
Database Encryption

SAP® Adaptive Server®

Enterprise 16.0

DOCUMENT ID: DC88886-01-1600-01
LAST REVISED: May 2014
Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

CHAPTER 1: Overview of Encryption1
Full Database Encryption ..3
Column Encryption ..3

CHAPTER 2: Protect Data with Encryption Keys5
Creating the Database Encryption Key5

Dropping a Database Encryption Key6
Changing a Database Encryption Key7

Creating Column Encryption Keys7
Dropping Column Encryption Keys11
Changing the Column Encryption Key11

Key Protection ..12
Grant Access to Keys ...12
Separate Keys from Data ..12

CHAPTER 3: Key Encryption15
Protect Encryption Keys with the Master Key16
Protect Encryption Keys with the System-Encryption

Password ..17
Protect Keys with User-Specified Passwords18
Protect Encryption Keys with Dual Control18

CHAPTER 4: Database-Level Master and Dual
Master Keys ...21

Creating the Master and Dual Master Keys21
Creating Master Key Copies ...22

Setting Passwords for the Master and Dual Master Keys
...23

Database Encryption iii

Altering Passwords and Key Encryption Keys for
Master Key Copies ..24

Regenerate Master Keys ...25
Dropping Master Keys and Key Copies26
Recovering the Master Key and Dual Master Key26
Starting SAP ASE in Unattended Start-Up mode27

Configure Unattended Start-Up Mode27
Create the Master Key Start-Up File27
How SAP ASE Uses the Master Key Start-Up File28

CHAPTER 5: Secure External Passwords and
Hidden Text ..29

Service Keys ..29
Creating Service Keys ..30
Dropping Service Keys ...31
Modify Service Keys ...32

Changing the syb_extpasswdkey32
Changing the syb_syscommkey33

Service Keys with External Passwords33
SSL Passwords ..33
LDAP Passwords ...34
Replication Agent Passwords34

Service Keys Encrypted with the Master Key35

CHAPTER 6: Database Encryption37
Create an Encrypted Database ...37
Encrypt an Existing Database ..38
Encryption Status and Progress ..40
Performance Considerations ..40
Suspend the Encryption Process43

The quiesce database Command and Fully Encrypted
Databases ..44

Resume the Encryption Process ..44
Decrypt an Encrypted Database ..44

Contents

iv SAP Adaptive Server Enterprise

Recover Fully Encrypted Databases45
Back Up (Dump) a Fully Encrypted Database45
Back Up the Database Encryption Key46
Restore (Load) Backups of Fully Encrypted Databases

...46
Loading Behavior of Encrypted Databases46
Dropping a Database That is Being Encrypted48
Mounting and Unmounting a Fully Encrypted Database

...48
Archive Databases and Full Encryption48

CHAPTER 7: Column Encryption51
Encrypting Columns on New Tables51

Specifying Encryption on select into52
Encrypting Columns in Existing Tables53
Index Creation and Constraints on Encrypted Columns

...53
Domain Creation and Access Rules on Encrypted

Columns ...54
Decrypt Permission ...55

Revoking Decryption Permission56
Restrict Decrypt Permission ...56
Default Values Returned Instead of Decrypted Data57

Defining Decrypt Defaults ...57
Permissions and Decrypt Default 59
Columns with Decrypt Default Values59
Decrypt Default Columns and Query Qualifications60
decrypt default and Implicit Grants61
decrypt default and insert, update, and delete

Statements ...62
Removing Decrypt Defaults ..63

Length of Encrypted Columns ...63
Encrypted Columns Audits ...67

Event Names and Numbers ..67

Contents

Database Encryption v

Passwords Masked in Command Text Auditing67
Auditing Actions of the Key Custodian67

Performance Considerations ..68
Indexes on Encrypted Columns68
Sort Orders and Encrypted Columns68
Joins on Encrypted Columns ..69
Search Arguments and Encrypted Columns70
Movement of Encrypted Data as Cipher Text70

Access Encrypted Data ...71
Encrypted Columns Process ..71
Permissions for Decryption ...72
Drop Encryption ..72

CHAPTER 8: Role of the Key Custodian73
Users, Roles, and Data Access ..74

CHAPTER 9: Key Protection Using User-Specified
Passwords ..77

Change a Key’s Protection Method78
Create Key Copies ...80
Change Passwords on Key Copies81
Access Encrypted Data with a User Password82
Application Transparency Using Login Passwords on

Key Copies ...84
Login Password Change and Key Copies87
Dropping a Key Copy ..87

CHAPTER 10: Key Recovery from Lost Passwords
...89

Loss of Password on Key Copy ...89
Loss of Login Password ...89
Loss of Password on Base Key ..90
Key Recovery Commands ..91

Contents

vi SAP Adaptive Server Enterprise

Ownership Change of Encryption Keys92

Contents

Database Encryption vii

Contents

viii SAP Adaptive Server Enterprise

CHAPTER 1 Overview of Encryption

SAP® Adaptive Server® Enterprise (SAP®ASE) authentication and access control
mechanisms ensure that only properly identified and authorized users can access data. Data
encryption further protects sensitive data against theft and security breaches.

Encrypt entire databases, or only columns, depending on your needs.

While both encrypted columns and fully encrypted databases allow you to comply with
security and privacy requirements, the different usages may make one feature easier to deploy
than the other. Consider using:

• Encrypt columns when you can easily identify which columns contain sensitive data.
• Encrypt databases when you must perform range searches over sensitive data columns,

and when you lack the knowledge of the data model and cannot identify sensitive data
columns (for example, in packaged applications that include thousands of tables). In
addition, the definition of sensitive data (such as personal information) differs among
different locations (such as states or countries); encrypting an entire database can allow
you to satisfy these various data security requirements.

The SAP ASE encryption feature enables you to encrypt data that is at rest, without changing
your applications. This native support provides the following capabilities:

• Fully encrypt databases
• Column-level granularity
• Use of a symmetric, National Institute of Standards and Technology (NIST)-approved

algorithm: Advanced Encryption Standard (AES)
• Performance optimization
• Enforced separation of duties
• Fully integrated and automatic key management
• Application transparency: no application changes are needed
• Data privacy protection from the power of the system administrator

Data encryption and decryption is automatic and transparent. If you have insert or update
permission on a table, any data you insert or modify is automatically encrypted prior to
storage. Daily tasks are not interrupted.

Selecting decrypted data requires decrypt permission in addition to select permission.
decrypt permission can be granted to specific database users, groups, or roles. SAP gives you
more control by providing you with granular access capability to sensitive data. SAP also
automatically decrypts selected data for users with decrypt permission.

Encryption keys are stored in the database in encrypted form. You can encrypt an encryption
key using a key encryption key (KEK) derived from a

Database Encryption 1

• System-level user-supplied password
• KEK derived from a user-supplied password (which can be the user’s login password)
• Separately created database-level KEK (master key or dual master key)

The password you select reflects your ability to preserve data privacy, even from system
administrators. You may choose to protect your column encryption key using dual-control
mode to increase the security.

When data is encrypted, it is stored in an encoded form called “cipher text.” Cipher text
increases the length of the encrypted column from a few bytes to 32 extra bytes. Unencrypted
data is stored as plain text.

Column and database encryption uses a symmetric encryption algorithm, which means that
the same key is used for encryption and decryption. SAP ASE tracks the key that encrypts the
data.

Generally, using data encryption requires these steps:

1. Install the license option ASE_ENCRYPTION. See the SAP ASE Installation Guide.
2. The system security officer (SSO) enables encryption in SAP ASE:

sp_configure 'enable encrypted columns', 1
3. Depending on the method you chose to protect encryption keys, create a database-level

master key or set the system encryption password.
4. Create one or more named encryption keys. Consider using passwords to protect data even

from the database administrator.
5. Specify the data for encryption.
6. Grant decrypt permission to users who must see the data. You may choose to specify a

default plain text value known as a “decrypt default.” The SAP ASE returns this default,
instead of the protected data, to users who do not have decrypt permission.

Once you perform these steps, you can run your existing applications against your existing
databases, tables and columns, but now the data is securely protected against theft and misuse.
SAP ASE utilities and other SAP products can process data in encrypted form, protecting your
data throughout the enterprise. For example, you can:

• Use SAP® Control Center or SAP Central SAP ASE Plug-in to manage encrypted data
using a graphical interface. See the online help.

• Use the bulk copy utility (bcp) to securely copy encrypted data in and out of the server. See
the Utility Guide.

• Use the SAP ASE migration tool sybmigrate to securely migrate data from one server to
another. See the SAP ASE System Administration Guide.

• Use SAP Replication Server to securely distribute encryption keys and data across servers
and platforms. See the Replication Server Administration Guide for information on
encryption when replicating.

CHAPTER 1: Overview of Encryption

2 SAP Adaptive Server Enterprise

Full Database Encryption
As of version 16.0, you can fully encrypt entire databases, providing protection for an entire
database.

When you fully encrypt a database, all of its data, indexes, and transaction logs become
encrypted. This encryption is transparent, so that users can perform operations on tables,
indexes, and so on, as usual, without noticing any differences.

Column Encryption
Encrypting columns in SAP ASE is more straightforward than using encryption in the middle
tier, or in the client application. Use SQL statements to create encryption keys and to specify
columns for encryption; existing applications continue to run without change.

When you insert or update data in an encrypted column, SAP ASE transparently encrypts the
data immediately before writing the row. When you select from an encrypted column, SAP
ASE decrypts the data after reading it from the row. Integer and floating point data are
encrypted in the following form for all platforms:

• Most significant bit format for integer data
• Institute of Electrical and Electronics Engineers (IEEE) floating point standard with MSB

format for floating point data

You can encrypt data on one platform and decrypt it on a different platform, provided that both
platforms use the same character set.

CHAPTER 1: Overview of Encryption

Database Encryption 3

CHAPTER 1: Overview of Encryption

4 SAP Adaptive Server Enterprise

CHAPTER 2 Protect Data with Encryption
Keys

SAP ASE uses two types of encryption keys and keeps keys encrypted when they are not in
use.

Types of encryption keys:

• Database encryption key (DEK) – the DEK is created in the master database and used to
encrypt a database.

• Column encryption key (CEK) – users must have access to the CEK before they can access
encrypted data, but it must be encrypted before you store it on disk or in memory. SAP ASE
encrypts the CEK using a key encryption key (KEK) and stores it in encrypted form in
sysencryptkeys. The KEK also decrypts the CEK, allowing you to access decrypted
data.

Key management includes creating, dropping, and modifying column encryption keys,
distributing passwords, creating key copies, and providing for key recovery in the event of a
lost password.

Creating the Database Encryption Key
The database encryption key is a 256-bit symmetric key that is created in the master database
and used to encrypt a database.

Prerequisites

Before you can create a database encryption key (DEK):

• Verify that you have a valid SAP ASE encryption feature license (ASE_ENCRYPTION)
• Set the enable encrypted columns configuration parameter
• Create a master key and optionally, a dual master key in the master database; these

protect the database encryption key.
• Ensure that you have the appropriate privileges:

• If granular permission is enabled, a system permission called manage database
encryption key is required to create the key.

• If granular permission is disabled, you must have sso_role, keycustodian_role, or
create encryption key permission.

Database Encryption 5

Task
Use the create encryption key command in the master database to create a database
encryption key. The syntax is:
create encryption key keyname
 [for algorithm]
 for database encryption
 [with
 {[master key]
 [key_length 256]
 [init_vector random]
 [[no] dual_control]}

where:
• keyname – must be unique in the user's table, view, and procedure name space in the

master database.

• for algorithm – specifies the algorithm. Currently, the only supported algorithm is
Advanced Encryption Standard (AES).

• for database encryption – explicitly specifies that you are creating an
encryption key to encrypt an entire database, rather than a column.

• master key – is required for full database encryption. SAP ASE returns an error if the
master key does not already exist.

• key_length 256 – is the size, in bits, of the key you are creating. The only valid length
for a database encryption key is 256; SAP ASE returns an error message if you use any
other size.

• init_vector random – is required for full database encryption. If you specify
init_vector null, as you can for creating a column encryption key, SAP ASE
returns an error.

• [no] dual control – indicates whether the database encryption key must be
encrypted using dual controls. By default, dual control is not configured.

This example creates a database encryption key that is protected by the master key:
sp_configure 'enable encrypted columns', 1
create encryption key master with passwd "testpassword"
set encryption passwd 'testpassword' for key master
create encryption key dbkey for database encryption

Dropping a Database Encryption Key
To drop the database encryption key, use the drop encryption key command. This command
deletes the database encryption key from the sysencryptkeys table in the master
database.

The syntax is:
drop encryption key key_name

Note: This command fails if the database encryption key you are dropping is still being used to
encrypt a database.

CHAPTER 2: Protect Data with Encryption Keys

6 SAP Adaptive Server Enterprise

Changing a Database Encryption Key
To change the manner in which a database encryption key is protected, as well as who its
owner is, use the alter encryption key command.

You cannot regenerate a database encryption key for a database.

• To change a database encryption key:
1. Decrypt the database protected by the database encryption key.
2. Drop, and re-create the database encryption key.

Note: You cannot convert a column encryption key into a database encryption key. SAP
ASE displays an error message if you alter a different type of encryption key into a
database encryption key using the for database encryption option.

• To simply change the way a database encryption key is protected, rather than change the
database encryption key altogether, use this syntax:
alter encryption key key_name
for database encryption
modify encryption with {[master key]
 [[no] dual_control}

• To change the owner of a database encryption key:
alter encryption key [[database.][owner].]dek_name
 modify owner user_name

The permission to run this option is the same as the permission for alter encryption key.

Creating Column Encryption Keys
A column encryption key must exist before a table owner can mark a column for encryption on
a new or existing table.

When you set up keys for the first time, consider:

• Key owner or custodian assignment – the system security officer (SSO) must grant create
encryption key permission to create keys. By default, the sso_role and the
keycustodian_role have create encryption key permission.

• Whether keys should be created in a separate key database – SAP recommends that you use
a separate database for keys, especially if keys are encrypted by the system encryption
password.

• The number of keys needed – you can create a separate key for each encrypted column, or
you can use the same key to encrypt columns across multiple tables. From a performance
standpoint, encrypted columns that join with equivalent columns in other tables should
share the same key. For security purposes, unrelated columns should use different keys.

Column encryption in SAP ASE uses the Advanced Encryption Standard (AES) symmetric
key encryption algorithm, with available key sizes of 128, 192, and 256 bits. Random-key
generation and cryptographic functionality is provided by the FIPS 140-2 compliant modules.

CHAPTER 2: Protect Data with Encryption Keys

Database Encryption 7

To securely protect key values, SAP ASE uses a 256-bit key-encrypting key (KEK), which
may be a master key, or an internal key derived from either the system encryption password or
a user-specified password.

SAP ASE encrypts the new key (the column encryption key) and stores the result in
sysencryptkeys.

By default, SAP ASE creates 256-bit key-encryption keys. For compatibility with versions
earlier than 15.7, it uses a 128-bit key if the KEK is derived from the system encryption
password.

The syntax is:

create encryption key [[database.][owner].]keyname
 [as default] [for algorithm]
 [with
 {[key_length num_bits]
 [{passwd 'passwd_phrase' | passwd system_encr_passwd |
 master key}]
 [init_vector {null | random}]
 [pad {null | random}]
 [[no] dual_control]
 }]

where:

• keyname – must be unique in the user’s table, view, and procedure name space in the
current database. Specify the database name if the key is in another database, and specify
the owner’s name if more than one key of that name exists in the database. The default
value for owner is the current user, and the default value for database is the current
database. Only the system security officer can create keys for other users.

Note: You cannot create temporary key names that start with “#”.

• as default – allows the system security officer or key custodian to create a database default
key for encryption. This enables the table creator to specify encryption without using a
keyname on create table, alter table, and select into. SAP ASE uses the default key from
the same database. The default key may be changed.

• for algorithm – Advanced Encryption Standard (AES) is the only algorithm supported.
AES supports key sizes of 128, 192, and 256 bits, and a block size of 16 bytes. The block
size is the number of bytes in an encryption unit. Large data is subdivided for encryption.

• keylength num_bits – the size, in bits, of the key to be created. For AES, valid key lengths
are 128, 192, and 256 bits. The default keylength is 128 bits.

• passwd password_phrase – indicates to ASE to protect the CEK using the user password
password_phrase, which can be a quoted alphanumeric string up to 255 bytes in length.

• passwd system_encr_passwd – indicates to ASE to protect the CEK using the system
encryption password.

• master key – indicates to ASE to protect the CEK using the master key. By default, SAP
ASE uses the master key (if it exists) to protect column encryption keys.

CHAPTER 2: Protect Data with Encryption Keys

8 SAP Adaptive Server Enterprise

• init_vector

• random – specifies use of an initialization vector during encryption. When an
initialization vector is used by the encryption algorithm, the cipher text of two identical
pieces of plain text are different, which prevents detection of data patterns. Using an
initialization vector can add to the security of your data.
Use of an initialization vector implies using a cipher-block chaining (CBC) mode of
encryption, where each block of data is combined with the previous block before
encryption, with the first block being combined with the initialization vector.
However, initialization vectors have some performance implications. You can create
indexes and optimize joins and searches only on columns where the encryption key
does not specify an initialization vector.

• null – omits the use of an initialization vector when encrypting. This makes the column
suitable for supporting an index.
The default is to use an initialization vector, that is, init_vector random.
Setting init_vector null implies the electronic codebook (ECB) mode, where each
block of data is encrypted independently.
To encrypt one column using an initialization vector and another column without using
an initialization vector, create two separate keys—one that specifies use of an
initialization vector and another that specifies no initialization vector.

• pad

• null – the default, omits random padding of data.
You cannot use padding if the column must support an index.

• random – data is automatically padded with random bytes before encryption. You can
use padding instead of an initialization vector to randomize the cipher text. Padding is
suitable only for columns whose plain text length is less than half the block length. For
the AES algorithm the block length is 16 bytes.

• dual control – indicates whether the new key must be encrypted using dual control. By
default, dual control is not configured.

Examples
These examples use various encryption attributes when creating a column encryption key, and
many assume you have already created the master key or set the system encryption password.

• Example 1 – specifies a 256-bit key called “safe_key” as the database default key. Because
the key does not specify a password, SAP ASE uses the database-level master key as the
KEK for safe_key. If there is no master key, SAP ASE uses the system encryption
password:
create encryption key safe_key as default for AES
 with keylength 256

Only the system security officer or a user with the keycustodian_role can create a default
key.

• Example 2 – creates a 128-bit key called “salary_key” for encrypting columns using
random padding:

CHAPTER 2: Protect Data with Encryption Keys

Database Encryption 9

create encryption key salary_key for AES with
 init_vector null pad random

• Example 3 – creates a 192-bit key named “mykey” for encrypting columns using an
initialization vector:
create encryption key mykey for AES
 with keylength 192 init_vector random

• Example 4 – creates a key protected by a user-specified password:
create encryption key key1
 with passwd 'Worlds1Biggest6Secret'

If a key is protected by a user-specified password, that password must be entered a column
encrypted by the key can be accessed.

• Example 5 – creates a key protected by dual-control:
create encryption key dualprotectedkey
with passwd "Pass4Tomorrow"
dual_control

Key “dualprotectedkey” is protected by the master key and a user password (in dual
control). To access the key, you must enter both the user password for the key and the
password for the master key.

Permissions
The sso_role and keycustodian_role implicitly have permission to create encryption keys.
The system security officer or the key custodian uses this syntax to grant create encryption
key permissions to others:
grant create encryption key
 to user_name | role_name | group_name

For example:
grant create encryption key to key_admin_role

To revoke key creation permission, use:
revoke create encryption key
 {to | from} user_name | role_name | group_name

Note: grant all does not grant create encryption key permission to the user. It must be
explicitly granted by the system security officer.

See also
• Chapter 8, Role of the Key Custodian on page 73

• Chapter 4, Database-Level Master and Dual Master Keys on page 21

• Key Protection on page 12

• Performance Considerations on page 68

• Dropping Column Encryption Keys on page 11

CHAPTER 2: Protect Data with Encryption Keys

10 SAP Adaptive Server Enterprise

Dropping Column Encryption Keys
Column encryption key owners can drop their own keys. The system security officer can drop
any key.

Prerequisites

A key can be dropped only if there are no encrypted columns in any database that use the
key.

Task

To drop an encryption key, use:

 drop encryption key [[database.][owner].]keyname

For example, this drops an encryption key named cc_key:

drop encryption key cust.dbo.cc_key

When executing drop encryption key, SAP ASE does not check for encrypted columns in
databases that are suspect, archived, offline, not recovered, or currently being loaded. In any of
these cases, the command issues a warning message that names the unavailable database, but
does not fail. When the database is brought online, any tables with columns that were
encrypted with the dropped key are unusable. To restore the key, the system administrator
must load a dump of the dropped key’s database that precedes when the key was dropped.

The system security officer can use sp_encryption to identify all the columns encrypted with a
given key.

See also
• Creating Column Encryption Keys on page 7
• Chapter 8, Role of the Key Custodian on page 73
• Chapter 4, Database-Level Master and Dual Master Keys on page 21
• Key Protection on page 12
• Performance Considerations on page 68

Changing the Column Encryption Key
Periodically change the keys used to encrypt columns and databases.

Create a new key using create encryption key, then use alter table...modify to encrypt the
column with the new key.

In the following example, assume that the “creditcard” column is already encrypted. The alter
table command decrypts and reencrypts the credit card value for every row of customer using
cc_key_new.

create encryption key cc_key_new for AES

CHAPTER 2: Protect Data with Encryption Keys

Database Encryption 11

alter table customer modify creditcard encrypt with
 cc_key_new

Key Protection
The key administrator must decide where keys are stored, when they should be renewed, and
which owners can use a given key to encrypt data.

See also
• Creating Column Encryption Keys on page 7

• Dropping Column Encryption Keys on page 11

Grant Access to Keys
The key owner or a user with the sso_role must grant select permission on a key before
another user can specify the key in the create table, alter table, and select into statements.

The key owner can be the system security officer, the key custodian or, for non-default keys,
any user with create encryption key permission. Key owners should grant select permission
on keys as needed.

This example allows users with db_admin_role to use the encryption key named “safe_key”
when specifying encryption on create table, alter table, and select into statements:
grant select on safe_key to db_admin_role

Note: Users who process encrypted columns through insert, update, delete, and select do not
need select permission on the encryption key.

Separate Keys from Data
When you specify a data for encryption, you can use a named key from the same database or
from a different database. Encrypting with a key from a different database provides a security
advantage because, in the event of the theft of a database dump, it protects against access to
both keys and encrypted data.

Administrators can also protect each database dump with a different password, making
unauthorized access even more difficult.

Encrypting with a key from a different database needs special care to avoid data and key
integrity problems in distributed systems. Carefully coordinate database dumps and loads. If
you use a named key from a different database, SAP recommends that, when you dump a
database that contains:

• Encrypted columns, you also dump the database where the key was created. You must do
this if new keys have been added since the last dump.

• An encryption key, dump all databases containing columns encrypted with that key. This
keeps encrypted data in sync with the available keys.

CHAPTER 2: Protect Data with Encryption Keys

12 SAP Adaptive Server Enterprise

If you do not specify a named key, the data is automatically encrypted with the default key
from the same database. The system security officer or the key custodian can use
sp_encryption to identify the columns encrypted with a given key.

CHAPTER 2: Protect Data with Encryption Keys

Database Encryption 13

CHAPTER 2: Protect Data with Encryption Keys

14 SAP Adaptive Server Enterprise

CHAPTER 3 Key Encryption

There are two keys between the user and the data: the database-encryption key (DEK) or
column-encryption key (CEK) and the key-encryption key (KEK). The DEK and CEK
encrypts data and users must have access to it before they can access encrypted data.

It cannot be stored on disk in an unencrypted form. Instead, SAP ASE uses a KEK, or 2 KEKs
in dual control, to encrypt the DEK or CEK when you create or alter an encryption key. The
KEK also decrypts the DEK or CEK before you can access decrypted data. DEKs and CEKs
are stored in encrypted form in sysencryptkeys.

The KEK is a master key, created separately by the system security officer or key custodian, is
an internally derived key from the system encryption password, a user-specified password, or
a login password, depending on how you specify the key’s encryption with the create and alter
encryption key statements. Both the system encryption password and the master key are
stored in encrypted form.

The following figure describes how to create and store a column encryption key for a create
encryption key statement. The KEK is derived from a password and the KEK and the raw
CEK are fed into the encryption function to produce an encrypted CEK.

Figure 1: Create an Encryption Key

The following figure describes how the KEK is used during a DML operation to decrypt the
CEK. The raw CEK is then used to encrypt or decrypt data.

Database Encryption 15

Figure 2: Accessing a CEK to Encrypt or Decrypt on DML Statement

Protect Encryption Keys with the Master Key
The master key is a database-level key that is created by a user with the sso_role or
keycustodian_role, and is used as a KEK for user-created encryption keys. Once created, the
master key replaces the system encryption password as the default KEK for user-created keys.

Although SAP ASE supports using the system encryption password, for compatibility with
versions earlier than 15.7, SAP recommends that you use the master key.

You can use the master key with the dual master key to create a composite key that provides
dual control and split knowledge for all user-created keys. You can also create a composite key
by using the master key with a DEK's or CEK’s explicit password.

Using a master key simplifies the administration of encrypted data because:

• Managing passwords for keys is restricted to setting the password for the master key.
• You need not specify passwords on create and alter encryption key statements.
• Allows for password distribution and recovery from lost column encryption key

passwords.
• Access control over encrypted data is enforced through decrypt permission on the data.
• You need not make any changes to the application.

The syntax for creating a master key is:
create encryption key master
 [for AES] with passwd char_literal

See the Reference Manual: Commands.

See also
• Restrict Decrypt Permission on page 56

CHAPTER 3: Key Encryption

16 SAP Adaptive Server Enterprise

Protect Encryption Keys with the System-Encryption
Password

The system encryption password is a database-specific password, and is the secondary default
encryption method for the DEK or CEK.

SAP ASE uses the system encryption password to encrypt keys created in a specified database
without an explicit password clause. Once the system security officer or key custodian has set
a system encryption password, you need not specify this password to process encrypted
columns. SAP ASE internally accesses the system encryption password when it needs to
encrypt or decrypt column encryption keys.

The system security officer or key custodian uses sp_encryption to set the system encryption
password. The system password is specific to the database using sp_encryption.
sp_encryption system_encr_passwd, password

password can be as many as 255 bytes in length.

Set a system encryption password only in the database where encryption keys are created.

The system encryption password protects your encryption keys. Choose long and complex
system encryption passwords. Longer passwords are harder to guess or crack by brute force.
Include uppercase and lowercase letters, numbers, and special characters in the system
encryption password. SAP recommends that the system encryption password be at least 16
bytes in length.

SAP ASE enforces compliance of the system encryption password with the minimum
password length and check password for digit configuration parameters.

Change the system password by using sp_encryption and supplying the old password:
sp_encryption system_encr_passwd, password [, old_password]

Periodically change the system encryption password, especially when an administrator who
knows the system encryption password leaves the company. When the system password is
changed, SAP ASE automatically reencrypts all keys in the database with the new password.
Encrypted data is unaffected when the system password is changed, in other words, it is not
decrypted and reencrypted.

You can u-set the system encryption password by supplying “null” as the argument for
password and supplying the value for old_password. Unset the system password only if you
have dropped all the encryption keys in that database that were encrypted by the system
encryption password.

The encrypted password value is stored in the sysattributes system table in that
database. Additionally, the encrypted database feature introduces 43, a new systtributes

CHAPTER 3: Key Encryption

Database Encryption 17

class that signifies full database encryption. For every storage allocation of the database that
undergoes encryption, SAP ASE inserts a row in sysattributes with these values:

Column Name Value

class 43

object dbid (database ID)

object_info1 Starting logical page ID

object_info2 Ending logical page ID

int_value Last encrypted logical page ID on one storage allocation

This row is removed when SAP ASE finishes encrypting the database.

Protect Keys with User-Specified Passwords
You can limit the power of the system administrator or database owner to access private data
when you specify passwords on keys using create encryption key or alter encryption key.

If keys have explicit passwords, users must have, before they can decrypt data:

• decrypt permission on the data
• The encryption key’s password

Users must also know the password to run DML commands that encrypt data.

See also
• Chapter 9, Key Protection Using User-Specified Passwords on page 77

Protect Encryption Keys with Dual Control
You can secure encryption keys with dual control using the create encryption key command.

If you specify create encryption key with dual_control, but do not specify a user password,
the encryption key is protected by the master key and the dual master key.

If you specify with dual_control and include a user-specific password, the encryption key is
protected by the master key and the user password.

• Example 1 – protects CEK “Reallysecret” with both the master and dual master keys and
fails, unless both keys exist in the database:
create encryption key Reallysecret
 with init_vector random dual_control

• Example 2 – encrypts CEK “k3” with both the master key and user password
“Whybother”:

CHAPTER 3: Key Encryption

18 SAP Adaptive Server Enterprise

create encryption key k3
 with passwd 'Whybother'
 dual_control

See also
• Change a Key’s Protection Method on page 78

CHAPTER 3: Key Encryption

Database Encryption 19

CHAPTER 3: Key Encryption

20 SAP Adaptive Server Enterprise

CHAPTER 4 Database-Level Master and Dual
Master Keys

SAP ASE allows users to create database-level encryption keys called the master key and the
dual master key. These keys both act as key encryption keys, and are used to protect other keys,
such as column and database encryption keys, and service keys.

The master key and the dual master key must have different owners. You can provide
passwords for the master keys using either isql, or through a server-private file that is
accessible only by the SAP ASE. The passwords to these keys are not stored in the database.

See also
• Creating Column Encryption Keys on page 7

• Dropping Column Encryption Keys on page 11

Creating the Master and Dual Master Keys
Once created, master keys become the default protection method for encryption keys. A dual
master key is required only for dual control of column and database encryption keys.

Prerequisites

Only users with sso_role or keycustodian_role can create the master key and dual master key.
There can only be one master and one dual master key for a database.

Task

To create the master and dual master keys use:
create encryption key [dual] master
 [for AES] with passwd char_literal

where:

• master and dual master refer to database-level keys used to encrypt other keys within the
database in which they are defined. These keys are not used to encrypt data. The master key
is named internally as sybencrmasterkey in sysobjects, and the dual master key
is named internally as sybencrdualmasterkey in sysobjects.

• with passwd must be followed by a character string password that adheres to
sp_passwordpolicy.

See the Reference Manual: Commands.

Database Encryption 21

• Example 1 – creates master key in database tdb1:

use database tdb1
create encryption key master with passwd
'unforgetablethatswhatyouare'

• Example 2 – creates a dual master key in database tdb1:

use database tb1
create encryption key dual master with passwd 'dualunforgettable'

• Example 3 – generates an error because you cannot use a master key as a column
encryption key:
create table t2 (c1 int encrypt with master)

To change the password of a master key or dual master key, use:
alter encryption key [dual] master
 with passwd <char_literal>
 modify encryption
 with passwd <char_literal>

Creating Master Key Copies
Users or master key owners with sso_role or keycustodian_role can create copies for master
keys.

You may need to:

• Provide access to the master key or dual master key for unattended start-up of the SAP
ASE. Such a key copy is referred to as the automatic_startup copy.

• Support recovery of the master keys should their passwords be lost. Such a key copy is
referred to as the recovery copy.

• Allow a user other than the base key owner to set up encryption passwords for the master or
dual master key. This key copy is referred to as a regular copy.

To add master key copies in a database, use:
alter encryption key [dual] master
 with passwd char_string
 add encryption
 {with passwd char_string
 for user user_name
 [for recovery] | [for automatic_startup] }

where:

• char_string – (first reference) specifies the password that currently encrypts the base copy
of the master or dual master key.

• char_string – (second reference) specifies the password for the regular or recovery copy. It
must not be used for automatic_startup copies.

• for user – indicates the user to whom the regular or recovery copy must be assigned. Do not
use this parameter to enter a password for automatic_startup copies.

CHAPTER 4: Database-Level Master and Dual Master Keys

22 SAP Adaptive Server Enterprise

• for recovery – indicates that the key copy is to be used to recover the master key in case the
password is lost.

• for automatic_startup – indicates that the key copy is to be used to access the master or
dual master key after the server is restarted with automatic master key access enabled.

• Example 1 – master key owner creates a key copy for Mary:
alter encryption key master
 with passwd 'unforgettablethatswhatur'
 add encryption
 with passwd 'just4now'
 for user mary

• Example 2 – dual master key owner Smith creates a key copy for automatic_startup with:
alter encryption key dual master
 with passwd 'Never4Getable'
 add encryption
 for automatic_startup

See also
• Chapter 10, Key Recovery from Lost Passwords on page 89

Setting Passwords for the Master and Dual Master Keys
The base key owner, or a user who owns a regular key copy, can set the password for the master
and dual master keys. Passwords must be set before master keys can be used.

To set passwords for master keys, you can either use the:

• set encryption passwd command
• Use the unattended start-up feature
• (Master key only) the dataserver command

The set encryption command is:
set encryption passwd char_literal
 for key [dual] master

where:

• char_literal – if the user is the key owner, this is the password that currently encrypts the
base copy of the master or dual master key. If the user is not the key owner, this is the
password that currently encrypts the user’s copy of the key.

Example – sets the password “MasterSecret” for the master key in database tdb1:

use tdb1
set encryption passwd 'MasterSecret' for key master

SAP ASE sets the password in the server memory for the database in which the master or dual
master key is defined, and also records the identity of the user setting the password. Once set,
the password is available for all access to the master key in the database.

CHAPTER 4: Database-Level Master and Dual Master Keys

Database Encryption 23

Altering Passwords and Key Encryption Keys for Master
Key Copies

Users who own master key copies can change the passwords for their key copies.

To change the password for key copies:
alter encryption key [dual] master
 with passwd char_string
 modify encryption
 {with passwd char_string [for recovery]
 | for automatic_startup}

where:

• char_string – (first instance) If the user is the key owner, this is the password that currently
encrypts the base copy of the master or dual master key. If the user is not the key owner, this
is the password that currently encrypts the user’s copy of the key.

• char_string – (second reference) specifies the new password for the regular or recovery
copy. Do not use this parameter to enter a password for automatic_startup copies.

• for automatic_startup – generate a new KEK and use it to create a new automatic_startup
key copy.

If neither for recovery nor for automatic startup is specified, and the command is issued by
the key owner, SAP ASE alters the base key copy password. If the command is not issued by
the key owner, SAP ASE alters the password of the base key copy only if the current user has
sso_role or keycustodian_role.

• Example 1 – master key owner “Jones” creates a key copy for “Mary” using:
alter encryption key master
 with passwd 'unforgettablethatswhatyouare'
 add encryption
 with passwd 'just4now'
 for user Mary

• Example 2 – “Mary” changes the password for her copy using:
alter encryption key master
 with passwd 'just4now'
 modify encryption
 with passwd 'maryspasswd'

• Example 3 – master key owner “John” changes the password for the base key using:
alter encryption key master
 with passwd 'unforgettablethatswhatyouare'
 modify encryption
 with passwd 'notunforgettable'

Users with sso_role or keycustodian_role can modify the automatic_startup key copies to
change their key encryption keys. For example, such a user with knowledge of the master key
password, can change the key encryption key of the automatic_startup key copy using:

CHAPTER 4: Database-Level Master and Dual Master Keys

24 SAP Adaptive Server Enterprise

alter encryption key master
 with passwd 'unforgettablethatswhatyouare'
 modify encryption for automatic_startup

The SAP ASE:

• Decrypts the base master key with a key encryption key derived from the password.
• Creates a new master key encryption key and replaces the old key in the master key start-up

file with this new key.
• Creates a new automatic_startup key copy by encrypting the master key using the new

master key encryption key, and replacing the old automatic_startup key copy in
sysencryptkeys with this new copy.

Regenerate Master Keys
Periodically change the master and dual master keys. However, each time you change the
master and dual master keys, you must also reencrypt all column and database encryption keys
using the new master and dual master keys.

To automate this process, SAP ASE uses the regenerate key option which replaces the master
or dual master key values with the new values, and reencrypts all column and database
encryption keys that are currently encrypted by the master or dual master keys being
regenerated:
alter encryption key [dual] master
 with passwd char_string
 regenerate key
 [with passwd char_string]

When regenerate key command is executed, SAP ASE:

• Validates that the supplied password decrypts the base master or dual master key.
• Creates a new master or dual master key.
• Decrypts all column and database encryption keys that are encrypted either solely or

partially by the master or dual master key. SAP ASE reencrypts them using the new master
or dual master key.

• Replaces the base master or dual master key with the new key encrypted by the second
password. If the second password is not supplied, SAP ASE uses the currently configured
password to encrypt the new key.

• Drops the regular key copies. The master key owner must re-create regular key copies for
designated users using alter encryption key.

• Drops the key recovery copy. The master key owner must add a new recovery key copy
using alter encryption key, and inform the recovery key owners of the new password.

• Replaces the automatic_startup copy with a new key copy created by encrypting the new
master key with a new randomly generated master key encryption key. SAP ASE writes the
new master key encryption key into the master key start-up file.

CHAPTER 4: Database-Level Master and Dual Master Keys

Database Encryption 25

Dropping Master Keys and Key Copies
A user with sso_role or keycustodian_role can drop a master or dual master key provided that
there are no other column or database encryption keys that are currently encrypted using that
master or dual master key.

To drop a master or a dual master key, use:
drop encryption key [dual] master

When a master or dual master key is dropped, SAP ASE:

• Drops the master or dual master key, and its key copies. All regular key copies, the
automatic_startup key copy, and recovery key copies are deleted from the database.

• Deletes the master key encryption keys from the master keystart-upfile, if an
automatic_startup key copy exists.

To delete only the regular key copy, use:
alter encryption key [dual] master
 drop encryption for user username

To delete only the recovery key copy, use:
alter encryption key [dual] master
 drop encryption for recovery

To delete only the automatic_startup key copy, use:
alter encryption key [dual] master
 drop encryption for automatic_startup

Recovering the Master Key and Dual Master Key
A user with sso_role or keycustodian_role can recover the master or dual master key.

To recover the master or dual master key:
alter encryption key [dual] master
 with passwd char_string
 recover encryption
 with passwd char_string

where the first reference to passwd is the password to the recovery key copy and the second
reference to passwd is the new password for the base key.

CHAPTER 4: Database-Level Master and Dual Master Keys

26 SAP Adaptive Server Enterprise

Starting SAP ASE in Unattended Start-Up mode
Use unattended start-up mode to allow access to the master keys when the password holders
are unavailable.

1. Enable the automatic master key access configuration parameter.

2. (Optional) set the master key start-up file path and name. Otherwise, SAP ASE uses the
default file path and name.

3. Add automatic_startup copies for the master keys or dual master keys for databases for
which you intend to have unattended start-up.

Configure Unattended Start-Up Mode
In unattended start-up mode, SAP ASE accesses master keys, even if their passwords are not
present in server memory, by reading and decrypting the master key encryption keys from the
master key start-up file.

Users with sso_role can configure SAP ASE to use unattended start-up mode by setting:
sp_configure ‘automatic master key access’, 1

To use unattended start-up mode, you must also create automatic_startup key copies for the
master key and dual master key in the database.

Create the Master Key Start-Up File
When automatic master key access is enabled, SAP ASE reads in the key encryption keys
from the master key start-up file.

If the master key start-up file does not exist, SAP ASE creates a master key start-up file, but
does not write the key encryption key values to the file until automatic_startup key copies
either of the master or dual master keys are created

When automatic master key access is disabled, SAP ASE drops the key encryption keys for
master and dual master keys from the server memory. SAP ASE does not erase the key
encryption key values from the master key start-up file.

A user with the sso_role can specify the master key start-up file path and name using:
sp_encryption mkey_startup_file
 [, {new_path | default_location | null}]
 [, {sync_with_mem | sync_with_qrm}]

where:

• new_path – specifies the location and name of the master key start-up file. new_path is not
supported in standalone SAP ASE Cluster Edition installations.

CHAPTER 4: Database-Level Master and Dual Master Keys

Database Encryption 27

• default_location – sets the master key start-up file to the default path and name:
$SYBASE_ASE/security/ase_encrcols_mk_<servername>.dat.
default_location is not supported in standalone SAP ASE Cluster Edition installations.

• null – displays the current master key start-up file path and name.
• sync_with_mem – writes the master key encryption keys existing in server memory to the

master key start-up file, if configuration option automatic master key access is enabled.
sync_with_mem is not supported in standalone SAP ASE Cluster Edition installations.

• sync_with_qrm – (Available only with standalone Cluster Edition installations) updates
the key copy in the local master key start-up file with the copy on the quorum device.

How SAP ASE Uses the Master Key Start-Up File
SAP ASE reads the master and dual master key encryption keys from the master key start-up
file into the server memory.

If:

• The server is started with automatic master key access enabled, or
• automatic master key access is enabled while the server is running.

If:

• An automatic_startup key copy of the master or dual master key is created, SAP ASE
writes the master or dual master key encryption keys to the file.

• The key encryption key of the automatic_startup key copy of the master or dual master
key is altered, SAP ASE writes the new master or dual master key encryption keys to the
file.

• An automatic_startup key copy is dropped, SAP ASE deletes the corresponding record in
the file.

• A database is dropped, SAP ASE deletes all records belonging to the dropped database.
• A master or dual master key is dropped, SAP ASE deletes the corresponding record.
• A new master key start-up file is specified using sp_encryption mkey_startup_file, SAP

ASE synchronizes the server memory with the contents of the new file.

Once a master key encryption key is in memory, the master key can be accessed through the
automatic_startup copy even if the master key password is not set.

CHAPTER 4: Database-Level Master and Dual Master Keys

28 SAP Adaptive Server Enterprise

CHAPTER 5 Secure External Passwords and
Hidden Text

SAP ASE provides strong encryption for external login passwords and hidden text, using the
AES-256 symmetric encryption algorithm.

You may choose strong encryption for external passwords to:

• Replication Agents – replicated databases.
• CIS – remote descriptors and logins.
• Job Scheduler – Job Scheduler Agent.
• RTMS – real-time messaging.
• Secure Sockets Layer (SSL) and Lightweight Directory Access Protocol (LDAP) – SSL

and LDAP access accounts. Passwords are administered using stored procedures
sp_ldapadmin and sp_ssladmin can be secured.

Objects that have SQL text stored in syscomments, such as stored procedures, user-defined
functions and computed columns can be optionally encrypted with strong encryption using
sp_hidetext.

Note: Encrypting external passwords and hidden text requires the ASE_ENCRYPTION
license.

Service Keys
Service keys are 256-bit, persistent encryption keys used to strongly encrypt external login
passwords and hidden text, and are stored in sysencryptkeys.

Encrypt service keys using either:

• A static key – is the default key encryption key for service keys, and can be used if no
master key has been created in the current database. With this method, SAP ASE can use
service keys after an unattended start-up.

• The master key – provides stronger protection than a static key. SAP ASE requires the
password to decrypt the database-specific master key.

The database objects that describe these service keys include:

• syb_extpasswdkey – identifies service key for encryption of external login passwords in
sysattributes. Only one syb_extpasswdkey exists for any database. When the
syb_extpasswdkey is changed, all data encrypted using the key is reencrypted using the
new key.

Database Encryption 29

Although external login passwords are generally stored in the master database, RepAgent
stores this information in replicate databases.

• syb_syscommkey_dddddd – identifies service key for encryption of hidden text in
syscomments, where “dddddd” is a global identifier generated by SAP ASE to uniquely
identify the key. The global identifier is included with the name to distinguish names when
there are many syb_syscommkey keys associated with the same object. The global
identifier distinguishes the key, on both the local database and in the replicate database.
Strong encryption of hidden text requires a service key in each database where
sp_hidetext is executed to hide SQL text. When a new service key is created, any
existing service key in the database persists until explicitly dropped, and any hidden text is
not reencrypted until you reissue sp_hidetext.

Note: The system encryption password does not encrypt service keys.

During an upgrade to version 15.7 or later, procedural objects are recompiled from source.
Connected users are restricted in what they can do until the master key password is entered for
databases where strong encryption of hidden text is enabled, and service key is protected by
master key.

An authorized user must set the master key password on such databases using:
use mydb
go
set encryption passwd password for key master
go

Creating Service Keys
A user with sso_role or keycustodian_role can create a service key and becomes the owner of
the key.

Prerequisites

To create service keys:

• An ASE_ENCRYPTION license is required.
• The enable encrypted columns configuration parameter must be set.
• The user creating the service key must have sso_role or keycustodian_role.
• The master key must be created before the service key, if you are protecting service keys

with the master key.

Task

Use:
create encryption key [syb_extpasswdkey | syb_syscommkey]
 [with { static key | master key }]

By default, the static key encrypts the keys. To use the master key, use the with master key
parameter.

CHAPTER 5: Secure External Passwords and Hidden Text

30 SAP Adaptive Server Enterprise

When a syb_extpasswdkey is created, all external passwords in sysattributes are
reencrypted with the new key using strong encryption.

When a syb_syscommkey is created, any subsequent execution of sp_hidetext uses the
new key with strong encryption. sp_hidetext must be executed on an existing database
object for the object to be encrypted with the new key. Because reencrypting hidden text may
involve very large amounts of data, database administrators should defer executing
sp_hidetext to times when there is low system demand.

Note: You cannot use dual control with service keys.

Dropping Service Keys
drop encryption key ensures that there are no remaining references to the encryption key, and
then deletes it. You cannot drop a nonexistent syb_extpasswdkey or
syb_syscommkey_dddddd. To ensure that you delete all hidden text keys, use sp_encryption
to identify all existing keys.

Prerequisites
Users must have a keycustodian_role or sso_role to delete an unused service key.

Task

Note: If your ASE_ENCRYPTION license has expired, encrypted data is no longer available,
and you cannot execute the drop encryption key command. Contact SAP Technical Support
to obtain a temporary license.

To delete an unused service key for external logins, use:
drop encryption key syb_extpasswdkey
 with password encryption downgrade

When with password encryption downgrade is specified, SAP ASE resets external login
passwords with the algorithm used in versions earlier then 15.7. The Replication Agent
password, and the CIS and RTMS external login passwords are reset to an invalid value. The
administrator must manually reenter the passwords, after the key is dropped, to resume usage
of the corresponding services.

To delete an unused single service key for hidden text, use:
drop encryption key syb_syscommkey_dddddd

SAP ASE checks if there are any references to the specified key _dddddd, and drops the key if
no references are found.

Because syb_syscommkey_dddddd indicates a single key, you cannot specify
syb_syscommkey_dddddd with the with text encryption downgrade parameter.

To delete multiple keys:
drop encryption key syb_syscommkey with text encryption downgrade

CHAPTER 5: Secure External Passwords and Hidden Text

Database Encryption 31

• If you specify with text encryption downgrade, you cannot specify a single service key
with syb_syscommkey_dddddd, only with syb_syscommkey.

• Without the “dddddd” suffix for the syb_syscommkey, SAP ASE reencrypts all the
hidden text in syscomments with the algorithm used in versions earlier than 15.7, and
drops all syb_syscommkey_dddddd keys.

Modify Service Keys
You can regenerate syb_extpasswdkey or change its protection encryption from master key to
static key, or vice versa. You cannot regenerate syb_syscommkey.

Changing the syb_extpasswdkey
You can change syb_extpasswdkey from static to dynamic.

Change the syb_extpasswdkey using:
alter encryption key syb_extpasswdkey
 [with { static key | master key}]
 { regenerate key [with { static key | master key }]
 | modify encryption [with { static key | master key }] }

where:

• The first instance of with {static key | master key} is optional and represents how the
syb_extpasswdkey is currently encrypted.

• The second instance of with {static key | master key} allows the administrator to change
the encryption on the regenerated key from static to dynamic, or vice versa. If you omit this
parameter, the regenerated key remains encrypted as it was before issuing this command.

• The third instance of with {static key | master key} changes the protection on the existing
key to use the static key or the master key as specified. If you omit this parameter, by
default, the static key is used.

1. Creates a new service key for the external login passwords.

2. Reencrypts the passwords in sysattributes using the new key.

3. Drops the old key.

For example:

• Create a service key for external login passwords and encrypt all external login passwords
with the service key protected by the static key:
create encryption key syb_extpasswdkey

• Regenerate the service key for external login passwords, leaving the new service key
protected by the static key and reencrypting all external passwords encrypted by the old
service key:
alter encryption key syb_extpasswdkey
 regenerate key

• Change the protection of the service key to be encrypted by the master key. The service key
does not change, and external login passwords are not reencrypted:

CHAPTER 5: Secure External Passwords and Hidden Text

32 SAP Adaptive Server Enterprise

alter encryption key syb_extpasswdkey
 modify encryption with master key

Note: Before issuing this command, ensure that the master key password has already been
entered by the master key owner.

Changing the syb_syscommkey
To change the syb_syscommkey, create a new key and use sp_hidetext to reencrypt with
the new key.

For example:

• Example 1 – Create a new hidden text encryption key and encrypt all SQL text objects in
the syscomments table with the newly created key:

create encryption key syb_syscommkey
go
sp_hidetext
go

Note: When a new syb_syscommkey is created, it becomes the default key used by
sp_hidetext in that database.

• Example 2 – Create a new hidden text encryption key, encrypt the text of a specific stored
procedure in syscomments with the newly created key, and protect the key with the
master key:
create encryption key syb_syscommkey
 with master_key
go
sp_hidetext sp_mysproc
go

In this example, all other hidden text rows in syscomments remain encrypted with the
previous encryption key.

Service Keys with External Passwords
Service keys decrypt the private-key password for network listeners using SSL. The private-
key password initializes the SSL certificate.

SSL Passwords
How SSL listeners start depends on if the service keys are encrypted by master key and
whether the master key is available.

If the service keys are encrypted by the master key and the master key is unavailable:

• When only SSL listeners are specified in the interfaces file, no user can log in to enter the
master key or dual master key password. The SAP ASE shuts down because it cannot start
any listeners.

• When both SSL and non-SSL listeners are specified in the interfaces file, the non-SSL
listener can accept login requests. The SSL listeners are blocked until the master key

CHAPTER 5: Secure External Passwords and Hidden Text

Database Encryption 33

password is entered manually by an authorized user after connecting to the SAP ASE on a
non-SSL listener port using:
use master
go
set encryption passwd password for key master
go

When the master key password is correctly entered, SAP ASE wakes the SSL listener
processes and they begin to accept incoming login requests.

LDAP Passwords
Service keys are required to decrypt the password for LDAP administration accounts when
SAP ASE authenticates users during the LDAP user authentication process. Until
authentication is complete, users cannot log in using LDAP.

An authorized user that can authenticate locally using SAP ASE authentication can manually
enter the master key password using:
use master
go
set encryption passwd password for key master
go

See the Security Administration Guide.

Replication Agent Passwords
Service keys decrypt passwords that initiate connections by Replication Agents on user
databases. Agents that are configured to start automatically are blocked until an authorized
user enters the master key password manually, if the service key is encrypted by a master key.

If a service key is in a user database that is replicated, the service key is also available on the
replicate database because the sysencryptkeys table that stores the encryption keys is
also replicated. The master key is also stored in the sysencryptkeys table that is
replicated, and also available on the replicate database. Because they are encrypted, service
keys remain protected during the replication process.

After the SAP ASE has been started, an authorized user can connect and set the master key
password for each database using:
use mydb
go
set encryption passwd password for key master
go

A Replication Agent that is waiting for the master key password can be identified by the status
value “passwd sleep”:
sp_who
go
fid spid status loginame origname hostname blk_spid dbname tempdbname
cmd block_xloid

CHAPTER 5: Secure External Passwords and Hidden Text

34 SAP Adaptive Server Enterprise

--- ---- ----------- ------ -------- -------- ------
------ ---------- --------- -----------
0 38 passwd sleep NULL NULL NULL 0
tdb4 tempdb REP AGENT 0

Service Keys Encrypted with the Master Key
If your service keys are encrypted with the master key, the master key’s password must be
entered into SAP ASE, either automatically or manually, depending on how you specify the
master key.

If you do not use automatic master key access, you typically enter the master key’s password
with set encryption passwd. However, if a service key is required to decrypt the private key
password for network listeners during start-up, you can supply the master key at the command
line, or through a command line prompt.

Use the dataserver . . . -- master_key_password parameter to prompt for a master key
password during SAP ASE start-up. The user issuing the -- master_key_password parameter
must know the master key password for the master database and have physical access to the
console and keyboard to enter the password.

If you do not include a password, -- master_key_password prompts for password at the
command line. For example:
dataserver --master_key_passwd -dd_master -eerrorlog
master_key_passwd:_

The password characters do not appear, and the password is not validated until later in the SAP
ASE start-up sequence.

If you include the password with the -- master_key_password parameter:
dataserver --master_key_passwd=mysecret -dd_master -eerrorlog

The password, mysecret, is blanked out in memory after it is read and used. However, the
clear password is visible until the memory is blanked out.

If you enter the incorrect password, attempts to use service keys fail, and SAP ASE services
that require the service keys remain unavailable. After the server has started, an authorized
user can connect and set the master key password in the master database with:
use master
go
set encryption passwd password for key master
go

If you have configured only SSL listeners and you enter the wrong password, SAP ASE shuts
down because it cannot start any listeners.

SAP recommends that you do not use passwords at the command line because the passwords
are visible:

CHAPTER 5: Secure External Passwords and Hidden Text

Database Encryption 35

• In memory that can be seen with the UNIX ps command
• In memory, on an unattended terminal screen, or on disk in command history buffers and

files
• On the screen

SAP encourages customer sites to prompt for passwords to avoid these vulnerabilities when
using attended start-up.

CHAPTER 5: Secure External Passwords and Hidden Text

36 SAP Adaptive Server Enterprise

CHAPTER 6 Database Encryption

Encrypt databases when you must perform range searches over sensitive data columns, and
when you lack the knowledge of the data model and cannot identify sensitive data columns.

Create an Encrypted Database
To create a fully encrypted database, use the create database command.

Specify whether to encrypt a database when you create it, and data inserted into the database is
automatically encrypted. The size of the database does not change when it is encrypted, and all
storage access functions work identically whether a database is encrypted or not. The types of
databases that support encryption are:

• Normal user database
• Temporary database
• Archive database

You cannot encrypt an in-memory database.

To create an encrypted database, use:
create [temporary] database database_name
 encrypt with key_name

Where:

• database_name is the name of the encrypted database you are creating.
• key_name is the name of the database encryption key.

To create an encrypted archive database, use:
create archive database database_name
 encrypt with key_name

Where:

• database_name is the name of the archive database you are creating
• key_name is the same key that you used to encrypt the database that was backed up. SAP

ASE verifies that key_name matches during the database load. If it does not match, the
restoration fails.

Example
Creates an encrypted database called demodb with data on device demodev and log on
device demologdev, using an encryption key called dbkey:

Database Encryption 37

create database demodb on demodev log on demologdev encrypt with
dbkey

Usage
There is no special permission to use the encrypt with option of the create database
command. Users however, need select permission on the database encryption key to be able to
reference it as the key_name.

Encrypt an Existing Database
You can encrypt an unencrypted database using the alter database command.

Depending on the size of the database, encryption might can take a while. For this reason, the
command returns as soon as the database is marked for encryption. Encryption occurs in the
background and the process is transparent to users. To check on the status and progress of
database encryption, run the sp_helpdb system procedure, the dbencryption_status() built-in
function, or the SAP Control Center user interface. Keep in mind:

• Database encryption occurs while the database is online. This means the database is
accessible by other users while it is being encrypted, and does not require you to put it into
single-user mode.

• The encryption process does not interrupt any user queries, updates, or insert operations on
the database.

• You can suspend and resume database encryption, so that you can resume encrypting the
database after restarting SAP ASE.

• The encryption operation is executed page by page.
• You cannot alter archive databases for encryption and decryption.
• SAP ASE records the encryption progress of a database and provides utilities to report its

status.

Restrictions:

• You cannot encrypt the master, model, dbccdb, and dbccalt databases.
• You cannot decrypt a database that is in the process of being encrypted, or encrypt a

database that is being decrypted.
• You cannot unmount a database while it is in the process of being encrypted.
• You cannot load another database on top of a database that is being encrypted.
• Do not execute commands that shrink database size when the database is being encrypted.

The syntax is:
alter database database_name
{encrypt with key_name [parallel degree_of_parallelism]
| resume encryption [parallel degree_of_parallelism]
| suspend encryption
}

where:

CHAPTER 6: Database Encryption

38 SAP Adaptive Server Enterprise

• encrypt with key_name instructs SAP ASE to encrypt the database using
key_name.
Specifically, the command retrieves the corresponding key ID from the
sysencryptkeys system table in the master database and set the encrkeyid
column in its related sysdatabases row.

SAP ASE fails to run alter database and displays an error message if the database is
already:
• Encrypted with another key.
• Being encrypted.
If you run this command on a partially encrypted database that is not currently being
encrypted, SAP ASE treats the command as if you specified the resume encryption
option, as long as the key name is the same as the previously specified key.

• parallel degree_of_parallelism determines how many worker threads to
initiate for the task.
Create a thread for each database storage virtual device, as long as the number is equal to or
fewer than "number of worker processes" configuration. The
degree_of_parallelism number should be no larger than the number of database devices
because additional worker threads do not improve encryption performance. If you do not
specify degree_of_parallelism, SAP ASE internally defines the value based on the number
of online engines, as well as how the database is distributed across various devices.

• resume encryption resumes the encryption process from the page where encryption
was previously suspended.
The command fails if:
• There is an encryption process already running in SAP ASE.
• Encryption was never started on the database.
• The encryption process already completed.
You can use parallel degree_of_parallelism with resume encrypt.

• suspend encryption terminates all encryption worker threads that are encrypting
data. SAP ASE records the progress of encryption so that resume encryption can
restart encryption where the previous encryption process stopped. SAP ASE ignores this
command if there is no encryption in progress.

This example alters an existing database called existdb for encryption using an encryption
key called dbkey:

alter database existdb encrypt with dbkey

The example does not specify the parallel degree, leaving it up to SAP ASE to determine how
many worker threads should be initiated to encrypt existdb in parallel.

In addition to the parallel degree, another major factor that affects database encryption
performance is the buffer pool size. A sufficient buffer cache and appropriate size of buffer
pool enable SAP ASE to load a large chunk of pages into memory for every disk read, perform
encryption, and write them back.

CHAPTER 6: Database Encryption

Database Encryption 39

The following example shows the steps you can take to configure both the buffer cache and
buffer pool size for a database called demodb that will be encrypted:

1. Create a specific data cache for demodb:

sp_cacheconfig demodb_cache, '10M'

This creates a named buffer cache called demodb_cache with 10MB of space for
database pages.

2. Create the specific size of buffer pool . The buffer pool size should be 8 times of database
page size. For example, the database page size is 2K by default, therefore the buffer pools
size should be 8 x 2 = 16K:
sp_poolconfig demodb_cache, '10M' , '16k'

This creates a 10MB buffer pool of buffers with a size that is 16K in the named cache called
demodb_cache.

3. Bind the database to the buffer cache:
sp_bindcache demodb_cache, demo_db

Encryption Status and Progress
To obtain information on whether a database is encrypted or not, as well as how far along the
encryption process has gone on a database being encrypted, use the sp_helpdb system
procedure or the dbencryption_status built-in function.

• sp_helpdb – the syntax is the following, where database_name is the name of the
database:
sp_helpdb database_name

• dbencryption_status – use status to get information on whether a database is encrypted,
and progress to find out how far along the encryption process has gone:
• select dbencryption_status(“status”, db_id(“existdb”))
• select dbencryption_status(“progress”, db_id(“existdb”))

Performance Considerations
When an existing database is being encrypted, it is still kept online. Take performance issues
into consideration to mitigate the impact on user access to the database, as well as general SAP
ASE response time.

Factors to take into account for good database encryption performance include:

• The number of SAP ASE engines on a multiprocessor machine
• The number of disks the database is stored across
• The buffer pool size associated with the database

Specifying the parallel degree value in alter database for encryption or, decryption,
essentially tells SAP ASE how many worker threads to initiate when executing the operation.

CHAPTER 6: Database Encryption

40 SAP Adaptive Server Enterprise

Since worker threads run concurrently, it is better when they are distributed across multiple
CPUs. At the same time, it is better to avoid overwhelming CPU resources, since this could
reduce the general response time from SAP ASE. For this reason, take the number of SAP
ASE engines into consideration when deciding on the parallel degree value.

Device I/O is a major bottleneck during database encryption. SAP ASE can tackle this from
two angles:

• If every separate device is assigned a worker thread, device I/O can be carried out
independently and concurrently for best throughput. Therefore parallel degree should
consider the number of disks the database is stored across.

• Performance will benefit if a big chunk of pages can be processed for every device read/
write. The database must be online while the encryption/decryption is in progress. For this
reason, instead of allocating a proprietary buffer, existing buffer manager mechanism has
to be leveraged to solve synchronization problem. In this respect, you can create sufficient
buffer cache and large I/O size of buffer pool to help SAP ASE improve its encryption
performance.

This example shows how to configure both the buffer cache and pool size to fully encrypt a
database called demodb, which has its data and log distributed across 11 devices:

> select dbid, segmap, lstart, size, vstart, vdevno from sysusages
where dbid=db_id('demodb')

dbid segmap lstart size vstart vdevno
------ ------ ---------- ---------- ----------- -----------
 4 3 0 92160 0 1
 4 4 92160 30720 0 2
 4 3 122880 184320 92160 1
 4 4 307200 61440 30720 2
 4 3 368640 419840 276480 1
 4 4 788480 61440 92160 2
 4 3 849920 122880 696320 1
 4 4 972800 153600 153600 2
 4 3 1126400 819200 819200 1
 4 3 1945600 1638400 0 3
 4 3 3584000 1638400 0 4
 4 3 5222400 1638400 0 5
 4 3 6860800 1638400 0 6
 4 3 8499200 1638400 0 7
 4 3 10137600 1638400 0 8
 4 3 11776000 1638400 0 9
 4 3 13414400 1638400 0 10
 4 3 15052800 1638400 0 11
 4 4 16691200 204800 307200 2

1. Configure buffer cache and buffer pool size:
a. Create a specific data cache for demodb:

sp_cacheconfig demodb_cache, '100M'

CHAPTER 6: Database Encryption

Database Encryption 41

This creates a buffer cache named demodb_cache that has 100MB of space for
database pages.

b. Create the specific size of buffer pool, where the buffer pool size is 8 times the size of
the database page size:
sp_poolconfig demodb_cache, '100M' , '16k'

Since the default database page size is 2K, the buffer pool size should be 8 X 2 =
16KB.
This creates a 100MB buffer pool with 16K buffers in the named cache
demodb_cache.

c. Bind the database to the buffer cache:
sp_bindcache demodb_cache, demo_db

This binds the database demo_db to the created buffer cache demodb_cache.

2. Determine what parallel degree to use. In this example, there are 8 SAP ASE engines
configured:
[Thread Pool:syb_default_pool]

Number of threads = 8
The maximum number of worker thread should not exceed 8.
In the meantime, with SAP ASE using 11 database devices, it needs, at most, 11 worker
threads to perform device I/O in parallel. Since 11 worker threads would strain the eight
engines, the parallel degree should be set to 8. However to allow SAP ASE to maintain its
response time and perform other operations, avoid occupying all of its CPU resources by
selecting a parallel degree of 6.
a. Make sure sufficient worker threads are configured:

sp_configure 'number of worker processes', 6
b. Alter database demodb for encryption:

alter database demodb encrypt with dbkey parallel degree 6

sp_who shows 6 worker threads:
>sp_who
fid spid status loginame origname
 hostname blk_spid dbname
 tempdbname cmd
 block_xloid threadpool
------ -------- ---------------- ---------
……
 0 16 sleeping NULL NULL NULL 0
master
 master DB ENCRYPTION CONTROLLER 0
NULL
 16 1 sleeping NULL NULL NULL 0
master
 master WORKER PROCESS 0 NULL
 16 17 sleeping NULL NULL NULL 0
master

CHAPTER 6: Database Encryption

42 SAP Adaptive Server Enterprise

 master WORKER PROCESS 0 NULL
……

sp_helpdb can report the encryption progress and status:
1> sp_helpdb demodb
2> go
name db_size owner dbid created durability
lobcomplvl inrowlen status
-------- ---------- ------ ----- ------------- ----------
---------- -------- ----------------
demodb 33000.0 MB sa 4 Sept 27, 2013 full 0
NULL encryption in progress: 18%

You can also use the dbencryption_status function to get encryption status and
progress:
1> select dbencryption_status("status", db_id('demodb'))
2> go

2
1> select dbencryption_status("progress", db_id('demodb'))
2> go

21

This shows that 21 percent of database pages has been encrypted.
You can also use dbencryption_status to find the progress on a specific fragment:
1> select dbencryption_status("progress", db_id('demodb'),
92160)
2> go

83

This shows that 83 percent of pages in the fragment with a logical page start of 92160
has been encrypted.

Encrypted databases consume more buffers for encryption and decryption than nonencrypted
databases. If clean buffers are unavailable because of encryption and decryption:

• Increase the buffer pool size and the buffer pool wash
• Configure housekeeper free write percent to a value that allows the housekeeper task to

wash buffers more frequently

Suspend the Encryption Process
To stop encrypting a database in the process of being encrypted, use the suspend encrypt
option of the alter database command.

alter database database_name
 suspend encryption

CHAPTER 6: Database Encryption

Database Encryption 43

The quiesce database Command and Fully Encrypted Databases
When you run the quiesce database command on a database that is being encrypted, SAP
ASE puts the encryption process on hold.

You need not run the suspend encryption option of alter database after you run
quiesce database; quiesce database automatically suspends the I/O operation on the
database.

After the quiesce mode is released, the task of encrypting (or decrypting) resumes
automatically; you need not run the resume encryption option in the alter database.

Resume the Encryption Process
To resume encrypting a database that had its encryption process interrupted or suspended, use
the resume encryption option of the alter database command.

alter database database_name
 resume encryption [parallel degree_of_parallelism]

Decrypt an Encrypted Database
To decrypt a fully encrypted database, use the alter database command.

The syntax is:
alter database database_name
 {decrypt [with key_name] [parallel degree_of_parallelism]
| resume decryption [parallel degree_of_parallelism]
| suspend decryption}

where:

• database_name – is the name of the fully encrypted database you want to decrypt.
• key_name – (optional) is the same database encryption key you used to encrypt the

database. If you specify a different key name, the command fails and SAP ASE displays an
error message.

• resume decryption – resumes the decryption process for the database in which an
earlier decryption process has been suspended. SAP ASE ignores this command if the
database_name is already completely decrypted.

• parallel degree_of_parallelism – specifies how many worker threads to
initiate for the task.

• suspend decryption – terminates the decryption process. SAP ASE records where
the process was stopped, so that resume decrypt can restart the decryption process at
the correct place in the database.

You must have select permission on the database's key_name to use this command.

CHAPTER 6: Database Encryption

44 SAP Adaptive Server Enterprise

Recover Fully Encrypted Databases
If SAP ASE cannot retrieve the database encryption key during start-up because the master or
dual master key is unavailable, SAP ASE ignores the encrypted database.

SAP ASE needs access to the database encryption key to know what to do with fully encrypted
databases. The database encryption key itself is also encrypted, and is decrypted by the master
key.

To connect to the server after you restart SAP ASE, the password holder for the master or dual
master key can set the encryption password:
set encryption passwd for key [dual] master

This allows the master key to decrypt the database encryption key, at which point the database
encryption key can bring the fully encrypted database online:
online database encrypted_database_name

Database recovery then occurs as the server comes back online.

You can also set up an automatic recovery; see Starting Adaptive Server in Unattended Start-
Up Mode in the Encrypted Columns Users Guide.

Back Up (Dump) a Fully Encrypted Database
Backing up a fully encrypted database is the same as for normal, unencrypted databases, since
the encryption process is performed transparently.

To load a back-up dump of an encrypted database, it must use the same encryption key that was
used to encrypt the dump.

The database encryption key is stored in the master database, outside of the database you are
backing up. For this reason, the backup process is not automatically applied to the database
encryption key when you execute the dump database command; you must independently
back up the database encryption key and the master key separately from the database backup.

To back up the key values, either:

• Use the ddlgen utility to generate a DDL statement, or;
• Back them up directly.

CHAPTER 6: Database Encryption

Database Encryption 45

Back Up the Database Encryption Key
To resume recoverability, you must back up the database encryption key, the master or dual
master key, and the encrypted database.

This example uses the ddlgen utility to generate SQL statements on database encryption keys:
ddlgen -Usa -P -Sserver -TEK -Nmaster.owner.dek_name

The syntax is similar when generating SQL statements for the [dual] master key.

Restore (Load) Backups of Fully Encrypted Databases
Restore a fully encrypted database as you would a normal, unencrypted database.

Before you can load an encrypted database dump:

1. Restore the master key and database encryption key.
2. Create the target database for encryption using the same database encryption key you used

for the database you are loading.

Use this command to restore your encrypted database, where database_name is the name of
the encrypted database you are restoring:
load database database_name

Note: You cannot use the verification option (load database database_name
with verify only = full) with encrypted databases. When you specify this option,
Backup Server reads all rows and checks that the row formats are valid. Since Backup Server
cannot understand encrypted text, the command fails and Backup Server displays an error
message.

When you perform load database to restore an encrypted database, SAP ASE verifies that the
taget database:

• Is an encrypted database. If it is not, SAP ASE displays an error message and the load
database command fails.

• Has the correct database encryption key. If the database encryption key does not match,
SAP ASE displays an error message.

Loading Behavior of Encrypted Databases
Loading behavior differs, depending on the encryption status of both the target database and
the database or transaction log being restored.

CHAPTER 6: Database Encryption

46 SAP Adaptive Server Enterprise

Loading Be-
havior

Unencrypted
Target Data-
base

Encrypted
Target Data-
base

Partially En-
crypted Tar-
get Database

Partially De-
crypted Tar-
get Database

Unencrypted Da-
tabase Dump

Allowed. Allowed only if
using the with
override
clause. Dump se-
curity status is re-
flected in target
database.

Allowed only if
using the with
override
clause. Dump sta-
tus is reflected in
target database.

Allowed only if
using the with
override
clause. Dump se-
curity status is re-
flected.

Unencrypted
Transaction
Dump

Allowed. Allowed. Marks
the target data-
base as partially
encrypted.

Allowed. The tar-
get database re-
tains its status as
partially encryp-
ted.

Allowed. The tar-
get database re-
tains its status as
partially encryp-
ted.

Encrypted Data-
base Dump

Not allowed. Allowed. Allowed. Dump
security status is
reflected in the
target database.

Allowed only if
using the with
override
clause. Dump se-
curity status is re-
flected in the tar-
get database.

Encrypted Trans-
action Dump

Not allowed. Allowed. Allowed. The tar-
get database re-
tains its status as
partially encryp-
ted.

Not allowed.

Partially Encryp-
ted Database
Dump

Not allowed. Allowed. Dump
security status is
reflected in the
target database.

Allowed. The tar-
get database re-
tains its status as
partially encryp-
ted.

Allowed only if
using the with
override
clause. Dump sta-
tus is reflected in
the target data-
base.

Partially Encryp-
ted Transaction
Dump

Not allowed. Allowed. Dump
security status is
reflected in the
target database.

Allowed. The tar-
get database re-
tains its status as
partially encryp-
ted.

Not allowed.

CHAPTER 6: Database Encryption

Database Encryption 47

Loading Be-
havior

Unencrypted
Target Data-
base

Encrypted
Target Data-
base

Partially En-
crypted Tar-
get Database

Partially De-
crypted Tar-
get Database

Partially Decryp-
ted Database
Dump

Not allowed. Allowed only if
using the with
override
clause. Dump
status is reflected
in the target data-
base.

Allowed only if
using the with
override
clause. Dump se-
curity status is re-
flected in the tar-
get database.

Allowed. The tar-
get database re-
tains its status as
partially decryp-
ted.

Partially Decryp-
ted Transaction
Dump

Not allowed. Not allowed. Not allowed. Allowed. The tar-
get database re-
tains its status as
partially decryp-
ted.

Dropping a Database That is Being Encrypted
When you execute the drop database command on a database that is being encrypted or
decrypted, drop database terminates the encryption/decryption process, searches the
sysattributes system table, cleans up all the progress information, and then drops the
database.

Mounting and Unmounting a Fully Encrypted Database
You cannot mount a database that is being encrypted or decrypted; you also cannot mount an
encrypted database.

Do not use the umount database command on an encrypted database; the command fails and
SAP ASE displays a message similar to:
Could not unmount encrypted database 'mydatabase'.

To unmount an encrypted database, decrypt it first.

Archive Databases and Full Encryption
Archive databases are read-only. The encryption syntax indicates that an archive database can
load an encrypted database dump.

As with database backups and loads, restore the master key and database encryption key, and
associate the DEK with the archive database.

CHAPTER 6: Database Encryption

48 SAP Adaptive Server Enterprise

To dump or load a fully encrypted archive database, perform the same steps as with normal
databases.

To create an archive database, use:
create archive database database_name
 encrypt with key_name

where:

• database_name is the name of the archive database you are creating
• key_name is the same key that you used to encrypt the database that was backed up

(dumped). SAP ASE verifies that key_name matches during the database dump. If it does
not match, the restoration fails.

Unlike normal databases, an archive database provides a modified page section that stores
page modification or allocation information due to redos/undos and transaction loading
operations. When you encrypt an archive database, encrypt the data in the modified page
section as well, using the database encryption key from the archive database.

There is no special permission to use the encrypt with option of the create archive
database command. Users however, need select permission on the database encryption key to
reference it as the key_name.

CHAPTER 6: Database Encryption

Database Encryption 49

CHAPTER 6: Database Encryption

50 SAP Adaptive Server Enterprise

CHAPTER 7 Column Encryption

Certain datatypes can be encrypted.

You can encrypt:

• int, smallint, tinyint
• unsigned int, unsigned smallint, unsigned tinyint
• bigint, unsigned bigint
• decimal and numeric
• float4 and float8
• money, smallmoney
• date, time, smalldatetime, datetime
• char and varchar
• unichar, univarchar
• binary and varbinary
• bit

Encrypting Columns on New Tables
To encrypt columns in a new table, use the encrypt column qualifier on the create table
statement.

The following partial syntax for create table includes only clauses that are specific to
encryption. See the Reference Manual: Commands for the complete syntax.
create table table_name
(column_name
. . .

[constraint_specification]
[encrypt [with [database.[owner].]keyname]]
[, next_column_specification . . .]
)

• keyname – identifies a key created using create encryption key. The creator of the table
must have select permission on keyname. If keyname is not supplied, SAP ASE looks for a
default key created using the as default clause on the create encryption key.

Note: You cannot encrypt a computed column, and an encrypted column cannot appear in an
expression that defines a computed column. You cannot specify an encrypted column in the
partition_clause of a table.

The following example creates two keys: a database default key, and another key (cc_key)
which you must name in the create table command. Both keys use default values for length

Database Encryption 51

and an initialization vector. The ssn column in the employee table is encrypted using the
default key, and the creditcard column in the customer table is encrypted with
cc_key:

create encryption key new_key as default for AES
create encryption key cc_key

create table employee_table (ssn char(15) encrypt,
 ename char(50), ...))

create table customer (creditcard char(20)
 encrypt with cc_key, cc_name char(50), ...)

This example creates key k1, which uses nondefault values for the initialization vector and
random pad. The employee esalary column is padded with random data before encryption:

create encryption key k1 init_vector null pad random
create table employee (eid int, esalary money encrypt with k1, ...)

Specifying Encryption on select into
By default, select into creates a target table without encryption, even if the source table has
one or more encrypted columns.

To encrypt any column in the target table, you must qualify the target column with the encrypt
clause, as shown:
select [all|distinct] column_list
 into table_name
 [(colname encrypt [with [[database.][owner].]keyname]
 [, colname encrypt
 [with[[database.][owner].]keyname]])]
 from table_name | view_name

You can encrypt a specific column in the target table even if the data was not encrypted in the
source table. If the column in the source table is encrypted with the same key specified for the
target column, SAP ASE optimizes processing by bypassing the decryption step on the source
table and the encryption step on the target table.

The rules for specifying encryption on a target table are the same as those for encryption
specified on create table in regard to:

• Allowable datatypes on the columns to be encrypted
• The use of the database default key when the keyname is omitted
• The requirement for select permission on the key used to encrypt the target columns.

The following example selects the encrypted column creditcard from the
daily_xacts table and stores it in encrypted form in the #bigspenders temporary
table:
select creditcard, custid, sum(amount) into #bigspenders
 (creditcard encrypt with cust.dbo.new_cc_key)
 from daily_xacts group by creditcard
 having sum(amount) > $5000

CHAPTER 7: Column Encryption

52 SAP Adaptive Server Enterprise

Note: select into requires column-level permissions, including decrypt, on the source table.

Encrypting Columns in Existing Tables
To encrypt columns in existing tables, use the modify column option on the alter table
statement with the encrypt clause.

The syntax is:

alter table table_name modify column_name
 [encrypt [with [[database.][owner].]keyname]]

where keyname identifies a key created using create encryption key. The creator of the table
must have select permission on keyname. If keyname is not supplied, SAP ASE looks for a
default key created using the as default clause on the create encryption key.

See the Reference Manual: Commands.

There are restrictions for modifying encrypted columns:

• You cannot modify a column for encryption or decryption on which you have created a
trigger. You must:
1. Drop the trigger.
2. Encrypt or decrypt the column.
3. Re-create the trigger.

• You cannot change an existing encrypted column, modify a column for encryption or
decryption on a table, or modify the type of an encrypted column if that column is a key in a
clustered or placement index. You must:
1. Drop the index.
2. Alter the table/modify the type of column.
3. Re-create the index.

You can alter the encryption property on a column at the same time you alter other attributes.
You can also add an encrypted column using alter table.

For example:
alter table customer modify custid null encrypt with cc_key
alter table customer add address varchar(50) encrypt with cc_key

Index Creation and Constraints on Encrypted Columns
You can create an index on an encrypted column if the encryption key has been specified
without any initialization vector or random padding.

An error occurs if you execute create index on an encrypted column that has an initialization
vector or random padding. Indexes on encrypted columns are generally useful for equality and

CHAPTER 7: Column Encryption

Database Encryption 53

nonequality matches. However, indexes are not useful for matching case-insensitive data, or
for range searches of any data.

Note: You cannot use an encrypted column in an expression for a functional index.

In the following example, cc_key specifies encryption without using an initialization vector
or padding. This allows an index to be built on any column encrypted with cc_key:

create encryption key cc_key
 with init_vector null

create table customer(custid int,
 creditcard varchar(16) encrypt with cc_key)

create index cust_idx on customer(creditcard)

You can encrypt a column that is declared as a primary or unique key.

You can define referential integrity constraints on encrypted columns when:

• Both referencing and referenced columns are encrypted with the same key.
• The key used to encrypt the columns specifies init_vector null and pad random has not

been specified.

Referential integrity checks are efficient because they are performed on cipher text values.

In this example, ssn_key encrypts the ssn column in both the primary and foreign tables:

create encryption key ssn_key for AES
 with init_vector null
create table user_info (ssn char(9) primary key encrypt
 with ssn_key, uname char(50), uaddr char(100))
create table tax_detail (ssn char(9) references user_info encrypt
 with ssn_key, return_info text)

Domain Creation and Access Rules on Encrypted Columns
You can create domain rules, check constraints, or access rules on encrypted columns.
However, decrypt permission is required on an encrypted column when it is used in target list,
where clause, and so on.

This example creates the rule_creditcard rule on the creditcard column, which
has a domain rule defined:
create encryption key cc_key
 with init_vector null

create table customer(custid int,
 creditcard varchar(16) encrypt with cc_key)

create rule rule_creditcard
as @value like '%[0-9]'
sp_bindrule rule_creditcard, creditcard

CHAPTER 7: Column Encryption

54 SAP Adaptive Server Enterprise

bcp in -C bypasses the domain rule or check constraint for encrypted columns because SAP
ASE uses fast bcp with bcp in -C. bcp out -C generates error number 2929 if an access rule
exists on the encrypted column. SAP ASE bypasses the rule or constraint for insert and
update statements when you replicate encrypted columns with domain rules or check
constraints. SAP ASE also generates error number 2929 when you replicate encrypted
columns with access rules for update, delete, or select statements.

Decrypt Permission
Users must have decrypt permission to select plain text data from an encrypted column, or to
search or join on an encrypted column.

The table owner or a user with the sso_role uses grant decrypt to grant explicit permission
to decrypt one or more columns in a table to other users, groups, and roles. Decrypt permission
may be implicitly granted when a procedure or view owner grants:

• exec permission on a stored procedure or user-defined function that selects from an
encrypted column where the owner of the procedure or function also owns the table
containing the encrypted column

• decrypt permission on a view column that selects from an encrypted column where the
owner of the view also owns the table

In both cases, decrypt permission need not be granted on the encrypted column in the base
table.

The syntax is:

grant decrypt on [owner.] table
 [(column[{,column}])]
 to user| group | role
 [with grant option]

Granting decrypt permission at the table or view level grants decrypt permission on all
encrypted columns in the table.

To grant decrypt permission on all encrypted columns in the customer table, enter:

grant decrypt on customer to accounts_role

The following example shows the implicit decrypt permission of user2 on the ssn column
of the base table “employee”. user1 sets up the employee table and the employee_view
as follows:
create table employee (ssn varchar(12)encrypt,
 dept_id int, start_date date, salary money)

create view emp_salary as select
 ssn, salary from employee

grant select, decrypt on emp_salary to user2

CHAPTER 7: Column Encryption

Database Encryption 55

user2 has access to decrypted Social Security Numbers when selecting from the
emp_salary view:

select * from emp_salary

Note: grant all on a table or view does not grant decrypt permission. Decrypt permission must
be granted separately.

Users with only select permission on an encrypted column can still process encrypted columns
as cipher text through the bulk copy command. Additionally, if an encrypted column specifies
a decrypt default value, the column can be named in a select target list or in a where clause by
users who do not have permission to decrypt data.

See also
• Restrict Decrypt Permission on page 56
• Default Values Returned Instead of Decrypted Data on page 57

Revoking Decryption Permission
revoke decrypt on revokes a user's decryption permission.

The syntax is:

revoke decrypt on [owner] table[(column[{,column}])] from user
 | group | role

For example:
revoke decrypt on customer from public

Restrict Decrypt Permission
Restrict access to private data from the database owner by setting the restricted decrypt
permission configuration parameter.

SAP ASE protects data privacy from the powers of the administrator even if you use the master
key or system encryption password for key protection. If you prefer to avoid password
management and use the master key or the system encryption password to protect encryption
keys, you can restrict access to private data from the database owner by setting the restricted
decrypt permission configuration parameter. System security officers (SSOs) can use this
parameter to control which users have decrypt permission. Once restricted decrypt
permission is enabled, the SSO is the only user who receives implicit decrypt permission and
who has implicit privilege to grant that permission to others. The SSO determines which users
receive decrypt permission, or delegates this job to another user by granting decrypt
permission with the with grant option. Table owners do not automatically have decrypt
permission on their tables.

Users with execute permission on stored procedures or user-defined functions do not have
implicit permission to decrypt data selected by the procedure or function. Users with decrypt

CHAPTER 7: Column Encryption

56 SAP Adaptive Server Enterprise

permission on a view column do not have implicit permission to decrypt data selected by the
view.

Note: Users with aliases continue to inherit all decrypt permissions of the user to whom they
are aliased. set proxy/set user statements continue to allow the administrator or database
owner the decrypt permissions of the user whose identity is assumed by this command.

If you are using restricted decrypt permission, you can assign the privileges for creating the
task’s schema and managing keys as follows:

• System security officer – configures restricted decrypt permission, creates encryption
keys, grants select permission on keys to the database owner, and grants decrypt
permission to the end user.

• Database owner – creates the schema and loads data.

See also
• Protect Encryption Keys with the Master Key on page 16

• Decrypt Permission on page 55

Default Values Returned Instead of Decrypted Data
When users who are not permitted to see confidential data run queries against encrypted
columns, they see the decrypt defaults instead of the decrypted data. Decrypt defaults allow
legacy applications and reports to run without error, even for users who are not permitted to see
confidential data.

See also
• Decrypt Permission on page 55

Defining Decrypt Defaults
The decrypt_default parameter for create table and alter table allows an encrypted column to
return a user-defined value when a user without decrypt permission attempts to select
information from the encrypted column.

Doing so avoids error message 10330:
Decrypt permission denied on object <table_name>,
 database <database name>, owner <owner name>

Using decrypt defaults on encrypted columns allows existing reports to run to completion
without error, and allows users to continue seeing the information that is not encrypted. For
example, if the customer table contains the encrypted column creditcard, you can
design the table schema so that:
select * from customer

CHAPTER 7: Column Encryption

Database Encryption 57

Returns the value “****************” instead of returning the credit card data to users
who lack decrypt permission.

Add a decrypt default on a new column with create table. The partial syntax for create table
is:
create table table_name (column_name datatype
 [[encrypt [with keyname]] [decrypt_default value]],)

• decrypt_default – specifies that this column returns a default value on a select statement
for users who do not have decrypt permissions.

• value – is the value SAP ASE returns on select statements instead of the decrypted value. A
constant-valued expression cannot reference a database column but it can include a user-
defined function which itself references tables and columns. The value can be NULL on
nullable columns only, and the value must be convertible into the column’s datatype.

For example, the ssnum column for table t2 returns “?????????” when a user without
decrypt permissions selects it:
create table t2 (ssnum char(11)
 encrypt decrypt_default '???????????', ...)

To add encryption and a decrypt default value to an existing column not previously encrypted,
use:
alter table table_name modify column_name [type]
 [[encrypt [with keyname]] [decrypt_default value]], …

This example modifies the emp table to encrypt the ssn column and specifies decrypt default:

alter table emp modify ssn encrypt
 with key1 decrypt_default '000-00-0000'

To add a decrypt default to an existing encrypted column or change the decrypt default value
on a column that already has a decrypt default, use:
alter table table_name replace column_name decrypt_default value

This example adds a decrypt default to the salary column, which is already encrypted:

alter table employee replace salary
 decrypt_default $0.00

This example replaces the previous decrypt_default value with a new value and uses a
user-defined function (UDF) to generate the default value:
alter table employee replace salary
 decrypt_default dbo.mask_salary()

To remove a decrypt default from an encrypted column without removing the encryption
property, use:
alter table table_name replace column_name drop decrypt_default

This example removes the decrypt default for salary without removing the encryption
property:

CHAPTER 7: Column Encryption

58 SAP Adaptive Server Enterprise

alter table employee replace salary
 drop decrypt_default

Permissions and Decrypt Default
You must grant decrypt permission on encrypted columns before users or roles can select or
search on encrypted data in those columns. If an encrypted column has a decrypt default
attribute, users without decrypt permission can run queries that select or search on these
columns, but the plain text data is not displayed and is not used for searching.

In this example, the owner of table emp allows users with the hr_role to view emp.ssn.
Because the ssn column has a decrypt default, users who have only select permission on emp
and who do not have the hr_role see the decrypt_default value only and not the actual
decrypted data.
create table emp (name char(50), ssn (char(11) encrypt
decrypt_default '000-00-000', ...)
grant select permission on table emp to public
grant decrypt on emp(ssn) to hr_role

If you have the hr_role and select from this table, you see the values for ssn:

select name, ssn from emp
name ssn
------------------------------ ------------
Joe Cool 123-45-6789
Tinna Salt 321-54-9879

If you do not have the hr_role and select from the table, you see the decrypt default:
select name, ssn from emp
name ssn
------------------------------ -----------
Joe Cool 000-00-0000
Tinna Salt 000-00-0000

order by clauses have no effect on the result set if you do not have the hr_role for this table.

Columns with Decrypt Default Values
There are no restrictions on how you use columns with decrypt default in a query. You can use
them in a target list expression, where clause, order by, group by, or subquery.

Although expressions on the decrypt default constant value may not have a practical use,
placing a decrypt default on a column does not impose any syntactic restrictions on use of the
column in a Transact-SQL statement.

This example uses a select statement on a column with a decrypt default value in the target
list:
create table emp_benefits (col1 name char(30),
 salary float encrypt decrypt_default -99.99)

CHAPTER 7: Column Encryption

Database Encryption 59

select salary/12 as monthly_salary from emp_benefits
 where name = 'Bill Smith'

When you perform the select statement against this table, but do not have decrypt permission,
you see:

monthly_salary

8.332500

When SAP ASE returns a column’s decrypt default value on a select into command, this
decrypt default value is inserted into the target table. However, the target column does not
inherit the decrypt default property. You must use alter table to specify a decrypt default on the
target table.

Use sp_checksource to view decrypt default source text defined on encrypted columns.

Decrypt Default Columns and Query Qualifications
If you use a column with the decrypt default property in a where clause, the qualification
evaluates to false if you do not have decrypt permission.

These examples use the emp table described above. Only users with the hr_role have decrypt
permission on ssn.

• If you have the hr_role and issue the following query, SAP ASE returns one row.
select name from emp where ssn = '123-456-7890'
name

Joe Cool

• If you do not have the hr_role, SAP ASE returns no rows:
select name from emp where ssn = '123-456-7890'
name

(0 rows affected)

• If you have the hr_role and include an or statement on a nonencrypted column, SAP ASE
returns the appropriate rows:
select name from emp where ssn = '123-456-7890' or
name like 'Tinna%'
name

Joe Cool
Tinna Salt

• If you do not have the hr_role and issue the same command, SAP ASE returns only one
row:
select name from emp where ssn = '123-456-7890' or name like
'Tinna%'

CHAPTER 7: Column Encryption

60 SAP Adaptive Server Enterprise

name

Tinna Salt

In this case, the qualification against the encrypted column with the decrypt default
property evaluates to false, but the qualification against the nonencrypted column
succeeds.
If you do not have decrypt permission on an encrypted column, and you issue a group by
statement on this column with a decrypt default, SAP ASE groups by the decrypt default
constant value.

See also
• Encrypted Columns Process on page 71

decrypt default and Implicit Grants
If you do not have explicit or implicit permission on a table, SAP ASE returns the decrypt
default value.

In this example (using the emp table), the database owner creates the p_emp procedure which
selects from the emp table that he or she owns:

create procedure p_emp as
 select name, ssn from emp
grant exec on p_emp to corp_role

Because you have the corp_role, you have implicit select and decrypt permission on emp
exec p_emp
name ssn
------------------------------ ------------
Tinna Salt 123-45-6789
Joe Cool 321-54-9879

If the emp table and p_emp stored procedure have been created by different users, you must
have select permission on emp to avoid permissions errors. If you have select permission but
not decrypt permission, SAP ASE returns the decrypt default value of emp.ssn.

In this next example, “joe,” who does not own the database, creates the v_emp view, which
selects from the emp table. Any permissions granted on the view are not implicitly applied to
the base table.
create view v_emp as
 select name, ssn from emp
grant select on v_emp to emp_role
grant select on emp to emp_role
grant decrypt on v_emp to emp_role

Although you have the emp_role, when you issue:
select * from joe.v_emp

CHAPTER 7: Column Encryption

Database Encryption 61

SAP ASE returns the following because decrypt permission on dbo.emp.ssn has not been
granted to the emp_role, and there is no implicit grant to emp_role on dbo.emp.ssn:

name ssn
-------------------------- ---------------
Tinna Salt 000-00-0000
Joe Cool 000-00-0000

decrypt default and insert, update, and delete Statements
The decrypt default parameter does not affect target lists of insert and update statements. If
you use a column with a decrypt default value in the where clause of an update or delete
statement, SAP ASE may not update or delete any rows.

For example, when using the emp table and permissions from the previous examples, if you do
not have the hr_role and issue the following query, SAP ASE does not delete the user’s name:

delete emp where ssn = '123-45-6789'
(0 rows affected)

Decrypt default attributes may indirectly affect inserting and updating data into an
application, particularly one with a graphical user interface (GUI) process:

1. Selects data.
2. Allow a user to update any of the data.
3. Applies the changed row back to the same or a different table.

If the user does not have decrypt permission on the encrypted columns, the application
retrieves the decrypt default value and may automatically write the unchanged decrypt default
value back to the table. To avoid overwriting valid data with decrypt default values, use a check
constraint to prevent these values from being automatically applied. For example:
create table customer (name char(30)),
cc_num int check (cc_num != -1)
encrypt decrypt_default -1

If the user does not have decrypt permission on cc_num and selects data from the
customer table, this data appears:

name cc_num
-------------------- ------------
Paul Jones -1
Mick Watts -1

However, if the user changes a name and updates the database, and the application attempts to
update all fields from the values displayed, the default value for cc_num causes SAP ASE to
issue error 548:

"Check constraint violation occurred, dbname =
<dbname>, table name = <table_name>, constraint name =
<internal_constraint _name>"

Setting a check constraint protects the integrity of the data. For a better solution, you can filter
these updates when you write the application’s logic.

CHAPTER 7: Column Encryption

62 SAP Adaptive Server Enterprise

Removing Decrypt Defaults
Multiple commands allow you to remove decrypt defaults.

Remove the decrypt default using any of these commands:

• drop table

• alter table .. modify .. drop col

• alter table .. modify .. decrypt

• alter table .. replace .. drop decrypt_default

For example, to remove the decrypt default attribute from the ssn column, enter:

alter table emp replace ssn drop decrypt_default

If you do not have the hr_role and select from the emp table after the table owner removed the
decrypt default, SAP ASE returns error message 10330.

Length of Encrypted Columns
During create table, alter table, and select into operations, SAP ASE calculates the
maximum internal length of the encrypted column. To make decisions on schema
arrangements and page sizes, the database owner must know the maximum length of the
encrypted columns.

AES is a block-cipher algorithm. The length of encrypted data for block-cipher algorithms is a
multiple of the block size of the encryption algorithm. For AES, the block size is 128 bits, or 16
bytes. Therefore, encrypted columns occupy a minimum of 16 bytes with additional space
for:

• The initialization vector. If used, the initialization vector adds 16 bytes to each encrypted
column. By default, the encryption process uses an initialization vector. Specify
init_vector null on create encryption key to omit the initialization vector.

• The length of the plain text data. If the column type is char, varchar, binary, or
varbinary, the data is prefixed with 2 bytes before encryption. These 2 bytes denote the
length of the plain text data. No extra space is used by the encrypted column unless the
additional 2 bytes result in the cipher text occupying an extra block.

• A sentinel byte, which is a byte appended to the cipher text to safeguard against the
database system trimming trailing zeros.

CHAPTER 7: Column Encryption

Database Encryption 63

Table 1. Datatype Length for Encrypted Columns

User-speci-
fied column
type

Input
data
length

Encryp-
ted col-
umn
type

Maxi-
mum en-
crypted
data
length
(no init
vector)

Actual
encryp-
ted data
length
(no init
vector)

Maxi-
mum en-
crypted
data
length
(with init
vector)

Actual
encryp-
ted data
length
(with init
vector)

bigint 8 varbi-
nary

17 17 33 33

unsigned
bigint

8 varbi-
nary

17 17 33 33

tinyint,
smallint,
or int (signed
or unsigned)

1, 2, or 4 varbi-
nary

17 17 33 33

tinyint,
smallint,
or int (signed
or unsigned)

0 (null) varbi-
nary

17 0 33 0

float,
float(4),
real

4 varbi-
nary

17 17 33 33

float,
float(4),
real

0 (null) varbi-
nary

17 0 33 0

float(8),
double

8 varbi-
nary

17 17 33 33

float(8),
double

0 (null) varbi-
nary

17 0 33 0

numer-
ic(10,2)

3 varbi-
nary

17 17 33 33

numeric
(38,2)

18 varbi-
nary

33 33 49 49

numeric
(38,2)

0 (null) varbi-
nary

33 0 49 0

CHAPTER 7: Column Encryption

64 SAP Adaptive Server Enterprise

User-speci-
fied column
type

Input
data
length

Encryp-
ted col-
umn
type

Maxi-
mum en-
crypted
data
length
(no init
vector)

Actual
encryp-
ted data
length
(no init
vector)

Maxi-
mum en-
crypted
data
length
(with init
vector)

Actual
encryp-
ted data
length
(with init
vector)

char, var-
char (100)

1 varbi-
nary

113 17 129 33

char, var-
char(100)

14 varbi-
nary

113 17 129 33

char, var-
char(100)

15 varbi-
nary

113 33 129 49

char, var-
char(100)

31 varbi-
nary

113 49 129 65

char, var-
char(100)

0 (null) varbi-
nary

113 0 129 0

binary,
varbina-
ry(100)

1 varbi-
nary

113 17 129 33

binary,
varbina-
ry(100)

14 varbi-
nary

113 17 129 33

binary,
varbina-
ry(100)

15 varbi-
nary

113 33 129 49

binary,
varbina-
ry(100)

31 varbi-
nary

113 49 129 65

binary,
varbina-
ry(100)

0 (null) varbi-
nary

113 0 65 0

uni-
char(10)

2 (1
uni-
char
charac-
ter)

varbi-
nary

33 17 49 33

CHAPTER 7: Column Encryption

Database Encryption 65

User-speci-
fied column
type

Input
data
length

Encryp-
ted col-
umn
type

Maxi-
mum en-
crypted
data
length
(no init
vector)

Actual
encryp-
ted data
length
(no init
vector)

Maxi-
mum en-
crypted
data
length
(with init
vector)

Actual
encryp-
ted data
length
(with init
vector)

uni-
char(10)

20 (10
uni-
char
charac-
ters)

varbi-
nary

33 33 49 49

univarch-
ar(20)

20 (10
uni-
char
charac-
ters)

varbi-
nary

49 33 65 49

date 4 varbi-
nary

17 17 33 33

time 4 varbi-
nary

17 17 33 33

time null varbi-
nary

17 0 33 0

smalldate-
time

4 varbi-
nary

17 17 33 33

datetime 8 varbi-
nary

17 17 33 33

smallmoney 4 varbi-
nary

17 17 33 33

money 8 varbi-
nary

17 17 33 33

money null varbi-
nary

17 0 33 0

bit 1 varbi-
nary

17 17 33 33

Note:

CHAPTER 7: Column Encryption

66 SAP Adaptive Server Enterprise

• The timestamp datatype is not supported by SAP ASE.

• char and binary are treated as variable-length datatypes and are stripped of blanks and
zero padding before encryption. Any blank or zero padding is applied when the data is
decrypted.

• The column length on disk increases for encrypted columns, but the increases are invisible
to tools and commands. For example, sp_help shows only the original size.

Encrypted Columns Audits
You can perform and manage encrypted column audits.

See Auditing in the Security Administration Guide.

Event Names and Numbers
You can query the audit trail for specific audit events.

Use audit_event_name with event id as a parameter.
audit_event_name(event_id)

See Auditing in the Security Administration Guide for values that appear in the event column
of sysaudits.

Passwords Masked in Command Text Auditing
Passwords are masked in audit records.

For example, if the SSO has enabled command text auditing (that is, auditing all actions of a
particular user) for user “alan” in database db1:

sp_audit "cmdtext", "alan", "db1", "on"

And “alan” issues this command:

create encryption key key1 with passwd "bigsecret"

SAP ASE writes the following SQL text to the extrainfo column of the audit table:

"create encryption key key1 with passwd "xxxxxx"

Auditing Actions of the Key Custodian
You can audit all actions in which the keycustodian_role is active.

The syntax is:
sp_audit "all", "keycustodian_role", "all", "on"

CHAPTER 7: Column Encryption

Database Encryption 67

Performance Considerations
Encryption is a resource-intensive operation that may introduce a performance overhead to
your application in terms of CPU usage and the elapsed time of commands that use encrypted
columns.

The amount of overhead depends on the number of CPUs and SAP ASE engines, the load on
the system, the number of concurrent sessions accessing the encrypted data, and the number of
encrypted columns referenced in a query. The encryption key size and the length of the
encrypted data are also factors. In general, the larger the key size and the wider the data, the
higher the CPU usage in the encryption operation.

The elapsed time depends on whether the SAP ASE optimizer can make use of an encrypted
column.

See also
• Creating Column Encryption Keys on page 7
• Dropping Column Encryption Keys on page 11
• Encrypted Columns Process on page 71

Indexes on Encrypted Columns
You can create an index on an encrypted column if the column’s encryption key does not
specify the use of an initialization vector or random padding.

Using an initialization vector or random padding results in identical data being encrypting to
different patterns of cipher text, which prevents an index from enforcing uniqueness and from
performing equality matching of data in cipher text form.

Indexes on encrypted data are useful for equality and nonequality matching of data but not for
data ordering, range searches, or finding minimum and maximum values. If SAP ASE is
performing an order-dependent search on an encrypted column, it cannot execute an indexed
lookup on encrypted data. Instead, the encrypted column in each row must be decrypted and
then searched. This slows data processing.

Sort Orders and Encrypted Columns
If you use a case-insensitive sort order, SAP ASE cannot use an index on an encrypted char
or varchar column when performing a join with another column or a search based on a
constant value. This is also true of an accent-insensitive sort order.

For example, For example, in a case-insensitive search, the string abc matches all strings in
the following range: abc, Abc, ABc, ABC, AbC, aBC, aBc, abC. SAP ASE must compare
abc against this range of values. By contrast, a case-sensitive comparison of the string abc to
the column data matches only identical column values, that is, columns containing abc. The
main difference between case-insensitive and case-sensitive column lookups is that case-

CHAPTER 7: Column Encryption

68 SAP Adaptive Server Enterprise

insensitive matching requires SAP ASE to perform a range search whereas case-sensitive
matching requires an equality search.

An index on a nonencrypted character column orders the data according to the defined sort
order. For encrypted columns, the index orders the data according to the cipher text values,
which bears no relationship to the ordering of plain text values. Therefore, an index on an
encrypted column is useful only for equality and non-equality matching and not for searching
a range of values. abc and Abc encrypt to different cipher text values and are not stored
adjacently in an index.

When SAP ASE uses an index on an encrypted column, it compares column data in cipher text
form. For case sensitive data, you do not want abc to match Abc, and the cipher text join or
search based on equality matching works well. SAP ASE can join columns based on cipher
text values and can efficiently match where clause values. In this example, the maidenname
column is encrypted:

select account_id from customer
 where cname = 'Peter Jones'
 and maidenname = 'McCarthy'

Providing that maidenname has been encrypted without use of an initialization vector or
random padding, SAP ASE encrypts McCarthy and performs a cipher text search of
maidenname. If there is an index on maidenname, the search uses of the index.

Joins on Encrypted Columns
SAP ASE optimizes the joining of two encrypted columns by performing cipher text
comparisons under certain circumstances.

• The joining columns have the same datatype. For cipher text comparisons, char and
varchar are considered to be the same datatypes, as are binary and varbinary.

• For int and float types, the columns have the same length. For numeric and
decimal types, the columns must have the same precision and scale.

• The joining columns are encrypted with the same key.
• The joining columns are not part of an expression. For example, you cannot perform a

cipher text join on a join where t.encr_col1 = s.encr_col1 +1.
• The encryption key was created with init_vector and pad set to NULL.
• The join operator is ‘=’ or ‘<>’.
• The data uses the default sort order.

This example sets a schema to join on cipher text:
create encryption key new_cc_key for AES
 with init_vector NULL
create table customer
 (custid int,
 creditcard char(16) encrypt with new_cc_key)
create table daily_xacts
 (cust_id int, creditcard char(16) encrypt with
 new_cc_key, amount money........)

CHAPTER 7: Column Encryption

Database Encryption 69

You can also set up indexes on the joining columns:
create index cust_cc on customer(creditcard)create index daily_cc on
daily_xacts(creditcard)

SAP ASE executes the following select statement to total a customer’s daily charges on a
credit card without decrypting the creditcard column in either the customer or the
daily_xacts table.

select sum(d.amount) from daily_xacts d, customer c
 where d.creditcard = c.creditcard and
 c.custid = 17936

Search Arguments and Encrypted Columns
For equality and nonequality comparison of an encrypted column to a constant value, SAP
ASE optimizes the column scan by encrypting the constant value once, rather than decrypting
the encrypted column for each row of the table.

For example:
select sum(d.amount) from daily_xacts d
 where creditcard = '123-456-7890'

SAP ASE cannot use an index to perform a range search on an encrypted column; it must
decrypt each row before performing data comparisons. If a query contains other predicates,
SAP ASE selects the most efficient join order, which often leaves searches against encrypted
columns until last, on the smallest data set.

If your query has more than one range search without a useful index, write the query so that the
range search against the encrypted column is last. This example which searches for the Social
Security Numbers of taxpayers earning more than $100,000 in Rhode Island positions the
zipcode column before the range search of the encrypted adjusted gross income column:

select ss_num from taxpayers
 where zipcode like '02%' and
 agi_enc > 100000

Referential Integrity Searches
Referential integrity probes match at the cipher text level if both the following are true:

• The datatypes of the primary key and foreign key match according to the rules described
above.

• The encryption of the primary and foreign keys meets the key requirements for joining
columns.

Movement of Encrypted Data as Cipher Text
As much as possible, SAP ASE optimizes the copying of encrypted data by copying cipher
text instead of decrypting and reencrypting data. This applies to select into commands, bulk
copying, and replication.

CHAPTER 7: Column Encryption

70 SAP Adaptive Server Enterprise

Access Encrypted Data
SAP ASE automatically performs encryption and decryption when you process data in
encrypted columns. SAP ASE encrypts data when you update or insert data into an encrypted
column, and decrypts data when you select it or use it in a where clause.

Encrypted Columns Process
When you issue a select, insert, update, or delete command against an encrypted column,
SAP ASE automatically encrypts or decrypts the data using the encryption key associated
with the encrypted column.

• When you issue an insert or update on an encrypted column:
• If you do not have insert or update permission on the encrypted column, the command

fails.
• If the column is encrypted by a key with a user-specified password, SAP ASE expects

the password to be available. If the user-specified password has not been set, the
command fails.

• SAP ASE decrypts the encryption key.
• SAP ASE encrypts the data using the column’s encryption key.
• SAP ASE inserts the varbinary cipher text data into the table.

• After the insert or update, SAP ASE clears the memory holding the plain text. At the
end of the statement, it clears the memory holding the raw encryption keys.

• When you issue a select command on data from an encrypted column:
• The command fails if you do not have select permission on the encrypted column.
• If the encryption key is associated with a column encrypted with a user-specified

password, SAP ASE expects the password to be available. If the user-specified
password has not been set, the select statement fails. Otherwise, SAP ASE decrypts
the encryption key.

• The decryption of the selected data succeeds if you have decrypt permission on the
column, and SAP ASE returns plain text data to the user.

• If a decrypt default has been declared on the encrypted column and if you do not have
decrypt permission on the column, SAP ASE returns the decrypt default value.

• When you include encrypted columns in a where clause:
• If you do not have decrypt permission on the column, and the column includes a

decrypt default, the where clause predicate evaluates to false.
• When possible, SAP ASE makes the comparison without decrypting the data if:

• The where clause joins an encrypted column with another column encrypted by the
same key without use of an initialization vector or random pad

• The column data is being matched with an equality or an inequality condition to a
constant value

CHAPTER 7: Column Encryption

Database Encryption 71

See also
• Access Encrypted Data with a User Password on page 82

• Decrypt Default Columns and Query Qualifications on page 60

• Performance Considerations on page 68

Permissions for Decryption
To see or process decrypted data, users must have certain permissions.

User must have:

• select and decrypt permissions on the column used in the target list and in where, having,
order by, group by, and other such clauses

• A password used to encrypt the key if you use the passwd password_phrase clause with
the create or alter encryption key commands.

Configuring SAP ASE for restricted decrypt permission restricts implicit decrypt
permissions. You must explicitly grant table owners decrypt permission to enable them to
select from an encrypted column on tables that they own. execute permission on a stored
procedure or select permission on a view does not implicitly grant users decrypt permission
on the underlying encrypted data through an ownership chain. The user must also have explicit
decrypt permission on the base table.

Drop Encryption
If you are a table owner, you can use alter table with the decrypt option to drop encryption on a
column.

For example, to drop encryption on the creditcard column in the customer table, enter:

alter table customer modify creditcard decrypt

If the creditcard column was encrypted by a key with an explicit user password, you
would need to set that password first.

CHAPTER 7: Column Encryption

72 SAP Adaptive Server Enterprise

CHAPTER 8 Role of the Key Custodian

The key custodian, who must be assigned the keycustodian_role, maintains encryption keys.
Using the keycustodian_role role allows you to separate the duties for administering
confidential data by ensuring that no administrator has implicit access to data.

This figure illustrates that the database owner, as the schema owner, controls permissions for
accessing the data, but has no access without knowledge of the key’s password. The key
custodian, however, administers keys and their passwords, but has no permissions on the data.
Only the qualified end user, with permissions on the data and knowledge of the encryption
key's password, can access the data.

The system administrator and database owner do not have implicit key management
responsibilities. SAP ASE provides the system role keycustodian_role so that the SSO need
not assume all encryption responsibility. The key custodian owns the encryption keys, but
should have no explicit or implicit permissions on the data. The database owner grants users
access to data through column permissions, and the key custodian allows users access to the
key’s password. keycustodian_role is automatically granted to sso_role and can be granted
by a user with the sso_role.

The key custodian can:

Database Encryption 73

• Create and alter encryption keys.
• Assign as the database default key a key he or she owns, as long as he or she also owns the

current default key, if one exists.
• Set up key copies for designated users, allowing each user access to the key through a

chosen password or a login password.
• Share key encryption passwords with end users.
• Grant schema owners select access to encryption keys on keys owned by the key custodian.
• Create the master key or set the system encryption password.
• Recover encryption keys.
• Drop his or her own encryption keys.
• Change ownership of keys he or she owns.

You can have multiple key custodians, who each own a set of keys. The key custodian grants
the schema owner permission to use the keys on create table, alter table, and select into, and
may disclose the key password to privileged users or allow users to associate key copies with a
personal password or a login password. The key custodian can work with a “key recoverer” to
recover keys in the event of a lost password or disaster. If the key custodian leaves the
company, the SSO can use the alter encryption key command to change key ownership to a
new key custodian.

See also
• Creating Column Encryption Keys on page 7

• Dropping Column Encryption Keys on page 11

Users, Roles, and Data Access
User-specified passwords on encryption keys ensure that data privacy is protected from the
system administrator.

• The key custodian can own the keys, but not see the data.
• The database owner can own the schema, but not the data.
• A user can see and process the data because of:

• Key access, granted by the key custodian
• Data access, granted by the table owner

CHAPTER 8: Role of the Key Custodian

74 SAP Adaptive Server Enterprise

Role Can Create
Encryption
Key?

Can Use Key in a
Schema Defini-
tion?

Can Decrypt Encrypted
Data?

sso_role Yes No, requires create
table permission

No. User with role may have
knowledge of password, but re-
quires select permission on table
(SSO has implicit decrypt permis-
sion).

sa_role No, requires cre-
ate encryption
key permission

Yes, but must be
granted select per-
mission on the key

No, requires knowledge of pass-
word

keycustodian_role Yes No, requires create
table permission

No. User with role may have
knowledge of password, but re-
quires decrypt and select permis-
sion.

database owner or
schema owner

No, requires cre-
ate encryption
key permission

Yes, but must be
granted select per-
mission on the key

No, requires knowledge of pass-
word.

User No No Yes, but must be granted decrypt
or select permission and have
knowledge of key’s password.

CHAPTER 8: Role of the Key Custodian

Database Encryption 75

CHAPTER 8: Role of the Key Custodian

76 SAP Adaptive Server Enterprise

CHAPTER 9 Key Protection Using User-
Specified Passwords

Use create encryption key to associate a password with a key.

The syntax is:

create encryption key [[db.][owner].]keyname [as default]
 [for algorithm_name]
 [with {[keylength num_bits]
 [passwd 'password_phrase']
 [init_vector {NULL | random}]
 [pad {NULL | random}]}]

where password_phrase is a quoted alphanumeric string of up to 255 bytes in length that SAP
ASE uses to generate thekey encryption key (KEK).

SAP ASE does not save the user-specified password. It saves a string of validating bytes
known as the “salt” in sysencryptkeys.eksalt, which allows SAP ASE to recognize
whether a password used on a subsequent encryption or decryption operation is legitimate for
a key. You must supply the password to SAP ASE before you can access any column encrypted
by keyname.

When you create an encryption key, its entry in the sysencryptkeys table is known as the
base key. For some users and applications, the base key, encrypted by either the master key, the
system encryption password, or an explicit password, is sufficient. Any explicit password is
shared among users requiring access to the key. Additionally, you can create key copies for
different users and applications. Each key copy can be encrypted by an individual password
and is stored as a separate row in sysencryptkeys. An encryption key is always
represented by one base key and zero or more key copies.

This example shows how to use passwords on keys, and the key custodian’s function in setting
up encryption. The password on the key is shared among all users who have a business need to
process encrypted data.

1. Key custodian “razi” creates an encryption key:
create encryption key key1
 with passwd 'Worlds1Biggest6Secret'

2. “razi” distributes the password to all users who need access to encrypted data.
3. Each user enters the password before processing tables with encrypted columns:

set encryption passwd 'Worlds1Biggest6Secret'
 for key razi.key1

4. If the key is compromised because an unauthorized user gained access to the password,
“razi” alters the key to change the password.

Database Encryption 77

See also
• Protect Keys with User-Specified Passwords on page 18

Change a Key’s Protection Method
You can use the alter encryption key command to change the protection method for an
encryption key.

The syntax is:

alter encryption key [[database.database][owner].] keyname
 [with {passwd {'old_passwd' | system_encr_passwd
 | login_passwd} | master key}]
 modify encryption
 [with [{passwd {'old_passwd' | system_encr_passwd |
login_passwd}
 | master key}] [[no] dual_control]]

where:

• keyname – identifies a column encryption key.
• with passwd 'old_password' – specifies the user-defined password previously specified to

encrypt the base key or the key copy with a create encryption key or alter encryption key
statement. The password can be up to 255 bytes long. If you do not specify with passwd on
the base key, the default is the master key or the system encryption password.

• with passwd 'new_password' – specifies the new password SAP ASE uses to encrypt the
column encryption key or key copy. The password can be up to 255 bytes long. If you do
not specify with passwd and you are encrypting the base key, the default is
system_encr_passwd.

• system_encr_passwd – is the default encryption password. You cannot modify the base
key to be encrypted with the system encryption password if one or more key copies already
exist. This restriction prevents the key custodian from inadvertently exposing an
encryption key to access by an administrator after the key custodian has set up the key for
restricted use by individual users. You cannot modify key copies to encrypt using the
system encryption password.

• login_passwd – is the login password of the current session. You cannot modify the base
key to use login_password for encryption. A user can modify his own key copy to encrypt
with his login password.

• master key – in the first instance indicates that the current encryption uses the master key.
In the second instance, it indicates that the KEK or CEK must be re-encrypted with the
master key.

Example 1: In this example, the key custodian alters the base key because the password was
compromised or a user who knew the password left the company.

1. Key custodian “razi” creates an encryption key:

CHAPTER 9: Key Protection Using User-Specified Passwords

78 SAP Adaptive Server Enterprise

create encryption key key1
 with passwd 'MotherOfSecrets'

2. “razi” shares the password on the base key with “joe” and “bill”, who need to process the
encrypted data (no key copies are involved).

3. “joe” leaves the company.
4. “razi” alters the password on the encryption key and then shares it with “bill”, and “pete”,

who replaceses “joe.” The data does not need to be reencrypted because the underlying key
has not changed, just the way the key is protected. The following statement decrypts key1
using the old password and reencrypts it with the new password:
alter encryption key key1
 with passwd 'MotherOfSecrets'
 modify encryption
 with passwd 'FatherOfSecrets'

Example 2: Use the master key to encrypt an existing CEK “k2”:
alter encryption key k2
 with passwd 'goodbye'
 modify encryption
 with master key

Example 3: Re-encrypt an existing CEK “k3” that is currently encrypted by the master key, to
use dual control:
alter encryption key k3
 modify encryption
 with master key
 dual_control

Note: You can omit with master key in this example to achieve the same encryption.

Example 4: Re-encrypt an existing CEK “k4” that is currently encrypted by the master key and
password “k4_password”, to remove dual control. The CEK and all its key copies are
controlled by a single key derived from “k4_new_password”:
alter encryption key k4
 with passwd 'k4_password'
 modify encryption
 with passwd 'k4_new_password'
 no dual_control

Example 5: Encrypt an existing CEK “k5” that is currently encrypted by the master key, for
dual control encrypted by the master key and password “k5_password”:
alter encryption key k5
 modify encryption
 with passwd 'k5_password'
 dual_control

Example 6: Encrypt a CEK for dual control by the master key and password “k6_password”:
create encryption key k6
 with passwd 'k6_password'
 dual_control

CHAPTER 9: Key Protection Using User-Specified Passwords

Database Encryption 79

For user “ned”, encrypt his existing key copy of CEK “k6” that is currently encrypted with
dual control by the master key and password “k6_password”, for dual control by the master
key and password “k6_ned_password”:
alter encryption key k6
 with passwd 'k6_password'
 add encryption
 with passwd 'k6_ned_password'
 for user ned

Note: User “ned” cannot change the dual control property of his key copy.

Example 7: Encrypt a CEK “k7” currently encrypted by the master and dual master key, to use
the system encryption password:
alter encryption key k7
 modify encryption
 with passwd system_encr_passwd
 no dual control

See also
• Protect Encryption Keys with Dual Control on page 18

Create Key Copies
The key custodian may need to make a copy of the key temporarily available to an
administrator or an operator who must load data into encrypted columns or databases.
Because this operator does not otherwise have permission to access encrypted data, he or she
should not have permanent access to a key.

You can make key copies available to individual users as follows:

• The key custodian uses create encryption key to create a key with a user-defined
password. This key is known as the base key.

• The key custodian uses alter encryption key to assign a copy of the base key to an
individual user with an individual password.

This syntax shows how to add a key encrypted using an explicit password for a designated
user:
alter encryption key [database.[owner].]key
 with passwd 'base_key_password'
 add encryption with passwd 'key_copy_password'
 for user_name ''

where:

• base_key_password – is the password used to encrypt the base key, and may be known
only by the key custodian. The password can be upto 255 bytes in length. SAP ASE uses
the first password to decrypt the base column-encryption key.

CHAPTER 9: Key Protection Using User-Specified Passwords

80 SAP Adaptive Server Enterprise

• key_copy_password – the password used to encrypt the key copy. The password cannot be
longer than 255 bytes. SAP ASE makes a copy of the decrypted base key, encrypts it with a
key encryption key derived from the key_copy_password, and saves the encrypted base
key copy as a new row in sysencryptkeys.

• user_name – identifies the user for whom the key copy is made. For a given key,
sysencryptkeys includes a row for each user who has a copy of the key, identified by
their user ID (uid).

• The key custodian adds as many key copies as there are users who require access through a
private password.

• Users can alter their copy of the encryption key to encrypt it with a different password.

The following example illustrates how to set up and use key copies with an encrypted column:

1. Key custodian “razi” creates the base encryption key with a user-specified password:
create encryption key key1 with passwd 'WorldsBiggestSecret'

2. “razi” grants select permission on key1 to database owner for schema creation:

grant select on key key1 to dbo
3. database owner creates schema and grants table and column-level access to “bill”:

create table employee (empname char(50), emp_salary money encrypt
with razi.key1, emp_address varchar(200))
 grant select on employee to bill
 grant decrypt on employee(emp_salary) to bill

4. Key custodian creates a key copy for “bill” and gives “bill” the password to his key copy.
Only the key custodian and “bill” know this password.
alter encryption key key1 with passwd 'WorldsBiggestSecret'
 add encryption with passwd 'justforBill'
 for user 'bill'

5. When “bill” accesses employee.emp_salary, he first supplies his password:

set encryption passwd 'justforBill' for key razi.key1
 select empname, emp_salary from dbo.employee

When SAP ASE accesses the key for the user, it looks up that user’s key copy. If no copy exists
for a given user, SAP ASE assumes the user intends to access the base key.

Change Passwords on Key Copies
Once a user has been assigned a key copy, he or she can use alter encryption key to modify the
key copy’s password.

This example shows how a user assigned a key copy alters the copy to access data through his
or her personal password:

• Key custodian “razi” sets up a key copy on an existing key for “bill” and encrypts it with a
temporary password:

CHAPTER 9: Key Protection Using User-Specified Passwords

Database Encryption 81

alter encryption key key1 with passwd 'MotherOfSecrets'
 add encryption with passwd 'just4bill' for user bill

• “razi” sends “bill” his password for access to data through key1.
• “bill” assigns a private password to his key copy:

alter encryption key razi.key1 with passwd 'just4bill'
 modify encryption with passwd 'billswifesname'

Only “bill” can change the password on his key copy. When “bill” enters the command
above, SAP ASE verifies that a key copy exists for “bill”. If no key copy exists for “bill”,
SAP ASE assumes the user is attempting to modify the password on the base key and
issues an error message:
Only the owner of object '<keyname>' or a user with
 sso_role can run this command.
You cannot create key copies for user “guest” for login association.

Access Encrypted Data with a User Password
You must supply the encryption key’s password to encrypt or decrypt data on an insert,
update, delete, select, alter table, or select into statement.

If the system encryption password protects the encryption key, you need not supply the system
encryption password because SAP ASE can already access it. Similarly, if your key copy is
encrypted with your login password, SAP ASE can access this password while you remain
logged in to the server. For keys encrypted with an explicit password, you must set the
password in your session before executing any command that encrypts or decrypts an
encrypted column with this syntax:

set encryption passwd 'password_phrase'
 for {key | column} {keyname | column_name}

where:
• password_phrase – is the explicit password specified with the create encryption key or

alter encryption key command to protect the key.
• key – indicates that SAP ASE uses this password to decrypt the key when accessing any

column encrypted by the named key
• keyname – may be supplied as a fully qualified name. For example:

[[database.][owner].]keyname
• column – specifies that SAP ASE use this password only in the context of encrypting or

decrypting the named column. End users do not necessarily know the name of the key that
encrypts a given column.

• column_name – name of the column on which you are setting an encryption password.
Supply column_name as:
[[database.][owner].]table_name.column_name

Each user who requires access to a key encrypted by an explicit password must supply the
password. SAP ASE saves the password in encrypted form in the user session's internal

CHAPTER 9: Key Protection Using User-Specified Passwords

82 SAP Adaptive Server Enterprise

context. SAP ASE removes the key from memory at the end of the session by overwriting the
memory with zeros.

This example illustrates how SAP ASE determines the password when it must encrypt or
decrypt data. It assumes that the ssn column in the employee and payroll tables is encrypted
with key1, as shown in these simplified schema creation statements:

create encryption key key1 with passwd "Ynot387"
create table employee (ssn char (11) encrypt with key1, ename
char(50))
create table payroll (ssn char(11) encrypt with key1, base_salary
float)

1. The key custodian shares the password required to access employee.ssn with “susan”.
He does not need to disclose the name of the key to do this.

2. If “susan” has select and decrypt permission on employee, she can select employee data
using the password given to her for employee.ssn:

set encryption passwd "Ynot387" for column employee.ssn
 select ename from employee where ssn = '111-22-3456'
ename

Priscilla Kramnik

3. If “susan” attempts to select data from payroll without specifying the password for
payroll.ssn, the following select fails (even if “susan” has select and decrypt
permission on payroll):

select base_salary from payroll where ssn = '111-22-3456'
You cannot execute 'SELECT' command because the user encryption
password
has not been set.

To avoid this error, “susan” must first enter:
set encryption passwd "Ynot387" for column payroll.ssn

The key custodian may choose to share passwords on a column-name basis and not on a key-
name basis to avoid users hard-coding key names in application code, which can make it
difficult for the database owner to change the keys used to encrypt the data. However, if one
key is used to encrypt several columns, it may be convenient to enter the password once. For
example:
set encryption passwd "Ynot387" for key key1
select base_salary from payroll p, employee e
 where p.ssn = e.ssn
 and e.ename = "Priscilla Kramnik"

If one key is used to encrypt several columns and the user is setting a password for the column,
the user needs to set password for all the columns they want to process. For example:
set encryption passwd 'Ynot387' for column payroll.ssn
set encryption passwd 'Ynot387' for column employee.ssn
select base_salary from payroll p, employee e

CHAPTER 9: Key Protection Using User-Specified Passwords

Database Encryption 83

 where p.ssn = e.ssn
 and e.ename = 'Priscilla Kramnik'

If a password is set for a column and then set at the key level for the key that encrypts the
column, SAP ASE discards the password associated with the column and retains the password
at the key level. If two successive entries for the same key or column are entered, SAP ASE
retains only the latest. For example:

1. If a user mistypes the password for the column employee.ssn as “Unot387” instead of
the correct “Ynot387”:
set encryption passwd "Unot387"
 for column employee.snn

2. And then the user reenters the correct password, SAP ASE retains only the second entry:
set encryption passwd "Ynot387"
 for column employee.ssn

3. If the user now enters the same password at the key level, SAP ASE retains only this last
entry:
set encryption passwd "Ynot387" for key key1

4. If the user now enters the same password at the column level, SAP ASE discards this entry
because it already has this password at the key level:
set encryption passwd "Ynot387"
 for column payroll.ssn

If a stored procedure or a trigger references data encrypted by a user specified password, you
must set the encryption password before executing the procedure or the statement that fires the
trigger.

Note: SAP recommends that you do not place the set encryption passwd statement inside a
trigger or procedure; this could lead to unintentional exposure of the password through
sp_helptext. Additionally, hard-coded passwords require you to change the procedure or
trigger when a password is changed.

See also
• Encrypted Columns Process on page 71

Application Transparency Using Login Passwords on Key
Copies

The key custodian can set up key copies for encryption using a user’s login password, and
thereby providing ease of use, better security, lower overhead, and application transparency.

• Ease of use – users whose login password is associated with a key can access encrypted
data without supplying a password.

CHAPTER 9: Key Protection Using User-Specified Passwords

84 SAP Adaptive Server Enterprise

• Better security – users have fewer passwords to track, and are less likely to write them
down.

• Lower administrative overhead for key custodian – the key custodian need not manually
distribute temporary passwords to each user who requires key access through a private
password.

• Application transparency – applications need not prompt for a password to process
encrypted data. Existing applications can take advantage of the measures to protect data
privacy from the power of the administrator.

To encrypt a key copy with a user’s login password, use:
alter encryption key [[database.][owner].]keyname
 with passwd 'base_key_password'
 add encryption for user 'user_name' for login_association

where login_association tells SAP ASE to create a key copy for the named user, which it later
encrypts with the user's login password. Encrypting a key copy with a login password
requires:

1. Using alter encryption key, the key custodian creates a key copy for each user who
requires key access via a login password. SAP ASE attaches information to the key copy to
securely associate the key copy with a given user. The identifying information and key are
temporarily encrypted using a key derived from the master key or—if no master key exists
—the system encryption password. The key copy is saved in sysencryptkeys.

2. When a user processes data requiring a key lookup, SAP ASE notes that a copy of the
encryption key identified for this user is ready for login password association. Using the
master key or the system encryption password to decrypt the information in the key copy,
SAP ASE validates the user information associated with the key copy against the user’s
login credentials, and encrypts the key copy with a KEK derived from the user’s login
password, which has been supplied to the session.

When adding a key copy with alter encryption key key for login_association, the master key
or the system encryption password must be available for encryption of the key copy. The
system encryption password must still be available for SAP ASE to decrypt the key copy when
the user logs in. After SAP ASE has reencrypted the key copy with the user’s login password,
the system encryption password is no longer required.

Note: You must use the default SAP ASE authentication method with syslogins to access
key copies using a login password. User authentication through external services such as
LDAP or Kerberos results in an error accessing the key if the user’s key copies were added for
login association.

The following example encrypts a user’s copy of the encryption key, key1, with the user’s
login password:

1. Key custodian “razi” creates an encryption key:
create encryption key key1 for AES
 with passwd 'MotherofSecrets'

CHAPTER 9: Key Protection Using User-Specified Passwords

Database Encryption 85

2. “razi” creates a copy of key1 for user “bill”, initially encrypted with the master key or the
system encryption password, but eventually to be encrypted by “bill”’s login password:
alter encryption key key1 with
 passwd 'MotherofSecrets'
 add encryption
 for user 'bill'
 for login_association

3. SAP ASE uses the master key or the system encryption password to encrypt a combination
of the key and information identifying the key copy for “bill”, and stores the result in
sysencryptkeys.

4. “bill” logs in to SAP ASE and processes data, requiring the use of key1. For example, if
emp.ssn is encrypted by key1:

select * from emp

SAP ASE recognizes that it must encrypt “bill”’s copy of key1 with his login password.
SAP ASE uses the master key or the system encryption password to decrypt the key value
data saved in step 4. It validates the information against the current login credentials, then
encrypts key1's key value with a KEK generated from “bill”’s login password.

5. During future logins when “bill” processes columns encrypted by key1, SAP ASE
accesses key1 directly by decrypting it with “bill”’s login password, which is available to
SAP ASE through “bill”’s internal session context.
Users who are aliased to “bill” cannot access the data encrypted by key1 because their
own login passwords cannot decrypt key1.

6. When “bill” loses authority to process confidential data, the key custodian drops “bill”’s
access to the key:
alter encryption key key1
 drop encryption
 for user 'bill'

A user can encrypt a key copy directly with a login password with alter encryption key using
the with passwd login_passwd clause. However, the disadvantages of using this method over
the login association are:

• The key custodian must communicate the key copy’s first assigned password to the user.
• The user must issue alter encryption key to reencrypt the key copy with a login password.

For example:

• “razi” adds a key copy for user “bill” encrypted by an explicit password:
alter encryption key key1
 with passwd 'MotherofSecrets'
add encryption with passwd 'just4bill'
 for user bill

• “razi” shares the key copy's password with “bill”.
• “bill” decides to encrypt his key copy with his login password for his own convenience:

CHAPTER 9: Key Protection Using User-Specified Passwords

86 SAP Adaptive Server Enterprise

alter encryption key key1 with passwd "just4bill" modify
encryption with passwd login_passwd

• Now, when “bill” processes encrypted columns, SAP ASE accesses “bill”’s key copy
through his login password.

Login Password Change and Key Copies
If you hold a key copy encrypted by a login password on one or more keys, you need not
modify the key copies after you change your login password. alter login decrypts your key
copies with your old login password and reencrypts them using the new login password.

If the SSO uses alter login to change your password, alter login drops your key copies. This
prevents an administrator from gaining access to a key through a known password. After a
mandatory password change of this kind, the key custodian must use alter encryption key to
add a key copy for login_association for the user whose password is changed. alter login
ignores offline databases and, for keys stored in offline databases, the key custodian follows
the steps for recovering a lost key copy password when the database comes back online.

The key custodian may also need to perform these steps when a user’s password is changed
after the server is started using the -p flag. If the SSO, who uses the -p flag also has access to
keys through key copies encrypted with his or her login password, then the key custodian must
drop and re-create the SSO’s key copies.

See also
• Loss of Login Password on page 89

Dropping a Key Copy
When a user changes jobs or leaves the company, the key custodian should drop the user’s key
copy.

The syntax is:
alter encryption key keyname
 drop encryption for user user_name

For example, if user “bill” leaves the company, the key owner can prevent “bill”’s access to
key1 by dropping his key copy:

alter encryption key key1
 drop encryption for user bill

SAP ASE does not require a password for this command because no key decryption is
required.

drop encryption key drops the base key and all its copies.

CHAPTER 9: Key Protection Using User-Specified Passwords

Database Encryption 87

CHAPTER 9: Key Protection Using User-Specified Passwords

88 SAP Adaptive Server Enterprise

CHAPTER 10 Key Recovery from Lost
Passwords

Key custodians can recover keys and lost passwords, and manage the ownership of encryption
keys.

See also
• Creating Master Key Copies on page 22

Loss of Password on Key Copy
If a user loses a password for the encryption key, the key custodian must drop the user’s copy
of the encryption key and issue to the user another copy of the encryption key with a new
password.

In this example, the key custodian assigned a copy of key1 to “bill”, and “bill” changed his
password on key1 to a password known only to him. After losing his password, “bill”
requests a new key copy from the key custodian.

1. The key custodian deletes Bill’s copy of the key:
alter encryption key key1
 drop encryption for user bill

2. The key custodian makes a new copy of key1 for user “bill” and gives “bill” the password:

alter encryption key key1
 with passwd 'MotherofSecrets'
 add encryption with passwd 'over2bill'
 for user bill

3. “bill” automatically has permission to alter his own copy of key1:

alter encryption key key1
 with passwd 'over2bill'
 modify encryption
 with passwd 'billsnupasswd'

Loss of Login Password
If a user who has key copies encrypted by his or her login password loses that password, the
key custodian can recover access for the user.

For example, if the user “bill”, who has key copies encrypted by his login password, loses his
login password, you can recover his access to encryption keys with these steps:

Database Encryption 89

1. The SSO uses alter login to issue “bill” a new login password. SAP ASE drops any key
copies assigned to “bill” for login association or key copies already encrypted by “bill”’s
login password.

2. The key custodian follows the regular procedure for setting up key encryption by login
association. He verifies that the master key or the system encryption password was set, and
creates a key copy for “bill":
alter encryption key k1
 with passwd 'masterofsecrets'
 add encryption for bill
 for login_association

This step assumes the key custodian still knows the base key’s password. If the key’s
encryption password is unknown, the key custodian must first follow the key recovery
procedure.

3. The next time “bill” accesses data encrypted by k1, SAP ASE reencrypts the key copy for
"bill" using the new login password for “bill”. For example, if emp_salary is encrypted
by key k1, the following statement automatically reencrypts the key copy for “bill” with
his login password:
select emp_salary from emp
 where name like 'Prisicilla%'

See also
• Login Password Change and Key Copies on page 87

Loss of Password on Base Key
Key custodians can use key recovery if the base key password is lost. Key recovery is vital
because, without the password, the key custodian cannot change the key’s password or add
key copies.

If all users share access to data through the base key and a user forgets the password, he or she
can get the password from another user or the key custodian. If no one remembers the
password, all access to the data is lost. Because of this, SAP ASE recommends that you back
up keys by creating a copy of the base key that you can use for recovery. This copy is called the
key recovery copy.

The key custodian should:

• Appoint one user as the key recoverer. The key recoverer's responsibility is to remember
the password to the key recovery copy.

• Make a copy of the base key for the key recoverer. Every key that requires recovery after a
disaster must have a key recovery copy.

CHAPTER 10: Key Recovery from Lost Passwords

90 SAP Adaptive Server Enterprise

Key Recovery Commands
SAP ASE does not allow access to data through the recovery key copy. A key recovery copy
exists only to provide a backup for accessing the base key.

Set up a recovery key copy using:

alter encryption key keyname with passwd base_key_passwd
add encryption with passwd recovery_passwd
for user key_recovery_user for recovery

where:

• base_key_passwd – is the password the key custodian assigned to the base key.
• recovery_passwd – is the password used to protect the key recovery copy.
• key_recovery_user – user assigned the responsibility for remembering a password for key

recovery.

After setting the key recovery copy, the key custodian shares the password with the key
recovery user, who can alter the password using:
alter encryption key keyname with passwd old_recovery_passwd
 modify encryption with passwd new_recovery_passwd for recovery

During key recovery, the key recovery user tells the key custodian the password of the key
recovery copy. The key custodian restores access to the base key using:

alter encryption key keyname with passwd recovery_key_passwd
 recover encryption with passwd new_base_key_passwd

where:

• recovery_key_passwd – is the password associated with the key recovery copy, shared
with the key custodian by the recovery key user. SAP ASE uses the recovery_key_passwd
to decrypt the key recovery copy to access the raw key.

• new_base_key_passwd – is the password used to encrypt the raw key. SAP ASE updates
the base key row in sysencryptkeys with the result.

This example shows how to set up the recovery key copy and use it for key recovery after
losing a password:

1. The key custodian creates a new encryption key protected by a password.
create encryption key key1 for AES
 passwd 'loseitl8ter'

2. The key custodian adds a encryption key recovery copy for key1 for “charlie”.

alter encryption key key1 with passwd 'loseitl8ter'
 add encryption
 with passwd 'temppasswd'

CHAPTER 10: Key Recovery from Lost Passwords

Database Encryption 91

 for user charlie
 for recovery

3. “charlie” assigns a different password to the recovery copy and saves this password in a
locked drawer:
alter encryption key key1
 with passwd 'temppasswd'
 modify encryption
 with passwd 'finditl8ter'
 for recovery

4. If the key custodian loses the password for base key, he can obtain the password from
“charlie” and recover the base key from the recovery copy using:
alter encryption key key1
 with passwd 'finditl8ter'
 recover encryption
 with passwd 'newpasswd'

The key custodian now shares access to key1 with other users by sharing the base key’s
password, or by dropping and adding key copies where changes in personnel have occurred.

Ownership Change of Encryption Keys
The SSO can transfer key ownership to a named user. Changing ownership may occur in the
normal course of business, or as part of key recovery.

This command, when executed by the SSO, transfers key ownership to a named user:
alter encryption key [[database.][owner].]keyname
 modify owner user_name

where user_name is the name of the new key owner. This user must already be a user in the
database where the key was created.

For example, if “razi” is the key custodian, and owns the key encr_key, but is being replaced
by a new key custodian named “tinnap”, change the key ownership using:
alter encryption key encr_key modify owner tinnap

Only the SSO or the key owner can run this command. If the new owner already has a copy of
the key, you see:
A copy of key encr_key already exists for user tinnap

A user who already has a regular key copy or a recovery key copy cannot become the new
owner of the key. SAP ASE does not allow a key copy to be made for a key owner.

If the previous key owner had granted any permissions on the key, the granter user ID in
sysprotects system table is changed to the user ID of the new owner of the key. The
ownership change is effective immediately; the new owner need not log in again for the change
to take effect.

CHAPTER 10: Key Recovery from Lost Passwords

92 SAP Adaptive Server Enterprise

	Database Encryption
	Contents
	CHAPTER 1: Overview of Encryption
	Full Database Encryption
	Column Encryption

	CHAPTER 2: Protect Data with Encryption Keys
	Creating the Database Encryption Key
	Dropping a Database Encryption Key
	Changing a Database Encryption Key

	Creating Column Encryption Keys
	Dropping Column Encryption Keys
	Changing the Column Encryption Key

	Key Protection
	Grant Access to Keys
	Separate Keys from Data

	CHAPTER 3: Key Encryption
	Protect Encryption Keys with the Master Key
	Protect Encryption Keys with the System-Encryption Password
	Protect Keys with User-Specified Passwords
	Protect Encryption Keys with Dual Control

	CHAPTER 4: Database-Level Master and Dual Master Keys
	Creating the Master and Dual Master Keys
	Creating Master Key Copies

	Setting Passwords for the Master and Dual Master Keys
	Altering Passwords and Key Encryption Keys for Master Key Copies
	Regenerate Master Keys
	Dropping Master Keys and Key Copies
	Recovering the Master Key and Dual Master Key
	Starting SAP ASE in Unattended Start-Up mode
	Configure Unattended Start-Up Mode
	Create the Master Key Start-Up File
	How SAP ASE Uses the Master Key Start-Up File

	CHAPTER 5: Secure External Passwords and Hidden Text
	Service Keys
	Creating Service Keys
	Dropping Service Keys
	Modify Service Keys
	Changing the syb_extpasswdkey
	Changing the syb_syscommkey

	Service Keys with External Passwords
	SSL Passwords
	LDAP Passwords
	Replication Agent Passwords

	Service Keys Encrypted with the Master Key

	CHAPTER 6: Database Encryption
	Create an Encrypted Database
	Encrypt an Existing Database
	Encryption Status and Progress
	Performance Considerations
	Suspend the Encryption Process
	The quiesce database Command and Fully Encrypted Databases

	Resume the Encryption Process
	Decrypt an Encrypted Database
	Recover Fully Encrypted Databases
	Back Up (Dump) a Fully Encrypted Database
	Back Up the Database Encryption Key
	Restore (Load) Backups of Fully Encrypted Databases
	Loading Behavior of Encrypted Databases
	Dropping a Database That is Being Encrypted
	Mounting and Unmounting a Fully Encrypted Database
	Archive Databases and Full Encryption

	CHAPTER 7: Column Encryption
	Encrypting Columns on New Tables
	Specifying Encryption on select into

	Encrypting Columns in Existing Tables
	Index Creation and Constraints on Encrypted Columns
	Domain Creation and Access Rules on Encrypted Columns
	Decrypt Permission
	Revoking Decryption Permission

	Restrict Decrypt Permission
	Default Values Returned Instead of Decrypted Data
	Defining Decrypt Defaults
	Permissions and Decrypt Default
	Columns with Decrypt Default Values
	Decrypt Default Columns and Query Qualifications
	decrypt default and Implicit Grants
	decrypt default and insert, update, and delete Statements
	Removing Decrypt Defaults

	Length of Encrypted Columns
	Encrypted Columns Audits
	Event Names and Numbers
	Passwords Masked in Command Text Auditing
	Auditing Actions of the Key Custodian

	Performance Considerations
	Indexes on Encrypted Columns
	Sort Orders and Encrypted Columns
	Joins on Encrypted Columns
	Search Arguments and Encrypted Columns
	Movement of Encrypted Data as Cipher Text

	Access Encrypted Data
	Encrypted Columns Process
	Permissions for Decryption
	Drop Encryption

	CHAPTER 8: Role of the Key Custodian
	Users, Roles, and Data Access

	CHAPTER 9: Key Protection Using User-Specified Passwords
	Change a Key’s Protection Method
	Create Key Copies
	Change Passwords on Key Copies
	Access Encrypted Data with a User Password
	Application Transparency Using Login Passwords on Key Copies
	Login Password Change and Key Copies
	Dropping a Key Copy

	CHAPTER 10: Key Recovery from Lost Passwords
	Loss of Password on Key Copy
	Loss of Login Password
	Loss of Password on Base Key
	Key Recovery Commands
	Ownership Change of Encryption Keys

