
Programmers Reference

SAP jConnect™ for JDBC 16.0

DOCUMENT ID: DC39001-01-1600-01
LAST REVISED: March 2014
Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

SAP jConnect for JDBC ..1
Java Database Connectivity (JDBC)1

Programming Information ...3
SAP jConnect Version Property3

SybDriver. setVersion Method3
JCONNECT_VERSION Connection Property4

Invoking the SAP jConnect Driver6
Configuring SAP jConnect for J2EE servers7
Establish a Connection ...8

Connection Properties ...8
Connect to SAP Adaptive Server35
Use the sql.ini and Interfaces File Directory

Services ...36
Connecting to a Server Using JNDI37

Internationalization and Localization42
Using SAP jConnect to Pass Unicode Data42
SAP jConnect Character Set Converters43

Database Issues ...48
Failover Support ...49
Server-to-Server Remote Procedure Calls52
Wide Table Support for Adaptive Server53
Accessing Database Metadata54
Use Cursors with Result Sets55
Support for Batch Updates66
Updating a Database from a Result Set of a

Stored Procedure ..67
Datatypes ...68

Variable-Length Rows in Data-Only-Locked Tables74
Large Object (LOB) Support ...75
Large Object Locator Support75
Advanced Features in SAP jConnect76

Programmers Reference iii

BCP Insert ...76
Supported SAP Adaptive Server Cluster Edition

Features ..77
Event Notification ...79
Error Messages ...81
Password Encryption ...85
Store Java Objects as Column Data in Table87
Dynamic Class Loading91
JDBC 4.0 Specifications Support95
JDBC 3.0 Specifications Support95
Support for JDBC 2.0 Optional Package

Extensions ..97
Restrictions and Interpretations of JDBC Standards . .105

Unsupported JDBC 4.0 Specification
Requirements ..105

Use Connection.isClosed and
IS_CLOSED_TEST105

Statement.close with Unprocessed Results106
Adjustments for Multithreading107
ResultSet.getCursorName107
Execute Stored Procedures108

Security ...111
Restrictions ...111
Implement Custom SSL Socket Plug-ins111

Using Custom Socket with jConnect112
Create and Configure a Custom Socket113
SSL Support in SAP jConnect115

Kerberos ...116
Configuring Kerberos for SAP jConnect116
GSSMANAGER_CLASS Connection Property . 117
Kerberos Environment119
Sample Applications ..123
Interoperability ...124
Troubleshooting Kerberos125

Related Documents ..126

Contents

iv SAP jConnect for JDBC

Troubleshooting ...127
Debugging with SAP jConnect127

Obtaining an Instance of the Debug Class127
Turning On Debugging in an Application127
Turning Off Debugging in an Application128
Setting the CLASSPATH for Debugging128
Using the Debugging Methods128

Dynamic Logging ..129
Enabling Logging Dynamically in SAP jConnect

...131
Enabling Logging Statically in SAP jConnect131

Capture TDS Communication132
PROTOCOL_CAPTURE Connection Property ..132
Pause and Resume Methods in Capture Class .132

Resolve Connection Errors ...133
Manage Memory in SAP jConnect Applications134
Resolve Stored Procedure Errors135

RPC Returns Fewer Output Parameters Than
Registered ...135

Fetch/State Error ..135
Stored Procedure Executed in Unchained

Transaction Mode ...135
Resolve Custom Socket Implementation Error136

Performance and Tuning ...137
Improve SAP jConnect Performance137

BigDecimal Rescaling ..137
REPEAT_READ Connection Property138
SunIoConverter Character-Set Conversion138

Performance Tuning for Prepared Statements in
Dynamic SQL ...139

Choose Prepared Statements and Stored
Procedures ..140

Prepared Statements in Portable Applications . 140
Prepared Statements with SAP jConnect

Extensions ...141

Contents

Programmers Reference v

Connection.PrepareStatement142
DYNAMIC_PREPARE Connection Property142
SybConnection.PrepareStatement Method143
ESCAPE_PROCESSING_DEFAULT

Connection Property144
Optimized Batch in SAP jConnect144

Cursor Performance ..145
LANGUAGE_CURSOR Connection Property . . .146

Migrating SAP jConnect Applications147
Migrating Applications to SAP jConnect 16.x147
Change SAP jConnect Extensions148

Extension Change Example148
Method Names ..148
Debug Class ..149

Web Server Gateways ...151
TDS tunnelling ..151
Configure SAP jConnect and Gateways152

Web Server and SAP Adaptive Server on One
Host ...152

Dedicated JDBC Web Server and SAP Adaptive
Server on One Host152

Web Server and SAP Adaptive Server on
Separate Hosts ..153

Connect to Server Through Firewall154
Usage Requirements ..154

Viewing the Index.html File154
Running Sample Applet155
Modifying Applet Screen Dimensions155

TDS-Tunnelling Servlet ...155
Reviewing Requirements156
Installing and Setting Servlet Arguments156
Invoking the Servlet ...157
Tracking Active TDS Sessions158
Terminating TDS Sessions158
Resuming a TDS Session158

Contents

vi SAP jConnect for JDBC

SAP jConnect Sample Programs159
Running IsqlApp ...159

SAP jConnect Sample Programs and Code163
Sample Applications ..163

Running the Sample Applets163
Running the Sample Programs with SAP SQL

Anywhere ..163
Sample Code ..164

SQL Exception and Warning Messages167
Glossary ...199
Index ..203

Contents

Programmers Reference vii

Contents

viii SAP jConnect for JDBC

SAP jConnect for JDBC

SAP® jConnect™ for JDBC is the SAP® high-performance JDBC driver.

SAP jConnect for JDBC is both:

• A native-protocol or all-Java driver, and
• A net-protocol or all-Java driver.

The protocol used by SAP jConnect is Tabular Data Stream™ 5.0 (TDS, version 5), the native
protocol for SAP® Adaptive Server® Enterprise (SAP® ASE) and SAP® Open Server™

applications. SAP jConnect implements the JDBC standard to provide optimal connectivity to
the complete family of SAP products, allowing access to over 25 enterprise and legacy
systems, including:

• SAP ASE
• SAP® SQL Anywhere®

• SAP® IQ
• SAP® Replication Server®

• SAP® DirectConnect™

In addition, SAP jConnect for JDBC can access Oracle, AS/400, and other data sources using
SAP DirectConnect.

In some instances, the SAP jConnect implementation of JDBC deviates from the JDBC
specifications.

See also
• Restrictions and Interpretations of JDBC Standards on page 105

Java Database Connectivity (JDBC)
Java Database Connectivity (JDBC), from the Oracle Corporation, is a specification for an
application program interface (API) that allows Java applications to access multiple database
management systems using Structured Query Language (SQL).

The JDBC Driver Manager handles multiple drivers that connect to different databases.

A set of interfaces is included in the standard JDBC API and the JDBC Standard Extension
API so you can open connections to databases, execute SQL commands, and process results.

SAP jConnect for JDBC

Programmers Reference 1

Table 1. JDBC Interfaces

Interface Description

java.sql.Driver Locates the driver for a database URL

java.sql.Connection Connects to a specific database

java.sql.Statement Allows users to execute SQL statements.

java.sql.Prepared-
Statement

Handles SQL statements with parameters

java.sql.CallableS-
tatement

Handles database stored procedure calls

java.sql.ResultSet Gets the results of SQL statements

java.sql.DatabaseMe-
taData

Use this interface to access information about the database
you have obtained connection to.

java.sql.ResultSetMe-
taData

Use this interface to retrieve information about ResultSet.

javax.sql.Rowset Handles JDBC RowSet implementations

javax.sql.DataSource Handles connection to a data source

javax.sql.Connection-
PoolDataSource

Handles connection pools

Each relational database management system requires a driver to implement these interfaces.
There are four types of JDBC drivers:

• Type 1 JDBC-ODBC bridge – translates JDBC calls into ODBC calls and passes them to
an ODBC driver. Some ODBC software must reside on the client machine. Some client
database code may also reside on the client machine.

• Type 2 native-API partly-Java driver – converts JDBC calls into database-specific calls.
This driver, which communicates directly with the database server, also requires some
binary code on the client machine.

• Type 3 net-protocol all-Java driver – communicates to a middle-tier server using a DBMS-
independent net protocol. A middle-tier gateway then converts the request to a vendor-
specific protocol.

• Type 4 native-protocol all-Java driver – converts JDBC calls to the vendor-specific DBMS
protocol, allowing client applications direct communication with the database server.

For more information about JDBC and its specification, see the Oracle Technology Network
for Java.

SAP jConnect for JDBC

2 SAP jConnect for JDBC

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Programming Information

Review the basic components of, and programming requirements for, SAP jConnect for
JDBC.

Start the SAP jConnect driver, set connection properties, connect to a database server, and
review information about using SAP jConnect features. For information about JDBC
programming, go to the resource page for Java developers at the Oracle Technology Network
for Java.

SAP jConnect Version Property
The JCONNECT_VERSION connection property determines the driver’s behavior and the
features activated.

For example, SAP Adaptive Server 15.5 supports both SAP jConnect 6.05 and 7.0, however,
these two versions process datetime and time data differently. When connecting to SAP
Adaptive Server 15.5, SAP jConnect 7.0, which supports microsecond granularity for time
data, uses bigdatetime or bigtime even if the target SAP Adaptive Server columns are
defined as datetime or time. SAP jConnect 6.05, however, does not support microsecond
granularity and always transfers datetime or time data when connecting to SAP Adaptive
Server 15.5.

You can set the SAP jConnect version by using either the SybDriver.setVersion
method or the JCONNECT_VERSION connection property.

SybDriver. setVersion Method
The setVersion method affects the SAP jConnect default behavior for all connections
created by the SybDriver object.

You can call setVersion multiple times to change the version setting. New connections
inherit the behavior associated with the version setting at the time the connection is made.
Changing the version setting during a session does not affect current connections. You can use
the com.sybase.jdbcx.SybDriver.VERSION_LATEST constant to ensure that you
are always requesting the highest version value possible for the SAP jConnect driver you are
using. However, by setting the version to
com.sybase.jdbcx.SybDriver.VERSION_LATEST, you may see behavior
changes if you replace your current SAP jConnect driver with a newer one.

This code sample shows how to load the SAP jConnect driver and set its version:
import java.sql.DriverManager;
import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)

Programming Information

Programmers Reference 3

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

 Class.forName("com.sybase.jdbc4.jdbc.SybDriver")
 .newInstance();
sybDriver.setVersion(com.sybase.jdbcx.SybDriver.
 VERSION_7);
DriverManager.registerDriver(sybDriver);

JCONNECT_VERSION Connection Property
Use the JCONNECT_VERSION connection property to override the SybDriver version
setting and specify a different version setting for a specific connection.

See the valid JCONNECT_VERSION values and the jConnect characteristics associated with
these values.

Table 2. Features Associated with SAP jConnect Version

JCON-
NECT_VER-
SION

Features

7.0 SAP jConnect 7.0 behaves in the same way as SAP jConnect 6.05, except that in 7.0, SAP
jConnect requests support for:

• bigdatetime and bigtime SQL datatypes from the server. Versions of SAP
Adaptive Server earlier than 15.5 ignore this request.

• JDBC 4.0.
• Valid values of ENABLE_BULK_LOAD are null (default), ARRAYIN-

SERT_WITH_MIXED_STATEMENTS, ARRAYINSERT, BCP, and
LOG_BCP.

6.05 SAP jConnect 6.05 behaves in the same way as SAP jConnect 6.0, except that in 6.05, SAP
jConnect requests support for:

• Computed columns, including metadata.
• Larger identifiers. With large identifiers, you can use identifiers or object names with

lengths of up to 255 bytes. The large identifier applies to most user-defined identifiers,
including table name, column name, and index name.

6.0 SAP jConnect 6.0 behaves in the same way as SAP jConnect 5.x, except that in 6.0,
jConnect requests support for:

• date and time SQL datatypes. Versions of Adaptive Server earlier than 12.5.1
ignore this request.

• unichar and univarchar datatypes from the server. Versions of Adaptive
Server earlier than 12.5.1 ignore this request.

• Wide tables from the server. Versions of Adaptive Server earlier than 12.5.1 ignore this
request.

• Default value of DISABLE_UNICHAR_SENDING is false.

Programming Information

4 SAP jConnect for JDBC

JCON-
NECT_VER-
SION

Features

5.0 SAP jConnect 5.x behaves in the same way as SAP jConnect 4.0.

4.0 SAP jConnect 4.0 behaves in the same way as SAP jConnect 3.0, except that in 4.0, SAP
jConnect requests support for:

• The default value of the LANGUAGE connection property is null.

• The default behavior of Statement.cancel is to cancel only the Statement

object on which it is invoked. This behavior is JDBC-compliant.
Use CANCEL_ALL to set the behavior of Statement.cancel.

• You can use JDBC 2.0 methods to store and retrieve Java objects as column data.

3.0 SAP jConnect 3.0 behaves in the same way as SAP jConnect 2.0, except that in 3.0:

• If the CHARSET connection property does not specify a character set, jConnect uses
the default character set of the database.

• The default value for CHARSET_CONVERTER is the CheckPureConvert-
er class.

2.0 • The default value of the LANGUAGE connection property is us_english.

• If the CHARSET connection property does not specify a character set, the default
character set is iso_1.

• The default value for CHARSET_CONVERTER is the Truncation-
Converter class, unless the CHARSET connection property specifies a multibyte
or 8-bit character set, in which case the default CHARSET_CONVERTER is the
CheckPureConverter class.

• The default behavior of Statement.cancel is to cancel the object it is invoked on and
any other Statement objects that have begun to execute and are waiting for results.
This behavior is not JDBC-compliant.
Use CANCEL_ALL to set the behavior of Statement.cancel.

See also
• JDBC 4.0 Specifications Support on page 95

• Restrictions and Interpretations of JDBC Standards on page 105

• SAP jConnect Character Set Converters on page 43

• Date and Time Datatypes on page 72

• JDBC 3.0 Specifications Support on page 95

• Wide Table Support for Adaptive Server on page 53

• Store Java Objects as Column Data in Table on page 87

• Using SAP jConnect to Pass Unicode Data on page 42

Programming Information

Programmers Reference 5

Invoking the SAP jConnect Driver
Register and invoke SAP jConnect, and add SAP jConnect to the jdbc.drivers system
property.

At initialization, the DriverManager class attempts to load the drivers listed in
jdbc.drivers. This is less efficient than calling Class.forName. You can list multiple
drivers in this property, separated with a colon (:).

This sample code shows how to add a driver tojdbc.drivers within a program:

Properties sysProps = System.getProperties();
String drivers = "com.sybase.jdbc4.jdbc.SybDriver";
String oldDrivers =
sysProps.getProperty("jdbc.drivers");
if (oldDrivers != null)
 drivers += ":" + oldDrivers;
 sysProps.put("jdbc.drivers", drivers.toString());

Note: You cannot use System.getProperties for Java applets. Use the
Class.forName method instead.

In Java 6 and JDBC 4, you can use the Java system property jdbc.drivers to specify
driver classes, for example:
java -Djdbc.drivers=com.sybase.jdbc4.jdbc.SybDriver UseDriver

You need not use the UseDriver program to load the driver explicitly:
public class UseDriver
{
 public static void main(String[] args)
 {
 try {
 Connection conn = java.sql.DriverManager.getConnection
 ("jdbc:sybase:Tds:localhost:5000?
USER=sa&PASSWORD=secret");
 // more code to use connection ...
 }
 catch (SQLException se){
 System.out.println("ERROR: SQLException "+se);
 }
 }
}

Programming Information

6 SAP jConnect for JDBC

Configuring SAP jConnect for J2EE servers
Use the com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource class to
configure connection pools to an SAP Adaptive Server server in application servers such as
EAServer.

The com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
implementation of the javax.sql.ConnectionPoolDataSource interface provides
getter and setter methods for every connection property.

You can also configure SAP jConnect programmatically, for example:
private DataSource getDataSource ()
{
 SybConnectionPoolDataSource connectionPoolDataSource = new
 SybConnectionPoolDataSource();
 connectionPoolDataSource.setDatabaseName("pubs2");
 connectionPoolDataSource.setNetworkProtocol("Tds");
 connectionPoolDataSource.setServerName("localhost");
 connectionPoolDataSource.setPortNumber(5000);
 connectionPoolDataSource.setUser("sa");
 connectionPoolDataSource.setPassword(PASSWORD);
 return connectionPoolDataSource;
}
private void work () throws SQLException
{
 Connection conn = null;
 Statement stmt = null;
 DataSource ds = getDataSource();
 try {
 conn = ds.getConnection();
 stmt = conn.createStatement();
 // ...
 }
 finally {
 if (stmt != null) {
 try { stmt.close(); } catch (Exception ex) { /* ignore */ }
 }
 if (conn != null) {
 try { conn.close(); } catch (Exception ex) { /* ignore */ }
 }
 }
}

Programming Information

Programmers Reference 7

Establish a Connection
Establish a connection to an SAP Adaptive Server or SAP SQL Anywhere database using SAP
jConnect.

Connection Properties
Connection properties specify the information needed to log in to a server and define expected
client and server behavior.

Connection property names are not case-sensitive.

Setting Connection Properties
You must set connection properties before you connect to a server.

Set the connection properties by either:

• Using the DriverManager.getConnection method in your application, or,

• Setting the connection properties when you define the URL.

Note: Driver connection properties that you set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection method.

This sample code uses the DriverManager.getConnection method. The sample
programs provided with SAP jConnect also contain examples of setting these properties.
 Properties props = new Properties();
 props.put("user", "userid");
 props.put("password", "user_password");
 /*
 * If the program is an applet that wants to access
 * a server that is not on the same host as the
 * web server, then it uses a proxy gateway.
 */
 props.put("proxy", "localhost:port");
 /*
 * Make sure you set connection properties before
 * attempting to make a connection. You can also
 * set the properties in the URL.
 */
 Connection con = DriverManager.getConnection
 ("jdbc:sybase:Tds:host:port", props);

Current Connection Settings
To view a driver’s current connection settings, use
Driver.getDriverPropertyInfo(String url, Properties props).

This code returns an array of DriverPropertyInfo objects containing:

Programming Information

8 SAP jConnect for JDBC

• Driver properties
• Current settings on which the driver properties are based
• The URL and properties passed in

SAP jConnect Connection Properties
The connection properties for SAP jConnect and their default values.

These properties are not case-sensitive.

You can use the getClientInfo() and setClientInfo() standard methods to
dynamically set the properties indicated as such.

Table 3. Connection Properties

Property Description

ALTERNATE_ SERVER_NAME Specifies the alternate server name used by the primary and
secondary database in a mirrored SAP SQL Anywhere envi-
ronment. The primary and secondary database use the same
alternate server name so that client applications can connect to
the current primary server without knowing in advance which
of the two servers is the primary server.

The JDBC URL syntax is jdbc:syb-
ase:Tds:<hostname>:<port#>/database?
connection_property=value;. However, when

ALTERNATE_SERVER_NAME is set, SAP jConnect ignores
the values of the hostname and port variables. Instead, SAP
jConnect uses the SAP SQL Anywhere UDP discovery proto-
col to determine the current primary server.

For information about database mirroring, see the SAP SQL
Anywhere Server - Database Administration Guide.

You can also use ALTERNATE_SERVER_NAME with an

SAP SQL Anywhere server that is not mirrored. However, you
will always get the same host and port values from the singleton
server.

Default value is null.

This property is static.

Programming Information

Programmers Reference 9

Property Description

APPLICATIONNAME Specifies an application name. This is a user-defined property.
You can program the server side to interpret the value provided
to this property.

Default value is null.

This property is static.

BE_AS_JDBC_ COMPLI-
ANT_AS_ POSSIBLE

Adjusts other properties to ensure that SAP jConnect methods
respond in a way that is as compliant as possible with the JDBC
3.0 standard.

These properties are affected (and overridden) when this prop-
erty is set to true:

• CANCEL_ALL (set to false)

• LANGUAGE CURSOR (set to false)

• SELECT_OPENS_CURSOR (set to true)

• FAKE_METADATA (set to true)

• GET_BY_NAME_USES_COLUMN_LABEL (set to

false)

Default value is false.

This property is static.

CACHE_COLUMN_ METADA-
TA

If you repeatedly use PreparedStatement or Call-
ableStatement objects that perform SELECT queries,

setting CACHE_COLUMN_METADATA to true might im-

prove performance. When set to true, the statement remembers
the ResultSet metadata information associated with the

SELECT query results from the first execution of the statement.
On subsequent executions, the metadata is re-used without
being reconstructed. This saves CPU time through the use of
additional memory.

Use the SUPPRESS_ROW_FORMAT connection property

when connecting to SAP Adaptive Server 15.7 ESD #1 and
later.

Default value is false.

This property is static.

Programming Information

10 SAP jConnect for JDBC

Property Description

PRE_CACHE_DATATYPE_INFO If you repeatedly use Statement or its derived interfaces to
obtain datatype metadata, setting PRE_CACHE_DATA-

TYPE_INFO to true might improve performance.

When PRE_CACHE_DATATYPE_INFO is set to true, informa-
tion about all user-defined datatypes that serve various Re-
sultsetMetadata APIs, like isCaseSensitive
and isSearchable, is cached at connection time. Subse-

quent access to this information is then available from the
cache.

When PRE_CACHE_DATATYPE_INFO is false (the default),
SAP jConnect does not cache any user-defined datatype infor-
mation.

Note: Depending on the number of user-defined datatypes that
exist in the database to which the connection is being obtained,
the time it takes to establish the connection may increase.

Default value is false.

This property is dynamic.

Programming Information

Programmers Reference 11

Property Description

CANCEL_ALL Specifies the behavior of the Statement.cancel meth-

od:

• If CANCEL_ALL is false, invoking State-
ment.cancel cancels only the Statement object

on which it is invoked. Thus, if stmtA is a Statement
object, stmtA.cancel cancels the execution of the

SQL statement contained in stmtA in the database, but no

other statements are affected. stmtA is canceled whether

it is in cache waiting to execute or has started to execute and
is waiting for results.

• If CANCEL_ALL is true, invoking State-
ment.cancel cancels not only the object on which it is

invoked, but also any other Statement objects on the

same connection that have executed and are waiting for
results.

This example sets CANCEL_ALL to false. props is a Prop-
erties object for specifying connection properties:

props.put("CANCEL_ALL", "false");

To cancel the execution of all Statement objects on a con-

nection, regardless of whether or not they have begun execution
on the server, use the extension method SybConnec-
tion.cancel.

Default values are:

• true – for JCONNECT_VERSION <= “3”

• false – for JCONNECT_VERSION >= “4”

This property is static.

Programming Information

12 SAP jConnect for JDBC

Property Description

CAPABILITY_TIME Used only when JCONNECT_VERSION >= 6. When SAP

jConnect is connected to a server that supports the TIME da-

tatype, and all parameters of type java.sql.Time or

escape literals {t ...} are processed as TIME.

Versions of SAP jConnect earlier than 6.0 treat such parameters
as DATETIME and prepend '1970-01-01' to the

java.sql.Time parameter. If the underlying datatype is

datetime or smalldatetime the date part also gets

stored in the database. In SAP jConnect 6.0 or later, when
TIME is processed, the server converts time to the underlying

datatype and prepends its own base year. This result in incom-
patibilities between old and new data. If you are using da-
tetime or smalldatetime datatypes for

java.sql.Time, then for backward compatibility, leave

CAPABILITY_TIME as false. Leaving this property as

false forces SAP SAP jConnect to process
java.sql.Time parameters or escape literals
{t ...} as DATETIME regardless of the server capability

of handling TIME datatype. Setting this property to true causes

SAP jConnect to process java.sql.Time parameters as

TIME datatype when connected to SAP Adaptive Server. SAP

recommends that you leave this property as false if you are
using smalldatetime or datetime columns to store

time values.

Default value is false.

This property is static.

CAPABILITY_ WIDETABLE If you do not require JDBC ResultSetMetaData like

Column name as a performance improvement, set this property
to false. The result is that less data is exchanged over the net-
work, which improves performance. Unless you are using
EAServer, SAP recommends that you use the default setting.

Default value is false.

This property is static.

Programming Information

Programmers Reference 13

Property Description

CHARSET Specifies the character set for strings passed to the database. If
the CHARSET value is null, SAP jConnect uses the default

character set of the server to send string data to the server. If

you specify a CHARSET, the database must be able to handle

characters in that format. If the database cannot do so, a mes-
sage is generated indicating that character conversion cannot
be properly completed.

If you are using SAP jConnect 6.05 or later and the DISA-
BLE_UNICHAR_SENDING is set to false, SAP jConnect

detects when a client is trying to send characters to the server
that cannot be represented in the character set that is being used
for the connection. When that occurs, SAP jConnect sends the
character data to the server as unichar data, which allows

clients to insert Unicode data into unichar/univarch-
ar columns and parameters.

Default value is null.

This property is static.

CHARSET_ CONVERT-
ER_CLASS

Specifies the character set converter class you want SAP jCon-
nect to use. SAP jConnect uses the version setting from Syb-
Driver.setVersion, or the version passed in with the

JCONNECT_VERSION property, to determine the default

character-set converter class to use.

Default value is version dependent.

This property is static.

CLASS_LOADER A property you set to an DynamicClassLoader object that you
create. The DynamicClassLoader loads Java classes that are
stored in the database but are not in the CLASSPATH at ap-
plication start-up time.

Default value is null.

This property is static.

CONNECTION_ FAILOVER Used with the Java Naming and Directory Interface (JNDI).

Default value is true.

This property is static.

Programming Information

14 SAP jConnect for JDBC

Property Description

CRC When this property is set to true, the update counts that are
returned are cumulative counts that include updates directly
affected by the statement executed and any triggers invoked as
a result of the statement being executed.

Default value is false.

This property is static.

DATABASE Use this property to specify the database name for a connection
when the connection information is obtained from a SAP in-
terfaces file. The URL of an interfaces file cannot

supply the database name.

Default value is null.

This property is static.

DEFAULT_QUERY_ TIMEOUT When this connection property is set, it is used as the default
query timeout for any statements created on this connection.

Default value is 0 (no timeout).

This property is dynamic.

DELETE_WARN-
INGS_FROM_EXCEP-
TION_CHAIN

Specifies whether to retain or remove SQLWarning from the
SQLException chain.

Values:

• true – SAP jConnect removes SQLWarning objects from
the SQLException chain.

• false – SAP jConnect retains the SQLWarning objects in
the SQLException chain.

Default value is true.

This property is static.

DISABLE_UNICHAR_ SEND-
ING

When a client application sends unichar characters to the

server (along with non-unichar characters), there is a slight

performance hit for any character data sent to the database. This
property defaults to false in SAP jConnect 6.05 and later. Cli-
ents using older versions of SAP jConnect who want to send
unichar data to the database must set this property to false.

Default value is version dependent.

This property is static.

Programming Information

Programmers Reference 15

Property Description

DISABLE_ UNPROCESSED_
PARAM_WARNINGS

Disables warnings. During results processing for a stored pro-
cedure, SAP jConnect often reads return values other than row
data. If you do not process the return value, SAP jConnect
raises a warning. To disable these warnings (which might im-
prove performance), set this property to true.

Default value is false.

This property is static.

DYNAMIC_PREPARE Determines whether dynamic SQL prepared statements are
precompiled in the database.

Default value is true.

This property is dynamic.

EARLY_BATCH_
READ_THRESHOLD

Specifies the number of rows after which a reader thread should
be started to drain out the server responses for a batch.

Set this value to -1 if the early read is never required.

Default value is -1.

This property is static.

ENABLE_BULK_ LOAD Specifies whether to use bulk load to insert rows to the data-
base.

Valid values are:

• null – disables bulk load.

• ARRAYINSERT_WITH_MIXED_STATEMENTS – en-
ables bulk load with row-level logging and allows your
application to execute other statements during the bulk-
load operation.

• ARRAYINSERT – enables bulk load with row-level log-
ging, but your application cannot execute other statements
during the bulk-load operation.

• BCP – enables bulk load with page-level logging; your
application cannot execute other statements during the
bulk-load operation.

• LOG_BCP – same as BCP except the complete transaction
is dumped for possible full recovery.

Default value is null.

This property is dynamic.

Programming Information

16 SAP jConnect for JDBC

Property Description

ENABLE_LOB_ LOCATORS Specifies whether SAP jConnect should create a client-side
materialized LOB or server-side LOB locator.

Valid values are:

• false – SAP jConnect uses client-side materialized LOBs.
That is, the entire LOB data is processed and cached on the
client side.

• true – works only when autocommit is set to false, other-
wise internally, the value changes to false. When set to true,
server locators are used instead of storing the LOB data on
client side.

Default value is false.

This property is dynamic.

ENABLE_SERVER_ PACKET-
SIZE

Specifies if the connection packet size is set to the value sug-
gested by the server. If true, the driver does not use PACK-
ETSIZE connection property, and the server is free to use any

value between 512 and the maximum packet size. If false, the
PACKETSIZE connection property is used.

Default value is true.

This property is static.

ENCRYPT_ PASSWORD Allows a secure login. When this property is true, both login
and remote site passwords are encrypted before being sent to
the server. Passwords are no longer sent in clear text.

ENCRYPT_PASSWORD has precedence over RE-
TRY_WITH_NO_ENCRYPTION.

Default value is false.

This property is static.

Programming Information

Programmers Reference 17

Property Description

ESCAPE_ PROCESSING_ DE-
FAULT

Circumvents processing of JDBC function escapes in SQL
statements. By default, SAP jConnect parses all SQL state-
ments submitted to the database for valid JDBC function es-
capes. If your application is not going to use JDBC function
escapes in its SQL calls, you can set this connection property to
false to avoid this processing, which might provide a slight
performance benefit.

Additionally, ESCAPE_PROCESSING_DEFAULT helps

with back-end servers such as SAP® IQ that use curly braces as
part of the SQL syntax.

Default value is true.

This property is static.

EXECUTE_BATCH_ PAST_ER-
RORS

Specifies whether SAP jConnect allows a batch update opera-
tion to ignore nonfatal errors encountered while executing in-
dividual statements and to complete the batch update, or aborts
the batch update operation.

Valid values are:

• true – allows a batch update operation to ignore nonfatal
errors encountered and to complete the batch update.

• false – aborts a batch update when a nonfatal error is en-
countered.

Default value is false.

This property is static.

EXPIRESTRING Contains the license expiration date. Expiration is set to

Never except for evaluation copies of SAP jConnect.

Default value is never.

This property is static and read-only.

Programming Information

18 SAP jConnect for JDBC

Property Description

FAKE_METADATA Returns fake metadata. When you call the ResultSetMe-
taData methods getCatalogName, getSche-
maName, and getTableName and this property is true,

the call returns empty strings ("") because the server does not
supply useful metadata.

When this property is false, calling these methods throws a
“Not Implemented” SQLException.

If you have enabled wide tables and are using an SAP Adaptive
Server 12.5 or later, this property setting is ignored because the
server supplies useful metadata.

Default value is false.

This property is static.

GET_BY_NAME_ USES_COL-
UMN_ LABEL

Provides backward compatibility with versions of SAP jCon-
nect earlier than 6.0.

With SAP Adaptive Server version 12.5 and later, SAP jCon-
nect has access to more metadata than was previously available.
Prior to version 12.5, column name and column
alias meant the same thing. SAP jConnect can now differ-

entiate between the two when used with a 12.5 or later SAP
Adaptive Server with wide tables enabled.

To preserve backward compatibility, set this property to true. If
you want calls to getByte, getInt, get* (String
columnName) to look at the actual name for the column, set

this property to false.

Default value is true.

This property is static.

Programming Information

Programmers Reference 19

Property Description

GET_COLUMN_ LA-
BEL_FOR_NAME

Maintains backward compatibility with SAP jConnect 5.5 or
earlier, where a call to ResultMetaData.getCo-
lumnName returns the column label rather than the column

name.

Valid values are:

• true – ResultMetaData.getColumnName re-

turns column label.

• false – ResultMetaData.getColumnName re-

turns column name.

Default value is false.

This property is static.

GSSMANAGER_ CLASS Specifies a third-party implementation of the
org.ietf.jgss.GSSManager class.

You can set this property to a string or a GSSManager ob-

ject.

If you set the property to a string, the value should be the fully
qualified class name of the third-party GSSManager imple-
mentation. If you set the property to an object, the object must
extend the org.ietf.jgss.GSSManager class.

Default value is null.

This property is static.

HOMOGENEOUS_ BATCH Invokes the SAP Adaptive Server optimized batching protocol
to speed up batch operations for PreparedStatement
objects.

Valid values are:

• true – optimized batching protocol is used.

• false – unoptimized batching protocol is used even if SAP
jConnect is connected to an SAP Adaptive Server that
supports new optimized batching protocol.

Default value is true.

This property is dynamic.

Programming Information

20 SAP jConnect for JDBC

Property Description

HOSTNAME Identifies the name of the current host.

Default value is none. The max length is 30 characters and, if
exceeded, it is truncated to 30.

This property is static.

HOSTPROC Identifies the application process on the host machine.

Default value is none.

This property is static.

IGNORE_DONE_IN_ PROC Intermediate update results (as in stored procedures) are not
returned; only the final result set is.

Default value is false.

This property is static.

IGNORE_WARNINGS Specifies whether or not to check for and generate warning
messages. This property checks only for warnings regarding
the loss of precision when storing timestamp values into SAP
Adaptive Server date and time datatypes, which have low-

er precision than the Java timestamp.

Valid values are:

• true – SAP jConnect does not check for and generate
warning messages, thus improving performance.

• false – the default value, which directs SAP jConnect to
check and generate warning messages.

Before setting IGNORE_WARNINGS to true, thoroughly

test the impact of such a configuration on your application.

Default value is false.

This property is static.

IMPLICIT_CURSOR_
FETCH_SIZE

Use this property with the SELECT_OPENS_CURSOR
property to force SAP jConnect to open a read-only cursor on
every select query that is sent to the database. The cursor has a
fetch size of the value set in this property, unless overridden by
the Statement.setFetchSize method.

Default value is 0.

This property is static.

Programming Information

Programmers Reference 21

Property Description

INTERNAL_QUERY_ TIMEOUT Use this property to set the query timeout used by statements
internally created and executed by SAP jConnect. This may
prevent application failures if internal commands do not com-
plete in a reasonable time.

Default value is 0(no timeout).

This property is dynamic.

IS_CLOSED_TEST Allows you to specify what query, if any, is sent to the database
when Connection.isClosed is called.

Default value is null.

This property is static.

J2EE_TCK_ COMPLIANT When this property is true, the SAP jConnect driver enables
behavior that is compliant with the J2EE 1.4 technology com-
patibility kit (TCK) test suite, which causes some loss of per-
formance. Therefore, SAP recommends using the default value
of false.

Default value is false.

This property is static.

JAVA_CHARSET_ MAPPING Specifies a user-defined character set mapping that supersedes
the default SAP Adaptive Server character set mapping.

Default value is none.

This property is static.

JCE_PROVIDER_ CLASS Specifies the Java Cryptography Extension (JCE) provider
used in RSA encryption algorithms.

Default value is bundled JCE provider.

This property is static.

JCONNECT_VERSION Sets version-specific characteristics.

Default value is 7.

This property is static.

Programming Information

22 SAP jConnect for JDBC

Property Description

LANGUAGE Specifies the language in which messages from SAP jConnect
and the server appear. The setting must match a language in
syslanguages because server messages are localized ac-

cording to the language setting in your local environment. The
languages supported are Chinese, US English, French, Ger-
man, Japanese, Korean, Polish, Portuguese, and Spanish.

Default value is version dependent.

This property is static.

LANGUAGE_ CURSOR Determines that SAP jConnect uses language cursors instead
of protocol cursors.

Default value is false.

This property is static.

LITERAL_PARAMS When true, any parameters set by the setXXX methods in the

PreparedStatement interface are inserted literally into

the SQL statement when it is executed.

If false, parameter markers are left in the SQL statement and the
parameter values are sent to the server separately.

Default value is false.

This property is static.

NEWPASSWORD Specifies the new password used in password expiration han-
dling.

Default value is null.

This property is static.

Programming Information

Programmers Reference 23

Property Description

OPTIMIZE_FOR_ PERFORM-
ANCE

Specifies whether or not to enable SAP jConnect performance-
enhancing properties. This property controls only the IG-
NORE_WARNINGS property.

Valid values are:

• true – SAP jConnect runs in enhanced performance mode.

• false – the default value, which means that SAP jConnect
runs in normal mode.

Before setting OPTIMIZE_FOR_PERFORMANCE to true,

thoroughly test the impact of such a configuration on your
application.

Default value is false.

This property is static.

OPTIMIZE_STRING_ CONVER-
SIONS

Specifies whether or not to enable string conversion optimiza-
tion.

This optimization behavior might improve SAP jConnect per-
formance when a client uses character datatypes in SQL pre-
pared statements.

Valid values are:

• 0 – string conversion optimization is not enabled.

• 1 – enables string conversion optimization when SAP
jConnect uses UTF8 or server default character set.

• 2 – enables string conversion optimization for all cases.

Default value is 0.

This property is static.

PACKETSIZE Identifies the network packet size. If you are using SAP Adap-
tive Server 15.0 or later, SAP recommends that you do not set
this property, and allow SAP jConnect and SAP Adaptive
Server to select the network packet size that is appropriate for
your environment.

Default value is 512.

This property is static.

Programming Information

24 SAP jConnect for JDBC

Property Description

PASSWORD Identifies the login password.StringString.

Set automatically if using the getConnec-
tion(String, String, String), method, or

explicitly if using getConnection(String,
Props).

Default value is none.

This property is static.

PRELOAD_JARS Contains a comma-separated list of .jar file names that are

associated with the CLASS_LOADER that you specify.

These .jar files are loaded at connect time, and are available

for use by any other connection using the same SAP jConnect
driver.

Default value is null.

This property is static.

PROMPT_FOR_ NEWPASS-
WORD

Specifies whether to perform a transparent password change or
to prompt for the new password.

Valid values are:

• true – prompts you to manually set the new password.

• false – SAP jConnect checks the value of NEWPASS-
WORD and, if it is not null, uses this value to replace the

expired password.

Default value is false.

This property is static.

PROTOCOL_ CAPTURE Specifies a file for capturing TDS communication between an
application and an SAP Adaptive Server.

Default value is null.

This property is dynamic.

Programming Information

Programmers Reference 25

Property Description

PROXY Specifies a gateway address. For the HTTP protocol, the URL
is http://host:port.

To use the HTTPS protocol that supports encryption, the URL
is https://host:port/servlet_alias.

Default value is none.

This property is static.

QUERY_TIMEOUT_ CAN-
CELS_ALL

Forces SAP jConnect to cancel all statements on a connection
when a read timeout is encountered. This behavior can be used
when a client has calls execute() and the timeout occurs

because of a deadlock (for example, trying to read from a table
that is currently being updated in another transaction).

Default value is false.

This property is dynamic.

RELEASE_LOCKS_ON_CUR-
SOR_ CLOSE

Specifies whether SAP Adaptive Server releases shared read-
only cursor locks at isolation levels 2 and 3 when a cursor is
closed:

• false – does not enable shared cursor locks release on close.

• true – enables shared cursor locks release on close.

Default value is false.

This property is static.

REMOTEPWD Contains remote server passwords for access through server-
to-server remote procedure calls.

Default value is none.

This property is static.

REPEAT_READ Determines whether the driver keeps copies of columns and
output parameters so that columns can be read out of order or
repeatedly.

Default value is true.

This property is static.

Programming Information

26 SAP jConnect for JDBC

Property Description

REQUEST_HA_ SESSION Indicates whether the connecting client wants to begin a high
availability (HA) failover session.

You cannot reset the property once a connection has been
made. For additional flexibility for requesting failover ses-
sions, code the client application to set RE-
QUEST_HA_SESSION at runtime.

Setting this property to true causes SAP jConnect to attempt a
failover login. If you do not set this connection property, a
failover session does not start, even if the server is configured
for failover.

Default value is false.

This property is static.

REQUEST_ KERBEROS_SES-
SION

Determines whether SAP jConnect uses Kerberos for authen-
tication. If you set this property to true, you must also enter a
value for the SERVICE_PRINCIPAL_NAME property.

You may also want to provide a value for the GSSMANAG-
ER_CLASS property.

Default value is false.

This property is static.

RETRY_WITH_NO_ ENCRYP-
TION

Allows server to retry logging in using clear text passwords.

When both ENCRYPT_PASSWORD and RE-
TRY_WITH_NO_ENCRYPTION properties are set to true,

SAP jConnect first logs in using the encrypted password. If
login fails, SAP jConnect logs in using the clear text password.

Default value is false.

This property is static.

RMNAME Sets the Resource Manager name when using distributed trans-
actions (XA). This property overrides a Resource Manager
name that may be set in an LDAP server entry.

Default value is null.

This property is static.

Programming Information

Programmers Reference 27

Property Description

SECONDARY_ SERVER_HOST-
PORT

Sets the host name and port for the secondary server when the
client is using an HA failover session. The value for this prop-
erty should be in the form of hostName:portNumber.

This property is ignored unless you have also set RE-
QUEST_HA_SESSION to true.

Default value is null.

This property is static.

SELECT_OPENS_ CURSOR Determines whether calls to Statement.execute-
Query automatically generate a cursor when the query con-

tains a FOR UPDATE clause.

If you have previously called Statement.setFetch-
Size or Statement.setCursorName on the same

statement, a setting of true for SELECT_OPENS_CURSOR
has no effect.

You may experience some performance degradation when
SELECT_OPENS_CURSOR is set to true.

Default value is false.

This property is static.

SEND_BATCHPARAMS_IMME-
DIATE

Specifies whether SAP jConnect sends the parameters for the
current row immediately after invoking Prepared-
Statement.addBatch() or only after invoking

PreparedStatement.executeBatch().

• true – SAP jConnect sends the parameters for the current
row immediately after invoking PreparedState-
ment.addBatch(). This minimizes usage of client

memory and gives the server more time to process the batch
parameters.

• false – SAP jConnect sends the batch parameters only after
invoking PreparedStatement.execute-
Batch().

Default value is false.

This property is dynamic.

Programming Information

28 SAP jConnect for JDBC

Property Description

SERIALIZE_ REQUESTS Determines whether SAP jConnect waits for responses from
the server before sending additional requests.

Default value is false.

This property is static.

SERVER_INITIATED_ TRANS-
ACTIONS

Allows the server to control transactions. By default the prop-
erty is set to true and SAP jConnect lets the server start and
control transactions by using the SAP Transact-SQL command
set chained on. If set to false, the transactions are started and
controlled by SAP jConnect by using the Transact-SQL com-
mand begin tran. SAP recommends that you allow the server to
control the transactions.

Default value is true.

This property is static.

SERVICENAME Indicates the name of a back-end database server that a Di-
rectConnect gateway serves. Also used to indicate which da-
tabase to use upon connecting to SAP SQL Anywhere.

Default value is none.

This property is static.

SERVERTYPE When connected to an SAP® Open Switch™, set this property
to OSW, which allows SAP jConnect to send certain instruc-
tions to SAP Open Switch that allows SAP Open Switch to
remember initial connection settings for example, isolation
level, textsize, quoted identifier and autocommit when SAP
Open Switch redirects a connection to a different server in-
stance.

Default value is none.

This property is static.

Programming Information

Programmers Reference 29

Property Description

SERVICE_ PRINCIPAL_NAME Used when establishing a Kerberos connection to SAP Adap-
tive Server. The value of this property should correspond both
to the server entry in your key distribution center (KDC) and to
the server name under which your database is running.

The value of the SERVICE_PRINCIPAL_NAME property

is ignored if the REQUEST_KERBEROS_SESSION
property is set to false.

Default value is null.

This property is static.

SESSION_ID A TDS session ID. When this property is set, SAP jConnect
assumes that an application is trying to resume communication
on an existing TDS session held open by the TDS-tunnelling
gateway. SAP jConnect skips the login negotiations and for-
wards all requests from the application to the specified session
ID.

Default value is null.

This property is static.

SESSION_TIMEOUT Specifies the amount of time, in seconds, that an HTTP-tun-
nelled session (created using the SAP jConnect TDS-tunnel-
ling servlet) remains alive while idle. After the specified time,
the connection is automatically closed.

Default value is null.

This property is static.

Programming Information

30 SAP jConnect for JDBC

Property Description

SETMAXROWS_ AFFECTS_SE-
LECT_ ONLY

Specifies whether setMaxRows limits only the rows re-

turned by select statements to be consistent with the JDBC
specification.

Valid values are:

• true – Statement.setMaxRows(int max)
limits only the number of rows returned as a result of the
select statements.

• false – Statement.setMaxRows(int max)
limits the number of rows returned as a result of the select,
insert, update, and delete statements.

SETMAXROWS_AFFECTS_SELECT_ONLY is ignored

when connected to SAP Adaptive Server 15.5 or earlier.

Default value is true.

This property is static.

SQLINITSTRING Defines a set of commands to be passed to the database server
when a connection is opened. These must be SQL commands
that can be executed using the Statement.execu-
teUpdate method.

Default value is null.

This property is static.

STREAM_CACHE_ SIZE Specifies the maximum size used to cache statement response
streams.

Default value is null (unlimited cache size).

This property is dynamic.

STRIP_BLANKS Forces the server to remove the preceding and trailing blanks in
a string value before storing it in the table.

Valid values are:

• false – string values sent by the client are stored as is.

• true – preceding and trailing blanks in a string value are
removed before storing it in the table.

Default value is false.

This property is static.

Programming Information

Programmers Reference 31

Property Description

SUPPRESS_ CONTROL_TOKEN Suppresses control tokens.

Valid values are:

• false – control tokens are sent.

• true – control tokens are suppressed.

Default value is false.

This property is static.

SUPPRESS_PARAM_ FORMAT When executing dynamic SQL prepared statements, SAP
jConnect client can use the SUPPRESS_PARAM_FORMAT
connection string property to suppress parameter format met-
adata. The client sends less parameter metadata where possible
for better performance.

Valid values are:

• false – parameter format metadata is not suppressed in
select, insert, and update operations.

• true – the default value; parameter format metadata is sup-
pressed where possible.

Default value is true.

This property is static.

SUPPRESS_ROW_ FORMAT In SAP jConnect, client can use the SUP-
PRESS_ROW_FORMAT connection string property to force

SAP Adaptive Server to send TDS_ROWFMT or
TDS_ROWFMT2 data only when the row format changes for a
dynamic SQL prepared statement. SAP Adaptive Server can
send less data to the client if possible, resulting in better per-
formance.

Valid values are:

• false – TDS_ROWFMT or TDS_ROWFMT2 data is sent,
even if the row format has not changed.

• true – the default; forces the server to send
TDS_ROWFMT or TDS_ROWFMT2 only when the row
format has changed.

Default value is true.

This property is static.

Programming Information

32 SAP jConnect for JDBC

Property Description

SUPPRESS_ROW_ FORMAT2 Specifies that SAP Adaptive Server is to send data using the
TDS_ROWFMT byte sequence where possible instead of the
TDS_ROWFMT2 byte sequence.

Valid values are:

• false – the default value; TDS_ROWFMT2 is not sup-
pressed.

• true – forces the server to send data in TDS_ROWFMT
where possible.

When connected to SAP Adaptive Server 15.7 ESD #1 or later,
use the SUPPRESS_ROW_FORMAT connection property

instead.

Default value is false.

This property is static.

SYBSOCKET_ FACTORY Enables SAP jConnect to use your custom socket implemen-
tation.

Set SYBSOCKET_FACTORY either to:

• The name of a class that implements com.syb-
ase.jdbcx.SybSocketFactory; or

• DEFAULT, which instantiates a new
java.net.Socket()

Use this property to make an SSL connection to your database.

Default value is null.

This property is static.

TEXTSIZE Allows you to set the text size. By default, SAP Adaptive
Server and SAP SQL Anywhere allow 32,627 bytes to be read
from an image or text column. If you have the SAP jConnect
Meta Data tables installed, SAP jConnect changes that value to
2GB. However, setting this value when connected to SAP Open
Switch allows the connection to remember the setting when
SAP Open Switch redirects a connection to a different server
instance.

Default value is 2GB.

This property is static.

Programming Information

Programmers Reference 33

Property Description

USE_METADATA Creates and initializes a DatabaseMetaData object

when you establish a connection. The DatabaseMeta-
Data object is necessary to connect to a specified database.

SAP jConnect uses DatabaseMetaData for some fea-

tures, including Distributed Transaction Management support
(JTA/JTS) and dynamic class loading (DCL).

If you receive error 010SJ, which indicates that your applica-
tion requires metadata, install the stored procedures for return-
ing metadata that come with SAP jConnect. See Installing
Stored Procedures in the jConnect for JDBC Installation
Guide.

Default value is true.

This property is static.

USER Specifies the login ID.

Set automatically if using the getConnec-
tion(String, String, String) method, or ex-

plicitly if using getConnection(String,
Props).

Default value is none.

This property is static.

VERSIONSTRING Provides read-only version information for the JDBC driver.

Default value is SAP jConnect driver version.

This property is static.

See also
• DYNAMIC_PREPARE Connection Property on page 142
• Password Encryption on page 85
• Security on page 111
• Optimized Batch in SAP jConnect on page 144
• Cursor Performance on page 145
• Failover Support on page 49
• Wide Table Support for Adaptive Server on page 53
• CONNECTION_FAILOVER Property on page 40
• Large Object Locator Support on page 75
• Use Connection.isClosed and IS_CLOSED_TEST on page 105

Programming Information

34 SAP jConnect for JDBC

• Supersede Default Character Set Mapping on page 48

• JCONNECT_VERSION Connection Property on page 4

• Release Locks at Cursor Close on page 61

• TDS tunnelling on page 151

• Using DynamicClassLoader on page 92

• Using SAP jConnect to Pass Unicode Data on page 42

• Selecting a Character Set Converter on page 44

• Preloading .jar Files on page 94

Connect to SAP Adaptive Server
In Java application, define a URL using the SAP jConnect driver to connect to an SAP
Adaptive Server.

The basic format of the URL is:
jdbc:sybase:Tds:host:port

where:

• jdbc:sybase identifies the driver.
• Tds is the SAP communication protocol for SAP Adaptive Server.
• host:port is the SAP Adaptive Server host name and listening port. See $SYBASE/

interfaces (UNIX) or %SYBASE%\ini\sql.ini (Windows) for the entry that
your database or SAP Open Server application uses. Obtain the host:port from the query
entry.

You can connect to a specific database using this format:
jdbc:sybase:Tds:host:port/database

Note: Connect to a specific database using SAP SQL Anywhere or DirectConnect. Use the
SERVICENAME connection property to specify the database name instead of “/database.”

This code creates a connection to an SAP Adaptive Server on host “myserver” listening on
port 3697:
SysProps.put("user","userid");
SysProps.put("password","user_password");
String url = "jdbc:sybase:Tds:myserver:3697";
Connection_con =
 DriverManager.getConnection(url,SysProps);

URL Connection Property Parameters
Specify the values for the SAP jConnect driver connection properties when you define a URL.

Note: Driver connection properties set in the URL do not override any corresponding
connection properties set in the application using the
DriverManager.getConnection method.

Programming Information

Programmers Reference 35

Set a connection property in the URL, append the property name and its value to the URL
definition. Use this syntax:
jdbc:sybase:Tds:host:port/database?
 property_name=value

Set multiple connection properties, append each additional connection property and value,
preceded by “&.” For example:
jdbc:sybase:Tds:myserver:1234/mydatabase?
 LITERAL_PARAMS=true&PACKETSIZE=512&HOSTNAME=myhost

If the value for one of the connection properties contains “&,” precede the “&” in the
connection property value with a backslash (\). For example, if your host name is “a&bhost,”
use this syntax:
jdbc:sybase:Tds:myserver:1234/mydatabase?
 LITERAL_PARAMS=true&PACKETSIZE=512&HOSTNAME=
 a\&bhost

Do not use quotes for connection property values, even if they are strings. For example, use:
HOSTNAME=myhost

not:
HOSTNAME="myhost"

Use the sql.ini and Interfaces File Directory Services
Use sql.ini file for Windows and the interfaces file for UNIX to provide server
information for SAP jConnect for JDBC.

By using the sql.ini or interfaces file, enterprises can centralize the information
about the services available in the enterprise networks including Adaptive Server information.

Use the connection string to identify the sql.ini or interfaces file. On jConnect for
JDBC, you can connect to only a single Directory Services URL (DSURL).

Connection String for Single DSURL for SAP jConnect
When connecting to a DSURL, you must specify the path to the sql.ini or interfaces
file and the server name.

If you do not to set the path, SAP jConnect returns an error.

This specifies the path to the sql.ini file:

String url = "jdbc:sybase:jndi:file://D:/syb1252/ini/mysql.ini?
myaseISO1”

where:

• server name = myaseISO1
• sql.ini file path = file://D:/syb1252/ini/sql.ini?
This specifies the path to the interfaces file:

Programming Information

36 SAP jConnect for JDBC

String url = "jdbc:sybase:jndi:file:///work/sybase/interfaces?myase"

where:

• server name = myase
• interfaces file path = file:///work/sybase/interfaces

Format of sql.Ini and Interfaces Files for SSL
Review the format of sql.ini and interfaces files for SSL.

Format for sql.ini file for SSL:

[SYBSRV2]
master=nlwnsck,mango1,4100,ssl
query=nlwnsck,mango1,4100,ssl
query=nlwnsck,mango1,5000,ssl

The format for the interfaces file is:
sybsrv2
master tcp ether mango1 5000 ssl
query tcp ether mango1 4100 ssl
query tcp ether mango1 5000 ssl

Note: SAP jConnect supports multiple query entries under the same server name in the
sql.ini or interfaces file. SAP jConnect attempts to connect to values for host or
port from the query entry in the sequence, as in the sql.ini or interfaces file. If SAP
jConnect finds a SSL in a query entry, it requires the application to be coded to handle SSL
connections by specifying an application specific socket factory, or the connection may fail.

Connecting to a Server Using JNDI
In SAP jConnect, use the Java Naming and Directory Interface (JNDI) to provide connection
information.

SAP jConnect provides:

• A centralized location where you can specify host names and ports for connecting to a
server. You do not need to hard-code a specific host and port number in an application.

• A centralized location where you can specify connection properties and a default database
for all applications to use.

• The SAP jConnect CONNECTION_FAILOVER property for handling unsuccessful
connection attempts. When CONNECTION_FAILOVER is true, SAP jConnect attempts
to connect to a sequence of host/port server addresses in the JNDI name space until one
succeeds.

Using SAP jConnect with JNDI, make sure that certain information is available in any
directory service that JNDI accesses and that required information is set in the
javax.naming.Context class.

Programming Information

Programmers Reference 37

See also
• Connection URL for Using JNDI on page 38

• Required Directory Service Information on page 38

• CONNECTION_FAILOVER Property on page 40

• Providing JNDI Context Information on page 40

Connection URL for Using JNDI
To specify that SAP jConnect use JNDI to obtain connection information, place “jndi” as the
URL protocol after “sybase”.

For example:

jdbc:sybase:jndi:protocol-information-for-use-with-JNDI

Anything that follows “jndi” in the URL is handled through JNDI. For example, to use JNDI
with the Lightweight Directory Access Protocol (LDAP), you might enter:
jdbc:sybase:jndi:ldap://LDAP_hostname:port_number/servername=
 Sybase11,o=MyCompany,c=US

This URL tells JNDI to obtain information from an LDAP server, gives the host name and port
number of the LDAP server to use, and provides the name of a database server in an LDAP-
specific form.

Required Directory Service Information
Review the required directory service information when using JNDI with SAP jConnect.

JNDI must return this information for the target database server:

• A host name and port number to connect to
• The name of the database to use
• Any connection properties that individual applications are not allowed to set on their own

Stores this information according to a fixed format in any directory service used for providing
connection information. The required format consists of a numerical object identifier (OID),
which identifies the type of information being provided (for example, the destination
database), followed by the formatted information.

Note: You can use the alias name to reference the attribute instead of the OID.

Table 4. Directory Service Information for JNDI

Attribute Description Alias OID (object_id)

Interfaces entry replacement in LDAP
directory services

sybaseServer 1.3.6.1.4.1.897.4.1.1

Collection point for sybaseServer
LDAP attributes

sybaseServer 1.3.6.1.4.1.897.4.2

Programming Information

38 SAP jConnect for JDBC

Attribute Description Alias OID (object_id)

Version sybaseVersion 1.3.6.1.4.1.897.4.2.1

Server name sybaseServer 1.3.6.1.4.1.897.4.2.2

Service sybaseService 1.3.6.1.4.1.897.4.2.3

Status sybaseStatus 1.3.6.1.4.1.897.4.2.4

(Required)Address sybaseAddress 1.3.6.1.4.1.897.4.2.5

Security mechanism sybaseSecurity 1.3.6.1.4.1.897.4.2.6

Retry count sybaseRetryCount 1.3.6.1.4.1.897.4.2.7

Loop delay sybaseRetryDelay 1.3.6.1.4.1.897.4.2.8

(Required)jConnect connection pro-
tocol

sybaseJconnectProtocol 1.3.6.1.4.1.897.4.2.9

(Required)jConnect connection prop-
erty

sybaseJconnectProperty 1.3.6.1.4.1.897.4.2.10

(Required)Database name sybaseDatabasename 1.3.6.1.4.1.897.4.2.11

High availability failover servername sybaseHAservername 1.3.6.1.4.1.897.4.2.15

ResourceManager name sybaseResourceManagerName 1.3.6.1.4.1.897.4.2.16

ResourceManager type sybaseResourceManagerType 1.3.6.1.4.1.897.4.2.17

JDBCDataSource interface sybaseJdbcDataSource- Inter-
face

1.3.6.1.4.1.897.4.2.18

ServerType sybaseServerType 1.3.6.1.4.1.897.4.2.19

These examples show connection information entered for the database server “SYBASE11”
under an LDAP directory service. You can use either the OID or the alias.

• Example 1 – uses the attribute OID:
dn: servername=SYBASE11,o=MyCompany,c=US
 servername:SYBASE11
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1266
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1337
1.3.6.1.4.1.897.4.2.5:TCP#1#standby1 4444
1.3.6.1.4.1.897.4.2.10:REPEAT_READ=false&
 PACKETSIZE=1024
 1.3.6.1.4.1.897.4.2.10:CONNECTION_FAILOVER=true
 1.3.6.1.4.1.897.4.2.11:pubs2
 1.3.6.1.4.1.897.4.2.9:Tds

• Example 2 – uses the attribute alias, which is not case sensitive:
dn: servername=SYBASE11,o=MyCompany,c=US
 servername:SYBASE11
sybaseAddress:TCP#1#giotto 1266

Programming Information

Programmers Reference 39

sybaseAddress:TCP#1#giotto 1337
sybaseAddress:TCP#1#standby1 4444
sybaseJconnectProperty:REPEAT_READ=false&
 PACKETSIZE=1024
sybaseJconnectProperty:CONNECTION_FAILOVER=true
sybaseDatabasename:pubs2
sybaseJconnectProtocol:Tds

In these examples, SYBASE11 can be accessed through either port 1266 or port 1337 on
host “giotto,” and accessed through port 4444 on host “standby1.” Two connection
properties, REPEAT_READ and PACKETSIZE, are set within one entry. The
CONNECTION_FAILOVER connection property is set as a separate entry. Applications
connecting to SYBASE11 are initially connected with the pubs2 database. You do not
need to specify a connection protocol, but if you do, you must enter the attribute as “Tds”,
not “TDS”.

CONNECTION_FAILOVER Property
CONNECTION_FAILOVER is a boolean-valued connection property you can use when SAP
jConnect uses JNDI to get connection information.

If CONNECTION_FAILOVER is true (the default), SAP jConnect makes multiple attempts to
connect to a server. If one attempt to connect to a host and port number associated with a server
fails, SAP jConnect uses JNDI to get the next host and port number associated with the server
and attempts to connect through them. Connection attempts proceed sequentially through all
the hosts and ports associated with a server.

For example, if a database server is associated with these hosts and port numbers, as in the
earlier LDAP example:
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1266
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1337
1.3.6.1.4.1.897.4.2.5:TCP#1#standby 4444

To get a connection to the server, SAP jConnect tries to connect to the host “giotto” at port
1266. If this fails, SAP jConnect tries port 1337 on “giotto.” If this fails, SAP jConnect tries to
connect to host “standby1” through port 4444.

If CONNECTION_FAILOVER is false, SAP jConnect attempts to connect to an initial host
and port number. If the attempt fails, SAP jConnect throws a SQL exception and does not try
again.

Providing JNDI Context Information
Be familiar with the JNDI specification to use SAP jConnect with JNDI.

See the JNDI specification from Oracle Technology Network.

In particular, make sure that required initialization properties are set in
javax.naming.directory.DirContext when JNDI and SAP jConnect are used
together. Set these properties either at the system level or at runtime.

Programming Information

40 SAP jConnect for JDBC

http://www.oracle.com/technetwork/java/jndi/index.html

The properties are:

• Context.INITIAL_CONTEXT_FACTORY – takes the fully qualified class name of
the initial context factory for JNDI to use. This determines the JNDI driver that is used with
the URL specified in the Context.PROVIDER_URL property.

• Context.PROVIDER_URL – takes the URL of the directory service that the driver (for
example, the LDAP driver) is to access. The URL should be a string, such as “ldap://
ldaphost:427”.

This example shows how to set context properties at runtime and how to get a connection using
JNDI and LDAP. The INITIAL_CONTEXT_FACTORY context property is set to invoke the
Oracle implementation of an LDAP service provider. The Context.PROVIDER_URL
property is set to the URL of an LDAP directory service located on the host “ldap_server1” at
port 389.
Properties props = new Properties();

 /* We want to use LDAP, so INITIAL_CONTEXT_FACTORY is set to the
 * class name of an LDAP context factory. In this case, the
 * context factory is provided by Sun’s implementation of a
 * driver for LDAP directory service.
 */
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");

 /* Now, we set PROVIDER_URL to the URL of the LDAP server that
 * is to provide directory information for the connection.
 */
 props.put(Context.PROVIDER_URL, "ldap://ldap_server1:389");

 /* Set up additional context properties, as needed. */
 props.put("user", "xyz");
 props.put("password", "123");

 /* get the connection */
 Connection con = DriverManager.getConnection
 ("jdbc:sybase:jndi:ldap://ldap_server1:389" +
 "/servername=Sybase11,o=MyCompany,c=US",props);

The connection string passed to getConnection contains LDAP-specific information,
which the developer must provide.

When JNDI properties are set at runtime, as in the preceding example, SAP jConnect passes
them to JNDI to be used in initializing a server, as in this SAP jConnect code:
javax.naming.directory.DirContext ctx =
 new javax.naming.directory.InitialDirContext(props);

SAP jConnect then obtains the connection information it needs from JNDI by invoking
DirContext.getAtributes, as in this example, where ctx is a DirContext object:

javax.naming.directory.Attributes attrs =
 ctx.getAttributes("ldap://ldap_server1:389/servername=" +
 "Sybase11", SYBASE_SERVER_ATTRIBUTES);

Programming Information

Programmers Reference 41

SYBASE_SERVER_ATTRIBUTES is an array of strings defined within SAP jConnect. The
array values are the OIDs for the required directory information listed in Required Directory
Service Information on page 38.

Internationalization and Localization
Review the internationalization and localization issues relevant to SAP jConnect.

Using SAP jConnect to Pass Unicode Data
In SAP Adaptive Server version 12.5 and later, database clients can take advantage of the
unichar and univarchar datatypes

The two datatypes allow for the efficient storage and retrieval of Unicode data, allowing users
to designate database table columns to store Unicode data, regardless of the default character
set of the server.

Quoting from the Unicode Standard, version 2.0:
The Unicode Standard is a fixed-width, uniform encoding scheme for
encoding characters and text. The repertoire of this international
character code for information processing includes characters for the
major scripts of the world, as well as technical symbols in common.
The Unicode character encoding treats alphabetic characters,
ideographic characters, and symbols identically, which means they can
be used in any mixture and with equal facility. The Unicode Standard
is modeled on the ASCII character set, but uses a 16-bit encoding to
support full multilingual text.

Note: In SAP Adaptive Server version 12.5 through 12.5.0.3, the server was required to use a
default character set of utf-8 to use the Unicode datatypes. However, in SAP Adaptive Server
12.5.1 and later, database users can use unichar and univarchar without having to
consider the default character set of the server.

You can use the unichar and univarchar datatypes anywhere that you can use char and
varchar character datatypes, without having to make syntax changes.

• unichar – use n to specify the number of Unicode characters (the amount of storage
allocated is 2 bytes per character).

• univarchar – usen to specify the maximum length in characters for the variable-length
datatypes.

When the server accepts unichar and univarchar data, SAP jConnect behaves as
follows:

• For all character data that a client sends to the server—for example, using
PreparedStatement.setString (int column, String value)— SAP
jConnect determines if the string can be converted to the default character set of the server.

Programming Information

42 SAP jConnect for JDBC

• If SAP jConnect determines that the characters cannot be converted to the character set of
the server (for example, some characters cannot be represented), it sends the data to the
server encoded as unichar/univarchar data.

For example, if a client attempts to send a Unicode Japanese character to an SAP Adaptive
Server 12.5.1 that has iso_1 as the default character set, SAP jConnect detects that the
Japanese character cannot be converted to an iso_1 character. SAP jConnect then sends the
string as Unicode data.

There is a performance penalty when a client sends unichar/univarchar data to a server,
because SAP jConnect must perform character-to-byte conversion twice for all strings and
characters that do not map directly to the default character set of the server.

If you are using a SAP jConnect version that is earlier than 6.05 and you want to use the
unichar and univarchar datatypes, you must:

1. Set the JCONNECT_VERSION = 6 or later.

2. Set the DISABLE_UNICHAR_SENDING connection property to false.

For more information on support for unichar and univarchar datatypes, see SAP
Adaptive Server Enterprise Manuals.

See also
• JCONNECT_VERSION Connection Property on page 4

• Setting Connection Properties on page 8

SAP jConnect Character Set Converters
There are two character set conversion classes. The conversion class that SAP jConnect uses is
based on the JCONNECT_VERSION, CHARSET, and CHARSET_CONVERTER_CLASS
connection properties.

• The TruncationConverter class works only with single-byte character sets that use
ASCII characters such as iso_1 and cp850. It does not work with multibyte character sets
or single-byte character sets that use non-ASCII characters. The
TruncationConverter class is the default converter when JCONNECT_VERSION
is set to 2.
Using the TruncationConverter class, SAP jConnect 16.0 handles character sets in
the same manner as SAP jConnect version 2.2. The TruncationConverter class is
the default converter when the JCONNECT_VERSION = 2.

• The PureConverter class is a pure Java, multibyte character-set converter. SAP
jConnect uses this class if the JCONNECT_VERSION = 4 or later. SAP jConnect also uses
this converter when JCONNECT_VERSION = 2 if it detects a character set specified in the
CHARSET connection property that is incompatible with the TruncationConverter
class.

Programming Information

Programmers Reference 43

Although it enables multibyte character-set conversions, the PureConverter class
may negatively impact SAP jConnect driver performance.

See also
• Improving Character Set Conversion Performance on page 45

Selecting a Character Set Converter
SAP jConnect uses the JCONNECT_VERSION to determine the default character-set
converter class to use.

For JCONNECT_VERSION = 2.0 or 3.0, the default is TruncationConverter. For
JCONNECT_VERSION = 4.0 or later, the default is PureConverter.

You can also set the CHARSET_CONVERTER_CLASS connection property to specify which
character-set converter you want SAP jConnect to use. This is useful if you want to use a
character-set converter other than the default for your jConnect version.

For example, if you set JCONNECT_VERSION = 4.0 or later but want to use the
TruncationConverterclass rather than the multibyte PureConverter class, you can
set CHARSET_CONVERTER_CLASS:

...
 props.put("CHARSET_CONVERTER_CLASS",
 "com.sybase.jdbc4.charset.TruncationConverter")

Setting the CHARSET Connection Property
Specify the character set to use in your application by setting the CHARSET driver property.

If you do not set the CHARSET property:

• For JCONNECT_VERSION = 2.0, SAP jConnect uses iso_1 as the default character set.

• For JCONNECT_VERSION = 3.0 through 6.05, SAP jConnect uses the default character
set of the database, and adjusts automatically to perform any necessary conversions on the
client side.

• For SAP jConnect versions starting with 6.05, if SAP jConnect cannot successfully
convert the user data to the negotiated charset, it sends unconverted Unicode characters to
the server if the server supports the Unicode characters, otherwise, it throws an exception.

You can also use the -J charset command line option for the IsqlApp application to specify a
character set.

To determine which character sets are installed on your SAP Adaptive Server, issue this SQL
query on your server:
select name from syscharsets
 go

For the PureConverter class, if the designated CHARSET does not work with the client
Java Virtual Machine (JVM), the connection fails with a SQLException, indicating that

Programming Information

44 SAP jConnect for JDBC

you must set CHARSET to a character set that is supported by both Adaptive Server and the
client.

When the TruncationConverter class is used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not. Therefore, if your
application must process non-ASCII data (for instance, any Asian languages), do not use
TruncationConverter, as this causes data corruption.

Improving Character Set Conversion Performance
If you use multibyte character sets and need to improve driver performance, you can use the
SunIoConverter class provided with the SAP jConnect samples.

In addition, you can use TruncationConverter to improve performance if your
application deals with only 7-bit ASCII data.

See also
• SunIoConverter Character-Set Conversion on page 138

Supported Character Sets
Character sets supported by SAP jConnect, and the corresponding JDK byte converter for
each supported character set.

Although SAP jConnect supports UCS-2, currently no SAP databases or SAP Open Servers
support UCS-2.

SAP Adaptive Server versions 12.5 and later support a version of Unicode known as UTF-16
encoding.

Table 5. Supported SAP jConnect Character Sets

SybCharset Name JDK Byte Converter

ascii_7 ASCII

big5 Big5

big5hk (for JDK 1.3 and above) Big5_HKSCS

cp037 Cp037

cp437 Cp437

cp500 Cp500

cp850 Cp850

cp852 Cp852

cp855 Cp855

cp857 Cp857

Programming Information

Programmers Reference 45

SybCharset Name JDK Byte Converter

cp860 Cp860

cp863 Cp863

cp864 Cp864

cp866 Cp866

cp869 Cp869

cp874 Cp874

cp932 MS932

cp936 GBK

cp949 Cp949

cp950 Cp950

cp1250 Cp1250

cp1251 Cp1251

cp1252 Cp1252

cp1253 Cp1253

cp1254 Cp1254

cp1255 Cp1255

cp1256 Cp1256

cp1257 Cp1257

cp1258 Cp1258

deckanji EUC_JP

eucgb EUC_CN

eucjis EUC_JP

eucksc EUC_KR

gb18030 GB18030

ibm420 Cp420

ibm918 Cp918

iso_1 ISO8859_1

iso88592 ISO8859-2

Programming Information

46 SAP jConnect for JDBC

SybCharset Name JDK Byte Converter

is088595 ISO8859_5

iso88596 ISO8859_6

iso88597 ISO8859_7

iso88598 ISO8859_8

iso88599 ISO8859_9

iso15 ISO8859_15_FDIS

koi8 KOI8_R

mac MacRoman

mac_cyr MacCyrillic

mac_ee MacCentralEurope

macgreek MacGreek

macturk MacTurkish

sjis MS932

tis620 MS874

ucs2 Unicode

utf8 UTF8

Unsupported Character Sets
Some character sets are not supported in SAP jConnect because no JDK byte converters are
analogous to them.

• cp1047
• euccns
• greek8
• roman8
• roman9
• turkish8

You can use these character sets with the TruncationConverter class as long as the
application uses only the 7-bit ASCII subsets of these characters.

Programming Information

Programmers Reference 47

Supersede Default Character Set Mapping
Use the JAVA_CHARSET_MAPPING connection property to supersede the default SAP
Adaptive Server character set mapping.

• Example – maps the server character set cp949 to ms949:
props.put("CHARSET", "cp949"); /* Server character set */
props.put("JAVA_CHARSET_MAPPING", "ms949"); /* Java character set
mapping */

Most of the SAP Adaptive Server character sets have the same name as the Java character
sets that they are mapped to. See Supported Character Sets on page 45 for those character
sets that are mapped to a Java character set with a different name.

European Currency Symbol Support
SAP jConnect supports the use of the European currency symbol, or “euro,” and its conversion
to and from UCS-2 Unicode.

The euro is included in these SAP jConnect character sets: cp1250, cp1251, cp1252, cp1253,
cp1254, cp1255, cp1256, cp1257, cp1258, cp874, iso885915, and utf8.

To use the euro symbol:

• Use the PureConvertor or CheckPureConverter class, pure Java, multibyte
character-set converter.

• Verify that the new character sets are installed on the server.
• Select the appropriate character set on the client.

See also
• SAP jConnect Character Set Converters on page 43
• Setting the CHARSET Connection Property on page 44

Database Issues
Review the database issues relevant to SAP jConnect.

See also
• Support for Batch Updates on page 66
• Datatypes on page 68
• Failover Support on page 49
• Server-to-Server Remote Procedure Calls on page 52
• Wide Table Support for Adaptive Server on page 53
• Use Cursors with Result Sets on page 55
• Transact-SQL Queries with COMPUTE Clause on page 65

Programming Information

48 SAP jConnect for JDBC

• Variable-Length Rows in Data-Only-Locked Tables on page 74

• Large Object (LOB) Support on page 75

• Large Object Locator Support on page 75

• Accessing Database Metadata on page 54

• Updating a Database from a Result Set of a Stored Procedure on page 67

Failover Support
SAP jConnect supports the SAP Adaptive Server failover.

SAP Adpative Server Failover allows you to configure two SAP Adaptive Servers as
companions.

Note: SAP Adpative Server Failover in a high availability system is a different feature than
connection failover. SAP strongly recommends that you read this section very carefully if you
want to use both.

If the primary companion fails, the devices, databases, and connections for that server can be
taken over by the secondary companion. You can configure a high availability system either
asymmetrically or symmetrically.

• An asymmetric configuration includes two SAP Adaptive Servers that are physically
located on different machines but are connected so that if one of the servers is brought
down, the other assumes its workload. The secondary SAP Adaptive Server acts as a “hot
standby” and does not perform any work until failover occurs.

• A symmetric configuration also includes two SAP Adaptive Servers running on separate
machines. However, if failover occurs, either SAP Adaptive Server can act as a primary or
secondary companion for the other SAP Adaptive Server. In this configuration, each SAP
Adaptive Server is fully functional with its own system devices, system databases, user
databases, and user logins.

In either setup, the two machines are configured for dual access, which makes the disks visible
and accessible to both machines. You can enable failover in SAP jConnect and connect a client
application to an SAP Adaptive Server configured for failover. If the primary server fails over
to the secondary server, the client application also automatically switches to the second server
and reestablishes network connections.

See Using Failover in High Availability Systems in the Adaptive Server Documentation for
more detailed information.

When using SAP jConnect as part of your failover strategy:

• Have two SAP Adaptive Servers configured for failover.
• Only changes that were committed to the database before failover are retained when the

client fails over.
• Set the REQUEST_HA_SESSION jConnect connection property to true.

• SAP jConnect event notification does not work when failover occurs.

Programming Information

Programmers Reference 49

• Close all statements when they are no longer used. SAP jConnect stores information on
statements to enable failover. Unclosed statements result in memory leaks.

Implementing Failover in SAP jConnect
Implement failover support in SAP jConnect.

1. Set:

• REQUEST_HA_SESSION to true.

• SECONDARY_SERVER_HOSTPORT to the host name and port number where your
secondary server is listening.

2. Use JNDI to connect to the server. Include an entry for the primary server and a separate
entry for the secondary server in the directory service information file required by JNDI.

The primary server entry has an attribute (the HA OID) that refers to the entry for the
secondary server.

Using LDAP as the service provider for JNDI, there are three possible forms that this HA
attribute can have:
• Relative distinguished name (RDN) – assumes that the search base (typically provided

by the java.naming.provider.url attribute), combined with the value of this
attribute, is enough to identify the secondary server.
For example, assume the primary server is at hostname:4200 and the secondary server
is at hostname:4202:
dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary
objectclass: sybaseServer
dn: servername=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

• Distinguished name (DN) – assumes that the value of the HA attribute uniquely
identifies the secondary server, and may or may not duplicate values found in the
search base.
For example:
dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary,
 o=Sybase, c=US ou=Accounting
objectclass: sybaseServer
dn: servername=hasecondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

Notice that hasecondary is located in a different branch of the tree (see the
additional ou=Accounting qualifier).

Programming Information

50 SAP jConnect for JDBC

• Full LDAP URL – assumes nothing about the search base. The HA attribute is expected
to be a fully qualified LDAP URL that is used to identify the secondary (it may even
point to a different LDAP server).
For example:
dn: servername=hafailover, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: ldap://ldapserver: 386/
servername=secondary,
 o=Sybase, c=US ou=Accounting
objectclass: sybaseServer
dn: servername=secondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

Use the REQUEST_HA_SESSION connection property to indicate that the connecting
client wants to begin a failover session with Adaptive Server that is configured for failover.
Setting this property to true instructs SAP jConnect to attempt a failover login. If you do
not set this connection property, a failover session doses not start, even if the server is
configured correctly. The default value for REQUEST_HA_SESSION is false.

Set the connection property like any other connection property. You cannot reset the
property once a connection has been made.

If you want more flexibility for requesting failover sessions, code the client application to
set REQUEST_HA_SESSION at runtime.

This example shows connection information entered for the database server SYBASE1
under an LDAP directory service, where "tahiti" is the primary server, and "moorea" is the
secondary companion server:
dn: servername=SYBASE11,o=MyCompany,c=US
1.3.6.1.4.1.897.4.2.5:TCP#1#tahiti 3456
1.3.6.1.4.1.897.4.2.10:REPEAT_READ=false&PACKETSIZE=1024
1.3.6.1.4.1.897.4.2.10:CONNECTION_FAILOVER=false
1.3.6.1.4.1.897.4.2.11:pubs2
1.3.6.1.4.1.897.4.2.9:Tds
1.3.6.1.4.1.897.4.2.15:servername=SECONDARY
1.3.6.1.4.1.897.4.2.10:REQUEST_HA_SESSION=true
dn:servername=SECONDARY, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1#moorea 6000

3. Request a connection using JNDI and LDAP:

a) Use the directory of the LDAP server to determine the name and location of the
primary and secondary servers:
/* get the connection */
Connection con = DriverManager.getConnection
 ("jdbc:sybase:jndi:ldap://ldap_server1:389" +
 "/servername=Sybase11,o=MyCompany,c=US",props);

, or

Programming Information

Programmers Reference 51

b) Specify a searchbase:

props.put(Context.PROVIDER_URL,
 "ldap://ldap_server1:389/ o=MyCompany, c=US");
Connection con=DriverManager.getConnection
 ("jdbc:sybase:jndi:servername=Sybase11", props);

Failover process allows:
• Logging in to the primary server – if an SAP Adaptive Server is not configured for

failover or cannot grant a failover session, the client cannot log in.

'The server denied your request to use the high-
availability feature.

Please reconfigure your database, or do not request a
high-availability session.'

• Failing over to secondary server – when failover occurs, the SQL exception JZ0F2 is
thrown:

‘SAP Adaptive Server Enterprise high-availability failover has
occurred. The
current transaction is aborted, but the connection is
still usable. Retry your transaction.’

The client automatically reconnects to the secondary database using JNDI and lets
you:

• Identity the database to which the client was connected and any committed
transactions are retained.

• Partially read result sets, cursors, and stored procedure invocations are lost.
• Restart your application with a procedure or return to the last completed transaction

or activity.
• Failing back to primary server – the system administrator determines the timing of

failback, by issuing sp_failback on the secondary server. The client fails back from the
secondary server to the primary server.

After failback, the client can expect the same behavior and results on the primary server
during failover to the secondary server.

See also
• Connection Properties on page 8
• Connecting to a Server Using JNDI on page 37

Server-to-Server Remote Procedure Calls
A Transact-SQL language command or stored procedure running on one server can execute a
stored procedure located on another server.

The server to which an application has connected logs in to the remote server, and executes a
server-to-server remote procedure call.

Programming Information

52 SAP jConnect for JDBC

An application can specify a universal password for server-to-server communication, that is, a
password used in all server-to-server connections. Once the connection is open, the server
uses this password to log in to any remote server. By default, SAP jConnect uses the password
of the current connection as the default password for server-to-server communications.

However, if the passwords are different on two servers for the same user, and that user is
performing server-to-server remote procedure calls, the application must explicitly define
passwords for each server it plans to use.

SAP jConnect includes a property that enables you to set a universal remote password or
different passwords on several servers.

Set and configure the property using the setRemotePassword method in the
SybDriver class:

Properties connectionProps = new Properties();

public final void setRemotePassword(String serverName,
 String password, Properties connectionProps)

To use this method, the application must import the SybDriver class, then call the method:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)
 Class.forName("com.sybase.jdbc4.jdbc.SybDriver").newInstance();
sybDriver.setRemotePassword
 (serverName, password, connectionProps);

Note: To set different remote passwords for various servers, repeat the preceding call for each
server.

This call adds the given server name-password pair to the given Properties object, which
can be passed by the application to DriverManager in
DriverManager.getConnection (server_url, props).

If serverName is null, the universal password is set to password for subsequent connections
to all servers except the ones specifically defined by previous calls to
setRemotePassword.

When an application sets the REMOTEPWD property, SAP jConnect no longer sets the default
universal password.

Wide Table Support for Adaptive Server
SAP Adaptive Server 15.7 ESD #1 offers limits and parameters that are larger than previous
versions of the database server.

For example:

• Tables can contain 1024 columns.
• varchar and varbinary columns can contain more than 255 bytes of data.

Programming Information

Programmers Reference 53

• You can send and retrieve up to 2048 parameters when invoking stored procedures or as
parameters to PreparedStatement.

• When connected to SAP Adaptive Server 15.7 ESD #1 and later, you can send and retrieve
up to 32767 parameters to PreparedStatement.

To ensure that SAP jConnect requests wide table support from the database, the default setting
of JCONNECT_VERSION must be 6.0 or later.

Note: SAP jConnect continues to work with an SAP Adaptive Server version 12.5 and later if
you set JCONNECT_VERSION to earlier than 6.0. However, if you try selecting from a table
that requires wide table support to fully retrieve the data, you may encounter unexpected
errors or data truncation.

You can also set JCONNECT_VERSION to 6.0 or later when you access data from a SAP
Adaptive Server that does not support wide tables. In this case, the server simply ignores your
request for wide table support.

In addition to the larger number of columns and parameters, wide table support provides
extended result set metadata. For example, in versions of SAP jConnect earlier than 6.0, the
ResultSetMetaData methods getCatalogName, getSchemaName, and
getTableName all returned Not Implemented SQLExceptions because that metadata was
not supplied by the server. When you enable wide table support, the server now sends back this
information, and the three methods return useful information.

Accessing Database Metadata
To support DatabaseMetaData methods, SAP Adaptive Server provides a set of stored
procedures that SAP jConnect can call to obtain metadata about a database.

If the stored procedures for providing metadata are not already installed in a SAP Adaptive
Server, you can install them using stored procedure scripts provided with SAP jConnect:

• sql_server.sql – installs stored procedures on SAP Adaptive Server databases
earlier than version 12.0.

• sql_server12.sql – installs stored procedures on SAP Adaptive Server database
version 12.0.x.

• sql_server12.5.sql – installs stored procedures on SAP Adaptive Server database
version 12.5.x.

• sql_server15.0.sql – installs stored procedures for SAP Adaptive Server 15.0
through 15.5.

• sql_server15.7.sql – installs stored procedures for SAP Adaptive Server 15.7 or
15.7 ESD #1.

• sql_server15.7.0.2.sql – installs stored procedures for SAP Adaptive Server
15.7 ESD #2 or later.

• sql_server16.0.sql – installs stored procedures for SAP Adaptive Server 16.0.

Programming Information

54 SAP jConnect for JDBC

• sql_asa.sql – installs stored procedures on the SAP SQL Anywhere database version
9.x.

• sql_asa10.sql – installs stored procedures on the SAP SQL Anywhere database
version 10.x.

• sql_asa11.sql – installs stored procedures on the SAP SQL Anywhere database
version 11.x.

• sql_asa12.sql – installs stored procedures on the SAP SQL Anywhere database
version 12.x.

• sql_asa16.sql – installs stored procedures on the SAP SQL Anywhere database
version 16.x.

Note: The most recent versions of these scripts are compatible with all versions of SAP
jConnect.

See the SAP jConnect for JDBC Installation Guide and SAP jConnect for JDBC Release
Bulletin for information about installing stored procedures.

In addition, to use the metadata methods, you must set the USE_METADATA connection
property to true (its default value) when you establish a connection.

You cannot obtain metadata from temporary tables in a database.

Note: The DatabaseMetaData.getPrimaryKeys method finds primary keys that are
declared in a table definition (CREATE TABLE) or with alter table (ALTER TABLE ADD
CONSTRAINT). It does not find keys that are defined using sp_primarykey.

Use Cursors with Result Sets
SAP jConnect implements many JDBC 2.0 cursor and update methods.

These methods make it easier to use cursors and to update rows in a table based on values in a
result set.

In JDBC 2.0, ResultSets are characterized by their type and their concurrency. The type
and concurrency values are part of the java.sql.ResultSet interface and are described
in its Javadoc.

When requested, SAP jConnect opens server-side scrollable cursors when the server is SAP
Adaptive Server 15.0 or later.

Programming Information

Programmers Reference 55

Table 6. java.sql.ResultSet Options Available in SAP jConnect

Concurrency Type

TYPE_FOR-
WARD_ ONLY

TYPE_SCROLL_
INSENSITIVE

TYPE_SCROLL_
SENSITIVE

CON-
CUR_READ_ONLY

Supported Supported Not available

CONCUR_UPDATA-
BLE

Supported Not available Not available

See also
• JDBC 2.0 Methods for Positioned Updates and Deletes on page 59

• Cursor with PreparedStatement Object on page 62

• TYPE_SCROLL_INSENSITIVE Result Sets in SAP jConnect on page 63

• JDBC 1.x Methods for Positioned Updates and Deletes on page 58

• Creating and Using a Cursor on page 57

Cursors
Methods for creating a cursor using SAP jConnect.

• SybStatement.setCursorName – assigns explicitly the cursor a name.

The signature for SybStatement.setCursorName is:

void setCursorName(String name) throws SQLException;
• SybStatement.setFetchSize – creates a cursor and specifies the number of rows

returned from the database in each fetch.
The signature for SybStatement.setFetchSize is:

void setFetchSize(int rows) throws SQLException;

When you use setFetchSize to create a cursor, the SAP jConnect driver names the
cursor. To get the name of the cursor, use ResultSet.getCursorName.

Another way you can create cursors is to specify the kind of ResultSet you want returned
by the statement, using this JDBC method on the connection:
Statement createStatement(int resultSetType, int
resultSetConcurrency)throws SQL Exception

If you request an unsupported ResultSet, a SQL warning is chained to the connection.
When the returned Statement is executed, you receive the kind of ResultSet that is most
like the one you requested. See the JDBC Specification for more details on the behavior of this
method.

If you do not use createStatement, the default types of ResultSet are:

Programming Information

56 SAP jConnect for JDBC

• If you call only Statement.executeQuery, the ResultSet returned is a
SybResultSet that is TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

• If you call setCursorName, the ResultSet returned from executeQuery is a
SybCursorResultSet that is TYPE_FORWARD_ONLY and
CONCUR_UPDATABLE.

• If you call setFetchSize, the ResultSet returned from executeQuery is a
SybCursorResultSet that is TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY.

To verify the kind of ResultSet object is what you intended, use these two ResultSet
methods:
int getConcurrency() throws SQLException;
int getType() throws SQLException;

Creating and Using a Cursor
Use the Statement.setCursorName or SybStatement.setFetchSize method
to create a cursor .

1. Create a cursor using Statement.setCursorName or
SybStatement.setFetchSize.

2. Invoke Statement.executeQuery to open the cursor for a statement and return a
cursor result set.

3. Invoke ResultSet.next to fetch rows and position the cursor in the result set.

This example uses each of the two methods for creating cursors and returning a result set. It
also uses ResultSet.getCursorName to get the name of the cursor created by
SybStatement.setFetchSize.

// With conn as a Connection object, create a
// Statement object and assign it a cursor using
// Statement.setCursorName().
Statement stmt = conn.createStatement();
stmt.setCursorName("author_cursor");

// Use the statement to execute a query and return
// a cursor result set.
ResultSet rs = stmt.executeQuery("SELECT au_id,
 au_lname, au_fname FROM authors
 WHERE city = 'Oakland'");
while(rs.next())
{
...
}

// Create a second statement object and use
// SybStatement.setFetchSize()to create a cursor
// that returns 10 rows at a time.
SybStatement syb_stmt = conn.createStatement();

Programming Information

Programmers Reference 57

syb_stmt.setFetchSize(10);

// Use the syb_stmt to execute a query and return
// a cursor result set.
SybCursorResultSet rs2 =
 (SybCursorResultSet)syb_stmt.executeQuery
 ("SELECT au_id, au_lname, au_fname FROM authors
 WHERE city = 'Pinole'");
while(rs2.next())
{
...
}

// Get the name of the cursor created through the
// setFetchSize() method.
String cursor_name = rs2.getCursorName();
 ...
// For jConnect 6.0, create a third statement
// object using the new method on Connection,
// and obtain a SCROLL_INSENSITIVE ResultSet.
// Note: you no longer have to downcast the
// Statement or the ResultSet.
Statement stmt = conn.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
ResultSet rs3 = stmt.executeQuery
 ("SELECT ... [whatever]");
// Execute any of the JDBC 2.0 methods that
// are valid for read only ResultSets.
rs3.next();
rs3.previous();
rs3.relative(3);
rs3.afterLast();
...

JDBC 1.x Methods for Positioned Updates and Deletes
Review the methods to use JDBC 1.x.

This example creates two Statement objects, one for selecting rows into a cursor result set,
and the other for updating the database from rows in the result set.

// Create two statement objects and create a cursor
// for the result set returned by the first
// statement, stmt1. Use stmt1 to execute a query
// and return a cursor result set.
Statement stmt1 = conn.createStatement();
Statement stmt2 = conn.createStatement();
stmt1.setCursorName("author_cursor");
ResultSet rs = stmt1.executeQuery("SELECT
 au_id,au_lname, au_fname

Programming Information

58 SAP jConnect for JDBC

 FROM authors WHERE city = 'Oakland'
 FOR UPDATE OF au_lname");

// Get the name of the cursor created for stmt1 so
// that it can be used with stmt2.
String cursor = rs.getCursorName();

// Use stmt2 to update the database from the
// result set returned by stmt1.
String last_name = new String("Smith");
while(rs.next())
{
 if (rs.getString(1).equals("274-80-9391"))
 {
 stmt2.executeUpdate("UPDATE authors "+
 "SET au_lname = "+last_name +
 "WHERE CURRENT OF " + cursor);
 }
}

Deletions in a Result Set
Use the Statement object stmt2 to perform a positioned deletion

stmt2.executeUpdate("DELETE FROM authors
 WHERE CURRENT OF " + cursor);

JDBC 2.0 Methods for Positioned Updates and Deletes
The JDBC 2.0 methods to update the columns in the current cursor row and the database from
the current cursor row in a result set.

Updating Columns in Result Sets
JDBC 2.0 specifies a number of methods for updating column values from a result set in
memory, on the client.

You can then use the updated values to perform an update, insert, or delete operation on the
underlying database. All of these methods are implemented in the SybCursorResultSet
class.

Examples of some of the JDBC 2.0 update methods available in SAP jConnect are:

void updateAsciiStream(String columnName, java.io.InputStream x, int
length)
 throws SQLException;
void updateBoolean(int columnIndex, boolean x) throws SQLException;
void updateFloat(int columnIndex, float x) throws SQLException;
void updateInt(String columnName, int x) throws SQLException;
void updateInt(int columnIndex, int x) throws SQLException;
void updateObject(String columnName, Object x) throws SQLException;

Programming Information

Programmers Reference 59

Methods for Updating a Database from a Result Set
JDBC 2.0 specifies methods for updating or deleting rows in the database, based on the current
values in a result set.

These methods are simpler in form than Statement.executeUpdate in JDBC 1.x and
do not require a cursor name. They are implemented in SybCursorResultSet:

void updateRow() throws SQLException;
void deleteRow() throws SQLException;

Note: The concurrency of the result set must be CONCUR_UPDATABLE. Otherwise, the
above methods raise exceptions. For insertRow, all table columns that require non-null
entries must be specified. Methods provided on DatabaseMetaData dictate when these
changes are visible.

Example

This example creates a single Statement object that returns a cursor result set. For each row
in the result set, column values are updated in memory and the database is updated with the
new column values for the row.
// Create a Statement object and set fetch size to
// 25. This creates a cursor for the Statement
// object Use the statement to return a cursor
// result set.
SybStatement syb_stmt =
(SybStatement)conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIV
E,
 ResultSet.CONCUR_UPDATABLE);
syb_stmt.setFetchSize(25);
SybCursorResultSet syb_rs =
(SybCursorResultSet)syb_stmt.executeQuery(
 "SELECT * from T1 WHERE ...")

// Update each row in the result set according to
// code in the following while loop. jConnect
// fetches 25 rows at a time, until fewer than 25
// rows are left. Its last fetch takes any
// remaining rows.
while(syb_rs.next())
{
 // Update columns 2 and 3 of each row, where
// column 2 is a varchar in the database and
// column 3 is an integer.
 syb_rs.updateString(2, "xyz");
syb_rs.updateInt(3,100);
//Now, update the row in the database.
 syb_rs.updateRow();
}
// Create a Statement object using the
// JDBC 2.0 method implemented in jConnect 6.0

Programming Information

60 SAP jConnect for JDBC

Statement stmt = conn.createStatement
(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);
// In jConnect 6.0, downcasting to SybCursorResultSet is not
// necessary. Update each row in the ResultSet in the same
// manner as above
while (rs.next())
{
rs.updateString(2, “xyz”);
rs.updateInt(3,100);
 rs.updateRow();
// Use the Statement to return an updatable ResultSet
ResultSet rs = stmt.executeQuery(“SELECT * FROM T1 WHERE...”);
}

Deleting Rows from Result Sets
Delete a row from a cursor result set.

To delete a row, use the SybCursorResultSet.deleteRow:

 while(syb_rs.next())
 {
 int col3 = getInt(3);
 if (col3 >100)
 {
 syb_rs.deleteRow();
 }
 }

Inserting Rows into Result Sets
Insert a row using the JDBC 2.0 API.

There is no need to downcast to a SybCursorResultSet.

// prepare to insert
rs.moveToInsertRow();
// populate new row with column values
rs.updateString(1, "New entry for col 1");
rs.updateInt(2, 42);
// insert new row into db
rs.insertRow();
// return to current row in result set
rs.moveToCurrentRow();

Release Locks at Cursor Close
SAP Adaptive Server 15.7 extends the declare cursor syntax to include the
release_locks_on_close option, which releases shared cursor locks at isolation
levels 2 and 3 when a cursor is closed.

SAP jConnect accordingly supports the release-lock-on-close semantics.

Programming Information

Programmers Reference 61

To use SAP jConnect connection, set the RELEASE_LOCKS_ON_CURSOR_CLOSE
connection property to true. The default value is false.

This setting takes effect only when connected to a server that supports
release_locks_on_close.

For information about release_locks_on_close, see the SAP Adaptive Server
Enterprise Reference Manual:Commands.

Select for Update Support
SAP Adaptive Server 15.7 and later supports select for update, which can lock rows for
subsequent updates within the same transaction, and supports exclusive locks for updatable
cursors.

See Queries: Selecting Data from a Table in the SAP Adaptive Server Enterprise Transact-
SQL Users Guide.

This functionality is automatically available to clients when the for update clause is
added to a select statement and to any updatable cursors opened within the clients.

Cursor with PreparedStatement Object
You can use PreparedStatement multiple times with the same or different values for its
input parameters.

If you use a cursor with a PreparedStatement object, you must close the cursor after
each use and then reopen the cursor to use it again. A cursor is closed when you close its
result set(ResultSet.close. It is opened when you execute its prepared statement
(PreparedStatement.executeQuery).

This example shows how to create a PreparedStatement object, assign it a cursor, and
execute the PreparedStatement object twice, closing and then reopening the cursor.

// Create a prepared statement object with a
// parameterized query.
PreparedStatement prep_stmt =
conn.prepareStatement(
"SELECT au_id, au_lname, au_fname "+
"FROM authors WHERE city = ? "+
"FOR UPDATE OF au_lname");

//Create a cursor for the statement.
prep_stmt.setCursorName("author_cursor");

// Assign the parameter in the query a value.
// Execute the prepared statement to return a
// result set.
prep_stmt.setString(1, "Oakland");
ResultSet rs = prep_stmt.executeQuery();

//Do some processing on the result set.
while(rs.next())

Programming Information

62 SAP jConnect for JDBC

{
 ...
}

// Close the result, which also closes the cursor.
rs.close();

// Execute the prepared statement again with a new
// parameter value.
prep_stmt.setString(1,"San Francisco");
rs = prep_stmt.executeQuery();
// reopens cursor

TYPE_SCROLL_INSENSITIVE Result Sets in SAP jConnect
SAP jConnect supports TYPE_SCROLL_INSENSITIVE result sets.

SAP jConnect uses the Tabular Data Stream (TDS)— its proprietary protocol—to
communicate with SAP database servers. SAP Adaptive Server 15.0 and later supports TDS
scrollable cursors. For servers that do not support TDS scrollable cursors, SAP jConnect
caches the row data on demand, on the client, on each call to ResultSet.next. However,
when the end of the result set is reached, the entire result set is stored in the client memory.
Because this may cause a performance strain, SAP recommends that you use
TYPE_SCROLL_INSENSITIVE result sets only with SAP Adaptive Server 15.0 or when the
result set is reasonably small.

Note: When you use TYPE_SCROLL_INSENSITIVE ResultSets in SAP jConnect, and
the server does not support TDS scrollable cursors, you can call the isLast method only
after the last row of the ResultSet has been read. Calling isLast before the last row is
reached throws an UnimplementedOperationException.

SAP jConnect provides the ExtendResultSet in the sample2 directory; this sample
provides a limited TYPE_SCROLL_INSENSITIVE ResultSet using JDBC 1.0
interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scroll-insensitive, read-
only result set, that is, a static view of the underlying data that is insensitive to changes made
while the result set is open. ExtendedResultSet caches all of the ResultSet rows on
the client. Be cautious when you use this class with large result sets.

The sample.ScrollableResultSet interface:

• Is an extension of JDBC 1.0 java.sql.ResultSet.

• Defines additional methods that have the same signatures as the JDBC 2.0
java.sql.ResultSet.

• Does not contain all of the JDBC 2.0 methods. The missing methods deal with modifying
the ResultSet.

The methods from the JDBC 2.0 API are:

Programming Information

Programmers Reference 63

boolean previous() throws SQLException;
boolean absolute(int row) throws SQLException;
boolean relative(int rows) throws SQLException;
boolean first() throws SQLException;
boolean last() throws SQLException;
void beforeFirst() throws SQLException;
void afterLast() throws SQLException;
boolean isFirst() throws SQLException;
boolean isLast() throws SQLException;
boolean isBeforeFirst() throws SQLException;
boolean isAfterLast() throws SQLException;
int getFetchSize() throws SQLException;
void setFetchSize(int rows) throws SQLException;
int getFetchDirection() throws SQLException;
void setFetchDirection(int direction) throws SQLException;
int getType() throws SQLException;
int getConcurrency() throws SQLException;
int getRow() throws SQLException;

To use the sample classes, create an ExtendedResultSet using any JDBC 1.0
java.sql.ResultSet. Below are the relevant pieces of code (assume a Java 1.1
environment):
// import the sample files
import sample.*;
//import the JDBC 1.0 classes
import java.sql.*;
// connect to some db using some driver;
// create a statement and a query;
// Get a reference to a JDBC 1.0 ResultSet
ResultSet rs = stmt.executeQuery(_query);
// Create a ScrollableResultSet with it
ScrollableResultSet srs = new ExtendedResultSet(rs);
// invoke methods from the JDBC 2.0 API
srs.beforeFirst();
// or invoke methods from the JDBC 1.0 API
if (srs.next())
 String column1 = srs.getString(1);

Programming Information

64 SAP jConnect for JDBC

Figure 1: Class Diagram Showing Relationship Between Sample Classes and
JDBC API

See the JDBC 2.0 API at Oracle Technology Network for Java for more details.

Transact-SQL Queries with COMPUTE Clause
SAP jConnect for JDBC supports Transact-SQL queries that include a COMPUTE clause.

A COMPUTE clause allows you to display detail and summary results in one select statement.
The summary row appears following the detail rows of a specific group. For example:
select type, price, advance
 from titles
 order by type
 compute sum(price), sum(advance) by type
type price advance
------------ --------- ----------
UNDECIDED NULL NULL

Compute Result:
------------------------ ------------------------
NULL NULL

type price advance
------------ --------- ----------
business 2.99 10,125.00
business 11.95 5,000.00

business 19.99 5,000.00
business 19.99 5,000.00

Compute Result:
------------------------ ------------------------

Programming Information

Programmers Reference 65

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

54.92 25,125.00

...

...

(24 rows affected)

When SAP jConnect executes a select statement that includes a COMPUTE clause, SAP
jConnect returns multiple result sets to the client. The number of result sets depends on the
number of unique groupings available. Each group contains one result set for the detail rows
and one result set for the summary. The client must process all result sets to fully process the
rows returned; if it does not, only the detail rows of the first group of data are included in the
first result set returned.

For more information about the COMPUTE clause, see the SAP Adaptive Server Enterprise
Transact-SQL Users Guide. For more information about processing multiple result sets, see
the JDBC API documentation on the Oracle Technology Network for Java Web site.

Support for Batch Updates
Batch updates allow a Statement object to submit multiple statements as one unit (batch) to
an underlying database for processing together.

Any statement added to a batch must return only an update count and cannot return a
ResultSet.

See BatchUpdates.java in the sample2 subdirectories for an example of using batch
updates with Statement, PreparedStatement, and CallableStatement.

SAP jConnect also supports dynamic PreparedStatements in batch.

Implementation Notes
SAP jConnect implements batch updates as specified in the JDBC 2.0 API.

Exceptions are:

• The EXECUTE_BATCH_PAST_ERRORS connection property controls how failures are
handled in batch execution.
By default, EXECUTE_BATCH_PAST_ERRORS is false and SAP jConnect stops
processing after the first failure. BatchUpdateException.getUpdateCounts
returns an int[] array with length of M < N, indicating that the first M statements in the
batch succeeded, that the M+1 statement failed, and M+2..N statements were not
executed. "N" represents the total statements in the batch.
When EXECUTE_BATCH_PAST_ERRORS is true, SAP jConnect continues processing
in the presence of nonfatal failures.
BatchUpdateException.getUpdateCounts returns an int[] array with
length of N, where "N" represents the total statements in the batch. Examine the individual
update counts to determine execution status of each statement.

Programming Information

66 SAP jConnect for JDBC

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

• To call stored procedures in batch (unchained) mode, you must create the stored procedure
in unchained mode.

• If SAP Adaptive Server encounters a fatal error during batch execution,
BatchUpdateException.getUpdateCounts returns only an int[] length of
zero. The entire transaction is rolled back if a fatal error is encountered, resulting in zero
successful rows.

• Batch updates in databases that do not support batch updates: SAP jConnect carries out
batch updates in an executeUpdate loop even if your database does not support batch
updates. This allows you to use the same batch code, regardless of the database to which
you are pointing.

For details on batch updates, see the JDBC API documentation.

See also
• Stored Procedure Executed in Unchained Transaction Mode on page 135

Updating a Database from a Result Set of a Stored Procedure
SAP jConnect includes update and delete methods that allow you to get a cursor on the result
set returned by a stored procedure.

You can then use the position of the cursor to update or delete rows in the underlying table that
provided the result set. The methods are in SybCursorResultSet:

void updateRow(String tableName) throws SQLException;
void deleteRow(String tableName) throws SQLException;

The tableName parameter identifies the database table that provided the result set.

To get a cursor on the result set returned by a stored procedure, use either
SybCallableStatement.setCursorName or
SybCallableStatement.setFetchSize before you execute the callable statement
that contains the procedure. This example shows how to create a cursor on the result set of a
stored procedure, update values in the result set, and then update the underlying table using the
SybCursorResultSet.update method:

// Create a CallableStatement object for executing the stored
// procedure.
CallableStatement sproc_stmt =
 conn.prepareCall("{call update_titles}",
 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

// Set the number of rows to be returned from the database with
// each fetch. This creates a cursor on the result set.
(SybCallableStatement)sproc_stmt.setFetchSize(10);

//Execute the stored procedure and get a result set from it.
SybCursorResultSet sproc_result = (SybCursorResultSet)
 sproc_stmt.executeQuery();

// Move through the result set row by row, updating values in the

Programming Information

Programmers Reference 67

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

// cursor’s current row and updating the underlying titles table
// with the modified row values.
while(sproc_result.next())
{
 sproc_result.updateString(...);
 sproc_result.updateInt(...);
 ...
 sproc_result.updateRow(titles);
}

Datatypes
Review the use of numeric, image, text, date, time, and char data.

Numeric Datatype
The SybPreparedStatement extension supports the way SAP Adaptive Server handles
the NUMERIC datatype where precision (total digits) and scale (digits after the decimal) can
be specified.

The corresponding datatype in Java java.math.BigDecimal is slightly different, and
these differences can cause problems when SAP jConnect applications use the
setBigDecimal method to control values of an input/output parameter. Specifically, there
are cases where the precision and scale of the parameter must precisely match that precision
and scale of the corresponding SQL object, whether it is a stored procedure parameter or a
column.

The SybPreparedStatement extension used with the following method gives SAP
jConnect applications more control over setBigDecimal:

public void setBigDecimal (int parameterIndex, BigDecimal X, int
scale,
 int precision) throws SQLException

See the SybPrepExtension.java sample in the /sample2 subdirectories under your
SAP jConnect installation directory for more information.

Image Datatype
SAP jConnect has a TextPointer class with sendData methods for updating an image
column in an SAP Adaptive Server or SAP SQL Anywhere database.

In versions of SAP jConnect earlier than 4.0, you had to send image data using the
setBinaryStream method in java.sql.PreparedStatement. In version 5.0 and
later, the TextPointer.sendData methods use java.io.InputStream and
greatly improve performance when you send image data to an SAP Adaptive Server database.

Warning! Using the TextPointer class with sendData() method may affect the
application as TextPointer is not a standard JDBC form.

SAP recommends you use PreparedStatement.setBinaryStream(int
paramIndex, InputStream image) or utilize the LOB locator support, both

Programming Information

68 SAP jConnect for JDBC

standard JDBCforms to send image data. However, setBinaryStream() may consume
much more memory on procedure cache than the TextPointer class when large image data is
handled.

Until a replacement for the TextPointer class is implemented, SAP will continue
supporting it.

To obtain instances of the TextPointer class, use either of these methods in
SybResultSet:

• public TextPointer getTextPtr(String columnName)
• public TextPointer getTextPtr(int columnIndex)

Public Methods in TextPointer Class
Review the public methods in TextPointer class in SAP jConnect.

The com.sybase.jdbcx package contains the TextPointer class. Its public
method interface is:
public void sendData(InputStream is, boolean log)
 throws SQLException
public void sendData(InputStream is, int length,
 boolean log) throws SQLException
public void sendData(InputStream is, int offset,
 int length, boolean log) throws SQLException
public void sendData(byte[] byteInput, int offset,
 int length, boolean log) throws SQLEXception

where:

• sendData(InputStream is, boolean log) updates an image column with data in the
specified input stream.

• sendData(InputStream is, int length, boolean log) updates an image column with data in
the specified input stream. length is the number of bytes being sent.

• sendData(InputStream is , int offset, int length, boolean log) updates an image column
with data in the specified input stream, starting at the byte offset given in the offset
parameter and continuing for the number of bytes specified in the length parameter.

• sendData(byte[] byteInput, int offset, int length, boolean log) updates a column with
image data contained in the byte array specified in the byteInput parameter. The update
starts at the byte offset given in the offset parameter and continues for the number of bytes
specified in the length parameter.

• log is a parameter for each method that specifies whether image data is to be fully logged
in the database transaction log. If the log parameter is true, the entire binary image is
written into the transaction log. If the log parameter is false, the update is logged, but the
image itself is not included in the log.

Programming Information

Programmers Reference 69

TextPointer Object
The text and image columns contain timestamp and page-location information that is
separate from their text and image data.

When data is selected from a text or image column, this extra information is “hidden” as
part of the result set.

A TextPointer object for updating an image column requires this hidden information but
does not need the image portion of the column data. To get this information, select the column
into a ResultSet object, then use SybResultSet.getTextPtr, which extracts text-
pointer information, ignores image data, and creates a TextPointer object.

When a column contains a significant amount of image data, selecting the column for one or
more rows and waiting to get all the data is likely to be inefficient, since the data is not used. To
shortcut this process, use the set textsize command to minimize the amount of data returned in
a packet. This code example for getting a TextPointer object includes the use of set
textsize for this purpose.

/*
 * Define a string for selecting pic column data for author ID
 * 899-46-2035.
 */
 String getColumnData = "select pic from au_pix where au_id =
'899-46-2035'";

 /*
 * Use set textsize to return only a single byte of column data
 * to a Statement object. The packet with the column data will
 * contain the "hidden" information necessary for creating a
 * TextPointer object.
 */
 Statement stmt= connection.createStatement();
 stmt.executeUpdate("set textsize 1");

 /*
 * Select the column data into a ResultSet object--cast the
 * ResultSet to SybResultSet because the getTextPtr method is
 * in SybResultSet, which extends ResultSet.
 */
 SybResultSet rs = (SybResultSet)stmt.executeQuery(getColumnData);

 /*
 * Position the result set cursor on the returned column data
 * and create the desired TextPointer object.
 */
 rs.next();
 TextPointer tp = rs.getTextPtr("pic");

 /*
 * Now, assuming we are only updating one row, and won’t need
 * the minimum textsize set for the next return from the server,
 * we reset textsize to its default value.

Programming Information

70 SAP jConnect for JDBC

 */
 stmt.executeUpdate("set textsize 0");

Executing the Update with TextPointer.sendData
Use the TextPointer object to update the pic column with image data in the file
Anne_Ringer.gif.

Sample code:
/*
 *First, define an input stream for the file.
 */
 FileInputStream in = new FileInputStream("Anne_Ringer.gif");

 /*
 * Prepare to send the input stream without logging the image data
 * in the transaction log.
 */
 boolean log = false;

 /*
 * Send the image data in Anne_Ringer.gif to update the pic
 * column for author ID 899-46-2035.
 */
 tp.sendData(in, log);

See the TextPointers.java sample in the sample2 subdirectories under your SAP
jConnect installation directory for more information.

Updating an Image Column with TextPointer.sendData
Update a column with image data using TextPointer.sendData.

1. Get a TextPointer object for the row and column that you want to update.

2. Use TextPointer.sendData to execute the update.

In this example, image data from the file Anne_Ringer.gif is sent to update the pic
column of the au_pix table in the pubs2 database. The update is for the row with author ID
899-46-2035.

Text Datatype
In SAP jConnect 3.0 and earlier versions, a TextPointer class is used with sendData
methods for updating a text column in an SAP Adaptive Server or SAP SQL Anywhere
database.

The TextPointer class has been deprecated, that is, it is no longer recommended and may
cease to exist in a future version of Java.

If your data server is SAP Adaptive Server or SAP SQL Anywhere, use the standard JDBC
form to send text data:

Programming Information

Programmers Reference 71

PreparedStatement.setAsciiStream(int paramIndex,
 InputStream text, int length)

or:

PreparedStatement.setUnicodeStream(int paramIndex,
 InputStream text, int length)

or:

PreparedStatement.setCharacterStream(int paramIndex, Reader
reader, int length)

Date and Time Datatypes
SAP jConnect for JDBC supports the SAP Adaptive Server datetime, smalldatetime,
bigdatetime, bigtime, date, and time datatypes:

• datetime can hold dates between January 1, 1753 and December 31, 9999 that are
accurate to 1/300 second on platforms that support this level of granularity.

• smalldatetime can hold dates from January 1, 1900 to June 6, 2079, with accuracy to
the minute.

• bigdatetime indicates the number of microseconds that have passed since January 1,
0000 0:00:00.000000. The range of legal bigdatetime values is from January 1, 0001
00:00:00.000000 to December 31, 9999 23:59:59.999999.

• bigtime indicates the number of microseconds that have passed since the beginning of
the day. The range of legal bigtime values is from 00:00:00.000000 to
23:59:59.999999.

• date can hold dates from January 1, 0001 to December 31, 9999, exactly matching the
allowable values in java.sql.Date. A direct mapping exists between
java.sql.Date and the date datatype.

• time can hold time between 00:00:00:000 and 23:59:59:990. A direct mapping exists
between java.sql.Time and the time datatype.

Date, Time, Datetime, and Smalldatetime Datatypes
SAP jConnect for JDBC supports date, time, datetime, and smalldatetime.

If you select from a table that contains a date or time column, and you have not enabled
date/time support in SAP jConnect (by setting the version), the server tries to convert the
date or time to a datetime value before returning it.

• This might cause problems if the date to be returned is earlier than 1/1/1753. In that case, a
conversion error occurs, and the database informs you of the error.

• SAP SQL Anywhere supports a date and time datatype, but they are not yet directly
compatible with those in SAP Adaptive Server version 12.5.1 and later. Using SAP
jConnect, continue to use the datetime and smalldatetime datatypes when
communicating with SAP SQL Anywhere.

Programming Information

72 SAP jConnect for JDBC

• The maximum value in a datetime column in SAP SQL Anywhere is 1-1-7911
00:00:00.

• Using SAP jConnect, you receive conversion errors if you attempt to insert dates earlier
than 1/1/1753 into datetime columns or parameters.

• Refer to the SAP Adaptive Server manuals for more information on the date and time
datatypes; of special note is the information about on allowable implicit conversions.

• If you use getObject with an SAP Adaptive Server date, time, or datetime
column, the value returned is, respectively, a java.sql.Date, java.sql.Time, or
java.sql.Timestamp datatype.

Bigdatetime and Bigtime Datatypes
When connecting to SAP Adaptive Server 15.5 and later, SAP jConnect transfers data using
the bigdatetime and bigtime datatypes even if the receiving SAP Adaptive Server
columns are defined as datetime and time.

• This means that SAP Adaptive Server may silently truncate the values from SAP jConnect
to fit SAP Adaptive Server columns. For example, a bigtime value of 23:59:59.999999
is saved as 23:59:59.996 in an Adaptive Server column with datatype time.

• When connecting to SAP Adaptive Server 15.0.x and earlier, SAP jConnect for JDBC
transfers data using the datetime and time datatypes.

Char, Varchar, Text, and GetByte Datatypes
Do not use rs.getByte on a char, univarchar, unichar, varchar, or text
field unless the data is hex, octal, or decimal.

Other Supported Datatypes
Review other SAP Adaptive Server datatypes supported by SAP jConnect.

SAP jConnect supports these SAP Adaptive Server datatypes:

• bigint – an exact numeric datatype designed to be used when the range of the existing
int types is insufficient.

• unsigned int – unsigned versions of the exact numeric integer datatypes:
unsignedsmallint, unsignedint, and unsignedbigint.

• unitext – a variable-length datatype for Unicode characters.

Bigint Datatype
bigint which is a 64-bit integer datatype that is supported as a native SAP Adaptive Server
datatype.

bigint maps to the Java datatype long. To use this as a parameter, call
PreparedStatement.setLong(int index, long value) and SAP jConnect
sends the data as bigint to SAP Adaptive Server. When retrieving from a bigint column,
use the ResultSet.getLong(int index) method.

Programming Information

Programmers Reference 73

Unitext Datatype
SAP jConnect internally stores and retrieves data from SAP Adaptive Server when unitext
columns are used.

Unsigned Int Datatypes
SAP Adaptive Server supports unsigned bigint, unsigned int, and unsigned
smallint as native SAP Adaptive Server datatypes.

Because, there are no corresponding unsigned datatypes in Java, you must set and get the
next higher integer to process the data correctly. For example, if you are retrieving data from
an unsigned int, using the Java datatype int is too small to contain positive large values, and
as a result, ResultSet.getInt (int index) might return incorrect data or throw an
exception. To process the data correctly, get the next higher integer value
ResultSet.getLong().

SAP Adaptive Server
Datatype

Java Datatype

unsigned smallint setInt(), getInt()
unsigned int setLong(), getLong()
unsigned bigint setBigDecimal(), getBigDecimal()

Variable-Length Rows in Data-Only-Locked Tables
Versions of SAP Adaptive Server earlier than 15.7 configured for 16K logical page sizes could
not create data-only-locked (DOL) tables with variable-length rows if a variable-length
column began more than 8191 bytes after the start of the row.

This limitation has been removed starting in SAP Adaptive Server 15.7. See Data Storage in
the SAP Adaptive Server Enterprise Performance and Tuning Series: Physical Database
Tuning.

JDBC clients do not need special configuration to use this feature. When connected to SAP
Adaptive Server version 15.7 that has been configured to receive wide DOL rows, these clients
automatically insert records using the wide offset. An error message is received if a client
attempts to send a wide DOL row to an earlier version of SAP Adaptive Server, or to a 15.7
SAP Adaptive Server for which the wide DOL row option is disabled.

Programming Information

74 SAP jConnect for JDBC

Large Object (LOB) Support
SAP jConnect supports using large object (LOB) datatypes—text, unitext, and image
• LOB columns with in-row storage – In SAP Adaptive Server, LOB columns that are

marked for in-row are stored in-row when there is adequate memory to hold the entire row.
When the size of a row increases over its defined limit due to an update to any column in it,
the LOB columns which are stored in-row are moved off-row to bring it within the limits.
See In-Row Off-Row LOB in the SAP Adaptive Server Enterprise Transact-SQL Users
Guide.
The bulk insert routines in SAP jConnect support the in-row and off-row storage of text,
image, and unitext LOB columns in SAP Adaptive Server. Bulk insert routines from
earlier client versions always store LOB columns off-row.

• LOB objects as parameters of stored procedures – SAP jConnect supports using text,
unitext, and image as input parameters in stored procedures and as parameter marker
datatypes.

Large Object Locator Support
SAP jConnect supports large object (LOB) locators. A LOB locator contains a logical pointer
to LOB data rather than the data itself, reducing the amount of data that passes through the
network between SAP Adaptive Server and its clients.

Server support for LOB locators was introduced in SAP Adaptive Server 15.7.

SAP jConnect accesses LOB data using server-side locators when connected to an SAP
Adaptive Server that supports LOB locators and autocommit is turned off. Otherwise,
jConnect materializes LOB data at the client side. You can use the complete LOB API with
client-side materialized LOB data, however, due to larger data, API performance may be
different than when used with LOB locators.

Note: When you are using LOB locators, retrieving a large result set that includes LOB data on
each row may impact your application's performance. SAP Adaptive Server returns a LOB
locator as part of the result set and, to obtain LOB data, SAP jConnect must cache the
remaining result set. SAP recommends that you keep result sets small, or that you enable
cursor support to limit the size of data to be cached.

To enable LOB locator support, establish a connection to SAP Adaptive Server with the
ENABLE_LOB_LOCATORS connection property set to true. When enabled, client
applications can access the locators using the Blob, Clob, and NClob classes from the
java.sql package.

Note: When both LOB locators and autocommit are enabled, SAP jConnect automatically
switches the LOB locators to client-side-materialized LOB even if the SAP Adaptive Server is

Programming Information

Programmers Reference 75

capable of supporting LOB locators. This increases the memory used by the client and may
degrade performance. Therefore, it is advisable to use LOB locators with autocommit
off.

For information about the Blob, Clob, and NClob classes, see the Java documentation.

Advanced Features in SAP jConnect
SAP jConnect provides advanced features such as event notification, error message handling,
password encryption, dynamic class loading, and JDBC specification support.

Review the instructions to use the advanced features supported by SAP jConnect.

See also
• BCP Insert on page 76

• Supported SAP Adaptive Server Cluster Edition Features on page 77

• Event Notification on page 79

• Error Messages on page 81

• Password Encryption on page 85

• JDBC 4.0 Specifications Support on page 95

• Store Java Objects as Column Data in Table on page 87

• Dynamic Class Loading on page 91

• JDBC 3.0 Specifications Support on page 95

• Support for JDBC 2.0 Optional Package Extensions on page 97

BCP Insert
SAP jConnect supports large insertions of rows to SAP Adaptive Server version 12.5.2 and
later using bulk-load inserts.

Although this feature does not require special server configuration, a larger page size, network
packet size, and maximum memory size significantly improves performance.

Additionally, depending on the client memory, using of larger batches also improves
performance.

To enable bulk-load inserts, set ENABLE_BULK_LOAD to one of these values:

• ARRAYINSERT_WITH_MIXED_STATEMENTS – enables bulk loading with row-
level logging, and allows your application to execute other statements during the bulk-load
operation.

• ARRAYINSERT – enables bulk loading with row-level logging, but your application
cannot execute other statements during the bulk-load operation.

Programming Information

76 SAP jConnect for JDBC

• BCP – enables bulk loading with page-level logging; your application cannot execute
other statements during the bulk-load operation.

• LOG_BCP – enables the bulk loading with page-level logging using the SAP Adaptive
Server fast-log BCP feature; your application cannot execute other statements during the
bulk-load operation.

When you use prepared statements, and ENABLE_BULK_LOAD is set to a valid value, SAP
jConnect uses the BULK routines to insert a batch of records into SAP databases.

Limitations for Enabling Bulk Load
Some of the limitations for ENABLE_BULK_LOAD:

• Triggers are ignored on selected tables.
• Null and referential constraints are not validated.
• Computed and encrypted columns are not supported.
• Duplicate identity values might be created if you specify identity value ranges that overlap.
• Conflicting IDENTITY values might be inserted when concurrent data entry occurs.

Supported SAP Adaptive Server Cluster Edition Features
SAP jConnect supports the SAP Adaptive Server Cluster Edition environment, where
multiple SAP Adaptive Servers connect to a shared set of disks and a high-speed private
interconnection. This allows SAP Adaptive Server to scale using multiple physical and logical
hosts.

For more information about Cluster Edition, see the SAP Adaptive Server Enterprise Users
Guide to Clusters.

Login Redirection
When a client application attempts to connect to a busy server, login redirection helps balance
the load of the servers by allowing the server to redirect the client connection to less busy
servers within the cluster.

At any given time, some servers within a cluster environment are usually more loaded with
work than others. The login redirection occurs during the login sequence and the client
application does not receive notification that it was redirected. Login redirection is enabled
automatically when a client application connects to a server that supports this feature.

Note: When a client application connects to a server that is configured to redirect clients, the
login time may increase because the login process is restarted whenever a client connection is
redirected to another server.

Programming Information

Programmers Reference 77

Connection Migration
Connection migration allows a server in a cluster environment to dynamically distribute load,
and seamlessly migrate an existing client connection and its context to another server within
the cluster.

This feature enables a cluster environment to achieve optimal resource utilization and
decrease computing time. Because migration between servers is seamless, connection
migration also helps create a highly available, zero-downtime environment. Connection
migration is enabled automatically when a client application connects to a server that supports
this feature.

Note: Command execution time may increase during server migration. SAP recommends that
you increase the command timeouts accordingly.

Connection Failover
Connection failover allows a client application to switch to an alternate SAP Adaptive Server
if the primary server becomes unavailable due to an unplanned event, like power outage or a
socket failure.

In a cluster environment, client applications can fail over numerous times to multiple servers
using dynamic failover addresses.

With high availability enabled, the client application does not need to be configured to know
the possible failover targets. SAP Adaptive Server keeps the client updated with the best
failover list based on cluster membership, logical cluster usage, and load distribution. During
failover, the client refers to the ordered failover list while attempting to reconnect. If the driver
successfully connects to a server, the driver internally updates the list of host values based on
the list returned. Otherwise, the driver throws a connection failure exception.

Note: The connection properties DEFAULT_QUERY_TIMEOUT and
INTERNAL_QUERY_TIMEOUT or DriverManager.setLoginTimeout(xx) play vital role to
switch over from failed node to highly available node after failover occurs.

Enabling Connection Failover
You can use the connection string to enable connection failover by setting
REQUEST_HA_SESSION to true.

For example:
URL="jdbc:sybase:Tds:server1:port1,server2:port2,...,
serverN:portN/mydb?REQUEST_HA_SESSION=true"

where server1:port1, server2:port2, ... , serverN:portN is the ordered failover list.

SAP jConnect attempts to connect to the first host and port specified in the failover list. If
unsuccessful, goes through the list until a connection is established or until the end of the list is
reached.

Programming Information

78 SAP jConnect for JDBC

Note: The list of alternate servers specified in the connection string is used only during initial
connection. After the connection is established with any available instance, and if the client
supports high availability, the client receives an updated list of the best possible failover
targets from the server. This new list overrides the specified list.

Event Notification
You can use event notification to have your application notified when an SAP Open Server
procedure is executed.

To use this feature, you must use the SybConnection class, which extends the
Connection interface. SybConnection contains a regWatch method for turning
event notification on and a regNoWatch method for turning event notification off.

Your application must also implement the SybEventHandler interface. This interface
contains one public method, void event(String proc_name, ResultSet
params), which is called when the specified event occurs. The parameters of the event are
passed to event, which tells the application how to respond.

To use event notification in your application, call SybConnection.regWatch() to
register your application in the notification list of a registered procedure:
SybConnection.regWatch(proc_name,eventHdlr,option)

where:

• proc_name is a string that is the name of the registered procedure that generates the
notification.

• eventHdler is an instance of the SybEventHandler class that you implement.

• option is either NOTIFY_ONCE or NOTIFY_ALWAYS. Use NOTIFY_ONCE if you want
the application to be notified only the first time a procedure executes. Use
NOTIFY_ALWAYS if you want the application to be notified every time the procedure
executes.

Whenever an event with the designated proc_name occurs on the SAP Open Server, SAP
jConnect calls eventHdlr.event from a separate thread. The event parameters are passed to
eventHdlr.event when it is executed. Because it is a separate thread, event notification does
not block execution of the application.

If proc_name is not a registered procedure, or if SAP Open Server cannot add the client to the
notification list, the call to regWatch throws a SQL exception.

To turn off event notification:
SybConnection.regNoWatch(proc_name)

Warning! When you use SAP jConnect event notification extensions, the application must
call the close method on the connection to remove a child thread created by the first call to
regWatch. Failing to do so may cause the virtual machine to stop responding when it exits the
application.

Programming Information

Programmers Reference 79

Event Notification Example
Review instructions to implement an event handler and then register an event with an instance
for your event handler, once a connection is established.

Event notification sample code:
 public class MyEventHandler implements SybEventHandler
 {
 // Declare fields and constructors, as needed.
 ...
 public MyEventHandler(String eventname)
 {
 ...
 }

 // Implement SybEventHandler.event.
 public void event(String eventName, ResultSet params)
 {
 try
 {
 // Check for error messages received prior to event
 // notification.
 SQLWarning sqlw = params.getWarnings();
 if sqlw != null
 {
 // process errors, if any
 ...
 }
 // process params as you would any result set with
 // one row.
 ResultSetMetaData rsmd = params.getMetaData();
 int numColumns = rsmd.getColumnCount();
 while (params.next()) // optional
 {
 for (int i = 1; i <= numColumns; i++)
 {
 System.out.println(rsmd.getColumnName(i) + " =
 " + params.getString(i));
 }
 // Take appropriate action on the event. For example,
 // perhaps notify application thread.
 ...
 }
 }
 catch (SQLException sqe)
 {
 // process errors, if any
 ...
 }
 }
 }

 public class MyProgram
 {

Programming Information

80 SAP jConnect for JDBC

 ...
 // Get a connection and register an event with an instance
 // of MyEventHandler.
 Connection conn = DriverManager.getConnection(...);
 MyEventHandler myHdlr = new MyEventHandler("MY_EVENT");

 // Register your event handler.
 ((SybConnection)conn).regWatch("MY_EVENT", myHdlr,
 SybEventHandler.NOTIFY_ALWAYS);
 ...
 conn.regNoWatch("MY_EVENT");
 conn.close();
 }

Error Messages
SAP jConnect provides two classes for returning SAP jConnect-specific error information,
SybSQLException and SybSQLWarning, as well as a SybMessageHandler
interface that allows you to customize the way SAP jConnect handles error messages received
from the server.

Numeric Errors Returned as Warnings
Numeric errors are handled by default as severity 10 in SAP Adaptive Server12.0 through
12.5.

A severity-level 10 message is classified as a status information message, not as an error, and
its content is transferred in a SQLWarning object.

This code illustrates the process:
static void processWarnings(SQLWarning warning)
{
if (warning != null)
 {
 System.out.println ("\n -- Warning received -- \n");
 }//end if
 while (warning != null)
 {
 System.out.println ("Message: " + warning.getMessage());
 System.out.println("SQLState: " + warning.getSQLState());
 System.out.println ("ErrorCode: " +
 warning.getErrorCode());
 System.out.println ("----------------------------");
 warning = warning.getNextWarning();
 }//end while
}//end processWarnings

When a numeric error occurs, the ResultSet object returned contains no result set data, and the
relevant information concerning the error must be obtained from the SQLWarning. Therefore,
in a JDBC application, the code that checks for and processes a SQLWarning should not
depend on a result set. For example, the following code checks for and processes SQLWarning
data both inside and outside the result-set processing while loop:

Programming Information

Programmers Reference 81

while (rs.next())
{
 String value = rs.getString(1);
 System.out.println ("Fetched value: " + value);

 // Check for SQLWarning on the result set.
 processWarnings (rs.getWarnings());

}//end while

 // Check for SQLWarning on the result set.
 processWarnings (rs.getWarnings());

Here, the code checks for SQLWarning even if there is no result set data (rs.next() is
false). The following example is output for a program properly written to detect and report
numeric errors. The error is a division by zero:
-- Warning received --

Message: Divide by zero occurred.
SQLState: 01012
ErrorCode: 3607

Retrieve SAP jConnect-Specific Error Information
SAP jConnect provides an EedInfo interface that specifies methods for obtaining SAP
jConnect-specific error information.

The EedInfo interface is implemented in SybSQLException and SybSQLWarning,
which extend the SQLException and SQLWarning classes.

SybSQLException and SybSQLWarning contain these methods:

• public ResultSet getEedParams, which returns a one-row result set containing
any parameter values that accompany the error message.

• public int getStatus, which returns a 1 if there are parameter values, and returns
a 0 if there are no parameter values in the message.

• public int getLineNumber, which returns the line number of the stored
procedure or query that caused the error message.

• public String getProcedureName, which returns the name of the procedure
that caused the error message.

• public String getServerName, which returns the name of the server that
generated the message.

• public int getSeverity, which returns the severity of the error message.

• public int getState, which returns information about the internal source of the
error message in the server for use only by SAP Technical Support.

• public int getTranState, which returns one of the following transaction states:

• 0 – the connection is currently in an extended transaction.
• 1 – the previous transaction committed successfully.

Programming Information

82 SAP jConnect for JDBC

• 3 – the previous transaction aborted.

Some error messages can be SQLException or SQLWarning messages without being
SybSQLException or SybSQLWarning messages. Your application should check the
type of exception it is handling before it downcasts to SybSQLException or
SybSQLWarning.

Customizing Error-Message Handling
Use the SybMessageHandler interface to customize the way SAP jConnect handles error
messages generated by the server.

Implementing SybMessageHandler in your own class for handling error messages can
provide the following benefits:

• Universal error handling – error-handling logic can be placed in your error-message
handler, instead of being repeated throughout your application.

• Universal error logging – your error-message handler can contain the logic for handling all
error logging.

• Remapping of error-message severity, based on application requirements – your error-
message handler can contain logic for recognizing specific error messages, and
downgrading or upgrading their severity based on application considerations rather than
the severity rating of the server. For example, during a cleanup operation that deletes old
rows, you might want to downgrade the severity of a message that a row does not exist.
However, you may want to upgrade the severity in other circumstances.

Note: Error-message handlers implementing the SybMessageHandler interface only
receive server-generated messages; they do not handle messages generated by SAP jConnect.

When SAP jConnect receives an error message, it checks to see if a SybMessageHandler
class has been registered for handling the message. If so, SAP jConnect invokes the
messageHandler method, which accepts a SQL exception as its argument. SAP jConnect
then processes the message based on what value is returned from messageHandler. The
error-message handler can:

• Return the SQL exception as is.
• Return a null. As a result, SAP jConnect ignores the message.
• Create a SQL warning from a SQL exception, and return it. This results in the warning

being added to the warning-message chain.
• If the originating message is a SQL warning, messageHandler can evaluate the SQL

warning as urgent, and create and return a SQL exception once the control is returned to
SAP jConnect.

Programming Information

Programmers Reference 83

Installing an Error-Message Handler
Install an error-message handler implementing SybMessageHandler by calling the
setMessageHandler method from SybDriver, SybConnection, or
SybStatement.

If you install an error-message handler from SybDriver, all subsequent SybConnection
objects inherit it. If you install an error-message handler from a SybConnection object, it
is inherited by all SybStatement objectscreated by that SybConnection.

This hierarchy only applies from the time the error-message handler object is installed. For
example, if you create a SybConnection object called “myConnection,” and then call
SybDriver.setMessageHandler to install an error-message handler object,
“myConnection” cannot use that object.

To return the current error-message handler object, use getMessageHandler.

Error Message Handler Example
Example for an error message handler in SAP jConnect.

 import java.io.*;
 import java.sql.*;
 import com.sybase.jdbcx.SybMessageHandler;
 import com.sybase.jdbcx.SybConnection;
 import com.sybase.jdbcx.SybStatement;
 import java.util.*;

 public class MyApp
 {
 static SybConnection conn = null;
 static SybStatement stmt = null
 static ResultSet rs = null;
 static String user = "guest";
 static String password = "sybase";
 static String server = "jdbc:sybase:Tds:192.138.151.39:4444";
 static final int AVOID_SQLE = 20001;

 public MyApp()
 {
 try
 {
 Class.forName("com.sybase.jdbc4.jdbc.SybDriver").newIn
stance();
 Properties props = new Properties();
 props.put("user", user);
 props.put("password", password);
 conn = (SybConnection)
 DriverManager.getConnection(server, props);
 conn.setMessageHandler(new NoResultSetHandler());
 stmt =(SybStatement) conn.createStatement();
 stmt.executeUpdate("raiserror 20001 'your error'");

Programming Information

84 SAP jConnect for JDBC

 for (SQLWarning sqw = _stmt.getWarnings();
 sqw != null;
 sqw = sqw.getNextWarning());
 {
 if (sqw.getErrorCode() == AVOID_SQLE);
 {
 System.out.println("Error" + sqw.getErrorCode()+
 " was found in the Statement’s warning list.");
 break;
 }
 }
 stmt.close();
 conn.close();
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 class NoResultSetHandler implements SybMessageHandler
 {
 public SQLException messageHandler(SQLException sqe)
 {
 int code = sqe.getErrorCode();
 if (code == AVOID_SQLE)
 {
 System.out.println("User " + _user + " downgrading " +
 AVOID_SQLE + " to a warning");
 sqe = new SQLWarning(sqe.getMessage(),
 sqe.getSQLState(),sqe.getErrorCode());
 }
 return sqe;
 }
 }

 public static void main(String args[])
 {
 new MyApp();
 }

Password Encryption
By default, SAP jConnect for JDBC sends plain text passwords over the network to SAP
Adaptive Server for authentication.

However, SAP jConnect also supports symmetrical and asymmetrical password encryption
and can encrypt passwords before they are sent over the network.

The symmetrical encryption mechanism uses the same key to encrypt and decrypt the
password, whereas an asymmetrical encryption mechanism uses one key (the public key) to
encrypt the password and another key (the private key) to decrypt the password. Because the
private key is not shared across the network, asymmetrical encryption is considered more

Programming Information

Programmers Reference 85

secure than symmetrical encryption. When password encryption is enabled, and the server
supports asymmetric encryption, this format is used instead of symmetric encryption.

Note: To use the asymmetric password encryption feature, you must have a server that
supports password encryption, such as SAP Adaptive Server 15.0.2 or later.

Enabling Password Encryption
The ENCRYPT_PASSWORD connection property specifies whether the password is
transmitted in encrypted format.

This same property enables asymmetric key encryption. When password encryption is
enabled and the server supports asymmetric key encryption, this format is used instead of
symmetric key encryption.

Set the ENCRYPT_PASSWORD connection property to true to enable password encryption.
The default value is false.

Note: If the server is configured to require clients to use an encrypted password, entering a
plain text password causes user login to fail.

Enabling Login Retry with Clear Text Password
Server login fails when the ENCRYPT_PASSWORD property is set to true, and the server does
not support password encryption.

To use a clear text password for servers that do not support password encryption, set the
RETRY_WITH_NO_ENCRYPTION connection property to true.

When both ENCRYPT_PASSWORD and RETRY_WITH_NO_ENCRYPTION properties are
set to true, jConnect first logs in using the encrypted password. If login fails, jConnect logs in
using the clear text password.

Setting Up the Java Cryptography Extension (JCE) Provider
Asymmetric password encryption mechanism uses RSA encryption algorithms to encrypt the
password being transmitted.

To perform this RSA encryption, configure your JRE with a suitable Java Cryptography
Extension (JCE) provider. The configured JCE provider should be capable of supporting the
“RSA/ECB/OAEPWithSHA1AndMGF1Padding” or “RSA/NONE/
OAEPWithSHA1AndMGF1Padding” transformation. SAP jConnect ships a FIPS 140-2
certified JCE Provider with the product and it is used by default.

You can use the JCE_PROVIDER_CLASS connection property to specify an alternate JCE
provider. There are a number of commercial and open source JCE providers that you can
choose from. For example, the “Bouncy Castle Crypto APIs for Java” is a popular open source
Java JCE provider. If you choose not to specify the JCE_PROVIDER_CLASS property, SAP
jConnect uses the default FIPS 140-2 certified bundled provider.

Programming Information

86 SAP jConnect for JDBC

Using Default JCE Provider to Perform Password Encryption
SAP jConnect uses default bundled FIPS 140-2 certified JCE Provider to perform RSA
password encryption, when JCE_PROVIDER_CLASS is not specified.

Specifying Custom JCE Provider
Specify a custom JCE provider in SAP jConnect.

1. Set the JCE_PROVIDER_CLASS property to the fully qualified class name of the
provider you want to use.

For example, to use the Bouncy Castle JCE:
String url = "jdbc:sybase:Tds:myserver:3697";
Properties props = new Properties();
props.put("ENCRYPT_PASSWORD ", “true”);
props.put("JCE_PROVIDER_CLASS",
"org.bouncycastle.jce.provider.BouncyCastleProvider");

/* Set up additional connnection properties as needed */
props.put("user", "xyz");
props.put("password", "123");

/* get the connection */
Connection con = DriverManager.getConnection(url, props);

2. Configure the JCE provider.

Either:
• Copy the JCE provider jar file into the JRE standard extension directory:

• For UNIX platforms: ${JAVA_HOME}/jre/lib/ext
• For Windows: %JAVA_HOME%\jre\lib\ext

• Or, if you cannot copy the JCE jar file to the appropriate directory, see JCE Reference
Guide for instructions on setting up an external JCE provider.

If no other JCE providers are configured, or if configured providers do not support the
required transformation and password encryption is enabled, the connection fails.

Store Java Objects as Column Data in Table
Database products enable you to directly store Java objects as column data in a database.

In such databases, Java classes are treated as datatypes, and you can declare a column with a
Java class as its datatype.

SAP jConnect supports storing Java objects in a database by implementing the setObject
methods defined in the PreparedStatement interface and the getObject methods
defined in the CallableStatement and ResultSet interfaces. This allows you to use
SAP jConnect with an application that uses native JDBC classes and methods to directly store
and retrieve Java objects as column data.

Programming Information

Programmers Reference 87

Note: To use getObject and setObject, set the SAP jConnect version to
com.sybase.jdbcx.SybDriver.VERSION_4 or later.

SAP Adaptive Server version 12.0 and later, and SAP SQL Anywhere version 6.0.x and later
can store Java objects in a table, with some limitations. See the SAP jConnect for JDBC
Release Bulletin.

See also
• Prerequisites for Storing Java Objects as Column Data on page 88
• Receive Java Objects from Database on page 90
• JCONNECT_VERSION Connection Property on page 4
• Sending Java Objects to Database on page 88

Prerequisites for Storing Java Objects as Column Data
Store Java objects belonging to a user-defined Java class in a column.

• The class must implement the java.io.Serializable interface. This is because
SAP jConnect uses native Java serialization and deserialization to send objects to a
database and receive them back from the database.

• The class definition must be installed in the destination database, or you must be using the
DynamicClassLoader (DCL) to load a class directly from SAP SQL Anywhere or an
SAP Adaptive Server server and use it as if it were present in the local CLASSPATH.

• The client system must have the class definition in a .class file that is accessible through
the local CLASSPATH environment variable.

See also
• Dynamic Class Loading on page 91

Sending Java Objects to Database
Use the setObject methods to send Java objects to a database.

To send an instance of a user-defined class as column data, use one of the setObject
methods, as specified in the PreparedStatement interface:

void setObject(int parameterIndex, Object x, int targetSqlType,
 int scale) throws SQLException;
void setObject(int parameterIndex, Object x, int targetSqlType)
 throws SQLException;
void setObject(int parameterIndex, Object x) throws SQLException;

In jConnect, to send a Java object, you can use the java.sql.Types.JAVA_OBJECT
target sql.Type, or you can use java.sql.Types.OTHER.

This example defines an Address class, shows the definition of a Friends table that has an
Address column whose datatype is the Address class, and inserts a row into the table.

Programming Information

88 SAP jConnect for JDBC

public class Address implements Serializable
{
 public String streetNumber;
 public String street;
 public String apartmentNumber;
 public String city;
 public int zipCode;
 //Methods
 ...
}
/* This code assumes a table with the following structure
** Create table Friends:
** (firstname varchar(30) ,
** lastname varchar(30),
** address Address,
** phone varchar(15))
*/
// Connect to the database containing the Friends table.
Connection conn =
 DriverManager.getConnection("jdbc:sybase:Tds:localhost:5000",
 "username", "password");

// Create a Prepared Statement object with an insert statement
//for updating the Friends table.
PreparedStatement ps = conn.prepareStatement("INSERT INTO
 Friends values (?,?,?,?)");

// Now, set the values in the prepared statement object, ps.
// set firstname to "Joan."
ps.setString(1, "Joan");

// Set last name to "Smith."
ps.setString(2, "Smith");

// Assuming that we already have "Joan_address" as an instance
// of Address, use setObject(int parameterIndex, Object x) to
// set the address column to "Joan_address."
ps.setObject(3, Joan_address);

// Set the phone column to Joan’s phone number.
ps.setString(4, "123-456-7890");

// Perform the insert.
ps.executeUpdate();

Programming Information

Programmers Reference 89

Receive Java Objects from Database
Client JDBC applications can receive a Java object from the database in a result set or as the
value of an output parameter returned from a stored procedure.

If a result set contains a Java object as column data, use one of the getObject methods in the
ResultSet interface to retrieve the object:

Object getObject(int columnIndex) throws SQLException;
Object getObject(String columnName) throws SQLException;

If an output parameter from a stored procedure contains a Java object, use this getObject
method in the CallableStatement interface to retrieve the object:

Object getObject(int parameterIndex) throws SQLException;

This example illustrates the use of ResultSet.getObject(int
parameterIndex) to assign an object received in a result set to a class variable. The
example uses the Address class and Friends table and presents a simple application that
prints a name and address on an envelope.
/*
 ** This application takes a first and last name, gets the
 ** specified person’s address from the Friends table in the
 ** database, and addresses an envelope using the name and
 ** retrieved address.
 */
 public class Envelope
 {
 Connection conn = null;
 String firstName = null;
 String lastName = null;
 String street = null;
 String city = null;
 String zip = null;

 public static void main(String[] args)
 {
 if (args.length < 2)
 {
 System.out.println("Usage: Envelope <firstName>
 <lastName>");
 System.exit(1);
 }
 // create a 4" x 10" envelope
 Envelope e = new Envelope(4, 10);
 try
 {
 // connect to the database with the Friends table.
 conn = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:5000", "username",
 "password");
 // look up the address of the specified person
 firstName = args[0];

Programming Information

90 SAP jConnect for JDBC

 lastName = args[1];
 PreparedStatement ps = conn.prepareStatement(
 "SELECT address FROM friends WHERE " +
 "firstname = ? AND lastname = ?");
 ps.setString(1, firstName);
 ps.setString(2, lastName);
 ResultSet rs = ps.executeQuery();
 if (rs.next())
 {
 Address a = (Address) rs.getObject(1);
 // set the destination address on the envelope
 e.setAddress(firstName, lastName, a);
 }
 conn.close();
 }
 catch (SQLException sqe)
 {
 sqe.printStackTrace();
 System.exit(2);
 }
 // if everything was successful, print the envelope
 e.print();
 }
 private void setAddress(String fname, String lname, Address a)
 {
 street = a.streetNumber + " " + a.street + " " +
 a.apartmentNumber;
 city = a.city;
 zip = "" + a.zipCode;
 }
 private void print()
 {
 // Print the name and address on the envelope.
 ...
 }
 }

You can find a more detailed example of HandleObject.java in the sample2
subdirectory under your SAP jConnect installation directory.

Dynamic Class Loading
SAP SQL Anywhere and SAP Adaptive Server allow you to specify Java classes.

• Datatypes of SQL columns
• Datatypes of Transact-SQL variables
• Default values for SQL columns

SAP jConnect version 6.05 and later implements DynamicClassLoader (DCL) to load a
class directly from an SAP SQL Anywhere or SAP Adaptive Server server and use it as if it
were present in the local CLASSPATH.

In SAP jConnect 6.0 and earlier versions, only classes that appeared in the SAP jConnect
CLASSPATH were accessible, that is, any attempt of a SAP jConnect application to access an

Programming Information

Programmers Reference 91

instance of a class that was not in the local CLASSPATH, resulted in a
java.lang.ClassNotFound exception.

All security features present in the superclass are inherited. The loader delegation model
implemented in Java 2 is followed—first SAP jConnect attempts to load a requested class
from the CLASSPATH; if that fails, SAP jConnect tries the DynamicClassLoader.

See Java in Adaptive Server for more detailed information about using Java and SAP Adaptive
Server.

Using DynamicClassLoader
Use the CLASS_LOADER connection property to provide a convenient mechanism for
sharing one class loader among several connections.

1. Create and configure a class loader.

The code for your SAP jConnect application should look similar to this:
Properties props = new Properties();// URL of the server where the
classes live.
String classesUrl = "jdbc:sybase:Tds:myase:1200"; // Connection
properties for connecting to above server.
props.put("user", "grinch");
props.put("password", "meanone");
... // Ask the SybDriver for a new class loader.
DynamicClassLoader loader = driver.getClassLoader(classesUrl,
props);

2. Use the CLASS_LOADER connection property to make the new class loader available to
the statement that executes the query.

Once you create the class loader, pass it to subsequent connections as shown (continuing
from the code example in step 1):
// Stash the class loader so that other connection(s)
// can know about it.
props.put("CLASS_LOADER", loader);// Additional connection
properties
props.put("user", "joeuser");
props.put("password", "joespassword");// URL of the server we now
want to connect to.
String url = "jdbc:sybase:Tds:jdbc.sybase.com:4446";// Make a
connection and go.
Connection conn = DriverManager.getConnection(url, props);

Assume the Java class definition is:
class Addr {
 String street;
 String city;
 String state;
}

Assume the SQL table definition:

Programming Information

92 SAP jConnect for JDBC

create table employee (char(100) name, int empid, Addr address)
3. Use the client-side code in the absence of an Addr class in the client application

CLASSPATH:

Statement stmnt = conn.createStatement();
// Retrieve some rows from the table that has a Java class
// as one of its fields.
ResultSet rs = stmnt.executeQuery(
 "select * from employee where empid = ’19’");
if (rs.next() {
 // Even though the class is not in our class path,
 // we should be able to access its instance.
 Object obj = rs.getObject("address");
 // The class has been loaded from the server, so let's take a
look.
 Class c = obj.getClass();
 // Some Java Reflection can be done here to access the fields
of obj.
 ...
}

Ensure that sharing a class loader across connections does not result in class conflicts. For
example, if two different, incompatible instances of class org.foo.Bar exist in two
different databases, problems might arise if you use the same loader to access both classes.
The first class is loaded when examining a result set from the first connection. When it is time
to examine a result set from the second connection, the class is already loaded. Consequently,
the second class is never loaded, and there is no direct way for SAP jConnect to detect this
situation.

However, Java has a built-in mechanism for ensuring that the version of a class matches the
version information in a deserialized object. The above situation is at least detected and
reported by Java.

Classes and their instances do not need to reside in the same database or server, but there is no
reason why both the loader and subsequent connections cannot refer to the same database or
server.

Deserialization
The serialized object is an instance of a class that resides on a server and does not exist in the
CLASSPATH.

This example illustrates how to deserialize an object from a local file:

Programming Information

Programmers Reference 93

SybResultSet.getObject() makes use of DynamicObjectInputStream,
which is a subclass of ObjectInputStream that loads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class loader.

// Make a stream on the file containing the
//serialized object.
FileInputStream fileStream = new FileInputStream("serFile");
// Make a "deserializer" on it. Notice that, apart
//from the additional parameter, this is the same
//as ObjectInputStreamDynamicObjectInputStream
stream = new DynamicObjectInputStream(fileStream, loader);
// As the object is deserialized, its class is
//retrieved through the loader from our server.
Object obj = stream.readObject();stream.close();

Preloading .jar Files
SAP jConnect version 6.05 or later has a connection property called PRELOAD_JARS. When
defined as a comma-delimited list of .jar file names, the .jar files are loaded in their
entirety.

In this context, “JAR” refers to the “retained JARname” used by the server. This is the .jar
file name specified in the install Java program, for example:

install java new jar 'myJarName' from file '/tmp/mystuff.jar'

If you set PRELOAD_JARS, the .jar files are associated with the class loader, so it is
unnecessary to preload them with every connection. You should only specify
PRELOAD_JARS for one connection. Subsequent attempts to preload the same .jar files
may result in performance problems as the .jar file data is retrieved from the server
unnecessarily.

Note: SAP SQL Anywhere cannot return a .jar file as one entity, so SAP jConnect
iteratively retrieves each class in turn. However, SAP Adaptive Server retrieves the
entire .jar file and loads each class that it contains.

Additional Dynamic Class Loading Features
Additional features include the ability to keep the database connection of a loader alive when a
series of class loads is expected, and to explicitly load a single class by name.

You can use public methods inherited from java.lang.ClassLoader. Methods in
java.lang.Class that deal with loading classes are also available; however, use these
methods with caution because some of them make assumptions about which class loader gets

Programming Information

94 SAP jConnect for JDBC

used. In particular, you should use the three-argument version of Class.forName,
otherwise the system (boot) class loader is used.

There are various public methods in DynamicClassLoader. For more information, see
the Javadoc in the JDBC_HOME/docs/en/javadocs.

See also
• Error Messages on page 81

JDBC 4.0 Specifications Support
Some JDBC 4.0 specifications that are supported by SAP jConnect.

• Connection management
• Automatic SQL driver loading
• Database metadata
• National character set conversion
• Wrapper pattern
• Scalar functions CHAR_LENGTH, CHARACTER_LENGTH, CURRENT_DATE,

CURRENT_TIME, CURRENT_TIMESTAMP, EXTRACT, and OCTET_LENGTH,
POSITION

See Oracle Technology Network for Java for information about the JDBC 4.0 specifications.

JDBC 3.0 Specifications Support
JDBC 3.0 features that are supported in SAP jConnect 16.0.

Savepoint Support
You can use the Savepoint interface, which contains methods to set, release, or roll back a
transaction to designated savepoints.

• Using Savepoints in your transactions – JDBC 3.0, the Savepoint interface allows
you to partition a transaction into logical breakpoints, providing control over how much of
the transaction gets rolled back.

• Setting and rolling back to a Savepoint – JDBC 3.0 API includes the method
Connection.setSavepoint, which sets a savepoint within the current transaction
and returns a Savepoint object. The Connection.rollback method is
overloaded to take a Savepoint object argument.

• Releasing a Savepoint – The Connection.releaseSavepoint method takes a
Savepoint object as a parameter and removes it from the current transaction.

After a Savepoint has been released, if you try to reference it in a rollback operation, a
SQLException occurs. Any savepoints you create in a transaction are automatically
released and become invalid when the transaction is committed or when the entire
transaction is rolled back. If you roll a transaction back to a savepoint, it automatically

Programming Information

Programmers Reference 95

http://www.oracle.com/technetwork/index.html

releases and invalidates any other savepoints that were created after the savepoint in
question.

Note: You can use the DatabaseMetaData.supportsSavepoints method to
determine whether a JDBC API implementation supports savepoints.

Retrieval of Parameter Metadata
The JDBC 3.0 ParameterMetaData interface describes the number, type, and properties
of parameters to prepared statements, and supports the most current DatabaseMetaData
methods.

Retrieval of Autogenerated Keys
JDBC 3.0 addresses the common need to obtain from columns the value of an autogenerated
or autoincremented key.

To retrieve autogenerated keys, pass the constant
Statement.RETURN_GENERATED_KEYS as the second parameter of the
Statement.execute() method.

After you have executed the statement, call Statement.getGeneratedKeys() to
retrieve the generated keys. The result set contains a row for each retrieved key.

Note: SAP Adaptive Server cannot return a result set of generated keys. If you execute a batch
of insert commands, invoking Statement.getGeneratedKeys() returns only the
value of the last generated key.

For more information about retrieving autogenerated keys, including a sample code, search
for “retrieving automatically generated keys” on the Oracle Java Web site.

Multiple Open ResultSet Objects
JDBC 3.0 includes getMoreResults(int), which takes an argument that specifies
whether ResultSet objects returned by a Statement object should be closed before
returning any subsequent ResultSet objects.

The JDBC 3.0 specification allows the Statement interface to support multiple open
ResultSets, which removes the limitation of the JDBC 2.0 specification that statements
returning multiple results must have only one ResultSet open at any given time. To support
multiple open results, the Statement interface adds an overloaded version of the method
getMoreResults(). The getMoreResults(int) method takes an integer flag that
specifies the behavior of previously opened ResultSets when the getResultSet()
method is called. The interface defines the flags as follows:

• CLOSE_ALL_RESULTS – all previously opened ResultSet objects are closed when
calling getMoreResults().

• CLOSE_CURRENT_RESULT – the current ResultSet object are closed when calling
getMoreResults().

Programming Information

96 SAP jConnect for JDBC

• KEEP_CURRENT_RESULT – the current ResultSet object is not closed when calling
getMoreResults().

Pass Parameters to CallableStatement Objects by Name
Allows a string to identify the parameter to be set for a CallableStatement object.

You can use the CallableStatement interface to specify parameters by their names,
rather than by parameter's index. This is useful when a procedure has many parameters with
default values. You can use named parameters to specify only the values that have no default
value.

Holdable Cursor Support
A holdable cursor, or result does not automatically close when the transaction that contains the
cursor is committed. You must specify the holdability of a ResultSet object.

JDBC 3.0 supports specifying cursor holdability. You must specify the holdability of your
ResultSet when you prepare a statement using the createStatement(),
prepareStatement(), or prepareCall() methods. The holdability may be one of
the following constants:

• HOLD_CURSORS_OVER_COMMIT – ResultSet objects (cursors) are not closed;
they are held open when a commit operation is implicitly or explicitly performed.

• CLOSE_CURSORS_AT_COMMIT – ResultSet objects (cursors) are closed when a
commit operation is implicitly or explicitly performed.

Closing a cursor when a transaction is committed usually results in better performance. Unless
you require the cursor after the transaction, SAP recommends that you close the cursor when
the commit operation is carried out. Because the specification does not define the default
holdability of a ResultSet, its behavior depends on the implementation.

Support for JDBC 2.0 Optional Package Extensions
The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API) defined
several features that JDBC 2.0 drivers could implement.

SAP jConnect version 6.05 and later have implemented several of these optional package
extension features:

• JNDI for naming conventions – works with any SAP DBMS supported by SAP jConnect
• Connection pooling – works with any SAP DBMS supported by SAP jConnect
• Distributed transaction management support – works only with SAP Adaptive Server

SAP recommends that you use JNDI 1.2, which is compatible with Java 1.1.6 and later.

Programming Information

Programmers Reference 97

JNDI for Naming Databases
Review the information for JNDI for naming databases.

Reference
The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API).

Related Interfaces
Related interfaces provide JDBC clients with an alternative to the standard approach for
obtaining database connections.

• javax.sql.DataSource
• javax.naming.Referenceable
• javax.naming.spi.ObjectFactory
Instead of invoking Class.forName
(“com.sybase.jdbc4.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager's getConnection() method, clients can access a JNDI name server
using a logical name to retrieve a javax.sql.DataSource object. This object is
responsible for loading the driver and establishing the connection to the physical database it
represents. The client code is simpler and reusable because the vendor-specific information
has been placed within the DataSource object.

The SAP implementation of the DataSource object is
com.sybase.jdbcx.SybDataSource (see the Javadoc for details). This
implementation supports the standard properties using the design pattern for JavaBean
components:

• databaseName
• dataSourceName
• description
• networkProtocol
• password
• portNumber
• serverName
• user

Note: roleName is not supported.

SAP jConnect provides an implementation of the
javax.naming.spi.ObjectFactory interface so the DataSource object can be
constructed from the attributes of a name server entry. When given a
javax.naming.Reference, or a javax.naming.Name and a
javax.naming.DirContext, this factory can construct
com.sybase.jdbcx.SybDataSource objects. To use this factory, set the

Programming Information

98 SAP jConnect for JDBC

java.naming.object.factory system property to include
com.sybase.jdbc4.SybObjectFactory.

Usage
DataSource is used in different ways, in different applications.

All options are presented with some code examples. For more information, see the JDBC 2.0
Optional Package (formerly the JDBC 2.0 Standard Extension API), and the JNDI
documentation on the Oracle Java Web site.

Configuration by Administrator: LDAP
SAP jConnect has supported LDAP connectivity since version 4.0. As a result, the
recommended approach, which requires no custom software, is to configure DataSources
as LDAP entries using the LDAP Data Interchange Format (LDIF).

For example:

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb

Access by Client
A JDBC client application allows you to access the server name to obtain a reference to a
DataSource object, instead of accessing the DriverManager and providing a JDBC
URL.

This is a typical JDBC client application. Once you obtain the connection, the client code is
identical to any other JDBC client code. The code is generic and references SAP jConnect
only when setting the object factory property, which you can do as part of the environment
setup.

The SAP jConnect installation contains the sample program sample2/
SimpleDataSource.java to illustrate the use of DataSource. This sample is
provided for reference only, that is, you cannot run the sample unless you configure your
environment and edit the sample appropriately. SimpleDataSource.java contains the
following critical code:

import javax.naming.*;
import javax.sql.*;
import java.sql.*;
// set necessary JNDI properties for your environment (same as above)
Properties jndiProps = new Properties();
// used by JNDI to build the SybDataSource

Programming Information

Programmers Reference 99

jndiProps.put(Context.OBJECT_FACTORIES,
 "com.sybase.jdbc4.jdbc.SybObjectFactory");
// nameserver that JNDI should talk to
jndiProps.put(Context.PROVIDER_URL, "ldap: some_ldap_server:238/" +
"o=MyCompany,c=Us");
// used by JNDI to establish the naming context
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
// obtain a connection to your name server
Context ctx = new InitialContext(jndiProps);
DataSource ds = (DataSource) ctx.lookup("servername=myASE");
// obtains a connection to the server as configured earlier.
// in this case, the default username and password will be used
Connection conn = ds.getConnection();
// do standard JDBC methods
...

You need not explicitly pass the Properties to the InitialContext constructor if the
properties have already been defined within the virtual machine, that is, passed when Java was
either set as part of the browser properties, or by using:

java -
Djava.naming.object.factory=com.sybase.jdbc4.jdbc.SybObjectFactory

See your Java VM documentation for more information about setting environment properties.

Programmatic Configuration
The purpose of programmatic configuration is to define a data source, then deploy it under a
logical name to a name server.

If the server needs to be reconfigured (for example, moved to another machine, port, and so
on), the administrator runs this configuration utility (outlined as follows) and reassigns the
logical name to the new data source configuration. This phase is typically done by the person
who performs database system administration or application integration for their company. As
a result, the client code does not change, since it knows only the logical name.

import javax.sql.*;
import com.sybase.jdbcx.*;
.....
// create a SybDataSource, and configure it

Programming Information

100 SAP jConnect for JDBC

SybDataSource ds = new com.sybase.jdbc4.jdbc.SybDataSource();
ds.setUser("my_username");
ds.setPassword("my_password");
ds.setDatabaseName("my_favorite_db");
ds.setServerName("db_machine");
ds.setPortNumber(4000);
ds.setDescription("This DataSource represents the Adaptive Server
 Enterprise server running on db_machine at port 2638. The default
 username and password have been set to 'me' and 'mine'
respectively.
 Upon connection, the user will access the my_favorite_db database
on
 this server.");
Properties props = newProperties()
props.put("REPEAT_READ","false");
props.put("REQUEST_HA_SESSION","true");
ds.setConnectionProperties(props);
// store the DataSource object. Typically this is
// done by setting JNDI properties specific to the
// type of JNDI service provider you are using.
// Then, initialize the context and bind the object.
Context ctx = new InitialContext();
ctx.bind("java:comp/env/jdbc/myASE", ds);

Once you set up your DataSource, decide where and how you want to store the
information. To assist you, SybDataSource is both java.io.Serializable and
javax.naming.Referenceable, but it is still up to the administrator to determine how
the data is stored, depending on what service provider you are using for JNDI.

Retrieve Datasource Object by Client
The client retrieves the DataSource object by setting its JNDI properties the same way the
DataSource was deployed.

The client needs to have an object factory available that can transform the object as it is stored
(for example, serialized) into a Java object.

Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/myASE");
Connection conn = ds.getConnection();

Programming Information

Programmers Reference 101

Connection Pooling
Review the connection pooling instructions in SAP jConnect.

Reference
Review the JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API).

Related Interfaces
Review the related interfaces in JDBC.

• javax.sql.ConnectionPoolDataSource
• javax.sql.PooledConnection

Overview
Traditional database applications create one connection to a database that you use for each
session of an application. However, a Web-based database application may need to open and
close a new connection several times when using the application.

An efficient way to handle Web-based database connections is to use connection pooling,
which maintains open database connections and manages connection sharing across different
user requests to maintain performance and to reduce the number of idle connections. On each
connection request, the connection pool first determines if there is an idle connection in the
pool. If there is, the connection pool returns that connection instead of making a new
connection to the database.

The com.sybase.jdbc4.jdbc.ConnectionPoolDataSource class is provided
to interact with connection pooling implementations. When you use
ConnectionPoolDataSource, pool implementations listen to the
PooledConnection. The implementation is notified when you close the connection, or if
you have an error that destroys the connection. At this point, the pool implementation decides
what to do with the PooledConnection.

Without connection pooling, a transaction:

1. Creates a connection to the database.
2. Sends the query to the database.
3. Gets back the result set.
4. Displays the result set.
5. Destroys the connection.

With connection pooling, the sequence looks more like this:

1. Transaction determines whether an unused connection exists in the poo” of connections.
2. If so, uses it; otherwise creates a new connection.
3. Sends the query to the database.
4. Gets back the result set.

Programming Information

102 SAP jConnect for JDBC

5. Displays the result set.
6. Returns the connection to the pool. The user still calls close(), but the connection

remains open, and the pool is notified of the close request.

It is less costly to reuse a connection than to create a new one every time a client needs to
establish a connection to a database.

To enable a third party to implement the connection pool, the jConnect implementation has the
ConnectionPoolDataSource interface produce PooledConnections, similar to
the way the DataSource interface produces Connections.The pool implementation
creates real database connections, using the getPooledConnection() methods of
ConnectionPoolDataSource. Then, the pool implementation registers itself as a
listener to the PooledConnection. Currently, when a client requests a connection, the
pool implementation invokes getConnection() on an available
PooledConnection. When the client finishes with the connection and calls close, the
pool implementation is notified through the ConnectionEventListener interface that
the connection is free and available for reuse.

The pool implementation is also notified through the ConnectionEventListener
interface if the client somehow corrupts the database connection, so that the pool
implementation can remove that connection from the pool.For more information, refer to
Appendix B in the JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension
API).

Configuration by Administrator: LDAP
Configure the LDAP by entering an additional line to your LDIF entry.

In this example, the added line of code is bolded for your reference.
dn:servername=myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.18:ConnectionPoolDataSource

See also
• JNDI for Naming Databases on page 98

• Configuration by Administrator: LDAP on page 99

Access by Middle-Tier Clients
Initializes three properties INITIAL_CONTEXT_FACTORY, PROVIDER_URL, and
OBJECT_FACTORIES and retrieves a ConnectionPoolDataSource object.

For a more complete code example, see sample2/SimpleConnectionPool.java.
The fundamental difference between access by client and middle-tier client is:

...
ConnectionPoolDatabase cpds = (ConnectionPoolDataSource)

Programming Information

Programmers Reference 103

 ctx.lookup("servername=myASE");
PooledConnection pconn = cpds.getPooledConnection();

Distributed Transaction Management Support
Provides a standard Java API for performing distributed transactions with SAP Adaptive
Server. This feature is designed for use in a large multitier environment.

Reference
The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API).

Related Interfaces
Review the related interfacs in JDBC.

• javax.sql.XADataSource
• javax.sql.XAConnection
• javax.transaction.xa.XAResource

Background and System Requirements
Use the dtm_tm_role to enable the Distribute Transaction Management support.

• SAP jConnect must be communicating directly with the resource manager within SAP
Adaptive Server version 12.0 and later, and the installation must have Distributed
Transaction Management support.

• Any user who wants to participate in a distributed transaction must be granted
dtm_tm_role, or the transactions fail.

• To use distributed transactions, you must install the stored procedures in the /sp directory.
Refer to Installing Stored Procedures in the SAP jConnect for JDBC Installation Guide.

Figure 2: Distributed Transaction Management Support with Version 12.x

Configuration by Administrator LDAP
Configure the LDAP by entering an additional line to your LDIF entry.

In this example, the added line of code is displayed in bold.

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.18:XADataSource

Programming Information

104 SAP jConnect for JDBC

See also
• JNDI for Naming Databases on page 98
• Configuration by Administrator: LDAP on page 99

Access by Middle-Tier Clients
Initializes three properties INITIAL_CONTEXT_FACTORY, PROVIDER_URL, and
OBJECT_FACTORIES, and retrieves a XADataSoure object.

For example:

...
XADataSoruce xads = (XADatasource) ctx.lookup ("server=myASE");
XAConnection xaconn = xads.getXAConnection ();

or, override the default settings for the user name and password:

...
XADataSource xads = (XADatasource) ctx.lookup("servername=myASE");
XAConnection xaconn = xads.getXAConnection("my_username",
"my_password");

Restrictions and Interpretations of JDBC Standards
The SAP jConnect implementation of JDBC deviates from the JDBC standards.

See also
• Adjustments for Multithreading on page 107
• Unsupported JDBC 4.0 Specification Requirements on page 105
• Use Connection.isClosed and IS_CLOSED_TEST on page 105
• Statement.close with Unprocessed Results on page 106
• ResultSet.getCursorName on page 107
• Execute Stored Procedures on page 108

Unsupported JDBC 4.0 Specification Requirements
Review the JDBC 4.0 statements that are not supported in this release.

• java.sql.RowID
• XML APIs introduced in JDBC 4.0

Use Connection.isClosed and IS_CLOSED_TEST
SAP jConnect offers a default interpretation of the isClosed method that differs from the
behavior defined in the JDBC 4.0 specification.

When you call Connection.isClosed, SAP jConnect verifies that
Connection.close has been called on this connection. If close has been called, SAP
jConnect returns true for isClosed. However, if Connection.close has not been

Programming Information

Programmers Reference 105

called, SAP jConnect tries to execute the sp_mda on the database. sp_mda is part of the
standard metadata that SAP jConnect users must install when they use SAP jConnect with a
database.

According to section 11.1 of the JDBC 4.0 specification:

The Connection.isClosed method is only guaranteed to return true after
Connection.close has been called. Connection.isClosed cannot be called, in
general, to determine whether a database connection is valid. A typical client can determine
that a connection is invalid by catching the exception that is thrown when an operation is
attempted.

The purpose of calling sp_mda is so that SAP jConnect can try to execute a procedure that is
known (or at least, expected) to reside on the database server. If the stored procedure executes
normally, SAP jConnect returns false for isClosed because it has verified that the database
connection is valid and working. However, if the call to sp_mda results in a SQLException
being thrown, SAP jConnect catches the exception and returns true for isClosed because it
appears that there is something wrong with the connection.

To force SAP jConnect to more closely follow the standard JDBC behavior for
isClosed(), set the IS_CLOSED_TEST connection property to the special value
“INTERNAL.” The INTERNAL setting means that SAP jConnect returns true for
isClosed only when Connection.close has been called, or when SAP jConnect has
detected an IOException that has disabled the connection.

You can also specify a query other than sp_mda to use when isClosed is called. For
example, if you intend for SAP jConnect to attempt a select 1 when isClosed is called, set
the IS_CLOSED_TEST connection property to select 1.

Statement.close with Unprocessed Results
The JDBC specification deos not clearly address how a driver should behave when you call
Statement.execute and later call close on that same statement object without
processing all of the results (update counts and ResultSets) returned by the Statement.

For example, assume that there is a stored procedure on the database that performs seven row
inserts. An application then executes that stored procedure using a Statement.execute.
In this case, a SAP database returns seven update counts (one for each inserted row) to the
application. In normal JDBC application logic, you would process those update counts in a
loop using the getMoreResults, getResultSet and getUpdateCount methods.
These are clearly explained on the Java SE documentation in the Javadoc for the java.sql.*
package.

However, an application programmer might incorrectly call Statement.close before
reading through all of the returned update counts. In this case, SAP jConnect sends a cancel
to the database, which might have unexpected and unwanted side effects.

Programming Information

106 SAP jConnect for JDBC

http://www.oracle.com/technetwork/java/index.html

In this particular example, if the application calls Statement.close before the database
has completed the inserts, the database might not execute all of the inserts. It might stop, for
example, after only five rows are inserted because the cancel is processed on the database
before the stored procedure completes. SAP jConnect throws a SQLException when you try to
close a Statement when there are still unprocessed results.

The missing inserts would not be reported to you. SAP jConnect programmers are strongly
advised to adhere to these guidelines:

• When you call Statement.close, a cancel is sent to the server if not all the results
(update counts and ResultSets) have been completely processed. In cases where you only
executed select statements, this is fine. However, in cases where you executed insert/
update/delete operations, this might result in not all of those operations completing as
expected.

• Therefore, you should never call close with unprocessed results when you have
executed anything but pure select statements.

• Instead, if you call Statement.execute, be sure your code processes all the results by
using the getUpdateCount, getMoreResults, and getResultSet methods.

Adjustments for Multithreading
Several threads simultaneously call methods on the same Statement instance,
CallableStatement, or PreparedStatement, which SAP does not recommend you
must manually synchronize the calls to the methods on the Statement; SAP jConnect does
not do this automatically.

For example, if you have two threads operating on the same Statement instance—one
thread sending a query and the other thread processing warnings—you must synchronize the
calls to the methods on the Statement or there might be conflicts.

ResultSet.getCursorName
JDBC drivers generate a cursor name for any SQL query so that a string can always be
returned. However, SAP jConnect does not return a name when
ResultSet.getCursorName is called.

Provided you either:

• Called setFetchSize or setCursorName on the corresponding statement, or

• Set the SELECT_OPENS_CURSOR connection property to true, and your query was in
the form of SELECT... FOR UPDATE. For example:
select au_id from authors for update

If you do not call setFetchSize or setCursorName on the corresponding statement, or
set the SELECT_OPENS_CURSOR connection property to true, null is returned.

According to the JDBC 2.0 API documentation, all other SQL statements do not need to open
a cursor and return a name.

Programming Information

Programmers Reference 107

For more information on how to use cursors in SAP jConnect, see Cursors with Result Sets.

See also
• Use Cursors with Result Sets on page 55

Execute Stored Procedures
Executing a stored procedure in a CallableStatement object that represents parameter
values as question marks, you get better performance than if you use both question marks and
literal values for parameters.

Also, if you mix literals and question marks, you cannot use output parameters with a stored
procedure.

This example creates sp_stmt as a CallableStatement object for executing the stored
procedure MyProc:
CallableStatement sp_stmt = conn.prepareCall(
 "{call MyProc(?,?)}");

The two parameters in MyProc are represented as question marks. You can register one or both
of them as output parameters using the registerOutParameter methods in the
CallableStatement interface.

In this example, sp_stmt2 is a CallableStatement object for executing the stored
procedure MyProc2.
CallableStatement sp_stmt2 = conn.prepareCall(
 {"call MyProc2(?,'javelin')}");

In sp_stmt2, one parameter value is given as a literal value and the other as a question mark.
You cannot register either parameter as an output parameter.

To execute stored procedures with RPC commands using name-binding for parameters, use
either of these procedures:

• Use language commands, passing input parameters to them directly from Java variables
using the PreparedStatement class.

// Prepare the statement
System.out.println("Preparing the statement...");
String stmtString = "exec " + procname + " @p3=?, @p1=?";
PreparedStatement pstmt = con.preparedStatement(stmtString);

// Set the values
pstmt.setString(1, "xyz");
pstmt.setInt(2, 123);

// Send the query
System.out.println("Executing the query...");
ResultSet rs = pstmt.executeQuery();

• With SAP jConnect version 6.05 and later, use the
com.sybase.jdbcx.SybCallableStatement interface:

Programming Information

108 SAP jConnect for JDBC

import com.sybase.jdbcx.*;
....
// prepare the call for the stored procedure to execute as an RPC
String execRPC = "{call " + procName + " (?, ?)}";
SybCallableStatement scs = (SybCallableStatement)
con.prepareCall(execRPC);

// set the values and name the parameters
// also (optional) register for any output parameters
scs.setString(1, "xyz");
scs.setParameterName(1, "@p3");
scs.setInt(2, 123);
scs.setParameterName(2, "@p1");

// execute the RPC
// may also process the results using getResultSet()
// and getMoreResults()
// see the samples for more information on processing results
ResultSet rs = scs.executeQuery();

Programming Information

Programmers Reference 109

Programming Information

110 SAP jConnect for JDBC

Security

SAP jConnect provides Secure Sockets Layer (SSL) and Kerberos options for securing client-
server communications

• SSL – use SSL to encrypt communications, including the login exchange, between client
and server applications.

• Kerberos – use Kerberos to authenticate Java applications or users of Java applications to
SAP Adaptive Server without sending user names or passwords over a network. Also use
Kerberos to set up a single sign-on (SSO) environment and provide mutual authentication
between the digital identity of a Java application and that of SAP Adaptive Server
Enterprise.

Note: You may use Kerberos to encrypt communications and provide data integrity
checking, but these features have not been implemented for SAP jConnect.

You can Kerberos and SSL together, providing the advantage of both SSO and encryption of
data transferred between client and server applications.

Restrictions
Kerberos and SSL is used with SAP Adaptive Server; SAP SQL Anywhere does not currently
support either SSL or Kerberos security.

SAP recommends that you read related documentation about SSL and Kerberos before
attempting to use either with SAP jConnect. The setup information assumes that the servers
you intend to use have been configured to work properly with SSL, with Kerberos, or with
both.

For further information on Kerberos, SSL, and configuring SAP Adaptive Server Enterprise,
see Related Documents on page 126. Also, see the white paper on setting up Kerberos, which
is referenced in the SAP jConnect for JDBC Release Bulletin.

Implement Custom SSL Socket Plug-ins
Plug a custom socket implementation into an application to customize the communication
between a client and server.

javax.net.ssl.SSLSocket is an example of a socket that you can customize to enable
encryption.

com.sybase.jdbcx.SybSocketFactory is a SAP jConnect extension interface that
contains the createSocket(String, int, Properties) method, which returns a

Security

Programmers Reference 111

java.net.Socket. To use a custom socket factory in SAP jConnect, an application must
implement this interface by defining the createSocket() method.

SAP jConnect uses the socket for subsequent input or output operations. Classes that
implement SybSocketFactory create sockets and provide a general framework for the
addition of public socket-level functionality, as shown:
/**
 * Returns a socket connected to a ServerSocket on the named host,
 * at the given port.
 * @param host the server host
 * @param port the server port
 * @param props Properties passed in through the connection
 * @returns Socket
 * @exception IOException, UnknownHostException
 */
public java.net.Socket createSocket(String host, int port,
Properties props)
 throws IOException, UnknownHostException;

Passing in properties allows instances of SybSocketFactory to use connection properties
to implement an intelligent socket.

When you implement SybSocketFactory, the same application code can use different
kinds of sockets by passing the different kinds of factories or pseudo-factories that create
sockets to the application.

You can customize factories with parameters used in socket construction. For example, you
can customize factories to return sockets with different networking timeouts or security
parameters already configured. The sockets returned to the application can be subclasses of
java.net.Socket to directly expose new APIs for features such as compression,
security, record marking, statistics collection, or firewall tunnelling
(javax.net.SocketFactory).

Note: SybSocketFactory is intended to be an overly simplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.*

Using Custom Socket with jConnect
Review the steps to use custom socket with SAP jConnect.

1. Provide a Java class that implements com.sybase.jdbcx.SybSocketFactory.

2. Set the SYBSOCKET_FACTORY connection property so that SAP jConnect can use your
implementation to obtain a socket.

To use a custom socket with SAP jConnect, set the SYBSOCKET_FACTORY connection
property to either:
• The class name that implements com.sybase.jdbcx.SybSocketFactory,

or,

Security

112 SAP jConnect for JDBC

• DEFAULT (this instantiates a new java.net.Socket).

See also
• Connection Properties on page 8
• Create and Configure a Custom Socket on page 113

Create and Configure a Custom Socket
You can create an instance of SSL socket and configure the socket, before SAP jConnect
obtains it.

SAP jConnect uses the socket to connect to a server.

This example shows how an implementation of SSL can create an instance of SSLSocket,
configure it, and then return it. The MySSLSocketFactory class implements
SybSocketFactory and extends javax.net.ssl.SSLSocketFactory to
implement SSL. It contains two createSocket methods—one for
SSLSocketFactory and one for SybSocketFactory—that:

• Create an SSL socket
• Invoke SSLSocket.setEnableCipherSuites to specify the cipher suites

available for encryption
• Return the socket to be used by SAP jConnect

Example
public class MySSLSocketFactory extends SSLSocketFactory
 implements SybSocketFactory
 {
 /**
 * Create a socket, set the cipher suites it can use, return
 * the socket.
 * Demonstrates how cither suites could be hard-coded into the
 * implementation.
 *
 * See javax.net.SSLSocketFactory#createSocket
 */
public Socket createSocket(String host, int port)
 throws IOException, UnknownHostException
 {
 // Prepare an array containing the cipher suites that are to
 // be enabled.
 String enableThese[] =
 {
 "SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA",
 "SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5",
 "SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA"
 }
 ;
 Socket s =
 SSLSocketFactory.getDefault().createSocket(host, port);

Security

Programmers Reference 113

 ((SSLSocket)s).setEnabledCipherSuites(enableThese);
 return s;
 }
/**
 * Return an SSLSocket.
 * Demonstrates how to set cipher suites based on connection
 * properties like:
 * Properties _props = new Properties();
 * Set other url, password, etc. properties.
 * _props.put(("CIPHER_SUITES_1",
 * "SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA");
 * _props.put("CIPHER_SUITES_2",
 * "SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5");
 * _props.put("CIPHER_SUITES_3",
 * "SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA");
 * _conn = _driver.getConnection(url, _props);
 *
 * See com.sybase.jdbcx.SybSocketFactory#createSocket
 */
public Socket createSocket(String host, int port,
 Properties props)
 throws IOException, UnknownHostException
 {
 // check to see if cipher suites are set in the connection
 // properites
 Vector cipherSuites = new Vector();
 String cipherSuiteVal = null;
 int cipherIndex = 1;
 do
 {
 if((cipherSuiteVal = props.getProperty("CIPHER_SUITES_"
 + cipherIndex++)) == null)
 {
 if(cipherIndex <= 2)
 {
 // No cipher suites available
 // return what the object considers its default
 // SSLSocket, with cipher suites enabled.
 return createSocket(host, port);
 }
 else
 {
 // we have at least one cipher suite to enable
 // per request on the connection
 break;
 }
 else
 }
 // add to the cipher suit Vector, so that
 // we may enable them together
 cipherSuites.addElement(cipherSuiteVal);
 }
 }
 while(true);

Security

114 SAP jConnect for JDBC

 // lets you create a String[] out of the created vector
 String enableThese[] = new String[cipherSuites.size()];
 cipherSuites.copyInto(enableThese);
 Socket s =
 SSLSocketFactory.getDefault().createSocket
 (host, port);
 // enable the cipher suites
 ((SSLSocket)s).setEnabledCipherSuites(enableThese);
 // return the SSLSocket
 return s;
 }
 // other methods
 }

Because jConnect requires no information about the kind of socket it is, you must complete
any configuration before you return a socket.

For additional information, see:

• EncryptASE.java – located in the sample2 subdirectory of your SAP jConnect
installation, this sample shows how to use the SybSocketFactory interface with SAP
jConnect applications.

• MySSLSocketFactoryASE.java – also located in the sample2 subdirectory of
your SAP jConnect installation, this is a sample implementation of the
SybSocketFactory interface that you can plug in to your application and use.

SSL Support in SAP jConnect
To use SSL sockets in versions of SAP jConnect earlier than 15.7 SP 100, you had to create an
implementation of SybSocketFactory interface and use it by setting the
SYBSOCKET_FACTORY connection property.

Starting from version 15.7 SP 100, SAP jConnect has built-in support to connect to SAP
Adaptive Server using SSL sockets. The new connection property ENABLE_SSL when set
to:

• false – (the default) SAP jConnect will not use SSL sockets.
• true – SAP jConnect uses SSL sockets and the target SAP Adaptive Server must be enabled

for SSL socket connections. SAP jConnect ignores the SYBSOCKET_FACTORY
connection property.

Note: SAP recommends that you set the login timeout using
DriverManager.setLoginTimeout property to allow the connection to timeout when
attempting SSL connection on a non SSL enabled SAP Adaptive Server.

The SSL socket feature depends on the following standard Java properties:

• javax.net.ssl.keyStore

Security

Programmers Reference 115

• javax.net.ssl.keyStorePassword

• javax.net.ssl.trustStore

• javax.net.ssl.trustStorePassword

• javax.net.ssl.trustStore

• javax.net.ssl.trustStoreType

See the Java J2SE 6 Documentation for more information on Java standard properties.

Kerberos
Kerberos is a network authentication protocol that uses encryption for authentication of client-
server applications.

Kerberos provides these advantages for users and system administrators:

• A Kerberos database can serve as a centralized storehouse for users.
• Kerberos facilitates the single-sign-on (SSO) environment, in which a user system login

provides the credentials necessary to access a database.
• Kerberos is an IETF standard. Interoperability is possible between different

implementations of Kerberos.

Configuring Kerberos for SAP jConnect
Review the instructions to configure SAP jConnect to use Kerberos security mechanism.

Prerequisites

There are several prerequisites for configuring Kerberos for SAP jConnect:

• JDK 6 or later
• A Java Generic Security Services (GSS) Manager:

• The default GSS Manager, which is part of the JDK, or
• Wedgetail JCSI Kerberos version 2.6 or later, or
• CyberSafe TrustBroker Application Security Runtime Library version 3.1.0 or later,

or
• A GSS Manager implementation from another vendor.

• A key distribution center(KDC) that is supported and interoperable at the server side with
your GSS library and at the client side with your GSSManager.

Task

1. Set the REQUEST_KERBEROS_SESSION property to true.

2. Set the SERVICE_PRINCIPAL_NAME property to the name that your SAP Adaptive
Server Enterprise is running under. In general, this is the name set with the -s option when
the server is started. The service principal name must also be registered with the KDC. If

Security

116 SAP jConnect for JDBC

you do not set a value for this property, SAP jConnect uses the host name of the client
machine.

3. (Optional) Set the GSSMANAGER_CLASS property.

For more information on the REQUEST_KERBEROS_SESSION and
SERVICE_PRINCIPAL_NAME, see the jConnect Connection Properties on page 9

See also
• GSSMANAGER_CLASS Connection Property on page 117

• Programming Information on page 3

GSSMANAGER_CLASS Connection Property
When using Kerberos, SAP jConnect relies on several Java classes that implement the Generic
Security Services (GSS) API.

Much of this functionality is provided by the org.ietf.jgss.GSSManager class.

SAP jConnect checks the value of GSSMANAGER_CLASS for a GSSManager class object to
use in Kerberos authentication.

If the value of GSSMANAGER_CLASS is set to a string instead of a class object, SAP jConnect
uses the string to create an instance of the specified class and uses the new instance in Kerberos
authentication.

If the value of GSSMANAGER_CLASS is set to something that is neither a GSSManager
class object nor a string, or if SAP jConnect encounters a ClassCastException,
jConnect throws a SQLException indicating the problem.

Java allows vendors to provide their own implementations of the GSSManager class.

Examples of vendor-supplied GSSManager implementations are those provided by
Wedgetail Communications and CyberSafe Limited. Users can configure a vendor-written
GSSManager class to work in a particular Kerberos environment. Vendor-supplied
GSSManager classes may also offer more interoperability with Windows than the standard
Java GSSManager class provides.

Before using a vendor-supplied implementation of GSSManager, be sure to read the vendor
documentation. Vendors use system property settings other than the standard Java system
properties used for Kerberos and may locate realm names and key distribution center (KDC)
entries without using configuration files.

Setting Up the GSSMANAGER_CLASS Property
Use a vendor implementation of GSSManager with SAP jConnect by setting the
GSSMANAGER_CLASS connection property.

There are two ways to set this property:

Security

Programmers Reference 117

• Create an instance of GSSManager, and set this instance as the value of the
GSSMANAGER_CLASS property.

• Set the value of the GSSMANAGER_CLASS property as a string, specifying the fully
qualified class name of the GSSManager object. SAP jConnect uses this string to call
Class.forName().newInstance() and casts the returned object as a
GSSManager class.

In either case, the application CLASSPATH variable must include the location of the classes
and .jar files for the vendor implementation.

Note: If you do not set the GSSMANAGER_CLASS connection property, SAP jConnect uses
the org.ietf.jgss.GSSManager.getInstance method to load the default Java
GSSManager implementation.

When you use the GSSMANAGER_CLASS connection property to pass in a fully qualified
class name, SAP jConnect calls the no-argument constructor for the GSSManager. This
instantiates a GSSManager that is in the default configuration for the vendor
implementation, so you do not have control over the exact configuration of the GSSManager
object. If you create your own instance of GSSManager, you can use constructor arguments
to set configuration options.

GSS Manager Examples
Review instructions to create an instance of GSSManager for your requirement or allow SAP
jConnect to create a GSSManager object when the GSSMANAGER_CLASS connection
property is set to a fully qualified class name.

Creating an Instance of GSSManager
Create an instance of GSSManager and pass it to the GSSMANAGER_CLASS property.

1. Instantiate a GSSManager in your application code:

GSSManager gssMan = new
com.dstc.security.kerberos.gssapi.GSSManager();

This example uses the default constructor with no arguments. You can use other vendor-
supplied constructors, which allow you to set various configuration options.

2. Pass the new GSSManager instance into the GSSMANAGER_CLASS connection property:

Properties props = new Properties();
props.put("GSSMANAGER_CLASS", gssMan);

3. Use these connection properties, including GSSMANAGER_CLASS, in your connection:

Connection conn = DriverManager.getConnection (url, props);

Security

118 SAP jConnect for JDBC

Passing String to GSSMANAGER_CLASS
Pass string to GSSMANAGER_CLASS in an application.

1. Ceate a string specifying the fully qualified class name of the GSSManager object. For
example:

String gssManClass =
"com.dstc.security.kerberos.gssapi.GSSManager";

2. Pass the string to the GSSMANAGER_CLASS connection property. For example:

Properties props = new Properties();
props.put("GSSMANAGER_CLASS", gssManClass);

3. Use these connection properties, including GSSMANAGER_CLASS, in your connection.
For example:

Connection conn = DriverManager.getConnection (url, props);

Kerberos Environment
You can use SAP jConnect with three different implementations of Kerberos.

• CyberSafe
• MIT
• Microsoft Active Directory

See the Kerberos white paper.

CyberSafe
Review the CyberSafe Kerberos implementation in SAP jConnect.

• Encryption keys – specify a Data Encryption Standard (DES) key when creating a
principal to be used by Java in the CyberSafe KDC.

The Java reference implementation does not support Triple Data Encryption Standard
(3DES) keys.

Note: You can use 3DES keys if you are using CyberSafe GSSManager with a CyberSafe
KDC and have set the GSSMANAGER_CLASS property.

• Address mapping and realm information – CyberSafe uses DNS records to locate KDC
address mapping and realm information.

CyberSafe Kerberos does not use a krb5.conf configuration file. Alternately,
CyberSafe locates KDC address mapping and realm information in the krb.conf and
krb.realms files, respectively. See CyberSafe documentation for more information.

If you are using the standard Java GSSManager implementation, you must still create a
krb5.conf file for use by Java. The CyberSafe krb.conf file is formatted differently
from the krb5.conf file. Create a krb5.conf file as specified in the Java SE

Security

Programmers Reference 119

http://www.sybase.com/detail?id=1029260

documentation or in the MIT documentation. You do not need a krb5.conf file if using
the CyberSafe GSSManager.
For examples of the krb5.conf file, see white paper on setting up Kerberos, the URL is
referenced in the SAP jConnect for JDBC Release Bulletin.

• Solaris – when using CyberSafe client libraries on Solaris, make sure your library search
path includes the CyberSafe libraries before any other Kerberos libraries.

A client uses krb5.conf file with a CyberSafe or MIT KDC. For example:

Please note that customers must alter the
default_realm, [realms] and [doamin_realm]
information to reflect their Kerberos environment.
Customers should *not* attempt to use this file as is.
#

[libdefaults]
 default_realm = ASE
 default_tgs_enctypes = des-cbc-crc
 default_tkt_enctypes = des-cbc-crc
 kdc_req_checksum_type = 2
 ccache_type = 2

[realms]

 ASE = {
 kdc = kdchost
 admin_server = kdchost
 }

[domain_realm]
 .sybase.com = ASE
 sybase.com = ASE

[logging]
 default = FILE:/var/krb5/kdc.log
 kdc = FILE:/var/krb5/kdc.log
 kdc_rotate = {

How often to rotate kdc.log. Logs will get rotated
no more often than the period, and less often if the
KDC is not used frequently.

 period = 1d

how many versions of kdc.log to keep around
(kdc.log.0, kdc.log.1, ...)

 versions = 10
 }

[appdefaults]
 kinit = {
 renewable = true

Security

120 SAP jConnect for JDBC

 forwardable= true
 }

MIT
Specify a DES key when creating a principal to be used by Java in the MIT KDC.

The Java reference implementation does not support 3DES keys.

If you plan to use only the standard Java GSSManager implementation, specify an
encryption key of type des-cbc-crc or des-cbc-md5. Specify the encryption type as:

des-cbc-crc:normal

where normal is the type of key salt. It may be possible to use other salt types.

Note: If you are using Wedgetail GSSManager, you can create principals in an MIT KDC of
type des3-cbc-sha1-kd.

Microsoft Active Directory
Review the components in a Microsoft Active Directory server for Kerberos.

• User accounts and service principal – make sure that you have set up accounts in Active
Directory for your user principals user(the users) and service principals (the accounts that
represent your database servers). Your user principals and service principals should both
be created as Users within Active Directory.

• Client machines – modify the Windows Registry to use the Java reference
implementation to set up an SSO environment.

See the instructions at the Microsoft support site to modify Windows Registry.
• Configuration file – on Windows, the Kerberos configuration file is called krb5.ini.

Java looks for krb5.ini by default at C:\WINNT\krb5.ini.

Java allows you to specify the location of this file. The format of krb5.ini is identical to
that of krb5.conf.

For examples of the krb5.conf file, see Kerberos white paper, which is referenced in
the SAP jConnect for JDBC Release Bulletin.

For more information on Kerberos for Microsoft Active Directory, see the Microsoft
Developer Network.

A client uses the krb5.conf file with Active Directory as the KDC. For example:

Please note that customers must alter the
default_realm, [realms] and [domain_realm]
information to reflect their Kerberos environment.
Customers should *not* attempt to use this file as is.
#

[libdefaults]
 default_realm = W2K.SYBASE.COM
 default_tgs_enctypes = des-cbc-crc

Security

Programmers Reference 121

http://support.microsoft.com/
http://msdn.microsoft.com
http://msdn.microsoft.com

 default_tkt_enctypes = des-cbc-crc
 kdc_req_checksum_type = 2
 ccache_type = 2

[realms]

 W2K.SYBASE.COM = {
 kdc = 1.2.3.4:88
 admin_server = adserver
 }

[domain_realm]
 .sybase.com = W2K.SYBASE.COM
 sybase.com = W2K.SYBASE.COM

[logging]
 default = FILE:/var/krb5/kdc.log
 kdc = FILE:/var/krb5/kdc.log
 kdc_rotate = {

How often to rotate kdc.log. Logs will get rotated no
more often than the period, and less often if the KDC
is not used frequently.

 period = 1d

how many versions of kdc.log to keep around
(kdc.log.0, kdc.log.1, ...)

 versions = 10
 }

[appdefaults]
 kinit = {
 renewable = true
 forwardable= true
 }

Setting DES Encryption
If you intend to use the Java reference GSS Manager implementation, you must use DES
encryption for both user and service principals.

1. In the Active Directory, right-click on the specific user principal or service principal name.

2. Select Properties.

3. Click the Account tab.

4. For both the user principal and service principal, specify that DES encryption types should
be used.

Security

122 SAP jConnect for JDBC

Sample Applications
The two commented code samples available in the jConnect-16_0/sample2 directory
illustrate how to establish a Kerberos connection to Adaptive Server Enterprise.

• ConnectKerberos.java – a simple Kerberos login to Adaptive Server Enterprise.

• ConnectKerberosJAAS.java – a more detailed sample showing how a Kerberos
login might be implemented within application-server code.

Running ConnectKerberos.java
Review the instructions to run ConnectKerberos.java file sample application.

1. Make sure your machine has valid Kerberos credentials. This task varies depending on
your machine and environment.

• Windows – you can establish Kerberos credentials for a machine in an Active
Directory environment by successfully logging in using Kerberos authentication.

• UNIX or Linux – you can establish Kerberos credentials for a UNIX or Linux machine
using the kinit utility for your Kerberos client. If you do not obtain an initial credential
using kinit, you are prompted for a user name and password when you attempt to run
the sample application.

Note: Typically, the GSSManager provider implementation provided by standard JDK
can use only the DES_CBC_MD5 and DES_CBC_CRC encryption types. You may be
able to use other encryption types by using third-party software and setting the
GSSMANAGER_CLASS property.

2. Determine the location of the credentials for your machine.

• Windows – for a machine running in an Active Directory environment, Kerberos
credentials are stored in an in-memory ticket cache.

• UNIX or Linux – for a UNIX or Linux machine using the JRE supplied, CyberSafe,
Solaris, or MIT implementations of Kerberos, kinit places credentials by default in /
tmp/krb5cc_{user_id_number}, where {user_id_number} is unique to your
user name.

If the credentials are placed elsewhere, specify that location in the sample2/
exampleLogin.conf file by setting the ticketCache property.

3. Specify to the Java reference implementation the default realm and host name of the KDC
machine. Java may obtain this information from the krb5.conf or krb5.ini
configuration files or from Java System properties. If you use a vendor GSS Manager
implementation, that implementation may obtain host and realm information from DNS
SRV records.

SAP recommends that you use a Kerberos configuration file, which allows for more
control of the Kerberos environment, including the ability to specify to Java the type of
encryption to request during authentication.

Security

Programmers Reference 123

Note: On Linux, the Java reference implementation looks for the Kerberos configuration
file in /etc/krb5.conf.

If you do not use a Kerberos configuration file, and your Kerberos configuration is not set
up to use DNS SRV records, you can specify the realm and KDC using the
java.security.krb5.realm and java.security.krb5.kdc system properties.

4. Edit ConnectKerberos.java so that the connection URL points to your database.

5. Compile ConnectKerberos.java.

Ensure that you are using JDK version 6 or later. Read through the source code comments,
and ensure the jconn4.jar from your jConnect installation is specified in your
CLASSPATH environment variable.

6. Execute ConnectKerberos.class:

java ConnectKerberos

Ensure that you are using the Java version 6 executable. The sample application output
explains that a successful connection has been established and executes the SQL:

select 1

• To execute the sample without using a Kerberos configuration file, use:
java -Djava.security.krb5.realm=your_realm
-Djava.security.krb5.kdc=your_kdc ConnectKerberos

where your_realm is your default realm, and your_kdc is your KDC.
• If necessary, you can run the sample application in debug mode to see debug output

from the Java Kerberos layer:
java -Dsun.security.krb5.debug=true ConnectKerberos

You can also make a Kerberos connection using IsqlApp, the Java version of isql, located
in the jConnect-16_0/classes directory:

java IsqlApp -S jdbc:sybase:Tds:hostName:portNum
-K service_principal_name
-F path_to_JAAS_login_module_config_file

Interoperability
SAP jConnect supports interoperability combinations of KDCs, GSS libraries, and platforms
on which SAP jConnect has successfully established a connection to SAP Adaptive Server
Enterprise.

The absence of any particular combination does not indicate that a connection cannot be
established with that combination. You can find the most recent status at the jConnect for
JDBC Web site.

Security

124 SAP jConnect for JDBC

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

Table 7. Interoperability Combinations

Client Plat-
form

KDC GSSManager GSS C libra-
ries \a

SAP ASE
Platform

Solaris 8b CyberSafe Java GSS CyberSafe Solaris 8

Solaris 8 Active Directoryc Java GSS CyberSafe Solaris 8

Solaris 8 MIT Java GSS CyberSafe Solaris 8

Solaris 8 MIT Wedgetail GSSd MIT Solaris 8

Solaris 8 CyberSafe Wedgetail GSSe CyberSafe Solaris 8

Windows 2000 Active Directory Java GSS CyberSafe Solaris 8

Windows XP Active Directory Java GSSf CyberSafe Solaris 8

a. These are the libraries that SAP Adaptive Server Enterprise is using for its GSS functionality.

b. All Solaris 8 platforms in this table are 32-bit.

c. All Active Directory entries in the table refer to an Active Directory server running on Windows
2000. For Kerberos interoperability, Active Directory users must be set to “Use DES encryption types
for this account.”

d. Used Wedgetail JCSI Kerberos 2.6. The encryption type was 3DES.

e. Used Wedgetail JCSI Kerberos 2.6. The encryption type was DES.

f. Java 1.4.x has a bug which requires that clients use System.setProperty("os.name", "Windows
2000"); to ensure that Java can find the in-memory credential on Windows XP clients.

SAP recommends that you use the latest versions of these libraries. Contact the vendor if you
intend to use older versions or if you have problems with non-SAP products.

Encryption Types
The standard Java GSS implementation provided by typical JREs supports only DES
encryption.

If you intend to use the 3DES, RC4-HMAC, AES-256, or AES-128 encryption standards, you
must use the CyberSafe or Wedgetail GSSManagers.

Refer to the respective documentation for more information about Wedgetail and CyberSafe.

Troubleshooting Kerberos
Review the considerations when troubleshooting Kerberos security issues.

• The Java reference implementation supports only the DES encryption type. You must
configure your Active Directory and KDC principals to use DES encryption.

• The value of the SERVICE_PRINCIPAL_NAME property must be set to the same name
you specify with the -s option when you start your data server.

Security

Programmers Reference 125

• Check the krb5.conf and krb5.ini files. For CyberSafe clients, check the
krb.conf and krb.realms files or DNS SRV records.

• You can set the debug property to true in the JAAS login configuration file.

• You can set the debug property to true at the command line:

-Dsun.security.krb5.debug=true
• The JAAS login configuration file provides several options that you can set for your

particular needs. For information about JAAS and the Java GSS API, refer to:
• JAAS Login Configuration File
• Class Krb5LoginModule
• Troubleshooting JGSS

Related Documents
Review the additional information on Kerberos security.

• Java tutorial on JAAS and the Java GSS API
• MIT Kerberos documentation and download site
• CyberSafe Limited
• CyberSafe Limited document on Windows-Kerberos interoperability
• Kerberos RFC 1510

Security

126 SAP jConnect for JDBC

Troubleshooting

Review the solutions and workarounds for problems you might encounter when using SAP
jConnect.

Debugging with SAP jConnect
SAP jConnect includes a Debug class that contains a set of debugging functions.

The Debug methods include a variety of assert, trace, and timer functions that let you define
the scope of the debugging process and the output destination for the debugging results.

The SAP jConnect installation also includes a complete set of debug-enabled classes. These
classes are located in the devclasses subdirectory under your SAP jConnect installation
directory. For debugging purposes, you must redirect your CLASSPATH environment
variable to reference the debug mode runtime classes (devclasses/jconn4d.jar),
rather than the standard SAP jConnect classes directory. You can also do this by explicitly
providing a -classpath argument to the java command when you run a Java program.

Obtaining an Instance of the Debug Class
Import the Debug interface and obtain an instance of the Debug class by calling the
getDebug method on the SybDriver class.

import com.sybase.jdbcx.Debug;
//
...
SybDriver sybDriver = (SybDriver)
Class.forName("com.sybase.jdbc4.jdbc.SybDriver").newInstance();
Debug sybdebug = sybDriver.getDebug();
...

Turning On Debugging in an Application
Use the debug method on the Debug object to turn on debugging within your application.

Add this call:
sybdebug.debug(true, [classes], [printstream]);

The classes parameter is a string that lists the specific classes you want to debug, separated by
colons. For example:
sybdebug.debug(true,"MyClass")

and:
sybdebug.debug(true,"MyClass:YourClass")

Troubleshooting

Programmers Reference 127

Using “STATIC” in the class string turns on debugging for all static methods in SAP jConnect
in addition to the designated classes. For example:
sybdebug.debug(true,"STATIC:MyClass")

You can specify “ALL” to turn on debugging for all classes. For example:
sybdebug.debug(true,"ALL");

The printstream parameter is optional. If you do not specify a printstream, the debug output
goes to the output file you specified with DriverManager.setLogStream.

Turning Off Debugging in an Application
Review the instruction to turn off debugging method.

Add this call:
sybdebug.debug(false);

Setting the CLASSPATH for Debugging
Before you run your debug-enabled application, replace the optimized SAP jConnect
jconn4.jar file with the debug version jconn4d.jar, which you can find in the
devclasses subdirectory under your SAP jConnect installation directory.

To set the environment variable:

• For UNIX, replace $JDBC_HOME/classes/jconn4.jar with $JDBC_HOME/
devclasses/jconn4d.jar.

• For Windows, replace %JDBC_HOME%\classes\jconn4.jar with %JDBC_HOME
%\devclasses\jconn4d.jar.

Using the Debugging Methods
Customize the debugging methods in SAP jConnect.

You can add calls to other Debug methods.

If any of these methods are static, use null for the object parameter.

• println – define the message to print in the output log if debugging is enabled and the
object is included in the list of classes to debug. The debug output goes to the file you
specified with sybdebug.debug.

The syntax is:
sybdebug.println(object,message string);

For example:
sybdebug.println(this,"Query: "+ query);

produces a message similar to this in the output log:
myApp(thread[x,y,z]): Query: select * from authors

Troubleshooting

128 SAP jConnect for JDBC

• assert – assert a condition and throw a runtime exception when the condition is not met.
You can also define the message to print in the output log if the condition is not met.
The syntax is:
sybdebug.assert(object,boolean condition,message
 string);

For example:
sybdebug.assert(this,amount<=buf.length,amount+"
 too big!");

produces a message similar to this in the output log if “amount” exceeds the value of
buf.length:

java.lang.RuntimeException:myApp(thread[x,y,z]):
Assertion failed: 513 too big!
at jdbc.sybase.utils.sybdebug.assert(
sybdebug.java:338)
at myApp.myCall(myApp.java:xxx)
at more stack:

• startTimer and stopTimer – start and stop a timer that measures the milliseconds
that elapse during an event. The method keeps one timer per object, and one for all static
methods. The syntax to start the timer is:
sybdebug.startTimer(object);

The syntax to stop the timer is:
sybdebug.stopTimer(object,message string);

For example:
sybdebug.startTimer(this);
stmt.executeQuery(query);
sybdebug.stopTimer(this,"executeQuery");

produces a message similar to this in the output log:
myApp(thread[x,y,z]):executeQuery elapsed time =
 25ms

Dynamic Logging
Starting with 15.7 ESD #4, SAP jConnect for JDBC supports logging mechanism by
implementing the standard Java logger mechanism.

Example
The application obtains the handle of the SAP jConnect logger, and turn logging on or off as
and when required.

try
{
// Get logger for all classes present in

Troubleshooting

Programmers Reference 129

//"com.sybase.jdbc4.jdbc" package

Logger LOG = Logger.getLogger("com.sybase.jdbc4.jdbc");

// To log class-specific log message,
// provide complete class name, for example:
//Logger.getLogger("com.sybase.jdbc4.jdbc.
//SybConnection");
//Get handle as per user's requirement
Handler handler = new ConsoleHandler();

//Set logging level
handler.setLevel(Level.ALL);

//Added user specific handler to logger object
LOG.addHandler(handler);

//Set logging level
LOG.setLevel(Level.ALL);

Class.forName("com.sybase.jdbc4.jdbc.SybDriver");
Properties properties = new Properties();
properties.put("USER", USER_NAME);
properties.put("PASSWORD", PASSWORD);
Connection con = DriverManager.getConnection("jdbc:sybase:Tds:" +
 HOST_PORT, properties);
Statement stmt = con.createStatement();
stmt.execute("select @@version");

//Dynamically turn off logging mechanism
LOG.setLevel(Level.OFF);
con.close();
...
}

Logging Levels
SAP jConnect allows application users to set message granularity to Level.FINE,
Level.FINER, and Level.FINEST. For example:

• When a user sets the logging level to Level.FINE on SybConnection class, jConnect
reports: Dr1_Col setClientInfo(Properties)

• Level.FINER on SybConnection class reports: Dr1_Co1
setClientInfo(Properties.size = [3])

• Level.FINEST on SybConnection class reports: Dr1_Co1
setClientInfo(Properties = [[ClientUserValue,
ApplicationNameValue, ClientHostnameValue]])

Troubleshooting

130 SAP jConnect for JDBC

Enabling Logging Dynamically in SAP jConnect
Dynamically enable logging by using LogHandler API programmatically in your
application.

1. Enable or disable logging by programmatically using LogHandler API. Enter the
following code to enable console-level logging on SybConnection and
SybStatement classes:

LogManager logManager = LogManager.getLogManager();
 Handler handler = new ConsoleHandler();
 handler.setLevel(Level.ALL);
 Logger connLOG =
Logger.getLogger(SybConnection.class.getName());
 connLOG.addHandler(handler);
 connLOG.setLevel(Level.FINE);
 logManager.addLogger(connLOG);
 Logger stmtLOG =
Logger.getLogger(SybStatement.class.getName());
 stmtLOG.addHandler(handler);
 stmtLOG.setLevel(Level.FINE);
 logManager.addLogger(stmtLOG);

2. Run the application.

3. You can tune the logging setting dynamically using the LogHandler as given in Step 1.
Some of the suggested ways to achieve this:

• Expose an interface where you can change a property that internally manages logging
levels.

• Run a surrogate thread that tunes the logging as required in your application.

Enabling Logging Statically in SAP jConnect
Statically enable logging in SAP jConnect that implements the standard Java logging
mechanism.

1. Use the text editor to modify the contents of the standard logging file in $JRE_DIR/
lib/logging.properties.

handlers= java.util.logging.FileHandler
java.util.logging.FileHandler.formatter =
com.sybase.jdbc4.utils.LogUtil
.level= ALL

2. Add or enter the following contents in the file:
com.sybase.jdbc4.jdbc.SybDriver.level = FINEST
com.sybase.jdbc4.jdbc.SybConnection.level = FINEST
com.sybase.jdbc4.jdbc.SybStatement.level = FINER
com.sybase.jdbc4.jdbc.SybPreparedStatement.level = FINE
com.sybase.jdbc4.jdbc.SybResultSet.level = FINE

3. Adjust the level of logging to Level.FINE, Level.FINER, and Level.FINEST to set the
appropriate granularity of logging.

Troubleshooting

Programmers Reference 131

Note: SAP jConnect does not support package-level logging.

4. Save the logging.properties file.

Capture TDS Communication
TDS is the SAP jConnect-proprietary protocol for handling communication between a client
application and SAP Adaptive Server.

SAP jConnect includes a PROTOCOL_CAPTURE connection property that allows you to
capture raw TDS packets to a file.

If you are having problems with an application that you cannot resolve within either the
application or the server, use PROTOCOL_CAPTURE to capture the communication between
the client and the server in a file. You can then send the file, which contains binary data and is
not directly interpretable, to SAP Technical Support for analysis.

Note: The captured TDS protocol data saved to a file contains sensitive user authentication
information and may contain confidential company or customer data. To protect this
confidential data from unauthorized or accidental disclosure, use file permissions or
encryption to properly protect the files containing captured data.

PROTOCOL_CAPTURE Connection Property
Use the PROTOCOL_CAPTURE connection property to specify a file for receiving the TDS
packets exchanged between an application and an SAP Adaptive Server.

PROTOCOL_CAPTURE takes effect immediately so that TDS packets exchanged during
connection establishment are written to the specified file. All packets continue to be written to
the file until Capture.pause is executed or the session is closed.

This example shows the use of PROTOCOL_CAPTURE to send TDS data to the file
tds_data:

...
props.put("PROTOCOL_CAPTURE", "tds_data")
Connection conn = DriverManager.getConnection(url, props);

where url is the connection URL, and props is a Properties object for specifying
connection properties.

Pause and Resume Methods in Capture Class
The Capture class is in the com.sybase.jdbcx package, and contains pause and
resume methods.

Capture.pause stops the capture of raw TDS packets into a file; Capture.resume
restarts the capture.

Troubleshooting

132 SAP jConnect for JDBC

The TDS capture file for an entire session can become very large. You can limit the size of the
capture file, if you know where in an application you want to capture TDS data.

Limiting Size of Capture File
Review the instructions to limit the size of the capture file.

1. Immediately after you have established a connection, get the Capture object for the
connection and use the pause method to stop capturing TDS data:

Capture cap = ((SybConnection)conn).getCapture();
 cap.pause();

2. Place cap.resume where you want to start capturing TDS data.

3. Place cap.pause where you want to stop capturing data.

Resolve Connection Errors
Address the problems that may arise when you are trying to establish a connection or start a
gateway.

Gateway connection refused:
HTTP/1.0 502 Bad Gateway|Restart Connection

This error message indicates that something is wrong with the hostname or port# used to
connect to your Adaptive Server. Check the [query] entry in $SYBASE/interfaces
(UNIX) or in %SYBASE%\ini\sql.ini (Windows).

If the problem persists after you have verified the hostname and port#, you can learn more by
starting the HTTP server using the “verbose” system property.

For Windows, go to a DOS prompt and enter:
httpd -Dverbose=1 > filename

For UNIX, enter:
sh httpd.sh -Dverbose=1 > filename &

where filename is the debug messages output file.

Your Web server probably does not support the connect method. Applets can connect only
to the host from which they were downloaded.

The HTTP gateway and your Web server must run on the same host. In this scenario, your
applet can connect to the same machine/host through the port controlled by the HTTP
gateway, which routes the request to the appropriate database.

To see how this is accomplished, review the source of Isql.java and gateway.html in
the sample2 subdirectory under the jConnect installation directory. Search for “proxy.”

Troubleshooting

Programmers Reference 133

Manage Memory in SAP jConnect Applications
Use the Statement objects and subclasses, if you notice increased memory use in SAP
jConnect applications

• In SAP jConnect applications, explicitly close all Statement objects and subclasses
(for example, PreparedStatement, CallableStatement) after their last use to
prevent statements from accumulating in memory. Closing only the ResultSet is not
sufficient.
For example, this statement causes problems:
ResultSet rs = _conn.prepareCall(_query).execute();
...
rs.close();

Instead, use:
PreparedStatement ps = _conn.prepareCall(_query);
ResultSet rs = ps.executeQuery();
...
rs.close();
ps.close();

• Native support for scrollable or updatable scrollable cursors may not be available,
depending on the version of SAP Adaptive Server or SAP SQL Anywhere database you
are connecting to. To support scrollable or updatable scrollable cursors when not
supported natively by the back-end server, SAP jConnect caches the row data on demand,
on the client, on each call to ResultSet.next. However, when the end of the result set
is reached, the entire result set is stored in client memory. Because this may cause a
performance degradation, SAP recommends that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is reasonably small.
SAP jConnect determines if the SAP Adaptive Server connection supports native
scrollable cursor functionality and uses it instead of client-side caching. As a result, most
applications can expect significant performance gain in accessing out-of-order rows and
reduction in client-side memory requirements.

Troubleshooting

134 SAP jConnect for JDBC

Resolve Stored Procedure Errors
Address the problems that occur when you are trying to use SAP jConnect and stored
procedures.

RPC Returns Fewer Output Parameters Than Registered
If you call CallableStatement.registerOutParam for more parameters than you
have declared as OUTPUT parameters in the stored procedure, an error occurs.

SQLState: JZ0SG - An RPC did not return as many output parameters as
the application had registered for it.

Make sure you have declared all of the appropriate parameters as “OUTPUT.” Look at the line
of code that reads:
 create procedure yourproc (@p1 int OUTPUT, ...

Note: If you receive this error while using SAP SQL Anywhere, upgrade to SAP SQL
Anywhere version 5.5.04 or later.

Fetch/State Error
Fetch/State error occurs if a query does not return row data.

You can use the CallableStatement.executeUpdate or execute methods rather
than the executeQuery method.

As required by the JDBC standards, SAP jConnect throws a SQL exception if
executeQuery has no result sets.

Stored Procedure Executed in Unchained Transaction Mode
This error occurs when JDBC attempts to send the connection in autocommit(true)
mode.

SAP Adaptive Server Error 7713 - Stored Procedure can only be
executed in unchained transaction mode.
The application can change the connection to chained mode using
Connection.setAutoCommit(false) or by using a “set chained on” language
command. This error occurs if the stored procedure was not created in a compatible mode.

To fix the problem, use:
sp_procxmode procedure_name,"anymode"

Troubleshooting

Programmers Reference 135

Resolve Custom Socket Implementation Error
Custom socket implementation error occurs when you try to set up an SSL socket when calling
sun.security.ssl.SSLSocketImpl.setEnabledCipherSuites.

java.lang.IllegalArgumentException:
SSL_SH_anon_EXPORT_WITH_RC4_40_MDS
Verify that the SSL libraries are in the system library path.

Troubleshooting

136 SAP jConnect for JDBC

Performance and Tuning

Review the instructions to fine-tune or improve performance when working with SAP
jConnect.

Improve SAP jConnect Performance
Review the options to optimize the performance of an application using SAP jConnect.

• Use TextPointer.sendData methods to send text and image data to an SAP
Adaptive Server database.

• Create precompiled PreparedStatement objects for dynamic SQL statements that
are used repeatedly during a session.

• Use batch updates to improve performance by reducing network traffic; specifically, all
queries are sent to the server in one group and all responses returned to the client are sent in
one group.

• For sessions that are likely to move image data, large row sets, and lengthy text data, use
the PACKETSIZE connection property to set the maximum feasible packet size.

• For TDS-tunneled HTTP, set the maximum TDS packet size and configure your Web
server to support the HTTP1.1 keep-alive feature. Also, set the SkipDoneProc servlet
argument to true.

• Use protocol cursors, the default setting of the LANGUAGE_CURSOR connection
property.

• If you use TYPE_SCROLL_INSENSITIVE result sets, use them only when the result set
is reasonably small.

See also
• Support for Batch Updates on page 66

• Image Datatype on page 68

• Performance Tuning for Prepared Statements in Dynamic SQL on page 139

• TYPE_SCROLL_INSENSITIVE Result Sets in SAP jConnect on page 63

• LANGUAGE_CURSOR Connection Property on page 146

BigDecimal Rescaling
The JDBC 1.0 specification requires a scale factor with getBigDecimal method.

When a BigDecimal object is returned from the server, it must be rescaled using the original
scale factor you used with getBigDecimal.

Performance and Tuning

Programmers Reference 137

To eliminate the processing time required for rescaling, use the JDBC 2.0 getBigDecimal
method, which SAP jConnect implements in the SybResultSet class and does not require
a scale value:
public BigDecimal getBigDecimal(int columnIndex)
 throws SQLException

For example:
SybResultSet rs =
 (SybResultSet)stmt.executeQuery("SELECT
 numeric_column from T1");
 while (rs.next())
 {
 BigDecimal bd rs.getBigDecimal(
 "numeric_column");
 ...
 }

REPEAT_READ Connection Property
You can improve performance on retrieving a result set from the database if you set the
REPEAT_READ connection property to false.

When REPEAT_READ is false:

• You must read column values in order, according to column index. This is difficult if you
want to access columns by name rather than column number.

• You cannot read a column value in a row more than once.

SunIoConverter Character-Set Conversion
If you are using multibyte character sets and want to improve driver performance, use the
SunIoConverter class provided with the SAP jConnect samples.

This converter is based on the sun.io classes provided by Oracle Corporation.

The SunIoConverter class is not a pure Java implementation of the character-set
converter feature and, therefore, is not integrated with the standard SAP jConnect product, it
has provided this converter class for your reference, and you can use it with the SAP jConnect
driver to improve character-set conversion performance.

Note: Based on SAP testing, the SunIoConverter class improved performance on all
VMs on which it was tested. However, Oracle Corporation reserves the right to remove or
change the sun.io classes with future releases of the JDK. Therefore, this
SunIoConverter class may not be compatible with later JDK releases.

To use the SunIoConverter class, you must install the SAP jConnect sample applications.
Once the samples are installed, set the CHARSET_CONVERTER_CLASS connection
property to reference the SunIoConverter class in the sample2 subdirectory under your
jConnect installation directory.

Performance and Tuning

138 SAP jConnect for JDBC

See the SAP jConnect for JDBC Installation Guide for complete instructions on installing
SAP jConnect and its components, including the sample applications.

If you are using a database with its default character set as iso_1, or if you are using only the
first 7 bits of ASCII, you can gain significant performance benefits by using the
TruncationConverter.

See also
• SAP jConnect Character Set Converters on page 43

Performance Tuning for Prepared Statements in Dynamic
SQL

In Embedded SQL™, dynamic statements are SQL statements that need to be compiled at
runtime, rather than statically.

Typically, dynamic statements contain input parameters, although this is not a requirement. In
SQL, the prepare command precompiles a dynamic statement and saves it so that it can be
executed repeatedly without being recompiled during a session.

If a statement is used multiple times in a session, precompiling it provides better performance
than sending it to the database and compiling it for each use. The more complex the statement,
the greater the performance benefit.

If a statement is likely to be used only a few times, precompiling it may be inefficient because
of the overhead involved in precompiling, saving, and later deallocating it in the database.

Precompiling a dynamic SQL statement for execution and saving it in memory uses time and
resources. If a statement is not likely to be used multiple times during a session, the costs of
doing a database prepare may outweigh its benefits. Another consideration is that once a
dynamic SQL statement is prepared in the database, it is very similar to a stored procedure. In
some cases, it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application.

You can use SAP jConnect to optimize the performance of dynamic SQL statements on a SAP
database by creating:

• PreparedStatement objects that contain precompiled statements in cases where a
statement is likely to be executed several times in a session.

• PreparedStatement objects that contain uncompiled SQL statements in cases where
a statement is used very few times in a session.

The optimal way to set the DYNAMIC_PREPARE connection property and create
PreparedStatement objects can depend on whether your application needs to be
portable across JDBC drivers or whether you are writing an application that allows SAP
jConnect-specific extensions to JDBC.

Performance and Tuning

Programmers Reference 139

SAP jConnect provides performance tuning features for dynamic SQL statements.

See also
• Choose Prepared Statements and Stored Procedures on page 140

Choose Prepared Statements and Stored Procedures
If you create a PreparedStatement object containing a precompiled dynamic SQL
statement, once the statement is compiled in the database, it effectively becomes a stored
procedure that is retained in memory and attached to the data structure associated with your
session.

In deciding whether to maintain stored procedures in the database or to create
PreparedStatement objects containing compiled SQL statements in your application,
resource demands and database and application maintenance are important considerations:

• Once a stored procedure is compiled, it is globally available across all connections. In
contrast, a dynamic SQL statement in a PreparedStatement object must be
compiled and deallocated in every session that uses it.

• If your application accesses multiple databases, using stored procedures means that the
same stored procedures must be available on all target databases. This can create a
database maintenance problem. If you use PreparedStatement objects for dynamic
SQL statements, you avoid this problem.

• If your application creates CallableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table references in the stored procedures.
You can then modify the underlying database or SQL code without have to change the
application.

Prepared Statements in Portable Applications
If your application runs on databases from different vendors and you want some
PreparedStatement objects to contain precompiled statements and others to contain
uncompiled statements, use the PreparedStatement in portable applications.

• When you access a SAP SAP database, make sure that the DYNAMIC_PREPARE
connection property is set to true.

• To return PreparedStatement objects containing precompiled statements, use
Connection.prepareStatement in the standard way:

PreparedStatement ps_precomp =
 Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing uncompiled statements, use
Connection.prepareCall.

Connection.prepareCall returns a CallableStatement object, but because
CallableStatement is a subclass of PreparedStatement, you can upcast a
CallableStatement object to a PreparedStatement object, as:

Performance and Tuning

140 SAP jConnect for JDBC

PreparedStatement ps_uncomp =
 Connection.prepareCall(sql_string);

The PreparedStatement object ps_uncomp is guaranteed to contain an uncompiled
statement, because only Connection.prepareStatement is implemented to return
PreparedStatement objects containing precompiled statements.

Prepared Statements with SAP jConnect Extensions
If you are not concerned about portability across drivers, you can write code that uses
SybConnection.prepareStatement to specify whether a PreparedStatement
object contains precompiled or uncompiled statements.

In this case, how you code prepared statements depends on whether most of the dynamic
statements in an application are likely to be executed many times or only a few times during a
session.

If Most Dynamic Statements Are Executed Infrequently
Dynamic SQL statements are executed only once or twice in a session for an application.

• Set the connection property DYNAMIC_PREPARE to false.

• To return PreparedStatement objects containing uncompiled statements, use
Connection.prepareStatement in the standard way:

PreparedStatement ps_uncomp =
 Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing precompiled statements, use
SybConnection.prepareStatement with dynamic set to true. For example:

PreparedStatement ps_precomp =
 (SybConnection)conn.prepareStatement(sql_string, true);

If Most Dynamic Statements Executed Are Multiple Times in a Session
Use the DYNAMIC_PREPARE and PreparedStatement objects to execute the dynamic
statements multiple times in an application in the course of a session.

• Set the connection property DYNAMIC_PREPARE to true.

• To return PreparedStatement objects containing precompiled statements, use
Connection.prepareStatement in the standard way:

PreparedStatement ps_precomp =
Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing uncompiled statements, you can
use either Connection.prepareCall or
SybConnection.prepareStatement, with dynamic set to false. For example:

PreparedStatement ps_uncomp =
 (SybConnection)conn.prepareStatement(sql_string, false);
PreparedStatement ps_uncomp = Connection.prepareCall(sql_string);

Performance and Tuning

Programmers Reference 141

See also
• Prepared Statements in Portable Applications on page 140

Connection.PrepareStatement
SAP jConnect implements Connection.prepareStatement so you can set it to return
either precompiled SQL statements or uncompiled SQL statements in PreparedStatement
objects.

If you set Connection.prepareStatement to return precompiled SQL statements in
PreparedStatement objects, it sends dynamic SQL statements to the database to be
precompiled and saved exactly as they would be under direct execution of the prepare
command. If you set Connection.prepareStatement to return uncompiled SQL
statements, it returns them in PreparedStatement objects without sending them to the
database.

The type of SQL statement that Connection.prepareStatement returns is
determined by the connection property DYNAMIC_PREPARE, and applies throughout a
session.

For SAP -specific applications, SAP jConnect 6.05 and later provides a
prepareStatement method under the SAP jConnect SybConnection class.
SybConnection.prepareStatement allows you to specify whether an individual
dynamic SQL statement is to be precompiled, independent of the session-level setting of the
DYNAMIC_PREPARE connection property.

DYNAMIC_PREPARE Connection Property
DYNAMIC_PREPARE is a Boolean-valued connection property for enabling dynamic SQL
prepared statements.

• If DYNAMIC_PREPARE is true (the default), every invocation of
Connection.prepareStatement during a session attempts to return a
precompiled statement in a PreparedStatement object.

In this case, when a PreparedStatement is executed, the statement it contains is
already precompiled in the database, with placeholders for dynamically assigned values,
and the statement needs only to be executed.

• If DYNAMIC_PREPARE is false for a connection, the PreparedStatement object
returned by Connection.prepareStatement does not contain a precompiled
statement.
In this case, each time a PreparedStatement is executed, the dynamic SQL statement
it contains must be sent to the database to be both compiled and executed.

In this example, DYNAMIC_PREPARE is false to disable precompilation of dynamic SQL
statements, and props is a Properties object for specifying connection properties.

Performance and Tuning

142 SAP jConnect for JDBC

...
props.put("DYNAMIC_PREPARE", "false")
Connection conn = DriverManager.getConnection(url, props);

When DYNAMIC_PREPARE is true:

• Not all dynamic statements can be precompiled under the prepare command. The SQL-92
standard places some restrictions on the statements that can be used with the prepare
command, and individual database vendors may have their own constraints.

• If the database generates an error because it cannot precompile and save a statement sent to
it through Connection.prepareStatement, SAP jConnect traps the error and
returns a PreparedStatement object containing an uncompiled dynamic SQL
statement. Each time the PreparedStatement object is executed, the statement is re-
sent to the database to be compiled and executed.

• A precompiled statement resides in memory in the database and persists either to the end of
a session or until its PreparedStatement object is explicitly closed. Garbage
collection on a PreparedStatement object does not remove the prepared statement
from the database.

As a general rule, explicitly close every PreparedStatement object after its last use to
prevent prepared statements from accumulating in server memory during a session and
slowing performance.

SybConnection.PrepareStatement Method
Use the SybConnection.prepareStatement extension method to return dynamic
SQL statements in PreparedStatement objects.

If your application allows SAP jConnect-specific extensions to JDBC:
PreparedStatement SybConnection.prepareStatement(String sql_stmt,
 boolean dynamic) throws SQLException

SybConnection.prepareStatement can return PreparedStatement objects
containing either precompiled or uncompiled SQL statements, depending on the setting of the
dynamic parameter. If dynamic is true, SybConnection.prepareStatement returns
a PreparedStatement object with a precompiled SQL statement. If dynamic is false, it
returns a PreparedStatement object with an uncompiled SQL statement.

This example shows the use of SybConnection.prepareStatement to return a
PreparedStatement object containing a precompiled statement:

PreparedStatement precomp_stmt = ((SybConnection)
conn).prepareStatement
 ("SELECT * FROM authors WHERE au_fname LIKE ?", true);

In this example, the connection object conn is cast to a SybConnection object to allow the
use of SybConnection.prepareStatement. The SQL string passed to
SybConnection.prepareStatement is precompiled in the database, even if the
connection property DYNAMIC_PREPARE is false.

Performance and Tuning

Programmers Reference 143

If the database generates an error because it cannot to precompile a statement sent to it through
SybConnection.prepareStatement, SAP jConnect throws a SQLException,
and the call fails to return a PreparedStatement object. This is unlike
Connection.prepareStatement, which traps SQL errors and, in the event of an error,
returns a PreparedStatement object containing an uncompiled statement.

ESCAPE_PROCESSING_DEFAULT Connection Property
By default, SAP jConnect parses all SQL statements submitted to the database for valid JDBC
function escapes.

If your application is not going to use JDBC function escapes in its SQL calls, set this
connection property to false to circumvent this parsing. This may give a slight performance
benefit.

Optimized Batch in SAP jConnect
SAP jConnect implements an internal algorithm to speed up batch operations for
PreparedStatement objects.

This algorithm is invoked when the HOMOGENEOUS_BATCH connection property is true.

Note: Homogeneous batching is available only when your client application is connected to a
server that supports this feature. SAP Adaptive Server Enterprise 15.7 introduces support for
homogeneous batching.

This example illustrates a PreparedStatement batching operation using the addBatch
and executeBatch methods:

String sql = "update members set lastname = ? where member_id = ?";
prep_stmt = connection.prepareStatement(sql);
prep_stmt.setString(1, "Forrester");
prep_stmt.setLong(2, 45129);
prep_stmt.addBatch();
prep_stmt.setString(1, "Robinson");
prep_stmt.setLong(2, 45130);
prep_stmt.addBatch();
prep_stmt.setString(1, "Servo");
prep_stmt.setLong(2, 45131);
prep_stmt.addBatch();
prep_stmt.executeBatch();

Performance and Tuning

144 SAP jConnect for JDBC

where connection is a connection instance, prep_stmt is a prepared statement instance,
and ? denotes parameter placeholders for the prepared statement.

Homogeneous Batch with Large Object (LOB) Columns
When the HOMOGENEOUS_BATCH and ENABLE_LOB_LOCATORS properties are true, the
client application cannot mix LOB and non-LOB prepared statement setter methods in the
same batch.

For example, this is invalid:
String sql = "update members SET catchphrase = ? WHERE member_id
= ?";
prep_stmt = connection.prepareStatement(sql);
prep_stmt.setString(1, "Push the button, Frank!");
prep_stmt.setLong(2, 45129);
prep_stmt.addBatch();
Clob myclob = con.createClob();
myclob.setString(1, "Hi-keeba!");
prep_stmt.setClob(1, myclob);
prep_stmt.setLong(2, 45130);
prep_stmt.addBatch();
pstmt.executeBatch();

where catchphrase is a column of type text. This code fails because the setString
method and the setClob method are used in the same batch for the same column.

Cursor Performance
When you use the Statement.setCursorName method or the setFetchSize()
method in the SybCursorResultSet class, SAP jConnect creates a cursor in the
database.

Other methods cause SAP jConnect to open, fetch, and update a cursor.

SAP jConnect creates and manipulates cursors either by sending SQL statements to the
database or by encoding cursor commands as tokens within the TDS communication protocol.
Cursors of the first type are language cursors, cursors of the second type are protocol cursors.

Protocol cursors provide better performance than language cursors. In addition, not all
databases support language cursors. For example, SAP SQL Anywhere databases do not
support language cursors.

Performance and Tuning

Programmers Reference 145

In SAP jConnect, the default condition is for all cursors to be protocol cursors. However, the
LANGUAGE_CURSOR connection property lets you use language commands in the database
to create and manipulate cursors.

LANGUAGE_CURSOR Connection Property
LANGUAGE_CURSOR is a Boolean-valued connection property in SAP jConnect that allows
you to determine whether cursors are created as protocol cursors or language cursors.

• If LANGUAGE_CURSOR is false (the default), all cursors created during a session are
protocol cursors, which provide better performance. SAP jConnect creates and
manipulates the cursors by sending cursor commands as tokens in the TDS protocol.

• If LANGUAGE_CURSOR is true, all cursors created during a session are language cursors.
SAP jConnect creates and manipulates the cursors by sending SQL statements to the
database for parsing and compilation.
There is no known advantage to setting LANGUAGE_CURSOR to true, but the option is
provided in case an application displays unexpected behavior when
LANGUAGE_CURSOR is false.

Performance and Tuning

146 SAP jConnect for JDBC

Migrating SAP jConnect Applications

Review instructions to migrate applications from SAP jConnect 5.x ,6.x, 7.x, and SAP
jConnect 16.x.

Migrating Applications to SAP jConnect 16.x
Review the instructions to migrate applications to SAP jConnect 16.x.

1. If your code uses SAP jConnect extensions, or if you explicitly import any SAP jConnect
class in your code, change package import statements as needed.

For example, change import statements such as:
import com.sybase.jdbc.*

and:
import com.sybase.jdbc2.jdbc.*

to:
import com.sybase.jdbcx.*

2. Set JDBC_HOME to the top directory of the SAP jConnect driver you installed:

JDBC_HOME=jConnect-16_0
3. Change your CLASSPATH environment variable to reflect the new installation; it must

include:

JDBC_HOME/classes/jconn4.jar
4. Change the source code where the driver is loaded, and recompile the application to use the

new driver:

Class.forName("com.sybase.jdbc4.jdbc.SybDriver");
5. Verify that the SAP jConnect 16.0 driver is the first SAP jConnect driver specified in your

CLASSPATH environment variable.

See also
• Change SAP jConnect Extensions on page 148

Migrating SAP jConnect Applications

Programmers Reference 147

Change SAP jConnect Extensions
SAP jConnect version 4.1 and later include the package com.sybase.jdbcx that contains
all of the SAP jConnect extensions to JDBC.

In versions of SAP jConnect earlier than 4.1, these extensions were available in the
com.sybase.jdbc and com.sybase.utils packages.

The com.sybase.jdbcx package provides a consistent interface across different versions
of SAP jConnect. All of the SAP jConnect extensions are defined as Java interfaces, which
allow the underlying implementations to change without affecting applications built using
these interfaces.

When you develop new applications that use SAP jConnect extensions, use
com.sybase.jdbcx. The interfaces in this package allow you to upgrade applications to
versions of SAP jConnect later than 4.0 with minimal changes.

Some of the SAP jConnect extensions have been changed to accommodate the
com.sybase.jdbcx interface.

Extension Change Example
Review the code differences if an application uses the SybMessageHandler.

• SAP jConnect 4.0 code:
import com.sybase.jdbc.SybConnection;
import com.sybase.jdbc.SybMessageHandler;
.
.
Connection con = DriverManager.getConnection(url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setMessageHandler(new ConnectionMsgHandler());

• SAP jConnect 6.0 code:
import com.sybase.jdbcx.SybConnection;
import com.sybase.jdbcx.SybMessageHandler;
.
.
Connection con = DriverManager.getConnection(url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setSybMessageHandler(new ConnectionMsgHandler());

See the samples provided with SAP jConnect for more examples of how to use SAP
jConnect extensions.

Method Names
Review the list of renamed methods in the interface.

Migrating SAP jConnect Applications

148 SAP jConnect for JDBC

Table 8. Method Name Changes

Actual Method Name Version 4.0 and Earlier Version 4.0 and Later

SybConnection getCapture() createCapture()
SybConnection setMessageHan-

dler()
setSybMessageHan-
dler()

SybConnection getMessageHan-
dler()

getSybMessageHan-
dler()

SybStatement setMessageHan-
dler()

setSybMessageHan-
dler()

SybStatement getMessageHan-
dler()

getSybMessageHan-
dler()

Debug Class
Direct static references to the Debug class are no longer supported, but exist in deprecated
form in the com.sybase.utils package.

Use SAP jConnect debugging facilities, use the getDebug method of the SybDriver class
to obtain a reference to the Debug class. For example:

import com.sybase.jdbcx.SybDriver;
import com.sybase.jdbcx.Debug;
.
.
.
SybDriver sybDriver =
 SybDriver)Class.forName
 ("com.sybase.jdbc4.jdbc.SybDriver") newInstance();
Debug sybDebug = sybDriver.getDebug();
sybDebug.debug(true, "ALL", System.out);

A complete list of SAP jConnect extensions is in the SAP jConnect Javadoc documentation
located in the docs/ directory of your SAP jConnect installation directory.

Migrating SAP jConnect Applications

Programmers Reference 149

Migrating SAP jConnect Applications

150 SAP jConnect for JDBC

Web Server Gateways

If your database server runs on a different host than your Web server, or if you are developing
Internet applications that must connect to a secure database server through a firewall, you need
a gateway to act as a proxy, providing a path to the database server.

To connect to servers using the SSL protocol, SAP jConnect includes a Java servlet that you
can install on any Web server that supports the javax.servlet interfaces. This servlet
enables SAP jConnect to support encryption using the Web server as the gateway.

Note: SAP jConnect includes support for SSL on the client system.

See also
• Implement Custom SSL Socket Plug-ins on page 111

TDS tunnelling
SAP jConnect uses TDS to communicate with database servers. Requests from a client to a
back-end server that go through the gateway contain TDS in the body of the request.

HTTP-tunnelled TDS is useful for forwarding requests. The request header indicates the
length of the TDS included in the request packet.

TDS is a connection-oriented protocol, whereas HTTP is not. To support security features
such as encryption for Internet applications, SAP jConnect uses a TDS-tunnelling servlet to
maintain a logical connection across HTTP requests. The servlet generates a session ID during
the initial login request, and the session ID is included in the header of every subsequent
request. Using session IDs lets you identify active sessions and even resume a session, as long
as the servlet has an open connection using that specific session ID.

The logical connection provided by the TDS-tunnelling servlet enables SAP jConnect to
support encrypted communication between two systems; for example, a SAP jConnect client
with the CONNECT_PROTOCOL connection property set to https can connect to a Web server
running the TDS-tunnelling servlet.

Web Server Gateways

Programmers Reference 151

Configure SAP jConnect and Gateways
There are several options for setting up your Web servers and SAP Adaptive Servers to install
the SAP jConnect driver and to use a gateway with the TDS-tunnelling servlet.

Web Server and SAP Adaptive Server on One Host
In a two-tier configuration, the Web server and SAP Adaptive Server are both installed on the
same host.

• Install SAP jConnect on the Web server host.
• No gateway is required.

Figure 3: Web Server and SAP Adaptive Server on One Host

Dedicated JDBC Web Server and SAP Adaptive Server on One Host
In a single host configuration, you have a separate host for your main Web server.

A second host is shared by a Web server specifically for SAP Adaptive Server access and the
SAP Adaptive Server. Links from the main server send requests requiring SQL access to the
dedicated Web server.

• Install SAP jConnect on the second (SAP Adaptive Server) host.
• No gateway is required on the second (SAP Adaptive Server) host.

Web Server Gateways

152 SAP jConnect for JDBC

Figure 4: Dedicated JDBC Web Server and SAP Adaptive Server on One
Host

Web Server and SAP Adaptive Server on Separate Hosts
In a three-tier configuration, the SAP Adaptive Server is on a separate host than the Web
server. SAP jConnect requires a gateway to act as a proxy to the SAP Adaptive Server.

• Install SAP jConnect on the Web server host.
• Install a TDS-tunnelling servlet or a different gateway.

Figure 5: Web Server and SAP Adaptive Server on Separate Hosts

Web Server Gateways

Programmers Reference 153

Connect to Server Through Firewall
Connect to a server protected by a firewall.

You must use a Web server with the TDS-tunnelling servlet to support transmission of
database request responses over the Internet.

• Install SAP jConnect on the Web server host.
• Requires a Web server that supports the javax.servlet interfaces.

Figure 6: Connecting to a Server Through a Firewall

Usage Requirements
Review the usage requirements for Web server gateways.

Viewing the Index.html File
Use your Web browser to view the index.html file in your SAP jConnect installation
directory. index.html provides links to the SAP jConnect documentation and sample
code.

If you use Netscape on the same machine where you have installed SAP jConnect, be sure that
your browser does not have access to your CLASSPATH environment variable. See
Restrictions on Setting CLASSPATH When You Use Netscape in the SAP jConnect for JDBC
Installation Guide and Release Bulletin.

1. Open your Web browser.

2. Enter the URL that matches your setup. For example, if your browser and the Web server
are running on the same host, enter:

Web Server Gateways

154 SAP jConnect for JDBC

http://localhost:8000/index.html

If the browser and the Web server are running on different hosts, enter:
http://host:port/index.html

where host is the name of the host on which the Web server is running, and port is the
listening port.

Running Sample Applet
Instructions to execute the sample applet in SAP jConnect.

1. Click Run Sample JDBC Applets.

2. In the Executable Samples table, locate Isql.java and click Run at the end of the
row.

The sample Isql.java applet prompts for a simple query on a sample database and
displays the results. The applet displays a default SAP Adaptive Server host name, port
number, user name (guest), password (sybase), database, and query. Using the default values,
the applet connects to the SAP jConnect demonstration database, and returns results after you
click Go.

Modifying Applet Screen Dimensions
On UNIX platforms, if the applet does not appear as expected, you can modify the applet
screen dimensions.

1. Use a text editor to open $JDBC_HOME/sample2/gateway.html.

2. Change the height parameter in line 7 to 650. You can experiment with different height
settings.

3. Reload the Web page on your browser.

TDS-Tunnelling Servlet
To use the TDS-tunnelling servlet, you need a Web server that supports the
javax.servlet interfaces, such as the Oracle Corporation Java Web server.

When you install the Web server, include the SAP jConnect TDS-tunnelling servlet in the list
of active servlets. You can also set servlet parameters to define connection timeouts and
maximum packet size.

With the TDS-tunnelling servlet, requests from a client to the back-end server that go through
the gateway include a GET or POST command, the TDS session ID (after the initial request),
back-end address, and status of the request.

TDS is in the body of the request. Two header fields indicate the length of the TDS stream and
the session ID assigned by the gateway.

Web Server Gateways

Programmers Reference 155

When the client sends a request, the Content-Length header field indicates the size of the TDS
content, and the request command is POST. If there is no TDS data in the request because the
client is either retrieving the next portion of the response data from the server, or closing the
connection, the request command is GET.

The following example illustrates how information is passed between the client and an
HTTPS gateway using the TDS-tunneled HTTPS protocol; it shows a connection to a back-
end server named “DBSERVER” with a port number of 1234.

• Client to gateway login request – No session ID required.

• Query– POST/tds?ServerHost=dbserver&ServerPort=1234& Operation=more
HTTP/1.0

• Header – Content-Length: 605
• Content (TDS) – Login request

• Gateway to client – Header contains session ID assigned by the TDS servlet.

• Query– 200 SUCCESS HTTP/1.0
• Header – Content-Length: 210 TDS-Session: TDS00245817298274292
• Content (TDS) – Login acknowledgment EED

• Client to gateway – Headers for all subsequent requests contain the session ID.

• Query– POST/tds?TDS-Session=TDS00245817298274292&Operation=more
HTTP/1.0

• Header – Content-Length: 32
• Content (TDS) – Query “SELECT * from authors”

• Gateway to client – Headers for all subsequent responses contain the session ID

• Query– 200 SUCCESS HTTP/1.0
• Header – Content-Length: 2048 TDS-Session: TDS00245817298274292
• Content (TDS) – Row format and some rows from query response

Reviewing Requirements
To use SAP jConnect servlet for TDS-tunnelling, you must have a Web server that supports the
javax.servlet interface.

To install the server, follow the instructions that are provided with the Java servlet.

Installing and Setting Servlet Arguments
SAP jConnect installation includes a gateway2 subdirectory under the classes directory.
The subdirectory contains files required for the TDS-tunnelling servlet.

1. Copy the SAP jConnect gateway package to a gateway2 subdirectory under the
servlets directory of your Web server.

Web Server Gateways

156 SAP jConnect for JDBC

After you have copied the servlets, activate the servlets by following the instructions for
your Web server.

2. Add the servlet to theWeb server and, to customize performance set the optional
arguments:

• SkipDoneProc [true|false] – databases often return row count information while
intermediate processing steps are performed during the execution of a query. Usually,
client applications ignore this data. If you set SkipDoneProc to true, the servlet
removes this extra information from responses, which reduces network usage and
processing requirements on the client. This is particularly useful when using HTTPS/
SSL, because the unwanted data is not encrypted/decrypted.

• TdsResponseSize – set the maximum TDS packet size for the tunneled HTTPS. A
larger TdsResponseSize is more efficient if you have only a few users with a large
volume of data. Use a smaller TdsResponseSize if you have many users making
smaller transactions.

• TdsSessionIdleTimeout – define the amount of time, in milliseconds that the server
connection can remain idle before the connection is automatically closed. The default
TdsSessionIdleTimeout is 600,000 (10 minutes).

If you have interactive client programs that may be idle for long periods of time and you
do not want the connections broken, increase the TdsSessionIdleTimeout.
You can also set the connection timeout value from the SAP jConnect client using the
SESSION_TIMEOUT connection property. This is useful if you have specific
applications that may be idle for longer periods. In this case, set a longer timeout for
those connections with the SESSION_TIMEOUT connection property, rather than
setting it for the servlet.

• Debug – turn on debugging.

See also
• Debugging with SAP jConnect on page 127

Invoking the Servlet
SAP jConnect determines when to use the gateway where the TDS-tunnelling servlet is
installed based on the path extension of the proxy connection property.

SAP jConnect recognizes the servlet path extension to the proxy and invokes the servlet on
the designated gateway.

Define the connection URL using this format:
http://host:port/TDS-servlet-path

SAP jConnect invokes the TDS-tunnelling servlet on the Web server to tunnel TDS through
HTTP. The servlet path must be the path you defined in the servlet alias list for your Web
server.

Web Server Gateways

Programmers Reference 157

Tracking Active TDS Sessions
View information about active TDS sessions, including the server connections, for each
session.

Use your Web browser to open the administrative URL:
http://host:port/TDS-servlet-path?Operation=list

For example, if your server is “myserver” and the TDS servlet path is /tds, enter:

http://myserver:8080/tds?Operation=list

This shows you a list of active TDS sessions. You can click on a session to see more
information, including the server connection.

Terminating TDS Sessions
To terminate a TDS session, use the URL defined in any active TDS session.

Select an active session from the list of sessions on the first page, then click Terminate This
Session.

Resuming a TDS Session
When you specify a SESSION_ID, SAP jConnect skips the login phase of the protocol and
resumes the connection with the gateway using the designated session ID.

Set the SESSION_ID connection property so that, if necessary, you can resume an existing
open connection.

If the session ID you specified does not exist on the servlet, SAP jConnect throws a SQL
exception the first time you attempt to use the connection.

Web Server Gateways

158 SAP jConnect for JDBC

SAP jConnect Sample Programs

Review SAP jConnect sample programs.

Running IsqlApp
IsqlApp allows you to issue isql commands from the command line, and run SAP jConnect
sample programs.

The syntax for IsqlApp:
IsqlApp [-U username]
 [-P password]
 [-S servername]
 [-G gateway]
 [-p {http|https}]
 [-D debug_class_list]
 [-v]
 [-I input_command_file]
 [-c command_terminator]
 [-C charset]
 [-L language]
 [-K service_principal_name]
 [-F JAAS_login_config_file_path]
 [-T sessionID]
 [-V <version {2,3,4,5}>]

Parameter Description

-U The login ID with which you want to connect to a server.

-P The password for the specified login ID.

-S The name of the server to which you want to connect.

-G The gateway address. For HTTP, the URL is: http://host:port.

To use HTTPS, the URL is https://host:port/servlet_alias.

-p Whether to use HTTP or HTTPS.

-D Turns on debugging for all classes or for just the ones you specify, separated
by a comma. For example:

-D ALL – displays debugging output for all classes.

-D SybConnection, Tds – displays debugging output only for the Syb-
Connection and Tds classes.

SAP jConnect Sample Programs

Programmers Reference 159

Parameter Description

-v Turns on verbose output for display or printing.

-I Causes IsqlApp to take commands from a file instead of the keyboard.

After the parameter, specify the name of the file to use for the IsqlApp input.
The file must contain command terminators (“go” by default).

-c Lets you specify a keyword (for example, “go”) that, when entered on a line
by itself, terminates the command. This lets you enter multiline commands
before using the terminator keyword. If you do not specify a command
terminator, each new line terminates a command.

-C Specifies the character set for strings passed through TDS.

If you do not specify a character set, IsqlApp uses the default charset of the
server.

-L Specifies the language in which to display error messages returned from the
server, and for SAP jConnect messages.

-K Indicates the user wants to make a Kerberos login to SAP Adaptive Server.
This parameter sets the service principal name. For example:

-K myASE
where the service principal name for your server is myASE.

-F Specifies the path to the JAAS login configuration file. You must set this
property if you use the -K option. For example:

-F /foo/bar/exampleLogin.conf

See the ConnectKerberos.java sample in the sample2 direc-

tory of your SAP jConnect installation.

-T When this parameter is set, SAP jConnect assumes that an application is
trying to resume communication on an existing TDS session held open by
the TDS-tunnelling gateway. SAP jConnect skips the login negotiations and
forwards all requests from the application to the specified session ID.

-V Enables the use of version-specific characteristics.

You must enter a space after each option flag.

To obtain a full description of the command line options, enter:
java IsqlApp -help

This example shows how to connect to a database on a host named “myserver” through port
“3756”, and run an isql script named “myscript”:

SAP jConnect Sample Programs

160 SAP jConnect for JDBC

java IsqlApp -U sa -P sapassword
 -S jdbc:sybase:Tds:myserver:3756
 -I $JDBC_HOME/sp/myscript -c run

An applet that provides GUI access to isql commands is available as: $JDBC_HOME/
sample2/gateway.html (UNIX) %JDBC_HOME%\sample2\gateway.html
(Windows).

See also
• Security on page 111

• JCONNECT_VERSION Connection Property on page 4

SAP jConnect Sample Programs

Programmers Reference 161

SAP jConnect Sample Programs

162 SAP jConnect for JDBC

SAP jConnect Sample Programs and Code

SAP jConnect includes several sample programs that are intended to help you understand how
SAP jConnect works with various JDBC classes and methods.

Sample Applications
When you install SAP jConnect, you can also the install sample programs, which include the
source code so that you can review how SAP jConnect implements various JDBC classes and
methods.

See the SAP jConnect for JDBC Installation Guide for complete instructions for installing the
sample programs.

Note: The SAP jConnect sample programs are intended for demonstration purposes only.

The sample programs are installed in the sample2 subdirectory under your SAP jConnect
installation directory. The file index.html in the sample2 subdirectory contains a
complete list of the samples that are available along with a description of each sample.
index.html also lets you view and run the sample programs as applets.

Running the Sample Applets
You can run some of the sample programs as applets in your Web browser, enabling you to
view the source code while you review the output results.

To run the sample programs as applets, enter http://localhost:8000/sample2/
index.html on a Web browser to start the Web server gateway.

Running the Sample Programs with SAP SQL Anywhere
All of the sample programs are compatible with SAP Adaptive Server, but only a limited
number are compatible with SAP SQL Anywhere.

Refer to index.html in the sample2 subdirectory for a current list of the sample
programs that are compatible with SAP SQL Anywhere.

To run the sample programs that are available for SAP SQL Anywhere, you must install the
pubs2_any.sql script on your SAP SQL Anywhere server. This script is located in the
sample2 subdirectory.

For Windows, go to DOS command window and enter:
java IsqlApp -U dba -P password
 -S jdbc:sybase:Tds:[hostname]:[port]
 -I %JDBC_HOME%\sample2\pubs2_any.sql -c go

SAP jConnect Sample Programs and Code

Programmers Reference 163

For UNIX, enter:
java IsqlApp -U dba -P password
 -S jdbc:sybase:Tds:[hostname]:[port]
 -I $JDBC_HOME/sample2/pubs2_any.sql -c go

Sample Code
Review the sample code that illustrates how to invoke the SAP jConnect driver, make a
connection, issue a SQL statement, and process results.

import java.io.*;
 import java.sql.*;

 public class SampleCode
 {
 public static void main(String args[])
 {
 try
 {
 /*
 * Open the connection. May throw a SQLException.
 */
 DriverManager.registerDriver(
 (Driver) Class.forName(
 "com.sybase.jdbc4.jdbc.SybDriver").newInstance());
 Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:myserver:3767", "sa", "");
 /*
 * Create a statement object, the container for the SQL
 * statement. May throw a SQLException.
 */
 Statement stmt = con.createStatement();
 /*
 * Create a result set object by executing the query.
 * May throw a SQLException.
 */
 ResultSet rs = stmt.executeQuery("Select 1");
 /*
 * Process the result set.
 */

 if (rs.next())
 {
 int value = rs.getInt(1);
 System.out.println("Fetched value " + value);
 }
 rs.close()
 stmt.close()

SAP jConnect Sample Programs and Code

164 SAP jConnect for JDBC

 con.close()
 }//end try
 /*
 * Exception handling.
 */
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 System.exit(1);
 }//end catch

 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }//end catch

 System.exit(0);
 }
 }

SAP jConnect Sample Programs and Code

Programmers Reference 165

SAP jConnect Sample Programs and Code

166 SAP jConnect for JDBC

SQL Exception and Warning Messages

Review the SQL exception and warning messages that you may encounter when using SAP
jConnect.

SQL state Message/Description/Action

010AF SEVERE WARNING: An assertion has failed, please use
devclasses todetermine the source of this serious bug.
Message = _____.
Action: Use the devclasses debug classes to determine the reason for this message,
and report the problem to SAP Technical Support.

010CP AutoCommit option has changed to true. All pending
statements on this transaction
(if any) are committed.

010DF Attempt to set database at login failed. Error mes-
sage:______.
Description: SAP jConnect cannot connect to the database specified in the connec-
tion URL.

Action: Be sure the database name in the URL is correct. Also, if you are connecting
to SAP SQL Anywhere, use the SERVICENAME connection property to specify
the database.

010DP Duplicate connection property _____ ignored.
Description: A connection property is defined twice. It may be defined twice in the
driver connection properties list with different capitalization, for example “pass-
word” and “PASSWORD.” SAP jConnect does not distinguish between property
names with the same name but different capitalization.

The connection property may also be defined both in the connection properties list,
and in the URL. In this case, the property value in the connection property list takes
precedence.

Action: Be sure your application defines the connection property only once. How-
ever, you may want your application to take advantage of the precedence of con-
nection properties defined in the property list over those defined in the URL. In this
case, you can safely ignore this warning.

010HA The server denied your request to use the high-availa-
bility feature. Please reconfigure your database, or
do
not request a high-availability session.
Action: Reconfigure the server to support high availability failover or do not set
REQUEST_HA_SESSION to true

SQL Exception and Warning Messages

Programmers Reference 167

SQL state Message/Description/Action

010HD SAP Adaptive Server high-availability failover is not
supported by this type of database server.
Action: Connect only to database servers that support high availability failover.

010HN The client did not specify a SERVICE_PRINCIPAL_NAME
Connection property. Therefore, jConnect is using the
hostname
of _____ as the service principal name
Action: Explicitly specify a service principal name using the connection property.

010HT Hostname property truncated, maximum length is 30.
Action: No action is necessary, since this is just a warning to indicate that SAP
jConnect is truncating the name to 30 bytes. However, if you wish to avoid this
warning, you should set the HOSTNAME to a string less than or equal to 30 bytes in
length.

010KF The server rejected your Kerberos login attempt. Most
likely, this was because of a Generic Security Services
(GSS)exception. Please check your Kerberos environment
and configuration.
Action: Check your Kerberos environment, and make sure that you authenticated
properly to the KDC. See Security on page 111 for more information.

010MX Metadata accessor information was not found on this da-
tabase. Please install the required tables as men-
tioned
in the jConnect documentation. Error encountered while
attempting to retrieve metadata information: _____.
Description: The server may not have the necessary stored procedures for returning
metadata information.

Action: Be sure that stored procedures for providing metadata are installed on the
server. See Installing Stored Procedures in the SAP jConnect for JDBC Installation
Guide.

010P4 An output parameter was received and ignored.
Description: The query you executed returned an output parameter but the appli-
cation result-processing code did not fetch it so it was ignored.

Action: If your application needs the output parameter data, rewrite the application
so it can get it. This may require using a CallableStatement to execute the query, and
adding calls to registerOutputParameter and getXXX. You can also prevent SAP
jConnect from returning this warning, and possibly see performance improvement,
by setting the DISABLE_UNPROCESSED_PARAM_WARNINGS connection
property to true.

SQL Exception and Warning Messages

168 SAP jConnect for JDBC

SQL state Message/Description/Action

010P6 A row was received and ignored.
Description: An unexpected object of type 0xD1 was encountered in the result set
being processed and has been ignored.

Action: Check the query that generated the result set and correct as required.

010PF One or more jars specified in the PRELOAD_JARS connec-
tion property could not be loaded.
Description: This happens when using the DynamicClassLoader with the
PRELOAD_JARS connection property set to a comma-delimited list of .jar file
names. When the DynamicClassLoader opens its connection to the server
from which the classes are to be loaded, it attempts to preload all the .jar files
mentioned in this connection property. If one or more of the .jar file names
specified does not exist on the server, the above error message results.

Action: Verify that every .jar file mentioned in the PRELOAD_JARS con-
nection property for your application exists and is accessible on the server.

010PO Property LITERAL_PARAM has been reset to false because
DYNAMIC_PREPARE was set to true.
Description: To use precompiled dynamic statements, allow for parameters to be
sent to those statements (if the statements take parameters). Setting LITER-
AL_PARAMS to true forces all parameters to be sent as literal values in the SQL
that you send to the server. Therefore, you cannot set both properties to true.

Action: To avoid this warning, do not set LITERAL_PARAMS to true when you
want to use dynamic SQL. See Performance Tuning for Prepared Statements in
Dynamic SQL on page 139.

010RC The requested ResultSet type and concurrency is not
supported. They have been converted.
Description: See Use Cursors with Result Sets on page 55 for more information
about what result set types and concurrencies are available in SAP jConnect

Action: Request a supported type and concurrency combination for the result set.

010SJ Metadata accessor information was not found on this da-
tabase. Please install the required tables as mentioned
in the jConnect documentation.
Description: The metadata information is not configured on the server.

Action: If your application requires metadata, install the stored procedures for
returning metadata that come with jConnect see Installing Stored Procedures in the
jConnect for JDBC Installation Guide. If you do not need metadata, set the
USE_METADATA property to false

SQL Exception and Warning Messages

Programmers Reference 169

SQL state Message/Description/Action

010SK Database cannot set connection option _____.
Description: Your application attempted an operation that the database you are
connected to does not support.

Action: Upgrade your database, or make sure that the latest version of metadata
information is installed on it.

010SL Out-of-date metadata accessor information was found on
this database. Ask your database administrator to load
the latest scripts.
Description: The metadata information on the server is old and needs to be updated.

Action: Install the stored procedures for returning metadata that come with SAP
jConnect. See Installing Stored Procedures in the SAP jConnect for JDBC Instal-
lation Guide.

010SM This database does not support the initial proposed set
of capabilities, retrying.
Description: SAP Adaptive Server Enterprise versions 11.9.2 and lower had an issue
that caused them to reject logins from clients that requested capabilities that the
servers did not have. This warning indicates that SAP jConnect has detected this
condition and is retrying the connection using the greatest number of capabilities
that the server can accept. When SAP jConnect encounters this bug, it attempts to
connect to the server twice.

Action: Clients can safely ignore this warning, but to eliminate the warning and
ensure that SAP jConnect makes only one connection attempt, they can set the
ELIMINATE_010SM connection property to true. Do net set this property to true
when connecting to SAP Adaptive Server versions 12.0 and later.

010SN Permission to write to file was denied. File: _____.
Error message: _____.
Description: Permission to write to a file specified in the PROTOCOL_CAPTURE
connection property is denied because of a security violation in the VM. This can
occur if an applet attempts to write to the specified file.

Action: If you are attempting to write to the file from an applet, make sure that the
applet has access to the target file system.

010SP File could not be opened for writing. File: _____. Error
message: _____.
Action: Make sure that the file name is correct and that the file is writable.

SQL Exception and Warning Messages

170 SAP jConnect for JDBC

SQL state Message/Description/Action

010SQ The connection or login was refused, retrying connec-
tion with the host/port address.
Description: The CONNECTION_FAILOVER connection property is set to true,
and SAP jConnect cannot to connect to one of the database servers in the list of
servers to which to connect. Therefore, SAP jConnect now tries to connect to the
next server in the list.

Action: No action is required, as long as SAP jConnect can to connect to another
database server. However, determine why SAP jConnect could not to connect to the
particular server that caused the connection warning to be issued.

010TP The connection’s initial character set,_____, could not
be converted by the server. The server’s proposed
character set,_____, will be used, with conversions
performed by jConnect.
Description: The server cannot use the character set initially requested by SAP
jConnect, and has responded with a different character set. SAP jConnect accepts
the change, and performs the necessary character-set conversions.

The message is strictly informational and has no further consequences.

Action: To avoid this message, set the CHARSET connection property to a character
set that the server supports.

010TQ jConnect could not determine the server's default char-
acter set. This is likely because
of a metadata problem. Please install the required ta-
bles as mentioned in the jConnect documentation.
The connection is defaulting to the ascii_7 character
set, which can handle only characters in the range from
0x00 through 0x7F.
Description: When this occurs, the only characters that are guaranteed to translate
properly are the first 127 ASCII characters. Therefore, SAP jConnect reverts to 7-bit
ASCII. The message is strictly informational and has no further consequences.

Action: Install the stored procedures for returning metadata that comes with SAP
jConnect. See Installing Stored Procedures in the SAP jConnect for JDBC Instal-
lation Guide.

SQL Exception and Warning Messages

Programmers Reference 171

SQL state Message/Description/Action

010UF Attempt to execute use database command failed. Error
message:_____.
Description: SAP jConnect cannot connect to the database specified in the connec-
tion URL. Two possibilities are:

• The name was entered incorrectly in the URL.
• USE_METADATA is true (the default), but the stored procedures for returning

metadata are not installed. As a result, SAP jConnect tried to execute the use
database command with the database in the URL, but the command failed. This
may be because you attempted to access a SQL Anywhere databases, which
does not support the use database command.

Action: Make sure the database name in the URL is correct. Make sure the stored
procedures for returning metadata are installed on the server. See Installing Stored
Procedures in the SAP jConnect for JDBC Installation Guide and SAP jConnect for
JDBC Release Bulletin. If you are attempting to access a SQL Anywhere database,
either do not specify a database name in the URL, or set USE_METADATA to false.

010UP Unrecognized connection property _____ ignored.
Description: You attempted to set a connection property in the URL that jConnect
does not currently recognize. jConnect ignores the unrecognized property.

Action: Check the URL definition in your application to make sure it references only
valid SAP jConnect driver connection properties.

0100V The version of TDS protocol being used is too old. Ver-
sion: _____.
Description: SAP jConnect requires version 5.0 or later.

Action: Use a server that supports the required version of TDS. See the System
Requirements in the SAP jConnect Installation Guide.

01S07 Adaptive Server may round or truncate nanosecond val-
ues.
Description: A time value more precise than 1/300th of a second encountered.
Because SAP Adaptive Server does not support such precision, jConnect rejected
the value.

Action: Make sure that time values are of precision up to 1/300th of a second.

SQL Exception and Warning Messages

172 SAP jConnect for JDBC

SQL state Message/Description/Action

01S08 This connection has been enlisted in a Global transac-
tion. All pending statements on the current local
transaction (if any) have been rolled back.
Description: SAP jConnect issues rollback to clear out any current local transac-
tions. This occurs when a global transaction has been enlisted, after issuing XAR-
esource.start().

Action: Either commit or roll back active local transactions before issuing the
XAResource.start() method.

01S09 The local transaction method ___________ cannot be used
while a global transaction is active on this connec-
tion.
Description: An example of a local operation is calling the commit() method on the
connection. Other operations that cannot be used include: rollback(),
rollback(Savepoint), setSavepoint(), setSave-
point(String), releaseSavepoint(Savepoint), and se-
tAutoCommit().

Action: Keep local transactions separate from global transactions. Complete all
local transactions and their operations before starting the global transaction.

01S10 The local transaction method _____ cannot be used on a
pre-System 12 XAConnection.
Description: You have used a local transaction method that does not work with
versions earlier than SAP SQL Anywhere version 12.

Action: Do not use the method.

01S11 WARNING: Your data might be truncated.
Description: The user-specified length of a stream or LOB is greater than the limit
(Integer.MAX_VALUE) in a ResultSet.updateXXX method.

Action: Make sure that the length is within the limit.

01S12 Unable to continue with HOMOGENEOUS_BATCH protocol,
falling back to normal batching.
Description: When DYNAMIC_PREPARE is set to false, SAP Adaptive Server
does not send parameter metadata. When HOMOGENEOUS_BATCH is true, SAP
jConnect requires this information for optimization. Thus, jConnect reverts to nor-
mal batching.

Action: Use optimized batching (HOMOGENEOUS_BATCH set to true) with pre-
compiled dynamic SQL prepared statements only (DYNAMIC_PREPARE set to
true).

SQL Exception and Warning Messages

Programmers Reference 173

SQL state Message/Description/Action

01S13 Connected Adaptive Server server does not support the
set option 'logbulkcopy' needed for logging BCP.
Falling back to normal bulk load without logging which
is equivalent to setting ENABLE_BULK_LOAD=BCP.
Description: If the SAP Adaptive Server is earlier than 15.7 ESD #1 and does not
support logged bulk loading, SAP jConnect reverts to normal batching.

Action: Use ENABLE_BULK_LOAD=LOG_BCP setting only with SAP Adap-
tive Server 15.7 ESD #1 or later.

01ZZZ Error code 4022:

Password has expired Please set the NEWPASSWORD proper-
ty with the new password or use sp_password to change
passwords.
Action: Reset the password for connecting to SAP Adaptive Server.

JZ001 User name property ‘_____’ too long. Maximum length is
30.
Action: Do not exceed the 30-byte maximum.

JZ002 Password property ‘_____’ too long. Maximum length is
30.
Action: Do not exceed the 30-byte maximum.

JZ003 Incorrect URL format. URL: _____.
Action: Verify the URL format. See URL connection property parameters on page
35.

If you are using the PROXY connection property, you may get a JZ003 exception
while trying to connect if the format for the PROXY property is incorrect.

• The PROXY format for the Cascade proxy is: ip_address:port_number
• The PROXY format for the TDS tunnelling servlet is: http[s]://host:port/tun-

neling_servlet_alias

JZ004 User name property missing in DriverManager.getConnec-
tion(..., Properties)
Action: Provide the required user property.

SQL Exception and Warning Messages

174 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ006 Caught IOException: _____.
Description: An unexpected I/O error is detected from a lower layer. When such I/O
exceptions are caught, they are rethrown as SQL exceptions using the
ERR_IO_EXCEPTION JZ006 sqlstate. These errors are often the result of
network communication problems. If the I/O exception causes the database con-
nection to be closed, SAP jConnect chains a JZ0C1 exception to the JZ006. Client
applications can look for the JZ0C1 exception in the chain to see if the connection is
still usable.

Action: Examine the text of the original I/O exception message, and proceed from
there.

JZ008 Invalid column index value _____.
Description: You have requested a column index value of less than 1 or greater than
the highest available value.

Action: Verify the call to the getXXX method and the text of the original query, or
call rs.next.

JZ009 Error encountered in conversion. Error message: _____.
Description: Possibilities include:

• An attempt to convert between two incompatible datatypes, such as date to
int.

• An attempt to convert a string containing a nonnumeric character to a numeric
type.

• A formatting error, such as an incorrectly formatted time/date string.

Action: Make sure that the JDBC specification supports the attempted type con-
version. Make sure that strings are correctly formatted. If a string contains nonnu-
meric characters, do not attempt to convert it to a numeric type.

JZ00A Invalid precision and scale specified for a numeric
value.
Description: When using the setBigDecimal method, the BigDecimal value
is set to either a precision value of less than 1, a negative scale value, a precision less
than the scale value, or precision value greater than 127.

Action: Examine the query and correct to specify a legal precision/scale value.

JZ00B Numeric overflow.
Description: You tried to send a BigInteger as a TDS numeric, and the value was too
large, or you tried to send a Java long as an int and the value was too large.

Action: These values cannot be stored in SAP jConnect. For long, consider using
a SAP jConnect numeric. There is no solution for Bignum.

SQL Exception and Warning Messages

Programmers Reference 175

SQL state Message/Description/Action

JZ00C The precision and scale specified cannot accommodate
numeric value _____.
Description: When using the setBigDecimal method, the BigDecimal value has a
precision or scale that exceeds the specified precision or scale.

Action: Make sure that the specified precision and scale can accommodate the
BigDecimal value.

JZ00E Attempt to call execute() or executeUpdate() for a
statement where setCursorName()has been called.
Action: Use a separate statement to delete or update a cursor. See Use Cursors with
Result Sets on page 55.

JZ00F Cursor name has already been set by setCursorName().
Action: Do not set the cursor name twice for a statement. Close the result set of the
current cursor statement.

JZ00G No column values were set for this row update.
Description: You attempted to update a row in which no column values were
changed.

Action: Call updateXX methods before calling updateRow.

JZ00H The result set is not updatable. Use Statement.setRe-
sultSetConcurrencyType().
Action: To change a result set from read-only to updatable, use the State-
ment.setResultSetConcurrencyType method or add a for update

clause to your SQL select statement.

JZ00I Invalid scale. The specified scale must be >=0.
Description: The scale value must be greater than zero.

Action: Be sure the scale value is not negative.

JZ00L Login failed. Examine the SQLWarnings chained to this
exception for the reason(s).
Action: See message text; proceed according to the reason(s) given for the login
failure.

JZ00M Login timed out. Check that your database server is
running on the host and port number you specified.
Also check the database server for other conditions
(such as a full tempdb) that might be causing it to
hang.
Action: Follow the recommended actions in the error message.

SQL Exception and Warning Messages

176 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ010 Unable to deserialize an Object value. Error text:
_____.
Action: Make sure that the Java object from the database implements the Seri-
alizable interface and is in your local CLASSPATH variable.

JZ011 Number format exception encountered while parsing nu-
meric connection property _____.
Description: A noninteger value was specified for a numeric connection property.

Action: Specify an integer value for the connection property.

JZ012 Internal Error. Please report it to SAP technical sup-
port. Wrong access type for connection property _____.
Action: Contact SAP Technical Support.

JZ013 Error obtaining JNDI entry: _____.
Action: Correct the JNDI URL, or make a new entry in the directory service.

JZ014 You may not setTransactionIsolation(Connection.TRANSAC-
TION_NONE). This level cannot be set; it can only be
returned by a server.
Action: Check your application code, where it calls Connection.setTran-
sactionIsolation, and verify the value you are passing to the method.

JZ015 Illegal value set for the GSSMANAGER_CLASS connection
property.
The property value must be a String or an Object that
extends org.ietf.jgss.GSSManager.
Action: Check the value to which you set the GSSMANAGER_CLASS property.

JZ017 Savepoint is not valid.
Description: You have specified a nonexistent savepoint for rollback or release.

Action: Examine the query and correct to specify an existing savepoint.

JZ018 This method can not be applied to this type of save-
point.
Description: The getSavepointId() method does not work on named sa-
vepoints (which have no ID), and the getSavepointName() method does
not work on unnamed savepoints (which have no name).

Action: Examine the query and correct.

SQL Exception and Warning Messages

Programmers Reference 177

SQL state Message/Description/Action

JZ019 Error obtaining SERVERNAME : _____.
Description: The URL set using jdbc::jndi:file does not specify either the
sql.ini file (Windows) or the interfaces file (UNIX) or a server name.

Action: Examine the URL command and correct.

JZ021 The Specified _____ file not found.
Description: The sql.ini file (Windows) or the interfaces file (UNIX)
specified in the connection URL is not found.

Action: Check the connection URL and correct.

JZ022 The Specified _____ file has an unknown format.
Description: The connection URL string in the sql.ini file (Windows) or the
interfaces file (UNIX) is not in the correct format.

Action: Check the connection URL string and correct.

JZ024 The Specified Server : _____ has no entry in the inter-
faces/sql.ini file :_____.
Action: Check the connection URL string and correct.

JZ025 The TLI format for Specified Server in interfaces/
sql.ini is Invalid.
Action: Check the settings and correct.

JZ026 The Specified Protocol : _____ for Server : _____ in
interfaces/sql.ini file :_____ is not Supported.
Description: A protocol other than TLI, TCP, and NLWNSCK is specified in the
sql.ini file (Windows) or the interfaces file (UNIX).

Action: Specify a supported protocol.

JZ027 The Specified SECMECH entrys: _____ for Server : _____
in interfaces/sql.ini file :_____ are not Supported.
Description: An invalid value is specified in the Kerberos connection URL.

Action: Examine the URL and correct.

JZ028 Illegal value set for JCE_PROVIDER_CLASS connection
property. The property value must be a fully qualified
provider
class name passed as a String or an instance of java.se-
curity.Provider.
Action: Specify a legal value.

SQL Exception and Warning Messages

178 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ029 Error looking up address for ALTERNATE_SERVER_NAME
_____,(_____).
Description: SAP jConnect cannot locate the server specified with the ALTER-
NATE_SERVER_NAME property using the SAP SQL Anywhere UDP discovery
protocol.

Action: Check the server name specified with the ALTERNATE_SERV-
ER_NAME connection property and correct.

JZ030 The method _____ is not supported.

JZ031 Failed to unwrap the object of _____.
Description: SAP jConnect cannot unwrap the object of a custom class because the
custom class is not in the classpath.

Action: Add the class to classpath.

JZ032 A Date or Timestamp parameter exceeds the BigDateTime/
BigTime range. The server can only support
BigDateTime values between 0001/01/01 12:00:00:000000AM
to 9999/12/31 11:59:59.999999PM or BigTime values
between 12:00:00:000000AM to 11:59:59.999999PM.

JZ033 Unknown Blob type returned by the server.
Description: SAP jConnect cannot map the SAP Adaptive Server datatype of the
column to a BLOB datatype.

Action: Make sure that the SAP Adaptive Server column is convertible to a BLOB
datatype.

JZ034 The connected server is not capable of handling Large
Objects [LOB].
Action: Use the regular stream methods to access LOB.

JZ035 To handle Large object [LOB], please set connection
property 'ENABLE_LOB_LOCATOR' to true.

JZ036 Reference to this Large Object [LOB] is no longer valid
in database. Check if you have called free() or
check if transaction ended.

JZ037 Value of offset/position/start should be in the range
[1, len] where len is the length of Large Object[LOB].

JZ038 Length of the object should be >= 0.

SQL Exception and Warning Messages

Programmers Reference 179

SQL state Message/Description/Action

JZ040 _____ operation failed. The _____ has been closed al-
read.
Description: The read (write) operation has failed as input stream or LOB reader
(output stream or LOB writer) has already closed

Action: Check the application to locate the reason of the conflict and correct.

JZ041 _____ operation failed on the _____.
Description: The read(write)(available()) operation has failed as input stream or
reader (output stream or writer)(input stream) has already closed.

Action: Check the application to locate the reason of the conflict and correct.

JZ042 Large Object setters can not be mixed with other setters
when ENABLE_LOB_LOCATOR and HOMOGENEOUS_BATCH are set
to TRUE. java.sql.Types _____ was mixed with
java.sql.Types _____.

JZ043 LOB objects are not supported for any of the possible
variants of 'ENABLE_BULK_LOAD property', but false.
Please consider using alternate setter APIs
to insert the data.

JZ044 Server-side locators can not be created within the
batch if,SEND_BATCHPARAMS_IMMEDIATE is TRUE. Try using
client side LOBs or set SEND_BATCHPARAMS_IMMEDIATE
to FALSE.

JZ0BD Out of range or invalid value used for method parameter.

JZ0BI setFetchSize: The fetch size should be set with the
following restrictions – 0 <= rows <=
(maximum number of rows in the ResultSet).
Action: Verify that you are calling setFetchSize with the parameter falling within
the above range of values.

JZ0BJ The value set for the IMPLICIT_CURSOR_FETCH_SIZE con-
nection property must be > 0.

JZ0BP Output parameters are not allowed in Batch Update
Statements.

JZ0BR The cursor is not positioned on a row that supports the
_____ method.
Action: Do not attempt to call a ResultSet method that is invalid for the current row
position.

SQL Exception and Warning Messages

180 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0BS Batch Statements not supported.
Action: Install or update the SAP jConnect metadata stored procedures on your
database with the latest versions.

JZ0BT The _____ method is not supported for ResultSets of type
_____.
Action: Do not attempt to call a ResultSet method that is invalid for the type of
ResultSet.

JZ0C0 Connection is already closed.
Action: Fix the code so that connection object references are nulled when a con-
nection is closed.

JZ0C1 An IOException occurred which closed the connection.
Description: The connection cannot be used for any further database activity. If this
exception occurs, it can always be found in an exception chain with the JZ006
Exception.

Action: Determine the cause of the IOException that disrupted the connection.

JZ0CL You must define the CLASS_LOADER property when using
the PRELOAD_JARS property.

JZ0D4 Unrecognized protocol in JDBC URL:_____.
Description: You specified a connection URL using a protocol other than TDS,
which is the only protocol currently supported by SAP jConnect.

Action: Check the URL definition. If the URL specifies TDS as a subprotocol, make
sure that the entry uses the following format and capitalization:

jdbc::Tds:host:port

If the URL specifies JNDI as a subprotocol, make sure that it starts with:

jdbc::jndi:

JZ0D5 Error loading protocol _____.
Action: Check the settings for the CLASSPATH system variable.

JZ0D6 Unrecognized version number _____ specified in setVer-
sion. Choose one of the SybDriver.VERSION_* values,
and make sure that the version of jConnect that you are
using is at or beyond the version you specify.

JZ0D7 Error loading url provider _____. Error message: _____.
Action: Check the JNDI URL to make sure it is correct.

SQL Exception and Warning Messages

Programmers Reference 181

SQL state Message/Description/Action

JZ0D8 Error initializing url provider: _____.
Action: Check the JNDI URL to make sure it is correct.

JZ0EM End of data.
Action: Please report this error to SAP Technical Support.

JZ0F1 SAP Adaptive Server Enterprise high-availability fail-
over connection was requested but the companion server
address is missing.
Description: When you set the REQUEST_HA_SESSION connection property
to true, you must also specify a failover server.

Action: You can specify the secondary server using the SECONDARY_SERV-
ER_HOSTPORT connection property, or you can set the secondary server using
JNDI.

JZ0F2 SAP Adaptive Server Enterprise high-availability fail-
over has occurred. The current transaction is aborted,
but the connection is still usable. Retry your transac-
tion.
Description: The back-end database server to which you were connected stopped
responding, but because you failed over to a secondary server, the database con-
nection is still usable.

Action: Client code should catch this exception, then restart the transaction from the
last committed point. Assuming you properly handle the exception, you can con-
tinue executing JDBC calls on the same connection object.

JZ0FP Incorrect value passed for parameter ____.
Description: The value of the parameter specified for the state of the current result
set is invalid.

Action: Make sure the value is valid: CLOSE_CURRENT_RESULT, KEEP_CUR-
RENT_RESULT, CLOSE_ALL_RESULTS.

JZ0GC Error casting a ____ as a GSSManager. Please check the
value you are setting for the GSSMANAGER_CLASS
connection property. The value must be a String that
specifies the fully qualified class name of a GSSManag-
er implementation. Or, it must be an Object that extends
org.ietf.jgss.GSSManager.

SQL Exception and Warning Messages

182 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0GK The _____ array can not be null and has to contain only
one key.
Description: The autogenerated key column name/index array is either NULL or
contains more than one key. Only one key is allowed in the array since it relates to the
IDENTITY column.

Action: Check the query and correct.

JZ0GN Error instantiating the class ___ as a GSSManager. The
exception was ____. Please check your
CLASSPATH and make sure the GSSMANAGER_CLASS property
value refers to a fully qualified class name of a
GSSManager implementation.
Action: Make sure your CLASSPATH environment variable includes any .jar
files required by your third-party GSSManager implementation.

JZ0GS A Generic Security Services API exception occurred. The
major error code is ___. The major error message is
___.
The minor error code is ___. The minor error message is
____.
Action: Examine the major and minor error codes and messages. Check your Ker-
beros configuration. See Security on page 111.

JZ0H0 Unable to start thread for event handler; event name =
_____.
Action: Report this error to SAP Technical Support.

JZ0H1 An event notification was received but the event han-
dler was not found; event name = _____.
Action: Report this error to SAP Technical Support.

JZ0HC Illegal character ‘_____’ encountered while parsing
hexadecimal number.
Description: A string that is supposed to represent a binary value contains a char-
acter that is not in the range (0–9, a–f) that is required for a hexadecimal number.

Action: Check the character values in the string to make sure they are in the required
range.

JZ0I3 Incorrect argument _____ passed to method _____.
Action: Verify in the product documentation or in the JDBC API that the correct
argument was passed.

SQL Exception and Warning Messages

Programmers Reference 183

SQL state Message/Description/Action

JZ0I5 An unrecognized CHARSET property was specified: _____.
Action: Enter a valid character-set code for the CHARSET connection property. See
jConnect Character-Set Converters on page 43.

JZ0I6 An error occurred converting UNICODE to the charset
used by the server. Error message: _____.
Action: Choose a different character set code for the CHARSET connection prop-
erty on the SAP jConnect client that supports all the characters you need to send to
the server. You may need to install a different character set on the server, too. Also, if
you are using SAP jConnect version 6.05 or later, and SAP Adaptive Server En-
terprise 12.5 or later, you can send your data to the server as unichar/uni-
varchar datatypes.

JZ0I7 No response from proxy gateway.
Description: The connection cannot be established as there is no response from
proxy gateway specified with the PROXY connection property.

Action: Check the PROXY setting and correct.

JZ0I8 Proxy gateway connection refused. Gateway response:
%1s.
Action: Check the proxy gateway settings.

JZ0I9 This InputStream was closed.
Description: You tried to read an InputStream obtained from getAscii-
Stream, getUnicodeStream, or getBinaryStream, but the Input-
Stream was already closed. The stream may have been closed because you moved to
another column or cancelled the result set and there were not enough resources to
cache the data.

Action: Increase the cache size or read columns in order.

JZ0IA Truncation error trying to send_____.
Description: There was a truncation error on character set conversion prior to send-
ing a string. The converted string is longer than the size allocated for it.

Action: Choose a different character-set code for the CHARSET connection prop-
erty on the SAP jConnect client that supports all the characters you need to send to
the server. You may need to install a different character set on the server, too.

SQL Exception and Warning Messages

184 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0IB The server's default charset of _____ does not map to an
encoding that is available in the client Java environ-
ment.
Because jConnect will not be able to do client-side
conversion, the connection is unusable and is being
closed.
Try using a later Java version, or try including your
Java installation's i18n.jar or charsets.jar file in
the classpath.

JZ0IR getXXX may not be called on a column after it has been
updated in the result set with a java.io.Reader.
Action: Remove the getXXX call on the ResultSet column you updated using a
reader.

JZ0IS getXXXStream may not be called on a column after it has
been updated in the result set.
Description: After updating a column in a result set, you attempted to read the
updated column value using one of these SybResultSet methods: getAs-
ciiStream, getUnicodeStream, getBinaryStream. SAP jCon-
nect does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

JZ0J0 Offset and/or length values exceed the actual text/im-
age length.

JZ0LA Failed to instantiate Cipher object. Transformation %1s
is not implemented by any of the loaded JCE providers.
Action: Make sure that the implementation is specified correctly in the JCE_PRO-
VIDER_CLASS connection property of the CLASSPATH.

JZ0LC You cannot call the ____ method on a ResultSet which is
using a language cursor to fetch rows.
Try setting the LANGUAGE_CURSOR connection property to
false.
Description: The application tried to call one of the ResultSet cursor scrolling
methods on a ResultSet which was created with a language cursor.

JZ0MD ResultSet metadata is not available.
Action: Install the metadata stored procedures.

JZ0NC wasNull called without a preceding call to get a column.
Description: You can only call wasNull after a call to get a column, such as getInt or
getBinaryStream.

Action: Change the code to move the call to wasNull.

SQL Exception and Warning Messages

Programmers Reference 185

SQL state Message/Description/Action

JZ0NE Incorrect URL format. URL: _____. Error message: _____.
Action: In the URL, make sure that the port number consists only of numeric
characters.

JZ0NF Unable to load SybSocketFactory. Make sure that you
have spelled the class name correctly, that the package
is
fully specified, that the class is available in your
class path, and that it has a public zero-argument con-
structor.

JZ0NK Generated keys are not available because either the
Statement.NO_GENERATED_KEYS was used or no keys were
automatically generated.
Description: The getGeneratedKeys() method cannot return the autogen-
erated keys because the statement was executed with .NO_GENERATED_KEYS
or the statement produced no autogenerated keys.

Action: Use getGeneratedKeys() only on statements executed with .RE-
TURN_GENERATED_KEYS, or those that are expected to autogenerate keys.

JZ0NS The method ____ is not supported and should not be
called.

JZ0P1 Unexpected result type.
Description: The database has returned a result that the statement cannot return to
the application, or that the application is not expecting at this point. This generally
indicates that the application is using JDBC incorrectly to execute the query or
stored procedure. If the JDBC application is connected to an SAP Open Server
application, it may indicate an error in the SAP Open Server application that causes
the SAP Open Server to send unexpected sequences of results.

Action: Use the com..utils.Debug(true, “ALL”) debugging tools
to try to determine what unexpected result is seen, and to understand its causes.

JZ0P4 Protocol error. This message indicates an internal
product problem. Report this error to SAP technical
support.

SQL Exception and Warning Messages

186 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0P7 Column is not cached; use RE-READABLE_COLUMNS property.
Description: With the REPEAT_READ connection property set to false, an at-
tempt was made to reread a column or read a column in the wrong order.

When REPEAT_READ is false, you can only read the column value for a row once,
and you can only read columns in ascending column-index order. For example, after
reading column 3 for a row, you cannot read its value a second time and you cannot
read column 2 for the row.

Action: Either set REPEAT_READ to true, or do not attempt to reread a column
value and be sure that you read columns in ascending column-index order.

JZ0P8 The RSMDA Column Type Name you requested is unknown.
This is a SAP internal error; please report it to tech-
nical support.
Description: SAP jConnect cannot determine the name of a column type in the
ResultSetMetaData.getColumnTypeName method.

Action: Be sure that your database has the most recent stored procedures for met-
adata.

JZ0P9 A COMPUTE BY query has been detected. That type of re-
sult is unsupported and has been cancelled.
Action: Change your query or stored procedure so it does not use COMPUTE BY.

JZ0PA The query has been cancelled and the same response dis-
carded.
Action: Check the chain of SQL exceptions and warnings on this and other state-
ments to determine the cause.

JZ0PB The server does not support a requested operation.
Description: When SAP jConnect creates a connection with a server, it informs the
server of capabilities it wants supported, and the server informs SAP jConnect of the
capabilities that it supports. This error message is sent when an application requests
an operation that was denied in the original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL
statements, and your code invokes SybConnection.prepareState-
ment(sql_stmt, dynamic), and dynamic is set to true, SAP jConnect generates this
message.

Action: Modify your code so that it does not request an unsupported capability.

SQL Exception and Warning Messages

Programmers Reference 187

SQL state Message/Description/Action

JZ0PC The number and size of parameters in your query require
wide table support. But either the server does not offer
such support, or it was not requested
during the login sequence. Try setting the JCON-
NECT_VERSION property to >=6 if you wish to request wi-
detable support.
Description: You are trying to execute a statement with a larger number of param-
eters than the server is configured to handle. The number of parameters that can
produce this exception varies, depending on the datatypes of the data you are send-
ing. You never get this exception if you are sending 481 or fewer parameters.

Action: Run the query against an SAP Adaptive Server 12.5 or later server. When
you connect to the database, set the JCONNECT_VERSION property to “6”.

JZ0PD The size of the query in your dynamic prepare is large
enough that you require widetable support.
But either the server does not offer such support, or it
was not requested during the login sequence.
Try setting the JCONNECT_VERSION property to >=6 if you
wish to request widetable support.
Description: You are trying to execute a dynamic prepared statement with larger
number of parameters than the server is configured to handle.

Action: Run the query against an SAP Adaptive Server 12.5 or later server. When
you connect to the database, set the JCONNECT_VERSION property to “6”.

JZ0PE The number of columns in your cursor declaration OR the
size of your cursor declaration itself are large enough
that you require widetable support. But either the
server does not offer such support, or it was not re-
quested during the
login sequence. Try setting the JCONNECT_VERSION prop-
erty to >= 6 if you wish to request wide table support.
Description: This error can occur when your SELECT statement tries to return data
from more than 255 columns, or when the actual length of the SELECT statement is
very large (greater than approximately 65500 characters).

Action: Run the query against a version 12.5 or later SAP Adaptive Server. When
you connect to the database, set the JCONNECT_VERSION property to “6”.

JZ0PN Specified port number of ____ was out of range.
Port numbers must meet the following conditions:
0<= portNumber <=65535.
Action: Check the port number that is specified in the database URL.

JZ0R0 Result set has already been closed.
Action: Fix the code so that ResultSet object references are set to null when-
ever a result set is closed.

SQL Exception and Warning Messages

188 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0R1 Result set is IDLE as you are not currently accessing a
row.
Description: The application has called one of the ResultSet.getXXX col-
umn-data retrieval methods, but there is no current row; the application has not
called ResultSet.next, or ResultSet.nextreturned false to indicate
that there is no data.

Action: Verify that rs.next is set to true before calling rs.getXXX.

JZ0R2 No result set for this query.
Description: You used Statement.executeQuery, but the statement re-
turned no rows.

Action: Use executeUpdate for statements returning no rows.

JZ0R3 Column is DEAD. This is an internal error. Please report
it to SAP technical support.

JZ0R4 Column does not have a text pointer. It is not a text/
image column or the column is NULL.
Action: Be sure that you are not trying to update or get a text pointer to a column that
does not support text/image data, and verify that you are not trying to update a
text/image column that is null. Insert data first, then make the update.

JZ0R5 The ResultSet is currently positioned beyond the last
row. You cannot perform a get* operation to read data
in
this state.
Action: Alter the code so that it does not attempt to read column data when the
ResultSet is positioned beyond the last row.

JZ0RD You cannot call any of the ResultSet.get* methods on a
row that has been deleted with the deleteRow() method.
Action: Alter the code so that the application does not attempt to retrieve data from a
deleted row.

JZ0RM refreshRow may not be called after updateRow or dele-
teRow.
Description: After updating a row in the database with SybCursorRe-
sult.updateRow, or deleting it with SybCursorResult.deleteR-
ow, you used SybCursorResult.refreshRow to refresh the row from
the database.

Action: Do not attempt to refresh a row after updating it or deleting it from the
database.

SQL Exception and Warning Messages

Programmers Reference 189

SQL state Message/Description/Action

JZ0S0 Statement state machine: Statement is BUSY.
Description: The only time this error is raised is from the Statement.set-
Cursorname method, if the application is trying to set the cursor name when the
statement is already in use and has noncursor results that need to be read.

Action: Set the cursor name on a statement before you execute any queries on it, or
call Statement.cancel before setting the cursor name, to make sure that the
statement is not busy.

JZ0S1 Statement state machine: Trying to FETCH on IDLE state-
ment.
Action: Close the statement and open another one.

JZ0S2 Statement object has already been closed.
Action: Fix the application so that statement object references are set to null when-
ever a statement is closed.

JZ0S3 The inherited method _____ cannot be used in this sub-
class.
Description: PreparedStatement does not support execute-
Query(String), executeUpdate(String), orexe-
cute(String).

Action: To pass a query string, use Statement, not PreparedState-
ment.

JZ0S4 Cannot execute an empty (zero-length) query.
Action: Do not execute an empty query (““).

JZ0S5 The local transaction method ____ cannot be used while a
global transaction is active on this connection.
Description: This exception can occur when using distributed transactions.

Action: See Distributed Transaction Management Support on page 104.

JZ0S6 The local transaction method _____ cannot be used on a
pre-System 12 XAConnection.
Description: This exception can occur when using distributed transactions.

Action: See Distributed Transaction Management Support on page 104.

JZ0S8 An escape sequence in a SQL Query was malformed: ‘_____.
Action: Check JDBC documentation for correct syntax.

JZ0S9 Cannot execute an empty (zero-length) query.
Action: Do not execute an empty query (““).

SQL Exception and Warning Messages

190 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0SA Prepared Statement: Input parameter not set, index:
_____.
Action: Be sure that each input parameter has a value.

JZ0SB Parameter index out of range: _____.
Action: Check the number of parameters in your query.

JZ0SC Callable Statement: attempt to set the return status as
an InParameter.
Description: You have prepared a call to a stored procedure that returns a status, but
you are trying to set parameter 1, which is the return status.

Action: Parameters that you can set start at 2 with this type of call.

JZ0SD No registered parameter found for output parameter.
Description: This indicates an application logic error. You attempted to call
getXXX or wasNull on a parameter, but you have not read any parameters yet,
or there are no output parameters.

Action: Check to make sure that the application has registered output parameters on
the CallableStatement, that the statement has been executed, and that the output
parameters were read.

JZ0SE Invalid object type specified for setObject().
Description: Illegal type argument passed to PreparedStatement.se-
tObject.

Action: Check the JDBC documentation. The argument must be a constant from
java.sql.Types.

JZ0SF No Parameters expected. Has query been sent?
Description: You tried to set a parameter on a statement with no parameters.

Action: Make sure the query has been sent before you set the parameters.

SQL Exception and Warning Messages

Programmers Reference 191

SQL state Message/Description/Action

JZ0SG An RPC did not return as many output parameters as the
application had registered for it.
Description: This error occurs if you call CallableStatement.regis-
terOutParam for more parameters than you declared as OUTPUT parameters
in the stored procedure. See RPC Returns Fewer Output Parameters than Registered
on page 135.

Action: Check your stored procedures and registerOutParameter calls.
Make sure that you have declared all of the appropriate parameters as OUTPUT.
Look at the line of code that reads:

create procedure yourproc (@p1 int OUTPUT, ...
Note: If you receive this error while using SQL Anywhere, upgrade to SQL Any-
where version 5.5.04.

JZ0SH A static function escape was used, but the metadata ac-
cessor information was not found on this server.
Action: Install metadata accessor information before using static function escapes.

JZ0SI A static function escape _____ was used which is not
supported by this server.
Action: Do not use this escape.

JZ0SJ Metadata accessor information was not found on this da-
tabase.
Action: Install metadata information before making metadata calls.

JZ0SK The oj escape is not supported for this type of database
server. Workaround: use server-specific outer join syn-
tax,
if supported. Consult server documentation.
Action: In addition to following the instructions in the message, also install the latest
version of the SAP jConnect metadata.

JZ0SL Unsupported SQL type _____.
Action: If possible, declare the parameter to be of a type supported by SAP jCon-
nect. Do not use Types.NULL or PreparedStatement.setObject
(null).

SQL Exception and Warning Messages

192 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0SM jConnect could not execute a stored procedure because
there was a problem sending the parameter(s).
This problem was likely caused because the server does
not support a specific datatype, or because jConnect
did not request
support for that datatype at connect time. Try setting
the JCONNECT_VERSION connection property to a higher
value.
Or, if possible, try sending your procedure execution
command as a language statement.

JZ0SN setMaxFieldSize: field size cannot be negative.

JZ0SO Invalid ResultSet concurrency type:_____.
Action: Check that your declared concurrency is either ResultSet.CON-
CUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE.

JZ0SP Invalid ResultSet type:_____.
Action: Check that your declared ResultSet type is ResultSet.TYPE_FOR-
WARD_ONLY or ResultSet.TYPE_SCROLL_INSENSITIVE. SAP
jConnect does not support the ResultSet.TYPE_SCROLL_SENSITIVE
ResultSet type.

JZ0SQ In valid UDT type ____.
Description: When calling the DatabaseMetaData.getUDTs method,
jConnect throws this exception if the user-defined type is not
Types.JAVA_OBJECT, Types.STRUCT, or Types.DISTINCT.

Action: Use one of the three UDTs mentioned.

JZ0SR setMaxRows: max rows cannot be negative.

JZ0SS setQueryTimeout:query timeout cannot be negative.

JZ0ST jConnect cannot send a Java object as a literal param-
eter in a query. Make sure that your database server
supports Java objects and that the LITERAL_PARAMS
connection property is set to false when you execute
this query.

SQL Exception and Warning Messages

Programmers Reference 193

SQL state Message/Description/Action

JZ0SU A Date or Timestamp parameter was set with a year of
______, but the server can only support year values
between _____ and _______. If you’re trying to send data
to date or timestamp columns or parameters on Adaptive
Server Anywhere,
you may wish to send your data as Strings, and let the
server convert them.
Description: SAP Adaptive Server Enterprise and SAP SQL Anywhere have dif-
ferent allowable ranges for datetime and date values. datetime values
must have years greater or equal to 1753. The date datatype, however, can hold
years greater or equal to 1.

Action: Make sure that the date/timestamp value you are sending falls in the
acceptable range.

JZ0SV Combination of setting parameters by name and by index
is not allowed in the same CallableStatement.
Description: The CallableStatement has parameters specified by name and by index
(ordinal position). Mixed use is invalid.

Action: Specify parameters by name only or by index (ordinal position) only.

JZ0SW Invalid ResultSet holdability type: ____.
Description: You have specified an invalid value with the setHoldability() method.

Action: Use the legal values only: HOLD_CURSORS_OVER_COMMIT or
CLOSE_CURSORS_AT_COMMIT.

JZ0T2 Listener thread read error.
Action: Check your network communications.

JZ0T3 Read operation timed out.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

JZ0T4 Write operation timed out. Timeout in milliseconds:
_____.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

JZ0T5 Cache used to store responses is full.
Action: Use default or larger value for the STREAM_CACHE_SIZE connection
property.

JZ0T6 Error reading tunneled TDS URL.
Description: The tunneled protocol failed while reading the URL header.

Action: Check the URL you defined for the connection.

SQL Exception and Warning Messages

194 SAP jConnect for JDBC

SQL state Message/Description/Action

JZ0T7 Listener thread read error -- caught ThreadDeath. Check
network connection.
Action: Check the network connections and try to run the application again. If the
threads continue to abort, please contact SAP Technical Support.

JZ0T8 Data received for an unknown request. Please report
this error to SAP Technical Support.

JZ0TC Attempted conversion between an illegal pair of types.
Description: Conversion between a Java type and a SQL type failed.

Action: Check the requested type conversion to make sure it is supported in the
JDBC specification.

JZ0TD Caught ThreadDeath.
Description: The calling application thread was killed while SAP jConnect was
performing a timed I/O operation.

Action: Check the application code to locate the conflict and correct.

JZ0TE Attempted conversion between an illegal pair of types.
Valid database types are: ‘_________'.
Description: The database column datatype and the datatype requested in the Re-
sultSet.getXXX call are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

JZ0TI jConnect cannot make a meaningful conversion between
the database type of _________ and the requested type of
_________.
Description: This kind of exception can occur, for example, if an application tries to
call ResultSet.getObject(int, Types.DATE) on a time value
that is returned from the database.

Action: Make sure that the database datatype is implicitly convertible to the object
type you want to retrieve.

JZ0TO Read operation timed out.
Description: This exception occurs when there is a socket read timeout.

Action: Increase the timeout period by calling Statement.setQueryTi-
meout. Also, check the query or stored procedure you are executing to determine
why it is taking longer than expected.

SQL Exception and Warning Messages

Programmers Reference 195

SQL state Message/Description/Action

JZ0TS Truncation error trying to send __________.
Description: The application specified a string that was longer than the length that
the application wanted to send. Therefore, the string is truncated to the declared
length.

Action: Set the length properly to avoid truncation.

JZ0US The SybSocketFactory connection property was set, and
the PROXY connection property was set to the
URL of a servlet. The jConnect driver does not support
this combination. If you want to send secure HTTP from
an applet running within a browser, use a proxy URL be-
ginning with “https://”.

JZ0XC ____________ is an unrecognized transaction coordinator
type.
Description: The metadata information indicates that the server supports distributed
transactions, but SAP jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists,
please contact SAP Technical Support.

JZ0XS The server does not support XA-style transactions.
Please verify that the transaction
feature is enabled and licensed on this server.
Description: The server to which SAP jConnect attempted a connection does not
support distributed transactions.

Action: Do not use XADataSource with this server, or upgrade or configure
the server for distributed transactions.

JZ0XU Current user does not have permission to do XA-style
transactions. Be sure user has _______ role.
Description: The user connected to the database is not authorized to conduct dis-
tributed transactions, most likely because the user does not have the proper role.

Action: Grant the user the role shown in the error message, or have another user with
that role conduct the transaction.

JZBK1 SybBCP class is NOT initialized Please Re-Run MDA sqls
to update the MDA stored procedures.
Action: Install MDA stored procedures.

JZBK3 Bulk load table does not exists.
Action: Correct the table name.

SQL Exception and Warning Messages

196 SAP jConnect for JDBC

SQL state Message/Description/Action

JZBK4 Illegal usage of sql statements mixed with batches in
bcp/arrayinsert mode.
Description: During a batch operation, you are attempting to execute a nonbatch
operation.

Action: Wait for the batch operation to complete before attempting a nonbatch
operation.

JZBK5 autocommit should be set to true when running bulk load
in bcp mode.

JZBK6 Adaptive Server 15.7 or latter and 'allow wide dol rows'
DB option must be enabled to insert rows
with offsets greater than 8191.

JZBK7 Failed to insert data. Total data size (_____ bytes)
exceeds the maximum row size (_____ bytes)allowed for
the
table _____.

JZBKI Invalid value set for property ENABLE_BULK_LOAD.
Action: Set ENABLE_BULK_LOAD to one of the valid values only –AR-
RAYINSERT_WITH_MIXED_STATEMENTS, ARRAYINSERT, BCP, or
LOG_BCP.

JZNNA Column does not allow null values.
Description: You attempted to set a bit-type column to a NULL value using set-
Null() in a prepared statement.

Action: Examine the query and correct to set a value of 0 or 1 for bit-type columns.

S0022 Invalid column name ‘_____’.
Action: Check the spelling of the column name, and that the named column exists.

ZZ00A The method _____ has not been completed and should not
be called.
Action: Check the release bulletin that came with your version of SAP jConnect for
further information. You can also check the jConnect Web page to see whether a
more recent version of SAP jConnect implements the method. If not, do not use the
method.

SQL Exception and Warning Messages

Programmers Reference 197

http://www.sybase.com

SQL Exception and Warning Messages

198 SAP jConnect for JDBC

Glossary

Glossary of terms used in SAP jConnect for JDBC.

• application program interface (API) – a source code based specification intended to be
used as an interface by software components to communicate with each other.

• SAP Adaptive Server Enterprise – manages multiple databases and multiple users,
keeps track of the actual location of data on disks, maintains mapping of logical data
description to physical data storage, and maintains data and procedure caches in memory.

• Certicom Security Builder GSE-J – a Java Cryptography Extension (JCE) software
cryptographic provider that supports FIPS 140-2 validated cryptographic algorithms.

• CyberSafe TrustBroker – a Generic Security Services (GSS) Manager that can be used
by jConnect.

• Database Server – the back-end system of a database application using client or server
architecture.

• datatype – a defining attribute that describes the type, values and operations that are legal
for a variable.

• deadlock – a situation that arises when two users, each having a lock on one piece of data,
attempt to acquire a lock on the other's piece of data.

• DirectConnect – the ECDA component that provides basic connectivity to non-SAP
datasources. In particular, it provides access management, transaction management, and
remote systems management through DirectConnect Manager.

• distinguished name (DN) – a string that uniquely identifies an entry in the Directory
Server. A DN comprises of zero or more relative distinguished name (RDN) components
that identify the location of the entry in the directory information tree (DIT). A DN is
similar to an analog to an absolute path in a file system in that it specifies both the name and
hierarchical location.

• GSS library – a library that implements Generic Security Service Application Program
Interface (GSS-API).

• IETF – Internet Engineering Task Force. The main standards organization for the Internet.
A large open international community of network designers, operators, vendors, and
researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet.

• SAP jConnect driver – a JDBC driver for SAP servers such as Adaptive Server Enterprise
that use Tabular Data Stream (TDS) communication protocol.

• Java Cryptography Extension (JCE) – an API that provides a uniform framework for
the implementation of security features in Java.

• JDBC – Java Database Connectivity. JDBC is a Java API that enables Java programs to
execute SQL statements.

• JDK – Java Development Kit . An SDK for producing Java programs.

Glossary

Programmers Reference 199

• Java Generic Security Services (GSS) Manager – provides a generic interface for
authentication and secure messaging.

• JNDI – Java Naming and Directory Interface. JNDI enables Java platform-based
applications to access multiple naming and directory services.

JNDI is an API from Oracle for connecting Java programs to naming and directory
services such as DNS, LDAP, and NDS.

• Java Runtime Environment (JRE) – part of the Java Development Kit (JDK), a set of
programming tools for developing Java applications. May be called Java Runtime.

• Java Transaction API (JTA) – an API that allows applications and J2EE servers to access
transactions.

• Java Transaction Service (JTS) – specifies the implementation of a transaction manager
that supports Java Transaction API (JTA) and implements the Java mapping of the Object
Management Group Object Transaction Service 1.1 specification at the level below the
API.

• Java Virtual Machine (JVM) – a virtual machine that provides a platform-independent
execution environment that converts Java bytecode into machine language and executes
it.

• J2EE – Java 2 Platform Enterprise Edition. J2EE is a platform-independent, Java-centric
environment for developing, building, and deploying Web-based enterprise applications
online.

• Kerberos – Kerberos is a secure method for authenticating a request for a service in a
computer network.

• key distribution center (KDC) – part of a single sign-on (SSO) setup that performs
authentication and ticket generation duties.

• large object (LOB) datatypes – typically large character objects (text) or binary objects
(image).

• large object (LOB) locator – contains a logical pointer to LOB data rather than the data
itself, reducing the amount of data that passes through the network between Adaptive
Server and its clients.

• LDAP – Lightweight Directory Access Protocol. LDAP is a software protocol for
enabling anyone to locate organizations, individuals, and other resources such as files and
devices in a network, whether on the public Internet, or on a corporate intranet.

• LDAP Data Interchange Format (LDIF) – a mechanism form representing directory
data in text form. The LDIF specification is contained in RFC 2849 and describes a format
not only for representing directory data but also a mechanism for making changes to that
data.

• native-protocol – the native protocol supported by the DBMS to exchange request or
response between clients and the server.

• net-protocol – a protocol used to exchange request or response between a middle tier
gateway that in turn communicates with the database.

Glossary

200 SAP jConnect for JDBC

• object identifier (OID) – an identifier used to name an object. Structurally, an OID
consists of a node in a hierarchically-assigned namespace.

• primary server – in a high availability (HA) environment, primary server is the server
where the client should first attempt to connect.

• Replication Server® – maintains replicated data in multiple databases while ensuring the
integrity and consistency of the data. It provides clients using databases in the replication
system with local data access, thereby reducing load on the network and centralized
computer systems.

• relative distinguished name (RDN) – a single component within a distinguished name.
An RDN comprises of one or more name-value pairs, in which the name and the value are
separated by an equal sign (for example, for an RDN of "uid=ann", the name is "uid" and
the value is "ann"), and if there are multiple name-value pairs, they should be separated by
plus signs (for example, for an RDN of "cn=Jon Doe+employeeNumber=12345", the
name-value pairs are "cn=John Doe" and "employeeNumber=12345"). In practice, RDNs
containing multiple name-value pairs (called "multivalued RDNs") are rare, but they can
be useful at times when either there is no unique attribute in the entry or you want to ensure
that the entry's DN contains some useful identifying information.

• RPC – Remote Procedure Call. A protocol that one program can use to request a service
from a program located in another computer in a network without having to understand
network details. (A procedure call is also sometimes known as a function call or a
subroutine call.) RPC uses the client/server model. The requesting program is a client and
the service-providing program is the server. Like a regular or local procedure call, an RPC
is a synchronous operation requiring the requesting program to be suspended until the
results of the remote procedure are returned. However, the use of lightweight processes or
threads that share the same address space allows multiple RPCs to be performed
concurrently.

• RSA encryption – a highly secure cryptography method.
• secondary server – in a high availability (HA) environment, secondary server is the server

where client should attempt to connect if connection fails on the primary server.
• single-sign-on (SSO) – a session or user authentication process that permits a user to enter

one name and password in order to access multiple applications. The process authenticates
the user for all the applications they have been given rights to and eliminates further
prompts when they switch applications during a particular session.

• SAP SQL Anywhere – a fully-featured relational database and data management tool.
• SSL – Secure Sockets Layer. SSL is a commonly-used protocol for managing the security

of a message transmission on the Internet.
• SAP IQ – a high-performance decision-support server designed specifically for data

warehousing.

SAP IQ is part of the SAP product family that includes SAP Adaptive Server Enterprise
and SAP SQL Anywhere. Component Integration Services within SAP IQ provide direct
access to relational and nonrelational databases on mainframe, UNIX, or Windows
servers.

Glossary

Programmers Reference 201

• Tabular Data Stream (TDS) – TDS is an application-level protocol that describes the
transmission of data between two computers. TDS defines the types of messages that can
be sent, as well as the order in which they are sent. TDS relies on a connection-oriented
transport service.

• TDS-tunnelling servlet – A servlet that passes through a TDS stream via HTTP or
HTTPS packets.

• UCS-2 – Universal Character Set is an ISO/IEC format for coding character sets. ISO/IEC
10646 was synchronized with Unicode; however, Unicode adds additional constraints,
and compliance with 10646 does not guarantee compatibility with Unicode.

• UTF-16 – Unicode Transformation Format-16 (UTF-16) is a two-byte format in the
Unicode coding system.

• Wedgetail JCSI – a Generic Security Services (GSS) Manager that can be used by SAP
jConnect.

Glossary

202 SAP jConnect for JDBC

Index
A

Active Directory
KDC 121

Adaptive Server
cluster edition 77
features 77
wide table support 53

adjustments
multithreading 107

advanced
features 76, 94

autogenerated keys
retrieval 96

B

batch updates
support 66

BCP
insert 76

bigdatetime and bigtime datatype
usage 73

BigDecimal
rescaling 137

C

capture
limit size 133
TDS 132

Capture class 132
change

extensions 148
character set conversion

performance 45
character sets

mapping 48
supersede 48
supported 45
unsupported 47

character-sets
converters 43

Compute clause 65
configuration file 121

configure
custom socket 113
gateways 152
J2EE servers 7

connect
Adaptive Server 35
firewall 154
server 154

connection
enable 78
failover 78
migration 78
URL 38

connection pooling 102
access by 103
interfaces 102
LDAP 103
middle-tier clients 103
overview 102
reference 102
related 102

connection properties 8
connection.isclosed

IS_CLOSED_TEST 105
connection.preparedstatement 142
ConnectKerberos.java 123
create 113
create cursors 56
current

connection settings 8
cursor close

release lock 61
cursors

performance 145
result sets 55

custom
JCE provider 87

D
database

issues 48
metadata 54

datatypes 68
bigint 73
char 73

Index

Programmers Reference 203

date and time 72
getbyte 73
numeric 68
other 73
text 73
unitext 74
unsigned int 74
varchar 73

date and time datatype
usage 72

debug 127
class 127, 149
methods 128
obtain instance 127
set classpath 128
turn off 128
turn on 127

delete row 61
DES encryption 122
deserialization 93
directory services 38

interfaces 36
sql.ini 36

distributed transaction
access by 105
background 104
configuration 104
interfaces 104
management 104
middle-tier 105
reference 104
related 104
requirements 104
support 104

DSURL
single 36
string 36

dynamic class
loader 92
loading 91

dynamic logging 129
dynamic statements

executed 141
infrequently 141

E
enable login

clear text password 86
encryption types 125

erorr
messages 81

errors
customize 83
example 84
fetch 135
handler 84
message 83, 84
message handler 84
numeric 81
retrieve 82
specific information 82
state 135
warnings 81

establish
connection 8

event
notification 79

event notification 80
execute

procedures 108
stored 108
TextPointer.SendData 71

extension change
example 148

F

failover 50
format

ssl 37

G

GSSMANAGER
create 118
examples 118
instance 118
pass 119
setup 117
string 119

H

holdable cursor
support 97

homogeneous
batch 145
large objects 145

Index

204 SAP jConnect for JDBC

I
image column 71
image data

textpointer 68
updating a column with

TextPointer.sendData() 69
implement

custom socket 111
implementation

notes 66
improve

performance 137
insert row 61
install

servlet 156
internationalization 42
interoperability 124
invoke

driver 6
jdbc.drivers 6
servlet 157

IsqlApp 159

J
Java Cryptography Extension

provider 86
Java Database Connectivity

interfaces 1
JDBC 1

jConnect for JDBC 1
connection properties 9

JDBC 1.x
positioned updates 58

JDBC 2.0
optional package 97
support 97

JDBC 2.0 methods
deletes 59
updates 59

JDBC 3.0
specifications 95
support 95

JDBC 4.0
specifications 95
support 95

JDBC Web server
Adaptive Server 152

JNDI
access 99
access by client 101
adminitrator 99
client 99
configuration 100
context 40
database 98
interfaces 98
LDAP 99
naming 98
programmatic 100
reference 98
related 98
usage 99

K

Kerberos
Active Directory 121
configure 116
CyberSafe 119
environment 119
Microsoft 121
MIT 121
protocol 116
related documents 126
setup 119

L

large object
LOB 75
locator 75
support 75

localization 42
login

redirection 77

M

manage
memory 134

metadata
retrieval 96

method names 148
migrate

applications 147
jConnect 7.x 147

Index

Programmers Reference 205

modify
applet 155

multiple open
result set objects 96

O
optimized

batch 144

P
pass

callablestatement objects 97
unicode data 42

password encryption 85
enable 86
perform 87
RSA password 87

pause 132
performance

prepared statements 139
tuning 137, 139

performance tuning
prepared statements 140
stored procedures 140

preload
.jar files 94

prepared statements
applications 140
extensions 141
object 62
portable 140

primary server 50
programming information 3
property

CHARSET 44
CONNECTION_FAILOVER 40
DYNAMIC_PREPARE 142
ESCAPE_PROCESSING_DEFAULT 144
GSSMANAGER_CLASS 117
JCONNECT_VERSION 4
LANGUAGE_CURSOR 146
PROTOCOL_CAPTURE 132
REPEAT_READ 138

public methonds
textpointer 69

pureconverter 44

R
read

Index.html 154

receive
database 90
Java objects 90

remote procedure calls 52
resolve

connection errors 133
custom socket error 136
stored procedure errors 135

restrictions and interpretations
JDBC 105
standards 105

result sets
deletions 58
type_scroll_insensitive 63

resume 132
TDS session 158

ResusltSet.getCursorName 107
review

requirements 156
RPC

output parameters 135
registered 135
returns 135

run
sample applet 163
sample isql applet 155
sample programs 163

S
sample

applications 123, 163
code 163, 164
programs 159, 163

savepoint
support 95

security
kerberos 111
restrictions 111
SSL 111

sending
database 88
Java objects 88

server connection
JNDI 37

service principal 121
set

connection properties 8
jConnect 3
version 3

Index

206 SAP jConnect for JDBC

SQL Exception
warning messages 167

Statement.close
results 106
unprocessed 106

store
column data 87
Java object 87, 88
prerequisites 88

stored procedure
result set 67
unchained transaction 135

SunIoConverter
character-set 138
conversion 138

SybConnection.PreparedStatementsexecuted
method 143

SybDriver.setVersion
method 3

T

TDS
tunnelling 151
tunnelling servlet 155

terminate
TDS sessions 158

text
datatype 71
object 70

track
active TDS 158
sessions 158

Transact-SQL 65
troubleshooting 127

Kerberos 125
sample isql applet 155

truncationconverter 44

U

unsupported
JDBC 4.0 105
requirements 105

update
columns 59
database 60
support 62

URL connection
property parameters 35

usage
requirements 154

use
custom socket 112

use cursor 57
user accounts 121

V

variable-length
data-only 74
locked tables 74
rows 74

view
Index.html 154

W

Web server
Adaptive Server 152, 153
gateways 151
one host 152
separate hosts 153

Index

Programmers Reference 207

Index

208 SAP jConnect for JDBC

	Programmers Reference
	Contents
	SAP jConnect for JDBC
	Java Database Connectivity (JDBC)

	Programming Information
	SAP jConnect Version Property
	SybDriver. setVersion Method
	JCONNECT_VERSION Connection Property

	Invoking the SAP jConnect Driver
	Configuring SAP jConnect for J2EE servers
	Establish a Connection
	Connection Properties
	Setting Connection Properties
	Current Connection Settings
	SAP jConnect Connection Properties

	Connect to SAP Adaptive Server
	URL Connection Property Parameters

	Use the sql.ini and Interfaces File Directory Services
	Connection String for Single DSURL for SAP jConnect
	Format of sql.Ini and Interfaces Files for SSL

	Connecting to a Server Using JNDI
	Connection URL for Using JNDI
	Required Directory Service Information
	CONNECTION_FAILOVER Property
	Providing JNDI Context Information

	Internationalization and Localization
	Using SAP jConnect to Pass Unicode Data
	SAP jConnect Character Set Converters
	Selecting a Character Set Converter
	Setting the CHARSET Connection Property
	Improving Character Set Conversion Performance
	Supported Character Sets
	Unsupported Character Sets
	Supersede Default Character Set Mapping

	European Currency Symbol Support

	Database Issues
	Failover Support
	Implementing Failover in SAP jConnect

	Server-to-Server Remote Procedure Calls
	Wide Table Support for Adaptive Server
	Accessing Database Metadata
	Use Cursors with Result Sets
	Cursors
	Creating and Using a Cursor

	JDBC 1.x Methods for Positioned Updates and Deletes
	JDBC 2.0 Methods for Positioned Updates and Deletes
	Updating Columns in Result Sets
	Methods for Updating a Database from a Result Set
	Deleting Rows from Result Sets
	Inserting Rows into Result Sets

	Release Locks at Cursor Close
	Select for Update Support
	Cursor with PreparedStatement Object
	TYPE_SCROLL_INSENSITIVE Result Sets in SAP jConnect
	Transact-SQL Queries with COMPUTE Clause

	Support for Batch Updates
	Implementation Notes

	Updating a Database from a Result Set of a Stored Procedure
	Datatypes
	Numeric Datatype
	Image Datatype
	Public Methods in TextPointer Class
	TextPointer Object
	Executing the Update with TextPointer.sendData
	Updating an Image Column with TextPointer.sendData

	Text Datatype
	Date and Time Datatypes
	Date, Time, Datetime, and Smalldatetime Datatypes
	Bigdatetime and Bigtime Datatypes

	Char, Varchar, Text, and GetByte Datatypes
	Other Supported Datatypes
	Bigint Datatype
	Unitext Datatype
	Unsigned Int Datatypes

	Variable-Length Rows in Data-Only-Locked Tables
	Large Object (LOB) Support
	Large Object Locator Support
	Advanced Features in SAP jConnect
	BCP Insert
	Supported SAP Adaptive Server Cluster Edition Features
	Login Redirection
	Connection Migration
	Connection Failover
	Enabling Connection Failover

	Event Notification
	Event Notification Example

	Error Messages
	Numeric Errors Returned as Warnings
	Retrieve SAP jConnect-Specific Error Information
	Customizing Error-Message Handling
	Installing an Error-Message Handler
	Error Message Handler Example

	Password Encryption
	Enabling Password Encryption
	Enabling Login Retry with Clear Text Password
	Setting Up the Java Cryptography Extension (JCE) Provider
	Using Default JCE Provider to Perform Password Encryption
	Specifying Custom JCE Provider

	Store Java Objects as Column Data in Table
	Prerequisites for Storing Java Objects as Column Data
	Sending Java Objects to Database
	Receive Java Objects from Database

	Dynamic Class Loading
	Using DynamicClassLoader
	Deserialization
	Preloading .jar Files
	Additional Dynamic Class Loading Features

	JDBC 4.0 Specifications Support
	JDBC 3.0 Specifications Support
	Savepoint Support
	Retrieval of Parameter Metadata
	Retrieval of Autogenerated Keys
	Multiple Open ResultSet Objects
	Pass Parameters to CallableStatement Objects by Name
	Holdable Cursor Support

	Support for JDBC 2.0 Optional Package Extensions
	JNDI for Naming Databases
	Reference
	Related Interfaces
	Usage
	Configuration by Administrator: LDAP
	Access by Client
	Programmatic Configuration
	Retrieve Datasource Object by Client

	Connection Pooling
	Reference
	Related Interfaces
	Overview
	Configuration by Administrator: LDAP
	Access by Middle-Tier Clients

	Distributed Transaction Management Support
	Reference
	Related Interfaces
	Background and System Requirements
	Configuration by Administrator LDAP
	Access by Middle-Tier Clients

	Restrictions and Interpretations of JDBC Standards
	Unsupported JDBC 4.0 Specification Requirements
	Use Connection.isClosed and IS_CLOSED_TEST
	Statement.close with Unprocessed Results
	Adjustments for Multithreading
	ResultSet.getCursorName
	Execute Stored Procedures

	Security
	Restrictions
	Implement Custom SSL Socket Plug-ins
	Using Custom Socket with jConnect
	Create and Configure a Custom Socket
	SSL Support in SAP jConnect

	Kerberos
	Configuring Kerberos for SAP jConnect
	GSSMANAGER_CLASS Connection Property
	Setting Up the GSSMANAGER_CLASS Property
	GSS Manager Examples
	Creating an Instance of GSSManager
	Passing String to GSSMANAGER_CLASS

	Kerberos Environment
	CyberSafe
	MIT
	Microsoft Active Directory
	Setting DES Encryption

	Sample Applications
	Running ConnectKerberos.java

	Interoperability
	Encryption Types

	Troubleshooting Kerberos

	Related Documents

	Troubleshooting
	Debugging with SAP jConnect
	Obtaining an Instance of the Debug Class
	Turning On Debugging in an Application
	Turning Off Debugging in an Application
	Setting the CLASSPATH for Debugging
	Using the Debugging Methods

	Dynamic Logging
	Enabling Logging Dynamically in SAP jConnect
	Enabling Logging Statically in SAP jConnect

	Capture TDS Communication
	PROTOCOL_CAPTURE Connection Property
	Pause and Resume Methods in Capture Class
	Limiting Size of Capture File

	Resolve Connection Errors
	Manage Memory in SAP jConnect Applications
	Resolve Stored Procedure Errors
	RPC Returns Fewer Output Parameters Than Registered
	Fetch/State Error
	Stored Procedure Executed in Unchained Transaction Mode

	Resolve Custom Socket Implementation Error

	Performance and Tuning
	Improve SAP jConnect Performance
	BigDecimal Rescaling
	REPEAT_READ Connection Property
	SunIoConverter Character-Set Conversion

	Performance Tuning for Prepared Statements in Dynamic SQL
	Choose Prepared Statements and Stored Procedures
	Prepared Statements in Portable Applications
	Prepared Statements with SAP jConnect Extensions
	If Most Dynamic Statements Are Executed Infrequently
	If Most Dynamic Statements Executed Are Multiple Times in a Session

	Connection.PrepareStatement
	DYNAMIC_PREPARE Connection Property
	SybConnection.PrepareStatement Method
	ESCAPE_PROCESSING_DEFAULT Connection Property
	Optimized Batch in SAP jConnect
	Homogeneous Batch with Large Object (LOB) Columns

	Cursor Performance
	LANGUAGE_CURSOR Connection Property

	Migrating SAP jConnect Applications
	Migrating Applications to SAP jConnect 16.x
	Change SAP jConnect Extensions
	Extension Change Example
	Method Names
	Debug Class

	Web Server Gateways
	TDS tunnelling
	Configure SAP jConnect and Gateways
	Web Server and SAP Adaptive Server on One Host
	Dedicated JDBC Web Server and SAP Adaptive Server on One Host
	Web Server and SAP Adaptive Server on Separate Hosts
	Connect to Server Through Firewall

	Usage Requirements
	Viewing the Index.html File
	Running Sample Applet
	Modifying Applet Screen Dimensions

	TDS-Tunnelling Servlet
	Reviewing Requirements
	Installing and Setting Servlet Arguments
	Invoking the Servlet
	Tracking Active TDS Sessions
	Terminating TDS Sessions
	Resuming a TDS Session

	SAP jConnect Sample Programs
	Running IsqlApp

	SAP jConnect Sample Programs and Code
	Sample Applications
	Running the Sample Applets
	Running the Sample Programs with SAP SQL Anywhere

	Sample Code

	SQL Exception and Warning Messages
	Glossary
	Index

