For more information, see “Authenticating users” on page 28.

♦ Synchronization A set of objects governing synchronization are accessed from the Connection
object.

For more information, see “Synchronizing data” on page 29.

♦ Tables UltraLite tables are accessed using the Connection.getTable method.

For more information, see “Method getTable” on page 62.

Understanding UltraLite for M-Business Anywhere Development

10 Copyright © 2006, iAnywhere Solutions, Inc.

Maintaining connections and application state across
pages

The scope of a JavaScript variable is limited to one web page. Most web applications require multiple pages,
and so a mechanism is needed for making some objects persistent across the pages of an application.

UltraLite for M-Business Anywhere provides persistence for the ULTable, ResultSet, and
PreparedStatement objects. To make one of these objects persist across pages, supply a persistent name as
a parameter when creating the object. You can use the persistent name on subsequent pages.

To carry a connection object from page to page, you reopen the connection on each page. One way to do
this is to use the reOpen method. Another is to supply an open method on each page, perhaps by including
a JavaScript file on each web page to initialize the settings. For examples of how to do this, see the sample
files Samples\UltraLiteForMBusinessAnywhere\CustDB\main.htm and Samples
\UltraLiteForMBusinessAnywhere\Simple\main_page.htm.

The requirement to reopen connections across pages provides a security feature for UltraLite applications.
You can use it to require that the user confirm some information, perhaps the password, on moving from
page to page.

If an UltraLite object is not needed in another web page, the application should issue a close method on the
object to save memory.

See also
♦ “Method reOpenConnection” on page 72
♦ “Class PreparedStatement” on page 81
♦ “Class ResultSet” on page 92
♦ “Class ULTable” on page 150
♦ “Class PreparedStatement” on page 81

Maintaining connections and application state across pages

Copyright © 2006, iAnywhere Solutions, Inc. 11

Persistent names in M-Business Anywhere applications
In HTML, when control transfers to a new page, all handles to allocated JavaScript objects from the old page
are lost. For example, in main.html, you have a M-Business Anywhere database connection object:

conn = dbMgr.openConnection("...");

If you click a link in main.html and it takes you to a different page (for example: insert.html), you cannot
find the object named "conn" in insert.html. To get the connection object back, you may have to call
dbMgr.openConnection("...") again. However, you do not have to do this since the connection object is still
in memory, you have only lost the JavaScript handle to it.

This is why there is a persistName argument in all the M-Business Anywhere API calls to DataManager,
Connection, ULTable, PreparedStatement, or ResultSet. For example, when the M-Business Anywhere
runtime receives a call from JavaScript for a UltraLite connection object, M-Business Anywhere first checks
to see if a connection object exists in memory that has the same persistName. If the runtime can find a
matching object, it will return that connection object. Otherwise, M-Business Anywhere goes through the
normal procedure to make a new UltraLite database connection and return it.

Using persistent names
There are two types of hierarchy among M-Business Anywhere objects. They both start with
DatabaseManager and Connection:

♦ DatabaseManager -> Connection -> Table (for table API)
♦ DatabaseManager -> Connection -> PreparedStatement -> ResultSet (for Dynamic SQL API)

To retrieve any of these M-Business Anywhere objects with a persistent name, you have to retrieve the top-
level object with a persistent name, and then all the upper level M-Business Anywhere objects along the
hierarchy tree until the one you want.

For example, if you want to retrieve a existing ULTable object from insert.html, you need to give a persistent
name to dbMgr, conn, and table objects in main.html, and then use persistent names in insert.html to get all
of them back:

Code segment for main.html:

var dbMgr = CreateObject("iAnywhere.UltraLite.DatabaseManager.simple");
// "simple" is the persistent name here. A real database manager object is
allocated
var conn = dbMgr.openConnection("CON=simple_con;...");
// "simple_con" is the persistent name here. A real database connection is
made.
var custTable = conn.getTable("ULCustomer", "simpleCustTable");
// a real table is allocated

Code segment for insert.html:

var dbMgr = CreateObject("iAnywhere.UltraLite.DatabaseManager.simple");
// "simple" is the persistent name here.
// The allocated database manager object from main.html is returned

Understanding UltraLite for M-Business Anywhere Development

12 Copyright © 2006, iAnywhere Solutions, Inc.

var conn = dbMgr.openConnection("CON=simple_con;...");
// "simple_con" is the persistent name here.
// The existing connection object from memory is returned.
var custTable = conn.getTable("ULCustomer", "simpleCustTable");
// the existing table object is returned.
var newTable = conn.getTable("ULOrder", "simpleOrderTable");
// since there is no order table from main.html,
// it does not exist in memory. A real order table object is allocated.

Using persistent names correctly
Put the commonly used code in a JavaScript file. Since most HTML pages of an M-Business Anywhere
application need to refer to DatabaseManager, Connection, and some major ULTable objects, it is convenient
to put the code that creates them (or retrieves them with a persistent name) in a common JavaScript file, and
include this file at the top of HTML pages that use them. Both M-Business Anywhere "simple" and "CustDB"
sample programs demonstrate how to do this.

Close the object if you do not plan to use the object from another page. If the M-Business Anywhere
application only has one HTML page, then there is no need to have persistent names. The persistent name
argument can be set to NULL. On the other hand, if each HTML page has many opened PreparedStatement
and ResultSet objects, then the developer needs to balance between the convenience of having them in
memory to retrieve them easily with a persistent name from another html page, and wasted memory usage
because these objects are always around. For example, suppose you have 5 PreparedStatement objects and
10 ResultSet objects created in main.html. They are occupying a significant amount of memory. When the
application jumps to insert.html, if you only need to refer to some of these objects with a persistent name,
then the objects that are not needed anymore are wasting memory. If you try to create new PreparedStatement
and ResultSet objects in insert.html, you may run out of memory. The solution is to explicitly close those
PreparedStatment object or ResultSet object at the end of main.html if you are sure you do not need them
from insert.html.

The state of each M-Business Anywhere object is preserved when it is retrieved with a persistent name. If
you have a persistent ULTable object from page 1, when you call openTable method from page 2 using the
same persistent name, you get the exact ULtable object back with the same state as the one from page 1. If
the cursor is on the nth row of the table when you leave page 1, the cursor will be still on the nth row when
you get it back in page 2. It will not be "before first row".

Be careful using the persistent name on ResultSet. When there are place holders on the PreparedStatment,
you need to be very careful about whether you want to give a persistent name to the ResultSet. For example,
in main.html you have the following code:

var OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt");
OrderStmt.setInt(1, 5000);
var OrderResultSet = OrderStmt.executeQuery("order_query_result");

Then from insert.html, you want the same ResultSet object, you must do the following:

var OrderStmt = Connection.prepareStatement(

Persistent names in M-Business Anywhere applications

Copyright © 2006, iAnywhere Solutions, Inc. 13

"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt");
//OrderStmt.setInt(1, 5000); // no need to do this since both the OrderStmt
and
OrderResultSet are retrieve from "cache" without any SQL statement being
actually executed
var OrderResultSet = OrderStmt.executeQuery("order_query_result");

This OrderResultSet object contains the same result as the "order_id" set to 5000.

However, consider a different situation. You want the same PreparedStatement because you want to do the
same query on the Order Table. But you want to query with an order ID other than 5000. In this case, you
can assign a persistent name to the PreparedStatement, but you don't need a persistent name on the ResultSet.
Since the order id is different this time, the result set will be different from the previous one. In main.html,
you still do the following:

var OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt"); // with persistent name
OrderStmt.setInt(1, 5000);
var OrderResultSet = OrderStmt.executeQuery(null); // notice here, no
persistent name

In insert.html, you do the following to get a new ResultSet:

var OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt"); // get the prepared statement from memory with
persistent name
OrderStmt.setInt(1, 6000); // set a different place holder value
var OrderResultSet = OrderStmt.executeQuery(null); // a real query is
executed
here!

In the example above, since the place holder value is different, or some other operation is performed on the
Order table that you expect the returned result set will be different, you do not use persistent name on the
ResultSet when calling executeQuery.

Understanding UltraLite for M-Business Anywhere Development

14 Copyright © 2006, iAnywhere Solutions, Inc.

Database encryption and obfuscation
You can encrypt or obfuscate your UltraLite database using UltraLite for M-Business Anywhere.

F For more information about database encryption, see “Security considerations” [UltraLite - Database
Management and Reference].

Encryption
UltraLite databases may be unencrypted or may employ either encryption or obfuscation. If you want the
database to be encrypted or obfuscated that choice must be made when the database is created.

Encryption of an UltraLite database uses extremely strong industry-standard techniques to encrypt the data
in the database. The encryption is based on a key phrase that is specified when the database is created. This
key phrase must also be supplied when a connection is made to the database.

If an UltraLite database is encrypted, all connections to that database must specify the correct encryption
key or the connection attempt fails.

F For more information about the EncryptionKey property, see “Class ConnectionParms” on page 66
and “Method changeEncryptionKey” on page 59.

Obfuscation
Obfuscation is a very weak form of encryption that simply masks the data in the database to discourage
casual observation of the contents of the database by file or disk viewer programs. To obfuscate the database,
set the creationParms.obfuscate boolean value to true. For example:

var create_parms = dbMgr.createCreationParms();
create_parms.obfuscate = true;

Example
You can change the encryption key by specifying a new encryption key on the Connection object. Before
calling the changeEncryptionKey method, the application must make a connection to the encrypted database
using the existing encryption key. In the following example code, "apricot" is the new encryption key.

conn.changeEncryptionKey("apricot")

Database encryption and obfuscation

Copyright © 2006, iAnywhere Solutions, Inc. 15

Working with data using SQL
UltraLite applications can access table data using SQL or the Table API. This section describes data access
using SQL.

F For information about the Table API, see “Working with data using the table API” on page 20.

This section explains how to perform the following tasks using SQL.

♦ Inserting, deleting, and updating rows.

♦ Executing a query.

♦ Scrolling through the rows of a result set.

F This section does not describe the SQL language itself. For information about SQL features, see SQL
Anywhere Server - SQL Reference [SQL Anywhere Server - SQL Reference].

Data manipulation: INSERT, UPDATE and DELETE

With UltraLite, you can perform SQL Data Manipulation Language operations and DDL operations. These
operations are performed using the ExecuteStatement method, a member of the PreparedStatement class.

F For more information the PreparedStatement class, see “Class PreparedStatement” on page 81.

Parameter markers in prepared statements
UltraLite handles variable values using the ? parameter marker. For any INSERT, UPDATE or DELETE,
each ? is referenced according to its ordinal position in the prepared statement. For example, the first ? is
referred to as 1, and the second as 2.

♦ To insert a row

1. Declare a PreparedStatement object.

var PrepStmt;
2. Assign an INSERT statement to your prepared statement object. In the following, TableName and

ColumnName are the names of a table and column.

PrepStmt = conn.prepareStatement(
 "INSERT into TableName(ColumnName) values (?)", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values to the statement.

var NewValue;
NewValue = "Bob";
PrepStmt.setStringParameter(1, NewValue);

Understanding UltraLite for M-Business Anywhere Development

16 Copyright © 2006, iAnywhere Solutions, Inc.

4. Execute the statement.

PrepStmt.executeStatement(null);

♦ To update a row

1. Declare a PreparedStatement object.

var PrepStmt;
2. Assign an UPDATE statement to your prepared statement object. In the following, TableName and

ColumnName are the names of a table and column.

PrepStmt = conn.prepareStatement(
 "UPDATE TableName SET ColumnName = ? WHERE ID = ?", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values to the statement using methods appropriate for the data type.

var NewValue;
NewValue = "Bob";
PrepStmt.setStringParameter(1, NewValue);
PrepStmt.setIntParameter(2, 6);

4. Execute the statement

PrepStmt.executeStatement();

♦ To delete a row

1. Declare a PreparedStatement object.

var PrepStmt;
2. Assign a DELETE statement to your prepared statement object.

PrepStmt = conn.prepareStatement(
 "DELETE FROM customer WHERE ID = ?", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values for the statement.

var IDValue;
IDValue = 6;
PrepStmt.setIntParameter(1, IDValue);

4. Execute the statement.

PrepStmt.executeStatement();

Data retrieval: SELECT

When you execute a SELECT statement, the PreparedStatement.executeQuery method returns a ResultSet
object. The ResultSet class contains methods for navigating within a result set and methods to update data
using the ResultSet.

Working with data using SQL

Copyright © 2006, iAnywhere Solutions, Inc. 17

F For more information about ResultSet objects, see “Class ResultSet” on page 92.

Example
In the following code, the results of a query are accessed as a ResultSet. When first assigned, the ResultSet
is positioned before the first row. The ResultSet.moveFirst method is then called to navigate to the first
record in the result set.

var MyResultSet;
var PrepStmt;
PrepStmt = conn.prepareStatement("SELECT ID, Name FROM customer", null);
MyResultSet = PrepStmt.executeQuery(null);
MyResultSet.moveFirst();

Example
The following code demonstrates how to obtain column values for the current row. The example uses
character data; similar methods are available for other data types.

The getString method uses the following syntax: MyResultSetName.getString(Index) where Index is the
ordinal position of the column name in your SELECT statement.

if (MyResultSet.getRowCount() == 0) {
} else {
 alert(MyResultSet.getString(1));
 alert(MyResultSet.getString(2));
 MyResultSet.moveRelative(0);
}

F For more information about navigating a result set, see “Navigation with SQL” on page 19.

The following procedure uses a SELECT statement to retrieve information from the database. The results
of the query are assigned to a ResultSet object.

♦ To perform a select statement

1. Declare a PreparedStatement object.

var OrderStmt;
2. Assign a prepared statement to your PreparedStatement object.

OrderStmt = Connection.prepareStatement(
 "SELECT order_id, disc, quant, notes, status, c.cust_id,
 cust_name, p.prod_id, prod_name, price
 FROM ULOrder o, ULCustomer c, ULProduct p
 WHERE o.cust_id = c.cust_id
 AND o.prod_id = p.prod_id
 ORDER BY der_id", "order_query_stmt");

The second parameter is a persistent name that provides cross-page JavaScript object persistence.

3. Execute the query.

OrderResultSet = OrderStmt.executeQuery("order_query");

Understanding UltraLite for M-Business Anywhere Development

18 Copyright © 2006, iAnywhere Solutions, Inc.

F For more information on how to use queries, see the CustDB sample code in samples-dir
\UltraLiteForMBusinessAnywhere\CustDB\custdb.js.

Navigation with SQL
UltraLite for M-Business Anywhere provides you with a number of methods to navigate a result set to
perform a wide range of navigation tasks.

The following methods of the ResultSet object allow you to navigate your result set:

♦ moveAfterLast moves to a position after the last row.

♦ moveBeforeFirst moves to a position before the first row.

♦ moveFirst moves to the first row.

♦ moveLast moves to the last row.

♦ moveNext moves to the next row.

♦ movePrevious moves to the previous row.

♦ moveRelative moves a certain number of rows relative to the current row. Positive index values move
forward in the result set, negative index values move backward in the result set, and zero does not move
the cursor. Zero is useful if you want to repopulate a row buffer.

Example
The following code fragment demonstrates how to use the moveFirst method to navigate within a result set.

PrepStmt = conn.prepareStatement(
 "SELECT ID, Name FROM customer", null);
MyResultSet = PrepStmt.executeQuery(null);
MyResultSet.moveFirst();

The same technique is used for all of the move methods.

F For more information about these navigational methods, see “Class ResultSet” on page 92.

The ResultSetSchema object
The ResultSet.schema property allows you to retrieve information about the columns in the query.

The following example demonstrates how to use ResultSetSchema to capture schema information.

var i;
var MySchema = rs.schema ;
for (i = 1; i <= MySchema.columnCount; i++) {
 colname = MySchema.getColumnName(i);
 coltype = MySchema.getColumnSQLType(colname).toString();
 alert (colname + " " + coltype);
}

Working with data using SQL

Copyright © 2006, iAnywhere Solutions, Inc. 19

Working with data using the table API
UltraLite applications can access table data using SQL or the Table API. This section describes data access
using the Table API.

F For information about SQL, see “Working with data using SQL” on page 16.

This section explains how to perform the following tasks using the Table API.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

Navigation with the Table API

UltraLite for M-Business Anywhere provides you with a number of methods to navigate a table to perform
a wide range of navigation tasks.

The following methods of the ULTable object allow you to navigate your result set:

♦ moveAfterLast moves to a position after the last row.

♦ moveBeforeFirst moves to a position before the first row.

♦ moveFirst moves to the first row.

♦ moveLast moves to the last row.

♦ moveNext moves to the next row.

♦ movePrevious moves to the previous row.

♦ moveRelative moves a certain number of rows relative to the current row. Positive index values move
forward in the table, negative index values move backward in the table, and zero does not move the cursor.
Zero is useful if you want to repopulate a row buffer.

Example
The following code opens the customer table and scrolls through its rows. It then displays an alert with the
last name of each customer.

var tCustomer;
tCustomer = conn.getTable("customer", null);
tCustomer.open();
tCustomer.moveBeforeFirst();
While (tCustomer.moveNext()) {
 alert(tCustomer.getString(3));
}

Understanding UltraLite for M-Business Anywhere Development

20 Copyright © 2006, iAnywhere Solutions, Inc.

Specifying an index
You expose the rows of the table to the application when you open the table object. By default, the rows are
exposed in order by primary key value, but you can specify an index to access the rows in a particular order.

Example
The following code moves to the first row of the customer table as ordered by the ix_name index.

tCustomer = conn.getTable("customer", null);
tCustomer.openWithIndex("ix_name");
tCustomer.moveFirst();

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following places.

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use one of the ULTable get methods to get the value
of each column for the current row.

Example
The following code fragment retrieves the value of three columns from the tCustomer ULTable object, and
displays them in text boxes.

var colID, colFirstName, colLastName;
colID = tCustomer.schema.getColumnID("id");
colFirstName = tCustomer.schema.getColumnID("fname");
colLastName = tCustomer.schema.getColumnID("lname");
alert(tCustomer.getInt(colID));
alert(tCustomer.getString(colFirstName));
alert(tCustomer.getString(colLastName));

You can also use methods of ULTable to set values.

tCustomer.setString(colLastName, "Kaminski");

By assigning values to these properties you do not alter the value of the data in the database.

You can assign values to the properties even if you are before the first row or after the last row of the table.
You cannot, however, get values from the column. For example, the following code fragment generates an
error.

tCustomer.moveBeforeFirst();
id = tCustomer.getInt(colID);

Working with data using the table API

Copyright © 2006, iAnywhere Solutions, Inc. 21

Searching rows with find and lookup

UltraLite has several modes of operation for working with data. Two of these modes, the find and lookup
modes, are used for searching. The ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Note
The columns searched using Find and Lookup methods must be in the index used to open the table.

♦ Find methods move to the first row that exactly matches a specified search value, under the sort order
specified when the ULTable object was opened.

For more information about find methods, see “Class ULTable” on page 150.

♦ Lookup methods move to the first row that matches or is greater than a specified search value, under
the sort order specified when the ULTable object was opened.

For more information about lookup methods, see “Class ULTable” on page 150.

♦ To search for a row

1. Enter find or lookup mode.

Call the FindBegin or LookupBegin method. For example, the following code fragment calls
ULTable.findBegin.

tCustomer.findBegin();
2. Set the search values.

You do this by setting values in the current row. Setting these values affects the buffer, not the database.
For example, the following code fragment sets the last name column in the buffer to Kaminski.

tCustomer.setString(3, "Kaminski");

For multi-column indexes, a value for the first column is required, but you can omit the other columns.

3. Search for the row.

Use the appropriate method to carry out the search. For example, the following instruction looks for
the first row that exactly matches the specified value in the current index.

tCustomer.findFirst();

Inserting, updating, and deleting rows

UltraLite exposes the rows in a table to your application one at a time. The ULTable object has a current
position, which may be on a row, before the first row, or after the last row of the table.

Understanding UltraLite for M-Business Anywhere Development

22 Copyright © 2006, iAnywhere Solutions, Inc.

When your application changes location, UltraLite makes a copy of the row in a buffer. Any operations to
get or set values affect only the copy of data in this buffer. They do not affect the data in the database.

Example
The following statement changes the value of the first column in the buffer to 3.

tCustomer.setInt(1 , 3);

Using UltraLite modes
The UltraLite mode determines the purpose for which the values in the buffer will be used. UltraLite has
the following four modes of operation, in addition to a default mode.

♦ Insert mode The data in the buffer is added to the table as a new row when the ULTable.insert method
is called.

♦ Update mode The data in the buffer replaces the current row when the ULTable.update method is
called.

♦ Find mode Used to locate a row whose value exactly matches the data in the buffer when one of the
ULTable.find methods is called.

♦ Lookup mode Used to locate a row whose value matches or is greater than the data in the buffer when
one of the ULTable.lookup methods is called.

♦ To update a row

1. Move to the row you want to update.

You can move to a row by scrolling through the table or by searching using Find and Lookup methods.

2. Enter Update mode.

For example, the following instruction enters Update mode on the table tCustomer.

tCustomer.updateBegin();
3. Set the new values for the row to be updated.

For example, the following instruction sets the new value to Elizabeth.

tCustomer.setString(2, "Elizabeth");
4. Execute the Update.

tCustomer.update();

After the update operation, the current row is the row that was just updated. If you changed the value of a
column in the index specified when the ULTable object was opened, the current position is undefined.

By default, UltraLite operates in AutoCommit mode, so that the update is immediately applied to the row
in permanent storage. If you have disabled AutoCommit mode, the update is not applied until you execute
a commit operation. For more information, see “Transaction processing in UltraLite” on page 25.

Working with data using the table API

Copyright © 2006, iAnywhere Solutions, Inc. 23

Caution
Do not update the primary key of a row: delete the row and add a new row instead.

Inserting rows
The steps to insert a row are similar to those for updating rows, except that there is no need to locate any
particular row in the table before carrying out the insert operation. Rows are automatically sorted by the
index specified when opening the table.

♦ To insert a row

1. Enter Insert mode.

For example, the following instruction enters Insert mode on the table CustomerTable.

tCustomer.insertBegin();
2. Set the values for the new row.

If you do not set a value for one of the columns, and that column has a default, the default value is used.
If the column has no default, NULL is used. If the column does not allow NULL, the following defaults
are used:

♦ For numeric columns, zero.

♦ For character columns, an empty string.

To set a value to NULL explicitly, use the setNull method.

colID = tCustomer.schema.getColumnID("id");
colFirstName = tCustomer.schema.getColumnID("fname");
colLastName = tCustomer.schema.getColumnID("lname");
tCustomer.setInt(colID, 42);
tCustomer.setString(colFirstName, "Mitch");
tCustomer.setString(colLastName, "McLeod");

3. Execute the insertion.

The inserted row is permanently saved to the database when a Commit is carried out. In AutoCommit
mode, a Commit is carried out as part of the Insert method.

tCustomer.insert();

Deleting rows
There is no delete mode corresponding to the insert or update modes.

The following procedure deletes a row.

♦ To delete a row

1. Move to the row you want to delete.

2. Execute the delete:

tCustomer.deleteRow();

Understanding UltraLite for M-Business Anywhere Development

24 Copyright © 2006, iAnywhere Solutions, Inc.

Working with BLOB data

You can fetch BLOB data for columns declared BINARY or LONG BINARY using the GetByteChunk
method.

F For more information, see “Method getStringChunk” on page 159.

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the integrity of the data in your database. A transaction
is a logical unit of work. Either the entire transaction is executed, or none of the statements in the transaction
are executed.

By default, UltraLite operates in AutoCommit mode. In AutoCommit mode, each insert, update, or delete
is executed as a separate transaction. Once the operation is completed, the change is made to the database.

If you set the Connection.AutoCommit property to false, you can use multi-statement transactions. For
example, if your application transfers money between two accounts, the deduction from the source account
and the addition to the destination account constitute a single transaction.

If AutoCommit is false, you must execute a Connection.commit statement to complete a transaction and
make changes to your database permanent, or you may execute a Connection.rollback statement to cancel
all the operations of a transaction. Turning AutoCommit off improves performance.

Note
Synchronization causes a Commit even if you have AutoCommit set to False.

Working with data using the table API

Copyright © 2006, iAnywhere Solutions, Inc. 25

Accessing schema information
Each Connection, ULTable, and ResultSet object contains a schema property. These schema objects provide
information about the tables, columns, indexes, and publications in a database.

♦ DatabaseSchema The number and names of the tables in the database, as well as global properties
such as the format of dates and times.

To obtain a DatabaseSchema object, access the Connection.databaseSchema property.

♦ TableSchema The number and names of columns in the table, as well as the Indexes collections for
the table.

To obtain a TableSchema object, access the ULTable.schema property.

♦ IndexSchema Information about the column, or columns, in the index. As an index has no data directly
associated with it, there is no separate Index object, only a IndexSchema object.

The IndexSchema objects are accessed using the TableSchema.getIndex method.

♦ PublicationSchema The numbers and names of tables and columns contained in a publication.
Publications are also comprised of schema only, so there is a PublicationSchema object but no Publication
object.

The PublicationSchema objects are accessible using the DatabaseSchema.getPublicationSchema
method.

♦ ResultSetSchema The number and names of the columns in a result set.

The ResultSetSchema objects are accessible using the PreparedStatement.getResultSetSchema method
or the ResultSet.schema property.

Understanding UltraLite for M-Business Anywhere Development

26 Copyright © 2006, iAnywhere Solutions, Inc.

Handling errors
In normal operation, UltraLite for M-Business Anywhere can throw errors that are intended to be caught
and handled in the script environment. Errors are expressed as SQLCODE values, negative numbers
indicating the particular kind of error.

F For a list of error codes thrown by UltraLite for M-Business Anywhere, see “Class
SQLError” on page 112.

UltraLite for M-Business Anywhere throws errors only from the DatabaseManager and Connection objects.
The following methods of DatabaseManager can throw errors.

♦ createDatabase
♦ dropDatabase
♦ openConnection

All other errors and exceptions within UltraLite for M-Business Anywhere are routed through the Connection
object.

F For more information about accessing error numbers from DatabaseManager and Connection objects,
see “Class Connection” on page 58 and “Class DatabaseManager” on page 70.

Handling errors

Copyright © 2006, iAnywhere Solutions, Inc. 27

Authenticating users
New users have to be added from an existing connection. As all UltraLite databases are created with a default
user ID and password of DBA and sql, respectively, you must first connect as this initial user.

You cannot change a user ID: you add a user and delete an existing user. A maximum of four user IDs are
permitted for each UltraLite database.

F For more information about granting or revoking connection authority, see “Method
grantConnectTo” on page 62 and “Method revokeConnectFrom” on page 63.

♦ To add a user or change the password for an existing user

1. Connect to the database as an existing user.

2. Grant the user connection authority with the desired password.

conn.grantConnectTo("Robert", "newPassword");

♦ To delete an existing user

1. Connect to the database as an existing user.

2. Revoke the user's connection authority as follows.

conn.revokeConnectFrom("Robert");

Understanding UltraLite for M-Business Anywhere Development

28 Copyright © 2006, iAnywhere Solutions, Inc.

Synchronizing data
UltraLite for M-Business Anywhere applications typically involve two kinds of synchronization:

♦ Web content synchronization Web content, including HTML pages that define the application
itself, is synchronized through M-Business Anywhere.

♦ Data synchronization The UltraLite database is synchronized with a MobiLink server.

Although these two kinds of synchronization are distinct, you can initiate them together in a technique called
one-button synchronization. One-button synchronization is the recommended model for most applications,
but as there may be cases where it is necessary to keep synchronization of data and web content entirely
separate, that technique is discussed below.

One-button synchronization

One-button synchronization is a technique for initiating web content synchronization (using M-Business
Anywhere) and UltraLite data synchronization (using MobiLink) in a single operation. It is available on
Windows CE and Windows XP only. The architecture of one-button synchronization is as follows:

MobiLink
Synchronization
Server

M-Business
Anywhere

Web content
synchronization
Data
synchronization

UltraLite for M-
Business
Anywhere
application

The sequence of events in one button synchronization is as follows:

1. The user synchronizes their web application, perhaps by placing it in the cradle.

2. The M-Business Client synchronizes the web content.

3. The MBConnect component of M-Business Client calls the ulconnect.exe application.

4. ulconnect.exe initiates synchronization of the UltraLite database.

5. Data is synchronized with MobiLink.

Synchronizing data

Copyright © 2006, iAnywhere Solutions, Inc. 29

To implement one-button synchronization you must carry out the following steps:

1. In your application, set the synchronization parameters for MobiLink synchronization.

If you are synchronizing through M-Business Anywhere you can use the SyncParms.setMBAServer
method to set the host and port synchronization parameters. For more information, see “Method
setMBAServer” on page 128.

Otherwise, use the standard methods to set synchronization parameters. For more information, see
“Class SyncParms” on page 122.

2. Save the synchronization parameters so that they can be read by ulconnect.exe.

Call the Connection.saveSyncParms method to save the synchronization parameters. For more
information, see “Method saveSyncParms” on page 64.

Synchronizing data
For most users it is useful to use one-button synchronization, which initiates both data synchronization and
web content synchronization. For more information, see “One-button synchronization” on page 29.

This section is for those users who want to synchronize data separately from web content synchronization.

Synchronization requires the MobiLink server and appropriate licensing. You can find a working example
of synchronization in the CustDB sample application.

UltraLite for M-Business Anywhere supports TCP/IP, HTTP, HTTPS, and HotSync synchronization.
Synchronization is initiated by the UltraLite application. In all cases, you use methods and properties of the
Connection object to control synchronization.

Separately licensed component required
ECC encryption and FIPS-approved encryption require a separate license. All strong encryption technologies
are subject to export regulations.
See “Separately licensed components” [SQL Anywhere 10 - Introduction].

♦ To synchronize over TCP/IP or HTTP

1. Prepare the synchronization information.

Assign values to the required properties of the Connection.syncParms object.

F For information about the properties and the values that you should set, see “UltraLite
Clients” [MobiLink - Client Administration].

2. Synchronize.

Call the Connection.synchronize method.

Understanding UltraLite for M-Business Anywhere Development

30 Copyright © 2006, iAnywhere Solutions, Inc.

Synchronizing data via M-Business Anywhere

Whether you use one-button synchronization or separate data synchronization, you can use a MobiLink
Redirector to configure your M-Business Anywhere server to route data to and from a MobiLink server. For
synchronization from outside the firewall, this reduces the number of ports that need to be externally
accessible.

The following diagram illustrates the architecture for the case of one-button synchronization.

MobiLink
Synchronization
Server

M-Business
Anywhere

Web content
synchronization
Data
synchronization

Redirector

UltraLite for M-
Business
Anywhere
application

♦ To synchronize data via M-Business Anywhere

1. At the server side, set up a MobiLink Redirector to route data between M-Business Anywhere and your
MobiLink server.

F For information on the MobiLink Redirector for M-Business Anywhere, see “M-Business
Anywhere Redirector” [MobiLink - Server Administration].

2. In your client, set synchronization parameters so that UltraLite synchronization is directed to the host
and port number of M-Business Anywhere. You can use the SyncParms.setMBAServer method to carry
out this task.

F For more information, see “Method setMBAServer” on page 128.

3. From a client application, initiate synchronization using either one-button synchronization or separate
data synchronization.

F For more information, see “One-button synchronization” on page 29, and “Synchronizing
data” on page 30.

Synchronizing data

Copyright © 2006, iAnywhere Solutions, Inc. 31

Deploying UltraLite for M-Business Anywhere
applications

When you have completed your application or when you want to test your application, you need to deploy
it to a device. This section outlines the steps needed to deploy an UltraLite application to a device.

Deploying applications to Windows CE and Windows XP

You must carry out the following steps to deploy an UltraLite application to a Windows CE device:

♦ Deploy your application and UltraLite component.

For instructions, see “UltraLite for M-Business Anywhere Quick Start” on page 6.

♦ Deploy an initial copy of the UltraLite database.

For instructions, see “UltraLite for M-Business Anywhere Quick Start” on page 6.

In many situations it is sufficient to deploy an UltraLite database. You can use synchronization to load
an initial copy of the data.

You must place the database so that it can be located by the application. The Database On CE connection
parameter defines the location for Windows CE. The Database on Desktop connection parameter defines
the location for Windows XP.

See “CE_FILE connection parameter” [UltraLite - Database Management and Reference], and “DBF
connection parameter” [UltraLite - Database Management and Reference].

Deploying applications that use one-button synchronization
One-button synchronization requires a set of files, including: ulconnect.exe,ulconnect.udb,ulpod10.dll, and
ulrt10.dll. For Windows CE, these files are located in file ulpod.cab in the directory install-dir\ultralite
\UltraLiteForMBusinessAnywhere\ce\arm\. When you deploy the cab file to a Windows CE device, it installs
its contents in the proper locations automatically. For Windows XP, the required files must be deployed
manually from the directory install-dir\ultralite\UltraLiteForMBusinessAnywhere\win32\386\.

Deploying applications to Palm OS

You must carry out the following steps to deploy an UltraLite application to a Palm OS device:

♦ Deploy your application and UltraLite component.

For instructions, see “UltraLite for M-Business Anywhere Quick Start” on page 6.

♦ Deploy an initial copy of the UltraLite database.

For instructions, see “UltraLite for M-Business Anywhere Quick Start” on page 6.

Understanding UltraLite for M-Business Anywhere Development

32 Copyright © 2006, iAnywhere Solutions, Inc.

In many situations it is sufficient to deploy an appropriately initialized UltraLite database file only. You
can then use synchronization to load an initial copy of the data.

You can create .pdb files for deployment to Palm OS from any of the UltraLite utilities, including ulxml
and ulinit.

You must supply a database using the correct creator ID, so that it can be located by your application.
The Database On Palm connection parameter uses the creator ID to find the database.

See “PALM_FILE connection parameter” [UltraLite - Database Management and Reference].

♦ Deploy the MobiLink synchronization conduit for HotSync.

This step is required only if the application is synchronizing using HotSync.

For instructions, see “Using HotSync on Palm OS” [MobiLink - Client Administration].

Deploying UltraLite for M-Business Anywhere applications

Copyright © 2006, iAnywhere Solutions, Inc. 33

CHAPTER 3

Tutorial: A Sample Application for M-Business
Anywhere

Contents
Introduction .. 36
Lesson 1: Create project architecture ... 37
Lesson 2: Create the application files ... 39
Lesson 3: Set up the M-Business Anywhere Server and Client 41
Lesson 4: Add startup code to your application .. 43
Lesson 5: Add inserts to your application .. 46
Lesson 6: Add navigation to your application .. 49
Lesson 7: Add updates and deletes to your application 50
Lesson 8: Add synchronization to your application .. 52

About this chapter
This tutorial guides you through the process of building a sample UltraLite application for M-Business
Anywhere.

Copyright © 2006, iAnywhere Solutions, Inc. 35

Introduction
This tutorial describes how to build a cross-platform UltraLite application. At the end of the tutorial you will
have an application and small database that synchronizes with a central consolidated database.

Timing
The tutorial takes about 30 minutes if you copy and paste the code. If you enter the code yourself, it takes
significantly longer.

Prerequisites
This tutorial assumes that you have M-Business Anywhere installed on your computer and that your machine
has a web server that you can use to deliver files.

You must also have access to an M-Business Client to test and run the application.

The tutorial assumes a basic familiarity with JavaScript programming language and M-Business Anywhere
application development.

The tutorial also assumes that you know how to create an UltraLite database using either UltraLite in Sybase
Central, or the ulcreate UltraLite utility. For more information, see “Creating an UltraLite database from
Sybase Central” [UltraLite - Database Management and Reference] and “Creating and Configuring
UltraLite Databases” [UltraLite - Database Management and Reference].

Tutorial: A Sample Application for M-Business Anywhere

36 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 1: Create project architecture
The first lesson describes how to set up the project achitecture and creating an UltraLite database for the
tutorial.

♦ To create project architecture and empty UltraLite database

1. Create a directory for this tutorial.

This tutorial assumes the directory is c:\Tutorial\mbus. If you create a directory with a different name,
use that directory throughout the tutorial.

Create the following subdirectories for platform-specific files:

♦ c:\Tutorial\mbus\PALM_OS
♦ c:\Tutorial\mbus\WIN32_OS
♦ c:\Tutorial\mbus\WINCE_OS
♦ c:\Tutorial\mbus\WINCE_OS\arm

2. Configure your web server:

a. Map a virtual directory named tutorial on your web server to c:\Tutorial\mbus. The URL to access
this directory will be http://localhost/tutorial.

For Microsoft IIS, you can make these changes from the management tool.

For Apache, make a symbolic link named tutorial from your document root to the c:\Tutorial
\mbus directory, or copy the tutorial files into your Apache document root.

b. Ensure that your web server delivers the following files with MIME type application/octet-stream:

♦ .cab
♦ .dll
♦ .prc
♦ .pdb
♦ .udb

For Microsoft IIS, you can make these changes from the management tool. Go to the virtual
directory properties and make the changes under HTTP Headers and File Types.

For Apache, edit the file mime.types in your conf directory.

3. Create a database using UltraLite in Sybase Central.

F For more information about creating a database, see “Creating an UltraLite database from Sybase
Central” [UltraLite - Database Management and Reference].

♦ Table name Customer

♦ Columns in Customer

Lesson 1: Create project architecture

Copyright © 2006, iAnywhere Solutions, Inc. 37

Column Name Data Type (Size) Column allows
NULL values?

Default value

ID integer No autoincrement

FName char(15) No None

LName char(20) No None

City char(20) Yes None

Phone char(12) Yes 555-1234

It is usually better to use global autoincrement or UUID values for primary keys in a synchronizing
environment. The autoincrement default is used here to keep the tutorial shorter.

♦ Primary key Ascending ID

4. Save the database.

If you are developing an application for Windows or Windows CE, choose File ► Save and choose
tutcustomer.udb in the WINCE_OS or the WIN32_OS subdirectory of your tutorial directory as the file
name.

If you are developing an application for Palm OS:

a. From the File menu, choose Export Schema for Palm.

b. Enter Syb3 as the creator ID.

c. Save the file as tutcustomer.pdb in the PALM_OS subdirectory of your tutorial directory.

A note on Palm creator IDs
The creator ID is assigned to you by Palm. You can use Syb3 as your creator ID when you make sample
applications. However, when you create a commercial application, you should use your own creator
ID.

If you are developing a cross-platform application, save the database file in all the above locations.

Tutorial: A Sample Application for M-Business Anywhere

38 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 2: Create the application files
The following procedure uses the form to create a user interface. This example uses text boxes for input and
output.

♦ Create the application files

1. Create the file c:\Tutorial\mbus\main.html.

This file will be the main file of the application. Later in the tutorial, you will add content to the file.
For now, you just set it up to include a platform-specific file ul_deps.html. Add the following content
to the file:

<html>
<body>

</body>
</html>

2. Create the platform-specific files.

Each of these files references the appropriate UltraLite runtime library and database file. Create a file
ul_deps.html in each of the operating system subdirectories of your tutorial directory, as follows:

<!-- PALM_OS\ul_deps.html -->
<html>

</html>

<!-- WINCE_OS\ul_deps.html -->
<html>

</html>

<!-- WIN32_OS\ul_deps.html -->
<html>

</html>

3. Copy the UltraLite runtime files to the tutorial directory.

The ul_deps.html files require that the UltraLite runtime library and database be in the proper location
relative to the tutorial directory. The database file is already in place from earlier in the tutorial. You
must now copy the UltraLite runtime library into place.

♦ For the Palm OS, copy ulpod10.prc from install-dir\ultralite\UltraLiteForMBusinessAnywhere
\palm\68k to c:\Tutorial\mbus\PALM_OS\.

♦ For Windows CE, copy ulpod10.dll from install-dir\ultralite\UltraLiteForMBusinessAnywhere\ce
\arm to c:\Tutorial\mbus\WINCE_OS\arm\.

♦ For Windows XP, copy ulpod10.dll from install-dir\ultralite\UltraLiteForMBusinessAnywhere
\win32\386 to c:\Tutorial\mbus\WIN32_OS\.

Lesson 2: Create the application files

Copyright © 2006, iAnywhere Solutions, Inc. 39

All application files are now in place.

Tutorial: A Sample Application for M-Business Anywhere

40 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 3: Set up the M-Business Anywhere Server and
Client

In this lesson you create an M-Business Anywhere user, group, and channel for your application. This
information is for M-Business Anywhere 6.0.

♦ Configure M-Business Anywhere

1. Open the M-Business Anywhere administration console and login as the admin user.

The default user ID is Admin, with an empty password.

2. Create a new user:

Later in this tutorial, you will use the user name and password you create in this step to synchronize
from an M-Business client. If you already have an M-Business client set up for this server, you may
want to use a user name that already exists.

a. Click the Users menu option in the left navigation panel and then click the Create User link. The
Create New User page appears.

b. Enter a User Name and enter the same password in the Password and Confirm Password fields.
The other fields are optional. Click Create.

3. Create a group and a channel:

a. Click the Groups heading and click New Group.

b. Name the new group UltraLite Samples and click Create and Edit.

c. Under the Web tab, click New Group Channel.

d. Use the following settings for the channel. Make sure to substitute the correct URL for your web
server:

♦ Title UltraLite Tutorial

♦ Location http://localhost:8091/tutorial/main.html.

The location is the URL of the tutorial main.html page, as served by your web server.

♦ Channel Size Limit 1000 KB

♦ Link Depth 3

♦ Allow Binary Distribution Yes (checked).

♦ Hidden No (unchecked)

4. Add the user to the group:

a. Click the Users heading and find the user you created in step 2.

b. Click the User Name to show the user's properties.

Lesson 3: Set up the M-Business Anywhere Server and Client

Copyright © 2006, iAnywhere Solutions, Inc. 41

c. Click Add/Remove Groups.

d. Check the _UltraLite Samples_ group and click Update to add the user to this group.

The user, group, and channel are now set up on M-Business Anywhere. The next step is to synchronize the
content of this channel to an M-Business client. You can do this from whichever platform you want to use.

The next procedure assumes that you have an M-Business client installed. It is recommended that you click
Tools ► Options and set the client options to Show JavaScript Errors. This setting allows easier debugging
of any errors in your application.

♦ Synchronize the channel for your device

• Synchronize your M-Business client with the UltraLite channel on the M-Business Anywhere Server.

At this stage there is no content for your application, so the page appears blank.

Tutorial: A Sample Application for M-Business Anywhere

42 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 4: Add startup code to your application
In this lesson you add startup code to your application that connects to an UltraLite database. This requires
adding HTML to the main page, and adding JavaScript logic to control the application.

♦ Add content to your application

1. Add content to main.html.

Add the following form to your application's main page, c:\Tutorial\mbus\main.html, immediately after
the <a> tag:

<form name="custForm">
<input type="text" name="fname" size="15">

<input type="text" name="lname" size="20">

<input type="text" name="city" size="20">

<input type="text" name="phone" size="12">

<input type="text" name="custid" size="10">

<table>
 <tr>
 <td><input type="button"
 value="Insert" onclick="ClickInsert();">
 </td>
 <td><input type="button"
 value="Update" onclick="ClickUpdate();">
 </td>
 <td>
 <input type="button"
 value="Delete" onclick="ClickDelete();">
 </td>
 </tr>
 <tr>
 <td>
 <input type="button"
 value="Next" onclick="ClickNext();">
 </td>
 <td>
 <input type="button"
 value="Prev" onclick="ClickPrev();">
 </td>
 <td></td>
 </tr>
 <tr>
 <td colspan=3>
 <input type="button"
 value="Synchronize" onclick="ClickSync();">
 </td>
 </tr>
</table>
</form>

2. Create a JavaScript file c:\Tutorial\mbus\tutorial.js that provides application logic.

3. Add content to the JavaScript file:

Add the following code to the top of the file to declare the required UltraLite objects:

Lesson 4: Add startup code to your application

Copyright © 2006, iAnywhere Solutions, Inc. 43

var DatabaseMgr;
var Connection;
var CustomerTable;

Add connection code:

function Connect()
{
 DatabaseMgr = CreateObject
("iAnywhere.Data.UltraLite.DatabaseManager.Tutorial");
 if(DatabaseMgr == null) {
 alert("Error, make sure POD is on device");
 return;
 }
 var connParms = DatabaseMgr.createConnectionParms();
 var dir = DatabaseMgr.directory;
 connParms.schemaOnPalm = "tutCustomer";
 connParms.databaseOnPalm = "Syb3";
 connParms.databaseOnCE = dir + "\\tutCustomer.udb";
 connParms.databaseOnDesktop = dir + "\\tutCustomer.udb";
 connParms.userID = "DBA";
 connParms.password = "sql";
 try {
 // try to connect to an existing database
 Connection = DatabaseMgr.openConnection(connParms.ToString());
 alert("Connected to an existing database");
 } catch(ex) {
 if(DatabaseMgr.sqlCode !=
DatabaseMgr.SQLError.SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
 alert(ex.getMessage());
 return;
 } else {
 try {
 // the database does not exist, create one
 Connection = DatabaseMgr.createDatabase(connParms.ToString());
 alert("Created a new database");
 } catch(ex2) {
 alert(ex2.getMessage());
 return;
 }
 }
 }
}

4. Use the onload event handler to connect to the database when the application is started:

a. Import tutorial.js into main.html by adding the following line immediately before the <body> tag:

<script src="tutorial.js"></script>
b. Edit main.html and change the <body> tag to the following:

<body onload="Connect();">
5. Test your application.

Tutorial: A Sample Application for M-Business Anywhere

44 Copyright © 2006, iAnywhere Solutions, Inc.

Synchronize your M-Business Client and start the application. A message box appears when your
application creates the UltraLite database. Once this is working properly, you can continue to the next
lesson.

Lesson 4: Add startup code to your application

Copyright © 2006, iAnywhere Solutions, Inc. 45

Lesson 5: Add inserts to your application
This lesson shows how to fill out your application with data manipulation and navigation logic.

♦ Open the table

1. Write code to initialize the CustomerTable that represents the Customer table in your database.

Add the following code to the end of the Connect function in tutorial.js:

try {
 CustomerTable = Connection.getTable("customer", null);
 CustomerTable.open();
} catch(ex3) {
 alert("Error: " + ex3.getMessage());
}

2. Add variables to move data between the database and the web form.

Add the following declarations to the top of tutorial.js, before the Connect function.

var Cust_FName = "";
var Cust_LName = "";
var Cust_City = "";
var Cust_Phone = "";
var Cust_Id = "";

3. Create procedures to fetch and display customer data.

Add the following function to tutorial.js, immediately after the Connect function. It fetches the current
row of the customer and also ensures that NULL columns display as empty strings:

function FetchCurrentRow()
{
 var id;
 if(CustomerTable.getRowCount() == 0) {
 Cust_FName = "";
 Cust_LName = "";
 Cust_City = "";
 Cust_Phone = "";
 Cust_Id = "";
 } else {
 id = CustomerTable.schema.getColumnID("FName");
 Cust_FName = CustomerTable.getString(id);
 id = CustomerTable.schema.getColumnID("LName");
 Cust_LName = CustomerTable.getString(id);
 id = CustomerTable.schema.getColumnID("city");
 if(CustomerTable.isNull(id)) {
 Cust_City = "";
 } else {
 Cust_City = CustomerTable.getString(id);
 }
 id = CustomerTable.schema.getColumnID("phone");
 if(CustomerTable.isNull(id)) {
 Cust_Phone = "";
 } else {
 Cust_Phone = CustomerTable.getString(id);
 }
 id = CustomerTable.schema.getColumnID("id");
 Cust_Id = CustomerTable.getString(id);

Tutorial: A Sample Application for M-Business Anywhere

46 Copyright © 2006, iAnywhere Solutions, Inc.

 }
}

Add the following JavaScript to main.html, immediately before the closing </body> tag.
DisplayCurrentRow takes the values from the database and displays them in the web form. FetchForm
takes the current values in the web form and makes them available to the database code.

<script>
function DisplayCurrentRow()
{
 FetchCurrentRow();
 document.custForm.fname.value = Cust_FName;
 document.custForm.lname.value = Cust_LName;
 document.custForm.city.value = Cust_City;
 document.custForm.phone.value = Cust_Phone;
 document.custForm.custid.value = Cust_Id;
}
function FetchForm()
{
 Cust_FName = document.custForm.fname.value;
 Cust_LName = document.custForm.lname.value;
 Cust_City = document.custForm.city.value;
 Cust_Phone = document.custForm.phone.value;
}
</script>

4. Call DisplayCurrentRow when the application is loaded.

Modify the body tag at the top of main.html as follows:

<body onload="Connect(); DisplayCurrentRow();">

Although there is no data in your database and no rows are displayed, this is a good place to synchronize
M-Business Client to ensure that you have not introduced bugs.

♦ Add code to insert rows

• Write code to implement the Insert button.

In the following procedure, the call to InsertBegin puts the application into insert mode and sets all
values in the current row to their defaults. For example, the ID column receives the next autoincrement
value. The column values are set and the new row is inserted.

Add the following function to tutorial.js, immediately after FetchCurrentRow:

function Insert()
{
 var id;
 try {
 CustomerTable.insertBegin();
 id = CustomerTable.schema.getColumnID("FName");
 CustomerTable.setString(id, Cust_FName);
 id = CustomerTable.schema.getColumnID("LName");
 CustomerTable.setString(id, Cust_LName);
 id = CustomerTable.schema.getColumnID("city");
 if(Cust_City.length > 0) {
 CustomerTable.setString(id, Cust_City);
 }

Lesson 5: Add inserts to your application

Copyright © 2006, iAnywhere Solutions, Inc. 47

 id = CustomerTable.schema.getColumnID("phone");
 if(Cust_Phone.length > 0) {
 CustomerTable.setString(id, Cust_Phone);
 }
 CustomerTable.insert();
 CustomerTable.moveLast();
 } catch(ex) {
 alert("Insert error: " + ex.getMessage());
 }
}

Add the following function to main.html, immediately after the FetchForm function:

function ClickInsert()
{
 FetchForm();
 Insert();
 DisplayCurrentRow();
}

You can now test your application.

♦ Test your application

1. Synchronize your M-Business Client.

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the table:

a. Enter a first name of Jane in the first text box and a last name of Doe in the second text box. Click
Insert.

A row is added to the table with these values. The application moves to the last row of the table
and displays the row. The label displays the automatically incremented value of the ID column
that UltraLite assigned to the row.

b. Enter a first name of John in the first text box and a last name of Smith in the second. Click Insert.

The next step is to add navigation buttons

Tutorial: A Sample Application for M-Business Anywhere

48 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 6: Add navigation to your application
This lesson describes code for scrolling forward and backward through the rows of a result set.

♦ Add navigation code to your application

1. Add the MoveNext function to tutorial.js, immediately after the Insert function:

function MoveNext()
{
 if(! CustomerTable.moveNext()) {
 CustomerTable.moveLast();
 }
}

2. Add the MovePrev function to tutorial.js, immediately after the MoveNext function:

function MovePrev()
{
 if(! CustomerTable.movePrevious()) {
 CustomerTable.moveFirst();
 }
}

3. Add the following procedures to main.html:

function ClickNext()
{
 MoveNext();
 DisplayCurrentRow();
}
function ClickPrev()
{
 MovePrev();
 DisplayCurrentRow();
}

4. Synchronize your application and test the navigation buttons.

When the form is first displayed, the controls are empty as the current position is before the first row.
After the form is displayed, click Next and Previous to move through the rows of the table.

Lesson 6: Add navigation to your application

Copyright © 2006, iAnywhere Solutions, Inc. 49

Lesson 7: Add updates and deletes to your application
This lesson describes code for updating and deleting rows.

♦ Add update and delete functions to your application

1. Add the Update function to tutorial.js:

function Update()
{
 var id;
 try {
 CustomerTable.updateBegin();
 id = CustomerTable.schema.getColumnID("fname");
 CustomerTable.setString(id, Cust_FName);
 id = CustomerTable.schema.getColumnID("lname");
 CustomerTable.setString(id, Cust_LName);
 id = CustomerTable.schema.getColumnID("city");
 if(Cust_City.length > 0) {
 CustomerTable.setString(id, Cust_City);
 } else {
 CustomerTable.setNull(id);
 }
 id = CustomerTable.schema.getColumnID("phone");
 if(Cust_Phone.length > 0) {
 CustomerTable.setString(id, Cust_Phone);
 } else {
 CustomerTable.setNull(id);
 }
 CustomerTable.update();
 } catch(ex) {
 alert("Update error: " + ex.getMessage());
 }
}

2. Add the Delete function to tutorial.js:

function Delete()
{
 if(CustomerTable.getRowCount() == 0) {
 return;
 }
 CustomerTable.deleteRow();
 CustomerTable.moveRelative(0);
}

3. Add the following functions to main.html:

function ClickUpdate()
{
 FetchForm();
 Update();
 DisplayCurrentRow();
}
function ClickDelete()
{
 Delete();
 DisplayCurrentRow();
}

Tutorial: A Sample Application for M-Business Anywhere

50 Copyright © 2006, iAnywhere Solutions, Inc.

4. Synchronize your M-Business Client and run the application.

Lesson 7: Add updates and deletes to your application

Copyright © 2006, iAnywhere Solutions, Inc. 51

Lesson 8: Add synchronization to your application
The following procedure implements synchronization.

♦ Add a synchronization function to your application

1. Add the Synchronize function to tutorial.js:

The synchronization parameters are stored in the SyncParms object. For example, the
SyncParms.userName property specifies the user name for which MobiLink searches. The
SyncParms.sendColumnNames property specifies that the column names are sent to MobiLink so it
can generate upload and download scripts.

This function uses a TCP/IP synchronization stream and the default network communication options
(stream parameters). These default options assume that you are synchronizing from either a Windows
CE client connected to the computer running the MobiLink server via ActiveSync, or from a Windows
XP/200x client running on the same computer as MobiLink. If this is not the case, change the
synchronization stream type and set the network communication options to the appropriate values.

F For more information, see “Method setStream” on page 131 and “Method
setStreamParms” on page 131

function Synchronize()
{
 var SyncParms = Connection.syncParms;

 SyncParms.setUserName("user-name");
 SyncParms.setStream(SyncParms.STREAM_TYPE_TCPIP);
 SyncParms.setVersion("ul_default");
 SyncParms.setSendColumnNames(true);
 try {
 Connection.synchronize();
 } catch(ex) {
 alert("Sync error: " + ex.getMessage());
 }
}

2. Add the following function to main.html:

function ClickSync()
{
 window.showBusy = true;
 Synchronize();
 window.showBusy = false;
 DisplayCurrentRow();
}

3. Synchronize your M-Business Client.

This synchronization downloads the latest version of the application. It does not synchronize your
database.

The final step in this tutorial is to synchronize your UltraLite database. The SQL Anywhere sample database
has a Customer table with columns matching those in the Customer table in your UltraLite database. The
following procedure synchronizes your database with the SQL Anywhere sample database.

Tutorial: A Sample Application for M-Business Anywhere

52 Copyright © 2006, iAnywhere Solutions, Inc.

♦ To synchronize your application

1. From a command prompt, start the MobiLink server by running the following command.

mlsrv10 -c "dsn=SQL Anywhere 10 Demo" -v+ -zu+

The -zu+ option provides automatic addition of user scripts. For more information about this option,
see “MobiLink Server Options” [MobiLink - Server Administration].

2. In M-Business Client, click Delete repeatedly to delete all the rows in your table.

Any rows in the table would be uploaded to the Customer table in the SQL Anywhere sample database.

3. Synchronize your application.

Click Synchronize. The MobiLink server window displays the synchronization progress.

4. When the synchronization is complete, click Next and Previous to move through the rows of the table.

This completes the tutorial.

Lesson 8: Add synchronization to your application

Copyright © 2006, iAnywhere Solutions, Inc. 53

CHAPTER 4

UltraLite for M-Business Anywhere API
Reference

Contents
Data types in UltraLite for M-Business Anywhere ... 56
Class AuthStatusCode .. 57
Class Connection .. 58
Class ConnectionParms ... 66
Class CreationParms .. 68
Class DatabaseManager ... 70
Class DatabaseSchema .. 73
Class IndexSchema ... 78
Class PreparedStatement ... 81
Class PublicationSchema ... 91
Class ResultSet ... 92
Class ResultSetSchema .. 108
Class SQLError .. 112
Class SQLType .. 120
Class SyncParms .. 122
Class SyncResult .. 133
Class TableSchema ... 139
Class ULTable .. 150
Class UUID ... 175

About this chapter
This chapter describes the UltraLite for M-Business Anywhere API, a set of classes and methods that allow
you to write code for applications that use UltraLite databases. Each topic contains information about a
specific class, method, constant, or enum. The reference is organized by class, with associated methods
following.

Copyright © 2006, iAnywhere Solutions, Inc. 55

Data types in UltraLite for M-Business Anywhere
JavaScript has only one numeric data type and only one Date data type.

The prototypes in this API Reference include a variety of other data types in the method and property
descriptions. These types are internal M-Business Anywhere data types. Distinct numeric data types such
as UInt32 (unsigned 32-bit integer) are reported here to give an idea of the size and precision of data that
may be supplied. Distinct data types related to date and time (Date, Time, Timestamp) are reported so that
you can write code to extract the required information from the supplied data if necessary.

UltraLite for M-Business Anywhere API Reference

56 Copyright © 2006, iAnywhere Solutions, Inc.

Class AuthStatusCode
Enumerates the status codes that may be reported during MobiLink user authentication.

This object can be obtained from DatabaseManager as follows:

var authStatus = dbMgr.AuthStatusCode;

Properties

The following constants are properties of AuthStatusCode

Constant Value Description

UNKNOWN 0 Authorization status is unknown, possibly be-
cause the connection has not yet performed a
synchronization.

VALID 1 User ID and password were valid at time of syn-
chronization.

VALID_BUT_EXPIRES_SOON 2 User ID and password were valid at time of syn-
chronization but will expire soon.

EXPIRED 3 User ID or password has expired; authorization
failed.

INVALID 4 Bad user ID or password; authorization failed.

IN_USE 5 User ID is already in use; authorization failed.

Method toString

Prototype
String toString();

Returns
The name of the code or unknown if not a recognized code.

Remarks
Generates the string name of the authorization status code constant.

Class AuthStatusCode

Copyright © 2006, iAnywhere Solutions, Inc. 57

Class Connection
Represents a connection to an UltraLite database.

Connections are instantiated using one of the following methods:

♦ DatabaseManager.openConnection
♦ DatabaseManager.createDatabase

You must open a connection before carrying out any other operation, and you must close the connection
after you have finished all operations on the connection and before your application terminates.

You must close all tables opened on a connection before closing the connection.

When a JavaScript Error is thrown because of a failed UltraLite database operation, the SQL error code is
set on the sqlCode field of the Connection object.

Properties

Prototype Description

Boolean autoCommit Controls whether a commit is performed after each statement
(insert, update or delete).

If autoCommit is false, a commit or rollback is performed
only when the user invokes the commit() or rollback()
method.

By default, a database commit is performed after each suc-
cessful statement. If the commit fails, you have the option to
execute additional SQL statements and perform the commit
again, or execute a rollback statement.

String openParms (read-only) Gets the connection parameters string as a semicolon-sepa-
rated list of name=value pairs.

See “UltraLite Connection String Parameters
Reference” [UltraLite - Database Management and Refer-
ence].

DatabaseSchema databaseSchema (read-
only)

Gets the database schema. This property is valid only while
its connection is open.

Boolean skipMBASync (read-write) Controls whether the database should be synchronized dur-
ing one-button synchronization (false) or whether it should
be skipped (true).

Default is false.

See “One-button synchronization” on page 29.

UltraLite for M-Business Anywhere API Reference

58 Copyright © 2006, iAnywhere Solutions, Inc.

Prototype Description

Int32 sqlCode (read-only) Gets the SQL Code of the last operation on this connection.

The SQL Code is the standard SQL Anywhere code and is
reset by any subsequent UltraLite database operation on this
connection.

SyncParms syncParms (read-only) Gets synchronization settings for this connection.

See “Synchronization parameters for UltraLite” [MobiLink
- Client Administration].

SyncResult syncResult (read-only) Gets the results of the most recent synchronization for this
connection.

See “Synchronization parameters for UltraLite” [MobiLink
- Client Administration].

INVALID_DATABASE_ID (read-only) A constant indicating an invalid database.

Method changeEncryptionKey

Prototype
changeEncryptionKey(String newKey)

Parameters
♦ newKey The new encryption key for the database.

Remarks
Changes the database encryption key to the specified new key.

If the encryption key is lost, it is not possible to open the database.

Method close

Prototype
close()

Remarks
Closes this connection.

Once a connection is closed, it cannot be reopened. To reopen a connection, a new connection object must
be created and opened.

It is an error to use any object (a table or schema for example) associated with a closed connection.

Class Connection

Copyright © 2006, iAnywhere Solutions, Inc. 59

In JavaScript, the closed connection object is not set to NULL automatically after it is closed. It is
recommended that you explicitly set the connection object to NULL after closing the connection.

Method commit

Prototype
commit()

Remarks
Commits outstanding changes to the database.

Method countUploadRow

Prototype
UInt32 countUploadRow(UInt32 mask, UInt32 threshold)

Parameters
♦ mask Set of publications to check. For more information, see PublicationSchema class.

♦ threshold Value that determines the maximum number of rows to count, and so limits the amount of
time taken by the call. A value of 0 corresponds to the maximum limit. A value of 1 determines if any
rows need to be synchronized. threshold must be in range [0,0x0ffffffff].

Returns
The number of rows to be uploaded when the next synchronization takes place.

Method getDatabaseID

Prototype
UInt32 getDatabaseID()

Remarks
Gets the current Database ID value, as set by setDatabaseID().

If the value has not been set, the constant Connection.INVALID_DATABASE_ID is returned.

Method getGlobalAutoIncrementUsage

Prototype
UInt16 getGlobalAutoIncrementUsage()

Returns
The percentage of available global increment values used so far.

UltraLite for M-Business Anywhere API Reference

60 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Returns the percentage of available global autoincrement values that have been used.

If the percentage approaches 100, your application should set a new value for the global database ID using
the setDatabaseID.

Method getLastDownloadTime

Prototype
Date getLastDownloadTime(UInt32 mask)

Parameters
♦ mask A set of publications to check.

Returns
The timestamp of the most recent download.

Remarks
The parameter mask must reference a single publication or be the special constant
PublicationSchema.SYNC_ALL_DB for the time of the last download of the full database.

See also
♦ “Class PublicationSchema” on page 91

Method getLastIdentity

Prototype
UInt64 getLastIdentity()

Returns
The most recent identity value used.

Remarks
This function is equivalent to the following SQL statement:

 SELECT @@identity

The function is particularly useful in the context of global autoincrement columns. The returned value is an
unsigned 64-bit integer, database data type UNSIGNED BIGINT. Since this statement only allows you to
determine the most recently assigned default value, you should retrieve this value soon after executing the
insert statement to avoid spurious results.

Occasionally, a single insert statement may include more than one column of type global autoincrement. In
this case, the return value is one of the generated default values, but there is no reliable means to determine
which one. For this reason, you should design your database and write your insert statements so as to avoid
this situation.

Class Connection

Copyright © 2006, iAnywhere Solutions, Inc. 61

Method getNewUUID

Prototype
UUID getNewUUID()

Returns
A new UUID value.

Method getTable

Prototype
Table getTable(String name, String persistName)

Parameters
♦ name Name of the table to fetch.

♦ persistName The name for cross-page JavaScript object persistence. Set to null if no persistence is
required (for example, if the application has only a single HTML page).

Remarks
Creates and returns a reference to the requested table in the database.

Method grantConnectTo

Prototype
grantConnectTo(String uid, String pwd)

Parameters
♦ uid User ID to grant access to. The maximum length is 16 characters.

♦ pwd The password for the user ID.

Remarks
Grants access to an UltraLite database for a user ID with a specified password. If an existing user ID is
specified, this function updates the password for the user. UltraLite supports a maximum of 4 users.

Method isOpen

Prototype
Boolean isOpen();

Returns
true if the connection is open, false otherwise.

Remarks
Checks whether this connection is currently open.

UltraLite for M-Business Anywhere API Reference

62 Copyright © 2006, iAnywhere Solutions, Inc.

Method prepareStatement

Prototype
PreparedStatement prepareStatement(String sql, String persistName)

Parameters
♦ sql A SQL statement that may contain one or more '?' IN parameter placeholder.

♦ persistName The name for cross-page JavaScript object persistence. Set to null if no persistence is
required (for example, if the application has only a single HTML page).

Remarks
Pre-compiles and stores into a PreparedStatement object a SQL statement with or without IN parameters.
This object can then be used to efficiently execute this statement multiple times.

Method resetLastDownloadTime

Prototype
resetLastDownloadTime(UInt32 mask)

Parameters
♦ mask Set of publications to reset.

Remarks
Resets the time of the most recent download.

Method revokeConnectFrom

Prototype
revokeConnectFrom(String uid)

Parameters
♦ uid User ID to be excluded from database access. The maximum length is 16 characters.

Remarks
Revokes access to an UltraLite database for a specified user ID.

Method rollback

Prototype
rollback()

Remarks
Rolls back outstanding changes to the database.

Class Connection

Copyright © 2006, iAnywhere Solutions, Inc. 63

Method rollbackPartialDownload

Prototype
rollbackPartialDownload()

Remarks
Rolls back the changes from a failed synchronization.

When a communication error occurs during the download phase of synchronization, UltraLite can apply the
downloaded changes, so that the synchronization can be resumed from the place it was interrupted. If the
download changes are not needed (the user or application does not want to resume the download at this
point), RollbackPartialDownload rolls back the failed download transaction.

Method setDatabaseID

Prototype
setDatabaseID(UInt32 value)

Parameters
♦ value Database ID value. value must be in range [0,0x0ffffffff].

Remarks
Sets the database ID value to be used for global autoincrement columns.

Method saveSyncParms

Prototype
saveSyncParms()

Remarks
Saves the synchronization parameters for use by HotSync or for use during one-button synchronization.

Do not confuse the saveSyncParms method with the Connection.SyncParms property. The SyncParms
property is used to define the synchronization parameters for this connection. The setSyncParms method
just saves these parameters so that HotSync can use them.

See also
♦ “One-button synchronization” on page 29

Method startSynchronizationDelete

Prototype
startSynchronizationDelete()

UltraLite for M-Business Anywhere API Reference

64 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Marks for synchronization all subsequent deletes made by this connection. Once this function is called, all
delete operations are again synchronized.

Method stopSynchronizationDelete

Prototype
stopSynchronizationDelete()

Remarks
Prevents delete operations from being synchronized. This is useful for deleting old information from an
UltraLite database to save space, while not deleting this information on the consolidated database.

Method synchronize

Prototype
synchronize()

Remarks
Synchronizes the database using the current SyncParms object. A detailed result status is reported in this
connection's SyncResult object. The synchronization is carried out using the synchronization properties
defined in the Connection.SyncParms object for this connection.

Method synchronizeWithParm

Prototype
synchronizeWithParm(SyncParms parms)

Parameters
♦ parms The SyncParms object to use for this synchronization.

Remarks
Synchronizes the database using the specified SyncParms object. This method makes it possible to share
synchronization parameters among connections.

A detailed result status is reported in this connection's SyncResult object.

Class Connection

Copyright © 2006, iAnywhere Solutions, Inc. 65

Class ConnectionParms
Specifies parameters for opening a connection to an UltraLite database.

Databases are created with a single authenticated user, DBA, whose initial password is sql. By default,
connections are opened using the user ID DBA and password sql. To disable the default user, use
Connection.revokeConnectFrom. To add a user or change a user's password, use
Connection.grantConnectTo.

Currently, only one connection can be opened at any time. Only one database may be active at a given time.
Attempts to open a connection to a different database while other connections are open result in an error.

Properties

The properties of the class are listed here.

Prototype Description

String additionalParms (read-write) Additional parameters specified as name=value pairs separated
with semicolons.

String cacheSize (read-write) The size of the cache. CacheSize values are specified in bytes.
Use the suffix k or K for kilobytes and use the suffix m or M for
megabytes. The default cache size is sixteen pages. Given a de-
fault page size of 4 KB, the default cache size is 64 KB.

F See “CACHE_SIZE connection parameter” [UltraLite -
Database Management and Reference].

String connectionName (read-write) A name for the connection. The connection name is used to share
a single connection across multiple web pages.

F See “CON connection parameter” [UltraLite - Database
Management and Reference], and “Maintaining connections and
application state across pages” on page 11.

String creatorIdOnPalm The UltraLite database creator ID on the Palm device.

String databaseOnCE (read-write) The filename of the database on Windows CE.

F See “CE_FILE connection parameter” [UltraLite - Database
Management and Reference].

String databaseOnDesktop (read-
write)

The filename of the database deployed to Windows XP/200x.

F See “DBF connection parameter” [UltraLite - Database
Management and Reference].

UltraLite for M-Business Anywhere API Reference

66 Copyright © 2006, iAnywhere Solutions, Inc.

Prototype Description

String databaseOnPalm (read-write) The filename of the UltraLite database on Palm.

F See “PALM_FILE connection parameter” [UltraLite -
Database Management and Reference].

String databaseOnSymbian (read-
write)

The filename of the UltraLite database on Symbian.

F See “SYMBIAN_FILE connection parameter” [UltraLite -
Database Management and Reference].

String encryptionKey (read-write) A key for encrypting the database. OpenConnection must use the
same key as specified during database creation. Suggestions for
keys are:

1. Select an arbitrary, lengthy string

2. Select strings with a variety of numbers, letters and special
characters, to decrease the chances of key penetration.

F See “DBKEY connection parameter” [UltraLite - Database
Management and Reference].

String password (read-write) The password for an authenticated user. Databases are initially
created with one authenticated user (DBA) with password sql.
Passwords are case-insensitive if the database is case-insensitive
and case-sensitive if the database is case-sensitive. The default
value is sql.

F See “PWD connection parameter” [UltraLite - Database
Management and Reference].

String userID (read-write) The authenticated user for the database. Databases are initially
created with one authenticated user DBA. The UserID is case-
insensitive. The default value is DBA.

F See “UID connection parameter” [UltraLite - Database
Management and Reference].

Method toString

Prototype
String toString();

Returns
The name of the code or unknown if not a recognized code.

Remarks
Generates the string name of the authorization status code constant.

Class ConnectionParms

Copyright © 2006, iAnywhere Solutions, Inc. 67

Class CreationParms
Defines parameters that may be specified when creating an UltraLite database.

Some UltraLite database options must be set at the time the database is created. The following parameters
can be supplied when creating the database using the createDatabase method. For more information see
“Method createDatabase” on page 70.

Properties

The properties of the class are listed here. For more information see the corresponding descriptions in
“Choosing creation-time database properties” [UltraLite - Database Management and Reference]

Prototype Description

Boolean caseSensitive Sets the case-sensitivity of string comparisons in the UltraLite
database.

UInt32 checksumLevel Sets the level of checksum validation in the database.

Default is 0.

String dateFormat Sets the default string format in which dates are retrieved from
the database.

String dateOrder Controls the interpretation of date ordering of months, days, and
years.

UInt32 maxHashSize Set the maximum number of bytes that are used to hash the Ul-
traLite indexes.

Default is 0.

UInt32 nearestCentury Controls the interpretation of two-digit years in string-to-date
conversions.

Boolean obfuscate Controls whether or not to obfuscate data in the database. Ob-
fuscation is a form of simple encryption.

UInt32 pageSize Defines the database page size. Valid values are: 1024, 2048,
4096, 8192, 16384.

Default is 4096.

UInt32 precision Specifies the maximum number of digits in the result of any dec-
imal arithmetic.

UInt32 scale Specifies the minimum number of digits after the decimal point
when an arithmetic result is truncated to the maximum precision.

String timeFormat Sets the format for times retrieved from the database.

String timestampFormat Determines how the timestamp is formatted in UltraLite.

UltraLite for M-Business Anywhere API Reference

68 Copyright © 2006, iAnywhere Solutions, Inc.

Prototype Description

String timestampIncrement Determines how the timestamp is truncated in UltraLite.

Boolean utf8Encoding Encodes data using the UTF-8 format, 8-bit multibyte encoding
for Unicode.

Class CreationParms

Copyright © 2006, iAnywhere Solutions, Inc. 69

Class DatabaseManager
Manages connections to an UltraLite database.

You must open a connection before carrying out any other operation, and you must close the connection
after you have finished all operations on the connection, and before your application terminates. You must
close all tables opened on a connection before closing the connection.

Properties

The properties of the class are listed here.

Property Description

AuthStatusCode AuthSta-
tusCode (read-only)

Gets the AuthStatusCode object associated with the most recent synchro-
nization.

String directory (read-on-
ly)

The directory in which M-Business Anywhere is running.

On Palm OS, this property is NULL.

UInt32 runtimeType
(read-only)

The runtime type: either the UltraLite runtime (stand alone) library or the
UltraLite database engine. The value is an enum, and is one of the following:

♦ DatabaseManager.UL_STANDALONE
♦ DatabaseManager.UL_ENGINE_CLIENT

Int32 sqlCode (read-only) Gets the SQL Code value associated with the most recent operation.

SQLError SQLError
(read-only)

Gets the SQLError object.

SQLType SQLType (read-
only)

Gets the SQLType object.

PODSUInt32 UL_STAN-
DALONE (read only)

A constant indicating that the runtime type is the UltraLite runtime library.

PODSUInt32
UL_ENGINE_CLIENT
(read-only)

A constant indicating that the runtime type is the UltraLite database engine.

Method createDatabase

Prototype
Connection createDatabase(
String access_parms ,
PODSArray *coll_bytes,

UltraLite for M-Business Anywhere API Reference

70 Copyright © 2006, iAnywhere Solutions, Inc.

String create_parms
)

Parameters
♦ access_parms Parameters for connecting to the database. access_parms is used to specify connection

parameters (including the database filename and location) and to open the connection. For more
information see “Connecting to an UltraLite Database” [UltraLite - Database Management and
Reference].

♦ coll_bytes A byte array defining a database collation to use for the database to be created. A number
of source files are supplied with UltraLite as javascript source files (.js) in install-dir\src\ulcollations\ with
filenames of the form Collation_XXXXX.js where XXXXX represents the collation name. For example,
coll_1250LATIN2.js.

The .js file must be included in the main html file before the database logic. The byte array variable is
defined in the .js file.

♦ create_parms Parameters for creating the database. Parameter keywords are case-insensitive, and
most values are case-sensitive. create_parms is used to specify certain parameters that may be specified
only at database creation. For more information, see “Choosing creation-time database
properties” [UltraLite - Database Management and Reference].

Returns
No return value.

Remarks
Creates a database and opens a connection to the database as specified by access_parms. If the database
already exists, a SQLE_DATABASE_NOT_CREATED exception is thrown.

Only one database may be active at a given time. Attempts to open a connection to a database result in an
error if there are connections open to a different database.

Method dropDatabase

Prototype
dropDatabase(String parms)

Parameters
♦ parms Parameters for identifying a database.

Remarks
Deletes the specified database.

parms is a semicolon-separated list of keyword=value pairs ("param1=value1;param2=value2").
Parameter keywords are case-insensitive, and most values are case-sensitive.

You cannot drop a database that has open connections.

Class DatabaseManager

Copyright © 2006, iAnywhere Solutions, Inc. 71

Method getDatabaseOptions

Prototype
Connection openConnection(String parms)

Method openConnection

Prototype
Connection openConnection(String parms)

Parameters
♦ parms A String holding the parameters for opening a connection as a set of keyword=value pairs.

Parameter keywords are case-insensitive, and most values are case-sensitive.

Returns
An opened connection.

Remarks
Opens a connection to the database specified by parms. If the database does not exist, an error is thrown.
You can check Connection.sqlCode within the error catching code to identify the cause of the error.

Only one database may be active at a given time. Attempts to open a connection to different database while
other connections are open result in an error.

Method reOpenConnection

Prototype
Connection reOpenConnection(String connectionName)

Parameters
♦ connectionName The name of the connection to be reopened, as specified in the

ConnectionParms.connectionName property.

Returns
An opened Connection object. The method is used to maintain connections across multiple web pages.

UltraLite for M-Business Anywhere API Reference

72 Copyright © 2006, iAnywhere Solutions, Inc.

Class DatabaseSchema
Represents the schema of an UltraLite database. A DatabaseSchema object is attached to a connection and
is only valid while that connection is open.

Constants

Constant Description

SYNC_ALL_DB Synchronize all tables in the database.

SYNC_ALL_PUBS Synchronize all publications in the database.

The members of the class are listed here.

Method getCollationName

Prototype
String getCollationName()

Returns
A string identifying the character set and sort order used in this database.

Method getDatabaseProperty

Prototype
String getDatabaseProperty(String name)

Parameters
♦ name Name of the database property.

Returns
Returns the value of the specified database property. Recognized properties are:

♦ "date_format" The date format used for string conversions by the database.

♦ "date_order" The date order used for string conversions by the database.

♦ "nearest_century" The nearest century used for string conversions by the database.

♦ "precision" The floating-point precision used for string conversions by the database.

♦ "scale" The minimum number of digits after the decimal point when an arithmetic result is truncated
to the maximum precision during string conversions by the database.

♦ "time_format" The time format used for string conversions by the database.

Class DatabaseSchema

Copyright © 2006, iAnywhere Solutions, Inc. 73

♦ "timestamp_format" The timestamp format used for string conversions by the database.

♦ "timestamp_increment" The minimum difference between two unique timestamps, in nanoseconds
(1,000,000th of a second).

Method getDateFormat

Prototype
String getDateFormat()

Returns
The date format used for string conversions.

Method getDateOrder

Prototype
String getDateOrder()

Returns
The date order used for string conversions.

Method getNearestCentury

Prototype
String getNearestCentury()

Returns
The nearest century used for string conversions.

Method getPrecision

Prototype
String getPrecision()

Returns
The floating-point precision used for string conversions.

Method getPublicationCount

Prototype
UInt16 getPublicationCount()

Returns
The number of publications in the database.

UltraLite for M-Business Anywhere API Reference

74 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Publication IDs range from 1 to getPublicationCount(), inclusively. Publication IDs are not publication
masks.

Note: Publication IDs, masks, and count may change during a schema upgrade. To correctly identify a
publication, access it by name or refresh the cached IDs, masks, and counts after a schema upgrade.

Method getPublicationName

Prototype
String getPublicationName(UInt16 pubID)

Parameters
♦ pubID ID of the publication. pubID must be in range [1,getPublicationCount]().

Returns
The name of the publication identified by the specified publication ID. Publication IDs are not publication
masks.

Remarks
Note: Publication IDs, masks, and count may change during a schema upgrade. To correctly identify a
publication, access it by name or refresh the cached IDs, masks, and counts after a schema upgrade.

Method getPublicationSchema

Prototype
PublicationSchema getPublicationSchema(String name)

Parameters
♦ name Name of the publication.

Returns
The publication schema corresponding to the named publication.

Method getSignature

Prototype
String getSignature()

Returns
The signature of this database.

Class DatabaseSchema

Copyright © 2006, iAnywhere Solutions, Inc. 75

Method getTableCount

Prototype
UInt16 getTableCount()

Returns
The number of tables, or 0 if the connection is not open.

Remarks
Returns the number of tables in the database. Table IDs range from 1 to getTableCount(), inclusively.

Method getTableCountInPublications

Prototype
UInt16 getTableCountInPublications(UInt32 mask)

Parameters
♦ mask Set of publications to check.

Returns
The number of tables included in the specified publication mask. The count does not include tables whose
names end in _nosync.

Method getTableName

Prototype
String getTableName(UInt16 tableID)

Parameters
♦ tableID ID of the table. tableID must be in range [1,getTableCount()].

Returns
The name of the table identified by the specified table ID.

Remarks
Note: Table IDs may change during a schema upgrade. To correctly identify a table, access it by name or
refresh the cached IDs after a schema upgrade.

Method getTimeFormat

Prototype
String getTimeFormat()

UltraLite for M-Business Anywhere API Reference

76 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
The time format used for string conversions.

Method getTimestampFormat

Prototype
String getTimestampFormat()

Remarks
The timestamp format used for string conversions.

Method isCaseSensitive

Prototype
Boolean isCaseSensitive()

Returns
True if the database is case sensitive, false otherwise.

Method isOpen

Prototype
Boolean isOpen()

Returns
True if the database schema is open, false otherwise.

Remarks
Checks whether this database schema is currently open.

Class DatabaseSchema

Copyright © 2006, iAnywhere Solutions, Inc. 77

Class IndexSchema
Represents the schema of an UltraLite table index.

This object cannot be directly instantiated. Index schemas are created using the
TableSchema.getPrimaryKey, TableSchema.getIndex and TableSchema.getOptimalIndex methods.

Method getColumnCount

Prototype
UInt16 getColumnCount()

Returns
The number of columns in this index. Column IDs in indexes range from 1 to getColumnCount(), inclusively.

Method getColumnName

Prototype
String getColumnName(UInt16 colIDInIndex)

Parameters
♦ colIDInIndex ID in this index of the column. colIDInIndex must be in range [1, getColumnCount()].

Returns
The name of the colIDInIndex column in this index.

Method getName

Prototype
String getName()

Returns
The name of this index.

Method getReferencedIndexName

Prototype
String getReferencedIndexName()

Returns
The name of the referenced primary index if this index is a foreign key.

UltraLite for M-Business Anywhere API Reference

78 Copyright © 2006, iAnywhere Solutions, Inc.

Method getReferencedTableName

Prototype
String getReferencedTableName()

Returns
The name of the referenced primary table if index is a foreign key.

Method isColumnDescending

Prototype
Boolean isColumnDescending(String name)

Parameters
♦ name Name of the column.

Returns
True if column is used in descending order, false if column is used in ascending order.

Method isForeignKey

Prototype
Boolean isForeignKey()

Returns
True if index is the foreign key, false if index is not the foreign key.

Remarks
Columns in a foreign key may reference a non-null unique index of another table.

Method isForeignKeyCheckOnCommit

Prototype
Boolean isForeignKeyCheckOnCommit()

Returns
True if referential integrity is checked on commits, false if it is checked on inserts and updates.

Method isForeignKeyNullable

Prototype
Boolean isForeignKeyNullable()

Class IndexSchema

Copyright © 2006, iAnywhere Solutions, Inc. 79

Returns
True if this foreign key is nullable, false if this foreign key is not nullable.

Method isPrimaryKey

Prototype
Boolean isPrimaryKey()

Returns
True if index is the primary key, false if index is not the primary key.

Remarks
Columns in the primary key may not be null.

Method isUniqueIndex

Prototype
Boolean isUniqueIndex()

Returns
True if the index is unique, false otherwise.

Remarks
Columns in a unique index may be null.

Method isUniqueKey

Prototype
Boolean isUniqueKey()

Returns
True if index is unique key, false if index is not unique key.

Remarks
Columns in a unique key may not be null.

UltraLite for M-Business Anywhere API Reference

80 Copyright © 2006, iAnywhere Solutions, Inc.

Class PreparedStatement
Represents a pre-compiled SQL statement with or without IN parameters. Created at runtime using
Connection.prepareStatement.

This object can then be used to efficiently execute this statements multiple times.

When a prepared statement is closed, all ResultSet and ResultSetSchema objects associated with it are also
closed. For resource management reasons, it is preferred that you explicitly close prepared statements when
you are done with them.

Method AppendBytesParameter

Prototype
AppendBytesParameter(
 UInt16 parameterID,
 Array value,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The value to append to the current new value for the parameter.

♦ srcOffset Start position in the source array.

♦ count The number of bytes to be copied.

Remarks
Appends the specified subset of the specified array of bytes to the new value for the specified
SQLType.LONGBINARY column. The bytes at position srcOffset (starting from 0) through srcOffset
+count-1 of the array value are appended to the value for the specified parameter. When inserting,
insertBegin initializes the new value to the parameter's default value.

If any of the following is true, an Error with code SQLError.SQLE_INVALID_PARAMETER is thrown
and the destination is not modified:

♦ The value argument is null.

♦ The srcOffset argument is negative.

♦ The count argument is negative.

♦ srcOffset+count is greater than value.length, the length of the source array.

Class PreparedStatement

Copyright © 2006, iAnywhere Solutions, Inc. 81

Method AppendStringChunkParameter

Prototype
AppendStringChunkParameter(
 UInt16 parameterID,
 String value,
)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The value to append to the current new value for the parameter.

Remarks
Appends the String to the new value for the specified SQLType.LONGVARCHAR.

Example
The following statement appends one hundred instances of the string XYZ to the first parameter:

for (i = 0; i < 100; i++){
 stmt.AppendStringChunkParameter(1, "XYZ");
}

Method close

Prototype
close()

Remarks
Close the prepared statement.

When a prepared statement is closed, all ResultSet and ResultSetSchema objects associated with it are also
closed.

It is recommended that you set the preparedStatement object to null immediately after you close it.

Method executeQuery

Prototype
ResultSet executeQuery(String persistName)

Parameter
♦ persistName The name for cross-page JavaScript object persistence. Set to null if no persistence is

required (for example, if the application has only a single HTML page).

UltraLite for M-Business Anywhere API Reference

82 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
The result set of the query, as a set of rows.

Remarks
Executes a SQL SELECT statement and returns the result set.

Method executeStatement

Prototype
Int32 executeStatement()

Returns
The number of rows affected by the statement.

Remarks
Executes a statement that does not return a result set, such as a SQL INSERT, DELETE or UPDATE
statement.

If Connection.autoCommit is true, the statement commits only if one or more rows is affected by the
statement.

Method getPlan

Prototype
String getPlan()

Returns
A string describing the access plan UltraLite will use to execute a query. This method is intended primarily
for use during development.

See also
♦ “Query access plans in UltraLite” [UltraLite - Database Management and Reference].

Method getResultSetSchema

Prototype
ResultSetSchema getResultSetSchema()

Returns
The schema describing the result set of this query statement.

Class PreparedStatement

Copyright © 2006, iAnywhere Solutions, Inc. 83

Method hasResultSet

Prototype
Boolean hasResultSet()

Returns
True if a result set is generated when this statement is executed, false if no result set is generated.

Method isOpen

Prototype
Boolean isOpen()

Returns
True if the prepared statement is open, false otherwise.

Method setBooleanParameter

Prototype
setBooleanParameter(UInt16 parameterID, Boolean value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified parameter using a Boolean.

Example
The following statement sets a value for the first parameter:

stmt.setBooleanParameter(1, false);

Method setBytesParameter

Prototype
setBytesParameter(UInt16 parameterID, Array value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

UltraLite for M-Business Anywhere API Reference

84 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Sets the value for the specified parameter using an array of bytes. Suitable for columns of type
SQLType.BINARY or SQLType.LONGBINARY only.

Example
The following statement sets a value for the first parameter:

var blob = new Array(3);
blob[0] = 78;
blob[1] = 0;
blob[2] = 68;
stmt.setBytesParameter(1, blob);

Method setDateParameter

Prototype
setDateParameter(UInt16 parameterID, Date value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified SQLType.DATE type parameter using a date. Only the year, month, and day
fields of the Date object are relevant.

Example
The following statement sets a value for the first parameter to 2004/09/27:

stmt.setDateParameter(
 1, new Date(2004,9,27,0,0,0,0)
);

Method setDoubleParameter

Prototype
setDoubleParameter(UInt16 parameterID, Double value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Class PreparedStatement

Copyright © 2006, iAnywhere Solutions, Inc. 85

Remarks
Sets the value for the specified parameter using a double.

Example
The following statement sets a value for the first parameter:

stmt.setDoubleParameter(1, Number.MAX_VALUE);

Method setFloatParameter

Prototype
setFloatParameter(UInt16 parameterID, Float value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified SQLType.REAL parameter.

Example
The following statement sets a floating-point value for the first parameter:

stmt.setFloatParameter(1,
 (2 - Math.pow(2,-23)) * Math.pow(2,127)
);

Method setIntParameter

Prototype
setUInt16Parameter(UInt16 parameterID, UInt16 value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified parameter using a UInt16.

Example
The following statement sets the value for the first parameter to 2147483647:

stmt.setIntParameter(1, 2147483647);

UltraLite for M-Business Anywhere API Reference

86 Copyright © 2006, iAnywhere Solutions, Inc.

Method setLongParameter

Prototype
setLongParameter(UInt16 parameterID, Int64 value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified parameter.

Example
The following statement sets the value for the first parameter to 9223372036854770000:

stmt.setLongParameter(1, 9223372036854770000);

Method setNullParameter

Prototype
setNullParameter(UInt16 parameterID)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

Remarks
Sets the specified parameter to the SQL NULL value.

Method setShortParameter

Prototype
setUInt16Parameter(UInt16 parameterID, UInt16 value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified parameter.

Class PreparedStatement

Copyright © 2006, iAnywhere Solutions, Inc. 87

Example
The following statement sets the value for the first parameter to 32767:

stmt.setShortParameter(1, 32767);

Method setStringParameter

Prototype
setStringParameter(UInt16 parameterID, String value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified parameter.

Example
The following statement sets the value for the first parameter to ABC:

stmt.setStringParameter(1, "ABC");

Method setTimeParameter

Prototype
setTimeParameter(UInt16 parameterID, Date value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified SQLType.TIME type parameter using a date. Only the hour, minute, and
second fields of the Date object are relevant.

Example
The following statement sets a value for the first parameter to 18:02:13:0000:

stmt.setTimeParameter(
 1, new Date(1966,4,1,18,2,13,0)
);

UltraLite for M-Business Anywhere API Reference

88 Copyright © 2006, iAnywhere Solutions, Inc.

Method setTimestampParameter

Prototype
setTimestampParameter(UInt16 parameterID, Date value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified parameter using a Timestamp.

Example
The following statement sets a value for the first parameter to 1966/04/01 18:02:13:0000:

stmt.setTimestampParameter(
 1, new Date(1966,4,1,18,2,13,0)
);

Method setULongParameter

Prototype
setULongParameter(UInt16 parameterID, UInt64 value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter. Uses a Double to represent the value of an unsigned 64-bit
integer.

Remarks
Sets the value for the specified parameter using a Double treated as an unsigned value. For more information,
see class Unsigned64.

Example
The following statement sets the value for the first parameter:

stmt.setLongParameter(1, 9223372036854770000 * 4096);

Method setUUIDParameter

Prototype
setUUIDParameter(UInt16 parameterID, UUID value)

Class PreparedStatement

Copyright © 2006, iAnywhere Solutions, Inc. 89

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Sets the value for the specified parameter using a UUID.

UltraLite for M-Business Anywhere API Reference

90 Copyright © 2006, iAnywhere Solutions, Inc.

Class PublicationSchema
Represents the schema of an UltraLite publication.

This class cannot be directly instantiated. Publication schemas are created using the
DatabaseSchema.getPublicationSchema method.

UltraLite methods requiring a publication mask actually require a set of publications to check. A set is formed
by or'ing the publication masks of individual publications. For example:

pub1.getMask() | pub2.getMask()

Two special mask values are provided by DatabaseSchema object. SYNC_ALL_DB corresponds to the
entire database. SYNC_ALL_PUBS corresponds to all publications.

Publication masks may change during a schema upgrade. To correctly identify a publication, access it by
name or refresh the cached masks after a schema upgrade.

Method getMask

Prototype
UInt32 getMask()

Returns
The publication mask of this publication.

Note: Publication IDs, masks, and count may change during a schema upgrade. To correctly identify a
publication, access it by name or refresh the cached masks, and counts after a schema upgrade.

Method getName

Prototype
String getName()

Returns
The name of this publication.

Class PublicationSchema

Copyright © 2006, iAnywhere Solutions, Inc. 91

Class ResultSet
Represents a result set in an UltraLite database. Created at runtime using PreparedStatement.executeQuery.

Properties

The properties of the class are listed here.

Property Description

ResultSetSchema schema (read-only) The schema of this result set. This property is only valid while
its prepared statement is open.

NULL_TIMESTAMP_VAL A constant indicating that a timestamp value is NULL.

Method appendBytes

Prototype
appendBytes(
 UInt16 columnID,
 Array value,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

♦ srcOffset The value to append to the current new value for the column.

♦ count The number of bytes to be copied.

Remarks
Appends the specified subset of the specified array of bytes to the new value for the specified
SQLType.LONGBINARY column. The bytes at position srcOffset (starting from 0) through srcOffset
+count-1 of the array value are appended to the value for the specified column. When inserting, insertBegin
initializes the new value to the column's default value. The data in the row is not actually changed until you
execute an insert, and that change is not permanent until it is committed.

If any of the following is true, an Error with code SQLCode.SQLE_INVALID_PARAMETER is thrown
and the destination is not modified:

♦ The value argument is null.

♦ The srcOffset argument is negative.

UltraLite for M-Business Anywhere API Reference

92 Copyright © 2006, iAnywhere Solutions, Inc.

♦ The count argument is negative.

♦ srcOffset+count is greater than value.length, the length of the source array.

For other errors, a SQLException with the appropriate error code is thrown.

Method appendStringChunk

Prototype
appendStringChunk(
 UInt16 columnID,
 String value
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Appends the specified string to the new value for the specified SQLType.LONGVARCHAR column.

Example
The following statements append one hundred instances of the string XYZ to the value in the first column:

for (i = 0; i < 100; i++){
 t.AppendStringChunk(1, "XYZ");
}

Method close

Prototype
close()

Remarks
Frees all resources associated with this object.

Method deleteRow

Prototype
deleteRow()

Remarks
Deletes the current row.

Each deleteRow must be preceded by a call to updateBegin.

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 93

Method getBoolean

Prototype
Boolean getBoolean(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

Returns
The value for the specified column as a Boolean.

Method getBytes

Prototype
Array getBytes(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

Returns
The value for the specified column as an array of bytes.

Remarks
Only valid for columns of type SQLType.BINARY or SQLType.LONGBINARY.

Method getBytesSection

Prototype
UInt32 getBytesSection(
 UInt16 index,
 UInt32 srcOffset,
 Array dst,
 UInt32 dstOffset,
 UInt32 count
)

Parameters
index The 1-based ordinal of the column containing the binary data.

offset The offset into the underlying array of bytes. The source offset must be greater than or equal to 0,
otherwise a SQLE_INVALID_PARAMETER error will be raised. A buffer bigger than 64K is also
permissible.

data An array of bytes.

data_len The length of the buffer, or array. The data_len must be greater than or equal to 0.

UltraLite for M-Business Anywhere API Reference

94 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
The number of bytes read.

Remarks
Copies a subset of the contents of the specified SQLType.LONGBINARY column, beginning at the specified
offset, to the specified offset of the destination byte array.

The bytes at position srcOffset (starting from 0) through srcOffset+count-1 of the source array
are copied into positions dstOffset through dstOffset+count-1, respectively, of the destination array. If the
end of the value is encountered before count bytes are copied, the remainder of the destination array is left
unchanged.

If any of the following is true, an error is thrown, SQLError code
SQLCode.SQLE_INVALID_PARAMETER is set, and the destination is not modified:

♦ The dst argument is null.
♦ The srcOffset argument is negative.
♦ The dstOffset argument is negative.
♦ The count argument is negative.
♦ dstOffset + count is greater than the length of the destination array, dst.length.

Errors set
SQLE_CONVERSION_ERROR The error occurs if the column data type is not BINARY or LONG
BINARY.

SQLE_INVALID_PARAMETER The error occurs if the column data type is BINARY and the offset is
not 0 or 1, or, the data length is less than 0.

The error also occurs if the column data type is LONG BINARY and the offset is less than 1.

Method getDate

Prototype
Date getDate(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Date.

Method getDouble

Prototype
Double getDouble(UInt16 index)

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 95

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Double.

Method getFloat

Prototype
Float getFloat(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value for the specified column.

Method getInt

Prototype
UInt32 getInt(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value for the specified column.

Method getLong

Prototype
Int64 getLong(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value for the specified column.

Method getRowCount

Prototype
UInt32 getRowCount()

Returns
The number of rows in the result set.

UltraLite for M-Business Anywhere API Reference

96 Copyright © 2006, iAnywhere Solutions, Inc.

Method getShort

Prototype
Int16 getShort(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as an Int16.

Method getString

Prototype
String getString(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a String.

Method getStringChunk

Prototype
String getStringChunk(
 UInt16 index,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ index The 1-based ordinal in the result set to get

♦ srcOffset The o-based start position in the string value.

♦ count The number of characters to be copied.

Returns
The string, with specified characters copied.

Remarks
Copies a subset of the value for the specified SQLType.LONGVARCHAR column, starting at the specified
offset, to the String object.

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 97

Method getTime

Prototype
Date getTime(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Date.

Method getTimestamp

Prototype
Date getTimestamp(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Date.

Method getULong

Prototype
UInt64 getULong(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as an unsigned 64-bit integer.

Method getUUID

Prototype
UUID getUUID(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value of the column as a UUID. The column must be of type SQLType.BINARY with length 16.

UltraLite for M-Business Anywhere API Reference

98 Copyright © 2006, iAnywhere Solutions, Inc.

Method isBOF

Prototype
Boolean isBOF()

Returns
true if the current row position is before first row.

false otherwise.

Method isEOF

Prototype
Boolean isEOF()

Returns
true if the current row position is after the last row.

false otherwise.

Method isNull

Prototype
Boolean isNull(Uint16 index)

Parameters
index The column index value.

Returns
true if the value is null.

false otherwise.

Method isOpen

Prototype
Boolean isOpen()

Returns
true if the ResultSet is open, false otherwise.

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 99

Method moveAfterLast

Prototype
moveAfterLast()

Remarks
Moves to a position after the last row of the ULResultSet.

Method moveBeforeFirst

Prototype
moveBeforeFirst()

Remarks
Moves to a position before the first row.

Method moveFirst

Prototype
Boolean moveFirst()

Remarks
Moves to the first row.

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

Method moveLast

Prototype
Boolean moveLast()

Remarks
Moves to the last row.

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

UltraLite for M-Business Anywhere API Reference

100 Copyright © 2006, iAnywhere Solutions, Inc.

Method moveNext

Prototype
Boolean moveNext()

Remarks
Moves to the next row.

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

Method movePrevious

Prototype
Boolean movePrevious()

Remarks
Moves to the previous row.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveRelative

Prototype
Boolean moveRelative(Int32 index)

Remarks
Moves a certain number of rows relative to the current row. Relative to the current position of the cursor in
the result set, positive index values move forward in the result set, negative index values move backward in
the result set and zero does not move the cursor.

Parameters
index The number of rows to move. The value can be positive, negative, or zero.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 101

Method setBoolean

Prototype
setBoolean(short columnID, boolean value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a boolean. The data in the row is not actually changed until
you execute an update, and that change is not permanent until it is committed.

Method setBytes

Prototype
setBytes(UInt16 columnID, Array value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using an array of bytes. Suitable for columns of type
SQLType.BINARY or SQLType.LONGBINARY only. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setDate

Prototype
setDate(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Date. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setDateTime

Prototype
setDateTime(UInt16 columnID, Date value)

UltraLite for M-Business Anywhere API Reference

102 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Date. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setDouble

Prototype
setDouble(UInt16 columnID, Double value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a double. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setFloat

Prototype
setFloat(UInt16 columnID, Float value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a float. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setInt

Prototype
setInt(UInt16 columnID, Int32 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 103

Remarks
Sets the value for the specified column using an Integer. The data in the row is not actually changed until
you execute an update, and that change is not permanent until it is committed.

Method setLong

Prototype
setLong(UInt16 columnID, Int64 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using an Int64. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setNull

Prototype
setNull(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
Sets a column to the SQL NULL. The data is not actually changed until you execute an update, and that
change is not permanent until it is committed.

Method setShort

Prototype
setShort(UInt16 columnID, Int16 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a UInt16. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

UltraLite for M-Business Anywhere API Reference

104 Copyright © 2006, iAnywhere Solutions, Inc.

Method setString

Prototype
setString(UInt16 columnID, String value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a String. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setTime

Prototype
setTime(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Date. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setTimestamp

Prototype
setTimestamp(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Date. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed.

Method setULong

Prototype
setULong(UInt16 columnID, UInt64 value)

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 105

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a 64-bit integer treated as an unsigned value. The data in the
row is not actually changed until you execute an update, and that change is not permanent until it is
committed.

Method setUUID

Prototype
setUUID(UInt16 columnID, UUID value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a UUID. The data in the row is not actually changed until you
execute an update, and that change is not permanent until it is committed. Only valid for columns of type
SQLType.BINARY and length 16.

See also
♦ “Using UUIDs” [MobiLink - Server Administration]

Method update

Prototype
update()

Remarks
Updates the current row with the current column values (specified using the set methods).

Each update must be preceded by a call to updateBegin.

Method updateBegin

Prototype
updateBegin()

UltraLite for M-Business Anywhere API Reference

106 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Prepares to update the current row in this result set. Column values are modified by calling the appropriate
setType method or methods.

The data is not actually changed until you execute the update, and that change is not permanent until it is
committed.

Class ResultSet

Copyright © 2006, iAnywhere Solutions, Inc. 107

Class ResultSetSchema
Represents the schema of an UltraLite result set.

Method getColumnCount

Prototype
UInt16 getColumnCount();

Returns
The number of columns in this cursor. Column IDs range from 1 to getColumnCount inclusively.

Remarks
Column IDs and count may change during a schema upgrade. To correctly identify a column, access it by
name or refresh the cached IDs and counts after a schema upgrade.

Method getColumnID

Prototype
UInt16 getColumnID(String name)

Parameters
♦ name The name of the column.

Returns
The column ID of the named column. Column IDs range from 1 to getColumnCount(), inclusively.

Remarks
Column IDs and count may change during a schema upgrade. To correctly identify a column, access it by
name or refresh the cached IDs and counts after a schema upgrade.

Method getColumnName

Prototype
String getColumnName(UInt16 columnID)

Parameters
♦ columnID ID of the column. columnID must be in the range [1,getColumnCount()].

Returns
The name of column identified by the specified column ID.

UltraLite for M-Business Anywhere API Reference

108 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Column IDs and count may change during a schema upgrade. To correctly identify a column, access it by
name or refresh the cached IDs and counts after a schema upgrade.

Method getColumnPrecision

Prototype
Int32 getColumnPrecision(String name)

Parameters
♦ name The name of the column.

Returns
The precision of the named column. The column must be of type SQLType.NUMERIC.

Method getColumnPrecisionByColID

Prototype
Int32 getColumnPrecisionByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

Returns
The precision of the column. The column must be of type SQLType.NUMERIC.

Method getColumnScale

Prototype
Int32 getColumnScale(String name)

Parameters
♦ name The name of the column.

Returns
The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnScaleByColID

Prototype
Int32 getColumnScaleByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

Class ResultSetSchema

Copyright © 2006, iAnywhere Solutions, Inc. 109

Returns
The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnSize

Prototype
UInt32 getColumnSize(String name)

Parameters
♦ name The name of the column.

Returns
The size of the named column. The column must be of type SQLType.NUMERIC.

Method getColumnSizeByColID

Prototype
UInt32 getColumnSizeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

Returns
The size of the column. The column must be of type SQLType.NUMERIC.

Method getColumnSQLType

Prototype
UInt16 getColumnSQLType(String name)

Parameters
♦ name The name of the column.

Remarks
The code for the SQL data type of the named column.

Method getColumnSQLTypeByColID

Prototype
UInt16 getColumnSQLTypeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

UltraLite for M-Business Anywhere API Reference

110 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
The SQLType of the column, in a SQLType enumerated integer.

Method isOpen

Prototype
Boolean isOpen();

Returns
true if the result set is open, false otherwise.

Class ResultSetSchema

Copyright © 2006, iAnywhere Solutions, Inc. 111

Class SQLError
Enumerates the SQL codes that may be reported by UltraLite for M-Business Anywhere. This class provides
static constants and cannot be directly instantiated.

members Description

SQLE_AGGREGATES_NOT_
ALLOWED

See “Invalid use of an aggregate function” [SQL Anywhere 10 - Error
Messages].

SQLE_ALIAS_NOT_UNIQUE See “Alias '%1' is not unique” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ALIAS_NOT_YET_DE-
FINED

See “Definition for alias '%1' must appear before its first refer-
ence” [SQL Anywhere 10 - Error Messages].

SQLE_AMBIGUOUS_INDEX
_NAME

See “Index name '%1' is ambiguous” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_BAD_ENCRYPTION_
KEY

See “Incorrect or missing encryption key” [SQL Anywhere 10 - Error
Messages].

SQLE_BAD_PARAM_INDEX See “Input parameter index out of range” [SQL Anywhere 10 - Error
Messages].

SQLE_CANNOT_ACCESS_FI
LESYSTEM

See “Unable to access the filesystem on the device” [SQL Anywhere
10 - Error Messages].

SQLE_CANNOT_CHANGE_U
SER_NAME

See “Cannot change synchronization user_name when status of the
last upload is unknown” [SQL Anywhere 10 - Error Messages].

SQLE_CANNOT_CONVERT See “Invalid data conversion” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CANNOT_EXECUTE_
STMT

See “Statement cannot be executed” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CANNOT_MODIFY See “Cannot modify column '%1' in table '%2'” [SQL Anywhere 10 -
Error Messages].

SQLE_CLIENT_OUT_OF_ME
MORY

See “Client out of memory” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_AMBIGU-
OUS

See “Column '%1' found in more than one table -- need a correlation
name” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_CANNOT_
BE_NULL

See “Column '%1' in table '%2' cannot be NULL” [SQL Anywhere 10
- Error Messages].

SQLE_COLUMN_IN_INDEX See “Cannot alter a column in an index” [SQL Anywhere 10 - Error
Messages].

SQLE_COLUMN_NOT_FOUN
D

See “Column '%1' not found” [SQL Anywhere 10 - Error
Messages].

UltraLite for M-Business Anywhere API Reference

112 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_COLUMN_NOT_IN-
DEXED

See “Column '%1' not part of any indexes in its containing
table” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_NOT_STRE
AMABLE

See “The operation failed because column '%1''s type does not support
streaming” [SQL Anywhere 10 - Error Messages].

SQLE_COMMUNICATIONS_
ERROR

See “Communication error” [SQL Anywhere 10 - Error Messages].

SQLE_CONNECTION_ALRE
ADY_EXISTS

See “This connection already exists” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CONNECTION_NOT_F
OUND

See “Connection not found” [SQL Anywhere 10 - Error Messages].

SQLE_CONNECTION_RE-
STORED

See “UltraLite connection was restored” [SQL Anywhere 10 - Error
Messages].

SQLE_CONSTRAINT_NOT_F
OUND

See “Constraint '%1' not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CONVERSION_ER-
ROR

See “Cannot convert %1 to a %2” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_COULD_NOT_FIND_F
UNCTION

See “Could not find '%1' in dynamic library '%2'” [SQL Anywhere 10
- Error Messages].

SQLE_COULD_NOT_LOAD_
LIBRARY

See “Could not load dynamic library '%1'” [SQL Anywhere 10 - Error
Messages].

SQLE_CURSOR_ALREADY_
OPEN

See “Cursor already open” [SQL Anywhere 10 - Error Messages].

SQLE_CURSOR_NOT_OPEN See “Cursor not open” [SQL Anywhere 10 - Error Messages].

SQLE_CURSOR_RESTORED See “UltraLite cursor (or result set or table) was restored” [SQL Any-
where 10 - Error Messages].

SQLE_CURSOROP_NOT_AL-
LOWED

See “Illegal cursor operation attempt” [SQL Anywhere 10 - Error
Messages].

SQLE_DATABASE_ERROR See “Internal database error %1 -- transaction rolled back” [SQL Any-
where 10 - Error Messages].

SQLE_DATABASE_NAME_R
EQUIRED

See “Database name required to start server” [SQL Anywhere 10 -
Error Messages].

SQLE_DATABASE_NOT_CR
EATED

See “Database creation failed: %1” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_DATATYPE_NOT_AL-
LOWED

See “Expression has unsupported data type” [SQL Anywhere 10 - Er-
ror Messages].

Class SQLError

Copyright © 2006, iAnywhere Solutions, Inc. 113

members Description

SQLE_DBSPACE_FULL See “A dbspace has reached its maximum file size” [SQL Anywhere
10 - Error Messages].

SQLE_DESCRIBE_NONSE-
LECT

See “Can only describe a SELECT statement” [SQL Anywhere 10 -
Error Messages].

SQLE_DIV_ZERO_ERROR See “Division by zero” [SQL Anywhere 10 - Error Messages].

SQLE_DOWNLOAD_CON-
FLICT

See “Download failed because of conflicts with existing rows” [SQL
Anywhere 10 - Error Messages].

SQLE_DOWNLOAD_RESTA
RT_FAILED

See “Unable to retry download because upload is not finished” [SQL
Anywhere 10 - Error Messages].

SQLE_DROP_DATABASE_F
AILED

See “An attempt to delete database '%1' failed” [SQL Anywhere 10 -
Error Messages].

SQLE_DUPLICATE_CURSOR
_NAME

See “The cursor name '%1' already exists” [SQL Anywhere 10 - Error
Messages].

SQLE_DUPLICATE_FOREIG
N_KEY

See “Foreign key '%1' for table '%2' duplicates an existing foreign
key” [SQL Anywhere 10 - Error Messages].

SQLE_DUPLICATE_OPTION See “Option '%1' specified more than once” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_DYNAMIC_MEMORY
_EXHAUSTED

See “Dynamic memory exhausted” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ENCRYPTION_INITIA
LIZATION_FAILED

See “Could not initialize the encryption DLL: '%1'” [SQL Anywhere
10 - Error Messages].

SQLE_ENGINE_ALREADY_
RUNNING

See “Database server already running” [SQL Anywhere 10 - Error
Messages].

SQLE_ENGINE_NOT_MUL-
TIUSER

See “Database server not running in multi-user mode” [SQL Any-
where 10 - Error Messages]

SQLE_ERROR See “Run time SQL error -- %1” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ERROR_CALLING_FU
NCTION

See “Could not allocate resources to call external function” [SQL
Anywhere 10 - Error Messages].

SQLE_ERROR_IN_ASSIGN-
MENT

See “Error in assignment” [SQL Anywhere 10 - Error Messages].

SQLE_EXPRESSION_ERROR See “Invalid expression near '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_FEATURE_NOT_EN-
ABLED

See “The method you attempted to invoke was not enabled for your
application” [SQL Anywhere 10 - Error Messages].

UltraLite for M-Business Anywhere API Reference

114 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_FILE_BAD_DB See “Unable to start specified database: '%1' is not a valid database
file” [SQL Anywhere 10 - Error Messages].

SQLE_FILE_IN_USE See “Specified database file already in use” [SQL Anywhere 10 - Error
Messages].

SQLE_FILE_NOT_DB See “Unable to start specified database: '%1' is not a database” [SQL
Anywhere 10 - Error Messages].

SQLE_FILE_VOLUME_NOT_
FOUND

See “Specified file system volume not found for database '%1'” [SQL
Anywhere 10 - Error Messages].

SQLE_FILE_WRONG_VER-
SION

See “Unable to start specified database: '%1' was created by a different
version of the software” [SQL Anywhere 10 - Error Messages].

SQLE_FOREIGN_KEY_NAM
E_NOT_FOUND

See “Foreign key name '%1' not found” [SQL Anywhere 10 - Error
Messages].

SQLE_IDENTIFIER_TOO_LO
NG

See “Identifier '%1' too long” [SQL Anywhere 10 - Error
Messages].

SQLE_INCORRECT_VOLUM
E_ID

See “Incorrect volume ID for '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NAME_NOT_
UNIQUE

See “Index name '%1' not unique” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NOT_FOUND See “Cannot find index named '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NOT_UNIQUE See “Index '%1' for table '%2' would not be unique” [SQL Anywhere
10 - Error Messages].

SQLE_INTERRUPTED See “Statement interrupted by user” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_CONSTRAI
NT_REF

See “Invalid reference to or operation on constraint '%1'” [SQL Any-
where 10 - Error Messages].

SQLE_INVALID_DESCRIPTO
R_INDEX

See “Invalid descriptor index” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_DESCRIPTO
R_NAME

See “Invalid SQL descriptor name” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_DISTINCT_
AGGREGATE

See “Grouped query contains more than one distinct aggregate func-
tion” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_FOREIGN_
KEY

See “No primary key value for foreign key '%1' in table '%2'” [SQL
Anywhere 10 - Error Messages].

SQLE_INVALID_FOREIGN_
KEY_DEF

See “Column '%1' in foreign key has a different definition than pri-
mary key” [SQL Anywhere 10 - Error Messages].

Class SQLError

Copyright © 2006, iAnywhere Solutions, Inc. 115

members Description

SQLE_INVALID_GROUP_SE-
LECT

See “Function or column reference to '%1' must also appear in a
GROUP BY” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_LOGON See “Invalid user ID or password” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_OPTION_SE
TTING

See “Invalid setting for option '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_OPTION_V
ALUE

See “'%1' is an invalid value for '%2'” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_ORDER See “Invalid ORDER BY specification” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_PARAME-
TER

See “Invalid parameter” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_PARSE_PA-
RAMETER

See “Parse error: %1” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_PUBLICATI
ON_MASK

See “The specified publication mask is invalid” [SQL Anywhere 10 -
Error Messages].

SQLE_INVALID_SQL_IDEN-
TIFIER

See “Invalid SQL identifier” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_UNION See “Select lists in UNION, INTERSECT, or EXCEPT do not match
in length” [SQL Anywhere 10 - Error Messages].

SQLE_KEYLESS_ENCRYP-
TION

See “Unable to perform requested operation since this database uses
keyless encryption” [SQL Anywhere 10 - Error Messages].

SQLE_LOCKED See “User '%1' has the row in '%2' locked” [SQL Anywhere 10 - Error
Messages].

SQLE_MEMORY_ERROR See “Memory error -- transaction rolled back” [SQL Anywhere 10 -
Error Messages].

SQLE_NAME_NOT_UNIQUE See “Item '%1' already exists” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NO_COLUMN_NAME See “Derived table '%1' has no name for column %2” [SQL Anywhere
10 - Error Messages].

SQLE_NO_CURRENT_ROW See “No current row of cursor” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NO_INDICATOR See “No indicator variable provided for NULL result” [SQL Any-
where 10 - Error Messages].

SQLE_NO_MATCHING_SEL
ECT_ITEM

See “The select list for the derived table '%1' has no expression to
match '%2'” [SQL Anywhere 10 - Error Messages].

UltraLite for M-Business Anywhere API Reference

116 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_NO_PRIMARY_KEY See “Table '%1' has no primary key” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NOERROR SQLE_NOERROR(0) - This code indicates that there was no error or
warning.

SQLE_NON_UPDATEABLE_
COLUMN

See “Cannot update an expression” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NON_UPDATEABLE_
CURSOR

See “FOR UPDATE has been incorrectly specified for a READ ON-
LY cursor” [SQL Anywhere 10 - Error Messages].

SQLE_NOT_IMPLEMENTED See “Feature '%1' not implemented” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NOT_SUPPORTED_IN
_ULTRALITE

See “Feature not available with UltraLite” [SQL Anywhere 10 - Error
Messages].

SQLE_NOTFOUND See “Row not found” [SQL Anywhere 10 - Error Messages].

SQLE_ONLY_ONE_TABLE See “INSERT/DELETE on cursor can modify only one table” [SQL
Anywhere 10 - Error Messages].

SQLE_OVERFLOW_ERROR See “Value %1 out of range for destination” [SQL Anywhere 10 -
Error Messages].

SQLE_PAGE_SIZE_INVALID See “Invalid database page size” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_PARTIAL_DOWNLOA
D_NOT_FOUND

See “No partial download was found” [SQL Anywhere 10 - Error
Messages].

SQLE_PERMISSION_DE-
NIED

See “Permission denied: %1” [SQL Anywhere 10 - Error
Messages].

SQLE_PRIMARY_KEY_NOT
_UNIQUE

See “Primary key for table '%1' is not unique” [SQL Anywhere 10 -
Error Messages].

SQLE_PRIMARY_KEY_TWI
CE

See “Table cannot have two primary keys” [SQL Anywhere 10 - Error
Messages].

SQLE_PRIMARY_KEY_VAL
UE_REF

See “Primary key for row in table '%1' is referenced by foreign key
'%2' in table '%3'” [SQL Anywhere 10 - Error Messages].

SQLE_PUBLICATION_NOT_
FOUND

See “Publication '%1' not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_PUBLICATION_PREDI
CATE_IGNORED

See “Publication predicates were not evaluated” [SQL Anywhere 10
- Error Messages].

SQLE_RESOURCE_GOVERN
OR_EXCEEDED

See “Resource governor for '%1' exceeded” [SQL Anywhere 10 - Er-
ror Messages].

Class SQLError

Copyright © 2006, iAnywhere Solutions, Inc. 117

members Description

SQLE_ROW_DELETED_TO_
MAINTAIN_REFERENTIAL_I
NTEGRITY

See “Row was dropped from table %1 to maintain referential integri-
ty” [SQL Anywhere 10 - Error Messages].

SQLE_SCHEMA_UPGRADE_
NOT_ALLOWED

See “A schema upgrade is not currently allowed” [SQL Anywhere 10
- Error Messages].

SQLE_SERVER_SYNCHRON
IZATION_ERROR

See “Synchronization failed due to an error on the server: %1” [SQL
Anywhere 10 - Error Messages].

SQLE_START_STOP_DATAB
ASE_DENIED

See “Request to start/stop database denied” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_STATEMENT_ERROR See “SQL statement error” [SQL Anywhere 10 - Error Messages].

SQLE_STRING_RIGHT_TRU
NCATION

See “Right truncation of string data” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_SUBQUERY_SELECT_
LIST

See “Subquery allowed only one select list item” [SQL Anywhere 10
- Error Messages].

SQLE_SYNC_INFO_IN-
VALID

See “Information for synchronization is incomplete or invalid, check
'%1'” [SQL Anywhere 10 - Error Messages].

SQLE_SYNC_INFO_RE-
QUIRED

See “Information for synchronization was not provided” [SQL Any-
where 10 - Error Messages].

SQLE_SYNC_NOT_REEN-
TRANT

See “Synchronization process was unable to re-enter synchroniza-
tion” [SQL Anywhere 10 - Error Messages].

SQLE_SYNC_STATUS_UN-
KNOWN

See “The status of the last synchronization upload is unknown” [SQL
Anywhere 10 - Error Messages].

SQLE_SYNTAX_ERROR See “Syntax error near '%1' %2” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_TABLE_ALREADY_IN
CLUDED

See “Table '%1' is already included” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_TABLE_IN_USE See “Table in use” [SQL Anywhere 10 - Error Messages].

SQLE_TABLE_NOT_FOUND See “Table '%1' not found” [SQL Anywhere 10 - Error Messages].

SQLE_TOO_MANY_BLOB_R
EFS

See “Too many references to a BLOB” [SQL Anywhere 10 - Error
Messages].

SQLE_TOO_MANY_CON-
NECTIONS

See “Database server connection limit exceeded” [SQL Anywhere 10
- Error Messages].

SQLE_TOO_MANY_PUBLI-
CATIONS

See “Too many publications specified in publication mask” [SQL
Anywhere 10 - Error Messages].

UltraLite for M-Business Anywhere API Reference

118 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_TOO_MANY_TEMP_T
ABLES

See “Too many temporary tables in connection” [SQL Anywhere 10
- Error Messages].

SQLE_TOO_MANY_USERS See “Too many users in database” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ULTRALITE_DATAB
ASE_NOT_FOUND

See “The database '%1' was not found” [SQL Anywhere 10 - Error
Messages].

SQLE_ULTRALITE_OBJ_CL
OSED

See “Invalid operation on a closed object” [SQL Anywhere 10 - Error
Messages].

SQLE_ULTRALITE_WRITE_
ACCESS_DENIED

See “Write access was denied” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNABLE_TO_CON-
NECT

See “Database cannot be started -- %1” [SQL Anywhere 10 - Error
Messages].

SQLE_UNABLE_TO_START_
DATABASE

See “Unable to start specified database: %1” [SQL Anywhere 10 -
Error Messages].

SQLE_UNABLE_TO_START_
DATABASE_VER_NEWER

See “Unable to start specified database: Server must be upgraded to
start database %1” [SQL Anywhere 10 - Error Messages].

SQLE_UNCOMMITTED_TRA
NSACTIONS

See “You cannot synchronize or upgrade with uncommitted transac-
tions” [SQL Anywhere 10 - Error Messages].

SQLE_UNKNOWN_FUNC See “Unknown function '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNKNOWN_OPTION See “'%1' is an unknown option” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNKNOWN_USERID See “User ID '%1' does not exist” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNRECOGNIZED_OP-
TION

See “The option '%1' is not recognized” [SQL Anywhere 10 - Error
Messages].

SQLE_UPLOAD_FAILED_AT
_SERVER

See “Synchronization server failed to commit the upload” [SQL Any-
where 10 - Error Messages].

SQLE_VALUE_IS_NULL See “Cannot return NULL result as requested data type” [SQL Any-
where 10 - Error Messages].

SQLE_VARIABLE_INVALID See “Invalid host variable” [SQL Anywhere 10 - Error Messages].

SQLE_WRONG_NUM_OF_IN
SERT_COLS

See “Wrong number of values for INSERT” [SQL Anywhere 10 -
Error Messages].

SQLE_WRONG_PARAMETE
R_COUNT

See “Wrong number of parameters to function '%1'” [SQL Anywhere
10 - Error Messages].

Class SQLError

Copyright © 2006, iAnywhere Solutions, Inc. 119

Class SQLType
This enumeration lists as constants the available UltraLite SQL database types used as table column types.

Constant UltraLite Database Type

BAD_INDEX

S_LONG INT

U_LONG UNSIGNED INT

S_SHORT SMALLINT

U_SHORT UNSIGNED SMALLINT

S_BIG BIGINT

U_BIG UNSIGNED BIGINT

TINY TYNY INT

BIT BIT

TIMESTAMP TIMESTAMP

DATE DATE

TIME TIMESTAMP

DOUBLE DOUBLE

REAL REAL

NUMERIC NUMERIC

BINARY BINARY

CHAR CHAR or VARCHAR

LONGVARCHAR LONG VARCHAR

LONGBINARY LONG BINARY

MAX_INDEX

Method toString

Prototype
String toString(UInt16 code)

UltraLite for M-Business Anywhere API Reference

120 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ code The SQL column type constant.

Returns
The string name of the specified SQL column type constant or BAD_SQL_TYPE if not a recognized type.

Class SQLType

Copyright © 2006, iAnywhere Solutions, Inc. 121

Class SyncParms
Represents synchronization parameters that define how to synchronize an UltraLite database. Each
connection has its own SyncParms instance.

Constants

Constant Value Description

STREAM_TYPE_TCPIP 0 TCP/IP stream

STREAM_TYPE_HTTP 1 HTTP stream

STREAM_TYPE_HTTPS 2 HTTPS synchronization

STREAM_TYPE_TLS 3 TLS synchronization

STREAM_TYPE_HOTSYNC 4 For HotSync synchronization

Method getAuthenticationParms

Prototype
Array getAuthenticationParms()

Returns
Parameters provided to a custom user authentication script or null if no parameters are specified.

Method getCheckpointStore

Prototype
Boolean getCheckpointStore()

Returns
True if the client performs extra checkpoints, false if the client only performs required checkpoints.

Method getDisableConcurrency

Prototype
Boolean getDisableConcurrency()

Returns
True if concurrent synchronization is disabled, false if concurrent synchronization is enabled.

UltraLite for M-Business Anywhere API Reference

122 Copyright © 2006, iAnywhere Solutions, Inc.

Method getDownloadOnly

Prototype
Boolean getDownloadOnly()

Returns
True if uploads are disabled, false if uploads are enabled.

Method getKeepPartialDownload

Prototype
Boolean getKeepPartialDownload()

Returns
True if partial downloads are to be kept, false if partial downloads should be rolled back.

Method getNewPassword

Prototype
String getNewPassword()

Returns
The new password that is associated with the MobiLink user after the next synchronization.

Method getPartialDownloadRetained

Prototype
Boolean getPartialDownloadRetained()

Returns
True if a download failed because of a communications error and the partial download was retained, false
if the download was not interrupted, or if the partial download was rolled back.

Method getPassword

Prototype
String getPassword();

Returns
The MobiLink password for the user specified with setUserName.

Method getPingOnly

Prototype
Boolean getPingOnly()

Class SyncParms

Copyright © 2006, iAnywhere Solutions, Inc. 123

Returns
True if client only pings the server, false if client performs a synchronization.

Method getPublicationMask

Prototype
UInt32 getPublicationMask();

Returns
The publications to be synchronized. For more information, see PublicationSchema class.

Method getResumePartialDownload

Prototype
Boolean getResumePartialDownload()

Returns
True if the previous partial download is to be resumed, false if the previous partial download is to be rolled
back.

Method getSendColumnNames

Prototype
Boolean getSendColumnNames()

Returns
True if client sends column names to the MobiLink server during synchronization, false if client does not
send column names.

Method getSendDownloadAck

Prototype
Boolean getSendDownloadAck()

Returns
True if client provides a download acknowledgement to the MobiLink server, false if the client does not
provide a download acknowledgement.

Method getStream

Prototype
UInt16 getStream();

Returns
The type of MobiLink synchronization stream to use for synchronization.

UltraLite for M-Business Anywhere API Reference

124 Copyright © 2006, iAnywhere Solutions, Inc.

Method getStreamParms

Prototype
String getStreamParms();

Remarks
A string containing all the network protocol options used for synchronization streams.

Method getUploadOnly

Prototype
Boolean getUploadOnly()

Remarks
True if downloads are disabled, false if downloads are enabled.

Method getUserName

Prototype
String getUserName()

Returns
The MobiLink user name.

Method getVersion

Prototype
String getVersion()

Remarks
The version string that indicates which synchronization scripts are to be used.

Method setAuthenticationParms

Prototype
setAuthenticationParms(Array value)

Parameters
♦ value An array of strings, each containing an authentication parameter (null array entries result in a

synchronization error).

Remarks
Specifies parameters for a custom user authentication script (MobiLink authenticate_parameters connection
event).

Class SyncParms

Copyright © 2006, iAnywhere Solutions, Inc. 125

Only the first 255 strings are used and each string should be no longer than 128 characters (longer strings
are truncated when sent to MobiLink).

Method setCheckpointStore

Prototype
setCheckpoint16Store(Boolean value)

Parameters
♦ value Set to true to perform extra checkpoints, or set to false to only perform the required checkpoints.

Remarks
Specifies whether the client should perform extra store checkpoints to control the growth of the database
store during synchronization.

The checkpoint operation adds I/O operations for the application, and so slows synchronization. This option
is most useful for large downloads with many updates. Devices with slow flash memory may not want to
incur the performance penalty.

Method setDisableConcurrency

Prototype
setDisableConcurrency(Boolean value);

Parameters
♦ value Set to true to disable concurrent synchronization, or set to false to enable concurrent

synchronization.

Remarks
Specifies whether to disable or enable concurrent access to UltraLite while performing a synchronization.

By default, other threads may perform UltraLite operations while a thread is synchronizing. When concurrent
synchronization is disabled, other threads block on UltraLite calls until the synchronization has completed.

Method setDownloadOnly

Prototype
setDownloadOnly(Boolean value)

Parameters
♦ value Set to true to disable uploads, or set to false to enable uploads.

UltraLite for M-Business Anywhere API Reference

126 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Specifies whether to disable or enable uploads when synchronizing.

Method setKeepPartialDownload

Prototype
setKeepPartialDownload(Boolean value)

Parameters
♦ value Set to true to enable the retention of partial downloads when synchronzing, or set to false to

discard partial downloads.

Remarks
Specifies whether to disable or enable partial downloads when synchronizing. UltraLite has the ability to
restart downloads that fail because of communication errors. UltraLite processes the download as it is
received. If a download is interrupted, then the partial download transaction will remain in the database and
can be resumed during the next synchronization.

To indicate that UltraLite should save partial downloads, specify
Connection.syncParms.setKeepPartialDownload(true); otherwise the download will be rolled back if an
error occurs.

If a partial download was kept, then the output field connection.SyncResult.getPartialDownloadRetained
will be set to true when the connection.synchronize exits. If getPartialDownloadRetained is set, then you
can resume a download. To do this, call connection.synchronize with
connection.syncParms.setResumePartialDownload(true) . You'll likely still want KeepPartialDownload set
to true as well in case another communications error occurs. No upload is done if a download is skipped.

The download you receive during a resumed download will be as old as when the download originally began.
If you need the most up to date data, then you can do another download immediately after the special resumed
download completes.

When resuming a download, many of the SyncParms fields are not relevant. For example, the
PublicationMask field is not used. You will receive the publications that you requested on the initial
download. The only fields that need to be set are setResumePartialDownload(boolean) and setUserName
(String). The fields setKeepPartialDownload(boolean), setDownloadOnly(boolean), and
setDisableConcurrency(boolean) may be set if desired and will function as normal.

If you have a partial download and it is no longer needed, then you can call
Connection.rollbackPartialDownload to roll back the failed download transaction. Also if you attempt to
synchronize again and do not specify ResumePartialDownload, then the partial download will roll back
before the next synchronization begins.

For more information, refer to “How synchronization failure is handled” [MobiLink - Getting Started].

Class SyncParms

Copyright © 2006, iAnywhere Solutions, Inc. 127

Method setMBAServer

Prototype
setMBAServer(String host, String port, String url_suffix)

Parameters
♦ host The host or IP value of the M-Business Anywhere server. If host is null, UltraLite sets it to the

current M-Business Anywhere host.

♦ port The port on which the M-Business Anywhere server is listening. If port is null, UltraLite sets it
to the current M-Business Anywhere port value.

♦ url_suffix This corresponds to the url_suffix parameter set in the sync.conf file of M-Business
Anywhere.

Remarks
Provides a quick way to set the synchronization parameters for the MobiLink host and port to those of the
M-Business Anywhere server used by the M-Business client. Use the MobiLink redirector for M-Business
Anywhere to route data to and from the MobiLink server.

If you are using one-button synchronization, you must save the synchronization parameters using
Connection.saveSyncParms.

F For information about configuring M-Business Server to route HTTP database traffic through the M-
Business Anywhere Redirector, see “M-Business Anywhere Redirector” [MobiLink - Server
Administration].

Method setMBAServerWithMoreParms

Prototype
setMBAServerWithMoreParms(String host, String port, String url_suffix, String additional)

Parameters
♦ host The host or IP value of the M-Business Anywhere server. If host is null, UltraLite sets it to the

current M-Business Anywhere host.

♦ port The port on which the M-Business Anywhere server is listening. If port is null, UltraLite sets it
to the current M-Business Anywhere port value.

♦ url_suffix This corresponds to the url_suffix parameter set in the sync.conf file of M-Business
Anywhere.

♦ additional This parameter may contain additional stream parameters that are not covered by the
preceding parameters (for example, proxy host, proxy port or security-related parameters). If you need to
specify host, port or url_suffix information, you may use the setMBAServer method described in the
previous section.

UltraLite for M-Business Anywhere API Reference

128 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Provides a quick way to set the synchronization parameters for the MobiLink host and port to those of the
M-Business Anywhere server used by the M-Business client. Use the MobiLink redirector for M-Business
Anywhere to route data to and from the MobiLink server.

This method expands on the capabilities provided by setMBAServer by permitting the user to specify other
parameters in an additional parameter.

If you are using one-button synchronization, you must save the synchronization parameters using
Connection.saveSyncParms.

F For information about configuring M-Business Server to route HTTP database traffic through the M-
Business Anywhere Redirector, see “M-Business Anywhere Redirector” [MobiLink - Server
Administration].

Method setNewPassword

Prototype
setNewPassword(String value)

Parameters
♦ value New password for MobiLink user.

Remarks
Sets a new MobiLink password for the user specified with setUserName. The new password takes effect
after the next synchronization.

Method setPassword

Prototype
setPassword(String value)

Parameters
♦ value The password for MobiLink user.

Remarks
Sets the MobiLink password for the user specified with setUserName. This user name and password are
separate from any database user ID and password, and serves to identify and authenticate the application to
the MobiLink server.

Method setPingOnly

Prototype
setPingOnly(Boolean value);

Class SyncParms

Copyright © 2006, iAnywhere Solutions, Inc. 129

Parameters
♦ value Set to true to only ping the MobiLink server, or to false to perform a synchronization.

Remarks
Specifies whether the client should only ping the MobiLink server instead of performing a real
synchronization.

Method setPublicationMask

Prototype
setPublicationMask(UInt16 mask)

Parameters
♦ mask Set of publications to synchronize.

Remarks
Specifies the publications to be synchronized. For more information, see PublicationSchema class.

Method setSendColumnNames

Prototype
setSendColumnNames(Boolean value)

Parameters
♦ value Set to true to send column names, or set to false not to send column names.

Remarks
Specifies whether the client should send column names to the MobiLink server during synchronization.

This parameter is used for direct row handling.

Method setSendDownloadAck

Prototype
setSendDownloadAck(Boolean value)

Parameters
♦ value Set to true to send a download acknowledgement (positive or negative) or set to false to tell the

server that no download acknowledgement is sent.

Remarks
Specifies whether the client should send a download acknowledgement to the MobiLink server during
synchronization. Such an acknowledgement is sent after the download has been fully applied and committed
at the remote (positive acknowledgement) or the download fails (negative acknowledgement).

UltraLite for M-Business Anywhere API Reference

130 Copyright © 2006, iAnywhere Solutions, Inc.

If the client does send a download acknowledgement, the MobiLink server database worker thread must
wait for the client to apply and commit the download. If the client does not sent a download
acknowledgement, the MobiLink server is freed up sooner for its next synchronization.

Method setStream

Prototype
setStream(UInt16 value)

Parameters
♦ value Type of MobiLink synchronization stream to use for synchronization. For a list of valid choices,

see “Constants” on page 122.

Remarks
Sets the MobiLink synchronization stream to use for synchronization. Most synchronization streams require
parameters to identify the MobiLink server address and control other behavior. These parameters are supplied
with the setStreamParms() method.

The default stream type is STREAM_TYPE_TCPIP.

Method setStreamParms

Prototype
setStreamParms(String value)

Parameters
♦ value String containing all the network protocol options used for synchronization streams. Options

are specified as a semicolon-separated list of name=value pairs ("param1=value1;param2=value2").

Remarks
Sets the parameters to configure the synchronization stream. For information on configuring specific stream
types, refer to the Synchronization Stream Parameters Reference section of the UltraLite Database
User's Guide online book.

Method setUploadOnly

Prototype
setUploadOnly(Boolean value)

Parameters
♦ value Set to true to disable downloads, or set to false to enable downloads.

Remarks
Specifies whether to disable or enable downloads when synchronizing.

Class SyncParms

Copyright © 2006, iAnywhere Solutions, Inc. 131

Method setUserName

Prototype
setUserName(String value)

Parameters
♦ value MobiLink user name.

Remarks
Sets the user name that uniquely identifies the MobiLink client to the MobiLink server. MobiLink uses this
value to determine the download content, to record the synchronization state, and to recover from
interruptions during synchronization. This user name and password are separate from any database user ID
and password, and serve to identify and authenticate the application to the MobiLink server.

Method setVersion

Prototype
setVersion(String value)

Parameters
♦ value Script version string.

Remarks
Specifies which synchronization script version to use. Each synchronization script in the consolidated
database is marked with a version string. For example, there may be two different download_cursor scripts,
and each one is identified by different version strings. The version string allows an UltraLite application to
choose from a set of synchronization scripts.

UltraLite for M-Business Anywhere API Reference

132 Copyright © 2006, iAnywhere Solutions, Inc.

Class SyncResult
Represents the status of the last synchronization. Each connection has its own SyncResult instance.

This class cannot be directly instantiated.

Method getAuthStatus

Prototype
UInt16 getAuthStatus()

Remarks
Returns the authorization status code for the last synchronization attempt.

Method getIgnoredRows

Prototype
Boolean getIgnoredRows()

Parameters
♦ return True if any uploaded rows were ignored, false if no uploaded rows were not ignored.

Returns
True if any uploaded rows were ignored during the most recent synchronization, false if no uploaded rows
were ignored.

Method getPartialDownloadRetained

Prototype
Boolean getPartialDownloadRetained()

Returns
True if a download was interrupted and the partial download was retained, false if the download was not
interrupted or the partial download was rolled back.

Method getStreamErrorCode

Prototype
UInt16 getStreamErrorCode()

Parameters
♦ return Error code reported by the synchronization stream.

Class SyncResult

Copyright © 2006, iAnywhere Solutions, Inc. 133

Returns
An integer representing the error reported by the stream itself. The following table gives a brief description
of the error codes. For more complete descriptions, see “MobiLink Communication Error Messages” [SQL
Anywhere 10 - Error Messages]

Value Description

0 None

1 Parameter

2 Parameter not uint32

3 Parameter not uint32 range

4 Parameter not boolean

5 Parameter not hex

6 Memory allocation

7 Parse

8 Read

9 Write

10 End write

11 End read

12 Not implemented

13 Would block

14 Generate random

15 Init random

16 Seed random

17 Create random object

18 Shutting down

19 Dequeuing connection

20 Secure certificate root

21 Secure certificate company name

22 Secure certificate chain length

23 Secure certificate ref

UltraLite for M-Business Anywhere API Reference

134 Copyright © 2006, iAnywhere Solutions, Inc.

Value Description

24 Secure certificate not trusted

25 Secure duplicate context

26 Secure set io

27 Secure set io semantics

28 Secure certificate chain func

29 Secure certificate chain ref

30 Secure enable non blocking

31 Secure set cipher suites

32 Secure set chain number

33 Secure certificate file not found

34 Secure read certificate

35 Secure read private key

36 Secure set private key

37 Secure certificate expiry date

38 Secure export certificate

39 Secure add certificate

40 Secure trusted certificate file not found

41 Secure trusted certificate read

42 Secure certificate count

43 Secure create certificate

44 Secure import certificate

45 Secure set random ref

46 Secure set random func

47 Secure set protocol side

48 Secure add trusted certificate

49 Secure create private key object

50 Secure certificate expired

Class SyncResult

Copyright © 2006, iAnywhere Solutions, Inc. 135

Value Description

51 Secure certificate company unit

52 Secure certificate common name

53 Secure handshake

54 HTTP version

55 Secure set read func

56 Secure set write func

57 Socket host name not found

58 Socket get host by addr

59 Socket localhost name not found

60 Socket create TCP/IP

61 Socket create UDP

62 Socket bind

63 Socket cleanup

64 Socket close

65 Socket connect

66 Socket get name

67 Socket get option

68 Socket set option

69 Socket listen

70 Socket shutdown

71 Socket select

72 Socket startup

73 Socket port out of range

74 Load network library

75 ActiveSync no port

89 HTTP expected post

UltraLite for M-Business Anywhere API Reference

136 Copyright © 2006, iAnywhere Solutions, Inc.

Method getStreamErrorContext

Prototype
UInt16 getStreamErrorContext()

Remarks
The basic network operation being performed when the stream error occurred. The known contexts are as
follows:

Value Context

0 Unknown

1 Register

2 Unregister

3 Create

4 Destroy

5 Open

6 Close

7 Read

8 Write

9 WriteFlush

10 EndWrite

11 EndRead

12 Yield

13 Softshutdown

Method getStreamErrorID

Prototype
UInt32 getStreamErrorID()

Returns
The network layer reporting the error. The value is the ID of network layer.

The known IDs are as follows:

Class SyncResult

Copyright © 2006, iAnywhere Solutions, Inc. 137

Value Description

0 TCP/IP stream

7 HTTP stream

8 HTTPS synchronization

3 For HotSync synchronization

Method getStreamErrorSystem

Prototype
UInt16 getStreamErrorSystem()

Parameters
♦ return A system-specific error code.

Remarks
Returns the stream error system-specific code.

Method getTimestamp

Prototype
Date getTimestamp()

Returns
The timestamp of the most recent synchronization.

Method getUploadOK

Prototype
Boolean getUploadOK()

Remarks
True if last upload synchronization was successful, false if last upload synchronization was unsuccessful.

UltraLite for M-Business Anywhere API Reference

138 Copyright © 2006, iAnywhere Solutions, Inc.

Class TableSchema
Represents the schema of an UltraLite table.

Method getColumnCount

Prototype
UInt16 getColumnCount()

Returns
The 1-based number of columns in this table. Column IDs range from 1 to getColumnCount().

Method getColumnDefaultValue

Prototype
String getColumnDefaultValue(String name)

Parameters
♦ name Name of the column.

Remarks
The default value of the named column or null if the default value is null.

Method getColumnDefaultValueByColID

Prototype
String getColumnDefaultValueByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
The default value of the column or null if the default value is null.

Method getColumnID

Prototype
UInt16 getColumnID(String name)

Parameters
♦ name Name of the column.

Returns
The 1-based ID of the specified column.

Class TableSchema

Copyright © 2006, iAnywhere Solutions, Inc. 139

Method getColumName

Prototype
String getColumnName(UInt16 colID)

Parameters
♦ colID The 1-based column ID of the column.

Returns
The name of the specified column.

Method getColumnPartitionSize

Prototype
UInt64 getColumnPartitionSize(String name)

Parameters
♦ name Name of the column.

Returns
The column's global autoincrement partition size as an unsigned 64-bit number represented by a Double.
All global autoincrement columns in a given table share the same global autoincrement partition.

Method getColumnPartitionSizeByColID

Prototype
UInt64 getColumnPartitionSizeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
The column's global autoincrement partition size as an unsigned 64-bit number represented by a Double.
All global autoincrement columns in a given table share the same global autoincrement partition.

Method getColumnPrecision

Prototype
Int32 getColumnPrecision(String name)

Parameters
♦ name Name of the column.

Returns
The precision of the column. The column must be of type SQLType.NUMERIC.

UltraLite for M-Business Anywhere API Reference

140 Copyright © 2006, iAnywhere Solutions, Inc.

Method getColumnPrecisionByColID

Prototype
Int32 getColumnPrecisionByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
The precision of the column. The column must be of type SQLType.NUMERIC

Method getColumnScale

Prototype
Int32 getColumnScale(String name)

Parameters
♦ name Name of the column.

Returns
The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnScaleByColID

Prototype
Int32 getColumnScaleByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
The scale of the column. The column must be of type SQLType.NUMERIC.

Method getColumnSize

Prototype
UInt32 getColumnSize(String name)

Parameters
♦ name Name of the column.

Returns
The size of the column. The column must be of type SQLType.BINARY or SQLType.CHAR.

Class TableSchema

Copyright © 2006, iAnywhere Solutions, Inc. 141

Method getColumnSizeByColID

Prototype
UInt32 getColumnSizeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
The size of the column. The column must be of type SQLType.BINARY or SQLType.CHAR.

Method getColumnSQLType

Prototype
Int16 getColumnSQLType(String name)

Parameters
♦ name Name of the column.

Returns
The SQLType of the column, in a SQLType enumerated integer.

Method getColumnSQLTypeByColID

Prototype
Int16 getColumnSQLTypeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
The SQLType of the column, in a SQLType enumerated integer.

Method getIndex

Prototype
IndexSchema getIndex(String name)

Parameters
♦ name Name of the index.

Returns
The index schema of the named index.

UltraLite for M-Business Anywhere API Reference

142 Copyright © 2006, iAnywhere Solutions, Inc.

Method getIndexCount

Prototype
UInt16 getIndexCount()

Returns
The number of indexes on this table. Index IDs range from 1 to getIndexCount(), inclusively.

Remarks
Note: Index IDs and count may change during a schema upgrade. To correctly identify an index, access it
by name or refresh the cached IDs and counts after a schema upgrade.

Method getIndexName

Prototype
String getIndexName(UInt16 indexID)

Parameters
♦ indexID ID of the index. indexID must be in the range [1,getIndexCount()].

Returns
The name of the index identified by the specified index ID.

Remarks
Note: Index IDs and count may change during a schema upgrade. To correctly identify an index, access it
by name or refresh the cached IDs and counts after a schema upgrade.

Method getName

Prototype
String getName()

Returns
The name of this table.

Method getOptimalIndex

Prototype
IndexSchema getOptimalIndex(String name)

Parameters
♦ name Name of the column.

Class TableSchema

Copyright © 2006, iAnywhere Solutions, Inc. 143

Returns
The optimal index for searching a table using the named column. The named column is the first column in
the index but the index may have more than one column.

Method getPrimaryKey

Prototype
IndexSchema getPrimaryKey()

Returns
The index schema of the primary key for this table.

Method getUploadUnchangedRows

Prototype
Boolean getUploadUnchangedRows()

Returns
True if the table is marked to upload all rows, false if the table is not marked to upload all rows.

Remarks
Tables for which this method returns true always upload unchanged rows, as well as changed rows, when
the table is synchronized. These tables are sometimes referred to as "all sync" tables.

Method isColumnAutoIncrement

Prototype
Boolean isColumnAutoIncrement(String name)

Parameters
♦ name Name of the column.

Returns
True if the column is autoincrementing, false otherwise.

Method isColumnAutoIncrementByColID

Prototype
Boolean isColumnAutoIncrementByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

UltraLite for M-Business Anywhere API Reference

144 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
True if the column is autoincrementing, false otherwise.

Method isColumnCurrentDate

Prototype
Boolean isColumnCurrentDate(String name)

Parameters
♦ name Name of the column.

Returns
True if the column defaults to the current date, false otherwise.

Remarks
The column must be of type SQLType.DATE.

Method isColumnCurrentDateByColID

Prototype
Boolean isColumnCurrentDateByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
True if the column defaults to the current date, false otherwise.

Remarks
The column must be of type SQLType.DATE.

Method isColumnCurrentTime

Prototype
Boolean isColumnCurrentTime(String name)

Parameters
♦ name Name of the column.

Returns
True if the column defaults to the current time, false otherwise.

Class TableSchema

Copyright © 2006, iAnywhere Solutions, Inc. 145

Remarks
The column must be of type SQLType.TIME.

Method isColumnCurrentTimeByColID

Prototype
Boolean isColumnCurrentTimeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
True if the column defaults to the current time, false otherwise.

Remarks
The column must be of type SQLType.TIME.

Method isColumnCurrentTimestamp

Prototype
Boolean isColumnCurrentTimestamp(String name)

Parameters
♦ name Name of the column.

Returns
True if the column defaults to the current timestamp, false otherwise.

Remarks
The column must be of type SQLType.TIMESTAMP.

Method isColumnCurrentTimestampByColID

Prototype
Boolean isColumnCurrentTimestampByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
True if the column defaults to the current timestamp, false otherwise.

UltraLite for M-Business Anywhere API Reference

146 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
The column must be of type SQLType.TIME.

Method isColumnGlobalAutoIncrement

Prototype
Boolean isColumnGlobalAutoIncrement(String name)

Parameters
♦ name Name of the column.

♦ return True if the column is global autoincrementing, false if not global autoincrementing.

Returns
True if the column defaults to global autoincrement, false otherwise.

Method isColumnGlobalAutoincrementByColID

Prototype
Boolean isColumnGlobalAutoincrementByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
True if the column defaults to global autoincrement, false otherwise.

Method isColumnNewUUID

Prototype
Boolean isColumnNewUUID(String name)

Parameters
♦ name Name of the column.

Returns
True if the column defaults to a new UUID, false otherwise.

Method isColumnNewUUIDByColID

Prototype
Boolean isColumnNewUUIDByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Class TableSchema

Copyright © 2006, iAnywhere Solutions, Inc. 147

Returns
True if the column defaults to a new UUID, false otherwise.

Method isColumnNullable

Prototype
Boolean isColumnNullable(String name)

Parameters
♦ name Name of the column.

Returns
True if the column is nullable, false otherwise.

Method isColumnNullableByColID

Prototype
Boolean isColumnNullableByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Returns
True if the column defaults to a new UUID, false otherwise.

Method isInPublication

Prototype
Boolean isInPublication(String pubName)

Parameters
♦ pubName Name of the publication.

Returns
True if table in publication, false if table not in publication.

Method isNeverSynchronized

Prototype
Boolean isNeverSynchronized()

Returns
True if the table is marked as never synchronized, false if the table is not marked as never synchronized.

UltraLite for M-Business Anywhere API Reference

148 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Tables for which this method returns true are never synchronized, even if they are included in a publication.
These tables are sometimes referred to as "no sync" tables.

Class TableSchema

Copyright © 2006, iAnywhere Solutions, Inc. 149

Class ULTable
Represents an UltraLite table.

Properties

The properties of the class are listed here.

Property Description

TableSchema schema (read-only) The schema of this result set. This property is only valid while its
prepared statement is open.

NULL_TIMESTAMP_VAL A constant indicating that a timestamp value is NULL.

Method AppendBytes

Prototype
AppendBytes(
 UInt16 columnID,
 Array value,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

♦ srcOffset The value to append to the current new value for the column.

♦ count The number of bytes to be copied.

Remarks
Appends the specified subset of the specified array of bytes to the new value for the specified
SQLType.LONGBINARY column. The bytes at position srcOffset (starting from 0) through srcOffset
+count-1 of the array value are appended to the value for the specified column. When inserting, insertBegin
initializes the new value to the column's default value. The data in the row is not actually changed until you
execute an insert, and that change is not permanent until it is committed.

If any of the following is true, an Error with code SQLCode.SQLE_INVALID_PARAMETER is thrown
and the destination is not modified:

♦ The value argument is null.

♦ The srcOffset argument is negative.

UltraLite for M-Business Anywhere API Reference

150 Copyright © 2006, iAnywhere Solutions, Inc.

♦ The count argument is negative.

♦ srcOffset+count is greater than value.length, the length of the source array.

For other errors, a SQLException with the appropriate error code is thrown.

Method AppendStringChunk

Prototype
AppendStringChunk(
 UInt16 columnID,
 String value
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Appends the specified string to the new value for the specified SQLType.LONGVARCHAR column.

Example
The following statements append one hundred instances of the string XYZ to the value in the first column:

for (i = 0; i < 100; i++){
 t.AppendStringChunk(1, "XYZ");
}

Method deleteRow

Prototype
deleteRow()

Remarks
Deletes the current row.

Method deleteAllRows

Prototype
deleteAllRows()

Remarks
Deletes all rows in the table.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 151

In some applications, it can be useful to delete all rows from a table before downloading a new set of data
into the table. Rows can be deleted from the UltraLite database without being deleted from the consolidated
database using the Connection.startSynchronizationDelete method.

Method findBegin

Prototype
findBegin()

Remarks
Prepares to perform a new find on this table. The value(s) for which to search are specified by calling the
appropriate setType method(s) on the columns in the index with which this table was opened.

Method findFirst

Prototype
Boolean findFirst()

Returns
true if successful, false otherwise

Remarks
Move forward through the table from the beginning, looking for a row that exactly matches a value or full
set of values in the current index.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that exactly matches the index value. On failure the cursor position is after the last row
(isEOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “Method findBegin” on page 152
♦ “Method isEOF” on page 99

Method findFirstForColumns

Prototype
Boolean findFirstForColumns(
 UInt16 numColumns
)

UltraLite for M-Business Anywhere API Reference

152 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise

Remarks
Move forward through the table from the beginning, looking for a row that exactly matches a value or partial
set of values in the current index.

To specify the value for which to search for, set the column value for each column in the index. The cursor
is left on the first row that exactly matches the index value. On failure the cursor position is after the last
row (isEOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “Method findBegin” on page 152
♦ “Method isEOF” on page 99

Method findLast

Prototype
Boolean findLast()

Returns
true if successful, false otherwise.

Remarks
Move backward through the table from the end, looking for a row that exactly matches a value or full set of
values in the current index.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row found that exactly matches the index value. On failure the cursor position is before the
first row (isBOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “Method findBegin” on page 152
♦ “Method isBOF” on page 99

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 153

Method findLastForColumns

Prototype
Boolean findLastForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
Move backward through the table from the end, looking for a row that exactly matches a value or partial set
of values in the current index.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row found that exactly matches the index value. On failure the cursor position is before the
first row (isBOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “Method findBegin” on page 152
♦ “Method isBOF” on page 99

Method findNext

Prototype
Boolean findNext()

Returns
true if successful, false otherwise.

Remarks
Continues a findFirst search by moving forward through the table from the current position, looking to see
if the next row exactly matches a value or full set of values in the current index.

The cursor is left on the next row if it exactly matches the index value. On failure the cursor position is after
the last row (isEOF).

The findNext method behavior is undefined if the column values being searched for are modified during a
row update.

UltraLite for M-Business Anywhere API Reference

154 Copyright © 2006, iAnywhere Solutions, Inc.

Method findNextForColumns

Prototype
Boolean findNextForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
Continues a findFirst search by moving forward through the table from the current position, looking to see
if the next row exactly matches a value or partial set of values in the current index.

The cursor is left on the next row if it exactly matches the index value. On failure the cursor position is after
the last row (isEOF).

The findNext method behavior is undefined if the column values being searched for are modified during a
row update.

Method findPrevious

Prototype
Boolean findPrevious()

Returns
true if successful, false otherwise.

Remarks
Continues a findLast search by moving backward through the table from the current position, looking to see
if the previous row exactly matches a value or full set of values in the current index.

The cursor is left on the previous row if it exactly matches the index value. On failure the cursor position is
before the first row (isBOF).

The findPrevious method behavior is undefined if the column values being searched for are modified during
a row update.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 155

Method findPreviousForColumns

Prototype
Boolean findPreviousForColumns(
 UInt16 numColumns
)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
Continues a findLast search by moving backward through the table from the current position, looking to see
if the previous row exactly matches a value or partial set of values in the current index.

The cursor is left on the previous row if it exactly matches the index value. On failure the cursor position is
before the first row (isBOF).

The findPrevious method behavior is undefined if the column values being searched for are modified during
a row update.

Method getBoolean

Prototype
Boolean getBoolean(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

Returns
The value for the specified column as a Boolean.

Method getBytes

Prototype
Array getBytes(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

UltraLite for M-Business Anywhere API Reference

156 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
The value for the specified column as an array of bytes.

Remarks
Only valid for columns of type SQLType.BINARY or SQLType.LONGBINARY.

Method getBytesSection

Prototype
UInt32 getBytesSection(
 UInt16 index
 UInt32 srcOffset,
 Array dst,
 UInt32 dstOffset,
 UInt32 count
)

Parameters
index The 1-based ordinal of the column containing the binary data.

srcOffset The start position in the column value. Zero is the beginning of the value.

dst The destination array.

dstOffset The start position in the destination array.

count The number of bytes to be copied

Returns
The number of bytes read.

Remarks
Copies a subset of the contents of the specified SQLType.LONGBINARY column, beginning at the specified
offset, to the specified offset of the destination byte array.

The bytes at position srcOffset (starting from 0) through srcOffset+count-1 of the source column are copied
into positions dstOffset through dstOffset+count-1, respectively, of the destination array. If the end of the
value is encountered before count bytes are copied, the remainder of the destination array is left unchanged.

If any of the following is true, an Error is thrown, Connection.sqlCode set to
SQLError.SQLE_INVALID_PARAMETER and the destination is not modified:

♦ The dst argument is null
♦ The srcOffset argument is negative
♦ The dstOffset argument is negative
♦ The count argument is negative
♦ dstOffset + count is greater than dst.length, the length of the destination array.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 157

Method getDate

Prototype
Date getDate(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Date.

Method getDouble

Prototype
Double getDouble(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Double.

Method getFloat

Prototype
Float getFloat(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value for the specified column.

Method getInt

Prototype
Int32 getInt(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value for the specified column.

UltraLite for M-Business Anywhere API Reference

158 Copyright © 2006, iAnywhere Solutions, Inc.

Method getLong

Prototype
Int64 getLong(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value for the specified column.

Method getRowCount

Prototype
UInt32 getRowCount()

Returns
The number of rows in the result set.

Method getShort

Prototype
Int16 getShort(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as an Int16.

Method getString

Prototype
String getString(UInt32 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a String.

Method getStringChunk

Prototype
String getStringChunk(
 UInt16 index,

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 159

 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ index The 1-based ordinal in the result set to get

♦ srcOffset The o-based start position in the string value.

♦ count The number of characters to be copied.

Returns
The string, with specified characters copied.

Remarks
Copies a subset of the value for the specified SQLType.LONGVARCHAR column, starting at the specified
offset, to the String object.

Method getTime

Prototype
Date getTime(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Date.

Method getTimestamp

Prototype
Date getTimestamp(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Date.

Method getULong

Prototype
UInt64 getULong(UInt16 index)

UltraLite for M-Business Anywhere API Reference

160 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as an unsigned 64-bit integer.

Method getUUID

Prototype
UUID getUUID(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value of the column as a UUID. The column must be of type SQLType.BINARY with length 16.

Method insert

Prototype
insert()

Remarks
Inserts a new row with the current column values (specified using the set methods).

Each insert must be preceded by a call to insertBegin.

Method insertBegin

Prototype
insertBegin()

Remarks
Prepares to insert a new row into this table by setting all current column values to their default values. Call
the appropriate setType method(s) to specify the non-default values that are to be inserted.

The row is not actually inserted and the data in the row is not actually changed until you execute the insert
method, and that change is not permanent until it is committed.

Method lookupBackward

Prototype
Boolean lookupBackward()

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 161

Returns
true if successful, false otherwise.

Remarks
Move backward through the table from the end, looking for a row that matches or is less than a value or full
set of values in the current index.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is less than the index value. On failure (no rows less than the value being
looked for) the cursor position is before the first row (isBOF).

Each search must be preceded by a call to the lookupBegin method.

Method lookupBackwardForColumns

Prototype
Boolean lookupBackwardForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
Move backward through the table from the beginning, looking for a row that matches or is less than a value
or partial set of values in the current index.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is less than the index value. On failure (no rows less than the value being
looked for) the cursor position is before the first row (isBOF).

Each search must be preceded by a call to the lookupBegin method.

Method lookupBegin

Prototype
lookupBegin()

Remarks
Prepares to perform a new lookup on this table. The value(s) for which to search are specified by calling the
appropriate setType method(s) on the columns in the index with which this table was opened.

UltraLite for M-Business Anywhere API Reference

162 Copyright © 2006, iAnywhere Solutions, Inc.

Method lookupForward

Prototype
Boolean lookupForward()

Returns
true if successful, false otherwise.

Remarks
Move forward through the table from the beginning, looking for a row that matches or is greater than a value
or full set of values in the current index.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is greater than the index value. On failure (no rows greater than the value
being looked for) the cursor position is after the last row (isEOF).

Each search must be preceded by a call to the lookupBegin method.

Method lookupForwardForColumns

Prototype
Boolean lookupForwardForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
Move forward through the table from the beginning, looking for a row that matches or is greater than a value
or partial set of values in the current index.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is greater than the index value. On failure (no rows greater than the value
being looked for) the cursor position is after the last row (isEOF).

Each search must be preceded by a call to the lookupBegin method.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 163

Method isBOF

Prototype
Boolean isBOF()

Returns
true if successful, false otherwise.

Method isEOF

Prototype
Boolean isEOF()

Returns
true if successful, false otherwise.

Method isNull

Prototype
Boolean isNull(Uint16 index)

Parameters
index The column index value.

Returns
true if the value is null.

false otherwise.

Method isOpen

Prototype
Boolean isOpen()

Returns
true if the ResultSet is open, false otherwise.

Method moveAfterLast

Prototype
Boolean moveAfterLast()

Remarks
Moves to a position after the last row of the ULResultSet.

UltraLite for M-Business Anywhere API Reference

164 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveBeforeFirst

Prototype
Boolean moveBeforeFirst()

Remarks
Moves to a position before the first row.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveFirst

Prototype
Boolean moveFirst()

Remarks
Moves to the first row.

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

Method moveLast

Prototype
Boolean moveLast()

Remarks
Moves to the last row.

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 165

Method moveNext

Prototype
Boolean moveNext()

Remarks
Moves to the next row.

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

Method movePrevious

Prototype
Boolean movePrevious()

Remarks
Moves to the previous row.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Method moveRelative

Prototype
Boolean moveRelative(Int32 index)

Remarks
Moves a certain number of rows relative to the current row. Relative to the current position of the cursor in
the result set, positive index values move forward in the result set, negative index values move backward in
the result set and zero does not move the cursor.

Parameters
index The number of rows to move. The value can be positive, negative, or zero.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

UltraLite for M-Business Anywhere API Reference

166 Copyright © 2006, iAnywhere Solutions, Inc.

Method open

Prototype
open()

Remarks
Opens this table for data access using its primary key.

Method openWithIndex

Prototype
openWithIndex(String index)

Parameters
♦ index The name of the index with which to open the table. If null, the primary key is used.

Remarks
Opens this table for data access using the specified index.

Method setBoolean

Prototype
setBoolean(short columnID, boolean value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a boolean. The data in the row is not actually changed until
you execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value for the first column to false:

t.setBoolean(1, false);

Method setBytes

Prototype
setBytes(UInt16 columnID, Array value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 167

♦ value The new value for the column.

Remarks
Sets the value for the specified column using an array of bytes. Suitable for columns of type
SQLType.BINARY or SQLType.LONGBINARY only. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statements set the value of the first column:

var blob = new Array(3);
blob[0] = 78;
blob[1] = 0'
blob[2] = 68;
t.setBytes(1, blob);

Method setDate

Prototype
setDate(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Date. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value of the first column to 2004/09/27:

t.setDate(
 1, new Date(2002,9,27,0,0,0,0)
);

Method setDouble

Prototype
setDouble(UInt16 columnID, Double value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

UltraLite for M-Business Anywhere API Reference

168 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Sets the value for the specified column using a double. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following example sets the value of the first column:

t.setDouble(1, Number.MAX_VALUE);

Method setFloat

Prototype
setFloat(UInt16 columnID, Float value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Float. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value of the first column:

t.setFloat(
 1,
 (2 - Math.pow(2,-23)) * Math.pow(2,127)
);

Method setInt

Prototype
setInt(UInt16 columnID, Int32 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using an Integer. The data in the row is not actually changed until
you execute an insert or update, and that change is not permanent until it is committed.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 169

Example
The following statement sets the value of the first column to 2147483647:

t.setInt(1, 2147483647);

Method setLong

Prototype
setLong(UInt16 columnID, Int64 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using an Int64. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value of the first column to 9223372036854770000:

t.setLong(1, 9223372036854770000);

Method setNull

Prototype
setNull(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
Sets a column to the SQL NULL. The data is not actually changed until you execute an insert or update, and
that change is not permanent until it is committed.

Method setShort

Prototype
setShort(UInt16 columnID, Int16 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

UltraLite for M-Business Anywhere API Reference

170 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Sets the value for the specified column using a UInt16. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value of the first column to 32767:

t.setShort(1, 32767);

Method setString

Prototype
setString(UInt16 columnID, String value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a String. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value of the first column to abc.

t.setString(1, "abc");

Method setTime

Prototype
setTime(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Date. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value for the first column to 18:02:13:0000:

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 171

t.setTime(
 1, new Date(1966,4,1,18,2,13,0)
);

Method setTimestamp

Prototype
setTimestamp(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a Date. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed.

Example
The following statement sets the value of the first column to 1966/04/01 18:02:13:0000:

t.setTimestamp(
 1, new Date(1966,4,1,18,2,13,0)
);

Method setToDefault

Prototype
setToDefault(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
Sets the value for the specified column to its default value. The data in the row is not actually changed until
you execute an insert or update, and that change is not permanent until it is committed.

Method setULong

Prototype
setULong(UInt16 columnID, UInt64 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

UltraLite for M-Business Anywhere API Reference

172 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Sets the value for the specified column using a 64-bit integer treated as an unsigned value. The data in the
row is not actually changed until you execute an insert or update, and that change is not permanent until it
is committed.

Example
The following statement sets the value for the first column:

t.setULong(
 1, 9223372036854770000 * 4096
);

Method setUUID

Prototype
setUUID(UInt16 columnID, UUID value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Sets the value for the specified column using a UUID. The data in the row is not actually changed until you
execute an insert or update, and that change is not permanent until it is committed. Only valid for columns
of type SQLType.BINARY and length 16.

Example
The following statement sets a new UUID value for the first column in the table:

t.setUUID(1, conn.getNewUUID(););

See also
♦ “Using UUIDs” [MobiLink - Server Administration]

Method truncate

Prototype
truncate()

Remarks
Deletes all rows in the table while temporarily activating stop synchronization delete.

Class ULTable

Copyright © 2006, iAnywhere Solutions, Inc. 173

Method update

Prototype
update()

Remarks
Updates the current row with the current column values (specified using the set methods).

Each update must be preceded by a call to updateBegin.

Method updateBegin

Prototype
updateBegin()

Remarks
Prepares to update the current row in this table. Column values are modified by calling the appropriate
setType method or methods.

The data in the row is not actually changed until you execute the update, and that change is not permanent
until it is committed.

Modifying columns in the index used to open the table will affect any active searches in unpredictable ways.
Columns in the primary key of the table can not be updated.

UltraLite for M-Business Anywhere API Reference

174 Copyright © 2006, iAnywhere Solutions, Inc.

Class UUID
Represents a UUID. A UUID (Universally Unique Identifer) or GUID (Globally Unique Identifier) is a
generated value guaranteed to be unique across all computers and databases. UUIDs are stored as
SQLType.BINARY(16) values in UltraLite databases and can be used to uniquely identify rows. The UUID
class stores immutable UUIDs.

A UUID is associated with the Connection that created it and can no longer be converted to a string after
the connection is closed.

Method equals

Prototype
Boolean equals(UUID other)

Parameters
♦ other UUID with which to compare.

Returns
true if this UUID is the same as the other argument, false otherwise.

Method toString

Prototype
String toString()

Returns
A string representation of this UUID.

Remarks
The string is of the format XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX, where X is a
hexadecimal digit or null if the Connection associated with the UUID is closed.

Class UUID

Copyright © 2006, iAnywhere Solutions, Inc. 175

Index
A
accessing schema information

UltraLite for M-Business Anywhere, 26
AppendBytes method

UltraLite for M-Business Anywhere API, 150
appendBytes method

UltraLite for M-Business Anywhere API, 92
AppendBytesParameter method

UltraLite for M-Business Anywhere API, 81
AppendStringChunk method

UltraLite for M-Business Anywhere API, 151
appendStringChunk method

UltraLite for M-Business Anywhere API, 93
AppendStringChunkParameter method

UltraLite for M-Business Anywhere API, 82
architecture

UltraLite for M-Business Anywhere, 3
AuthStatusCode class

UltraLite for M-Business Anywhere API, 57
AuthStatusCode properties

UltraLite for M-Business Anywhere API, 57
AutoCommit mode

UltraLite for M-Business Anywhere, 25
AvantGo (see M-Business Anywhere)
AvantGo M-Business Server (see M-Business
Anywhere)
AvGo

UltraLite for M-Business Anywhere creator ID, 9

B
BLOBs

GetByteChunk method in UltraLite for M-Business
Anywhere, 25
UltraLite for M-Business Anywhere, 25

C
casting

data types in UltraLite for M-Business Anywhere,
22

changeEncryptionKey method
UltraLite for M-Business Anywhere API, 59

close method

UltraLite for M-Business Anywhere API, 59, 82,
93

columns
accessing schema information in UltraLite for M-
Business Anywhere, 26

Columns collection
UltraLite for M-Business Anywhere, 20

Commit method
UltraLite for M-Business Anywhere, 25

commit method
UltraLite for M-Business Anywhere API, 60

commits
UltraLite for M-Business Anywhere, 25

Connection class
UltraLite for M-Business Anywhere API, 58

Connection properties
UltraLite for M-Business Anywhere API, 58

ConnectionParms class
UltraLite for M-Business Anywhere API, 66

ConnectionParms properties
UltraLite for M-Business Anywhere API, 66

conventions
documentation, viii
file names in documentation, x

countUploadRow method
UltraLite for M-Business Anywhere API, 60

createDatabase method
UltraLite for M-Business Anywhere API, 70

CreationParms class
UltraLite for M-Business Anywhere API, 68

CreationParms properties
UltraLite for M-Business Anywhere API, 68

creator IDs
UltraLite for M-Business Anywhere, 9

D
data manipulation

SQL in UltraLite for M-Business Anywhere, 16
table API in UltraLite for M-Business Anywhere,
20
UltraLite for M-Business Anywhere, 16

data types
accessing in UltraLite for M-Business Anywhere,
21
casting in UltraLite for M-Business Anywhere, 22
JavaScript, 56
UltraLite for M-Business Anywhere, 56

Copyright © 2006, iAnywhere Solutions, Inc. 177

database schemas
accessing in UltraLite for M-Business Anywhere,
26

DatabaseManager class
UltraLite for M-Business Anywhere API, 70

DatabaseManager properties
UltraLite for M-Business Anywhere API, 70

DatabaseSchema class
UltraLite for M-Business Anywhere API, 73
UltraLite for M-Business Anywhere development,
26

deleteAllRows method
UltraLite for M-Business Anywhere API, 151

deleteRow method
UltraLite for M-Business Anywhere API, 93, 151

deleting
rows in UltraLite for M-Business Anywhere, 22

deploying
UltraLite for M-Business Anywhere, 32
UltraLite for M-Business Anywhere applications to
Palm OS, 32
UltraLite for M-Business Anywhere to Windows
CE, 32
UltraLite for M-Business Anywhere to Windows
XP, 32

development platforms
UltraLite for M-Business Anywhere, 2

DML operations
UltraLite for M-Business Anywhere, 16

documentation
conventions, viii
SQL Anywhere, vi

dropDatabase method
UltraLite for M-Business Anywhere API, 71

E
encryption

UltraLite for M-Business Anywhere development,
15

equals method
UltraLite for M-Business Anywhere API, 175

error handling
UltraLite for M-Business Anywhere, 27

errors
handling in UltraLite for M-Business Anywhere,
27

executeQuery method

UltraLite for M-Business Anywhere API, 82
executeStatement method

UltraLite for M-Business Anywhere API, 83

F
features

for M-Business Anywhere, 2
feedback

documentation, xiii
providing, xiii

find methods
UltraLite for M-Business Anywhere, 22

find mode
UltraLite for M-Business Anywhere, 23

findBegin method
UltraLite for M-Business Anywhere API, 152

findFirst method
UltraLite for M-Business Anywhere API, 152

findFirstForColumns method
UltraLite for M-Business Anywhere API, 152

findLast method
UltraLite for M-Business Anywhere API, 153

findLastForColumns method
UltraLite for M-Business Anywhere API, 154

findNext method
UltraLite for M-Business Anywhere API, 154

findNextForColumns method
UltraLite for M-Business Anywhere API, 155

findPrevious method
UltraLite for M-Business Anywhere API, 155

findPreviousForColumns method
UltraLite for M-Business Anywhere API, 156

firewalls
M-Business Anywhere synchronization, 31

G
getAuthenticationParms method

UltraLite for M-Business Anywhere API, 122
getAuthStatus method

UltraLite for M-Business Anywhere API, 133
getBoolean method

UltraLite for M-Business Anywhere API, 94, 156
GetByteChunk method

UltraLite for M-Business Anywhere, 25
getBytes method

UltraLite for M-Business Anywhere API, 94, 156
getBytesSection method

Index

178 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite for M-Business Anywhere API, 94, 157
getCheckpointStore method

UltraLite for M-Business Anywhere API, 122
getCollationName method

UltraLite for M-Business Anywhere API, 73
getColumnCount method

UltraLite for M-Business Anywhere API, 78, 108,
139

getColumnDefaultValue method
UltraLite for M-Business Anywhere API, 139

getColumnDefaultValueByColID method
UltraLite for M-Business Anywhere API, 139

getColumnID method
UltraLite for M-Business Anywhere API, 108, 139

getColumnName method
UltraLite for M-Business Anywhere API, 78, 108

getColumnPartitionSize method
UltraLite for M-Business Anywhere API, 140

getColumnPartitionSizeByColID method
UltraLite for M-Business Anywhere API, 140

getColumnPrecision method
UltraLite for M-Business Anywhere API, 109, 140

getColumnPrecisionByColID method
UltraLite for M-Business Anywhere API, 109, 141

getColumnScale method
UltraLite for M-Business Anywhere API, 109, 141

getColumnScaleByColID method
UltraLite for M-Business Anywhere API, 109, 141

getColumnSize method
UltraLite for M-Business Anywhere API, 110, 141

getColumnSizeByColID method
UltraLite for M-Business Anywhere API, 110, 142

getColumnSQLType method
UltraLite for M-Business Anywhere API, 110, 142

getColumnSQLTypeByColID method
UltraLite for M-Business Anywhere API, 110, 142

getDatabaseID method
UltraLite for M-Business Anywhere API, 60

getDatabaseOptions method
UltraLite for M-Business Anywhere API, 72

getDatabaseProperty method
UltraLite for M-Business Anywhere API, 73

getDate method
UltraLite for M-Business Anywhere API, 95, 158

getDateFormat method
UltraLite for M-Business Anywhere API, 74

getDateOrder method
UltraLite for M-Business Anywhere API, 74

getDisableConcurrency method
UltraLite for M-Business Anywhere API, 122

getDouble method
UltraLite for M-Business Anywhere API, 95, 158

getDownloadOnly method
UltraLite for M-Business Anywhere API, 123

getFloat method
UltraLite for M-Business Anywhere API, 96, 158

getGlobalAutoIncrementUsage method
UltraLite for M-Business Anywhere API, 60

getIgnoredRows method
UltraLite for M-Business Anywhere API, 133

getIndex method
UltraLite for M-Business Anywhere API, 142

getIndexCount method
UltraLite for M-Business Anywhere API, 143

getIndexName method
UltraLite for M-Business Anywhere API, 143

getInt method
UltraLite for M-Business Anywhere API, 96, 158

getKeepPartialDownload method
UltraLite for M-Business Anywhere API, 123

getLastDownloadTime method
UltraLite for M-Business Anywhere API, 61

getLastIdentity method
UltraLite for M-Business Anywhere API, 61

getLong method
UltraLite for M-Business Anywhere API, 96, 159

getMask method
UltraLite for M-Business Anywhere API, 91

getName method
UltraLite for M-Business Anywhere API, 78, 91,
143

getNearestCentury method
UltraLite for M-Business Anywhere API, 74

getNewPassword method
UltraLite for M-Business Anywhere API, 123

getNewUUID method
UltraLite for M-Business Anywhere API, 62

getOptimalIndex method
UltraLite for M-Business Anywhere API, 143

getPartialDownloadRetained method
UltraLite for M-Business Anywhere API, 123, 133

getPassword method
UltraLite for M-Business Anywhere API, 123

getPingOnly method
UltraLite for M-Business Anywhere API, 123

getPlan method

Copyright © 2006, iAnywhere Solutions, Inc. 179

UltraLite for M-Business Anywhere API, 83
getPrecision method

UltraLite for M-Business Anywhere API, 74
getPrimaryKey method

UltraLite for M-Business Anywhere API, 144
getPublicationCount method

UltraLite for M-Business Anywhere API, 74
getPublicationMask method

UltraLite for M-Business Anywhere API, 124
getPublicationName method

UltraLite for M-Business Anywhere API, 75
getPublicationSchema method

UltraLite for M-Business Anywhere API, 75
getReferencedIndexName method

UltraLite for M-Business Anywhere API, 78
getReferencedTableName method

UltraLite for M-Business Anywhere API, 79
getResultSetSchema method

UltraLite for M-Business Anywhere API, 83
getResumePartialDownload method

UltraLite for M-Business Anywhere API, 124
getRowCount method

UltraLite for M-Business Anywhere API, 96, 159
getSendColumnNames method

UltraLite for M-Business Anywhere API, 124
getSendDownloadAck method

UltraLite for M-Business Anywhere API, 124
getShort method

UltraLite for M-Business Anywhere API, 97, 159
getSignature method

UltraLite for M-Business Anywhere API, 75
getStream method

UltraLite for M-Business Anywhere API, 124
getStreamErrorCode method

UltraLite for M-Business Anywhere API, 133
getStreamErrorContext method

UltraLite for M-Business Anywhere API, 137
getStreamErrorID method

UltraLite for M-Business Anywhere API, 137
getStreamErrorSystem method

UltraLite for M-Business Anywhere API, 138
getStreamParms method

UltraLite for M-Business Anywhere API, 125
getString method

UltraLite for M-Business Anywhere API, 97, 159
getStringChunk method

UltraLite for M-Business Anywhere API, 97, 159
getTable method

UltraLite for M-Business Anywhere API, 62
getTableCount method

UltraLite for M-Business Anywhere API, 76
getTableCountInPublications method

UltraLite for M-Business Anywhere API, 76
getTableName method

UltraLite for M-Business Anywhere API, 76
getTime method

UltraLite for M-Business Anywhere API, 98, 160
getTimeFormat method

UltraLite for M-Business Anywhere API, 76
getTimestamp method

UltraLite for M-Business Anywhere API, 98, 138,
160

getTimestampFormat method
UltraLite for M-Business Anywhere API, 77

getULong method
UltraLite for M-Business Anywhere API, 98, 160

getUploadOK method
UltraLite for M-Business Anywhere API, 138

getUploadOnly method
UltraLite for M-Business Anywhere API, 125

getUploadUnchangedRows method
UltraLite for M-Business Anywhere API, 144

getUserName method
UltraLite for M-Business Anywhere API, 125

getUUID method
UltraLite for M-Business Anywhere API, 98, 161

getVersion method
UltraLite for M-Business Anywhere API, 125

grantConnectTo method
UltraLite for M-Business Anywhere, 28
UltraLite for M-Business Anywhere API, 62

H
hasResultSet method

UltraLite for M-Business Anywhere API, 84
HotSync

UltraLite for M-Business Anywhere, 9
HotSync synchronization

UltraLite for M-Business Anywhere
synchronization parameters, 64

I
icons

used in manuals, x
IndexSchema class

Index

180 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite for M-Business Anywhere API, 78
insert method

UltraLite for M-Business Anywhere API, 161
insert mode

UltraLite for M-Business Anywhere, 23
insertBegin method

UltraLite for M-Business Anywhere API, 161
inserting

rows in UltraLite for M-Business Anywhere, 22
install-dir

documentation usage, x
isBOF method

UltraLite for M-Business Anywhere API, 99, 164
isCaseSensitive method

UltraLite for M-Business Anywhere API, 77
isColumnAutoIncrement method

UltraLite for M-Business Anywhere API, 144
isColumnAutoIncrementByColID method

UltraLite for M-Business Anywhere API, 144
isColumnCurrentDate method

UltraLite for M-Business Anywhere API, 145
isColumnCurrentDateByColID method

UltraLite for M-Business Anywhere API, 145
isColumnCurrentTime method

UltraLite for M-Business Anywhere API, 145
isColumnCurrentTimeByColID method

UltraLite for M-Business Anywhere API, 146
isColumnCurrentTimestamp method

UltraLite for M-Business Anywhere API, 146
isColumnCurrentTimestampByColID method

UltraLite for M-Business Anywhere API, 146
isColumnDescending method

UltraLite for M-Business Anywhere API, 79
isColumnGlobalAutoIncrement method

UltraLite for M-Business Anywhere API, 147
isColumnGlobalAutoincrementByColID method

UltraLite for M-Business Anywhere API, 147
isColumnNewUUID method

UltraLite for M-Business Anywhere API, 147
isColumnNewUUIDByColID method

UltraLite for M-Business Anywhere API, 147
isColumnNullable method

UltraLite for M-Business Anywhere API, 148
isColumnNullableByColID method

UltraLite for M-Business Anywhere API, 148
isEOF method

UltraLite for M-Business Anywhere API, 99, 164
isForeignKey method

UltraLite for M-Business Anywhere API, 79
isForeignKeyCheckOnCommit method

UltraLite for M-Business Anywhere API, 79
isForeignKeyNullable method

UltraLite for M-Business Anywhere API, 79
isInPublication method

UltraLite for M-Business Anywhere API, 148
isNeverSynchronized method

UltraLite for M-Business Anywhere API, 148
isNull method

UltraLite for M-Business Anywhere API, 99, 164
isOpen method

UltraLite for M-Business Anywhere API, 62, 77,
84, 99, 111, 164

isPrimaryKey method
UltraLite for M-Business Anywhere API, 80

isUniqueIndex method
UltraLite for M-Business Anywhere API, 80

isUniqueKey method
UltraLite for M-Business Anywhere API, 80

J
JavaScript

maintaining application state, 11
JavaScript data types

UltraLite for M-Business Anywhere, 56
JavaScript programming language

UltraLite for M-Business Anywhere, 55

L
lookup methods

UltraLite for M-Business Anywhere, 22
lookup mode

UltraLite for M-Business Anywhere, 23
lookupBackward method

UltraLite for M-Business Anywhere API, 161
lookupBackwardForColumns method

UltraLite for M-Business Anywhere API, 162
lookupBegin method

UltraLite for M-Business Anywhere API, 162
lookupForward method

UltraLite for M-Business Anywhere API, 163
lookupForwardForColumns method

UltraLite for M-Business Anywhere API, 163

M
M-Business Anywhere

Copyright © 2006, iAnywhere Solutions, Inc. 181

UltraLite, 2
modes

UltraLite for M-Business Anywhere, 23
moveAfterLast method

UltraLite for M-Business Anywhere API, 100, 164
moveBeforeFirst method

UltraLite for M-Business Anywhere API, 100, 165
MoveFirst method

UltraLite for M-Business Anywhere, 20
UltraLite for M-Business Anywhere development,
17

moveFirst method
UltraLite for M-Business Anywhere API, 100, 165

moveLast method
UltraLite for M-Business Anywhere API, 100, 165

MoveNext method
UltraLite for M-Business Anywhere, 20
UltraLite for M-Business Anywhere development,
17

moveNext method
UltraLite for M-Business Anywhere API, 101, 166

movePrevious method
UltraLite for M-Business Anywhere API, 101, 166

moveRelative method
UltraLite for M-Business Anywhere API, 101, 166

N
network protocol options

UltraLite for M-Business Anywhere AP, 131
newsgroups

technical support, xiii

O
obfuscation

UltraLite for M-Business Anywhere, 15
object hierarchy

UltraLite for M-Business Anywhere, 3
one-button synchronization

UltraLite for M-Business Anywhere, 29
Open method

ULTable object in UltraLite for M-Business
Anywhere, 17, 20

open method
UltraLite for M-Business Anywhere API, 167

OpenByIndex method
ULTable object in UltraLite for M-Business
Anywhere, 17

openConnection method
UltraLite for M-Business Anywhere API, 72

P
passwords

authentication in UltraLite for M-Business
Anywhere, 28

persistent names
UltraLite for M-Business Anywhere, 11, 12

platforms
supported in UltraLite for M-Business Anywhere,
2

prepared statements
UltraLite for M-Business Anywhere, 16

PreparedStatement class
UltraLite for M-Business Anywhere API, 81
UltraLite for M-Business Anywhere usage, 16

prepareStatement method
UltraLite for M-Business Anywhere API, 63

publications
accessing schema information in UltraLite for M-
Business Anywhere, 26

PublicationSchema class
UltraLite for M-Business Anywhere API, 91
UltraLite for M-Business Anywhere development,
26

R
reOpenConnection method

UltraLite for M-Business Anywhere API, 72
resetLastDownloadTime method

UltraLite for M-Business Anywhere API, 63
ResultSet class

UltraLite for M-Business Anywhere API, 92
ResultSet properties

UltraLite for M-Business Anywhere API, 92
ResultSetSchema class

UltraLite for M-Business Anywhere API, 108
revokeConnectFrom method

UltraLite for M-Business Anywhere, 28
UltraLite for M-Business Anywhere API, 63

Rollback method
UltraLite for M-Business Anywhere, 25

rollback method
UltraLite for M-Business Anywhere API, 63

rollbackPartialDownload method
UltraLite for M-Business Anywhere API, 64

Index

182 Copyright © 2006, iAnywhere Solutions, Inc.

rollbacks
UltraLite for M-Business Anywhere, 25

rows
accessing values in UltraLite for M-Business
Anywhere, 21

S
samples-dir

documentation usage, x
saveSyncParms method

UltraLite for M-Business Anywhere API, 64
schemas

UltraLite for M-Business Anywhere, 26
scope

variables in UltraLite for M-Business Anywhere,
11

scrolling
UltraLite for M-Business Anywhere, 20

security
UltraLite for M-Business Anywhere, 11

SELECT statement
UltraLite for M-Business Anywhere development,
17

setAuthenticationParms method
UltraLite for M-Business Anywhere API, 125

setBoolean method
UltraLite for M-Business Anywhere API, 102, 167

setBooleanParameter method
UltraLite for M-Business Anywhere API, 84

setBytes method
UltraLite for M-Business Anywhere API, 102, 167

setBytesParameter method
UltraLite for M-Business Anywhere API, 84

setCheckpointStore method
UltraLite for M-Business Anywhere API, 126

setDatabaseID method
UltraLite for M-Business Anywhere API, 64

setDate method
UltraLite for M-Business Anywhere API, 102, 168

setDateParameter method
UltraLite for M-Business Anywhere API, 85

setDateTime method
UltraLite for M-Business Anywhere API, 102

setDisableConcurrency method
UltraLite for M-Business Anywhere API, 126

setDouble method
UltraLite for M-Business Anywhere API, 103, 168

setDoubleParameter method
UltraLite for M-Business Anywhere API, 85

setDownloadOnly method
UltraLite for M-Business Anywhere API, 126

setFloat method
UltraLite for M-Business Anywhere API, 103, 169

setFloatParameter method
UltraLite for M-Business Anywhere API, 86

setInt method
UltraLite for M-Business Anywhere API, 103, 169

setIntParameter method
UltraLite for M-Business Anywhere API, 86

setKeepPartialDownload
UltraLite for M-Business Anywhere API, 127

setLong method
UltraLite for M-Business Anywhere API, 104, 170

setLongParameter method
UltraLite for M-Business Anywhere API, 87

setMBAServer method
UltraLite for M-Business Anywhere API, 128

setMBAServerWithMoreParms method
UltraLite for M-Business Anywhere API, 128

setNewPassword method
UltraLite for M-Business Anywhere API, 129

setNull method
UltraLite for M-Business Anywhere API, 104, 170

setNullParameter method
UltraLite for M-Business Anywhere API, 87

setPassword method
UltraLite for M-Business Anywhere API, 129

setPingOnly method
UltraLite for M-Business Anywhere API, 129

setPublicationMask method
UltraLite for M-Business Anywhere API, 130

setSendColumnNames method
UltraLite for M-Business Anywhere API, 130

setSendDownloadAck method
UltraLite for M-Business Anywhere API, 130

setShort method
UltraLite for M-Business Anywhere API, 104, 170

setShortParameter method
UltraLite for M-Business Anywhere API, 87

setStream method
UltraLite for M-Business Anywhere API, 131

setStreamParms method
UltraLite for M-Business Anywhere API, 131

setString method
UltraLite for M-Business Anywhere API, 105, 171

Copyright © 2006, iAnywhere Solutions, Inc. 183

setStringParameter method
UltraLite for M-Business Anywhere API, 88

setTime method
UltraLite for M-Business Anywhere API, 105, 171

setTimeParameter method
UltraLite for M-Business Anywhere API, 88

setTimestamp method
UltraLite for M-Business Anywhere API, 105, 172

setTimestampParameter method
UltraLite for M-Business Anywhere API, 89

setToDefault method
UltraLite for M-Business Anywhere API, 172

setULong method
UltraLite for M-Business Anywhere API, 105, 172

setULongParameter method
UltraLite for M-Business Anywhere API, 89

setUploadOnly method
UltraLite for M-Business Anywhere API, 131

setUserName method
UltraLite for M-Business Anywhere API, 132

setUUID method
UltraLite for M-Business Anywhere API, 106, 173

setUUIDParameter method
UltraLite for M-Business Anywhere API, 89

setVersion method
UltraLite for M-Business Anywhere API, 132

SQL Anywhere
documentation, vi

SQLError class
UltraLite for M-Business Anywhere API, 112

SQLType class
UltraLite for M-Business Anywhere API, 120

startSynchronizationDelete method
UltraLite for M-Business Anywhere API, 64

stopSynchronizationDelete method
UltraLite for M-Business Anywhere API, 65

support
newsgroups, xiii

supported platforms
UltraLite for M-Business Anywhere, 2

synchronization
HTTP in UltraLite for M-Business Anywhere, 30,
31
HTTPS in UltraLite for M-Business Anywhere, 30
TCP/IP in UltraLite for M-Business Anywhere, 30,
31
UltraLite for M-Business Anywhere development,
29

synchronize method
UltraLite for M-Business Anywhere API, 65

synchronizeWithParm method
UltraLite for M-Business Anywhere API, 65

synchronizing UltraLite applications
UltraLite for M-Business Anywhere development,
29

SyncParms class
UltraLite for M-Business Anywhere API, 122

SyncResult class
UltraLite for M-Business Anywhere API, 133

T
tables

accessing schema information in UltraLite for M-
Business Anywhere, 26

TableSchema class
UltraLite for M-Business Anywhere API, 139
UltraLite for M-Business Anywhere development,
26

target platforms
UltraLite for M-Business Anywhere, 2

technical support
newsgroups, xiii

toString method
UltraLite for M-Business Anywhere API, 57, 67,
120, 175

transaction processing
UltraLite for M-Business Anywhere, 25

transactions
UltraLite for M-Business Anywhere, 25

truncate method
UltraLite for M-Business Anywhere API, 173

U
ULTable class

UltraLite for M-Business Anywhere API, 150
UltraLite for M-Business Anywhere development,
17

ULTable properties
UltraLite for M-Business Anywhere API, 150

UltraLite databases
accessing schema information for M-Business
Anywhere, 26
connecting in UltraLite for M-Business Anywhere,
10

UltraLite for M-Business Anywhere

Index

184 Copyright © 2006, iAnywhere Solutions, Inc.

about, 1
accessing schema information, 26
architecture, 3
connecting to UltraLite databases, 10
data manipulation using SQL, 16
data manipulation with Table API, 20
deploying applications, 32
deploying applications to Palm OS, 32
deploying applications to Windows CE, 32
deploying applications to Windows XP, 32
encryption, 15
error handling, 27
features, 2
maintaining state, 11
object hierarchy, 3
project architecture, 37
quick start, 6
supported platforms, 2
synchronizing UltraLite applications, 29
user authentication, 28

UltraLite for M-Business Anywhere API
alphabetical listing, 55

update method
UltraLite for M-Business Anywhere API, 106, 174

update mode
UltraLite for M-Business Anywhere, 23

updateBegin method
UltraLite for M-Business Anywhere API, 106, 174

updating
rows UltraLite for M-Business Anywhere, 22

user authentication
UltraLite for M-Business Anywhere, 28

UUIDs
UltraLite class for M-Business Anywhere API, 175

V
values

accessing in UltraLite for M-Business Anywhere,
21

Visual Basic
supported versions in UltraLite for M-Business
Anywhere, 2

W
Windows CE

target platform in UltraLite for M-Business
Anywhere, 2

Copyright © 2006, iAnywhere Solutions, Inc. 185

	UltraLite® - M-Business Anywhere Programming
	Contents
	About This Manual
	SQL Anywhere documentation
	Documentation conventions
	Finding out more and providing feedback

	Introduction to UltraLite for M-Business Anywhere
	UltraLite for M-Business Anywhere features
	System requirements and supported platforms

	UltraLite for M-Business Anywhere architecture

	Understanding UltraLite for M-Business Anywhere Development
	UltraLite for M-Business Anywhere Quick Start
	Connecting to an UltraLite database
	Maintaining connections and application state across pages
	Persistent names in M-Business Anywhere applications
	Database encryption and obfuscation
	Working with data using SQL
	Data manipulation: INSERT, UPDATE and DELETE
	Data retrieval: SELECT
	Navigation with SQL
	The ResultSetSchema object

	Working with data using the table API
	Navigation with the Table API
	Accessing the values of the current row
	Searching rows with find and lookup
	Inserting, updating, and deleting rows
	Working with BLOB data
	Transaction processing in UltraLite

	Accessing schema information
	Handling errors
	Authenticating users
	Synchronizing data
	One-button synchronization
	Synchronizing data
	Synchronizing data via M-Business Anywhere

	Deploying UltraLite for M-Business Anywhere applications
	Deploying applications to Windows CE and Windows XP
	Deploying applications to Palm OS

	Tutorial: A Sample Application for M-Business Anywhere
	Introduction
	Lesson 1: Create project architecture
	Lesson 2: Create the application files
	Lesson 3: Set up the M-Business Anywhere Server and Client
	Lesson 4: Add startup code to your application
	Lesson 5: Add inserts to your application
	Lesson 6: Add navigation to your application
	Lesson 7: Add updates and deletes to your application
	Lesson 8: Add synchronization to your application

	UltraLite for M-Business Anywhere API Reference
	Data types in UltraLite for M-Business Anywhere
	Class AuthStatusCode
	Properties
	Method toString

	Class Connection
	Properties
	Method changeEncryptionKey
	Method close
	Method commit
	Method countUploadRow
	Method getDatabaseID
	Method getGlobalAutoIncrementUsage
	Method getLastDownloadTime
	Method getLastIdentity
	Method getNewUUID
	Method getTable
	Method grantConnectTo
	Method isOpen
	Method prepareStatement
	Method resetLastDownloadTime
	Method revokeConnectFrom
	Method rollback
	Method rollbackPartialDownload
	Method setDatabaseID
	Method saveSyncParms
	Method startSynchronizationDelete
	Method stopSynchronizationDelete
	Method synchronize
	Method synchronizeWithParm

	Class ConnectionParms
	Properties
	Method toString

	Class CreationParms
	Properties

	Class DatabaseManager
	Properties
	Method createDatabase
	Method dropDatabase
	Method getDatabaseOptions
	Method openConnection
	Method reOpenConnection

	Class DatabaseSchema
	Constants
	Method getCollationName
	Method getDatabaseProperty
	Method getDateFormat
	Method getDateOrder
	Method getNearestCentury
	Method getPrecision
	Method getPublicationCount
	Method getPublicationName
	Method getPublicationSchema
	Method getSignature
	Method getTableCount
	Method getTableCountInPublications
	Method getTableName
	Method getTimeFormat
	Method getTimestampFormat
	Method isCaseSensitive
	Method isOpen

	Class IndexSchema
	Method getColumnCount
	Method getColumnName
	Method getName
	Method getReferencedIndexName
	Method getReferencedTableName
	Method isColumnDescending
	Method isForeignKey
	Method isForeignKeyCheckOnCommit
	Method isForeignKeyNullable
	Method isPrimaryKey
	Method isUniqueIndex
	Method isUniqueKey

	Class PreparedStatement
	Method AppendBytesParameter
	Method AppendStringChunkParameter
	Method close
	Method executeQuery
	Method executeStatement
	Method getPlan
	Method getResultSetSchema
	Method hasResultSet
	Method isOpen
	Method setBooleanParameter
	Method setBytesParameter
	Method setDateParameter
	Method setDoubleParameter
	Method setFloatParameter
	Method setIntParameter
	Method setLongParameter
	Method setNullParameter
	Method setShortParameter
	Method setStringParameter
	Method setTimeParameter
	Method setTimestampParameter
	Method setULongParameter
	Method setUUIDParameter

	Class PublicationSchema
	Method getMask
	Method getName

	Class ResultSet
	Properties
	Method appendBytes
	Method appendStringChunk
	Method close
	Method deleteRow
	Method getBoolean
	Method getBytes
	Method getBytesSection
	Method getDate
	Method getDouble
	Method getFloat
	Method getInt
	Method getLong
	Method getRowCount
	Method getShort
	Method getString
	Method getStringChunk
	Method getTime
	Method getTimestamp
	Method getULong
	Method getUUID
	Method isBOF
	Method isEOF
	Method isNull
	Method isOpen
	Method moveAfterLast
	Method moveBeforeFirst
	Method moveFirst
	Method moveLast
	Method moveNext
	Method movePrevious
	Method moveRelative
	Method setBoolean
	Method setBytes
	Method setDate
	Method setDateTime
	Method setDouble
	Method setFloat
	Method setInt
	Method setLong
	Method setNull
	Method setShort
	Method setString
	Method setTime
	Method setTimestamp
	Method setULong
	Method setUUID
	Method update
	Method updateBegin

	Class ResultSetSchema
	Method getColumnCount
	Method getColumnID
	Method getColumnName
	Method getColumnPrecision
	Method getColumnPrecisionByColID
	Method getColumnScale
	Method getColumnScaleByColID
	Method getColumnSize
	Method getColumnSizeByColID
	Method getColumnSQLType
	Method getColumnSQLTypeByColID
	Method isOpen

	Class SQLError
	Class SQLType
	Method toString

	Class SyncParms
	Constants
	Method getAuthenticationParms
	Method getCheckpointStore
	Method getDisableConcurrency
	Method getDownloadOnly
	Method getKeepPartialDownload
	Method getNewPassword
	Method getPartialDownloadRetained
	Method getPassword
	Method getPingOnly
	Method getPublicationMask
	Method getResumePartialDownload
	Method getSendColumnNames
	Method getSendDownloadAck
	Method getStream
	Method getStreamParms
	Method getUploadOnly
	Method getUserName
	Method getVersion
	Method setAuthenticationParms
	Method setCheckpointStore
	Method setDisableConcurrency
	Method setDownloadOnly
	Method setKeepPartialDownload
	Method setMBAServer
	Method setMBAServerWithMoreParms
	Method setNewPassword
	Method setPassword
	Method setPingOnly
	Method setPublicationMask
	Method setSendColumnNames
	Method setSendDownloadAck
	Method setStream
	Method setStreamParms
	Method setUploadOnly
	Method setUserName
	Method setVersion

	Class SyncResult
	Method getAuthStatus
	Method getIgnoredRows
	Method getPartialDownloadRetained
	Method getStreamErrorCode
	Method getStreamErrorContext
	Method getStreamErrorID
	Method getStreamErrorSystem
	Method getTimestamp
	Method getUploadOK

	Class TableSchema
	Method getColumnCount
	Method getColumnDefaultValue
	Method getColumnDefaultValueByColID
	Method getColumnID
	Method getColumName
	Method getColumnPartitionSize
	Method getColumnPartitionSizeByColID
	Method getColumnPrecision
	Method getColumnPrecisionByColID
	Method getColumnScale
	Method getColumnScaleByColID
	Method getColumnSize
	Method getColumnSizeByColID
	Method getColumnSQLType
	Method getColumnSQLTypeByColID
	Method getIndex
	Method getIndexCount
	Method getIndexName
	Method getName
	Method getOptimalIndex
	Method getPrimaryKey
	Method getUploadUnchangedRows
	Method isColumnAutoIncrement
	Method isColumnAutoIncrementByColID
	Method isColumnCurrentDate
	Method isColumnCurrentDateByColID
	Method isColumnCurrentTime
	Method isColumnCurrentTimeByColID
	Method isColumnCurrentTimestamp
	Method isColumnCurrentTimestampByColID
	Method isColumnGlobalAutoIncrement
	Method isColumnGlobalAutoincrementByColID
	Method isColumnNewUUID
	Method isColumnNewUUIDByColID
	Method isColumnNullable
	Method isColumnNullableByColID
	Method isInPublication
	Method isNeverSynchronized

	Class ULTable
	Properties
	Method AppendBytes
	Method AppendStringChunk
	Method deleteRow
	Method deleteAllRows
	Method findBegin
	Method findFirst
	Method findFirstForColumns
	Method findLast
	Method findLastForColumns
	Method findNext
	Method findNextForColumns
	Method findPrevious
	Method findPreviousForColumns
	Method getBoolean
	Method getBytes
	Method getBytesSection
	Method getDate
	Method getDouble
	Method getFloat
	Method getInt
	Method getLong
	Method getRowCount
	Method getShort
	Method getString
	Method getStringChunk
	Method getTime
	Method getTimestamp
	Method getULong
	Method getUUID
	Method insert
	Method insertBegin
	Method lookupBackward
	Method lookupBackwardForColumns
	Method lookupBegin
	Method lookupForward
	Method lookupForwardForColumns
	Method isBOF
	Method isEOF
	Method isNull
	Method isOpen
	Method moveAfterLast
	Method moveBeforeFirst
	Method moveFirst
	Method moveLast
	Method moveNext
	Method movePrevious
	Method moveRelative
	Method open
	Method openWithIndex
	Method setBoolean
	Method setBytes
	Method setDate
	Method setDouble
	Method setFloat
	Method setInt
	Method setLong
	Method setNull
	Method setShort
	Method setString
	Method setTime
	Method setTimestamp
	Method setToDefault
	Method setULong
	Method setUUID
	Method truncate
	Method update
	Method updateBegin

	Class UUID
	Method equals
	Method toString

	Index

