
UltraLite®
AppForge Programming

Published: October 2006

Copyright and trademarks
Copyright © 2006 iAnywhere Solutions, Inc. Portions copyright © 2006 Sybase, Inc. All rights reserved.

iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

iAnywhere grants you permission to use this document for your own informational, educational, and other non-commercial purposes; provided
that (1) you include this and all other copyright and proprietary notices in the document in all copies; (2) you do not attempt to "pass-off" the
document as your own; and (3) you do not modify the document. You may not publish or distribute the document or any portion thereof without
the express prior written consent of iAnywhere.

This document is not a commitment on the part of iAnywhere to do or refrain from any activity, and iAnywhere may change the content of
this document at its sole discretion without notice. Except as otherwise provided in a written agreement between you and iAnywhere, this
document is provided “as is”, and iAnywhere assumes no liability for its use or any inaccuracies it may contain.

iAnywhere®, Sybase®, and the marks listed at http://www.ianywhere.com/trademarks are trademarks of Sybase, Inc. or its subsidiaries. ®
indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.ianywhere.com/trademarks

Contents

About This Manual ... vii

SQL Anywhere documentation ... viii
Documentation conventions ... xi
Finding out more and providing feedback .. xv

Introduction to UltraLite for AppForge ... 1

UltraLite for AppForge features ... 2
UltraLite for AppForge architecture ... 3

Understanding UltraLite Development with AppForge 5

Preparing to use UltraLite for AppForge ... 6
Creating UltraLite databases .. 9
Connecting to an UltraLite database ... 10
Encryption and obfuscation ... 13
Working with data using dynamic SQL ... 14
Working with data using the table API .. 20
Accessing schema information ... 27
Handling errors .. 28
Authenticating users ... 29
Synchronizing data ... 30
Deploying UltraLite applications .. 33
Maintaining state in UltraLite Palm applications .. 35
Notes on AppForge for Symbian OS ... 38

Tutorial: A Sample Application for AppForge Crossfire 41

Introduction .. 42
Lesson 1: Create a project architecture .. 43
Lesson 2: Create the application interface ... 45
Lesson 3: Write the sample code ... 47
Lesson 4: Deploy to a device ... 54

Copyright © 2006, iAnywhere Solutions, Inc. iii

Summary .. 55

Tutorial: A Sample Application for AppForge MobileVB 57

Introduction .. 58
Lesson 1: Create project architecture ... 59
Lesson 2: Create a form .. 61
Lesson 3: Write the sample code ... 63
Lesson 4: Deploy to a device ... 69
Summary .. 70

UltraLite for AppForge API Reference .. 71

ULAuthStatusCode enumeration ... 73
ULColumn class .. 74
ULColumnSchema class ... 80
ULConnection class .. 81
ULConnectionParms class ... 89
ULDatabaseManager class ... 91
ULDatabaseSchema class .. 94
ULFileTransfer class ... 98
ULFileTransferEvent class ... 101
ULIndexSchema class ... 102
ULPreparedStatement class ... 104
ULPublicationSchema class ... 110
ULResultSet class ... 111
ULResultSetSchema class ... 124
ULSQLCode enumeration ... 125
ULSQLType enumeration ... 134
ULStreamErrorCode enumeration ... 135
ULStreamErrorContext enumeration ... 139
ULStreamErrorID enumeration ... 140
ULStreamType enumeration ... 142
ULSyncEvent class ... 143
ULSyncParms class .. 146
ULSyncResult class .. 149

UltraLite® - AppForge Programming

iv Copyright © 2006, iAnywhere Solutions, Inc.

ULSyncState enumeration .. 150
ULTable class .. 151
ULTableSchema class ... 162

Index .. 165

UltraLite® - AppForge Programming

Copyright © 2006, iAnywhere Solutions, Inc. v

About This Manual
Subject

This manual describes UltraLite for AppForge. With UltraLite for AppForge you can develop and deploy
database applications to handheld, mobile, or embedded devices, running Palm OS, Symbian OS, or
Windows CE.

Audience
This manual is intended for AppForge application developers who want to take advantage of the performance,
resource efficiency, robustness, and security of an UltraLite relational database for data storage and
synchronization.

Copyright © 2006, iAnywhere Solutions, Inc. vii

SQL Anywhere documentation
This book is part of the SQL Anywhere documentation set. This section describes the books in the
documentation set and how you can use them.

The SQL Anywhere documentation
The complete SQL Anywhere documentation is available in two forms: an online form that combines all
books, and as separate PDF files for each book. Both forms of the documentation contain identical
information and consist of the following books:

♦ SQL Anywhere 10 - Introduction This book introduces SQL Anywhere 10—a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

♦ SQL Anywhere 10 - Changes and Upgrading This book describes new features in SQL Anywhere
10 and in previous versions of the software.

♦ SQL Anywhere Server - Database Administration This book covers material related to running,
managing, and configuring SQL Anywhere databases. It describes database connections, the database
server, database files, security, backup procedures, security, and replication with Replication Server, as
well as administration utilities and options.

♦ SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

♦ SQL Anywhere Server - SQL Reference This book provides a complete reference for the SQL
language used by SQL Anywhere. It also describes the SQL Anywhere system views and procedures.

♦ SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, and Java programming languages, as well as Visual Studio .NET. Users
of tools such as Visual Basic and PowerBuilder can use the programming interfaces provided by those
tools.

♦ SQL Anywhere 10 - Error Messages This book provides a complete listing of SQL Anywhere error
messages together with diagnostic information.

♦ MobiLink - Getting Started This manual introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

♦ MobiLink - Server Administration This manual describes how to set up and administer MobiLink
applications.

♦ MobiLink - Client Administration This manual describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases.

♦ MobiLink - Server-Initiated Synchronization This manual describes MobiLink server-initiated
synchronization, a feature of MobiLink that allows you to initiate synchronization or other remote actions
from the consolidated database.

About This Manual

viii Copyright © 2006, iAnywhere Solutions, Inc.

♦ QAnywhere This manual describes QAnywhere, which defines a messaging platform for mobile and
wireless clients as well as traditional desktop and laptop clients.

♦ SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

♦ SQL Anywhere 10 - Context-Sensitive Help This manual provides context-sensitive help for the
Connect dialog, the Query Editor, the MobiLink Monitor, the SQL Anywhere Console utility, the Index
Consultant, and Interactive SQL.

♦ UltraLite - Database Management and Reference This manual introduces the UltraLite database
system for small devices.

♦ UltraLite - AppForge Programming This manual describes UltraLite for AppForge. With UltraLite
for AppForge you can develop and deploy database applications to handheld, mobile, or embedded
devices, running Palm OS, Symbian OS, or Windows CE.

♦ UltraLite - .NET Programming This manual describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

♦ UltraLite - M-Business Anywhere Programming This manual describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows CE, or Windows XP.

♦ UltraLite - C and C++ Programming This manual describes UltraLite C and C++ programming
interfaces. With UltraLite you can develop and deploy database applications to handheld, mobile, or
embedded devices.

Documentation formats
SQL Anywhere provides documentation in the following formats:

♦ Online documentation The online documentation contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product, and is the most complete and
up-to-date source of documentation.

To access the online documentation on Windows operating systems, choose Start ► Programs ► SQL
Anywhere 10 ► Online Books. You can navigate the online documentation using the HTML Help table
of contents, index, and search facility in the left pane, as well as using the links and menus in the right
pane.

To access the online documentation on Unix operating systems, see the HTML documentation under
your SQL Anywhere installation or on your installation CD.

♦ PDF files The complete set of SQL Anywhere books is provided as a set of Adobe Portable Document
Format (pdf) files, viewable with Adobe Reader.

On Windows, the PDF books are accessible from the online books via the PDF link at the top of each
page, or from the Windows Start menu (Start ► Programs ► SQL Anywhere 10 ► Online Books - PDF
Format).

SQL Anywhere documentation

Copyright © 2006, iAnywhere Solutions, Inc. ix

On Unix, the PDF books are accessible on your installation CD.

About This Manual

x Copyright © 2006, iAnywhere Solutions, Inc.

Documentation conventions
This section lists the typographic and graphical conventions used in this documentation.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in uppercase, like the words ALTER TABLE in the following
example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers or expressions are shown like
the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of the list followed by an ellipsis
(three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. In this example, if more than one is specified, they must be
separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

♦ Options When none or only one of a list of items can be chosen, vertical bars separate the items and
the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in curly
braces and a bar is used to separate the options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The brackets and braces should not
be typed.

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. xi

File name conventions

The documentation generally adopts Windows conventions when describing operating-system dependent
tasks and features such as paths and file names. In most cases, there is a simple transformation to the syntax
used on other operating systems.

♦ Directories and path names The documentation typically lists directory paths using Windows
conventions, including colons for drives and backslashes as a directory separator. For example,

MobiLink\redirector

On Unix, Linux, and Mac OS X, you should use forward slashes instead. For example,

MobiLink/redirector
♦ Executable files The documentation shows executable file names using Windows conventions, with

the suffix .exe. On Unix, Linux, and Mac OS X, executable file names have no suffix. On NetWare,
executable file names use the suffix .nlm.

For example, on Windows, the network database server is dbsrv10.exe. On Unix, Linux, and Mac OS
X, it is dbsrv10. On NetWare, it is dbsrv10.nlm.

♦ install-dir The installation process allows you to choose where to install SQL Anywhere, and the
documentation refers to this location using the convention install-dir.

After installation is complete, the environment variable SQLANY10 specifies the location of the
installation directory containing the SQL Anywhere components (install-dir). SQLANYSH10 specifies
the location of the directory containing components shared by SQL Anywhere with other Sybase
applications.

For more information on the default location of install-dir, by operating system, see “File Locations and
Installation Settings” [SQL Anywhere Server - Database Administration].

♦ samples-dir The installation process allows you to choose where to install the samples that are
included with SQL Anywhere, and the documentation refers to this location using the convention
samples-dir.

After installation is complete, the environment variable SQLANYSAMP10 specifies the location of the
directory containing the samples (samples-dir). From the Windows Start menu, choosing
Programs ► SQL Anywhere 10 ► Sample Applications and Projects opens a Windows Explorer window
in this directory.

For more information on the default location of samples-dir, by operating system, see “The samples
directory” [SQL Anywhere Server - Database Administration].

♦ Environment variables The documentation refers to setting environment variables. On Windows,
environment variables are referred to using the syntax %envvar%. On Unix, Linux, and Mac OS X,
environment variables are referred to using the syntax $envvar or ${envvar}.

About This Manual

xii Copyright © 2006, iAnywhere Solutions, Inc.

Unix, Linux, and Mac OS X environment variables are stored in shell and login startup files, such
as .cshrc or .tcshrc.

Graphic icons
The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as SQL Anywhere.

♦ An UltraLite application.

♦ A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

♦ A Sybase Replication Server

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. xiii

♦ A programming interface.

Interface

About This Manual

xiv Copyright © 2006, iAnywhere Solutions, Inc.

Finding out more and providing feedback
Finding out more

Additional information and resources, including a code exchange, are available at the iAnywhere Developer
Network at http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere Solutions newsgroups listed
below.

When you write to one of these newsgroups, always provide detailed information about your problem,
including the build number of your version of SQL Anywhere. You can find this information by entering
dbeng10 -v at a command prompt.

The newsgroups are located on the forums.sybase.com news server. The newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.
iAnywhere Solutions Technical Advisors as well as other staff assist on the newsgroup service when they
have time available. They offer their help on a volunteer basis and may not be available on a regular basis
to provide solutions and information. Their ability to help is based on their workload.

Feedback
We would like to receive your opinions, suggestions, and feedback on this documentation.

You can email comments and suggestions to the SQL Anywhere documentation team at
iasdoc@ianywhere.com. Although we do not reply to emails sent to that address, we read all suggestions
with interest.

In addition, you can provide feedback on the documentation and the software through the newsgroups listed
above.

Finding out more and providing feedback

Copyright © 2006, iAnywhere Solutions, Inc. xv

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

CHAPTER 1

Introduction to UltraLite for AppForge

Contents
UltraLite for AppForge features ... 2
UltraLite for AppForge architecture ... 3

About this chapter
This chapter introduces UltraLite for AppForge. It assumes that you are familiar with the features of
UltraLite, as described in “Introducing UltraLite” [UltraLite - Database Management and Reference].

Copyright © 2006, iAnywhere Solutions, Inc. 1

UltraLite for AppForge features
UltraLite for AppForge is a relational data management system for mobile devices. It has the performance,
resource efficiency, robustness, and security required by business applications. UltraLite also provides
synchronization with enterprise data stores.

System requirements and supported platforms

Development platforms
To develop applications using UltraLite for AppForge, you require the following:

♦ Microsoft .NET (Visual Basic .NET or C#) or Visual Basic 6.

You must install a service pack that meets the requirements for the version of AppForge MobileVB or
AppForge Crossfire that you are using. For more information, see the AppForge web site. If you are
using Visual Basic 6, it is recommended that you install at least service pack 5.

AppForge Client
To deploy applications using UltraLite for AppForge you need the appropriate AppForge Client for the
target device. More information about AppForge Clients can be found at the AppForge web site.

♦ AppForge MobileVB, or AppForge Crossfire.

Target platforms
UltraLite for AppForge supports the following target platforms:

♦ Windows CE 3.0 and higher, with Pocket PC on the ARM processor, including Windows Mobile 5.0.

♦ Sony Ericsson UIQ 2.08 using ARMI (upward compatible with 2.1)

♦ Nokia Series 60 and Series 80 using ARMI

♦ Motorola 1000 using ARMI

♦ Palm OS version 4 and higher.

F For more information, see the UltraLite table in UltraLite Deployment Option for SQL Anywhere.

Introduction to UltraLite for AppForge

2 Copyright © 2006, iAnywhere Solutions, Inc.

http://www.appforge.com
http://www.appforge.com/products/clients/index.html

UltraLite for AppForge architecture
The UltraLite programming interface exposes a set of objects for data manipulation using an UltraLite
database. The following figure describes the object hierarchy.

ULDatabaseManager

ULConnection ULDatabaseSchema

ULPublicationSchema

ULSyncParms

ULSyncResult

ULTable

ULTableSchema

ULIndexSchema

ULColumn

ULColumnSchema

ULPrepared Statement

ULResultSet

ULFileTransfer ULResultSetSchema

ULConnectionParms

The following list describes some of the more commonly-used high-level objects.

♦ ULDatabaseManager manages connections to UltraLite databases.

For more information, see “ULDatabaseManager class” on page 91.

♦ ULConnectionParms holds a set of connection parameters.

You can use a Connection Parameters control and specify connection parameters in a Visual Basic
property sheet.

For more information, see “ULConnectionParms class” on page 89.

♦ ULFileTransfer manages a file transfer with a MobiLink server.

For more information, see “ULFileTransfer class” on page 98.

♦ ULConnection represents a database connection, and governs transactions.

UltraLite for AppForge architecture

Copyright © 2006, iAnywhere Solutions, Inc. 3

For more information, see “ULConnection class” on page 81.

♦ ULPreparedStatement, ULResultSet, and ULResultSetSchema manage database requests and
their results using SQL.

For more information, see “ULPreparedStatement class” on page 104, “ULResultSet
class” on page 111, and “ULResultSetSchema class” on page 124.

♦ ULTable and ULColumn manage data using a table-based API.

For more information, see “ULTable class” on page 151 and “ULColumn class” on page 74.

♦ ULSyncParms and ULSyncResult manage synchronization through the MobiLink synchronization
server.

For more information about synchronization with MobiLink, see “UltraLite Clients” [MobiLink - Client
Administration].

Introduction to UltraLite for AppForge

4 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 2

Understanding UltraLite Development with
AppForge

Contents
Preparing to use UltraLite for AppForge ... 6
Creating UltraLite databases .. 9
Connecting to an UltraLite database ... 10
Encryption and obfuscation ... 13
Working with data using dynamic SQL ... 14
Working with data using the table API .. 20
Accessing schema information ... 27
Handling errors .. 28
Authenticating users ... 29
Synchronizing data ... 30
Deploying UltraLite applications .. 33
Maintaining state in UltraLite Palm applications .. 35
Notes on AppForge for Symbian OS ... 38

About this chapter
This chapter explains how to develop applications using UltraLite for AppForge.

F For a hands-on tutorial, see “Tutorial: A Sample Application for AppForge MobileVB” on page 57 or
“Tutorial: A Sample Application for AppForge Crossfire” on page 41.

Copyright © 2006, iAnywhere Solutions, Inc. 5

Preparing to use UltraLite for AppForge
The following procedures describe the steps you must take before you can build an application using
UltraLite for AppForge.

Adding UltraLite to the MobileVB design environment

To access the UltraLite control from your MobileVB or Crossfire project, you must add UltraLite for
MobileVB to the design environment.

♦ To add the UltraLite connection parameters control

1. From the Visual Basic menu, choose Project ► Components.

2. Click the Controls tab.

3. Scroll down the list to choose UltraLite Connection Parameters 10.0. Click OK.

If this item does not appear in the list of available controls, complete the following steps:

♦ Close Visual Basic and save your project.

♦ Open a command prompt and run the following command:

ulafreg -r

For more information, see “UltraLite AppForge Registry utility (ulafreg)” [UltraLite - Database
Management and Reference].

♦ Restart Visual Basic and open your project.

♦ Choose Project ► Components.

♦ Choose UltraLite Connection Parameters 10.0.

A database icon is added to your toolbar. To add a ULConnectionParms object to your form you double-
click this icon.

Adding a reference to UltraLite for MobileVB
Once SQL Anywhere is installed, UltraLite for MobileVB is automatically added to any new MobileVB
project. It is therefore not usually necessary to manually add a reference to UltraLite for MobileVB to a
project. The following procedure is provided for occasional situations where you may need to add a reference
manually, such as if you install MobileVB after installing SQL Anywhere.

♦ To add a reference to UltraLite for MobileVB

1. From the Visual Basic menu, choose Project ► References.

2. If iAnywhere Solutions, UltraLite for MobileVB 10.0 is included in the list of available references,
select it and click OK.

Understanding UltraLite Development with AppForge

6 Copyright © 2006, iAnywhere Solutions, Inc.

If iAnywhere Solutions, UltraLite for MobileVB 10.0 does not appear in the list of available references:

♦ Open a command prompt and run the following command:

ulafreg -r

For more information, see “UltraLite AppForge Registry utility (ulafreg)” [UltraLite - Database
Management and Reference].

♦ Choose iAnywhere Solutions, UltraLite for MobileVB 10.0 and click OK.

Adding UltraLite to the Crossfire design environment

Although the SQL Anywhere Setup program automatically adds UltraLite to your Crossfire design
environment, there are cases where you may have to add UltraLite to the environment manually. For example,
if you install Crossfire after you install SQL Anywhere, you may need to carry out this procedure.

To find out if you need to add UltraLite to Crossfire, check that a new Crossfire project includes a reference
to iAnywhere.UltraLiteForAppForge. If it does not, you need to add UltraLite to the environment. Also,
check if the ULConnectionParms class appears in the AppForge panel of the toolbox. If it does not, you need
to add UltraLite to the environment.

♦ To add UltraLite references and controls to your Crossfire project

1. Register UltraLite for MobileVB with Crossfire.

a. Ensure that Crossfire is closed.

b. Open a command prompt and run the following command:

ulafreg -r

F For more information, see “UltraLite AppForge Registry utility (ulafreg)” [UltraLite -
Database Management and Reference].

c. If you have upgraded a MobileVB project remove the reference to UltraLiteAFLib from the Visual
Basic.NET Solution Explorer.

d. Add a reference to iAnywhere.UltraLiteForAppForge.dll

i. From the Microsoft Development Environment menu, choose Project ► Add Reference and
browse to the install-dir\ultralite\UltraLiteForAppForge\win32 subdirectory of your SQL
Anywhere installation.

ii. Select iAnywhere.UltraLiteForAppForge.dll and click Open.

iii. Click OK to add the reference.

2. Add the ULConnectionParms control to the AppForge toolbox.

a. In the Microsoft Development Environment, right click the AppForge toolbox and choose Add/
Remove Items. A dialog appears.

Preparing to use UltraLite for AppForge

Copyright © 2006, iAnywhere Solutions, Inc. 7

b. Click the COM Components tab.

c. Scroll down to the entry named ULConnectionParms Class. Check the box beside this component
and click OK.

d. The ULConnectionParms control is added to the toolbox.

Understanding UltraLite Development with AppForge

8 Copyright © 2006, iAnywhere Solutions, Inc.

Creating UltraLite databases
You can create an UltraLite database using UltraLite in Sybase Central or the ulcreate utility:

♦ UltraLite in Sybase Central Use the Create Database wizard to create an UltraLite database.

For more information, see “Creating an UltraLite database from Sybase Central” [UltraLite - Database
Management and Reference].

♦ The ulcreate utility You can use the ulcreate utility to create an empty UltraLite database.

For more information, see “UltraLite Create Database utility (ulcreate)” [UltraLite - Database
Management and Reference].

Applications can create an UltraLite database dynamically by using the UltraLite CreateDatabase function.
Since application deployment environments support deploying additional files with an application, most
applications can be simplified by distributing an initial database along with the executable code. UltraLite
databases are comprised of a single file.

Creating UltraLite databases

Copyright © 2006, iAnywhere Solutions, Inc. 9

Connecting to an UltraLite database
UltraLite applications must connect to a database before carrying out operations on the data in it. This section
describes how to connect to an UltraLite database.

Using the ULConnection object
The following properties of the ULConnection object govern global application behavior.

F For more information about the ULConnection object, see “ULConnection class” on page 81.

♦ Commit behavior By default, UltraLite applications are in AutoCommit mode. Each insert, update,
or delete statement is committed to the database immediately. Set ULConnection.AutoCommit to false
to build transactions into your application. Turning AutoCommit off and performing commits directly
can improve the performance of your application.

For more information, see “Commit method” on page 83.

♦ User authentication You can change the user ID and password for the application from the default
values of DBA and sql by using the GrantConnectTo and RevokeConnectFrom methods.

For more information, see “Authenticating users” on page 29.

♦ Synchronization A set of objects governing synchronization are accessed from the ULConnection
object.

For more information, see “Synchronizing data” on page 30.

♦ Tables UltraLite tables are accessed using the ULConnection.GetTable method.

For more information, see “GetTable method” on page 84.

Connecting to a database
You can connect to a database using either a ULConnectionParms object or a connection string. Use a
ULConnectionParms object to manipulate multiple connection parameters for different target device
platforms. Methods that use a connection string require you specify the different target platform strings in
one large string.

F For more information about connection parameters, see “UltraLite Connection String Parameters
Reference” [UltraLite - Database Management and Reference]

The following procedure illustrates connecting to an UltraLite database:

♦ Connect to UltraLite database

1. Create a ULDatabaseManager object:

You should create only one DatabaseManager object per application. This object is at the root of the
object hierarchy. For this reason, it is often best to declare the DatabaseManager object as global to the
application or as a class-level variable.

Understanding UltraLite Development with AppForge

10 Copyright © 2006, iAnywhere Solutions, Inc.

'MobileVB using VB6
Public DatabaseMgr As ULDatabaseManager
Set DatabaseMgr = New ULDatabaseManager
'Crossfire using vb.net
Public DatabaseMgr As New UltraLiteAFLib.ULDatabaseManager

2. Declare a ULConnection object:

Most applications use a single connection to an UltraLite database, and keep the connection open all
the time. For this reason, it is often best to declare the ULConnection object as global to the application.

'MobileVB using VB6
Public Connection As New ULConnection
'Crossfire using vb.net
Public Connection As UltraLiteAFLib.ULDatabaseManager

3. Create a ULConnectionParms object:

Double-click the ULConnectionParms object on the MobileVB tool palette. A ULConnectionParms
object appears on your form.

4. Set the required properties of the ULConnectionParms object:

In the ULConnectionParms properties window, specify properties such as the location of the database,
and a user name and password for your database.

Using the following properties, you must specify a database file for OpenConnection. For information
about additional properties, see “Properties” on page 89.

Keyword Description

DatabaseOnCE The path and file name of the UltraLite database on Windows CE.

DatabaseOnDesktop The path and file name of the UltraLite database on the desktop com-
puter.

5. Open a connection to the database:

OpenConnection returns an open connection as a ULConnection object. This method takes a single
ULConnectionParms object as its argument.

The following code attempts to connect to an existing database. If the database does not exist, the
OpenConnection method returns an error.

'MobileVB using VB6
On Error Resume Next
Set Connection = DatabaseMgr.OpenConnection(ULConnectionParms1.ToString
())
'Crossfire using vb.net
Try
 Connection = _
 DatabaseMgr.OpenConnection(ULConnectionParms1.ToString())
Catch
 If Err.Number = _
 UltraLiteAFLib.ULSQLCode.ulSQLE_ULTRALITE_DATABASE_NOT_FOUND _
 Then

Connecting to an UltraLite database

Copyright © 2006, iAnywhere Solutions, Inc. 11

 ...
End Try

// Crossfire using C#
using UltraLiteAFLib;
...
 public UltraLiteAFLib.ULConnection Connection;
 public UltraLiteAFLib.ULDatabaseManager DatabaseMgr;
 private UltraLiteAFLib._ULConnectionParms_ingotClass parms;
 // dropped onto design form
 parms.DatabaseOnCE = AppForge.System.AppPath + "\\mydb.udb";
 try {
 Connection = DatabaseMgr.OpenConnection
(parms.ToString);
 } catch (Exception ex) {
 Debug.WriteLn("Connect failed: " + ex.Message);
 }

Understanding UltraLite Development with AppForge

12 Copyright © 2006, iAnywhere Solutions, Inc.

Encryption and obfuscation
UltraLite databases can be created with one of the following choices for data security: obfuscation or
encryption. By default, UltraLite databases are created without any specific measures to obscure the data in
the database. Utilities that examine the file which contains an UltraLite database and can display raw disk
data could reveal character data stored in the database. The format of the actual database file is proprietary,
but the contents are able to be viewed.

Obfuscation and encryption are creation-time configuration options. Although the actual encryption key can
be changed, the choice to obfuscate or encrypt the data in the database cannot be changed without unloading
the database, creating a new database, and reloading the data.

Encryption
To create a database with encryption, you must specify the encryption key when the database is created.

To open a connection to an encrypted database, you use the ULConnectionParms.EncryptionKey property
to supply the encryption key string used when the database was created.

F For more information about the EncryptionKey property, see “DBKEY connection
parameter” [UltraLite - Database Management and Reference].

You can change the encryption key by specifying a new encryption key on the Connection object. An
application must first connect using the existing encryption key and then specify a new encryption key. In
the following example, "apricot" is the new encryption key:

Connection.ChangeEncryptionKey("apricot")

F For more information about changing the encryption key, see “ChangeEncryptionKey
method” on page 82.

After the database is encrypted, all connections to the database must specify the correct encryption key.
Otherwise, the connection fails. If the encryption key is not known, the data in the database cannot be
retrieved.

Obfuscation
To obfuscate the database, set the obfuscation option when you create the database. Obfuscation is a simple
masking of the contents of the database that is meant to prevent utility programs from revealing the raw
contents of the database file. Databases created with obfuscation operate transparently to the user and the
application program; there are no additional programming considerations.

F For more information about database encryption, see “obfuscate property” [UltraLite - Database
Management and Reference] and “Security considerations” [UltraLite - Database Management and
Reference].

Encryption and obfuscation

Copyright © 2006, iAnywhere Solutions, Inc. 13

Working with data using dynamic SQL
UltraLite applications can access table data using dynamic SQL or the Table API. This section describes
data access using dynamic SQL.

F For information about the Table API, see “Working with data using the table API” on page 20.

This section explains how to perform the following tasks using dynamic SQL.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Locating rows in a table.

♦ Inserting, deleting, and updating rows.

F This section does not describe the SQL language itself. For information about SQL features, see “SQL
Language Elements” [SQL Anywhere Server - SQL Reference].

F The sequence of operations required is similar for any SQL operation. For an overview, see “SQL
Statements” [SQL Anywhere Server - SQL Reference].

Data manipulation: INSERT, UPDATE, and DELETE

With UltraLite, you can perform SQL Data Manipulation Language operations. These operations are
performed using the ExecuteStatement method, a member of the ULPreparedStatement class.

F For more information the ULPreparedStatement class, see “ULPreparedStatement class” on page 104.

It is important for applications to free up resources after using prepared statements by calling the Close
method.

Using parameters in your prepared statements
Placeholders for parameters are identified using the ? character. For any INSERT, UPDATE, or DELETE,
each ? is referenced according to its ordinal position in the prepared statement. For example, the first ? is
referred to as parameter 1, and the second as parameter 2.

♦ To INSERT a row

1. Declare a ULPreparedStatement object.

'MobileVB using VB6
Dim PrepStmt As ULPreparedStatement
'Crossfire using vb.net
Dim PrepStmt As UltraLiteAFLib.ULPreparedStatement

Understanding UltraLite Development with AppForge

14 Copyright © 2006, iAnywhere Solutions, Inc.

// Crossfire using C#
 ULPreparedStatement PrepStmt = null;

2. Assign an INSERT statement to your prepared statement object. In the following code, TableName and
ColumnName are the names of a table and column.

'MobileVB using VB6
Set PrepStmt = Connection.PrepareStatement(_
 "INSERT INTO TableName(ColumnName) VALUES (?)")
'Crossfire using vb.net
PrepStmt = Connection.PrepareStatement(_
 "INSERT INTO TableName(ColumnName) VALUES(?)")
// CrossFire using C#
try {
 PrepStmt = Connection.PrepareStatement("INSERT INTO ...", null);
} catch (Exception){
}
if (PrepStmt == null) // failed

3. Assign parameter values for the statement.

PrepStmt.SetStringParameter (1, "Bob")
4. Execute the statement and free resources after the command is completed.

PrepStmt.ExecuteStatement
PrepStmt.Close()

♦ To UPDATE a row

1. Declare a ULPreparedStatement object.

Dim PrepStmt As ULPreparedStatement
2. Assign an UPDATE statement to your prepared statement object. In the following code, TableName

and ColumnName are the names of a table and column.

Set PrepStmt = Connection.PrepareStatement(_
 "UPDATE TableName SET ColumnName = ? WHERE ID = ?")

3. Assign parameter values for the statement.

PrepStmt.SetStringParameter (1, "newvalue")
PrepStmt.SetStringParameter (2, "oldvalue")

4. Execute the statement and free resources after the command is completed.

PrepStmt.ExecuteStatement
PrepStmt.Close()

♦ To DELETE a row

1. Declare a ULPreparedStatement object.

'MobileVB using VB6
Dim PrepStmt As ULPreparedStatement

Working with data using dynamic SQL

Copyright © 2006, iAnywhere Solutions, Inc. 15

'Crossfire using vb.net
Dim PrepStmt As UltraLiteAFLib.ULPreparedStatement

2. Assign a DELETE statement to your prepared statement object.

'MobileVB using VB6
Set PrepStmt = Connection.PrepareStatement(_
 "DELETE FROM customer WHERE ID = ?")

'Crossfire using vb.net
PrepStmt = Connection.PrepareStatement(_
 "DELETE FROM customer WHERE ID = ?")

3. Assign parameter values for the statement.

PrepStmt.SetStringParameter (1, "oldvalue")
4. Execute the statement and free resources after the command is completed.

PrepStmt.ExecuteStatement
PrepStmt.Close()

Data retrieval: SELECT

When you execute a SELECT statement, the ULPreparedStatement.ExecuteQuery method returns a
ULResultSet object.

The ULResultSet class contains methods for navigating within a result set. The values are then accessed
using methods of the ULResultSet class.

F For more information about ULResultSet objects, see “ULResultSet class” on page 111.

Example
In the following code, the results of a SELECT query are accessed through a ULResultSet. When first
assigned, the ULResultSet is positioned before the first row. The ULResultSet.MoveFirst method is then
called to navigate to the first record in the result set.

F For more information about navigating a result set, see “Navigation with dynamic SQL” on page 18.

'MobileVB using VB6
Dim MyResultSet As ULResultSet
Dim PrepStmt As ULPreparedStatement
PrepStmt = Connection.PrepareStatement(_
 "SELECT ID, Name FROM customer")
MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst

'Crossfire using vb.net
Dim MyResultSet As UltraLiteAFLib.ULResultSet
Dim PrepStmt As UltraLiteAFLib.ULPreparedStatement
PrepStmt = Connection.PrepareStatement(_
 "SELECT ID, Name FROM customer")
MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst

Understanding UltraLite Development with AppForge

16 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite for AppForge provides you with methods to get data of particular types from the UltraLite database
into a result set. MobileVB does not support the use of Variant data types and, because of this, UltraLite for
MobileVB includes functions to handle all types of data. Each of these methods is called using the following
template, where Index is the ordinal position of the column name in your SELECT statement:

MyResultSetName.MethodName(Index)

Example
The following code demonstrates how to use the GetString method to obtain the column values for the current
row.

The GetString method uses the following syntax, where Index is the ordinal position of the column name in
your SELECT statement.

MyResultSetName.GetString(Index)

The MoveRelative(0) method is called to refresh the contents of the current buffer from the result set, so
that the effects of any data modification are included.

If MyResultSet.RowCount = 0 Then
 lblID.Caption = ""
 txtName.Text = ""
Else
 lblID.Caption = MyResultSet.GetString(1)
 txtName.Text = MyResultSet.GetString(2)
 MyResultSet.MoveRelative(0)
End If

The following procedure uses a SELECT statement to retrieve information from the database. The results
of the query are assigned to a ULResultSet object.

♦ To perform a SELECT statement

1. Declare a ULPreparedStatement object.

'MobileVB using VB6
Dim PrepStmt As ULPreparedStatement
'Crossfire using vb.net
Dim PrepStmt As UltraLiteAFLib.ULPreparedStatement

2. Assign a prepared statement to your ULPreparedStatement object. In the following code, TableName
and ColumnName are the names of a table and column.

Set PrepStmt = Connection.PrepareStatement(_
 "SELECT ColumnName FROM TableName")

3. Execute the query.

In the code below, an AFListBox captures the result of the SELECT query.

Dim MyResultSet As ULResultSet
Set MyResultSet = PrepStmt.ExecuteQuery
While MyResultSet.MoveNext
 aflistbox.AddItem MyResultSet.GetString(1)
Wend

Working with data using dynamic SQL

Copyright © 2006, iAnywhere Solutions, Inc. 17

4. After processing the query, free resources by closing the result set.

MyResultSet.Close()

Navigation with dynamic SQL
UltraLite for MobileVB provides you with a number of methods to navigate a result set to perform a wide
range of navigation tasks.

The following methods of the ULResultSet object allow you to navigate your result set:

♦ MoveAfterLast moves to a position after the last row.

♦ MoveBeforeFirst moves to a position before the first row.

♦ MoveFirst moves to the first row.

♦ MoveLast moves to the last row.

♦ MoveNext moves to the next row.

♦ MovePrevious moves to the previous row.

♦ MoveRelative moves a certain number of rows relative to the current row. Positive index values move
forward in the result set, negative index values move backward in the result set, and zero does not move
the cursor. Zero is useful if you want to repopulate a row buffer.

Example
The following code demonstrates how to use the MoveFirst method to navigate within a result set.

'MobileVB using VB6
Set PrepStmt = Connection.PrepareStatement(_
 "SELECT ID, Name FROM customer")
Set MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst
'Crossfire using vb.net
PrepStmt = Connection.PrepareStatement(_
 "SELECT ID, Name FROM customer")
MyResultSet = PrepStmt.ExecuteQuery
MyResultSet.MoveFirst

The same technique is used for all of the Move methods.

F For more information about these navigational methods, see “ULResultSet class” on page 111.

ULResultSet schema property
The ULResultSet.Schema property allows you to retrieve information about the columns in the query. The
properties of this ULResultSet.Schema object include ColumnName, ColumnCount, ColumnPrecision,
ColumnScale, ColumnSize, and ColumnSQLType.

Understanding UltraLite Development with AppForge

18 Copyright © 2006, iAnywhere Solutions, Inc.

Example
The following example shows how you can use ULResultSet.Schema to display schema information in a
MobileVB grid. The example assumes you have a ULResultSet named MyResultSet and a MobileVB grid
named grdSchema.

'MobileVB using VB6
Dim i As Integer
For i = 1 To MyResultSet.Schema.ColumnCount
 grdSchema.AddItem (MyResultSet.Schema.ColumnName(i) _
 & Chr(9) & CStr(MyResultSet.Schema.ColumnSQLType(i))), 0
Next i
grdSchema.AddItem _
 ("Column Name" & Chr(9) & "Column Type"), 0

Working with data using dynamic SQL

Copyright © 2006, iAnywhere Solutions, Inc. 19

Working with data using the table API
UltraLite applications can access table data using dynamic SQL or the Table API. This section describes
data access using the Table API.

F For information about dynamic SQL, see “Working with data using dynamic SQL” on page 14.

This section explains how to perform the following tasks using the Table API.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

Navigation with the Table API

UltraLite for MobileVB provides you with a number of methods to navigate a table to perform a wide range
of navigation tasks.

The following methods of the ULTable object allow you to navigate your result set:

♦ MoveAfterLast moves to a position after the last row.

♦ MoveBeforeFirst moves to a position before the first row.

♦ MoveFirst moves to the first row.

♦ MoveLast moves to the last row.

♦ MoveNext moves to the next row.

♦ MovePrevious moves to the previous row.

♦ MoveRelative moves a certain number of rows relative to the current row. Positive index values move
forward in the table, negative index values move backward in the table, and zero does not move the cursor.
Zero is useful if you want to repopulate a row buffer.

Example
The following code opens the customer table and scrolls through its rows. It then displays a message box
with the last name of each customer.

'MobileVB using VB6
Dim TCustomer as ULTable
Set TCustomer = Conn.GetTable("customer")
TCustomer.Open
While TCustomer.MoveNext
 MsgBox TCustomer.Column("lname").StringValue
Wend

Understanding UltraLite Development with AppForge

20 Copyright © 2006, iAnywhere Solutions, Inc.

'Crossfire using vb.net
Dim TCustomer as UltraLiteAFLib.ULTable
Set TCustomer = Conn.GetTable("Customer")
TCustomer.Open
While TCustomer.MoveNext
 MsgBox TCustomer.Column("LName").StringValue
Wend

Specifying an index
You expose the rows of the table to the application when you open the table object. By default, the rows are
exposed in order by primary key value, but you can specify an index to access the rows in a particular order.

Example
The following code moves to the first row of the customer table as ordered by the ix_name index.

'MobileVB using VB6
Set TCustomer = Conn.GetTable("customer")
TCustomer.Open "ix_name"
TCustomer.MoveFirst
'Crossfire using vb.net
TCustomer = Conn.GetTable("customer")
TCustomer.Open "ix_name"
TCustomer.MoveFirst

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following places.

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use the Column method together with an appropriate
property to get the value of that column for the current row.

Example
The following code retrieves the value of three columns from the tCustomer ULTable object, and displays
them in text boxes.

Dim colID, colFirstName, colLastName As ULColumn
Set colID = tCustomer.Column("ID")
Set colFirstName = tCustomer.Column("fname")
Set colLastName = tCustomer.Column("lname")
txtID.Text = colID.IntegerValue
txtFirstName.Text = colFirstName.StringValue
txtLastName.Text = colLastName.StringValue

You can also use the properties of ULColumn to set values.

colLastName.StringValue = "Kaminski"

By assigning values to these properties you do not alter the value of the data in the database.

Working with data using the table API

Copyright © 2006, iAnywhere Solutions, Inc. 21

You can assign values to the properties even if you are before the first row or after the last row of the table.
You cannot, however, get values from the column. For example, the following code generates an error.

' This code is incorrect
TCustomer.MoveBeforeFirst
id = TCustomer.Column("ID").IntegerValue

To work with binary data, use the GetByteChunk method instead of a property.

F For more information, see “GetByteChunk method” on page 76.

Casting values
The ULColumn property you choose must match the Visual Basic data type you want to assign. UltraLite
automatically casts incompatible data types, so that you could use the StringValue method to fetch an integer
value into a string variable, and so on. For more information, see “Converting data types” [UltraLite -
Database Management and Reference].

F For more information about accessing values of the current row, see “ULColumn class” on page 74.

Searching rows with find and lookup

UltraLite has several modes of operation for working with data. Two of these modes, the find and lookup
modes, are used for searching. The ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Note
The columns searched using Find and Lookup methods must be in the index used to open the table.

♦ Find methods move to the first row that exactly matches a specified search value, under the sort order
specified when the ULTable object was opened.

For more information about find methods, see “FindBegin method” on page 152.

♦ Lookup methods move to the first row that matches or is greater than a specified search value, under
the sort order specified when the ULTable object was opened.

For more information about lookup methods, see “LookupBackward method” on page 156.

♦ To search for a row

1. Enter find or lookup mode.

Call the FindBegin or LookupBegin method. For example, the following code calls
ULTable.FindBegin.

tCustomer.FindBegin
2. Set the search values.

Understanding UltraLite Development with AppForge

22 Copyright © 2006, iAnywhere Solutions, Inc.

You do this by setting values in the current row. Setting these values affects the buffer, not the database.
For example, the following code sets the last name column in the buffer to Kaminski.

tCustomer.Column("lname").StringValue = "Kaminski"

For multi-column indexes, a value for the first column is required, but you can omit the other columns.

3. Search for the row.

Use the appropriate method to carry out the search. For example, the following instruction looks for
the first row that exactly matches the specified value in the current index.

tCustomer.FindFirst

Inserting, updating, and deleting rows

UltraLite exposes the rows in a table to your application one at a time. The ULTable object has a current
position, which may be on a row, before the first row, or after the last row of the table.

When your application changes location, UltraLite makes a copy of the row in a buffer. Any operations to
get or set values affect only the copy of data in this buffer. They do not affect the data in the database.

Example
The following statement changes the value of the ID column in the buffer to 3.

colID.IntegerValue = 3

Using UltraLite modes
The UltraLite mode determines the purpose for which the values in the buffer are used. UltraLite has the
following four modes of operation, in addition to a default mode.

♦ Insert mode The data in the buffer is added to the table as a new row when the ULTable.Insert method
is called.

♦ Update mode The data in the buffer replaces the current row when the ULTable.Update method is
called.

♦ Find mode Used to locate a row whose value exactly matches the data in the buffer when one of the
ULTable.Find methods is called.

♦ Lookup mode Used to locate a row whose value matches or is greater than the data in the buffer when
one of the ULTable.Lookup methods is called.

♦ To update a row

1. Move to the row you want to update.

You can move to a row by scrolling through the table or by searching using Find and Lookup methods.

2. Enter Update mode.

For example, the following instruction enters Update mode on the table tCustomer.

Working with data using the table API

Copyright © 2006, iAnywhere Solutions, Inc. 23

tCustomer.UpdateBegin
3. Set the new values for the row to be updated.

For example, the following instruction sets the new value to Elizabeth.

ColFirstName.StringValue = "Elizabeth"
4. Execute the Update.

tCustomer.Update

After the update operation, the current row is the row that was just updated. If you changed the value of a
column in the index specified when the ULTable object was opened, the current position is undefined.

By default, UltraLite operates in AutoCommit mode, so that the update is immediately applied to the row
in permanent storage. If you have disabled AutoCommit mode, the update is not applied until you execute
a commit operation. For more information, see “Transaction processing in UltraLite” on page 26.

Caution
Do not update the primary key of a row: delete the row and add a new row instead.

Inserting rows
The steps to insert a row are similar to those for updating rows, except that there is no need to locate any
particular row in the table before carrying out the insert operation. Rows are automatically inserted according
to the index specified when opening the table.

♦ To insert a row

1. Enter Insert mode.

For example, the following instruction enters Insert mode on the table CustomerTable.

CustomerTable.InsertBegin
2. Set the values for the new row.

If you do not set a value for a column, and that column has a default value defined, the default value is
used. If the column has no default, NULL is used. If the column does not allow NULL, the following
defaults are used:

♦ For numeric columns, zero.

♦ For character columns, an empty string.

To set a value to NULL explicitly, use the setNull method.

CustomerTable.Column("FName").StringValue = fname
CustomerTable.Column("LName").StringValue = lname

3. Execute the insertion.

The inserted row is permanently saved to the database when a Commit is carried out. In AutoCommit
mode, a Commit is carried out as part of the Insert method.

Understanding UltraLite Development with AppForge

24 Copyright © 2006, iAnywhere Solutions, Inc.

CustomerTable.Insert

Deleting rows
There is no delete mode corresponding to the insert or update modes.

The following procedure deletes a row.

♦ To delete a row

1. Move to the row you want to delete.

2. Execute the deletion.

tCustomer.Delete

Working with BLOB data

You can fetch BLOB data for columns declared BINARY or LONG BINARY using the GetByteChunk
method.

F For more information, see “GetByteChunk method” on page 76.

Example
The following code demonstrates how to use the ULColumn.GetByteChunk method to get BLOB data.

'MobileVB using VB6
Dim table as ULTable
Dim col As ULColumn
Dim data(1 to 1024) As Byte
Dim data_fit As Boolean
Dim size As Long
Set table = Conn.GetTable("image")
table.Open
size = 1024
Set col = table.Column("img_data")
data_fit = col.GetByteChunk(VarPtr(data(1)), size)
If data_fit Then
 'No truncation
Else
 'data truncated at 1024
End if
table.Close
'Crossfire using vb.net
Dim table as ULTable
Dim col As ULColumn
Dim data(1 to 1024) As Byte
Dim data_fit As Boolean
Dim size As Long
Set table = Conn.GetTable("image")
table.Open
size = 1024
Set col = table.Column("img_data")
' The data argument must be a local variable
data_fit = col.GetByteChunk(data, size)
If data_fit Then
 'No truncation

Working with data using the table API

Copyright © 2006, iAnywhere Solutions, Inc. 25

Else
 'data truncated at 1024
End if
table.Close

Transaction processing in UltraLite

UltraLite provides transaction processing to ensure the integrity of the data in your database. A transaction
is a logical unit of work. Either the entire transaction is executed, or none of the statements in the transaction
are executed.

By default, UltraLite operates in AutoCommit mode. In AutoCommit mode, each insert, update, or delete
is executed as a separate transaction. Once the operation is completed, the change is made to the database.

If you set the ULConnection.AutoCommit property to false, you can use multi-statement transactions. For
example, if your application transfers money between two accounts, the deduction from the source account
and the addition to the destination account constitute a single transaction. If AutoCommit is false, you must
execute a ULConnection.Commit statement to complete a transaction and make changes to your database
permanent, or you may execute a ULConnection. Rollback statement to cancel all the operations of a
transaction. Turning off AutoCommit improves performance.

Note
Synchronization causes a Commit even if you have AutoCommit set to False.

Understanding UltraLite Development with AppForge

26 Copyright © 2006, iAnywhere Solutions, Inc.

Accessing schema information
Each ULConnection, ULTable, and ULColumn object contains a schema property. These schema objects
provide information about the tables, columns, indexes, and publications in a database.

Note
You cannot modify the schema through the API. You can only retrieve information about the schema.

♦ ULDatabaseSchema The number and names of the tables in the database, as well as global properties
such as the format of dates and times.

To obtain a ULDatabaseSchema object, access the ULConnection.Schema property.

♦ ULTableSchema The number and names of columns in the table, as well as the Indexes collections
for the table.

To obtain a ULTableSchema object, access the ULTable.Schema property.

♦ ULColumnSchema Information about an individual column, including its default value, name, and
whether it is autoincrement.

To obtain a ULColumnSchema object, access the ULColumn.Schema property.

♦ ULIndexSchema Information about the column, or columns, in the index. As an index has no data
directly associated with it, there is no separate ULIndex object, only a ULIndexSchema object.

The ULIndexSchema objects are accessed using the ULTableSchema.GetIndex method.

♦ ULPublicationSchema The numbers and names of tables and columns contained in a publication.
Publications are also comprised of schema only, so there is a ULPublicationSchema object but no
ULPublication object.

The ULPublicationSchema objects are accessible using the ULDatabaseSchema.GetPublicationSchema
method.

♦ ULResultSetSchema The number and names of the columns in a result set.

The ULResultSetSchema objects are accessible using the ULPreparedStatement.ResultSetSchema
property.

Accessing schema information

Copyright © 2006, iAnywhere Solutions, Inc. 27

Handling errors
In normal operation, UltraLite for AppForge can throw errors. Errors are expressed as SQLCODE values,
negative numbers indicating the particular kind of error.

F For a list of error codes thrown by UltraLite for AppForge, see “ULSQLCode
enumeration” on page 125.

You can use the standard MobileVB or Crossfire error-handling features to handle errors. When an UltraLite
object is the source of an error, the Err object is assigned a ULSQLCode number. ULSQLCodes are negative
numbers indicating the particular kind of error. The ULSQLCode enumeration provides a set of descriptive
constants associated with these values.

F For more information, see “ULSQLCode enumeration” on page 125.

To make use of type completion in the MobileVB environment, you may want to create an error handling
function such as the following:

'MobileVB using VB6
Public Function GetError() As ULSQLCode
 GetError = Err.Number
End Function

You can then easily access UltraLite errors using the GetError function.

Understanding UltraLite Development with AppForge

28 Copyright © 2006, iAnywhere Solutions, Inc.

Authenticating users
An UltraLite database may define up to four user IDs and associated passwords. UltraLite databases are
created with an initial user ID of DBA with password sql; you must first connect as this initial user. While
connected to the database, an application may grant connection authority to a new user ID, change the
password for an existing user ID or revoke connection authority from an existing user ID.

Note that a user ID cannot be changed directly; however, you can add a new user ID and then delete the
existing user ID.

UltraLite does not associate any specific rights with a user ID. All user IDs that are defined for the database
can be used to connect to that UltraLite database. Code within an application can enforce different capabilities
based on the user information supplied to the application.

F For more information about granting or revoking connection authority, see “GrantConnectTo
method” on page 84 and “RevokeConnectFrom method” on page 86.

♦ To add a user or change the password for an existing user

1. Connect to the database as an existing user.

2. Grant connection authority to a specific user with the desired password:

conn.GrantConnectTo("Robert", "newPassword")

♦ To delete an existing user

1. Connect to the database as an existing user.

2. Revoke a specified user's connection authority as follows:

conn.RevokeConnectFrom("Robert")

Authenticating users

Copyright © 2006, iAnywhere Solutions, Inc. 29

Synchronizing data
You can synchronize UltraLite applications with a central database. Synchronization requires the MobiLink
synchronization server and appropriate licensing.

This section provides a brief introduction to synchronization and describes some features of particular interest
to users of UltraLite for AppForge. For a detailed explanation of synchronization, see “UltraLite
Clients” [MobiLink - Client Administration].

You can also find a working example of synchronization in the CustDB sample application. This sample is
described in “Tutorial: A Sample Application for AppForge MobileVB” on page 57

The UltraLite AppForge component does not support ECC or FIPS synchronization encryption for the Palm
OS. For the Symbian OS, no synchronization encryption is available.

UltraLite for AppForge supports TCP/IP, HTTP, and HTTPS synchronization. Synchronization is initiated
by the UltraLite application. In all cases, you use methods and properties of the ULConnection object to
control synchronization.

Separately licensed component required
ECC encryption and FIPS-approved encryption require a separate license. All strong encryption technologies
are subject to export regulations.
See “Separately licensed components” [SQL Anywhere 10 - Introduction].

♦ To synchronize over TCP/IP or HTTP

1. Prepare the synchronization information.

Assign values to the required properties of the ULConnection.SyncParms object.

F For information about the properties and the values that you should set, see “UltraLite
Clients” [MobiLink - Client Administration].

2. Synchronize.

Call the ULConnection.Synchronize method.

Adding the synchronization template

UltraLite for MobileVB includes a template form that can be used to monitor the status of a synchronization
session. A version of this form is included for both Palm OS and Pocket PC. You can use these templates
in your application, you can customize them, or you can simply examine them to learn how UltraLite
synchronization events work.

Understanding UltraLite Development with AppForge

30 Copyright © 2006, iAnywhere Solutions, Inc.

The way to add this template to your application depends on whether you are using MobileVB or Crossfire.

♦ To add a synchronization template to your application (MobileVB)

1. From the project menu, choose Add Form.

2. Select either UltraLite for MobileVB Sync Form (Windows CE) or UltraLite for MobileVB Sync Form
(Palm).

3. Click Open. A copy of the form is added to your application.

♦ To add a synchronization template to your application (Crossfire)

1. From the project menu, choose Add New Item.

2. From Local Project Items ► Ultralite_Crossfire Forms, select UltraLite Crossfire 10 Sync Form for
CE, Palm or PalmHires depending on your application.

3. Click Open. A copy of the form is added to your application.

Writing code to use the synchronization form

Call the InitSyncForm function, passing it your ULConnection object. This must be done before each
synchronization.

Example
The following code uses a synchronization status form named Form_Sync and a ULConnection object named
Connection.

Synchronizing data

Copyright © 2006, iAnywhere Solutions, Inc. 31

Form_Sync.InitSyncForm Connection
Connection.Synchronize

Each time your application synchronizes, the synchronization status form appears. As synchronization
progresses, your end user can observe the progress bar and byte count. When synchronization completes,
the form closes. The Cancel button instructs UltraLite to cancel the current synchronization.

F For more details, see “Tutorial: A Sample Application for AppForge MobileVB” on page 57.

Understanding UltraLite Development with AppForge

32 Copyright © 2006, iAnywhere Solutions, Inc.

Deploying UltraLite applications
When you have completed your application or when you want to test your application, you need to deploy
it to a device. This section outlines the steps needed to deploy an UltraLite application to a device.

Deploying UltraLite for MobileVB applications to Windows CE

You must carry out the following steps to deploy an UltraLite application to Windows CE:

1. Deploy your application and UltraLite component.

a. Configure the application settings.

♦ From the MobileVB menu, choose MobileVB Settings. A dialog appears.

♦ In the left pane, choose Dependencies and click the User Dependencies tab.

♦ Click the Add button and select the c:\tutorial\mvb\tutCustomer.udb. This indicates to
MobileVB that the file should be included in the deployment.

♦ Choose the PocketPC Settings item in the left pane

♦ Enter \tutorial\mvb for the Device Installation Path.

♦ Click OK to close the dialog.

b. From the MobileVB menu, choose Deploy to Device, and choose the PocketPC device. If a dialog
appears asking if you want to save the project, click Yes.

2. Deploy an initial copy of the UltraLite database.

You can then use synchronization to load an initial copy of the data. You can deploy the .prc file in the
standard manner from the Install Tool included with your Palm Desktop Organizer Software.

You must place the database file so that it can be located by the application. The DatabaseOnCE
connection parameters define the location.

F See “CE_FILE connection parameter” [UltraLite - Database Management and Reference].

3. Deploy the MobiLink provider for ActiveSync.

This step is required only if the application is synchronizing using ActiveSync.

F For instructions, see “Deploying ActiveSync and HotSync for UltraLite clients” [MobiLink - Client
Administration]

Deploying UltraLite for MobileVB applications to Palm OS

You must carry out the following steps to deploy an UltraLite application to a Palm OS device:

Deploying UltraLite applications

Copyright © 2006, iAnywhere Solutions, Inc. 33

♦ Deploy your application and UltraLite component.

1. Configure the application settings.

♦ From the MobileVB menu, choose MobileVB Settings. A dialog appears.

♦ In the left pane, choose Dependencies and click the User Dependencies tab.

♦ Click the Add button and select the c:\tutorial\mvb\tutCustomer.pdb. This indicates to
MobileVB that the file should be included in the deployment.

♦ Choose the Palm OS Settings item in the left pane and enter the creator ID of your application.
Choose a valid HotSync name. Click OK to close the dialog.

2. From the MobileVB menu, choose Deploy to Device, and choose the Palm OS device. If a dialog
appears asking if you want to save the project, click Yes.

♦ Deploy an initial UltraLite database.

In many situations it is sufficient to deploy an UltraLite database file. You can then use synchronization
to load data.

You can create .pdb files for deployment to Palm OS using UltraLite utilities sych as ulcreate, ulload,
and ulinit.

You must supply a database using the correct creator ID, so that it can be located by your application.
The DatabaseOnPalm connection parameter uses the creator ID to find the database.

See “PALM_FILE connection parameter” [UltraLite - Database Management and Reference].

♦ Deploy the MobiLink synchronization conduit for HotSync.

This step is required only if the application is synchronizing using HotSync.

Understanding UltraLite Development with AppForge

34 Copyright © 2006, iAnywhere Solutions, Inc.

Maintaining state in UltraLite Palm applications
Palm OS devices run only one application at a time. However, when a user switches from your application
to another application, and then returns to your application, it is common to make applications appear as
they were simply suspended while the user was working with other applications. To maintain this illusion,
the application must save its internal state when the user switches to another application. When the
application is launched again, it must restore its internal state.

Saving and restoring state in a database application can be challenging, as the application must re-open result
sets and re-position the application within those result sets. UltraLite provides a way for you to save and
restore application state.

The state of cursors on result sets is maintained automatically. MobileVB applications that use the table-
based API provide a value for the persistent name parameter in the Open method of the ULTable object.

Understanding how state is maintained

For each table whose state is being preserved, UltraLite stores a name for the table as well as enough
information to restore the state of the table. The name associated with the table may be, but is not required
to be, the name of the table. It is called the persistent name.

UltraLite applications can open more than one instance of the same table at the same time. In this case, the
table name is not unique. For example, the following code (using MobileVB) opens the same table twice:

' MobileVB
Set table1 = Connection.GetTable("ULCustomer")
table1.Open "", "customer1"
' operations here
Set table2 = Connection.GetTable("ULCustomer")
table2.Open "", "customer2"

When opening a table, an application can optionally provide a persistent name as a parameter. If the state
of the persistent name has been saved, the table is opened and positioned to the proper row. If not, the table
is opened and positioned before the first row.

When an application terminates, it may or may not explicitly close open tables and close the connection. If
it does not close an open table, then UltraLite records the current row of each open table that was supplied
with a persistent name. Tables without a persistent name are closed.

Suppose the Connection object is of type ULConnection and a table called ULCustomer exists in the
database.

'MobileVB using VB6
Dim table As ULTable
Set table = Connection.GetTable("ULCustomer")
table.Open "", "customer"

The second line of code gets the table object representing the ULCustomer table. The table has not been
opened for reading or writing yet.

In the Open call (the third line of code), the first parameter is the empty string, which indicates that the data
is ordered by the primary key. The second parameter is the persistent name being assigned to the table. If

Maintaining state in UltraLite Palm applications

Copyright © 2006, iAnywhere Solutions, Inc. 35

the application terminates while this table is still open, the state PDB associates customer with the
ULCustomer table and save the current position.

Persistent name notes
♦ If the persistent name is empty, UltraLite does not store state information for this table, or attempt to

look it up when opening the table.

If you do not need to store the state of your tables, supply an empty persistent name. The state is then
not looked up in the state database.

♦ HotSync synchronization does not affect the state of your open tables. When a user presses the HotSync
button on a device, the operating system closes the application in the same way it closes the application
when any other application is started. Consequently, the state of the open tables is recorded in the state
PDB and when the user returns to the application and the tables are re-opened, the user is positioned on
the expected row. If that row has been deleted as part of the synchronization, the user is positioned on
the next row (or after the last row if it was the last row).

♦ Applications with auto-commit turned off could terminate with uncommitted transactions. UltraLite
maintains these transactions so that when the application restarts, they are not lost.

♦ If UltraLite finds a table in the state PDB that matches the persistent name you have provided, it checks
that the table and index are the same as the table and index used when the position information was
recorded. If they are not, then the call to Open fails.

♦ The use of the persistent name is unique to the Palm OS. If you create UltraLite for MobileVB
applications for Windows CE, they do not use the persistent name. Applications on Windows CE run
more like they do on a desktop computer.

Example: Using the persistent name to maintain state information

The PersistentName example program is a relatively simple program that shows how to use maintained state
information. It is available at http://www.sybase.com/detail?id=1022734. Here are some highlights from the
sample:

'MobileVB using VB6
CustomerTable.Open
AddRow "John", "Doe", "Atlanta"
AddRow "Mary", "Smith", "Toronto"
AddRow "Jane", "Anderson", "New York"
AddRow "Margaret", "Billington", "Vancouver"
AddRow "Fred", "Jones", "London"
AddRow "Jack", "Frost", "Dublin"
AddRow "David", "Reiser", "Berlin"
AddRow "Kathy", "Stevens", "Waterloo"
AddRow "Rebecca", "Gable", "Paris"
AddRow "George", "Jenkins", "Madrid"
CustomerTable.Close

This code adds ten rows to the ULCustomer table. It calls Open on the table, but in this case a persistent
name is not supplied because there is no need to maintain the position in the table. Since the code only inserts
data, the position in the table is not relevant.

Understanding UltraLite Development with AppForge

36 Copyright © 2006, iAnywhere Solutions, Inc.

http://www.sybase.com/detail?id=1022734

The following line opens the ULCustomer table, ordering rows by the primary key and assigning a persistent
name of customer.

CustomerTable.Open "" , "customer"

If the application has been run before, then a lookup is done in the state database for customer. Otherwise,
customer is associated with this table.

The customer table is left open for the duration of the running application. If the user switches to another
application, UltraLite records the position in the table where the user left off. When the application is started
again, the table is opened and UltraLite determines that position information is known for a table with the
persistent name customer, so it positions the user back on that row.

When the user clicks the End button, the customer table and the connection are closed before the application
disappears. This has the effect of discarding any state information for the customer table, so that when the
application is restarted, the user is positioned on the first row.

Maintaining state in UltraLite Palm applications

Copyright © 2006, iAnywhere Solutions, Inc. 37

Notes on AppForge for Symbian OS
This section provides some notes about UltraLite development on the Symbian OS using AppForge.

Supported platforms and devices
UltraLite for AppForge supports all Symbian OS 7 and Symbian OS 8 devices supported by AppForge
Crossfire. These include UIQ devices such as the Sony Ericsson P800 and P900 series, Nokia S60 devices
such as the Nokia N-90, and Nokia S-80 devices such as the Nokia 9300 Communicator.

The devices supported depend on the version of AppForge Crossfire that you are using. For example, in
order to support the Nokia 9300 Communicator you must have at least Crossfire 5.6.1.

Sample Aapplication
The Crossfire CustDB application includes projects for both the Nokia 9300 Communicator and for Sony
Ericsson P800/P900 devices. You can find the application in samples-dir\UltraLiteForAppForge
\CF_CustDB\.

♦ To use the CustDB sample application

1. From a command prompt, run the makedbs.bat file to create the UltraLite database.

2. Open the solution file in Visual Studio .NET 2003.

3. To synchronize, start the MobiLink synchronization server by choosing Programs ► SQL Anywhere
10 ► MobiLink ► MobiLink Server Sample.

Symbian-specific notes for AppForge developers

Symbian OS uses a Windows-like nomenclature for its file system. You can use the dbf connection parameter
to specify the location of an UltraLite database.

As with other AppForge projects, you must add a reference to iAnywhere.UltraLiteForAppForge in your
project.

♦ To configure a project for your target device:

1. Select the project to configure.

2. Choose AppForge ► Crossfire Settings

3. Choose Dependencies in the list, and add the UltraLite database file to the User Dependencies list.

4. Select the appropriate device type from the list and use the settings dialog to specify an application UID
and other application properties.

For cross-platform development, you can use the AppForge.Platforms.DeviceType enumeration to identify
the platform on which the application is running. The Symbian OS members of the enumeration are as
follows:

Understanding UltraLite Development with AppForge

38 Copyright © 2006, iAnywhere Solutions, Inc.

Constantt Target

SymbianOSCrystal Nokia 9300/9500

SymbianOSPearl Nokia S60

SymbianOSQuartz Sony Ericsson P800/P900/P910 or Motorola A1000

Here is a simple example of platform-independent connection code in Visual Basic .Net:

 deviceType = sysInfo.DeviceType
 path = AppForge.MobileVB.Compatibility.Device.AppPath
 If deviceType = AppForge.Platforms.DeviceType.SymbianOSCrystal Or _
 deviceType = AppForge.Platforms.DeviceType.SymbianOSPearl Or _
 deviceType = AppForge.Platforms.DeviceType.SymbianOSQuartz Then
 connString = "dbf=" & path & "\ul_custdb.udb;"
 Else
 connString = "dbf=" & path & "\..\ul_custdb.udb;"
 End If
 connString += "con=custdbConn"
 Try
 Connection = DBManager.OpenConnection(connString)
 Catch ex As Exception
 MsgBox("Error when connecting to database: " & ex.Message)
 End
 End Try

Deploying AppForge projects to devices

To deploy an AppForge project to a Symbian OS device, you must first connect your device to your computer
using a cable or a Bluetooth connection. The required connectivity software, drivers, and instructions should
be provided with your device.

Applications are deployed to Symbian OS devices as an .sis file. If your device is properly connected to your
development computer, you can deploy an AppForge project to a Symbian OS device by choosing AppForge
> Deploy Application To Device and selecting the device type from the list.

An alternative deployment method is to create the SIS file on your development computer and then to deploy
that in a separate operation. You can do this by choosing AppForge > Build Installation File.

Synchronizing applications

When synchronizing applications using TCP/IP or HTTP-based protocols, it is recommended that you
specify the host address using an IP address, rather than a host name in the network protocol options that
you set in the SyncStream.StreamParms property.

Notes on AppForge for Symbian OS

Copyright © 2006, iAnywhere Solutions, Inc. 39

CHAPTER 3

Tutorial: A Sample Application for AppForge
Crossfire

Contents
Introduction .. 42
Lesson 1: Create a project architecture .. 43
Lesson 2: Create the application interface ... 45
Lesson 3: Write the sample code ... 47
Lesson 4: Deploy to a device ... 54
Summary .. 55

About this chapter
This tutorial guides you through the process of using AppForge Crossfire to build an UltraLite application
for either a PocketPC or a Palm OS device.

Copyright © 2006, iAnywhere Solutions, Inc. 41

Introduction
This tutorial describes how to use AppForge Crossfire to build an UltraLite application. At the end of the
tutorial you will have an application and small database on your Windows CE device that synchronizes with
a central consolidated database.

F For more information about the table API, see the “UltraLite for AppForge API
Reference” on page 71.

Timing
The tutorial takes about 30 minutes if you copy and paste the code. If you enter the code yourself, it takes
significantly longer. If you chose to copy and paste the code from this help information, the special characters
less-than, greater-than and ampersand may be pasted incorrectly in the code window and have to be manually
corrected.

Prerequisites
This tutorial assumes that you have AppForge Crossfire installed on your computer. It also assumes a basic
familiarity with Crossfire development.

The tutorial also assumes that you know how to create an UltraLite database using the command line utility
ulcreate, or using UltraLite in Sybase Central. For more information, see “Creating an UltraLite database
from Sybase Central” [UltraLite - Database Management and Reference].

Note
Crossfire users can perform most of this tutorial without SQL Anywhere. The synchronization sections of
the tutorial require SQL Anywhere.

Tutorial: A Sample Application for AppForge Crossfire

42 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 1: Create a project architecture
The first procedure describes how to create an UltraLite database.

♦ To create an UltraLite database

1. Create a directory for this tutorial.

This tutorial assumes the directory is c:\Tutorial\crossfire. If you create a directory with a different
name, use that directory throughout the tutorial.

2. Create a database using UltraLite in Sybase Central.

F For more information about creating a database, see the “Creating an UltraLite database from
Sybase Central” [UltraLite - Database Management and Reference].

♦ Table name Customer

♦ Columns in Customer

Column
name

Datatype (size) Column allows NULL
values?

Default value

ID integer No autoincrement

FName varchar(15) No None

LName varchar(20) No None

City varchar(20) Yes None

Phone varchar(12) Yes 555-1234

In an application with synchronization, it is usual to choose a global autoincrement or UUID data
type for primary keys. An autoincrement method is chosen here to simplify the tutorial.

♦ Primary key Ascending ID

3. Save the database.

If you are developing an application for Windows or Windows CE, choose File ► Save and choose
tutcustomer.udb in your tutorial directory as the file name.

Create a Crossfire project
The following procedure creates an AppForge Crossfire project for your application and adds a reference to
the UltraLite control.

AppForge tools appear in addition to the standard Visual Basic tools on the toolbar to the left of the
development environment.

Lesson 1: Create a project architecture

Copyright © 2006, iAnywhere Solutions, Inc. 43

♦ To create a Crossfire project for UltraLite

1. Start Crossfire.

a. Choose Start ► Programs ► AppForge ► Crossfire. The Crossfire Project Manager dialog
appears.

b. Choose New Project. The Microsoft Development Environment New Project dialog appears.

c. In the Project Types window click to expand the Visual Basic Projects folder.

d. In the Templates window, click Crossfire Application.

e. Leave the project name as CrossfireApp1, and enter your tutorial directory (c:\tutorial\crossfire)
as the location.

Click OK.

f. Choose your deployment platform and click Finish to create the project.

You should now see a Crossfire form in the Microsoft Visual Basic .NET Development Environment.

2. If the Toolbox is not displayed, choose View ► Toolbox to open it. Open the AppForge tab.

3. Scroll down the list of AppForge controls to and double-click ULConnectionParms to add the database
connection object to the form.

Troubleshooting
If your Crossfire project does not include a reference to iAnywhere.UltraLiteForAppForge.dll, and if the
ULConnectionParms class does not appear in the list of AppForge controls, you need to register UltraLite
with Crossfire. This may occur if, for example, you install Crossfire after installing SQL Anywhere.

F For instructions on adding UltraLite to Crossfire, see “Adding UltraLite to the Crossfire design
environment” on page 7.

What's next
You now have an UltraLite database and a Crossfire project with an UltraLite control on a form. The next
step is to create the application interface.

Tutorial: A Sample Application for AppForge Crossfire

44 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 2: Create the application interface
The following procedure uses the form to create a user interface. This example uses labels as outputs, and
text boxes and buttons as inputs, similar to a real application.

♦ To add controls to your project

1. From the AppForge controls, add the following controls to your form:

Type Name Caption or text

TextBox txtFName

TextBox txtLName

TextBox txtcity

TextBox txtphone

Label lblID

Button btnInsert Insert

Button btnUpdate Update

Button btnDelete Delete

Button btnNext Next

Button btnPrevious Previous

Button btnSync Synchronize

Button btnDone End

2. Check the application.

♦ Choose Build ► Build Solution.

Your form should look as follows:

Lesson 2: Create the application interface

Copyright © 2006, iAnywhere Solutions, Inc. 45

Tutorial: A Sample Application for AppForge Crossfire

46 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 3: Write the sample code
This lesson guides you through writing code to connect to a database, navigate within the database, and
manipulate the data in the database.

This lesson also includes instructions for synchronizing your application with a SQL Anywhere database.
This portion of the lesson is optional, and requires SQL Anywhere.

Write code to connect to your database
In this application, you connect to the database during the Form_Load event. You can also connect to a
database using the general module.

This example uses a the ULConnectionParms object to connect to your tutcustomer database. This method
is recommended. Alternatively, the database connection can be established by providing connection
parameters directly as follows:

Connection = DatabaseMgr.OpenConnection("DBF=c:\tutorial\crossfire
\tutCustomer.udb")

♦ Write code to connect to the UltraLite database

1. Double-click the form to open the Code window.

2. Declare the required UltraLite objects.

Immediately after the line Public NonInheritable Class CrossfireForm1 Inherits
System.Windows.Forms.Form enter the following code:

Public DatabaseMgr As New UltraLiteAFLib.ULDatabaseManager
Public Connection As UltraLiteAFLib.ULConnection
Public CustomerTable As UltraLiteAFLib.ULTable

3. Specify the connection parameters.

♦ Select the ULConnectionParm1 control. In the Properties window, specify connection properties
for this database.

If you are deploying to a Windows CE device, specify the following properties:

Property Value

DatabaseOnCE \tutorial\crossfire\tutCustomer.udb

DatabaseOnDesktop c:\tutorial\crossfire\tutCustomer.udb

If you are deploying to a Palm device, specify the following properties:

Lesson 3: Write the sample code

Copyright © 2006, iAnywhere Solutions, Inc. 47

Property Value

DatabaseOnDesktop c:\tutorial\crossfire\tutCustomer.pdb

DatabaseOnPalm Syb3

4. In the Form Load event CrossfireForm1_Load, add code to connect to the database.

The standard way of connecting is to try open a connection to the database specified by the connection
string. If the database does not exist, generate an error message.

Try
 Connection = _
 DatabaseMgr.OpenConnection(ULConnectionParms1.ToString())
Catch
 MsgBox(Err.Number)
 MsgBox(Err.Description)
End Try

5. Add the following code to the click event of the End button (btnDone):

Connection.Close
End

6. Run the application.

♦ Choose Debug ► Start.

♦ After an initial message box, the form loads.

♦ To terminate the application, click End.

Troubleshooting
You now have the basic code in place to connect to your database.

If you see a data type conversion error on the attempt to connect, make sure you have used the ToString
method on the ULConnectionParms1 object.

Write code for navigation and data manipulation
The following procedures implement data manipulation and navigation. The code uses the Table API, which
provides methods for moving through and changing the rows of a table, one row at a time. For more complex
applications, UltraLite provides an implementation of SQL.

♦ To open the table

1. Write code to initialize the table and move to the first row.

This code assigns the Customer table in the database to the CustomerTable variable. The call to Open
opens the table so that the table data can be read or manipulated. It also positions the application before
the first row in the table.

Add the following code to the Form1_Load event, just before the End Sub instruction.

Tutorial: A Sample Application for AppForge Crossfire

48 Copyright © 2006, iAnywhere Solutions, Inc.

Try
 CustomerTable = Connection.GetTable("Customer")
 CustomerTable.Open()
Catch
 If Err.Number <> UltraLiteAFLib.ULSQLCode.ulSQLE_NOERROR _
 Then
 MsgBox(Err.Description)
 End If
End Try

2. Create a new procedure called DisplayCurrentRow and implement it as shown below.

If the table has no rows, the following procedure causes the application to display empty controls.
Otherwise, it displays the values stored in each of the columns of the current row of the database.

Private Sub DisplayCurrentRow()
 If CustomerTable.RowCount = 0 Then
 txtFname.Text = ""
 txtLname.Text = ""
 txtCity.Text = ""
 txtPhone.Text = ""
 lblID.Caption = ""

 Else
 lblID.Caption = _
 CustomerTable.Column("ID").StringValue
 txtFname.Text = _
 CustomerTable.Column("FName").StringValue
 txtLname.Text = _
 CustomerTable.Column("LName").StringValue
 If CustomerTable.Column ("City").IsNull Then
 txtCity.text =""
 Else
 txtCity.Text = _
 CustomerTable.Column("City").StringValue

 End If
 If CustomerTable.Column("Phone").IsNull Then
 txtphone.Text = ""
 Else
 txtphone.Text = _
 CustomerTable.Column("Phone").StringValue
 End If
 End If
End Sub

3. Call DisplayCurrentRow from the Form's Activated event. This call ensures that the fields get updated
when the application starts.

DisplayCurrentRow

♦ To insert rows into the table

1. Write code to implement the Insert button.

In the following procedure, the call to InsertBegin puts the application into insert mode and sets all the
values in the row to their defaults. For example, the ID column receives the next autoincrement value.
The column values are set and then the new row is inserted.

Add the following procedure to the Click event of the Insert button (btnInsert).

Lesson 3: Write the sample code

Copyright © 2006, iAnywhere Solutions, Inc. 49

Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String
fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text

Try
 CustomerTable.InsertBegin
 CustomerTable.Column("FName").StringValue = _
 fname
 CustomerTable.Column("LName").StringValue = _
 lname
 If Len(city) > 0 Then
 CustomerTable.Column("City").StringValue = _
 city
 End If
 If Len(phone) > 0 Then
 CustomerTable.Column("Phone").StringValue = _
 phone
 End If
 CustomerTable.Insert
 CustomerTable.MoveLast
 DisplayCurrentRow
 Exit Sub
Catch
 MsgBox "Error: " & CStr(Err.Description)
End Try

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the database.

♦ Enter a first name of Jane in the first text box and a last name of Doe in the second. Click Insert.

A row is added to the table with these values. The application moves to the last row of the table and
displays the row. The label displays the automatically incremented value of the ID column that
UltraLite assigned to the row.

♦ Enter a first name of John in the first text box and a last name of Smith in the second. Click Insert.

4. Click End to end the program.

♦ To move through the rows of the table

1. Write code to implement the Next and Previous buttons.

Add the following code to the Click event of the Next button (btnNext).

If Not CustomerTable.MoveNext Then
 CustomerTable.MoveLast
End If
DisplayCurrentRow

Tutorial: A Sample Application for AppForge Crossfire

50 Copyright © 2006, iAnywhere Solutions, Inc.

Add the following code to the Click event of the Previous button (btnPrevious).

If Not CustomerTable.MovePrevious Then
 CustomerTable.MoveFirst
End If
DisplayCurrentRow

2. Run the application.

When the form is first displayed, the controls are empty as the current position is before the first row.

After the form is displayed, click Next and Previous to move through the rows of the table.

At this stage you can enter data and scroll through the rows of the table.

♦ To update and delete rows in the table

1. Write code to implement the Update button.

In the code below, the call to UpdateBegin puts the application into update mode. The column values
are updated and then the row itself is updated with a call to Update.

Add the following code to the Click event of the Update button (btnUpdate):

Dim fname As String
Dim lname As String
Dim city As String
Dim phone As String
fname = txtFname.Text
lname = txtLname.Text
city = txtCity.Text
phone = txtPhone.Text
Try
 CustomerTable.UpdateBegin
 CustomerTable.Column("FName").StringValue = fname
 CustomerTable.Column("LName").StringValue = lname
 If Len(city) > 0 Then
 CustomerTable.Column("City").StringValue = city
 Else
 CustomerTable.Column("City").SetNull
 End If
 If Len(phone) > 0 Then
 CustomerTable.Column("Phone").StringValue = phone
 End If
 CustomerTable.Update
 DisplayCurrentRow
 Exit Sub
Catch
 MsgBox "Error: " & CStr(Err.Description)
End Try

2. Write code to implement the Delete button.

In the code below, the call to Delete deletes the current row (the application displays the row data at
the current position).

Add the following code to the Click event of the Delete button (btnDelete):

Lesson 3: Write the sample code

Copyright © 2006, iAnywhere Solutions, Inc. 51

If CustomerTable.RowCount = 0 Then
 Exit Sub
End If
CustomerTable.Delete
CustomerTable.MoveRelative 0
DisplayCurrentRow

3. Run the application.

Write code to synchronize
The following procedure implements synchronization. Synchronization requires SQL Anywhere.

♦ To write code for the synchronize button

• Write code to implement the Synchronize button.

In the code below, the ULSyncParms object contains the synchronization parameters. For example, the
ULSyncParms.UserName property specifies that when MobiLink is started, it will add a new user.

Add the following code to the Click event of the Synchronize button (btnSync):

With Connection.SyncParms
 .UserName = "CrossfireSample"
 .Stream = UltraLiteAFLib.ULStreamType.ulTCPIP
 .Version = "ul_default"
End With
Connection.Synchronize
DisplayCurrentRow

Synchronize your application
The SQL Anywhere sample database has a Customers table with columns matching those in the
Customer table in your UltraLite database. The following procedure synchronizes your database with the
SQL Anywhere sample database.

♦ To synchronize your application

1. From a command prompt, start the MobiLink synchronization server by running the following
command.

mlsrv10 -c "dsn=SQL Anywhere 10 Demo" -v+ -zu+

The -zu+ command line option permits automatic addition of users and generation of synchronization
scripts. For more information about these options, see “MobiLink Server Options” [MobiLink - Server
Administration].

Verify that the MobiLink server starts and displays a server status window.

2. Start your UltraLite Crossfire application.

3. Click Delete repeatedly to delete all the rows in your table. Any rows left in the table would be uploaded
to the Customers table in the SQL Anywhere sample database.

Tutorial: A Sample Application for AppForge Crossfire

52 Copyright © 2006, iAnywhere Solutions, Inc.

4. Synchronize your application.

Click Synchronize.

The MobiLink synchronization server window displays the synchronization progress.

5. When the synchronization is complete, click Next and Previous buttons to move through the rows of
the table to view the data retrieved from the SQL Anywhere sample database.

Lesson 3: Write the sample code

Copyright © 2006, iAnywhere Solutions, Inc. 53

Lesson 4: Deploy to a device
The following procedures deploy your application to either a Palm OS or PocketPC device.

♦ To deploy to a PocketPC device

1. Configure the application settings.

♦ From the AppForge menu, choose Crossfire Settings. A dialog appears.

♦ In the left pane, choose Dependencies and click the User Dependencies tab.

♦ Click the Add button and select the c:\tutorial\crossfire\tutCustomer.udb. This indicates to Crossfire
that the database file must be included in the deployment.

♦ Choose the PocketPC Settings or Windows Mobile Settings item in the left pane and in the right
panel select the Packaging tab.

♦ Enter %CE1%\tutorial\crossfire for the Custom Device Installation Path.

♦ Click OK to close the dialog.

2. From the AppForge menu, choose Deploy to Device, and select PocketPC/Windows Mobile. If a dialog
appears asking if you want to save the project, choose Yes.

3. On your device, click Start ► Programs.

4. Click UltraLiteTutorial to run your application.

♦ To deploy to the Palm device

1. Configure the application settings.

♦ From the AppForge menu, choose Crossfire Settings.

♦ In the dialog that appears, choose Dependencies in the left pane and click the User Dependencies
tab.

♦ Click the Add button and select c:\tutorial\mvb\tutCustomer.pdb. This indicates to Crossfire that
the file should be included in the deployment.

♦ Choose the Palm OS Settings item in the left pane and enter Syb3 for the creator ID. Select a valid
HotSync name.

♦ Click OK to close the dialog.

2. From the AppForge menu, choose Deploy to Device, and select the Palm OS device. If a dialog appears
asking if you want to save the project, choose Yes.

3. HotSync your device and ensure the application gets sent to the device. After the HotSync process is
complete, your application files will be extracted on the device.

4. Click Home on the device and choose UltraLiteTutorial to run your application.

Tutorial: A Sample Application for AppForge Crossfire

54 Copyright © 2006, iAnywhere Solutions, Inc.

Summary
Learning accomplishments

During this tutorial, you:

♦ created a database file with one table defined

♦ created an UltraLite application for Crossfire

♦ synchronized an UltraLite remote database with a SQL Anywhere consolidated database

More samples

You can find more sample applications and utilities at iAnywhere CodeXchange.

Summary

Copyright © 2006, iAnywhere Solutions, Inc. 55

http://ianywhere.codexchange.sybase.com/

CHAPTER 4

Tutorial: A Sample Application for AppForge
MobileVB

Contents
Introduction .. 58
Lesson 1: Create project architecture ... 59
Lesson 2: Create a form .. 61
Lesson 3: Write the sample code ... 63
Lesson 4: Deploy to a device ... 69
Summary .. 70

About this chapter
This chapter provides a tutorial to guide you through the process of building an UltraLite application for
MobileVB for either a PocketPC or a Palm OS device.

Copyright © 2006, iAnywhere Solutions, Inc. 57

Introduction
This tutorial guides you through the process of building an UltraLite application for MobileVB using the
UltraLite table API. At the end of the tutorial you will have an application and small database on your
Windows CE device that synchronizes with a central database.

F For more information about the table API, see the “UltraLite for AppForge API
Reference” on page 71.

Timing
The tutorial takes about 30 minutes if you copy and paste the code. If you enter the code yourself, it takes
significantly longer.

If you copy the code literally from this help file, be aware that some characters may not be copied correctly.
The ampersand, less-than, and greater-than symbols may be copied as html markup codes and have to be
manually repaired in the Visual Basic code edit window.

Competencies and experience
This tutorial assumes:

♦ you have MobileVB and Microsoft Visual Basic 6 installed on your computer

♦ you can write, test, and troubleshoot a MobileVB application

♦ you know how to create an UltraLite database using the UltraLite plug-in for Sybase Central or using
the ulcreate utility

♦ you have the Crossfire Client installed on the target device.

Information about the Crossfire Client is available from the AppForge Web site.

Note
You can perform most of this tutorial without SQL Anywhere. The synchronization sections of the tutorial
require SQL Anywhere.

Goals
The goals for the tutorial are to gain competence and familiarity with the process of developing an UltraLite
application.

Tutorial: A Sample Application for AppForge MobileVB

58 Copyright © 2006, iAnywhere Solutions, Inc.

http://www.appforge.com/products/clients/index.html

Lesson 1: Create project architecture
The first lesson establishes the location for files in the project and the specifications for an UltraLite database
for the project.

♦ To create an UltraLite database

1. Create a directory for this tutorial.

This tutorial assumes the directory is c:\Tutorial\mvb. If you create a directory with a different name
or location, use that directory instead of c:\Tutorial\mvb throughout the tutorial.

2. Create a database using UltraLite in Sybase Central.

F For more information about creating a database, see “Creating an UltraLite database from Sybase
Central” [UltraLite - Database Management and Reference].

♦ Database filename c:\Tutorial\mvb\tutcustomer.udb

♦ Table name ULCustomer

♦ Columns in ULCustomer table

Col-
umn
Name

Data
Type
(Size)

Column allows
null values?

Column unique
value?

Default value

cust_id integer No n/a autoincrement

cust_na
me

varchar
(30)

No No None

♦ Primary key for ULCustomer table ascending cust_id

Create a MobileVB project
The following procedure creates a MobileVB project for your application and adds a reference to the
UltraLite for MobileVB control.

MobileVB tools appear in addition to the standard Visual Basic tools on the Visual Basic toolbar to the left
of the Visual Basic environment. If the UltraLite connection parameters control is not present, see “Adding
UltraLite to the MobileVB design environment” on page 6

♦ To create a reference to the UltraLite for MobileVB control

1. Start MobileVB.

♦ Choose Start ► Programs ► AppForge MobileVB ► Start MobileVB.

The MobileVB Project Manager appears.

Lesson 1: Create project architecture

Copyright © 2006, iAnywhere Solutions, Inc. 59

2. Create a new project.

Click New Project. When asked for the Design Target, choose the appropriate target. This tutorial
provides instructions for a PocketPC device.

3. Create a reference to UltraLite for MobileVB.

♦ Choose Project ► References

♦ Select iAnywhere Solutions, UltraLite Connection Parameters 10.0 and click OK.

4. Give the Project a name.

♦ Click Project ► MobileVBProject1 Properties

♦ Under Project Name, type UltraLiteTutorial. This is the name of the application as it will appear
on your device.

♦ Click OK.

5. Save the Project:

♦ Choose File ► Save Project.

♦ Save the form file as c:\tutorial\mvb\Tutorial.frm.

♦ Save the project as c:\tutorial\mvb\Tutorial.vbp.

Tutorial: A Sample Application for AppForge MobileVB

60 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 2: Create a form
After completing the steps in “Lesson 1: Create project architecture” on page 59, the project should display
a form. The following procedure uses the form to create a user interface. This example uses labels as outputs,
and text boxes and buttons as inputs, similar to a real application.

♦ To add controls to your project

1. Add the controls and properties given in the table below to your form:

Type Name Caption or text

AFTextBox txtname

AFLabel lblID

AFButton btnInsert Insert

AFButton btnUpdate Update

AFButton btnDelete Delete

AFButton btnNext Next

AFButton btnPrevious Previous

AFButton btnSync Synchronize

AFButton btnDone End

2. Check the application:

♦ Choose MobileVB ► Compile and Validate.

Your form should look like the following screen capture:

Lesson 2: Create a form

Copyright © 2006, iAnywhere Solutions, Inc. 61

Tutorial: A Sample Application for AppForge MobileVB

62 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 3: Write the sample code
This lesson guides you through the process of writing Visual Basic code to connect to a database, navigate
within the database, and manipulate the data in the database.

This lesson also includes instructions for synchronizing your application with a SQL Anywhere database.
The synchronization portion of the lesson is optional, and requires SQL Anywhere.

Write code to connect to your database
In this application, you connect to the database during the Form_Load event. You can also connect to a
database using the general module.

This example uses a ULConnectionParms object to connect to a database. Alternatively, you can use a
connection string in the application code.

F For reference information, see “ULConnectionParms class” on page 89.

♦ Write code to connect to the UltraLite database

1. Double-click the form to open the Code window.

2. Declare the required UltraLite objects:

Enter the following code in the declarations area of your form.

Public DatabaseMgr As New ULDatabaseManager
Public Connection As ULConnection
Public CustomerTable As ULTable

3. Specify the connection parameters:

♦ Add a ULConnectionParms object to your form named ULConnectionParms1. The
ULConnectionParms control is a database icon on the toolbox.

♦ In the Properties window, specify the ULConnectionParms properties.

If you are deploying to a Windows CE device, specify the following properties:

Property Value

DatabaseOnCE \tutorial\mvb\tutcustomer.udb

DatabaseOnDesktop c:\tutorial\mvb\tutcustomer.udb

4. Add code to connect to the database in the Form_Load event.

The database manager opens a connection to the database specified by the ULConnectionParms1 object:

Private Sub Form_Load()
' enable error handling

Lesson 3: Write the sample code

Copyright © 2006, iAnywhere Solutions, Inc. 63

On Error Resume Next

 Set Connection = DatabaseMgr.OpenConnection(ULConnectionParms1.ToString
())
 If Err.Number = ULSQLCode.ulSQLE_NOERROR Then
 MsgBox "Connected to an existing database"
 Else
 MsgBox Err.Description
 Exit Sub
 End If
End Sub

Once the connection code is working, the line that issues a Msgbox to indicate a connection has been
made can be removed.

If you prefer to use a connection string rather than the ULConnectionParms object, you can alter the
code illustrated above to use this syntax instead:

Set Connection = DatabaseMgr.OpenConnection _
 ("dbf=C:\tutorial\mvb\tutcustomer.udb;" & _
 "ce_file=\tutorial\mvb\tutcustomer.udb")

Note the inclusion of the database filename specification for the potential target platforms (dbf= for the
desktop environment and ce_file= for the Windows CE device environment.

5. Add code to end the application and close the connection when the End button is clicked.

Sub btnDone_Click()
 Connection.Close
 End
End Sub

6. Run the application.

♦ Choose Run ► Execute.

♦ After an initial message box, the form loads.

♦ To terminate the application, click the End button.

Write code for navigation and data manipulation
The following procedures implement data manipulation and navigation.

♦ To open the table

1. Write code to initialize the table and move to the first row.

This code assigns the customer table in the database to the CustomerTable variable. The call to Open
opens the table so that the table data can be read or manipulated. It also positions the application before
the first row in the table.

Add the following code to the Form_Load event, just before the End Sub instruction.

Tutorial: A Sample Application for AppForge MobileVB

64 Copyright © 2006, iAnywhere Solutions, Inc.

Set CustomerTable = Connection.GetTable("ULCustomer")
CustomerTable.Open
If Err.Number <> ULSQLCode.ulSQLE_NOERROR Then
 MsgBox Err.Description
End If
CustomerTable.MoveFirst

2. Create a new procedure called DisplayCurrentRow and implement it as shown below.

If the table has no rows, the following procedure causes the application to display empty controls.
Otherwise, it displays the values stored in each of the columns of the current row of the database.

Private Sub DisplayCurrentRow()
 If CustomerTable.RowCount = 0 Then
 txtname.Text = ""
 lblID.Caption = ""
 Else
 txtname.Text = CustomerTable.Column("cust_name").StringValue
 lblID.Caption = CustomerTable.Column("cust_id").StringValue
 End If
End Sub

3. Call DisplayCurrentRow from the Form_Activate procedure. This call ensures that the fields get
updated when the application starts.

Private Sub Form_Activate()
 DisplayCurrentRow
End Sub

♦ To insert rows into the table

1. Write code to implement the Insert button.

In the following procedure, the call to InsertBegin puts the application into insert mode and sets all the
values in the row to their defaults. For example, the ID column receives the next autoincrement value.
The column values are set and then the new row is inserted.

Add the following procedure to the form.

Private Sub btnInsert_Click()

 On Error GoTo InsertError
 CustomerTable.InsertBegin
 CustomerTable.Column("cust_name").StringValue = txtname.Text

 CustomerTable.Insert
 CustomerTable.MoveLast
 DisplayCurrentRow
 Exit Sub
InsertError:
 MsgBox "Error: " & CStr(Err.Description)
End Sub

2. Run the application.

Lesson 3: Write the sample code

Copyright © 2006, iAnywhere Solutions, Inc. 65

After an initial message box, the form is displayed.

3. Insert two rows into the database.

♦ Enter a first name of Jane in the first text box and a last name of Doe in the second. Click Insert.

A row is added to the table with these values. The application moves to the last row of the table and
displays the row. The label displays the automatically incremented value of the ID column that
UltraLite assigned to the row.

♦ Enter a first name of John in the first text box and a last name of Smith in the second. Click Insert.

4. Click End to end the program.

♦ To move through the rows of the table

1. Write code to implement the Next and Previous buttons.

Add the following procedures to the form.

Private Sub btnNext_Click()
 If Not CustomerTable.MoveNext Then
 CustomerTable.MoveLast
 End If
 DisplayCurrentRow
End Sub

Private Sub btnPrevious_Click()
 If Not CustomerTable.MovePrevious Then
 CustomerTable.MoveFirst
 End If
 DisplayCurrentRow
End Sub

2. Run the application.

When the form is first displayed, the controls are empty as the current position is before the first row.

After the form is displayed, click Next and Previous to move through the rows of the table.

♦ To update and delete rows in the table

1. Write code to implement the Update button.

In the code below, the call to UpdateBegin puts the application into update mode. The column values
are updated and then the row itself is updated with a call to Update.

Add the following procedure to the form.

Private Sub btnUpdate_Click()

 On Error GoTo UpdateError

 CustomerTable.UpdateBegin
 CustomerTable.Column("cust_name").StringValue = txtname.Text

Tutorial: A Sample Application for AppForge MobileVB

66 Copyright © 2006, iAnywhere Solutions, Inc.

 CustomerTable.Update
 DisplayCurrentRow
 Exit Sub
UpdateError:
 MsgBox "Error: " & CStr(Err.Description)
End Sub

2. Write code to implement the Delete button.

In the code below, the call to Delete deletes the current row on which the application is positioned.

Add the following procedure to the form.

Private Sub btnDelete_Click()
 If CustomerTable.RowCount = 0 Then
 Exit Sub
 End If
 CustomerTable.Delete
 CustomerTable.MoveRelative 0
 txtname.Text = ""
 lblID.Caption = ""
 DisplayCurrentRow
End Sub

3. Run the application.

Write code to synchronize
The following procedure implements synchronization. Synchronization requires SQL Anywhere. This
portion of the tutorial is optional.

♦ To write code for the synchronize button

• Write code to implement the Synchronize button.

In the code below, the ULSyncParms object contains synchronization parameters. For example, the
UserName property specifies that when MobiLink is started, it uses the specified user name to determine
the proper set of MobiLink scripts to employ for the synchronization process. The DownloadOnly
property is set to true (in this program) to ensure that no data is uploaded from the UltraLite database
since this is a simple demonstration application. For additional information about synchronization
parameters, see “UltraLite Synchronization Parameters and Network Protocol options” [MobiLink -
Client Administration].

Add the following procedure to the form:

Private Sub btnSync_Click()
 With Connection.SyncParms
 .UserName = "50"
 .Stream = ULStreamType.ulTCPIP
 .Version = "custdb 10.0"
 .DownloadOnly = True
 End With
 Connection.Synchronize
 CustomerTable.MoveFirst

Lesson 3: Write the sample code

Copyright © 2006, iAnywhere Solutions, Inc. 67

 DisplayCurrentRow
End Sub

Synchronize your application
The SQL Anywhere 10 CustDB database sample supplied with SQL Anywhere has a Customer table with
columns matching those in the ULCustomer table in your UltraLite database. The following procedure
synchronizes your database with the SQL Anywhere 10 CustDB database.

♦ To synchronize your application

1. From a command prompt, start the MobiLink synchronization server by running the following
command.

mlsrv10 -c "dsn=SQL Anywhere 10 CustDB" -v+ -zu+

The -v+ option turns on verbose logging (+ means "show all"). Verbose logging is recommended
during application debugging. The -zu+ option provides automatic addition of users. For more
information about MobiLink server options, see “MobiLink Server Options” [MobiLink - Server
Administration].

2. Start the UltraLite MobileVB application.

3. Synchronize your application.

Click Synchronize.

The MobiLink synchronization server window displays the synchronization progress.

4. When the synchronization is complete, click Next and Previous to move through the rows of the table
to verify that new information has been downloaded from the SQL Anywhere 10 CustDB database.

Tutorial: A Sample Application for AppForge MobileVB

68 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 4: Deploy to a device
The following procedure describes how to deploy your application to a PocketPC device.

♦ To deploy to a PocketPC device:

1. Configure the application settings:

♦ From the AppForge menu, choose MobileVB Settings.

A dialog appears.

♦ In the left pane, choose Dependencies and click the User Dependencies tab.

♦ Click the Add button and select c:\tutorial\mvb\tutcustomer.udb. This indicates to MobileVB that
the file should be included in the deployment.

♦ Choose the Windows Mobile Settings item in the left pane

♦ Enter \tutorial\mvb for the Custom path in Device Installation Path.

♦ Click OK to close the dialog.

2. From the AppForge menu, choose Deploy to Device, and select the Windows Mobile-based Pocket PC
device. If a dialog appears asking if you want to save the project, choose Yes.

3. On your device, click Start ► Programs.

4. Click ULTutorial to run your application.

Lesson 4: Deploy to a device

Copyright © 2006, iAnywhere Solutions, Inc. 69

Summary
Learning accomplishments

During this tutorial, you:

♦ created an UltraLite database

♦ created an UltraLite for MobileVB application

♦ synchronized an UltraLite remote database with a SQL Anywhere consolidated database

♦ gained competence with the process of developing an UltraLite for MobileVB application

More samples
You can find more sample applications and utilities at iAnywhere CodeXchange.

Tutorial: A Sample Application for AppForge MobileVB

70 Copyright © 2006, iAnywhere Solutions, Inc.

http://ianywhere.codexchange.sybase.com/

CHAPTER 5

UltraLite for AppForge API Reference

Contents
ULAuthStatusCode enumeration ... 73
ULColumn class .. 74
ULColumnSchema class ... 80
ULConnection class .. 81
ULConnectionParms class ... 89
ULDatabaseManager class ... 91
ULDatabaseSchema class .. 94
ULFileTransfer class ... 98
ULFileTransferEvent class ... 101
ULIndexSchema class ... 102
ULPreparedStatement class ... 104
ULPublicationSchema class ... 110
ULResultSet class ... 111
ULResultSetSchema class ... 124
ULSQLCode enumeration ... 125
ULSQLType enumeration ... 134
ULStreamErrorCode enumeration ... 135
ULStreamErrorContext enumeration ... 139
ULStreamErrorID enumeration ... 140
ULStreamType enumeration ... 142
ULSyncEvent class ... 143
ULSyncParms class .. 146
ULSyncResult class .. 149
ULSyncState enumeration .. 150
ULTable class .. 151
ULTableSchema class ... 162

Copyright © 2006, iAnywhere Solutions, Inc. 71

About this chapter
This chapter describes the UltraLite AppForge API, a set of classes and methods that allow you to write
UltraLite database applications using the AppForge development product. Each topic contains information
about a specific class, method, constant, or enumeration. The reference is organized by class, with associated
methods.

UltraLite for AppForge API Reference

72 Copyright © 2006, iAnywhere Solutions, Inc.

ULAuthStatusCode enumeration
The ULAuthStatusCode is the auth_status synchronization parameter used in the ULSyncResult object.

Constant Value

ulAuthStatusUnknown 0

ulAuthStatusValid 1000

ulAuthStatusValidButExpiresSoon 2000

ulAuthStatusExpired 3000

ulAuthStatusInvalid 4000

ulAuthStatusInUse 5000

ULAuthStatusCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 73

ULColumn class
The ULColumn object allows you to get and set values from a table in a database. Each column object
represents a particular value in a table; the row is determined by the ULTable object.

Note that get methods throw an error if the underlying column is NULL. Applications should first check for
a NULL value in the property or method before attempting a get.

A note on converting from UltraLite database types to Visual Basic types.
UltraLite attempts to convert from the database column data type to the Visual Basic data type. If a conversion
cannot be successfully done, then a ULSQLE_CONVERSION_ERROR is raised.

F For information about the table object, see “ULTable class” on page 151.

Properties

Prototype Description

BooleanValue As Boolean Gets or sets the value of this column for the current row as Boolean.

ByteValue As Byte Gets or sets the value of this column for the current row as Byte.

DatetimeValue As Date Gets or sets the value of this column for the current row as Date.

DoubleValue As Double Gets or sets the value of this column for the current row as Double.

IntegerValue As Integer Gets or sets the value of this column for the current row as Integer.

IsNull As Boolean (read only) Indicates whether the column value is NULL.

LongValue As Long Gets or sets the value of this column for the current row as Long.

RealValue As Single Gets or sets the value of this column for the current row as Single.

Schema As ULColumnSchema
(read only)

Gets the object representing the schema of the column.

StringValue As String Gets or sets the value of this column for the current row as a String.

AppendByteChunk method

Prototype
AppendByteChunk(_
 data As Long, _
 data_len As Long _
)
Member of UltraLiteAFLib.ULColumn

UltraLite for AppForge API Reference

74 Copyright © 2006, iAnywhere Solutions, Inc.

Description
Appends bytes to the row's column if the type is ulTypeLongBinary or TypeBinary.

Parameters
data In MobileVB, a pointer to an array of Bytes. To get the pointer to the array of bytes, use the Visual
Basic VarPtr() function. In Crossfire, a local variable that is an array of Bytes.

data_len The number of bytes from the array to append.

Errors set
ulSQLE_INVALID_PARAMETER This error occurs if data length is less than 0.

ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not LONG BINARY.

Example
The following examples append data to the edata column.

'MobileVB using VB6
Dim data (1 to 512) As Byte
' ...
table.Column("edata").AppendByteChunk(_
 VarPtr(data(1)), 232)
'Crossfire using vb.net
Dim data (1 to 512) As Byte
' ...
table.Column("edata").AppendByteChunk(data, 232)

AppendStringChunk method

Prototype
AppendStringChunk(chunk As String)
Member of UltraLiteAFLib.ULColumn

Description
Appends the string to the column if the type is TypeLongString or TypeString.

Parameters
data A string to append to the existing string in a table.

Errors set
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not CHAR or LONG
VARCHAR.

ULColumn class

Copyright © 2006, iAnywhere Solutions, Inc. 75

GetByteChunk method

Prototype
GetByteChunk (_
 offset As Long, _
 data As Long, _
 data_len As Long, _
 filled_len As Long _
) As Boolean
Member of UltraLiteAFLib.ULColumn

Description
Gets data from a TypeBinary or TypeLongBinary column.

Parameters
offset The offset into the underlying array of bytes. The source offset must be greater than or equal to 0,
otherwise a ulSQLE_INVALID_PARAMETER error is raised.

data A pointer to an array of bytes. To get the pointer to the array of bytes, use the Visual Basic VarPtr()
function.

data_len The length of the buffer, or array. The data_len must be greater than or equal to 0.

filled_len This is an OUT parameter. After the method is called, it indicates how many bytes were fetched
with valid data. If the size of BLOB data is unknown in advance, it is fetched using a fixed-length chunk -
one chunk at a time. The last chunk fetched can be smaller than chunk size, so filled_len informs how many
bytes of valid data exist in the buffer.

Returns
True if this column value contains more data.

False if there is no more data for this column in the database.

Errors set
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not BINARY or LONG
BINARY.

ulSQLE_INVALID_PARAMETER This error occurs if the column data type is BINARY and the offset
is not 0 or 1, or, the data length is less than 0.

The error also occurs if the column data type is LONG BINARY and the offset is less than 1.

Example
In the following example, edata is a column name.

'MobileVB using VB6
Dim filled As Long
Dim more_data As Boolean
Dim data (1 to 512) As Byte
more_data = table.Column("edata").GetByteChunk(0, _
VarPtr(data(1)), 512, filled)

UltraLite for AppForge API Reference

76 Copyright © 2006, iAnywhere Solutions, Inc.

'Crossfire using vb.net
Dim filled As Long
Dim more_data As Boolean
Dim data (1 to 512) As Byte
more_data = table.Column("edata").GetByteChunk(0, _
data, 512, filled)

GetStringChunk method

Prototype
GetStringChunk(_
 offset As Long, _
 data As String, _
 string_len As Long, _
 filled_len As Long _
) As Boolean
Member of UltraLiteAFLib.ULColumn

Description
Gets data from a TypeString or TypeLongString column.

Parameters
offset The character offset into the underlying data from which you start getting the String.

data The variable to receive the string data.

string_length The length of the String you want returned.

filled_len The length of the String fetched.

Returns
True if there is more data to be retrieved from the database.

False if there is no more data.

Errors
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not CHAR or LONG
VARCHAR.

ulSQLE_INVALID_PARAMETER This error occurs if the column data type is CHAR and the src_offset
is greater than 64K.

The error also occurs if src_offset is less than 0 or string length is less than 0.

SetByteChunk method

Prototype
SetByteChunk (_
 data As Long, _
 length As Long _

ULColumn class

Copyright © 2006, iAnywhere Solutions, Inc. 77

)
Member of UltraLiteAFLib.ULColumn

Description
Sets data in a TypeBinary or TypeLongBinary column.

F To append rather than overwriting data, use the “AppendByteChunk method” on page 74.

Parameters
data In MobileVB, a pointer to an array of Bytes. To get the pointer to the array of bytes, use the Visual
Basic VarPtr() function. In Crossfire, a local variable that is an array of Bytes.

length The length of the array.

Errors set
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not BINARY or LONG
BINARY.

ulSQLE_INVALID_PARAMETER This error occurs if the data length is less than 0 or greater than 64K.

Example
In the following example, edata is a column name and the first 232 bytes of the data variable are stored in
the database.

'MobileVB using VB6
Dim data (1 to 512) As Byte
' ...
table.Column("edata").SetByteChunk(VarPtr(data(1)), 232)
'Crossfire using vb.net
Dim data (1 to 512) As Byte
' ...
table.Column("edata").SetByteChunk(data, 232)

SetNull method

Prototype
SetNull()
Member of UltraLiteAFLib.ULColumn

Description
Sets the column value to null.

SetToDefault method

Prototype
SetToDefault()
Member of UltraLiteAFLib.ULColumn

UltraLite for AppForge API Reference

78 Copyright © 2006, iAnywhere Solutions, Inc.

Description
Sets the current column to its default value as defined by the database schema. For example, an autoincrement
column is assigned the next available value.

ULColumn class

Copyright © 2006, iAnywhere Solutions, Inc. 79

ULColumnSchema class
The ULColumnSchema object allows you to obtain metadata, the attributes of a column, in a table. The
attributes are independent of the data in the table.

Properties

Prototype Description

AutoIncrement As Boolean (read-
only)

Indicates whether this column defaults to an autoincrement value.
True if AutoIncrement.

CurrentDate As Boolean (read-only) Indicates whether this column defaults to the current date.

CurrentTime As Boolean (read-only) Indicates whether this column defaults to the current time.

CurrentTimestamp As Boolean
(read-only)

Indicates whether this column defaults to the current timestamp.

DefaultValue As String (read-only) Gets the value used if one was not provided when a row was in-
serted.

GlobalAutoIncrement As Boolean
(read-only)

Indicates whether this column defaults to a global autoincrement
value.

GlobalAutoIncrementPartitionSize
As Long (read-only)

Gets the partition size for a global autoincrement column.

ID As Integer (read- only) Gets the ID of the column.

Name As String (read-only) Gets the column name.

NewUUID As Boolean (read-only) Indicates whether this column defaults to a new universally
unique identifier.

Nullable As Boolean (read-only) Indicates whether the column permits NULLs.

OptimalIndex As ULIndexSchema
(read-only)

Gets the index with this column as its first column.

Precision As Integer (read-only) Gets the precision value for the column if it is of type ulTypeNu-
meric.

Scale As Integer (read-only) Gets the scale value for the column if it is of type ulTypeNumeric.

Size As Integer (read-only) Gets the column size for binary, numeric, and character data types.

SQLType As ULSQLType (read-on-
ly)

Gets the SQL type assigned to the column when it was created.

UltraLite for AppForge API Reference

80 Copyright © 2006, iAnywhere Solutions, Inc.

ULConnection class
The ULConnection object represents an UltraLite database connection. It provides methods to get database
objects like tables to synchronize.

Use WithEvents when receiving synchronization progress
When synchronizing, the ULConnection object can also receive progress information. If you want to receive
this information, you must declare your connection WithEvents. You can perform synchronization without
declaring your connection WithEvents; however, your connection object does not receive notification of
synchronization progress.

Example
To declare a connection WithEvents, in a MobileVB form, use the following syntax:

Public WithEvents Connection As ULConnection

The addition of WithEvents makes receipt of synchronization progress information possible.

Properties

The following are properties of ULConnection:

Prototype Description

AutoCommit As Boolean Indicates the AutoCommit value. If true, all data changes are
committed immediately after they are made. Otherwise,
changes are not committed to the database until Commit is
called. By default, this property is True.

DatabaseID As Long Identification number of the database; -1 if not set.

GlobalAutoIncrementUsage As Integer
(read-only)

Gets the percentage of available global autoincrement values
that have been used.

LastIdentity As Long (read-only) Gets the most recent value inserted into a column with a de-
fault of autoincrement or global autoincrement.

OpenParms As String (read-only) Gets the string used to open the connection to the database.

Schema As ULDatabaseSchema (read-on-
ly)

Gets the ULDatabaseSchema object which represents the
definition of the database.

SQLErrorOffset As Integer (read-only) If PrepareStatement raises an error, indicates the 1-based
offset in the SQL statement where the error was noted. If this
value is less than or equal to 0, no offset information is avail-
able.

SyncParms As ULSyncParms (read-only) Gets the synchronization parameters object.

ULConnection class

Copyright © 2006, iAnywhere Solutions, Inc. 81

Prototype Description

SyncResult As ULSyncResult (read-only) Gets the results of the most recent synchronization.

CancelSynchronize method

Prototype
CancelSynchronize()
Member of UltraLiteAFLib.ULConnection

Description
When called during synchronization, the method cancels the synchronization. The user can only call this
method during one of the synchronization events.

To allow this, the ULConnection object must be declared WithEvents.

ChangeEncryptionKey method

Prototype

ChangeEncryptionKey(newkeyAs String)
Member of UltraLiteAFLib.ULConnection

Description
Encrypt the database with the specified key.

Parameters
newkey The new encryption key value for the database.

Example
When you call CreateDatabase with a value in place for EncryptionKey, the database is created with
encryption. Another way to change the encryption key is by specifying the new encryption key on the
ULConnection object. In this example, "apricot" is the key.

Connection.ChangeEncryptionKey("apricot")

Connections to the database, such as OpenConnection, must, after the database is encrypted, specify
apricot as the EncryptionKey property too. Otherwise, the connection fails.

Close method

Prototype
Close()
Member of UltraLiteAFLib.ULConnection

UltraLite for AppForge API Reference

82 Copyright © 2006, iAnywhere Solutions, Inc.

Description
Closes the connection to the database. No methods on the ULConnection object or any other database object
for this connection should be called after this method is called. If a connection is not explicitly closed, it is
implicitly closed when the application terminates.

Commit method

Prototype
Commit()
Member of UltraLiteAFLib.ULConnection

Description
Commits outstanding changes to the database. This is only useful if AutoCommit is false.

For more information, see Autocommit under ULConnection “Properties” on page 81

CountUploadRows method

Prototype
CountUploadRows(
 [mask As Long = 0], _
 [threshold As Long = -1] _
) As Long
Member of UltraLiteAFLib.ULConnection

Description
Returns the number of rows that need to be uploaded when synchronization next takes place.

Parameters
mask An optional, unique identifier that refers to the publications to check. Use 0 for all publications. If
not specified, then the value is zero.

threshold An optional parameter representing the maximum number of rows to count. Use -1 to indicate
no maximum. If not specified, this value is -1.

Returns
Returns the number of rows that need to be uploaded during the next synchronization.

GetNewUUID method

Prototype
GetNewUUID() As String
Member of UltraLiteAFLib.ULConnection

ULConnection class

Copyright © 2006, iAnywhere Solutions, Inc. 83

Description
Returns a new universally unique identifier. The value is a string of the form xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx, and is typically stored in a column of data type UNIQUEIDENTIFIER.

Returns
Each call returns a new UUID.

GetTable method

Prototype
GetTable(name As String) As ULTable
Member of UltraLiteAFLib.ULConnection

Description
Returns the ULTable object for the specified table. You must then open the table before data can be read
from it.

Parameters
name The name of the table sought.

Returns
Returns the ULTable object.

GrantConnectTo method

Prototype
GrantConnectTo(
 userid As String, _
 password As String _
)
Member of UltraLiteAFLib.ULConnection

Description
Grants the specified user permission to connect to the database with the given password.

Parameters
userid The user ID being granted authority to connect.

password The password the user ID must specify to connect.

UltraLite for AppForge API Reference

84 Copyright © 2006, iAnywhere Solutions, Inc.

LastDownloadTime method

Prototype
LastDownloadTime([mask As Long = 0]) As Date
Member of UltraLiteAFLib.ULConnection

Description
Returns the time of last download for the publication(s).

Parameters
mask An optional, unique identifier that refers to the publications to check. Use 0 for all publications. If
this parameter is omitted, 0 is used.

Returns
The last download time in the form of a date.

PrepareStatement method

Prototype
PrepareStatement(
 sqlStatement As String, _
 persistent_name As String _
) As ULPreparedStatement
Member of UltraLiteAFLib.ULConnection

Description
Prepares a SQL statement for execution.

Parameters
sqlStatement The SQL statement to prepare.

persistent_name For Palm applications, the persistent name of the statement.

Returns
Returns a ULPreparedStatement. If there was a problem preparing the statement, an error is raised. The offset
into the statement where the error occurred can be determined from the SQLErrorOffset property.

ResetLastDownloadTime method

Prototype
ResetLastDownloadTime([mask As Long])
Member of UltraLiteAFLib.ULConnection

Description
Resets the time of the most recent download for the publications specified in the mask.

ULConnection class

Copyright © 2006, iAnywhere Solutions, Inc. 85

Parameters
mask The mask of the publications to reset. The default is 0, specifying all publications.

RevokeConnectFrom method

Prototype
RevokeConnectFrom(userID As String)
Member of UltraLiteAFLib.ULConnection

Description
Revokes the specified user's ability to connect to the database.

Parameters
userid The user ID whose authority to connect is being revoked.

Rollback method

Prototype
Rollback()
Member of UltraLiteAFLib.ULConnection

Description
Rolls back outstanding changes to the database. This is only useful if AutoCommit is false.

RollbackPartialDownload method

Prototype
RollbackPartialDownload ()
Member of UltraLiteAFLib.ULConnection

Description
Rolls back the changes from a failed synchronization.

When a communication error occurs during the download phase of synchronization, UltraLite can apply the
downloaded changes, so that the synchronization can be resumed from the place it was interrupted. If the
download changes are not required (the user or application does not want to resume the download at this
point), RollbackPartialDownload rolls back the failed download transaction.

See also
♦ “Resuming failed downloads” [MobiLink - Server Administration]
♦ “Keep Partial Download synchronization parameter” [MobiLink - Client Administration]
♦ “Partial Download Retained synchronization parameter” [MobiLink - Client Administration]
♦ “Resume Partial Download synchronization parameter” [MobiLink - Client Administration]

UltraLite for AppForge API Reference

86 Copyright © 2006, iAnywhere Solutions, Inc.

StartSynchronizationDelete method

Prototype
StartSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Description
Once StartSynchronizationDelete is called, all delete operations are again synchronized.

StopSynchronizationDelete method

Prototype
StopSynchronizationDelete()
Member of UltraLiteAFLib.ULConnection

Description
Prevents delete operations from being synchronized. This is useful for deleting old information from an
UltraLite database to save space, while not deleting this information on the consolidated database.

StringToUUID method

Prototype
StringToUUID(
 s_uuid As String, _
 buffer_16_bytes As Long _
)
Member of UltraLiteAFLib.ULConnection

Description
Converts a universally unique identifier represented as a String in the form xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx to a Byte array of 16 bytes. In a MobileVB application, it may be useful to refer to them in
their string format. Consequently, the UUIDValue property on the ULColumn object converts from string
to binary(16) and vice versa. The StringToUUID function is provided as an easy way to convert a MobileVB
String to a Byte array. It does not reference the UltraLite database in any way.

The pointer to the buffer
The pointer to the buffer must be declared as at least16 bytes. Since Visual Basic does not provide bounds
checking, memory could be overwritten if the buffer is too small. In MobileVB, use the VarPtr() function
to get the pointer to the buffer. See also ULColumn.UUIDValue property.

Not needed in newer databases
In databases created before version 9.0.2, the UNIQUEIDENTIFIER data type is defined as a user-defined
data type and functions are needed to convert between binary and string representations of UUID values.
In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type is a native data type
and UltraLite carries out conversions as needed. The StringToUUID function is therefore not needed.
For more information, see “UNIQUEIDENTIFIER data type” [SQL Anywhere Server - SQL Reference].

ULConnection class

Copyright © 2006, iAnywhere Solutions, Inc. 87

Parameters
s_uuid A Universally Unique Identifier passed in as a string. You can obtain a new string UUID using
GetNewUUID.

buffer_16_bytes A pointer to a byte array that has at least 16 elements. Use the VarPtr() function to get
the pointer value.

Example
The following example converts the string form of the UUID 0a141e28-323c-4650-5a64-6e78828c96a0 to
a binary array:

Dim buff(1 to 16) As Byte
conn.StringToUUID("0a141e28-323c-4650-5a64-6e78828c96a0", VarPtr(buff(1)))

Synchronize method

Prototype
Synchronize()
Member of UltraLiteAFLib.ULConnection

Description
Synchronizes a consolidated database using MobiLink. This function does not return until synchronization
is complete, but you can be notified of events if the connection was declared WithEvents.

UUIDToString method

Prototype
UUIDToString(buffer_16_bytes As Long) As String
Member of UltraLiteAFLib.ULConnection

Description
Converts a UUID from a byte array to a string of the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

Not needed in newer databases
In databases created before version 9.0.2, the UNIQUEIDENTIFIER data type is defined as a user-defined
data type and functions are needed to convert between binary and string representations of UUID values.
In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type is a native data type
and UltraLite carries out conversions as needed. The UUIDToString function is therefore not needed.
For more information, see “UNIQUEIDENTIFIER data type” [SQL Anywhere Server - SQL Reference].

Parameters
buffer_16_bytes An array of 16 bytes containing a UUID.

Returns
Each call returns a string of the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

UltraLite for AppForge API Reference

88 Copyright © 2006, iAnywhere Solutions, Inc.

ULConnectionParms class
The ULConnectionParms object allows you to set user ID, password, file on your desktop, and numerous
other parameters that specify your connection.

Properties

The ULConnectionParms class specifies parameters for opening a connection to an UltraLite database.

In UltraLite for MobileVB, ensure you have the ULConnectionParms object on your form and you set
connection properties in the ConnectionParms dialog. You use the ULConnectionParms object in
conjunction with ULDatabaseManager.CreateDatabase and ULDatabaseManager.OpenConnection
methods.

Note
Databases are created with a single authenticated user, DBA, whose initial password is sql. If a user ID and
password are not supplied, connections are opened using the user ID DBA and password sql.

F For more information about the meaning of these parameters, see “UltraLite Connection String
Parameters Reference” [UltraLite - Database Management and Reference].

Prototype Description

CacheSize As String (read-write) The size of the cache. CacheSize values are specified in bytes.
Use the suffix k or K for kilobytes and use the suffix m or M for
megabytes. The default cache size is sixteen pages. Given a de-
fault page size of 4 KB, the default cache size is 64 KB.

F See “CACHE_SIZE connection parameter” [UltraLite -
Database Management and Reference].

ConnectionName As String (read-
write)

A name for the connection. This is needed only if you create more
than one connection to the database.

F See “CON connection parameter” [UltraLite - Database
Management and Reference].

DatabaseOnCE As String (read-
write)

The file name of the database deployed to PocketPC.

F See “CE_FILE connection parameter” [UltraLite - Database
Management and Reference].

DatabaseOnDesktop As String (read-
write)

The file name of the database during development.

F See “DBF connection parameter” [UltraLite - Database
Management and Reference].

ULConnectionParms class

Copyright © 2006, iAnywhere Solutions, Inc. 89

Prototype Description

DatabaseOnPalm As String (read-
write)

The creator ID for the UltraLite database on the Palm device.

F See “PALM_FILE connection parameter” [UltraLite -
Database Management and Reference].

DatabaseOnSymbian As String (read-
write)

The file name of the database on Symbian OS device.

F See “SYMBIAN_FILE connection parameter” [UltraLite -
Database Management and Reference].

EncryptionKey As String (read-write) A key for encrypting the database. OpenConnection must use the
same key as specified during database creation. Recommended
guidelines for keys are:

1. Select an arbitrary, lengthy string

2. Select strings with a variety of numbers, letters and special
characters, to decrease the chances of successfully guessing
the key.

F See “DBKEY connection parameter” [UltraLite - Database
Management and Reference].

PalmCreatorID As String (read-write) A registered four digit Palm creator ID.

Password As String (read-write) The password for an authenticated user. Databases are initially
created with one authenticated user (DBA) with password sql.
Passwords are case sensitive.

F See “PWD connection parameter” [UltraLite - Database
Management and Reference].

ToString As String The connection string, as built from the current property settings.

UserID As String (read-write) The authenticated user for the database. Databases are initially
created with one authenticated user DBA. The UserID is case
insensitive if the database is case insensitive and case sensitive
if the database is case sensitive. The default value is DBA.

F See “UID connection parameter” [UltraLite - Database
Management and Reference].

UltraLite for AppForge API Reference

90 Copyright © 2006, iAnywhere Solutions, Inc.

ULDatabaseManager class
The ULDatabaseManager class is used to manage connections and databases. Your application should only
have one instance of this object. Creating a database and establishing a connection to it is a necessary first
step in using UltraLite. It is recommeneded that you use CreateDatabase, OpenConnection and
DropDatabase, and include checks in your code to ensure that you are connected properly before attempting
any DML with the database.

Properties

The following are properties of ULDatabaseManager:

Prototype Description

Version As String (read-
only)

Gets the version string of the UltraLite component.

CreateDatabase method

Prototype
CreateDatabase(connparms As string ,
collation As Long ,
createparms As String
) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Description
Create a new UltraLite database using specified creation parameters, collation sequence, and connection
parameters.

Parameters
connparms Access parameters for the database. Similar to parameters supplied to OpenConnection.

collation A pointer to an array of bytes representing a collation. The collation byte array can be initialized
in Visual Basic .NET for AppForge by using predefined collations located in the folder install-dir\src
\ulcollations\af.vb.net.

createparms Database creation parameters—database characteristics that can only be specified at
database creation; examples: obfuscation and page-size. For more information, see “Choosing creation-time
database properties” [UltraLite - Database Management and Reference]

Returns
Returns a connection if the database is successfully created.

ULDatabaseManager class

Copyright © 2006, iAnywhere Solutions, Inc. 91

DropDatabase method

Prototype
DropDatabase(parms As String)
Member of UltraLiteAFLib.ULDatabaseManager

Description
Deletes the database file. All information in the database file is lost. Fails if the specified database does not
exist, or if open connections exist when DropDatabase is executed.

Parameters
parms The file name for the database.

Example
The following example drops a database:

Dim parms As String
parms = "PALM_DB=Syb1;NT_FILE=c:\temp\ul_CustDB.udb"
DropDatabase(parms)

OpenConnection method

Prototype
OpenConnection(connparms As string) As ULConnection
Member of UltraLiteAFLib.ULDatabaseManager

Description
If a database exists, use this method to connect to the database. If a database does not exist, or the connection
parameters are invalid, the call fails. Use the error object to determine why the call failed.

The function returns a ULConnection object which provides an open connection to a specified UltraLite
database. The database file name is specified using the connparms string. Parameters are specified using a
sequence of name=value pairs. If no user ID or password is given, the default is used.

It should contain a value of the following form.

file_name=UDBFILE
DBF=UDBFILE
palm_db=CreatorID.

Parameters
connparms The parameter used to establish a connection to a database. Parameters are specified as a
semicolon-separated list of keyword=value pairs. If no user ID or password is given, the default is used.

Returns
The ULConnection object is returned if the connection was successful.

UltraLite for AppForge API Reference

92 Copyright © 2006, iAnywhere Solutions, Inc.

Example
The following example creates a new database connection from the CustDB sample application.

Set Connection = DatabaseMgr.OpenConnection(
"file_name=d:\Dbfile.udb;palm_db=Syb3;CE_file=\myapp\MyDB.udb")

ULDatabaseManager class

Copyright © 2006, iAnywhere Solutions, Inc. 93

ULDatabaseSchema class
The ULDatabaseSchema object allows you to obtain the attributes of the database to which you are
connected.

Properties

The following are properties of ULDatabaseSchema:

Prototype Description

CollationName As String (read-only) Gets the database collation sequence name.

DateFormat As String (read-only) Gets the format for dates retrieved from the database;
'YYYY-MM-DD' is the default. The format of the date
retrieved depends on the format used when you created
the database.

DateOrder As String (read-only) Indicates the interpretation of date formats; valid values
are 'MDY', 'YMD', or 'DMY'.

IsCaseSensitive As Boolean (read-only) Indicates whether the database is case sensitive.

NearestCentury As String (read-only) Indicates the interpretation of two-digit years in string-
to-date conversions. This is a numeric value that acts as
a rollover point. Two digit years less than the value are
converted to 20yy, while years greater than or equal to
the value are converted to 19yy. The default is 50.

Precision As String (read-only) Gets the maximum number of digits in the result of any
decimal arithmetic.

PublicationCount As Integer (read-only) Gets the number of publications in the connected
database.

TableCount As Integer (read-only) Gets the number of tables in the connected database.

TimeFormat As String (read-only) Gets the format for times retrieved from the database.

TimestampFormat As String (read-only) Gets the format for timestamps retrieved from the
database.

GetDatabaseProperty method

Prototype
GetDatabaseProperty(property_name As String) As
String Member of UltraLiteAFLib.ULDatabaseSchema

UltraLite for AppForge API Reference

94 Copyright © 2006, iAnywhere Solutions, Inc.

Description
Returns the value of the named property.

Parameters
property_name The property_name specifies the property name which is being queried.

The following table is a list of property name strings. More information about the meaning of the properties
is available here: “UltraLite Database Settings Reference” [UltraLite - Database Management and
Reference].

CaseSensitive

CharSet

ChecksumLevel

CollationName

ConnCount

date_format

date_order

Encryption

File

global_database_id

MaxHashSize

ml_remote_id

Name

nearest_century

PageSize

precision

scale

time_format

timestamp_format

timestamp_increment

Returns
Returns the named property value.

ULDatabaseSchema class

Copyright © 2006, iAnywhere Solutions, Inc. 95

GetPublicationName method

Prototype
GetPublicationName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Description
Returns the name of the specified publication. The publication ID can range from 1 to PublicationCount.

Parameters
id The id is the identifier of the publication whose name is returned.

Returns
Returns the name of a publication in the connected database.

For information about the ULPublicationSchema object, see “ULPublicationSchema class” on page 110.

For more information, see ULDatabaseSchema “Properties” on page 94

GetPublicationSchema method

Prototype
GetPublicationSchema(Name As String) As ULPublicationSchema
Member of UltraLiteAFLib.ULDatabaseSchema

Description
Use the publication name to retrieve the ULPublicationSchema object.

Parameters
name The name of the publication.

Returns
Returns the ULPublicationSchema object.

GetTableName method

Prototype
GetTableName(id As Integer) As String
Member of UltraLiteAFLib.ULDatabaseSchema

Description
Returns the name of the table in the connected database that corresponds to the id value you supply. The
TableCount property returns the number of tables in the connected database. Each table has a unique number
from 1 to the TableCount value, where 1 is the first table in the database, 2 is the second table in the database,
and so on. The id for a table may change after a database has had its schema changed.

UltraLite for AppForge API Reference

96 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
id The id of the table.

Returns
Returns the name of the table for the specified id.

SetDatabaseOption method

Prototype
SetDatabaseOption(
option_name As String
option_value As String
)

Description
Sets the value for a database option.

Parameters
option_name The name of the database option to be set. The following database options may be set:
global_database_id (for more information see: “global_id option” [UltraLite - Database Management and
Reference]) and ml_remote_id (for more information see: “ml_remote_id option” [UltraLite - Database
Management and Reference]).

option_value The new value for the option.

ULDatabaseSchema class

Copyright © 2006, iAnywhere Solutions, Inc. 97

ULFileTransfer class
MobiLink file transfer interface.

Properties
The following are properties of ULFileTransfer:

Prototype Description

AuthStatus As ULAuthStatusCode The authorization status code for the last file transfer.

AuthValue As Integer The authorization value for the last file transfer.

DestinationFile As String Name of downloaded file within DestinationPath.

DestinationPath As String Client location of downloaded file.

DowloadedFile As Boolean Set to true if file was downloaded.

FileAuthCode As Integer The authorization code for the last file transfer.

FileName As String Remote filename to download.

ForceDownload As Boolean If true, download file unconditionally.

Password As String Password for synchronization user name specified in User-
Name property.

ResumePartialDownload As Boolean If set to true, resume a previously kept partial download.

Stream As ULStreamType Type of stream to use in synchronization.

StreamErrorCode As ULStreamErrorCode The error code reported by the stream.

StreamParms As String Additional parameters for the given stream type.

StreamErrorSystem As Long The stream error system-specific code.

UserName As String User name to submit to MobiLink during synchronization.

Version As String The version of the synchronization scripts to run.

For additional information, see the descriptions of the parameters in “MLFileTransfer function” [UltraLite
- C and C++ Programming].

UltraLite for AppForge API Reference

98 Copyright © 2006, iAnywhere Solutions, Inc.

AddAuthenticationParm method

Prototype
AddAuthenticationParm(newParm As String)
As Boolean
 Member of UltraLiteAFLib.ULFileTransfer

Description
Adds an authentication parameter to the list of custom authentication parameters.

Parameters
newParm The authentication parameter to add.

CancelTransfer method

Prototype
CancelTransfer()Member of UltraLiteAFLib.ULFileTransfer

Description
Cancels an in-progress file transfer started by DownloadFile method.

ClearAuthenticationParms method

Prototype
ClearAuthenticationParms()
 Member of UltraLiteAFLib.ULFileTransfer

Description
Clears the list of custom authentication parameters.

DownloadFile method

Prototype
DownloadFile()
 As Boolean
 Member of UltraLiteAFLib.ULFileTransfer

Description
Download a file using MobiLink file transfer, using current properties.

Returns
Returns true if file downloaded successfully or already existed locally; false otherwise. The property
ULFileTransfer.DownloadedFile can be checked to see if a file transfer actually occurred.

ULFileTransfer class

Copyright © 2006, iAnywhere Solutions, Inc. 99

Errors set
ulSQLE_COMMMUNICATIONS_ERROR This error occurs if no stream was specified.

UltraLite for AppForge API Reference

100 Copyright © 2006, iAnywhere Solutions, Inc.

ULFileTransferEvent class
The ULFileTransferEvent object provides a mechanism to signal events during MobiLink file transfer (for
related information, see “ULFileTransfer class” on page 98.

OnTransferProgressChanged method

Prototype
OnTransferProgressChanged(
 file_size As Long ,
 bytes_received As Long ,
 resumed_at_size As Long
)
 Member of UltraLiteAFLib.ULFileTransferEvent

Description
This method is used to notify your application that the current file transfer has transferred data.

Parameters
file_size File size in bytes.

bytes_received Bytes transferred.

resumed_at_size Byte count where resumed transfer occurred.

Returns
Return true if transfer continues.

ULFileTransferEvent class

Copyright © 2006, iAnywhere Solutions, Inc. 101

ULIndexSchema class
The ULIndexSchema object allows you to obtain the attributes of an index. An index is an ordered set of
columns by which data in a table is sorted. The primary use of an index is to order the data in a table by one
or more columns.

An index can be a foreign key, which is used to maintain referential integrity in a database.

Properties

Prototype Description

ColumnCount As Integer (read-only) Gets the number of columns in the index.

ForeignKey As Boolean (read-only) Indicates whether this is a foreign key.

ForeignKeyCheckOnCommit As Boolean (read-on-
ly)

Indicates whether referential integrity is checked
only when a commit is done (TRUE) or immedi-
ately (FALSE).

ForeignKeyNullable As Boolean (read-only) Indicates whether the foreign key columns allow
NULL.

Name As String (read-only) Gets the name of the index.

PrimaryKey As Boolean (read-only) Gets whether this is the primary key for this table.

ReferencedIndexName As String (read-only) Gets the name of the index referenced by this in-
dex if it is a foreign key.

ReferencedTableName As String (read-only) Gets the name of the table referenced by this in-
dex if it is a foreign key.

UniqueIndex As Boolean (read-only) Indicates whether values in the index must be
unique.

UniqueKey As Boolean (read-only) Indicates whether the index is a unique constraint
on a table. If True, the columns in the index are
unique and do not permit NULL values.

GetColumnName method

Prototype
GetColumnName(col_pos_in_index As Integer) As String
Member of UltraLiteAFLib.ULIndexSchema

UltraLite for AppForge API Reference

102 Copyright © 2006, iAnywhere Solutions, Inc.

Description
Used to return the names of the columns in the index. The parameter col_pos_in_index must be at least 1
and at most ColumnCount.

Parameters
col_pos_in_index The column position in the index.

Returns
Returns the name of a column in the index.

IsColumnDescending method

Prototype
IsColumnDescending(col_name As String) As Boolean
 Member of UltraLiteAFLib.ULIndexSchema

Description
Indicates whether the specified column in the index is in descending order.

Parameters
col_name The index column name.

Returns
True if the column is descending.

False if the column is ascending.

ULIndexSchema class

Copyright © 2006, iAnywhere Solutions, Inc. 103

ULPreparedStatement class
The ULPreparedStatement represents a pre-compiled SQL statement ready for execution. You can use a
prepared statement to run a SQL query. You can also use the ULPreparedStatement to execute the same
statement multiple times using numerous input parameters. Since the prepared statement is precompiled,
any further additions beyond the first execution take very little extra processing. Use ULPreparedStatement
and Dynamic SQL when you want relatively fast DML over multiple rows.

Properties

Prototype Description

HasResultSet As Boolean (read-only) Indicates whether the prepared statement generates a result
set.

True if the statement has a result set, otherwise, false.

If true, ExecuteQuery should be called instead of ExecuteS-
tatement.

Plan (read-only) As String Gets the access plan UltraLite uses to execute a query. This
property is intended primarily for use during development.

ResultSetSchema As ULResult-
SetSchema (read-only)

Gets the schema description for the result set if the statement
is for a result set.

AppendByteChunkParameter method

Prototype
AppendByteChunkParameter (
 param_id As Integer,
 data As Long,
 data_len As Long)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Appends the buffer of bytes to the row's column if the type is ulTypeLongBinary.

Parameters
parameter_id The 1-based parameter number to set.

data The array of bytes to append.

data_len The number of bytes from the array to append.

Errors set
ulSQLE_INVALID_PARAMETER This error occurs if the data length is less than 0.

UltraLite for AppForge API Reference

104 Copyright © 2006, iAnywhere Solutions, Inc.

ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not LONG BINARY.

AppendStringChunkParameter method

Prototype
AppendStringChunkParameter(
 param_id As Integer ,
 chunk As String)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Appends the string to the column if the type is ulTypeLongString.

Parameters
parameter_id The 1-based parameter number to set.

chunk A string to append to the existing string in a table.

Errors set
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not LONG VARCHAR.

Close method

Prototype
Close()
Member of UltraLiteAFLib.ULPreparedStatement

Description
Frees resources associated with the ULPreparedStatement.

ExecuteQuery method

Prototype
ExecuteQuery() As ULResultSet
Member of UltraLiteAFLib.ULPreparedStatement

Description
Executes the query and returns a result set.

Returns
A ULResultSet object. The ULResultSet is the data you requested in your SELECT statement. To describe
the product of your query, see “ULResultSetSchema class” on page 124.

ULPreparedStatement class

Copyright © 2006, iAnywhere Solutions, Inc. 105

ExecuteStatement method

Prototype
ExecuteStatement() As Long
Member of UltraLiteAFLib.ULPreparedStatement

Description
Executes the statement.

Returns
The number of rows updated.

SetBooleanParameter method

Prototype
SetBooleanParameter(
 param_number As Integer
 param_value As Boolean
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to the Boolean value passed in.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetByteChunkParameter method

Prototype
SetByteChunkParameter(
 param_number As Integer,
 data As Long,
 data_len As Long
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Sets data in a binary or long binary column.

Parameters
param_number The 1-based parameter number to set.

data An array of bytes.

UltraLite for AppForge API Reference

106 Copyright © 2006, iAnywhere Solutions, Inc.

data_len The number of bytes from the array to set. SetByteChunk writes over the current content. To
append to an existing value, see “AppendByteChunkParameter method” on page 104.

SetByteParameter method

Prototype
SetByteParameter(
 param_number As Integer
 param_value As Byte
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to the specified Byte value.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetDatetimeParameter method

Prototype
SetDatetimeParameter(
 param_number As Integer
 param_value As String
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to the specified Datetime value.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetDoubleParameter method

Prototype
SetDoubleParameter(
 param_number As Integer
 param_value As String
)
Member of UltraLiteAFLib.ULPreparedStatement

ULPreparedStatement class

Copyright © 2006, iAnywhere Solutions, Inc. 107

Description
Set the parameter to the specified Double value.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetIntegerParameter method

Prototype
SetIntegerParameter(
 param_number As Integer
 param_value As String
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to the specified Integer value.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetLongParameter method

Prototype
SetLongParameter(
 param_number As Integer
 param_value As String
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to the specified Long value.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

UltraLite for AppForge API Reference

108 Copyright © 2006, iAnywhere Solutions, Inc.

SetNullParameter method

Prototype
SetNullParameter(param_id As Integer)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to NULL.

Parameters
parameter_id The 1-based parameter number to set.

SetRealParameter method

Prototype
SetRealParameter(
 param_number As Integer
 param_value As String
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to the specified Long value.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

SetStringParameter method

Prototype
SetStringParameter(
 param_number As Integer
 param_value As String
)
Member of UltraLiteAFLib.ULPreparedStatement

Description
Set the parameter to the specified string.

Parameters
param_number The 1-based parameter number to set.

param_value The value the parameter should receive.

ULPreparedStatement class

Copyright © 2006, iAnywhere Solutions, Inc. 109

ULPublicationSchema class
The ULPublicationSchema object allows you to obtain the attributes of a publication.

Properties

Prototype Description

Mask As Long (read-only) Gets the mask for the publication.

Name As String (read-only) Gets the name of the publication.

ContainsTable method

Prototype
ContainsTable(name As String) As Boolean
Member of UltraLiteAFLib.ULPublicationSchema

Description
Indicates whether the specified table is part of this publication.

Parameters
name The target table name.

Returns
True if the table is in the publication.

False if the table is not in the publication.

UltraLite for AppForge API Reference

110 Copyright © 2006, iAnywhere Solutions, Inc.

ULResultSet class
The ULResultSet object moves over rows returned by a SQL query. Since the ULResultSet object contains
the data returned by a query, you must refresh any query resultset after you have performed DML operations
such as INSERT, UPDATE, or DELETE. To do this, you should perform ExecuteQuery after you perform
ExecuteStatement.

ULResultSet columns are accessed using an ordinal number representing the 1-relative column number in
the result set. This parameter is named index in the following descriptions.

Note that get methods throw an error if the underlying column is NULL. Applications should first check for
a NULL value in the property or method before attempting a get.

Properties

Prototype Description

BOF As Boolean (read-only) Indicates whether the current row position is before the first
row. Returns True if the current row position is before the
first row, otherwise false.

EOF As Boolean (read-only) Indicates whether the current row position is after the last
row. EOF is true if beyond the last row, otherwise false.

RowCount As Long (read-only) The number of rows in the result set.

Schema As ULResultSetSchema (read-
only)

The schema description for this result set.

AppendByteChunk method

Prototype
AppendByteChunk(
 index As Integer,
 data As Long,
 data_len As Long)
Member of UltraLiteAFLib.ULResultSet

Description
Appends the buffer of bytes to the row's column if the type is ulTypeLongBinary.

Parameters
index The 1-based parameter number to set.

data The array of bytes to append.

data_len The number of bytes from the array to append.

ULResultSet class

Copyright © 2006, iAnywhere Solutions, Inc. 111

Errors set
ulSQLE_INVALID_PARAMETER This error occurs if the data length is less than 0.

ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not LONG BINARY.

AppendStringChunk method

Prototype
AppendStringChunk(
 index As Integer ,
 data As String)
Member of UltraLiteAFLib.ULResultSet

Description
Appends the string to the row's column if the type is ulTypeLongString.

Parameters
index The 1-based parameter number to set.

data A string to append to the existing string in a table.

Errors set
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not LONG VARCHAR.

Close method

Prototype
Close()
Member of UltraLiteAFLib.ULResultSet

Description
Frees all resources associated with this object.

Delete method

Prototype
Delete()
Member of UltraLiteAFLib.ULResultSet

Description
Deletes the current row of the table.

UltraLite for AppForge API Reference

112 Copyright © 2006, iAnywhere Solutions, Inc.

GetBoolean method

Prototype
GetBoolean(index As Integer) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Gets column value as boolean.

Parameters
index The 1-based ordinal in the result set.

Returns
The value as a boolean.

GetByte method

Prototype
GetByte(index As Integer) As Byte
Member of UltraLiteAFLib.ULResultSet

Description
Gets column value as byte.

Parameters
index The 1-based ordinal in the result set.

Returns
The value as a byte.

GetByteChunk method

Prototype
GetByteChunk (_
 index As Integer, _
 src_offset As Long, _
 data As Long, _
 data_len As Long, _
 filled_len As Long _
) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Fills the buffer passed in (which should be an array) with the binary data in the column. Suitable for BLOBs.

ULResultSet class

Copyright © 2006, iAnywhere Solutions, Inc. 113

Parameters
index The 1-based ordinal of the column containing the binary data.

offset The offset into the underlying array of bytes. The source offset must be greater than or equal to 0,
otherwise a SQLE_INVALID_PARAMETER error is raised. A buffer bigger than 64K is also permissible.

data A pointer to an array of bytes. To get the pointer to the array of bytes, use the Visual Basic VarPtr()
function.

data_len The length of the buffer, or array. The data_len must be greater than or equal to 0.

filled_len The number of bytes fetched. Because you do not know how big the BLOB data is in advance,
you generally fetch it using a fixed-length chunk, one chunk at a time. The last chunk may be smaller than
your chunk size. filled_len reports how many bytes were actually fetched.

Returns
The number of bytes read.

Errors set
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not BINARY or LONG
BINARY.

ulSQLE_INVALID_PARAMETER This error occurs if the column data type is BINARY and the offset
is not 0 or 1, or, the data length is less than 0.

The error also occurs if the column data type is LONG BINARY and the offset is less than 1.

Example
In the following example, edata is a column name. If the data_len parameter passed in is not sufficiently
long, the entire application terminates.

Dim data (512) As Byte
...
table.Column("edata").GetByteChunk(0,data)

GetDatetime method

Prototype
GetDatetime(index As Integer) As Date
Member of UltraLiteAFLib.ULResultSet

Description
Gets the column value as a Date.

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Date.

UltraLite for AppForge API Reference

114 Copyright © 2006, iAnywhere Solutions, Inc.

GetDouble method

Prototype
GetDouble(index As Integer) As Double
Member of UltraLiteAFLib.ULResultSet

Description
Gets the column value as a Double.

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Double.

GetInteger method

Prototype
GetInteger(index As Integer) As Integer
Member of UltraLiteAFLib.ULResultSet

Description
Gets the column value as an Integer.

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as an Integer.

GetLong method

Prototype
GetLong(index As Integer) As Long
Member of UltraLiteAFLib.ULResultSet

Description
Gets the column value as a Long.

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Long.

ULResultSet class

Copyright © 2006, iAnywhere Solutions, Inc. 115

GetReal method

Prototype
GetReal(index As Integer) As Single
Member of UltraLiteAFLib.ULResultSet

Description
Gets the column value as a Single.

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a Real.

GetString method

Prototype
GetString(index As Integer) As String
Member of UltraLiteAFLib.ULResultSet

Description
Gets the column value as a String.

Parameters
index The 1-based ordinal in the result set to get.

Returns
The value as a String.

GetStringChunk method

Prototype
GetStringChunk(_
 index As Integer, _
 offset As Long, _
 data As String, _
 string_len As Long, _
 filled_len As Long _
) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Fills the string passed in with the binary data in the column. Suitable for Long Varchars.

UltraLite for AppForge API Reference

116 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
index The 1-based column ID of the target column.

offset The character offset into the underlying data from which you start getting the string.

data The data string.

string_len The length of the string you want returned.

filled_len The length of the string filled.

Returns
Gets BLOB data from a binary or long binary column.

Errors set
ulSQLE_CONVERSION_ERROR This error occurs if the column data type is not CHAR or LONG
VARCHAR.

ulSQLE_INVALID_PARAMETER This error occurs if the column data type is CHAR and the src_offset
is greater than 64K.

This error also occurs if offset is less than 0 or string length is less than 0.

IsNull method

Prototype
IsNull(index As Integer) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Indicates whether this column contains a null value.

Parameters
index The column index value.

Returns
True if the value is NULL.

MoveAfterLast method

Prototype
MoveAfterLast()
Member of UltraLiteAFLib.ULResultSet

Description
Moves to a position after the last row of the ULResultSet.

ULResultSet class

Copyright © 2006, iAnywhere Solutions, Inc. 117

MoveBeforeFirst method

Prototype
MoveBeforeFirst()
Member of UltraLiteAFLib.ULResultSet

Description
Moves to a position before the first row.

MoveFirst method

Prototype
MoveFirst() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Moves to the first row.

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

MoveLast method

Prototype
MoveLast() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Moves to the last row.

Returns
True if successful.

False if unsuccessful. For example, if there are no rows, the method fails.

MoveNext method

Prototype
MoveNext() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Moves to the next row.

UltraLite for AppForge API Reference

118 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
True if successful.

False if unsuccessful. For example, if there are no rows, the method fails.

MovePrevious method

Prototype
MovePrevious() As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Moves to the previous row.

Returns
True if successful.

False if unsuccessful. For example, if there are no rows, the method fails.

MoveRelative method

Prototype
MoveRelative(index As Long) As Boolean
Member of UltraLiteAFLib.ULResultSet

Description
Moves a certain number of rows relative to the current row. Relative to the current position of the cursor in
the resultset, positive index values move forward in the resultset, negative index values move backward in
the resultset, and zero does not move the cursor.

Parameters
index The number of rows to move. The value can be positive, negative, or zero.

Returns
True if successful.

False if unsuccessful. For example, if there are no rows, the method fails.

SetBoolean method

Prototype
SetBoolean(
 index As Integer, _
 value As Boolean

ULResultSet class

Copyright © 2006, iAnywhere Solutions, Inc. 119

)
Member of UltraLiteAFLib.ULResultSet

Description
Set the specified column to the Boolean value passed in.

Parameters
index The 1-based ordinal of the column in the result set to be set.

value The new boolean value.

SetByte method

Prototype
SetByte(
index As Integer , _
data As Byte
)
Member of UltraLiteAFLib.ULResultSet

Description
Set the specified column to the Byte value passed in.

Parameters
index The 1-based ordinal in the result set.

SetByteChunk method

Prototype
SetByteChunk(
 index As Integer, _
 data As Long , _
 data_len As Long
)
Member of UltraLiteAFLib.ULResultSet

Description
Set the specified column to the binary value passed in.

Parameters
index The 1-based ordinal of the column in the result set to be set.

data A pointer to the buffer containing the new data.

data_len The length of the data buffer.

UltraLite for AppForge API Reference

120 Copyright © 2006, iAnywhere Solutions, Inc.

SetDatetime method

Prototype
SetDatetime(
 index As Integer
 value As Date
)
Member of UltraLiteAFLib.ULResultSet

Description
Set the specified column of the current row to the supplied Datetime value.

Parameters
index The 1-based ordinal of the column in the current row to set.

value The value the column is to receive.

SetDouble method

Prototype
SetDouble(
 index As Integer
 value As Double
)
Member of UltraLiteAFLib.ULResultSet

Description
Set the parameter to the specified Double value.

Parameters
index The 1-based ordinal of the column in the current row to set.

value The value the parameter should receive.

SetInteger method

Prototype
SetInteger(
 index As Integer
 value As Integer
)
Member of UltraLiteAFLib.ULResultSet

Description
Set the parameter to the specified Integer value.

ULResultSet class

Copyright © 2006, iAnywhere Solutions, Inc. 121

Parameters
index The 1-based ordinal of the column in the current row to set.

value The value the parameter should receive.

SetLong method

Prototype
SetLong(
 index As Integer
 value As Long
)
Member of UltraLiteAFLib.ULResultSet

Description
Set the parameter to the specified Long value.

Parameters
index The 1-based ordinal of the column in the current row to set.

value The value the parameter should receive.

SetNull method

Prototype
SetNull(index As Integer)
Member of UltraLiteAFLib.ULResultSet

Description
Set the specified column to NULL.

Parameters
index The 1-based ordinal of the column in the current row to set.

Update method

Prototype
Update()
Member of UltraLiteAFLib.ULResultSet

Description
Updates the current row of the table with the current data.

UltraLite for AppForge API Reference

122 Copyright © 2006, iAnywhere Solutions, Inc.

UpdateBegin method

Prototype
UpdateBegin()
Member of UltraLiteAFLib.ULResultSet

Description
Prepares a table for modification of the contents of the current row.

ULResultSet class

Copyright © 2006, iAnywhere Solutions, Inc. 123

ULResultSetSchema class
The ULResultSetSchema provides information about the schema of the result set.

Properties

Prototype Description

ColumnBaseName As String (read-only) Gets the base column name of a given column in the result
set (if available).

ColumnBaseTableName As String (read-
only)

Gets the base table name of a named column in the result set
(if available).

ColumnCount As Integer (read-only) Gets the number of columns in the result set.

ColumnID As Integer (read-only) Gets the column ID of a named column in the result set.

ColumnName As String (read-only) Gets the name of the column in the result set.

ColumnPrecision As Integer (read-only) Gets the precision of the datatype for the column if it is nu-
meric.

ColumnScale As Integer (read-only) Gets the scale of the datatype for the column if it is numeric.

ColumnSize As Integer (read-only) Gets the size of the datatype for the column.

ColumnSQLType As ULSQLType
(read-only)

Gets the ULSQLType of the column.

UltraLite for AppForge API Reference

124 Copyright © 2006, iAnywhere Solutions, Inc.

ULSQLCode enumeration
The ULSQLCode constants identify SQL codes that may be reported by UltraLite.

F For a description of the errors, see the SQL Anywhere 10 - Error Messages book.

members Description

SQLE_AGGREGATES_NOT_A
LLOWED

See “Invalid use of an aggregate function” [SQL Anywhere 10 -
Error Messages].

SQLE_ALIAS_NOT_UNIQUE See “Alias '%1' is not unique” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ALIAS_NOT_YET_DE-
FINED

See “Definition for alias '%1' must appear before its first refer-
ence” [SQL Anywhere 10 - Error Messages].

SQLE_AMBIGUOUS_INDEX_
NAME

See “Index name '%1' is ambiguous” [SQL Anywhere 10 - Error
Messages].

SQLE_BAD_ENCRYPTION_K
EY

See “Incorrect or missing encryption key” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_BAD_PARAM_INDEX See “Input parameter index out of range” [SQL Anywhere 10 - Error
Messages].

SQLE_CANNOT_ACCESS_FIL
ESYSTEM

See “Unable to access the filesystem on the device” [SQL Anywhere
10 - Error Messages].

SQLE_CANNOT_CHANGE_US
ER_NAME

See “Cannot change synchronization user_name when status of the
last upload is unknown” [SQL Anywhere 10 - Error Messages].

SQLE_CANNOT_CONVERT See “Invalid data conversion” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CANNOT_EXECUTE_S
TMT

See “Statement cannot be executed” [SQL Anywhere 10 - Error
Messages].

SQLE_CANNOT_MODIFY See “Cannot modify column '%1' in table '%2'” [SQL Anywhere 10
- Error Messages].

SQLE_CLIENT_OUT_OF_ME
MORY

See “Client out of memory” [SQL Anywhere 10 - Error
Messages].

SQLE_COLUMN_AMBIGU-
OUS

See “Column '%1' found in more than one table -- need a correlation
name” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_CANNOT_B
E_NULL

See “Column '%1' in table '%2' cannot be NULL” [SQL Anywhere
10 - Error Messages].

SQLE_COLUMN_IN_INDEX See “Cannot alter a column in an index” [SQL Anywhere 10 - Error
Messages].

ULSQLCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 125

members Description

SQLE_COLUMN_NOT_FOUN
D

See “Column '%1' not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_COLUMN_NOT_IN-
DEXED

See “Column '%1' not part of any indexes in its containing
table” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_NOT_STREA
MABLE

See “The operation failed because column '%1''s type does not sup-
port streaming” [SQL Anywhere 10 - Error Messages].

SQLE_COMMUNICATIONS_E
RROR

See “Communication error” [SQL Anywhere 10 - Error
Messages].

SQLE_CONNECTION_ALREA
DY_EXISTS

See “This connection already exists” [SQL Anywhere 10 - Error
Messages].

SQLE_CONNECTION_NOT_F
OUND

See “Connection not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CONNECTION_RE-
STORED

See “UltraLite connection was restored” [SQL Anywhere 10 - Error
Messages].

SQLE_CONSTRAINT_NOT_FO
UND

See “Constraint '%1' not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CONVERSION_ERROR See “Cannot convert %1 to a %2” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_COULD_NOT_FIND_FU
NCTION

See “Could not find '%1' in dynamic library '%2'” [SQL Anywhere
10 - Error Messages].

SQLE_COULD_NOT_LOAD_LI
BRARY

See “Could not load dynamic library '%1'” [SQL Anywhere 10 -
Error Messages].

SQLE_CURSOR_ALREADY_O
PEN

See “Cursor already open” [SQL Anywhere 10 - Error Messages].

SQLE_CURSOR_NOT_DE-
CLARED

See “Cursor has not been declared” [SQL Anywhere 10 - Error
Messages].

SQLE_CURSOR_NOT_OPEN See “Cursor not open” [SQL Anywhere 10 - Error Messages].

SQLE_CURSOR_RESTORED See “UltraLite cursor (or result set or table) was restored” [SQL
Anywhere 10 - Error Messages].

SQLE_CURSOROP_NOT_AL-
LOWED

See “Illegal cursor operation attempt” [SQL Anywhere 10 - Error
Messages].

SQLE_DATABASE_ERROR See “Internal database error %1 -- transaction rolled back” [SQL
Anywhere 10 - Error Messages].

SQLE_DATABASE_NAME_RE
QUIRED

See “Database name required to start server” [SQL Anywhere 10 -
Error Messages].

UltraLite for AppForge API Reference

126 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_DATABASE_NOT_CRE-
ATED

See “Database creation failed: %1” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_DATATYPE_NOT_AL-
LOWED

See “Expression has unsupported data type” [SQL Anywhere 10 -
Error Messages].

SQLE_DB_INIT_NOT_CALLE
D

See “db_init has not been called or the call to db_init failed” [SQL
Anywhere 10 - Error Messages]

SQLE_DBLIB_ENGINE_MIS-
MATCH

See “Client/database server version mismatch” [SQL Anywhere 10
- Error Messages]

SQLE_DBSPACE_FULL See “A dbspace has reached its maximum file size” [SQL Anywhere
10 - Error Messages].

SQLE_DESCRIBE_NONSE-
LECT

See “Can only describe a SELECT statement” [SQL Anywhere 10 -
Error Messages].

SQLE_DEVICE_IO_FAILED See “File I/O failed for '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_DIV_ZERO_ERROR See “Division by zero” [SQL Anywhere 10 - Error Messages].

SQLE_DOUBLE_REQUEST See “Attempted two active database requests” [SQL Anywhere 10 -
Error Messages]

SQLE_DOWNLOAD_CON-
FLICT

See “Download failed because of conflicts with existing rows” [SQL
Anywhere 10 - Error Messages].

SQLE_DOWNLOAD_RESTAR
T_FAILED

See “Unable to retry download because upload is not finished” [SQL
Anywhere 10 - Error Messages].

SQLE_DROP_DATABASE_FAI
LED

See “An attempt to delete database '%1' failed” [SQL Anywhere 10
- Error Messages].

SQLE_DUPLICATE_CURSOR_
NAME

See “The cursor name '%1' already exists” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_DUPLICATE_FOREIGN
_KEY

See “Foreign key '%1' for table '%2' duplicates an existing foreign
key” [SQL Anywhere 10 - Error Messages].

SQLE_DUPLICATE_OPTION See “Option '%1' specified more than once” [SQL Anywhere 10 -
Error Messages].

SQLE_DYNAMIC_MEMORY_
EXHAUSTED

See “Dynamic memory exhausted” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ENCRYPTION_INITIAL
IZATION_FAILED

See “Could not initialize the encryption DLL: '%1'” [SQL Anywhere
10 - Error Messages].

SQLE_ENGINE_ALREADY_R
UNNING

See “Database server already running” [SQL Anywhere 10 - Error
Messages].

ULSQLCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 127

members Description

SQLE_ENGINE_NOT_RUN-
NING

See “Database server not found” [SQL Anywhere 10 - Error Mes-
sages]

SQLE_ERROR See “Run time SQL error -- %1” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ERROR_CALLING_FUN
CTION

See “Could not allocate resources to call external function” [SQL
Anywhere 10 - Error Messages].

SQLE_ERROR_IN_ASSIGN-
MENT

See “Error in assignment” [SQL Anywhere 10 - Error Messages].

SQLE_EXPRESSION_ERROR See “Invalid expression near '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_FEATURE_NOT_EN-
ABLED

See “The method you attempted to invoke was not enabled for your
application” [SQL Anywhere 10 - Error Messages].

SQLE_FILE_BAD_DB See “Unable to start specified database: '%1' is not a valid database
file” [SQL Anywhere 10 - Error Messages].

SQLE_FILE_IN_USE See “Specified database file already in use” [SQL Anywhere 10 -
Error Messages].

SQLE_FILE_NOT_DB See “Unable to start specified database: '%1' is not a database” [SQL
Anywhere 10 - Error Messages].

SQLE_FILE_VOLUME_NOT_F
OUND

See “Specified file system volume not found for database '%
1'” [SQL Anywhere 10 - Error Messages].

SQLE_FILE_WRONG_VER-
SION

See “Unable to start specified database: '%1' was created by a dif-
ferent version of the software” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_FOREIGN_KEY_NAME
_NOT_FOUND

See “Foreign key name '%1' not found” [SQL Anywhere 10 - Error
Messages].

SQLE_IDENTIFIER_TOO_LON
G

See “Identifier '%1' too long” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INCORRECT_VOLUME
_ID

See “Incorrect volume ID for '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NAME_NOT_U
NIQUE

See “Index name '%1' not unique” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NOT_FOUND See “Cannot find index named '%1'” [SQL Anywhere 10 - Error
Messages].

SQLE_INDEX_NOT_UNIQUE See “Index '%1' for table '%2' would not be unique” [SQL Anywhere
10 - Error Messages].

UltraLite for AppForge API Reference

128 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_INTERRUPTED See “Statement interrupted by user” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_CONSTRAIN
T_REF

See “Invalid reference to or operation on constraint '%1'” [SQL
Anywhere 10 - Error Messages].

SQLE_INVALID_DESCRIPTO
R_INDEX

See “Invalid descriptor index” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_DESCRIPTO
R_NAME

See “Invalid SQL descriptor name” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_DISTINCT_A
GGREGATE

See “Grouped query contains more than one distinct aggregate func-
tion” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_FOREIGN_K
EY

See “No primary key value for foreign key '%1' in table '%2'” [SQL
Anywhere 10 - Error Messages].

SQLE_INVALID_FOREIGN_K
EY_DEF

See “Column '%1' in foreign key has a different definition than pri-
mary key” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_GROUP_SE-
LECT

See “Function or column reference to '%1' must also appear in a
GROUP BY” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_INDEX_TYP
E

See “Index type specification of '%1' is invalid” [SQL Anywhere 10
- Error Messages].

SQLE_INVALID_LOGON See “Invalid user ID or password” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_OPTION_SET
TING

See “Invalid setting for option '%1'” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_OPTION_VA
LUE

See “'%1' is an invalid value for '%2'” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_ORDER See “Invalid ORDER BY specification” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_PARAMETER See “Invalid parameter” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_PARSE_PA-
RAMETER

See “Parse error: %1” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_PUBLICATIO
N_MASK

See “The specified publication mask is invalid” [SQL Anywhere 10
- Error Messages].

SQLE_INVALID_SQL_IDENTI-
FIER

See “Invalid SQL identifier” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_STATEMENT See “Invalid statement” [SQL Anywhere 10 - Error Messages].

ULSQLCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 129

members Description

SQLE_INVALID_UNION See “Select lists in UNION, INTERSECT, or EXCEPT do not match
in length” [SQL Anywhere 10 - Error Messages].

SQLE_KEYLESS_ENCRYP-
TION

See “Unable to perform requested operation since this database uses
keyless encryption” [SQL Anywhere 10 - Error Messages].

SQLE_LOCKED See “User '%1' has the row in '%2' locked” [SQL Anywhere 10 -
Error Messages].

SQLE_MEMORY_ERROR See “Memory error -- transaction rolled back” [SQL Anywhere 10 -
Error Messages].

SQLE_METHOD_CANNOT_BE
_CALLED

See “Method '%1' cannot be called at this time” [SQL Anywhere 10
- Error Messages].

SQLE_NAME_NOT_UNIQUE See “Item '%1' already exists” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NO_COLUMN_NAME See “Derived table '%1' has no name for column %2” [SQL Any-
where 10 - Error Messages].

SQLE_NO_CURRENT_ROW See “No current row of cursor” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NO_INDICATOR See “No indicator variable provided for NULL result” [SQL Any-
where 10 - Error Messages].

SQLE_NO_MATCHING_SELE
CT_ITEM

See “The select list for the derived table '%1' has no expression to
match '%2'” [SQL Anywhere 10 - Error Messages].

SQLE_NO_PRIMARY_KEY See “Table '%1' has no primary key” [SQL Anywhere 10 - Error
Messages].

SQLE_NOERROR SQLE_NOERROR(0) - This code indicates that there was no error
or warning.

SQLE_NON_UPDATEABLE_C
OLUMN

See “Cannot update an expression” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NON_UPDATEABLE_C
URSOR

See “FOR UPDATE has been incorrectly specified for a READ
ONLY cursor” [SQL Anywhere 10 - Error Messages].

SQLE_NOT_IMPLEMENTED See “Feature '%1' not implemented” [SQL Anywhere 10 - Error
Messages].

SQLE_NOT_SUPPORTED_IN_
ULTRALITE

See “Feature not available with UltraLite” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_NOTFOUND See “Row not found” [SQL Anywhere 10 - Error Messages].

SQLE_ONLY_ONE_TABLE See “INSERT/DELETE on cursor can modify only one table” [SQL
Anywhere 10 - Error Messages].

UltraLite for AppForge API Reference

130 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_OVERFLOW_ERROR See “Value %1 out of range for destination” [SQL Anywhere 10 -
Error Messages].

SQLE_PAGE_SIZE_INVALID See “Invalid database page size” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_PARTIAL_DOWNLOAD
_NOT_FOUND

See “No partial download was found” [SQL Anywhere 10 - Error
Messages].

SQLE_PERMISSION_DENIED See “Permission denied: %1” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_PRIMARY_KEY_NOT_
UNIQUE

See “Primary key for table '%1' is not unique” [SQL Anywhere 10 -
Error Messages].

SQLE_PRIMARY_KEY_TWIC
E

See “Table cannot have two primary keys” [SQL Anywhere 10 -
Error Messages].

SQLE_PRIMARY_KEY_VALU
E_REF

See “Primary key for row in table '%1' is referenced by foreign key
'%2' in table '%3'” [SQL Anywhere 10 - Error Messages].

SQLE_PUBLICATION_NOT_F
OUND

See “Publication '%1' not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_PUBLICATION_PREDIC
ATE_IGNORED

See “Publication predicates were not evaluated” [SQL Anywhere 10
- Error Messages].

SQLE_RESOURCE_GOVERNO
R_EXCEEDED

See “Resource governor for '%1' exceeded” [SQL Anywhere 10 -
Error Messages].

SQLE_ROW_DELETED_TO_M
AINTAIN_REFERENTIAL_IN-
TEGRITY

See “Row was dropped from table %1 to maintain referential in-
tegrity” [SQL Anywhere 10 - Error Messages].

SQLE_SERVER_SYNCHRONI
ZATION_ERROR

See “Synchronization failed due to an error on the server: %1” [SQL
Anywhere 10 - Error Messages].

SQLE_START_STOP_DATAB
ASE_DENIED

See “Request to start/stop database denied” [SQL Anywhere 10 -
Error Messages].

SQLE_STATEMENT_ERROR See “SQL statement error” [SQL Anywhere 10 - Error Messages].

SQLE_STRING_RIGHT_TRUN-
CATION

See “Right truncation of string data” [SQL Anywhere 10 - Error
Messages].

SQLE_SUBQUERY_SELECT_L
IST

See “Subquery allowed only one select list item” [SQL Anywhere
10 - Error Messages].

SQLE_SYNC_INFO_INVALID See “Information for synchronization is incomplete or invalid,
check '%1'” [SQL Anywhere 10 - Error Messages].

SQLE_SYNC_INFO_RE-
QUIRED

See “Information for synchronization was not provided” [SQL Any-
where 10 - Error Messages].

ULSQLCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 131

members Description

SQLE_SYNC_NOT_REEN-
TRANT

See “Synchronization process was unable to re-enter synchroniza-
tion” [SQL Anywhere 10 - Error Messages].

SQLE_SYNC_STATUS_UN-
KNOWN

See “The status of the last synchronization upload is
unknown” [SQL Anywhere 10 - Error Messages].

SQLE_SYNTAX_ERROR See “Syntax error near '%1' %2” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_TABLE_ALREADY_IN-
CLUDED

See “Table '%1' is already included” [SQL Anywhere 10 - Error
Messages].

SQLE_TABLE_IN_USE See “Table in use” [SQL Anywhere 10 - Error Messages].

SQLE_TABLE_NOT_FOUND See “Table '%1' not found” [SQL Anywhere 10 - Error Messages].

SQLE_TOO_MANY_BLOB_RE
FS

See “Too many references to a BLOB” [SQL Anywhere 10 - Error
Messages].

SQLE_TOO_MANY_CONNEC-
TIONS

See “Database server connection limit exceeded” [SQL Anywhere
10 - Error Messages].

SQLE_TOO_MANY_PUBLICA-
TIONS

See “Too many publications specified in publication mask” [SQL
Anywhere 10 - Error Messages].

SQLE_TOO_MANY_TEMP_TA
BLES

See “Too many temporary tables in connection” [SQL Anywhere 10
- Error Messages].

SQLE_TOO_MANY_USERS See “Too many users in database” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ULTRALITE_DATABAS
E_NOT_FOUND

See “The database '%1' was not found” [SQL Anywhere 10 - Error
Messages].

SQLE_ULTRALITE_OBJ_CLO
SED

See “Invalid operation on a closed object” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_ULTRALITE_WRITE_A
CCESS_DENIED

See “Write access was denied” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNABLE_TO_CON-
NECT

See “Database cannot be started -- %1” [SQL Anywhere 10 - Error
Messages].

SQLE_UNABLE_TO_CONNEC
T_OR_START

See “Server not found and unable to autostart” [SQL Anywhere 10
- Error Messages]

SQLE_UNABLE_TO_START_
DATABASE

See “Unable to start specified database: %1” [SQL Anywhere 10 -
Error Messages].

SQLE_UNABLE_TO_START_
DATABASE_VER_NEWER

See “Unable to start specified database: Server must be upgraded to
start database %1” [SQL Anywhere 10 - Error Messages].

UltraLite for AppForge API Reference

132 Copyright © 2006, iAnywhere Solutions, Inc.

members Description

SQLE_UNABLE_TO_START_E
NGINE

See “Unable to start database server” [SQL Anywhere 10 - Error
Messages]

SQLE_UNCOMMITTED_TRAN
SACTIONS

See “You cannot synchronize or upgrade with uncommitted trans-
actions” [SQL Anywhere 10 - Error Messages].

SQLE_UNKNOWN_FUNC See “Unknown function '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNKNOWN_OPTION See “'%1' is an unknown option” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNKNOWN_USERID See “User ID '%1' does not exist” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNRECOGNIZED_OP-
TION

See “The option '%1' is not recognized” [SQL Anywhere 10 - Error
Messages].

SQLE_UPLOAD_FAILED_AT_
SERVER

See “Synchronization server failed to commit the upload” [SQL
Anywhere 10 - Error Messages].

SQLE_VALUE_IS_NULL See “Cannot return NULL result as requested data type” [SQL Any-
where 10 - Error Messages].

SQLE_VARIABLE_INVALID See “Invalid host variable” [SQL Anywhere 10 - Error Messages].

SQLE_WRONG_NUM_OF_INS
ERT_COLS

See “Wrong number of values for INSERT” [SQL Anywhere 10 -
Error Messages].

SQLE_WRONG_PARAMETER
_COUNT

See “Wrong number of parameters to function '%1'” [SQL Anywhere
10 - Error Messages].

ULSQLCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 133

ULSQLType enumeration
ULSQLType lists the available UltraLite SQL database types used as table column types.

Constant UltraLite Database Type Value

ulTypeLong Integer 0

ulTypeShort UnsignedInteger 1

ulTypeUnsignedLong SmallInt 2

ulTypeUnsignedShort UnsignedSmallInt 3

ulTypeBig Big 4

ulTypeUnsignedBig UnsignedBig 5

ulTypeByte Byte 6

ulTypeBit Bit 7

ulTypeDateTime Time 8

ulTypeDate Date 9

ulTypeTime Timestamp 10

ulTypeDouble Double 11

ulTypeReal Real 12

ulTypeBinary LongBinary 13

ulTypeLongBinary Numeric 14

ulTypeString (Var)Char 15

ulTypeLongString LongVarchar 16

ulTypeNumeric (Var)Binary 17

ulTypeUUID UniqueIdentifier 18

UltraLite for AppForge API Reference

134 Copyright © 2006, iAnywhere Solutions, Inc.

ULStreamErrorCode enumeration
The ULStreamErrorCode constants identify communications errors during synchronization.

F For more information about these errors, see “MobiLink Communication Error Messages” [SQL
Anywhere 10 - Error Messages].

Constant Value

ulStreamErrorCodeNone 0

ulStreamErrorCodeParameter 1

ulStreamErrorCodeParameterNotUint32 2

ulStreamErrorCodeParameterNotUint32Range 3

ulStreamErrorCodeParameterNotBoolean 4

ulStreamErrorCodeParameterNotHex 5

ulStreamErrorCodeMemoryAllocation 6

ulStreamErrorCodeParse 7

ulStreamErrorCodeRead 8

ulStreamErrorCodeWrite 9

ulStreamErrorCodeEndWrite 10

ulStreamErrorCodeEndRead 11

ulStreamErrorCodeNotImplemented 12

ulStreamErrorCodeWouldBlock 13

ulStreamErrorCodeGenerateRandom 14

ulStreamErrorCodeInitRandom 15

ulStreamErrorCodeSeedRandom 16

ulStreamErrorCodeCreateRandomObject 17

ulStreamErrorCodeShuttingDown 18

ulStreamErrorCodeDequeuingConnection 19

ulStreamErrorCodeSecureCertificateRoot 20

ulStreamErrorCodeSecureCertificateCompanyName 21

ULStreamErrorCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 135

Constant Value

ulStreamErrorCodeSecureCertificateChainLength 22

ulStreamErrorCodeSecureCertificateRef 23

ulStreamErrorCodeSecureCertificateNotTrusted 24

ulStreamErrorCodeSecureDuplicateContext 25

ulStreamErrorCodeSecureSetIo 26

ulStreamErrorCodeSecureSetIoSemantics 27

ulStreamErrorCodeSecureCertificateChainFunc 28

ulStreamErrorCodeSecureCertificateChainRef 29

ulStreamErrorCodeSecureEnableNonBlocking 30

ulStreamErrorCodeSecureSetCipherSuites 31

ulStreamErrorCodeSecureSetChainNumber 32

ulStreamErrorCodeSecureCertificateFileNotFound 33

ulStreamErrorCodeSecureReadCertificate 34

ulStreamErrorCodeSecureReadPrivateKey 35

ulStreamErrorCodeSecureSetPrivateKey 36

ulStreamErrorCodeSecureCertificateExpiryDate 37

ulStreamErrorCodeSecureExportCertificate 38

ulStreamErrorCodeSecureAddCertificate 39

ulStreamErrorCodeSecureTrustedCertificateFileNotFound 40

ulStreamErrorCodeSecureTrustedCertificateRead 41

ulStreamErrorCodeSecureCertificateCount 42

ulStreamErrorCodeSecureCreateCertificate 43

ulStreamErrorCodeSecureImportCertificate 44

ulStreamErrorCodeSecureSetRandomRef 45

ulStreamErrorCodeSecureSetRandomFunc 46

ulStreamErrorCodeSecureSetProtocolSide 47

ulStreamErrorCodeSecureAddTrustedCertificate 48

UltraLite for AppForge API Reference

136 Copyright © 2006, iAnywhere Solutions, Inc.

Constant Value

ulStreamErrorCodeSecureCreatePrivateKeyObject 49

ulStreamErrorCodeSecureCertificateExpired 50

ulStreamErrorCodeSecureCertificateCompanyUnit 51

ulStreamErrorCodeSecureCertificateCommonName 52

ulStreamErrorCodeSecureHandshake 53

ulStreamErrorCodeHttpVersion 54

ulStreamErrorCodeSecureSetReadFunc 55

ulStreamErrorCodeSecureSetWriteFunc 56

ulStreamErrorCodeSocketHostNameNotFound 57

ulStreamErrorCodeSocketGetHostByAddr 58

ulStreamErrorCodeSocketLocalhostNameNotFound 59

ulStreamErrorCodeSocketCreateTcpip 60

ulStreamErrorCodeSocketCreateUdp 61

ulStreamErrorCodeSocketBind 62

ulStreamErrorCodeSocketCleanup 63

ulStreamErrorCodeSocketClose 64

ulStreamErrorCodeSocketConnect 65

ulStreamErrorCodeSocketGetName 66

ulStreamErrorCodeSocketGetOption 67

ulStreamErrorCodeSocketSetOption 68

ulStreamErrorCodeSocketListen 69

ulStreamErrorCodeSocketShutdown 70

ulStreamErrorCodeSocketSelect 71

ulStreamErrorCodeSocketStartup 72

ulStreamErrorCodeSocketPortOutOfRange 73

ulStreamErrorCodeLoadNetworkLibrary 74

ulStreamErrorCodeActsyncNoPort 75

ULStreamErrorCode enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 137

Constant Value

ulStreamErrorCodeHttpExpectedPost 89

UltraLite for AppForge API Reference

138 Copyright © 2006, iAnywhere Solutions, Inc.

ULStreamErrorContext enumeration
The ULStreamErrorContext constants identify constants you can use to specify ULStreamErrorContext. The
ULStreamErrorContext is the network operation performed when the stream error happens.

Constant Value

ulStreamErrorContextUnknown 0

ulStreamErrorContextRegister 1

ulStreamErrorContextUnregister 2

ulStreamErrorContextCreate 3

ulStreamErrorContextDestroy 4

ulStreamErrorContextOpen 5

ulStreamErrorContextClose 6

ulStreamErrorContextRead 7

ulStreamErrorContextWrite 8

ulStreamErrorContextWriteFlush 9

ulStreamErrorContextEndWrite 10

ulStreamErrorContextEndRead 11

ulStreamErrorContextYield 12

ulStreamErrorContextSoftshutdown 13

ULStreamErrorContext enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 139

ULStreamErrorID enumeration
The ULStreamErrorID is an enumeration of the possible network layers that caused an error in an
unsuccessful synchronization.

Constant Value

ulStreamErrorIDTcpip 0

ulStreamErrorIDSerial 1

ulStreamErrorIDFake 2

ulStreamErrorIDPalmConduit 3

ulStreamErrorIDPalmSs 4

ulStreamErrorIDNettech 5

ulStreamErrorIDRimbb 6

ulStreamErrorIDHttp 7

ulStreamErrorIDHttps 8

ulStreamErrorIDDhCast 9

ulStreamErrorIDSecure 10

ulStreamErrorIDCerticom 11

ulStreamErrorIDJavaCerticom 12

ulStreamErrorIDCerticomSsl 13

ulStreamErrorIDCerticomTls 14

ulStreamErrorIDWirestrm 15

ulStreamErrorIDWireless 16

ulStreamErrorIDReplay 17

ulStreamErrorIDStrm 18

ulStreamErrorIDUdp 19

ulStreamErrorIDEmail 20

ulStreamErrorIDFile 21

ulStreamErrorIDActivesync 22

ulStreamErrorIDRsaTls 23

UltraLite for AppForge API Reference

140 Copyright © 2006, iAnywhere Solutions, Inc.

Constant Value

ulStreamErrorIDJavaRsa 24

ulStreamErrorIDOpenSslRsa 25

ulStreamErrorIDPalmSsl 26

ULStreamErrorID enumeration

Copyright © 2006, iAnywhere Solutions, Inc. 141

ULStreamType enumeration
The ULStreamType constants identify constants you can use to specify stream type. These represent the
types of MobiLink synchronization streams you can use for synchronization.

Constant Value Description

ulUnknown 0 No stream type has been set. You must set a stream
type before synchronization.

ulTCPIP 1 TCP/IP stream

ulHTTP 2 HTTP stream

ulHTTPS 3 HTTPS synchronization

ulPalmConduit 4 For HotSync synchronization

ulTLS 5 TLS (Transport Layer Security)

UltraLite for AppForge API Reference

142 Copyright © 2006, iAnywhere Solutions, Inc.

ULSyncEvent class

OnReceive event

Prototype
OnReceive(
 nBytes As Long, _
 nInserts As Long, _
 nUpdates As Long, _
 nDeletes As Long _
)
Member of UltraLiteAFLib.ULSyncEvent

Description
Reports download information to the application from the consolidated database via MobiLink. This event
may be called several times.

Parameters
nBytes Cumulative count of bytes received at the remote application from the consolidated database.

nInserts Cumulative count of inserts received at the remote application from the consolidated database.

nUpdates Cumulative count of updates received at the remote application from the consolidated database.

nDeletes Cumulative count of deletes received at the remote application from the consolidated database.

Example
For an example of this method, see the CustDB application.

OnSend event

Prototype
OnSend(
 nBytes As Long, _
 nInserts As Long, _
 nUpdates As Long, _
 nDeletes As Long _
)
Member of UltraLiteAFLib.ULSyncEvent

Description
Reports upload information from the remote database via MobiLink to the consolidated database. This event
may be called several times.

ULSyncEvent class

Copyright © 2006, iAnywhere Solutions, Inc. 143

Parameters
nBytes Cumulative count of bytes sent by the remote application to the consolidated database via
MobiLink.

nInserts Cumulative count of inserts sent by the remote application to the consolidated database via
MobiLink.

nUpdates Cumulative count of updates sent by the remote application to the consolidated database via
MobiLink.

nDeletes Cumulative count of deletes sent by the remote application to the consolidated database via
MobiLink.

Example
For an example of this method, see the CustDB application.

OnStateChange event

Prototype
OnStateChange(
 newState As ULSyncState, _
 oldState As ULSyncState _
)
Member of UltraLiteAFLib.ULSyncEvent

Description
This event is called whenever the state of the synchronization changes. For more information, see
“ULSyncState enumeration” on page 150.

Parameters
newState The state that the synchronization process is about to enter.

oldState The state that the synchronization process just completed.

Example
For an example of this method, see the CustDB application.

OnTableChange event

Prototype
OnTableChange(
 newTableIndex As Long, _
 numTables As Long _
)
Member of UltraLiteAFLib.ULSyncEvent

UltraLite for AppForge API Reference

144 Copyright © 2006, iAnywhere Solutions, Inc.

Description
This event is called whenever the synchronization process begins synchronizing another table.

Parameters
newTableIndex The index number of the table currently being synchronized. This number is not the same
as the table ID, therefore, it cannot be used with the ULDatabaseSchema.GetTableName method.

numTables The number of tables eligible to be synchronized.

Example
For an example of this method, see the CustDB application.

OnWaiting event

Prototype
OnWaiting()Member of UltraLiteAFLib.ULSyncEvent

Description
This event is called whenever synchronization is waiting for a MobiLink response.

Parameters
None.

Example

ULSyncEvent class

Copyright © 2006, iAnywhere Solutions, Inc. 145

ULSyncParms class
The attributes set for the ULSyncParms object determine how the database synchronizes with the
consolidated or desktop database. Attributes that are read-only reflect the status of the last synchronization.

Properties

The following are properties of ULSyncParms:

Prototype Description

CheckpointStore As Boolean If true, adds checkpoints of the database during syn-
chronization to limit database growth during the syn-
chronization process. This is most useful for large
downloads with many updates.

See “Checkpoint Store synchronization
parameter” [MobiLink - Client Administration].

DownloadOnly As Boolean Indicates if a synchronization only downloads data.

See “Download Only synchronization parameter” [Mo-
biLink - Client Administration].

KeepPartialDownload As Boolean If the synchronization fails during download because of
a communications error, apply those changes that were
successfully downloaded, rather than rolling back all the
changes.

See “Keep Partial Download synchronization parame-
ter” [MobiLink - Client Administration].

NewPassword As String Change a user password to this new password string on
the next synchronization.

See “New Password synchronization parameter” [Mo-
biLink - Client Administration].

Password As String The password corresponding to a given user name.

See “Password synchronization parameter” [MobiLink
- Client Administration].

PingOnly As Boolean If true, check the server for liveness, but do not syn-
chronize data.

See “Ping synchronization parameter” [MobiLink -
Client Administration].

PublicationMask As Long Specify the publications to synchronize. The default is
to synchronize all data.

See “Publication synchronization parameter” [Mo-
biLink - Client Administration].

UltraLite for AppForge API Reference

146 Copyright © 2006, iAnywhere Solutions, Inc.

Prototype Description

ResumePartialDownload As Boolean Resume a synchronization that failed during download
because of a communications error, applying only those
changes that were scheduled to be downloaded in the
failed synchronization.

See “Resume Partial Download synchronization param-
eter” [MobiLink - Client Administration].

SendColumnNames As Boolean If SendColumnNames is true, column names are sent to
the MobiLink synchronization server.

See “Send Column Names synchronization parame-
ter” [MobiLink - Client Administration].

SendDownloadAck As Boolean If SendDownloadAck is true, a download acknowledge-
ment is sent during synchronization.

See “Send Download Acknowledgment synchroniza-
tion parameter” [MobiLink - Client Administration].

Stream As ULStreamType constants Set the type of stream to use during synchronization.

See “Stream Type synchronization parameter” [Mo-
biLink - Client Administration].

StreamParms As String Set network protocol options for the given stream type.

See “Stream Parameters synchronization
parameter” [MobiLink - Client Administration] and
“Network protocol options for UltraLite synchroniza-
tion streams” [MobiLink - Client Administration].

TableOrder As String Specify Table synchronization order.

F “Table Order synchronization parameter” [Mo-
biLink - Client Administration]

UploadOnly As Boolean Indicates whether a synchronization only uploads data.

See “Upload Only synchronization parameter” [Mo-
biLink - Client Administration].

UserName As String The MobiLink user name for synchronization.

See “User Name synchronization parameter” [Mo-
biLink - Client Administration].

Version As String The synchronization script version to run.

See “Version synchronization parameter” [MobiLink -
Client Administration].

Examples
The following example sets synchronization parameters for an UltraLite for MobileVB application.

ULSyncParms class

Copyright © 2006, iAnywhere Solutions, Inc. 147

With Connection.SyncParms
 .UserName = "afsample"
 .Stream = ULStreamType.ulTCPIP
 .Version = "ul_default"
End With
Connection.Synchronize

AddAuthenticationParm method

Prototype
AddAuthenticationParm(BSTR parm)
Member of UltraLiteAFLib.ULSyncParms

Description
Adds a parameter to be passed to the authenticate_parms MobiLink synchronization script.

Parameters
parm The parameter being added.

Returns
No return value.

See also
♦ “Authentication Parameters synchronization parameter” [MobiLink - Client Administration]
♦ “authenticate_parameters connection event” [MobiLink - Server Administration]

ClearAuthenticationParms method

Prototype
ClearAuthenticationParms()
Member of UltraLiteAFLib.ULSyncParms

Description
Clears all parameters that were to be passed to the authenticate_parms MobiLink synchronization script.

Returns
No return value.

See also
♦ “Authentication Parameters synchronization parameter” [MobiLink - Client Administration]
♦ “authenticate_parameters connection event” [MobiLink - Server Administration]

UltraLite for AppForge API Reference

148 Copyright © 2006, iAnywhere Solutions, Inc.

ULSyncResult class
The attributes of the ULSyncResult object store the results of the last synchronization.

Properties

The following are properties of ULSyncResult:

Prototype Description

AuthStatus As ULAuthStatusCode
(read-only)

Gets the authorization status code for the last synchronization.

See “Authentication Status synchronization parameter” [Mo-
biLink - Client Administration].

AuthValue As Long (read-only) Gets the MobiLink authentication value.

See “Authentication Value synchronization parameter” [Mo-
biLink - Client Administration].

PartialDownloadRetained As
Boolean (read-only)

Indicates that the synchronization failed during download, and
that a partial download was kept.

See “Partial Download Retained synchronization
parameter” [MobiLink - Client Administration].

IgnoredRows As Boolean (read-only) Indicates whether rows were ignored during the last synchro-
nization.

See “Ignored Rows synchronization parameter” [MobiLink -
Client Administration].

StreamErrorCode As ULStreamEr-
rorCode (read-only)

Gets the error code reported by the synchronization stream.

StreamErrorContext As ULStream-
ErrorContext (read-only)

Gets the basic network operation performed.

StreamErrorID As ULStreamErrorID
(read-only)

Gets the network layer reporting the error.

StreamErrorSystem As Long (read-
only)

Gets the stream error system-specific code.

Timestamp as Date (read-only) Gets the timestamp of the last synchronization.

UploadOK As Boolean (read-only) Indicates whether data was uploaded successfully in the last syn-
chronization.

See “Version synchronization parameter” [MobiLink - Client Ad-
ministration].

ULSyncResult class

Copyright © 2006, iAnywhere Solutions, Inc. 149

ULSyncState enumeration
Constant Value Description

ulSyncStateStarting 0 No synchronization actions have been taken yet.

ulSyncStateConnecting 1 The synchronization stream has been built, but
not yet opened.

ulSyncStateSendingHeader 2 The synchronization stream has been opened
and the header is about to be sent.

ulSyncStateSendingTable 3 A table is being sent.

ulSyncStateSendingData 4 Data for the current table is being sent.

ulSyncStateFinishingUpload 5 The upload is completing. The final count of
rows sent is included with this event.

ulSyncStateReceivingUploadAck 6 An acknowledgement that the upload is com-
plete is being received.

ulSyncStateReceivingTable 7 A table is being received.

ulSyncStateReceivingData 8 Data for the current table is being received.

ulSyncStateCommittingDown-
load

9 The download is being committed. The final
count of rows received is included with this
event.

ulSyncStateSendingDownload-
Ack

10 An acknowledgement that the download is com-
plete is being sent.

ulSyncStateDisconnecting 11 The synchronization stream is about to be
closed.

ulSyncStateDone 12 Synchronization has successfully completed.
The SyncResult object has been updated.

ulSyncStateError 13 Synchronization has completed but an error oc-
curred. Check SyncResult and SQLCode for
details.

ulSyncStateRollingBackDown-
load

14 Synchronization is rolling back the download
because an error was encountered during the
download. The error is reported with a subse-
quent ulSyncStateError progress report.

ulSyncStateCancelled 99 Synchronization has been canceled.

UltraLite for AppForge API Reference

150 Copyright © 2006, iAnywhere Solutions, Inc.

ULTable class
The ULTable class is used to store, remove, update, and read data from a table.

Before you can work with table data, you must call the Open method. ULTable uses the following table
modes for table operations.

Mode Description

FindBegin Begins find mode

InsertBegin Begins insert mode

LookupBegin Begins lookup mode

UpdateBegin Begins update mode

Properties

Prototype Description

BOF As Boolean (read-only) Indicates whether the current row position is be-
fore the first row. Returns True if the current row
position is before the first row, otherwise false.

EOF As Boolean (read-only) Indicates whether the current row position is after
the last row. Returns True if the current row po-
sition is before the first row, otherwise false.

IsOpen As Boolean (read-only) Indicates whether the table is currently open.

RowCount As Long (read-only) Gets the number of rows in the table.

Schema As ULTableSchema (read-only) Gets information about the table schema.

Close method

Prototype
Close()
Member of UltraLiteAFLib.ULTable

Description
Frees resources associated with the table. This method should be called after all processing involving the
table is complete.

For the Palm OS, if a table is not closed it can be reopened to its current position.

ULTable class

Copyright © 2006, iAnywhere Solutions, Inc. 151

Column method

Column(name As String) As ULColumn
Member of UltraLiteAFLib.ULTable

Description
Returns the object for the specified column name.

For information about the ULColumn object, see “ULColumn class” on page 74.

Parameters
name The name of the column to return.

Returns
Returns a Column's object.

Delete method

Prototype
Delete()
Member of UltraLiteAFLib.ULTable

Description
Deletes the current row from the table.

DeleteAllRows method

Prototype
DeleteAllRows()
Member of UltraLiteAFLib.ULTable

Description
Deletes all rows in the table.

In some applications, it can be useful to delete all rows from tables before downloading a new set of data
into the table. Rows can be deleted from the UltraLite database without being deleted from the consolidated
database using the ULConnection.StopSynchronizationDelete method or calling Truncate instead of
DeleteAllRows.

FindBegin method

Prototype
FindBegin()
Member of UltraLiteAFLib.ULTable

UltraLite for AppForge API Reference

152 Copyright © 2006, iAnywhere Solutions, Inc.

Description
Prepares a table for a find.

FindFirst method

Prototype
FindFirst([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves forward through the table from the beginning, looking for a row that exactly matches a value or set
of values in the current index.

The current index is that used to specify the sort order of the table. It is specified when your application calls
the Open method. The default index is the primary key.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that exactly matches the index value. On failure the cursor position is after the last row
(EOF).

Note
Requires that FindBegin be called prior to using this method.

Parameters
num_columns An optional parameter referring to the number of columns to be used in the FindFirst. For
example, if 2 is passed, the first two columns are used for the FindFirst. If num_columns exceeds the number
of columns indexed, all columns are used in FindFirst.

Returns
True if successful.

False if unsuccessful.

FindLast method

Prototype
FindLast([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves backward through the table from the end, looking for a row that matches a value or set of values in
the current index.

The current index is used to specify the sort order of the table. It is specified when your application calls the
Open method. The default index is the primary key.

ULTable class

Copyright © 2006, iAnywhere Solutions, Inc. 153

F For more information, see “Open method” on page 160.

To specify the value for which to search, set the column value for each column in the index for which you
want to find the value. The cursor is left on the last row found that exactly matches the index value. On
failure the cursor position is before the first row (BOF).

Note
Requires that FindBegin be called prior to using this method.

Parameters
num_columns An optional parameter referring to the number of columns to be used in the FindLast. For
example, if 2 is passed, the first two columns are used for the FindLast. If num_columns exceeds the number
of columns indexed, all columns are used in FindLast.

Returns
True if successful.

False if unsuccessful.

FindNext method

Prototype
FindNext([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves forward through the table from the current position, looking for the next row that exactly matches a
value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is specified when your application calls
the Open method. The default index is the primary key.

F For more information, see “Open method” on page 160.

The cursor is left on the first row found that exactly matches the index value. On failure, the cursor position
is after the last row (EOF).

Note
Must be preceded by FindFirst or FindLast.

Parameters
num_columns An optional parameter referring to the number of columns to be used in the FindNext. For
example, if 2 is passed, the first two columns are used for the FindNext. If num_columns exceeds the number
of columns indexed, all columns are used in FindNext.

UltraLite for AppForge API Reference

154 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
True if successful.

False if unsuccessful (EOF).

FindPrevious method

Prototype
FindPrevious([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves backward through the table from the current position, looking for the previous row that exactly
matches a value or set of values in the current index.

The current index is used to specify the sort order of the table. It is specified when your application calls the
Open method. The default index is the primary key.

F For more information, see “Open method” on page 160.

On failure it is positioned before the first row (BOF).

Parameters
num_columns An optional parameter referring to the number of columns to be used in the FindPrevious.
For example, if 2 is passed, the first two columns are used for the FindPrevious. If num_columns exceeds
the number of columns indexed, all columns are used in FindPrevious.

Returns
True if successful.

False if unsuccessful (BOF).

Insert method

Prototype
Insert() As Boolean
Member of UltraLiteAFLib.ULTable

Description
Inserts a row in the table with values specified in previous Set methods. Must be preceded by
InsertBegin. Set for each ULColumn object.

Returns
True if successful.

False if unsuccessful (BOF).

ULTable class

Copyright © 2006, iAnywhere Solutions, Inc. 155

InsertBegin method

Prototype
InsertBegin()
Member of UltraLiteAFLib.ULTable

Description
Prepares a table for inserting a new row, setting column values to their defaults.

Examples
In this example, InsertBegin sets insert mode to allow you to begin assigning data values to CustomerTable
columns.

CustomerTable.InsertBegin
CustomerTable.Column("Fname").StringValue = fname
CustomerTable.Column("Lname").StringValue = lname
CustomerTable.Insert

See also
♦ “UpdateBegin method” on page 161

LookupBackward method

Prototype
LookupBackward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves backward through the table starting from the end, looking for the first row that matches or is less
than a value or set of values in the current index.

The current index is used to specify the sort order of the table. It is specified when your application calls the
Open method. The default index is the primary key.

F For more information, see “Open method” on page 160.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the last row that matches or is less than the index value. On failure (that is, if no row is less than the
value for which it is searching), the cursor position is before the first row (BOF).

Parameters
num_columns For composite indexes, the number of columns to use in the lookup.

Returns
True if successful.

False if unsuccessful.

UltraLite for AppForge API Reference

156 Copyright © 2006, iAnywhere Solutions, Inc.

LookupBegin method

Prototype
LookupBegin()
Member of UltraLiteAFLib.ULTable

Description
Prepares a table for a lookup.

LookupForward method

Prototype
LookupForward([num_columns As Long = 32767]) As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves forward through the table starting from the beginning, looking for the first row that matches or is
greater than a value or set of values in the current index.

The current index is that used to specify the sort order of the table. It is specified when your application calls
the Open method. The default index is the primary key.

F For more information, see “Open method” on page 160.

To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is greater than the index value. On failure (that is, if no rows are greater
than the value for which it is searching), the cursor position is after the last row (EOF).

Parameters
num_columns For composite indexes, the number of columns to use in the lookup.

Returns
True if successful.

False if unsuccessful.

MoveAfterLast method

Prototype
MoveAfterLast() As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves to a position after the last row.

ULTable class

Copyright © 2006, iAnywhere Solutions, Inc. 157

Returns
True if successful.

False if the operation fails.

MoveBeforeFirst method

Prototype
MoveBeforeFirst() As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves to a position before the first row.

Returns
True if successful.

False if the operation fails.

MoveFirst method

Prototype
MoveFirst() As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves to the first row.

Returns
True if successful.

False if there is no data in the table.

MoveLast method

Prototype
MoveLast() As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves to the last row.

Returns
True if successful.

UltraLite for AppForge API Reference

158 Copyright © 2006, iAnywhere Solutions, Inc.

False if there is no data in the table.

MoveNext method

Prototype
MoveNext() As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves to the next row.

Returns
True if successful.

False if there is no more data in the table. For example, if there are no more rows, MoveNext fails.

MovePrevious method

Prototype
MovePrevious() As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves to the previous row.

Returns
True if successful.

False if there is no more data in the table. For example, MovePrevious fails if there are no rows.

MoveRelative method

Prototype
MoveRelative(index As Long) As Boolean
Member of UltraLiteAFLib.ULTable

Description
Moves a certain number of rows relative to the current row.

Parameters
index The number of rows to move. The value can be positive, negative, or zero. Zero is useful if you
want to repopulate a row buffer.

ULTable class

Copyright © 2006, iAnywhere Solutions, Inc. 159

Returns
True if successful.

False if the move failed. For example, if the cursor is positioned beyond the first or last row.

Open method

Prototype
Open(
 [index_name As String], _
 [persistent_name As String] _
)
Member of UltraLiteAFLib.ULTable

Description
Opens the table so it can be read or manipulated. By default, the rows are ordered by primary key. By
supplying an index name, the rows can be ordered in other ways.

The cursor is positioned before the first row in the table.

Parameters
index_name An optional parameter referring to the name of the index.

persistent_name For Palm Computing Platform applications, an optional parameter referring to the
stored name of the table.

Truncate method

Prototype
Truncate()
Member of UltraLiteAFLib.ULTable

Description
Removes all data from this table. The changes are not synchronized, so that on synchronization, it does not
affect the data in the consolidated database.

F For more information, see “StartSynchronizationDelete method” on page 87.

Update method

Prototype
Update()
Member of UltraLiteAFLib.ULTable

UltraLite for AppForge API Reference

160 Copyright © 2006, iAnywhere Solutions, Inc.

Description
Updates a row in the table with values specified in ULColumn methods.

Note
Must be preceded by a call to UpdateBegin.

UpdateBegin method

Prototype
UpdateBegin()
Member of UltraLiteAFLib.ULTable

Description
Prepares a table for modifying the contents of the current row.

Example
CustomerTable.UpdateBegin
CustomerTable.Column("Fname").StringValue = fname
'...
CustomerTable.Update

ULTable class

Copyright © 2006, iAnywhere Solutions, Inc. 161

ULTableSchema class
The ULTableSchema object allows you to obtain the attributes of a table.

Properties

The ULTableSchema represents metadata about the table. The following are properties of the
ULTableSchema class:

Prototype Description

ColumnCount As Integer (read-only) The number of columns in this table.

IndexCount As Integer (read-only) The number of indexes on this table.

Name As String (read-only) This table's name.

NeverSynchronized As Boolean (read-only) Indicates if the table is always excluded from syn-
chronization.

PrimaryKey As ULIndexSchema (read-only) The primary key for this table.

UploadUnchangedRows As Boolean (read-only) Indicates if all rows in the table should be uploaded
on synchronization, rather than just the rows changed
since the last synchronization.

GetColumnName method

Prototype
GetColumnName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Description
Returns the name of the column that corresponds to the id value you supply. The ColumnCount property
returns the number of columns in the table. Each column has a unique number from 1 to the ColumnCount
value, where 1 is the first column in the table, 2 is the second column in the table, and so on.

Parameters
id The id of the column.

Returns
The name of a column.

UltraLite for AppForge API Reference

162 Copyright © 2006, iAnywhere Solutions, Inc.

GetIndex method

Prototype
GetIndex(name As String) As ULIndexSchema
Member of UltraLiteAFLib.ULTableSchema

Description
Returns the ULIndexSchema object for the specified index.

F For information about the ULIndexSchema object, see “ULIndexSchema class” on page 102.

Parameters
name The name of the index.

Returns
Returns a schema object for a given index on the table.

GetIndexName method

Prototype
GetIndexName(id As Integer) As String
Member of UltraLiteAFLib.ULTableSchema

Description
Returns the name of the index in the table that corresponds to the id value you supply. The IndexCount
property returns the number of indexes in the table. Each index has a unique number from 1 to the IndexCount
value, where 1 is the first index in the table, 2 is the second index in the table, and so on.

Parameters
name The id of the index.

Returns
Returns the name of the index.

GetPublicationPredicate method

Prototype
GetPublicationPredicate(
 pub_name As String
) As String
Member of UltraLiteAFLib.ULTableSchema

Description
Get publication predicate (if any) for specified publication name.

ULTableSchema class

Copyright © 2006, iAnywhere Solutions, Inc. 163

Parameters
pub_name Publication name.

Returns
Returns the publication predicate for the named publication or an empty string.

InPublication method

Prototype
InPublication(publicationName As String) As Boolean
 Member of UltraLiteAFLib.ULTableSchema

Description
Indicates whether this table is part of the specified publication.

Parameters
publicationName The name of the publication you are checking.

Returns
True if the table is part of the publication.

False if the table is not part of the publication.

UltraLite for AppForge API Reference

164 Copyright © 2006, iAnywhere Solutions, Inc.

Index
A
accessing schema information

UltraLite for MobileVB, 27
AddAuthenticationParm method (UltraLite for
AppForge API)

ULFileTransfer class, 99
ULSyncParms class, 148

AppendByteChunk method (UltraLite for AppForge
API)

ULColumn class, 74
ULResultSet class, 111

AppendByteChunkParameter method (UltraLite for
AppForge API)

ULPreparedStatement class, 104
AppendStringChunk method (UltraLite for AppForge
API)

ULColumn class, 75
ULResultSet class, 112

AppendStringChunkParameter method (UltraLite for
AppForge API)

ULColumn class, 105
AppForge Client

MobileVB, 2
AppForge MobileVB

AppForge Client, 2
UltraLite, 2

architecture
UltraLite for AppForge, 3

AuthStatus property (UltraLite for AppForge API)
ULFileTransfer class, 98
ULSyncResult class, 149

AuthValue property (UltraLite for AppForge API)
ULFileTransfer class, 98
ULSyncResult class, 149

AutoCommit mode
UltraLite for MobileVB, 26

AutoCommit property (UltraLite for AppForge API)
ULConnection class, 81

AutoIncrement property (UltraLite for AppForge API)
ULColumnSchema class, 80
ULConnectionParms class, 89

B
BLOBs

GetByteChunk method in UltraLite for MobileVB,
25
UltraLite for MobileVB, 25

BOF property (UltraLite for AppForge API)
ULTable class, 151

BooleanValue property (UltraLite for AppForge API)
ULColumn class, 74

ByteValue property (UltraLite for AppForge API)
ULColumn class, 74

C
CancelSynchronize method (UltraLite for AppForge
API)

ULConnection class, 82
CancelTransfer method (UltraLite for AppForge API)

ULFileTransfer class, 99
casting

data types in UltraLite for MobileVB, 22
ChangeEncryptionKey method (UltraLite for
AppForge API)

ULConnection class, 82
CheckpointStore property (UltraLite for AppForge
API)

ULSyncParms class, 146
ClearAuthenticationParms method (UltraLite for
AppForge API)

ULFileTransfer class, 99
ULSyncParms class, 148

Close method (UltraLite for AppForge API)
ULConnection class, 82
ULPreparedStatement class, 105
ULResultSet class, 112
ULTable class, 151

CodeXchange
downloadable samples, 55

CollationName property (UltraLite for AppForge API)
ULDatabaseSchema class, 94

Column method (UltraLite for AppForge API)
ULTable class, 152

ColumnCount property (UltraLite for AppForge API)
ULIndexSchema class, 102
ULTableSchema class, 162

columns
accessing schema information in UltraLite for
MobileVB, 27

Copyright © 2006, iAnywhere Solutions, Inc. 165

Columns collection
UltraLite for MobileVB, 20

Commit method
UltraLite for MobileVB, 26

Commit method (UltraLite for AppForge API)
ULConnection class, 83

commits
UltraLite for MobileVB, 26

connecting
UltraLite for MobileVB databases, 10

ContainsTable method (UltraLite for AppForge API)
ULPublicationSchema class, 110

conventions
documentation, x
file names in documentation, xii

CountUploadRows method (UltraLite for AppForge
API)

ULConnection class, 83
CreateDatabase method (UltraLite for AppForge API)

ULDatabaseManager class, 91
CurrentDate property (UltraLite for AppForge API)

ULColumnSchema class, 80
CurrentTime property (UltraLite for AppForge API)

ULColumnSchema class, 80
CurrentTimestamp property (UltraLite for AppForge
API)

ULColumnSchema class, 80

D
data manipulation

dynamic SQL in UltraLite for MobileVB, 14
Table API in UltraLite for MobileVB, 20
UltraLite for MobileVB, 14

data types
accessing in UltraLite for MobileVB, 21
casting in UltraLite for MobileVB, 22

database schemas
accessing in UltraLite for MobileVB, 27

database state
maintaining on Palm OS with UltraLite for
MobileVB, 35

DatabaseID property (UltraLite for AppForge API)
ULConnection class, 81

DateFormat property (UltraLite for AppForge API)
ULDatabaseSchema class, 94

DateOrder property (UltraLite for AppForge API)
ULDatabaseSchema class, 94

DatetimeValue property (UltraLite for AppForge API)
ULColumn class, 74

DefaultValue property (UltraLite for AppForge API)
ULColumnSchema class, 80

Delete method (UltraLite for AppForge API)
ULResultSet class, 112
ULTable class, 152

DeleteAllRows method (UltraLite for AppForge API)
ULTable class, 152

deleting
rows in UltraLite for MobileVB, 23

deploying
UltraLite applications to Windows CE, 33
UltraLite for MobileVB applications, 33

DestinationFile property (UltraLite for AppForge API)
ULFileTransfer class, 98

DestinationPath property (UltraLite for AppForge API)
ULFileTransfer class, 98

development
UltraLite for AppForge, 5

development platforms
UltraLite for AppForge, 2

DML operations
UltraLite for MobileVB, 14

documentation
conventions, x
SQL Anywhere, viii

DoubleValue property (UltraLite for AppForge API)
ULColumn class, 74

DowloadedFile property (UltraLite for AppForge API)
ULFileTransfer class, 98

DownloadFile method (UltraLite for AppForge API)
ULFileTransfer class, 99

DownloadOnly property (UltraLite for AppForge API)
ULSyncParms class, 146

DropDatabase method (UltraLite for AppForge API)
ULDatabaseManager class, 92

dynamic SQL
UltraLite for MobileVB development, 14

E
encryption

UltraLite for MobileVB development, 13
EOF property (UltraLite for AppForge API)

ULTable class, 151
error handling

UltraLite for AppForge, 28

Index

166 Copyright © 2006, iAnywhere Solutions, Inc.

errors
handling in UltraLite for AppForge, 28

ExecuteQuery method (UltraLite for AppForge API)
ULPreparedStatement class, 105

ExecuteStatement method (UltraLite for AppForge
API)

ULPreparedStatement class, 106

F
features

for AppForge, 2
feedback

documentation, xv
providing, xv

FileAuthCode property (UltraLite for AppForge API)
ULFileTransfer class, 98

FileName property (UltraLite for AppForge API)
ULFileTransfer class, 98

find methods
UltraLite for MobileVB, 22

find mode
UltraLite for MobileVB, 23

FindBegin method (UltraLite for AppForge API)
ULTable class, 152

FindFirst method (UltraLite for AppForge API)
ULTable class, 153

FindLast method (UltraLite for AppForge API)
ULTable class, 153

FindNext method (UltraLite for AppForge API)
ULTable class, 154

FindPrevious method (UltraLite for AppForge API)
ULTable class, 155

ForceDownload property (UltraLite for AppForge API)
ULFileTransfer class, 98

ForeignKey property (UltraLite for AppForge API)
ULIndexSchema class, 102

G
GetBoolean method (UltraLite for AppForge API)

ULResultSet class, 113
GetByte method (UltraLite for AppForge API)

ULResultSet class, 113
GetByteChunk method

UltraLite for MobileVB, 25
GetByteChunk method (UltraLite for AppForge API)

ULColumn class, 76
ULResultSet class, 113

GetColumnName method (UltraLite for AppForge
API)

ULIndexSchema class, 102
ULTableSchema class, 162

GetDatabaseProperty method (UltraLite for AppForge
API)

ULDatabaseSchema class, 94
GetDatetime method (UltraLite for AppForge API)

ULResultSet class, 114
GetDouble method (UltraLite for AppForge API)

ULResultSet class, 115
GetIndex method (UltraLite for AppForge API)

ULTableSchema class, 163
GetIndexName method (UltraLite for AppForge API)

ULTableSchema class, 163
GetInteger method (UltraLite for AppForge API)

ULResultSet class, 115
GetLong method (UltraLite for AppForge API)

ULResultSet class, 115
GetNewUUID method (UltraLite for AppForge API)

ULConnection class, 83
GetPublicationName method (UltraLite for AppForge
API)

ULDatabaseSchema class, 96
GetPublicationPredicate method (UltraLite for
AppForge API)

ULTableSchema class, 163
GetPublicationSchema method (UltraLite for
AppForge API)

ULDatabaseSchema class, 96
GetReal method (UltraLite for AppForge API)

ULResultSet class, 116
GetString method (UltraLite for AppForge API)

ULResultSet class, 116
GetStringChunk method (UltraLite for AppForge API)

ULColumn class, 77
ULResultSet class, 116

GetTable function (UltraLite for AppForge API)
ULConnection class, 84

GetTableName method (UltraLite for AppForge API)
ULDatabaseSchema class, 96

GlobalAutoIncrement property (UltraLite for
AppForge API)

ULColumnSchema class, 80
GlobalAutoIncrementPartitionSize property (UltraLite
for AppForge API)

ULColumnSchema class, 80

Copyright © 2006, iAnywhere Solutions, Inc. 167

GlobalAutoIncrementUsage property (UltraLite for
AppForge API)

ULConnection class, 81
grantConnectTo method

UltraLite for MobileVB, 29
GrantConnectTo method (UltraLite for AppForge API)

ULConnection class, 84

I
iAnywhere.UltraLiteForAppForge

UltraLite development with Crossfire, 7
icons

used in manuals, xii
ID property (UltraLite for AppForge API)

ULColumnSchema class, 80
IgnoredRows property (UltraLite for AppForge API)

ULSyncResult class, 149
IndexCount property (UltraLite for AppForge API)

ULTableSchema class, 162
indexes

accessing schema information in UltraLite for
MobileVB, 27

InPublication method (UltraLite for AppForge API)
ULTableSchema class, 164

Insert method (UltraLite for AppForge API)
ULTable class, 155

insert mode
UltraLite for MobileVB, 23

InsertBegin method (UltraLite for AppForge API)
ULTable class, 156

inserting
rows in UltraLite for MobileVB, 23

install-dir
documentation usage, xii

IntegerValue property (UltraLite for AppForge API)
ULColumn class, 74

IsCaseSensitive property (UltraLite for AppForge API)
ULDatabaseSchema class, 94

IsColumnDescending method (UltraLite for AppForge
API)

ULIndexSchema class, 103
IsNull method (UltraLite for AppForge API)

ULResultSet class, 117
IsNull property (UltraLite for AppForge API)

ULColumn class, 74
IsOpen property (UltraLite for AppForge API)

ULTable class, 151

K
KeepPartialDownload property (UltraLite for
AppForge API)

ULSyncParms class, 146

L
LastDownloadTime method (UltraLite for AppForge
API)

ULConnection class, 85
LastIdentity property (UltraLite for AppForge API)

ULConnection class, 81
library functions

RollbackPartialDownload (UltraLite for AppForge
API), 86

LongValue property (UltraLite for AppForge API)
ULColumn class, 74

lookup methods
UltraLite for MobileVB, 22

lookup mode
UltraLite for MobileVB, 23

LookupBackward method (UltraLite for AppForge
API)

ULTable class, 156
LookupBegin method (UltraLite for AppForge API)

ULTable class, 157
LookupForward method (UltraLite for AppForge API)

ULTable class, 157

M
Mask property (UltraLite for AppForge API)

ULPublicationSchema class, 110
ULResultSet class, 111
ULResultSetSchema class, 124

MobileVB (see AppForge MobileVB)
modes

UltraLite for MobileVB, 23
MoveAfterLast method (UltraLite for AppForge API)

ULResultSet class, 117
ULTable class, 157

MoveBeforeFirst method (UltraLite for AppForge API)
ULResultSet class, 118
ULTable class, 158

MoveFirst method
UltraLite for MobileVB, 20
UltraLite for MobileVB development, 16

MoveFirst method (UltraLite for AppForge API)
ULResultSet class, 118

Index

168 Copyright © 2006, iAnywhere Solutions, Inc.

ULTable class, 158
MoveLast method (UltraLite for AppForge API)

ULResultSet class, 118
ULTable class, 158

MoveNext method
UltraLite for MobileVB, 20
UltraLite for MobileVB development, 16

MoveNext method (UltraLite for AppForge API)
ULResultSet class, 118
ULTable class, 159

MovePrevious method (UltraLite for AppForge API)
ULResultSet class, 119
ULTable class, 159

MoveRelative method (UltraLite for AppForge API)
ULResultSet class, 119
ULTable class, 159

N
Name property (UltraLite for AppForge API)

ULColumnSchema class, 80
ULIndexSchema class, 102
ULPublicationSchema class, 110
ULResultSet class, 111
ULResultSetSchema class, 124
ULTableSchema class, 162

NearestCentury property (UltraLite for AppForge API)
ULDatabaseSchema class, 94

network protocol options
UltraLite for AppForge API, 146

NeverSynchronized property (UltraLite for AppForge
API)

ULTableSchema class, 162
NewPassword property (UltraLite for AppForge API)

ULSyncParms class, 146
newsgroups

technical support, xv
NewUUID property (UltraLite for AppForge API)

ULColumnSchema class, 80
Nullable property (UltraLite for AppForge API)

ULColumnSchema class, 80

O
obfuscation

UltraLite for MobileVB, 13
object hierarchy

UltraLite for AppForge, 3
OnReceive event (UltraLite for AppForge API)

ULSyncEvent class, 143
OnSend event (UltraLite for AppForge API)

ULSyncEvent class, 143
OnStateChange event (UltraLite for AppForge API)

ULSyncEvent class, 144
OnTableChange event (UltraLite for AppForge API)

ULSyncEvent class, 144
OnTransferProgressChanged method (UltraLite for
AppForge API)

ULFileTransferEvent class, 101
OnWaiting event (UltraLite for AppForge API)

ULSyncEvent class, 145
Open method

ULTable object in MobileVB, 20
ULTable object in UltraLite for MobileVB, 16

Open method (UltraLite for AppForge API)
ULTable class, 160

OpenConnection method (UltraLite for AppForge API)
ULDatabaseManager class, 92

OpenParms property (UltraLite for AppForge API)
ULConnection class, 81

OptimalIndex property (UltraLite for AppForge API)
ULColumnSchema class, 80

P
Palm Computing Platform

target platform in UltraLite for AppForge, 2
Palm OS

maintaining state with UltraLite for MobileVB, 35
UltraLite for MobileVB example, 36

PartialDownloadRetained property (UltraLite for
AppForge API)

ULSyncResult class, 149
Password property (UltraLite for AppForge API)

ULFileTransfer class, 98
ULSyncParms class, 146

passwords
authentication in UltraLite for MobileVB, 29

persistent name
maintaining, 35
UltraLite for MobileVB example, 36
using, 35
using with UltraLite for MobileVB on Palm OS, 35

PingOnly property (UltraLite for AppForge API)
ULSyncParms class, 146

platforms
supported in UltraLite for AppForge, 2

Copyright © 2006, iAnywhere Solutions, Inc. 169

Precision property (UltraLite for AppForge API)
ULColumnSchema class, 80
ULDatabaseSchema class, 94

prepared statements
UltraLite for MobileVB, 14

PrepareStatement method (UltraLite for AppForge
API)

ULConnection class, 85
preparing to work with UltraLite for AppForge

about, 6
PrimaryKey property (UltraLite for AppForge API)

ULIndexSchema class, 102
ULTableSchema class, 162

projects
creating in AppForge Crossfire, 43
creating in UltraLite for MobileVB, 59

PublicationCount property (UltraLite for AppForge
API)

ULDatabaseSchema class, 94
PublicationMask property (UltraLite for AppForge
API)

ULSyncParms class, 146
publications

accessing schema information in UltraLite for
MobileVB, 27

R
RealValue property (UltraLite for AppForge API)

ULColumn class, 74
ReferencedIndexName property (UltraLite for
AppForge API)

ULIndexSchema class, 102
ReferencedTableName property (UltraLite for
AppForge API)

ULIndexSchema class, 102
ResetLastDownloadTime method (UltraLite for
AppForge API)

ULConnection class, 85
restartable downloads

UltraLite for AppForge API, 86
ResumePartialDownload property (UltraLite for
AppForge API)

ULFileTransfer class, 98
ULSyncParms class, 146

RevokeConnectFrom method (UltraLite for AppForge
API)

ULConnection class, 86

revokeConnectionFrom method
UltraLite for MobileVB, 29

Rollback method
UltraLite for MobileVB, 26

Rollback method (UltraLite for AppForge API)
ULConnection class, 86

RollbackPartialDownload method (UltraLite for
AppForge API)

ULConnection class, 86
rollbacks

UltraLite for MobileVB, 26
RowCount property (UltraLite for AppForge API)

ULTable class, 151
rows

accessing values in UltraLite for MobileVB, 21

S
samples

CodeXchange, 55
samples-dir

documentation usage, xii
Scale property (UltraLite for AppForge API)

ULColumnSchema class, 80
Schema property (UltraLite for AppForge API)

ULColumn class, 74
ULConnection class, 81
ULTable class, 151

schemas
UltraLite for MobileVB, 27

scrolling
UltraLite for MobileVB, 20

SELECT statement
UltraLite MobileVB development, 16

SendColumnNames property (UltraLite for AppForge
API)

ULSyncParms class, 146
SendDownloadAck property (UltraLite for AppForge
API)

ULSyncParms class, 146
SetBoolean method (UltraLite for AppForge API)

ULResultSet class, 119
SetBooleanParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 106
SetByte method (UltraLite for AppForge API)

ULResultSet class, 120
SetByteChunk method (UltraLite for AppForge API)

Index

170 Copyright © 2006, iAnywhere Solutions, Inc.

ULColumn class, 77
ULResultSet class, 120

SetByteChunkParameter method (UltraLite for
AppForge API)

ULPreparedStatement class, 106
SetByteParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 107
SetDatabaseOption method (UltraLite for AppForge
API)

ULDatabaseSchema class, 97
SetDatetime method (UltraLite for AppForge API)

ULResultSet class, 121
SetDatetimeParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 107
SetDouble method (UltraLite for AppForge API)

ULResultSet class, 121
SetDoubleParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 107
SetInteger method (UltraLite for AppForge API)

ULResultSet class, 121
SetIntegerParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 108
SetLong method (UltraLite for AppForge API)

ULResultSet class, 122
SetLongParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 108
SetNull method (UltraLite for AppForge API)

ULColumn class, 78
ULResultSetclass, 122

SetNullParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 109
SetRealParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 109
SetStringParameter method (UltraLite for AppForge
API)

ULPreparedStatement class, 109
SetToDefault method (UltraLite for AppForge API)

ULColumn class, 78
Size property (UltraLite for AppForge API)

ULColumnSchema class, 80
SQL Anywhere

documentation, viii
SQLErrorOffset property (UltraLite for AppForge API)

ULConnection class, 81
SQLType property (UltraLite for AppForge API)

ULColumnSchema class, 80
StartSynchronizationDelete method (UltraLite for
AppForge API)

ULConnection class, 87
StopSynchronizationDelete method (UltraLite for
AppForge API)

ULConnection class, 87
Stream property (UltraLite for AppForge API)

ULFileTransfer class, 98
ULSyncParms class, 146

StreamErrorCode property (UltraLite for AppForge
API)

ULFileTransfer class, 98
StreamErrorContext property (UltraLite for AppForge
API)

ULSyncResult class, 149
StreamErrorID property (UltraLite for AppForge API)

ULSyncResult class, 149
StreamErrorSystem property (UltraLite for AppForge
API)

ULFileTransfer class, 98
ULSyncResult class, 149

StreamParms property (UltraLite for AppForge API)
ULFileTransfer class, 98
ULSyncParms class, 146

StringToUUID method (UltraLite for AppForge API)
ULConnection class, 87

StringValue property (UltraLite for AppForge API)
ULColumn class, 74

support
newsgroups, xv

supported platforms
UltraLite for AppForge, 2

Symbian OS
AppForge Development, 38
deploying project to devices, 39
notes for AppForge developers, 38
synchronization notes, 39

synchronization
HTTP in UltraLite for MobileVB, 30
HTTPS in UltraLite for MobileVB, 30
monitoring in UltraLite for MobileVB, 30
TCP/IP in UltraLite for MobileVB, 30
template in UltraLite for MobileVB, 30

Copyright © 2006, iAnywhere Solutions, Inc. 171

UltraLite for MobileVB development, 30
writing code in UltraLite for MobileVB, 31

Synchronize method (UltraLite for AppForge API)
ULConnection class, 88

synchronizing UltraLite applications
MobileVB development, 30

SyncParms property (UltraLite for AppForge API)
ULConnection class, 81

SyncResult property (UltraLite for AppForge API)
ULConnection class, 81

T
TableCount property (UltraLite for AppForge API)

ULDatabaseSchema class, 94
TableOrder property (UltraLite for AppForge API)

ULSyncParms class, 146
tables

accessing schema information in UltraLite for
MobileVB, 27

target platforms
UltraLite for AppForge, 2

technical support
newsgroups, xv

TimeFormat property (UltraLite for AppForge API)
ULDatabaseSchema class, 94

Timestamp property (UltraLite for AppForge API)
ULSyncResult class, 149

transaction processing
UltraLite for MobileVB, 26

transactions
UltraLite for MobileVB, 26

Truncate method (UltraLite for AppForge API)
ULTable class, 160

tutorials
UltraLite for AppForge Crossfire, 41
UltraLite for AppForge MobileVB, 57

U
ULAuthStatusCode enumeration (UltraLite for
AppForge API)

constants, 73
ULColumn class

properties in UltraLite for AppForge API, 74
UltraLite for AppForge API, 74

ULColumnSchema class
properties in UltraLite for AppForge API, 80
UltraLite for AppForge API, 80

UltraLite for MobileVB development, 27
ULConnection class

properties in UltraLite for AppForge API, 81
UltraLite for AppForge API, 81

ULConnectionParms class
properties in UltraLite for AppForge API, 89
UltraLite for AppForge API, 89

ULDatabaseManager class
properties in UltraLite for AppForge API, 91
UltraLite for AppForge API, 91

ULDatabaseSchema class
properties in UltraLite for AppForge API, 94
UltraLite for AppForge API, 94
UltraLite for MobileVB development, 27

ULFileTransfer class
properties in UltraLite for AppForge API, 98
UltraLite for AppForge API, 98

ULFileTransferEvent class
UltraLite for AppForge API, 101

ULIndexSchema class
properties in UltraLite for AppForge API, 102
UltraLite for AppForge API, 102
UltraLite for MobileVB development, 27

ULPreparedStatement
UltraLite for MobileVB, 14

ULPreparedStatement class
properties in UltraLite for AppForge API, 104
UltraLite for AppForge API, 104

ULPublicationSchema class
properties in UltraLite for AppForge API, 110
UltraLite for AppForge API, 110
UltraLite for MobileVB development, 27

ULResultSet class
properties in UltraLite for AppForge API, 111
UltraLite for AppForge API, 111

ULResultSetSchema class
properties in UltraLite for AppForge API, 124
UltraLite for AppForge API, 124

ULSQLCode enumeration (UltraLite for AppForge
API)

constants, 125
ULSQLType enumeration (UltraLite for AppForge
API)

constants, 134
ULStreamErrorCode enumeration (UltraLite for
AppForge API)

constants, 135

Index

172 Copyright © 2006, iAnywhere Solutions, Inc.

ULStreamErrorCode property (UltraLite for AppForge
API)

ULSyncResult class, 149
ULStreamErrorContext enumeration (UltraLite for
AppForge API)

constants, 139
ULStreamErrorID enumeration (UltraLite for
AppForge API)

constants, 140
ULStreamType enumeration (UltraLite for AppForge
API)

constants, 142
ULSyncEvent class

UltraLite AppForge API, 143
ULSyncParms class

properties in UltraLite for AppForge API, 146
UltraLite for AppForge API, 146

ULSyncResult class
properties in UltraLite for AppForge API, 149
UltraLite for AppForge API, 149

ULSyncState enumeration (UltraLite for AppForge
API)

constants, 150
ULTable class

properties in UltraLite for AppForge API, 151
UltraLite for AppForge API, 151
UltraLite for MobileVB development, 16

ULTableSchema class
properties in UltraLite for AppForge API, 162
UltraLite for AppForge API, 162
UltraLite for MobileVB development, 27

UltraLite applications
deploying to Palm OS, 33
deploying to Symbian OS, 38
deploying to Windows CE, 33

UltraLite databases
accessing schema information for MobileVB, 27
connecting in UltraLite for MobileVB, 10

UltraLite for AppForge
about, 1
accessing schema information, 27
architecture, 3
connecting to UltraLite databases, 10
Crossfire adding UltraLite references, 7
Crossfire project architecture, 43
Crossfire tutorial, 41
data manipulation using SQL, 14
data manipulation using Table API, 20

deploying applications for MobileVB, 33
deploying applications for Symbian OS, 38
development, 5
encryption and obfuscation, 13
error handling, 28
features, 2
maintaining state for Palm OS, 35
MobileVB adding UltraLite references, 6
MobileVB project architecture, 59
MobileVB tutorial, 57
object hierarchy, 3
preparing to work with, 6
supported platforms, 2
synchronization, 30
user authentication, 29

UltraLite for AppForge API
alphabetical listing, 72

UltraLite for AppForge API classes
ULColumn, 74
ULColumnSchema, 80
ULConnection , 81
ULConnectionParms, 89
ULDatabaseManager, 91
ULDatabaseSchema, 94
ULFileTransfer, 98
ULFileTransferEvent, 101
ULIndexSchema, 102
ULPreparedStatement, 104
ULPublicationSchema, 110
ULResultSet, 111
ULResultSetSchema, 124
ULSyncEvent, 143
ULSyncParms, 146
ULSyncResult, 149
ULTable, 151
ULTableSchema, 162

UltraLite for AppForge API constants
ULAuthStatusCode, 73
ULSQLCode, 125
ULSQLType, 134
ULStreamErrorCode, 135
ULStreamErrorContext, 139
ULStreamErrorID, 140
ULStreamType, 142
ULSyncState, 150

UltraLite for AppForge API events
OnReceive (ULSyncEvent class), 143
OnSend (ULSyncEvent class), 143

Copyright © 2006, iAnywhere Solutions, Inc. 173

OnStateChange (ULSyncEvent class), 144
OnTableChange (ULSyncEvent class), 144
OnWaiting (ULSyncEvent class), 145

UltraLite for AppForge API methods
AddAuthenticationParm (ULFileTransfer class), 99
AddAuthenticationParm (ULSyncParms class),
148
AppendByteChunk (ULColumn class), 74
AppendByteChunk (ULResultSet class), 111
AppendByteChunkParameter
(ULPreparedStatement class), 104
AppendStringChunk (ULColumn class), 75
AppendStringChunk (ULResultSet class), 112
AppendStringChunkParameter (ULColumn class),
105
CancelSynchronize (ULConnection class), 82
CancelTransfer (ULFileTransfer class), 99
ChangeEncryptionKey (ULConnection class), 82
ClearAuthenticationParms (ULFileTransfer class),
99
ClearAuthenticationParms (ULSyncParms class),
148
Close (ULConnection class), 82
Close (ULPreparedStatement class), 105
Close (ULResultSet class), 112
Close (ULTable class), 151
Column (ULTable class), 152
Commit (ULConnection class), 83
ContainsTable (ULPublicationSchema class), 110
CountUploadRows (ULConnection class), 83
CreateDatabase (ULDatabaseManager class), 91
Delete (ULResultSet class), 112
Delete (ULTable class), 152
DeleteAllRows (ULTable class), 152
DownloadFile (ULFileTransfer class), 99
DropDatabase (ULDatabaseManager class), 92
ExecuteQuery (ULPreparedStatement class), 105
ExecuteStatement (ULPreparedStatement class),
106
FindBegin (ULTable class), 152
FindFirst (ULTable class), 153
FindLast (ULTable class), 153
FindNext (ULTable class), 154
FindPrevious (ULTable class), 155
GetBoolean (ULResult class), 113
GetByte (ULResult class), 113
GetByteChunk (ULColumn class), 76
GetByteChunk (ULResultSet class), 113

GetColumnName (ULIndexSchema class), 102
GetColumnName (ULTableSchema class), 162
GetDatabaseProperty (ULDatabaseSchema class),
94
GetDatetime (ULResultSet class), 114
GetDouble (ULResultSet class), 115
GetIndex (ULTableSchema class), 163
GetIndexName (ULTableSchema class), 163
GetInteger (ULResultSet class), 115
GetLong (ULResultSet class), 115
GetNewUUID (ULConnection class), 83
GetPublicationName (ULDatabaseSchema class),
96
GetPublicationPredicate (ULTableSchema class),
163
GetPublicationSchema (ULDatabaseSchema class),
96
GetReal (ULResultSet class), 116
GetString (ULResultSet class), 116
GetStringChunk (ULColumn class), 77
GetStringChunk (ULResultSet class), 116
GetTable (ULConnection class), 84
GetTableName (ULDatabaseSchema class), 96
GrantConnectTo (ULConnection class), 84
InPublication (ULTableSchema class), 164
Insert (ULTable class), 155
InsertBegin (ULTable class), 156
IsColumnDescending (ULIndexSchema), 103
IsNull (ULResultSet class), 117
LastDownloadTime (ULConnection class), 85
LookupBackward (ULTable class), 156
LookupBegin (ULTable class), 157
LookupForward (ULTable class), 157
MoveAfterLast (ULResultSet class), 117
MoveAfterLast (ULTable class), 157
MoveBeforeFirst (ULResultSet class), 118
MoveBeforeFirst (ULTable class), 158
MoveFirst (ULResultSet class), 118
MoveFirst (ULTable class), 158
MoveLast (ULResultSet class), 118
MoveLast (ULTable class), 158
MoveNext (ULResultSet class), 118
MoveNext (ULTable class), 159
MovePrevious (ULResultSet class), 119
MovePrevious (ULTable class), 159
MoveRelative (ULResultSet class), 119
MoveRelative (ULTable class), 159

Index

174 Copyright © 2006, iAnywhere Solutions, Inc.

OnTransferProgressChanged (ULFileTransferEvent
class), 101
Open (ULTable class), 160
OpenConnection (ULDatabaseManager class), 92
PrepareStatement (ULConnection class), 85
ResetLastDownloadTime (ULConnection class),
85
RevokeConnectFrom (ULConnection class), 86
Rollback (ULConnection class), 86
RollbackPartialDownload (ULConnection class),
86
SetBoolean (ULResultSet class), 119
SetBooleanParameter (ULPreparedStatement
class), 106
SetByte (ULResultSet class), 120
SetByteChunk (ULColumn class), 77
SetByteChunk (ULResultSet class), 120
SetByteChunkParameter (ULPreparedStatement
class), 106
SetByteParameter (ULPreparedStatement class),
107
SetDatabaseOption (ULDatabaseSchema class), 97
SetDatetime (ULResultSet class), 121
SetDatetimeParameter (ULPreparedStatement
class), 107
SetDouble (ULResultSet class), 121
SetDoubleParameter (ULPreparedStatement class),
107
SetInteger (ULResultSet class), 121
SetIntegerParameter (ULPreparedStatement class),
108
SetLong (ULResultSet class), 122
SetLongParameter (ULPreparedStatement class),
108
SetNull (ULColumn class), 78
SetNull (ULResultSet class), 122
SetNullParameter (ULPreparedStatement class),
109
SetRealParameter (ULPreparedStatement class),
109
SetStringParameter (ULPreparedStatement class),
109
SetToDefault (ULColumn class), 78
StartSynchronizationDelete (ULConnection class),
87
StopSynchronizationDelete (ULConnection class),
87
StringToUUID (ULConnection class), 87

Synchronize (ULConnection class), 88
Truncate (ULTable class), 160
Update (ULResultSet class), 122
Update (ULTable class), 160
UpdateBegin (ULResultSet class), 123
UpdateBegin (ULTable class), 161
UUIDToString (ULConnection class), 88

UltraLite for AppForge API properties
ULColumn class, 74
ULColumnSchema class, 80
ULConnection class, 81
ULConnectionParms class, 89
ULDatabaseManager class, 91
ULDatabaseSchema class, 94
ULFileTransfer class, 98
ULIndexSchema class, 102
ULPreparedStatement class, 104
ULPublicationSchema class, 110
ULResultSet class, 111
ULSyncParms class, 146
ULSyncResult class, 149
ULTableSchema class, 162

UniqueIndex property (UltraLite for AppForge API)
ULIndexSchema class, 102

UniqueKey property (UltraLite for AppForge API)
ULIndexSchema class, 102

Update method (UltraLite for AppForge API)
ULResultSet class, 122
ULTable class, 160

update mode
UltraLite for MobileVB, 23

UpdateBegin method (UltraLite for AppForge API)
ULResultSet class, 123
ULTable class, 161

updating
rows UltraLite for MobileVB, 23

UploadOK property (UltraLite for AppForge API)
ULSyncResult class, 149

UploadOnly property (UltraLite for AppForge API)
ULSyncParms class, 146

user authentication
UltraLite for MobileVB, 29

UserName property (UltraLite for AppForge API)
ULFileTransfer class, 98
ULSyncParms class, 146

UUIDs
getting as string in UltraLite for AppForge API, 83
StringToUUID method, 87

Copyright © 2006, iAnywhere Solutions, Inc. 175

UUIDToString method, 88
UUIDToString method (UltraLite for AppForge API)

ULConnection class, 88

V
values

accessing in UltraLite for MobileVB, 21
Version property (UltraLite for AppForge API)

ULDatabaseManager class, 91
ULFileTransfer class, 98
ULSyncParms class, 146

Visual Basic
supported versions in UltraLite for AppForge, 2

Visual Basic programming language
UltraLite for AppForge, 72

W
Windows CE

target platform in UltraLite for AppForge, 2

Index

176 Copyright © 2006, iAnywhere Solutions, Inc.

	UltraLite® - AppForge Programming
	Contents
	About This Manual
	SQL Anywhere documentation
	Documentation conventions
	Finding out more and providing feedback

	Introduction to UltraLite for AppForge
	UltraLite for AppForge features
	System requirements and supported platforms

	UltraLite for AppForge architecture

	Understanding UltraLite Development with AppForge
	Preparing to use UltraLite for AppForge
	Adding UltraLite to the MobileVB design environment
	Adding UltraLite to the Crossfire design environment

	Creating UltraLite databases
	Connecting to an UltraLite database
	Encryption and obfuscation
	Working with data using dynamic SQL
	Data manipulation: INSERT, UPDATE, and DELETE
	Data retrieval: SELECT
	Navigation with dynamic SQL
	ULResultSet schema property

	Working with data using the table API
	Navigation with the Table API
	Accessing the values of the current row
	Searching rows with find and lookup
	Inserting, updating, and deleting rows
	Working with BLOB data
	Transaction processing in UltraLite

	Accessing schema information
	Handling errors
	Authenticating users
	Synchronizing data
	Adding the synchronization template
	Writing code to use the synchronization form

	Deploying UltraLite applications
	Deploying UltraLite for MobileVB applications to Windows CE
	Deploying UltraLite for MobileVB applications to Palm OS

	Maintaining state in UltraLite Palm applications
	Understanding how state is maintained
	Example: Using the persistent name to maintain state information

	Notes on AppForge for Symbian OS

	Tutorial: A Sample Application for AppForge Crossfire
	Introduction
	Lesson 1: Create a project architecture
	Create a Crossfire project

	Lesson 2: Create the application interface
	Lesson 3: Write the sample code
	Write code to connect to your database
	Write code for navigation and data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 4: Deploy to a device
	Summary

	Tutorial: A Sample Application for AppForge MobileVB
	Introduction
	Lesson 1: Create project architecture
	Create a MobileVB project

	Lesson 2: Create a form
	Lesson 3: Write the sample code
	Write code to connect to your database
	Write code for navigation and data manipulation
	Write code to synchronize
	Synchronize your application

	Lesson 4: Deploy to a device
	Summary

	UltraLite for AppForge API Reference
	ULAuthStatusCode enumeration
	ULColumn class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	GetByteChunk method
	GetStringChunk method
	SetByteChunk method
	SetNull method
	SetToDefault method

	ULColumnSchema class
	Properties

	ULConnection class
	Properties
	CancelSynchronize method
	ChangeEncryptionKey method
	Close method
	Commit method
	CountUploadRows method
	GetNewUUID method
	GetTable method
	GrantConnectTo method
	LastDownloadTime method
	PrepareStatement method
	ResetLastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	RollbackPartialDownload method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	StringToUUID method
	Synchronize method
	UUIDToString method

	ULConnectionParms class
	Properties

	ULDatabaseManager class
	Properties
	CreateDatabase method
	DropDatabase method
	OpenConnection method

	ULDatabaseSchema class
	Properties
	GetDatabaseProperty method
	GetPublicationName method
	GetPublicationSchema method
	GetTableName method
	SetDatabaseOption method

	ULFileTransfer class
	Properties
	AddAuthenticationParm method
	CancelTransfer method
	ClearAuthenticationParms method
	DownloadFile method

	ULFileTransferEvent class
	OnTransferProgressChanged method

	ULIndexSchema class
	Properties
	GetColumnName method
	IsColumnDescending method

	ULPreparedStatement class
	Properties
	AppendByteChunkParameter method
	AppendStringChunkParameter method
	Close method
	ExecuteQuery method
	ExecuteStatement method
	SetBooleanParameter method
	SetByteChunkParameter method
	SetByteParameter method
	SetDatetimeParameter method
	SetDoubleParameter method
	SetIntegerParameter method
	SetLongParameter method
	SetNullParameter method
	SetRealParameter method
	SetStringParameter method

	ULPublicationSchema class
	Properties
	ContainsTable method

	ULResultSet class
	Properties
	AppendByteChunk method
	AppendStringChunk method
	Close method
	Delete method
	GetBoolean method
	GetByte method
	GetByteChunk method
	GetDatetime method
	GetDouble method
	GetInteger method
	GetLong method
	GetReal method
	GetString method
	GetStringChunk method
	IsNull method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	SetBoolean method
	SetByte method
	SetByteChunk method
	SetDatetime method
	SetDouble method
	SetInteger method
	SetLong method
	SetNull method
	Update method
	UpdateBegin method

	ULResultSetSchema class
	Properties

	ULSQLCode enumeration
	ULSQLType enumeration
	ULStreamErrorCode enumeration
	ULStreamErrorContext enumeration
	ULStreamErrorID enumeration
	ULStreamType enumeration
	ULSyncEvent class
	OnReceive event
	OnSend event
	OnStateChange event
	OnTableChange event
	OnWaiting event

	ULSyncParms class
	Properties
	AddAuthenticationParm method
	ClearAuthenticationParms method

	ULSyncResult class
	Properties

	ULSyncState enumeration
	ULTable class
	Properties
	Close method
	Column method
	Delete method
	DeleteAllRows method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	Insert method
	InsertBegin method
	LookupBackward method
	LookupBegin method
	LookupForward method
	MoveAfterLast method
	MoveBeforeFirst method
	MoveFirst method
	MoveLast method
	MoveNext method
	MovePrevious method
	MoveRelative method
	Open method
	Truncate method
	Update method
	UpdateBegin method

	ULTableSchema class
	Properties
	GetColumnName method
	GetIndex method
	GetIndexName method
	GetPublicationPredicate method
	InPublication method

	Index

