SYBASE

Company

Customizing and Extending
PowerDesigner

PowerDesigner® 16.5

Windows

DOCUMENT ID: DC38628-01-1650-01

LAST REVISED: January 2013

Copyright © 2013 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: PowerDesigner Resource Files............... 1
Opening Resource Files in the Editor..........ccccccceeeiiieeennn, 3
Navigating and Searching in Resource Files...................... 5
Editing Resource FileS ..o 6
SaVING ChaNQESciiiiiieieee e 6
Sharing and Embedding Resource Filesccccccceeeee 6
Creating and Copying Resource Files...........ccccevvviiiinnne. 7
Comparing Resource Files.........cccccooiiiiiiiiiiiii e, 7
Merging Resource FileS ... 8

CHAPTER 2: Extension Files..........cccooviiiiiiiiinncnnnn, 11
Creating an Extension File ... 12
Attaching Extensions to a Modelccooviiiiiiennnnnnnn, 12
Exporting an Embedded Extension File for Sharing......... 14
Extension File Propertiescccccoovviiiiiieiiiiiiieeeceeee 14
Example: Adding a New Attribute from a Property Sheet

... 15
Example: Creating Robustness Diagram Extensions...... 16
Creating New Objects with Stereotypes.............c..uveeee. 18

Specifying Custom Symbols for Robustness Objects...19
Example: Creating Custom Checks on Instance Links

.. 21
Example: Defining Templates to Extract Message
(DTS o3 ¢ o] (0] 1SRRI 27
Example: Creating a Generated File for the Message
INFOrMALION ... 29
Example: Testing the Robustness Extensions.............. 30
Metaclasses (Profile)uveeieiiiiiiie e 33
Extended Objects, Sub-Objects, and Links (Profile)36

Customizing and Extending PowerDesigner iii

Contents

Stereotypes (Profile) ..o, 37
Promoting a Stereotype to Metaclass Status................ 39
Criteria (Profile) ... 40
Extended Attributes (Profile) ..., 41
Creating an Extended Attribute Typeccceevvvvininnnns 45
Specifying Icons for Attribute Valuescccccocevennnn.n. 46
Linking Objects Through Extended Attributes 48
Extended Collections and Compositions (Profile) 48
Calculated Collections (Profile)cccceovveiiiiiiiiiiiiiieeeeeenn, 50
Dependency Matrices (Profile)ccccoeiiiiiiiiiiiiiiiiiiin. 52
Specifying Advanced Dependencies..........cccccoeeveevnnnn.. 54
FOIrmMS (Profil@)covviiiiiiiiiiiiiiiii s 55
Adding Extended Attributes and Other Controls to
YOUI FOIM .. 57
Example: Creating a Property Sheet Tab 61
Example: Including a Formina Form..............cccccovvee. 64
Example: Opening a Dialog from a Property Sheet...... 67
Custom Symbols (Profile) ..., 70
Custom Checks (Profile)ccoovveviiiiiiiiii e, 71
Example: PDM Custom ChecK.........ccccooeevvveiiiiiieeeennnnn. 73
Example: PDM AULOFIXccoovviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee 74
Event Handlers (Profile) ..., 75
Methods (Profile) ... 79
MeNUS (Profil€)oevviiiiiiiiiiiiii 81
Example: Opening a Dialog Box from a Menu............... 82
Templates (Profile) ..., 84
Generated Files (Profile)cccoovveiiiiiiiie e, 85
Example: JavaGenerated File and Templates............... 87
Generating Your Files in a Standard or Extended
GENEIALION ...ttt 89
Transformations (Profile)coooiiiiiiiii e, 92
Transformation Profiles (Profile)cccceeiieviiinnncn, 94
Developing Transformation ScriptS...........cceevvieeerennnnn. 95
XML IMpPorts (Profil€)euvveiiiiiiiiiiiiieeeeeeeeeeeveeeeeeiiiis 96
XML Import Mappingsccoeeeeeemmmmiiiiiaaeeeeeeeeeeeeeeenneens 97

PowerDesigner

Contents

Metamodel Mapping Propertiesccccoeeeeeviviinnnnnn. 100
Metamodel Object Propertiescccvvvvveieeeeevennnnnnn. 101
Object Generations (Profile)ccccooveviiiiiiiiieees 102
Model-to-Model Generation Mappings..........cccceeeeeen. 103
Global Script (Profile)coviviiiiiiiii e, 105

CHAPTER 3: Object, Process, and XML Language

Definition Files ..o 107
Settings Category: Process Languagecccccvvvneennnn. 109
Settings Category: Object Languageccccovevevvvnneneenns 110
Settings Category: XML Languagecccccceeeeeeeevnvnnnnnnn. 112
Generation CategOryccooieuuiuiiieeeeeeeeiie e 112

Example: Adding a Generation Option....................... 113
Example: Adding a Generation Command and Task..114
Profile Category (Definition FileS)cccccovvvviiiicinnnnenn. 117
CHAPTER 4: DBMS Definition Files...............coccoun... 119
Triggers Templates, Trigger Template Items, and
Procedure Templatescccoooiiiiiiiiiie 120
Database Generation and Reverse Engineering............. 120
SCript GENEratioNccceeeiiieeeeiiieee e 121
Extending Generation with Before and After
StatemeNntScooevviiie 122
Script Reverse Engineeringccceevevviiieeviiieeeeennnn, 124
Live Database Generationcccocoevvviieeeeeeeeeeeeeeeen, 125
Live Database Reverse Engineering............cccoeevuunnnes 125
Creating Queries to Retrieve Additional
ARIDULES ..o 128
Calling Sub-Queries with the EX Keyword.......... 128
Live Database Reverse Engineering Physical
(@] 1[0} o 3R 129
Live Database Reverse Engineering Function-
based INdeXccoooeiiiiiiiii 131

Live Database Reverse Engineering Qualifiers. 132

Customizing and Extending PowerDesigner v

Contents

Generating and Reverse-Engineering PDM Extended

(@] o] 1= o] £ 133
Adding Scripts Before or After Generation and
Reverse ENgineeringcooeeevvvvieieeeveeiieee e 133
General Category (DBMS)ccuvviiiiiiiiiiiii e, 134
Script/Sql Category (DBMS)coooiiiiiiiiiiiiiiiiiiieen 135
SYNtax CategOrycccvvvviiiieiiiiiiie e 135
Format Categorycooeviiiiiiiiiiineee e 136
Date and Time Format............cceeveeiveeiiiinineeeeenns 137
[| OF= 1 (=To (o] 138
Keywords Categorycooeer e 140
Script/Objects Category (DBMS)ccooovvvieiiiiiiiiiiiiins 142
Common Object HEMSuvvvviiiiiiee e 144
TADIE oo 148
ColUumN 152
Working with Null Valuescccoeevveviinnnnnnnn. 159
INAEX e 160
PKEY e 163
K Y i 164
REFEIENCE ...vviiiiiiiii 166
VIBW ettt eeaeea 169
TablEeSPACEccoovveiiii e 171
SEOTAGE ...t 171
Databaseccevviiiiiiiiiiiiiiiiini e 172
DOMAIN e 173
Abstract Data TYPEuuuvvieiiiiiiiee e e e e 174
Abstract Data Type Attributec.oooeiiiiiiiiiis 176
(0 L PRI 177
RUIE e 177
Procedure ... 180
TGO e 181
(D] 2] ST T [=] R 184
JOIN INAEX .. 185
QUANTIEE v 185
SEUUENCE ...t 186

Vi PowerDesigner

Contents

SYNONYIM . 187
(€] (0] U] I PP 187
ROIE ... 188
DB Packagecceeiiiiiiieeiiieeeeee e 189
DB Package Sub-0Djectseuviiiiiiiiiiiiiiiii, 190
Parameteroo oo 191
PrVIIEOE ...ttt 191
PeIMISSION ..o 192
Default.....ccooieiie s 193
Web Service and Web Operationcccccevvveeeeenn... 194
Web Parametercooovvviiiiiiiieeeeeeeeeeiiee e 195
ReSUIt COIUMN ...ttt 195
DIMENSION . 196
Extended ODbJecCtuvieiiiiieeiiieeecce e 197
Script/Data Type Category (DBMS)cccoovveviiiiiiiiiiineeens 197
Profile Category (DBMS)uiiiiiiiiiiieiiieeieeeeeeee e 200
Using Extended Attributes During Generation............ 200

Modifying the Estimate Database Size Mechanism202
Calling the GetEstimatedSize Event Handler on

Another Metaclassccccevvvevviiiiiiiie e, 205
Formatting the Database Size Estimation

OUIPUL ..t 205

ODBC Category (DBMS)ooiiiiiiiiiiiieeeeeeie e 206
Physical Options (DBMS)uuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 207
Simple Physical Optionscccccciiiiiiiiiiiiiiiiiieeeee, 207
Composite Physical Options...........cccvviiieeeeeeeeieiiiinnnn, 209
Adding DBMS Physical Options to Your Forms.......... 210
PDM Variables and MacCroscccoooeevvveeiiiiieeeeeeeiiiceee e 212
Testing Variable Values with the [] Operators............ 213
Formatting Variable Values............ccccccoeeeeei i, 215
Variables for Tables and Viewsccccvvvviiiiineeenn. 216
Variables for Columns, Domains, and Constraints..... 217
Variables for KeYS ..., 219
Variables for Indexes and Index Columns................... 220
Variables for References and Reference Columns..... 220

Customizing and Extending PowerDesigner Vi

Contents

Variables for Triggers and Procedures...............ccc...... 222
Variables for RUIEScceiiiiiiiiiieciiie e, 223
Variables for SEQUENCEScoiiiiiiiiiiieeeee e 224
Variables for Synonymscc.ccovvviiiiieiieiiiiie e, 224
Variables for Tablespaces and Storages..................... 224
Variables for Abstract Data TypesS........ccccccceeeeeeeeeeennns 224
Variables for Join Indexes (IQ) ..., 227
Variables for ASE & SQL Serverccccoveeeeeevevvvnnnnnnn. 227
Variables for Database Synchronization 227
Variables for DB Packages and Their Child Objects...228
Variables for Database Securitycccoovvieiiiiiinnnnnn. 230
Variables for Defaultsccccooeviiiiiiiiiiiii e, 231
Variables for Web Servicescccovvvviiiiiiiiiiiiiieeeinns 231
Variables for DIMeNSIoNScccoevvviiiieeveeiiiiiieeeeeeans 232
Variables for Extended Objects ..., 233
Variables for Reverse Engineering..........c.cccoecevvveees 234
Variables for Database, Triggers, and Procedures
(12T 01T -1 1o o I 234
.AKCOLN, .FKCOLN, and .PKCOLN Macros............. 235
ALLCOL MACIO c.uiiiiiciiiieeeeee et 236
DEFINE MACIOcovviiiiiiiiiciees e 236
DEFINEIF MACIOcccooiiiiiiieiiiiiiie 237
ERROR MACIO ...t 237
.FOREACH_CHILD MACIOcccevvvrriiiiieeeeeieeeiiiiiinnnn 238
.FOREACH_COLUMN MaCIOccvuuieiiiiiiiiiaeeeeiiinne 239
.FOREACH_PARENT MaCIOccevvrriririiiiiiiiinneenn 240
ANCOLN MACKO ...t 240
JOIN MACIO .. 241
NMFCOL MACKO ...t 242
.CLIENTEXPRESSION and .SERVEREXPRESSION
1Y/ = T3 0 1 T PP 242
SQLXML MACIO ...eiiii e 243
CHAPTER 5: Customizing Generation with GTL 245

viii PowerDesigner

Contents

Creating a Template and a Generated File....................... 245
Extracting Object Properties..........cccccciiiiiiiiiiiiiiiiieeene, 246
Accessing Collections of Sub-Objects or Related
ODJECTS .. 247
Formatting Your OQULPULcoeeviiiiiiiieiie e 248
Controlling Line Breaks in Head and Tail Strings........ 250
Conditional BIOCKScooiiiiiiiiiiiiiiieeeeeee e 250
Accessing Global Variablescccccoiiiiii, 251
(G I O 01T -1 (o] 1= TP 252
Translation SCOPEoooviiiiii e 255
Shortcut Translation ..., 256
ESCape SEQUENCESuiii it e e 256
Calling Templatesccooviiiiiiiiiii e, 257
Inheritance and Polymorphismcccoooevviiiiiineennnn, 257
Passing Parameters to a Templatecccccceeeeeeeeeee. 260
Recursive Templatesccccuuvevieeiiiiiiiieeeeecee e, 262
GTL-Specific Metamodel Extensions............c.cccovvvvvnen. 262
GTL Macro ReferencCeuceeiiiiiiieeeeeeeeeiee e 264
.abort_command MacCro............ccceevveeiiiiiiiiiiinie e 265
DIOCK MACTO ... 265
DOOI MACIO ..o 266
break Macro ..., 266
.change_dir and .create_path Macros............cccc........ 266
.comment and .// Macrooouevuuuuiiiiiiiiieeeeeeeeeeeee, 267
.convert_name and .convert_code Macros................. 267
.delete and .replace Macrosc.ccevvvviieeeveiiiineeenens 268
.error and .warning MacroSceeeiiieneeeeeeeeeeeeeeeeee 269
.execute_command Macrooceevvvevviiiiieeeeeeennnnn 269
.execute_VDbSCript Macrocoovvveiviiiiiiniiieeeeeeeeeeeee, 270
foreach_item Macro.........cccccceeeviiiiiiiii e 271
foreach_line MacCro.........c.uueiiiiiiiiiiiiii e 273
foreach_part Macro..........ccccceeeiveiiiiieiiicie e 274
AFMACTO . 275
B 0T 1Y, = od o TSR 277
Jlowercase and .uppercase Macros.............c.ccccuuneennn 277

Customizing and Extending PowerDesigner ix

Contents

.object and .collection Macrosccccceevieeeeviiineenens 278
.set_interactive_mode Macroccccccceeeeeeeeeeeeeeeennnns 278
.set_object, .set_value, and .unset Macros................ 279
U o]0 (U= = Lo o TSP 281
VDSCHPt MACIO ... 281
GTL Syntax and Translation Errorsccccccceevvnnnnnns 283

CHAPTER 6: Translating Reports with Report

Language FileS.........cccooiviiiiiiiic e, 287
Opening a Report Language Fileoooiiiiiiiiiinnn. 288
Creating a Report Language File for a New Language . .289
Report Language File Propertiescccccceeiiieiiiiiiinnennn. 290

Values Mapping Categorycccceeeeeeeeiiieieeeeiiiieeeeens 291
Example: Creating a Mapping Table, and
Attaching It to a Specific Model Object.......... 292
Report Titles Categoryuuvvieieeeeieiiieeiiiiiee e 294
Example: Translating the HTML Report Previous
BUION ..o 295
All Report Titles Tabccovvviiiieiiiieee 297
Object Attributes Categorycooovvvvviiiiiiiieeeeeeeeeiiins 298
All Classes Tabcuuvvevviiiiiiiiiiiiiieeee e 299
All Attributes and Collections Tab 300
Profile/Linguistic Variables Categoryc........ 300
Profile/Report Item Templates Categoryccc....... 303
CHAPTER 7: Scripting PowerDesigner..................... 305
Running Scripts in PowerDesignerccccccoeeeeeeeeeeeen. 307
VBScript File Samples ..., 309
Manipulating Models, Collections, and Objects
(ST ox 110111 T) I 312
Creating and Opening Models (Scripting)cc....... 313
Browsing and Modifying Collections (Scripting) 314
Accessing and Modifying Objects and Properties
(SCrPLING) .vueeeeeee e 316

X PowerDesigner

Contents

Creating Objects (SCrPiNg) «...ccvvvveeeeeeeeeeeeiiiiiies 318
Displaying, Formatting, and Positioning Symbols
(SCIIPLING) +eveveee e 320
Deleting Objects (SCripting)ccovvvveiiieriiiiiineeeeeiiinnnns 321
Creating an Object Selection (Scripting)vvveens 321
Controlling the Workspace (Scripting)cccceeeevennn. 322
Creating Shortcuts (Scripting)coooovvviiviiiiiiieccieeeeeene, 323
Creating Mappings Between Objects (Scripting) 324
Creating and Generating Reports (Scripting) 325
Manipulating the Repository (Scripting)cccevveeeeeeee. 325
Generating a Database (Scripting)ccccooeeivveiiiiiiiienennns 326
Reverse Engineering a Database (Scripting) 328
Creating and Accessing Extensions (Scripting)............. 329
Accessing Metadata (SCripting)eeeeieiiiiiiiineeeeeeeeenn. 330
OLE Automation and Add-INScceeeiiiiiiiiiiiiiiiiieiiiis 332
Creating an ActiveX Add-iN.........ccevviiiiiieiiieiiiieeeee, 334
Creating an XML File Add-in........coovviiiiiiiiiiiiiiiiiins 335
Launching Scripts and Add-Ins from Menus.................. 338
Adding Commands to the Tools Menu......................... 339

CHAPTER 8: The PowerDesigner Public Metamodel

... 343
Navigating in the Metamodelccccvviiiiiiii i, 344
Using the Metamodel Objects Help Fileccccc..... 347
PowerDesigner Model File Format..........ccccccceeeeviieiviennnns 348

Example: Simple OOM XML Fileccooviiiiiiiininennnnn, 351
I EX 355

Customizing and Extending PowerDesigner Xi

Contents

Xi PowerDesigner

CHAPTER 1 PowerDesigner Resource Files

The PowerDesigner® modeling environment is powered by XML-format resource files,
which define the objects available in each model along with the methods for generating and
reverse-engineering them. You can view, copy, and edit the provided resource files and create
your own in order to customize and extend the behavior of the environment.

The following types of resource files, based on or extending the PowerDesigner public
metamodel are provided:

Definition file. customize the metamodel to define the objects available for a specific

DBMS or language:

« DBMS definition files (.xdb) - define a specific DBMS in the PDM (see Chapter 4,
DBMS Definition Files on page 119).

* Process, object, and XML language definition files (.xpl, .xol, and .xsl) — define a
specific language in the BPM, OOM, or XSM (see Chapter 3, Object, Process, and
XML Language Definition Files on page 107).

Extension files (.xem) — extend the standard definitions of target languages to, for

example, specify a persistence framework or server in an OOM. You can create or attach

one or more XEMs to a model (see Chapter 2, Extension Files on page 11).

Report templates (.rtp) - specify the structure of a report. Editable within the Report

Template Editor (see Core Features Guide > Storing, Sharing and Reporting on Models >

Reports).

Report language files (.xrl) — translate the headings and other standard text in a report (see

Chapter 6, Translating Reports with Report Language Files on page 287).

Impact and lineage analysis rule sets(.rul) - specify the rules defined for generating impact

and lineage analyses (see Core Features Guide > Linking and Synchronizing Models >

Impact and Lineage Analysis).

Object permission profiles (.ppf) - customize the PowerDesigner interface to hide models,

objects, and properties (see Core Features Guide > Administering PowerDesigner >

Customizing the PowerDesigner Interface > Using Profiles to Control the PowerDesigner

Interface).

User profiles (.upf) - store preferences for model options, general options, display

preferences, etc (see Core Features Guide > Modeling with PowerDesigner > Customizing

Your Modeling Environment > User Profiles).

Model category sets(.mcc) - customize the New Model dialog to guide model creation (see

Core Features Guide > Administering PowerDesigner > Customizing the PowerDesigner

Interface > Customizing the New Model Dialog).

Conversion tables (.csv) - define conversions between the name and code of an object (see

Core Features Guide > Modeling with PowerDesigner > Objects > Naming

Conventions).

Customizing and Extending PowerDesigner 1

CHAPTER 1: PowerDesigner Resource Files

You can review all the available resource files from the lists of resource files, available by
selecting Tools > Resour ces > type.

Note: To comply with recent Microsoft recommendations, PowerDesigner no longer allows
you to save resource files inside the Program Files folder, and will propose an alternative
location if you try to do so, adding the selected directory to the list of paths for that type of
resource file. Resource files previously saved inside Program Files may no longer be
available, as Windows Vista or Windows 7 actually store them in a virtual mirror at, for
example, C: \Users\username\AppData\Local\VirtualStore\Program
Files\Sybase\PowerDesigner 16\Resource Files\DBMS. To restore these
files to your lists, optionally move them to a more convenient path, and add their location to
your list using the Path tool.

The following tools are available on each resource file list:

Tool |Description

il Properties - Opens the resource file in the Resource Editor.

0 New - Creates a new resource file using an existing file as a model (see Creating and
Copying Resource Files on page 7).

Save - Saves the selected resource file.

Save All - Saves all the resource files in the list.

U | | | &

Path - Specifies the directories that contain resource files to populate this list and other
places in the PowerDesigner interface where resources of this type can be selected. By
default, only the directory containing the resource files delivered in the PowerDesigner
installation is specified, but you can add as many additional directories as necessary.

If you plan to modify the delivered resource files or create your own, we recommend that
you store these files in a directory outside the PowerDesigner installation directory.

The root of the library belonging to your most recent repository connection is implicitly
included at the head of the list, and is scanned recursively (see Core Features Guide >
Administering PowerDesigner > Deploying an Enterprise Glossary and Library).

Note: In rare cases, when seeking resource files to resolve broken references in models, the
directories in the list are scanned in order, and the first matching instance of the required
resource is used.

B Compare - Selects two resource files for comparison.

5| Merge - Selects two resource files for merging.

2 Check In - [if the repository is installed] Checks the selected resource file into the reposi-
tory. For information about storing your resource files in the repository, see Core Features
Guide > Administering PowerDesigner > Deploying an Enterprise Glossary and Library.

2 PowerDesigner

CHAPTER 1: PowerDesigner Resource Files

Tool | Description

3 Update from Repository - [if the repository is installed] Checks out a version of the selected
file from the repository to your local machine.

EY Compare with Repository - [if the repository is installed] Compares the selected file with a
resource file stored in the repository.

Opening Resource Files in the Editor

When working with a BPM, PDM, OOM, or XSM, you can open the definition file that
controls the objects available in your model in the Resource Editor for viewing and editing.
You can also open and edit any extension files currently attached to or embedded in your
model or access the appropriate list of resource files and open any PowerDesigner resource
file.

To open the definition file currently used by your model:

* InaPDM, select Database > Edit Current DBMS.

* InaBPM, select Language > Edit Current Process L anguage.
* Inan OOM, select Language > Edit Current Object Language.
* Inan XSM, select Language > Edit Current Language.

To open any extension file currently attached to your model, double-click its entry inside the
Extensions category in the Browser.

To open any other resource file, select Tools > Resources> Type to open the relevant
resource file list, select a file in the list, and then click the Propertiestool.

In each case, the file opens in the Resource Editor, in which you can review and edit the
structure of the resource. The left-hand pane shows a tree view of the entries contained within
the resource file, and the right-hand pane displays the properties of the currently-selected
element:

Customizing and Extending PowerDesigner 3

CHAPTER 1: PowerDesigner Resource Files

l DBMS Properties (For All Models) ol

General I Trigger Templates | Trigger Template Hems' Procedure Tamplalesl

Root - e ISYASIGT520::Prnfi|e\Co|umn\ExlendedAltributes\lndexCode j Q- - “3: i‘;}
Sybase 10 15.2 - . .
uj Generation General I Get Methad Scnpll Global Seript
72 General Name:
8 IndexCod
(\ et [indestoce
. D) Settings Label |
Categories B Profile
B Shared Comment: Code of the first index defined an the column i’
Eﬂ Calumn
i {0 Criteria
[#-2) Custom Checks
-2 Event Handlers
It - Extended Attributes =l
ems {5 EstlqUnricity i
-3 HasPartition Data type I[SUIHQ] ju'!l
| ﬂ | ¥ Computed: " Read/wiite [Get+Set methads) % Read only [Get method)
; RevColPartition Drefault value: I j J Template [~
— ¥ ValueNeedduote . :
Properties - 453 Forms LI List of walues: I g Complete [
[N -

akK I Cancel | Aapply | Help |

Note: You should never modify the resource files shipped with PowerDesigner. If you want to
modify a file, create a copy using the New tool (see Creating and Copying Resource Fileson
page 7).

Each entry is a part of the definition of a resource file, and entries are organized into logical

categories. For example, the Script category in a DBMS language file collects together all the
entries relating to database generation and reverse engineering.

You can drag and drop categories or entries in the tree view of the resource editor and also
between two resource editors of the same type (for example two XOL editors).

Note: Some resource files are delivered with "Not Certified" in their names. Sybase® will
perform all possible validation checks, however we do not maintain specific environments to
fully certify these resource files. We will support them by accepting bug reports and providing
fixes as per standard policy, with the exception that there will be no final environmental
validation of the fix. You are invited to assist us by testing fixes and reporting any continuing
inconsistencies.

PowerDesigner

CHAPTER 1: PowerDesigner Resource Files

Navigating and Searching in Resource Files

The tools at the top of the Resource Editor help you to navigate through and search in the
resource file.

Go Back/ Find In/
Ilorwid Pathferup Box Lookup Save Replace
a- - |SYASE1550:Profile\T able'E stended Attrbutes'WwithE spFiowSize S SR [

Tool |Description

a- Back (Alt+L eft) - Go to the previous visited entry or category. Click the down arrow to
directly select from your history.

El- Forward (Alt+Right) - Go to the next visited entry or category. Click the down arrow to
directly select from your history.

Q- Lookup (Enter) - Go to the item named in the text box to the left of the tool. If more than one
item is found, they are listed in a results dialog and you should double-click on the desired
item or select it and click OK to go to it.

Click the down arrow to set lookup options:

» [extension type] - select the type of extension to search, for example you can search only
stereotypes

* Allow wildcard - Enables the use of the characters * to match any string and 2 to match
any single character. For example, type i s* to retrieve all extensions called
1s....

« Match case - Search with case sensitivity.

= | Save (Ctrl+Shift+S) — Save the current resource file. Click the down arrow to save the
current resource file under a new name.

& Find In Items (Ctrl+Shift+F) - Search for text in entries.

aby Replace In Items (Ctrl+Shift+H) - Search for and replace text in entries.

Note: To jump to the definition of a template from a reference in another template (see
Templates (Profile) on page 84) or other extension, place your cursor between the percent
signs and press F12. If an extension overrides another item, right-click it and select Go to
super-definition to go to the overriden item.

Customizing and Extending PowerDesigner 5

CHAPTER 1: PowerDesigner Resource Files

Editing Resource Files

You can add items in the resource editor by right-click a category or an entry in the tree view.

The following editing options are available:

Edit option Description

New Adds a user-defined entry or category .

Add items... Opens a selection dialog box to allow you select one or more of the predefined
metamodel categories or entries to add to the present node. You cannot edit the
names of these items but you can change their comments and values by selecting
their node.

Remove Deletes the selected category or entry.

Restore Comment | Restores the default comment for the selected category or entry.

Restore value Restores the default value for the selected entry.

Note: You can rename a category or an entry directly from the resource file tree by selecting it
and pressing the F2 key.

Saving Changes

If you make changes to a resource file and then click OK to close the resource editor without
having clicked the Savetool, the changes are saved in memory, the editor is closed and you
return to the list of resource files. When you click Close in the list of resource files, a
confirmation box is displayed asking you if you really want to save the modified resource file.
If you click Yes, the changes are saved in the resource file itself. If you click No, the changes
are kept in memory until you close the PowerDesigner session.

The next time you open any model that uses the customized resource file, the model will take
modifications into account. However, if you have previously modified the same options
directly in the model, the values in the resource file do not change these options.

Sharing and Embedding Resource Files

Resource files can be shared and referenced by multiple models or copied to and embedded in
a single model. Any modifications that you make to a shared resource are available to all
models using the resource, while modifications to an embedded resource are available only to
the model in which it is embedded. Embedded resource files are saved as part of their model
and not as a separate file.

6 PowerDesigner

CHAPTER 1: PowerDesigner Resource Files

Note: You should never modify the original extensions shipped with PowerDesigner. To
create a copy of the file to modify, open the List of Extensions, click the New tool, specify a
name for the new file, and then select the .xem that you want to modify in the Copy from
field.

The File Name field displays the location of the resource file you are modifying is defined.
This field is empty if the resource file is embedded.

Creating and Copying Resource Files

You can create a new resource file in the appropriate resource file list. To create a copy of an
existing resource file, select it in the Copy from field of the New... dialog.

Warning! Since each resource file has a unique id, you should only copy resource files within
PowerDesigner, and not in Windows Explorer.

1. Select Tools> Resources> Type to open the appropriate resource file list.

2. Click the New tool, enter a name for the new file and select an existing file to copy. Select
the <Default template> item to create a minimally completed resource file.

3. Click OK to create the new resource file, and then specify a filename and click Saveto
open it in the Resource Editor.

Note: You can create an extension file directly in your model from the List of Extensions.
For more information, see Creating an Extension File on page 12.

Comparing Resource Files

You can select two resource files and compare them to highlight the differences between
them.

1. Select Tools> Resources> Type to open the appropriate resource file list.

2. Select the first resource file you want to compare in the list, and then click the Compare
tool to open a selection dialog.

The selected file is displayed in the second comparison field.
3. Select the other resource file to compare in the first comparison field.

If the resource file you want to compare is not in the list, click the Select Path tool and
browse to its directory.

Customizing and Extending PowerDesigner 7

CHAPTER 1: PowerDesigner Resource Files

4,

5.

Select DBEMS to Compare
DBEMS 1: Subaze AS Enterprige 12.5 @

DEMS 2: |Sybase 45 Enterprize 12.5.1

0K I Cancel | Help |

Click OK to open the Compare... dialog, which allows you to review all the differences
between the files.

For detailed information about this window, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

Review the differences and then click Closeto close the comparison window and return to
the list.

Merging Resource Files

You can select two resource files of the same kind and merge them. Merge is performed from
left to right, the resource file in the right pane is compared to the resource file in the left pane,
differences are highlighted and merge actions are proposed in the right hand resource file.

1
2.

Select Tools > Resources > Type to open the appropriate resource file list.

Select the resource file in which you want to make merge changes in the list, and then click
the Merge tool to open a selection dialog.

The selected file is displayed in the To field.
Select the resource file from which you want to merge in the From field.

If the resource file you want to merge is not in the list, click the Select Path tool and browse
to its directory.

Select DEMS to Merge

Frarm:

Tar |Sybase A5 Enterprise 12.5.1

QK. I Cancel | Help |

Click OK to open the Merge... dialog, which allows you to review all the merge actions
before you complete them.

For detailed information about this window, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

PowerDesigner

CHAPTER 1: PowerDesigner Resource Files

5. Selector reject the proposed merge actions as necessary, and then click OK to perform the
merge.

Customizing and Extending PowerDesigner 9

CHAPTER 1: PowerDesigner Resource Files

10 PowerDesigner

CHAPTER 2 Extension Files

Extensions files (* . xem) allow you to customize and extend the PowerDesigner metamodel

to support your exact modeling needs. You can define additional properties for existing

objects or specify entirely new types of objects, modify the PowerDesigner interface

(reorganizing and adding property sheet tabs, Toolbox tools and menu items), and define

additional generation targets and options.

Extension files have an . xem extension and are located in install dir/Resource

Files/Extende Model Definitions. To view the list of extensions, select Tools>
Resour ces > Extensions > model type. For information about the tools available in resource
file lists, see Chapter 1, PowerDesigner Resource Files on page 1.

Each extension file contains two first-level categories:

Generation - used to develop or complement the default PowerDesigner object generation
(for BPM, OOM, and XSM models) or for separate generation. For more information, see
Generation Category on page 112.

Profile - used for extending the metaclasses in the PowerDesigner metamodel. You can:

Create or sub-classify new kinds of objects:
* Metaclasses — drawn from the metamodel as a basis for extension.

» Stereotypes [for metaclasses and stereotypes only] — sub-classify metaclasses by

stereotype.
e Criteria — sub-classify metaclasses by evaluating conditions.
Add new properties and collections to objects and display them:
» Extended attributes — to add metadata.

« Extended collections and compositions — to enable manual linking between
objects.

» Calculated collections — to automate linking between objects.

< Dependency matrices — to show dependencies between two types of objects.

« Forms — to modify property sheets and add custom dialogs.

« Custom symbols — to change the appearance of objects in diagrams.
Add constraints and validation rules to objects:

e Custom checks — to test the validity of your models on demand

« Event handlers — to perform validation or invoke methods automatically.
Execute commands on objects:

» Methods — VBScripts to be invoked by menus or form buttons.

e Menus [for metaclasses and stereotypes only] — to add commands to
PowerDesigner menus.

Generate objects in new ways:

Customizing and Extending PowerDesigner

11

CHAPTER 2: Extension Files

o Templates — to extract text from object properties.

« Generated Files - to assemble templates for preview and generation of files

» Transformations — to automate changes to objects at generation or on demand.

* Map correspondences between different metamodels:

« Obiject generations - to define mappings between different modules in the
PowerDesigner metamodel for model-to-model generation.

e XML imports - to define mappings between an XML schema and a PowerDesigner
module to import XML files as models.

Note: Since you can attach several resource files to a model (for example, a target language
and one or more extension files) you can create conflicts, where multiple extensions with
identical names (for example, two different stereotype definitions) are defined on the same
metaclass in separate resource files. In case of such conflicts, the extension file extension
usually prevails. When two XEMs are in conflict, priority is given to the one highest in the List
of Extensions.

Creating an Extension File

You can create an extension file from the list of extension files or directly embedded in your
model.

Note: For information about creating an extension file from the list of extension files, see
Creating and Copying Resource Files on page 7.

1. Open your model, and then select Model > Extensionsto open the List of Extensions.
2. Click the Add a Row tool and enter a name for the new extension file.

3. Clickthe Propertiestool to open the new extension file in the Resource Editor, and create
any appropriate extensions.

4. When you have finished, click OK to save your changes and return to the List of
Extensions.

The new XEM is initially embedded in your model, and cannot be shared with any other
model. For information about exporting your extensions and making them available for
sharing, see Exporting an Embedded Extension File for Sharing on page 14.

Attaching Extensions to a Model

Extensions can be in independent * . xem files that are attached to models or can be embedded
in model files. Independent extension files can be referenced by multiple models, and any
changes made to such a file are shared by all models that attach it. Changes made to extensions
embedded in a model file affect only that model.

Note: You should never modify the original extensions shipped with PowerDesigner. To
create a copy of the file to modify, open the List of Extensions, click the New tool, specify a

12

PowerDesigner

CHAPTER 2: Extension Files

name for the new file, and then select the .xem that you want to modify in the Copy from
field.

You can attach an extension file (.xem) to your model at the creation of the model by clicking
the Select Extensions button on the New Model dialog. You can subsequently attach an
extension file to your model at any time from the List of Extensions.

1. Select Model > Extensionsto open the List of Extensions.
2. Click the Attach an Extension tool to open the Select Extensions dialog.

3. Review the different sorts of extensions available by clicking the sub-tabs and select one or
more to attach to your model.

By default, PowerDesigner creates a link in the model to the specified file. To copy the
contents of the extension file and save it in your model file, click the Embed Resourcein
Model button in the toolbar. Embedding a file in this way enables you to make changes
specific to your model without affecting any other models that reference the shared
resource.

4. Click OK to return to the List of Extensions.

_iixi
HEE % B X AR EaED-
Hame Code 1=
1 Data Movernert [0 D atabd ovvementl 0 *—l—--.‘
2 FowerBuilder FO'WEREUILDER N
= | ASE Prosy Tables APy T ablas ‘\ Attached
. /
_/
Embedded «
Fle[e]+]$]|2]4] [+
0k I Cancel | Apply | Help |

Extension files listed in grey are attached to the model, while those in black are embedded
in the model.

Note: If you embed an extension file in the model, the name and code of the extension may
be madified in order to make it respect the naming conventions of the Other Objects
category in the Model Options dialog.

Customizing and Extending PowerDesigner 13

CHAPTER 2: Extension Files

Exporting an Embedded Extension File for Sharing

If you export an XEM created in a model, it becomes available in the List of Extensions, and
can be shared with other models. When you exportan XEM, the original remains embedded in
the model.

Select Moddl > Extensionsto open the List of Extensions.
Select an extension in the list.

Click the Export an Extension tool.

Type a name and select a directory for the extension file.
Click Save.

g s~ DN

The extension can now be accessed by and attached to or embedded in other models.

Extension File Properties

All extension files have the same basic category structure.

The root node of each file contains the following properties:

Property Description

Name / Code Specify the name and code of the extension file, which must be unique in a model.

File Name [read-only] Specifies the path to the extension file. If the XEM has been copied to
your model, this field is empty.

Family / Sub- Restricts the availability of the XEM to a particular target family and subfamily.

family For example, when an XEM has the family Java, it is available only for use with

targets in the Java object language family. EJB 2.0 is a sub-family of Java.

Auto-attach Specifies that the XEM will be automatically attached to new models with a target
belonging to the specified family.

Category Groups XEMs by type for generation and in the Select Extensions dialog. Ex-
tensions having the same category cannot be generated simultaneously. If you do
not specify a category, the XEM is displayed in the General Purpose category and
is treated as a generation target.

Enable Trace Lets you preview the templates used during generation (see 7emplates (Profile)on
Mode page 84). Before starting the generation, click the Preview page of the relevant
object, and click the Refresh tool to display the templates.

When you double-click on atrace line from the Preview page, the Resource Editor
opens to the corresponding template definition.

14

PowerDesigner

CHAPTER 2: Extension Files

Property Description

Complement Specifies that the XEM is used to complement the generation of an DBMS or
language genera- | language definition, so that items to be generated for the language are merged with
tion those of the XEM before generation, and all generated files specified by both the

language definition and the XEMs are generated (see Generated Files (Profile) on
page 85). If two generated files have identical names, the file in the XEM
overrides the one defined in the target.

Note: PowerBuilder does not support XEMs for complementary generation.

Comment Provides a descriptive comment for the XEM.

The following categories are also available:

Generation - Contains Generation commands, options, and tasks to define and activate a
generation process (see Generation Category on page 112).

Transformation Profile - Groups transformations for application at model generation time
or on demand (see 7ransformations (Profile) on page 92).

Example: Adding a New Attribute from a Property Sheet

In this example, we will quickly add a new attribute directly from the property sheet of an
object. PowerDesigner will manage the creation of the extension file and creation of all the
necessary extensions.

1

Click on the Property Sheet M enu button at the bottom-left of the property sheet, to the
right of the More/L ess button, and select New Attribute.

In the New Attribute dialog, enter Latency in the Name field, select String for the
data type.

Click the ellipsis button to the right of the List of valuesfield, enter the following list of
predefined values, and then click OK:

« Batch
¢ Real-Time
e Scheduled

[optional] Select Scheduled in the Default value field.

[optional] Click Next to specify the property sheet page where you want the new attribute
to appear. Here, we'll leave the default, so its inserted on the General tab.

Customizing and Extending PowerDesigner 15

CHAPTER 2: Extension Files

x
Nare: ILatenc_l,J
Camment: ﬂ
D ata type: I[String] ﬂ
Default value: IScheduIed j
List af walugs: IBatch;H eal-Time;5cheduled _I Complete [+

" Open Resource Editor on Finish Create Anotker... |
< Back I Heut » I Finish Cancel | Help |

Example: Creating Robustness Diagram Extensions

In this example, we will recreate the Robustness extension file delivered with PowerDesigner
to extend the OOM communication diagram to enable robustness analysis. Robustness
diagrams sit between use case and sequence diagram analysis, and allow you to bridge the gap
between what the system has to do, and how it is actually going to accomplish it.

In order to support the robustness diagram, we will need to define new objects by applying
stereotypes to a metaclass, specify custom tools and symbols for them, as well as defining
custom checks for instance links and producing a file to output a description of messages
exchanged between objects.

Creating the robustness extensions will enable us to verify use cases like the following, which
represents a basic Web transaction:

16 PowerDesigner

CHAPTER 2: Extension Files

Custc-mer\

Internet Browser

SfapoesseE > LHLAnCEETF

Application Senver [Latabase Senrer

A customer wants to know the value of his stocks in order to decide to sell or not, and sends a
stock value query from his Internet Browser, which is transferred from his browser to the
database server via the application server.

The first step in defining extensions, is to create an extension file (.xem) to keep them in:

1. Create or open an OOM and select M odel > Extensionsto open the list of extensions
attached to the model.

2. Clickthe Add aRow tool to create a new extension file, and then click the Propertiestool
to open it in the Resource Editor.

3. Enter Robustness Analysis Extensions inthe Namefield, and clear the
Complement language gener ation check box, as these extensions do not belong to any
object language family and will not be used to complement any object language

generation.
4. Expand the Profile category, in which we will create the extensions:
Extension Properties (MyODOM}) ”| _ IDIﬂ
General |
- - IHUbuslneSSAnalysis Extensions j % o= n_sf ;22
; - -
L;gb;:::::“j:alysls EHEOR Hame: IHobustness Analysiz Extensions _=|
=] uj Prafile LCode: |H0bustness Analysis Extensions IT
L) Shared
File name: I
Family: I Auto gttach ™
Subfanmily: |
Categary: I
Generation
|7 " Enable hace mode [~ Complement language generatiors |

Comment:

=]
oK I Cancel | Apply | Help |

For detailed information about creating extension files, see Creating an Extension Fileon
page 12.

Customizing and Extending PowerDesigner 17

CHAPTER 2: Extension Files

Creating New Objects with Stereotypes

To implement robustness analysis in PowerDesigner, we need to create three new types of
objects (boundary, entity, and control objects), which we will define in the Profile category by
extending the UMLOb7ject metaclass through stereotypes.

1

Right-click the Profile category and select Add M etaclasses to open the Metaclass
Selection dialog.

Select UMLObject on the PAOOM tab and click OK to add this metaclass to the
extension file.

Note: Click the Find in M etamodel Objects Help tool to the right of the Namefield (or
click Ctrl+F1) to obtain information about this metaclass and see where it is situated in the
PowerDesigner metamodel.

Right-click the UMLObject category and select New > Ster eotypeto create a stereotype
to extend this metaclass.

Enter Boundary in the Namefield, and Boundary objects are used by
actors when communicating with the system; they can be
windows, screens, dialog boxes or menus. inthe Comment field.
Select the Use asmetaclass check box to promote the object type in the interface so that it
has its own object list and Browser category.

Click the Select Icon tool to open the PowerDesigner image library dialog, select the
Search Imagestab, enter boundary in the Search for field, and click the Sear ch button.
Select the Boundary. cur image in the results, and click OK to assign it to represent
boundary objects in the Browser and other interface elements. Click the Toolbox custom

tool check box to create a tool with the same icon for creating the new object in the
Toolbox.

Repeat these steps to create the following stereotypes and icons:

Stereo- Comment Image file

type

Entity Entity objects represent stored data like a database, data- | entity.cur
base tables, or any kind of transient object such as a search
result.

Control Control objects are used to control boundary and entity | control.cur
objects, and represent transfer of information.

18

PowerDesigner

CHAPTER 2: Extension Files

Extension Properties (MyOOM) - |E||5|
Gieneral |
- - IF\obustness Analysiz Extensions:Profile\UMLO bject\StereotppeshControl j % - - nz:: ’2}
L)f] Raobustness Analysis Estensions
. X General |
‘,3 Generation
E“Aj Profile Hame: IContrDI
A5) Shared
=-E UMLDbject Label: |
=) Stereotypes)
-[#2] Boundary ot I <Mone> j @
; ﬁm [&bstact ¥ Use as metaclass [Mo spmbol
-[s] Entity lcon: |6 [+ Palette custom tool
Jeer B :
<Cursor click test arear
PBlural label: IContloI Objects
Diefault name: |
Comrment:
Control objects are used to control boundary and entity objects, and represent transfer of
information.

ak I Cancel Apply Help

9. Click Apply to save your changes before continuing.

For detailed information about creating stereotypes, see Stereotypes (Profile) on page

37.

Specifying Custom Symbols for Robustness Objects

We will specify diagram symbols for each of our new robustness diagram objects by adding

custom symbols to our new stereotypes.

1. Right-click Boundary stereotype and select New > Custom Symbol to create a custom

symbol under the stereotype.

2. Click the Modify button to open the Symbol Format dialog, and select the Custom Shape

tab.

3. Select the Enable custom shape check box, and select Boundary Object in the Shape

name list.

Customizing and Extending PowerDesigner

19

CHAPTER 2: Extension Files

Symbol Format) x|

Size I Line St_l,llel Fill I Shadowl Font Custom Shape |I:0ntent|

— v &pply custom shape to symbols

¥ Allow users to madify spmbol custom shape

—Iv Enable custom shape

Shape bype: IPredefinedSymboI 'I ETDWSE---l

Shape name: ol b -

Display name: (% Bottom (& Center & Mone

L

Jalo]

 Preview

r—

QK I Cancel Apply | Help |

4. Click OK to complete the definition of the custom symbol and return to the Resource
Editor.

5. Repeat these steps for the other stereotypes:

Stereotype Shape Name
Entity Entity Object
Control Control Object

20 PowerDesigner

CHAPTER 2: Extension Files

Extension Properties (MyOOM) - |E||5|
Gieneral |
- - IF\obustnessAnaIysis Estensions::ProfiletJMLObjgct\StereotypesiEntitysCustom Symbol j -)\ - lﬂ - nz:: ’2}
L)f] Raobustness Analysis Estensions Name:
‘,3 Generation Rare:
Eh.j Profile Comment: =
A5) Shared
=-E UMLDbiect
Eh,j Slereotypes j
I%I---ﬂ?‘;ugda{y S Type: Predefined Symbol - Mame: Entity Object
=l Contr;‘ls Sl AL — Default size [pixel]
ﬂﬂ Custom Syrnbol it |B4 Height: |B4
EI---M_* Entity -
i Custom Symbol - Preview
Diefault | Modify... |

ok I Cancel Apply | Help |

6. Click Apply to save your changes.

For detailed information about creating custom symbols, see Custom Symbols (Profile)on

page 70.

Example: Creating Custom Checks on Instance Links

We will now create three custom checks on the instance links that will connect the various
robustness objects. These checks, which are written in VB, do not prevent users from creating
diagrams not supported by the robustness methodology, but define rules that will be verified

when you check your model.

1. Right-click the Profile category, select Add M etaclassesto open the Metaclass Selection
dialog, select InstanceLink onthe PAOOM tab and click OK to add it to the extension

file.

2. Right-click the InstanceLink category and select New > Custom Check to create a

check under the metaclass.

3. Enter the following values for the properties on the General tab:

Field Value
Name Incorrect Actor Collaboration
Comment This check verifies if actors are linked to boundary

objects. Linking actors to control or entity objects
is not allowed in the robustness analysis.

boundary objects.

Help message | This check ensures that actors only communicate with

Customizing and Extending PowerDesigner

21

CHAPTER 2: Extension Files

Field Value

Output mes- The following instance links are incorrect:
sage

Default severi- | Exror

ty

Execute the [selected]

check by de-

fault

4. Select the Check Script tab and enter the following script in the text field:

Function %Check% (1link)
' Default return is True
%Check% = True

' The object must be an instance link

If link is Nothing then
Exit Function

End if

If not link.IsKindOf (PdOOM.cls InstancelLink) then
Exit Function

End If

' Retrieve the link extremities
Dim src, dst

Set src link.ObjectA

Set dst = link.ObjectB

' Source is an Actor
' Call CompareObjectKind () global function defined in Global
Script pane
If CompareObjectKind(src, PdOOM.Cls Actor) Then
' Check if destination is an UML Object with "Boundary"
Stereotype
If not CompareStereotype (dst, PdOOM.Cls UMLObject,
"Boundary") Then
%Check% = False
End If
ElseIf CompareObjectKind(dst, PdOOM.Cls Actor) Then
' Check if source is an UML Object with "Boundary" Stereotype
If not CompareStereotype (src, PdOOM.Cls UMLObject,
"Boundary") Then
%Check% = False
End If
End If
End Function

Note: For more information on VVBS, see Chapter 7, Scripting PowerDesigner on page
305.

Select the Global Script tab (where you store functions and static attributes that may be
reused among different functions) and enter the following script in the text field:

22

PowerDesigner

CHAPTER 2: Extension Files

' This global function check if an object is of given kind

or is a shortcut of an object of given kind
Function CompareObjectKind (Obj, Kind)

' Default return is false
CompareObjectKind = False

' Check object
If Obj is Nothing Then
Exit Function
End If
' Shortcut specific case, ask to it's target object
If Obj.IsShortcut() Then
CompareObjectKind = CompareObjectKind (Obj.TargetObject,
Kind)
Exit Function
End If
If Obj.IsKindOf (Kind) Then
' Correct object kind
CompareObjectKind = True
End If
End Function
' This global function check if an object is of given kind
and compare it's stereotype value
Function CompareStereotype (Obj, Kind, Value)
' Default return is false
CompareStereotype = False

' Check object
If Obj is Nothing then
Exit Function

End If
if (not Obj.IsShortcut() and not
Obj.HasAttribute ("Stereotype")) Then
Exit Function
End If

' Shortcut specific case, ask to it's target object

If Obj.IsShortcut() Then
CompareStereotype = CompareStereotype (Obj.TargetObject,
Kind, Value)
Exit Function
End If
If Obj.IsKindOf (Kind) Then
' Correct object kind
If Obj.Stereotype = Value Then
' Correct Stereotype value
CompareStereotype = True
End If
End If
End Function
' This global function copy the standard attribute
from source to target
Function Copy (src, trgt)
trgt.name = src.name
trgt.code = src.code

Customizing and Extending PowerDesigner 23

CHAPTER 2: Extension Files

trgt.comment = src.comment
trgt.description = src.description
trgt.annotation = src.annotation
Dim b, d

for each b in src.AttachedRules
trgt.AttachedRules.insert -1,Db
next
for each d in src.RelatedDiagrams
trgt.RelatedDiagrams.insert -1,d
next
output " "
output trgt.Classname & " " & trgt.name & " has been created."
output " "

End Function

6. Repeat these steps to create a second check by entering the following values:

Field

Value

Name

Incorrect Boundary to Boundary Link

Help message

This check ensures that an instance link is not de-
fined between two boundary objects.

Output message The following links between boundary objects are
incorrect:
Default severity Error
Execute the check | [selected]
by default
24 PowerDesigner

CHAPTER 2: Extension Files

Field

Value

Check Script Function %Check% (1link)

' Default return is True
%$Check% = True

' The object must be an instance link

If link is Nothing then
Exit Function

End if

If not link.IsKindOf (PdOOM.cls InstancelLink)
Exit Function

End If

' Retrieve the link extremities
Dim src, dst

Set src link.ObjectA

Set dst = link.ObjectB

dary") Then

"Boundary") Then
%Check% = False
End If
End If
End Function

' Error if both extremities are 'Boundary' objects
If CompareStereotype (src, PdOOM.Cls UMLObject, "Boun-

If CompareStereotype (dst, PdOOM.Cls UMLObject,

then

7. Repeat these steps to create a third check by entering the following values:

Field Value

Name Incorrect Entity Access

Help Message This check ensures that entity objects are accessed
only from control objects.

Output Message The following links are incorrect:

Default Severity Error

Execute the check | [selected]

by default

Customizing and Extending PowerDesigner

25

CHAPTER 2: Extension Files

Field

Value

Check Script

Function %Check% (1link)
' Default return is True
%$Check% = True

' The object must be an instance link

If link is Nothing then
Exit Function

End if

If not link.IsKindOf (PdOOM.cls InstanceLink) then
Exit Function

End If

' Retrieve the link extremities
Dim src, dst

Set src link.ObjectA

Set dst = link.ObjectB

' Source is and UML Object with "Entity" stereotype?
' Call CompareStereotype () global function defined in
Global Script pane
If CompareStereotype (src, PdOOM.Cls UMLObject, "Enti-
ty") Then
' Check if destination is an UML Object with "Con-
trol" Stereotype
If not CompareStereotype (dst, PdOOM.Cls UMLObject,
"Control") Then
%Check% = False
End If
ElseIf CompareStereotype (dst, PdOOM.Cls UMLObject,
"Entity") Then
' Check if source is an UML Object with "Control"
Stereotype
If not CompareStereotype (src, PdOOM.Cls UMLObject,
"Control") Then
%Check% = False
End If
End If
End Function

26

PowerDesigner

CHAPTER 2: Extension Files

Extension Properties (MyOOM) - |E||5|
Gieneral |
- - IF\obustness Analysiz Extensions:ProfilebnstancelinkCustom Checks\lncorect Entity Access j Q- - nsf ’2}
Robustness Analysiz Extensions
General i i i i
(2 Generation Check Script | Autofix Scrpt | Global Script
(D Profile Name:
-1 7) Shared
-2 Instancelink Comment: -
i EMD Custom Checks
[Incomect Actor Collaboration =l
H B fincorisch BDLf'nda'-"' to Baundary Help message: | This check ensures that enlity nhiects are accessed onlp fiom contiol ohiects
@' Incorrect Entity Access
E-E UMLObject
1) Stereatypes
[=2| Boundary Clutput message: IThe fallowing links are incarrect:
L4 Custom Syrbol
=[] Contral Default severity: & Emor " Waming
| i .Custom Syrabol v Execute the check by default
ﬂ:» Entiy I Enable automnatic corection
S Customn Symbol
™| Execute the automatic corection by default
Kl | B
ok I Cancel | Apply | Help |

8. Click Apply to save your changes before continuing.

For detailed information about creating custom checks, see Custom Checks (Profile) on
page 71.

Example: Defining Templates to Extract Message Descriptions
We are going to generate a textual description of the messages in the diagram, giving for each
message, the names of the sender, message, and receiver. To do so, we will need to define
PowerDesigner Generation Template Language (GTL) templates to extract the information
and a generated file to contain and display the extracted information.

To generate this textual description, we will need to extract information from the Message
metaclass (to extract the message sequence number, name, sender, and receiver) and the
CommunicationDiagram (to gather all the messages from each diagram and sort them)

1. Right-click the Profile category, select Add M etaclassesto open the Metaclass Selection
dialog, select CommunicationDiagramand Message onthe PAOOM tab and click
OK to add them to the extension file.

2. Right-click the Me s sage category and select New > Templateto create a template under
the metaclass.

3. Enter description inthe Namefield, and then enter the following GTL code in the
text area:

.set value(tabs, "", new)
.foreach part (%$SequenceNumber%, '.')
.set value(tabs, " %_tabss")

.next

% tabs%%SequenceNumber%) S$Sender.ShortDescription% sends message
"$Name%" to $Receiver.ShortDescription$

Customizing and Extending PowerDesigner 27

CHAPTER 2: Extension Files

The first line of the template initializes the tabs variable, and the foreach part
macro calculates an appropriate amount of indentation by looping through each sequence
number, and adding 3 spaces whenever a dot is found. The last line uses this variable to
indent, format, and display information extracted for each message.

Right-click the CommunicationDiagram category and select New > Template to
create a template under the metaclass.

Enter compareCbMsgSymbols in the Name field, and then enter the following GTL
code in the text area:

.bool (%$Iteml.Object.SequenceNumbers >=
$Item2.0bject.SequenceNumber%)

This template resolves to a boolean value to determine if one message number is greater
than another, and the result will be used in a second template.

Right-click the CommunicationDiagram category and select New > Template to
create a second template, enter description in the Namefield, and then enter the
following GTL code in the text area:

Collaboration Scenario $Name%:

\n

.foreach item(Symbols,,, %0ObjectType% ==
CollaborationMessageSymbol, %compareCbMsgSymbols%)

%0bject.description%
.next (\n)

The first line of this template generate the title of the scenario from the name of the
communication diagram. Then the . foreach item macro loops on each message
symbol, and calls on the other templates to format and output the message information.

Extension Properties (MyDDM}) ;Iglll

General |

- - |H0bustnessAnaIysis Estenzions::Profile\CommunicationDiagram’ T emplateshdescription j \)\ = R-.ff ";g

Bf] Fobustness Analysis Extensions = Name: descrinti
") Generation Mame: escription

=) Profile i o
42) Shared

E!-- CommunicationCiagram

B0 Templates

-IE] compareChi sg5ymbols

%] deseription S-5-d3 & | % =3 Ji‘l| o |-3“J @ Ln5 Call0

EI-- Instancelink 5 5 — -
El\.j Custom Chacks Coumunication Scenario 3Names:

T N
Q RS B .foreach item(3ymbols,,, %0bjectType: == CommunicationMessacely
Q Incarect Boundary to B -

. N H0bject, description®
£ Ew“ Incomect Entity Access nextiin)
[=-—+ Meszage
BT Templates
“{%] description
=-E UMLObject

El\.j Sterentypes i
[- P _lLI 4 I DI
3

oK I Cancel Apply | Help |

L

28

PowerDesigner

CHAPTER 2: Extension Files

7. Click Apply to save your changes before continuing.

For detailed information about templates and GTL, see 7emplates (Profile) on page 84
and Chapter 5, Customizing Generation with GTL on page 245.

Example: Creating a Generated File for the Message Information

Having created templates to extract information about the messages in the model, we need to
create a generated file to contain and display them on the Preview tab of the diagram property
sheet. We will define the file on the BasePackage metaclass, which is the common class for
all packages and models, and will have it loop through all the communication diagrams in the
model to evaluate the template description defined onthe CommunicationDiagram
metaclass.

1. Right-click the Profile category, select Add M etaclassesto open the Metaclass Selection
dialog, click the M odify Metaclass Filter tool, select Show Abstract Modeling
Metaclasses, and click the PdCommon tab.

2. Select BasePackage and click OK to add it to the extension file.

3. Right-click the BasePackage category and select New > Generated Fileto create a file
under the metaclass.

4. Enter the following values for the file properties:

Field Value
Name Communications Textual Descriptions
File name $Name% Communication Description.txt
Encoding ANSIT

Use package [unselected]
hierarchy as
file path

5. Enter the following code in the text box:

.foreach item(CollaborationDiagrams)
$description$%
.next (\n\n)

Customizing and Extending PowerDesigner 29

CHAPTER 2: Extension Files

Extension Properties (MyOOM) - |E||5|
Gieneral |
- - IF\obustness Analysiz Extensions:Profie\B asePack age’Generated Files\Communications Textual Descripj \)\ - - R.Ef ’2}
L)f] Raobustness Analysis Estensions = N
\,j Generation Rare
E‘hj Prafile File name: IZNameZ Communication Description. bt Tvpe: I_txt j
|2 Shared
E._J BasePackage Encoding: |ANSI [Active Code Page] _I
=2 Generated Files
T L t: ~
L2l Communications Testua Sl j
EI'- CommunicationDiagram
EH Templates LI
i -IE] compareChi sg5ymbols y
.ﬂ description ¥ Use package hierarchy as file path
[_]..hm:s‘tagc?unl;h . Al &-F-d58 8% 2@ 9e|32@ Lol
- ustom Checks
B‘ |meamrect Actor Collabor. .foreach item(CollaborationDiagrams) ;I
2 Ldescription®
Q Incarect Bogndaw toB et (Amin)
B‘ Incomect Entity Access
B Meszage
| B Templates s
H P8 Anesricboe, ¥ 4 D
1 | r
ak I Cancel | Apply | Help |
6. Click Apply to save your changes, and then OK to close the resource editor.
7. Click OK to close the List of Extensions.

For detailed information about creating generated files, see Generated Files (Profile) on
page 85.

Example: Testing the Robustness Extensions

To test the extensions we have created, we will create a small robustness diagram to analyze
our use case.

1.

Right-click your model node in the Browser, and select New > Communication
Diagram.

In addition to the standard Toolbox, a custom toolbox is provided with tools you have
defined to create boundary, control, and entity objects.

Drag the Customer actor from the Actors category in the Browser into the diagram to
create a shortcut. Then create one each of the boundary, control and entity objects, and
name them Internet Browser, Application Server,and Database
Server respectively.

Use the Instance Link tool in the standard Toolbox to connect the Customer to the
Internet Browsertothe Application Server,tothe Database
Server.

Create the following messages on the M essagestabs of the instance links property sheets:

30

PowerDesigner

CHAPTER 2: Extension Files

Direction Message name Sequence
number

Customer - Internet Browser Stock value query 1

Internet Browser - Application Server Ask value to app server 2
Application Server - Database Server Ask value to db 3

Database Server - Application Server Return value from db 4
Application Server - Internet Browser Return value from app server | 5

Internet Browser - Customer Return value 6

% Stock Walue Queny

Custamer

<<Contmolz=
Application Senrer

Return value from h

Feturn walue from app semear

Agivalue to app ser\ter/(

Ashowalue to db

Return value\

<«<Boundan==

«<<Entity=>
Internet Browser

Lrabatase Senrer

5. Select Tools> Check Model to display the Check Model Parameters dialog box, in which
the custom checks we have created appear in the Instance Link category:

Customizing and Extending PowerDesigner 31

CHAPTER 2: Extension Files

Check Model Parameters 1ol =l

Optiar | Selection I

B - - | B E

Incomect dctor Collaboration
Incormect Boundary to Boundary Link,
Incomect Entity Access

0k I Cancel | Apply | Help |

Click OK to test the validity of the instance links we have created.

6. Right-click the model node in the Browser and select Propertiesto open the model
property sheet. Click the Preview tab to review messages sent for our use case:

S vodelproperties- ooz onoorg) S _loix]
Generall Annotationsl WSDLI Motes I Extended &ttibutes Preview |
S-R-d3A|Xam| 920 |@EE Lo

|Collabm:at,ion dcenario Stock Query Robustness: ;I

1) Actor 'Customer' sends message "Stock Value Query™ to Boundary 'Internet Browser'

2) Boundary 'Internet Browser' sends message "isk walue to app server” to Control 'aAppl
3) Control 'Application Serwver' sends message "isk walue to db™ to Entity 'Dabatase Ser
4] Entity 'Dabatase Zerver' sends message "Return value frowm db™ to Control 'Applicatio
5) Control 'Application Serwver' sends message "Return walue from app serwver” to Boundar
&) Boundary 'Internet Browser' sends message "Return walue™ to Actor 'Customer'

vI
E\Robus{ness Extensions. Communications Textual Descriptions A 1 | | 3
Mare »» | % - QK I Cancel Lpply | Help |

32 PowerDesigner

Metaclasses (Profile)

CHAPTER 2: Extension Files

Metaclasses are defined in the PowerDesigner metamodel and provide the basis for your
extensions. You add a metaclass to the Profile category when you want to extend it in some
way by modifying its behavior, adding new properties, changing its property sheet or symbol,
or even excluding it from your models.

You can either make extensions to an existing type of object or create an entirely new kind of
modeling object by adding the ExtendedObject, ExtendedSubObject or
ExtendedLink metaclass (see Extended Objects, Sub-Objects, and Links (Profile)on page

36).

In the following example, the FederationController isan entirely new type of object
created by adding the ExtendedObject metaclass and defining a stereotype on it. Various
specializations of the Table metaclass are defined through criteria and stereotypes:

=) Profile
i Shared
=-[X] BdendedOhiect
i B+ Stereotypes
: =-[s3] FederationCortroller
{7 Exdended Aftributes
#-{C3) Extended Collections
=3 Table
=2 Criteria
=[]l SecureTable
— {2 Criteria
: -] Replicated
| “+{) Exended Attibutes
23 ReplicationPath
=) Edended Attributes
-3 EncryptionKey
=2 Exended Attibutes
[SecurtyLevel
53 Stereotypes
=)~ (€] FederatedTable
=) Bxdended Attibutes
i L3 Btemallogin
= I Stereotypes
=)-23] Priority Table
=) Extended Attributes
{3 Availability

Extensions are inherited, so that any extensions made to a metaclass
are available to its stereotyped children, and those that are subject to
criteria. The various extended attributes defined under the table met-
aclass will be available to table instances according to the following
rules:

e SecurityLevel - All tables.

* EncryptionKey - Tables for which the SecureTable
criterion evaluates to true.

* ReplicationPath-Tablesforwhichboththe SecureT-
able and Replicated criteria evaluate to true.

* Externallogin - Tables bearing either the Federa-
tedTableor PriorityTable stereotype.

* Availability - Tablesbearingthe PriorityTable
stereotype.

For example, a table bearing the FederatedTalb1e stereotype,
and for which the SecureTable criteria evaluates to true, would
display the SecurityLevel, EncryptionKey, and Ex—
ternallLogin attributes, while a table bearing the Priori-
tyTable stereotype, and for which both the SecureTable and
Replicated criteria evaluate to true, would display these attrib-
utes and, additionally, the ReplicationPathand Availa-
bility attributes.

1. Right-click the Profile category and select Add M etaclasses:

Customizing and Extending PowerDesigner 33

CHAPTER 2: Extension Files

2. Select one or more metaclasses to add to the profile. The sub-tabs list metaclasses
belonging to the present module (for example, the OOM), and standard metaclasses
belonging to the PdACommon module.

i Metaclass Selection
g = R SNG E 2
tetaclass | Parent -~
18 action MamedO bject
18 activity B azed chivity —
8 actor BehavioralM amedObject
(18 Association Bazedssociation
WIB attribute Congtrainedt amedObject
WIE Class Clazsifier
WIB Component MamedO bject
18 Componentinstance Instance -
A F % Peoom £PdCommon f

Ohject(z] selectad: 3734
0K I Cancel | Help |

[optional] Use the M odify M etaclass Filter tool to display:

e All metaclasses

« Concrete metaclasses - for object types that can be created in a model, suchas Class
or Interface.

» Abstract metaclasses -which are never instantiated but are used to define common
extensions. For example, add the Classifier metaclass to your profile to define
extensions that will be inherited by both classes and interfaces.

Note: For information about viewing and navigating among metaclasses in the
metamodel, see Chapter 8, The PowerDesigner Public Metamodel/ on page 343.

3. Click OK to add the selected metaclasses to your profile:

34 PowerDesigner

CHAPTER 2: Extension Files

[pBMS Properties (For All Models) o]
General ITrigger Templalesl Trigger Template ltems | Procedure Templatesl
@ - - |Svbase AS Arpwhere 5 FrafilshBusinessFiule - d- T
1 Svbase AS Anpwhere 9 : -
0 Gerersl Marne: |BusmessF|uIe
H-AD) Soript Parent; |NamedElbiect
-1 Profile
B2 Shared Cade naming convention: |<None> j
-l BusinezzFule X
[]---% Diatabase llegal characters: I
(g Index ™ Enahle selection in file generation
6% Procedure
B Table [Exclude fram maods
Eh,j Criteria .
§ - |=TemporarT able gt
--..:l Event Handlers ﬂ
--..j Estended Attributes
-3 Forms
-} Tablespace
-4 WebOperation
-4 webService
<] [=l
(n] 4 I Cancel Lpply | Help |

4. [optional] Enter the following properties as appropriate:

Property Description

Name [read-only] Specifies the name of the metaclass. Click the button to the right
of this field to open the Metamodel Objects Help for the metaclass.

Parent [read-only] Specifies the parent of the metaclass. Click the button to the right

of this field to go to the parent. If the parent is not present in the profile, a
message invites you to add it.

Code naming
convention

[concrete metaclasses in target files] Specifies the default format to initialize

the name to code conversion script for instances of the metaclass. The fol-

lowing formats are available:

» firstLowerWord-Firstwordinlowercase, then other first letters of
other words in uppercase

* FirstUpperChar - First character of all words in uppercase

* lower case-Allwordsinlowercase and separated by an underscore

* UPPER_CASE - Allwords in uppercase and separated by an underscore
For more information on conversion scripts and naming conventions, see Core

Features Guide > Modeling with PowerDesigner > Objects > Naming Con-
ventions.

Customizing and Extending PowerDesigner 35

CHAPTER 2: Extension Files

Property Description

Illegal characters | [concrete metaclasses in target files] Specifies a list of illegal characters that
may not be used in code generation for the metaclass. The list must be placed
between double quotes, for example:

n/ !:<>nuv () n
When working with an OOM, this object-specific list overrides any values

specified inthe I11egalChar property for the object language (see Set-
tings Category: Object Language on page 110).

Enable selection | Specifies that instances of the metaclass will appear in the Selection tab of the
in file generation | extended generation dialog box.

Exclude from [concrete metaclasses only] Prevents the creation of instances of the meta-
model class and removes all references to the metaclass from the menus, Toolbox,
property sheets and so on, to simplify the interface. For example, if you do not
use business rules, select this check box for the Bus ine s sRule metaclass
to hide them in your models.

When several resource files are attached to a model, the metaclass is excluded
if at least one file excludes it and the others do not explicitly enable it. For
models that already have instances of this metaclass, the objects will be
preserved but it will not be possible to create new ones.

Comment Documents the reason for the presence of the metaclass in this profile.

Extended Objects, Sub-Objects, and Links (Profile)

Extended objects, sub-objects, and links are special metaclasses that are designed to allow you
to add completely new types of objects to your models, rather than basing them on existing
PowerDesigner objects. These objects do not appear, by default, in models other than the free
model unless you add them to an extension or other resource file.

Extended objects — define new types of objects that can be created anywhere.

Extended sub-objects — define new types of child objects that can only be created in the
property sheet of their parent via an extended composition (see Extended Collections and
Compositions (Profile) on page 48).

Extended links — define new types of links between objects.

Right-click the Profile category, select Add M etaclasses, and click the PdCommon sub-
tab in the dialog to display the list of objects common to all models.

Select one or more of ExtendedLink, ExtendedSubObject, and
ExtendedObject and click OK to add them to your profile.

Note: To make the tools for creating extended objects and extended links available in the
Toolbox of models other than the free model, you must add them via the customization
dialog available at Tools > Customize Menus and Tools.

36

PowerDesigner

CHAPTER 2: Extension Files

3. [optional] To create your own object add a stereotype (see Stereotypes (Profile) on page
37 and define appropriate extensions under the stereotype. To have your object appear in
the PowerDesigner interface as a standard metaclass, with its own tool, Browser category
and model list, select Use as metaclass in the stereotype definition (see Promoting a
Stereotype to Metaclass Status on page 39).

4. Click Apply to save the changes.

Stereotypes (Profile)

Stereotypes subclassify metaclasses so that extensions are applied to objects only if they bear
the stereotype. Stereotypes can be promoted to the status of metaclasses with a specific list,
Browser category and custom symbol and Toolbox tool.

Note: You can define more than one stereotype for a given metaclass, but you can only apply a
single stereotype to each instance. Like other extensions, stereotypes support /nheritance, so
extensions to a parent stereotype are inherited by child stereotypes.

1. Right-click a metaclass, criterion, or stereotype, and select New > Stereotype.
2. Enter the following properties as appropriate:

Property |Description

Name Specifies the internal name of the stereotype, which is used for scripting.

Label Specifies the display name of the stereotype, which will appear in the PowerDe-
signer interface.

Parent Specifies a parent stereotype of the stereotype. You can select a stereotype defined
in the same metaclass or in a parent metaclass. Click the Proper tiesbutton to go to
the parent stereotype in the tree and display its properties.

Abstract Specifies that the stereotype cannot be applied to metaclass instances. The ster-
eotype will not appear in the stereotype list in the object property sheet, and can
only be used as a parent of other child stereotypes. Disables the Useasmetaclass

property.
Use as meta- | Promotes the stereotype to the same status as standard PowerDesigner meta-
class classes, to give it its own list of objects, Browser category, and its own tab in

multi-pane selection boxes such as those used for generation (see Promoting a
Stereotype to Metaclass Status on page 39).

No Symbol | [available when Use as metaclass is selected] Specifies that instances of the
stereotyped metaclass cannot be displayed in a diagram and are visible only in the
Browser. Disables the Toolbox custom tool.

Customizing and Extending PowerDesigner 37

CHAPTER 2: Extension Files

Property

Description

Icon

Specifies an icon for stereotyped instances of the metaclass. Click the tools to the
right of this field in order to browse for . cur or . ico files.

Note: The icon is used to identify objects in the Browser and elsewhere in the
interface, but not as a diagram symbol. To specify a custom diagram symbol, see
Custom Symbols (Profile) on page 70.

Toolbox cus-
tom tool

[available for objects supporting symbols] Specifies a Toolbox tool to enable you
to create objects inadiagram. If you do not select this option, users are only able to
create objects bearing the stereotype from the Browser or M odel menu. Custom
tools appear in a separate Toolbox group named after the resource file in which
they are defined.

Note: If you have not specified an icon, the tool will use ahammer icon by default.

Plural label

[available when Use as metaclass is selected] Specifies the plural form of the
display name that will appear in the PowerDesigner interface.

Default
name

[available when Useas metaclassor Toolbox Custom Tool is selected] Specifies
a default name for objects created. A counter will be automatically appended to
the name specified to generate unique names.

A default name can be useful when designing for a target language or application
with strict naming conventions. Note that the default name does not prevail over
model naming conventions, so if aname is not correct it is automatically modified.

Comment

Provides a description or additional information about the stereotype.

38

PowerDesigner

CHAPTER 2: Extension Files

?f:) Process Language Properties (For All Models) o o=l

Gerneral |
Q- - IAnaI_l,lsis::Profile\Process\Stereotypes\Binar_l,lCoIIaboration ﬂ J& - Tff i';"_!
'ﬁ Analysiz
: General
[Generation |
u:l Settings M ame: |Binar_l,lCOIIabc-ratic-n
=) Profile

..... Shared Label: Binary Collaboration

i |
----- ¢ Corelation
. Barent:

% D ataT ransformation R I lionss j E

o & Ewent [~ &bstract W Use asmetaclass [Mo zymbol

@ Operation lcon: [™ Palette custom tool

=0 Process : |—

B-C3 Stereotypes <Cursor click test areas
EEEEE inanCollsboration

-+ Servicelnterface Blural label: IBinar_l,l Collaborations IT

----- e ServiceProvider

..... 4 Variable Default name: |

Comment:
ﬂ
|
ak. I Cancel Apply | Help |

Promoting a Stereotype to Metaclass Status
You can create new types of objects that behave as standard PowerDesigner metaclasses by
selecting Use as M etaclass in the stereotype property page.

You can use such stereotypes to:

« Create new kinds of objects that share much of the behavior of an existing object type, such
as business transactions and binary collaborations in a BPM for ebXML.

» Have objects with identical names but different stereotypes in the same namespace (a
metaclass stereotype creates a sub-namespace in the current metaclass).

Note: Stereotypes defined on sub-objects (such as table columns or entity attributes), cannot
be promoted to metaclass status.

1. In the Stereotype property page, select Use as metaclass.

2. [optional] Specify an icon and tool to create instances of the metaclass stereotype.

3. Click Apply to save the changes and then add extended attributes and other appropriate
extensions under the stereotype.

In your model, the stereotypes has:
* A separate list in the M odel menu after the parent metaclass list (and the parent
metaclass list will not display objects with the metaclass stereotype). Objects created

Customizing and Extending PowerDesigner 39

CHAPTER 2: Extension Files

in the new list bear the new metaclass stereotype by default. If you change the
stereotype, the object will be removed from the list the next time it is opened.

* Aseparate Browser folder and command under New, when you right-click the model
or a package.

« Property sheet titles based on the metaclass label.

« Its own tab in multi-pane selection boxes such as those used for generation.

Criteria (Profile)

Criteria subclassify metaclasses so that extensions are applied to objects only if they satisfy
conditions. You can test an object instance against multiple criteria, and for sub-criteria, its
condition and any conditions specified by its parents must be met for its extensions to be
applied to the instance.

1. Right-click a metaclass and select New > Criterion.
2. Enter the following properties as appropriate:

Property

Description

Name

Specifies the name of the criterion.

Condition

Specifies the condition which instances must meet in order to access the criterion
extensions. You can use any expressions valid for the PowerDesigner GTL .if
macro (see ./f Macro on page 275). You can reference any extended attributes
defined at the metaclass level in the condition, but not those defined under the
criterion itself.

For example, ina PDM, you can customize the symbols of fact tables by creating a
criterion that will test the type of the table using the following condition:

($DimensionalType% == "1")

$DimensionalType% is an attribute of the BaseTable object, which
has a set of defined values, including " 1", which correspondsto " fact". For
more information, select Help > Metamodel Objects Help, and navigate to
Libraries>PdPDM > Abstract Classes > BaseTable.

Parent

Specifies the parent criterion of the criterion. To move the criterion to under
another parent, select the parent in the list. Click the Propertiestool to open the
parent and view its properties.

Comment

Specifies additional information about the criterion.

40

PowerDesigner

B Object Language Properties [For All Models] =] E5

General |

& = |Java::F'r-:file\lnterface'\Criteria\EJE Component Interface\Criteria\EJB lj A-EH- w2k

CHAPTER 2: Extension Files

B Component ;I)
---E Dependsncy Mame: |EJB Local Interface
E-B Fielbiect LCondition: | (4izLocalInterfacey)
#-B Generalization
=-B Interface Earent; I EJB Component Interface j
ElD Liiteria Comment;
EI EJEB Component Interface
. =-[_3 Criteria ﬂ
EJB Local Interface

i - Templates
-[E EJB Home Interface
B Sterectypes

B Templates

-B Madel
~B Operation
B Package
-B Parameter
B Realization

&l EJB Remote Interface

(n] 4 I Cancel Spmly Help

3. Click Apply to save your changes.

Extended Attributes (Profile)

Extended attributes define additional metadata to capture for object instances. You can specify
a default value, allow users to freely enter numeric, string, or other types of data (or select
objects), provide an open or closed list of possible values, or calculate a value.

Note: Extended attributes are listed on a generic Extended Attributestab in the object
property sheet, unless you insert them into forms (see Forms (Profile) on page 55). If all the
extended attributes are allocated to forms, the generic page will not be displayed.

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select New >
Extended Attribute.

2. Specify the following properties as appropriate:

Property Description

Name Specifies the internal name of the attribute, which can be used for scripting.

Label Specifies the display name of the attribute, which will appear in the PowerDe-
signer interface.

Customizing and Extending PowerDesigner 41

CHAPTER 2: Extension Files

Property Description

Comment Provides additional information about the extended attribute.

Data type Specifies the form of the data to be held by the extended attribute. You can choose
from:

* Boolean- TRUE or False.

* Color-xxx xxx xxx where x isan integer between 0-255.

» Date or Time - your local format as specified in your Windows regional
settings

* File or Path - cannot contain /// or any of the following charac-
ters: 2"<> .

» Integer or Float - the appropriate local format.

* Hex - a hexadecimal.

* Font- font name, font type, font size.

» Font Name or Font Style - a 1-50 character string.

« Font Size - an integer between 1-400.

» Object - an object of the correct type and, if appropriate, with the correct
stereotype. When selecting this type you must specify an Object typeand, if
appropriate, an Object stereotype, and you can also specify an I nverse
collection name (see Linking Objects Through Extended Attributeson page
48).

» Password - no restrictions.

» String (single line) or Text (multi-line) - no restrictions.

Select the Validate check box to the right of the list to enforce validation of the

values entered for the attribute.

To create your own data type, click the Create Extended Attribute Typetool to

the right of the field (see Creating an Extended Afttribute Type on page 45).

Computed Specifies that the extended attribute is calculated from other values using

VBScript on the Get Method Script, Set Method Script, and Global Script
tabs. When you select this checkbox, you must choose between:

» Read/Write (Get+Set methods)

* Read only (Get method)

In the following example script, the Fi 1 eGroup computed extended attribute
gets its value from and sets the value of the £i1 1 egroup physical option of the
object:

Function %Get% (obj)

$Get% = obj.GetPhysicalOptionValue ("on/<filegroup>")
End Function

Sub %$Set% (obj, wvalue)
obj.SetPhysicalOptionValue "on/<filegroup>", value
End Sub

42

PowerDesigner

CHAPTER 2: Extension Files

Property

Description

Default value

[if not computed] Specifies a default value for the attribute. You can specify
the value in any of the following ways:
» Enter the value directly in the list.

» [predefined data types] Click the Ellipsis button to open a dialog listing
possible values. For example, if the data type is set to Color, the Ellipsis
button opens a palette window.

» [user-defined data types] Select a value from the list.

Template

[if not computed] Specifies that the value of the attribute is to be evaluated as a
GTL template at generation time. For example, if the value of the attribute is set
to $Code%, it will be generated as the value of the code attribute of the relevant
object.

By default (when this checkbox is not selected), the attribute is evaluated liter-
ally, and a value of $Code% will be generated as the string $Code%.

List of values

Specifies a list of possible values for the attribute in one of the following ways:

» Enter a static list of semi-colon-delimited values directly in the field.

» Use the tools to the right of the list to create or select a GTL template to
generate the list dynamically.
If the attribute type is Object, and you do not want to filter the list of
available objects in any way, you can leave this field blank.
To perform a simple filter of the list of objects, use the . collection
macro (see .object and .collection Macros on page 278). In the following
example, only tables with the Generated attribute set to true will be
available for selection:

[

.collection (Model.Tables, %Generated%==true)

For more complex filtering, use the foreach item macro (see .7ore-
ach_item Macro on page 271):
.foreach item (Model.Tables)

.1if %Generated%

.// (or more complex criteria)

%0bjectID%

.endif

.next (\n)

If the attribute is based on an extended attribute type (see Creating an Extended
Alttribute Type on page 45), this field is unavailable since the values of the
extended attribute type will be used.

Complete

Specifies that all possible values for the attribute are defined in the List of values,
and that the user may not enter any other value.

Customizing and Extending PowerDesigner 43

CHAPTER 2: Extension Files

Property

Description

Edit method

[if not Comp 1 e te] Specifies amethod to override the default action associated
with the tool to the right of the field.

This method is often used to apply afilter defined in the List of valuesfield in the
object picker. In the following example, only tables with the Generated
attribute set to true will be available for selection:

Sub %$Method% (obj)

Dim Mdl
Set Mdl = obj.Model

Dim Sel
Set Sel

Mdl.CreateSelection

If not (Sel is nothing) Then
Dim table
For Each table in Mdl.Tables
if table.generated then
Sel.Objects.Add table
end if
Next
' Display the object picker on the selection
Dim selObj
set selObj = Sel.ShowObjectPicker
If Not (selObj is Nothing) Then
obj.SetExtendedAttribute "Storage-For-Each",
selObj
End If

Sel.Delete
End If

End Sub

Icon Set

Specifies aset of icons to display on object symbols in place of extended attribute
values (see Specifying Icons for Attribute Values on page 46).

Text format

[for Text data types only] Specifies the language contained within the text
attribute. If you select any value other than plain Text, then an editor toolbar

and (where appropriate) syntax coloring are provided in the associated form
fields.

Object type

[for Object data types only] Specifies the type of the object that the attribute
contains (for example, User, Table, Class).

Object stereo-
type

[for Object data types only] Specifies the stereotype that objects of this type
must bear to be selectable.

44

PowerDesigner

CHAPTER 2: Extension Files

Property

Description

Inverse col-
lection name

[for Object data types only, if not computed] Specifies the name under
which the links to the object will be listed on the Dependenciestab of the target
object.

An extended collection with the same name as the extended attribute, which
handles these links, is automatically created for all non-computed extended
attributes of the Object type, and is deleted when you delete the extended at-
tribute, change its type, or select the Computed checkbox.

Physical op-
tion

[for [Physical Option] data types only] Specifies the physical option with which
the attribute is associated. Click the ellipsis to the right of this field to select a
physical option. For more information, see Adding DBMS Physical Options to
Your Forms on page 210.

l: DBMS Properties {For All Models) ;Iglll

General | Trigger Templatesl Trigger Template Itemsl Procedure Templates

a- - |SYASE1502:FrofieT ablehE tended Attributes\withl dentityGiap [I ™ R
o |# i i -
j\ PhysicalD omain _I General |
@ Procedure
D Storage Mame:
= Table B
-2 Criteria Label:
-2 Custom Checks c) = —
E|\.j Estended Attibutes ammerit: Specifies the identity gap for the table ﬂ
e[At
{3 ExternalT able
-8 Lock
[On
{3 Partition hd|
-2 WithE xpRowSize
‘_j . Drata type: I [Physzical Option) ju'!l
[WithMaxR owsPe ¥ | Computed: & Bead/uite [Get+S et methods] | Biead only [Get method)
[WithReservepag
-5 Fams Default value: I j _I Template
M) 2
E “E ufluin hd List of valugs: I IEI Camplete I
4 I I 3

oK I Cancel | Lpply | Help

3. Click Apply to save your changes.

Creating an Extended Attribute Type

You can create extended attribute types to define the data type and authorized values of
extended attributes. Creating extended attribute types allows you to reuse the same list of
values for several extended attributes without having to write code.

1. Right-click the Profile\Shared category and select New > Extended Attribute

Type.

2. Enter the appropriate properties, including a list of values and a default value.

Customizing and Extending PowerDesigner 45

CHAPTER 2: Extension Files

] Extended Model Definition Properties [For All Models)

General |
a- - |W’ebLogic::meile\Shared\EHtendedAttribute Typeshweblogic-boolean j (O
Ii] BEA WeblLogic 7.0 - -
B3 Generation —1 | Mame: weblogic-boolean
E|..__‘l Prafile Comment: |Boolean data type for Weblogic. ﬂ
=+ Shared
=) Extended Attribute Types
SEAE eblogic-boolean
-3 weblogic-cache-type LI
3‘] weblogic-concurrency-strategy List of values:
%Y weblogic-dbms-column-type
{2 weblogic-delay-databasze-insert-u M X | ' | b | L
{2 weblogic-generatar-tppe [ITre
{2 weblogic-load-algarithm — | |CIFake

{39 weblogic-passivation-strategy
{3 weblogic-replication-type
{3 weblogic-type-identifier
#H-2) Templates

H-Bg Association

[]---%@ Agzociationtd apping
1 T Abbeib bm =z il I PI
| ¥
ok I Cancel | Apply | Help |

1

3. Click Apply to save your changes.

The new shared type is available to any extended attribute in the Data Typefield. You can
also define a list of values for a given extended attribute directly in this field (see Extended
Alttributes (Profile) on page 41).

Specifying Icons for Attribute Values

You can specify icons to display on object symbols in place of extended attribute values by
creating an attribute icon set with individual attribute value icons for each possible value.

1. Create an extended attribute (see Extended Attributes (Profile) on page 41).

2. Select a standard data type or an extended attribute type (see Creating an Extended
Alttribute Type on page 45).

3. If appropriate, specify a list of possible values and a default value.
4. Click the Create tool to the right of the Icon set list to create a new icon set

A new icon set is created at Profile > Shared > Attribute | con Setsinitialized with the
possible values and an empty icon which matches any value for which another icon has not
been defined (=*).

5. For each value in the list, double-click it, and click the I con tool to select an icon to
represent this value on object symbols:

46 PowerDesigner

CHAPTER 2: Extension Files

.ﬂ Extension Properties (Project Management (CDM)) [[= @
General
a- EXTENDEDDEFINITION_1::Profils\Shared\Attribute lcon Sets\CompletionlconSet — + @ = [~ T 201 ga
%| Completi
Lg—-émgen:;tion Mame: CompletionlconSet
=+ Profile Comment; -

{2 Shared
-2 Adtribute lcon Sets I=
L CompletionlconS
HJ) Bxtended Aftribute Ty -

.3 Completion

= List of walues:
=~ Entity = = -
©-E Bxended Atrbutes | "2 "2 x|d| e
i =¥ Completion = Not Started
- Foms = In Progress
[2] General = - Complate

[o0kion] [wCanceli)

Note: By default, the Filter operator field is set to =, and each icon matches exactly one
possible value. To have a single icon match multiple values, use the Between or another
operator together with a suitable Filter value. For example, in an icon set paired with a
progress attribute for which the user can enter any value between 0 and 100% progress,
you could use three icons:

* Not Started-= 0

e InProgress - Between 1,99

e Completed-= 100

6. If appropriate, add the attribute to a form (see Forms (Profile) on page 55), to enable
users to modify its value.

7. Click OK to save your changes and return to the model.

8. To enable the display of the icon on your object symbol, select Tools > Display
Preferences, select your object type, and click the Advanced button to add your attribute
to the symbol. For detailed information about working with display preferences, see Core
Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and Symbols >
Display Preferences.

Your attribute is now displayed on object symbols. In the following example, the
Employee entity is In Progress, while the Customer entity is Completed:

Customizing and Extending PowerDesigner 47

CHAPTER 2: Extension Files

Customer [

Employee —1 Customer number =Zpi= |D =M=
Employee number =pi= |D =hi= Customer name NAME <hi=
First name NAME Customer address SHORT_TEXT <M=
Last name NAME <M= Customer activity SHORT_TEXT
Employee functicn NAME Customer telephone PHONE
Employes salary MONEY Customer fax PHONE
Idtf_2 <pi= Idtf_2 <pi=

Linking Objects Through Extended Attributes

Specify the [Object] data type to allow users to select another object as the value of the

attribute. You must specify an Obj ect type (metaclass) to link to, and can optionally specify an
Object stereotypeto filter the objects available for selection and an I nver se collection name,
which will be displayed on the Dependencies tab on the referenced object property sheet.

For example, under the Table metaclass, | create an extended attribute called Owner, select
[Object] inthe Datatypefield, and User in the Object type field. | name the inverse
collection Tables owned.When I setthe Owner property of atable, the table will be listed
on the Dependenciestab of the user property sheet, under the inverse collection name of
Tables owned.

Extended Collections and Compositions (Profile)

Extended collections define the possibility to associate an object instance with a group of
other objects of the specified type. Extended compositions define a parent-child connection
between an object instance and a group of sub-objects derived from the
ExtendedSubObject metaclass.

For extended collections, the association between the parent and child objects is relatively
weak, so that if you copy or move the parent object, the related objects are not copied or
moved, but the connection is maintained (using shortcuts if necessary). For example, you
could associate documents containing use case specifications with the different packages of a
model by creating an extended collection under the Package metaclass and specifying
FileObject asthe target metaclass.

For extended compositions, the association is stronger. Sub-objects can only be created within
the parent object and are moved, copied, and/or deleted along with their parent.

The collection or composition is displayed as a new tab in the object instance property sheet.
The property sheets of objects referenced in a collection show the object instance owning the
collection on their Dependencies tab.

1. Right-click a metaclass, stereotype, or criterion and select New > Extended Collection or
Extended Composition.

48

PowerDesigner

CHAPTER 2: Extension Files

Note: If you define the collection or composition under a stereotype or criterion, its tab is
displayed only if the metaclass instance bears the stereotype or meets the criterion.

2. Enter the following properties as appropriate:

Property |Description

Name Specifies the name of the extended collection or composition.

Label Specifies the display name of the collection, which will appear as the name of the
tab associated with the collection in the parent object property sheet.

Comment [optional] Describes the extended collection.

Inverse [extended collection only] Specifies the name to appear in the Dependenciestab

Name of the target metaclass. If you do not enter a value, an inverse name is automati-
cally generated.

Target Type | Specifies the metaclass whose instances will appear in the collection.
For extended collections, the list displays only metaclasses that can be directly
instantiated in the current model or package, such as classes or tables, and not
sub-objects such as class attributes or table columns. Click the Select aM etaclass
tool to the right of this field to choose a metaclass from another type of model.
For extended compositions, only the ExtendedSubObject is available, and you
must specify a stereotype for it.

Target Ster- | [required for extended compositions] Specifies a stereotype to filter the target

eotype type. You can select an existing stereotype from the list or click the Createtool to
the right of this field to create a new one.

List Col- Specifies the property columns that will be displayed by default in the parent

umns object property sheet tab associated with the collection. Click the Customize
Default Columnstool to the right of this field to add or remove columns.

3. Click Apply to save your changes.

Customizing and Extending PowerDesigner 49

CHAPTER 2: Extension Files

] Extended Model Definition Properties (Business Process_1)

General I
@ - - |MyEstensions: Frofilsh Fracess\E stended CallestionshT ablef esources - d- T
[MyEntensions)
..:l Generation Marne: |TabIeF|esources
=D Profils Labek: |Tables
12 Shared
=0 Process Carment; List of tables used as resources for the process ﬂ
E|..:| Extended Caollections
ERESE T ableF e B LI
Inyerse Mame: IF'rDcesses Using Table
TagetTvpe: |PdPDM:Table =1 [l
Target Sterectype: I ﬂ Iil
List Colurmms: I ame - |¥|
Code
Murnber of Reconds
Divirr. 2 K = LI
4 |

Ok I Cancel | Apply | Help |

You can view the tab associated with the collection by opening the property sheet of a
metaclass instance. The tab contains an Add Objects(and, if the metaclass belongs to the
same type of model, Create an Object) tool, to populate the collection.

Note: When you open a model containing extended collections or compositions and
associate itwith aresource file that does not support them, the collections are still visible in
the different property sheets in order to let you delete objects in the collections no longer
supported.

Calculated Collections (Profile)

Calculated collections define a read-only connection between an object instance and a group
of other objects of the specified type. The logic of the collection is defined using VBScript.

Calculated collections, unlike extended collections (see Extended Collections and
Compositions (Profile) on page 48) cannot be modified by the user.

You can create calculated collections to:

Display user-defined dependencies for a selected object. The calculated collection is
displayed in the Dependenciestab of the object property sheet.

Fine-tune impact analysis by creating your own calculated collections in order to be able to
better evaluate the impact of a change. For example, in a model where columns and

50

PowerDesigner

CHAPTER 2: Extension Files

domains can diverge, you can create a calculated collection on the domain metaclass that
lists all the columns that use the domain and have identical data type.

« Improve your reports. You can drag and drop any book or list item under any other report
book and modify its default collection in order to document a specific aspect of the model
(see Core Features Guide > Storing, Sharing and Reporting on Models > Reports > The
Report Editor > Adding Items to a Report > Modifying the Collection of an Item).

» Improve GTL generation since you can loop on user-defined calculated collections.

For example, in an OOM, you may need to create a list of sequence diagrams using an
operation, and can create a calculated collection on the operation metaclass that retrieves this
information. In a BPM, you could create a calculated collection on the process metaclass that
lists the CDM entities created from data associated with the process.

1. Right-click a metaclass, stereotype, or criterion and select New > Calculated
Collection.

2. Enter the following properties as appropriate:

Property Description

Name Specifies the name of the calculated collection for use in scripts.

Label Specifies the display name of the collection, which will appear as the name of
the tab associated with the collection in the parent object property sheet.

Comment [optional] Describes the calculated collection.

Target Type Specifies the metaclass whose instances will appear in the collection. The list

displays only metaclasses that can be directly instantiated in the current model
or package, such as classes or tables, and not sub-objects such as class attrib-
utes or table columns.

Click the Select a M etaclasstool to the right of this field to choose a metaclass
from another type of model.

Target Stereo- [optional] Specifies a stereotype to filter the target type. You can select an
type existing stereotype from the list or enter a new one.

List Columns Specifies the columns displayed by default on the collection property sheet
tab.

3. Click the Calculated Collection Script tab and enter a script that will calculate which
objects will form the collection.

If appropriate, you can reuse functions on the Global Script tab, which is used for sharing
library functions and static attributes in the resource file. You can declare global variables
on this tab, but you should be aware that they will not be reinitialized each time the
collection is calculated, and keep their value until you modify the resource file, or the
PowerDesigner session ends. This may cause errors, especially when variables reference
objects that can be modified or deleted. Make sure you reinitialize the global variable if
you do not want to keep the value from a previous run.

Customizing and Extending PowerDesigner 51

CHAPTER 2: Extension Files

For more information on defining a script and using the Global Script tab, see Example:
PDM Custom Check on page 73 and Global Script (Profile) on page 105.

4. Click Apply to save your changes.

] Extended Model Definition Properties {Class Diagram_1}

General I
- - IM_I,JExtensions::F‘rofile\Dperation\CaIcuIated CollectionshCollection_1 j J\, -~ H - ﬁi’f iba}
_>£| MyE xtenzions . . .
= G |
) Generation ENEa ICaIcuIated Callection Seript | Global Scnptl
= Profile Mame; IMessagesInDiagrams
-2 Shared
B2 Operation Label: IDiaglam Messages
E|.,j Calculated Collections)
- [®Y MessageslnDiagrams Gt j
Target Type: |Message j E
Target Stereotype: I j
List Columns: Mame ﬂ g
Code
Sender
Elermis LI

Ok, I Cancel | Apply | Help |

You can view the tab associated with the collection by opening the property sheet of a
metaclass instance.

Dependency Matrices (Profile)

Dependency matrices allow you to review and create links between any kind of objects. You
specify one metaclass for the matrix rows, and the same or another metaclass for the columns.
The contents of the cells are then calculated from a collection or link object.

For example, you could create dependency matrices that show links between:

e OOM Classes and Classes — connected by Association link objects
« PDM Tables and Users — connected by the Owner collection

52 PowerDesigner

CHAPTER 2: Extension Files

Ll

T

B &=

m || m

= (oo

=T | = | =X

o | oo | CO

oo o
Customers L4
Diwiziohiz -
Employess -
Groups L
Order Lines L4

« PDM Tables and OOM Classes — connected by extended dependencies

1. Right-click the Profile category and select Add Dependency Matrix to add the
DependencyMatrix metaclass to the profile and create a stereotype under it, in which
you will define the matrix properties.

2. On the General tab, enter a name for the matrix (for example Table Owners
Matrix) along with a label and plural label for use in the PowerDesigner interface, as
well as a default name for the matrices that users will create based on this definition.

3. Click the Definition tab to specify the rows and columns of your matrix and how they are
associated using the following properties.

Property |Description

Rows Specifies the object type with which to populate your matrix rows.

Columns Specifies the object type with which to populate your matrix columns. Click the
Select M etaclass button to the right of the list to select a metaclass from another
model type.

Matrix Cells | Specifies how the rows and columns of your matrix will be associated. You must

specify a Dependency from the list, which includes all the collections and links
available to the object.

Click the Createbutton to the right of the list to create a new extended collection
(see Extended Collections and Compositions (Profile) on page 48) connecting
your objects, or the Advanced button to specify a complex dependency path (see
Specifying Advanced Dependencies on page 54).

For certain dependencies, the Object typeon which the dependency is based will
be displayed, and you can select an Object attributeto display in the matrix cells
along with the No value symbol, which is displayed if that attribute is not set in
any particular instance.

Customizing and Extending PowerDesigner 53

CHAPTER 2: Extension Files

[DBMS Properties (For All Models)

General |TriggerTempIates| Trigger Template Itemsl Procedure Templatesl

Q- - |SYASIG'IEUD::F'rc-file\Dependenu:yMatri:-:'\Sterec-types'\Table Owners v 4~ |~ T %

Ac

) Sybase 10 15.x - o
- = Definit
1) Generation Gieneral Lefiniion |
: D Gerjeral r— Object types
":' el Rows: j
E|.,:| Profile

#-+2) Shared Columns: j IQ

@!i Batas?jurce Mt — Matrix cells

=] Uependencitatns Dependency: Dwrer | [3] Advanced.. |

2+ Sterentypes [I J
Object type: |
| T able Owhers bk . .

[#-[¥] ExtendedObject Dl <l |<None> j Mo value: I

#-[E] ExtendedSubObject

F-5 Index

-5 Joinlndex

F- 3§ Fey

=-F2 Model

€% Procedure hd
1| 3

Qg I Cancel | Apply Help

4. Click OK to save your matrix and close the resource editor.

You can now create instances of the matrix in your model as follows:
e Select View > Diagram > New Diagram > Matrix Name.
* Right-click a diagram background and select Diagram > New Diagram > Matrix

Name.

¢ Right-click the model in the browser and select New > M atrix Name.

Note: For information about using dependency matrices, see Core Features Guide >
Modeling with PowerDesigner > Diagrams, Matrices, and Symbols > Dependency

Matrices.

Specifying Advanced Dependencies

You can examine dependencies between two types of objects that are not directly associated
with each other, using the Dependency Path Definition dialog, which is accessible by clicking
the Advanced button on the Definition tab, and which allows you to specify a path passing

through as many intermediate linking objects as necessary.

Each line in this dialog represents one step in a dependency path:

54

PowerDesigner

CHAPTER 2: Extension Files

Property Description

Name Specifies a name for the dependency path. By default, this field is populated with
the origin and destination object types.

Dependency Specifies the dependency for this step in the path. The list is populated with all the
possible dependencies for the previous object type.

Object Type Specifies the specific object type that is linked to the previous object type by the
selected dependency. This field is autopopulated if only one object type is available
through the selected dependency.

In the following example, a path is identified between business functions and roles, by passing
from the business function through the processes it contains, to the role linked to it by a role

association:

M Dependency Path Definition

Mame;

IBusiness Function / Role

Dependency path:

Create as many raws az necessary in the list below to provide & path through the metamaodel
from ‘Buginess Function' to 'Role’

Diependency Object Type

Frocesses

Frocess

Fiole Associations

Role ==

4| H|4

1]

| »

Resat |

0k I Cancel | Help |

Forms (Profile)

Forms present standard and extended attributes and collections as property sheet tabs or can be
used to create dialog boxes launched from menus or property sheet buttons.

Note: Unless you add them to a form, extended attributes are listed alphabetically on the
Extended Attributestab of the object's property sheet. By creating your own form, you can
make these attributes more visible and easy to use, by organizing them logically, grouping
related ones, and emphasizing those that are most important. If you associate all of your
extended attributes with a form, the Extended Attributestab is not displayed.

1. Right-click a metaclass, stereotype or criterion and select New > Form to create an empty

form.

Customizing and Extending PowerDesigner 55

CHAPTER 2: Extension Files

Note: If you define a property tab under a stereotype or criterion, it is displayed only when
the metaclass instance bears the stereotype or meets the criterion.

@ Process Language Properties (For All Models) = 5
General
a- WSBPEL 2.0::Profile\Process\Forms\WS-BPEL - Q- - ﬁ.zf ig} |

T3 Model .
~E NamedObject

Mame: WS-BPEL

@ Operation Label:
-4% OrganizationUnit
4 Package Caornment: -

=< Process

Help file:
g E;d:nrs.ded Attributes Tupe: Property Tab » | [¥] &dd to favorite tabs
= | vis-BREL Form | ML
{) Generated Files N o1
) Mtods |mmmMo2x=88 A — 11X
L) Sterectypes E Fom
{2 Templates [joinCondition

L Custom Symbol
EJ---@ ProcessEnd

[#-- ® ProcessStart

----- | J Resource

----- ~# ResourceFow

[suppress.JainFailure
[expressionLanguage

m

EJ---:?‘ RoleAssociation
-+ Servicelnterface
e ServiceProvider
EJ"-# Synchronization
- & Variable

[-{&] ¥sdDocument I

[ok][Cancel Apply Help
2. Enter the appropriate following properties:
Proper- | Description
ty
Name Specifies the internal name of the form, which can be used for scripting.
Label Specifies the display name of the form, which will display in the tab of the property
tab or in the title bar of the dialog box.
Comment | Provides additional information about the form.

56 PowerDesigner

CHAPTER 2: Extension Files

Proper- | Description
ty
Help file | Enables the display of a Help button and specifies an action that will be performed
when the button is clicked or F1 is pressed when in the context of the form.
The action can be the display of a help file (.hlp, .chm or .html), and can specify a
specific topic. For instance:
C:\PD1500\pddocl5.chm 26204
If no help file extension is found, the string will be treated as a shell command to
execute. For instance, you could instruct PowerDesigner to open a simple text file:
notepad.exe C:\Temp\Readme.txt
Type Specifies the kind of form. You can choose from the following:
» Dialog Box —creates a dialog box that can be launched from a menu or via a form
button
» Property Tab—creates a new tab in the property sheet of the metaclass, stereotype
or criterion
* Replace <standard> Tab — replaces a standard tab in the property sheet of the
metaclass, stereotype or criterion. If your form is empty, it will be filled with the
standard controls from the tab that you are replacing.
Add to fa- | [property tabs only] Specifies that the tab is displayed by default in the object prop-
vorite tabs | erty sheet.

3. Insert controls as necessary in your form using the toolbar on the Form tab (see Adding
Extended Attributes and Other Controls to Your Form on page 57).

4. Click the Preview button to review the layout of your form and, when satisfied, click
Apply to save your changes.

Adding Extended Attributes and Other Controls to Your Form

You insert controls into your form using the tools in the Form tab toolbar. You can reorder
controls in the form control tree by dragging and dropping them. To place a control inside a
container control (group box or horizontal or vertical layout), drop it onto the container. For
example, if you want the extended attributes GUID, InputGUID, and OutputGUID to be
displayed in a GUI group box, you should create a group box, name it GUI and drag and drop
all three extended attributes under the GUI group box.

The following tools are available:

Customizing and Extending PowerDesigner 57

CHAPTER 2: Extension Files

Tool

Description

s =]

Add Attribute/ Collection — opens a selection box in which you select standard or
extended attributes or collections belonging to the metaclass to insert into the form. If you
do not enter a label, the attribute or collection name is used as its form label. If you have
entered a comment, it is displayed as a tooltip.

The type of control associated with an attribute depends on its type: booleans are asso-
ciated with check boxes, lists with combo boxes, text fields with multi-line edit boxes,
and so on. Collections are displayed as standard grids with all the appropriate tools.

Add Group Box - inserts a group box, intended to contain other controls within a named
box.

Add Tab Window - inserts a sub-tab layout, in which each child control appears, by
default, in its own sub-tab. To place multiple controls on a single sub-tab, use a horizontal
or vertical layout.

Add Horizontal / Vertical Layout - inserts a horizontal or vertical layout. To arrange
controls to display side by side, drag them onto a horizontal layout in the list. To arrange
attributes to display one under the other, drag them onto a vertical layout in the list.
Vertical and horizontal layouts are often used together to provide columns of controls.

Include Another Form - inserts a form defined on this or another metaclass in the
present form (see Example. Including a Form in a Form on page 64).

Add Method Push Button - opens a selection box in which you select one or more
methods belonging to the metaclass to associate with the form via buttons. Clicking the
button invokes the method. If you do not enter a label, the method name is used as the
button label. If you have entered a comment, it is displayed as a tooltip.

Bk | | 2b

Add Edit / Multi-Line Edit Field [dialog boxes only] inserts an edit or multi-line edit
field.

L

i
<o)
]

=

Add Combo Box / List Box / Check Box [dialog boxes only] - inserts a combo box, list
box, or check box.

>
I

Fa
- ol

Add Text / Separator Line/ Spacer - inserts the appropriate decorative control. The
separator line is vertical when its parent control is a vertical layout.

4

Delete — deletes the currently selected control.

Select a control to specify properties to control its format and contents:

Property

Definition

Name

Internal name of the control. This name must be unique within the form. The name
can be used in scripts to get and set dialog box control values (see Example. Opening
a Dialog Box from a Menu on page 82).

58

PowerDesigner

CHAPTER 2: Extension Files

Property

Definition

Label

Specifies a label for the control on the form. If this field is left blank, the name of the
control is used. If you enter a space, then no label is displayed. You can insert line
breaks with \ n.

To create keyboard shortcuts to navigate among controls, prefix the letter that will
serve as the shortcut with an ampersand. If you do not specify a shortcut key,
PowerDesigner will choose one by default. To display an ampersand in a label, you
must escape it with a second ampersand (for example: §Johnson && Sonwill
display as Johnson & Son.

Attribute

[included forms] Specifies the object on which the form to be included is defined.
The list is populated with all attributes of type object and the following objects:

* <None> - the present metaclass

» Generation Origin - for example, the CDM entity from which a PDM table was
generated

* Model - the parent model

» Parent - the immediate parent object for sub-objects (for example, the table
containing a column

» Parent Folder - the immediate parent object for composite objects (for example
BPM processes that contain other processes)

» Parent Package - the immediate parent package

Form name

[included forms] Specifies the name of the form that will be included. You can:

» Select a standard property sheet tab name from the list.
» Enter the name of a custom form defined in the extension file.
» Enter the name of a GTL template to generate XML to define the form.

Indentation

[container controls] Specifies the space in pixels between the left margin of the
container (form, group box, or horizontal or vertical layout) and the beginning of the
labels of its child controls.

Customizing and Extending PowerDesigner 59

CHAPTER 2: Extension Files

Property

Definition

Label space

[container controls] Specifies the space in pixels reserved for displaying the labels of
child controls between the indentation of the container and the control fields.

Toalign controls with the controls in a previous container, enter a negative value. For
example, if you have two group boxes, and want all controls in both to be aligned
identically, set an appropriate indentation in the first group box and set the inden-
tation of the second group box to - 1.

If a child control label is larger than the specified value, the label space property is
ignored,; to display this label, you need to type a number of pixels greater than 50.

Advanced Teradata Attributes _ O]

Startup: IDefauIt walue [preview mode)

Fallback: IDefauIt value [preview mode) j

Graup baox label Default Database: IDefauIt walue [preview mode)
_—

= Journal

Indentation

[Hournal IDefauIt value [preview mode) j

Default Journal T able: ID efault value [preview mode)

Label space ﬂ,ﬁ_fte[Journal: ||Defau|t value [preview maode) j

Ok I Cancel |

Show control
as label

[group boxes] Use the first control contained within the group box as its label.

Show Hidden
Attribute

[extended attributes] Displays controls that are not valid for a particular form
(because they do not bear the relevant stereotype, or do not meet the criteria) as
greyed. If this option is not set, irrelevant options are hidden.

Value

[dialog box entry fields] Specifies a default value for the control. For extended
attributes, default values must be specified in the attribute's properties (see Extended
Alttributes (Profile) on page 41).

List of Values

[combo and list boxes] Specifies a list of possible values for the control. For ex-
tended attributes, lists of values must be specified in the attribute's properties (see
Extended Attributes (Profile) on page 41).

Exclusive

[combo boxes] Specifies that only the values defined in the List of values can be
entered in the combo box.

60

PowerDesigner

CHAPTER 2: Extension Files

Property

Definition

Minimum Size
(chars)

Specifies the minimum width (in characters) to which the control may be reduced
when the window is resized.

Vertical Resize

Minimum Specifies the minimum number of lines to which a multiline control may be reduced
Line Number | when the window is resized.
Horizontal / Specifies that the control may be resized horizontally or, for multiline controls,

vertically, when the property sheet or dialog is resized.

Read-Only

[included forms and dialog box entry fields] Specifies that the control is read-only,
and will be greyed in the form.

Left Text

[booleans] Places the label text to the left of the checkbox.

Display

[booleans and methods] Specifies the form in which the boolean options or method
button are displayed.

For booleans, you can choose between a check box or vertical or horizontal radio
buttons, while for methods, you can choose from a range of standard icons or Text,
which prints the text specified in the Label field on the button.

Width/ Height

[spacers] Specify the width and height, in pixels, of the spacer.

Example: Creating a Property Sheet Tab

In this example, we will create a new property tab for the EAM Person metaclass to display
extended attributes we define to store personal information.

1. Create anew extension file (see Creating an Extension Fileon page 12) inan EAM, add the
Person metaclass (see Metaclasses (Profile) on page 33), and define five extended
attributes (see Extended Attributes (Profile) on page 41) to contain home contact details:

Customizing and Extending PowerDesigner

61

CHAPTER 2: Extension Files

] Extension Properties {Acme Corporation)

General |

- - IDrganogram::Profile\Person\ExtendedAttributes\HomeAddress

SQ-de T

=10l x|

I_),(] Organogram
- G |
@ Generation SnEE
E-) Settings Marme: Home Add
=53 Profile - IHome Address
A3 Shared Label |
- 3 Person
@ .
E@ Extended Attributes Tzt ﬂ
ERERE Home Address
{9 Home City
[Home Country
{9 Home Telephone
~{¥] Hame Zip hd|
Drata type: I[String] ju'!l
[Computed: & Fead/uite [Get+Set methods] € Bead only (et method]
Drefault walue: I j _I Template [
List of values: I |__1||Q Complete [
Edit method: I@ <Mones j |_—1||!|
QK I Cancel | Apply | Help |

2. Right-click the Person metaclass and select New > Form, enter Personal Details
in the Namefield, select Property Tab inthe Typelist, and click the Add Attribute

tool to select all the new extended attributes for inclusion in the form:

Ml Add Attributes | x|

B-a- #a

MHame | Data Type | Auailability Contest | Carnrment |

[39 Home &ddress [String) Perzon

[39 Home City [String) Perzon

[39 Home Couritry [String) Perzon

[39 Home Telephone [String) Perzon

[*9 Home Zip [String) Perzon
D Iy Extended atiributes £ Attributes J

Selected ohject(z]: 5/5
ak I Cancel | Help |

3. Click OK to add the attributes to the form, and arrange them in a group box, using
horizontal layouts to align them neatly. Here, I'm using the Label field to overide the
default name of the attribute in the form for brevity:

62

PowerDesigner

ﬁ] Extension Properties {Acme Corporation)

CHAPTER 2: Extension Files

_(ol x|
General |
= e IDrganogram::F'r0file\Person\Forms\F’ersonalDetails j Q- - ﬁfi al;-é
x] 0
Lg__égzn;f::im Mame: IPersonaI D etails
@ Settings Label: |
=) Prafile
; 23 Shared Comment: ;I
.- & Person LI
{23 Extended Attributes)

-[3] Home Address Help file: I

Wi i ;

é :22: Egintr}, Type: |Property Tab x| ¥ Addtafavoite tabs Preview |

-{#9 Home Telephone Form |><ML I

{9 Home Zip " _ .

B Forms EBEMOEE&HA— X
[5] Personal Details & Form . ;
[Perzamal Information Altribute: IHome City
[E5] Home Address Label lElty—
=*. HorizontalLayout -
JESEHorne City Diata Type: I[Stnng]
B2} Home Zip Caomment:

*. HorizontalLayout2
[Home Country
[Home Telephone

——

¥ Show Hidden Attribut

inimum Size [Chars): |1

¥ Horizantal Resize

QK I Cancel | Apply |

Help |

4. Click OK to save your changes and return to the model. When you next open the property
sheet of a person, a new Personal Detailstab is available containing the extended

attributes:

Customizing and Extending PowerDesigner

63

CHAPTER 2: Extension Files

#_, Person Properties - James Jones (james_jones = |EI|5|

Generall Roles Personal Details |Nu:|les I

Personal Information

Home address: |EERE]ls[0ENEEx
City: IChippingham Zipr |5W1 B 9al
Couritry: UK Tel |0205-555-9576

More > | = QK I Cancel | Apply Help

Example: Including a Form in a Form
In this example, we will replace the General tab of the EAM Person metaclass by a form which
includes properties from the person and from the site to which she is assigned by including a
form defined on the Site metaclass as a read-only control in a form defined on the Person
metaclass.

This example builds on the extension file created in Example. Creating a Property Sheet Tab
on page 61.

1. Add the site metaclass and create a form called Site Address. Select Property
Tab from the Type list and unselect the Add to favorite tabs option (as we do not want
this form, which duplicates standard site properties displayed in site property sheets).

2. Populate the form with standard attributes to display the complete address of the site:

64 PowerDesigner

] Extension Properties {Acme Corporation)

General |

CHAPTER 2: Extension Files

=10l x|

- - IDrganogram::Profile\Site\Forms\SiteAddress

SQ-de T

l_)f] Organogram

I3 Generation

@ Settings

B Profile
23 Shared
2 Person
{23 Extended Attributes
-[%Y Home Address
-{%9 Home City
[Home Country
-{#9 Home Telephone
{9 Home Zip

Mame: ISite Address
Label: I
Comment: ;I
Help file: |
Tvpe: IProperty Tab j [~ Add to favorite tabs Preview |
Form |><M|_ |
@EMO=EEHA— I X
: Altribute: IAddress
*. HorizontalLayout | abek IAddress
[City
[FipCade Minimumn Size [Chars): |1
[Country Minimum Line Mumber: |3
[Phone

¥ Horizantal Resize

¥ “ertical Fesize

o]

Cancel | Apply | Help |

3. Create a form under the Person metaclass, select Replace General tab from the
Typelist, and change the name to Contact Details.

4. Delete unwanted attributes from the list, and arrange the remaining attributes you want to
display, including the si te attribute (which is of type Ob-ject, and which will enable us
to pull in the appropriate properties from the associated site form) using horizontal and

vertical layouts.

5. Clickthe IncludeAnother Formtool, select Site inthe Attributefield,andenter Site
Address inthe Form namefield. Select the Read-Only check box to prevent editing of
the included form from the person's property sheet:

Customizing and Extending PowerDesigner

65

CHAPTER 2: Extension Files

Extension Properties {Acme Corporation) D Inlﬂ
General |
= e IDrganogram::F'r0fiIe\Person\Forms\EontactDetails j [P R-if 52}
I_),(j Organogram) -
@ Gereration Mame: IEontact D etails
) Settings Label I
Comment: ;I
[
-[3] Home Address Help file: I
(%] H Cit :
é szz Clointry Tupe: IHepIace General tab j Preview |
-[#9 Home Telephone Form |><ML I

-[¥9 Home Zip
@@EMO=EEHA— I X
[=] Fom i
2. HorizontalLayout] Hame: ISItB Address
@ Namg Attribute: ISite VI
[JobTite -
*. HorizontalLayout2 Farm name: ISlte Address vl
(3 Email tinirum Size [Chars]: |3
[Telephone
[Manager Minirum Line Mumber: |1

% e ¥ Horizortal Resize
fElf Site Address
¥ “ertical Fiesize
[Read-Orly

QK I Cancel | Apply | Help |

6. Click OK to save the extensions, and return to your model. When you next open the
property sheet of a person, the Gener al tab is replaced by the custom Contact Detailstab,
and when the person is assigned to a site, the site's address details are displayed as read-
only in the lower part of the form:

66 PowerDesigner

CHAPTER 2: Extension Files

& Person Properties - James Jones (james_jones) i I] B
Contact Details | Roles | Personal Details | Motes |
Mame: arnes Jones Job title; IMarkeling E xecutive
Emal. [iiones@acme. com Telephone: | 01085555678
Manager: I 2 Alison Anderson j
Site: I European Headquarters j
fddress: |57 Picoadily
City: |London Zip code: [EC1 3FR
Coountry: IUK
Phone: |0108-555-5000
More > | = ITI Cancel | Apply | Help |

Example: Opening a Dialog from a Property Sheet

In thisexample, we will add a button to a property sheet tab, to open a dialog box, allowing you

to enter additional personal details for a person.

This example builds on the extension file developed in Example: Including a Form in a Form

on page 64.

1. Openthe Personal Details formunderthe Person metaclass, andselectDialog
Box inthe Typefield, to transform it from a property sheet tab into an independent dialog:

Customizing and Extending PowerDesigner

67

CHAPTER 2: Extension Files

=10l x|

Extension Properties {Acme Corporation)

General |

SQ-d- %

- - IDrganogram::F'rofiIe\Person\Forms\PersonalDetails

2 Home Zip

u]
_égzn;g::im Mame: IPersonaI Dretailz
@ Settings Label: I
@ Prafile
@ Shared Caomment: ;I
=3 Perzon LI
{23 Extended Attibutes)
39 Home Address Help file: I
é :Ez: Egintry Tupe: IDiang Box j Breview |
%9 Home Telephone Form |><ML |

0 @) [OO & += [E] &5 bbd P B8 B2 [¢] A —

LEX

*. HorizontalLayout2
[Home Country
IESEHome T elephone:

Cantact Details E Foarm I_
Personal Details [Perzonal Information il e ek
@ Methads] [Home Address Label: I
@ ShowPerzonalD etails . HorizontalLayout] . l_
|—__-|.. .Site [Home City il e S
E-CD Forms [Home Zip Cormment:

=

[V Show Hidden Attribut

inimum Size [Chars): |1

¥ Horizontal Resize

Kl [+

Cancel | Lpply | Help |

o]

2. Right-click the Person metaclass and select New > M ethod. Enter the name

ShowPersonalDetails, and then click the M ethod Script tab and enter the
following script:
Sub %Method% (obj)

' Show custom dialog for advanced extended attributes

Dim dlg

Set dlg = obj.CreateCustomDialog ("$CurrentTargetCode%.Personal
Details")

If not dlg is Nothing Then

dlg.ShowDialog ()

End If
End Sub

Select the Contact Details form, and click the Add Method Push Button tool,
select the ShowPersonalDetails method, and then click OK to add it to the form.
Here, | use a horizontal layout and spacer to align the button with the right edge of the
form:

68

PowerDesigner

CHAPTER 2: Extension Files

Extension Properties {Acme Corporation) - |EI|1|
General |
- - IDrganogram::F'r0fiIe\Person\Forms\EontactDetails j (& i 4 n-if ’2}
Organogram Name: Contact Detal
) Gereration Hame: | ontact Details
g Settings Label: I
F'roflle
f Comment: ;I
E-@ Extended Attributes)
. {9 Home Address Help file: I
{9 Home City Tupe:)
e - |
15 Horme Country Tup IHepIace General tab J Breview
{9 Home Telephone Form |><ML |
i [Home Zip - _ .
E@Forms EEMOXEEBEHA - X
5 Contact Details *. HorizontalLayoutl ;I
Perzonal Details [Name Method: IShowPersonaIDetaiIs
E| @ Methods (3 JobTitle Mame: IF‘ersonaI
""" & ShowPersonalDetails =¥ HorizontalLayout2 i
=5 . Site [Email Label: I
= @ Formsz [Teleph
phaons Caomment:
------ 5] Site Address [Manager
[Site
j Site Address
= HonzontaILayoutB . .
"7 Spacel ™ Horizortal Fesize
=1 Dizplay: IText j
Kl [—
QK I Cancel | Lpply | Help |

4. Enter Personal. .. inthe Label field, and then click OK to save your changes and

return to the model. Now when you open the property sheet of a person, the Contact
Detailstab contains a Personal... button which opens the Personal | nfor mation dialog:

?;, Person Properties - James Jones (j

Contact Details |F|g|.33 I Hates I

M ame; IJames Jones

=lol]

Personal Details

=lol x|

Ermnail: Iiiones@acme.com Personal Information

N
tanager: I & Alizon Anderson

Home address: |59 Qldbury Gardens

Site: I European Headquart City: |Chi|3|:-ingham Zip: |5W1 B oAl
Address; IE? Ficcadilly Country: IUK Harne telephone: |D2DS-555-98?5
Citye ILnnan
Country: IUK
ITI Canhcel |
Phone: |0108-555-5000
Perzonal... |
Ok Cancel Apply | Help |

Maore =3 | = -

Customizing and Extending PowerDesigner

69

CHAPTER 2: Extension Files

Custom Symbols (Profile)

Custom symbols modify the appearance of object symbols in diagrams along with the content
displayed on them. You can choose to enforce certain aspects of the symbol format and

content, while allowing users some liberty to change others.

1. Right-click a metaclass, stereotype, or criterion and select New > Custom Symbol.

[Extended Model Definition Properties [DbjectOrientedModel 1)

General I

& v o= IEHtendedDefinitionj::Profile\EIass\Eustom Syrbal

E stendedD efinitian_1 Narme.
= |2 Generation Hame.
EID Frafile Comment:

#-B Associstiont apping
B BusinessRuls
=B Class

-1 Stereotypes
-4 Custom Symbal

Type:

b
mm

Qperationt apping

Predefined Symbal Mame: 3D Rectangle
— Default zsize [inch)

[Classh apping wdidth: ID- 8 Height: IU- 7

 Preview

Default |

todify... |

| Help |

2. Specify a default Width and Height for the symbol and then click the M odify button to
open the Symbol Format dialog, and set appropriate properties on the various tabs.

Note: If you customize the line style and arrows of a link symbol (such as a PDM
reference), your styles will override those selected in the Display Preferences dialog, and
may cause confusion and inconsistency in the model. To ensure coherence in a model
governed by a notation, select Notat i on for the Styleand Arrowspropertiesonthe Line

Style tab.

For more information on the Symbol Format dialog (including the custom symbol options
that let you control the default format options for the symbol, and whether users can edit
them, on a per-tab basis) see Core Features Guide > Modeling with PowerDesigner >
Diagrams, Matrices, and Symbols > Symbols > Symbol Format Properties.

3. Click OK to return to the resource editor and view your changes in the Preview field.

70

PowerDesigner

CHAPTER 2: Extension Files

4. Click Apply to save your changes.

Custom Checks (Profile)

Custom checks define additional rules to validate the content of your models. The logic of the
check is defined using VBScript. Custom checks appear alongside standard checks in the
Check Modd dialog.

Custom checks appear with standard model checks in the Check M odel Par ameter sdialog
(see Core Features Guide > Modeling with PowerDesigner > Objects > Checking Models).

1. Right-click a metaclass, stereotype, or criterion, and select New > Custom Check.
2. Enter the following properties as appropriate:

Parameter Description

Name Specifies the name of the custom check, which is displayed under the
selected object category in the Check M odel Parameter sdialog. This
name is also used (concatenated) in the check function name to uniquely

identify it.
Comment Provides a description of the custom check.
Help Message Specifies text to display in the message box that opens when the user
right-clicks the check and selects Help.
Output message Specifies text to display in the Output window during check execution.
Default severity Specifies whether the check is designated by default as an error (major

problem that stops generation) or a warning (minor problem or just
recommendation).

Execute the check by | Specifies that the check is selected by default in the Check M oddl Pa-
default rameter s dialog.

Enable automatic cor- | Specifies that an autofix is available for the check (see Example. PDM
rection Autofix on page 74).

Execute the automatic | Specifies that the autofix is executed by default.
correction by default

3. Click the Check Script tab and enter your script (see Example: PDM Custom Check on
page 73. You can access shared library functions and static attributes defined for reuse in
the resource file from the Global Script tab (see Global Script (Profile) on page 105).

Customizing and Extending PowerDesigner 71

CHAPTER 2: Extension Files

4,

B Extended Model Definition Properties [For All Models) | _ O] x|
General |
CERE AN Icustom_ckeck::Profile\lndex\Custam Checks\Index_type_verification n b Fa: ?..:B
I@ custam_ckeck Check Seii
[Generation General eck Script IAutohx Scnpt' GIobaIScrlplI
E"DF_LT'; . E-B-HS# $BE oo
o El
B Column Function %Check%iob3)]
#-B Cubehapping !
#-B Dimensiont apping ! cannot create an LF, HG, CMP, or HNG index for Varchar(255) column
#-B FactMapping '_ -
2 B Index Dim c 'temporary index column
EH:I Custor Checks Dim col 'temporary column

a Index_type_verfication
B NamedObject
-8B Table

t]-B TahleMapping

End Function =
KN - _'l_I

Dim position
Dim DT_col
%Check%= True
if obj.type = "LF" or obj.type = "HE" or obj.type = "CMPF" or ob]).typ
for each ¢ in obj.indexcolunns
get col = c.column

position = InStricol.datatype,” (")
if posgition <> 0 then
LT col = left{col.datatype, position -1}
else
DT_col = col.datatype
end if

if ucase (DT_col) = "VARCHAR"™ and col.length » 255 then
output "Table " & col.parent.name & 7 Column ™ & col.na
%Check% = False
end if
nENT |
end if

oK I Cancel | Apply | Help |

If you want to define an autofix, click the Autofix Script tab and enter your script (see
Example: PDM Autofix on page 74.

Click Apply to save your changes.

All custom checks defined in any resource files attached to the model are merged and all
the functions for all the custom checks are appended to build one single script. You custom
checks are displayed in the Check M odel Par ameter sdialog box alongside the standard
model checks. If there are errors in your custom check scripts, the user will be prompted

with the following options:

Ignore- Skip the problematic script and continue with the other checks.
Ignore All - Skip this and any future scripts with problems and continue with the other

checks.

Abort - Stop the model checking.
Debug - Stop the model checking and open the Resource Editor on the script line with

the problem.

72

PowerDesigner

CHAPTER 2: Extension Files

Example: PDM Custom Check

You enter the script of the custom check in the Check Script tab using VBScript. In this
example, we will write a script to verify that Sybase 1Q indexes of type HG, HNG, CMP, or LF
are not linked with columns with a data type of VARCHAR with a length higher than 255.

The script is initialized with the following line, which must not be altered:

Function %Check% (obj)

Atrun-time the variable $Check#% is replaced by concatenating the names of the resource file,
metaclass, any stereotypes or criteria, and the name of the check itself from the General tab,
with any spaces replaced by an underscore. The parameter ob7 contains the object being
checked.

We begin by defining a certain number of variables after the default function definition:

Dim c 'temporary index column
Dim col 'temporary column

Dim position

Dim DT col

Next, we enter the function body, which starts by setting the $Check% to true (meaning that
the object passes the test) and then iterates over each of the columns associated with the index

and tests their datatype. If a column has a varchar longer than 255, the script outputs a message
and sets the check to false (the object fails the test:

%Check%= True

if obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type

="HNG" then
for each ¢ in obj.indexcolumns
set col = c.column

position = InStr(col.datatype,” (")
if position <> 0 then
DT col = left(col.datatype, position -1)

else
DT col = col.datatype
end if
if ucase (DT col) = "VARCHAR" and col.length > 255 then

output_“Table " & col.parent.name & " Column " & col.name & "
Data type is not compatible with Index " & obj.name & " type " &
obj.type
%Check% = False
end if

For more information about using VBScript in PowerDesigner, see Chapter 7, Scripting
PowerDesigner on page 305.

Customizing and Extending PowerDesigner 73

CHAPTER 2: Extension Files

Example: PDM Autofix

If the custom check you have defined supports an automatic correction, you enter its script on
the Autofix Script tab using VVBScript. In this example, we will write a script to fix a Sybase
1Q index linked with columns with an invalid data type.

The script is initialized with the following line, which must not be altered:

Function $Fix% (obj, outmsg)

At run-time the variable $Fix% is replaced by the name of the fix. The parameter obj
contains the object being checked and outmsg, the message to be output.

We begin by defining a certain number of variables after the default function definition:

Dim c 'temporary index column
Dim col 'temporary column

Dim position

Dim DT col

Next, we enter the function body, which starts by setting the $Fix% to false (meaning that it
does nothing) and then iterates over each of the columns associated with the index and tests
their datatype. If a column has a varchar longer than 255, the script outputs a message, deletes
the column from the collection of columns associated with the index, and sets the fix to true (it
has made a correction):

$Fix% = False
If obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type
="HNG" Then
For Each ¢ In obj.IndexColumns
Set col = c.column
position = InStr(col.datatype," (")
If position <> 0 Then
DT col = Left(col.datatype, position -1)
Else
DT col = col.datatype
End If
If (Ucase(DT col) = "VARCHAR") And (col.length > 255) Then
outmsg = "Automatic correction has removed column " & col.Name & "
from index."
c.Delete
$Fix% = True
End If
Next
End If

PowerDesigner

CHAPTER 2: Extension Files

Iél (23 Custom Checks
B Index_type_verification
B NamedObject
=-E Table
B TableMapping

Bl Extended Model Definition Properties (For All Models) [_ O]
General I
&= v o= Istom,ckeck::Profi\e\lndex\tustom Checks\Index type_verification = - ?f '5;3'3
I@ custom_ckeck . .
T [Generation GEnEraII Check Script Autofis Seript |G|nhal8cnpt|
E"'D[P:Tfl?ared E-EHESH L BRE oo e
B Column Function $Fix%(obj, outwmsg) ;I
B-B CubeMapping !
=B Dimensiontdapping ! Auromatic correction: cannot create an LF, HG, CMP, or HNG index £
B-B Facttdapping !
E1-B Index Dim ¢ 'temporary index column

Dim col 'temporary column
Din poszition
Dim DT_col
%Fix% = False
If obj.type = "LF" or obj.type = "HG" or obj.type = "CHMPF" or obj.tym
For Each ¢ In obj.IndexColumns

Set col = c.column

position = Inftr(col.datatype,” (")

If pozition <> 0 Then

DT_col = Left(col.datatype, position -1)

Else
DT _col = col.datatype
End If
If (Ucaze(DT_col) = "VARCHAR™) And (col.length > 255) Then
outmsy = "Automatic correction has rewmowved column " & collNs
c.Delete
%Fix% = True
End If
Hext
End If

End Function

0K I Cancel Apply | Help |

Event Handlers (Profile)

Event handlers define validation rules or other scripts to run when an event occurs on an
object. The logic of the event handler is defined using VVBScript. Criteria do not support event

handlers.

1. Right-click a metaclass or a stereotype and select New > Event Handler to open a
selection box, listing the available types of event handlers:

Customizing and Extending PowerDesigner 75

CHAPTER 2: Extension Files

Event handler

Description

CanCreate

Implements a validation rule to prevent objects from being created in an
invalid context. For example, in a BPM for eb XML, a process with a
Business Transactions stereotype can only be created under a process with
a Binary Collaboration stereotype. The script of the CanCreate event han-
dler associated with the Business Transaction process stereotype is the
following:

Function %CanCreate% (parent)
if parent is Nothing or
parent.IsKindOf (PdBpm.Cls Process) then
%CanCreate% = False
else
%$CanCreate% = True
end if
End Function

If the event handler returns True on a stereotype, then you can use the
custom tool to create the stereotyped object and the stereotype is available
in the Stereotype list on the object property sheet. If it returns True on a
metaclass, then you can create the object from the Toolbox, from the
Browser or in a list.

Note: CanCreate event handlers are ignored during model import or
reverse-engineering, since they could modify the model and make it di-
verge from the source.

76

PowerDesigner

CHAPTER 2: Extension Files

Event handler

Description

Initialize

Instantiates objects with a predefined template. For example, in a BPM, a
Business Transaction must be a composite process with a predefined sub-
graph. The script of the Initialize event handler associated with the Busi-
ness Transaction process stereotype contains all the functions needed to
create the sub-graph. The following script fragment is from the Initialize
event handler for a Business Transaction.

' Search for an existing requesting activity
symbol
Dim RegSym
Set RegSym = Nothing
If Not RegBizAct is Nothing Then
If RegBizAct.Symbols.Count > 0 Then
Set RegSym = RegBizAct.Symbols.Item(0)
End If
End If

' Create a requesting activity if not found

If RegBizAct is Nothing Then
Set RegBizAct =

BizTrans.Processes.CreateNew
RegBizAct.Stereotype =
"RequestingBusinessActivity"
RegBizAct.Name = "Request"
End If

If the event handler returns True on a stereotype, then the initialization
script will be launched whenever the stereotype is assigned, either with a
custom tool in the Toolbox, or from the object property sheet. If it returns
True on a metaclass, then it will be launched when you create a new object
from the Toolbox, from the Browser, in a list or in a property sheet. If it
returns true on a model, then it will be launched when you assign a target
(DBMS or object, process, or schema language) to the model at creation
time, when you change the target of the model, or when you attach an
extension to the model.

Customizing and Extending PowerDesigner 77

CHAPTER 2: Extension Files

Event handler

Description

Validate Validates changes to object properties or triggers cascade updates when
you change tabs or click OK or Apply in an object property sheet. You can
define an error message to appear when the condition is not satisfied by
filling the message variable and setting the $Validate% variable to
False.

In this example, the event handler verifies that a comment is added to the
definition of an object:
Function %Validate% (obj, ByRef message)
if obj.comment = "" then
SValidate$ = False
message = "Comment cannot be empty"
else
%$Validate% = True
end if
End Function
CanLinkKind [link objects] Validates the kind and stereotype of the objects that can be

linked together as the source and destination extremities when you create a
link with a Toolbox tool or modify link ends in a property sheet. The
sourceStereotype and destinationStereotype pa-
rameters are optional.

In this example, the source of the extended link must be a start object:

Function %CanLinkKind% (sourceKind, sourceStereo-
type,
destinationKind, destina-

tionStereotype)

if sourceKind = cls_ Start Then

%$CanLinkKind% = True

end if
End Function

OnModelOpen, On-
ModelSave, and
OnModelClose

[models] Run immediately after a model is opened, saved, or closed.

OnLanguageChan-
geRequest, OnLan-
guageChanging,
and OnLanguage-

[models] Run immediately:

» Before the model's DBMS or language definition file is changed. If the
event handler returns false, then the language change is canceled.

» After the language change, but before any transformations are applied

Changed to objects to make them conform with the new language definition.
» Afterthe model's DBMS or language definition file is changed and the
object transformations are applied.
OnNewFromTem- | [models] Runs immediately after a model or a project is created from a
plate model or project template.

78

PowerDesigner

CHAPTER 2: Extension Files

Event handler | Description

BeforeDatabase-
Generate, AfterDa-
tabaseGenerate, Be-
foreDatabaseRever-
seEngineer, and Af-
terDatabaseRever-
seEngineer

[PDM models] Run immediately before or after generating or reverse-
engineering a database (see Adding Scripts Before or After Generation and
Reverse Engineering on page 133).

GetEstimatedSize

[PDM only] Runs when the Estimate Database Size mechanic is called (see
Modifying the Estimate Database Size Mechanism on page 202).

2. Select one or more event handlers and click OK to add them.
3. Enter a name and comment to identify and document the event handler.

4. Click the Event Handler Script tab and enter a script to define the event handler. You can
access shared library functions and static attributes defined for reuse in the resource file
from the Global Script tab (see Global Script (Profile) on page 105).

i Process Language Properties [For All Models] M= E
General |
Gy Do Ieb><ML‘I_D4::Profile\Process\Stereotypes\BinaryEoIIaboration\EventHandlers\EanEreate n - ?i’ ?_;’B
= - ;
7 g...[“_[-locgjsstom Checks —I General Ewvent Handler Script | Global Scriptl
: [C Generated Files ERNE & H§M| * E| Lyl ﬁl| B LnB Cold
=] Stereotypes
E-EH AbstractProcess Function %CanCreate%(parent) ;I

[Extended Attributes
(1 Templates
BinaryCollaboration
[Custam Checks
(2 Event Handlers

(1 Extended Attributes

-] Templates

=-EH Businesstction

-] Custom Checks

f#-(] Extended Attibutes

D Templates

I'_—'l BusinessTransaction ;I

S ST e T Y VRPN T PP 1Y

if parent is Nothing or parent.IsKind0f (PdBEpm.
4CanCreate% = False

else
3CanCreate® = True

end if

End Function

P

Cancel Apply | Help |

o 1

5. Click Apply to save your changes.

Methods (Profile)

Methods are written in VVBScript and perform actions on objects when they are invoked by
other extensions, such as menu items or form buttons.

1. Right-click a metaclass, stereotype, or criterion and select New > Method.

Customizing and Extending PowerDesigner

79

CHAPTER 2: Extension Files

2. Enter the following properties as appropriate:

Property Description

Name Specifies the name of the method.

Comment Provides additional information about the method.

3. Click the Method Script tab, and enter the VVBscript. If appropriate, you can reuse

functions on the Global Script tab.

For more information on defining a script and using the Global Script tab, see Example:
PDM Custom Check on page 73 and Global Script (Profile) on page 105.

The following example, created under the C1ass metaclass, converts classes into
interfaces by copying basic class properties and operations, deleting the class (to avoid
namespace problems), and creating the new interface.

Sub %$Mthd% (ob7j)
' Convert class to interface

' Copy class basic properties

Dim Folder, Intf, ClassName, ClassCode
Set Folder = obj.Parent

Set Intf = Folder.Interfaces.CreateNew
ClassName = obj.Name

ClassCode = obj.Code

Intf.Comment = obj.Comment

' Copy class operations

Dim Op

For Each Op In obj.Operations
Al

Output Op.Name
Next

' Destroy class
obj.Delete

' Rename interface to saved name
Intf.Name = ClassName
Intf.Code ClassCode

End Sub

Note: This script does not deal with other class properties, or with interface display, but a
method can be used to launch a custom dialog box to ask for end-user input before
performing its action (see Example. Opening a Dialog Box from a Menu on page 82).

4. Click Apply to save your changes.

80

PowerDesigner

CHAPTER 2: Extension Files

Menus (Profile)

Menus specify commands to appear in the standard PowerDesigner File, Tools, and Help
menus or in contextual menus.

1. Right-click a metaclass, stereotype, or criterion and select New > Menu.
2. Enter the following properties as appropriate:

Property Description

Name Specifies the internal name of the menu. This name will not appear in the menu
Comment Provides a description of the menu.
Location [model and diagram only] Specifies where the menu will be displayed. You can

choose between:

e File > Export menu

e Help menu

« Object Contextual Menu

¢ Tools menu

Menus created on other metaclasses are only available on the contextual menu,
and do not display a L ocation field.

3. Use the tools on the M enu sub-tab to create the items in your menu:

Tool

Function

-

Add Command - Opens a selection dialog listing methods (see Methods (Profile) on
page 79) and transformations (see 7ransformations (Profile) on page 92) defined in
the current metaclass and its parents to add to the menu as commands. Select one or
more and click OK.

The items are added to your menu in the format:
MenuEntry (Method/TransformationName)

You can modify the MenuEntry (and define a shortcut key by adding an ampersand
before the shortkey letter) but you must not edit the Method/TransformationName.

Note: If you modify the name of a method or transformation, you must update any
commands using the method or transformation by hand, because the name is not au-
tomatically synchronized. You can use the Replacein Itemstool to locate and update
these commands.

il

Add Separator -Creates a menu separator under the selected item.

Add Submenu - Creates a submenu under the selected item.

b4

Delete - Deletes the selected item.

Customizing and Extending PowerDesigner 81

CHAPTER 2: Extension Files

4,
5.

You can reorder items in the menu tree by dragging and dropping them. To place an item
inside a submenu item, drop it onto the submenu.

il Extended Model Definition Properties [PhysicalD ataModel_2)

General |
S v = IEXTENDEDDEFINITIDN_'I::F'rofile\Table'\Menus'\ManageViews n © F&: ﬁ:g
EstendedDefinition_1 Mame: M i
[:l B alion Mame: anage Yiews
E|D Prafile Comment: ;I
[:| Shared
=B Table
=1 Methods =l
1@ Createtiews
gl Drganizeviews
2 Menus
: M
[% M anage Views i |><ML I
sl = HEE X
I% Menu

@ iCreate Views [CreateViews];
@ Organize Views [Organize'iews)

QK I Cancel | Apply | Help |

[optional] Click the XML sub-tab to review the XML generated from the M enu sub-tab.
Click Apply to save your changes.

Example: Opening a Dialog Box from a Menu

In this example, we will create a menu command to export object properties to an XML file via

a dialog box.

1. Create a new extension file (see Creating an Extension Fileon page 12) ina PDM and add
the Table metaclass (see Metaclasses (Profile) on page 33).

2. Right-click the Table metaclass and select New > Form. Enter Export in the Name
field, and select Dialog Box from the Type list.

3. Click the Edit Field tool to add an edit field control, and call it Filename.

4. Right-click the Tab1le metaclass and select New > Method. Enter Export inthe Name

field, click the Method Script tab and enter the following code:

Sub %$Method$% (ob7j)
' Exports an object to a file

82

PowerDesigner

CHAPTER 2: Extension Files

' Create a dialog to input the export file name

Dim dlg

Set dlg = obj.CreateCustomDialog ("$CurrentTargetCode%.Export")
If not dlg is Nothing Then
' Initialize filename control value
dlg.SetValue "Filename", "c:\temp\MyFile.xml"

Show dialog
If dlg.ShowDialog() Then
' Retrieve customer value for filename control
Dim filename
filename = dlg.GetValue ("Filename")
' Process the export algorithm...

' (Actual export code not included in this example)

Output "Exporting object " + obj.Name + " to file " +
filename

End If
' Free dialog object
dlg.Delete

Set dlg = Nothing
End If

End Sub

5. Right-click the Table metaclass and select New > Menu. Enter Export in the Name
field, and then click the Add Command tool and select the Export method:

] Extension Properties {(Data Warehouse)

=0l x|

General |

- - IExport::Profile\TabIe\Menus\Export j Q- - ﬁ-,_af ag-é

|_),<] Export _— o
{3 Generation Lik<lih bd<lElLd

Comment: -
@ Shared
= Table
E@ Forms

Location:
¢ X Export M
E@ Methods = |><ML I
% Export @y X
= Menu
&% Export [Export]

0k I Cancel | Apply | Help |

6. Click OK to save your changes and return to your model. When you next right-click a table
in a diagram or the browser, the Export command is available in the contextual menu.

Customizing and Extending PowerDesigner 83

CHAPTER 2: Extension Files

Templates (Profile)

GTL templates extract text from PowerDesigner property values for use in generated files or

other contexts.

1. Right-click a metaclass, a stereotype, or a criterion (or the Shared category, if the
template applies to all metaclasses) and select New > Template to create a template.

2. Enter a name for the template. You should not use spaces in the name and, by convention,
templates are named in headless camelcase (for example myTemplate).

3. [optional] Enter a comment to explain the use of the template.
4. Enter GTL code (see Chapter 5, Customizing Generation with GTL on page 245) in the

text box.

In this example, myTemplate is defined on the C1lass metaclass, and will generate the
name of the class followed by a list of its attributes:

@ Extension Properties (myOOM)

General

a-Bg myExtension:: Profile\Class Templates \my Template

CA-d- % e

%] myBExtension

B\.j Templates
%] myTemplate

MHame: my Template

Comment: -

2-F-HdIA |y 2R 906 0@

Class Name: £Name$ -
.foreach item{Attributes)
\n\tiNamet
<= b :
OK || Cancel |[ppy][Hep

84

PowerDesigner

CHAPTER 2: Extension Files

Generated Files (Profile)

Generated files assemble GTL templates for generation as files or for previewing on the object
property sheet Preview tab.

1. Right-click a metaclass, stereotype, or criterion, and select New > Generated File.

Only objects, such as tables or classes, support file generation. However, you can still
create generated files for sub-objects, such as columns and attributes, to preview code
generated for them on their property sheet Preview tab.

2. Enter the following properties as appropriate:

Property Description

Name Specifies a name for the generated file item in the resource editor.

If an extension attached to the model contains a generated file name identical to
one defined in the main resource file, then only the extension generated file will
be generated.

File Name Specifies the name of the file that will be generated. This field can contain GTL
variables. For example, to generate an XML file with the code of the object for
its name, you would enter $code% . xml.

If you leave this field empty, then no file will be generated, but you can view the
code produced in the object's Preview tab.

If this field contains a recognized extension, the code is displayed with the
corresponding language editor and syntactic coloring.

Type Specifies the type of file to provide appropriate syntax coloring in the Preview
window.

Encoding Specifies the encoding format for the file. Click the ellipsis tool to the right of
the field to choose an alternate encoding from the Text Output Encoding For-
mat dialog, where you can specify the following options:

« Encoding - Encoding format of the generated file
e Abort on character loss - Specifies to stop generation if characters cannot
be identified and are to be lost in current encoding

Comment Specifies additional information about the generated file.

Use package hi- | Specifies that the package hierarchy should be used to generate a hierarchy of

erarchy as file | file directories.

path

3. Enter GTL code (see Chapter 5, Customizing Generation with GTL on page 245) or the
name of a template to populate the file in the text zone.

In the following example, a generated file is defined for OOM classes. A file will be
generated for each class in the model with a name derived from the class $Name%, and

Customizing and Extending PowerDesigner 85

CHAPTER 2: Extension Files

containing the contents generated from the $myTemplate% template (see 7emplates

(Profile) on page 84):

General

L.)f] Extension Properties (myOOM]

B8 Ol

- myExtension::Profile\Class"Generated Files'\myFile > Q- - E o ge
%] myBExtension
{C3) Generation Hames myFile
Q--@{thﬂle File name: Class_%MName¥ bd Tupe:
i--{2) Shared
EIE Class Encoding, ANSI (Active Code Page) J
B@ nela;lad Files Comment; i
i Bl myFile
B Templates | = :
%] myTemplate -

Usze package hierarchy as file path

S-F-HoA| R[N~

imyTemplate$

-

[ok][Cancel ||

Aoply | [Hebp

4. Click OK to save your changes and close the resource editor.
The file is immediately available as a sub-tab on the Preview tab of the object property

sheet:

86

PowerDesigner

CHAPTER 2: Extension Files

(= Class Properties - myClass (MyClass) | = [B |z
General I Detail I Attributes I Operations I Parts I Parts | Annotations | Java |
Fods MNotes | Preview

S-F-do9Al @90 AEHE]| b

!Ilass Hame: myClasa
Attribute 1
Attribute_2
Attribute 3
Lttribute_4

\ Java Source } myExtension myFile /7] « [P
= ook] [Gancsl] [200 Help

Example: JavaGenerated File and Templates

Templates contain GTL code used to generate text fragments from PowerDesigner property
values, while generated files are used to assemble templates for generation as files or for
previewing on the object property sheet Preview tab.

Inthis example, a generated file called Java Source isdefined for classifiers. A file will be
generated for each classifier in the model with a name derived fromthe $sourceFilename

% template specified in the File name field, and containing the contents generated from the
$source$ template:

Customizing and Extending PowerDesigner 87

CHAPTER 2: Extension Files

7 object Language Properties (For All Models) _ |E||1|

General |

- ™ IJava::Profile\EIassifier\Generated Files'Java Source ﬂ -k - =l ﬁff ’ba',_!

=D Templates File name: IZSDUlceFilenameZ Type: |<N0ne>
-0 Helpers
-5 Kind Encoding: IUTF-B
ﬂ DrefaultHeader
----- @ Defaullmports
Iﬂ altributes

----- |E| extends

- %] imports

_____ Iﬂ initilizers W Usze package hierarchy as file path
%] innerClasses L -BF-dI8 | LaB|9e[32@ Lnlcoll
ﬂ innerE nums J - -

sz3ourced

----- |£| inner nterfaces
-
4 3

Iﬂ members
ok I Cancel I Apply | Help |

Mame: I.J awa Source

Caomment:

I« L} Lo

1l

----- |E| operatiohs
Iﬂ package

----- @ SOUIGE -
| »

[«

Note: If you position your cursor between the percent signs surrounding this or any other
template name and press F12, you will either jump directly to the referenced template or, if
several templates share the same name, to a Resultsdialog in which you select the template to
navigate to.

The referenced template, source, contains GTL code, including references to further
templates called $isSourceGenerated%, $sourceHeader$%, $package$, and
%importss:

88 PowerDesigner

CHAPTER 2: Extension Files

7 object Language Properties (For All Models) _ |E||1|
General |
a3 - ™ IJava::Profile\EIassifier\Templates\source ﬂ ul L= “if ’ba"_g
=k Generated Files -
!.3 £ _I Mame: Isource
P E] Java Source
D) Templates CEmiTE -
-2y Helpers
-1 Kind
ﬂ DrefaultHeader LI
.ﬂ Defaullmports
. = A =
.E] attributes = - |_:17 - H = I | % 53 ‘3| ¥) |$|=-| @ Ln1 Coll
| %] extends
ﬂ imports .1if [(3isfourceleneratedy) -
.ﬂ . tD i .set_object(GenClassifier, new)
; ?nl IaEF[S .44 header and package declaration
-—1 Inner.lasses [$sourceHeadersininly
-ﬂ ?nnerEnums [$packagesinin]
1-1 inner nterfaces /7 imports
ﬂ members umique
- %)| operations simportss
ﬂ package - endunioque (Yl
] souice ./7 definition rl'
4 I »

ok I Cancel I Apply | Help |

Generating Your Files in a Standard or Extended Generation

You can use generated files to extend the standard generation for objects from OOMs, BPMs,
and XSMs or to create a separate extended generation for any type of model. For extended
generations, you can define a custom menu command.

To extend the standard BPM, OOM, or XSM generation from the Resource Editor:

1. Select the Complement language gener ation property in the root of the extension file
(see Extension File Propertieson page 14) to have the extension file appear for selection on
the Generation dialog Tar getstab.

2. Define generated files as appropriate.

3. [optional] Define options in Generation\Options (see Example. Adding a
Generation Option on page 113) to have them appear on the Generation dialog Options
tab.

4, [optional] Define commands in Generation\Commands and reference these
commands in tasks (see Example: Adding a Generation Command and Taskon page 114)
to have them appear on the Generation dialog Tasks tab.

Alternatively, to define separate file generations apart from the standard language generation
for a PDM or any type of model and make them available via the Tools > Extended
Generation command

1. [OOM, BPM, and XSM only] Deselect the Complement language gener ation property
in the root of the extension file (see Extension File Properties on page 14).

Customizing and Extending PowerDesigner 89

CHAPTER 2: Extension Files

2. Define generated files as appropriate.

The generation isimmediately available on the Tar getstab of the Gener ation dialog when

you select Tools > Extended Generation.

3. [optional] Create a command in the Tools menu to directly access your extended
generation in its own dialog:

a. Create amethod in Profile\Model with the name you want to give to your
command, and enter the following code (where extension is the code of the
extension file):

Sub %$Method$% (ob7j)

Dim selection ' as ObjectSelection

' Create a new selection
set selection = obj.CreateSelection

' Add object of the active selection in the created selection
selection.AddActiveSelectionObjects

' Generate scripts for specific target

InteractiveMode = im Dialog
obj.GenerateFiles "", selection, "extension"
End Sub

For more information about methods, see Methods (Profile) on page 79.

b. CreateamenuinProfile\Model andselectthe Tools menuinthe Location list
(see Menus (Profile) on page 81).

c. Add the method to the menu using the Add Command tool:

90 PowerDesigner

CHAPTER 2: Extension Files
Eﬂ Extensien Properties (myQOM) =
General
- - myEstension::Profile’\Model\Menus\My Generation I ™ R s
@--gag:nn:;}on Hame: My Generation
Comment: o
L
Location: [Tools menu Y]
Meru | ML
#EHX
TaDEmm ||
-3 Methods = Menu
L.435 My Gensration &% My Generation (My Generation)

[ok

][Cancel |

Apply Help
d. Select the command specified (for example, Tools > My Generation) to open a

custom Generation dialog, which does not have a Tar getstab:

Customizing and Extending PowerDesigner

91

CHAPTER 2: Extension Files

Generation = @
Directory. C\emp®, - ﬂ
[7] Check madel
Selection | Generated Files

FmyO0M B2 | 2- w ST O GO

MName Code

| B myClass MyClass

= Ancther Class AnotherClass

<[]} Classes £

Filter: Selected object(s): 242

Selection: <Mame your selection> - J J

OK || Cancel || sppy][Hep |

Transformations (Profile)

Transformations define sets of actions to modify objects either before or after a model
generation or on request. Transformations are commonly grouped together in transformation
profiles.

Transformations can be used to:

* Implement Model Driven Architecture (MDA), which uses UML modeling to describe an
application at different levels of detail. PowerDesigner allows you to create an initial
platform-independent model (PIM) (modeling the basic business logic and functionality)
and refine it progressively in different models containing increasing levels of
implementation and technology-dependent information through to a p/atform-specific
model (PSM). You can define transformations that will generate a more refined version of
a model, based on the desired target platform, and changes made to the PIM can be
cascaded down to the generated models.

« Apply design patterns to your model objects.

« Modify objects for a special purpose. For example, you can create a transformation in an
OOM that converts <<control>> classes into components.

92

PowerDesigner

CHAPTER 2: Extension Files

« Modify objects in a reversible way for round-trip engineering. For example, if you
generate a PDM from an OOM in order to create O/R mappings, and the source OOM
contains components, you can pre-transform components into classes for easy mapping to
PDM tables. When you update the source OOM from the generated PDM, you can use a
post-transformation to recreate the components from the classes.

Transformations can be invoked:

* Ondemand, by selecting Tools > Apply Transfor mations.

» Before or after model generation (see Core Features Guide > Linking and Synchronizing
Models > Generating Models and Model Objects).

* Via a user-defined menu command (see Menus (Profile) on page 81).

1. Right-click a metaclass or stereotype, and select New > Transformation.
2. Enter an appropriate Name and, optionally, a Comment to explain its purpose.
3. On the Transformation Script tab, enter a VVBscript to perform the transformation.

Inthis example, which is created in an extension attached to a CDM under the DataItem
metaclass, the script tests to see whether the data item has a list of values defined and, if this
is the case (and a domain with this same list of values does not already exist in the CDM),
creates a new domain with the list of values:

Sub %Transformation% (obj, trfm)

Dim list
list = obj.ListOfValues
if not list = "" then
output "transforming " & cstr (obj)
' Check if such a domain already exist
Dim domn, found
found = false
for each domn in obj.Model.Domains
if domn.ListOfValues = list then
found = true
end 1if
next

' Create a new domain
if not found then
set domn = obj.Model.Domains.CreateNew ()
domn . SetNameAndCode obj.Name, obj.Code
domn.ListOfValues = list
end if
end 1if

End Sub

This transformation can be added to a transformation profile as a:

Customizing and Extending PowerDesigner 93

CHAPTER 2: Extension Files

4,

* Pre-generation transformation - The transformation is called from the Generation
Options dialog. The domains are created temporarily in the CDM before generation
and then are generated to the target model (for example, to a PDM).

« Post-generation transformation - The transformation can be called from the
Generation Options dialog (fora CDM-CDM generation). The domains are created in
the target CDM after generation. Alternatively, the transformation can be called at any
time by selecting Tools > Apply Transformationsto create the domains in the
existing model.

[optional] Review the Global Script tab (see Global Script (Profile) on page 105), which

provides access to definitions shared by all VBscript functions defined in the profile, and

the Dependenciestab, which lists the transformation profiles in which the transformation
is used.

Transformation Profiles (Profile)

A transformation profile groups transformations together, and makes them available during
model generation or by selecting Tools> Apply Transformations.

1

[if the Transformation Profiles category is not present] Right-click the root node, select
Add Items, select Transformation Profiles, and click OK to create this folder.

Right click the Transformation Profiles folder, and select New to create a
transformation profile.

Enter the following properties as appropriate:

Property |Description

Name/Com- | Specify the name of the transformation profile and provide an explanation of what
ment it is intended to do.

Model Type / | [optional] Specify the type of model with which the transformation profile can be
Family/Sub- | used during generation and (if the type supports a language definition file) the
family family and subfamily. If one or more of these fields is completed, the profile will
only be displayed if the model to be generated conforms to them. For example, if
you define the transformation in a PDM or PDM extension and specify Ob -
ject-Oriented Model and Java, thenthe profile will only be available
when you select to generate the PDM into a Java OOM.

Click the Pre-generation tab and click the Add Transformations tool to add
transformations to perform prior to generation.

These transformations are executed before generation on the objects in your source model.
If objects are created by these transformations then they are automatically added to the list
of objects to be generated. Any changes to existing objects or new objects created by these
transformations are reversed after generation, so that your model returns to its previous
state.

Click the Post-generation tab and click the Add Transfor mationstool to add
transformations to perform after generation. Transformations added on this tab are also

94

PowerDesigner

CHAPTER 2: Extension Files

made available to apply outside of the context of a generation by selecting Tools> Apply
Transformations.

These transformations are executed on the objects generated in your target model.
6. Click Apply to save your changes.

Developing Transformation Scripts

Transformation scripts are written in VBScript using a certain number of special methods.
Transformation scripts do not require as many checks as standard scripts, because they are
always implemented in a new, empty, temporary model, which is merged with the generation
target model.

Since a source object can be transformed and have several targets, you may have problems
identifying the origin of an object, especially in the merge dialog box. The following
mechanism is used to help identify the origin of an object:

« If the source object is transformed into a single object, the transformation is used as an
internal identifier of the target object.

 If the source object is transformed into several objects, you can define a specific fagto
identify the result of transformation. You should use only alphanumeric characters, and we
recommend that you use a "stable" value such as a stereotype, which will not be modified
during repetitive generations.

The following methods are available when writing a transformation script:

e CopyObject (source [,tag])

Duplicates an existing object, sets a source for the duplicated object, and returns a copy of
the new object.
e SetSource (source, target [,tag])

Sets the source object of a generated object. It is recommended to always set the source
object to keep track of the origin of a generated object.
e GetSource (target [,tag])

Retrieves the source object of a generated object.
¢ GetTarget (source [,tag])

Retrieves the target object of a source object.

Internal transformation objects are preserved when the transformations are used via the Apply
Transformations or a custom menu command, so that they can be re-executed if you
subsequently update (regenerate) the model. For example, you generate a CDM entity A to an
OOM class B and then apply a transformation to class B in order to create class C. If you make
changes to entity A and repeat the generation to update the OOM, class B is updated and the
transformation is automatically reapplied to update class C.

Customizing and Extending PowerDesigner 95

CHAPTER 2: Extension Files

XML Imports (Profile)

XML imports allow you to define mappings between an XML schema and the PowerDesigner
metamodel (and any extensions) to enable the import of XML files complying with the
schema. You can specify initialization and post-processing scripts to manage complexities in
the import.

For an overview of creating, deploying, and using XML imports, see Core Features Guide >
Modeling with PowerDesigner > Objects > Importing Objects from XML Files.

1

[if the XML Imports category is not present] Right-click the root node, select Add
Items, select XML, Imports, and click OK to create this folder.

Right click the XML, Imports folder, and select New to create an XML import.
Enter the following properties as appropriate:

Property Description

Name Specifies the name of the import, which will be used as the name of the import
command under File > Import.

First diagram | Specifies the first diagram that should be initialized in the model created from the
imported file.

Create default | Specifies to create symbols for the imported objects in the diagram.
symbols

File extension | Specifies the file extension that identifies XML documents that conform to the
schema.

Comment Provides an explanation of the import or other additional information.

Click the Schematab and click the Import tool to copy the schema, with any imports and
includes resolved, to the extension file for mapping.

Warning! If the selected schema is too permissive and allows for too many possible object
hierarchies it may not be possible to display it fully in the Mapping Editor. If you have an
example XML data file to import, you can import this in place of the schema by clicking
the Import from Sampletool and PowerDesigner will deduce a partial schema from it.
Note that while a schema obtained in this way may successfully import the sample data
file, other documents based on the same schema may not be complete if they contain other
types of objects (or attributes or collections) that, though valid for the schema, were not in
the first document.

You can click the View as Modd tool to open the schema as an XML schema model.

[optional] Click the Extensionstab and select extension files containing extensions to the
standard PowerDesigner metamodel to provide additional metaclasses (see Extended
Objects, Sub-Objects, and Links (Profile) on page 36), attributes (see Extended Attributes

96

PowerDesigner

9.

CHAPTER 2: Extension Files

(Profile) on page 41), and collections (see Extended Collections and Compositions
(Profile) on page 48) to map your XML schema to.

Attaching extension files in this way allow you to reuse previously defined extensions in
your imports or to share extensions between imports. You can also define extensions under
the Profile category in the resource file containing the XML import definition, or create
them dynamically when creating your import mappings.

[optional] Click the Initialization tab and enter VBScript to run at model creation time
before the importing of any objects. You can access shared library functions and static
attributes defined for reuse in the resource file from the Global Script tab (see Global
Script (Profile) on page 105).

[optional] Click the Post-Processtab and enter VBScript to run after all the objects have
been imported.

Click the General tab and click the M appings button to define mappings from the
metaclasses identified in your XML schema to those in the PowerDesigner metamodel in
the Mapping Editor (see XML Import Mappings on page 97).

Click Apply to save your changes.

XML Import Mappings

You control how elements defined in an XML schema are imported by mapping them and their
attributes, compositions, and aggregations to objects in the PowerDesigner metamodel. The
XML schema is analyzed and presented as a list of metaclasses on the left side of the Mapping
Editor and the PowerDesigner metamodel (and any extensions) are displayed on the right
side.

Note: It is not necessary to map all metaclasses (or all their contents), but only those with
which you want to work. If the PowerDesigner metamodel does not contain appropriate
metaclasses, attributes, compositions, or aggregations to map against, you can create them
dynamically here or save any existing mappings, close the Mapping Editor, define or attach
appropriate extensions, and then reopen the Mapping Editor to map to them.

1

Drag and drop an external metaclass to a PowerDesigner metaclass to create an import
mapping. Any external attributes and collections are automatically mapped to
PowerDesigner attributes with which they share a name:

= E3 Rules (PERRulzOR11R2)# —»= B3 BusinessRule
- [_§ Attributes = [Attributes

o CSAOName @ Annotation
o Caption o Client Expression
0 CheckConstrairts {d) @ Code
o GallerylD o Comment
o Galleryttem|D @ Description
o GalleryObject|D o DisplayMame
o GenerateCode @ KeywordList
o GlobalCrder g Mame
o Id o QCLConstrairt
O IgrioreMC / O ServerExpression
3, Name # o Stereotype

By default, the Mapping Editor lists the standard attributes and collections of metaclasses,
which are normally displayed in object property sheets. To display all available properties,

Customizing and Extending PowerDesigner 97

CHAPTER 2: Extension Files

click the Filter Propertiestool, andselect Show A11 Properties. Youcanalsofilter
the tree by using the Filter Mappingsand Filter Objectstools.

Note: If no suitable metaclass exists, to create and map to a new extended metaclass based
on the ExtendedObject metaclass, drag and drop the external metaclass onto the
PowerDesigner metamodel root.

Drag and drop additional attributes under the metaclass to PowerDesigner attributes with
compatible data types to create mappings for them. Attributes are contained in a folder
under the metaclass and represent individual properties such as Name, Size,
Dimensional Type, which have boolean, textual, numeric, or object ID values:

-] [E5, Entities (PEREntityOR11R2) = Eg Table
- [} Attributes = [Attributes
O AccessDhverType i AbstractData Type
O AccessParameters O Annotation
o AfterSeript
13, BeforeScript raintMame
o CSAOName O CheckExpression Preview

PowerDesigner identifies sub-object metaclasses in the schema that are limited to a single
instance and displays a 1 overlay on their icons. Attributes under such metaclasses are
treated as belonging to the parent metaclass and can be mapped to attributes under the
PowerDesigner object with which the parent is mapped:
-I B RenamerlLog (IPERRenamerLogOR11R2)

= [Attrbutes

o CSACName

GlobalOrder
Id
ltems
Mame
Object Type

a
a
a
a
a
@ Ordinal

Note: If no suitable attribute exists, to create and map to a new extended attribute, drag and
drop the external attribute onto the PowerDesigner metaclass to which its parent is
mapped.

Drag and drop external sub-object metaclasses (compositions) under the metaclass to
PowerDesigner compositions to create mappings between them:

= E Entties (PEREttyOR11R2) = B3 Table
+ [_J Atrbutes + [Attributes
5 iAttibutes (PERAttibuteOR11R2)j——— + [Collections
B CheckConstraints (PERCheckConstrairt EntiyOR = B3 Columns {Column)
B Indexss (PERIndexQOR11R2) + | Attrbutes

+ [# [+ [+

B Keys (PERKeyConstrairtOR11R2) % 4 Collections

Any attributes under the sub-object metaclass are automatically mapped to
PowerDesigner attributes with which they share aname. Map other sub-object attributes as
necessary.

Note: In certain circumstances, it may be appropriate to map an external sub-object
metaclass to a PowerDesigner object metaclass, and so such mappings are also permitted.

98

PowerDesigner

CHAPTER 2: Extension Files

4. Drag and drop external collections (aggregations) under the metaclass to PowerDesigner
collections to create mappings between them:

- E3 Keys (PERKeyConstraintOR11R2) = B3 Keys (Key)
T | Attibutes T [Atributes
=1 4§ Collections =1 [Collsctions
"_i";‘ Keyltems + % AttachedRequirements
= E Triggers (PERTriggerEntity OR11R2) % AttachedRules
+ | Attributes % Columns

5. In certain schemas, it may be necessary to identify attributes as references and identifiers
to link one metaclass to another through aggregation:

a) Right-click an attribute and select Declar e as Object Referenceto specify that it acts
as a pointer to another object. Such attributes often have a type of GUID, Token, or
NCName (PowerDesigner automatically identifies attributes of type IDRef as
references). A rounded arrow overlay is added to the attribute icon:

- E3 Entities (PEREntityOR11R2)
- [Adtributes
O AccessDriverType
3 AccessPaameters
O AfterScript
3, BeforeScript
a CS5AOName
Caption
Category (Id)
Comments

a
a
a

right-click it, and select Declare as Unique I dentifier. A key overlay is added to the
attribute icon:

-] E5 Users (DBUserDR11R2)

=) Attibutes
C5AOMName
Caption
Children (Id)
CodeGenerators (1d)
GallerylD
GalleryltemID
GalleryObject|D
GlobalCrder

o oooooooao

c) The object reference attribute can now be mapped to a PowerDesigner attribute of type
object (which also bears a rounded arrow overlay):

o Comments ‘ | @ MNumber
ﬁ'ﬁ DbOwner (Id) > ﬁ‘% Owner
o Directory (Id) ‘ | @ PartionRange

6. [optional] Selecta metaclass and enter an initialization or post-processing script to modify
the objects at or after creation (see Metamodel Mapping Properties on page 100).

Customizing and Extending PowerDesigner 99

CHAPTER 2: Extension Files

7. [optional] Click the target model (root node) to display the global list of mappings in the
M appings pane at the bottom of the dialog and use the arrows at the bottom of the list to
change the order in which objects are imported to ensure that dependencies are respected.

Note: To control the order in which attributes, compositions, and aggregations are
imported within objects, select the target metaclass to display its mappings in the

M appingspane, and use the arrows at the bottom of the lists on the Attribute M appings,
Collection Mappings, and Sub-Object M appings sub-tabs.

8. Click Apply to save your changes.

Metamodel Mapping Properties
Metamodel mappings are mappings between metamodel objects, which control how objects
are imported or generated. Metamodel mappings are sub-objects of the PowerDesigner
metamodel object on which they are defined.

To open a metamodel mapping property sheet, select the mapping from the list at the top of the
Mapping Editor M appings pane or parent object property sheet M apping tab and click the
Propertiestool.

Mapping: |E Project Management Entities. Task Mapping_1 - | Jﬂﬁ

The tabs available on a particular mapping property sheet depend on the objects being
mapped. The General tab contains the following properties:

Property | Description

Source object | Specifies the metamodel object being mapped to the target object.

Target object | Specifies the metamodel object being mapped from the source object. This object is
the parent of the mapping itself.

100 PowerDesigner

CHAPTER 2: Extension Files

Property |Description
Transforma- | [metaattribute mappings] Specifies a script to set the value of the attribute. In the
tion script following example, froman XML import, the notnullable attribute isimported

tothe Mandatory attribute and, because the sense of the attributes is reversed, the
boolean value imported is set to the opposite of the source value:

Sub %$Set% (obj, sourceValue)
obj.SetAttribute "Mandatory", not sourceValue
End Sub

In the following example, from an object generation, the Number ID attribute is
generated to the Comment attribute and a text string is prepended to make clear the
origin of the value:

Function $%$AdjustValue$% (sourceValue, sourceObject, tar-
getObject)

Dim targetValue

targetValue = "The original process NumberID is "
+cstr (sourceValue)

$AdjustValue% = targetValue
End Function

The following tabs are also available for metaclass mappings:

* Initialization - Specifies a script to initialize the metaclass to be created. In the following
example, the value of the Stereotype attribute is set to SimpleType:

Sub %$Initialize% (obj)
obj.Stereotype = "SimpleType"

End Sub

« Attribute Mappings - Lists the mappings of attributes under the metaclass. Select a
mapping and click the Propertiestool to open its property sheet. To control the order in
which attributes are created, in order to respect dependencies between them, use the
arrows at the bottom of the list.

* Collection Mappings - Lists the mappings of collections under the metaclass.

Post-Process - Specifies a script to modify the metaclass after creation and execution of
mappings. In the following example, the value of the Codeattribute is copied to the Name

attribute:

Sub %PostProcess$% (obj)
' Copy code into name
obj.Name = obj.Code

End Sub

Metamodel Object Properties

To view the properties of metaclasses, metaattributes, and metacollections displayed in the
Mapping Editor, double-click the object node in the Mapping Editor or right-click the node
and selecting Properties.

The General tab contains the following properties:

Customizing and Extending PowerDesigner 101

CHAPTER 2: Extension Files

Property

Description

Parent

[metaattributes and metacollections] Specifies the metaclass to which the metaobject
belongs.

Parent collec-
tion

[sub-objects/compositions] Specifies the name of the composition collection that
contains the sub-objects under the parent object.

Name Specifies the name of the metaclass in the PowerDesigner metamodel or XML sche-
ma.

Data type [metaattributes] Specifies the data type of the attribute.

Identifier [metaattributes] Specifies that the attribute is used to identify the metaclass for ref-

erencing by another metaclass.

Reference /

[metaattributes and metacollections] Specifies that the attribute or collection is used

Reference to point to another metaclass to form an aggregation.

path

Singleton [metaclasses] Specifies that only one instance of the metaclass is possible under each
parent object.

Comment Provides additional information about the metaobject.

The following tabs are also available for metaclasses:

« Attributes- Lists the metaattributes belonging to the metaclass. Select an attribute in the
list and click the Propertiestool to open its property sheet.

* Collections- Lists the metacollections belonging to the metaclass. Select a collection in
the list and click the Propertiestool to open its property sheet.

Object Generations (Profile)

Object generations allow you to define mappings between one PowerDesigner model type and
another based on the two metamodels (and any extensions) to enable the generation of one or
more object types.

For an overview of creating, deploying, and using object generations, see Core Features Guide
> [inking and Synchronizing Models > Generating Models and Model Objects > Generating
Model Objects > Defining Advanced Object Generations.

1. [iftheObject Generations category isnot present] Right-click the root node, select
Add Items, select Object Generations, and click OK to create this folder.

2. Rightclick the Object Generations folder, and select New to create an object
generation.

102

PowerDesigner

CHAPTER 2: Extension Files

3. Enter the following properties as appropriate:

Property |Description

Target model | Specifies the type of model that will be created or updated by the generation.
type

Menu com- | Specifies the name of the command that will appear in the interface under Tools>
mand name | Generate Objects. This field is initialized when you select a target model type.
Comment Provides a description of the generation or other additional information.

4. [optional] Click the Source Extensions and/or Target Extensionstab and select
extension files containing extended attributes, collections, or metaclasses to reference in
your mappings.

Attaching extension files in this way allow you to reuse previously defined extensions in
your generations or to share extensions between generations. You can also define
extensions as appropriate under the Profile category in the resource file containing the
generation definition.

5. Click the M appings button to define mappings from your source to target metaclasses in
the Mapping Editor (see Model-to-Model Generation Mappings on page 103).

6. Click Apply to save your changes.

Model-to-Model Generation Mappings

You control how metaclasses from one PowerDesigner model type will be generated to
metaclasses in another model type by mapping them and their attributes and collections in the
Mapping Editor. Any extensions defined for the source or target metamodels are displayed
and available for mapping.

Note: It is not necessary to map all metaclasses (or all their contents), but only those with
which you want to work. If the PowerDesigner metamodel does not contain appropriate
metaclasses, attributes, compositions, or aggregations to map against, you should save any
existing mappings, close the Mapping Editor, define or attach appropriate extensions, and
then reopen the Mapping Editor to map to them.

1. Dragand drop a metaclass from the source pane on the left to a metaclass in the Target pane
onthe right. Any source attributes are automatically mapped to target attributes with which
they share a name:

Customizing and Extending PowerDesigner 103

CHAPTER 2: Extension Files

- E5' BusinessFunction -+ —»= Eg Process
=l) Attibutes = [Attibutes
3, Annotation #——7M— —\n_ O ActionType

3, Code —_ ———— [Annotation
3, Comment 4—M— —— i Code

ﬁ';_}, Default Diagram ——— ——__ — Comment

3, Description #——— —_ — Default Diagram

3, Name # —— i Description
o, Sterectype 4—————————— @ Duration

= |} Collections i EmissionComelation
'ii"t,‘ AttachedRequirements #———— @ ImplementationMode
'ii"t,‘ AttachedRules #¥———7— i Implementer
'ii"t,‘ RelatedDiagrams ———7— O LoopExpression
% Sites @ LoopType

+ B RoleAssociations (RoleAssociation) ————* g Name

Note: By default, the Mapping Editor lists the standard attributes and collections of
metaclasses, which are displayed, by default, in object property sheets. To display all
available properties, click the Filter Propertiestool, and select Show A1l
Properties. You can also filter the tree by using the Filter Mappingsand Filter
Objectstools.

. Drag and drop additional source attributes under the metaclass to target attributes with

compatible data types to map them. Attributes are contained in a folder under the
metaclass and represent individual properties such as Name, Size, Dimensional Type,
containing boolean, textual, numeric, or object ID values:

. Drag and drop source sub-object metaclasses (compositions) under the metaclass to target

compositions to create mappings between them:

Any attributes under the source sub-object metaclass are automatically mapped to target
attributes with which they share a name. Map other sub-object attributes as necessary.

Note: In certain circumstances, it may be appropriate to map a source sub-object metaclass
to a target object metaclass, and so such mappings are also permitted.

. Drag and drop source collections (aggregations) under the metaclass to target collections

to create mappings between them:

. [optional] Select a metaclass and enter an initialization or post-processing script to modify

the objects at or after creation (see Metamodel Mapping Properties on page 100).

. [optional] Click the target model (root node) to display the global list of mappings in the

M appings pane at the bottom of the dialog and use the arrows at the bottom of the list to
change the order in which objects are generated to ensure that dependencies are respected.

Note: To control the order in which attributes, compositions, and aggregations are
generated, select the target metaclass to display its mappings in the M appings pane, and
use the arrows at the bottom of the lists on the Attribute Mappings, Collection

M appings, and Sub-Object M appings sub-tabs.

. Click Apply to save your changes.

104

PowerDesigner

CHAPTER 2: Extension Files

Global Script (Profile)

The profile contains a global script, which you can use to store functions and variables to be
reused in your scripts defined for extensions.

For example, we could imagine writing a function for obtaining the data type of an item and
reusing it in the scripts for both the custom check and autofix examples (see Custom Checks
(Profile) on page 71.

The new DataTypeBase function is entered on the Global Script tab as follows:

Function DataTypeBase (datatype)
Dim position
position = InStr (datatype, " (")
If position <> 0 Then
DataTypeBase = Ucase (Left (datatype, position -1))
Else
DataTypeBase = Ucase (datatype)
End If
End Function

The script for the check (see Example: PDM Custom Checkon page 73 can be rewritten to call
the function as follows:

Function %Check% (obj)
Dim ¢ 'temporary index column
Dim col 'temporary column
Dim position
%Check%= True
If obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type
="HNG" then
For Each ¢ In obj.IndexColumns
Set col = c.column
If (DataTypeBase(col.datatype) = "VARCHAR") And (col.length > 255)
Then
Output "Table " & col.parent.name & " Column " & col.name & "
Data type is not compatible with Index " & obj.name & " type " &
obj.type
%Check% = False
End If
Next
End If
End Function

Note: Variables defined on the Global Script tab are reinitialized each time they are
referenced in another script.

Customizing and Extending PowerDesigner 105

CHAPTER 2: Extension Files

106 PowerDesigner

CHAPTER 3 Object, Process, and XML
Language Definition Files

Language definition files provide PowerDesigner with the information necessary to model,
reverse-engineer, and generate for a particular object-oriented, business process, or XML
language. PowerDesigner provides definition files for many popular languages. You select a
language when you create an OOM, BPM, or XSM.

Language definition files have an . xo1, .xpl, or . xs1 extension and are located in
install dir/Resource Files. To view the list of languages, select Tools >
Resources > Object Languages >, Process L anguages, or XML Languages. For
information about the tools available in resource file lists, see Chapter 1, PowerDesigner
Resource Files on page 1.

Note: The PDM uses a different form of definition file (see Chapter 4, DBMS Definition Files
on page 119), and other model types do not have definition files but can be extended with
extension files (see Chapter 2, Extension Fileson page 11).

All target languages have the same basic category structure, but the detail and values of entries
differs for each language:

» Settings - contains data types, constants, namings, and events categories used to customize
and manage generation features. The types of items in this category differ depending on
the type of resource file.

» Generation - contains generation commands, options, and task.

» Profile - contains extensions on metaclasses.

Customizing and Extending PowerDesigner 107

CHAPTER 3: Object, Process, and XML Language Definition Files

E7 object Language Properties (For All Models)

General |

a-BE- IJava

Q- %

=10l x|

El.-:-]

| v

Mame: I.Java

EHT) Settings

_=|

--@ M armings
uﬂ DataTypes

Code: I.Java

IT

B Constants

File name: IC:\F‘rngram FileshSybaze \PowerDesigner 164 esource Files'

B3 Everts

Farily:
o)1 EnableGenerics sy

|.Java

Subfamiy: [J2EE
EH) Gereration

~ Generation
o [" Enable race mode

--@ Commatids
) Options

B0 Tasks
B Profile
E-2) Shared

= annotation

T Association

E-E Attribute

" B Criteria

-3) Extended Attributes LI

Comment:

Thiz object language definition iz based on the Java language
specification.

It includes support for J25E 5.0 Metadata ag well az JZEE 1.4, Enterprise
avaBeans 2.1, Java Servlets 2.4 and Java Server Pages [J5F).

o]

Caticel Aol Help

The root node of each file contains the following properties:

Property Description

Name / Code Specify the name and code of the language definition file.

File Name [read-only] Specifies the path to the language definition file. If the target language
has been copied to your model, this field is empty.

\ersion [read-only] Specifies the repository version if the resource is shared via the re-
pository.

Family / Sub- Specifies the family and subfamily of the language, which may enable certain

family non-default features in the model. For example, object languages of the Java,

XML, IDL and PowerBuilder® families support reverse engineering.

Enable Trace
Mode

Lets you preview the templates used during generation (see 7emplates (Profile)on
page 84). Before starting the generation, click the Preview page of the relevant
object, and click the Refresh tool to display the templates.

When you double-click on atrace line from the Preview page, the Resource Editor
opens to the corresponding template definition.

Comment

Specifies additional information about the target language.

108

PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

Settings Category: Process Language

The Settings category contains the following items used to control the data types, constants,
namings, and events categories used to customize and manage BPM generation features:

» Implementation — [executable BPM only] Gathers options that influence the process
implementation possibilities. The following constants are defined by default:
» LoopTypeList- This list defines the type of loop supported by the language. The value
must be an integer
» OperationTypeList- This list defines the type of operation supported by the language.
An unsupported operation type cannot be associated with a process. The value must be
an integer
» EnableEmissionCorrelation - enables the definition of a correlation for an emitted
message
e EnableProcessReuse - allows a process to be implemented by another process
* AutomaticlnvokeMode - indicates if the action type of a process implemented by an
operation can be automatically deducted from the operation type. You can specify:
* 0 (default) - the action type cannot be deduced and must be specified
e 1 -the language enforces a Request-Response and a One-Way operation to be
received by the process and a Solicit-Response and a Notification operation to be
invoked by the process
« 2 the language ensures that a Solicit-Response and a Notification operation are
always received by the process while Request-Response and One-Way operations
are always invoked by the process

Customizing and Extending PowerDesigner 109

CHAPTER 3: Object, Process, and XML Language Definition Files

@ Process Language Properties [For All Models) (O] x|
General I
S =T IBF'EL4W'S 1.1::Settings' mplementation’ 0 perationT ppeList = - Fi? ?-E'B
= Seth -
= D EhndE . —I Marne: O perationT ypelis
= Implementation
D] LoopTypelist Commert: [T his lizt defines the type of operation supported by the language &
|I| OperationTypeList Ah unzupported operation type cannot be associated with a
[0 EnableE mizzionCorrela process. .
[0 ErableProcessReuse The: value must be an integer.)) .
:) The list must contain a subset of following operation tppes:
(1 DataHanding - Undsfined (valus
[il1] EnabletessagelnFloy - One-way [value 1) ;I
: [0l Enabletd essagel ariab W alue:
=10 Chaorengraphy == % | ¢
[f[1] EnabletultipleStarts ' | ‘% E |
[i[i] EnableTopLevelChaore MHame Walue)
B2 Profile 1 o Undefined
-] Shared 2 1 One-way
= BasePackage 3 2 Request-response]
i Templates i
Correlation =
B Data =
= | B FYEYPY A E1 1K |21
4| [[
ak. I Cancel | Apply | Help |

» DataHandling - [executable BPM only] Gathers options for managing data in the
language. The following constant values are defined by default:
» EnableMessageOnFlow - indicates if a message format can be associated to a flow or
not. The default value is Yes
» EnableMessageVariable - enables a variable object to store the whole content of a
message format. In this case, the message format objects will appear in the data type
combo box of the variable
» Choreography - Gathers objects that allow the design of the graph of activities (start, end,
decision, synchronization, transition...) Contains the following constant values defined by
default:
e EnableMultipleStarts - When set to No, ensures that no more than one start is defined
under a composite process
» EnableTopLevelChoreography- When setto No, ensures that no flow or choreography
object (start, end, decision...) is defined directly under the model or a package. These
objects can be defined only under a composite process

Settings Category: Object Language

The Settings category contains the following items used to control the data types, constants,
namings, and events categories used to customize and manage OOM generation features:

» Data Types- Tables for mapping internal data types with object language data types. The
following data types values are defined by default:

110 PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

BasicDataTypes — lists the most commonly-used data types. The Value column
indicates the conceptual data type used for CDM and PDM model generations.
ConceptualDataTypes - lists internal PowerDesigner data types. The Value column
indicates the object language data type used for CDM and PDM model generations.
AdditionalDataTypes— lists additional data types added to data type lists. Can be used
to add or change data types of your own. The Value column indicates the conceptual
data type used for CDM and PDM model generations.

DefaultDataType — specifies the default data type.

E7 Object Language Propertiez [For All Models) H=] B
General |
S v IXML SchemasSettings\D ataTypes BasicD ataTvpes - % %
[59] <ML - Schema -
EI[:I Seftings Mame: BazicDataTypes
D Mamings Comment: |basic #ML-Schema datatypes -
21 DataTypes The second column indicates the conceptual data type
- -[]] AdditionalDataT ypes used for COM and PDM madel generations but alsa in the
|I| EasicDataTppes 'Change Object Language’ process
: |I| Conceptuall ataT ypes
CI Constants j
- Events Walue:
..... @3 Gen.eratmn =M= | ¥ B X | P e
[+ Profile
Marne Walue i’
1 wzd: sting TT
2 wzd:boolean BL
3 wzd:decimal M
4 wzd:float F -
5 «zd:double M =
5 wd: duration T -
ik Y EAETEIED |

Ok, I Cancel | Sppl | Help |

e Constants - contains mapping between the following constants and their default values:
Null, True, False, Void, Bool.

» Namings - contains parameters that influence what will be included in the files that you
generate from an OOM:

GetterName - Name and value for getter operations
GetterCode - Code and value for getter operations
SetterName - Name and value for setter operations
SetterCode - Code and value for setter operations

IllegalChar - lists illegal characters for the object language. This list populates the

Invalid characters field in Tools> Model Options > Naming Convention. For
example, n/ l=g>mnnt () "

e Events- defines standard events on operations. This category may contain default existing
events such as constructors and destructors, depending on the object language. An event is
linked to an operation, and the contents of the Events category is displayed in the Event list

Customizing and Extending PowerDesigner 111

CHAPTER 3: Object, Process, and XML Language Definition Files

in operation property sheets to describe the events that can be used by an operation. In
PowerBuilder for example, the Events category is used to associate operations with
PowerBuilder events.

Settings Category: XML Language

The Settings category contains the Data types category that shows a mapping of internal data
types with XML language data types.

The following data types values are defined by default:

» ConceptualDataTypes - The Value column indicates the XML language data type used for
model generations. Conceptual data types are the internal data types of PowerDesigner,
and cannot be modified.

« XsmbDataTypes- Data types for generations from the XML model.

Generation Category

The Generation category contains categories and entries to define and activate a generation
process.

The following sub-categories are available:

e Commands - contains generation commands, which can be executed at the end of the
generation process, after the generation of all files. Commands are written in GTL (see
Chapter 5, Customizing Generation with GTL on page 245), and must be included within
tasks to be evoked.

variahle defined in General Options = Varables
(environment vanahle)

Afnot {(XSJAVACK) -
log Warning: Undefined environment variable: JAVAC (Jawa
log If java.exe i= not accessible from Path. please define
c=et_walus{ JAVAC, "javac.exe")

el==

cset_valus(_JAVAC, "X$JAVACYK")
local endit
variable

executable

foreach_item{ictiveModel GeneratedClassifierlist)
cegecute_command (% JAVACYK, XjavaFilepathX, cmd_ PipeOutput)

next | / ;I

template for evaluating the path hlocks until commletion
and shows the output

* Options—- contains options, available on the Optionstab of the Generation dialog, the
values of which can be tested by generation templates or commands. You can create
options that take boolean, string, or list values. The value of an option may be accessed ina
template using the following syntax:
$GenOptions.option%

112 PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

For example, for a boolean option named GenerateComment,
%GenOptions.GenerateComment$ will evaluate to either true or false in a
template, depending on the value specified in the Generation dialog Options tab.

» Tasks— contains tasks, available on the Taskstab of the Generation dialog, and which
contain lists of generation commands. When a task is selected, the commands included in
it are retrieved and their templates evaluated and executed.

Example: Adding a Generation Option
In this example, we will add a generation option to the Java object language.

1. Select Language > Edit Current Object L anguage to open the Java resource file.
2. Expand the Generation category, and then right-click the Options category and select

New:
B Object Language Properties [For All Models) Hi=] E
General |
& =T IJava::Generation\Dptions\UselDefined_Elption = - F&: ﬁ:g
(8] Java - -
D Settings Mame: ILISElDehned_Dptlon
- Generation Ivpe: [Boolean =l
#-[Z1 Commands
=1+ Options Caomment: |Userdefined option for generation ;I
¢ - J2EE
o MembersPrimaryS ort
tembersTypeSart LI
tembersVizibilityS art Yale: Yes T Mo
_ Packagelmparts
[UserDefined_Option
-] Tasks
-1 Profile

Qg I Cancel | Apply | Help |

3. Click OK to save your changes and return to the model. Then select L anguage >
Gener ate Java code to open the Generation dialog, and click the Optionstab. The new
option is listed on the tab under its comment (or its name, if no comment has been
provided):

Customizing and Extending PowerDesigner 113

CHAPTER 3: Object, Process, and XML Language Definition Files

Generation

|_[0] x]

Cirectony: |c:\generatinn

Talgetsl Selection Options | Tasksl

[Check model

o

Target « Option et

Java EJE : Add Java clazzes source code in the JAR: tue

Java Jawa: Sort clazs members primarily by: Wizibility

Java Jawva : Clazz members wpe sort Aftributes - O

Java Jawa: Clazs members vizibility zort Private - Publi

Java Java : Generate package imports falze

Java E.JB : Generate CMA field accessors in remote i falze

Java EJB : Generate CMP field accessors in compon i true

Java Uzer defined option for generation true =i
=
=

1] | 2]

QK I Cancel | Apply | Help |

Note: For detailed information about creating and modifying generation templates, see
Chapter 5, Customizing Generation with GTL on page 245.

Example: Adding a Generation Command and Task

In this example, we will add a generation command
language

and associated task to the Java object

1. Create a new OOM for Java, and then select Language > Edit Current Object

Language.

2. Expand the Generation category, and then right-click the Commands category and select

New.

3. Name the command DoCommand and enter an appropriate template:

114

PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

B Object Language Properties [For All Models) |_ O] =|
General |
R IJava::Generation'\Eommands\DoEommand H- % %%
(] Java -
[:I Settings Mame: DoCommand
ED Generation Comment: |Fun do command on file to generate ﬂ
=+ Commands
EID Enterprize Java Beans
gy EJBCleanup =
@ EJBJar _
g3 EJBVerly E-B-HESd# BB o~ 8§ e
2] web Application
i . Y
% meﬁpp&eﬂd dog Warning: Undefined enwironment wariahle
Dal = pz ar .log If do.bat is not accessible from Path,
43 DoCammany .set walue(D0, "do.bat™)
-4 Java - -
3 Javac Lset_walue(DO, "E5DO%T)
-4l Javadoo |
-] Options
=0 Tasks .set_walue| CMD, "cod.exe™)
-] Enterprise Java Beans _ILI
- Web Application LI ﬂ_l k
fre: DR
Ok I Cancel | Apply | Help |

4. Right-click the Tasks category and select New. Name the task Execute, click the Add

Commandstool, select DoCommand from the list, and then click OK to add it to the new
task:

Customizing and Extending PowerDesigner 115

CHAPTER 3: Object, Process, and XML Language Definition Files

B Object Language Properties [For All Models) |_ O] =|
General |
e o I.Java::Generation'\Tasks\EHecute H- %%
E_ﬁl Java Mame: E "
)] Seltings Mame: secute
= [:I Generation Comment: |Execute do command on files =]

[Commands

&-[_] Options
E-E3 Tasks
D Enterprise Java Beans LI
[web Application
'3-1—; Compile Commands:
% CompileRun | E)
“%& Execute
----- 4k Generatelavadoc Marme Camrment =
-7 Profile 1 CoCarmmand Run do command on file to generate
>
F#| e[v]$|2]4] (A

Ok I Cancel | Apply | Help |

5. Click OK to save your changes and return to the model. Then select L anguage >
Gener ate Java codeto open the Generation dialog, and click the Taskstab. The new task
is listed on the tab under its comment (or its name, if no comment has been provided):

Generation H =] E3
Duireectary: |c:'\generalion\ |EI

Targetsl Selectinnl Options Tasks |

+ +

WS5DL: Generate Web Service related files using the <RPCC toal
Java: Compile Java sources

Java: Package compiled clazzes in a JAR file

Java: Run Java application

Java Generate Jawa Doc

Java Aun JZEE verifier

Java: Package J2EE application in an EAR file

Jte: DoCormmand an

Ok I Cancel Spply Help

116 PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

Profile Category (Definition Files)

The language definition file Profile category can contain Stereotypes, Extended attributes,
Methods and so on, to extend the metaclasses defined in the PowerDesigner metamodel.

In object languages, the Shared/Extended Attribute Types category contains
various attributes used to control object language support within PowerDesigner. The Object
Container variable specifies the default container for implementing associations. This
attribute has an editable list of possible values for each object language, from which you can
select a default value for your language. You can, if necessary, override this default using the
Default association container model option.

For detailed information about working with the Profile category, see Chapter 2, Extension
Fileson page 11.

Customizing and Extending PowerDesigner 117

CHAPTER 3: Object, Process, and XML Language Definition Files

118 PowerDesigner

CHAPTER 4 DBMS Definition Files

DBMS definition file provide PowerDesigner with the information necessary to model,
reverse-engineer, and generate for a particular DBMS. PowerDesigner provides definition
files for most popular DBMSs. You select a DBMS when you create a PDM.

DBMS definition files have an . xdb extension and are located in install dir/
Resource Files/DBMS. Toview the listof DBMSs, select Tools> Resources>DBMS.
For information about the tools available in resource file lists, see Chapter 1, PowerDesigner
Resource Files on page 1.

You can consult or modify the DBMS definition file attached to your PDM in the Resource
Editor by selecting Database> Edit current DBM S. When you select a categoryor anitemin
the left-hand pane, the name, value, and related comment appear in the right side of the dialog

box.

Warning! We strongly recommend that you make a back up of the resource files delivered
with PowerDesigner before editing them.

Each DBMS file has the following structure:

e General - contains general information about the database, without any categories (see
General Category (DBMS) on page 134). All items defined in the General category apply
to all database objects.

« Script- used for generation and reverse engineering. Contains the following sub-
categories:

e SQL - contains the following sub-categories, each of which contains items whose
values define general syntax for the database:

Syntax - general parameters for SQL syntax (see Syntax Category on page 135)
Format - parameters for allowed characters (see Format Category on page 136)
File- header, footer and usage text items used during generation (see File Category
on page 138)

Keywords- the list of SQL reserved words and functions (see Keywords Category
on page 140)

» Opjects- contains commands to create, delete or modify all the objects in the database.
Also includes commands that define object behavior, defaults, necessary SQL queries,
reverse engineering options, and so on (see Script/Objects Category (DBMS)on page
142).

» Data Type - contains the list of valid data types for the specified DBMS and the
corresponding types in PowerDesigner (see Script/Data Type Category (DBMS) on
page 197).

Customizing and Extending PowerDesigner 119

CHAPTER 4: DBMS Definition Files

* Customize - Retrieves information from PowerDesigner Version 6 DBMS definition
files. It is not used in later versions.

e ODBC- presentonly if the DBMS does not support standard statements for generation. In
this case the ODBC category contains additional items necessary for live database
connection generation .

» Transformation Profiles— contains group of transformations used during model
generation when you need to apply changes to objects in the source or target models (see
Transformations (Profile) on page 92).

* Profile- allows you to define extended attribute types and extended attributes for database
objects (see Profile Category (DBMS) on page 200).

The following properties are available on the root of a DBMS definition file:

Property | Description

Name / Code | Name and code of the DBMS.

File Name [read only] Path and name of the DBMS file.

Family Used to classify a DBMS, and to establish a link between different database resource
files. For example, Sybase AS Anywhere, and Sybase AS Enterprise belong to the
SQL Server family.

Triggers are retained when you change target within the same family.

Merge interface allows to merge models from the same family.

Comment Additional information about the DBMS

Triggers Templates, Trigger Template Items, and Procedure
Templates

The DBMS Trigger templates, Trigger template items, and Procedure templates are accessible
via the tabs in the Resource Editor window. In addition, for Oracle, there is a tab for database
package templates.

Templates for stored procedures are defined under the Procedure category in the DBMS tree
view.

For more information, see Data Modeling > Building Data Models > Triggers and Procedures

Database Generation and Reverse Engineering

PowerDesigner supports generation and reverse engineering of databases through scripts and
live connections via SQL statements and queries stored inthe Script/Objects category.
Generation and reverse-engineering of scripts and generation to a live connection all use the
same statements, while reverse-engineering from a live connection uses separate queries.

120

PowerDesigner

CHAPTER 4: DBMS Definition Files

PowerDesigner performs generation and reverse-engineering as follows:

« Generation/Update Database - Each model object selected is applied to the statements in
the Script/Objects category.
» Reverse engineering:

« Script - PowerDesigner parses the script and identifies object creation statements by
comparing them with the statements in the Script/Objects category.

e Live connection - PowerDesigner uses the queries inthe Script/Objects
category to retrieve information from the database system tables. Each column of a
query result set is associated with a variable. The query header specifies the association
between the columns of the resultset and the variable. The values of the returned
records are stored in these variables which are then committed as object attributes.

Script Generation

PowerDesigner can generate a SQL script from a PDM to create or modify a database. The
statements that control script generation are available in the Script/Objects category.

When generating a SQL script, PowerDesigner takes each object to be created in turn, and
applies the appropriate Create or other statement to create or modify the object:

e Create - Creates a new object.

e Alter/Modify - Modifies the attributes of an existing object.

* Add - Creates a new sub-object. If keys are defined inside a table, they will be created with
an Add statement, but if they are created outside the table, then they will be created with a
table Mod1i fy statement.

e Rename - Renames an object.

e Drop - Drops an object (for use when an Alter statement is not possible).

* ObjectComment - Adds a comment on the object.

e Options - Defines the physical options of an object.

e ConstName - Defines the constraint name template for object checks.

For example, in Sybase ASE 15.7, the Create statement in the Table category is the
following:

create table [%QUALIFIER%]$TABLES

(
$TABLDEFN%

1%OPTIONS%]

This statement contains the parameters for creating the table together with its owner and
physical options using variables (see Variables for Tables and Viewson page 216) that extract
the necessary information from the object's properties. The $TABLDEFN% variable collects
the Add items in the Column, PKey, Key, and Reference categories, and the
AddTableCheck item in the Table category.

Customizing and Extending PowerDesigner 121

CHAPTER 4: DBMS Definition Files

Other statements in the object categories are used to customize the PowerDesigner interface
and behavior according to database features, such as Maxlen, Permission,
EnableOwner, and A11lowedADT.

Extending Generation with Before and After Statements

You can extend script generation statements to complement generation using the extension
Statements. The extension mechanism allows you to generate statements immediately before
or after Create, Drop, and Modify statements, and to retrieve these statements during reverse
engineering.

Extension statements are written in GTL (see Chapter 5, Customizing Generation with GTL
on page 245). During generation, the statements and variables are evaluated and the result is
added to the global script.

Note: We recommend that you avoid using GTL macros (other than . i £) in generation
scripts, as they may not be resolvable when reverse engineering by script. Generating and
reverse engineering via a live database connection are not subject to this limitation.

Example - Adding an AfterCreate Statement

The extension statement AfterCreate is defined in the Table category to complement the
table Create statement by adding partitions to the table if the value of the partition extended
attribute requires it:

.1f (%ExtTablePartition% > 1)

%CreatePartition%

go

.endif

The . if macro evaluates variable $ExtTablePartition$%, which is an extended
attribute that contains the number of table partitions. If the value is higher than 1, then
$CreatePartition$, defined in the Table category, will be generated as follows:

alter table [$QUALIFIERS]S$TABLES
partition %$ExtTablePartition%

This item generates the statement for creating the number of table partitions specified in
$ExtTablePartition%.

Example - Adding a BeforeCreate Statement
The extension statement BeforeCreate is defined in the User category to create the login
of a user before the user Create statement is executed:

sp_addlogin %Name?% %Passwords
go

The automatically generated login will have the same name as the user, and its password. The
BeforeCreate statement is displayed before the user creation statement in the Preview:

122

PowerDesigner

CHAPTER 4: DBMS Definition Files

¥ User Properties - User_1 [User_1]

Dependencies I Extended Dependencies I Yerzion Info

General I Privileges I Permigzions Preview | MHotes I Rulez

B--HESdHA iR oo REREI
sp_dropuser Taer_ 1 ;I
qo

sp_addlogin Taer 1 password
g0

sp_adduzer User_ 1l
s 0]

3 8 N a— 1T e
<< Less | - ok | Eancell Al | Help |

Example - Modify Statements
You can also add BeforeModify and AfterModi fy statements to standard Modify
statements.

Modify statements are executed to synchronize the database with the schema created in the
PDM. By default, the modify database feature does not take into account extended attributes
when it compares changes performed in the model from the last generation. You can bypass
this rule by adding extended attributes in the ModifiableAttributes list item.
Extended attributes defined in this list will be taken into account in the merge dialog box
during database synchronization.

To detect that an extended attribute value has been modified you can use the following
variables:

e 3%OLDOBJECT% - to access an old value of the object
* S$NEWOBJECT - to access a new value of the object

For example, you can verify that the value of the extended attribute ExtTablePartition
has been modified using the following GTL syntax:
.if (%OLDOBJECT.ExtTablePartition% != $NEWOBJECT.ExtTablePartition%)

If the extended attribute value was changed, an extended statement will be generated to update
the database. In the Sybase ASE syntax, the ModifyPartition extended statement is the
following because in case of partition change you need to delete the previous partition and
then recreate it:

Customizing and Extending PowerDesigner 123

CHAPTER 4: DBMS Definition Files

.if (%0LDOBJECT.ExtTablePartition% != $SNEWOBJECT.ExtTablePartition$%)
.1f (SNEWOBJECT.ExtTablePartition% > 1)
.1f (%OLDOBJECT.ExtTablePartition% > 1)
%DropPartition%
.endif
%$CreatePartition%
.else
%DropPartition%
.endif
.endif

Script Reverse Engineering

PowerDesigner can reverse engineer SQL scripts into a PDM. The statements that control
script generation are available in the Script/Objects category.

When reverse-engineering a SQL script into a PDM, PowerDesigner compares each statement
in turn with all of the Create statements defined in the DBMS definition file and when it
finds a match, extracts all of the available information to create or update PDM objects.

The statements used in script reverse engineering are the same as those for script generation
(see Script Generation on page 121).

For example, in Sybase 1Q v15.2, the Create statement in the Table category is the
following:
create[%3ExtGlobalTemporaryTable$? global temporary] table
[$QUALIFIER%]$TABLES (

$TABLDEFN%
)[.Z2:[[%R%?[.0:[1in] [on]] %DBSpace%: [%DBSpace%?

in %$DBSpaceGeneratedName%]]] [

on commit %$OnCommit%] [$NotTransactional%? not transactional] [

at $.g:At%] [$R%?partition by range %RevPartition%:[$PartitionKey
$?[%hasLifecycle%?:

partition by range (%$PartitionKey.Code%)

(

$PartitionDef$%
)111]
1

This statement contains the parameters for creating the table together with its owner and
physical options using variables (see Variables for Tables and Viewson page 216) that extract
the necessary information from the object's properties.

If you are using the extension mechanism for script generation, you have to declare statements
in the list item ReversedStatements (one statement per line) for them to be properly
reversed.

For example, the extension statement AfterCreate Uses CreatePartition, which
must be declared in ReversedStatements to be properly reverse engineered:

124

PowerDesigner

CHAPTER 4: DBMS Definition Files

£ DBMS Properties (For All Models) H =] E3

General I Trigger Templatesl Trigger Template Itemsl

e ISybaseAS Enterprize 12.5:5cripthObjectsh T able\ReversedStatements H- T
=T
B[] Table - = Marne: ReversedStatements
----- I| Fermizzion
_____ 3 AddT ableCheck Comment: |Additional statements which can be reversed ;I
----- j AfterCreate
.....] Aftert odify

----- j AlterT ableFooter
----- j AlterT ableHeader

----- 3 Consti ame LI
..... 3 Create Walue;

----- % CreatePartition CreatePartition d
..... [DefDptions Staternent?

.....) DefineTableCheck Statementd

----- j Drop

----- B DropPartition

----- [DropTableCheck
.....) Modiisbledtiibutes
----- % M odifyPartition

----- [options

----- 3 Fiename

----- 3 ReversedStatements j

----- _j SqlattrCueny =]
(] I Caticel Apply | Help |

Live Database Generation

PowerDesigner can generate or modify a database from a PDM to a live connection. The
statements that control live generation are available in the Script/Objects category,
except when the DBMS does not support standard SQL syntax. For example, MS Access,
which needs VB scripts to create database objects, has special generation statements defined
in the ODBC category.

When generating to a live connection, PowerDesigner takes each object to be created in turn,
and applies the appropriate Create or other statement to create or modify the object.

The statements used in live generation are the same as those for script generation (see Script
Generation on page 121).

Live Database Reverse Engineering

PowerDesigner can reverse engineer from a live database connection into a PDM. The queries
that control live reverse engineering are available in the Script/Objects category.

The following queries are used in live reverse engineering:

e SglListQuery - Retrieves a list of available objects to populate the Database Reverse
Engineering dialog. This query is memory intensive, and should retrieve the smallest

Customizing and Extending PowerDesigner 125

CHAPTER 4: DBMS Definition Files

number of columns possible. If it is not defined, then SqlAttrQuery will be used to
populate the dialog.

e SglAttrQuery - Retrieves the object attributes to be reverse-engineered. This query is
not necessary if the object has few attributes, and the Sq1ListQuery can retrieve all
necessary information, as is the case for tablespaces in Sybase SQL Anywhere.

e SglOptsQuery - Retrieves the physical options to be reverse-engineered.

e SglListChildrenQuery - Retrieves lists of child objects (such as columns of an
index or key or joins of a reference) to be reverse-engineered.

* SglSysIndexQuery - Retrieves system indexes created by the database.

e SglChckQuery - Retrieves object check constraints.

e SglPermQuery - Retrieves object permissions.

Note: You can also create your own queries (see Creating Queries to Retrieve Additional
Altributes on page 128).

Each type of query has the same basic structure comprised of a comma-separated list of
PowerDesigner variables enclosed in curly braces { } followed by a select statement to extract
values to populate these variables. The values of the returned records are stored in these
variables, which are then committed as object attribute values.

For example, the Sq1ListQuery inthe View category of Oracle 11g R1 extracts values for
eight variables:

{OWNER, VIEW, VIEWSTYLE, ExtObjViewType,
ExtObjOIDList, ExtObjSuperView, XMLSCHEMA EX, XMLELEMENT EX}

select
v.owner,
v.view name,
decode (v.view type, 'XMLTYPE', 'XML', 'View'),
v.view type,
v.oid text,
V.superview name,

decode (v.view type, 'XMLTYPE', '%SglXMLView.'||v.owner||
v.view name]| |'1l%', ''"),

decode (v.view type, 'XMLTYPE', '$SglXMLView.'||v.owner| |
v.view namel|'2%', ''")

from sys.all views v
[where v.owner = $.g:SCHEMA%]

Each comma-separated part of the header may contain the following:

« Name of variable - [required] can be any standard PDM variable (see PDM Variables and
Macroson page 212), metamodel public name (see Navigating in the Metamodel on page
344) or the name of an extended attribute defined under the metaclass in the Profile (see
Profile Category (DBMS) on page 200).

e ID - [optional] the variable is part of the identifier.

126

PowerDesigner

CHAPTER 4: DBMS Definition Files

e ... -[optional] the variable must be concatenated for all the lines returned by the SQL
query that have the same values for the ID columns. The IDand . . . (ellipsis) keywords
are mutually exclusive.

* Value pairs - [optional] lists conversions between retrieved values and PowerDesigner
values in the following format (where * means all other values):

(valuel = PDvaluel, value2 = PDvalue2, * = PDvalue3)

Example: Using ID to Define the Identifier
Inthis script, the identifier isdefinedas TABLE + ISKEY+ CONSTNAME throughthe use of
the 1D keyword:

{TABLE ID, ISPKEY ID, CONSTNAME ID, COLUMNS ...}
select
t.table name,
1,
null,
c.column name + ', ',
c.column id
from
systable t,
syscolumn c
where
etc..

Inthe resulting lines returned by the SQL script, the values of the fourth field are concatenated
in the COLUMNS field as long as these ID values are identical.

SQL Result set
Tablel,1l,null, 'coll,
Tablel,1l,null, 'col2,
Tablel,1l,null, 'col3,
Table2,1,null, 'col4,
In PowerDesigner memory
Tablel,1l,null, 'coll,col2,col3"
Table2,1,null, 'cold’'

In the example, COLUMNS will contain the list of columns separated by commas, and
PowerDesigner will process the contents to remove the last comma.

Example: Converting Value Pairs
In this example, when the SQL query returns the value 25 or 26, it is replaced by JAVA in the
TYPE variable:

{ADT, OWNER, TYPE (25=JAVA , 26=JAVA) }

SELECT t.type name, u.user name, t.domain id
FROM sysusertype t, sysuserperms u

WHERE [u.user name = '$SCHEMA%' AND]
(domain id = 25 OR domain_id = 26) AND
t.creator = u.user id

Customizing and Extending PowerDesigner 127

CHAPTER 4: DBMS Definition Files

Creating Queries to Retrieve Additional Attributes

You can create queries to retrieve additional attributes. These attributes could be added to
SqlAttrQuery, but retrieving them in a separate query helps to avoid overloading that
item. User-created queries are only called during reverse-engineering if their names are added
to the ReversedQueries item.

To create anew query in a category, right-click the category and select New > Text Item. Enter
an appropriate name, and then add the name to the ReversedQueries item.

For example, in the Oracle family of DBMSs, SqlColnListQuery is defined in the View
category:
{OWNER ID, VIEW ID, VIEWCOLN ...}

select

c.owner,

c.table name,

c.column name||"', '
from

sys.all tab columns c
where 1 = 1

[and c.owner=%.q:0WNER%]

[and c.table name=%.q:VIEW%]
order by

1, 2, c.column id

This query retrieves view columns, and is enabled by adding itto ReversedQueriesinthe
View category.

Note: Subqueries that are called with the EX keyword from within Sq1AttrQuery or other
queries (see Calling Sub-Queries with the EX Keywordon page 128) do not need to be added
to ReversedQueries.

Calling Sub-Queries with the EX Keyword

DBMS system tables may store information to be reversed in columns with LONG, BLOB,
TEXT and other incompatible data types, which PowerDesigner cannot directly concatenate
into strings.

You can bypass this limitation by using the £Xkeyword and creating user-defined queries and
variables in the existing reverse engineering queries with the syntax:

$UserDefinedQueryName.UserDefinedVariableName$
These user-defined variables are evaluated by sub-queries that you write.

In the following example, the value of OPTIONS is marked as containing a user-defined
query, and we see in the body of the query that the 'global partition by range' option contains a
user-defined query called :'SqlPartIndexDef', which seeks values for the variables 'i.owner'
and 'i.index_name":

128

PowerDesigner

CHAPTER 4: DBMS Definition Files

{OWNER, TABLE, CONSTNAME, OPTIONS EX}

select

c.owner,

c.table name,
c.constraint name,

'global partition by range
(3SglPartIndexDef.'||i.owner||i.index name||'%) "',

Note: Extended queries are not be added to the ReversedQueries item.

1. Aquery is executed to evaluate variables in a set of string statements. If the EX keyword is
present in the query header, PowerDesigner searches for user-defined queries and
variables to evaluate. You can create user-defined queries in any live database reverse
engineering query. Each query must have a unique name.

2. The execution of the user-defined query generates a resultset containing pairs of user-
defined variable names (without %) and variable value for each of the variables as needed.
For example, in the following resultset, the query returns 3 rows and 4 columns by row:

Variable 1 1 Variable 2 2
Variable 3 3 Variable 4 4
Variable 5 5 Variable 6 6

3. These values replace the user-defined variables in the original query.

Live Database Reverse Engineering Physical Options

During reverse engineering, physical options are concatenated in a single string statement.
However, when the system tables of a database are partitioned (like in Oracle) or fragmented
(like in Informix), the partitions/fragments share the same logical attributes but their physical
properties like storage specifications, are stored in each partition/fragment of the database.
The columns in the partitions/fragments have a data type (LONG) that allows storing larger
amount of unstructured binary information.

Since physical options in these columns cannot be concatenated in the string statement during
reverse engineering, SqlOptsQuery (Tables category in the DBMS) contains a call to a
user-defined query that will evaluate these physical options.

In Informix SQL 9, Sql0OptsQuery is delivered by default with the following user-defined
queries and variables (the following is a subset of Sq1lOptsQuery):

select

t.owner,

t.tabname,

'$SglFragQuery.FragSprt'||f.evalpos||'S $FragExpr'||f.evalpos||'S
in %FragDbsp'| |f.evalpos]||'S ',

f.evalpos
from

informix.systables t,

Customizing and Extending PowerDesigner 129

CHAPTER 4: DBMS Definition Files

informix.sysfragments £
where

t.partnum = 0

and t.tabid=f.tabid

[and t.owner = '$SCHEMAS']
[and t.tabname='S$TABLES']

After the execution of Sq10OptsQuery, the user-defined query Sql1FragQuery is
executed to evaluate FragDbsp n, FragExpr n, and FragSprt n. n stands for
evalpos which defines fragment position in the fragmentation list. n allows to assign unique
names to variables, whatever the number of fragment defined in the table.

FragDbsp n, FragExpr N, and FragSprt n are user-defined variables that will be
evaluated to recover information concerning the physical options of fragments in the database:

User-defined variable Physical options

FragDbsp n Fragment location for fragment number n
FragExpr n Fragment expression for fragment number n
FragSprt n Fragment separator for fragment number n

SqlFragQuery is defined as follows:

{A, a(E="expression", R="round robin", H="hash"), B, b, C, ¢, D,
d(0="r, *=v,m))
select
'FragDbsp'| |f.evalpos, f.dbspace,
'FragExpr'| |f.evalpos, f.exprtext,
'FragSprt'| |f.evalpos, f.evalpos
from
informix.systables t,
informix.sysfragments £
where
t.partnum = 0
and f.fragtype='T'
and t.tabid=f.tabid
[and t.owner = '$SCHEMAS']
[and t.tabname='%TABLE%']

The header of Sg1FragQuery contains the following variable names.

{A, a(E="expression", R="round robin", H="hash"), B, b, C, ¢, D,
d(o:""’ *:",")}

Only the translation rules defined between brackets will be used during string concatenation:
"FragSprt0", which contains 0 (f.evalpos), will be replaced by " ", and "FragSprt1", which
contains 1, will be replaced by ","

SglFragQuery generates a numbered resultset containing as many pairs of user-defined
variable name (without %) and variable value as needed, if there are many variables to
evaluate.

130

PowerDesigner

CHAPTER 4: DBMS Definition Files

The user-defined variable names are replaced by their values in the string statement for the
physical options of fragments in the database.

Live Database Reverse Engineering Function-based Index

In Oracle 8i and later versions, you can create indexes based on functions and expressions that
involve one or more columns in the table being indexed. A function-based index precomputes
the value of the function or expression and stores it in the index. The function or the expression
will replace the index column in the index definition.

An index column with an expression is stored in system tables with a LONG data type that
cannot be concatenated in a string statement during reverse engineering.

To bypass this limitation, Sq1ListQuery (Index category in the DBMS) contains a call to
the user-defined query SqlExpression used to recover the index expression in a column
with the LONG data type and concatenate this value in a string statement (the following is a
subset of SqlListQuery):

select
'$SCHEMAS ',
i.table name,
i.index name,

decode (i.index type, 'BITMAP', 'bitmap', ''),

decode (substr(c.column name, 1, 6), 'SYS NC',
'$SqglExpression.Xpr'||i.table name||i.index name] |
c.column position]||'%', c.column name) ||' '||c.descend||', ',
c.column position

from

user indexes i,

user ind columns c
where

c.table name=i.table name

and c.index name=i.index name

[and i.table owner='3%SCHEMA%']
[and i.table name='S$TABLE%']

[and i.index name='S%INDEX%']

The execution of Sq1ListQuery calls the execution of the user-defined query
SglExpression

SqlExpression is followed by a user-defined variable defined as follow:

{VAR, VAL}

select
'Xpr'||table name||index name| |column position,
column expression

from

all ind expressions
where 1=1

[and table owner='$SCHEMAS']
[and table name='3%TABLES']

Customizing and Extending PowerDesigner 131

CHAPTER 4: DBMS Definition Files

The name of the user-defined variable is unique, it is the result of the concatenation of "Xpr",

table name, index name, and column position.

Live Database Reverse Engineering Qualifiers

A qualifier allows the use of the object qualifier that is displayed in the dropdown list box in the
upper left corner of the Database Reverse Engineering dialog box. You use a qualifier to select

which objects are to be reverse engineered.

Database Reverse Engineering

[« qualfiers =l|5 psa | A B oo Bt B Y W
Code | Owaner | M arne -~
] contact DE& contact
T customer DE& cugtamer s
] department DE& department
] employee DE& employes 5

1 | 3
L4 r\TabIe ,{View }\System Tahle)\Synonym }\User)\Grnup 3 Role A Domain)\Defaurt i

-

¥ Checks [Pemissions
¥ Physical options [Statistics

Objectz] selected: 9/3
=] [l [<]

Help |

v Altemnate Keys
IV Indexes

¥ Primary Keys
¥ Foreign Keys

Selection: |<Default Selection:

[o]

Cancel |

You can add a qualifier section when you customize your DBMS. This section must contain

the following items:

« enable: YES/NO

« SqglListQuery (script) : this item contains the SQL query that is executed to retrieve the

qualifier list. You should not add a Header to this query

The effect of these items are shown in the table below:

Enable SqlListQuery Result

present?

Yes Yes Qualifiers are available for selection. Select one as required.
You can also type the name of a qualifier. SqlListQuery is
executed to fill the qualifier list

No Only the default (All qualifiers) is selected. You can also type
the name of a qualifier

No No Dropdown list box is grayed.

132

PowerDesigner

CHAPTER 4: DBMS Definition Files

Example
In Adaptive Server Anywhere 7, a typical qualifier query is:

.Qualifier.SglListQuery :
select dbspace name from sysfile

Generating and Reverse-Engineering PDM Extended Objects

Some DBMSs have objects that are not present in the standard PowerDesigner metamodel,
and that must be represented as extended objects. PDM extended objects are defined in the
Profile category, but their generation and reverse-engineering is controlled by statements
and queries defined in the Script/Objects category.

Note: Before following this procedure, you must create an extended object in the Profile
category (see Extended Objects, Sub-Objects, and Links (Profile) on page 36).

1

2.

Right-click the Script/Objects category, select Add Items, select your new
extended object in the list, and then click OK to add it to the list of objects

Right-click the new object entry, and select Add I temsto add the necessary script items to
it. Asaminimum, to enable the generation and reverse engineering of the object, you must
add the following items:

e Create

e Drop

e AlterStatementList

e SqglAttrQuery

» SqlListQuery

Click OK to add these script items to your object, and enter the appropriate SQL

statements and queries. You will need to enter values for each of these items. For guidance
on syntax, see Common Object Items on page 144.

[optional] To control the order in which this and other objects will be generated, use the
Generation Order item (see Script/Objects Category (DBMS) on page 142).

Adding Scripts Before or After Generation and Reverse Engineering

You can specify scripts to be used before or after database generation or reverse engineering.

1

Openthe Profile folder. If there is no entry for Model, then right-click the Profile folder and
select Add M etaclasses.

On the PdPDM sub-tab, select Model and then click OK to add the Model item to the
Profile folder.

Right-click the Model item, and select New > Event Handler (see Event Handlers
(Profile) on page 75).

Select one or more of the following event handlers depending on where you want to add a
script:

Customizing and Extending PowerDesigner 133

CHAPTER 4: DBMS Definition Files

« BeforeDatabaseGenerate
« AfterDatabaseGenerate
» BeforeDatabaseReverseEngineer
» AfterDatabaseReverseEngineer
5. Click OK to add the selected event handlers to the Model item.
6. Select each of the event handlers in turn, click its Event Handler Script tab, and enter the

desired script.

7. Click OK to confirm your changes and return to the model.

General Category (DBMS)

The General category is located directly beneath root, and contains high-level items that
define the basic behavior of the DBMS.

Item

Description

EnableCheck

Specifies whether the generation of check parameters is authorized. The fol-
lowing settings are available. If this item is set to No, no variables linked to
check parameters will be evaluated during generation and reverse-engineering.

EnableConstName

Specifies whether constraint names are supported by the DBMS. If this item is
setto Yes, table and column constraint names are generated in addition to the
constraints themselves.

Enablelntegrity

Specifies whether integrity constraints are supported by the DBMS. If this item
issetto Yes, primary, alternate, and foreign key check boxes are available for
database generation and modification

EnableMultiCheck

Specifies whether the generation of multiple check parameters for tables and
columns is supported by the DBMS. If this item is set to Ye s, multiple check
parameters are generated, with the first constraint concatenating all the vali-

dation business rules, and additional constraints generated for each constraint
business rules attached to the object. If this item is set to No, all business rules
(validation and constraint) are concatenated into a single constraint expression.

SchemaStereotype

Specifies the user stereotype to be used to indicate a schema (object owner).

SqlSupport

Specifies whether SQL syntax is supported by the DBMS. If this item is set to
Yes, SQL syntax is supported and the SQL Preview is available.

UnigConstName

Specifies whether unique constraint names for objects are required by the
DBMS. Ifthisitemis setto Ye s, all constraint names (including index names)
must be unique in the database. Otherwise constraint names must be unique
only at the object level.

UserStereotype

Specifies the user stereotype to be used to indicate a user (permissions grantee).

134

PowerDesigner

CHAPTER 4: DBMS Definition Files

Script/Sql Category (DBMS)

The SQL category is located in the Root > Script category and contains sub-categories that
define the SQL syntax for the DBMS.

Syntax Category

The Syntax category is located in the Root > Script > SQL category, and contains the
following items that define the DBMS-specific syntax:

Item

Description

BlockComment

Specifies the character used to enclose a multi-line commentary.
Example:
J% =/

BlockTerminator

Specifies the end of block character, which is used to end expressions for
triggers and stored procedures.

Delimiter

Specifies the field separation character.

IdentifierDelimiter

Specifies the identifier delimiter character. When the beginning and end de-
limiters are different, they must be separated by a space character.

LineComment

Specifies the character used to enclose a single line commentary.

Example:

oo
o°

Quote

Specifies the character used to enclose string values.

Note that the same quote must be used in the check parameter tab to enclose
reserved words used as default.

SqlContinue

Specifies the continuation character. Some databases require a continuation

character when a statement is longer than a single line. For the correct char-
acter, refer to your DBMS documentation. This character is attached to each
line just prior to the linefeed.

Terminator

Specifies the end of statement character, which is used to terminate create table,
view, index, or the open/close database, and other statements.

If empty, BlockTerminator is used instead.

Customizing and Extending PowerDesigner 135

CHAPTER 4: DBMS Definition Files

Item

Description

UseBlockTerm

Specifies the use of BlockTerminator. The following settings are
available:

* Yes-BlockTerminator isalways used

e No-BlockTerminator isused for triggers and stored procedures
only

Format Category

The Format category is located in the Root > Script > SQL category, and contains the
following items that define script formatting:

ltem Description

AddQuote Specifies that object codes are systematically enquoted during the generation.
The following settings are available:
* Yes - Quotes are systematically added to object codes during generation
* No - Object codes are generated without quotes

CaseSensitivityU- | Specifies if the case sensitivity for identifiers is managed using double quotes.

singQuote Enable this option if the DBMS you are using needs double quotes to preserve

the case of object codes.

Date and Time for-
mats

See Date and Time Format on page 137.

EnableOwnerPre-
fix / Enable-
DtbsPrefix

Specifies that object codes can be prefixed by the object owner (3OWNER®%),
the database name (sDBPREFIX%), or both (5QUALIFIERS). The fol-
lowing settings are available:

* Yes —enables the Owner Prefix and/or Database Prefix options in the
Database Generation dialog to require one or both prefixes for objects.

* No - The Owner Prefix and Database Prefix options are unavailable

Note: EnableOwnerPrefix enables the Ignoreidentifying owner
model option for tables and views.

136

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description

IllegalChar [generation only] Specifies invalid characters for names. If there is an illegal
character in a Code, the code is set between quotes during generation.

Example:

+=F/1=<>T1 ()

If the name of the table is "SALES+PROFITS", the generated create statement
will be:

CREATE TABLE "SALES+PROFITS"

Double quotes are placed around the table name to indicate that an invalid

character is used. During reverse engineering, any illegal character is consid-
ered as a separator unless it is located within a quoted name.

LowerCaseOnly / When generating a script, all objects are generated in lowercase or uppercase
UpperCaseOnly independently of the model Naming Conventions and the PDM codes. The
following settings are available:

* Yes - Forces all generated script characters to lowercase or uppercase.

* No-Generatesall scripts unchanged from the way objects are written in the
model.

Note: These items are mutually exclusive. If both are enabled, the script is
generated in Jowercase.

MaxScriptLen Specifies the maximum length of a script line.

Date and Time Format
You can customize the date and time format for test data generation to a script or live database
connection using DBMS items in the Format category.

PowerDesigner uses the PhysDataType map item in the script\data types category to
convert the physical data types of columns to conceptual data types because the DBMS items
are linked with conceptual data types.

Example for Sybase AS Anywhere 7:

Physical da- | Conceptual DBMS entry used |DBMS entry used for live
ta type data type for SQL connection

datetime DT DateTimeFormat OdbcDateTimeFormat
timestamp TS DateTimeFormat OdbcDateTimeFormat

date D DateFormat OdbcDateFormat

time T TimeFormat OdbcTimeFormat

If you want to customize the date and time format of your test data generation, you have to
verify the data type of the columns in your DBMS, then find the corresponding conceptual

Customizing and Extending PowerDesigner 137

CHAPTER 4: DBMS Definition Files

data type in order to know which item to customize in your DBMS. For example, if the
columns use the datetime data type in your model, you should customize the Date TimeFormat
item in your DBMS.

The default date and time format is the following:

e SQL:'yyyy-mm-dd HH:MM:SS'
e Live connection: {ts 'yyyy-mm-dd HH:MM:SS'}

Where:
Format Description
yyyy Year on 4 digits
vy Year on 2 digits
mm Month
dd Day
HH Hour
MM Minute
SS Second

For example, you can define the following value for the DateTimeFormat item for SQL: yy-
mm-dd HH:MM. For live database connections, this item should have the following value:
{ts 'yy-mm-dd HH:MM'}.

File Category

The File category is located in the Root > Script > SQL category, and contains the following
items that define script formatting:

ltem Description
AlterHeader Specifies header text for a modify database script.
AlterFooter Specifies footer text for a modify database script.

138 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

EnableMultiFile

Specifies that multiple scripts are allowed. The following settings are available:

* Yes —enables the One File Only check box in the Generate database,
Generate Triggers and Procedures, and Modify Database parameters win-
dows. If you deselect this option, a separate script is created for each table
(named after the table, and with the extension defined in the TableExt
item), and a global script summarizes all the single table script items.

e The One File Only check box is unavailable, and a single script includes all
the statements.

The file name of the global script is customizable in the File Name field of the
generation or modification windows and has the extension specified in the
ScriptExt item.

The default name for the global script is CREBAS for database generation,
CRETRG for triggers and stored procedures generation, and ALTER for da-
tabase modification.

Footer

Specifies the text for the database generation script footer.

Header

Specifies the text for the database generation script header.

ScriptExt

Specifies the default script extension when you generate a database or modify a
database for the first time.

Example:

sgl

StartCommand

Specifies the statement for executing a script. Used inside the header file of a
multi-file generation to call all the other generated files from the header file.

Example (Sybase ASE 11):
isgl $NAMESCRIPTS%

Corresponds to the %STARTCMD% variable (see PDM Variables and Macros
on page 212).

TableExt

Specifies the extension of the scripts used to generate each table when the
EnableMultiFile item is enabled and the "One File Only" check box is not
selected in the Generate or Modify windows.

Example:

sgl

TrgFooter

Specifies footer text for a triggers and procedures generation script.

TrgHeader

Header script for triggers and procedures generation.

TrgUsagel

[when using a single script] Specifies text to display in the Output window at
the end of trigger and procedure generation.

Customizing and Extending PowerDesigner 139

CHAPTER 4: DBMS Definition Files

Item Description

TrgUsage2 [when using multiple scripts] Specifies text to display in the Output window at
the end of trigger and procedure generation.

TriggerExt Specifies the main script extension when you generate triggers and stored
procedures for the first time.
Example:
trg

Usagel [when using a single script] Specifies text to display in the Output window at
the end of database generation.

Usage?2 [when using multiple scripts] Specifies text to display in the Output window at
the end of database generation.

Keywords Category

The Keywords category is located in the Root > Script > SQL category, and contains the
following items that reserve keywords.

The lists of SQL functions and operators are used to populate the PowerDesigner SQL editor
to propose lists of available functions to help in entering SQL code.

Month, ConvertDa-
teToQuarter, Con-
vertDateToYear

Item Description
CharFunc Specifies a list of SQL functions to use with characters and strings.
Example:
char ()
charindex ()
char length () etc
Commit Specifies a statement for validating the transaction by live connection.
ConvertAnyTo- Specifies a function to convert any type to a string.
String
ConvertDateTo- Specifies a function to extract the relevant period from a date.

ConvertFunc

Specifies a list of SQL functions to use when converting values between hex
and integer and handling strings.

Example:

convert ()
hextoint ()
inttohex () etc

140

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

DateFunc

Specifies a list of SQL functions to use with dates.
Example:

dateadd()
datediff ()
datename () etc

GroupFunc

Specifies a list of SQL functions to use with group keywords.
Example:

avg ()
count ()
max () etc

ListOperators

Specifies a list of SQL operators to use when comparing values, boolean, and
various semantic operators.

Example:

not like etc

NumberFunc

Specifies a list of SQL functions to use with numbers.

Example:

abs ()
acos ()
asin () etc

OtherFunc

Specifies a list of SQL functions to use when estimating, concatenating and
SQL checks.

Example:

db_id ()
db name ()
host id() etc

Reserved Default

Specifies a list of keywords that may be used as default values. If a reserved
word is used as a default value, it will not be enquoted.

Example (SQL Anywhere® 10) - USER is a reserved default value:

Create table CUSTOMER (
Username varchar (30) default USER

)

When you run this script, CURRENT DATE is recognized as a reserved default
value.

Customizing and Extending PowerDesigner 141

CHAPTER 4: DBMS Definition Files

Item Description

ReservedWord Specifies a list of reserved keywords. If a reserved word is used as an object

code, it is enquoted during generation (using quotes only in DBM S> Script >

SQL > Syntax > Quote).

StringConcatena- Specifies the operator used to concatenate two strings.
tionOperator

Script/Objects Category (DBMS)

The Objects category is located in the Root > Script > SQL category (and, possibly within
Root > ODBC > SQL), and contains the following items that define the database objects that
will be available in your model.

The following items are located in the Root > Script > Objectsand Root > ODBC > Objects
categories, and apply to all objects:

MaxConstLen - Specifies the maximum constraint name length supported by the target
database for tables, columns, primary and foreign keys. This value is used during model
checking and returns an error if the code exceeds the defined value. The constraint name is
also truncated at generation time.

Note: PowerDesigner has a maximum length of 254 characters for constraint names. If
your database supports longer constraint names, you must define the constraint names to
fit in 254 characters or less.

EnableOption - Specifies that physical options are supported by the target DBMS for the
model, tables, indexes, alternate keys, and other objects and enables the display of the
Optionstab in object property sheets. For more information, see Physical Options
(DBMS) on page 207.

GenerationOrder - Specifies the generation order of database objects. Drag and drop
entries in the Ordered List tab to adjust the order in which objects will be created.

142

PowerDesigner

CHAPTER 4: DBMS Definition Files

P DBMS Properties [For All Models) =] E3
General |TriggerTempIates| Trigger Template Itemsl Procedure Templatesl
Ao = IDHACLE'IDg::Script\Dbiects‘\GenerationDrder j A-EH- w4k
[Abstract Data Type Proced -
e Abstiact Data Type Frocedue —I Marmne: GenerationOrder
-2 User
B[] Pracedure Corment: |This list defines the objects generation order. | &
-2 Trigger
E-(C Join Index
-1 Sequence LI
- Synonym
E=-(3 Role Ordered List | sthL |
#-Z] DB Package
F-1 DB Package Procedure @ *
B~ DB Package Yariable [i
(] DB Package Type % A ab:ase::F'ermission
-1 DB Package Cursor B Starage
-] DB Package Exception Tableg'lspac:e
&0 Parameter o BuzinessAule
-1 DB Package Pragma E Sequence
Sg E:;:::sgs?on = % Sequence::Permiszion
& Dimension & AbstractDataType
anConstLen % AbstractD ataT ype::Permission
rabletion [PhypsicalDefault
_p PhyzicalD omain
i1z ! GenerationOrder User
[atalype
[T A T LI
kK I Cancel | Apply | Help |

Note: If an object does not appear on the list, it will still be generated, but after the listed
objects. You can add and remove items using the tools on the tab. Sub-objects, such as
Sequence: : Permissions, can be placed directly below their parent object in the list
(where they will be indented to demonstrate their parentage) or separately, in which case
they will be displayed without indentation. Extended objects (see Generating and Reverse-
Engineering PDM Extended Objects on page 133) cannot be added to this list, and are

generated after all other objects.

Customizing and Extending PowerDesigner

143

CHAPTER 4: DBMS Definition Files

Common Obiject Items
The following items are available in various objects located in the Root > Script > Objects

category.

Item Description
Add Specifies the statement required to add the object inside the creation statement
of another object.
Example (adding a column):
$20:COLUMNS %$30:DATATYPES [default %DEFAULTS%]
[$IDENTITY%?identity: [$NULL%] [$NOTNULL%]]
[[constraint $CONSTNAME%] check (%CONSTRAINTS)]
AfterCreate/ After- | Specify extended statements executed after the main Create, Drop or Modify
Drop/ AfterModify | statements. For more information, see Script generation on page 121.
Alter Specifies the statement required to alter the object.

AlterDBIgnored

Specifies a list of attributes that should be ignored when performing a com-
parison before launching an update database.

AlterStatementList

Specifies a list of attributes which, when changed, should give rise to an alter
statement. Each attribute in the list is mapped to the alter statement that should
be used.

BeforeCreate/ Befor-

Specify extended statements executed before the main Create, Drop or Mod-

eDrop/ BeforeModi- | ify statements. For more information, see Script generation on page 121.

fy

ConstName Specifies a constraint name template for the object. The template controls how
the name of the object will be generated.
The template applies to all the objects of this type for which you have not
defined an individual constraint name. The constraint name that will be ap-
plied to an object is displayed in its property sheet.
Examples (ASE 15):
» Table: CKT_%.U26:TABLE%
e Column: CKC_%.U17:COLUMN%_%.U8:TABLE%
e Primary Key: PK_%.U27:TABLE%

Create [generation and reverse] Specifies the statement required to create the object.

Example:

create table $TABLES

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

DefOptions

Specifies default values for physical options (see Physical Options (DBMS)
on page 207) that will be applied to all objects. These values must respect
SQL syntax.

Example:

in default tablespace

Drop

Specifies the statement required to drop the object.
Example (SQL Anywhere 10):

if exists(select 1 from sys.systable

where table name=%.q:TABLES

and table type in ('BASE', 'GBL TEMP') [$QUALIFIER
o)

oe

and creator=user id(%.q:0WNER%)]
) then drop table [$QUALIFIERS]S%TABLES
end if

Enable

Specifies whether an object is supported.

EnableOwner

Enables the definition of owners for the object. The object owner can differ
from the owner of the parent table. The following settings are available:

e Yes - The Owner list is enabled in the object's property sheet.
* No - Owners are not supported for the object.

Note that, in the case of index owners, you must ensure that the Create state-
ment takes into account the table and index owner. For example, in Oracle 9i,
the Create statement of an index is the following:

create [SUNIQUES%?%UNIQUES :[SINDEXTYPES]]index
[3QUALIFIERS] $INDEX% on [%$CLUSTER%?cluster C 3TABLE
%: [$TABLQUALIFIER%] $TABLE% (

SCIDXLISTS

)]

[$OPTIONS%]

Where %QUALIFIER% refers to the current object (index) and % TABL-
QUALIFIER% refers to the parent table of the index.

EnableSynonym

Enables support for synonyms on the object.

Footer / Header

Specify the object footer and header. The contents are inserted directly after or
before each create object statement.

MaxConstLen

Specifies the maximum constraint name length supported for the object in the
target database, where this value differs from the default specified in Max—
ConstLen (see .Script/Objects Category (DBMS) on page 142).

Customizing and Extending PowerDesigner 145

CHAPTER 4: DBMS Definition Files

Item

Description

MaxLen

Specifies the maximum code length for an object. This value is used when
checking the model and produces an error if the code exceeds the defined
value. The object code is also truncated at generation time.

Modifiable Attrib-
utes

Specifies a list of extended attributes that will be taken into account in the
merge dialog during database synchronization. For more information, see
Script generation on page 121.

Example (ASE 12.5):
ExtTablePartition

Options

Specifies physical options (see Physical Options (DBMS) on page 207)
available to apply when creating an object.

Example (ASA 6):

in %s : category=tablespace

Permission

Specifies a list of available permissions for the object. The first column is the
SQL name of permission (SELECT for example), and the second column is
the shortname that is displayed in the title of grid columns.

Example (table permissions in ASE 15):

SELECT / Sel
INSER / Ins
DELETE / Del
UPDATE / Upd
REFERENCES / Ref

Reversed Queries

Specifies a list of additional attribute queries to be called during live database
reverse engineering. For more information, see Live database reverse engi-
neering on page 125.

Reversed Statements

Specifies a list of additional statements that will be reverse engineered. For
more information, see Script reverse engineering on page 124.

SqlAttrQuery

Specifies a SQL query to retrieve additional information on objects reversed
by SQLListQuery.

Example (Join Index in Oracle 10g):

{OWNER ID, JIDX ID, JIDXWHERE ...}

select index owner, index name,

outer table owner || '.' || outer table name || '.'
|| outer table column || '=' || inner table owner
[| "." || inner table name || '.' || inner ta-
ble column || ',

from all join ind columns

where 1=1

[and index owner=%.q:0OWNERS%]

[and index name=%.q:JIDX%]

146

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

SqlListQuery

Specifies a SQL query for listing objects in the reverse engineering dialog.
The query is executed to fill header variables and create objects in memory.

Example (Dimension in Oracle 10g):

{ OWNER, DIMENSION }

select d.owner, d.dimension name

from sys.all dimensions d

where 1=1

[and d.dimension name=%.q:DIMENSION%]
[and d.owner=%.qg:SCHEMA%]

order by d.owner, d.dimension name

SqlOptsQuery

Specifies a SQL query to retrieve physical options from objects reversed by
SglListQuery. Theresultof the query will fill the variable %6OPTIONS
% and must respect SQL syntax.

Example (Table in SQL Anywhere 10):

{OWNER, TABLE, OPTIONS}
select u.user name, t.table name,
'in '+ f.dbspace name
from sys.sysuserperms u
join sys.systab t on (t.creator = u.user id)
join sys.sysfile f on (f.file id = t.file id)
where f.dbspace name <> 'SYSTEM'
and t.table type in (1, 3, 4)
[and t.table name = %.q:TABLE%]
[and u.user name = %.q:0WNER%]

SqlPermQuery

Specifies a SQL query to reverse engineer permissions granted on the object.

Example (Procedure in SQL Anywhere 10):

{ GRANTEE, PERMISSION}

select

u.user name grantee, 'EXECUTE'

from sysuserperms u, sysprocedure s, sysprocperm p
where (s.proc name = %$.q:PROC%) and

(s.proc_id = p.proc_id) and

(u.user_id = p.grantee)

Default Variable

Inacolumn, if the type of the default variable is text or string, the query must retrieve the value
of the default variable between quotes. Most DBMS automatically add these quotes to the
value of the default variable. If the DBMS you are using does not add quotes automatically,
you have to specify it in the different queries using the default variable.

For example, in IBM DB2 UDB 8 for 0OS/390, the following line has been added in
SqlListQuery in order to add quotes to the value of the default variable:

Customizing and Extending PowerDesigner 147

CHAPTER 4: DBMS Definition Files

case (default) when 'l' then '''' concat defaultvalue concat ''"''

when '5' then '''' concat defaultvalue concat '''' else defaultvalue
end,
Table

The Table category is located in the Root > Script > Objects category, and can contain the
following items that define how tables are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for tables:

« AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

¢ Create, Drop

* Enable, EnableSynonym

* Header, Footer

e Maxlen, MaxConstLen

* ModifiableAttributes

« Options, DefOptions

e Permission

* ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object itemson
page 144.

AddTableCheck

Specifies a statement for customizing the script to modify the table constraints
withinan alter table statement.

Example (SQL Anywhere 10):

alter table [$QUALIFIER%]%TABLES
add [constraint %CONSTNAME%]Jcheck (%.A:CON-
STRAINTS)

AllowedADT

Specifies a list of abstract data types on which a table can be based. This list
populates the Based On field of the table property sheet.

You can assign an abstract data type to a table, the table will use the properties
of the type and the type attributes become table columns.

Example (Oracle 10g):
OBJECT

148

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AlterTable Footer

Specifies a statement to be placed after alter table statements (and
before the terminator).

Example:

AlterTableFooter = /* End of alter statement */

AlterTable Header

Specifies a statement to be placed before alter table statements. You
can place an alter table header in your scripts to document or perform initi-
alization logic.

Example:
AlterTableHeader = /* Table name: $TABLE% */

DefineTable Check

Specifies a statement for customizing the script of table constraints (checks)
withina create table statement.

Example:
check ($CONSTRAINTS)

DropTable Check

Specifies a statement for dropping a table check inan alter table
statement.

Example:

alter table [$QUALIFIER%]%TABLES
delete check

InsertldentityOff

Specifies a statement for enabling insertion of data into a table containing an
identity column.

Example (ASE 15):
set identity insert [%QUALIFIER%]%QOBJTCODE% off

InsertldentityOn

Specifies a statement for disabling insertion of data into a table containing an
identity column.

Example (ASE 15):
set identity insert [$QUALIFIER%]%QOBJTCODES on

Customizing and Extending PowerDesigner 149

CHAPTER 4: DBMS Definition Files

Item

Description

Rename

[modify] Specifies a statement for renaming a table. If not specified, the

modify database process drops the foreign key constraints, creates a new table
with the new name, inserts the rows from the old table in the new table, and
creates the indexes and constraints on the new table using temporary tables.

Example (Oracle 109):

rename $OLDTABLS to $SNEWTABLS

The %OLDTABL% variable is the code of the table before renaming, and the
%NEWTABL% variable is the new code.

SqlChckQuery

Specifies a SQL query to reverse engineer table checks.
Example (SQL Anywhere 10):

{OWNER, TABLE, CONSTNAME, CONSTRAINT}

select u.user name, t.table name,

k.constraint name,

case (lcase(left (h.check defn, 5))) when 'check'
then substring(h.check defn, 6) else h.check defn
end

from sys.sysconstraint k

join sys.syscheck h on (h.check id = k.con-
straint id)

join sys.systab t on (t.object id = k.table ob-
ject id)

join sys.sysuserperms u on (u.user id = t.creator)
where k.constraint type = 'T'

and t.table type in (1, 3, 4)

[and u.user name = %.q:0WNERS%]

[and t.table name = %.q:TABLE%]

order by 1, 2, 3

150

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

SqlListRefr Tables

Specifies a SQL query used to list the tables referenced by a table.

Example (Oracle 10g):

{OWNER, TABLE, POWNER, PARENT}
select c.owner, c.table name, r.owner,
r.table name
from sys.all constraints c,
sys.all constraints r

where (c.constraint type = 'R' and c.r con-
straint name = r.constraint name and c.r owner =
r.owner)

[and c.owner = %.q:SCHEMA%]
[and c.table name = %.q:TABLES%]
union select c.owner, c.table name,
r.owner, r.table name
from sys.all constraints c,
sys.all constraints r

where (r.constraint type = 'R' and r.r con-
straint name = c.constraint name and r.r owner =
c.owner)

[and c.owner = %.q:SCHEMAS%]
[and c.table name = %.q:TABLES]

SqlListSchema

Specifies a query used to retrieve registered schemas in the database. This
item is used with tables of XML type (a reference to an XML document stored
in the database).

When you define an XML table, you need to retrieve the XML documents
registered in the database in order to assign one document to the table, this is
done using the SqlListSchema query.

Example (Oracle 10g):
SELECT schema url FROM dba xml schemas

SqlStatistics

Specifies a SQL query to reverse engineer column and table statistics. See
SqlStatistics in Column on page 152.

SqIXMLTable

Specifies a sub-query used to improve the performance of SqlAttrQuery (see
Common object items on page 144).

TableComment

[generation and reverse] Specifies a statement for adding a table comment. If
not specified, the Comment check box in the Tables and Views tabs of the
Database Generation box is unavailable.

Example (Oracle 10g):

comment on table [$QUALIFIER%]S%TABLES is
$.q:COMMENTS

The % TABLE% variable is the name of the table defined in the List of Tables,
or in the table property sheet. The %COMMENT% variable is the comment
defined in the Comment textbox of the table property sheet.

Customizing and Extending PowerDesigner 151

CHAPTER 4: DBMS Definition Files

Item Description

TypelList Specifies a list of types (for example, DBMS: relational, object, XML) for
tables. This list populates the Type list of the table property sheet.

The XML type is to be used with the SqlListSchema item.

UnigConstraint Specifies whether the same name for index and constraint name may be used
Name in the same table. The following settings are available:

¢ Yes-Thetable constraint and index names must be different, and this will
be tested during model checking

* No - The table constraint and index names can be identical

Column

The Column category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how columns are modeled for your DBMS.

Item Description
[Common items] The following common object items may be defined for columns:
« Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

¢ Create, Drop

« Enable

« Maxlen, MaxConstLen

* ModifiableAttributes

e Options, DefOptions

e Permission

e ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 144.

AddColnCheck Specifies a statement for customizing the script for modifying column con-
straints within an alter table statement.

Example (Oracle 109):

alter table [$QUALIFIER%]%TABLES
add [constraint $CONSTNAMES] check (%.A:CONSTRAINT

5)

152 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AlterTableAdd De-

Specifies a statement for defining the default value of a column in an alter

fault statement.
Example (SQL Server 2005):
[[constraint $ExtDeftConstName%] default $DEFAULT
%]for %COLUMN%
AltEnableAdd Specifies if a column check constraint, built from the check parameters of the
ColnChk column, can or cannot be added in a table using an alter table state-

ment. The following settings are available:

* Yes-AddColnChck can be used to modify the column check con-
straintinan alter table statement.

« No-PowerDesigner copies data to a temporary table before recreating the
table with the new constraints.

See also AddColnChck.

AltEnableTS Copy

Enables timestamp columns in insert statements.

Bind

Specifies a statement for binding a rule to a column.
Example (ASE 15):

[3R%? [exec]][execute]sp bindrule [%R%?
FIER$]SRULES'] [[$SQUALIFIERS] SRULES] : [' [
$1%RULE$']], 'S$TABLE%.3%COLUMNS'

['[%QUALI-
$QUALIFIER

CheckNull

Specifies whether a column can be null.

Column Comment

Specifies a statement for adding a comment to a column.
Example:

comment on column [$QUALIFIER%]S$TABLES.%COLUMNS is
%.q:COMMENTS

DefineColn Check

Specifies a statement for customizing the script of column constraints
(checks) withina create table statement. This statement is called if
the create, add, or alter statements contain %CONSTDEFN%.

Example:
[constraint $CONSTNAMES%] check (%$CONSTRAINTS)

Customizing and Extending PowerDesigner 153

CHAPTER 4: DBMS Definition Files

Item

Description

DropColnChck

Specifies a statement for dropping a column check inan alter table
statement. This statement is used in the database modification script when the
check parameters have been removed on a column.

If DropColnChck is empty, PowerDesigner copies data to a temporary
table before recreating the table with the new constraints.

Example (SQL Anywhere 10):

alter table [$QUALIFIERS]S$TABLES
drop constraint $CONSTNAMES

DropColnComp

Specifies a statement for dropping a column computed expression in an alter
table statement.

Example (SQL Anywhere 10):

alter table [%QUALIFIER%]%TABLES
alter $COLUMNS drop compute

DropDefault Con-
straint

Specifies a statement for dropping a constraint linked to a column defined
with a default value

Example (SQL Server 2005):

[$ExtDeftConstName%?alter table [$QUALIFIERS]STA-
BLES
drop constraint $ExtDeftConstName%]

EnableBindRule

Specifies whether business rules may be bound to columns for check param-
eters. The following settings are available:

e Yes - The Create and Bind entry of Rule are generated
e No - The check is generated inside the column Add order

Enable Computed-
Coln

Specifies whether computed columns are permitted.

154

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description

EnableDefault Specifies whether predefined default values are permitted. The following
settings are available:

e Yes - The default value (if defined) is generated for columns. It can be
defined in the check parameters for each column. The %DEFAULT%
variable contains the default value. The Default Value check box for
columns must be selected in the Tables & Views tabs of the Database
Generation box

* No - The default value can not be generated, and the Default Value check
box is unavailable.

Example (AS IQ 12.6):

EnableDefault is enabled and the default value for the column employee
function EMPFUNC is Technical Engineer. The generated script is:

create table EMPLOYEE
(

EMPNUM numeric(5) not null,
EMP EMPNUM numeric (5) 0
DIVNUM numeric (5) not null,
EMPFNAM char (30) ,
EMPLNAM char (30) not null,

EMPFUNC char (30)

default 'Technical Engineer',
EMPSAL numeric(8,2) ,
primary key (EMPNUM)

Customizing and Extending PowerDesigner 155

CHAPTER 4: DBMS Definition Files

Item

Description

Enableldentity

Specifies whether the Identity keyword is supported. Identity columns are
serial counters maintained by the database (for example Sybase and Microsoft
SQL Server). The following settings are available:

* Yes - Enables the Identity check box in the column property sheet.
¢ No - The Identity check box is not available.

When the Identity check box is selected, the ldentity keyword is generated in
the script after the column data type. An identity column is never null, and so
the Mandatory check box is automatically selected. PowerDesigner ensures
that:

e Only one identity column is defined per table

» A foreign key cannot be an identity column

e The Identity column has an appropriate data type. If the Identity check
box is selected for a column with an unsupported data type, the data type is
changed to numeric. If the data type of an identity column is changed to an
unsupported type, an error is displayed.

Note that, during generation, the %IDENTITY% variable contains the value
"identity" but you can easily change it, if needed, using the following syn-
tax :

[$IDENTITY%?new identity keyword]

EnableNotNull
WithDflt

Specifies whether default values are assigned to columns containing Null
values. The following settings are available:

* Yes-The With Default check box is enabled in the column property sheet.
When it is selected, a default value is assigned to a column when a Null
value is inserted.

¢ No - The With Default check box is not available.

ModifyColn Chck

Specifies a statement for modifying a column checkinanalter table
statement. This statement is used in the database modification script when the
check parameters of a column have been modified in the table.

If AddColnChck is empty, PowerDesigner copies data to a temporary
table before recreating the table with the new constraints.
Example (AS 1Q 12.6):
alter table [%QUALIFIER%]%TABLE%
modify $COLUMNS check (%$.A:CONSTRAINTS)

The %COLUMN% variable is the name of the column defined in the table
property sheet. The % CONSTRAINT % variable is the check constraint built
from the new check parameters.

AltEnableAddColnChk mustbe setto YES to allow use of this state-
ment.

156

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

ModifyColn Comp

Specifies a statement for modifying a computed expression for a columninan
alter table.

Example (ASA 6):

alter table [$QUALIFIERS%]STABLES
alter $COLUMNS set compute (%$COMPUTES)

ModifyColnDflt

Specifies a statement for modifying a column default value inan alter
table statement. This statement is used in the database modification script
when the default value of a column has been modified in the table.

If ModifyColnDf1t is empty, PowerDesigner copies data to a tempo-
rary table before recreating the table with the new constraints.

Example (ASE 15):

alter table [$QUALIFIER%]%TABLES
replace %COLUMN% default %DEFAULTS%

The %COLUMN?% variable is the name of the column defined in the table
property sheet. The %DEFAULT% variable is the new default value of the
modified column.

ModifyColnNull Specifies a statement for modifying the null/not null status of a column in an

alter table statement.

Example (Oracle 10g):

alter table [%QUALIFIER%]%TABLE%
modify $COLUMN% $MAND%

ModifyColumn Specifies a statement for modifying a column. This is a different statement
fromthe alter table statement, and is used in the database modifica-
tion script when the column definition has been modified.

Example (SQL Anywhere 10):
alter table [%QUALIFIER%]%TABLE%
modify %COLUMN% %DATATYPE% %$NOTNULL%

NullRequired Specifies the mandatory status of a column. This item is used with the
NULLNOTNULL column variable, which can take the "null", "not null" or
empty values. For more information, see Working with Null values on page
159.

Rename Specifies a statement for renaming a column withinan alter table

statement.

Example (Oracle 10g):

alter table [%$QUALIFIER%]%TABLES
rename column $%OLDCOLN% to $SNEWCOLNS%

Customizing and Extending PowerDesigner 157

CHAPTER 4: DBMS Definition Files

Item

Description

SqlChckQuery

Specifies a SQL query to reverse engineer column check parameters. The
result must conform to proper SQL syntax.

Example (SQL Anywhere 10):

{OWNER, TABLE, COLUMN, CONSTNAME, CONSTRAINT}
select u.user name, t.table name,

c.column name, k.constraint name,

case (lcase(left (h.check defn, 5))) when 'check'
then substring(h.check defn, 6) else h.check defn
end

from sys.sysconstraint k

join sys.syscheck h on (h.check id = k.con-
straint id)

join sys.systab t on (t.object id = k.table ob-
ject id)

join sys.sysuserperms u on (u.user id = t.creator)
join sys.syscolumn ¢ on (c.object id = k.ref ob-
ject id)
where k.constraint type = 'C'

[and u.user name=%.q:0WNERS]

[and t.table name=%.q:TABLES%]

[and c.column name=%.q:COLUMN%]

order by 1, 2, 3, 4

SqlStatistics

Specifies a SQL query to reverse engineer column and table statistics.

Example (ASE 15):

[$ISLONGDTTP%?{ Averagelength }

select [%$ISLONGDTTP%?[%$ISSTRDTTP%?

avg (char length (¥COLUMN%)) :avg (datalength (3COLUMN
%)) 1:null] as average length

from [%QUALIFIER%]%TABLE%

:{ NullValuesRate, DistinctValues, AveragelLength }
select

[$ISMAND%?null: (count (*) - count ($COLUMN%)) * 100 /
count (*)] as null values,
[$ISMAND%?null:count (distinct %COLUMNS%)] as dis-

tinct values,

[$ISVARDTTP%? [3ISSTRDTTP%?avg (char length ($COLUMN
%)) ravg (datalength (3COLUMN%))] :null] as aver-

age length

from [$QUALIFIERS]STABLES%]

Unbind

Specifies a statement for unbinding a rule to a column.

Example (ASE 15):

[3R%? [exec]] [execute]sp unbindrule '3%TABLE%.%COL-
UMN% '

158

PowerDesigner

CHAPTER 4: DBMS Definition Files

Working with Null Values

The NullRequired item specifies the mandatory status of a column. This item is used with the
NULLNOTNULL columnvariable, which can take the "null”, “not null" or empty values. The
following combinations are available

When the Column Is Mandatory
"not null" is always generated whether NullRequired is set to True or False as shown in the
following example:

create domain DOMN MAND char (33) not null;
create domain DOMN NULL char (33) null;

create table TABLE 1

(
COLN MAND 1 char(33) not null,
COLN MAND 2 DOMN MAND not null,
COLN_MAND_3 DOMN_NULL not null,
)i

When the Column Is not Mandatory

e If NullRequired is set to True, "null" is generated. The NullRequired item should be used
in ASE for example, where nullability is a database option, and the "null" or "not null"
keywords are required.

In the following example, all "null" values are generated:

create domain DOMN MAND char (33) not null;
create domain DOMN MAND char (33) null;

create table TABLE 1

(

COLN NULL 1 char (33) null,
COLN NULL 2 DOMN NULL null,
COLN NULL 3 DOMN MAND null
)

< IfNullRequired is set to False, an empty string is generated. However, if a column attached
to a mandatory domain becomes non-mandatory, "null" will be generated.

In the following example, "null" is generated only for COLUMN_NULL3 because this
column uses the mandatory domain, the other columns generate an empty string:

create domain DOMN MAND char (33) not null;
create domain DOMN NULL char (33) null;

create table TABLE 1

(

COLUMN NULL1 char (33) ’
COLUMN NULLZ DOMN NULL ’
COLUMN_NULL3 DOMN_MAND null
)

Customizing and Extending PowerDesigner 159

CHAPTER 4: DBMS Definition Files

Index

The Index category is located in the Root > Script > Objects category, and can contain the
following items that define how indexes are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for indexes:

e Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

* Enable, EnableOwner

e Header, Footer

e Maxlen

« ModifiableAttributes

« Options, DefOptions

¢ ReversedQueries

* ReversedStatements

« SqlAttrQuery, SglListQuery, SqlOptsQuery

For adescription of each of these common items, see Common object itemson
page 144.

AddCollIndex

Specifies a statement for adding a column inthe Create Index state-
ment. This parameter defines each column in the column list of the Create
Index statement.

Example (ASE 15):
$COLUMNS [$ASC%]

%COLUMN% is the code of the column defined in the column list of the
table. %ASC% is ASC (ascending order) or DESC (descending order) de-
pending on the Sort radio button state for the index column.

AlterlgnoreOrder

Specifies that changes in the order of the collection should not provoke a
modify database order.

Cluster

Specifies the value to be assigned to the Cluster keyword. If this parameter is
empty, the default value of the %CLUSTER% variable is CLUSTER.

CreateBefore Key

Controls the generation order of keys and indexes. The following settings are
available:

* Yes - Indexes are generated before keys.
* No - Indexes are generated after keys.

160

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

DeflndexType

Specifies the default type of an index.
Example (DB2):
Type?2

Definelndex Column

Specifies the column of an index.

EnableAscDesc

Enables the Sort property in Index property sheets, which allows sorting in
ascending or descending order. The following settings are available:

* Yes—The Sort property is enabled for indexes, with Ascending selected
by default. The variable %ASC% is calculated, and the ASC or DESC
keyword is generated when creating or modifying the database

* No - Index sorting is not supported.

Example (SQL Anywhere 10):

A primary key index is created on the TASK table, with the PRONUM column
sorted in ascending order and the TSKNAME column sorted in descending
order:

create index IX TASK on TASK (PRONUM asc, TSKNAME
desc) ;

EnableCluster

Enables the creation of cluster indexes. The following settings are available:

e Yes - The Cluster check box is enabled in index property sheets.
* No - Cluster indexes are not supported.

EnableFunction

Enables the creation of function-based indexes. The following settings are
available:

* Yes - You can define expressions for indexes.
* No - Function-based indexes are not supported.

IndexComment

Specifies a Statement for adding a comment to an index.
Example (SQL Anywhere 10):

comment on index [$QUALIFIER%]S%TABLE%.%INDEXS% is
%.q:COMMENTS

Customizing and Extending PowerDesigner 161

CHAPTER 4: DBMS Definition Files

Item

Description

IndexType

Specifies a list of available index types.
Example (IQ 12.6):

CMP
HG
HNG
LF
WD
DATE
TIME
DTTM

MandIndexType

Specifies whether the index type is mandatory for indexes. The following
settings are available:

¢ Yes - The index type is mandatory.
* No - The index type is not mandatory.

MaxCollndex

Specifies the maximum number of columns that may be included in an index.
This value is used during model checking.

SqlSysIndex Query

Specifies a SQL query used to list system indexes created by the database.
These indexes are excluded during reverse engineering.

Example (AS 1Q 12.6):

{OWNER, TABLE, INDEX, INDEXTYPE}

select u.user name, t.table name, i.index name,
i.index type

from sysindex i, systable t, sysuserperms u
where t.table id = i.table id

and u.user_id = t.creator

and i.index owner != 'USER'

[and u.user name=%.q:0WNER%]

[and t.table name=%.q:TABLES%]

union

select u.user name, t.table name, i.index name,
i.index type

from sysindex i, systable t, sysuserperms u
where t.table id = i.table id

and u.user_ id = t.creator

and i.index type = 'SA'

[and u.user name=%.q:0WNER%]

[and t.table name=%.q:TABLE%]

UnigName

Specifies whether index names must be unique within the global scope of the
database. The following settings are available:

* Yes-Index names must be unique within the global scope of the database.
e No - Index names must be unique per object

162

PowerDesigner

Pkey

CHAPTER 4: DBMS Definition Files

The Pkey category is located in the Root > Script > Objects category, and can contain the
following items that define how primary keys are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for primary keys:

« Add

¢ ConstName

¢ Create, Drop

e Enable

« Options, DefOptions
¢ ReversedQueries

For a description of each of these common items, see Common object itemson
page 144.

EnableCluster

Specifies whether clustered constraints are permitted on primary keys.

e Yes - Clustered constraints are permitted.
* No - Clustered constraints are not permitted.

PkAutolndex Determines whether a Create Index statement is generated for every

Primary key statement. The following settings are available:

* Yes - Automatically generates a primary key index with the primary key
statement. If you select the primary key check box under create index
when generating or modifying a database, the primary key check box of
the create table will automatically be cleared, and vice versa.

« No - Primary key indexes are not automatically generated. Primary key
and create index check boxes can be selected at the same time.

PKeyComment Specifies a statement for adding a primary key comment.

Customizing and Extending PowerDesigner 163

CHAPTER 4: DBMS Definition Files

Key

Item

Description

UseSpPrimKey

Specifies the use of the Sp_primarykey statement to generate primary
keys. For a database that supports the procedure to implement key definition,
you can test the value of the corresponding variable %USE_SP_PKEY% and
choose between the creation key in the table or launching a procedure. The
following settings are available:

* Yes-The Sp primarykey statement is used to generate primary
keys.

e No - Primary keys are generated separately inanalter table
statement.

Example (ASE 15):

If UseSpPrimKey is enabled the Add entry for Pkey contains:

UseSpPrimKey = YES
Add entry of

[$USE_SP PKEYS$?[execute] sp primarykey S$TABLE%,
$PKEYCOLUMNS%
ralter table [%QUALIFIER%®]STABLES
add [constraint $CONSTNAMES] primary key [$IsClus-
tered%] ($PKEYCOLUMNSS%)

[$OPTIONSS]]

The Key category is located in the Root > Script > Objects category, and can contain the
following items that define how keys are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for keys:

« Add

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

e Create, Drop

e Enable

¢ MaxConstLen

* ModifiableAttributes

* Options, DefOptions

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlOptsQuery

For adescription of each of these common items, see Common object itemson
page 144.

164

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AKeyComment

Specifies a statement for adding an alternate key comment.

AllowNullable Coln

Specifies whether non-mandatory columns are permitted. The following set-
tings are available:

* Yes - Non mandatory columns are permitted.
* No - Non mandatory column are not permitted.

AlterlgnoreOrder

Specifies that changes in the order of the collection should not provoke a
modify database order.

EnableCluster

Specifies whether clustered constraints are permitted on alternate keys.

* Yes - Clustered constraints are permitted.
* No - Clustered constraints are not permitted.

SqlAkeyIndex

Specifies a reverse-engineering query for obtaining the alternate key indexes
of a table by live connection.

Example (SQL Anywhere 10):

select distinct i.index name
from sys.sysuserperms u

join sys.systable t on

(t.creator=u.user id)

join sys.sysindex i on

(i.table id=t.table id)
where i."unique" not in ('Y', 'N")
[and t.table name = %.q:TABLE%]
[and u.user name = %.q:SCHEMA%]

UnigConstAuto In-
dex

Determines whether a Create Index statement is generated for every
key statement. The following settings are available:

* Yes - Automatically generates an alternate key index within the alternate
key statement. If you select the alternate key check box under create index
when generating or modifying a database, the alternate key check box of
the create table will automatically be cleared, and vice versa.

* No - Alternate key indexes are not automatically generated. Alternate key
and create index check boxes can be selected at the same time.

Customizing and Extending PowerDesigner 165

CHAPTER 4: DBMS Definition Files

Reference

The Reference category is located in the Root > Script > Obj ects category, and can contain
the following items that define how references are modeled for your DBMS.

Item Description
[Common items] The following common object items may be defined for references:
* Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

¢ Create, Drop

« Enable

¢ MaxConstLen

« ModifiableAttributes

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 144.

CheckOn Commit Specifies that referential integrity testing is performed only after the COM-
MIT. Contains the keyword used to specify a reference with the CheckOn-
Commit option.

Example:
CHECK ON COMMIT

DclDellIntegrity Specifies a list of declarative referential integrity constraints allowed for
delete. The listcan contain any or all of the following values, which control the
availability of the relevant radio buttons on the Integrity tab of reference

property sheets:
e RESTRICT
« CASCADE
e SET NULL

SET DEFAULT

166 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

DclUpdIntegrity

Specifies a list of declarative referential integrity constraints allowed for
update. The list can contain any or all of the following values, which control
the availability of the relevant radio buttons on the Integrity tab of reference
property sheets:

* RESTRICT
« CASCADE
« SET NULL

» SET DEFAULT

DefineJoin

Specifies a statement to define a join for a reference. This is another way of
defining the contents of the create reference statement, and corre-
sponds to the %JOINS% variable.

Usually the create script for a reference uses the % CKEYCOLUMNS%
and %PKEYCOLUMNS% variables, which contain the lists of child and
parent columns separated by commas.

If you use %JOINS%, you can refer to each paired parent and child columns
separately. A loop is executed on Join for each paired parent and child col-
umns, allowing to have a syntax mix of PK and FK.

Example (Access 2000):

EnableChange Join-
Order

Specifies whether, when a reference is linked to a key as shown in the Joins tab
of reference properties, the auto arrange join order check box and features are
available. The following settings are available:

e Yes - The join order can be established automatically, using the Auto
arrange join order check box. Selecting this check box sorts the list ac-
cording to the key column order. Clearing this check box allows manual
sorting of the join order with the move buttons.

* No - The auto arrange join order property is unavailable.

EnableCluster

Specifies whether clustered constraints are permitted on foreign keys.

e Yes - Clustered constraints are permitted.
* No - Clustered constraints are not permitted.

EnablefKey Name

Specifies the foreign key role allowed during database generation. The fol-
lowing settings are available:

* Yes - The code of the reference is used as role for the foreign key.
¢ No - The foreign key role is not allowed.

Customizing and Extending PowerDesigner 167

CHAPTER 4: DBMS Definition Files

Item

Description

FKAutolndex

Determines whether a Create Index statement is generated for every
foreign key statement. The following settings are available:

e Yes - Automatically generates a foreign key index with the foreign key
statement. If you select the foreign key check box under create index when
generating or modifying a database, the foreign key check box of the
create table will automatically be cleared, and vice versa.

* No - Foreign key indexes are not automatically generated. Foreign key
and create index check boxes can be selected at the same time.

FKeyComment

Specifies a statement for adding an alternate key comment.

SqlListChildren
Query

Specifies a SQL query used to list the joins in a reference.

Example (Oracle 10g):

{CKEYCOLUMN, FKEYCOLUMN }

[$ISODBCUSER%?select

p.column name, f.column name

from sys.user cons columns £,
sys.all cons columns p

where f.position = p.position
and f.table name=%.q:TABLES

[and p.owner=%.q:POWNERS]

and p.table name=%.q:PARENTS

and f.constraint name=%.q:FKCONSTRAINTS
and p.constraint name=%.q:PKCONSTRAINTS

order by f.position

:select p.column name, f.column name

from sys.all cons columns f,
sys.all cons columns p

where f.position = p.position

and f.owner=%.qg:SCHEMAS%
and f.table name=%.q:TABLES
[and p.owner=%.q:POWNER%]
and p.table name=%.q:PARENTS%
and f.constraint name=%.q:FKCONSTRAINTS
and p.constraint name=%.q:PKCONSTRAINTS
b

order by f.position]

UseSpFornKey

Specifies the use of the Sp foreignkey statement to generate a foreign
key. The following settings are available:

* Yes-The Sp_foreignkey statement is used to create references.

* No-Foreign keys are generated separatelyinanalter table state-
ment using the Create order of reference.

See also UseSpPrimKey (Pkeyon page 163).

168

PowerDesigner

View

CHAPTER 4: DBMS Definition Files

The View category is located in the Root > Script > Objects category, and can contain the
following items that define how views are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for views:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

* Enable, EnableSynonym

* Header, Footer

* ModifiableAttributes

e Options

e Permission

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 144.

Enablelndex

Specifies a list of view types for which a view index is available.

Example (Oracle 10g):
MATERIALIZED

SqlListSchema

Specifies a query used to retrieve registered schemas in the database. This
item is used with views of XML type (a reference to an XML document stored
in the database).

When you define an XML view, you need to retrieve the XML documents
registered in the database in order to assign one document to the view, this is
done using the SqlListSchema query.

Example (Oracle 10g):

SELECT schema url FROM dba xml schemas

SqIXMLView

Specifies a sub-query used to improve the performance of SqlAttrQuery.

TypelList

Specifies a list of types (for example, DBMS: relational, object, XML) for
views. This list populates the Type list of the view property sheet.

The XML type is to be used with the SqlListSchema item.

Customizing and Extending PowerDesigner 169

CHAPTER 4: DBMS Definition Files

Item Description

ViewCheck Specifies whether the With Check Option check box in the view property
sheet is available. If the check box is selected and the ViewCheck param-
eter is not empty, the value of ViewCheck is generated at the end of the
view select statement and before the terminator.

Example (SQL Anywhere 10):

If ViewCheck is set to with check option, the generated script is:
create view TEST as

select CUSTOMER.CUSNUM, CUSTOMER.CUSNAME, CUSTOM-
ER.CUSTEL

from CUSTOMER

with check option;

ViewComment Specifies a statement for adding a view comment. If this parameter is empty,
the Comment check box in the Views groupbox in the Tables and Views tabs
of the Generate Database box is unavailable.

Example (Oracle 10g):
[$VIEWSTYLE®S=view? comment on table [%QUALIFIERS%]
SVIEWS is
%.q:COMMENT%]
ViewStyle Specifies a view usage. The value defined is displayed in the Usage list of the

view property sheet.
Example (Oracle 10g):

materialized view

170

PowerDesigner

Tablespace

CHAPTER 4: DBMS Definition Files

The Tablespace category is located in the Root > Script > Obj ects category, and can contain
the following items that define how tablespaces are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for tablespaces:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

e Enable

* ModifiableAttributes

e Options, DefOptions

* ReversedQueries, ReversedStatements

« SqlAttrQuery, SglListQuery, SqlOptsQuery

For adescription of each of these common items, see Common object itemson

page 144.
Tablespace Com- Specifies a statement for adding a tablespace comment.
ment
Storage

The Storage category is located in the Root > Script > Obj ects category, and can contain the
following items that define how storages are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for storages:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
« Create, Drop

* Enable

* ModifiableAttributes

e Options, DefOptions

* ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson

page 144.

Storage Comment

Specifies a statement for adding a storage comment.

Customizing and Extending PowerDesigner

171

CHAPTER 4: DBMS Definition Files

Database

The Database category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how databases are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for databases:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable

* ModifiableAttributes

e Options, DefOptions

e Permission

¢ ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 144.

BeforeCreate Data- | Controls the order in which databases, tablespaces, and storages are gener-
base ated. The following settings are available:

e Yes-—[default] Create Tablespace and Create Storage statements are gen-
erated before the Create Database statement.

* No - Create Tablespace and Create Storage statements are generated after
the Create Database statement

CloseDatabase Specifies the command for closing the database. If this parameter is empty, the
Database/Close option on the Options tab of the Generate Database box is
unavailable.

EnableMany Data- Enables support for multiple databases in the same model.

bases

OpenDatabase Specifies the command for opening the database. If this parameter is empty,
the Database/Open option on the Options tab of the Generate Database box is
unavailable.

Example (ASE 15):
use %DATABASES

The %DATABASE% variable is the code of the database associated with the
generated model.

172 PowerDesigner

Domain

CHAPTER 4: DBMS Definition Files

The Domain category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how domains are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for domains:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* Enable, EnableOwner

¢ Maxlen

* ModifiableAttributes

* ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery

For adescription of each of these common items, see Common object itemson
page 144.

Bind

Specifies the syntax for binding a business rule to a domain.

Example (ASE 15):

[3R%? [exec]] [execute]sp bindrule [%R%?['[3QUALI-
FIER%]SRULES'] [[$QUALIFIER%]$RULES] : [' [$QUALIFIER
%$]%SRULE%']], $DOMAIN%

EnableBindRule

Specifies whether business rules may be bound to domains for check param-
eters. The following settings are available:

* Yes - The Create and Bind entry of Rule are generated
e No - The check inside the domain Add order is generated

EnableCheck

Specifies whether check parameters are generated.

This item is tested during column generation. If User-defined Type is selected
for columns in the Generation dialog box, and EnableCheck is set to Yes for
domains, then the check parameters are not generated for columns, since the
column is associated with a domain with check parameters. When the checks
on the column diverge from those of the domain, the column checks are
generated.

The following settings are available:

e Yes - Check parameters are generated

* No - Variables linked to check parameters are not evaluated during gen-
eration and reverse

Customizing and Extending PowerDesigner 173

CHAPTER 4: DBMS Definition Files

Item Description
EnableDefault Specifies whether default values are generated. The following settings are
available:

e Yes - Default values defined for domains are generated. The default value
can be defined in the check parameters. The %DEFAULT% variable
contains the default value

e No - Default values are not generated

SqlListDefault Specifies a SQL query to retrieve and list domain default values in the system
Query tables during reverse engineering.

UddtComment Specifies a statement for adding a user-defined data type comment.

Unbind Specifies the syntax for unbinding a business rule from a domain.

Example (ASE 15):

[3R%? [exec]][execute]sp unbindrule %DOMAIN%

Abstract Data Type

The Abstract Data Type category is located in the Root > Script > Obj ects category, and can
contain the following items that define how abstract data types are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for abstract data types:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify

e Create, Drop

e Enable

* ModifiableAttributes

e Permission

e ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 144.

ADTComment Specifies a statement for adding an abstract data type comment.

AllowedADT Specifies a list of abstract data types which can be used as data types for
abstract data types.

Example (Oracle 10g):

OBJECT
TABLE
VARRAY

174 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

Authorizations

Specifies a list of those users able to invoke abstract data types.

CreateBody

Specifies a statement for creating an abstract data type body.
Example (Oracle 10g):

create [or replace]Jtype body [$QUALIFIERS]S$ADTS
[.0:[as] [is]]

$ADTBODY%
end;

EnableAdtOn Coln

Specifies whether abstract data types are enabled for columns. The following
settings are available:

* Yes - Abstract Data Types are added to the list of column types provided
they have the valid type.

* No - Abstract Data Types are not allowed for columns.

EnableAdtOn Domn

Specifies whether abstract data types are enabled for domains. The following
settings are available:

e Yes - Abstract Data Types are added to the list of domain types provided
they have the valid type

* No - Abstract Data Types are not allowed for domains

Enable Inheritance

Enables inheritance for abstract data types.

Install

Specifies a statement for installing a Java class as an abstract data class (in
ASA, abstract data types are installed and removed rather than created and
deleted). This item is equivalentto a create statement.

Example (SQL Anywhere 10):
install JAVA UPDATE from file $.q:FILES

JavaData

Specifies a list of available instantiation mechanisms for SQL Java abstract
data types.

Remove

Specifies a statement for installing a Java class as an abstract data class.
Example (SQL Anywhere 10):

remove JAVA class S$%ADTS

Customizing and Extending PowerDesigner 175

CHAPTER 4: DBMS Definition Files

Abstract Data Type Attribute

The Abstract Data Types Attribute category is located in the Root > Script > Objects
category, and can contain the following items that define how abstract data type attributes are

modeled for your DBMS.
Item Description
[Common items] The following common object items may be defined for abstract data type
attributes:
« Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
« Create, Drop, Modify

* ModifiableAttributes

* ReversedQueries, ReversedStatements

e SqlListQuery

For a description of each of these common items, see Common object itemson
page 144.

AllowedADT Specifies a list of abstract data types which can be used as data types for
abstract data type attributes.

Example (Oracle 10g):

OBJECT
TABLE
VARRAY

If you select the type OBJECT for an abstract data type, an Attributes tab
appears in the abstract data type property sheet, allowing you to specify the
attributes of the object data type.

176 PowerDesigner

User

CHAPTER 4: DBMS Definition Files

The User category is located in the Root > Script > Objects category, and can contain the
following items that define how users are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for users:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable

¢ Maxlen

* ModifiableAttributes

e Options, DefOptions

¢ ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 144.

UserComment

Specifies a statement for adding a user comment.

Rule

The Rule category is located in the Root > Script > Objects category, and can contain the
following items that define how rules are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for rules:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

e Enable

¢ Maxlen

* ModifiableAttributes

e ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 144.

Customizing and Extending PowerDesigner 177

CHAPTER 4: DBMS Definition Files

Item

Description

ColnDefault Name

Specifies the name of a default for a column. This item is used with DBMSs
that do not support check parameters on columns. When a column has a
specific default value defined in its check parameters, a name is created for
this default value.

The corresponding variable is %DEFAULTNAME%.
Example (ASE 15):
D %.19:COLUMN% %.8:TABLES

The EMPFUNC column of the EMPLOYEE table has a default value of
Technical Engineer. The D EMPFUNC EMPLOYEE column
default name is created:

create default D EMPFUNC EMPLOYEE

as 'Technical Engineer'

go

execute sp bindefault D EMPFUNC EMPLOYEE, "EMPLOY-
EE.EMPFUNC"

go

ColnRuleName

Specifies the name of a rule for a column. This item is used with DBMSs that
do not support check parameters on columns. When a column has a specific
rule defined in its check parameters, a name is created for this rule.

The corresponding variable is %RULE%.

Example (ASE 15):
R %$.19:COLUMN%_ %.8:TABLE%

The TEASPE column of the Team table has a list of values - Industry, Military,
Nuclear, Bank, Marketing - defined in its check parameters:

The R_TEASPE_TEAM rule name is created and associated with the TEA-
SPE column:

create rule R TEASPE TEAM

as @TEASPE in ('Industry', 'Military', 'Nu-
clear', 'Bank', '"Marketing')

go

execute sp bindrule R TEASPE TEAM, "TEAM.TEASPE"
go

MaxDefaultLen

Specifies the maximum length that the DBMS supports for the name of the
column Default name

RuleComment

Specifies a statement for adding a rule comment.

178

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

UddtDefault Name

Specifies the name of a default for a user-defined data type. This item is used
with DBMSs that do not support check parameters on user-defined data types.
When a user-defined data type has a specific default value defined in its check
parameters, a name is created for this default value.

The corresponding variable is %DEFAULTNAME%.

Example (ASE 15):

D _%.28:DOMAIN%

The FunctionList domain has a default value defined in its check

parameters: Technical Engineer. The following SQL script will
generate a default name for that default value:

create default D FunctionList
as 'Technical Engineer'

go

UddtRuleName

Specifies the name of arule for a user-defined data type. This item is used with
DBMSs that do not support check parameters on user-defined data types.
When a user-defined data type has a specific rule defined in its check param-
eters, a name is created for this rule.

The corresponding variable is %RULE%.
Example (ASE 15):
R %.28:DOMAIN%

The Domain_ specialitydomain hastobelong toasetofvalues. This
domain check has been defined in a validation rule. The SQL script will
generate the rule name following the template defined in the item Udd-
tRuleName:

create rule R Domain speciality

as (@Domain speciality in ('Industry', 'Mili-
tary', 'Nuclear', 'Bank', 'Marketing'))
go

execute sp bindrule R Domain speciality, T Do-
main speciality
go

Customizing and Extending PowerDesigner 179

CHAPTER 4: DBMS Definition Files

Procedure

The Procedure category is located in the Root > Script > Obj ects category, and can contain
the following items that define how procedures are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for procedures:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

« Enable, EnableOwner, EnableSynonym

¢ Maxlen

* ModifiableAttributes

e Permission

¢ ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 144.

CreateFunc Specifies the statement for creating a function.
Example (SQL Anywhere 10):

create function [%$QUALIFIER%]S%FUNCS[%$SPROCPRMSS?
([SPROCPRMS%])] $TRGDEFN%

CustomFunc Specifies the statement for creating a user-defined function, a form of pro-
cedure that returns a value to the calling environment for use in queries and
other SQL statements.

Example (SQL Anywhere 10):

create function [$QUALIFIER%]SFUNCS (<arg> <type>)
RETURNS <type>

begin

end

CustomProc Specifies the statement for creating a stored procedure.
Example (SQL Anywhere 10):

create procedure [$QUALIFIERS%]S$PROCS (IN <arg>
<type>)

begin

end

180 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description

DropFunc Specifies the statement for dropping a function.
Example (SQL Anywhere 10):

if exists(select 1 from sys.sysprocedure where
proc name = %.q:FUNC%[and user name (creator) =
%.q:0OWNER%]) then

drop function [$QUALIFIER%]S$FUNCS

end if

EnableFunc Specifies whether functions are allowed. Functions are forms of procedure
that return a value to the calling environment for use in queries and other SQL
statements.

Function Comment | Specifies a statement for adding a function comment.

ImplementationType | Specifies a list of available procedure template types.

MaxFuncLen Specifies the maximum length of the name of a function.

Procedure Comment | Specifies a statement for adding a procedure comment.

Trigger

The Trigger category is located in the Root > Script > Objects category, and can contain the
following items that define how triggers are modeled for your DBMS.

ltem Description

[Common items] The following common object items may be defined for triggers:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* Enable, EnableOwner

e Maxlen

« ModifiableAttributes

¢ ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For adescription of each of these common items, see Common object itemson
page 144.

DefaultTrigger Specifies a template to define default trigger names.
Name Example (SQL Anywhere 10):
$TEMPLATE% %.L:TABLE%

EnableMulti Trigger | Enables the use of multiple triggers per type.

Customizing and Extending PowerDesigner 181

CHAPTER 4: DBMS Definition Files

Item

Description

Event

Specifies a list of trigger event attributes to populate the Event list on the
Definition tab of Trigger property sheets.

Example:

Delete
Insert
Update

EventDelimiter

Specifies a character to separate multiple trigger events.

ImplementationType

Specifies a list of available trigger template types.

Time

Specifies a list of trigger time attributes to populate the Time list on the
Definition tab of Trigger property sheets.

Example:

Before
After

Trigger Comment

Specifies a statement for adding a trigger comment.

UnigName

Specifies whether trigger names must be unique within the global scope of the
database. The following settings are available:

* Yes—Trigger names must be unique within the global scope of the data-
base.

« No - Trigger names must be unique per object

182

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

UseErrorMsg Table

Specifies a macro for accessing trigger error messages from a message table in
your database.

Enables the use of the User-defined radio button on the Error Messages tab of
the Trigger Rebuild dialog box (see Data Modeling > Building Data Models >
Triggers and Procedures > Generating Triggers and Procedures > Creating
User-Defined Error Messages).

If an error number in the trigger script corresponds to an error number in the
message table, the default error message of the .ERROR macro is replaced
your message.

Example (ASE 15):
begin
select @errno = %ERRNOS%,

@errmsg = $MSGTXTS%
from $MSGTAB%

where $MSGNO% = 3%ERRNO%
goto error

end
Where:

* %ERRNO% - error number parameter to the .ERROR macro

* %ERRMSG% - error message text parameter to the .ERROR macro

* %MSGTAB - name of the message table

e %MSGNO% - name of the column that stores the error message number
* %MSGTXT% - name of the column that stores the error message text

See also UseErrorMsgText.

UseErrorMsg Text

Specifies a macro for accessing trigger error messages from the trigger tem-
plate definition.

Enables the use of the Standard radio button on the Error Messages tab of the
Trigger Rebuild dialog box.

The error number and message defined in the template definition are used.

Example (ASE 15):

begin
select @errno = S%ERRNOS%,
@errmsg = $SMSGTXTS
goto error
end

See also UseErrorMsgTable.

ViewTime

Specifies a list of available times available for trigger on view.

Customizing and Extending PowerDesigner

183

CHAPTER 4: DBMS Definition Files

DBMS Trigger

The DBMS Trigger category is located in the Root > Script > Objects category, and can
contain the following items that define how DBMS triggers are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for DBMS triggers:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

e Alter, AlterStatementList, AlterDBIgnored
* Enable, EnableOwner

e Header, Footer

e Maxlen

« ModifiableAttributes

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 144.

EventDelimiter

Specifies a character to separate multiple trigger events.

Events_scope

Specifies a list of trigger event attributes to populate the Event list on the
Definition tab of Trigger property sheets for the selected scgpe, for example,
schema, database, server.

Scope Specifies a list of available scopes for the DBMS trigger. Each scope must
have an associated Events_scope item.
Time Specifies a list of trigger time attributes to populate the Time list on the

Definition tab of Trigger property sheets.

Example:

Before
After

Trigger Comment

Specifies a statement for adding a trigger comment.

184

PowerDesigner

Join Index

CHAPTER 4: DBMS Definition Files

The Join Index category is located in the Root > Script > Objects category, and can contain
the following items that define how join indexes are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for join indexes:

« Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

* Enable, EnableOwner

e Header, Footer

e Maxlen

« ModifiableAttributes

« Options, DefOptions

* ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Cormmon object itemson
page 144.

AddJoin

Specifies the SQL statement used to define joins for join indexes.
Example:
Tablel.colnl = Table2.coln2

EnablelidxColn

Enables support for attaching multiple columns to a join index. In Oracle 9i,
this is called a bitmap join index.

Joinlndex Comment

Specifies a statement for adding a join index comment.

Qualifier

The Qualifier category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how qualifiers are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for qualifiers:

e Enable
¢ ReversedQueries
e SqlListQuery

For a description of each of these common items, see Common object ftemson
page 144.

Customizing and Extending PowerDesigner 185

CHAPTER 4: DBMS Definition Files

Item Description
Label Specifies a label for <all> in the qualifier selection list.
Sequence

The Sequence category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how sequences are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for sequences:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable, EnableOwner, EnableSynonym

e Maxlen

« ModifiableAttributes

« Options, DefOptions

e Permission

* ReversedQueries, ReversedStatements

* SqlAttrQuery, SqlListQuery, SqlPermQuery

For adescription of each of these common items, see Common object itemson
page 144.

Rename Specifies the command for renaming a sequence.
Example (Oracle 10g):
rename S$OLDNAMES to $SNEWNAMES

Sequence Comment | Specifies a statement for adding a sequence comment.

186 PowerDesigner

CHAPTER 4: DBMS Definition Files

Synonym
The Synonym category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how synonyms are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for synonyms:

e Create, Drop

* Enable, EnableSynonym

* Maxlen

¢ ReversedQueries

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 144.

EnableAlias Specifies whether synonyms may have a type of alias.

Group
The Group category is located in the Root > Script > Objects category, and can contain the
following items that define how groups are modeled for your DBMS.

Iltem Description

[Common items] The following common object items may be defined for groups:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

e Create, Drop

« Enable

¢ Maxlen

* ModifiableAttributes

e ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object itemson
page 144.

Bind Specifies a command for adding a user to a group.
Example (SQL Anywhere 10):

grant membership in group %GROUP% to $SUSER%

Group Comment Specifies a statement for adding a group comment.

ObjectOwner Allows groups to be object owners.

Customizing and Extending PowerDesigner 187

CHAPTER 4: DBMS Definition Files

Item

Description

SqlListChildren
Query

Specifies a SQL query for listing the members of a group.
Example (ASE 15):

{GROUP ID, MEMBER}
select g.name, u.name

from

[$CATALOG%.]dbo.sysusers u, [%CATALOGS.]dbo.sysus-—
ers g

where

u.suid > 0 and

u.gid = g.gid and

g.gid = g.uid

order by 1, 2

Unbind

Specifies a command for removing a user from a group.
Example (SQL Anywhere 10):

revoke membership in group %GROUP% from $SUSERS

Role

The Role category is located in the Root > Script > Objects category, and can contain the
following items that define how roles are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for roles:

* AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable

e Maxlen

* ModifiableAttributes

» ReversedQueries, ReversedStatements

« SqglAttrQuery, SqlListQuery, SqlPermQuery

For adescription of each of these common items, see Common object itemson
page 144.

Bind

Specifies a command for adding a role to a user or to another role.
Example (ASE 15):
grant role $ROLES to $USERS

188

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

SqlListChildren
Query

Specifies a SQL query for listing the members of a group.
Example (ASE 15):

{ ROLE ID, MEMBER }
SELECT r.name, u.name
FROM
master.dbo.sysloginroles 1,
[$CATALOGS.]dbo.sysroles s,
[$CATALOGS .]dbo.sysusers u,
[$CATALOG%.]dbo.sysusers r
where
1l.suid = u.suid
and s.id =1l.srid
and r.uid = s.lrid

Unbind

Specifies a command for removing a role from a user or another role.

DB Package

The DB Package category is located in the Root > Script > Objectscategory, and can contain
the following items that define how database packages are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for database packages:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

e Create, Drop

« Enable, EnableSynonym

¢ Maxlen

* ModifiableAttributes

e Permission

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlPermQuery

For adescription of each of these common items, see Common object itemson
page 144.

Authorizations

Specifies a list of those users able to invoke database packages.

Customizing and Extending PowerDesigner 189

CHAPTER 4: DBMS Definition Files

Item

Description

CreateBody

Specifies a template for defining the body of the database package. This
statement is used in the extension statement AfterCreate.

Example (Oracle 109):

create [or replace]package body [%QUALIFIERS%]
$DBPACKAGES [.0:[as] [is]][%$IsPragma%$? pragma seri-
ally reusable]

$DBPACKAGERBODYS

[begin

$DBPACKAGEINITS

lend[$DBPACKAGES];

DB Package Sub-objects

The following categories are located in the Root > Script > Objects category:

DB Package Procedure
DB Package Variable

DB Package Type

DB Package Cursor
DB Package Exception
DB Package Pragma

Each contains many of the following items that define how database packages are modeled for
your DBMS.

Item

Description

[Common items]

The following common object items may be defined for database packages:
* Add
¢ ReversedQueries

For a description of each of these common items, see Common object itemson
page 144.

DBProcedure Body

[database package procedures only] Specifies a template for defining the body
of the package procedure in the Definition tab of its property sheet.

Example (Oracle 10g):

begin
end

190

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

ParameterTypes

[database package procedures and cursors only] Specifies the available types
for procedures or cursors.

Example (Oracle 10g: procedure):

in

in nocopy

in out

in out nocopy
out

out nocopy

Parameter

The Parameter category is located in the Root > Script > Objects category, and can contain
the following items that define how parameters are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for database packages:
* Add
¢ ReversedQueries

For adescription of each of these common items, see Common object itemson
page 144.

Privilege

The Privilege category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how privileges are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for privileges:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

e Enable

* ModifiableAttributes

* ReversedQueries, ReversedStatements

For a description of each of these common items, see Common object itemson
page 144.

Customizing and Extending PowerDesigner 191

CHAPTER 4: DBMS Definition Files

Item Description

GrantOption Specifies the grant option for a privileges statement.
Example (Oracle 10g):

with admin option

Revokelnherited Allows you to revoke inherited privileges from groups and roles.
RevokeOption Specifies revoke option for a privileges statement.
System Specifies a list of available system privileges.

Example (ASE 15):

CREATE DATABASE
CREATE DEFAULT
CREATE PROCEDURE
CREATE TRIGGER
CREATE RULE
CREATE TABLE
CREATE VIEW

Permission

The Permission category is located in the Root > Script > Obj ects category, and can contain
the following items that define how permissions are modeled for your DBMS.

Iltem Description

[Common items] The following common object items may be defined for permissions:

¢ Create, Drop

« Enable

* ReversedQueries
e SqlListQuery

For adescription of each of these common items, see Common object itemson
page 144.

GrantOption Specifies the grant option for a permissions statement.
Example (ASE 15):

with grant option

Revokelnherited Allows you to revoke inherited permissions from groups and roles.
RevokeOption Specifies the revoke option for a permissions statement.

Example (ASE 15):

cascade

192 PowerDesigner

Default

CHAPTER 4: DBMS Definition Files

The Default category is located in the Root > Script > Objects category, and can contain the
following items that define how defaults are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for defaults:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* Enable, EnableOwner

¢ Maxlen

* ModifiableAttributes

* ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery

For adescription of each of these common items, see Common object itemson
page 144.

Bind

Specifies the command for binding a default object to a domain or a column.

When a domain or a column use a default object, a binddefault statement is
generated after the domain or table creation statement. In the following ex-
ample, column Address in table Customer uses default object CITYDFLT:

create table CUSTOMER (
ADDRESS char (10) null

)
sp_bindefault CITYDFLT, 'CUSTOMER.ADDRESS'

If the domain or column use a default value directly typed in the Default list,
then the default value is declared in the column creation line:

ADDRESS char (10) default 'StdAddr' null

PublicOwner

Enables PUBLIC to own public synonyms.

Unbind

Specifies the command for unbinding a default object from a domain or a
column.

Example (ASE 15):

[3R%? [exec]] [execute]sp unbindefault
%.q:BOUND_OBJECT%

Customizing and Extending PowerDesigner 193

CHAPTER 4: DBMS Definition Files

Web Service and Web Operation

The Web Service and Web Operation categories are located in the Root > Script > Objects
category, and can contain the following items that define how web services and web
operations are modeled for your DBMS.

Item Description
[Common items] The following common object items may be defined for web services and web
operations:

« AfterCreate, AfterDrop, AfterModify
e Alter

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

* Enable, EnableOwner

e Header, Footer

e MaxConstLen (web operations only)

e Maxlen

* ModifiableAttributes

* ReversedQueries, ReversedStatements
e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object itemson
page 144.

Enable Namespace | Specifies whether namespaces are supported.

EnableSecurity Specifies whether security options are supported.

OperationType List | [web operation only] Specifies a list of web service operation types.
Example (DB2 UDB 8.x CS):

query
update
storeXML
retrieveXML
call

ServiceTypeList [web service only] Specifies a list of web service types.
Example (SQL Anywhere 10):

RAW
HTML
XML
DISH

UnigName Specifies whether web service operation names must be unique in the data-
base.

194 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

WebService Com-
ment/ WebOperation
Comment

Specifies the syntax for adding a comment to web service or web service
operation.

Web Parameter

The Web Parameter category is located in the Root > Script > Objects category, and can
contain the following items that define how web parameters are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for web parameters:
* Add
* Enable

For adescription of each of these common items, see Common object itemson
page 144.

EnableDefault

Allows default values for web service parameters.

ParameterDttp List

Specifies a list of data types that may be used as web service parameters.

Result Column

The Result Column category are located in the Root > Script > Objects category, and can
contain the following items that define how web services and web operations are modeled for

your DBMS.

Item

Description

ResultColumn
DttpList

Specifies a list of data types that may be used for result columns.

Customizing and Extending PowerDesigner

195

CHAPTER 4: DBMS Definition Files

Dimension

The Dimension category is located in the Root > Script > Objects category, and can contain
the following items that define how dimensions are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for dimensions:

« AfterCreate, AfterDrop, AfterModify

e Alter

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

¢ Enable
e Header, Footer
¢ Maxlen

¢ ReversedQueries
e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 144.

AddAttr Hierarchy | Specifies the syntax for defining a list of hierarchy attributes.

Example (Oracle 10g):
child of $DIMNATTRHIERS

AddAttribute Specifies the syntax for defining an attribute.
Example (Oracle 109):

attribute $DIMNATTR® determines [.0O: [($DIMNDEPCOLN-
LIST%)] [$DIMNDEPCOLNS]]

AddHierarchy Specifies the syntax for defining a dimension hierarchy.
Example (Oracle 10g):

hierarchy $DIMNHIERS% (
$SDIMNATTRHIERFIRSTS $DIMNATTRHIERLISTS)

AddJoin Hierarchy | Specifies the syntax for defining a list of joins for hierarchy attributes.
Example (Oracle 10g):

join key [.O:[(%DIMNKEYLIST%)][%DIMNKEY LIST%]] references
%DIMNPARENTLEVEL%

196 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AddLevel

Specifies the syntax for dimension level (attribute).
Example (Oracle 10g):

level %DIMNATTR% is [.O:[(%DIMNCOLNLIST%)][%DIMNTABL%.
%DIMNCOLN%]]

Extended Object

The Extended Object category is located in the Root > Script > Objects category, and can
contain the following items that define how extended objects are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for extended objects:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* EnableSynonym

e Header, Footer

« ModifiableAttributes

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object itemson
page 144.

AlterStatement List

Specifies a list of text items representing statements modifying the corre-
sponding attributes

Comment

Specifies the syntax for adding a comment to an extended object.

Script/Data Type Category (DBMS)

The Data Type category provides mappings to allow PowerDesigner to handle DBMS-
specific data types correctly.

The following variables are used in many of the entries:

e %n - Length of the data type
* %s - Size of the data type
* %p - Precision of the data type

Customizing and Extending PowerDesigner 197

CHAPTER 4: DBMS Definition Files

Item

Description

AmcdAmcd-
Type

Lists mappings to convert from specialized data types (such as XML, IVL, ME -
DIA, etc) to standard PowerDesigner data types. These mappings are used to help
conversion from one DBMS to another, when the new DBMS does not support

one or more of these specialized types. For example, if the XML data type is not
supported, TXT is used.

AmcdDataType

Lists mappings to convert from PowerDesigner (Internal) data types to DBMS
(Physical M odel) data types.

These mappings are used during CDM to PDM generation and with the Change
Current DBM 'S command.

Examples (ASE 15):

e The PowerDesigner A%n datatype is converted to a char (%n) for ASE
15.

* The PowerDesigner VA% n datatype is converted to a varchar (%n) for
ASE 15.

PhysDataType

Lists mappings to convert from DBMS (Physical M odel) data types to Power-
Designer (Internal) data types.

These mappings are used during PDM to CDM generation and with the Change
Current DBM S command.

Examples (ASE 15):

* The ASE 15 sysname datatype is converted to a VA3 O for PowerDesigner.
e The ASE 15 integer datatype is converted to a T for PowerDesigner.

PhysDttpSize

Lists the storage sizes of DBMS data types. These values are used when estimat-
ing the size of a database.

Examples (ASE 15):

* The ASE 15 smallmoney requires 8 bytes of space.
e The ASE 15 smalldatetime requires 4 bytes of space.

OdbcPhysData
Type

Lists mappings to convert from live database (ODBC) data types to DBMS
(Physical Model) data types during database reverse engineering.

These mappings are used when data types are stored differently in the database
(often due to the inclusion of a default size) than in the DBMS notation.

Examples (ASE 15):

e Afloat (8) inan ASE 15 database is reversed asa float.
e Adecimal (30, 6) inan ASE 15 database is reversed as a decimal.

198

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description
PhysOdbcData | Lists mappings of DBMS (Physical M odel) data types to database (ODBC) data
Type types for use when updating and reverse engineering a database.
These mappings are used when data types that are functionally equivalent but
different to those specified in the PDM are found in an existing database to avoid
the display of unnecessary and irrelevant differences in the Merge dialog.
Examples (ASE 15):
e Aunichar istreated as equivalentto a unichar (1) inan ASE 15
database.
e Afloat (1) istreated asequivalenttoa float (4) inan ASE 15
database.
PhysLogADT Lists mappings to convert from DBMS (Physical M odel) abstract data types to
Type PowerDesigner (I nternal) abstract data types.
These mappings are used to populate the Type field and display the appropriate
properties in abstract data type property sheets and with the Change Current
DBM S command.
Examples (Oracle 119):
e The Oracle 11g VARRAY abstract data type is converted to an Array for
PowerDesigner.
* TheOracle11g SQLJ OBJECT datatype isconvertedtoa JavaObject
for PowerDesigner.
LogPhysADT Lists mappings to convert from PowerDesigner (I nternal) abstract data types to
Type DBMS (Physical M odel) abstract data types.
These mappings are used with the Change Current DBM S command.
Examples (Oracle 119):
e The PowerDesigner L1 st abstract data type is converted to a TABLE for
Oracle 11g.
* The PowerDesigner Object abstract data type is converted to an OBJECT
for Oracle 11g.
AllowedADT Lists the abstract data types that may be used as types for columns and domains in
the DBMS.
Example (ASE 15):
« JAVA

Customizing and Extending PowerDesigner 199

CHAPTER 4: DBMS Definition Files

Item Description

HostDataType Lists mappings to convert from DBMS data types (Physical M odel) to data types
permitted as procedure parameters (Trigger).

These mappings are used to populate the Data type field in ADT procedure
parameter property sheets

Examples (Oracle 119):

* The Oracle 11g DEC data type is converted to a number.
e The Oracle 11g SMALLINT datatype is converted to an integer.

Profile Category (DBMS)

The Profile category is used to extend standard PowerDesigner objects. You can refine the
definition, behavior, and display of existing objects by creating extended attributes,
stereotypes, criteria, forms, symbols, generated files, etc, and add new objects by creating and
stereotyping extended objects and sub-objects.

You can add extensions in either:

» your DBMS definition file - you should save a backup of this file before editing it.
« aseparate extension file - which you attach to your model.

For detailed information about working with profiles, including adding extended attributes
and objects, see Chapter 2, Extension Files on page 11.

Using Extended Attributes During Generation
Extended attributes can be taken into account during generation. Each extended attribute
value can be used as a variable that can be referenced in the scripts defined in the Script
category.

Some DBMSs include predefined extended attributes. For example in PostgreSQL, domains
include default extended attributes used for the creation of user-defined data types.

200 PowerDesigner

CHAPTER 4: DBMS Definition Files

E* Domain Properties - Address [ADDRESS])

Prewview I Dependencies I Extended Dependencies I Yerzion Info
General I Standard Checks I Additional Checks Base Type | Motes I Rules

Length: ||

Array Element type: I

Array delimiter: I

[~ Bu¥alue

Input function:

Qutput function;

Send function:

Receive function;

< Less | - QK I Cancel | Apply Help |

You can create as many extended attributes as you need, for each DBMS supported object.

Note: PowerDesigner variable names are case sensitive. The variable name must be an exact
match of the extended attribute name.

Example
For example, in DB2 UDB 7 0S/390, the extended attribute WhereNotNull allows you to
add a clause enforcing the uniqueness of index names if they are not null.

Inthe Create index order, WhereNotNull is evaluated as follows:

create [%INDEXTYPE%] [%UNIQUES [%$WhereNotNull%?where not
null]]lindex [%QUALIFIER%]%INDEXS on [$TABLQUALIFIERS]STABLES (
$CIDXLISTS

)
[$OPTIONS%]

If the index name is unique, and if you set the type of the WhereNotNul1l extended attribute
to True, the "where not null” clause is inserted in the script.
Inthe SqlListQuery item:

{OWNER, TABLE, INDEX, INDEXTYPE, UNIQUE, INDEXKEY, CLUSTER,
WhereNotNull}

select
tbcreator,
tbname,

Customizing and Extending PowerDesigner 201

CHAPTER 4: DBMS Definition Files

name,
case indextype when '2' then 'type 2' else 'type 1' end,

case uniquerule when 'D' then '' else 'unique' end,

case uniquerule when 'P' then 'primary' when 'U' then 'unique' else
'' end,

case clustering when 'Y' then 'cluster' else '' end,

case uniquerule when 'N' then 'TRUE' else 'FALSE' end

from

sysibm.sysindexes
where 1=1

[and tbname=%.q:TABLE%]

[and tbcreator=%.qg:0WNER%]
[and dbname=%.q:CATALOGS]
order by

1,2 ,3

Modifying the Estimate Database Size Mechanism
By default, the Estimate Database Size mechanism uses standard algorithms to calculate the
sizes of tablespaces, tables, columns, and indexes and adds them together to provide an
indication of the size that the database will require. You can override the algorithm for one or
more of these types of objects or include additional objects in the calculation by adding the
GetEstimatedSize eventhandler to the appropriate objectinthe Profile category and
entering a script to calculate its size.

1. Select Database> Edit Current DBM Sto open the DBMS definition file, and expand the
profile category.

2. Right-click the metaclass for which you want to provide a script to calculate the object
size, select New > Event Handler to open a selection dialog, select the
GetEstimatedsSize event handler, and then click OK to add it under the metaclass.

3. Click the Event Handler Script tab in the right pane and enter appropriate code to
calculate the size of your chosen object.

202 PowerDesigner

CHAPTER 4: DBMS Definition Files

l: DBMS Properties {For All Models) =101 x]

General | Trigger Templates I Trigger Template Items | Procedure Templatesl

a- - ISYASIE!'I52EI::Prof|Ie\TabIe\EvantHandlels\GetEstlmatedSlze j Q R R.ff ’3’,_!
D ataSource - 5
- . —I General Event Handler Script | GIobaIScliptI
Dependency atrix
ExtendedObject = J =] | & 53 ;5| ¥ | & Ln1.Coll
] ExtendedSubObject
ndex Function %GetEstimatediize%obj, ByRef message) -
Joinlndex
Key ! First compute global database setting wariable we will need.
3 Madel i .Get IQPagz.aS:.ze
Procedue Dim IQPégaSlze
Reference INPagedize = 131072 ' default
j Tabl if (ActiweModel.Databases.Count > 0) then
- 12 g.) Dim DE, S0pts
12 Criteriz Set DB = ActiveModel.Databases.Item(0
“:3 EventHanf:IIers § S0pts = DB.GetPhysicallptionWalue("ig page size™)
o of GetEstimatedSize if (S0pts <> ") then
& Velidate IQPageSize = CLngiS0pts)
1) Extended Attributes end if
D) Extended Collections end if -
+]-1) Forms _I—I
P S hdatbhada 2 Ll—l D
| | »

Ok I Cancel | Spply | Help |

In the following example, we look at extracts of a GetEstimatedSize event handler
defined on the Tab1e metaclass to estimate the size of the database by calculating the size
of each table as the total size of all its columns plus the total size of all its indexes.

Note: For examples of the GetEstimatedSize event handler in use on the Table and
other metaclasses, see the Sybase 1Q v15.2 and HP Neoview R2.4 DBMS definition files.

Inthis first extract from the script, the Get EstimatedSize function opens and the size
of each table is obtained by looping through the size of each of its columns. The actual
work of calculating the column size is done by the line:

ColSize = C.GetEstimatedSize (message, false)

, which calls the GetEstimatedSize event handler on the Column metaclass (see
Calling the GetEstimatedSize Event Handler on Another Metaclass on page 205):

Function %GetEstimatedSize% (obj, ByRef message)

' First compute global database setting variable we will need.

' Get table size and keep column size for future use
Dim ColSizes, TblSize, ColSize, C
Set ColSizes = CreateObject ("Scripting.Dictionary")

TblSize = 0 ' May be changed to take into account table
definition initial size.

for each C in obj.Columns

' Start browsing table columns and use event handler defined
on column metaclass (if it exists).

ColSize = C.GetEstimatedSize (message, false)

Customizing and Extending PowerDesigner 203

CHAPTER 4: DBMS Definition Files

' Store column size in the map for future use in indexes.
ColSizes.Add C, ColSize

' Increase the table global size.
TblSize = TblSize + ColSize
next
Dim RawDataSize
RawDataSize = BlockSize * int (obj.Number * TblSize / BlockSize)
' At this point, the RawDataSize is the size of table in
database.

Next the size of the table indexes is calculated directly in the script without making a call to
an event handler on the Index metaclass, the line outputting index sizes is formatted and
the size of the indexes added to the total database size:

' Now calculate index sizes. Set up variables to store indexes
sizes.
Dim X, XMsg, XDataSize
XMSg = mn
for each X in obj.Indexes
XDataSize = 0
' Browsing index columns and get their size added in
XDataSize
For each C in X.IndexColumns
XDataSize = XDataSize + ColSizes.Item(C.Column)
next
XDataSize = BlockSize * int (obj.Number * XDataSize /
BlockSize)

' Format the display message in order to get size
information in output and result list.
XMsg = XMsg & CStr (XDataSize) & "|" & X.ObjectID & vbCrLf

' Add the index size to table size.
RawDataSize = RawDataSize + XDataSize
next

Finally the size information is formatted for output (see Formatting the Database Size
Estimation Outputon page 205). Each table is printed on a separate line in both the Output
and Result List windows, and its total size including all columns and indexes is given:

' set the global message to table size and all indexes
(separate with carriage return).

message = CStr (RawDataSize) & "||" & obj.ShortDescription &
vbCrLf & XMsg

%$GetEstimatedSize% = RawDataSize
End Function

Once all the tables have been processed, PowerDesigner calculates and prints the total
estimated size of the database.

204 PowerDesigner

CHAPTER 4: DBMS Definition Files

Calling the GetEstimatedSize Event Handler on Another Metaclass

Youcan callaGetEstimatedSize event handler defined on another metaclass to use this
size in your calculation. For example, you may define GetEstimatedSize onthe Table
metaclass, and make a call to GetEstimatedSize defined on the Column and Index
metaclasses to use these sizes to calculate the total size of the table.

The syntax of the function is as follows, where message is the name of your variable
containing the results to print:

GetEstimatedSize (message[, true|false])

In general, we recommend that you use the function in the folllowing form:

GetEstimatedSize (message, false)

The use of the false parameter (which is the default, but which is shown here for clarity)
means that we call the GetEstimatedsSi ze event handler on the other metaclass, and use
the default mechanism only if the event handler is not available.

Setting the parameter to true will force the use of the default mechanism for calculating the
size of objects (only possible for tables, columns, and join indexes):

GetEstimatedSize (message, true)

Formatting the Database Size Estimation Output

You can format the output for your database size estimation. Sub-objects (such as columns and
indexes) contained in a table are offset, and you can print additional information after the
total.

The syntax for the output is as follows:
[object-size] [:compartment] | [ObjectID] [|labell]

where:

* object-size - is the size of the object.

e compartment- is a one-digit number, which indicates that the size of the object should be
excluded from the total size of the database and should be printed after the database size
has been calculated. For example, you may include the size of individual tables in your
calculation of the database size and print the sizes of tablespaces separately after the
calculation.

* ObjectID - isunneccessary for objects, such as tables, but required for sub-objects if
you want to print them to the Result List.

« Jabel - is any appropriate identifying string, and is generally set to
ShortDescription, which prints the type and name of the selected object.

For example, in the event handler defined on the Table metaclass (having calculated and
stored the size of a table, the size of all the columns of type LONG contained in the table, and
the size of each index in the table), we create a message variable to print this information. We
begin by printing a line giving the size of a table:

Customizing and Extending PowerDesigner 205

CHAPTER 4: DBMS Definition Files

message = CStr (TableSize) & "||" & objTable.ShortDescription & vbCrLf

We then add a line printing the total size of all the columns of type LONG in the table:

message = message & CStr (LongSize) & "||Columns of type LONG" &
vbCrLf

We then add a line printing the size of each index in the table:

message = message & CStr(IndexSize) & "|" & objIndex.ObjectID &
vbCrLf

In the event handler defined onthe Tab1espace metaclass (having calculated and stored the
size of a tablespace), we create a message variable to print this information after the database
size calculation has been printed.

We begin by overriding the default introduction to this second compartment:

message = ":1||Tables are allocated to the following tablespaces:"

We then add a line printing the size of each tablespace in the table

message = message + CStr (tablespaceSize) & ":1]|" &
objTablespace.ShortDescription

The result gives the following output:

Estimate of the size of the Database "Sales"...

10,000 6096 KB Table 'Invoices'
Columns of type LONG (35 KB)
Index 'customerFKeyIndex' (976 KB)
Index 'descriptionIndex' (1976 KB)

[...etc...]

Tables are allocated to the following tablespaces:

Estimated size Object
6096 KB Tablespace 'mainStorage'
[...etc...]

ODBC Category (DBMS)

The ODBC category contains items for live database generation when the DBMS does not
support the generation statements defined in the Script category.

For example, data exchange between PowerDesigner and MSACCESS works with VB scripts
and not SQL, this is the reason why these statements are located in the ODBC category. You

206

PowerDesigner

CHAPTER 4: DBMS Definition Files

have to use a special program (access.mdb) to convert these scripts into MSACCESS database
objects.

Physical Options (DBMS)

For some DBMSs, additional options are used to specify how an object is optimized or stored
in a database. In PowerDesigner, these options are called physical gptions and are displayed
on the Physical Optionsand Physical Options (Common) tabs of object property sheets.

To appear on the Physical Optionstab, an option must be defined inthe Script\Objects
\object\Options item (see Common Object Items on page 144). Default values can be
stored in Options orin DefOptions. To appear on the Physical Options(Common) tab
(or any other property sheet tab), the physical option must, additionally be associated with an
extended attribute (see Adding DBMS Physical Options to Your Forms on page 210).

During generation, the options selected in the model for each object are stored as a SQL string
in the %OPTIONS% variable, which must appear at the end of the Create statement of the
object, and cannot be followed by anything else. The following example uses the correct
syntax:

create table
[$OPTIONS%]

During reverse engineering by script, the section of the SQL query determined as being the
physical options is stored in %OPTIONS%, and will then be parsed when required by an
object property sheet.

During live database reverse engineering, the Sg1 OptsQuery SQL statement is executed to
retrieve the physical options which is stored in %OPTIONS% to be parsed when required by
an object property sheet.

You can use PowerDesigner variables (see PDM Variables and Macros on page 212) to set
physical options for an object. For example, in Oracle, you can set the following variable for a
cluster to make the cluster take the same name as the table.

Cluster %TABLES

For information about setting physical options, see Data Modeling > Building Data Models >
Physical Implementation > Physical Options.

Simple Physical Options
Simple physical options must contain a name, and may contain a %d, %s, or other variable to
let the user specify a value, and keywords to specify permitted values and defaults.

Simple physical options are specified on a single line using the following syntax:

name [=] %s|%d|%variable% [: keywords]

Customizing and Extending PowerDesigner 207

CHAPTER 4: DBMS Definition Files

Everything entered before the colon is generated in scripts. The nameis required by
PowerDesigner, but you can place it between carets (<name>) if you need to exclude it from
the final script. The $d or % s variables require anumeric or string value, and you can also use a
PowerDesigner variable or GTL snippet.

Physical Option Generates As

max rows_per page=%d max rows_per page=value
for instance $%s for instance string
<Partition-name> %s name

You can insert a colon followed by comma-separated keywords to control your options:

Keyword Value and result

catego- Allows the user to associate the object with an object of the specified kind. The
ry=meta- following settings are available:

class

e tablespace
e storage

Note: In Oracle, the storage composite physical option is used as a
template to define all the storage values in a storage entry to avoid having to
set values independently each time you need to re-use them same values in a
storage clause. For this reason, the Oracle physical option does not include the
storage name (%0S).

» qualified metaclass collection - For example: Model.Tables or Ta-
ble.Columns

on %s : category=storage
{
list=val- Specifies a list of pipe-separated values permitted for the option.
uel| value
de- Specifies a default value for the option.
fault=val-
ue
dquo- Specifies that the value is enclosed in double or single quotes.
ted=yes and
squo-—
ted=yes

208 PowerDesigner

CHAPTER 4: DBMS Definition Files

Keyword Value and result

multi- Specifies that the option is displayed with a <* > suffix in the left pane of the

ple=yes Physical Options tab and can be added to the right pane as many times as nec-
essary. If the option is selected in the right pane and you click the same option in
the left pane to add it, a message box asks you if you want to reuse the selected
option. If you click No, a second instance of the option is added to the right pane.

enable- Specifies that the database name is inserted as a prefix (see tablespace options in

dbpre- DB2 0S/390).
fix=yes

pre- Specifies that the previous or next physical option is required for the present
vmand=yes option and that if the present option is added to the right pane, then the previous or
and next - next option is also added.

mand=yes

Examples

Physical Option

Generates As

ccsid %s
unicode, default=ascii

list=ascii|ebcdic]|

ccsid ascii

table=%s
bles, dguoted=yes

category=Model.Ta-

table="table"

<flashback archive> %s

string

Composite Physical Options

Composite physical options are specified over multiple lines, and contain one or more
dependent options. If you add the composite option to the right pane of the Physical Options
tab, all the dependant options are added with it. If you add a dependant option, the composite
option is added as well to contain it.

Composite physical options are defined with the following syntax:

name [=] [%s]|%d|%variable%]
{

sub-option

[sub-option...]

}

: composite=yes|[, keywords]

Everything entered before the colon is generated in scripts. The nameis required by
PowerDesigner, but you can place it between carets (<name>) if you need to exclude it from
the final script. The $d or % s variables require anumeric or string value, and you can also use a
PowerDesigner variable or GTL snippet.

Customizing and Extending PowerDesigner 209

CHAPTER 4: DBMS Definition Files

The composite=yes keyword is required for composite options, and can be used in
conjunction with any of the simple physical option keywords or any of the following:

Keyword Value and result
compo- Specifies that the option is a composite option containing dependant options
site=yes surround by curly braces.
separa- Specifies that the dependant options are separated by commas.
tor=yes
parenthe- Specifies that the ensemble of dependant objects are contained between paren-
sis=yes theses.
chldmand=ye | Specifies that at least one of the dependant options must be set.
s
Examples
Physical Option Generates As
<list> : composite=yes, multi-
ple=yes

frag-expression
in storage

{

<frag-expression> %s

in %s : category=storage frag-expression?2
in storageZ

etc

}

<using block> : compo-
site=yes,parenthesis=yes
{ prigty value
using vcat %s secqgty value
using stogroup %s : catego- erase no)
ry=storage, composite=yes

{

prigty %d : default=12

secqgty %d

erase %s : default=no, list=yes
| no

}

(using vcat string
using stogroup storage

Adding DBMS Physical Options to Your Forms

Many DBMSs use physical options as part of the definition of their objects. The most
commonly-used physical options are displayed on a form, Physical Options (Common),

210 PowerDesigner

CHAPTER 4: DBMS Definition Files

defined under the appropriate metaclass. You can edit this form, or add physical options to
your own forms.

Note: PowerDesigner displays all of the available options for an object (defined at Script/
Objects/object/Options category) on the Physical Optionstab (see Physical
Options (DBMS) on page 207).

For a physical option to be displayed in a form, it must be associated with an extended attribute
with the type physical option.

1. Right-click the metaclass and select New Extended Attributefrom Physical Optionsto
open the Select Physical Options dialog:

Il Select Physical Options E
By - Oy -
=

0k | Cancel | Help I

Note: This dialog will be empty if no physical options are defined at Script/
Objects/object/Options.

2. Select the physical option required and click OK to create an extended attribute associated
with it.

3. Specify any other appropriate properties.

4. Selectthe form in which you want to insert the physical option and click the Add Attribute
tool to insert it as a control (see Adding Extended Attributes and Other Controls to Your
Form on page 57).

Note: To change the physical option associated with an extended attribute, click the ellipsis to
the right of the Physical Optionsfield in the Extended Attribute property sheet.

Customizing and Extending PowerDesigner 211

CHAPTER 4: DBMS Definition Files

PDM Variables and Macros

The SQL queries recorded in the DBMS definition file items make use of various PDM
variables, which are written between percent signs. These variables are replaced with values
from your model when the scripts are generated, and are evaluated to create PowerDesigner
objects during reverse engineering.

For example, in the following query, the variable $ TABLE% will be replaced by the code of the
table being created:
CreateTable = create table $TABLES%

Note: You can use these variables freely in your own queries, but you cannot change the
method of their evaluation (ie, $*TABLE% can only ever evaluate to the code of the table). You
can alternately, access any object properties using GTL (see Chapter 5, Customizing
Generation with GTL on page 245) and the public names available through the
PowerDesigner metamodel (see Chapter 8, The PowerDesigner Public Metamodel on page
343).

The evaluation of variables depends on the parameters and context. For example, the
$COLUMN% variable cannot be used in a Create Tablespace query, because it is only
valid in a column context.

These variables can be used for all objects supporting these concepts:

Variable Comment

%COMMENT% Comment of Object or its name (if no comment defined)

%OWNER% Generated code of User owning Object or its parent. You should not use
this variable for queries on objects listed in live database reverse dialog
boxes, because their owner is not defined yet

%DBPREFIX% Database prefix of objects (name of Database +'." if database defined)

%QUALIFIER% Whole object qualifier (database prefix + owner prefix)

%OPTIONS% SQL text defining physical options for Object

%OPTIONSEX% The parsed SQL text defining physical options of the object

%CONSTNAME% Constraint name of Object

%CONSTRAINT% Constraint SQL body of Object. Ex: (A <=0) AND (A >=10)

%CONSTDEFN% Column constraint definition. Ex: constraint C1 checks (A>=0) AND
(A<=10)

%RULES% Concatenation of Server expression of business rules associated with
Object

212

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%NAMEISCODE%

True if the object (table, column, index) name and code are identical
(AS 400 specific)

%TABLQUALIFIER%

Parent table qualifier (database prefix + owner prefix)

%TABLOWNER%

The generated code of the user owning the parent table

Testing Variable Values with the [] Operators

You can use square brackets [] to test for the existence or value of a variable.

You can use square brackets to

Include optional strings and variables, or lists of strings and variables in the syntax of SQL
statements: [$variable%]

Test the value of a variable and insert or reconsider a value depending of the result of the

test: [svariable%? true
Test the content of a variable [$variable%=constant? true

false]
false]

Variable

Generation

[Svariable%]

Tests for the existence of the variable.

Generation: Generated only if variableexists and is not assigned NO
or FALSE.

Reverse: Evaluated if the parser detects a SQL statement corre-
sponding to the variable and it is not assigned NO or FALSE.

[$Svariable%?
true false]

Tests for the existence of the variable and allows conditional output.

Generation: frueis generated if variable exists and is not assigned
NO or FALSE. Otherwise, false is generated.

Reverse: If the parser detects varfable and it is not assigned NO or
FALSE, frueis reversed. Otherwise, falseis reversed. variableis set
to True or False as appropriate.

[$variable%=con-
stant? true
false]

Tests the value of the variable and allows conditional output.

Generation: If variableequals constant, trueis generated. Otherwise,
false is generated.

Reverse: If the parser detects thatvariable equals constant, trueis
reversed. Otherwise, falseis reversed.

Customizing and Extending PowerDesigner

213

CHAPTER 4: DBMS Definition Files

Variable Generation
.Z: [iteml] Specifies that the jtems do not have a significant order.
[item2]...]

Generation: . Z is ignored

Reverse: The jtems can be reversed in any order they are encoun-

tered.
.0: [iteml] Specifies that the /temsare synonyms, only one of which should be
[item2]...] output.

Generation: Only the first item listed is generated.

Reverse: The reverse parser must find one of the ifemsto validate the
full statement.

Examples

[$OPTIONS%]

If s0PTIONS% (physical options for the objects visible in the object property sheet) exists
and is not assigned NO or FALSE, it is generated to the value of $OPTIONS%.
[default $DEFAULTS]

If the statement default 10 is found during reverse engineering, $DEFAULT% is
assigned the value 10, but the statement is not mandatory and reversing continues even if it
is absent. In script generation, if $DEFAULT% has a value of 10, it is generated as
default 10 otherwise nothing is generated for the block.

[$MAND%? not null : null]

If $MANDS is evaluated as true or contains a value other than False or NO, it is generated
asnot null. Otherwise it is generated as null.
[$DELCONST$=RESTRICT?: [on delete $DELCONST%]]

If $DELCONST$% contains the value RESTRICT, itis generated as on delete
RESTRICT.
%$COLUMN% %DATATYPES[.Z: [$NOTNULLS] [$DEFAULTS]]

Because of the presence of the . z variable, both of the following statements will be
reversed correctly even though the column attributes are not in the same order:

¢ Create table abc (a integer not null default 99)

e Create table abc (a integer default 99 not null)

[.0: [procedure] [proc]]

This statement will generate procedure. During reverse engineering, the parser will
match either procedure or proc keywords.
Note: A string between square brackets is always generated. For reverse engineering,

placing a string between square brackets means that it is optional and its absence will not
cancel the reversing of the statement.

214

PowerDesigner

CHAPTER 4: DBMS Definition Files

create [or replace] view SVIEWS as $SQLS

A script containing either create or create or replace will be correctly reversed
because or replace is optional.

Formatting Variable Values

You can specify a format for variable values. For example, you can force values to lowercase
or uppercase, truncate the length of values, or place values between quotes.

You embed formatting options in variable syntax as follows:

S[I?10-1[x]1[.[-1y

] [options]:]lvariable%

The variable formatting options are the following:

Option

Description

Mandatory field, if a null value is returned the translate call fails

Extracts the first y characters or, for -y, the last y characters.

If xis specified, and yis lower than x, then blanks or zeros are added to
the right of the extracted characters to fill the width up to x. For — x, the
blanks or zeros are added to the left and the output is right-justified.

If the M option is appended, then the first x characters of the variable are
discarded and the next y characters are output.

Thus, for an object named abcdefghijklmnopgrstuvwxyz
(with parentheses present simply to demonstrate padding):

Template Output
(%$.3:Name%) gives (abc)
(%$.-3:Name%) gives (xyz)
(%$10.3:Name%) gives (abc)
(%10.-3:Name%) gives (xyz)
(%-=10.3:Name%) gives (abc)
($-10.-3:Name%) gives (Xyz)
($10.3M:Name%) gives (7k1)

L[F],U[F],and c

Converts the output to lowercase or uppercase. If F is specified, only the
first character is converted. c is equivalent to UF.

gand Q Surrounds the variable with single or double quotes.
T Trims leading and trailing whitespace from the variable.
H Converts number to hexadecimal.

You can combine format codes. For example, the template ($12.3QMFU:Name%) applied
to object abcdefghijklmnopgrstuvwxyz generates ("Lmn").

Customizing and Extending PowerDesigner 215

CHAPTER 4: DBMS Definition Files

Variables for Tables and Views

PowerDesigner can use variables in the generation and reverse-engineering of tables and

views.

The following variables are available for tables:

Variable Comment

%TABLE% Generated code of Table

%TNAME% Name of Table

%TCODE% Code of Table

%TLABL% Comment of Table

%PKEYCOLUMNS% List of primary key columns. Ex: A, B

%TABLDEFN% Complete body of Table definition. It contains definition of
columns, checks and keys

%CLASS% Abstract data type name

%CLASSOWNERY Owner of the class object

%CLASSQUALIFIER%

Qualifier of the class object

%CLUSTERCOLUMNS% List of columns used for a cluster

%INDXDEFN%

Table indexes definition

%TABLTYPE%

Table type

The following variables are available for views:

Variable Comment
%VIEW% Generated code of View
%VIEWNAME% View name
%VIEWCODE% View code

%VIEWCOLN%

List of columns of View. Ex: "A, B, C"

%SQL%

SQL text of View. Ex: Select * from T1

%VIEWCHECK%

Contains Keyword "with check option" if this option is selected in View

%SCRIPT%

Complete view creation order. Ex: create view V1 as select * from T1

%VIEWSTYLE%

Style of view: view, snapshot, materialized view

216

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment
%ISVIEW% True is it is a view (and not a snapshot)
%USAGE% Read-only=0, Updatable=1, Check option=2

The following variables are available for tables and views:

Variable Comment

%XMLELEMENT% Element contained in the XML schema

%XMLSCHEMA% XML schema

Variables for Columns, Domains, and Constraints

PowerDesigner can use variables in the generation and reverse-engineering of columns,
domains, and constraints. Parent table variables are also available.

The following variables are available for columns:

Variable Comment

%COLUMN% Generated code of Column

%COLNNO% Position of Column in List of columns of Table

%COLNNAME% Name of Column

%COLNCODE% Code of Column

%PRIMARY % Contains Keyword "primary" if Column is primary key column

%ISPKEY % TRUE if Column is part of a primary key

%ISAKEY % TRUE if Column is part of an alternate key

%FOREIGN% TRUE if Column is part of a foreign key

%COMPUTE% Compute constraint text

%PREVCOLN% Code of the previous column in the list of columns of the table

%NEXTCOLN%Y% Code of the next column in the list of columns of the table

%NULLNOTNULL% Mandatory status of a column. This variable is always used with Null-
Required item, see Working with Null Values on page 159

%PKEYCLUSTER% CLUSTER keyword for the primary key when it is defined on the same
line

Customizing and Extending PowerDesigner 217

CHAPTER 4: DBMS Definition Files

Variable Comment

%AKEYCLUSTER% CLUSTER keyword for the alternate key when it is defined on the
same line

%AVERAGELENGTH% Average length

%ISVARDTTP%

TRUE if the column datatype has a variable length

%ISLONGDTTP%

TRUE if the column datatype is a long datatype but not an image or a
blob

%ISBLOBDTTP%

TRUE if the column datatype is an image or a blob

%ISSTRDTTP%

TRUE if the column datatype contains characters

The following variables are

available for domains:

Variable

Comment

%DOMAIN%

Generated code of Domain (also available for columns)

%DEFAULTNAME%

Name of the default object associated with the domain (SQL Server
specific)

The following variables are

available for constraints:

Variable Comment

%UNIT% Unit attribute of standard check
%FORMAT% Format attribute of standard check
%DATATYPE% Data type. Ex: int, char(10) or numeric(8, 2)
%DTTPCODE% Data type code. Ex: int, char or numeric
%LENGTH% Data type length. Ex: 0, 10 or 8

%PREC% Data type precision. Ex: 0, 0 or 2

%ISRDONLY%

TRUE if Read-only attribute of standard check has been selected

%DEFAULT%

Default value

%MINVAL%

Minimum value

%MAXVAL%

Maximum value

%VALUES%

List of values. Ex: (0, 1, 2, 3, 4, 5)

218

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%LISTVAL%

SQL constraint associated with List of values. Ex: C1in (0, 1, 2, 3, 4,
5)

%MINMAX%

SQL constraint associated with Min and max values. Ex: (C1 <= 0)
AND (C1 >=5)

%ISMAND%

TRUE if Domain or column is mandatory

%MAND% Contains Keywords "null" or "not null" depending on Mandatory at-
tribute

%NULL% Contains Keyword "null" if Domain or column is not mandatory

%NOTNULL% Contains Keyword "not null" if Domain or column is mandatory

%IDENTITY%

Keyword "identity" if Domain or Column is identity (Sybase specific)

%WITHDEFAULT%

Keyword "with default” if Domain or Column is with default

%ISUPPERVAL%

TRUE if the upper-case attribute of standard check has been selected

%ISLOWERVAL%

TRUE if the lower-case attribute of standard check has been selected

%UPPER% SQL constraint associated with upper only values
%LOWER% SQL constraint associated with lower only values
%CASE% SQL constraint associated with cases (upper, lower, first word capital,

etc)

Variables for Keys

PowerDesigner can use variables in the generation and reverse-engineering of keys.

Variable

Comment

%COLUMNS% or %COLNLIST% | List of columns of Key. Ex: "A, B, C"

%ISPKEY %

TRUE when Key is Primary key of Table

%PKEY % Constraint name of primary key
%AKEY % Constraint name of alternate key
%KEY% Constraint name of the key

%ISMULTICOLN%

True if the key has more than one column

%CLUSTER%

Cluster keyword

Customizing and Extending PowerDesigner 219

Variables for Indexes

CHAPTER 4: DBMS Definition Files

and Index Columns

PowerDesigner can use variables in the generation and reverse-engineering of indexes and

index columns.

The following variables are available for indexes:

Variable

Comment

%INDEX%

Generated code of index

%TABLEY% Generated code of the parent of an index, can be a table or a query table
(view)

%INDEXNAME% Index name

%INDEXCODE% Index code

%UNIQUE%

Contains Keyword "unique" when index is unique

%INDEXTYPE%

Contains index type (available only for a few DBMS)

%CIDXLIST%

List of index columns with separator, on the same line. Example: A asc, B
desc, C asc

%INDEXKEY%

Contains keywords "primary",
origin

unique" or "foreign™ depending on index

%CLUSTER%

Contains keyword "cluster" when index is cluster

%INDXDEFN%

Used for defining an index within a table definition

The following variables

are available for index columns:

Variable

Comment

%ASC%

Contains keywords "ASC" or "DESC" depending on sort order

%ISASC%

TRUE if index column sort is ascending

Variables for References and Reference Columns

PowerDesigner can use variables in the generation and reverse-engineering of references and

reference columns.

The following variables are available for references:

Variable Comment
%REFR% Generated code of reference
%PARENT% Generated code of parent table

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment

%PNAME% Name of parent table

%PCODE% Code of parent table

%PQUALIFIER% Qualifier of parent table. See also QUALIFIER.
%CHILD% Generated code of child table

%CNAME% Name of child table

%CCODE% Code of child table

%CQUALIFIER% Qualifier of child table. See also QUALIFIER.
%REFRNAME% Reference name

%REFRCODE% Reference code

%FKCONSTRAINT% Foreign key (reference) constraint name
%PKCONSTRAINT% Constraint name of primary key used to reference object
%CKEYCOLUMNS% List of parent key columns. Ex: C1, C2, C3
%FKEYCOLUMNS% List of child foreign key columns. Ex: C1, C2, C3
%UPDCONST% Contains Update declarative constraint keywords "restrict”, "cas-

cade", "set null" or "set default"

%DELCONST% Contains Delete declarative constraint keywords "restrict", "cascade",
"set null" or "set default"

%MINCARD% Minimum cardinality

%MAXCARD% Maximum cardinality

%POWNER% Parent table owner name

%COWNER% Child table owner name

%CHCKONCMMT% TRUE when check on commit is selected on Reference (ASA 6.0
specific)

%REFRNO% Reference number in child table collection of references

%JOINS% References joins.

The following variables are available for reference columns:

Customizing and Extending PowerDesigner 221

CHAPTER 4: DBMS Definition Files

Variable Comment

%CKEYCOLUMN% Generated code of parent table column (primary key)

%FKEYCOLUMN% Generated code of child table column (foreign key)

%PK% Generated code of primary key column

%PKNAME% Primary key column name

%FK% Generated code of foreign key column

%FKNAME% Foreign key column name

%AK% Alternate key column code (same as PK)

%AKNAME% Alternate key column name (same as PKNAME)

%COLTYPE% Primary key column data type

%COLTYPENOOWNER | Primary column owner

%

%DEFAULT% Foreign key column default value

%HOSTCOLTYPE% Primary key column data type used in procedure declaration. For ex-
ample: without length

Variables for Triggers and Procedures

PowerDesigner can use variables in the generation and reverse-engineering of triggers and

procedures.

The following variables are available for triggers:

Variable

Comment

%ORDER%

Order number of Trigger (in case DBMS support more than one trigger of
one type)

%TRIGGER%

Generated code of trigger

%TRGTYPE%

Trigger type. It contains Keywords "beforeinsert”, "afterupdate”, ...etc.

%TRGEVENT%

Trigger event. It contains Keywords "insert", "update”, "delete"

%TRGTIME%

Trigger time. It contains Keywords NULL, "before", "after"

%REFNO% Reference order number in List of references of Table
%ERRNO% Error number for standard error
%ERRMSG% Error message for standard error

222

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment

%MSGTAB% Name of Table containing user-defined error messages

%MSGNO% Name of Column containing Error numbers in User-defined error table
%MSGTXT% Name of Column containing Error messages in User-defined error table

%SCRIPT%

SQL script of trigger or procedure.

%TRGBODY% Trigger body (only for Oracle live database reverse engineering)
%TRGDESC% Trigger description (only for Oracle live database reverse engineering)
%TRGDEFN% Trigger definition

%TRGSCOPE% Trigger scope (keywords: database, schema, all server)
%TRGSCOPEOWNER | Trigger scope owner

%

%TRGSCOPEQUALI- | Trigger scope owner plus dot

FIER%

The following variables are available for procedures:

Variable Comment

%PROC% Generated code of Procedure (also available for trigger when Trigger is imple-
mented with a procedure)

%FUNC% Generated code of Procedure if Procedure is a function (with a return value)

%PROCPRMS% | List of parameters of the procedure

Variables for Rules

PowerDesigner can use variables in the generation and reverse-engineering of rules.

Variable Comment
%RULE% Generated code of Rule
%RULENAME% Rule name
%RULECODE% Rule code
%RULECEXPR% Rule client expression
%RULESEXPR% Rule server expression

Customizing and Extending PowerDesigner

223

CHAPTER 4: DBMS Definition Files

Variables for Sequences
PowerDesigner can use variables in the generation and reverse-engineering of sequences.

Variable Comment
%SQNC% Name of sequence
%SQNCOWNER% Name of the owner of the sequence

Variables for Synonyms
PowerDesigner can use variables in the generation and reverse-engineering of synonyms.

Variable Comment

%SYNONYM% Generated code of the synonym
%BASEOBJECT% Base object of the synonym
%BASEOWNER% Owner of the base object
%BASEQUALIFIER% Qualifier of the base object
%VISIBILITY% Private (default) or public
%SYNMTYPE% Synonym of alias (DB2 only)
%ISPRIVATE% True for a private synonym
%ISPUBLIC% True for a public synonym

Variables for Tablespaces and Storages
PowerDesigner can use variables in the generation and reverse-engineering of tablespaces and

storages.
Variable Comment
%TABLESPACE% Generated code of Tablespace
%STORAGE% Generated code of Storage

Variables for Abstract Data Types

PowerDesigner can use variables in the generation and reverse-engineering of abstract data
types and their child objects.

The following variables are available for abstract data types:

Variable Comment

%ADT% Generated code of Abstract data type

224 PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment

%TYPE% Type of Abstract data type. It contains keywords like "array", "list", ...
%SIZE% Abstract data type size

%FILEY% Abstract data type Java file

%ISARRAY %

TRUE if Abstract data type is of type array

%ISLIST%

TRUE if Abstract data type is of type list

%ISSTRUCT%

TRUE if Abstract data type is of type structure

%ISOBJECT%

TRUE if Abstract data type is of type object

%ISJIAVAOBJECT%

TRUE if Abstract data type is of type JAVA object

%ISIAVAY%

TRUE if Abstract data type is of type JAVA class

%ADTDEF% Contains Definition of Abstract data type
%ADTBODY% Abstract data type body
%SUPERADT% Abstract data type supertype

%ADTNOTFINAL
%

Abstract data type final

%ADTABSTRACT | Abstract data type instantiable

%

%ADTHEADERY% | Abstract data type body with ODBC
%ADTTEXT% Abstract data type spec with ODBC

%SUPERQUALIFI-
ER%

Abstract data type supertype qualifier

%SUPEROWNER% | Abstract data type supertype owner
%ADTAUTH% Abstract data type authorization
%ADTIJAVANAME | Abstract data type JAVA name

%

%ADTJAVADATA | Abstract data type JAVA data

%

%ADTATTRDEF% | Attributes part of abstract data type definition
%ADTMETHDEF | Methods part of abstract data type definition

%

Customizing and Extending PowerDesigner

225

CHAPTER 4: DBMS Definition Files

The following variables are available for abstract data type attributes:

Variable Comment

%ADTATTRY% Generated code of Abstract data type attribute
%ATTRIAVA- Abstract data type attribute JAVA name
NAME%

The following variables are available for abstract data type procedures:

Variable Comment

%ADTPROC% Procedure code

%PROCTYPE% Procedure type (constructor, order, map)
%PROCFUNC% Procedure type (procedure, function)
%PROCDEFN% Procedure body (begin... end)
%PROCRETURN | Procedure return type

%

%PARAM% Procedure parameters

%PROCNOTFI- Procedure final

NAL%

%PROCSTATIC%

Procedure member

%PROCAB- Procedure instantiable
STRACT%
%SUPERPROC% | Procedure super-procedure

%ISCONSTRUC-
TOR%

True if the procedure is a constructor

%PROCJAVA-
NAME%

Procedure JAVA name

%ISIAVAVARY

True if procedure is mapped to a static JAVA variable

%ISSPEC%

True in specifications, undefined in body

226

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variables for Join Indexes (1Q)
PowerDesigner can use variables in the generation and reverse-engineering of 1Q join indexes.

Variable Comment

%JIDX% Generated code for join index

%JIDXDEFN% Complete body of join index definition
%REFRLIST% List of references (for live database connections)
%RFINLIST% List of reference joins (for live database connections)

%FACTQUALIFIER% | Qualifier for the fact table

%JIDXFACT% Fact (base table)
%JIDXCOLN% List of columns
%JIDXFROM% From clause
%JIDXWHERE% Where clause

Variables for ASE & SQL Server

PowerDesigner can use variables in the generation and reverse-engineering of objects for ASE
and SQL Server.

Variable Comment

%RULENAME% Name of Rule object associated with Domain
%DEFAULTNAME% Name of Default object associated with Domain
%USE_SP_PKEY% Use sp_primary key to create primary keys
%USE_SP_FKEY% Use sp_foreign key to create foreign keys

Variables for Database Synchronization

PowerDesigner can use variables in the generation and reverse-engineering of objects during
database synchronization.

Variable Comment

%OLDOWNER% Old owner name of Object. See also OWNER
%NEWOWNER% New owner name of Object. See also OWNER
%OLDQUALIFIER% Old qualifier of Object. See also QUALIFIER
%NEWQUALIFIER% New qualifier of Object. See also QUALIFIER
%OLDTABLY% Old code of Table

Customizing and Extending PowerDesigner 227

CHAPTER 4: DBMS Definition Files

Variable Comment
%NEWTABL% New code of Table
%OLDCOLN% Old code of Column
%NEWCOLN% New code of Column
%OLDNAME% Old code of Sequence
%NEWNAME% New code of Sequence

Variables for DB Packages and Their Child Objects

PowerDesigner can use variables in the generation and reverse-engineering of database
packages and their child objects.

The following variables are available for database packages:

Variable Comment

%DBPACKAGE% Generated code of the database package
%DBPACKAGECODE% Initialization code at the end of the package
%DBPACKAGESPEC% Database package specification
%DBPACKAGEBODY % Database package body

%DBPACKAGEINIT%

Database package initialization code

%DBPACKAGEPRIV%

Database package authorization (old privilege)

%DBPACKAGEAUTH%

Database package authorization

%DBPACKAGEPUBLIC%

True for public sub-object

%DBPACKAGETEXT%

Database package body with ODBC

%DBPACKAGEHEADER
%

Database package spec with ODBC

The following variables are

available for database package procedures:

Variable Comment

%DBPKPROC% Procedure code
%DBPKPROCTYPE% Procedure type (procedure, function)
%DBPKPROCCODE% Procedure body (begin... end)
%DBPKPROCRETURN% | Procedure return type

228

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%DBPKPROCPARAM%

Procedure parameters

The following variables are

available for database package variables:

Variable Comment

%DBPFVAR% Variable code
%DBPFVARTYPE% Variable type
%DBPFVARCONST% Variable of constant type
%DBPFVARVALUE% Variable default value for constant

The following variables are available for database package types:

Variable Comment
%DBPKTYPE% Type code
%DBPKTYPEVAR% List of variables

%DBPKISSUBTYPE%

True if type is a subtype

The following variables are available for database package cursors:

%

Variable Comment
%DBPKCURSOR% Cursor code
%DBPKCURSORRE- Cursor return type
TURN%

%DBPKCURSORQUERY | Cursor query

%

%DBPKCURSORPARAM | Cursor parameter

The following variables are available for database package exceptions:

Variable

Comment

%DBPKEXEC%

Exception code

The following variables are available for database package parameters:

Customizing and Extending PowerDesigner

229

CHAPTER 4: DBMS Definition Files

%

Variable Comment
%DBPKPARM% Parameter code
%DBPKPARMTYPE% Parameter type
%DBPKPARMDTTP% Parameter data type
%DBPKPARMDEFAULT | Parameter default value

The following variables are available for database package pragmas:

%

Variable Comment
%DBPKPRAGMA% Pragma directive
%DBPKPRAGMAOBJI% Pragma directive on object
%DBPKPRAGMAPARAM | Pragma directive parameter

Variables for Database Security

PowerDesigner can use variables in the generation and reverse-engineering of database

security objects.

Variable

Comment

%PRIVLIST%

List of privileges for a grant order

%REVPRIVLIST%

List of privileges for a revoke order

%PERMLIST%

List of permissions for a grant order

%REVPERMLIST%

List of permissions for a revoke order

%COLNPERMISSION%

Permissions on a specific list of columns

%BITMAPCOLN%

Bitmap of specific columns with permissions

%USER% Name of the user

%GROUP% Name of the group

%ROLE% Name of the role

%GRANTEE% Generic name used to design a user, a group, or a role
%PASSWORD% Password for a user, group, or role

%O0BJECT% Database objects (table, view, column, and so on)

%PERMISSION%

SQL grant/revoke order for a database object

230

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%PRIVILEGE%

SQL grant/revoke order for an 1D (user, group, or role)

%GRANTOPTION%

Option for grant: with grant option / with admin option

%REVOKEOPTION%

Option for revoke: with cascade

%GRANTOR% User that grants the permission

%MEMBER% Member of a group or member with a role

%GROUPS% List of groups separated by the delimiter

%MEMBERS% List of members (users or roles) of a group or role separated by the
delimiter

%ROLES% List of parent roles of a user or role

%SCHEMADEFN% Schema definition

Variables for Defaults

PowerDesigner can use variables in the generation and reverse-engineering of defaults.

Variable

Comment

%BOUND_OBJECT%

Binded object

Variables for Web Services

PowerDesigner can use variables in the generation and reverse-engineering of Web services.

The following variables are available for web services:

Variable

Comment

%WEBSERVICENAME%

Only generated code of the web service

%WEBSERVICE%

Generated code of the web service and local path

PATH%

%WEBSERVICETYPE% | Web service type
%WEBSERVICESQL% SQL statement
%WEBSERVICELOCAL- | Local path

The following variables are available for web service operations:

Customizing and Extending PowerDesigner 231

CHAPTER 4: DBMS Definition Files

Variable

Comment

%WEBOPERATION-
NAME%

Only generated code of the web operation

%WEBOPERATION%

Generated code of the operation, service, and local path

%

%WEBOPERATIONTYPE

We operation type

%WEBOPERATIONSQL
%

SQL statement

%WEBOPERATIONPAR-
AM%

Web operation parameters list

The following variables are available for web service security:

Variable Comment
%WEBUSER% Connection user required for web service
%WEBCNCTSECURED% | Connection secured

%WEBAUTHREQUIRED
%

Authorization required

The following variables are available for web service parameters:

%

Variable Comment
%WEBPARAM% List of web parameters
%WEBPARAMNAME% Web parameter name
%WEBPARAMTYPE% Web parameter type
%WEBPARAMDTTP% Web parameter data type
%WEBPARAMDEFAULT | Web parameter default value

Variables for Dimensions

PowerDesigner can use var

iables in the generation and reverse-engineering of dimensions.

Variable

Comment

%DIMENSION%

Generated code of dimension

%DIMNDEF%

Dimension definition

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment

%DIMNATTR% Dimension attribute (level)

%DIMNOWNERTABL% Level table owner

%DIMNTABL% Level table
%DIMNCOLN% Level column
%DIMNCOLNLIST% Level columns list
%DIMNHIER% Dimension hierarchy
%DIMNKEY % List of child key columns
%DIMNKEYLIST% List of child key columns

%DIMNLEVELLIST% Level list for hierarchy

%DIMNATTRHIER% Attribute of hierarchy

%DIMNATTRHIERFIRST | First attribute of hierarchy
%

%DIMNATTRHIERLIST% | List of attributes of hierarchy

%DIMNPARENTLEVEL Parent level for hierarchy
%

%DIMNDEPATTR% Dimension dependant attribute

%DIMNDEPCOLN% Dependent column

%DIMNDEPCOLNLIST% | List of dependent columns

Variables for Extended Objects

PowerDesigner can use variables in the generation and reverse-engineering of extended
objects.

Variable Comment

%EXTENDEDOBJECT% | Generated code for extended object

%EXTENDEDSUBOB- Generated code for extended sub-object
JECT%

%EXTSUBOBJTPARENT | Generated code for parent of extended sub-object
%

%EXTSUBOBJTPAREN- | Generated code for owner of extended sub-object
TOWNER%

%EXTSUBOBJTPARENT- | Parent object qualifier (database prefix and owner prefix)
QUALIFIER%

Customizing and Extending PowerDesigner 233

CHAPTER 4: DBMS Definition Files

Variable

Comment

%EXTOBJECTDEFN%

Complete body of the extended object definition. Contains definition
of extended collection listed in DefinitionContent DBMS item.

Variables for Reverse Engineering

PowerDesigner can use variables during the reverse engineering of objects.

Variable Comment

%R% Set to TRUE during reverse engineering

%S% Allow to skip a word. The string is parsed for reverse but not generated

%D% Allow to skip a numeric value. The numeric value is parsed for reverse but
not generated

%A% Allow to skip all Text. The text is parsed for reverse but not generated

%ISODBCUSER%

True if Current user is Connected one

%CATALOG%

Catalog name to be used in live database connection reverse queries

%SCHEMA%

Variable representing a user login and the object belonging to this user in
the database. You should use this variable for queries on objects listed in
database reverse dialog boxes, because their owner is not defined yet.
Once the owner of an object is defined, you can use SCHEMA or OWN-
ER

%SIZE%

Data type size of column or domain. Used for live database reverse, when
the length is not defined in the system tables

%VALUE%

One value from the list of values in a column or domain

%PERMISSION%

Allow to reverse engineer permissions set on a database object

%PRIVILEGE%

Allow to reverse engineer privileges set on a user, a group, or a role

Variables for Database, Triggers, and Procedures Generation

PowerDesigner can use variables in the generation of databases, triggers, and procedures.

Variable Comment
%DATEY% Generation date & time
%USER% Login name of User executing Generation

%PATHSCRIPT%

Path where File script is going to be generated

%NAMESCRIPT%

Name of File script where SQL orders are going to be written

%STARTCMD%

Description to explain how to execute Generated script

234

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment

%ISUPPER% TRUE if upper case generation option is set

%ISLOWER% TRUE if lower case generation option is set

%DBMSNAME% Name of DBMS associated with Generated model

%DATABASEY% Code of Database associated with Generated model

%DATASOURCE% Name of the data source associated with the generated script

%USE_SP_PKEY% Use stored procedure primary key to create primary keys (SQL Server
specific)

%USE_SP_FKEY% Use stored procedure foreign key to create primary keys (SQL Server
specific)

AKCOLN, .FKCOLN, and .PKCOLN Macros
Repeat a statement for each alternate, foreign, or primary key column in a table.

Syntax

.AKCOLN ("statement","prefix","suffix","last suffix", "condition")
.FKCOLN ("statement","prefix","suffix","last suffix")

.PKCOLN ("statement","prefix","suffix","last suffix")

Argument Description

statement Statement to repeat for each column

prefix Prefix for each new line

suffix Suffix for each new line

last suffix Suffix for the last line

condition Alternate key code (if condition argument is left empty the macro returns a state-
ment for each alternate key in the table)

Example
In a trigger for the table TITLEAUTHOR:

¢ message .AKCOLN ("'S$COLUMN% is an alternate key column'","", "",
mn , IIAKEYl ")

generates the following trigger script:

message 'TA ORDER is an alternate key column',
¢ message .FKCOLN("'&$COLUMN% is a foreign key column'","",",",";")

generates the following trigger script:

Customizing and Extending PowerDesigner 235

CHAPTER 4: DBMS Definition Files

message 'AU ID is a foreign key column,
TITLE ISBN is a foreign key column;'

¢ message .PKCOLN("'S$COLUMN% is a primary key column'","",",",";")

generates the following trigger script:

message 'AU ID is a primary key column',
'TITLE ISBN is a primary key column';

Note: For columns, these macros only accept the $COLUMN% variable.

ALLCOL Macro

Repeats a statement for each column in a table

Syntax
ALLCOL("statement""prefix""suffix""last suffix")
Argument | Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example

In a trigger for the table AUTHOR, the following macro:
.ALLCOL ("$COLUMN% %COLTYPE%","", ", ", ";")

generates the following trigger script:

AU ID char(12),

AU LNAME varchar (40),

AU FNAME varchar (40),

AU BIOGRAPH long varchar,
AU ADVANCE numeric(8,2),
AU ADDRESS varchar (80),
CITY varchar (20),

STATE char(2),

POSTALCODE char (5),

AU _PHONE char(12);

.DEFINE Macro

Defines a variable and initializes its value

Syntax
.DEFINE "variable" "value"

236

PowerDesigner

CHAPTER 4: DBMS Definition Files

Argument | Description

variable Variable name (without % signs)

value Variable value (may include another variable surrounded by % signs)

Example
In a trigger for the table AUTHOR, the following macro:

.DEFINE "TRIGGER" "T S$TABLE%"
message 'Error: Trigger ($TRIGGER%) of table $TABLES'

generates the following trigger script:

message 'Error: Trigger (T AUTHOR) of table AUTHOR';

.DEFINEIF Macro

Defines a variable and initializes its value if the test value is not null

Syntax
.DEFINEIF "test value" "variable""value"
Argument [Description
test_value Value to test
variable Variable name (without % signs)
value Variable value (may include another variable surrounded by % signs)
Example
For example, to define a variable for a default data type:
$DEFAULTS%
.DEFINEIF "$%DEFAULT%" " DEFLT"" "$DEFAULTS%"

Add %$COLUMNS% $DATATYPE %_%_DEFLT%

.ERROR Macro
Handles errors.

Syntax

.ERROR (errno, "errmsg")

Argument Description

errno Error number

errmsg Error message

Customizing and Extending PowerDesigner 237

CHAPTER 4: DBMS Definition Files

Example
.ERROR (-20001, "Parent does not exist, cannot insert child")

.FOREACH CHILD Macro
Repeats a statement for each parent-to-child reference in the current table fulfilling a

condition.

Syntax

.FOREACH_CHILD (“condition")

"statement"

.ENDFOR
Argument | Description
condition Reference condition (see below)
statement Statement to repeat
Condition Selects
UPDATE RESTRICT Restrict on update
UPDATE CASCADE Cascade on update
UPDATE SETNULL Set null on update
UPDATE SETDEFAULT Set default on update
DELETE RESTRICT Restrict on delete
DELETE CASCADE Cascade on delete
DELETE SETNULL Set null on delete
DELETE SETDEFAULT Set default on delete

Example

In a trigger for the table TITLE, the following macro:

.FOREACH CHILD("DELETE RESTRICT")

-- Cannot delete parent "$PARENTS" if children still exist in
"SCHILDS"
.ENDFOR

generates the following trigger script:

-- Cannot delete parent "TITLE" if children still exist in
"ROYSCHED"

-- Cannot delete parent "TITLE" if children still exist in "SALE"

238 PowerDesigner

CHAPTER 4: DBMS Definition Files

Cannot delete parent "TITLE" if children still exist in
"TITLEAUTHOR"

.FOREACH COLUMN Macro
Repeats a statement for each column in the current table fulfilling a condition.

Syntax
.FOREACH_COLUMN ("condition")

"statement"

.ENDFOR

Argument | Description

condition Column condition (see below)

statement Statement to repeat

Condition Selects

empty All columns

PKCOLN Primary key columns

FKCOLN Foreign key columns

AKCOLN Alternate key columns

NMFCOL Non-modifiable columns (columns that have Cannot Modify selected as a check
parameter)

INCOLN Triggering columns (primary key columns, foreign key columns; and non-modi-
fiable columns)

Example
In a trigger for the table TITLE, the following macro:

.FOREACH COLUMN ("NMFCOL")

- "$COLUMNS%" cannot be modified
.ENDFOR

generates the following trigger script:

-- "TITLE ISBN" cannot be modified
—-- "PUB_ID" cannot be modified

Customizing and Extending PowerDesigner 239

CHAPTER 4: DBMS Definition Files

.FOREACH PARENT Macro
Repeats a statement for each child-to-parent reference in the current table fulfilling a

condition.

Syntax

.FOREACH_PARENT ("condition")

“"statement"

.ENDFOR

Argument Description

condition Reference condition (see below)

statement Statement to repeat

Condition Selects references defined with ...

empty All references

FKNULL Non-mandatory foreign keys

FKNOTNULL Mandatory foreign keys

FKCANTCHG Non-modifiable foreign keys
Example

In a trigger for the table SALE, the following macro:

.FOREACH PARENT ("FKCANTCHG")

-- Cannot modify parent code of "$PARENTS" in child "$CHILDS"
.ENDFOR

generates the following trigger script:

Cannot modify parent code of "STORE" in child "SALE"
Cannot modify parent code of "TITLE" in child "SALE"

.INCOLN Macro

Repeats a statement for each primary key column, foreign key column, alternate key column,
or non-modifiable column in a table.

Syntax

.INCOLN ("statement","prefix","suffix","last suffix")

240 PowerDesigner

CHAPTER 4: DBMS Definition Files

Argument | Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example

In a trigger for the table TITLE, the following macro:
.INCOLN ("$COLUMN% $COLTYPE%","", ", ", ";")

generates the following trigger script:

TITLE ISBN char (12),
PUB ID char(12);

.JOIN Macro

Repeats a statement for column couple in a join.

Syntax

.JOIN ("statement","prefix","suffix","last suffix")
Argument | Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line

Example

In a trigger for the table TITLE, the following macro:

.FOREACH PARENT ()

where .JOIN ("%PK%$=%FK%", " and", "", ";")

message 'Reference $REFR% links table $%PARENTS to $CHILDS'
.ENDFOR

generates the following trigger script:

message 'Reference TITLE PUB links table PUBLISHER to TITLE

Note: For columns, the macro JOIN only accepts the variables %PK%, %AK%, and %FK
%.

Customizing and Extending PowerDesigner 241

CHAPTER 4: DBMS Definition Files

.NMFCOL Macro

Repeats a statement for each non-modifiable column in atable. Non-modifiable columns have
Cannot Modify selected as a check parameter.

Syntax
.NMFCOL ("statement","prefix","suffix","last suffix")

Argument Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example

In a trigger for the table TITLE, the following macro:
.NMFCOL ("$COLUMN% $COLTYPES","",",",";")

generates the following trigger script:

TITLE ISBN char (12),
PUB ID char(12);

.CLIENTEXPRESSION and .SERVEREXPRESSION Macros

Uses the client and/or server expression of a business rule in the trigger template, template
item, trigger, and procedure script.

Syntax
.CLIENTEXPRESSION(code of the business rule)

.SERVEREXPRESSION(code of the business rule)

Example
The business rule ACTIVITY_DATE_CONTROL has the following server expression:

activity.begindate < activity.enddate

In a trigger based on template AfterDeleteTrigger, you type the following macro in the
Definition tab of the trigger:

. SERVEREXPRESSION (ACTIVITY DATE CONTROL)

This generates the following trigger script:

242 PowerDesigner

CHAPTER 4: DBMS Definition Files

activity.begindate < activity.enddate
end

Efl Trigger Properties - Trigger_1 [TRIGGER_1]

Generall Definitinnl Template ltems Preview |Nntes I Rules I Versionlnfnl
E-B-EHEA LR -« REEE

<% After delete trigger "TRIGGEE_1" for table "EHPLOY%ﬂ

create trigger TRIGGERE 1 after delete order 1 on EMPLO
referencing old as old del for each row

begin

declare user defined exception exception for SOLST
declare found integer:
activity . begindate { activitv.enddate

end
S sa / ol | »F

<< Less | - QK. I Cancel | Apply | Help |

.SQLXML Macro
Represents a SQL/XML query in the definition of a trigger, a procedure or a function.

Use one of the following tools:

e The Insert SQL/XML Macrotool opens a selection dialog box where you choose a global
element from an XML model. The XML model must be open in the workspace, mapped to
a PDM, and have the SQL/XML extension file attached. Click OK in the dialog box and
the SQLXML macro is displayed in the definition code, with the code of the XML model
(optional) and the code of the global element.

» The Macrostool, where you select .SQLXML() in the list. The SQLXML macro is
displayed empty in the definition code. You must fill the parentheses with the code of an
XML model (optional), followed by :: and the code of a global element. The XML model,
from which you choose a global element, must be open in the workspace, mapped to a
PDM, and have the SQL/XML extension file attached.

After generation, the SQLXML macro is replaced by the SQL/XML query of the global
element.

Syntax
.SQLXML(code of an XML model::code of a global element)

Note: the code of an XML model is optional.

Customizing and Extending PowerDesigner 243

CHAPTER 4: DBMS Definition Files

Example
In a trigger for the table EMPLOYEE, the following macro:

.SQLXML (CorporateMembership: : DEPARTMENT)

generates the following trigger script:

select XMLELEMENT (NAME "Department", XMLATTRIBUTES
(DEPNUM, DEPNAME) ,

(select XMLAGG (XMLELEMENT (NAME "Employee", XMLATTRIBUTES
(DEPNUM, EMPID, FIRSTNAME, LASTNAME)))

from EMPLOYEE

where DEPNUM = DEPNUM))
from DEPARTMENT

% Trigger Properties - tdb_employee [TDB_EMFPLOYEE)

Generall Definitionl Template Items Preview I Motes I Rules I Dependenciesl Versionlnfol

B-B-HSH L 2eo | AEBRE w7cs

create trigger TDE_EMPLOVEE before delete order 1 on PROJ.EMPLOYEE
referencing old as old_del for each row
begin
declare user_defined_exception exception for S0LETATE '59599°;
declare found integer;

t XMLELEMENT|(NAME “Departmwent”, XMLATTRIEUTES (DEPNUM,DEPNAME),
{ ect X¥MLAGG | XMLELEMENT| NAME "Empl e'", XMLATTRIEUTES (DEPNUM,EMPIDL,FIES
fron EMPLOYEE
where DEPNUM = DEPNUM))
fron DEPARTHMEN

end;
=
A ThsaL / | [

<¢ Lesz | - QK I Cancel Apply | Help |

244

PowerDesigner

CHAPTER 5 Customizing Generation with
GTL

The PowerDesigner Generation Template Language (GTL) is used to extract model object
properties as text. GTL iswritten in femplatesand generated filesdefined under metaclasses in
language definition and extension files. It powers generation of code for business process,
object-oriented and XML languages, and can be used to define new generations for any model.

When you launch a generation from a model, PowerDesigner generates a file for each instance
of each metaclass for which you have defined a generated file (see Generated Files (Profile)on
page 85) by evaluating the templates it calls and resolving any variables.

GTL is object-oriented, supporting inheritance and polymorphism for reusability and
maintainability, and provides macros for testing variables and iterating through collections,
etc.

A GTL template can contain text, macros, and variables, and can reference:

« metamodel attributes, such as the name of a class or data type of an attribute
« collections, such as the list of attributes of a class or columns of a table
» other elements of the model, such as environment variables

Note: Though GTL can be used to extend generation in a PDM, the standard generation is
primarily defined using a different mechanism (see Database Generation and Reverse
Engineering on page 120).

Creating a Template and a Generated File

GTL templates are commonly used for generating files. If your template is going to be used in
generation, it must be referenced in a generated file.

1. Open your language definition or extension file in the resource editor (see Opening
Resource Files in the Editoron page 3).

2. Ifnecessary, add a metaclass to the Profile category (see Metaclasses (Profile)on page 33)
and then right-click it and select New > Template (see 7emplates (Profile) on page 84).

3. Enter helloWorld asthe name of the template and enter the following code in the text
box:

Hello World!
This template is being generated for the %Name% object.

Customizing and Extending PowerDesigner 245

CHAPTER 5: Customizing Generation with GTL

Note: We recommend that you name your templates using headless camelCase, (starting
with a lowercase letter), in order to avoid clashes with property and collection names
which, by convention use full CamelCase.

4. Right-click the metaclass again, and select New > Generated File (see Generated Files
(Profile) on page 85).

5. Enter myFile as the name of the generated file, and enter the following code in the text
box to call your template:
ShelloWorld$%

6. Click OK to save your changes in the resource file and return to your model.

7. Create an instance of the metaclass on which you defined the template and generated file,
open its property sheet, and click the Preview tab.

8. Select the myFile sub-tab to preview what would be generated for this object.

Extracting Object Properties

Obiject properties are referenced as variables and enclosed between percent signs:
$variable%. Variable names are case sensitive, and property names are, by convention,
defined in CamelCase.

Properties are extracted as the following types:

e String - returns text.
» Boolean - returns true or false.
e Obiject - returns the object ID or null.

Example

This file is generated for %$Name%, which is a %Color$% %Shape%.

Result:
This file is generated for MyObject, which is a Red Triangle.

Standard properties defined in the PowerDesigner public metamodel (see Chapter 8, The
PowerDesigner Public Metamodel on page 343) are referenced using their public names,
which are written in CamelCase. You can infer public names for many properties from their
labels in object property sheets, but in case of doubt, click the Property Sheet M enu button at
the bottom of the property sheet and select Find in Metamodel Objects Help to review all
available properties for the object.

Extended attributes (see Extended Attributes (Profile) on page 41) are referenced by their
Name defined in the resource editor.

Note: To access an extended attribute defined in another extension file attached to the model,
prefix the name with the . D formatting option. For example:

246

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

%.D:MyExXtAttS

Accessing Collections of Sub-Objects or Related Objects

An OOM contains a collection of classes and classes contain collections of attributes and
operations. To iterate over a collection, use the . foreach item macro.

Example

%$Name$ contains:

.foreach item(Widgets)
\n\t%Name% (%Color% %$Shape$)

.next

Result:

MyObject contains:
Widgetl (Red Triangle)
Widget2 (Yellow Square)
Widget3 (Green Circle)

Standard collections defined in the PowerDesigner public metamodel (see Chapter 8, The
PowerDesigner Public Metamodel on page 343) are referenced using their public names,
which are written in CamelCase. You can infer public names for many collections from their
labels in object property sheet tabs, but in case of doubt, click the Property Sheet Menu
button at the bottom of the property sheet and select Find in Metamodel ObjectsHelp to
review all available collections for the object.

Extended collections (see Extended Collections and Compositions (Profile) on page 48 and
Calculated Collections (Profile) on page 50) are referenced by their Name.

You can use the following keywords to access information about a collection:

Name Description
First (object) Returns the first element of the collection.
IsEmpty (boolean) Returns T rue if the collection is empty, or false if it contains one or

more members.

Count (integer) Returns the number of elements in the collection. You can use this key-
word for defining criteria based on collection size, for example Attrib-
utes.Count>=10.

Customizing and Extending PowerDesigner 247

CHAPTER 5: Customizing Generation with GTL

Example

Result:

$Name% is associated with %AttachedRules.Count% business rules,
of which the first is

%$AttachedRules.First.Name%.

myClass is associated with 3 business rules,
of which the first is myRule.

Formatting Your Output

You can change the formatting of variables by embedding formatting options in variable
syntax. New lines and tabs are specified using the \n and \ t escape sequences respectively.

S[I-1[x][.

[-1y] [options]

:]Jvariable%

The following variable formatting options are available:

Option

Description

Extracts the first y characters or, for -y, the last y characters.

If xis specified, and yis lower than x, then blanks or zeros are added to the
right of the extracted characters to fill the width up to x. For — x, the blanks
or zeros are added to the left and the output is right-justified.

If the M option is appended, then the first x characters of the variable are
discarded and the next y characters are output.

Thus, for an object named abcdefghijklmnopgrstuvwxyz
(with parentheses present simply to demonstrate padding):

Template Output

% .3:Name%) gives (abc)
(%.-3:Name%) gives (xyz)
(%$10.3:Name%) gives (abc)
(%10.-3:Name%) gives (xyz)
%$-10.3:Name%) gives (abc)
($-10.-3:Name%) gives (XYZ)
($10.3M:Name%) gives (7k1)

L[(F],U[F],and c

Converts the output to lowercase or uppercase. If F is specified, only the
first character is converted. c is equivalent to UF.

gand Q Surrounds the variable with single or double quotes.

A Removes indentation and aligns text on the left border.
T Trims leading and trailing whitespace from the variable.
H Converts number to hexadecimal.

248

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Option Description

D Returns the human-readable value of an attribute used in the PowerDe-
signer interface when this value differs from the internal representation.

Forexample, the value of the Vi sibi 11ty attribute is stored internally
as +, but is displayed as pub1ic in the property sheet. The template
$Visibility% generatesas +,but %.D:Visibility% gen-
eratesas public.

Note: You can access extended attributes defined in another extension file
by prefixing them with the . D option (see Extracting Object Propertieson

page 246).
X Escapes XML forbidden characters.
E [deprecated — use the ! power evaluation operator instead, see GTL Op-

erators on page 252].

Examples

This file is generated for %.UQ:Name%. It has the form of a $.L:Col-
or% %.L:Shape%.

This file is generated for "MYGADGET". It has the form of a red
triangle.

The following template is applied to object abcdefghijklmnopgrstuvwxyz
%12 .3QMFU:Name$

Result:

"Tmn"

Customizing and Extending PowerDesigner 249

CHAPTER 5: Customizing Generation with GTL

Controlling Line Breaks in Head and Tail Strings

The head and tail strings in a macro block are only generated when necessary. If the block
returns nothing then the head and tail strings do not appear, which can help to control the
creation of new lines.

Example

The text and new lines in the head and tail of each . foreach item loop are only printed if the
collection is not empty. When this template is applied to a class with attributes but no operations, the
text // Operations and the new lines specified before and after the operations list will not be
printed:

class "%Code%" {
.foreach item(Attributes, // Attributes\n,\n\n)
$DataType% %Code%
.if (%InitialValue%)
= %InitialvValue$%
.endif
.next (\n)
.foreach item(Operations, // Operations\n,\n\n)
SReturnType% %$Code% (...)
.next (\n)
<Source>

}

Result:

class "C1" {// Attributes
int al = 10
int a2
int a3 =5
int a4

<Source>

}

Note: To print a blank space between the curly brace and the string // Attributes, you must
enclose the head string in double-quotes:

.foreach item(Attributes," // Attributes\n",\n)

Conditional Blocks

Place text containing a variable between square brackets to have it appear only if the variable
resolves to a non-null value.

You can also use a form similar to C and Java ternary expressions to printastring if the variable
is true or not null:

[variable ? ifNotNull]

250

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

You can optionally include a string to print if the variable is evaluated to false, null, or the

empty string:

[variable ? ifNotNull :ifNull]

Examples

Attribute %Code%[= %$InitialValue%];
Result:

Attribute Al =0;

Attribute A2 =100;

Attribute A3;

Attribute A4 =10;

The class

Result if the Abstract property is selected:

The class myClass is Abstract.

Result if the Abstract property is not selected:

The class myClass is Concrete.

$Name% is [%$Abstract%$?Abstract:Concrete].

Accessing Global Variables

You can insert information such as your user name and the current date with global variables.

Name

Description

$ActiveModel% (object) Returns the UID of the model. Use $ActiveModel .Name$%

to obtain the name of the model.

%GenOptions% (struct) Returns the model generation options.

$PreviewMode% (boolean) Returns t rue inthe Preview tab, fa 1l se when generatedto a

file.

%CurrentDate% (string) Returns the current system date and time formatted using local

settings.

%CurrentUser$ (string) Returns the current user login.

%NewUUID%

(string) Returns a new universally unique identifier.

Customizing and Extending PowerDesigner 251

CHAPTER 5: Customizing Generation with GTL

Example

This file was generated from $ActiveModel.Name% by $CurrentUser$ on
%CurrentDate%.

Result:

This file was generated from My Model by jsmith on Tuesday, Novem-
ber 06, 2012 4:06:41 PM.

GTL Operators

GTL supports standard arithmetic and logical operators along with some advanced template
operators.

The following standard arithmetical and logical operators are supported, where xand ycan be
numbers or templates resolving to numbers:

Operator Description

= Assignment operator.

==and != Equal to and not equal to operators.
>and < Greater than and less than operators.
>=and <= Greater than or equal to and less than or equal to operators.
&&and | | Logical AND and logical OR operators.
S+ (x,¥7)% Addition operator.

$-(x,¥)% Subtraction operator.

SF(x,V)% Multiplication operator.

$/(x,9)% Division operator.

$&(X,7)% Logical bitfield and operator

In this example, the template in the left column produces the output on the right:

Template Results

Base number= SNumber$ Base number= 4
Number+1= %+ (Number, 1) % Number+1l= 5
Number-1= $— (Number, 1) % Number-1= 3
Number*2= $* (Number, 2) % Number*2= 8
Number/2= %/ (Number, 2) % Number/2= 2
Numberé&l= $& (Number, 1) % Numberé&l= 0

252

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

The following advanced template operators are also supported:

Operator

Description

*

Dereferencing operator - Corresponds to a double evaluation, returning a template
instead of text, using the syntax:
S*template [(P1,P2...)1%

For information about template parameters, see Passing Parameters to a Template
on page 260.

In the following example, a local variable is returned normally and in a dereferenced
form:

.set value(C, Code)
C
*

o° oo

Q o°
o

Result:

Code
%$Code%

Power evaluation operator - Evaluates the results of the evaluation of the variable as
a template.

In the following example, a local variable is returned normally and in a power-
evaluated form:

.set value (C, $%MyAttribute%%)
C
!

o° oo

Q o°
o

Result:

SMyAttribute$

Red

The ! operator may be applied any number of times. For example:

F!ts

°

This outputs the results of the evaluation of the evaluation of the evaluation of
template t.

Customizing and Extending PowerDesigner 253

CHAPTER 5: Customizing Generation with GTL

Operator

Description

?

Existence operator - Tests whether a template, local variable, or property is present,
and returns £alse if it is not.

For example:

.set value (myVariable, 20, new)
SmyVariable?%

.unset (myVariable)
myVariable?%

Result:

true
false

Visibility operator - Tests whether an object property is visible in the interface, and
returns false ifitis not.

For example, to test if the Type field is displayed in the General tab of a database
property sheet in a DMM (meaning that a Replication Server extension file is
attached to the model), enter the following:

$tDatabase.Typet%

254

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Translation Scope

The initial scope of a template is always the metaclass on which it is defined. All standard and
extended attributes, collections, and templates defined on the active object metaclass and its
parents are visible, but only one object is active at any given time.

Examples

The following template is applied to a package P1, which contains a class C1, which contains
operations O1 and 02, which each contain parameters P1 and P2. The scope changes, affecting the
value of the $Name$% variable, as each collection is traversed. The Outer keyword is used to return
temporarily to previous scopes:

SName$
.foreach item(Classes)
\n\t*$Name% in %Outer.Name$%
.foreach item(Operations)
\n\t*%Name% in %Outer.Name$% in %Outer.Outer.Name$%
.foreach item(Parameters)
\n\t\t*$Name% in %$Outer.Name% in %Outer.Outer.Name$% in
%Outer.Outer.Outer.Name$
.next
.next
.next

Result:

Pl

*Cl in P1

*01 in Cl1 in P1
*P1 in Ol in C1 in P1
*P2 in 01 in Cl1 in P1

*02 in C1 in P1
*P1l in 02 in C1 in P1
*P2 in 02 in C1 in P1

The Outer scope is restored when you leave a . foreach item block. Nested scopes form a
hierarchy that can be viewed as a tree, with the top level scope being the root. Use Parent instead of
Outer to climb above the scope of the original object. For example, nothing will be output if the
following template is applied to the parameter P1:

%$Name% in %$Outer.Name$ in %$Outer.Outer.Name$%

However, this template will produce output:

%$Name$ in %Parent.Name$% in %Parent.Parent.Name$%

Result:
Pl in O1 in C1

Customizing and Extending PowerDesigner 255

CHAPTER 5: Customizing Generation with GTL

Shortcut Translation

Shortcuts are dereferenced during translation, so that the scope of the target object replaces the
scope of the shortcut. This is different from VB Script where shortcut translation retrieves the
shortcut itself. You can use the $IsShortcut$% variable to test whether an object is a
shortcut, and the Shortcut keyword to access the properties of the shortcut itself.

Template

In this example, the template is applied to an OOM package P 1 containing two classes and two
shortcuts to classes in P2:

.foreach item(Classes)

\n*Class %$Code% [%$IsShortcut% ? From package %$Package.Name% : Local
Object]

.next

Result:

*Class Cl Local Object
*Class C2 Local Object
*Class C3 From package P2
*Class C4 From package P2

Note: If your model contains shortcuts to objects in another model that is not open, a dialog
box invites you to open the target model. You can use the . set interactive mode
macro to change this behavior (see .set interactive mode Macro on page 278).

Escape Sequences

GTL supports a number of escape sequences to simplify the layout of your templates and
generated files, and to make reserved characters accessible.

The following escape sequences can be used inside templates:

Escape sequence Description

\n New line. For examples of using new lines in macro blocks, see Con-
trolling Line Breaks in Head and Tail Strings on page 250.

\t Tab

\\ Backslash

\ at end of line Continuation character (ignores the new line)

. at beginning of line Comment. Ignores the line.

256

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Escape sequence Description
.. at beginning of line Dot character (to generate a macro).
%% Percent character.

Calling Templates

You can call a template from a generated file or from another template by entering its name
surrounded by percentage signs. Object properties, collections, and local and global variables
are called in the same way. At generation time, a template call is replaced by the template
content, which is then resolved to its final textual value.

Examples:

* %Name% - Calls the object's Name property
* SmyTemplate% - Calls the $SmyTemplate% template

e 3%CurrentDate% - Callsthe 3CurrentDate% global variable (see Accessing Global
Variables on page 251)

Breaking templates into concise units and calling them at generation time helps with
readability and reuse. For example, you can define a commonly-used condition in one
template and reference it in multiple other templates:

Example

The $isInner% template is defined as:

.bool (%ContainerClassifier%!=null)

The $QualifiedCode% template callsthe $isInner% template to testif the class is aninner
class:
.if (%isInner%)
$ContainerClassifier.QualifiedCode%: :%Code%
.else
$Code%
.endif

Result:
C2::C1

The $QualifiedCode% template is applied to the C1 class, which is an inner class to C2.

Inheritance and Polymorphism

Templates are defined on a particular metaclass in a language definition file or extension and
are inherited by and available to the children of the metaclass. For example, a template defined

Customizing and Extending PowerDesigner 257

CHAPTER 5: Customizing Generation with GTL

on the Classifier metaclass is available to templates or generated files defined on the Class and
Interface metaclasses.

GTL supports the following OO concepts as part of inheritance:

Polymorphism - The choice of the template to be evaluated is made at translation-time. A
template defined on a classifier can access templates defined on its children (class,
interface). In the following example, the content of $definition% depends on whether
a class or an interface is being processed:
[classifier

SOUTrCe

Value = Yodefinition®n

[class

definition

[Interface
definition

Template overriding - A template defined on a given metaclass can be overridden by a
template of the same name defined on a child class. In the following example the template
defined on the Classifier metaclass is overridden by the one defined on the Class

metaclass:

[Profile
[classifier
[Templates

izsAbstract
Value =false
[class

[Templates
isabstract
Value = true

You can view the overridden parent by right-clicking the child template and selecting Go
to Super-Definition. You can specify the use of the parent template by prefixing the
template call with the : : qualifying operator. For example:
%$Classifier::isAbstract5s.

Template overloading - You can overload your template definitions and test for different
conditions. Templates can also be defined under criteria (see Criteria (Profile) on page 40)
or stereotypes (see Stereotypes (Profile)on page 37), and the corresponding conditions are
combined. At translation-time, each condition is evaluated and the appropriate template
(or, in the event of no match, the default template) is applied. For example:

full-template-name = {syntaxl}l <template-name> |
{syntaxi} <template-name>'<<' stereotype '>3x! |

{syntax3}! <template-name>'<' «<simple-condition> '>!

template—name = <Lext>

258

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

You can define the same template multiple times in the hierarchy of a language definition file
and extensions files, and PowerDesigner will resolve it using inheritance rules. For example,
the myLang OOM language definition file and the myExtension extension file each
contain a template $t% defined on each of the Classifier and Class metaclasses:

myLang Language Definition File

myExtension Extension File

o Classifier:
* myFile generated file
* $t% template

e Class:
* %t% template

¢ Classifier:
e myOtherFile generated file
* %t% template

e Class:
e $t% template

The Class and Interface metaclasses both inherit from the Classifier metaclass,
and each will generate amyFile and amyOtherFile.

The following template calls are possible inmylLang/Classifier/myFile (which
cannot access the templates inmyExtension):

Template Call in myFile

Template Called

gmyLang: :Classifier::t%

$t%or myLang/Class/t
smyLang: :t%
%Classifier::t%or myLang/Classifier/t

The following template calls are possible in myExtension/Classifier/
myOtherFile (which can access both its own templates and those in myLang):

Template Call in myOtherFile

Template Called

$t%or

tmyExtension::t%

myExtension/Class/t

$Classifier::t%or

gmyExtension::Classifier:

1t

myExtension/Classifier/t

$myLang: :t%or myLang/Class/t
gmyLang::Class::t%
$myLang: :Classifier::t% myLang/Classifier/t

Note: For an extension file to reach templates defined in a language definition file, the

Complement languagegener ation property in the extension must be selected (see Extension

File Properties on page 14).

Customizing and Extending PowerDesigner

259

CHAPTER 5: Customizing Generation with GTL

Passing Parameters to a Template

You can pass parameters to a template, using the syntax:%t (p1,p2...) %.

Parameter values cannot contain any % characters (you cannot pass a template), and are

separated by commas. They are retrieved in the template using local variables with the names
@1, ez,

Examples

The following template call:
SmyTemplate (fine, sunny,24,12)%
calls $myTemplate%:

The weather today is $@1% and %$@2%, with a high of %@3% and a low of
$@4%.

Result:

The weather today is fine and sunny, with a high of 24 and a low of
12.

260

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Examples

The template SAttributes$ is defined as follows:

.foreach item(Attributes)
Lif (%Visibility$ == $Q1%)
$DataType% %Code%

.endif

.next (\n)

The template $AttributelList$ calls $Attributes$ three times, passing a different
visibility value each time to loop over only the attributes that have this visibility:
Class "%Code%" attributes:

// Public
Sattributes (+) %

// Protected
Yattributes (#) %

// Private
$attributes (-) %

Result:

Class "C1" attributes
// Public

int height

int width

// Protected
int shape

// Private
int cost
int price

Customizing and Extending PowerDesigner 261

CHAPTER 5: Customizing Generation with GTL

Recursive Templates

A template can call itself, but such a template should contain some kind of criteria or scope
change to avoid an infinite loop.

Example

Class C1 isinnerto class C2, whichisinturninnerto C3. Thetemplate $topContainerCode
% tests whether the present classifier is inner to another, and if so, calls itself on the container classifier
to perfom the same test until it reaches a classifier that is not inner, at which point it prints the code of
the top container:
.1f (%isInner%)

%ContainerClassifier.topContainerCode%
.else

sCode%
.endif

Result:
C3

GTL-Specific Metamodel Extensions

A number of calculated attributes and collections are provided as GTL-specific extensions to
the metamodel.

The following calculated attributes are metamodel extensions specific to GTL:

Metaclass GTL-Specific Attributes

PdCommon. BaseObject « isSelected (boolean) - True if the object is part of the selection in

the generation dialog
e isShorctut (boolean) - True if the object was accessed by dere-
ferencing a shortcut

PdCommon.BaseModel « GenOptions (struct) - Gives access to user-defined generation

options

PdOOM.* e ActualComment (string) - Cleaned—up comment (with /** /* */

and // removed)

PAOOM.Association « RoleAMinMultiplicity (string)

* RoleAMaxMultiplicity (string)
¢ RoleBMinMultiplicity (string)
* RoleBMaxMultiplicity (string)

262

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Metaclass

GTL-Specific Attributes

PdOOM . Attribute

* MinMultiplicity (string)

« MaxMultiplicity (string)

e Overridden (boolean)

« DataTypeModifierPrefix (string)

« DataTypeModifierSuffix (string)

e (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting

PdOOM.Class

¢ MinCardinality (string)

e MaxCardinality (string)

e SimpleTypeAttribute [XML-specific]

e (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting

PdOOM.Interface

e (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting

PdOOM.Operation

e Declaringlnterface (object)

« GetSetAttribute (object)

e Overridden (boolean)

e ReturnTypeModifierPrefix (string)
¢ ReturnTypeModifierSuffix (string)

* (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting (especially for @throws,
@exception, @params)

PdOOM.Parameter

« DataTypeModifierPrefix (string)
« DataTypeModifierSuffix (string)

The following calculated collections are metamodel extensions specific to GTL:

Metaclass name

Collection name

PdCommon.BaseModel

Generated <metaclass-name> List - Collection of all objects of
type <metaclass-name> that are part of the selection in the gener-
ation dialog

PdCommon. BaseClassifier-
Mapping

SourceLinks

PdCommon. BaseAssociation-
Mapping

SourceLinks

Customizing and Extending PowerDesigner 263

CHAPTER 5: Customizing Generation with GTL

GTL Macro Reference

GTL supports macros to express template logic, and to loop on object collections. Macro
keywords are prefixed by a . (dot) character, which must be the first non-blank character in the
line, and you must respect the use of line breaks in the macro syntax.

Note: Macro parameters can be delimited by double quotes, and this is required if the
parameter value includes commas, braces, leading or trailing blanks. The escape sequence for
double quotes inside a parameter value is \ . When the macro parameters specify that a
parameter is of type simple template, this means that it can contain text, variables, and
conditional blocks, but no macros. Parameters of type complex template can additionally
include macros.

The following macros are available:

Conditional and loop / iterative macros.

.If Macro on page 275 - evaluates conditions.

.foreach_item Macro on page 271 — iterates on object collections.
.foreach_line Macro on page 273 — iterates on lines of a multi-line text block.
.foreach_part Macro on page 274 — iterates on parts of a string.

.break Macro on page 266 — breaks a loop.

Formatting and string manipulation macros.

Jowercase and .uppercase Macros on page 277 - change the case of a text block.

.convert_name and .convert_code Macros on page 267 - convert codes into names or
names into codes.

.delete and .replace Macros on page 268 - perform operations on substrings.
.unique Macro on page 281 - filters redundant lines from a text block.
.block Macro on page 265 - adds a header and a footer to a text block.

Generation command macros- for use when writing GTL in the context of the execution of
a generation command:

.vbscript Macro on page 281 - embed VB script code inside a template.
.execute_vbscript Macro on page 270 - launch vbscripts.

.execute_command Macro on page 269 - launch executables.

.abort_command Macro on page 265 - stop command execution.

.change_dir and .create_path Macroson page 266 - change directory or create a path.
.Jog Macro on page 277 - write log messages.

Miscellaneous macros.

.set_object, .set_value, and .unset Macros on page 279 - create local objects or
variables.

.comment and .// Macro on page 267 - inserts a comment in a template.

264

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

.object and .collection Macros on page 278 - returns a collection of objects based on
the specified scope and condition.

e .objectand .collection Macroson page 278 - return an object or collection based on the
specified scope and condition.

.bool Macro on page 266 - evaluates a condition.

.set_interactive_mode Macro on page 278 — defines whether the GTL execution must
interact with the user.

e .errorand .warning Macros on page 269

.abort command Macro
This macro stops a generation command.

Example

.if % JAVACS

.execute command (% JAVAC%, sFileName%)
.else

.abort command
.endif

For information about generation commands, see Generation Category on page 112.

.block Macro
This macro wraps a block of output with a header and/or a footer, if the output is not empty.

.block [(head)]
block-input
.endblock[(tail)]

The following parameters are available:

Parameter | Description

head [optional] Generated only if block-input is not empty.

Type: Simple template

block-input Specifies the text to output between the head and tail.

Type: Complex template

tail [optional] Generated only if block-input is not empty.

Type: Simple template

Customizing and Extending PowerDesigner 265

CHAPTER 5: Customizing Generation with GTL

Example Result

.block () My comment is in bold!
%Comment%

.endblock ()

Note: The tags would not be generated if no
comment were entered for a particular object.

bool Macro

This macro returns true or false depending on the value of the condition specified.
.bool (condition)

The following parameters are available:

Parameter | Description

condition Specifies the condition to be evaluated.

Type: Condition

Example Result

.bool (%$.3:Code%= =ejb) true

.break Macro

This macro can be used to break out of . foreach loops.

Example

.set value(hasMain, false,

new)
.foreach item(Operations)

.if (%Code% == main)
.set value(hasMain, true)
.break

.endif

.next

[

% hasMain%

.change dir and .create path Macros

These macros change the current directory or create the specified path as part of a generation
command.

.change dir (path)

.create path (path)

The following parameters are available:

266

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Parameter Description
path Specifies the directory to go to or to create.
Type: Simple template (escape sequences ignored)
Example Result
.change_dir (C:\temp) Changes the path to write to to C : \ temp.
.create_path (C:\temp\mydir) Creates the new directory C: \ temp\mydir.

For information about generation commands, see Generation Category on page 112.

.comment and .// Macro

These macros are used to insert comments in a template. Lines starting with . //
or .comment are ignored during generation.

Example

.// This is a comment
.comment This is also a comment

.convert name and .convert code Macros

These macros convert the object name to its code (or vice versa).

Use the following syntax to convert a name to a code:

.convert name

(expression [, "separator" [, "delimiters"] , case])

Use the following syntax to convert a code to a name:

.convert code

(expression [, "separator" [, "delimiters"]])

The following parameters are available:

Parameter | Description

expression Specifies the text to be converted. For .convert_name, this is generally the $Name
% variable and may include a suffix or prefix.
Type: Simple template

separator [optional] Character generated each time a separator declared in delimiters is found
in the code. For example, "_" (underscore).
Type: Text

Customizing and Extending PowerDesigner 267

CHAPTER 5: Customizing Generation with GTL

Parameter | Description

delimiters [optional] Specifies the different delimiters likely to exist in the input code or name,
and which will be replaced by separator. You can declare several separators, for
example"_"and "-"

Type: Text

case [optional for . convert name only] Specifies the case into which to convert
the code. You can choose between:

e firstLowerWord - First word in lowercase, first letters of subsequent
words in uppercase

* FirstUpperChar - First character of all words in uppercase

* lower case - All words in lowercase and separated by an underscore

* UPPER_CASE - All words in uppercase and separated by an underscore

.delete and .replace Macros
These macros delete or replace all instances of the given string in the text input.

.delete (string)
block-input
.enddelete

.replace (string, new-string)

block-input
.endreplace

The following parameters are available:

Parameter Description

string Specifies the string to be deleted.
Type: Text

new-string [.replace only] Specifies the string with which to replace string.
Type: Text

block-input Specifies the text to be parsed for instances of the string to delete or replace.
Type: Complex template

Examples Result

.delete (Get) CustomerName
GetCustomerName

.enddelete

268 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Examples Result

.replace (Get, Set) SetCustomerName
GetCustomerName
.endreplace

.replace(" ",) Customer Name

Customer Name
.endreplace

.error and .warning Macros
These macros are used to output errors and warnings during translation. Errors stop
generation, while warnings are purely informational and can be triggered when an
inconsistency is detected while applying the template on a particular object. The messages are
displayed in both the object Preview tab and the Output window.

.€rror message

.warning message

The following parameters are available:

Parameter Description

message Specifies the text of the message.

Type: Simple template

Example

.error no initial value supplied for attribute %Code% of class
%Parent.Code%

.execute_ command Macro

This macro is launches executables as part of a generation command. If there is a failure for
any reason (executable not found or output sent to stderr), then command execution is
stopped.

.execute command (cmd [,args [, mode]])

The following parameters are available:

Parameter Description

cmd Specifies the path to the executable

Type: Simple template (escape sequences ignored)

Customizing and Extending PowerDesigner 269

CHAPTER 5: Customizing Generation with GTL

Parameter Description

args [optional] Specifies arguments for the executable.

Type: Simple template (escape sequences ignored)

mode [optional] Specifies the execution mode.You can choose from:

*+ cmd ShellExecute -runsas an independent process

* cmd PipeOutput - blocks until completion, and shows the executable
output in the output window

Example

.execute command (notepad, filel.txt, cmd ShellExecute)

For information about generation commands, see Generation Category on page 112.

.execute vbscript Macro

This macro is used to execute a VB script specified in a separate file as part of a generation
command.

.execute vbscript (vbs-file [, script-parameter])

The following parameters are available:

Parameter Description

vbs-file Specifies the path to the VB script.

Type: Simple template (escape sequences ignored)

script-parameter | [optional] Passed to the script through the ScriptInputParameters
global property.

Type: Simple template

Example

.execute vbscript (C:\samples\vbs\login.vbs, S%$username%)

The result of the script is available in the ScriptResult global property (see Manipulating
Models, Collections, and Objects (Scripting)on page 312). The active object of the current translation

scope can be accessed through the ActiveSelection collectionas ActiveSelec-
tion.Item(0).

For information about generation commands, see Generation Category on page 112.

270

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

foreach item Macro
This macro iterates over a collection of sub-objects or related objects.

.foreach item (collection [,head [,tail [,filter [,order]]]])
output
.next [(separator)]

The following parameters are available:

Parameter Description

collection Specifies the collection over which to iterate.

Type: Simple template

head [optional] Specifies text to be generated before the output, unless the collection is
empty.
Type: Text

tail [optional] Specifies text to be generated after the output, unless the collection is empty.
Type: Text

filter [optional] Specifies a filter to apply to the collection before iteration.

Type: Simple condition

order [optional] Specifies the order in which the collection will be iterated in the format:
$Iteml.property$s <= $Item?2.propertys

When the comparison evaluates to true, $Ttem1% will be placed after $Ttem?2%.
By default, the collection is ordered alphabetically by name.

Type: Simple condition

output Specifies the text to output for each item in the collection.

Type: Complex template

separator [optional] Specifies text to be generated between each instance of output.

Type: Text

Note: If parameter values contain commas, braces, or leading or trailing blanks, they must be
delimited with double-quotes. To escape double-quotes inside a parameter value, use \".

Customizing and Extending PowerDesigner 271

CHAPTER 5: Customizing Generation with GTL

Examples

Simple list:

.foreach item(Attributes)
*$Code% (%DataType%) [= %$InitialValue%];
.next (\n)

Result:

*available (boolean) = true;
*actualCost (int);

*baseCost (int);
*color (String);
*height (int) = 10;
*width (int) = 5;
*name (int);

With head and tail:
.foreach item(Attributes,Attributes:\n,\n\nEnd of Attribute List)

*%$Code% (%DataType%)[= %$InitialValue%];
.next (\n)
Result:
Attributes:
*available (boolean) = true;

*actualCost (int);
*baseCost (int);
*color (String);
*height (int) = 10;
*width (int) = 5;
*name (int);

End of Attribute List

With filter:
.foreach item(Attributes,,,%.1l:Code%==a)
*%Code% (%DataType%) [= S$InitialValue%];
.next (\n)
Result:
*available (boolean) = true;

*actualCost (int);

272

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Examples

With reverse alphabetical ordering:

.foreach item(Attributes,,,, %Iteml.Code% <= $Item2.Code%)
*$Code% (%DataType%) [= %$InitialValue%];
.next (\n)

Result:

*width (int) = 5;
*name (int);
*height (int) =
*color (String);
*baseCost (int);
*available (boolean) = true;
*actualCost (int);

10;

foreach line Macro

This macro iterates over the lines of the multiline block of text using the special
$CurrentLine$% local variable.

.foreach line (input [,head [, tail]])
output
.next [(separator)]

The following parameters are available:

Parameter Description

input Specifies the text over which to iterate.

Type: Simple template

head [optional] Specifies text to be generated before the output, unless there is no
output.
Type: Text

tail [optional] Specifies text to be generated after the output, unless there is no output.
Type: Text

output Specifies the text to output for each line in the input.

Type: Complex template

separator [optional] Specifies text to be generated between each line of output.

Type: Text

Customizing and Extending PowerDesigner 273

CHAPTER 5: Customizing Generation with GTL

Example

.foreach line (%Comment%,"/**\n","\n*/")
* $CurrentLine%
.next ("\n")

Result:
/* *

* This is my comment.
* It is a Java style documentation comment.
* It spans several lines.

*/

foreach part Macro

This macro iterates over the parts of a string divided by a delimiter using the special
$CurrentPart$% local variable.

.foreach part (input [, "delimiter" [,head [, tail]]])
output
.next [(separator)]

The following parameters are available:

Parameter Description

input Specifies the text over which to iterate.

Type: Simple template

delimiter Specifies the sub-string that divides the input into parts. You can specify multiple
characters including ranges. For example [A-Z] specifiesthatany capital letter
acts as a delimiter.

By default, the delimiterissetto ' -, \t ' (space, dash, underscore, comma,
or tab).

Note: The delimiter must be surrounded by single quotes if it contains a space.

Type: Text

head [optional] Specifies text to be generated before the output, unless there is no
output.

Type: Text

tail [optional] Specifies text to be generated after the output, unless there is no output.

Type: Text

output Specifies the text to output for each part in the input.

Type: Complex template

274 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Parameter Description
separator [optional] Specifies text to be generated between each part of output.
Type: Text
For example:
Examples

This template is applied to My class:

.foreach part (%Name%)
%.FU:CurrentPart%
.next

Result:

MyClass

This template is applied to My class:

.foreach part (%Name%,' - ', tbl)
%.L:CurrentPart%

.next ()

Result:

tbl my class

This template is applied to MyClass:

.foreach part (%Name%, [A-Z])
%.L:CurrentPart$%

.next (-)

Result:

my-class

.if Macro
This macro is used for conditional generation.

.if[not] condition
output
[(.elsif[not] condition
output) *]
[.else
output]
.endif [(tail)]

The following parameters are available:

Customizing and Extending PowerDesigner

275

CHAPTER 5: Customizing Generation with GTL

Parameter Description

condition Specifies the condition to evaluate, in the form:
variable [operator comparison]

Where comparisonmay be :

e Text, or a simple template
e trueorfalse
e nullornotnull

If no operator and condition are specified, the condition evaluates to true unless
the value of the variable is false, null, or the empty string.

If variable and comparison are not integers, the operators perform a string
comparison that takes into account embedded numbers. For example:

Class 10 > Class 2

You can chain conditions together using the and or or logical operators.
Type: Simple template

output Specifies the output if the condition is true.

Type: Complex template

tail [optional] Specifies text to be generated after the output, unless the output is
empty.
Type: Text

Examples

Simple . i f block:

.1f %$Abstract$%

This class is abstract.
.endif
Result (if the Abstract property is selected):

This class is abstract.

With two conditions and an . el se clause:

.1f (%Abstract%$==false) && (%Visibility%=="+")
This class is public and concrete.
.else
This is not a public, concrete class.
.endif

Result (if the Abstract property is not selected and the Visibility property is set to Public):

This class is public and concrete.

276

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Examples

Withan .elseif clause:

.1if (%Abstract%$==false) && (%Visibility%$=="+")
This class is public and concrete.
.elsif (%Visibility%=="+")
This class is public.
.else
This is not a public, concrete class.
.endif

Jlog Macro

This macro logs a message to the Output window Gener ation tab as part of a generation

command.

.log message

Example

.log undefined environment variable: JAVAC

For information about generation commands, see Generation Category on page 112.

Jlowercase and .uppercase Macros
These macros convert text blocks to the specified case.

.lowercase
block-input
.endlowercase

.uppercase

block-input
.enduppercase

The following parameters are available:

Parameter Description

block-input Specifies the text to convert.

Type: Complex template

Customizing and Extending PowerDesigner

277

CHAPTER 5: Customizing Generation with GTL

Example Result
.lowercase Applied to
%Comment% Thi ; t
.endlowercase s
Produces:
this is my comment.

.0bject and .collection Macros

These macro return a single object OID or a collection of objects as a concatenation of semi-

colon terminated OIDs, and are generally used to create templates returning objects for use by
other templates.

.collection (scope [, filter])

.object (scope [, filter])

The following parameters are available:

Parameter | Description

scope Specifies the collection over which to iterate.

Type: simple-template returning a collection scope

filter [optional] Specifies a filter condition to filter the collection.

Type: simple-template

Examples

.object (Attributes, %.1:Code%>= a) and (%.1:Code$% <= e))

Result:
C73C03B7-CD73-466A-B323-0B90B67E82FC

.collection (Attributes, %$.1:Code%$>= a) and (%.1:Code% <= e))

Result:

C73C03B7-CD73-466A-B323-0B90B67E82FC; 77TE3F55C-

CF24-440F-84E7-5AA7B3399C00;F369CD8C-0C16-4896-9C2D-0CD2F80D6980; 0
0ADD959-0705-4061-BF77-BB1914EDC018;

.set interactive mode Macro
This macro is used to define if the GTL execution must interact with the user or not.

.set _interactive mode (mode)

The following parameters are available:

278 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Parameter Description

mode Specifies the level of interaction required. You can choose between:

* im Batch - Suppresses dialog boxes and always uses default values. For
example, if your model contains external shortcuts and the target model for
the shortcuts is closed, this mode will automatically open the model without
user interaction.

* 1im Dialog - Displays information and confirmation dialog boxes that
require user interaction for the execution to keep running.

* im Abort - Suppresses dialog boxes and aborts execution if a dialog is
encountered.

.set object, .set value, and .unset Macros

These macros are used to define a local variable of object (local object) or value type or to
unset them.

Use the following syntax to create a local object:
.set object ([scope.] name [, object-ref [, mode]])

Use the following syntax to create a local variable:
.set value ([scope.] name, value [, mode])

Use the following syntax to remove a local object or variable:

.unset ([scope.] name)

The following parameters are available:

Parameter Description

scope [optional] Specifies the qualifying scope. If no scope is set, then the scope is the
object with the current scope. Use the thi s keyword to explicitly give a scope
of the current object, or Parent to give a scope of the parent object.

Type: Simple-template returning an object or a collection scope

name Specifies the name of the object or variable, which you can reference elsewhere
in the template in the form of $name%.

Type: Simple-template

object-ref [.set_object only - optional] Specifies an object reference. If no reference is
specified or an empty string is given, the variable is a reference to the active object
in the current translation scope.

Type: [scope.] object-scope]

Customizing and Extending PowerDesigner 279

CHAPTER 5: Customizing Generation with GTL

Parameter Description

value [.set_value only] Specifies the value to give to the variable.

Type: Simple template (escape sequences ignored)

mode [optional] Specifies the mode of creation. You can choose between:

* new - Forces the (re)-definition of the variable in the current scope. Recom-
mended when a variable with the same name may already be defined in a
previous scope.

e update — [default] If a variable with the same name already exists, update the
existing variable. Otherwise define a new one.

¢ newifundef - Define the variable in the current scope if it has not been defined
in an outer scope. Otherwise do nothing.

Examples:

Examples

.set object (Attributel, Attributes.First)
.set value (FirstAttributeCode, %Attributes.First.Code%)
SFirstAttributeCode% (OID: $%$Attributel%)

Result:
al (OID: 63442F85-48DF-42C8-92C1-0591F5D34525)

.set value (this.key, %Code%-%0bjectID%)

Result:
C1-40D8F396-EE29-4B7B-8C78-E5A0C5A23325

.set value (i, 1, new)

$i2%

.unset (1)

$1i?%

Result:

true

false

The first call to $1 ?% outputs t rue as the variable i is defined, and the second outputs false,

because it has been unset.

Note: You can use the dereferencing operator, * (see GTL Operatorson page 252), to convert
the value of a variable set with the . set value macro to atemplate name. For example, the
following code is equivalent to $Code%.:

.set _value (i, Code)

o Lo}
F*i%

280 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

.unique Macro

This macro outputs a block in which each line of the text generated is unique, and is often used

for calculating imports, includes, typedefs, or forward declarations in languages such as Java,
C++ or C#.

.unique
block-input
.endunique /| (tail)]

The following parameters are available:

Parameter Description

block-input Specifies the text block to be processed.

Type: Complex template

tail [optional] Specifies text to be generated after the output, unless the collection is
empty.
Type: Text

Example

.unique

import java.util.x*;
import java.lang.String;
$imports$

.endunique

.vbscript Macro

This macro is used to embed VBScript code inside a template as part of a generation
command. The result of the script is available as the ScriptResult array

.vbscript [(script-param-list)]
block-input
.endvbscript [(tail)]

The following parameters are available:

Parameter Description

script-param-list | Specifies the parameters to pass to the script through the ScriptInpu-
tArray table.

Type: List of simple-template arguments separated by commas

block-input Specifies theVBscript to run.

Type: Text

Customizing and Extending PowerDesigner 281

CHAPTER 5: Customizing Generation with GTL

Parameter Description

tail Appended to the output, if there is one
Type: Text

Examples

This simple script accepts the two words he1 10 and wor 1d as input parameters, and returns them
as a single string with a space in between them:
.vbscript (hello, world)

ScriptResult = ScriptInputArray(0) + " " + ScriptInputArray(l)
.endvbscript

Result:
hello world

282

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Examples

This script accepts an attribute code, reviews it against all the attribute codes in the current model, and
appends a 1 to it if it matches any other code:

.set value(code, $@1%,new)
.vbscript (% _code?)

Dim attrCode

attrCode = ScriptInputArray(0)

While (attrFound (attrCode))
attrCode = attrCode + "1"
Wend

Function attrFound (attrCode)
Dim found, attr
found = False
For Each attr in ActiveSelection.Item(0) .Attributes
If attr.Code = attrCode Then
found = True
Exit For
End If
Next

For Each attr in ActiveSelection.Item(0).InheritedAttri-
butes
If attr.Code = attrCode Then
found = True
Exit For
End If
Next
attrFound = found
End Function

ScriptResult = attrCode
.endvbscript

Note: The active object of the current translation scope is accessed as ActiveSelec—
tion.Item(0) (see Manipulating Models, Collections, and Objects (Scripting) on page 312).

For information about generation commands, see Generation Category on page 112.

GTL Syntax and Translation Errors

Error messages stop the generation of the file in which errors have been found, these errors are
displayed in the Preview tab of the corresponding object property sheet.

Error messages have the following format:

target::catg-path full-template-name (line-number)
active-object-metaclass active-object-code) :
error-type error-message

Customizing and Extending PowerDesigner 283

CHAPTER 5: Customizing Generation with GTL

You may encounter the following syntax errors:

Syntax error message

Description and correction

condition parsing error

Syntax error in a boolean expression

expecting .endif
.else with no matching .if

.endif with no matching .if

Addan .endif or .if (see./f Macroon page 275).

expecting .next

.next with no matching .foreach

Add an appropriate . next or . foreach to the
collection block (for example, see . foreach_item Macro
on page 271).

expecting .end%s

Add an appropriate . end to the macro block (for ex-
ample, see .unique Macro on page 281).

.end%s with no matching .%s

Add an appropriate .macrotothe .endmacro (for
example, see .vbscript Macro on page 281).

missing or mismatched parentheses

Correct any mismatched parentheses.

unexpected parameters: extra-params

Remove any unnecessary parameters

unknown macro

Replace with a valid macro (see GTL Macro Reference
on page 264).

.execute_command incorrect syntax

The correct syntax is displayed in the Preview tab, or in
the Output window (see .execute_command Macro on
page 269).

Change_dir incorrect syntax

See .change_dir and .create_path Macros on page 266.

convert_name incorrect syntax

convert_code incorrect syntax

See .convert_name and .convert_code Macros on page
267.

set_object incorrect syntax

set_value incorrect syntax

See .set_object, .set_value, and .unset Macros on page
279.

execute_vbscript incorrect syntax

See .execute_vbscript Macro on page 270.

Translation errors are evaluation errors on a variable when evaluating a template:

Translation error message

Description and correction

unresolved collection: collection

Unknown collection (see Accessing Collections of Sub-
Objects or Related Objects on page 247).

284

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Translation error message Description and correction

unresolved member: member Unknown member, null object member, or expecting a

null object string instead of an object (see Extracting Object Prop-

erties on page 246).
expecting object variable: object

no outer scope Invalid use of the OQuter keyword (see Translation

Scope on page 255).

VBScript execution error VB script error (see .vbscript Macro on page 281).

Deadlock detected Deadlock due to an infinite loop.

Customizing and Extending PowerDesigner 285

CHAPTER 5: Customizing Generation with GTL

286 PowerDesigner

CHAPTER 6

Translating Reports with Report
Language Files

When you create a report, you select a report language, which contains all the framing text
used in the generation of the report for the selected language, such as report section titles, types
of model objects, and their properties. PowerDesigner ships with support for English
(default), French, and simplified and traditional Chinese. You can edit these files, or use them
as the basis for creating your own files for translations into other languages.

Report language files have an .xrl extension and are stored in install dir/Resource
Files/Report Languages. To view the list of report languages, select Tools >
Resources > Report Languages. For information about the tools available in resource file
lists, see Chapter 1, PowerDesigner Resource Files on page 1.

In the following example, Entity Card, Entity Description, and Entity Annotation are shown in
English and French as they will appear in the Report items pane:

E Project Management (CDM), Report - CDM report
Show All lkems

1 =] E3
Fieport iems
;I QJ Section 1
[=RNMIEE ritity - E bty ZITE M
5] Entity Card - Card of entity ZITEM?
j Entity Description - Description of entity 2 TEM %
,J Entity Annotation - Annotation of entity ZITEMZ

vailable items
4] Data ltem
EI---Q_& Enrtity

5] Entlity Card
,j Entity Descriptian
,J Enlity Annotation
|| Entity Package Options
f% Lizt of Related Diagrams of E ntity
-AJ| Related Diagram
(7 List of Child Eniities

EPruiect Management {CDM), Report - CDM Report

I[=] E3

[List of Child Inherits

7 List of Parerts of E
:‘j List of Diagrams co
[List of Entity Atibu
AL Entity Attibute
2] List of Entity | dentit
L] Entity [dentifier

1 T D el b die

-] Enlity Annatation

I‘:‘% Ertity Package Options
-1 List of Related Diagrams of Entity
#-\J] Related Diagiam

i List of Child Entities of Entity

List of Entity Attached Rules
List of all Dependencies
List of Objects in Related Diagrams of Entity
List of Relationships of Entity
List of Child Inheritances of Entity
List of Parents of Entity
List of Diagrams containing the Entity
List of Entity Attributes

AL Entity Attribute =

j Ertity Description - Description de l'entité ZITEM %
-,j Entity Annotation - Annotation de lentité ZITEME

Buvailable items Show All ltems [T
-4 Entity ;I ‘_j,_l Section_1
-] Entity Card - A%
-] Ertity Description -] Entity Card - Fiche de I'sntité %I TEM

N section_1 /

The report language files use GTL templates (see Chapter 5, Customizing Generation with
GTL on page 245) to factorize the work of translation. Report Item Templates interact with
your translations of the names of model objects and Linguistic Variables (that handle syntactic
peculiarities such as plural forms and definite articles) to automatically generate all the textual

Customizing and Extending PowerDesigner

287

CHAPTER 6: Translating Reports with Report Language Files

elements in a report and dramatically reduce (by around 60%) the number of strings that must
be translated in order to render reports in a new language.

For example the French report title Liste des données de 1'entité MyEntity
is automatically generated as follows:

 the List - object collections report item template (see Profile/Report Item Templates
Category on page 303) is translated as:

Liste des %@Value% %ParentMetaClass.OFTHECLSSNAMES %%PARENTSS

in which the following variables are resolved:

* %Q@Value% - resolves to the object type of the metaclass (see Object Attributes
Category on page 298), données.

e %ParentMetaClass.OFTHECLSSNAMES% %%PARENT%% - resolves to the

object type of the parent metaclass, as generated by the OF THECL.SSNAME linguistic
variable (see Profile/Linguistic Variables Category on page 300), 1 'entité.

* %%PARENTS%% - resolves to the name of the specific object (see Object Attributes
Category on page 298), MyEntity.

Opening a Report Language File

You can review and edit report language files in the Resource Editor.

1. Select Tools> Resources > Report Languages to open the List of Report Languages,
which lists all the available .xrl files:

ol ™ - B e RS RS

Frenich
Simplified Chinese
Traditional Chinese

Cloze I Help |

2. Select a report language and click the Propertiestool to open it in the Resource Editor.

Note: You can open the .xrl file attached to a report open in the Report Editor by selecting
Report > Report Properties, and clicking the Edit Current L anguage tool beside the

288 PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

L anguage list. You can change the report language by selecting another language in the
list.

For more information about the tools available in the List of Report Languages, see
Chapter 1, PowerDesigner Resource Files on page 1.

Creating a Report Language File for a New Language

You can translate reports and other text items used to generate PowerDesigner reports into a
new language.

1

Select Tools > Resour ces > Report Languagesto open the List of Report Languages,
which shows all the available report language resource files.

Click the New tool, and enter the name that you want to appear in the List of Report
Languages.

[optional] Select a report language in the Copy from list.
Click OK to open the new file in the Report Language Editor.

Open the Values Mapping category, and translate each of the keyword values (see Values
Mapping Category on page 291).

Open the Profile > Linguistic Variables category to create the grammar rules necessary
for the correct evaluation of the report item templates (see Profile/Linguistic Variables
Category on page 300).

Open the Profile> Report |tems Templatescategory, and translate the various templates
(see Profile/Report Item Templates Category on page 303). As you translate, you may
discover additional linguistic variables that you should create.

Click the All Classestab to view a sortable list of all the metaclasses available in the
PowerDesigner metamodel (see A// Classes Tab on page 299). Translate each of the
metaclass names.

Click the All Attributesand Collectionstab to view a sortable list of all the attributes and
collections available in the PowerDesigner metamodel (see A/l Attributes and Collections
7ab on page 300). Translate each of the attribute and collection names.

10. Click the All Report Titlestab, and review the automatically generated report titles (see

All Report Titles Tab on page 297). This tab may take several seconds to display.

11. Click the Savetool, and click OK to close the Report Language Editor. The report

language file is now ready to be attached to a report.

Customizing and Extending PowerDesigner 289

CHAPTER 6: Translating Reports with Report Language Files

Report Language File Properties

[Report Language Properties {For All Reports)

General |.-’-‘«II Elassesl Al Sttributes and Eollectionsl All Repaort Titlesl

- - IEninsh Template

Ja-d- 5

All report language files can be opened in the Resource Editor, and have the same basic
category structure.

IS[=] E3

H-10) Walues Mapping
--u,j Report Titles
F-1C3) Ohject Attibutes
=3 Profile
B Shared
E.,j Templates
--uj Linguistic V ariables
--uj Repart Itern Templates

Hame:

LCoode:

Comment;

I Englizh Template

j

|Eng|ish Template

IT

File name: IE:'\F‘IDgram Filez\SpbazehPoveerDiezsigner 1545

i

[

Cancel

Apply

| Help |

The root node of each file contains the following properties:

Property Description

Name Specifies the name of the report language.

Code Specifies the code of the report language.

File Name [read-only] Specifies the path to the .xrl file.

Comment Specifies additional information about the report language.

290

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

Values Mapping Category

The Values Mapping category contains a list of keywords values (such as Undefined, Yes,
False, or None) for object properties displayed in cards, checks, and lists. You must enter a
translation in the Value column for each keyword in the Name column:

E Report Language Properties {For All Reports) [_ (O]

General |.f3«|| Classesl &l dstributes and Collectionsl &l Repart TitIesI

W 3 IEnuIish Template: ¥ alues MappingsFormshStandard ﬂ J\, L n:f 52}
=
sy RptLang Template - ;
15 Walues Mapping Mame: IStandald
Caomment; ﬂ
=) Report Titles
B+ Common Dbjects LI
[0 Report Wizard W alue:
B0 Conceptual Data Model K &
[0 Logical Data Modsl a4 | $a@dx | G
.._"‘l ML Maodel Marne: Walue o
B2 Information Liguidity Madel 1 <Embedded Files> <Embedded Files:
#-C30) Requirements Model 2 <None> <Aucuny
42) Free Madel & <UMDEF: <Mon définiz
-3 Project 4 <Undefined: <MNon défini: =
B2 Enterprize Architecture Mod g ELInI:nown) EUnI:nown) hd
=12 Physical Data Model mpty mpty =
) Diagram L it Feli B
{ WL Parkane _ILI HEIENEAEIEIEE! [»]
4 | i 3

ag I Cancel Lpply | Help |

This category contains the following sub-categories:

Sub-category Description

Forms Contains a Standard mapping table for keywords of object properties in cards
and checks, which is available to all models. You have to provide translations
for keywords values in the Value column.

Example: Embedded Files.

Lists Contains a Standard mapping table for keywords of object properties in lists,
which is available to all models. You have to provide translations for keywords
values in the Value column.

Example: True.

You can create new mapping tables containing keywords values specific to particular types of
model objects.

Customizing and Extending PowerDesigner 291

CHAPTER 6: Translating Reports with Report Language Files

Example: Creating a Mapping Table, and Attaching It to a Specific Model Object

You can override the values in the Standard mapping tables for a specific model object by
creating a new mapping table, and attaching it to the object.

In the following example, the DisplayMap mapping table is used to override the Standard
mapping table for PDM columns to provide custom values for the Displayed property, which
controls the display of the selected column in the table symbol. This situation can be

summarized as follows:

Name Value

TRUE Displayed

FALSE

Not Displayed

property sheet.

Apply:

Open the Values Mapping > Lists category.
Right-click the Lists category, select New > Map Item to create a new list, and open its

« Name: TRUE, Value: Displayed.
* Name:FALSE, Value: Not Displayed.

E Report Language Properties {For All Reports)

Enter DisplayMap in the Name field, enter the following values in the Value list, and click

[_ (O]
General |AII Elassesl All Attributes and Collectionsl All Report Tillesl
ﬂ hé - IEninsh Template: Walues MappingsLists\Dizplavh ap ﬂ \-"» 3 H = Rif i';}
Q} French Template - ; -
=) Yalues Mapping Name: |D|sp|ayMap
- Forms Comment; -
E|.,j Lists
[EREE [i=playtdap
-3 Report Titles Walue:
E-) Object Attributes | I G
= 5 i n @ X |
- Cormmon Objects 344 | * . |
.,j Requirements Model MHame Walue i
-2 Conceptual D ata Model 1 TRUE Dizplayed
J Free Madel 2 FALSE Mot Dizplayed
&) Logical Data Model]
B0 ¥ML Model s
- Information Liquidiy Model =
-0 Physical Data Model = =
et et | | BEREIFIESEY |

e |

Cancel

Apply | Help |

292

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

4. Right-click the Lists category, select New > Category, hame the category Physical Data
Model, and click Apply.

5. To complete the recreation of the PDM Object Attributes tree, right-click the new Physical
Data Model category, select New > Map Item, name the category Column, and click
Apply.

6. Click the Name column to create a value and enter Displayed, which is the name of the
PDM column attribute (property).

7. Click the Value column and enter DisplayMap to specify the mapping table to use for that
attribute.

[Report Language Properties (For All Reports) =] E3

General |AII CIas&e&l All Atributes and Eollections' Al Report Titlesl

ﬂ - - IEninshTempIale::VaIues MappingiLists\Phyzical D ata ModelCalumins j JQ - H - B2 ab

4 Tat
v RptLang Templat
Q.‘f ptLang empa.e - N
E|_"‘| Walues Mapping
B Foms Comment: -
=- Lists
Walue:
E N
-2 Report Titles 24 | i — |
Elj Object Attibutes I ame Value iz
J Common Objects 1 Dizplayed Dizplaykd ap
-0 Requirsments Model
-0 Concsptual D ata Modsl i
B0 Free Model b
B+ Logical Diata Modsd e
B =ML Model =
I i |..:......:...|:_..:.I|:;..H.Jilﬂ ?I#Ifl‘l*lil‘l I 'I
4 4

()4 I Cancel | Apply | Help |

8. Click Apply to save your changes. When you generate a report, the Displayed property
will be shown using the specified values:

1 List of table columns

Mame Code Displayed
id id Displayed
name natne Mot Displayed
size size Mot Displayed
supplier suppliet Mot Displayed
guatitity uanitity Displayed
unit_price unit_price Displayed

Customizing and Extending PowerDesigner 293

CHAPTER 6: Translating Reports with Report Language Files

Report Titles Category

The Report Titles category contains translations for all the possible report titles that appear in
the Available Items pane in the Report Editor, those that are generated with the Report Wizard,
and other miscellaneous text items.

[® Report Language Properties {For All Reports) _ O]

General |.-’-‘«II I:Iassesl Al Attributes and Eollectinnsl All Repart TitIesI

Q- =- IEninsh Template::Repart Titles\Phyzical Data Model\T ableA\Calumn®, j T HT: il

ac
=0 Column =] .
[\.j ExtendedSubObject e Lolumn card
AJIE stendedSubObjects list J Comment: ﬂ

AnalyzizObjects st
Annotation
ArticleCalumneg list
AttachedR equirements list
AttachedRules list

-
Book title —I

CheckConstraintt ame Walue: Fiche de la colonne de la table IEI
ChildviewReferenceloins list

ClientCheckE spregzzion
Column card

Colurmn check

ComputedE spression

Data list
DataStructureColumngSource
DataStructureColumnsT aget

[T P P

4 —I ;

ak I Cancel Apply Help

This category contains the following sub-categories:

Sub-cate- [Description
gory

Common Ob- | Contains the text items available to all models. You must provide translations of
jects these items here.

Example: HTMLNext provides the text for the Next button in an HTML report.

Report Wizard | Contains the report titles generated with the Report Wizard. You must provide
translations of these items here.

Example: Short description title provides the text for a short description section
when you generate a report with the Report Wizard.

294 PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

Sub-cate- [Description
gory

[Models] Contain the report titles and other text items available to each model. These are
automatically generated, but you can override the default values.

Example: DataTransformationTasks list provides the text for the data transforma-
tion tasks list of a given transformation process in the Data Movement Model.

By default (with the exception of the Common Objects and Report Wizard sub-categories)
these translations are automatically generated from the templates in the Profile category (see
Profile/Report Item Templates Category on page 303). You can override the automatically
generated values by entering your own text in the L ocalized name field, which will depress
the User-Defined button to indicate that the value is no longer generated.

Note: The All Report Titlestab (see A/l Report Titles Tab on page 297) displays the same
translations shown in this category in a simple, sortable list form. You may find it more
convenient to check and, where appropriate, to override generated translations on this tab.

Example: Translating the HTML Report Previous Button

The HTML report Previousbutton is a common object available to all models, and located in
the Common Objects category. You must translate this text item manually along with the other
items in this, and the Report Wizard categories.

1. Open the Report Titles> Common Objects category.

2. Click the Htm1Previous entry to display its properties, and enter a translation in the
Value box. The User-Defined button is depressed to indicate that the value is no longer
generated.

Customizing and Extending PowerDesigner 295

CHAPTER 6: Translating Reports with Report Language Files

'f\f Report Language Properties (For All Reports)

General |AII CIasses' All Attributes ard Collections' All Report Titlesl

- - IENG::HepDrtTitles\l:ommon Objects\HtmlPrevious

Ja-d- g

=] E3

4

----- abe| Domains list ;I
----- abe| ExtendedCollection Conten
----- abe| ExtendedDependencies list
be| Extendedinfluences list

----- Jbe| EwtendedinverseCollection:
----- Jabe| Ewtendedlinks list

Jbe| ExtendedObjects list

~Jabe| Files list

ooter

Generatedhd odels list

-|abe] GenerationDriging list
eader

i HtmlHame

=

----- abe| bodel card
be| ObjectslnRelatedDiaarams
----- abe| Packages list

=

bl Dem s

m

Mame:

HirnlPrewvious

Comment:

Walue:

i

Précédent

=Y

i

Cancel

Apply Help

3. Click Apply to save your changes.

296

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

All Report Titles Tab
The Report Titles tab lists all the report titles and other miscellaneous text items available in
the Report Titles category on the General tab, but the flat structure makes it more convenient to

work with.
@ Report Language Properties (For All Reports) [_ O]

General | Al Classes | Al Attributes and Collections 41l Report Tites |

| ¥ cal X |8 R

Parent Marme Localized Mame i’
19 Category Diagram' ActivitgFlow list Ligt of flows in diagram
20 Category 'Actar Actar card Card of actor ZITEM %
21 Category 'Actar Actar card Card of actor ZITEM %
22 Category Diagram' Actar list Lizt of actors in diagram
23 Category Diagram' Actar list Lizt of actors in diagram
24 Category Clazs' Actors list Lizt of actors of the class ZPARENT %
25 Category Interface’ Actors list Lizt of actors of the interface XPAREMT %

28 Category 'Datadggregation’ | AggregationColumng list Lizt of aggregated colurmng of the data transft
29 Category ‘ShatractD ataT ppe' AllEstendedSubObjects list Lizt of extended sub-objects of the abstract d.
a0 Category ‘ShatractD ataT ppe | AllEstendedSubObjects list Lizt of extended sub-objects of the abstract d.
£l Categon ‘ShatractD ataT upe AlEstendedSubObjects list Lizst of extended sub-objects of the abstract d.
32 Categaon ‘Action’ AlEstendedSubObjects list Lizst of extended sub-objects of the action %P
33 Categan ‘Action’ AlEstendedSublbjects list Lizst of extended sub-objects of the action %P
34 Categan ‘Sctivity' AlEstendedSubObjects list Lizst of extended sub-objects of the activity %F =
3B Categan ‘ActivitpFlow AlEstendedSublbjects list Lizst of extended sub-objects of the flow XPAF =
6 Categan ‘Actar’ AlEstendedSubObjects list Lizst of extended sub-objects of the actar ZPA =
| | IO
ak. I Cancel | Apply | Help |

For each report listed in the Name column, you can review or override a translation in the
L ocalized Namecolumn. You can sort the list to group similarly-named objects, and translate

identical items together by selecting multiple lines.

Customizing and Extending PowerDesigner

297

CHAPTER 6: Translating Reports with Report Language Files

Object Attributes Category

The Object Attributes category contains all the metaclasses, collections and attributes
available in the PowerDesigner metamodel, organized in tree form;

EI Report Language Properties (For all Reports) [_ (O] x|

[ieneral |AII EIa&sesI &l Attributes and Eullectionsl Al Repart Titlesl

ﬂ - - IENG::DbiectAttributes'\lnformation Ligquidity Model\ControlF low j J\ s ._‘;_-‘ hd ﬁf 2l

1
ac

|_——_|J Information Liguidity Model ;I
- Article
120 ArticleColumn Comment; ﬂ

Hame; ControlFlow

12 Common Attributes

.,j CantralFlaw

F-) Databccesslink

¥ 1) DataCalculator

.,j DataConnection

12 DataConnectionGroup

) D ataFilker

1 DataFlow

=3 padre L LI TS
1) Datalookup

2 Datalutput Linguistic Variables | Walue

F-) DatallueyE xecution = |CLSSHaMES flux de cantréle| [':

; 1) DataStuctureCalunn OFTHECLSSHAME desz flux de contrdle

12 DataStucture ain

- DataStructureS ortedColum:
== n-.p-.T.-.mrmm-.p:ﬁnT-ml,_lll 4] +] 2] £]2]4] |
4

1] |
0k I Cancel | Apply | Help |

L

Walue: Iflux de contrdle

-
| mja | |»

This category contains the following sub-categories:

Sub-category Description

[Models] Contain text items for metaclasses, collections and attributes available to
each model, for which you must provide translations.

Example: Action provides the text for an attribute of a process in the
Business Process Model.

Common Objects Contains text items for metaclasses, collections and attributes available to
all models, for which you must provide translations.

Example: Diagram provides the text for a diagram in any model.

For each item the name is given, and you must provide a translation in the L ocalized name
field. This value is retrieved by the templates you have specified in the Profile category to
generate default report titles (see Report Titles Category on page 294).

298 PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

For metaclasses only, the linguistic variables you have specified (see Profile/Linguistic
Variables Category on page 300) are listed along with the results of their application to the
translations given in the L ocalized name field. If necessary, you can override the
automatically generated values by entering your own text in the Value column, which will
depress the User-Defined button to indicate that the value is no longer generated.

All Classes Tab

The All Classes tab lists all the metaclasses available in the Object Attributes category on the
General tab but the flat structure makes it more convenient to work with.

[Report Language Properties (For All Reports) I [=]

General Al Classes |.-’-‘n.||.t‘-‘«ttributes and Eollectionsl All Report Titlesl

A% a2l X |8

Parent MWame w| Localized Mame
1 Category FPhysical D ata ModiAbstractDataT ype | abstract data type
2 Category FPhysical D ata Mod: AbstractD ataT ypedt abstract data type al
3 Category FPhysical D ata ModiAbstractD ataT ypePr abstract data type pi
4 Category Mernze Process Mo Action action
5 Category ‘Object Oriented M {Action action
5 Category 'Object Oriented b :Achivity activity
7 Category Object Orented b L ActivitgFlow flows
g Category Thiect Oriented M ActiviyParameter — activity para

ﬂcteuﬂ.

11 Category 'Dbject Orented M Annotation annatation

12 Category =ML Model Arnatation annatation

13 Category =ML Model Annotation|tem annatation item

14 Category =ML Model Ay any

15 Category Information Liquidit: Article article

16 Category Information Liguidit: ArticleColumn article column -

17 Category Common Objects' : Artifact artéfact =

18 Category TObject Orented M AssemblyConnector : assembly connector >

4| [
0k, I Cancel | Apply | Help |

For each metaclass listed in the Name column, you must enter a translation in the L ocalized
Name column. You can sort the list to group similarly-named objects, and translate identical
items together by selecting multiple lines.

Customizing and Extending PowerDesigner

299

CHAPTER 6: Translating Reports with Report Language Files

All Attributes and Collections Tab

The All Attributes and Collections lists all the collections and attributes available in the Object
Attributes category on the General tab, but the flat structure makes it more convenient to work

with.

@ Report Language Properties (For All Reports)

General | Al Classes Al Attributes and Collections |.-’-\II Fieport Tites |

M| ¥ Al X |40 X

=] B

Parent

h amne hd

Localized Mamne

Language Metaclass ‘Servic

DataSchemalangu

Data Schema Lang

Language Metaclass ‘Servic

[ratsSchemaT ext

Data Schema Text

Language Metaclazs 'DataT)

Language Metaclazs 'Bazel

CratsSorts

DataSourcelogin

data Sarts

Login

Language Metaclass 'Bazel

DataSourcelogin

Login

Language Metaclazs 'Bazel

DataSourcelogin

Login

Language Metaclazs 'Bazel

DataSourcelogin

Login

Language Metaclazs 'Bazel

DataSourcelogin

Login

Language Metaclazs 'BazeD

DataSourcelogin

Login

Language Metaclass 'BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

|dentifiamt

Language Metaclass 'Datas

DataSourcelogin

Login

Language Metaclass 'Datas

DataSourcelogin

Login

Language Metaclass 'Datas

DataSourcelogin

Login

[14] pi] 4

|

QK I Cancel | Apply | Help |

For each attribute or collection listed in the Name column, you must enter a translation in the
L ocalized Namecolumn. You can sort the list to group similarly-named objects, and translate
identical items together by selecting multiple lines.

Profile/Linguistic Variables Category

The Linguistic Variables category contains templates, which specify grammar rules to help
build the report item templates.

Examples of grammar rules include the plural form of a noun, and the correct definite article
that must precede a noun (see Profile/Report ltem Templates Category on page 303).

300 PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

[Report Language Properties {For All Reports) | _ (O] x|

General |.-’-‘«II Elassesl Al Sttributes and Eollectionsl All Repaort Titlesl

a8 - IEngIlshTemplate F'roflle'\Shared\Templates\Llngwstlc\-"anables'\ELSSJ o

=
Iy RptLang Template = i
-6 Values Mapping Hame: CLSSHAMES

1) Repart Titles Comment: ﬂ

1) Object Attributes
=) Profile

=) Shared hd|

E---.j Templates

o L|ngLJ|sl|cVar|ables SH-H-do 8 | b =3 ui‘ll i |-¢‘J €

| DFTHECLSSNAME *¥aluess &
=] ..j Fleporl Itern Templates =
i dttibute - Object
Attribute - Sub object
Book Title - Object
Book Title - Sub ohje
Card - Object

Card - Sub object

Check - Object -
; I P Plaanls I ook Ak;n,llll L I I d

Ok I Cancel | Apply | Help |

Specifying appropriate grammar rules for your language, and inserting them into your report
item templates will dramatically improve the quality of the automatic generation of your
report titles. You can create as many variables as your language requires.

Each linguistic variable and the result of its evaluation is displayed for each metaclass in the
Object Attributes category (see Object Attributes Category on page 298).

The following are examples of grammar rules specified as linguistic variables to populate
report item templates in the French report language resource file:

 GENDER - Identifies as feminine a metaclass name %Value%, if it finishes with "e" and
as masculine in all other cases:

Lif (%.-1:@Value%s == e)

F

.else

M
.endif

For example: la table, la colonne, le trigger.

e CLSSNAMES - Creates a plural by adding "x" to the end of the metaclass name %Value
%, if it finishes with "eau" or "au" and adds "s" in all other cases:

.1if (%.-3:@Value% == eau) or (%.-2:Q@Value% == au)
$@Value$x

Customizing and Extending PowerDesigner 301

CHAPTER 6: Translating Reports with Report Language Files

.else
%@Value%s
.endif

For example: les tableaux, les tables, les entités.

* THECLSSNAME - Inserts the definite article before the metaclass name %Value% by

inserting " I' ", if it begins with a vowel, "le" if it is masculine, and "la" if not:
.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U:@Value% == I)
or (%.1U:@Value% == 0) or (%.1U:@Value% == U)
1'3@Value$
.elsif (%GENDER% == M)
le %$@Value$%
.else
la %@Value%
.endif

For example: I'association, le package, la table.

e OFTHECLSSNAME - Inserts the preposition "de" plus the definite article before the
metaclass name %Value%,if it begins with a vowel or if it is feminine, otherwise "du".

.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U:@Value% == I)

or (%.1U:@Value% == 0) or (%.1U:@Value% == U) or (%GENDER% == F)

de $THECLSSNAMES

.else

du %@Value%
.endif

For example: de la table, du package.

e OFCLSSNAME - Inserts the preposition " d' " before the metaclass name %Value%,, if it
begins with a vowel, otherwise "de".

.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U0:@Value% == I)
or (%.1U0:@Value% == 0) or (%.1U0:@Value% == U)
'$QValue%
.else
de %@Value$
.endif

For example: d'association, de table.

302 PowerDesigner

CHAPTER 6: Translating Reports with Report Language Files

Profile/Report Item Templates Category

The Report Item Templates category contains a set of templates that, in conjunction with the
translations that you will provide for metaclass, attribute and collection names, are evaluated
to automatically generate all the possible report titles for report items (book, list, card etc.)

Eg‘ Report Language Properties (For All Reports) _ (O]

General |,.f_\|| Elassesl Al Attributes and Eollectionsl All Report Titlesl

ABC ah

- - I Englizh Template:: ProfiletSharedTemplates'Feport [tem TemplateshList - j [S

-i%! Book Title - Sub object -]
Card - Object

Card - Sub object Comment: -
Check - Object = :’
Check. - Sub object
ist - Dependent Sub objects ;I
- Diependent objects
ist - Diagrams containing the ¢ = - _‘? - = =3 | # 53 Jlil S |.¢‘J @ Lnl.Cal
izt - Global object mappings

izt - Global objects collections
izt - Model collections

Marne: Lizt - Object collections

Liste de %@Walue% de 1' $ParentMetaClaszs.@Value$;I

izt - Object extended attribute
ist - Object mappings

izt - Objects in diagram

ist - Sub object collections
Sub object extended attril

b atrix - Object = _ILI
11 3

Kl s B
oK I Cancel | Lpply | Help |

You must provide translations for each template by entering your own text. Variables (such as
$text$%) must not be translated.

For example the template syntax for the list of sub-objects contained within a collection
belonging to an object is the following:

List of %@Value% of the %$ParentMetaClass.@Value% $%%$PARENTSS

When this template is evaluated, the variable $@value% is resolved to the value of the
localized name for the object, $ParentMetaClass.@Value% isresolved to the value of
the localized name for the parent of the object, and $$PARENT%% is resolved to the name for
the parent of the object.

In this example, you translate this template as follows:

» Translate the non-variable items in the template. For example:
» Createalinguistic variable named OF THECLSSNAME to specify the grammar rule used in
the template (see Profile/Linguistic Variables Category on page 300).

Customizing and Extending PowerDesigner 303

CHAPTER 6: Translating Reports with Report Language Files

This template will be reused to create report titles for all the lists of sub-objects contained
within a collection belonging to an object.

Note: You cannot create or delete templates.

304 PowerDesigner

CHAPTER 7 Scripting PowerDesigner

When working with large or multiple models, it can be tedious to perform repetitive tasks,
such as modifying objects using global rules, importing or generating new formats, or
checking models. Such operations can be automated through scripts.

You can access and modify any PowerDesigner object using Java, VBScript, C#, or many
other languages. In this chapter, we focus primarily on writing VBScript to execute in
PowerDesigner's Edit/Run Script dialog, but you can also call add-ins from PowerDesigner
menus (see Launching Scripts and Add-Ins from Menus on page 338) or script the
PowerDesigner application via OLE automation (see OLE Automation and Add-Ins on page
332).

The following script illustrates the basic syntax of VBScript applied to manipulating
PowerDesigner models and objects, including:

» Declaration of local variable

« Assignment of value to a local variable (with the specific case of object)
e Condition operator: If Then/Else/End If

e lteration on alist: For Each/Next

« Definition and call of a procedure: Sub

» Definition and call of a function: Function

* Error handling using On Error statements

' This is a VBScript comment.
Dim var ' Declaration of a local variable
var = 1 ' Value assignment for simple type
Set var = ActiveModel ' Value assignment for an object. ActiveModel
is a PowerDesigner global property
If not var is Nothing Then ' Condition on an object, testing if it is
'null'

Dim objt ' Declaration of another local variable

For Each objt In ActiveModel.Children ' Loop on the Children
object collection

DescribeObject objt ' Procedure call with objt as a parameter

(without parentheses). The procedure is defined below.
Next
Else
output "There is no active model" ' Output is a PowerDesigner
procedure that writes text to the Output window
End If

' This is a procedure - a method that does not return a value
Sub DescribeObject (objt)

Dim desc ' A variable declaration inside the procedure

desc = ComputeObjectLabel (objt) ' A function call with objt as
parameter (with parentheses). The function is defined below.

Customizing and Extending PowerDesigner 305

CHAPTER 7: Scripting PowerDesigner

' We retrieve the value returned by the
function in the wvariable desc
output desc ' Displays the object description in the output
End Sub

' This is a function - a method that returns a value
Function ComputeObjectLabel (objt)
Dim label ' Declare a local variable to store the object label
label = "" ' Initialize the label variable with a default value
If objt is nothing then
label = "There is no object"

ElseIf objt.IsShortcut () then ' IsShortcut is a PowerDesigner
function available on objects

label = objt.Name & " (shortcut)" ' Concatenation of two strings
Else
On Error Goto O ' Disables script execution abort on error

label = objt.Name ' Assigns the object's Name property to the
local variable
On Error Resume Next ' Reactivates script execution error
End If
ComputeObjectLabel = label ' The value is returned by assigning an
implicit variable with same name than the function
End Function

Note: VBScript can also be used to create custom checks, event handlers, transformations,
and methods in an extension file (see Chapter 2, Extension Fileson page 11) and embedded in
or called from GTL templates (see .execute _vbscript Macroon page 270 and . vbscript Macro
on page 281).

The examples in this chapter are intended to introduce the basic concepts and techniques for
controlling PowerDesigner by script. For complete documentation of the PowerDesigner
metamodel, select Help > M etamodel Objects Help. For full documentation of VVBScript,
see the Microsoft MSDN site.

306

PowerDesigner

http://msdn.microsoft.com/en-us/library/t0aew7h6

CHAPTER 7: Scripting PowerDesigner

Running Scripts in PowerDesigner

You can run VBScript scripts in your PowerDesigner client by selecting Tools > Execute

Commandsto open the Edit/Run Script dialog. Output from the script is printed to the
Output window.

- F-od@d IR L a@BX 9o p| @ LnCdl

|

Option Explicit
ValidationMode = True
InteractiveMade = im_Eatch
' get the current active model
Iim mdl ' the current model
Set mdl = ActiwveModel
If (mdl Is Nothing) Then

M=zgBox "There is no Actiwve Model™
Elze

LiztObjects (mdl)
End If

' Sub procedure to scan current package and print information on objec

' and call again the same sub procedure on all children pacakge
' of the current package

Private Sub ListObjects(fldr)
output "Jcanning T & £ldr.code _lj
. - -

Bun Cloze | Help |

The following tools are available on the Edit/Run Script dialog toolbar:

Customizing and Extending PowerDesigner 307

CHAPTER 7: Scripting PowerDesigner

Tools

Description

gv

Editor Menu [Shift+F11] - Contains the following commands:

* New [Ctrl+N] - Reinitializes the field by removing all the existing content.

* Open... [Ctrl+O] - Replaces the content of the field with the content of the se-
lected file.

* Insert... [Ctrl+]] - Inserts the content of the selected file at the cursor.
* Save[Ctrl+S] - Saves the content of the field to the specified file.

* SaveAs... - Saves the content of the field to a new file.

* Select All [Ctrl+A] - Selects all the content of the field.

e Find... [CtrI+F] - Opens a dialog to search for text in the field.

* Find Next... [F3] - Finds the next occurence of the searched for text.

* Find Previous... [Shift+F3] - Finds the previous occurence of the searched for
text.

* Replace... [CtrI+H] - Opens a dialog to replace text in the field.
* GoTolLine..[Ctrl+G] - Opens a dialog to go to the specified line.
* Toggle Bookmark [Ctrl+F2] Inserts or removes a bookmark (a blue box) at the

cursor position. Note that bookmarks are not printable and are lost if you refresh
the tab

* Next Bookmark [F2] - Jumps to the next bookmark.
* Previous Bookmark [Shift+F2] - Jumps to the previous bookmark.

Edit With [CtrI+E] - Opens the previewed code in an external editor. Click the down
arrow to select a particular editor or Choose Program to specify a new editor. Editors
specified here are added to the list of editors available at Tools > General Options>
Editors.

Save [Ctrl+S] - Saves the content of the field to the specified file.

Print [CtrI+P] - Prints the content of the field.

Find [Ctrl+F] - Opens a dialog to search for text.

7

Cut [Ctrl+X], Copy [CtrI+C], and Paste [Ctrl+V] - Perform the standard clipboard
actions.

X | |BE| 2= | S]] K| | BD

Clear - Deletes the script in the dialog.

)|

Undo [Ctrl+Z] and Redo [CtrI+Y] - Move backward or forward through edits.

Multiple levels of Undo and Redo are supported but , if you run a script that modifies
objects in several models, you must use the Undo or Redo commands in each of the
models called by the script.

308

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Tools Description

3 Run [F5] - Runs the script. Output is printed to the Output window.

If a compilation error occurs, a message box is displayed, a brief error description
appears in the dialog's Result pane, and the cursor is set at the error position.

You can catch errors usingthe On Error Resume Next statement, unless the
scriptiscalledinthe im_Abort interactive mode (see .set_interactive_mode Macro
on page 278).

@ Find in M etamodel ObjectsHelp [CtrI+F1] - Opens the PowerDesigner metamodel
objects help file, which provides detailed information about all the attributes, collec-
tions, and methods available for each metaclass.

VBScript File Samples
PowerDesigner ships with a set of script samples, that you can use as a basis to create your own
scripts, and which are located in the VB Scripts folder of the PowerDesigner installation
directory. These scripts are intended to show you the range of tasks you can perform on
PowerDesigner models using VBScript.

War ning! You should always make a backup copy of the sample script before making changes
to it.

Model Scan Sample
The following script browses any model, looping through any packages and listing the objects
contained in them:

Option Explicit ' Forces each variable to be declared

'before assignment

InteractiveMode = im Batch ' Supresses the display of dialogs
' get the current active model

Dim diag

Set diag = ActiveDiagram ' the current diagram

If (diag Is Nothing) Then

MsgBox "There is no Active Diagram"
Else

Dim fldr

Set Fldr = diag.Parent

ListObjects (fldr)
End If

' Sub procedure to scan current package and print information on
' objects from current package and call again the same sub
procedure

' on all child packages

Private Sub ListObjects (fldr)

output "Scanning " & fldr.code

Dim obj ' running object

For Each obj In fldr.children

' Calling sub procedure to print out information on the object
DescribeObject obj

Customizing and Extending PowerDesigner 309

CHAPTER 7: Scripting PowerDesigner

Next
' go into the sub-packages
Dim f ' running folder

For Each f In fldr.Packages
'calling sub procedure to scan children package
ListObjects f
Next
End Sub
' Sub procedure to print information on current object in output
Private Sub DescribeObject (CurrentObject)

if CurrentObject.ClassName ="Association-Class link" then exit sub

'output "Found "+CurrentObject.ClassName

output "Found "+CurrentObject.ClassName+" """+CurrentObject.Name
+""", Created by "+CurrentObject.Creator+" On
"+Cstr (CurrentObject.CreationDate)
End Sub

Model Creation Sample
The following script creates a new OOM model, then creates a class with attributes and
operations:

ValidationMode = True 'Forces PowerDesigner to validate

' actions and return errors in the event of a forbidden action
InteractiveMode = im Batch ' Supresses PowerDesigner dialogs

' Main function

' Create an OOM model with a class diagram

Dim Model

Set model = CreateModel (PdOOM.cls Model, "|Diagram=ClassDiagram")
model .Name = "Customer Management"

model.Code = "CustomerManagement"

' Get the class diagram
Dim diagram
Set diagram = model.ClassDiagrams.Item(0)
' Create classes
CreateClasses model, diagram
' Create classes function
Function CreateClasses (model, diagram)
' Create a class

Dim cls

Set cls = model.CreateObject(PdOOM.cls_Class)

cls.Name = "Customer"

cls.Code = "Customer"

cls.Comment = "Customer class"

cls.Stereotype = "Class"

cls.Description = "The customer class defines the attributes and

behaviors of a customer."
' Create attributes
CreateAttributes cls
' Create methods
CreateOperations cls
' Create a symbol for the class

Dim sym
Set sym = diagram.AttachObject (cls)
CreateClasses = True

End Function

310

PowerDesigner

' Create attributes function
Function CreateAttributes (cls)

Dim attr

Set attr = cls.CreateObject (PdOOM.
attr.Name = "ID"

attr.Code = "ID"

attr.DataType = "int"
attr.Persistent = True
attr.PersistentCode = "ID"
attr.PersistentDataType = "I"

attr.PrimaryIdentifier = True
Set attr = cls.CreateObject (PdOOM.
attr.Name = "Name"
attr.Code = "Name"
attr.DataType = "String"
attr.Persistent = True
attr.PersistentCode = "NAME"
attr.PersistentDataType = "A30"
Set attr = cls.CreateObject (PdOOM.
attr.Name = "Phone"
attr.Code = "Phone"
attr.DataType = "String"
attr.Persistent = True
attr.PersistentCode = "PHONE"
attr.PersistentDataType = "A20"
Set attr = cls.CreateObject (PAOOM.
attr.Name = "Email"
attr.Code = "Email"
attr.DataType = "String"
attr.Persistent = True
attr.PersistentCode = "EMAIL"
attr.PersistentDataType = "A30"
CreateAttributes = True
End Function
' Create operations function
Function CreateOperations(cls)
Dim oper
Set oper = cls.CreateObject (PAdOOM.

oper.Name = "GetName"
oper.Code = "GetName"
oper.ReturnType = "String"
Dim body

body = "{" + vbCrLf

CHAPTER 7: Scripting PowerDesigner

cls Attribute)

cls Attribute)

cls Attribute)

cls Attribute)

cls Operation)

body = body + " return Name;" + vbCrLf

body = body + "}"
oper.Body = body
Set oper = cls.CreateObject (PAOOM.

oper.Name = "SetName"
oper.Code = "SetName"
oper.ReturnType = "void"

Dim param

Set param = oper.CreateObject (PdOOM.cls Parameter)

param.Name = "newName"
param.Code = "newName"
param.DataType = "String"
body = "{" + vbCrLf

cls Operation)

Customizing and Extending PowerDesigner

311

CHAPTER 7: Scripting PowerDesigner

body = body + " Name = newName;" + vbCrLf
body = body + "}"

oper.Body = body

CreateOperations = True

End Function

=-E2s Customer Management *
ClassDiagram_1
—-{_4 Classes g
=-J= Customer S omer
L 4 - 1o cint
—-{_J Attributes = o b 7 ¢
_" - Mame : String
""" E D - Phone : String
= = Name - Email : String
= = Phone + GetMame () : Stiing
b E Emnail + SetMName (String newName) : void

<<Class»>

=4 Identifiers
e dertifier_1

Manipulating Models, Collections, and Objects (Scripting)

You can manipulate the contents of a model by creating or opening it and then descending
from the model root through collections of objects. A number of global properties, functions,
and constants are available in any context and provide entry points for your scripts.

The following global properties provide access to the Workspace and models it contains:

 ActiveWorkspace - Retrieves the current Workspace.

e ActiveModel, ActivePackage, and ActiveDiagram - Retrieves the model,
package, or diagram with current focus.

* ActiveSelection-Read-only collection of the objects selected in the active diagram.

e Models - Read-only collection of models open in the current Workspace.

* RepositoryConnection - Retrieves the current repository connection (see
Manipulating the Repository (Scripting) on page 325).

The following global functions are commonly used to create or open models and perform
actions upon them:

* CreateModel () and OpenModel () - Create and open a model (see Creating and
Opening Models (Scripting) on page 313).

* Output () - Prints text to the Script tab of PowerDesigner's Output window.

e IsKindOf () - Tests the metaclass of the object.

e ExecuteCommand () - Launches an external application

312

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

* EvaluateNamedPath () and MapToNamedPath () - Manage named paths in
model files.

* BeginTransaction (), CancelTransaction (),and EndTransaction () -
Start, cancel, and commit transactions.

The following global constants provide information about the instance of PowerDesigner:

e UserName - Retrieves the user login name.

* Version - Returns the PowerDesigner version.

* HomeDirectory - Returns the application home directory.

e RegistryHome - Returns the application registry home path.

* Viewer - Returns True if the running application is a Viewer version that has limited
features.

e ValidationMode - By default, PowerDesigner performs various checks to validate
your actions and gives an error in the case of a forbidden action. You can set
ValidationMode = False (which turns off validation rules such as name
uniqueness or link extremities) to improve performance or if your algorithm temporarily
requires an invalid state.

* InteractiveMode - Specifies the level of interaction required. You can choose
between:

* im Batch [default] - Suppresses dialog boxes and always uses default values. For
example, if your model contains external shortcuts and the target model for the
shortcuts is closed, this mode will automatically open the model without user
interaction.

* im Dialog - Displays information and confirmation dialog boxes that require user
interaction for the execution to keep running.

* 1im Abort - Suppresses dialog boxes and aborts execution if a dialog is encountered.

e ShowMode [OLE-specific] - Checks or changes the visibility status of the main
application window. Returns True if the application main window is visible and not
minimized.

* Locked [OLE-specific] - When set to True, ensures that PowerDesigner continues to
run even after an OLE client disconnects.

For detailed information about all the global properties, constants, and functions, select Help
> MetaM odel Objects Help and navigate to Basic Elements.

Creating and Opening Models (Scripting)
You create models and open existing models using the CreateModel () and
OpenModel () global functions. The model with the current focus is accessible via the
ActiveModel global property, and the models currently open in the workspace are
available from the Mode1s global collection.

This script creates a new OOM targeting the Analysis language, creates some classes in it,
displays them in the diagram, and then saves the model and closes it:

Customizing and Extending PowerDesigner 313

CHAPTER 7: Scripting PowerDesigner

Dim NewModel

set NewModel = CreateModel (PAOOM.Cls Model, "Language=Analysis|
Diagram=ClassDiagram|Copy")

If NewModel is Nothing then

msgbox "Failed to create UML Model", vbOkOnly, "Error" ' Display an
error message

Else

output "The UML model has been created" ' Display a message in
Output

NewModel . SetNameAndCode "MyOOM", "MyOOM" 'Initialize model name and
code

For idx = 1 to 12 'Create classes and display them

Set obj=NewModel.Classes.CreateNew ()

obj.SetNameAndCode "C" & idx, "C" & idx

Set sym=ActiveDiagram.AttachObject (ob7j)

Next
ActiveDiagram.AutoLayoutWithOptions (2)
NewModel.Save "c:\temp\MyOOM.oom" ' Save the model

NewModel.Close ' Close the model

Set NewModel = Nothing ' Release last reference to object to free
memory

End If

This script verifies that the previously created model exists, and then opens it in the
workspace:
Dim MyModel, FileName

FileName = "c:\temp\MyOOM.oom"

On Error Resume Next ' Avoid generic scripting error message
Set MyModel = OpenModel (FileName)

If MyModel is nothing then ' Display an error message box

msgbox "Failed to open Model:" + vbCrLf + FileName, vbOkOnly,
"Error"

Else ' Display a message in Output
output "The OOM has been opened."
End If

Browsing and Modifying Collections (Scripting)

Most metamodel navigation is performed by descending from the model root through
collections of objects to collections of sub-objects or associated objects. An OOM contains a
collection of classes and classes contain collections of attributes and operations. You can
obtain information about and browse the members of a collection through scripting, as well as
adding, removing, and moving objects in the collection.

To browse the members of a collection, navigate to the parent object and then use a For
each loop. This script prints the names of all the tables in an open PDM:

Dim MyModel

Set MyModel=ActiveModel

For each t in MyModel.Tables
Output "* " & t.Name

Next

314

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

When you browse a collection, both full objects in the collection and any shortcuts will be
retrieved.

Note: For information about accessing collections defined in extensions, see Creating and
Accessing Extensions (Scripting) on page 329.

The following kinds of collections appear in the metamodel:

Compositions - contain objects that will be deleted if the parent is deleted. For example,
the PAPDM/Tables and PAPDM/Table/Columns collections are compositions.
Aggregations - reference objects that will continue to exist if the parent is deleted. For
example, the PdCommon/NamedObject/AttachedRules collection (inherited by
most objects) is an aggregation.

Unordered collections - contain objects with no significant order. For example, the
PACDM/Entity/Relationships collection is unordered.

Ordered collections - contain objects where the user chooses the order. For example, the
PdPDM/Table/Columns collection is ordered.

Read-only collections - can only be browsed. For example, the global Mode 1 s collection
(all open models) is read-only.

The following properties are available for all collections:

Count - Retrieves the number of objects in the collection.

Item] (index)] - Retrieves the specified item in the collection as an object. Item (0) is
the first object (and the default) and Ttem (-1) is the last object.

MetaCollection - Retrieves the metadefinition of the collection as an object.
Kind - Retrieves the type of objects the collection can contain.
Source - Retrieves the object on which the collection is defined.

The following methods are available for modifying writeable collections:

CreateNew ([kind] and CreateNewAt (index [, kind]) - [compositions only]
Creates a new object at the end of the collection or at the specified index (default, -1). The
kind parameter (for example, PAPDM. cls Table) is only needed if the collection
supports multiple kinds of objects.

Add (object) - Inserts the specified object at the end of the collection.

Insert ([index] [, object]) - Inserts the specified object in the collection at the
specified index position (default, -1).

Move (index2, indexl) - Moves the object at position index1 to position index2 in the
collection.

Remove (object[, delete = y|n]) and RemoveAt ([index] [, delete =
yv|n]) - Removes the specified object or the object at the specified index (default, -1)
from the collection. For aggregations, you can additionally specify to delete the object
(objects removed from a composition are always deleted).

Customizing and Extending PowerDesigner 315

CHAPTER 7: Scripting PowerDesigner

* Clear([delete = yIn]) - Removes all objects from the collection and optionally
deletes them.

The following script:

* Createsa PDM,

» Creates objects in the model's Tables and BusinessRules unordered composition
collections, and

* Adds some objects to table T1's AttachedRules ordered aggregation collection and
then manipulates that collection:

Dim MyModel, t, r, sym
set MyModel = CreateModel (PdPDM.Cls Model, "DBMS=SYASA12")
MyModel . SetNameAndCode "MyPDM" , "MyPDM"
'Create tables and rules
For idx = 1 to 12
Set t=MyModel.Tables.CreateNew ()
t.SetNameAndCode "T" & idx, "T" & idx
Set sym=ActiveDiagram.AttachObject (t)
Set r=MyModel.BusinessRules.CreateNew ()
r.SetNameAndCode "BR" & idx, "BR" & idx
Next
ActiveDiagram.AutoLayoutWithOptions (2)
'Attach rules to Table 1
Dim MyTable
Set MyTable=MyModel.FindChildByName ("T1",cls table)
For idx = 1 to 10
MyTable.AttachedRules.Add (MyModel.FindChildByName ("BR" &
(idx),cls businessrule))

Next
'Print list of rules attached to Table 1
Output "Rules Attached to Tl (" & MyTable.AttachedRules.Count & ")"

For each r in MyTable.AttachedRules

Output "* " & r.Name
Next
'Modify attached rules by insertion, move and removal
MyTable.AttachedRules.Insert 3,
MyModel.FindChildByName ("BR12",cls businessrule)
MyTable.AttachedRules.Move 5,0
MyTable.AttachedRules.Remove (MyModel.FindChildByName ("BR6", cls busi
nessrule))
'Print modified list of rules
Output "Modified Rules Attached to T1 (" &
MyTable.AttachedRules.Count & ")"
For each r in MyTable.AttachedRules

Output "* " & r.Name
Next

Accessing and Modifying Objects and Properties (Scripting)

You can access and modify any PowerDesigner object and its properties by script. Objects
include not only standard design objects (such as tables, classes, processes, and columns), but
also diagrams and symbols and functional objects (such as a report or repository). An object

316

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

belongs to a metaclass of the PowerDesigner metamodel and inherits properties, collections
and methods from its metaclass.

Root objects, such as models, are accessed using global properties and functions (see
Manipulating Models, Collections, and Objects (Scripting) on page 312), while standard
objects are accessed by browsing collections (see Browsing and Modifying Collections
(Scripting) on page 314) or individually through the following methods:

¢ FindChildByName ("Name", Kind [, OptionalParams]
e FindChildByCode ("Code", Kind [, OptionalParams]
¢ FindChildByPath ("Path", Kind [, OptionalParams]

The following parameters are available:

Parameter Description

Name / Code / Specifies the name or code of, or the path to the object. For example, to find the
Path column Address in the table Customer in the package Sales from the
context of the model node, you could search by name Address or by path
Sales/Customer/Address.

Kind Specifies the metaclass of the object to find in the form c1s PublicName.
For example, to find a column, select c1s Column.

These metaclass ids are unique within their model library but, in cases such as
packages, which appear in multiple types of models, you must prefix the id with
the name of the module (PdOOM. c1s_Package). Whenyou create amodel,
you must use the module prefix (for example PAPDM.cls Model).

OptionalParams | The following parameters are optional:

» “Stereotype" - Specifies that the object to find must bear the specified ster-
eotype.

* "LastFound" - Specifies to begin the search after this object. This parameter
is used when several objects have the same path value, and can be used to
launch a find in a while loop that uses the previous match as the last found
parameter.

» CaseSensitive=y|n - [default: y] Specifies that the search is case sensitive.

* IncludeShortcuts - [default: n] Specifies that shortcuts can be found.

* UseCodelnPlaceOfName - [ByPath, default: n] Specifies that the object can
be found by its code (Default=n).

* PathSeparator - [ByPath, default=/,\, or ::)] Specifies the character to sep-
arate nodes in the path.

You can get standard attribute values using the dot notation (object. attribute) or using the
following methods:

* GetAttribute ("attribute™) - retrieves the value stored for the attribute
* GetAttributeText ("attribute™) - retrieves the value displayed for the attribute

Customizing and Extending PowerDesigner 317

CHAPTER 7: Scripting PowerDesigner

You can set attribute values using the dot notation (object . attribute=value) or using the
following methods:

e SetAttribute "attribute", value
e SetAttributeText "attribute", "value"

Note: For information about getting and setting extended attribute values see Creating and
Accessing Extensions (Scripting) on page 329

The following script opens a sample OOM, finds a class by name and a parameter by path, and
then prints and modifies some of their properties:

Dim MyModel, C, P

'Open model file

Set MyModel=OpenModel (EvaluateNamedPath ("% EXAMPLES$\" & "UML2
Sample.oom"))

'Obtain class and parameter

Set C=MyModel.FindChildByName ("OrderManager",cls Class)

Set P=Mymodel.FindChildByPath ("SecurityManager/CheckPassword/
login",PdOOM.cls Parameter)

'Print initial values

Output "Initial Values:"

PrintProperties C, P

'Modify wvalues

C.Comment="This class controls orders."
C.SetAttributeText "Visibility", "private"
P.Name="LoginName"

'Print revised values

Output "Revised Values:"

PrintProperties C, P

'Procedure for printing values
Sub PrintProperties (MyClass, MyParam)

output "Class: " & MyClass.Name
output vbTab & "Comment: " & MyClass.Comment
output vbTab & "Visibility: " &
MyClass.GetAttributeText ("Visibility")
output vbTab & "Persisted as: " &
MyClass.GetAttributeText ("PersistentGenerationMode")
output "Parameter: " & MyParam.Parent & "." & MyParam.Name
output vbTab & "Data type: " & MyParam.DataType
output vbTab & "Parameter type: " &
MyParam.GetAttributeText ("ParameterType")
End Sub

Creating Objects (Scripting)

You should generally create objects via the collection under the parent object using the
CreateNew () method. The CreateObject (kind) method is also available on model
objects.

This script creates a class in an OOM, sets some of its properties, and then creates an attribute
under the class, in each case creating the objects inside collections:

318

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Dim MyModel
Set MyModel = ActiveModel
Dim MyClass
' Create a class
Set MyClass = MyModel.Classes.CreateNew ()
If MyClass is nothing Then
' Display an error message box
msgbox "Fail to create a class", vbOkOnly, "Error"
Else
output "The class has been created."
' Set Name, Code, Comment, Stereotype and Final attributes
MyClass.SetNameAndCode "Customer", "cust"
MyClass.Comment = "Created by script"
MyClass.Stereotype = "MyStereotype"
MyClass.Final = true
' Create an attribute inside the class
Dim MyAttr
Set MyAttr = MyClass.Attributes.CreateNew ()
If not MyAttr is nothing Then
output "The attribute has been created."
MyAttr.SetNameAndCode "Name", "custName"

MyAttr.DataType = "String"

' Reset the variable in order to avoid memory leaks
End If
End If

You can also create objects using the CreateObject (kind) method. This script creates a
class inside an OOM and sets some of its properties:

Dim MyModel

Set MyModel = ActiveModel

Dim MyClass

' Create a class

Set MyClass = MyModel.CreateObject (cls Class)
MyClass.SetNameAndCode "Another Class", "Class2"
MyClass.Comment = "Created by CreateObject"

When creating a link object, you must define its extremities. This script creates two classes
and joins them by an association link:

Dim MyModel

Set MyModel = ActiveModel

Dim MyFirstClass, MySecondClass, MyAssociation

' Create classes

Set MyFirstClass = MyModel.Classes.CreateNew ()

MyFirstClass.SetNameAndCode "Classl", "C1"

Set MySecondClass = MyModel.Classes.CreateNew ()
MySecondClass.SetNameAndCode "Class2", "C2"
Create association

Set MyAssociation = MyModel.Associations.CreateNew ()

MyAssociation.Name = "Al"

' Define its extremities

Set MyAssociation.Objectl MyFirstClass

Set MyAssociation.Object2 = MySecondClass

Customizing and Extending PowerDesigner 319

CHAPTER 7: Scripting PowerDesigner

Displaying, Formatting, and Positioning Symbols (Scripting)
When you create an object, it will not appear in a diagram unless you use the
AttachObject () orAttachLinkObject () method. Symbolsare objects in their own
right that can be accessed via collections on the parent object or diagram. You can position a
symbol using the Position () method and change its format using the LineWwidth and
other formatting attributes.

The following script creates two classes, joins them by an association link, and displays all
three symbols in the active diagram:

Dim MyModel, MyDiagram, Cl, C2, Al

Set MyModel = ActiveModel

Set MyDiagram = ActiveDiagram

' Create classes

Set Cl = MyModel.Classes.CreateNew ()

Cl.SetNameAndCode "C1", "C1"

Set C2 = MyModel.Classes.CreateNew ()
C2.SetNameAndCode "C2", "C2"

' Display class symbols

MyDiagram.AttachObject (Cl)

MyDiagram.AttachObject (C2)

' Create association

Set Al = MyModel.Associations.CreateNew ()

Al.SetNameAndCode = "Al1l", "Al"

' Define its extremities

Set Al.Objectl = C1

Set Al.Object2 = C2

' Display Association symbol

MyDiagram.AttachLinkObject (Al)

The following script creates an EAM and four architecture areas, aligns them in a square, and
formats the top-left area:

Dim NewModel, idx, obj, sym
set NewModel = CreateModel (PdEAM.Cls Model,
"Diagram=CityPlanningDiagram")
NewModel.SetNameAndCode "MyEAM" , "MyEAM"
For idx = 1 to 4
Set obj=NewModel.ArchitectureAreas.CreateNew ()
obj.SetNameAndCode "A" & idx, "A" & idx
Set sym=ActiveDiagram.AttachObject (obj)
sym.width=30000
sym.height=20000
Next
dim Al, A2, A3, A4, X1, Y1
set Al =
NewModel .FindChildByName ("Al",cls architecturearea) .Symbols.Item(0)
set A2 =
NewModel.FindChildByName ("A2",cls architecturearea) .Symbols.Item(0)
set A3 =
NewModel .FindChildByName ("A3",cls architecturearea) .Symbols.Item(0)
set A4 =
NewModel.FindChildByName ("A4",cls architecturearea) .Symbols.Item(0)

320 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

X1 = Al.Position.X

Yl = Al.Position.Y

' Move symbols for them to be adjacent

A2 .Position = NewPoint (X1 + Al.Width, Y1)

A3.Position = NewPoint (X1, Y1 - Al.Height)

A4 .Position = NewPoint (X1 + Al.Width, Y1 - Al.Height)
Al.DashStyle = 2

Al.LineWidth = 3

Deleting Objects (Scripting)
You can delete objects using the Delete method.

The following script creates a new CDM, populates it with entities and relationships, and then
deletes entity £5 and relationship R8:

Dim MyModel, obj, sym, idx
set MyModel = CreateModel (PACDM.Cls Model)
MyModel . SetNameAndCode "MyCDM" , "MyCDM"
'Create entities
For idx = 1 to 12
Set obj=MyModel.Entities.CreateNew ()
obj.SetNameAndCode "E" & idx, "E" & idx
Set sym=ActiveDiagram.AttachObject (obj)
Next
'Create relationships
For idx = 2 to 11
Set obj=MyModel.Relationships.CreateNew ()
obj.SetNameAndCode "R" & idx-1, "R" & idx-1
Set obj.Objectl = MyModel.FindChildByName ("E" &
(idx-1),cls_entity)
Set obj.Object2 = MyModel.FindChildByName ("E" & (idx
+1) ,cls_entity)
Set sym=ActiveDiagram.AttachLinkObject (obj)
Next
ActiveDiagram.AutoLayoutWithOptions (2)
'Delete objects
MyModel.FindChildByName ("E5",cls entity) .Delete
MyModel.FindChildByName ("R8",cls relationship) .Delete

Creating an Object Selection (Scripting)
You can create a selection of objects using the CreateSelection () method. You can
perform actions on the selection such as changing properties or format or moving them to
another package.

The following script creates a PDM, populates it with tables and then makes a selection of
tables and moves them into a package:
Dim MyModel, obj, sym
set MyModel = CreateModel (PdPDM.Cls Model, "DBMS=SYASA12")
MyModel . SetNameAndCode "MyPDM" , "MyPDM"
'Create tables
For idx = 1 to 12
Set obj=MyModel.Tables.CreateNew ()

Customizing and Extending PowerDesigner 321

CHAPTER 7: Scripting PowerDesigner

obj.SetNameAndCode "T" & idx, "T" & idx
Set sym=ActiveDiagram.AttachObject (obj)
Next
ActiveDiagram.AutoLayoutWithOptions (2)
'Create package
Dim MyPackage
Set MyPackage=MyModel.Packages.CreateNew ()
MyPackage.SetNameAndCode "P1", "P1"
ActiveDiagram.AttachObject (MyPackage)
'Create selection
Dim MySelection
Set MySelection = ActiveModel.CreateSelection
For idx = 1 to 5
MySelection.Objects.Add (MyModel.FindChildByName ("T" &
(idx*2),cls table))
Next
'Move selection to package
MySelection.MoveToPackage (MyPackage)

To add all the tables to the selection, use the AddObjects method:
MySelection.AddObjects MyModel,cls table

To remove an object from the selection, use the Remove method:
MySelection.Objects.Remove (MyModel.FindChildByName ("T6",cls table))

Controlling the Workspace (Scripting)

You can access the current workspace using the ActiveWorkspace global property, open,
save, and close workspaces, and add folders and documents to it.

The following script constructs a simple folder structure in a workspace and adds and creates
several models in it:

Option Explicit
' Close existing workspace and save it to Temp
Dim workspace, curentFolder
Set workspace = ActiveWorkspace
workspace.Load "% EXAMPLES$\mywsp.sws"
Output "Saving current workspace to ""Example directory
"tEvaluateNamedPath ("% EXAMPLES%\temp.sws")
workspace.Save "% EXAMPLES$\Temp.SWS"
workspace.Close
workspace.Name = "VBS WSP"
workspace.FileName = "VBSWSP.SWS"
workspace.Load "% EXAMPLES$\Temp.SWS"
dim Item, subitem
for each Item in workspace.children
If item.IsKindOf (PdWsp.cls WorkspaceFolder) Then
ShowFolder (item)
renameFolder item, "FolderToRename", "RenamedFolder"
deleteFolder item,"FolderToDelete"
curentFolder = item
ElsIf item.IsKindOf (PdWsp.cls WorkspaceModel) Then
ElsIf item.IsKindOf (PdWsp.cls WorkspaceFile) Then

322

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

End if
next
Dim subfolder
'insert folder in root
Set subfolder =
workspace.Children.CreateNew (PdWsp.cls WorkspaceFolder)
subfolder.name = "Newfolder (VBS)"
'insert folder in root at pos 6
Set subfolder = workspace.Children.CreateNewAt (5,
PdWsp.cls WorkspaceFolder)
subfolder.name = "Newfolder (VBS)insertedAtPos5"'
' add a new folder in this folder
Set subfolder =
subfolder.Children.CreateNew (PdWsp.cls WorkspaceFolder)
subfolder.name = "NewSubFolder (VBS)"
subfolder.AddDocument EvaluateNamedPath ("% EXAMPLES$\pdmrep.rtf")
subfolder.AddDocument EvaluateNamedPath ("% EXAMPLES$\cdmrep.rtf")
subfolder.AddDocument EvaluateNamedPath ("% EXAMPLES$\project.pdm")
subfolder.AddDocument EvaluateNamedPath("%_EXAMPLES%\demo.oom")
dim lastmodel
set lastmodel = subfolder.AddDocument
(EvaluateNamedPath ("% EXAMPLES%\Ordinateurs.fem"))
lastmodel.open
lastmodel.name = "Computers"
lastmodel.close
'detaching model from workspace
lastmodel.delete
workspace.Save "% EXAMPLES%\Final.SWS"

For more information about properties and methods available on the workspace, select Help >
M etaM odel ObjectsHelp and navigate to Libraries/PdWSP/Workspace.

Creating Shortcuts (Scripting)

You create a shortcut in a model using the CreateShortcut () method.

The following script acts on an OOM and creates a shortcut of the class C 1 from package P1 in
package P2:

Dim obj, shortcut, recipient
' Get class to shortcut
Set obj = ActiveModel.FindChildByPath("Pl/Cl",cls_Class)
' Get package to create shortcut in
Set recipient = ActiveModel.FindChildByPath ("P2",PdOOM.cls Package)
' Create shortcut
Set shortcut = obj.CreateShortcut (recipient)
If not shortcut is nothing then
output "The class shortcut has been successfully created"
End If

The following script creates a shortcut of the class c1 from model 01 package P1 directly
under model 02:

Customizing and Extending PowerDesigner 323

CHAPTER 7: Scripting PowerDesigner

Dim targetmodel, usingmodel, obj, shortcut
For each m in Models
Output m.Name
If m.Name="01l" then 'Get model with object to shortcut
Set targetmodel=m
End If
If m.Name="02" then 'Get model to create shortcut in
Set usingmodel=m
End If
Next
' Get object to shortcut
Set obj = targetmodel.FindChildByPath ("P1/Cl",cls Class)
' Create shortcut
Set shortcut = obj.CreateShortcut (receivingmodel)
If not shortcut is nothing then
output "The class shortcut has been successfully created"
End If

Creating Mappings Between Objects (Scripting)

You can create data sources in a model and from there create mappings from source objects in
other models to objects in the first model using scripts.

The following script creates an OOM and a PDM, populates them with classes and tables, then
creates a data source in the OOM, associates the PDM with it and creates mappings:

Dim MyOOM, MyPDM

'Create an OOM and a PDM

set MyOOM = CreateModel (PAOOM.Cls Model, "|Language=Analysis|
Diagram=ClassDiagram|Copy")

MyOOM. SetNameAndCode "MyOOM", "OOM"

set MyPDM = CreateModel (PdPDM.Cls Model, " |DBMS=Sybase SQL Anywhere
12| Copy™)

MyPDM. SetNameAndCode "MyPDM", "PDM"

'Create classes and tables
For idx = 1 to 6
Set c=MyOOM.Classes.CreateNew ()
c.SetNameAndCode "Class" & idx, "C" & idx
Set t=MyPDM.Tables.CreateNew ()
t.SetNameAndCode "Table" & idx, "T" & idx
Next
'Create a data source in the OOM and add the PDM as its source
Dim ds, ml
Set ds = MyOOM.DataSources.CreateNew ()
ds.SetNameAndCode "MyPDM", "PDM"
ds.AddSource MyPDM

'Create a mapping between Cl and T6
set ml = ds.CreateMapping (MyOOM.FindChildByName ("Classl",cls class))
ml.AddSource MyPDM.FindChildByName ("Table6",cls table)
' Retrieve mappings for each class in the OOM
For each ¢ in MyOOM.Classes
Dim m, sc
set m = ds.GetMapping(c)

324

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

If not m is nothing then
Output c.Name & vbtab & "Mapped to: "
for each sc in m.SourceClassifiers

output vbtab & vbtab & "- " & sc.Name
next
Else
Output c.Name & vbtab & "No mapping defined."
End if
Next

For more information about objects mapping, see Core Features Guide > Linking and
Synchronizing Models > Object Mappings.

Creating and Generating Reports (Scripting)

You can create a report, browse its contents, and generate it as HTML or RTF using scripting.

To create a report, use the CreateReport () method on a model. For example:

Dim model
Set model = ActiveModel
model.CreateReport ("MyReport")

To browse the reports in a model, use the Reports collection. For example:

Dim model

Set model = ActiveModel

For each m in model.Reports
Output m.Name

Next

To generate a report as RTF or HTML, use the GenerateRTF () Of GenerateHTML ()
method:

set m = ActiveModel
For each r in m.Reports

filename = "C:\temp\" & r.Name & ".htm"
r.GenerateHTML (filename)
Next

Manipulating the Repository (Scripting)

You can connect to the repository and check documents into and out of it by script and iterate
on the latest versions of repository documents through the RepositoryConnection
object. You can manage repository folders and branches and LDAP and SMTP servers and the
repository password policy, but you cannot manipulate repository users and groups.

The following script opens a repository connection, creates a new PDM and checks it in, and
then loops over the creation of tables, and further consolidations, before closing the
connection:

Customizing and Extending PowerDesigner 325

CHAPTER 7: Scripting PowerDesigner

Dim rc
Set rc = RepositoryConnection
rc.Open "REPOSITORYNAME", "USER", "PW", "DBUSER", "DBPW"

Output "Before consolidation"
ListChildren rc
Dim NewModel
Set NewModel = CreateModel (PdPDM.Cls Model, "|Language=SYASIQ1540")
NewModel .Name = "My PDM"
NewModel.ConsolidateNew rc
For i = 1 to 5
For j = 1 to 5
NewModel.Tables.CreateNew ()
Next
NewModel.Consolidate
Next
Output "After consolidation"
ListChildren rc
rc.Close

Sub ListChildren (rc)
For each ¢ in rc.ChildObjects
Output c.Name & " (Modified: " & c.ModificationDateInRepository &

ll) "
Next
End Sub

To check out a model, use the CheckOut method.

For detailed information about the members, collections, and methods available for scripting
the repository, select Help > MetaM odel ObjectsHelp and navigate to Libraries/
PdRMG.

Generating a Database (Scripting)

You can generate a PDM as a SQL script or directly to a live database connection using the
GenerateDatabase () method. You can generate test data with the
GenerateTestData () method.

The following script fragment opens an example PDM and then calls procedures to generate
various scripts:

Dim GenDir, MyModel

GenDir = "C:\temp\"

Set MyModel:OpenModel(EvaluateNamedPath("%_EXAMPLES%\" &
"project.pdm"))

GenerateDatabaseScripts MyModel 'Generate a SQL script to create the
database

ModifyModel MyModel 'Modify each table in the model
GenerateAlterScripts MyModel - Generate alter scripts to modify the
database

GenerateTestDataScript MyModel - generate test data to load into the
database

326

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

This procedure generates a SQL script to create the database:

Sub GenerateDatabaseScripts (m)

Dim opts

Set opts = m.GetPackageOptions ()

InteractiveMode = im Batch ' Avoid displaying generation window

opts.GenerateODBC = False ' Force sgl script generation rather
than ODBC

opts.GenerationPathName = GenDir

opts.GenerationScriptName = "MyScript.sqgl"

m.GenerateDatabase ' Launch the Generate Database feature
End Sub

To generate to a live database connection, you would connect to the database (using the
ConnectToDatabase () method) and then set the GenerateODBC property to true.

Note: For more information about the generation options, select Help > M etaM odel Objects
Help and navigate to Libraries/PdPDM/BasePhysicalPackageOptions.

This procedure modifies the model by adding a new column to each table:

Sub ModifyModel (m)

dim pTable, pCol

For each pTable in m.Tables

Set pCol = pTable.Columns.CreateNew ()

pCol.SetNameAndCode "az" & pTable.Name, "AZ" & pTable.Code

pCol.Mandatory = False

Next
End Sub

This procedure generates an alter script to modify the database:

Sub GenerateAlterScripts (m)

Dim pOpts

Set pOpts = m.GetPackageOptions ()

InteractiveMode = im Batch ' Avoid displaying generate window

' set generation options using model package options
pOpts.GenerateODBC = False ' Force sqgl script generation rather than
ODBC

pOpts.GenerationPathName = GenDir
pOpts.DatabaseSynchronizationChoice = 0 'force already saved apm as

source

pOpts.DatabaseSynchronizationArchive = GenDir & "model.apm"
pOpts.GenerationScriptName = "MyAlterScript.sgl"
m.ModifyDatabase ' Launch the Modify Database feature

End Sub

This procedure generates test data to load to the database:
Sub GenerateTestDataScript (m)

Dim pOpts
Set pOpts = m.GetPackageOptions ()
InteractiveMode = im Batch ' Avoid displaying generate window

' set generation options using model package options

pOpts.TestDataGenerationByODBC = False ' Force sgl script generation
rather than ODBC
pOpts.TestDataGenerationDeleteOldData = False

Customizing and Extending PowerDesigner 327

CHAPTER 7: Scripting PowerDesigner

pOpts.TestDataGenerationPathName = GenDir

pOpts.TestDataGenerationScriptName = "MyTestData.sqgl"
m.GenerateTestData ' Launch the Generate Test Data feature
End Sub

Reverse Engineering a Database (Scripting)

You can connect to a database using the ConnectToDatabase () method, and reverse
engineer the schema to a PDM using ReverseDatabase ().

To connect to a database via a user or system data source, define a constant in the form
"ODBC : datasourcename" . For example:

Const cnxDSN = "ODBC:ASA 9.0 sample"

To use a data source file, define a constant with the full path to the DSN file. For example:

Const cnxDSN = "\\romeo\public\DATABASES\ filedsn
\sybase asa9 sample.dsn"

This script creates a new PDM, connects to a database via a system data source, sets reverse
options and reverses all objects to the PDM:

' Define ODBC data source and PDM file

Const cnxDSN = "ODBC:MyDatabase"

Const cnxUSR = "MyUser"

Const cnxPWD = "MyPassword"

Const filename = "C:\temp\MyReversedDB.pdm"

Dim pModel, pOpt
' Create model with appropriate DBMS

Set pModel=CreateModel (PdPDM.cls Model, "|DBMS=Sybase SQL Anywhere
1211)

' Hide dialogs

InteractiveMode = im Batch

' Connect to the database
pModel.ConnectToDatabase cnxDSN, cnxUSR, cnxPWD
' Set reverse options to reverse all listed objects via ODBC
Set pOpt = pModel.GetPackageOptions ()
pOpt.ReversedScript = False
pOpt.ReverseAllTables = true
pOpt.ReverseAllViews = true
pOpt.ReverseAllStorage = true
pOpt.ReverseAllTablespace = true
pOpt.ReverseAllDomain = true
pOpt.ReverseAllUser = true
pOpt.ReverseAllProcedures = true
pOpt.ReverseAllTriggers = true
pOpt.ReverseAllSystemTables = true
pOpt.ReverseAllSynonyms = true

' Reverse database to model and then save model

328 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

pModel .ReverseDatabase
pModel.save (filename)

Creating and Accessing Extensions (Scripting)

You can create extensions by script to define additional properties, new metaclasses, forms,
and any other type of extension to the standard metamodel.

The following example creates an EAM, then creates an extension inside it, defines a new type
of object called tablet derived from the MobileDevice metaclass, and creates an
extended attribute and new custom form for it:

Dim MyModel, MyExt, MyStype, MyExAtt, MyForm, FormDef

set MyModel =

CreateModel (PdEAM.Cls Model, "Diagram=TechnologyInfrastructureDiagra
mll)

MyModel . SetNameAndCode "MyEAM" , "MyEAM"

'Create extension

Set MyExt = MyModel.ExtendedModelDefinitions.CreateNew ()
MyExt.Name = "MyExtension"

MyExt.Code = "MyExtension"

'Create stereotype

Set MyStype = MyExt.AddMetaExtension (PdEAM.Cls MobileDevice,
Cls StereotypeTargetItem)

MyStype.Name = "Tablet"

MyStype.UseAsMetaClass = true

'Create extended atrribute

Set MyExAtt =
MyStype.AddMetaExtension (Cls ExtendedAttributeTargetItem)

MyExAtt.Name = "TabletType"

MyExAtt.Label = "Type"

MyExAtt.DataType = "12" ' (String) For a full list of values,

' see ExtendedAttributeTargetItem in the Metamodel objects help
MyExAtt.ListOfValues = "iPad;Android;Playbook;Windows8"
MyExAtt.Value = "iPad"

'Create form to replace General tab
Set MyForm = MyStype.AddMetaExtension (Cls FormTargetItem)

MyForm.Name = "ReplaceGeneral"

MyForm.FormType = "GENERAL"

'Assemble form definition

FormDef = "<Form><StandardNameAndCode Attribute=""NameAndCode"" />"
& vberlf

FormDef = FormDef + "<StandardAttribute Attribute=""Comment"" />" &
vbcrlf

FormDef = FormDef + "<ExtendedAttribute Attribute=""TabletType"" />"
& vberlf

FormDef = FormDef + "<StandardAttribute Attribute=""KeywordList"" /
></Form>"

MyForm.Value = FormDef
You can get and set extended attribute values using the following methods:

e GetExtendedAttribute ("resource.attribute")

Customizing and Extending PowerDesigner 329

CHAPTER 7: Scripting PowerDesigner

e GetExtendedAttributeText ("resource.attribute")
¢ SetExtendedAttribute "resource.attribute" "value"
e SetExtendedAttributeText "resource.attribute" "value"”

You can access collections defined in an extension using the following methods:

* GetCollectionByStereotype ("stereotype" - for new types of objects defined in
an target or extension file (see Promoting a Stereotype to Metaclass Status on page 39).

* GetExtendedCollection ("resource.collection") - for extended collections and
compositions (see Extended Collections and Compositions (Profile) on page 48).

* GetCalculatedCollection ("resource.collection™) - for calculated collections
(see Calculated Collections (Profile) on page 50).

* GetCollectionByName ("resource.collection™) -for any kind of collection.

The following script uses the GetCollectionByStereotype () method to access the
collection of tablets and the SetExtendedAttribute method to set the tablet type:

Dim col, obj

'The collection of tablets is not directly accessible

set col = ActiveModel.GetCollectionByStereotype ("Tablet")

'Create an array to hold the values to assign to tablet properties
Dim myArray (3)

myArray (0) = "Tabletl, T1l, PlayBook"
myArray(l) = "Tablet2, T2, Android"
myArray(2) = "Tablet3, T3, iPad"
myArray (3) = "Tabletd4, T4, iPad"

CreateObjects col, myArray

'Procedure to assign values to properties
Sub CreateObjects (compColl, dataArray)
For Each line In dataArray
Dim myProps
myProps = split(line, ",")
set obj = compColl.CreateNew ()
obj.Name = myProps (0)
obj.Code = myProps (1)
'Special syntax for setting extended attribute
obj.SetExtendedAttribute "MYEXT.TabletType", myProps(2)
Next
End Sub

Accessing Metadata (Scripting)

You can explore the structure of the PowerDesigner metamodel as a standalone model or
starting from object instances in your model.

For general information about accessing and navigating in the metamodel, see Chapter 8, The
PowerDesigner Public Metamode/ on page 343. Metaclasses (such as
CheckModelInternalMessage and FileReportItem) that are not accessible by

330

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

scriptare visible in Metamodel.oom, but bear the <<notScriptable>> stereotype and are
not listed in the Metamodel Object Help file.

You can access metaclasses, metaattributes, and metacollections by iterating over collections
descending from the MetaMode1 root or individually through the following methods:

« GetMetaClassByPublicName (name) - to access a metaclass by its public name.

* GetMetaMemberByPublicName (name) - to access a metaattribute or a metacollection by
its public name

The following script traverses the metamodel by library and lists each concrete class:

for each 1 in MetaModel.Libraries
for each ¢ in 1.Classes
if c.Abstract = false then
Output 1.PublicName + "." + c.PublicName
end if
next
next

The following script locates the BaseC1lass rootand shows the first two levels of inheritance
under it:

set root = MetaModel.GetMetaClassByPublicName ("PdCommon.BaseObject")
for each ¢ in root.Children
output c.PublicName
for each cc in c.Children
output " " + cc.PublicName
next
next

The following script obtains a table in a PDM, and then shows the metaclass of which the
object is an instance, the parent metaclass and metalibrary to the metaclass, and all the
attributes and collections that are available on that metaclass:

Dim object

Set object = ActiveModel.FindChildByName ("myTable",cls Table)
Output "Object: " + object.Name

Dim metaclass

Set metaclass = object.MetaClass

Output "Metaclass: " + metaclass.PublicName

Output "Parent: " + metaclass.Parent.PublicName
Output "Metalibrary: " + metaclass.Library.PublicName

Output "Attributes:"

For each attr in metaclass.attributes
Output " - " + attr.PublicName

Next

Output "Collections:"

For each coll in metaclass.collections
Output " - " + coll.PublicName

Next

Properties and collections are read-only for all metamodel objects.

Customizing and Extending PowerDesigner 331

CHAPTER 7: Scripting PowerDesigner

OLE Automation and Add-Ins

OLE Automation provides a way to communicate with PowerDesigner from another
application using the COM architecture. You can write a program using any language that
supports COM, such as Word or Excel macros, VB, C++, or PowerBuilder.You can create
executables that call PowerDesigner or add-ins that are called by PowerDesigner.

VBScript programs that run from within PowerDesigner and OLE Automation programs are
very similar, but OLE requires you to work through a PowerDesigner application object, and
to use stronger typing. You must:

Create an instance of the PowerDesigner Application object and release it when your script
terminates:
Dim PD As PdCommon.Application
Set PD = CreateObject ("PowerDesigner.Application™)
'Enter script here

'Once script is finished, release PD object
Set PD = Nothing

If PowerDesigner is currently running, this instance will be used; otherwise a new instance
will be launched. If you do not specify a version number, the most recent version is used.
To specify a specific version, use the syntax:

Set PD = CreateObject ("PowerDesigner.Application.version")

Prefix all global properties and functions (see Manipulating Models, Collections, and
Objects (Scripting) on page 312) with the PowerDesigner Application object. For
example, to access the model with focus using a PowerDesigner application object called
PD, use the following syntax:

PD.ActiveModel

Specify object types whenever possible. For example, instead of simply using Dim cls,
you should use:

Dim cls as PdOOM.Class

If your model contains shortcuts, we recommend that you use the following syntax to
avoid runtime errors when the target model is closed:

Dim obj as PdCommon.IdentifiedObject

Adapt the object class ID syntax to the language when you create object. For VBScript,
VBA and VB and other languages that support enumeration defined outside a class, you
can use the syntax:

Dim cls as PdOOM.Class
Set cls = model.CreateObject (PdOOM.cls Class)

For C# and VB.NET, you can use the following syntax (where PAOOM Classes isthe
name of the enumeration):

Dim cls As PdOOM.Class
Set cls = model.CreateObject (PAOOM.PdOOM Classes.cls Class)

332

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

For other languages such as JavaScript or PowerBuilder, you have to define constants that
represent the objects you want to create. For a complete list of class ID constants, see file
VBScriptConstants.vbs in the PowerDesigner OLE Automation directory.

« Add references to the object type libraries you need to use. For example, in a VBA editor,
select Tools > References:

References - TemplateProject E3

Available References: oK
[]5etup Kernel 1.0 Type Library :l Cancel
[[]5etup UL 1.0 Tvpe Library

[I5hockeave Flash
[[]Svbase PABPM Type Library
Swvhase PACDM Type Library
[15ybase PdCommon Type Library ﬂ
[[]5vbase PAFRM Tvpe Library

[[]5vbase PAMTM Type Library Priarity
[[I5vbase PAOOM Type Library

[1svbase PAPDM Type Library ﬂ
[[I5vbase PARMG Type Library J

[] Tabular Daka Contral 1.1 Tvpe Library

[ThzRC

[1TIME it
4| | »

—Sybase PACDM Tvpe Library

Browse, ..

Help

il

Location:

Language: Standard

This script is launched from outside PowerDesigner, creates an instance of the PowerDesigner
Application object, and then uses it to create two OOMs through OLE Automation:

'* Purpose: This script displays the number of classes defined in an
OOM in the output window.
Option Explicit
' Main function
Sub VBTest ()
' Defined the PowerDesigner Application object
Dim PD As PdCommon.Application
' Get the PowerDesigner Application object
Set PD = CreateObject ("PowerDesigner.Application")
' Get the current active model
Dim model As PdCommon.BaseModel
Set model = PD.ActiveModel
If model Is Nothing Then
MsgBox "There is no current model."
ElsIf Not model.IsKindOf (PdOOM.cls Model) Then
MsgBox "The current model is not an OOM model."
Else
' Display the number of classes
Dim nbClass
nbClass = Model.Classes.Count
PD.Output "The model '" + model.Name + "' contains " +
CStr (nbClass) + " classes."
' Create a new OOM
Dim model2 As PdOOM.Class

Customizing and Extending PowerDesigner 333

CHAPTER 7: Scripting PowerDesigner

v

Set model2 = PD.CreateModel (PAOOM.cls Model)
If Not model2 Is Nothing Then

' Copy the author name

model2.Author = Model.Author

' Display a message in the output window

PD.Output "Successfully created the model '" + model2.Name + "'."
Else

MsgBox "Cannot create an OOM."

End If
End If

Release the PowerDesigner Application object

Set PD = Nothing

End Sub

OLE Automation samples for different languages are provided in the OLE Automation
directory within your PowerDesigner installation directory.

Creating an ActiveX Add-in

You can create ActiveX add-ins to provide additional features to PowerDesigner, and call
them through menu items.

To operate as a PowerDesigner add-in, the ActiveX add-in must implement the IPDAddIn
interface, which defines the following methods, invoked by PowerDesigner to dialog with
menus and execute the commands defined by the add-in:

HRESULT Initialize([in] IDispatch * pApplication) and HRESULT
Uninitialize () -TheInitialize () method initializescommunication between
PowerDesigner and the add-in. PowerDesigner provides a pointer to its application object,
defined in the PdCommon type library, which allows you to access the PowerDesigner
environment (output window, active model etc.). The Uninitialize () method is
called when PowerDesigner is closed to release all global variables and clean all
references to PowerDesigner objects.

BSTR ProvideMenulItems ([in] BSTR sMenu, [in] IDispatch
*pOb7) - is invoked each time PowerDesigner needs to display a menu, and returns an
XML text that describes the menu items to display. It is called once without an object
parameter at the initialization of PowerDesigner to fill the Import and Rever se menus.
When you right-click a symbol in a diagram, this method is called twice: once for the
object and once for the symbol. Thus, you can create a method that is only called on
graphical contextual menus.

The DTD for menu definition is as follows:

<!ELEMENT Menu (Command | Separator | Popup) *>
<!ELEMENT Command>
<!ATTLIST Command

Name CDATA #REQUIRED

Caption CDATA #REQUIRED>
<!ELEMENT Separator>
<!ELEMENT PopUp (Command | Separator | Popup) *>
<!ATTLIST PopUp

Caption CDATA #REQUIRED>

334

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

For example:
ProvideMenultems ("Object", pModel)

returns the following text:

<Menu>
<Popup Caption="&Perforce">
<Command Name="CheckIn" Caption="Check &In"/>
<Separator/>
<Command Name="CheckOut" Caption="Check &Out"/>
</POPUP>
</MENU>

¢ BOOL IsCommandSupported([in] BSTR sMenu, [in] IDispatch *
pObject, [in] BSTR sCommandName) - allows you to dynamically disable
commands defined in a menu. The method must return true to enable a command and false
to disable it.

¢ HRESULT DoCommand (in BSTR sMenu, in IDispatch *pObj, in
BSTR sCommandName) - implements the execution of a command designated by its
name. For example:

DoCommand ("Object", pModel, "CheckIn")

Note: To use your add-in, save it to the Add-ins directory beneath your PowerDesigner
installation directory and enable it through the PowerDesigner General Options window (see
Core Features Guide > Modeling with PowerDesigner > Customizing Your Modeling
Environment > General Options > Add-Ins).

Creating an XML File Add-in

You can create XML add-ins to group multiple commands for calling executable programs or
VB scripts and add them to PowerDesigner menus.

The following illustration helps you understand the XML file structure:

Customizing and Extending PowerDesigner 335

CHAPTER 7: Scripting PowerDesigner

Frofile

Command : 1
0.7 Name
Caption
0.1 | henus: 1 0.7 | Menu:2 o Separater: 1
Location =
Command : 2
. MName
0.1 Sharad | Fopup : 2 = | Caption
—= GlobalSeript o.F -
Caption Separator: 2
Method : 1 0.7
0.1 [Methods:2 | 5 =
S, '; Hame
Data Command : 3
Criteria 0.7
Mame
Caption
o= Menus: 2 o.x | Menu:i Separater: 2
= Lacation 0.s
o.r
Mataciaes Command : 4
L= o= Fopup :1 Hame
0. Name - Caption
- Caption
Separater: 4
Method : 2
Methods: 1 | 0.~ 0.
=l Hame
o Data
- Criteria

Note: The DTD is available at PD_installdir\Add-ins\XMLAddins.dtd.

The Profile is the root element of the XML file add-in descriptor and can contain:

* A shared element - which defines the menus that are always available and their
associated methods, along with a GlobalScript attribute, which can contain a global
script for shared functions.

« One or more Metaclass elements - which define commands and menus for a specific
metaclass, identified by its public name prefixed by its Type Library public name.

Both these elements can contain sub-elements as follows:

* Menus contains Menu elements that specify a location, which can be one of:

Filelmport - shared only
FileExport - metaclass only
FileReverse - shared only

Tools

Help

Object - metaclasses only (default)

Each Menu element can contain:

A Command element - whose Name must be equal to the name of a Method, and whose
Caption defines the name of the command that appears in the menu.

336

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

e A Separator element - which indicates that you want to insert a line in the menu.
* A Popup element - which defines a sub-menu item that may in turn contain
commands, separators, and popups.

e Methods contains Method elements, which define the methods used in the menus, and
which are defined by a name and a VBScript. A method defined under a metaclass has the
current object as a parameter. Inheritance is taken into account, so that a menu defined on
the metaclass PdCommon . NamedObject will be available on PAOOM.Class.

The following example defines two menu items for the Perforce repository and the methods
that are called by them:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
<Metaclass Name="PdOOM.Model">
<Menus>
<Menu Location="Tools">
<Popup Caption="Perforce">
<Command Name="CheckIn" Caption="Check In"/>
<Separator/>
<Command Name="CheckOut" Caption="Check Out"/>
</Popup>
</Menu>
</Menus>
<Methods>
<Method Name="CheckIn">
Sub %$Method$% (ob7j)
execute command(p4, submit %Filename%, cmd PipeOutput)
End Sub
</Method>
<Method Name="CheckOut">
Sub %$Method$% (obj)
execute command(p4, edit %Filename%, cmd PipeOutput)
End Sub
</Method>
</Methods>
</Metaclass>
</Profile>

The following example defines a global script which is referenced by a method defined under a

metaclass:
<?xml version="1.0" encoding="UTF-8"?>
<Profile>
<Shared>
<GlobalScript>

Option Explicit
Function Print (obj)
Output obj.classname & " " & obj.name
End Function
</GlobalScript>
</Shared>
<Metaclass Name="PdOOM.Class">
<Menus>
<Menu>
<Popup Caption="Transformation">

Customizing and Extending PowerDesigner 337

CHAPTER 7: Scripting PowerDesigner

<Command Name="ToInt" Caption="Convert to interface"/>
<Separator/>
</Popup>
</Menu>
</Menus>
<Methods>
<Method Name="ToInt">
Sub %$Method% (obj)
Print obj
ExecuteCommand (" $SMORPHEUS%\ToInt.vbs",
" ", cmd_InternalScript)
End Sub
</Method>
</Methods>
</Metaclass>
</Profile>

Note: To use your add-in, save it to the Add-ins directory beneath your PowerDesigner
installation directory and enable it through the PowerDesigner General Options window (see
Core Features Guide > Modeling with PowerDesigner > Customizing Your Modeling
Environment > General Options > Add-Ins).

Launching Scripts and Add-Ins from Menus

You can extend PowerDesigner menus to add commands to call scripts defined in resource
files or externally and to launch executables and ActiveX add-ins. XML add-ins can be used to
group and organize multiple commands. You can extend the File, Tools, and Help menus, and
the contextual menus available on objects in the Browser and diagrams.

You can modify PowerDesigner menus in the following ways:

« Custom commands - are defined directly in PowerDesigner and can call executable
programs or VB scripts (see Adding Commands to the Tools Menu on page 339).

e Menu and method extensions — are specified in a DBMS or language definition or
extension file and define commands for a specific target or model type (see Menus
(Profile) on page 81).

» ActiveX Add-Ins — are written in languages such as VB, C#, C++ or any language
supporting COM, and permit more complex interactions with PowerDesigner, such as
enabling and disabling menu items based on object selection, and interaction with the
windows display environment (see Creating an ActiveX Add-inon page 334).

Note: The XML syntax used to define menus in an ActiveX or XML add-in is the same as
that used in the creation of a menu extension, and you can use the resource editor menu
XML page (see Menus (Profile) on page 81) to help you construct the syntax for your add-
ins.

338

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

e XML Add-Ins — define multiple commands to call executable programs or VB scripts.
Commands linked to the same applications (for example, ASE, IQ etc.) should be gathered
into the same XML file (see Creating an XML File Add-inon page 335).

Adding Commands to the Tools Menu

You can create your own menu items in the PowerDesigner Tools menu to access
PowerDesigner objects using your own scripts or executable programs. You can define up to
256 commands in the Customize Commands dialog, and control the contexts (model,
diagram, and target type) in which they appear.

1. Select Tools > Execute Commands > Customize Commandsand click the Add arow
tool.

2. Enter the following properties:

Property Description

Name Specifies the name of the command that will appear in the menu. Names
must be unique and can contain a pick letter (&Generate Java will appear as
Generate Java)

Submenu Specifies a submenu in which to place the command. You can enter your
own or select one of:

* <None> - directly under Tools > Execute Commands
» Check Model

e Export

» Generation

» Import - also appears under File > Import

* Reverse - also appears under File > Rever se-Engineer

Customizing and Extending PowerDesigner 339

CHAPTER 7: Scripting PowerDesigner

Property

Description

Context

Specifies when the command is available. By default the command is
available at all times (* / * / *). Click the ellipsis button to restrict the
display of the command to a specific:

* Model type - for example OOM/ * / *

* Model and Diagram type - for example OOM/Class diagram/
*

* Model, Diagram, and Target type - for example OOM/Class di-
agram/Java. By default, the list contains extensions available for
the chosen model type. Click the Path tool to navigate to another folder
containing extensions or DBMS or language definition files.

Context Definition _ (O}

IF'DM.?'MuIlidimensional Diagram,PowerE uilder

todel: I PDM ﬂ

Diagrarn: IMuItidimensinnal Diagram ﬂ
Taiget resource; |(ei=I=TRisl) j IE‘

QK I Cancel | Help |

Type

Specifies whether the command will launch an executable or VBScript.

Command Line

Specifies the path to the executable or script file to run. Click the ellipsis
button to navigate to a file. If your file is a VBScript, you can review or edit
the script by clicking the Edit With tool in the toolbar.

Comment

Specifies text that is displayed in the status bar when you select the com-
mand.

[S]how in Menu

Specifies that the command should be displayed. Deselect this field to hide
the command while retaining its definition.

Accelerator Key

Associates one of ten reserved keyboard shortcuts Ctrl-Shift-0 to Ctrl-
Shift-9 with the command.

340

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

i Customize Commands Hi=] B3
DB % @XM
Mame Submenu Context Type W Command Line Comrr = |
1 Basic BPM Iy Patterns BPM /= Executable C:hdoc Puktoolswmake. exe Thiz prograrn «
= [Cuztomized package My Pattems FDM/Multidimers | VB Script C:\Program Filesh5 ybasetPowe: This script imp
-
=
4] | o
QK I Cancel | Help |

3. Click OK to save your changes.

Your command is now available under Tools > Execute Commands.

AN window Help
Complete Links Chi+F5
Corwert to Package. ..
Check Model... F4
Lompare Models... Ctr!+FB Subrmenu that gathers related commands Submenu
Merge Model... Shift+F& Mame of the command

Standalone Generation...

te Commands [MyPattems »| BasicBPM Ctrbebdaj+1
Generate Physical Data Modslm.._ kG Edit/Fun Seript.. Ok Ghifisg L CustmEstpaeherss Ei
Generate Object-Orented Model... Cif ift+01 Cusztomize Commands... |

Besources ¥ \

LCustomize Toalbars. ..

. Menu ltem
Display Preferences..
Model Options...
General Options. ..

Note: Customized Commands are saved by default in the Registry at
HKEY CURRENT USER\Software\Sybase\PowerDesigner v

\PlugInCommands\submenu and are available only to the user defining them. To
make them available to all users, create an entry at the same location under
HKEY LOCAL MACHINE.

The name of the entry is the name of the command, and its value takes the following
syntax, in which only the commandline parameter is mandatory and must be terminated
by a | (pipe) character

[Hide:] [Key:accelerator:] [Script:]commandline[|comment]

If you want to insert a pipe within a command, you must escape it with a second pipe.

Customizing and Extending PowerDesigner 341

CHAPTER 7: Scripting PowerDesigner

=0 PowerDesigner ﬂ Marme | Data

&3 Contrcls Basic BFM "k Ctil-Shift-1:C:AT oolshwmake. exelThiz program creat...

=0 D?alogPreferences [ab] Customized packages "Kep:Ctil-Shift-0:Seript D:\Program Filess MyPreferedPragr..
F-_] DisplayPreferences
£

f-{_7] FolderOptions
{7 General

Fegistry entry Reqistry entry value
gg I}:da;;;tﬂ ions [Marne of the Command] (Defirition properties of the Command)
-{Z] MRU J
-0 Pathe Registy kep
=3 PIugInCommand$f’fﬁmenu of the Command)
© L5 My Programs |

342 PowerDesigner

CHAPTER 8

The PowerDesigner Public

Metamodel

The PowerDesigner public metamodel is an abstraction of the metadata for all the
PowerDesigner models, describing the elements of a model, and the syntax and semantics of
their manipulation.

You can review the public metamodel in PowerDesigner by opening install dir
\Examples\MetaModel . oom, and find exhaustive documentation of all the metamodel
objects, collections, and methods available via scripting, by selecting Help > Metamodel
Objects Help (see Using the Metamodel Objects Help File on page 347).

This OOM and help file help you understand the structure of your models, especially when
working with;

» Generation Template Language (GTL) templates (see Chapter 5, Customizing Generation

with GTL on page 245).

» /B scripts (see Chapter 7, Scripting PowerDesigner on page 305).
» PowerDesigner XML model files (see PowerDesigner Model File Format on page 348).

o [=[3]

=] File Edit Yiew Model Swmbol Language Repork Reposikory Tools Window Help ;Iilil
[odSd@dad|saax (20 |@¢llasGas|adl. »alzes|@s
Al -

1

_.,j ‘Workspace

75 AbsztractRequirement

-2 Association

][Associationdtibute
o[Associationdtibutel
1= AssociationLink
- AssociationlinkS pmt
[Associationt apping
[AssociationSpmbal
1-= Bassdtribute

v Bassdttibuteh appin
-3 BaseCheckMamedCl
E BazeD ataSource
E BazelinkObject

-

= E BazelogicalConcept _
f— Y |I oo f
3

| Local I 4! Hepositoryl

Kl

Feady

Analysis 4

The metamodel is divided into the following main packages:

Customizing and Extending PowerDesigner 343

CHAPTER 8: The PowerDesigner Public Metamodel

PdBPM - Business Process Model

PdCDM - Conceptual Data Model

PdCommon - contains all objects shared between two or more models, and the abstract
classes of the model. For example, business rules, which are available in all models, and
the BaseObject class, from which all model objects are derived, are defined in this
package. Other model packages are linked to PdCommaon by generalization links
indicating that each model inherits common objects from the PdCommon package.
PJdEAM - Enterprise Architecture Model

PdFRM - Free Model

PdGLM - Glossary Model

PdILM - Data Movement Model (the DMM was previously named Information Liquidity
Model or ILM, and the PdILM library name has been retained for backwards
compatibility)

PdLDM - Logical Data Model

PdMTM - Merise Model (available in French only)

PdOOM - Object Oriented Model

PdPDM - Physical Data Model

PdPRJ - Project

PdRMG - Repository

PdRQM - Requirements Model

PdXSM - XML Model

PdWSP - Workspace

Each of these top-level packages contains the follow kinds of sub-objects, organized by
diagram or, in the case of PdCommon, by sub-packages:

Features - All the features implemented by classes in the model. For example, Report
(available in all models) belongs to PdCommon, and AbstractDataType belongs to
PdPDM.

Objects - Design objects in the model

Symbols - Graphical representation of design objects

Navigating in the Metamodel

You can expand and collapse the packages in the Browser to explore their contents. Double-
click a diagram to display it in the canvas.

Each metaclass has a name, contains zero or more attributes and assumes zero or more roles in
associations with other classes, which allow you to identify collections. The PowerDesigner
public metamodel uses standard UML concepts:

Public Names - Each object in the metamodel has a name and a code corresponding to the
public name of the object, which is the unique identifier of the object in a model library or

344

PowerDesigner

CHAPTER 8: The PowerDesigner Public Metamodel

package. Public names are referenced in PowerDesigner XML model files and when using

GTL and scripting. The public name often matches the object's name in the

PowerDesigner interface, but where the two diverge, the public name must be used in

scripts and GTL templates.

e Classes - are used to represent metadata in the following ways:

» Abstract classes- are used only to share attributes and behaviors, and are not visible in
the PowerDesigner interface.

o Instantiable/Concrete classes - correspond to objects displayed in the interface. They
have their own attributes and behaviors in addition to those they inherit from abstract
classes through generalization links. For example, NamedObject is an abstract
class, which contains standard attributes like Name, Code, Comment,
Annotation, and Description, which are inherited by most PowerDesigner
design objects.

» Class attributes - are object properties. Classes linked to other classes with generalization
links usually contain derived attributes that are calculated from the attributes or collections
of the parent class. Neither derived attributes, nor attributes migrated from navigable
associations, are stored in the model file. Non-derived attributes are proper to the class, and
are stored in the model and saved in the model file.

» Associations - express the semantic connections between classes. In the association
property sheet, the roles carry information about the end object of the association.
PowerDesigner objects are linked to other objects using collections, and the role at the
other end of the association gives the name of the collection for an object. For example,
NamedOject has a collection of business rules called AttachedRules, and
BusinessRule has a collection of objects called Objects:

D:j.ll:—c:s 0= -

| Ordered™ AttachedRules — |

NamedObject

{abstract] BusinessRule

When associations have two roles, only the collection with the navigablerole will be saved
in the XML file. In the case, only the AttachedRules collection is saved.

« Compositions— express an association where the children live and die with the parent and,
when the parent is copied, the child is also copied. For example, Tab1e hasacomposition
association with the Column class:

0.1 a.=

Table - _— —= Column
Ordered Columns ~ p

» Generalizations - show the inheritance links existing between a more general, usually
abstract, class and a more specific, usually instantiable, class. The more specific class
inherits from the attributes of the more generic class, these attributes are called derived
attributes. For example, Class inherits from Classifier

Classifier
Class [abstract}

Customizing and Extending PowerDesigner 345

CHAPTER 8: The PowerDesigner Public Metamodel

Each diagram shows classes the connections between metaclasses via associations and
generalizations. Classes in greenare defined in the current diagram, while classes in purpleare
present only to provide context. To investigate a purple class, right-click it and select Related
Diagrams > diagram to open the diagram where it is defined.

In the following example, BusinessRule is being defined, while NamedObject and
BaseModel are present only to show inheritance and composition links:

Z=GUER YABLE GLOBAL ==
BusinessRule

Type : short
ClientExpression : TEAT o
SenmerExprezsion : TEXT

0.1
Padkage

BusinessRules

Double-click any class to show its property sheet and review the following tabs:

General - provides the public name in the Nameand Codefields, a Comment providing a
brief description of the class, and shows whether it is Abstract.

Note: Objects, such as RepositoryGroup that do not support scripting bear the
<<notScriptable>> stereotype.

Attributes - lists the properties defined directly on the class, but not those that it inherits
via any parent classes.

Associations - lists the migrated associations for the class, which represent collections.
The Role B column lists the collections for the class, while the Role A column lists the
collections in which the class figures.

Operations - lists the methods available for scripting.
Dependencies - contains the following sub-tabs (among others):
* Associations

* Generalizations- lists the generalization links where the current class is the child and
inherits attributes from a parent class.

* Specializations- lists the generalization links where the current class is the parent and
its children inherit attributes from it.

» Shortcuts- lists the shortcuts created for the current object.
Notes - may include further information on the Description or Annotation sub-tabs.

346

PowerDesigner

CHAPTER 8: The PowerDesigner Public Metamodel

Using the Metamodel Objects Help File

PowerDesigner provides documentation of the metamodel available from Help > M etamodel

Objects Help.

The file can be opened from the Edit/Run Script dialog (see Running Scripts in

PowerDesigneron page 307) or from a metaclass in a resource file (see Metaclasses (Profile)
on page 33) by clicking the Find in MetaM odel Help button or pressing Ctrl+F1. It can also
be opened from any object property sheet by pressing Ctrl+F1 or clicking the Property Sheet

Menu button and selecting Find in MetaM odel Help.

[Sybase PowerDesigner16.5.0 OLE Help (=N
c & o
Hide Back Print Options
: ick links: Library PAPDM Basic elements
Corterts LCILE LT Qui St
£] ProcedursTemp » B BaseObject =
[£] Reference B IdentifiedObject
%ijncef;mt E ExtensibleObiect
2 ‘erence Sym - E
5] ResuttColumn b harnetleb ect c
=] Role B NamedClassifier
5] Sequence [BaseTable
a Storage & Table
[£] Synorym cls_Tat
[£] Table Description:
a TableCollapsing
% ?::el‘ﬂapping A table is a collection of rows (records) that have associated colmmns.
E| ablespace
5] TableSymbol | .-
a TargetTable | =
5] TestDataProfile —
a Trigger
% Triggerttem
E Trigger Template Specific Members:
E User . - . F .
5] VertcalPartiion Properties: Collections: Methods:
5] view PrimarvK ey Keys UpdateStatistics
?j ViewCalumn CheckFExpressionPreview InReferences EstimateCostSaving
% gewgsfe" AbstractDataType OutReferences SetEstimatedR ows
;j V:::R ef:::z: RowGrowthRateForLifeCycle Procedures GetEstimatedRows
A VewPfemnea Y Number DatabasePackages GetEstimatedSize =
4 mn 3 ""'--‘”r T S :
The three top-level nodes contain the following documentation:
Customizing and Extending PowerDesigner 347

CHAPTER 8: The PowerDesigner Public Metamodel

Nodes What you can find...

Basic Elements Provides general information on:

¢ Collections of objects - provide the principal way of navigating the
metamodel (see Browsing and Modifying Collections (Scripting) on
page 314).

e Structured Types - used for positioning symbols in diagrams (see Dis-
playing, Formatting, and Positioning Symbols (Scripting) on page 320).

« Global properties, constants, and functions - provide entry points for
scripting (see Manipulating Models, Collections, and Objects (Script-
ing) on page 312).

Libraries Provides exhaustive documentation of all scriptable properties, collections,

and methods for metamodel objects, organized by module.

Appendix Includes an expandable hierarchy showing all the metaclasses in the Pow-

erDesigner metamodel, a VBScript code sample, and a list of the class ID
constants used to identify objects in certain contexts (see Accessing and
Modifying Objects and Properties (Scripting) on page 316).

To obtain information about the properties, collections and methods available for a particular
metaclass, navigate to it under the Libraries category, or locate it in the index. All properties,
collections, and methods are listed in the index.

Each metaclass shows the hierarchy of ancestors from which it is descended and inherits.
After a brief description and symbol, it then lists:

« Specific Members - a table which lists the properties, collections, and methods defined
directly on this metaclass

« Full definition - which lists, in separate tables, the properties, collections, and methods
inherited from each of its ancestors. For example, the Table metaclass (located at
Libraries\PdPDM\Table) inherits members from:

PdCommon.BaseObject
PdCommon.ldentifiedObject
PdCommon.ExtensibleObject
PdCommon.NamedObject
PdCommon.NamedClassifier
PdPDM.BaseTable
PdPDM.View

PowerDesigner Model File Format

PowerDesigner models are made up of objects, the properties and interactions of which are
explained in the public metamodel. Models can be saved in either binary or XML file formats.
Binary files are smaller and significantly quicker to open and save, but XML model files can

348

PowerDesigner

CHAPTER 8: The PowerDesigner Public Metamodel

be edited by hand or programatically (and DTDs are provided for each model type in the DTD
folder in the installation directory).

Warning! You can modify an XML model file using a text or XML editor, but you should take
care, as even a minor syntax error may render the file unusable. If you create an object in an
XML file by copy and paste, make sure that you remove the duplicated OID. PowerDesigner
will automatically assign an OID to the new object when next you open the model.

The following elements are used in PowerDesigner XML files:

e <o:object>-APowerDesigner model object. The first time the object is mentioned in
a collection, PowerDesigner assigns itanid using the <o: object Id="XYZ">syntax
(where X'YZis a unique identifier automatically assigned to an object when it is found for
the first time) or references it with the <o:object Ref="XYZ"/> syntax. Object
definition is only used in composition collections, where the parent object owns the
children in the association.

e <c:collection> - Acollection of objects linked to another object. You can use the
PowerDesigner metamodel to visualize the collections of an object. For example
<c:Children>.

e <a:attribute>-Anobjectis made up of anumber of attributes each of which you can
modify independently. For example <a : ObjectID>.

PowerDesigner XML model files have an <o :mode 1> element at their root, which contains
collections defined in the PowerDesigner metamodel. The model object and all the other
object elements that it contains define their attributes and collections in sub-elements. The
definition of an object implies the definition of its attributes and its collections.
PowerDesigner checks each object and drills down the collections of this object to define each
new object and collection in these collections, and so on, until the process finds terminal
objects that do not need further analysis.

You can search for an object in the metamodel using its object name in the XML file in order to
better understand its definition. Once you have found an object in the metamodel you can read
the following information:

« Each PowerDesigner object can have several collections corresponding to other objects to
interact with, these collections are represented by the associations existing between
objects. The roles of the associations (aggregations and compositions included)
correspond to the collections of an object. For example, each PowerDesigner model
contains a collection of domains called Domains.

Usually associations have only one role, the role is displayed at the opposite of the class for
which it represents a collection. However, the metamodel also contains associations with
two roles, in such case, both collections cannot be saved in the XML file. You can identify
the collection that will be saved from the association property sheet: the role where the
Navigable check box is selected is saved in the file.

In the following example, association has two roles which means Classifier has a
collection Actors, and Actor2 has a collection ImplementationClasses:

Customizing and Extending PowerDesigner 349

CHAPTER 8: The PowerDesigner Public Metamodel

+ Abstract :BOOL =FALSE

Classifier
{abstract}

+ Stereotype : CHARZSS)
+ Visibility : CHARCT) = TEXT("+"

Implemeantation

If you display the association property sheet, you can see that the Navigable check box is
selected for role ImplementationClass, which means that only collection

o.

o
Actors

=SSQUERYABLE ==
Actor?

+ Symbollisplayed

ImplementationClass will be saved in file.

F‘nﬁssuciatiun Properties - ImplementationClasses (Implem... M=l E3

Class &

Clazz B

Actor o

0.7
ActolmplementationClasses

—== Classifier

General Detail |Ma|:||:|ing| Motes I Rules I Dependenciesl Versinnlnfol

— Actar Classifier
IImpIementationCIasses
izibility: Wizibility:
I public: j I public j
Multiplicity: Ordering: Fultiplicity: Ordering:
ID..“ j IUnDrdered j ID.." j IUnnldered j
[T Mavigable ¥ Mavigable

— Agagregation / Composition

Container: 5 FHole s
Indicatar: 5 hogregation

" Role B
" Composition

<< Less |" OF. I

Cancell Appli | Help |

 Attributes with the /OBJECT data type are attributes in the metamodel while they appear
as collections containing a single object in the XML file. This is not true for Parent and

Folder that do not contain any collection.

350

PowerDesigner

CHAPTER 8: The PowerDesigner Public Metamodel

Example: Simple OOM XML File

In this example, we will explore the structure of a simple OOM model file containing two
classes and one association.

Customer

+ MName
+ Company :
+ D :

o.r Order

+ Orderfumber :
+ Orderfmount

The file starts with several lines stating XML and model related details.

The first object to appear is the root of the model <o0:RootObject 1d="01">. RootObject is a
model container that is defined by default whenever you create and save a model. RootObject
contains a collection called Children that is made up of models.

In our example, Children contains only one model object that is defined as follows:

<o:Model Id="o2">
<a:0bjectID>3CEC45F3-A77D-11D5-BB88-0008C7EA916D</a:0bjectID>
<a:Name>ObjectOrientedModel 1</a:Name>
<a:Code>OBJECTORIENTEDMODEL 1</a:Code>
<a:CreationDate>1000309357</a:CreationDate>
<a:Creator>arthur</a:Creator>
<a:ModificationDate>1000312265</a:ModificationDate>
<a:Modifier>arthur</a:Modifier>

<a:ModelOptionsText>

[ModelOptions]

Below the definition of the model object, you can see the series of ModelOptions attributes.
Note that ModelOptions is not restricted to the options defined in the Model Options dialog
box of a model, it gathers all properties saved in a model such as intermodel generation
options.

After ModelOptions, you can identify collection <c:ObjectLanguage>. This is the object
language linked to the model. The second collection of the model is <c:ClassDiagrams>. This
is the collection of diagrams linked to the model, in our example, there is only one diagram
defined in the following paragraph:

<o:ClassDiagram Id="o4">
<a:0bjectID>3CEC45F6-A77D-11D5-BB88-0008C7EA916D</a:0bjectID>
<a:Name>ClassDiagram 1</a:Name>
<a:Code>CLASSDIAGRAM 1</a:Code>
<a:CreationDate>1000309357</a:CreationDate>
<a:Creator>arthur</a:Creator>
<a:ModificationDate>1000312265</a:ModificationDate>

Customizing and Extending PowerDesigner 351

CHAPTER 8: The PowerDesigner Public Metamodel

<a:Modifier>arthur</a:Modifier>
<a:DisplayPreferences>

Like for model options, ClassDiagram definition is followed by a series of display preference
attributes.

Within the ClassDiagram collection, a new collection called <c:Symbols> is found. This
collection gathers all the symbols in the model diagram. The first object to be defined in
collection Symbols is AssociationSymbol:

<o:AssociationSymbol Id="o5">
<a:CenterTextOffset> (1, 1)</a:CenterTextOffset>
<a:SourceTextOffset>(-1615, 244)</a:SourceTextOffset>
<a:DestinationTextOffset> (974, -2)</a:DestinationTextOffset>
<a:Rect>((-6637,-4350), (7988,1950))</a:Rect>
<a:ListOfPoints>((-6637,1950), (7988,-4350))</a:ListOfPoints>
<a:ArrowStyle>8</a:ArrowStyle>
<a:ShadowColor>13158600</a:ShadowColor>
<a:FontList>DISPNAME 0O Arial,8,N

AssociationSymbol contains collections <c:SourceSymbol> and <c:DestinationSymbol>. In
both collections, symbols are referred to but not defined: this is because ClassSymbol does not
belong to the SourceSymbol or DestinationSymbol collections.

<c:SourceSymbol>
<o0:ClassSymbol Ref="o6"/>
</c:SourceSymbol>
<c:DestinationSymbol>
<o:ClassSymbol Ref="o7"/>
</c:DestinationSymbol>

The association symbols collection is followed by the<c:Symbols> collection. This collection
contains the definition of both class symbols.

<o:ClassSymbol Id="o6">
<a:CreationDate>1012204025</a:CreationDate>
<a:ModificationDate>1012204025</a:ModificationDate>
<a:Rect>((-18621,6601), (-11229,12675))</a:Rect>
<a:FillColor>16777215</a:FillColor>
<a:ShadowColor>12632256</a:ShadowColor>
<a:FontList>ClassStereotype 0 Arial,8,N

Collection <c:Classes> follows collection <c:Symbols>. In this collection, both classes are
defined with their collections of attributes.

<o:Class Id="o0l0">
<a:0bjectID>10929C96-8204-4CEE-911#-E6F7190D823C</a:0bjectID>
<a:Name>Order</a:Name>
<a:Code>Order</a:Code>
<a:CreationDate>1012204026</a:CreationDate>
<a:Creator>arthur</a:Creator>
<a:ModificationDate>1012204064</a:ModificationDate>
<a:Modifier>arthur</a:Modifier>

352

PowerDesigner

CHAPTER 8: The PowerDesigner Public Metamodel

<c:Attributes>
<o:Attribute Id="o0l4">

Attribute is a terminal object: there is not further ramification required to define this object.

Each collection belonging to an analyzed object is expanded, and analyzed and the same
occurs for collections within collections.

Once all objects and collections are browsed, the following markups appear:

</o:RootObject>
</Model>

Customizing and Extending PowerDesigner 353

CHAPTER 8: The PowerDesigner Public Metamodel

354 PowerDesigner

Index

Index

%-(X,y)% subtraction operator 252
! power evaluation operator 252

1= not equal to operator 252

? existence operator 252
.foreach_item

ActiveDiagram global property 312, 320
%ActiveModel% global variable 251
ActiveModel global property 312, 313
ActiveSelection global collection 312
ActiveWorkspace global property 312, 322

example 27 ActiveX
Zorme P add-in 334
See extension files :Dn?t(i:;;g;n;gg 334
operators 213
E]]coe\ditional block 250 IsCommandSupported 334
method 334

* dereferencing operator 252
%*(x,y)% multiplication operator 252
%I(x,y)% division operator 252

ProvideMenultems 334
Uninitialize 334

I macro 267 Add _144
\\ escape sequence 256 add-ins 305
e satione ActiveX 334
\n escape sequence 256 ’
\t nce 256 launching 338
escape sequence e

%&(X,y)% logical bitfield and operator 252
&& logical AND operator 252

%% escape sequence 256

+ visibility operator 252

%-+(x,y)% addition operator 252

< less than operator 252

<= less than or equal to operator 252

= assignment operator 252

== equal to operator 252

> greater than operator 252

Add() method 314

AddCollIndex 160

AddColnChck 152
AddColnCheck 152

adding items in resource files 6
AdditionalDataTypes 110
AddJoin 185
AddMetaExtension() method 329
AddObjects() method 321

>= greater than or equal to operator 252 ﬁgggggrtse%)g ðod 324

|| logical OR operator 252 AddTableCheck 148
ADTComment 174

A AfterCreate 144, 189

AfterDatabaseGenerate event handler 75, 133

Af tti ti lign left) 248
ormatting option (align left) AfterDatabaseReverseEngineer event handler 75,

.abort_command macro 265

abstract classes 344 AfterD 1;”24
abstract data type attributes erorop
AllowedADT 176 AfterModify 144
.AKCOLN PDM macro 235
abstract data types AKLC o
ADTComment 174 eyComment

All Attributes and Collections tab 300
All Classes tab 299

All Report Titles tab 297

ALLCOL PDM macro 236

AllowedADT 174
EnableAdtOnColn 174
EnableAdtOnDomn 174

Install 174
PDM variables 224 2::0Wi|dA||D; 1C48|, 117:;:,1 176
Remove 174 owNullableColn

Customizing and Extending PowerDesigner 355

Index

AltEnableAddColnChk 152
Alter 144
AlterDBIgnored 144
AlterFooter 138
AlterHeader 138
AlterStatementList 144
AlterTableFooter 148
AlterTableHeader 148
ASE

PDM variables 227
associations 344
AttachLinkObject() method 320
AttachObject() method 320
attribute icon sets 46
attribute value icons 46
attributes 344

creating from a property sheet 15
Attributes collection 330
auto-attach 14
autofixes 74

B

BasicDataTypes 110
BeforeCreate 144
BeforeCreateDatabase 172
BeforeDatabaseGenerate event handler 75, 133
BeforeDatabaseReverseEngineer event handler 75,
133
BeforeDrop 144
BeforeModify 144
BeginTransaction() global function 312
Bind 152, 173, 187, 188
BinDefault 173
.block macro 265
BlockComment 135
BlockTerminator 135
.bool macro 266
booleans
.bool macro 266
testing in GTL 266
.break macro 266

C

calculated collections 50
CancelTransaction() global function 312
CanLinkKind event handler 75
cases

changing in GTL 277

.lowercase macro 277
.uppercase macro 277
CaseSensitivityUsingQuote 136
.change_dir macro 266
CharFunc 140
CheckNull 152
CheckOnCommit 166
CheckOut() method 325
Choreography category
process language 109
class attributes 344
classes 344
Clear() method 314
.CLIENTEXPRESSION macro 242
CloseDatabase 172
Cluster 160
code property
.convert_code macro 267
converting in GTL 267
.collection macro 278
collections
accessing first item 247
Add() method 314
calculated collections 50
Clear() method 314
.collection macro 278
Count keyword 247
Count property 314
counting members 247
CreateNew() method 314, 318
CreateNewAt() method 314
extended collections 48
extended compositions 48
First keyword 247
.foreach_item macro 247, 271
GetCalculatedCollection() method 329
GetCollectionByStereotype() method 329
GetExtendedCollection() method 329
Insert() method 314
IsEmpty keyword 247
Item property 314
iterating over in GTL 271
Kind property 314
MetaCollection property 314
modifying by script 314
Move() method 314
Outer scope 255
Parent scope 255
Remove() method 314

356

PowerDesigner

Index

returning by GTL 278 ConceptualDataTypes 110
scope 255 concrete classes 344
Source property 314 conditional blocks 250
testing for members 247 .block macro 265
ColnDefaultName 177 in GTL 265
ColnRuleName 177 conditional processing
ColumnComment 152 GTL 275
columns .if macro 275
AddColnChck 152 connecting to databases by script 326, 328
AddColnCheck 152 ConnectToDatabase() method 328
AltEnableAddColnChk 152 Consolidate() method 325
Bind 152 ConsolidateNew() method 325
CheckNull 152 Constants category
ColumnComment 152 object language 110
ConstName 152 ConstName 148, 152, 163, 164, 166
DefineColnCheck 152 constraints
DropColnChck 152 PDM variables 217
DropColnComp 152 conversion tables 1
EnableBindRule 152 .convert_code macro 267
EnableComputedColn 152 .convert_name macro 267
EnableDefault 152 ConvertFunc 140
Enableldentity 152 copying resource files 7
EnableNotNullWithDflt 152 Count keyword 247
MaxConstLen 152 Count property 314
ModifyColnComp 152 Create 144
ModifyColnDflt 152 .create_path macro 266
ModifyColnNull 152 CreateBeforeKey 160
ModifyColumn 152 CreateBody 189
null values 159 CreateDefault 173
NullRequired 152, 159 CreateFunc 180
PDM variables 217 CreateModel() global function 312
Permission 152 CreateModel() method 313
Rename 152 CreateNew() method 314, 318
SqlChckQuery 152 CreateNewAt() method 314
SqlPermQuery 152 CreateObject() method 318
SqlStatistics 152 CreateReport() method 325
Unbind 152 CreateSelection() method 321
variables 235 CreateShortcut() method 323
commands creating data sources by script 324
creating custom commands 338, 339 creating mappings by script 324
.comment macro 267 creating metaclasses from stereotypes 39
comments creating resource files 7
11267 criteria 40
.comment 267 csv (conversion tables) 1
in GTL 267 %CurrentDate% global variable 251
Commit 140 %CurrentUser% global variable 251
comparing resource file 7 custom checks 71
Complement language generation 14, 89 autofixes 74
composite physical options 209 example 21, 73, 74

Customizing and Extending PowerDesigner 357

Index

script 73
custom commands

adding to menus 338, 339
custom properties

See extended attributes
custom symbols 70

example 19
CustomFunc 180
CustomProc 180

D

D formatting option (interface values) 248

DashStyle property 320

data sources
AddSource() method 324
creating by script 324

Data Type category (DBMS) 197

data types 45, 112, 197

database package templates 120

database security
PDM variables 230

database synchronization
PDM variables 227

databases
AfterCreate 122
BeforeCreate 122
BeforeCreateDatabase 172
CloseDatabase 172
connecting by script 326, 328
ConnectToDatabase() method 328
database package templates 120
EnableManyDatabases 172
estimating size 202, 205
EX keyword 128
GenerateDatabase() method 326
GenerateTestData() method 326
generating by script 326
generating test data by script 326
generation 120-122, 125, 133, 200
GetPackageOptions() method 326, 328
live connection 125
ModifyDatabase() method 326
object generation order 142
OpenDatabase 172
PDM variables 234
physical options 129, 207
procedure templates 120
reverse engineering 120, 124, 125, 128, 129,

131-133

reverse-engineering by script 328
ReverseDatabase() method 328
ReversedQueries 128
ReversedStatements 124
scripts 121, 124
trigger template items 120
trigger templates 120
See also DBMS definition files
DataHandling category
process language 109
DataTypes category
XML language 112
date formats 137
DateFormat 136
DateFunc 140
dates
%CurrentDate% global variable 251
DateTimeFormat 136
DB package cursors 190
DB package exceptions 190
DB package pragmas 190
DB package types 190
DB package variables 190
DB packages
AfterCreate 189
CreateBody 189
PDM variables 228
DBMS definition files 1, 119
[1 operators 213
abstract data type attributes 176
abstract data types 174, 224
AfterCreate 122
ASE 227
BeforeCreate 122
columns 152, 159, 217
constraints 217
Data Type category 197
database package templates 120
database security 230
database synchronization 227
databases 172, 234
date formats 137
DB package cursors 190
DB package exceptions 190
DB package pragmas 190
DB package types 190
DB package variables 190
DB packages 189, 228
DBMS triggers 184

358

PowerDesigner

defaults 193, 231
dimensions 196, 232
domains 173, 217
EnableOption 142
estimating database size 202, 205
EX keyword 128

extended attributes 200, 207
extended objects 197, 233
extensions 207, 210

File category 138

Format category 136, 137
forms 210

General category 134
generation 120-122, 125, 133, 200
GenerationOrder 142
GetEstimatedSize 202, 205
groups 187

index columns 220

indexes 160, 220
introduction 119

join indexes 185, 227

keys 163, 164, 219
Keywords category 140

live database connection 125
live database generation 206
MaxConstLen 142

Objects category 142, 144, 148, 152, 159, 160,
163, 164, 166, 169, 171-174, 176,

177, 180, 181, 184-197
ODBC category 206
parameters 191
PDM macros 212, 235-243

PDM variables 212, 213, 215-217, 219, 220,
222-224, 2217, 228, 230-234

permissions 192
physical options 129, 207, 209, 210

Physical Options (Common) tab 207

Physical Options tab 207
primary keys 163
privileges 191

procedure templates 120
procedures 180, 222, 234
Profile category 200
properties 119

qualifiers 185

reference columns 220
references 166, 220
result columns 195

Index

reverse engineering 120, 124, 125, 128, 129,

131-133, 234
ReversedQueries 128
ReversedStatements 124
roles 188
rules 177, 223
scripts 121, 124
sequences 186, 224
SQL category 135
SQL Server 227
storages 171, 224
synonyms 187, 224
Syntax category 135
tables 144, 148, 216
tablespaces 171, 224
testing values 213
time formats 137
trigger template items 120
trigger templates 120
triggers 181, 222, 234
users 177
views 169, 216
Web operations 194
Web parameters 195
Web services 194, 231

DBMS triggers 184
DclDellntegrity 166
DclUpdIntegrity 166
Default association container 117
default variable 144
DefaultDataType 110
defaults 193
PDM variables 231
DefaultTriggerName 181
DeflndexColumn 160
DeflndexType 160
.DEFINE PDM macro 236
DefineColnCheck 152
.DEFINEIF PDM macro 237
DefineJoin 166
DefineTableCheck 148
DefOptions 144
.delete macro 268
Delete() method 321
deleting items in resource files 6
Delimiter 135
dependencies 344
dependency matrices 52
dependency paths 54

Customizing and Extending PowerDesigner

359

Index

dependency paths 54
diagrams
ActiveDiagram global property 312, 320
AttachLinkObject() method 320
AttachObject() method 320
displaying symbols by script 320
dialog boxes
creating from forms 55
example 67
dimensions 196
PDM variables 232
directories
.change_dir 266
changing in GTL 266
domains
Bind 173
BinDefault 173
CreateDefault 173
EnableBindRule 173
EnableCheck 173
EnableDefault 173
EnableOwner 173
PDM variables 217
SqlListDefaultQuery 173
UddtComment 173
Unbind 173
UserTypeName 173
Drop 144
DropColnChck 152
DropColnComp 152
DropFunc 180
DropTableCheck 148

E

Edit/Run Script editor 307
editing resource files 6
embedding resource files 6
Enable 144
EnableAdtOnColn 174
EnableAdtOnDomn 174
EnableAlias 187
EnableAscDesc 160
EnableBindRule 152, 173
EnableChangeJoinOrder 166
EnableCheck 134, 173
EnableCluster 160, 163, 164, 166
EnableComputedColn 152
EnableConstName 134
EnableDefault 152, 173

EnableDtbsPrefix 136
EnablefKeyName 166
EnableFunc 180
EnableFunction 160
Enableldentity 152
Enablelntegrity 134
EnableJidxColn 185
EnableManyDatabases 172
EnableMultiCheck 134
EnableMultiFile 138
EnableMultiTrigger 181
EnableNotNullWithDflt 152
EnableOption 142
EnableOwner 160, 173, 180, 181, 186
EnableOwnerPrefix 136
EndTransaction() global function 312
.error macro 269
.ERROR PDM macro 237
error messages 237
errors
.error macro 269
in GTL 269
escape sequences
\\ backslash 256
\n new line 256
\t tab 256
%% percent sign 256
EvaluateNamedPath() global function 312
Event 181
event handlers
AfterDatabaseGenerate 75, 133
AfterDatabaseReverseEngineer 75, 133
BeforeDatabaseGenerate 75, 133
BeforeDatabaseReverseEngineer 75, 133
CanCreate 75
CanLinkKind 75
GetEstimatedSize 75, 202, 205
Initialize 75
OnlLanguageChanged 75
OnlLanguageChangeRequest 75
OnlLanguageChanging 75
OnModelClose 75
OnModelOpen 75
OnModelSave 75
OnNewFromTemplate 75
Validate 75
EventDelimiter 181
Events category
object language 110

360

PowerDesigner

EX keyword 128
examples
.foreach_item 27
creating a property sheet tab 61
creating custom check autofix 74
creating custom check script 73
creating custom checks 21
creating custom symbols 19
creating generated files 29
creating stereotypes 18
creating templates 27
extended attribute 15
extension files 15
extensions 15, 16, 18, 19, 21, 27, 29, 30
generated files 87
generation commands 114
generation options 113
generation tasks 114
including a form in a form 64
opening a dialog box from a form 67
opening a dialog from a menu 82
templates 87
XML model file format 351
excluding metaclasses from models 33
executables
.execute_command macro 269
launching with GTL 269
.execute_command macro 269
.execute_vbscript macro 270
ExecuteCommand() global function 312
exporting
extension files 14
extensions 14
extended attribute types
type 45
extended attributes 41, 207
accessing in other extension files 246
adding to forms 41
attribute value icons 46
creating from a property sheet 15
creating types for 45
data types 45
displaying in forms 57
example 15
generation 200
specifying objects as data types 48
extended collections 48
displaying in forms 57
extended compositions 48

Index

extended generation 89
extended links 36
extended model definitions
See extension files
extended objects 36, 197
generation 133
PDM variables 233
reverse engineering 133
extended sub-objects 36
ExtendedLink metaclass 36
ExtendedModelDefinitions collection 329
ExtendedObject metaclass 36
ExtendedSubObject metaclass 36, 48
extension category 14
extension files 1, 11
attaching to a model 12
auto-attach 14
category 14
Complement language generation 14
conflict resolution 11
creating 12, 16
embedded 12
example 15
exporting from a model 14
Generation category 14
properties 14
shared 12
trace mode 14
Transformation Profile category 14
See also extensions
extensions 11, 207, 210
accessing by script 329
AddMetaExtension() method 329
attaching to a model 12
calculated collections 50
collections 329
criteria 40
custom checks 21, 71
custom symbols 19, 70
dependency matrices 52, 54
event handlers 75, 133, 202, 205
example 15, 16, 18, 19, 21, 27, 29, 30, 82
exporting from a model 14
extended attribute types 45
extended attributes 15, 41, 46, 48, 57, 200
extended collections 48, 57
extended compositions 48
extended links 36
extended objects 36

Customizing and Extending PowerDesigner

361

Index

extended sub-objects 36

ExtendedModelDefinitions collection 329

forms 55, 57, 61, 64, 67

generated files 29, 85, 87, 89, 245

Generation category 11

GetCalculatedCollection() method 329

GetCollectionByStereotype() method 329

GetExtendedAttribute() method 329

GetExtendedAttribute Text() method 329

GetExtendedCollection() method 329

global script 105

in DBMS definition files 200

menus 81, 338

metaclasses 33

methods 57, 79, 81, 338

object generations 100, 102, 103

object language definition files 117

process language definition files 117

Profile category 11

SetExtendedAttribute() method 329

SetExtendedAttributeText() method 329

stereotypes 18, 37, 39, 329

templates 27, 84, 87, 245

transformation profiles 94

transformations 92, 95

UseAsMetaclass property 329

XML imports 96, 97, 100

XML language definition files 117
external applications

ExecuteCommand() global function 312

F

File category (DBMS)
AlterFooter 138
AlterHeader 138
EnableMultiFile 138
Footer 138
Header 138
ScriptExt 138
StartCommand 138
TableExt 138
TrgFooter 138
TrgHeader 138
TrgUsagel 138
TrgUsage2 138
TriggerExt 138
Usagel 138
Usage2 138

FindChildByCode() method 316

FindChildByName() method 316
FindChildByPath() method 316
First keyword 247
FKAutolndex 166
.FKCOLN PDM macro 235
FKeyComment 166
folders
creating by script 322
Footer 138, 160
.FOREACH_CHILD PDM macro 238
.FOREACH_COLUMN PDM macro 239
.foreach_item macro 271
.foreach_line macro 273
.FOREACH_PARENT PDM macro 240
.foreach_part macro 274
foreign key
variable 241
Format category (DBMS)
AddQuote 136
CaseSensitivityUsingQuote 136
date formats 137
DateFormat 136, 137
DateTimeFormat 136, 137
EnableDtbsPrefix 136
EnableOwnerPrefix 136
IllegalChar 136
LowerCaseOnly 136
MaxScriptLen 136
time formats 137
TimeFormat 136, 137
UpperCaseOnly 136
formatting options
A (align left) 248
D (interface values) 248
H (hexadecimal) 215, 248
L (lowercase) 215, 248
LF (first character lowercase) 215, 248
M (delete substring) 215, 248
Q (double quotes) 215, 248
g (single quotes) 215, 248
T (trim whitespace) 215, 248
U (uppercase) 215, 248
UF (first character uppercase) 215, 248
X (escape XML characters) 248
forms 210
adding buttons 57
adding controls 57
creating dialog boxes 55
creating property tabs 55

362

PowerDesigner

dialog box example 67

displaying extended attributes 57

displaying extended collections 57

form-in-form example 64

property sheet example 61

replacing property tabs 55
function based indexes 131
FunctionComment 180

G

General category (DBMS)
EnableCheck 134
EnableConstName 134
Enablelntegrity 134
EnableMultiCheck 134
SqlSupport 134
UnigConstName 134

generalizations 344

generated files 85, 87, 89, 245
example 29

GenerateDatabase() method 326

GenerateHTML() method 325

GenerateRTF() method 325

GenerateTestData() method 326

generating database objects 142

generating databases by script 326

generating models 102

generating test data by script 326

generation 120
extended generation 89
%GenOptions% global variable 251
live connection 125
PDM extended objects 133
script after 133
script before 133
scripts 121, 122

generation category 112

Generation category 11, 14

generation commands 112, 114
.abort_command macro 265
aborting 265
GTL 265

generation options 112, 113

generation tasks 112, 114

Generation Template Language
See GTL

GenerationOrder 142

%GenOptions% global variable 251

GetAttribute() method 316

Index

GetAttributeText() method 316
GetCalculatedCollection() method 329
GetCollectionByStereotype() method 329
GetEstimatedSize 202, 205
GetEstimatedSize event handler 75
GetExtendedAttribute() method 329
GetExtendedAttribute Text() method 329
GetExtendedCollection() method 329
GetMapping() method 324
GetMetaClassByPublicName() method 330
GetMetaMemberByPublicName() method 330
GetPackageOptions() method 326, 328
global script 71, 75, 79, 105
global variables 105
%ActiveModel% 251
%CurrentDate% 251
%CurrentUser% 251
%GenOptions% 251
%NewUUID% 251
%PreviewMode% 251
go to super-definition 5
GrantOption 191, 192
GroupFunc 140
groups
Bind 187
SqlListChildrenQuery 187
SqlPermQuery 187
Unbind 187
GTL 84, 85, 245
aborting generation commands 265
accessing extended attributes in other
extension files 246
breaking loops 266
calling templates 257
changing directory 266
changing text case 277
collections 247
comments 267
conditional blocks 250, 265
conditional generation 275
controlling user interaction 278
converting names and codes 267
creating generated files 245
creating paths 266
creating templates 245
defining local variable and value types 279
deleting substrings 268
embedding VBScript 281
errors 283

Customizing and Extending PowerDesigner

363

Index

escape sequences 256
executing VBScript 270
extended attributes 246
formatting text 248

generated files 245

global variables 251

GTL operators 252

head string 250

inheritance 257

introduction 245
%IlsShortcut% 256

iterating over a collection 271
iterating over lines in a text block 273
iterating over parts of a string 274
launching executables 269
line breaks 250

macros 264

metamodel extensions 262
new line 250

object properties 246

Outer scope 255

outputting unique lines 281
overloading templates 257
overriding templates 257
parameters 260

Parent scope 255
polymorphism 257

printing error messages 269
printing warning messages 269
properties 246

recursive templates 262
replacing substrings 268
returning collections by OID 278
returning objects by OID 278
scope 255

%Shortcut% 256

shortcuts 256

syntax errors 283

tail string 250

templates 245

testing boolean conditions 266
text blocks 250

translation errors 283

writing log messages 277

.break 266

.change_dir 266
.collection 278
.comment 267
.convert_code 267
.convert_name 267
.create_path 266
.delete 268

.error 269
.execute_command 269
.execute_vbscript 270
.foreach_item 247, 271
.foreach_line 273
.foreach_part 274

if 275

Jlog 277

lowercase 277

.object 278

.replace 268
.set_interactive_mode 278
.set_object 279
.set_value 279

.unique 281

.unset 279

.uppercase 277
.vbscript 281

.warning 269

GTL operators

! power evaluation 252

1= not equal to 252

? existence 252

%-(X,y)% subtraction 252

* dereferencing 252
%*(X,y)% multiplication 252
%I(x,y)% division 252
%&(X,y)% logical bitfield and 252
&& logical AND 252

+ visibility 252

%-+(x,y)% addition 252

< less than 252

<= less than or equal to 252
= assignment 252

== equal to 252

> greater than 252

GTL macros >= greater than or equal to 252
. 11267 || logical OR 252
.abort_command 265
.block 265 H
-bool 266 H formatting option (hexadecimal) 215, 248
364 PowerDesigner

head string 250
Header 138, 160
HomeDirectory global constant 312

IdentifierDelimiter 135

.if macro 275

IllegalChar 136

impact and analysis rule sets 1

Implementation category
process language 109

.INCOLN PDM macro 240

index columns
PDM variables 220

IndexComment 160

indexes
AddColindex 160
Cluster 160
CreateBeforeKey 160
DeflndexColumn 160
DeflndexType 160
EnableAscDesc 160
EnableCluster 160
EnableFunction 160
EnableOwner 160
Footer 160
Header 160
IndexComment 160
IndexType 160
MandIndexType 160
MaxCollndex 160
PDM variables 220
SqlSysindexQuery 160
UnigName 160

IndexType 160

inheritance 257

Insert() method 314

Install 174

instantiable classes 344

InteractiveMode global property 312

inverse collections 48

ISEmpty keyword 247

I1sKindOf() global function 312

%IsShortcut% 256

Item property 314

J
.JOIN PDM macro 241

Index

join indexes
AddJoin 185
EnableJidxColn 185
JoinindexComment 185
PDM variables 227
JoinindexComment 185

K

keys
AKeyComment 164
AllowNullableColn 164
ConstName 164
EnableCluster 164
MaxConstLen 164
PDM variables 219
primary keys 163
SqlAkeyindex 164
UnigConstAutolndex 164
UniginTable 164

Keywords category (DBMS)
CharFunc 140
Commit 140
ConvertFunc 140
DateFunc 140
GroupFunc 140
ListOperators 140
NumberFunc 140
OtherFunc 140
ReservedDefault 140
ReservedWord 140

Kind property 314

L

L formatting option (lowercase) 215, 248
LF formatting option (first character lowercase)
215, 248
Libraries collection 330
Library property 330
line breaks
controlling in GTL 250
LineComment 135
LineWidth property 320
Linguistic Variables category 300
link objects
creating by script 318
link symbols
setting extremities by script 320

Customizing and Extending PowerDesigner

365

Index

ListOperators 140 metaclass 33
live database generation 206 Metaclass property 330
local variables metaclasses 33

defining in GTL 279
.set_object 279
.set_value 279
.unset 279
Locked global property 312
.log macro 277
logs
.log macro 277
writing to in GTL 277
loops
.break macro 266
breaking in GTL 266
.lowercase macro 277
lowercase 277
LowerCaseOnly 136

M

M formatting option (delete substring) 215, 248

MandIndexType 160
Mapping Editor 100, 103
XML imports 97
mappings
creating by script 324
GetMapping() method 324
metamodel 97, 103
metamodel objects 101
properties 100
retrieving by script 324
SourceClassifiers collection 324
MapToNamedPath() global function 312
MaxColindex 160
MaxConstLen 142, 148, 152, 164, 166
MaxDefaultLen 177
MaxFuncLen 180
Maxlen 144
MaxScriptLen 136
mcc (model category sets) 1
MDA 92
menus
creating custom commands in 338, 339
customizing via extensions 81, 338
customizing via XML add-ins 338
example 82
launching add-ins from 338
launching scripts from 338
merging resource files 8

adding to extension file 33
creating from stereotypes 39
creating new 36

excluding from model 33
ExtendedLink 36

ExtendedObject 36
ExtendedSubObject 36, 48
extending 33

subclassifying with criteria 40
subclassifying with stereotypes 37

MetaCollection property 314
metamodel

abstract classes 344

associations 344

attributes 344

Attributes collection 330

calculated attributes 262

calculated collections 262

class attributes 344

classes 344

concrete classes 344

dependencies 344

extending by script 329

generalizations 344

GetMetaClassByPublicName() method 330

GetMetaMemberByPublicName() method
330

GTL-specific extensions 262

instantiable classes 344

Libraries collection 330

Library property 330

Metaclass property 330

MetaModel global property 330

Metamodel Objects Help 343, 347

metamodel.oom 343

navigating 344

notScriptable stereotype 344

operations 344

Parent property 330

PdBPM 344

PdCDM 344

PdCommon 344

PdEAM 344

PdFRM 344

PdGLM 344

PdILM 344

366

PowerDesigner

PdLDM 344

PdMTM 344

PdOOM 344

PdPDM 344

PdPRJ 344

PdRMG 344

PARQM 344

PdWSP 344

PdXSM 344

PowerDesigner 343

public names 344

PublicName property 330

shortcuts 344

specializations 344

XML model file format 348, 351
MetaModel global property 330
metamodel objects

properties 101
Metamodel Objects Help 343, 347
metamodel.oom 343
methods 79

adding to menus 81, 338

attaching to form buttons 57
model category sets 1
model checks

creating custom checks 71
model file format

bin 348

DTD 348

XML 348, 351
model generation 102
models

%ActiveModel% global variable 251

ActiveModel global property 312

CreateModel() global function 312

CreateObject() method 318

creating by script 313

Models global collection 312

opening by script 313

OpenModel() global function 312
Models global collection 312, 313
ModifiableAttributes 144
ModifyColnComp 152
ModifyColnDflt 152
ModifyColnNull 152
ModifyColumn 152
ModifyDatabase() method 326
Move() method 314
MoveToPackage() method 321

Index

N

name property
.convert_name macro 267
converting in GTL 267
named paths
EvaluateNamedPath() global function 312
MapToNamedPath() global function 312
Namings category
object language 110
navigating in resource files 5
new line 250
NewPoint() global function 320
%NewUUID% global variable 251
.NMFCOL PDM macro 242
not certified resource files 3
notScriptable stereotype 344
NullRequired 152, 159
NumberFunc 140

@)

.object macro 278

Object Attributes category 298

Object container 117

object generations 102
initialization scripts 100
mapping properties 100
mappings 103
post-processing scripts 100

object language definition files 1
AdditionalDataTypes 110
BasicDataTypes 110
ConceptualDataTypes 110
Constants category 110
data types 110
Default association container 117
DefaultDataType 110
Events category 110
extensions 117
generation category 112
generation commands 112, 114
generation options 112, 113
generation tasks 112, 114
Namings category 110
Object container 117
profile category 117
properties 107
Settings category 110

object permission profiles 1

Customizing and Extending PowerDesigner

367

Index

object properties 246
accessing by script 316
modifying by script 316

object selections

ActiveSelection global collection 312

AddObijects() method 321
CreateSelection() method 321
creating by script 321
MoveToPackage() method 321
Remove() method 321

objects
accessing by script 316
creating by script 318
creating shortcuts by scripts 323
Delete() method 321
deleting by script 321

displaying in diagrams by script 320

FindChildByCode() method 316

FindChildByName() method 316

FindChildByPath() method 316

GetAttribute() method 316

GetAttributeText() method 316

IsKindOf() global function 312

.object macro 278

Outer scope 255

Parent scope 255

returning by GTL 278

scope 255

SetAttribute() method 316

SetAttributeText() method 316

Symbols collection 320
Objects category (DBMS)

abstract data type attributes 176

abstract data types 174

Add 144

AfterCreate 144

AfterDrop 144

AfterModify 144

Alter 144

AlterDBIgnored 144

AlterStatementList 144

BeforeCreate 144

BeforeDrop 144

BeforeModify 144

columns 152, 159

Create 144

databases 172

DB package cursors 190

DB package exceptions 190

DB package pragmas 190

DB package types 190

DB package variables 190

DB packages 189
DBMS triggers 184
default variable 144
defaults 193
DefOptions 144
dimensions 196
domains 173

Drop 144

Enable 144
EnableOption 142
extended objects 197
GenerationOrder 142
groups 187

indexes 160

join indexes 185
keys 163, 164
MaxConstLen 142
Maxlen 144

ModifiableAttributes 144

Options 144
parameters 191
permissions 192
primary keys 163
privileges 191
procedures 180
qualifiers 185
references 166
result columns 195

ReversedStatements 144

roles 188

rules 177
sequences 186
SqlAttrQuery 144
SqlListQuery 144
SqlOptsQuery 144
storages 171
synonyms 187
tables 144, 148
tablespaces 171
triggers 181

users 177

views 169

Web operations 194
Web parameters 195
Web services 194

ODBC category 206

368

PowerDesigner

OLE

Locked global property 312

ShowMode global property 312
OLE Automation 305, 332
OnlLanguageChanged event handler 75
OnlLanguageChangeRequest event handler 75
OnlLanguageChanging event handler 75
OnModelClose event handler 75
OnModelOpen event handler 75
OnModelSave event handler 75
OnNewFromTemplate event handler 75
OpenDatabase 172
opening resource files 3
OpenModel() global function 312
OpenModel() method 313
operations 344
Options 144
OtherFunc 140
Outer 255
Output window

Output() global function 312
Output() global function 312
overloading

templates 257
overriding

templates 257

P

parameters 191, 260

Parent 255

Parent property 330

paths
.create_path 266
creating in GTL 266
specifying for resource files 1

PdBPM 344

PJdCDM 344

PdCommon 344

PJEAM 344

PdFRM 344

PAdGLM 344

PdILM 344

PdLDM 344

PDM macros 212
.AKCOLN 235
ALLCOL 236
.CLIENTEXPRESSION 242
.DEFINE 236
.DEFINEIF 237

Index

.ERROR 237
.FKCOLN 235
.FOREACH_CHILD 238
.FOREACH_COLUMN 239
.FOREACH_PARENT 240
.INCOLN 240
JOIN 241
.NMFCOL 242
.PKCOLN 235
.SERVEREXPRESSION 242
SQLXML 243
PDM variables 212
[1 operators 213
abstract data types 224
ASE 227
columns 217
constraints 217
database security 230
database synchronization 227
databases 234
DB packages 228
defaults 231
dimensions 232
domains 217
extended objects 233
formatting 215
index columns 220
indexes 220
join indexes 227
keys 219
procedures 222, 234
reference columns 220
references 220
reverse engineering 234
rules 223
sequences 224
SQL Server 227
storages 224
synonyms 224
tables 216
tablespaces 224
testing values 213
triggers 222, 234
views 216
Web services 231
PAMTM 344
PdOOM 344
PdPDM 344
PdPRJ 344

Customizing and Extending PowerDesigner

369

Index

PdRMG 344
PARQM 344
PdWSP 344
PdXSM 344
Permission 148, 152, 180
permissions
GrantOption 192
RevokeOption 192
physical options 210
composite options 209
default value 207
defining defaults in a DBMS file 144
defining in a DBMS file 144, 207
DefOptions DBMS item 144
extended attributes 207
list of values 207
Options DBMS item 144
Physical Options (Common) tab 207
Physical Options tab 207
reverse engineering 129
simple options 207
Physical Options (Common) tab 207
Physical Options tab 207
PkAutolndex 163
.PKCOLN PDM macro 235
PKeyComment 163
platform-independent models 92
platform-specific models 92
polymorphism 257
Position property 320
PowerDesigner
metamodel 343
XML model file format 351
ppf (object permission profiles) 1
Preview tab
%PreviewMode% global variable 251
%PreviewMode% global variable 251
primary key
variable 241
primary keys
ConstName 163
EnableCluster 163
PkAutolndex 163
PKeyComment 163
UseSpPrimKey 163
privileges
GrantOption 191
RevokeOption 191
System 191

procedure templates 120
ProcedureComment 180
procedures
CreateFunc 180
CustomFunc 180
CustomProc 180
DropFunc 180
EnableFunc 180
EnableOwner 180
FunctionComment 180
MaxFuncLen 180
PDM variables 222, 234
Permission 180
ProcedureComment 180
SqlPermQuery 180
process language definition files 1
Choreography category 109
DataHandling category 109
extensions 117
generation category 112
generation commands 112, 114
generation options 112, 113
generation tasks 112, 114
Implementation category 109
profile category 117
properties 107
Settings category 109
profile
See extension files
profile category
object language definition files 117
process language definition files 117
XML language definition files 117
Profile category 11
DBMS definition files 200
promoting a stereotype to metaclass 37
promoting a sterotype to metaclass 39
properties 246
property sheets
example 61
form-in-form example 64
property tabs
creating from forms 55
replacing by forms 55
public names 344
PublicName property 330

Q

Q formatting option (double quotes) 215, 248

370

PowerDesigner

g formatting option (single quotes) 215, 248
qualifiers 185
Quote 135

R

recursive templates 262

reference columns
PDM variables 220

references
CheckOnCommit 166
ConstName 166
DclDellntegrity 166
DclUpdIntegrity 166
DefineJoin 166
EnableChangeJoinOrder 166
EnableCluster 166
EnablefKeyName 166
FKAutolndex 166
FKeyComment 166
MaxConstLen 166
PDM variables 220
SqlListChildrenQuery 166
UseSpFornKey 166

RegistryHome global constant 312

Remove 174

Remove() method 314, 321

Rename 148, 152

.replace macro 268

Report Item Templates category 303

report language files 1, 287
All Attributes and Collections tab 300
All Classes tab 299
All Report Titles tab 297
creating 289
Linguistic Variables category 300
Object Attributes category 298
opening 288
properties 290
Report Item Templates category 303
Report Titles category 294
translation example 295
Values Mapping category 291

report templates 1

Report Titles category 294

reports
CreateReport() method 325
creating by script 325
GenerateHTML() method 325
GenerateRTF() method 325

Index

generating by script 325
Reports collection 325
translating 287
Reports collection 325
repository
checking documents in by script 325
checking documents out by script 325
checking resource files into 1
CheckOut() method 325
comparing resource files 1
connecting by script 325
Consolidate() method 325
ConsolidateNew() method 325
RepositoryConnection global property 312
updating resource files from 1
RepositoryConnection global property 312
ReservedDefault 140
ReservedWord 140
resource editor
See also resource files
resource files
adding items 6
checking into the repository 1
comparing 7
comparing with the repository 1
conversion tables 1
copying 7
creating 7
csv (conversion tables) 1
DBMS definition files 1
deleting items 6
editing 6
embedding 6
extension files 1
impact and analysis rule sets 1
mcc (model category sets) 1
merging 8
model category sets 1
navigating in 5
not certified 3
object language definition files 1
object permission profiles 1
opening 3
paths 1
ppf (object permission profiles) 1
process language definition files 1
report language files 1
report templates 1
repository 1

Customizing and Extending PowerDesigner

371

Index

restoring defaults 6

rtp (report templates) 1

rul (impact and analysis rule sets) 1

saving 6

searching 5

sharing 6

updating from the repository 1

upf (user profiles) 1

user profiles 1

xdb (DBMS definition files) 1

xem (extension files) 1

XML language definition files 1

xol (object language definition files) 1

xpl (process language definition files) 1

xrl (report language files) 1

xsl (XML language definition files) 1
restoring defaults in resource files 6
result columns 195
retrieving mappings by script 324
reverse engineering 120

attributes 128

EX keyword 128

extending 128

function based indexes 131

live connection 125

live databases 129, 131, 132

PDM extended objects 133

PDM variables 234

physical options 129

qualifiers 132

ReversedQueries 128

ReversedStatements 124

script after 133

script before 133

scripts 124
reverse-engineering databases by script 328
ReverseDatabase() method 328
ReversedQueries 128
ReversedStatements 124, 144
RevokeOption 191, 192
robustness diagrams

creating custom checks 21

creating custom symbols 19

creating extension for 16

creating generated files 29

creating stereotypes 18

creating templates 27

testing extension 30

roles
Bind 188
SqlListChildrenQuery 188
SqlPermQuery 188
Unbind 188

rtp (report templates) 1

rul (impact and analysis rule sets) 1

RuleComment 177

rules
ColnDefaultName 177
ColnRuleName 177
MaxDefaultLen 177
PDM variables 223
RuleComment 177
UddtDefaultName 177
UddtRuleName 177

S

saving resource files 6

scope
Outer 255
Parent 255

ScriptExt 138

scripting
accessing extensions 329
accessing object properties 316
accessing objects 316
ActiveModel global property 313
browsing collections 314
changing symbol format 320
checking documents into the repository 325
checking out of the repository 325
connecting to databases 326, 328
connecting to the repository 325
create shortcut 323
CreateModel() method 313
creating data sources 324
creating extensions 329
creating link objects 318
creating mappings 324
creating models 313
creating object selections 321
creating objects 318
creating reports 325
creating shortcuts 323
creating symbols 320
databases 326, 328
deleting objects 321
Edit/Run Script editor 307

372

PowerDesigner

Index

extending the metamodel 329 sharing resource files 6
folders 322 %Shortcut% 256
generating databases 326 shortcuts 344
generating reports 325 CreateShortcut() method 323
generating test data 326 creating by script 323
global constants 312 in GTL 256
global functions 312 ShowMode global property 312
global properties 312 Source property 314
introduction 305 SourceClassifiers collection 324
launching scripts via custom commands 338, specializations 344
339 SQL category (DBMS) 135
mappings 324 SQL Server
metamodel 330 PDM variables 227
Metamodel Objects Help 347 SqlAkeyindex 164
Models global collection 313 SqlAttrQuery 144
modifying collections 314 SqlChckQuery 148, 152
modifying object properties 316 SqlContinue 135
navigating in the metamodel 330 SqlListChildrenQuery 166, 187, 188
notScriptable stereotype 344 SqlListDefaultQuery 173
OLE Automation 332 SqlListQuery 144
opening models 313 SqlListRefrTables 148
OpenModel() method 313 SqlListSchema 148, 169
positioning symbols 320 SqlOptsQuery 144
reports 325 SqlPermQuery 148, 152, 169, 177, 180, 187, 188
repository 325 SqlStatistics 152
reverse-engineering databases 328 SqlSupport 134
running scripts 307 SqlSysIndexQuery 160
sample scripts 309 .SQLXML PDM macro 243
transactions 312 SqlXMLTable 148
VBScript example 305 SqIXMLView 169
workspace 322 StartCommand 138
searching in resource files 5 stereotypes 37, 39
SequenceComment 186 example 18
sequences promoting to metaclass 37, 39
EnableOwner 186 Use as metaclass 18, 37, 39
PDM variables 224 UseAsMetaclass property 329
SequenceComment 186 StorageComment 171
.SERVEREXPRESSION macro 242 storages
.set_interactive_mode macro 278 PDM variables 224
.set_object macro 279 StorageComment 171
.set_value macro 279 strings
SetAttribute() method 316 A (align left) 248
SetAttributeText() method 316 aligning left 248
SetExtendedAttribute() method 329 converting to first character lowercase 215,
SetExtendedAttributeText() method 329 248
Settings category converting to first character uppercase 215,
object language 110 248
process language 109 converting to lowercase 215, 248
XML language 112 converting to uppercase 215, 248

Customizing and Extending PowerDesigner 373

Index

deleting substrings 215, 248
.foreach_part macro 274
iterating over in GTL 274
L (lowercase) 215, 248
LF (first character lowercase) 215, 248
M (delete substring) 215, 248
Q (double quotes) 215, 248
g (single quotes) 215, 248
surrounding in double quotes 215, 248
surrounding in single quotes 215, 248
T (trim whitespace) 215, 248
trimming whitespace 215, 248
U (uppercase) 215, 248
UF (first character uppercase) 215, 248
subclassifying metaclasses with criteria 40
subclassifying metaclasses with stereotypes 37
submenus
creating 339
substrings
deleting in GTL 248, 268
deleting in PDM variables 215
M (delete substring) 215, 248
replacing in GTL 268
symbols
creating by script 320
DashStyle property 320
formatting by script 320
LineWidth property 320
NewPoint() global function 320
Position property 320
positioning by script 320
Symbols collection 320
synonyms
EnableAlias 187
PDM variables 224
Syntax category (DBMS)
BlockComment 135
BlockTerminator 135
Delimiter 135
IdentifierDelimiter 135
LineComment 135
Quote 135
SqlContinue 135
Terminator 135
UseBlockTerm 135
syntax errors 283
System 191

T
T formatting option (trim whitespace) 215, 248

TableComment 148
TableExt 138
tables

AddTableCheck 148
AllowedADT 148
AlterTableFooter 148
AlterTableHeader 148
ConstName 148
DefineTableCheck 148
DropTableCheck 148
MaxConstLen 148
PDM variables 216
Permission 148
Rename 148
SqlChckQuery 148
SqlListRefrTables 148
SqlListSchema 148
SqlPermQuery 148
SqlXMLTable 148
TableComment 148
TypeList 148
UnigConstraintName 148

TablespaceComment 171
tablespaces

PDM variables 224
TablespaceComment 171

tail string 250
templates 84, 87, 245

calling 257

example 27

F125

jumping to referenced template 5
Outer scope 255
overloading 257
overriding 257

Parent scope 255

passing parameters 260
recursive 262

referencing shortcuts 256
scope 255

Terminator 135
testing PDM variable values 213

formatting in GTL 248

text blocks

changing case in GTL 277
.foreach_line macro 273
iterating over in GTL 273
.lowercase macro 277

374

PowerDesigner

outputting unique lines in GTL 281
.unique macro 281
.uppercase macro 277

Time 181

time formats 137

TimeFormat 136

Tools menu

creating custom commands in 338, 339

trace mode 14
transactions

BeginTransaction() global function 312
CancelTransaction() global function 312

EndTransaction() global function 312
Transformation Profile category 14
transformation profiles 94
transformations 92

transformation profiles 94

transformation scripts 95
translation errors 283
TrgFooter 138
TrgHeader 138
TrgUsagel 138
TrgUsage2 138
trigger template items 120
trigger templates 120
TriggerComment 181
TriggerExt 138
triggers

DefaultTriggerName 181

EnableMultiTrigger 181

EnableOwner 181

Event 181

EventDelimiter 181

PDM variables 222, 234

Time 181

TriggerComment 181

UseErrorMsgTable 181

UseErrorMsgText 181
TypeList 148, 169

U

U formatting option (uppercase) 215, 248
UddtComment 173

UddtDefaultName 177

UddtRuleName 177

UF formatting option (first character uppercase)

215, 248
Unbind 152, 173, 187, 188
UnigConstAutolndex 164

UnigConstName 134
UnigConstraintName 148
UniginTable 164
UnigName 160
.unique macro 281
unique identifiers
%NewUUID% global variable 251
.unset macro 279
upf (user profiles) 1
uppercase 277
.uppercase macro 277
UpperCaseOnly 136
Usagel 138
Usage2 138
Use as metaclass 18, 37, 39
UseAsMetaclass property 329
UseBlockTerm 135
UseErrorMsgTable 181
UseErrorMsgText 181
user interaction
controlling in GTL 278
.set_interactive_mode macro 278
user profiles 1
UserName global constant 312
users
%CurrentUser% global variable 251
SqlPermQuery 177
UserTypeName 173
UseSpFornKey 166
UseSpPrimKey 163

\Y,

ValidationMode global property 312
Values Mapping category 291
variable
foreign key 241
primary key 241
variables
columns 235
.vbscript macro 281
VBScript 79, 95, 309
embedding in GTL 281
example 305
.execute_vbscript macro 270
executing with GTL 270
.vbscript macro 281
Version global constant 312
ViewCheck 169
ViewComment 169

Index

Customizing and Extending PowerDesigner

375

Index

Viewer global constant 312

views
PDM variables 216
SqlListSchema 169
SqlPermQuery 169
SqIXMLView 169
TypeList 169
ViewCheck 169
ViewComment 169
ViewStyle 169

ViewStyle 169

w

.warning macro 269
warnings
in GTL 269
.warning macro 269
Web operations 194
Web parameters 195
Web services 194
PDM variables 231
workspace
accessing by script 322
ActiveWorkspace global property 312, 322
Children collection 322
modifying by script 322
saving by script 322

X
X formatting option (escape XML characters) 248

xdb (DBMS definition files) 1
xem (extension files) 1
xems
See extension files
XML
extensions for importing 96
importing objects from 97
XML file
add-in 335
structure 335
XML imports 96
initialization scripts 100
mapping properties 100
mappings 97
post-processing scripts 100
XML language definition files 1
DataTypes category 112
extensions 117
generation category 112

generation commands 112, 114

generation options 112, 113
generation tasks 112, 114
profile category 117
properties 107
Settings category 112

XML model file format 351

xol (object language definition files) 1
xpl (process language definition files) 1

xrl (report language files) 1

xsl (XML language definition files) 1

376

PowerDesigner

	Customizing and Extending PowerDesigner
	Contents
	CHAPTER 1: PowerDesigner Resource Files
	Opening Resource Files in the Editor
	Navigating and Searching in Resource Files
	Editing Resource Files
	Saving Changes
	Sharing and Embedding Resource Files
	Creating and Copying Resource Files
	Comparing Resource Files
	Merging Resource Files

	CHAPTER 2: Extension Files
	Creating an Extension File
	Attaching Extensions to a Model
	Exporting an Embedded Extension File for Sharing
	Extension File Properties
	Example: Adding a New Attribute from a Property Sheet
	Example: Creating Robustness Diagram Extensions
	Creating New Objects with Stereotypes
	Specifying Custom Symbols for Robustness Objects
	Example: Creating Custom Checks on Instance Links
	Example: Defining Templates to Extract Message Descriptions
	Example: Creating a Generated File for the Message Information
	Example: Testing the Robustness Extensions

	Metaclasses (Profile)
	Extended Objects, Sub-Objects, and Links (Profile)

	Stereotypes (Profile)
	Promoting a Stereotype to Metaclass Status

	Criteria (Profile)
	Extended Attributes (Profile)
	Creating an Extended Attribute Type
	Specifying Icons for Attribute Values
	Linking Objects Through Extended Attributes

	Extended Collections and Compositions (Profile)
	Calculated Collections (Profile)
	Dependency Matrices (Profile)
	Specifying Advanced Dependencies

	Forms (Profile)
	Adding Extended Attributes and Other Controls to Your Form
	Example: Creating a Property Sheet Tab
	Example: Including a Form in a Form
	Example: Opening a Dialog from a Property Sheet

	Custom Symbols (Profile)
	Custom Checks (Profile)
	Example: PDM Custom Check
	Example: PDM Autofix

	Event Handlers (Profile)
	Methods (Profile)
	Menus (Profile)
	Example: Opening a Dialog Box from a Menu

	Templates (Profile)
	Generated Files (Profile)
	Example: JavaGenerated File and Templates
	Generating Your Files in a Standard or Extended Generation

	Transformations (Profile)
	Transformation Profiles (Profile)
	Developing Transformation Scripts

	XML Imports (Profile)
	XML Import Mappings
	Metamodel Mapping Properties
	Metamodel Object Properties

	Object Generations (Profile)
	Model-to-Model Generation Mappings

	Global Script (Profile)

	CHAPTER 3: Object, Process, and XML Language Definition Files
	Settings Category: Process Language
	Settings Category: Object Language
	Settings Category: XML Language
	Generation Category
	Example: Adding a Generation Option
	Example: Adding a Generation Command and Task

	Profile Category (Definition Files)

	CHAPTER 4: DBMS Definition Files
	Triggers Templates, Trigger Template Items, and Procedure Templates
	Database Generation and Reverse Engineering
	Script Generation
	Extending Generation with Before and After Statements

	Script Reverse Engineering
	Live Database Generation
	Live Database Reverse Engineering
	Creating Queries to Retrieve Additional Attributes
	Calling Sub-Queries with the EX Keyword
	Live Database Reverse Engineering Physical Options
	Live Database Reverse Engineering Function-based Index
	Live Database Reverse Engineering Qualifiers

	Generating and Reverse-Engineering PDM Extended Objects
	Adding Scripts Before or After Generation and Reverse Engineering

	General Category (DBMS)
	Script/Sql Category (DBMS)
	Syntax Category
	Format Category
	Date and Time Format

	File Category
	Keywords Category

	Script/Objects Category (DBMS)
	Common Object Items
	Table
	Column
	Working with Null Values

	Index
	Pkey
	Key
	Reference
	View
	Tablespace
	Storage
	Database
	Domain
	Abstract Data Type
	Abstract Data Type Attribute
	User
	Rule
	Procedure
	Trigger
	DBMS Trigger
	Join Index
	Qualifier
	Sequence
	Synonym
	Group
	Role
	DB Package
	DB Package Sub-objects
	Parameter
	Privilege
	Permission
	Default
	Web Service and Web Operation
	Web Parameter
	Result Column
	Dimension
	Extended Object

	Script/Data Type Category (DBMS)
	Profile Category (DBMS)
	Using Extended Attributes During Generation
	Modifying the Estimate Database Size Mechanism
	Calling the GetEstimatedSize Event Handler on Another Metaclass
	Formatting the Database Size Estimation Output

	ODBC Category (DBMS)
	Physical Options (DBMS)
	Simple Physical Options
	Composite Physical Options
	Adding DBMS Physical Options to Your Forms

	PDM Variables and Macros
	Testing Variable Values with the [] Operators
	Formatting Variable Values
	Variables for Tables and Views
	Variables for Columns, Domains, and Constraints
	Variables for Keys
	Variables for Indexes and Index Columns
	Variables for References and Reference Columns
	Variables for Triggers and Procedures
	Variables for Rules
	Variables for Sequences
	Variables for Synonyms
	Variables for Tablespaces and Storages
	Variables for Abstract Data Types
	Variables for Join Indexes (IQ)
	Variables for ASE & SQL Server
	Variables for Database Synchronization
	Variables for DB Packages and Their Child Objects
	Variables for Database Security
	Variables for Defaults
	Variables for Web Services
	Variables for Dimensions
	Variables for Extended Objects
	Variables for Reverse Engineering
	Variables for Database, Triggers, and Procedures Generation
	.AKCOLN, .FKCOLN, and .PKCOLN Macros
	.ALLCOL Macro
	.DEFINE Macro
	.DEFINEIF Macro
	.ERROR Macro
	.FOREACH_CHILD Macro
	.FOREACH_COLUMN Macro
	.FOREACH_PARENT Macro
	.INCOLN Macro
	.JOIN Macro
	.NMFCOL Macro
	.CLIENTEXPRESSION and .SERVEREXPRESSION Macros
	.SQLXML Macro

	CHAPTER 5: Customizing Generation with GTL
	Creating a Template and a Generated File
	Extracting Object Properties
	Accessing Collections of Sub-Objects or Related Objects
	Formatting Your Output
	Controlling Line Breaks in Head and Tail Strings

	Conditional Blocks
	Accessing Global Variables
	GTL Operators
	Translation Scope
	Shortcut Translation
	Escape Sequences
	Calling Templates
	Inheritance and Polymorphism
	Passing Parameters to a Template
	Recursive Templates

	GTL-Specific Metamodel Extensions
	GTL Macro Reference
	.abort_command Macro
	.block Macro
	.bool Macro
	.break Macro
	.change_dir and .create_path Macros
	.comment and .// Macro
	.convert_name and .convert_code Macros
	.delete and .replace Macros
	.error and .warning Macros
	.execute_command Macro
	.execute_vbscript Macro
	.foreach_item Macro
	.foreach_line Macro
	.foreach_part Macro
	.if Macro
	.log Macro
	.lowercase and .uppercase Macros
	.object and .collection Macros
	.set_interactive_mode Macro
	.set_object, .set_value, and .unset Macros
	.unique Macro
	.vbscript Macro

	GTL Syntax and Translation Errors

	CHAPTER 6: Translating Reports with Report Language Files
	Opening a Report Language File
	Creating a Report Language File for a New Language
	Report Language File Properties
	Values Mapping Category
	Example: Creating a Mapping Table, and Attaching It to a Specific Model Object

	Report Titles Category
	Example: Translating the HTML Report Previous Button
	All Report Titles Tab

	Object Attributes Category
	All Classes Tab
	All Attributes and Collections Tab

	Profile/Linguistic Variables Category
	Profile/Report Item Templates Category

	CHAPTER 7: Scripting PowerDesigner
	Running Scripts in PowerDesigner
	VBScript File Samples

	Manipulating Models, Collections, and Objects (Scripting)
	Creating and Opening Models (Scripting)
	Browsing and Modifying Collections (Scripting)
	Accessing and Modifying Objects and Properties (Scripting)
	Creating Objects (Scripting)
	Displaying, Formatting, and Positioning Symbols (Scripting)
	Deleting Objects (Scripting)
	Creating an Object Selection (Scripting)
	Controlling the Workspace (Scripting)

	Creating Shortcuts (Scripting)
	Creating Mappings Between Objects (Scripting)
	Creating and Generating Reports (Scripting)
	Manipulating the Repository (Scripting)
	Generating a Database (Scripting)
	Reverse Engineering a Database (Scripting)
	Creating and Accessing Extensions (Scripting)
	Accessing Metadata (Scripting)
	OLE Automation and Add-Ins
	Creating an ActiveX Add-in
	Creating an XML File Add-in

	Launching Scripts and Add-Ins from Menus
	Adding Commands to the Tools Menu

	CHAPTER 8: The PowerDesigner Public Metamodel
	Navigating in the Metamodel
	Using the Metamodel Objects Help File
	PowerDesigner Model File Format
	Example: Simple OOM XML File

	Index

