
PowerScript® Reference
PowerBuilder® Classic

12.5

DOCUMENT ID: DC37781-01-1250-02

LAST REVISED: January 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book .. xxv

PART 1 POWERSCRIPT TOPICS

CHAPTER 1 Language Basics... 3
Comments.. 3
Identifier names.. 5
Labels... 6
Special ASCII characters ... 6
NULL values... 8
Reserved words ... 10
Pronouns.. 11

Parent pronoun.. 12
This pronoun ... 13
Super pronoun... 14

Statement continuation .. 15
Statement separation ... 16
White space ... 17
Conditional compilation .. 18

CHAPTER 2 Datatypes ... 21
Standard datatypes .. 21
The Any datatype ... 26
System object datatypes .. 29
Enumerated datatypes ... 30
PowerBuilder datatypes in EAServer ... 31

CHAPTER 3 Declarations... 33
Declaring variables... 33

Where to declare variables.. 34
About using variables .. 35
Syntax of a variable declaration .. 37
PowerScript Reference iii

Contents
Declaring constants.. 47
Declaring arrays ... 48

Values for array elements ... 51
Size of variable-size arrays ... 53
More about arrays ... 54

Declaring external functions... 58
Datatypes for external function arguments.............................. 62
Calling external functions .. 64
Defining source for external functions 64

Declaring DBMS stored procedures as remote procedure calls 65

CHAPTER 4 Operators and Expressions.. 69
Operators in PowerBuilder ... 69

Arithmetic operators in PowerBuilder 70
Relational operators in PowerBuilder 72
Concatenation operator in PowerBuilder................................. 73

Operator precedence in PowerBuilder expressions....................... 74
Datatype of PowerBuilder expressions .. 75

Numeric datatypes in PowerBuilder .. 75
String and char datatypes in PowerBuilder 78

CHAPTER 5 Structures and Objects ... 79
About structures ... 79
About objects ... 80

About user objects... 81
Instantiating objects... 83
Using ancestors and descendants .. 84
Garbage collection .. 84
User objects that behave like structures 85

Assignment for objects and structures ... 86
Assignment for structures.. 86
Assignment for objects .. 87
Assignment for autoinstantiated user objects.......................... 88

CHAPTER 6 Calling Functions and Events .. 91
About functions and events.. 91
Finding and executing functions and events 94

Finding functions ... 94
Finding events ... 95

Triggering versus posting functions and events............................. 96
Static versus dynamic calls .. 98

Static calls ... 98
iv PowerBuilder Classic

Contents
Dynamic calls .. 99
Overloading, overriding, and extending functions and events 104

Overloading and overriding functions.................................... 104
Extending and overriding events ... 106

Passing arguments to functions and events 106
Passing objects ... 107
Passing structures... 107
Passing arrays... 108

Using return values .. 109
Functions... 109
Events ... 109
Using cascaded calling and return values............................. 110

Syntax for calling PowerBuilder functions and events 111
Calling functions and events in an object’s ancestor 114

PART 2 STATEMENTS, EVENTS, AND FUNCTIONS

CHAPTER 7 PowerScript Statements... 119
Assignment .. 120
CALL .. 123
CHOOSE CASE... 124
CONTINUE .. 126
CREATE... 127
DESTROY.. 130
DO...LOOP... 131
EXIT ... 133
FOR...NEXT ... 134
GOTO... 136
HALT .. 137
IF...THEN ... 138
RETURN .. 140
THROW.. 141
THROWS ... 142
TRY...CATCH...FINALLY...END TRY .. 143

CHAPTER 8 SQL Statements .. 145
Using SQL in scripts... 146

CLOSE Cursor .. 149
CLOSE Procedure... 150
COMMIT.. 151
CONNECT... 152
DECLARE Cursor.. 153
PowerScript Reference v

Contents
DECLARE Procedure.. 153
DELETE .. 155
DELETE Where Current of Cursor .. 156
DISCONNECT... 156
EXECUTE ... 157
FETCH .. 158
INSERT ... 159
OPEN Cursor .. 160
ROLLBACK ... 160
SELECT .. 161
SELECTBLOB... 162
UPDATE.. 164
UPDATEBLOB .. 165
UPDATE Where Current of Cursor 166

Using dynamic SQL ... 167
Dynamic SQL Format 1... 171
Dynamic SQL Format 2... 172
Dynamic SQL Format 3... 173
Dynamic SQL Format 4... 176

CHAPTER 9 PowerScript Events ... 183
About events .. 183
Activate .. 186
BeginDownload .. 187
BeginDrag .. 188
BeginLabelEdit ... 191
BeginLogScan.. 193
BeginRightDrag.. 193
BeginSync .. 196
BeginUpload... 197
Clicked ... 197
Close .. 204
CloseQuery .. 206
CloseUp ... 207
ColumnClick ... 208
ConnectMobiLink ... 209
Constructor... 210
DataChange ... 211
DateChanged ... 211
DateSelected.. 212
DBError .. 213
DBNotification .. 215
Deactivate .. 217
DeleteAllItems .. 217
vi PowerBuilder Classic

Contents
DeleteItem.. 218
Destructor... 219
DisconnectMobiLink ... 220
DisplayMessage... 221
DoubleClicked .. 221
DragDrop.. 225
DragEnter... 230
DragLeave.. 231
DragWithin ... 232
DropDown .. 235
EndDownload... 235
EndLabelEdit.. 236
EndLogScan... 238
EndSync... 238
EndUpload ... 239
Error ... 239
ErrorMessage... 242
ExternalException .. 243
FileExists.. 246
FileMessage... 247
Gesture .. 247
GetFocus.. 250
Help.. 251
Hide.. 252
HotLinkAlarm.. 252
Idle ... 253
InputFieldSelected ... 253
InsertItem ... 254
ItemActivate ... 255
ItemChanged.. 256
ItemChanging... 257
ItemCollapsed .. 258
ItemCollapsing ... 259
ItemExpanded .. 260
ItemExpanding ... 261
ItemPopulate .. 262
Key ... 263
LineDown ... 265
LineLeft .. 266
LineRight .. 267
LineUp.. 268
LoseFocus.. 269
Modified.. 270
MouseDown ... 272
PowerScript Reference vii

Contents
MouseMove.. 274
MouseUp.. 278
Moved .. 281
Notify .. 282
Open .. 283
Other .. 287
PageDown.. 288
PageLeft... 289
PageRight .. 290
PageUp .. 291
PictureSelected .. 292
PipeEnd.. 292
PipeMeter... 293
PipeStart .. 294
PrintFooter ... 294
PrintHeader .. 295
ProgressIndex .. 295
PropertyChanged ... 296
PropertyRequestEdit .. 297
RButtonDown ... 298
RButtonUp.. 300
RecognitionResult .. 300
RemoteExec... 301
RemoteHotLinkStart ... 301
RemoteHotLinkStop ... 302
RemoteRequest ... 302
RemoteSend .. 303
Rename.. 303
Resize .. 304
RightClicked ... 305
RightDoubleClicked.. 307
Save ... 309
SaveObject... 310
Selected ... 311
SelectionChanged.. 312
SelectionChanging ... 315
Show .. 317
Sort... 318
SQLPreview ... 320
Start.. 322
Stop.. 322
Stroke... 323
SyncPreview .. 323
SystemError ... 324
viii PowerBuilder Classic

Contents
SystemKey ... 325
Timer .. 326
ToolbarMoved .. 328
UploadAck.. 329
UserString .. 330
ValueChanged ... 331
ViewChange... 331
WaitForUploadAck ... 332
WarningMessage ... 332

CHAPTER 10 PowerScript Functions... 333
Abs ... 334
ACos .. 334
Activate .. 335
AddCategory .. 337
AddColumn .. 338
AddData ... 339
AddItem.. 341
AddLargePicture .. 346
AddPicture.. 347
AddSeries... 348
AddSmallPicture... 349
AddStatePicture ... 350
AddToLibraryList .. 351
Arrange .. 352
ArrangeSheets ... 353
Asc ... 354
AscA... 354
ASin.. 356
ATan... 357
Beep... 357
BeginTransaction ... 358
Blob .. 359
BlobEdit.. 361
BlobMid .. 362
BuildModel ... 364
Byte .. 367
Cancel .. 368
CancelSync .. 369
CanUndo .. 370
CategoryCount ... 371
CategoryName ... 372
Ceiling .. 373
ChangeDirectory .. 374
PowerScript Reference ix

Contents
ChangeMenu.. 375
Char ... 376
CharA ... 377
Check ... 378
ChooseColor .. 379
ClassList... 380
ClassName... 381
Clear... 383
ClearAll... 386
ClearBoldDates .. 386
Clipboard.. 387
Close .. 390
CloseChannel... 395
CloseTab.. 396
CloseUserObject .. 397
CloseWithReturn .. 398
CollapseItem .. 401
CommandParm .. 402
CommitTransaction .. 403
ConnectToNewObject .. 405
ConnectToNewRemoteObject ... 407
ConnectToObject ... 408
ConnectToRemoteObject... 411
ConnectToServer ... 413
Copy... 416
CopyRTF.. 418
Cos... 419
Cpu... 420
CreateDirectory .. 420
CreateInstance... 421
CreatePage .. 426
Cut.. 427
DataCount .. 428
DataSource .. 429
Date.. 431
DateTime.. 434
Day... 437
DayName ... 438
DayNumber .. 439
DaysAfter ... 440
DBHandle... 441
DebugBreak ... 441
Dec... 442
DeleteCategory .. 443
x PowerBuilder Classic

Contents
DeleteColumn .. 444
DeleteColumns... 444
DeleteData ... 445
DeleteItem.. 446
DeleteItems .. 448
DeleteLargePicture .. 449
DeleteLargePictures... 449
DeletePicture.. 450
DeletePictures.. 450
DeleteSeries... 451
DeleteSmallPicture... 452
DeleteSmallPictures... 452
DeleteStatePicture ... 453
DeleteStatePictures ... 453
DestroyModel ... 454
DirectoryExists ... 455
DirList ... 456
DirSelect... 458
Disable ... 459
DisableCommit ... 460
DisconnectObject ... 461
DisconnectServer... 462
Double.. 463
DoVerb ... 464
Drag ... 465
DraggedObject ... 467
Draw... 468
EditLabel .. 469
Enable .. 471
EnableCommit.. 472
EntryList ... 473
ExecRemote... 474
Exp ... 477
ExpandAll ... 478
ExpandItem .. 478
Fact .. 479
FileClose .. 480
FileCopy ... 480
FileDelete ... 481
FileEncoding .. 482
FileExists.. 483
FileLength .. 484
FileLength64 .. 485
FileMove... 486
PowerScript Reference xi

Contents
FileOpen... 487
FileRead... 491
FileReadEx... 493
FileSeek ... 495
FileSeek64 ... 496
FileWrite ... 498
FileWriteEx... 500
Fill... 502
FillA .. 503
FillW ... 503
Find .. 503
FindCategory.. 505
FindClassDefinition .. 506
FindFunctionDefinition ... 507
FindItem ... 508
FindMatchingFunction.. 514
FindNext... 516
FindSeries .. 517
FindTypeDefinition ... 518
FromAnsi.. 520
FromUnicode.. 520
GarbageCollect .. 521
GarbageCollectGetTimeLimit ... 521
GarbageCollectSetTimeLimit ... 522
GetActiveSheet .. 523
GetAlignment ... 524
GetApplication.. 524
GetArgElement... 525
GetAutomationNativePointer.. 526
GetByte .. 527
GetByteArray.. 528
GetCertificateLabel .. 528
GetChildrenList .. 531
GetColumn ... 532
GetCommandDDE ... 533
GetCommandDDEOrigin.. 535
GetCommandString ... 536
GetCompanyName .. 537
GetContextKeywords ... 538
GetContextService ... 539
GetCredentialAttribute.. 541
GetCurrentDirectory ... 543
GetData.. 543
GetDataDDE .. 548
xii PowerBuilder Classic

Contents
GetDataDDEOrigin... 549
GetDataLabelling ... 550
GetDataPieExplode.. 551
GetDataStyle.. 553
GetDataTransparency.. 558
GetDataValue... 560
GetDateLimits .. 562
GetDbmlsyncPath .. 563
GetDisplayRange ... 564
GetDynamicDate.. 566
GetDynamicDateTime.. 568
GetDynamicDecimal .. 569
GetDynamicNumber... 570
GetDynamicString .. 571
GetDynamicTime ... 572
GetEnvironment ... 573
GetFileOpenName ... 574
GetFileSaveName.. 579
GetFirstSheet ... 581
GetFixesVersion... 582
GetFocus.. 583
GetFolder ... 584
GetGlobalProperty ... 585
GetHostObject.. 586
GetItem .. 587
GetItemAtPointer.. 590
GetLastReturn.. 591
GetLibraryList... 592
GetMajorVersion .. 593
GetMessage... 594
GetMinorVersion .. 595
GetName.. 596
GetNativePointer.. 597
GetNextSheet... 598
GetObjectRevisionFromRegistry.. 599
GetOrigin.. 600
GetParagraphSetting ... 601
GetParent... 601
GetPin .. 603
GetRecordSet .. 605
GetRemote... 606
GetSelectedDate.. 609
GetSelectedRange... 610
GetSeriesLabelling... 611
PowerScript Reference xiii

Contents
GetSeriesStyle ... 612
GetSeriesTransparency ... 619
GetShortName ... 620
GetSpacing .. 621
GetStatus ... 622
GetSyncRegistryProperties.. 624
GetText .. 625
GetTextColor.. 625
GetTextStyle .. 626
GetToday ... 627
GetToolbar ... 627
GetToolbarPos ... 629
GetTransactionName ... 632
GetURL .. 633
GetValue .. 634
GetVersionName.. 635
Handle.. 636
Hide.. 638
Hour ... 639
HyperLinkToURL.. 639
Idle ... 640
ImpersonateClient .. 641
ImportClipboard.. 642
ImportFile ... 645
ImportString.. 649
IncomingCallList ... 651
Init .. 653
InputFieldChangeData ... 656
InputFieldCurrentName.. 657
InputFieldDeleteCurrent ... 658
InputFieldGetData .. 659
InputFieldInsert .. 660
InputFieldLocate... 660
InsertCategory.. 662
InsertClass ... 664
InsertColumn.. 664
InsertData... 665
InsertDocument.. 668
InsertFile .. 669
InsertItem ... 670
InsertItemFirst .. 676
InsertItemLast .. 678
InsertItemSort... 681
InsertObject.. 683
xiv PowerBuilder Classic

Contents
InsertPicture ... 684
InsertSeries .. 685
Int ... 686
Integer .. 686
InternetData ... 688
IntHigh.. 689
IntLow... 689
InvokePBFunction .. 690
_Is_A .. 692
IsAlive... 693
IsAllArabic .. 694
IsAllHebrew .. 694
IsAnyArabic .. 695
IsAnyHebrew.. 696
IsArabic .. 696
IsArabicAndNumbers ... 697
IsCallerInRole... 698
IsDate... 700
IsHebrew .. 700
IsHebrewAndNumbers ... 701
IsImpersonating.. 702
IsInTransaction... 703
IsNull .. 704
IsNumber.. 705
IsPreview.. 706
IsSecurityEnabled .. 707
IsTime .. 708
IsTransactionAborted ... 709
IsValid .. 710
KeyDown.. 711
LastPos .. 714
Left ... 716
LeftA... 717
LeftW.. 717
LeftTrim .. 718
LeftTrimW... 719
Len ... 719
LenA... 721
LenW.. 721
Length .. 722
LibraryCreate ... 723
LibraryDelete.. 724
LibraryDirectory.. 725
LibraryDirectoryEx.. 727
PowerScript Reference xv

Contents
LibraryExport .. 729
LibraryImport .. 730
LineCount... 732
LineLength ... 733
LineList... 734
LinkTo .. 735
LoadInk .. 736
LoadPicture .. 737
Log ... 738
LogTen ... 740
Long ... 741
LongLong ... 743
Lookup ... 745
Lower ... 750
LowerBound ... 750
mailAddress ... 751
mailDeleteMessage.. 753
mailGetMessages .. 754
mailHandle ... 755
mailLogoff... 756
mailLogon... 757
mailReadMessage ... 759
mailRecipientDetails... 761
mailResolveRecipient... 762
mailSaveMessage.. 764
mailSend .. 767
Match ... 769
MatchW .. 772
Max .. 772
MemberDelete.. 773
MemberExists .. 774
MemberRename .. 775
MessageBox .. 776
Mid ... 778
MidA ... 780
MidW .. 780
Min ... 781
Minute .. 781
Mod .. 782
ModifyData ... 782
Month ... 785
Move .. 785
MoveTab .. 787
_Narrow.. 788
xvi PowerBuilder Classic

Contents
NextActivity .. 789
Now .. 790
ObjectAtPointer .. 791
Object_To_String ... 793
OffsetPos ... 794
Open .. 795
OpenChannel ... 810
OpenSheet ... 812
OpenSheetWithParm ... 815
OpenTab .. 818
OpenTabWithParm .. 822
OpenUserObject .. 827
OpenUserObjectWithParm... 831
OpenWithParm... 835
OutgoingCallList... 840
PageCount ... 841
PageCreated .. 843
ParentWindow.. 844
Paste .. 845
PasteLink ... 847
PasteRTF ... 848
PasteSpecial .. 849
PBAddCookie... 850
PBGetCookies.. 851
PBGetMenuString .. 852
Pi .. 853
PixelsToUnits ... 854
Play .. 855
PointerX ... 856
PointerY ... 857
PopMenu.. 858
PopulateError ... 859
Pos ... 860
PosA... 862
PosW.. 862
Position .. 862
Post .. 868
PostEvent... 869
PostURL... 871
Preview .. 874
Print.. 875
PrintBitmap... 881
PrintCancel... 882
PrintClose... 884
PowerScript Reference xvii

Contents
PrintDataWindow ... 885
PrintDefineFont .. 886
PrintEx.. 888
PrintGetPrinter ... 889
PrintGetPrinters.. 890
PrintLine ... 891
PrintOpen ... 892
PrintOval .. 893
PrintPage ... 895
PrintRect .. 896
PrintRoundRect.. 897
PrintScreen .. 899
PrintSend ... 900
PrintSetFont ... 902
PrintSetPrinter.. 903
PrintSetSpacing ... 903
PrintSetup .. 904
PrintSetupPrinter.. 905
PrintText... 905
PrintWidth... 907
PrintX ... 908
PrintY ... 909
ProfileInt ... 909
ProfileString.. 911
Rand... 913
Randomize ... 914
Read... 915
Real.. 918
RecognizeText ... 919
RegistryDelete.. 919
RegistryGet .. 920
RegistryKeys .. 922
RegistrySet... 923
RegistryValues ... 925
RelativeDate... 926
RelativeTime .. 926
ReleaseAutomationNativePointer .. 927
ReleaseNativePointer .. 928
RemoveDirectory ... 929
Repair... 930
Replace .. 931
ReplaceA.. 933
ReplaceText ... 934
ReplaceW... 935
xviii PowerBuilder Classic

Contents
Reset.. 935
ResetArgElements ... 938
ResetDataColors.. 939
ResetInk ... 940
ResetPicture... 940
Resize .. 941
Resolve_Initial_References ... 942
RespondRemote .. 944
Restart.. 945
ResumeTransaction ... 945
Reverse.. 947
RevertToSelf .. 948
RGB ... 949
Right... 951
RightA .. 951
RightW ... 952
RightTrim.. 952
RightTrimW .. 953
RollbackOnly .. 953
RollbackTransaction... 955
Round... 956
RoutineList ... 957
Run... 958
Save ... 960
SaveAs... 963
SaveDocument... 972
SaveInk .. 974
Scroll .. 976
ScrollNextPage .. 977
ScrollNextRow.. 978
ScrollPriorPage .. 979
ScrollPriorRow ... 980
ScrollToRow... 981
Second ... 982
SecondsAfter.. 982
Seek ... 983
SelectedColumn... 986
SelectedIndex .. 987
SelectedItem .. 988
SelectedLength .. 988
SelectedLine .. 990
SelectedPage... 991
SelectedStart.. 992
SelectedText .. 993
PowerScript Reference xix

Contents
SelectionRange.. 994
SelectItem .. 995
SelectObject... 999
SelectTab ... 1000
SelectText .. 1001
SelectTextAll .. 1005
SelectTextLine ... 1006
SelectTextWord.. 1007
Send... 1009
SeriesCount ... 1011
SeriesName ... 1012
SetAbort ... 1013
SetAlignment.. 1015
SetArgElement ... 1016
SetAutomationLocale ... 1017
SetAutomationPointer .. 1019
SetAutomationTimeout... 1020
SetBoldDate ... 1021
SetByte... 1023
SetColumn ... 1024
SetComplete .. 1025
SetData .. 1027
SetDataDDE... 1029
SetDataLabelling.. 1030
SetDataPieExplode .. 1031
SetDataStyle .. 1033
SetDataTransparency .. 1039
SetDateLimits... 1040
SetDropHighlight .. 1041
SetDynamicParm ... 1042
SetFirstVisible .. 1043
SetFocus .. 1044
SetGlobalProperty.. 1045
SetItem... 1046
SetLevelPictures .. 1050
SetLibraryList ... 1051
SetMask ... 1052
SetMessage ... 1054
SetMicroHelp.. 1055
SetNewMobiLinkPassword .. 1056
SetNull.. 1057
SetOverlayPicture .. 1058
SetParagraphSetting.. 1060
SetParm ... 1061
xx PowerBuilder Classic

Contents
SetPicture... 1062
SetPointer .. 1063
SetPosition ... 1065
SetProfileString .. 1068
SetRange ... 1070
SetRecordSet... 1070
SetRedraw ... 1072
SetRemote ... 1073
SetResultSet .. 1076
SetSelectedDate .. 1077
SetSelectedRange ... 1078
SetSeriesLabelling ... 1079
SetSeriesStyle.. 1080
SetSeriesTransparency.. 1088
SetSpacing... 1090
SetState ... 1091
SetSyncRegistryProperties .. 1092
SetTextColor .. 1093
SetTextStyle... 1094
SetTimeout... 1095
SetToday.. 1096
SetToolbar.. 1097
SetToolbarPos ... 1099
SetTop.. 1103
SetTraceFileName ... 1104
SetTransPool ... 1105
SetValue... 1106
SharedObjectDirectory... 1107
SharedObjectGet ... 1108
SharedObjectRegister.. 1111
SharedObjectUnregister... 1112
Show .. 1113
ShowHeadFoot .. 1114
ShowHelp... 1115
ShowPopupHelp .. 1116
Sign .. 1117
SignalError ... 1117
Sin .. 1119
Sleep .. 1119
Sort... 1120
SortAll... 1122
Space ... 1123
Sqrt... 1123
Start.. 1124
PowerScript Reference xxi

Contents
StartHotLink ... 1131
StartServerDDE ... 1133
State... 1134
StepIt.. 1136
Stop.. 1136
StopHotLink.. 1138
StopServerDDE.. 1139
String.. 1139
String_To_Object ... 1145
SuspendTransaction .. 1149
Synchronize ... 1150
SyntaxFromSQL... 1152
SystemRoutine... 1155
TabPostEvent... 1156
TabTriggerEvent .. 1157
Tan ... 1158
Text .. 1158
TextLine ... 1159
Time ... 1160
Timer .. 1163
ToAnsi .. 1164
Today ... 1165
Top ... 1166
TotalColumns ... 1167
TotalItems .. 1167
TotalSelected ... 1168
ToUnicode.. 1169
TraceBegin... 1169
TraceClose... 1171
TraceDisableActivity... 1172
TraceEnableActivity ... 1174
TraceEnd.. 1176
TraceError .. 1177
TraceOpen ... 1178
TraceUser .. 1180
TriggerEvent... 1181
TriggerPBEvent.. 1183
Trim .. 1185
TrimW... 1186
Truncate ... 1186
TrustVerify.. 1187
TypeOf ... 1190
Uncheck ... 1192
Undo... 1193
xxii PowerBuilder Classic

Contents
UnitsToPixels ... 1194
UpdateLinksDialog ... 1194
Upper ... 1196
UpperBound ... 1196
Which ... 1198
WordCap .. 1200
WorkSpaceHeight .. 1200
WorkSpaceWidth ... 1202
WorkSpaceX .. 1203
WorkSpaceY .. 1204
Write... 1205
XMLParseFile... 1206
XMLParseString ... 1209
Year.. 1212
Yield ... 1213

Index ... 1217
PowerScript Reference xxiii

Contents
xxiv PowerBuilder Classic

About This Book

Audience This book is for programmers who will use PowerBuilder® to build
client/server or multitier applications.

How to use this book This book describes syntax and usage information for the PowerScript®
language including variables, expressions, statements, events, and
functions.

Related documents For a complete list of PowerBuilder documentation, see the preface of the
PowerBuilder Getting Started book.

Other sources of
information

Use the Sybase® Getting Started CD and the Sybase Product
Documentation Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format. It is included with your software. To read or
print documents on the Getting Started CD, you need Adobe Acrobat
Reader, which you can download at no charge from the Adobe Web
site using a link provided on the CD.

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you
will find links to EBFs/Maintenance, Technical Documents, Case
Management, Solved Cases, newsgroups, and the Sybase Developer
Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Conventions The formatting conventions used in this manual are:

Formatting example Indicates

Retrieve and Update When used in descriptive text, this font indicates:

• Command, function, and method names

• Keywords such as true, false, and null

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• User-defined objects such as dw_emp or
w_main
PowerScript Reference xxv

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

variable or file name When used in descriptive text and syntax
descriptions, oblique font indicates:

• Variables, such as myCounter

• Parts of input text that must be substituted, such
as pblname.pbd

• File and path names

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how
to navigate menu selections. For example,
File>Save indicates “select Save from the File
menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on
a command line

• Sample script fragments

• Sample output fragments

Formatting example Indicates
xxvi PowerBuilder Classic

P A R T 1 PowerScript Topics

This part describes the basics of using the
PowerScript language.

C H A P T E R 1 Language Basics

About this chapter This chapter describes general elements and conventions of PowerScript.

Contents

Comments
Description You can use comments to document your scripts and prevent statements

within a script from executing. There are two methods.

Syntax Double-slash method

Code // Comment

Slash-and-asterisk method

/* Comment */

Topic Page

Comments 3

Identifier names 5

Labels 6

Special ASCII characters 6

NULL values 8

Reserved words 10

Pronouns 11

Statement continuation 15

Statement separation 16

White space 17

Conditional compilation 18
PowerScript Reference 3

Comments
Usage The following table shows how to use each method.

Table 1-1: Methods for adding comments in scripts

Adding comment markers
In Script views and the Function painter, you can use the Comment Selection
button (or select Edit>Comment Selection from the menu bar) to comment out
the line containing the cursor or a selected group of lines.

For information about adding comments to objects and library entries, see the
PowerBuilder Users Guide.

Examples Double-slash method

// This entire line is a comment.
// This entire line is another comment.
amt = qty * cost // Rest of the line is comment.

// The following statement was commented out so that it
// would not execute.
// SetNull(amt)

Slash-and-asterisk method

/* This is a single-line comment. */

/* This comment starts here,
continues to this line,
and finally ends here. */

A = B + C /* This comment starts here.
/* This is the start of a nested comment.

The nested comment ends here. */
The first comment ends here. */ + D + E + F

Method Marker Can use to Note

Double
slash

// Designate all text on the line to
the right of the marker as a
comment

Cannot extend to
multiple lines

Slash and
asterisk

/*...*/ Designate the text between the
markers as a comment

Nest comments

• Can extend over
multiple lines
(multiline
comments do
not require a
continuation
character)

• Can be nested
4 PowerBuilder Classic

CHAPTER 1 Language Basics
Identifier names
Description You use identifiers to name variables, labels, functions, windows, controls,

menus, and anything else you refer to in scripts.

Syntax Rules for identifiers:

• Must start with a letter or an _ (underscore)

• Cannot be reserved words (see “Reserved words” on page 10)

• Can have up to 40 characters but no spaces

• Are not case sensitive (PART, Part, and part are identical)

• Can include any combination of letters, numbers, and these special
characters:

- Dash
_ Underscore
$ Dollar sign
Number sign
% Percent sign

Usage By default, PowerBuilder allows you to use dashes in all identifiers, including
in variable names in a script. However, this means that when you use the
subtraction operator or the -- operator in a script, you must surround it with
spaces. If you do not, PowerBuilder interprets the expression as an identifier
name.

If you want to disallow dashes in variable names in scripts, you can change the
setting of the Allow Dashes in Identifiers option in the script editor’s property
sheet. As a result, you do not have to surround the subtraction operator and the
decrement assignment shortcut (--) with spaces.

Be careful
If you disallow dashes and have previously used dashes in variable names, you
will get errors the next time you compile.

Examples Valid identifiers

ABC_Code
Child-Id
FirstButton
response35
pay-before%deductions$
ORDER_DATE
PowerScript Reference 5

Labels
Actual-$-amount
Part#

Invalid identifiers

2nd-quantity // Does not start with a letter
ABC Code // Contains a space
Child'sId // Contains invalid special character

Labels
Description You can include labels in scripts for use with GOTO statements.

Syntax Identifier:

Usage A label can be any valid identifier. You can enter it on a line by itself above the
statement or at the start of the line before the statement.

For information about the GOTO statement, see GOTO on page 136. For
information about valid identifiers, see “Identifier names” on page 5.

Examples On a line by itself above the statement

FindCity:
IF city=cityname[1] THEN ...

At the start of the line before the statement

FindCity: IF city=cityname[1] THEN ...

Special ASCII characters
Description You can include special ASCII characters in strings. For example, you might

want to include a tab in a string to ensure proper spacing or a bullet to indicate
a list item. The tilde character (~) introduces special characters. The tab is one
of the common ASCII characters that can be entered by typing a tilde followed
by a single keystroke. The bullet must be entered by typing a tilde followed by
the decimal, hexadecimal, or octal ASCII value that represents it.
6 PowerBuilder Classic

CHAPTER 1 Language Basics
Syntax Follow the guidelines in the following table.

Table 1-2: Using special ASCII characters in strings

Examples Entering ASCII characters Here is how to use special characters in strings:

Using decimal, hexadecimal, and octal values Here is how to indicate a
bullet (•) in a string by using the decimal, hexadecimal, and octal ASCII values:

In this
category

To specify
this

Enter
this More information

Common
ASCII
characters

Newline ~n

Tab ~t

Vertical tab ~v

Carriage return ~r

Form feed ~f

Backspace ~b

Double quote ~"

Single quote ~'

Tilde ~~

Any
ASCII
character

Decimal ~### ### = a 3-digit number from 000 to 255

Hexadecimal ~h## ## = a 2-digit hexadecimal number from
01 to FF

Octal ~o### ### = a 3-digit octal number from 000 to
377

String Description

"dog~n" A string containing the word dog followed by a newline
character

"dog~tcat~ttiger" A string containing the word dog, a tab character, the word cat,
another tab character, and the word tiger

Value Description

"~249" The ASCII character with decimal value 249

"~hF9" The ASCII character with hexadecimal value F9

"~o371" The ASCII character with octal value 371
PowerScript Reference 7

NULL values
NULL values
Description Null means undefined or unknown. It is not the same as an empty string or zero

or a date of 0000-00-00. For example, null is neither 0 nor not 0.

Typically, you work with null values only with respect to database values.

Usage Initial values for variables Although PowerBuilder supports null values for
all variable datatypes, it does not initialize variables to null. Instead, when a
variable is not set to a specific value when it is declared, PowerBuilder sets it
to the default initial value for the datatype—for example, zero for a numeric
value, false for boolean, and the empty string ("") for a string.

Null variables A variable can become null if one of the following occurs:

• A null value is read into it from the database. If your database supports null,
and a SQL INSERT or UPDATE statement sends a null to the database, it is
written to the database as null and can be read into a variable by a SELECT
or FETCH statement.

Null in a variable
When a null value is read into a variable, the variable remains null unless it
is changed in a script.

• The SetNull function is used in a script to set the variable explicitly to null.
For example:

string city // city is an empty string.
SetNull(city) // city is set to NULL.

Nulls in functions and expressions Most functions that have a null value
for any argument return null. Any expression that has a variable with a null
value results in null.

A boolean expression that is null is considered undefined and therefore false.

Testing for null To test whether a variable or expression is null, use the IsNull
function. You cannot use an equal sign (=) to test for null.

Valid This statement shows the correct way to test for null:

IF IsNull(a) THEN ...

Invalid This statement shows the incorrect way to test for null:

IF a = NULL THEN ...
8 PowerBuilder Classic

CHAPTER 1 Language Basics
Examples Example 1 None of the following statements make the computer beep (the
variable nbr is set to null, so each statement evaluates to false):

int Nbr
// Set Nbr to NULL.
SetNull(Nbr)
IF Nbr = 1 THEN Beep(1)
IF Nbr <> 1 THEN Beep(1)
IF NOT (Nbr = 1) THEN Beep(1)

Example 2 In this IF...THEN statement, the boolean expression evaluates to
false, so the ELSE is executed:

int a
SetNull(a)
IF a = 1 THEN
 MessageBox("Value", "a = 1")
ELSE
 MessageBox("Value", "a = NULL")
END IF

Example 3 This example is a more useful application of a null boolean
expression than Example 2. It displays a message if no control has focus. When
no control has focus, GetFocus returns a null object reference, the boolean
expression evaluates to false, and the ELSE is executed:

IF GetFocus() THEN
 . . . // Some processing
ELSE
 MessageBox("Important", "Specify an option!")
END IF
PowerScript Reference 9

Reserved words
Reserved words
The words PowerBuilder uses internally are called reserved words and cannot
be used as identifiers. If you use a reserved word as an identifier, you get a
compiler warning. Reserved words that are marked with an asterisk (*) can be
used as function names.

Table 1-3: PowerScript reserved words

The PowerBuilder system class also includes private variables that you cannot
use as identifiers. If you use a private variable as an identifier, you get an
informational message and should rename your identifier.

If you are deploying a DataWindow® to the Web, you cannot use JavaScript
reserved words to name fields or bands in the DataWindow object. The list of
reserved words is available on the Sun Microsystems Web site. at
http://docs.sun.com/source/816-6410-10/keywords.htm.

alias
and
autoinstantiate
call
case
catch
choose
close*
commit
connect
constant
continue
create*
cursor
declare
delete
describe*
descriptor
destroy
disconnect
do
dynamic
else
elseif
end
enumerated
event

execute
exit
external
false
fetch
finally
first
for
forward
from
function
global
goto
halt
if
immediate
indirect
insert
into
intrinsic
is
last
library
loop
namespace
native
next

not
of
on
open*
or
parent
post*
prepare
prior
private
privateread
privatewrite
procedure
protected
protectedread
protectedwrite
prototypes
public
readonly
ref
return
rollback
rpcfunc
select
selectblob
shared
static

step
subroutine
super
system
systemread
systemwrite
then
this
throw
throws
to
trigger
true
try
type
until
update*
updateblob
using
variables
while
with
within
xor
_debug
10 PowerBuilder Classic

CHAPTER 1 Language Basics
Pronouns
Description PowerScript has pronouns that allow you to make a general reference to an

object or control. When you use a pronoun, the reference remains correct even
if the name of the object or control changes.

Usage You can use pronouns in function and event scripts wherever you would use an
object’s name. For example, you can use a pronoun to:

• Cause an event in an object or control

• Manipulate or change an object or control

• Obtain or change the setting of a property

The following table lists the PowerScript pronouns and summarizes their use.

Table 1-4: PowerScript pronouns

ParentWindow property You can use the ParentWindow property of the
Menu object like a pronoun in Menu scripts. It identifies the window that the
menu is associated with when your program is running. For more information,
see the PowerBuilder Users Guide.

The rest of this section describes the individual pronouns in detail.

This pronoun In a script for a Refers to the

This Window, custom user object,
menu, application object, or
control

Object or control itself

Parent Control in a window Window containing the control

Control in a custom user
object

Custom user object containing the
control

Menu Item in the menu on the level
above the current menu

Super Descendent object or control Parent

Descendent window or user
object

Immediate ancestor of the window
or user object

Control in a descendent
window or user object

Immediate ancestor of the
control’s parent window or user
object
PowerScript Reference 11

Pronouns
Parent pronoun
Description Parent in a PowerBuilder script refers to the object that contains the current

object.

Usage You can use the pronoun Parent in scripts for:

• Controls in windows

• Custom user objects

• Menus

Where you use Parent determines what it references:

Window controls When you use Parent in a script for a control (such as a
CommandButton), Parent refers to the window that contains the control.

User object controls When you use Parent in a script for a control in a
custom user object, Parent refers to the user object.

Menus When you use Parent in a menu script, Parent refers to the menu item
on the level above the menu the script is for.

Examples Window controls If you include this statement in the script for the Clicked
event in a CommandButton within a window, clicking the button closes the
window containing the button:

Close(Parent)

If you include this statement in the script for the CommandButton, clicking the
button displays a horizontal scroll bar within the window (sets the HScrollBar
property of the window to true):

Parent.HScrollBar = TRUE

User object controls If you include this statement in a script for the Clicked
event for a CheckBox in a user object, clicking the check box hides the user
object:

Parent.Hide()

If you include this statement in the script for the CheckBox, clicking the check
box disables the user object (sets the Enabled property of the user object to
false):

Parent.Enabled = FALSE

Menus If you include this statement in the script for the Clicked event in the
menu item Select All under the menu item Select, clicking Select All disables
the menu item Select:

Parent.Disable()
12 PowerBuilder Classic

CHAPTER 1 Language Basics
If you include this statement in the script for the Clicked event in the menu item
Select All, clicking Select All checks the menu item Select:

Parent.Checked = TRUE

This pronoun
Description The pronoun This in a PowerBuilder script refers to the window, user object,

menu, application object, or control that owns the current script.

Usage Why include This Using This allows you to make ownership explicit. The
following statement refers to the current object’s X property:

This.X = This.X + 50

When optional but helpful In the script for an object or control, you can
refer to the properties of the object or control without qualification, but it is
good programming practice to include This to make the script clear and easy to
read.

When required There are some circumstances when you must use This.
When a global or local variable has the same name as an instance variable,
PowerBuilder finds the global or local variable first. Qualifying the variable
with This allows you to refer to the instance variable instead of the global
variable.

EAServer restriction
You cannot use This to pass arguments in EAServer components.

Examples Example 1 This statement in a script for a menu places a check mark next to
the menu selection:

This.Check()

Example 2 In this function call, This passes a reference to the object
containing the script:

ReCalc(This)

Example 3 If you omit This, “x” in the following statement refers to a local
variable x if there is one defined (the script adds 50 to the variable x, not to the
X property of the control). It refers to the object’s X property if there is no local
variable:

x = x + 50
PowerScript Reference 13

Pronouns
Example 4 Use This to ensure that you refer to the property. For example, in
the following statement in the script for the Clicked event for a
CommandButton, clicking the button changes the horizontal position of the
button (changes the button’s X property):

This.x = This.x + 50

Super pronoun
Description When you write a PowerBuilder script for a descendant object or control, you

can call scripts written for any ancestor. You can directly name the ancestor in
the call, or you can use the reserved word Super to refer to the immediate
ancestor.

Usage Whether to use Super If you are calling an ancestor function, you only need
to use Super if the descendant has a function with the same name and the same
arguments as the ancestor function. Otherwise, you would simply call the
function with no qualifiers.

Restrictions for Super You cannot use Super to call scripts associated with
controls in the ancestor window. You can only use Super in an event or function
associated with a direct descendant of the ancestor whose function is being
called. Otherwise, the compiler returns a syntax error.

To call scripts associated with controls, use the CALL statement.

See the discussion of CALL on page 123.

Examples Example 1 This example calls the ancestor function wf_myfunc (presumably
the descendant also has a function called wf_myfunc):

Super::wf_myfunc(myarg1, myarg2)

This example must be part of a script or function in the descendent window, not
one of the window’s controls. For example, if it is in the Clicked event of a
button on the descendent window, you get a syntax error when the script is
compiled.

Supplying arguments
Be certain to supply the correct number of arguments for the ancestor function.

Example 2 This example in a CommandButton script calls the Clicked script
for the CommandButton in the immediate ancestor window or user object:

Super::EVENT Clicked()
14 PowerBuilder Classic

CHAPTER 1 Language Basics
Statement continuation
Description Although you typically put one statement on each line, you occasionally need

to continue a statement to more than one line. The statement continuation
character is the ampersand (&). (For the use of the ampersand character in
accelerator keys, see the PowerBuilder Users Guide.)

Syntax Start of statement &
more statement &
end of statement

The ampersand must be the last nonwhite character on the line or the compiler
considers it part of the statement.

For information about white space, see “White space” on page 17.

Usage You do not use a continuation character for:

• Continuing comments Do not use a continuation character to continue
a comment. The continuation character is considered part of the comment
and is ignored by the compiler.

• Continuing SQL statements You do not need a continuation character
to continue a SQL statement. In PowerBuilder, SQL statements always
end with a semicolon (;), and the compiler considers everything from the
start of a SQL statement to a semicolon to be part of the SQL statement. A
continuation character in a SQL statement is considered part of the
statement and usually causes an error.

Examples Continuing a quoted string

One way Place an ampersand in the middle of the string and continue the
string on the next line:

IF Employee_District = "Eastern United States and&
Eastern Canada" THEN ...

Note that any white space (such as tabs and spaces) before the ampersand and
at the beginning of the continued line is part of the string.

A problem The following statement uses only the ampersand to continue the
quoted string in the IF...THEN statement to another line; for readability, a tab
has been added to indent the second line. The compiler includes the tab in the
string, which might result in an error:

IF Employee_District = "Eastern United States and&
 Eastern Canada" THEN ...
PowerScript Reference 15

Statement separation
A better way A better way to continue a quoted string is to enter a quotation
mark before the continuation character ('& or "&, depending on whether the
string is delimited by single or double quotation marks) at the end of the first
line of the string and a plus sign and a quotation mark (+' or +") at the start of
the next line. This way, you do not inadvertently include unwanted characters
(such as tabs or spaces) in the string literal:

IF Employee_District = "Eastern United States and "&
 +" Eastern Canada" THEN ...

The examples in the PowerBuilder documentation use this method to continue
quoted strings.

Continuing a variable name Do not split a line by inserting the continuation
character within a variable name. This causes an error and the statement fails,
because the continuation character splits the variable name “Quantity”:

Total-Cost = Price * Quan&
 tity + (Tax + Shipping)

Statement separation
Description Although you typically put one statement on each line, you occasionally want

to combine multiple statements on a single line. The statement separation
character is the semicolon (;).

Syntax Statement1; statement2

Examples The following line contains three short statements:

A = B + C; D = E + F; Count = Count + 1
16 PowerBuilder Classic

CHAPTER 1 Language Basics
White space
Description Blanks, tabs, form feeds, and comments are forms of white space. The

compiler treats white space as a delimiter and does not consider the number of
white space characters.

Usage White space in string literals The number of white space characters is
preserved when they are part of a string literal (enclosed in single or double
quotation marks).

Dashes in identifiers Unless you have prohibited the use of dashes in
identifiers (see “Identifier names” on page 5), you must surround a dash used
as a minus sign with spaces. Otherwise, PowerBuilder considers the dash as
part of a variable name:

Order - Balance // Subtracts Balance from Order
Order-Balance // A variable named Order-Balance

Examples Example 1 Here the spaces and the comment are white space, so the compiler
ignores them:

A + B /*Adjustment factor */+C

Example 2 Here the spaces are within a string literal, so the compiler does
not ignore them:

"The value of A + B is:"
PowerScript Reference 17

Conditional compilation
Conditional compilation
Description The use of conditional compilation directives causes the PowerBuilder

preprocessor to parse blocks of code before they are passed to the compiler.

Syntax #IF { NOT } DEFINED predefined_symbols THEN
action1

{ #ELSEIF DEFINED predefined_symbols THEN
action2 }

{ #ELSE
action3 }

#END IF

Usage Conditional compilation enables you to include PowerScript code for a specific
target type or set of target types in an application. You can also include debug
code in your application and specify in the Project painter whether it will be
included in your application’s executable file.

The preprocessor substitutes blank lines for statements with a leading number
(#) sign character. It passes the code in the action statements to the compiler or
converts it to blank lines depending on whether the condition in the previous
preprocessor directive was met.

The following table displays the predefined symbols, the project types to which
they correspond, and their effects on the code passed to the compiler.

Table 1-5: Predefined symbols for conditional compilation

Parameter Description
predefined_symbols A predefined identifier or a combination of

predefined identifiers separated by AND or OR
operators. In the current release, you cannot use a
user-defined identifier.

action1, action2,
action3

The action you want performed if the condition in the
previous statement was met.

Predefined
symbols Target type Code in this processing block

PBNATIVE Standard PowerBuilder
client-server or
distributed applications

Fully parsed for the standard
application and converted to blank
lines for .NET targets.

PBWEBFORM .NET Web Forms
applications

Fully parsed for .NET Web Forms
targets and converted to blank lines
for all other targets.

PBWINFORM .NET Windows Forms
applications

Fully parsed for .NET Windows
Forms targets and converted to
blank lines for all other targets.
18 PowerBuilder Classic

CHAPTER 1 Language Basics
You can use the NOT operator to include code for all target types that are not of
the type that you specify, and you can use AND and OR operators to combine
symbols. For example, code that follows this statement will be parsed for all
targets except standard PowerBuilder applications and .NET Windows Forms
targets:

#if NOT defined PBNATIVE OR PBWINFORM then

Comments can be added to conditional code blocks if they are preceded by
double slash marks (//) in the same line of code. You cannot use the
PowerScript line continuation character (&) in a conditional code statement.
You must use it in code that you embed in the conditional block when you use
more than one line for a single line of code.

PBWEBSERVICE .NET Web Service
component targets

Fully parsed for .NET Web Service
targets and converted to blank lines
for all other targets.

PBDOTNET .NET Web Forms and
Windows Forms
applications, and .NET
Assembly and .NET
Web Service
components

Fully parsed for all .NET targets
and converted to blank lines for all
other targets.

DEBUG All PowerBuilder
standard and .NET
targets

When a project’s Enable DEBUG
Symbol check box is selected, code
is fully parsed by the compiler and
included in the deployed
application. The code is converted
to blank lines when the check box is
cleared. The DEBUG symbol is
always defined in the development
environment.

Predefined
symbols Target type Code in this processing block
PowerScript Reference 19

Conditional compilation
Limitations and error
messages

Conditional compilation is not supported in DataWindow syntax, or in
structure or menu objects. You cannot edit the source code for an object to
include conditional compilation blocks that span function, event, or variable
definition boundaries.

You must rebuild your application after you add a DEBUG conditional block.

The following table shows the types of error messages displayed for incorrect
conditional compilation code.

Table 1-6: Types of error messages returned by the preprocessor

Examples When you run or debug the application in the development environment, the
following code is always parsed and you always see the message box. When
you run the executable file, the code is parsed only if the DEBUG symbol is
enabled on the General page in the Project painter:

#if defined DEBUG then
MessageBox("Debugging","Ctr value is " + string(i))

#end if

For examples of using conditional compilation in .NET targets, see the section
on conditional compilation in Deploying Applications and Components to
.NET.

Error message Description

Invalid if statement #if statement without a defined symbol, with an
incorrectly defined symbol, or without a then
clause

#end if directive expected #if statement without an #end if statement

Unexpected preprocessor
directive

Caused by an #else, #elseif, or #end if statement
when not preceded by an #if statement

Preprocessor syntax error Caused by including text after an #else or #end if
statement when the text is not preceded by
comment characters (//)
20 PowerBuilder Classic

C H A P T E R 2 Datatypes

About this chapter This chapter describes the PowerScript datatypes.

Contents

Standard datatypes
The datatypes The standard datatypes in PowerBuilder are the familiar datatypes that are

used in many programming languages, including char, integer, decimal,
long, and string. In PowerScript, you use these datatypes to declare
variables or arrays.

These are the standard PowerScript datatypes, followed by a description
of each:

Blob Binary large object. Used to store an unbounded amount of data (for
example, generic binary, image, or large text such as a word-processing
document).

Boolean Contains true or false.

Topic Page

Standard datatypes 21

The Any datatype 26

System object datatypes 29

Enumerated datatypes 30

PowerBuilder datatypes in EAServer 31

Blob Integer or Int

Boolean LongLong

Byte Long

Char or character Real

Date String

DateTime Time

Decimal or Dec UnsignedInteger, UnsignedInt, or UInt

Double UnsignedLong or ULong
PowerScript Reference 21

Standard datatypes
Byte 8-bit unsigned integers, from 0 to +255.

Using literals To assign a literal value, use any whole positive number in the
range 0 to 255. The leading plus sign is not required (18 and +18 are the same).
For example:

1 123 200 +55 +200

Char or character A single Unicode character.

If you have character-based data that you will want to parse in an application,
you might want to define it as an array of type char. Parsing a char array is
easier and faster than parsing strings. If you will be passing character-based
data to external functions, you might want to use char arrays instead of strings.

For more information about passing character-based data to external functions,
see Application Techniques. For information about datatype conversion when
assigning strings to chars and vice versa, see “String and char datatypes in
PowerBuilder” on page 78.

Using literals To assign a literal value, enclose the character in either single
or double quotation marks. For example:

char c
c = 'T'
c = "T"

Date The date, including the full year (1000 to 3000), the number of the month (01
to 12), and the day (01 to 31).

Using literals To assign a literal value, separate the year, month, and day
with hyphens. For example:

2001-12-25 // December 25, 2001
2003-02-06 // February 6, 2003

DateTime The date and time in a single datatype, used only for reading and writing
DateTime values from and to a database. To convert DateTime values to
datatypes that you can use in PowerBuilder, use:

• The Date(datetime) function to convert a DateTime value to a
PowerBuilder date value after reading from a database

• The Time(datetime) function to convert a DateTime value to a
PowerBuilder time value after reading from a database

• The DateTime (date, time) function to convert a date and (optional) time to
a DateTime before writing to a DateTime column in a database.

PowerBuilder supports microseconds in the database interface for any DBMS
that supports microseconds.
22 PowerBuilder Classic

CHAPTER 2 Datatypes
Decimal or Dec Signed decimal numbers, positive or negative, with up to 28 digits. You can
place the decimal point anywhere within the 28 digits—for example, 123.456,
0.000000000000000000000001 or 12345678901234.5678901234.

Using literals To assign a literal value, use any number with a decimal point
and no exponent. The plus sign is optional (95 and +95 are the same). For
numbers between zero and one, the zero to the left of the decimal point is
optional (for example, 0.1 and .1 are the same). For whole numbers, zeros to
the right of the decimal point are optional (32.00, 32.0, and 32. are all the
same). For example:

12.34 0.005 14.0 -6500 +3.5555

Double A signed floating-point number with 15 digits of precision and a range from
2.2250738585073E-308 to 1.79769313486231E+308, and
-2.2250738585073E-308 to -1.79769313486231E+308.

Integer or Int 16-bit signed integers, from -32768 to +32767.

Using literals To assign a literal value, use any whole number (positive,
negative, or zero). The leading plus sign is optional (18 and +18 are the same).
For example:

1 123 1200 +55 -32

Long 32-bit signed integers, from -2147483648 to +2147483647.

Using literals Use literals as for integers, but longer numbers are permitted.

LongLong 64-bit signed integers, from -9223372036854775808 to
9223372036854775807.

Using literals Use literals as for integers, but longer numbers are permitted.

Real A signed floating-point number with six digits of precision and a range from
3.402822E-38 to 3.402822E+38, and -3.402822E-38 to -3.402822E+38.

Using literals To assign a literal value, use a decimal value, followed by E,
followed by an integer; no spaces are allowed. The decimal number before the
E follows all the conventions specified above for decimal literals. The leading
plus sign in the exponent (the integer following the E) is optional (3E5 and
3E+5 are the same). For example:

2E4 2.5E38 +6.02E3 -4.1E-2
-7.45E16 7.7E+8 3.2E-38

String Any string of Unicode characters with variable length (0 to 1073741823).
PowerScript Reference 23

Standard datatypes
Most of the character-based data in your application, such as names, addresses,
and so on, will be defined as strings. PowerScript provides many functions that
you can use to manipulate strings, such as a function to convert characters in a
string to uppercase and functions to remove leading and trailing blanks.

For more information about passing character-based data to external functions,
see Application Techniques. For information about datatype conversion when
assigning strings to chars and vice versa, see “String and char datatypes in
PowerBuilder” on page 78.

Using literals To assign a literal value, enclose as many as 1024 characters
in either single or double quotes, including a string of zero length or an empty
string. For example:

string s1
s1 = 'This is a string'
s1 = "This is a string"

You can embed a quotation mark in a string literal if you enclose the literal with
the other quotation mark. For example, the following statements result in the
string Here's a string:

string s1
s1 = "Here's a string."

You can also use a tilde (~) to embed a quotation mark in a string literal. For
example:

string s1 = 'He said, "It~'s good!"'

Complex nesting When you nest a string within a string that is nested in
another string, you can use tildes to tell the parser how to interpret the quotation
marks. Each pass through the parser strips away the outermost quotes and
interprets the character after each tilde as a literal. Two tildes become one tilde,
and tilde-quote becomes the quote alone.

Example 1 This string has two levels of nesting:

"He said ~"she said ~~~"Hi ~~~" ~" "

The first pass results in:

He said "she said ~"Hi ~" "

The second pass results in:

she said "Hi"

The third pass results in:

Hi
24 PowerBuilder Classic

CHAPTER 2 Datatypes
Example 2 A more probable example is a string for the Modify function that
sets a DataWindow® property. The argument string often requires complex
quotation marks (because you must specify one or more levels of nested
strings). To understand the quotation marks, consider how PowerBuilder will
parse the string. The following string is a possible argument for the Modify
function; it mixes single and double quotes to reduce the number of tildes:

"bitmap_1.Invert='0~tIf(empstatus=~~'A~~',0,1)'"

The double quotes tell PowerBuilder to interpret the argument as a string. It
contains the expression being assigned to the Invert property, which is also a
string, so it must be quoted. The expression itself includes a nested string, the
quoted A. First, PowerBuilder evaluates the argument for Modify and assigns
the single-quoted string to the Invert property. In this pass through the string, it
converts two tildes to one. The string assigned to Invert becomes:

'0[tab]If(empstatus=~'A~',0,1)'

Finally, PowerBuilder evaluates the property’s expression, converting
tilde-quote to quote, and sets the bitmap’s colors accordingly.

Example 3 There are many ways to specify quotation marks for a particular
set of nested strings. The following expressions for the Modify function all have
the same end result:

"emp.Color = ~"0~tIf(stat=~~~"a~~~",255,16711680)~""
"emp.Color = ~"0~tIf(stat=~~'a~~',255,16711680)~""
"emp.Color = '0~tIf(stat=~~'a~~',255,16711680)'"
"emp.Color = ~"0~tIf(stat='a',255,16711680)~""

Rules for quotation marks and tildes When nesting quoted strings, the
following rules of thumb might help:

• A tilde tells the parser that the next character should be taken as a literal,
not a string terminator

• Pairs of single quotes (') can be used in place of pairs of tilde double
quotes (~")

• Pairs of tilde tilde single quotes (~~') can be used in place of pairs of triple
tilde double quotes (~~~")

Time The time in 24-hour format, including the hour (00 to 23), minute (00 to 59),
second (00 to 59), and fraction of second (up to six digits), with a range from
00:00:00 to 23:59:59.999999.

PowerBuilder supports microseconds in the database interface for any DBMS
that supports microseconds.
PowerScript Reference 25

The Any datatype
Using literals The time in 24-hour format, including the hour (00 to 23),
minute (00 to 59), second (00 to 59), and fraction of second (up to six digits),
with a range from 00:00:00 to 23:59:59.999999. You separate parts of the time
with colons—except for the fractions of seconds, which should be separated by
a decimal point. For example:

21:09:15 // 15 seconds after 9:09 pm

06:00:00 // Exactly 6 am

10:29:59 // 1 second before 10:30 am

10:29:59.9 // 1/10 sec before 10:30 am

UnsignedInteger,
UnsignedInt, or UInt

16-bit unsigned integers, from 0 to 65535.

UnsignedLong or
ULong

32-bit unsigned integers, from 0 to 4294967295.

The Any datatype
General information PowerBuilder also supports the Any datatype, which can hold any kind of

value, including standard datatypes, objects, structures, and arrays. A variable
whose type is Any is a chameleon datatype—it takes the datatype of the value
assigned to it.

Do not use Any in EAServer component definition
The Any datatype is specific to PowerScript and is not supported in the IDL of
an EAServer component. CORBA has a datatype called Any that can assume
any legal IDL type at runtime, but it is not semantically equivalent to the
PowerBuilder Any type. You must exclude the PowerBuilder Any datatype
from the component interface definition, but you can use it within the
component.

Declarations and
assignments

You declare Any variables just as you do any other variable. You can also
declare an array of Any variables, where each element of the array can have a
different datatype.

You assign data to Any variables with standard assignment statements. You can
assign an array to a simple Any variable.
26 PowerBuilder Classic

CHAPTER 2 Datatypes
After you assign a value to an Any variable, you can test the variable with the
ClassName function and find out the actual datatype:

any la_spreadsheetdata
la_spreadsheetdata = ole_1.Object.cells(1,1).value
CHOOSE CASE ClassName(la_spreadsheetdata)

CASE "integer"
...

CASE "string"
...

END CHOOSE

These rules apply to Any assignments:

• You can assign anything into an Any variable.

• You must know the content of an Any variable to make assignments from
the Any variable to a compatible datatype.

Restrictions If the value of a simple Any variable is an array, you cannot access the elements
of the array until you assign the value to an array variable of the appropriate
datatype. This restriction does not apply to the opposite case of an array of Any
variables—you can access each Any variable in the array.

If the value of an Any variable is a structure, you cannot use dot notation to
access the elements of the structure until you assign the value to a structure of
the appropriate datatype.

After a value has been assigned to an Any variable, it cannot be converted back
to a generic Any variable without a datatype. Even if you set it to NULL, it
retains the datatype of the assigned value until you assign another value.

Operations and
expressions

You can perform operations on Any variables as long as the datatype of the data
in the Any variable is appropriate to the operator. If the datatype is not
appropriate to the operator, an execution error occurs.

For example, if instance variables ia_1 and ia_2 contain numeric data, this
statement is valid:

any la_3
la_3 = ia_1 - ia_2

If ia_1 and ia_2 contain strings, you can use the concatenation operator:

any la_3
la_3 = ia_1 + ia_2

However, if ia_1 contained a number and ia_2 contained a string, you would
get an execution error.
PowerScript Reference 27

The Any datatype
Datatype conversion functions PowerScript datatype conversion functions
accept Any variables as arguments. When you call the function, the Any
variable must contain data that can be converted to the specified type.

For example, if ia_any contains a string, you can assign it to a string variable:

ls_string = ia_any

If ia_any contains a number that you want to convert to a string, you can call
the String function:

ls_string = String(ia_any)

Other functions If a function’s prototype does not allow Any as a datatype
for an argument, you cannot use an Any variable without a conversion function,
even if it contains a value of the correct datatype. When you compile the script,
you get compiler errors such as Unknown function or Function not
found.

For example, the argument for the Len function refers to a string column in a
DataWindow, but the expression itself has a type of Any:

IF Len(dw_notes.Object.Notes[1]) > 0 THEN // Invalid

This works because the string value of the Any expression is explicitly
converted to a string:

IF Len(String(dw_notes.Object.Notes[1])) > 0 THEN

Expressions whose datatype is Any Expressions that access data whose
type is unknown when the script is compiled have a datatype of Any. These
expressions include expressions or functions that access data in an OLE object
or a DataWindow object:

myoleobject.application.cells(1,1).value
dw_1.Object.Data[1,1]
dw_1.Object.Data.empid[99]

The objects these expressions point to can change so that the type of data being
accessed also changes.

Expressions that refer to DataWindow data can return arrays and structures and
arrays of structures as Any variables. For best performance, assign the
DataWindow expression to the appropriate array or structure without using an
intermediate Any variable.
28 PowerBuilder Classic

CHAPTER 2 Datatypes
Overusing the Any
datatype

Do not use Any variables as a substitute for selecting the correct datatype in
your scripts. There are two reasons for this:

• At execution time, using Any variables is slow PowerBuilder must
do much more processing to determine datatypes before it can make an
assignment or perform an operation involving Any variables. In particular,
an operation performed many times in a loop will suffer greatly if you use
Any variables instead of variables of the appropriate type.

• At compile time, using Any variables removes a layer of error
checking from your programming The PowerBuilder compiler makes
sure datatypes are correct before code gets executed. With Any variables,
some of the errors that can be caught by the compiler are not found until
the code is run.

System object datatypes
Objects as datatypes System object datatypes are specific to PowerScript. You view a list of all the

system objects by selecting the System tab in the Browser.

In building PowerBuilder applications, you manipulate objects such as
windows, menus, CommandButtons, ListBoxes, and graphs. Internally,
PowerBuilder defines each of these kinds of objects as a datatype. Usually you
do not need to concern yourself with these objects as datatypes—you simply
define the objects in a PowerBuilder painter and use them.

However, sometimes you need to understand how PowerBuilder maintains its
system objects in a hierarchy of datatypes. For example, when you need to
define instances of a window, you define variables whose datatype is window.
When you need to create an instance of a menu to pop up in a window, you
define a variable whose datatype is menu.

PowerBuilder maintains its system objects in a class hierarchy. Each type of
object is a class. The classes form an inheritance hierarchy of ancestors and
descendants.

Examples All the classes shown in the Browser are actually datatypes that you can use in
your applications. You can define variables whose type is any class.

For example, the following code defines window and menu variables:

window mywin
menu mymenu
PowerScript Reference 29

Enumerated datatypes
If you have a series of buttons in a window and need to keep track of one of
them (such as the last one clicked), you can declare a variable of type
CommandButton and assign it the appropriate button in the window:

// Instance variable in a window
commandbutton LastClicked
// In Clicked event for a button in the window.
// Indicates that the button was the last one
// clicked by the user.
LastClicked = This

Because it is a CommandButton, the LastClicked variable has all the properties
of a CommandButton. After the last assignment above, LastClicked’s
properties have the same values as the most recently clicked button in the
window.

To learn more about working with instances of objects through datatypes, see
“About objects” on page 80.

Enumerated datatypes
About enumerated
datatypes

Like the system object datatypes, enumerated datatypes are specific to
PowerScript. Enumerated datatypes are used in two ways:

• As arguments in functions

• To specify the properties of an object or control

You can list all the enumerated datatypes and their values by selecting the
Enumerated tab in the Browser.

You cannot create your own enumerated datatypes. As an alternative, you can
declare a set of constant variables and assign them initial values. See
“Declaring constants” on page 47.

A variable of one of the enumerated datatypes can be assigned a fixed set of
values. Values of enumerated datatypes always end with an exclamation point
(!). For example, the enumerated datatype Alignment, which specifies the
alignment of text, can be assigned one of the following three values: Center!,
Left!, and Right!:

mle_edit.Alignment=Right!
30 PowerBuilder Classic

CHAPTER 2 Datatypes
Incorrect syntax
Do not enclose an enumerated datatype value in quotation marks. If you do,
you receive a compiler error.

Advantages of
enumerated types

Enumerated datatypes have an advantage over standard datatypes. When an
enumerated datatype is required, the compiler checks the data and makes sure
it is the correct type. For example, if you set an enumerated datatype variable
to any other datatype or to an incorrect value, the compiler does not allow it.

PowerBuilder datatypes in EAServer
Prior to EAServer 6.0, all EAServer component interfaces were defined in
standard CORBA IDL. The following table lists the predefined datatypes used
in EAServer Manager, the equivalent CORBA IDL types, and the
PowerBuilder datatypes that they map to.

For information about datatype mapping in EAServer 6.0, see the
PowerBuilder components chapter in the CORBA Components Guide on the
Sybase Product Documents Web site.

Table 2-1: PowerBuilder datatypes in EAServer

EAServer Manager CORBA IDL PowerBuilder

Integer (16-bit) Short Integer

Integer (32-bit) Long Long

Integer (64-bit) Long long LongLong

Boolean Boolean Boolean

Float Float Real

Double Double Double

String String String

Binary BCD::Binary Blob

Decimal BCD::Decimal Decimal

Money BCD::Money Decimal

Date MJD::Date Date

Time MJD::Time Time

Timestamp MJD::Timestamp DateTime

ResultSet TabularResults::ResultSet ResultSet

ResultSets TabularResults::ResultSets ResultSets

Void Void None
PowerScript Reference 31

PowerBuilder datatypes in EAServer
32 PowerBuilder Classic

C H A P T E R 3 Declarations

About this chapter This chapter explains how to declare variables, constants, and arrays and
refer to them in scripts, and how to declare remote procedure calls (RPCs)
and external functions that reside in dynamic link libraries (DLLs).

Contents

Declaring variables
General information Before you use a variable in a PowerBuilder script, you must declare it

(give it a datatype and a name).

A variable can be a standard datatype, a structure, or an object. Object
datatypes can be system objects as displayed in the Browser or they can
be objects you have defined by deriving them from those system object
types. For most variables, you can assign it a value when you declare it.
You can always assign it a value within a script.

Topic Page

Declaring variables 33

Declaring constants 47

Declaring arrays 48

Declaring external functions 58

Declaring DBMS stored procedures as remote procedure calls 65
PowerScript Reference 33

Declaring variables
Where to declare variables
Scope You determine the scope of a PowerScript variable by selecting where you

declare it. Instance variables have additional access keywords that restrict
specific scripts from accessing the variable.

The following table shows the four scopes of variables.

Table 3-1: PowerScript variable scopes

Global, instance, and
shared declarations

Global, instance, and shared variables can be defined in the Script view of the
Application, Window, User Object, or Menu painters. Global variables can also
be defined in the Function painter:

1 Select Declare from the first drop-down list in the Script view.

2 Select the type of variable you want to declare in the second drop-down
list of the Script view.

3 Type the declaration in the scripting area of the Script view.

Local declarations You declare local variables for an object or control in the script for that object
or control.

Declaring SQL
cursors

You can also declare SQL cursors that are global, shared, instance, or local.
Open a specific script or select a variable declaration scope in the Script view
and type the DECLARE SQL statement or select Paste SQL from the PainterBar
or pop-up menu.

Scope Description

Global Accessible anywhere in the application. It is independent of any object
definition.

Instance Belongs to an object and is associated with an instance of that object
(you can think of it as a property of the object). Instance variables have
access keywords that determine whether scripts of other objects can
access them. They can belong to the application object, a window, a user
object, or a menu.

Shared Belongs to an object definition and exists across all instances of the
object. Shared variables retain their value when an object is closed and
opened again.

Shared variables are always private. They are accessible only in scripts
for the object and for controls associated with the object. They can
belong to the application object, a window, a user object, or a menu.

Local A temporary variable that is accessible only in the script in which you
define it. When the script has finished executing, the variable constant
ceases to exist.
34 PowerBuilder Classic

CHAPTER 3 Declarations
About using variables
General information To use or set a variable’s value in a PowerBuilder script, you name the variable.

The variable must be known to the compiler—in other words, it must be in
scope.

You can use a variable anywhere you need its value—for example, as a
function argument or in an assignment statement.

How PowerBuilder
looks for variables

When PowerBuilder executes a script and finds an unqualified reference to a
variable, it searches for the variable in the following order:

1 A local variable

2 A shared variable

3 A global variable

4 An instance variable

As soon as PowerBuilder finds a variable with the specified name, it uses the
variable’s value.

Referring to global
variables

To refer to a global variable, you specify its name in a script. However, if the
global variable has the same name as a local or shared variable, the local or
shared variable will be found first.

To refer to a global variable that is masked by a local or shared variable of the
same name, use the global scope operator (::) before the name:

::globalname

For example, this statement compares the value of local and global variables,
both named total:

IF total < ::total THEN ...

Referring to instance
variables

You can refer to an instance variable in a script if there is an instance of the
object open in the application. Depending on the situation, you might need to
qualify the name of the instance variable with the name of the object defining
it.

Using unqualified names You can refer to instance variables without
qualifying them with the object name in the following cases:

• For application-level variables, in scripts for the application object

• For window-level variables, in scripts for the window itself and in scripts
for controls in that window
PowerScript Reference 35

Declaring variables
• For user-object-level variables, in scripts for the user object itself and in
scripts for controls in that user object

• For menu-level variables, in scripts for a menu object, either the highest-
level menu or scripts for the menu objects included as items on the menu

For example, if w_emp has an instance variable EmpID, then you can reference
EmpID without qualification in any script for w_emp or its controls as follows:

sle_id.Text = EmpID

Using qualified names In all other cases, you need to qualify the name of
the instance variable with the name of the object using dot notation:

object.instancevariable

This requirement applies only to Public instance variables. You cannot
reference Private instance variables outside the object at all, qualified or not.

For example, to refer to the w_emp instance variable EmpID from a script
outside the window, you need to qualify the variable with the window name:

sle_ID.Text = w_emp.EmpID

There is another situation in which references must be qualified. Suppose that
w_emp has an instance variable EmpID and that in w_emp there is a
CommandButton that declares a local variable EmpID in its Clicked script. In
that script, you must qualify all references to the instance variable:

Parent.EmpID

Using pronouns as
name qualifiers

To avoid ambiguity when referring to variables, you might decide to always
use qualified names for object variables. Qualified names leave no doubt about
whether a variable is local, instance, or shared.

To write generic code but still use qualified names, you can use the pronouns
This and Parent to refer to objects. Pronouns keep a script general by allowing
you to refer to the object without naming it specifically.

Window variables in window scripts In a window script, use the pronoun
This to qualify the name of a window instance variable. For example, if a
window has an instance variable called index, then the following statements are
equivalent in a script for that window, as long as there is no local or global
variable named index:

index = 5
This.index = 5
36 PowerBuilder Classic

CHAPTER 3 Declarations
Window variables in control scripts In a script for a control in a window,
use the pronoun Parent to qualify the name of a window instance variable—the
window is the parent of the control. In this example, the two statements are
equivalent in a script for a control in that window, as long as there is no local
or global variable named “index”:

index = 5
Parent.index = 5

Naming errors If a local or global variable exists with the name “index,”
then the unqualified name refers to the local or global variable. It is a
programming error if you meant to refer to the object variable. You get an
informational message from the compiler if you use the same name for instance
and global variables.

Syntax of a variable declaration
Simple syntax In its simplest form, a PowerScript variable declaration requires only two parts:

the datatype and the variable name. For example:

datatype variablename

Full syntax The full syntax allows you to specify access and an initial value. Arrays and
some datatypes, such as blobs and decimals, accept additional information:

{ access } datatype { { size } } { { precision } } variablename { = value }
{, variablename2 { = value2 } }

Table 3-2: Variable declaration parameters

Parameter Description

access
(optional)

(For instance variables only) Keywords specifying the access
for the variable. For information, see “Access for instance
variables” on page 43.

datatype The datatype of the variable. You can specify a standard
datatype, a system object, or a previously defined structure.

For blobs and decimals, you can specify the size or precision of
the data by including an optional value in brackets.

{ size }
(optional)

(For blobs only) A number, enclosed in braces, specifying the
size in bytes of the blob. If { size } is omitted, the blob has an
initial size of zero and PowerBuilder adjusts its size each time
it is used at runtime.

If you enter a size that exceeds the declared length in a script,
PowerBuilder truncates the blob data.
PowerScript Reference 37

Declaring variables
Examples Declaring instance variables

integer ii_total = 100 // Total shares
date id_date // Date shares were bought

Declaring a global variable

string gs_name

Declaring shared variables

time st_process_start
string ss_process_name

Declaring local variables

string ls_city = "Boston"
integer li_count

Declaring blobs This statement declares ib_Emp_Picture a blob with an
initial length of zero. The length is adjusted when data is assigned to it:

blob ib_Emp_Picture

This statement declares ib_Emp_Picture a blob with a fixed length of 100
bytes:

blob{100} ib_Emp_Picture

Declaring decimals These statements declare shared variables sc_Amount
and sc_dollars_accumulated as decimal numbers with two digits after the
decimal point:

decimal{2} sc_Amount
decimal{2} sc_dollars_accumulated

{ precision }
(optional)

(For decimals only) A number, enclosed in braces, specifying
the number of digits after the decimal point. If you do not
specify a precision, the variable takes the precision assigned to
it in the script.

variablename The name of the variable (must be a valid PowerScript
identifier, as described in “Identifier names” on page 5).

You can define additional variables with the same datatype by
naming additional variable names, separated by commas; each
variable can have a value.

value
(optional)

A literal or expression of the appropriate datatype that will be
the initial value of the variable.

Blobs cannot be initialized with a value.

For information, see “Initial values for variables” on page 40.

Parameter Description
38 PowerBuilder Classic

CHAPTER 3 Declarations
This statement declares lc_Rate1 and lc_Rate2 as decimal numbers with four
digits after the decimal point:

dec{4} lc_Rate1, lc_Rate2

This statement declares lc_Balance as a decimal with zero digits after the
decimal point:

decimal{0} lc_Balance

This statement does not specify the number of decimal places for lc_Result.
After the product of lc_Op1 and lc_Op2 is assigned to it, lc_Result has four
decimal places:

dec lc_Result
dec{2} lc_Op1, lc_Op2
lc_Result = lc_Op1 * lc_Op2

Datatype of a variable

A PowerScript variable can be declared as one of the following datatypes:

• A standard datatype (such as an integer or string).

• An object or control (such as a window or CommandButton).

• An object or structure that you have defined (such as a window called
mywindow). An object you have defined must be in a library on the
application’s library search path when the script is compiled.

Variable names

In a well-planned application, standards determine how you name your
PowerScript variables. Naming conventions make scripts easy to understand
and help you avoid name conflicts. A typical approach is to include a prefix
that identifies the scope and the datatype of the variable. For example, a prefix
for an instance variable’s name typically begins with i (such as ii_count or
is_empname), a local integer variable’s name would be li_total and a global
integer variable’s name would be gi_total. For information about naming
conventions, see the PowerBuilder Users Guide.

X and Y as variable
names

Although you might think of x and y as typical variable names, in
PowerBuilder they are also properties that specify an object’s onscreen
coordinates. If you use them as variables and forget to declare them, you do not
get a compiler error. Instead, PowerBuilder assumes you want to move the
object, which might lead to unexpected results in your application.
PowerScript Reference 39

Declaring variables
Initial values for variables

When you declare a PowerScript variable, you can accept the default initial
value or specify an initial value in the declaration.

Default values for
variables

If you do not initialize a variable when you declare it, PowerBuilder sets the
variable to the default value for its datatype as shown in the following table.

Table 3-3: Default initial values for variables

Specifying a literal as
a initial value

To initialize a variable when you declare it, place an equal sign (=) and a literal
appropriate for that variable datatype after the variable. For information about
literals for specific datatypes, see “Standard datatypes” on page 21.

Do not use a function’s return value
You should not initialize a variable by assigning it the return value of a global
user defined function, because it might not compile correctly, or because it
could lead to confusion about the value assigned. For example, do not use:

integer i = f_return_one()

Although you can use global system functions or expressions to initialize
variables with compile time values in a variable declaration statement, for
runtime value assignments, you must also declare variables and assign their
values in separate statements.

This example declares li_count as an integer whose value is 5:

integer li_count=5

This example declares li_a and li_b as integers and initializes li_a to 5 and li_b
to 10:

integer li_a=5, li_b=10

For this variable datatype PowerBuilder sets this default value

Blob A blob of 0 length; an empty blob

Char (or character) ASCII value 0

Boolean false

Date 1900-01-01 (January 1, 1900)

DateTime 1900-01-01 00:00:00

Numeric (byte, integer, long, longlong,
decimal, real, double, UnsignedInteger,
and UnsignedLong)

0

String Empty string ("")

Time 00:00:00 (midnight)
40 PowerBuilder Classic

CHAPTER 3 Declarations
This example initializes ls_method with the string "UPS":

string ls_method="UPS"

This example initializes ls_headers to three words separated by tabs:

string ls_headers = "Name~tAddress~tCity"

This example initializes li_a to 1 and li_c to 100, leaving li_b set to its default
value of zero:

integer li_a=1, li_b, li_c=100

This example declares ld_StartDate as a date and initializes it with the date
February 1, 2004:

date ld_StartDate = 2004-02-01

Specifying an
expression as an
initial value

You can initialize a variable with the value of an existing variable or
expression, such as:

integer i = 100
integer j = i

When you do this, the second variable is initialized with the value of the
expression when the script is compiled. The initialization is not reevaluated at
runtime.

If the expression’s value changes Because the expression’s value is set to
the variable when the script is compiled (not at runtime) make sure the
expression is not one whose value is based on current conditions. If you want
to specify an expression whose value will be different when the application is
executed, do not initialize the variable in the declaration. For such values,
declare the variable and assign the value in separate statements.

In this declaration, the value of d_date is the date the script is compiled:

date d_date = Today()

In contrast, these statements result in d_date being set to the date the
application is run:

date d_date
d_date = Today()

How shared variables
are initialized

When you use a shared variable in a script, the variable is initialized when the
first instance of the object is opened. When the object is closed, the shared
variable continues to exist until you exit the application. If you open the object
again without exiting the application, the shared variable will have the value it
had when you closed the object.
PowerScript Reference 41

Declaring variables
For example, if you set the shared variable Count to 20 in the script for a
window, then close the window, and then reopen the window without exiting
the application, Count will be equal to 20.

When using multiple instances of windows
If you have multiple instances of the window in the example above, Count will
be equal to 20 in each instance. Since shared variables are shared among all
instances of the window, changing Count in any instance of the window
changes it for all instances.

How instance
variables are
initialized

When you define an instance variable for a window, menu, or application
object, the instance variable is initialized when the object is opened. Its initial
value is the default value for its datatype or the value specified in the variable
declarations.

When you close the object, the instance variable ceases to exist. If you open the
object again, the instance variable is initialized again.

When to use multiple instances of windows When you build a script for
one of multiple instances of a window, instance variables can have a different
value in each instance of the window. For example, to set a flag based on the
contents of the instance of a window, you would use an instance variable.

When to use shared variables instead Use a shared variable instead of an
instance variable if you need a variable that:

• Keeps the same value over multiple instances of an object

• Continues to exist after the object is closed
42 PowerBuilder Classic

CHAPTER 3 Declarations
Access for instance variables
Description The general syntax for declaring PowerScript variables (see “Syntax of a

variable declaration” on page 37) showed that you can specify access
keywords in a declaration for an instance variable. This section describes those
keywords.

When you specify an access right for a variable, you are controlling the
visibility of the variable or its visibility access. Access determines which
scripts recognize the variable’s name.

For a specified access right, you can control operational access with modifier
keywords. The modifiers specify which scripts can read the variable’s value
and which scripts can change it.

Syntax { access-right } { readaccess } { writeaccess } datatype variablename

The following table describes the parameters you can use to specify access
rights for instance variables.

Table 3-4: Instance variable declaration parameters for access rights

Parameter Description

access-right
(optional)

A keyword specifying where the variable’s name will be
recognized. Values are:

• PUBLIC – (Default) Any script in the application can refer to
the variable. In another object’s script, you use dot notation
to qualify the variable name and identify the object it
belongs to.

• PROTECTED – Scripts for the object for which the variable
is declared and its descendants can refer to the variable.

• PRIVATE – Scripts for the object for which the variable is
declared can refer to the variable. You cannot refer to the
variable in descendants of the object.

readaccess
(optional)

A keyword restricting the ability of scripts to read the variable’s
value. Values are:

• PROTECTEDREAD – Only scripts for the object and its
descendants can read the variable.

• PRIVATEREAD – Only scripts for the object can read the
variable.

When access-right is PUBLIC, you can specify either keyword.
When access-right is PROTECTED, you can specify only
PRIVATEREAD. You cannot specify a modifier for PRIVATE
access, because PRIVATE is already fully restricted.

If readaccess is omitted, any script can read the variable.
PowerScript Reference 43

Declaring variables
Usage Access modifiers give you more control over which objects have access to a
particular object’s variables. A typical use is to declare a public variable but
only allow the owner object to modify it:

public protectedwrite integer ii_count

You can also group declarations that have the same access by specifying the
access-right keyword as a label (see "Another format for access-right
keywords" next).

When you look at exported object syntax, you might see the access modifiers
SYSTEMREAD and SYSTEMWRITE. Only PowerBuilder can access variables
with these modifiers. You cannot refer to variables with these modifiers in your
scripts and functions and you cannot use these modifiers in your own
definitions.

Examples To declare these variables, select Declare>Instance Variables in the appropriate
painter.

These declarations use access keywords to control the scripts that have access
to the variables:

private integer ii_a, ii_n
public integer ii_Subtotal
protected integer ii_WinCount

writeaccess
(optional)

A keyword restricting the ability of scripts to change the
variable’s value. Values are:

• PROTECTEDWRITE – Only scripts for the object and its
descendants can change the variable.

• PRIVATEWRITE – Only scripts for the object can change the
variable.

When access-right is PUBLIC, you can specify either keyword.
When access-right is PROTECTED, you can specify only
PRIVATEWRITE. You cannot specify a modifier for PRIVATE
access, because PRIVATE is already fully restricted.

If writeaccess is omitted, any script can change the variable.

datatype A valid datatype. See “Syntax of a variable declaration” on
page 37.

variablename A valid identifier. See “Syntax of a variable declaration” on
page 37.

Parameter Description
44 PowerBuilder Classic

CHAPTER 3 Declarations
This protected variable can only be changed by scripts of the owner object;
descendants of the owner can read it:

protected privatewrite string is_label

These declarations have public access (the default) but can only be changed by
scripts in the object itself:

privatewrite real ir_accum, ir_current_data

This declaration defines an integer that only the owner objects can write or read
but whose name is reserved at the public level:

public privateread privatewrite integer ii_reserved

Private variable not recognized outside its object Suppose you have
defined a window w_emp with a private integer variable ii_int:

private integer ii_int

In a script you declare an instance of the window called w_myemp. If you refer
to the private variable ii_int, you get a compiler warning that the variable is not
defined (because the variable is private and is not recognized in scripts outside
the window itself):

w_emp w_myemp
w_myemp.ii_int = 1 // Variable not defined

Public variable with restricted access Suppose you have defined a
window w_emp with a public integer variable ii_int with write access restricted
to private:

public privatewrite integer ii_int

If you write the same script as above, the compiler warning will say that you
cannot write to the variable (the name is recognized because it is public, but
write access is not allowed):

w_emp w_myemp
w_myemp.ii_int = 1 // Cannot write to variable
PowerScript Reference 45

Declaring variables
Another format for access-right keywords
Description You can also group declarations of PowerScript variables according to access

by specifying the access-right keyword as a label. It appears on its own line,
followed by a colon (:).

Syntax access-right:

{ readaccess } { writeaccess } datatype variablename

{ access-right } { readaccess } { writeaccess } datatype variablename

{ readaccess } { writeaccess } datatype variablename

Within a labeled group of declarations, you can override the access on a single
line by specifying another access-right keyword with the declaration. The
labeled access takes effect again on the following lines.

Examples In these declarations, the instance variables have the access specified by the
label that precedes them. Another private variable is defined at the end, where
private overrides the public label:

Private:
integer ii_a=10, ii_b=24
string is_Name, is_Address1
Protected:
integer ii_Units
double idb_Results
string is_Lname
Public:
integer ii_Weight
string is_Location="Home"
private integer ii_test

Some of these protected declarations have restricted write access:

Protected:
integer ii_Units
privatewrite double idb_Results
privatewrite string is_Lname
46 PowerBuilder Classic

CHAPTER 3 Declarations
Declaring constants
Description Any PowerScript variable declaration of a standard datatype that can be

assigned an initial value can be a constant instead of a variable. To make it a
constant, include the keyword CONSTANT in the declaration and assign it an
initial value.

Syntax CONSTANT { access } datatype constname = value

The following table shows the parameters used to declare constants.

Table 3-5: Constant variable declaration parameters

Usage When declaring a constant, an initial value is required. Otherwise, a compiler
error occurs. Assigning a value to a constant after it is declared (that is,
redefining a constant in a descendant object) also causes a compiler error.

Examples Although PowerScript is not case sensitive, these examples of local constants
use a convention of capitalizing constant names:

constant string LS_HOMECITY = "Boston"
constant real LR_PI = 3.14159265

Parameter Description

CONSTANT Declares a constant instead of a variable. The CONSTANT
keyword can be before or after the access keywords.

access
(optional)

(For instance variables only) Keywords specifying the access
for the constant. For information, see “Access for instance
variables” on page 43.

datatype A standard datatype for the constant. For decimals, you can
include an optional value in brackets to specify the precision of
the data. Blobs cannot be constants.

For information about PowerBuilder datatypes, see “Standard
datatypes” on page 21.

constname The name of the constant (must be a valid PowerScript
identifier, as described in “Identifier names” on page 5).

value A literal or expression of the appropriate datatype that will be
the value of the constant. The value is required. For
information, see “Initial values for variables” on page 40.
PowerScript Reference 47

Declaring arrays
Declaring arrays
Description An array is an indexed collection of elements of a single datatype. In

PowerBuilder, an array can have one or more dimensions. One-dimensional
arrays can have a fixed or variable size; multidimensional arrays always have
a fixed size. Each dimension of an array can have 2,147,483,647 bytes of
elements.

Any simple variable declaration becomes an array when you specify brackets
after the variable name. For fixed-size arrays, you specify the sizes of the
dimensions inside those brackets.

Syntax { access } datatype variablename { d1, ..., dn } { = { valuelist } }

The following table describes the parameters used to declare array variables.

Table 3-6: Array variable declaration parameters

Parameter Description

access
(optional)

(For instance variables only) Keywords specifying the access
for the variable. For information, see “Access for instance
variables” on page 43.

datatype The datatype of the variable. You can specify a standard
datatype, a system object, or a previously defined structure.

For decimals, you can specify the precision of the data by
including an optional value in brackets after datatype (see
“Syntax of a variable declaration” on page 37):

decimal {2} variablename []
For blobs, fixed-length blobs within an array are not supported.
If you specify a size after datatype, it is ignored.

variablename The name of the variable (name must be a valid PowerScript
identifier, as described in “Identifier names” on page 5).

You can define additional arrays with the same datatype by
naming additional variable names with brackets and optional
value lists, separated by commas.
48 PowerBuilder Classic

CHAPTER 3 Declarations
Examples These declarations create variable-size arrays:

integer li_stats[] // Array of integers.
decimal {2} ld_prices[] // Array of decimals with

// 2 places of precision.
blob lb_data[] // Array of variable-size

// blobs.
date ld_birthdays[] // Array of dates.
string ls_city[] // Array of strings.

// Each string can be
// any length.

This statement declares a variable-size array of decimal number (the
declaration does not specify a precision, so each element in the array takes the
precision of the value assigned to it):

dec lc_limit[]

[{ d1, ..., dn }] Brackets and (for fixed-size arrays) one or more integer values
(d1 through dn, one for each dimension) specifying the sizes of
the dimensions.

For a variable-size array, which is always one-dimensional,
specify brackets only.

For more information on how variable-size arrays change size,
see “Size of variable-size arrays” on page 53.

For a fixed-size array, the number of dimensions is determined
by the number of integers you specify and is limited only by the
amount of available memory.

For fixed-size arrays, you can use TO to specify a range of
element numbers (instead of a dimension size) for one or more
of the dimensions. Specifying TO allows you to change the
lower bound of the dimension (upperbound must be greater
than lowbound):

[
 d1lowbound TO d1upperbound {, ... ,
dnlowbound TO dnupperbound }
]

{ valuelist }
(optional)

A list of initial values for each position of the array. The values
are separated by commas and the whole list is enclosed in
braces. The number of values cannot be greater than the
number of positions in the array. The datatype of the values
must match datatype.

Parameter Description
PowerScript Reference 49

Declaring arrays
Fixed arrays These declarations create fixed-size, one-dimensional arrays:

integer li_TaxCode[3] // Array of 3 integers.
string ls_day[7] // Array of 7 strings.
blob ib_image[10] // Array of 10

// variable-size blobs.
dec{2} lc_Cost[10] // Array of 10 decimal

// numbers.
// Each value has 2 digits
// following the decimal
// point.

decimal lc_price[20] // Array of 20 decimal
// numbers.
// Each takes the precision
// of the value assigned.

Using TO to change array index values These fixed-size arrays use TO to
change the range of index values for the array:

real lr_Rate[2 to 5] // Array of 4 real numbers:
// Rate[2] through Rate[5]

integer li_Qty[0 to 2] // Array of 3 integers
string ls_Test[-2 to 2] // Array of 5 strings
integer li_year[76 to 96] // Array of 21 integers
string ls_name[-10 to 15] // Array of 26 strings

Incorrect declarations using TO In an array dimension, the second number
must be greater than the first. These declarations are invalid:

integer li_count[10 to 5] // INVALID: 10 is
// greater than 5

integer li_price[-10 to -20] // INVALID: -10
// is greater than -20

Arrays with two or more dimensions This declaration creates a
six-element, two-dimensional integer array. The individual elements are
li_score[1,1], li_score[1,2], li_score[1,3], li_score[2,1], li_score[2,2], and
li_score[2,3]:

integer li_score[2,3]

This declaration specifies that the indexes for the dimensions are 1 to 5 and 10
to 25:

integer li_RunRate[1 to 5, 10 to 25]

This declaration creates a 3-dimensional 45,000-element array:

long ll_days[3, 300, 50]
50 PowerBuilder Classic

CHAPTER 3 Declarations
This declaration changes the subscript range for the second and third
dimension:

integer li_staff[100, 0 to 20, -5 to 5]

More declarations of multidimensional arrays:

string ls_plant[3,10] // two-dimensional array
// of 30 strings

dec{2} lc_rate[3,4] // two-dimensional array of 12
// decimals with 2 digits
// after the decimal point

This declaration creates three decimal arrays:

decimal{3} lc_first[10],lc_second[15,5],lc_third[]

Values for array elements
General information PowerBuilder initializes each element of an array to the same default value as

its underlying datatype. For example, in a newly declared integer array:

integer li_TaxCode[3]

the elements li_TaxCode[1], li_TaxCode[2], and li_TaxCode[3] are all
initialized to zero.

For information about default values for basic datatypes, see “Initial values for
variables” on page 40.

Simple array In a simple array, you can override the default values by initializing the
elements of the array when you declare the array. You specify the values in a
comma-separated list of values enclosed in braces. You do not have to initialize
all the elements of the array, but you cannot initialize values in the middle or
end without initializing the first elements.

Multidimensional array In a multidimensional array, you still provide the values in a simple,
comma-separated list. When the values are assigned to array positions, the first
dimension is the fastest-varying dimension, and the last dimension is the
slowest-varying. In other words, the values are assigned to array positions by
looping over all the values of the first dimension for each value of the second
dimension, then looping over all the values of the second dimension for each
value of the third, and so on.
PowerScript Reference 51

Declaring arrays
Assigning values
You can assign values to an array after declaring it using the same syntax of a
list of values within braces:

integer li_Arr[]
Li_Arr = {1, 2, 3, 4}

Examples Example 1 This statement declares an initialized one-dimensional array of
three variables:

real lr_Rate[3]={1.20, 2.40, 4.80}

Example 2 This statement initializes a two-dimensional array:

integer li_units[3,4] = {1,2,3, 1,2,3, 1,2,3, 1,2,3}

As a result:

Li_units[1,1], [1,2], [1,3], and [1,4] are all 1
Li_units[2,1], [2,2], [2,3], and [2,4] are all 2
Li_units[3,1], [3,2], [3,3], and [3,4] are all 3

Example 3 This statement initializes the first half of a 3-dimensional array:

integer li_units[3,4,2] = &
 {1,2,3, 1,2,3, 1,2,3, 1,2,3}

As a result:

Li_units[1,1,1], [1,2,1], [1,3,1], and [1,4,1] are all 1
Li_units[2,1,1], [2,2,1], [2,3,1], and [2,4,1] are all 2
Li_units[3,1,1], [3,2,1], [3,3,1], and [3,4,1] are all 3
Li_units[1,1,2], [1,2,2], [1,3,2], and [1,4,2] are all 0
Li_units[2,1,2], [2,2,2], [2,3,2], and [2,4,2] are all 0
Li_units[3,1,2], [3,2,2], [3,3,2], and [3,4,2] are all 0
52 PowerBuilder Classic

CHAPTER 3 Declarations
Size of variable-size arrays
General information A variable-size array consists of a variable name followed by square brackets

but no number. PowerBuilder defines the array elements by use at execution
time (subject only to memory constraints). Only one-dimensional arrays can be
variable-size arrays.

Because you do not declare the size, you cannot use the TO notation to change
the lower bound of the array, so the lower bound of a variable-size array is
always 1.

Using arrays with a TO clause in EAServer components
When you generate a proxy for an EAServer component deployed from
PowerBuilder that contains an array that uses a TO clause, the proxy object
represents the range as a single value because CORBA IDL does not support
the TO clause. For example, Int ar1[5 TO 10] is represented as Int ar1[6],
with [6] representing the number of array elements. Client applications must
declare the array using a single value instead of a range.

How memory is
allocated

Initializing elements of a variable-size array allocates memory for those
elements. You specify initial values just as you do for fixed-size arrays, by
listing the values in braces. The following statement sets code[1] equal to 11,
code[2] equal to 242, and code[3] equal to 27. The array has a size of 3
initially, but the size will change if you assign values to higher positions:

integer li_code[]={11,242,27}

For example, these statements declare a variable-size array and assigns values
to three array elements:

long ll_price[]
ll_price[100] = 2000
ll_price[50] = 3000
ll_price[110] = 5000

When these statements first execute, they allocate memory as follows:

• The statement ll_price[100]=2000 will allocate memory for 100 long
numbers ll_price[1] to ll_price[100], then assign 0 (the default for
numbers) to ll_price[1] through ll_price[99] and assign 2000 to
ll_price[100].

• The statement ll_price[50]=3000 will not allocate more memory but
will assign the value 3000 to the 50th element of the ll_price array.
PowerScript Reference 53

Declaring arrays
• The statement ll_price[110]=5000 will allocate memory for 10 more
long numbers named ll_price[101] to ll_price[110] and then assign 0 (the
default for numbers) to ll_price[101] through ll_price[109] and assign
5000 to ll_price[110].

More about arrays
This section provides technical details about:

• Assigning one array to another

• Using arraylists to assign values to an array

• Errors that occur when addressing arrays

Assigning one array to another
General information When you assign one array to another, PowerBuilder uses the following rules

to map the values of one onto the other.

One-dimensional
arrays

To an unbounded array The target array is the same as the source:

integer a[], b[]
a = {1,2,3,4}
b = a

To a bounded array If the source array is smaller, values from the source
array are copied to the target array and extra values are set to zero. In this
example, b[5] and b[6] are set to 0:

integer a[], b[6]
a = {1,2,3,4}
b = a

If the source array is larger, values from the source array are copied to the target
array until it is full (and extra values from the source array are ignored). In this
example, the array b has only the first three elements of a:

integer a[], b[3]
a = {1,2,3,4}
b = a

Multidimensional
arrays

PowerBuilder stores multidimensional arrays in column major order, meaning
the first subscript is the fastest varying—[1,1], [2,1], [3,1]).
54 PowerBuilder Classic

CHAPTER 3 Declarations
When you assign one array to another, PowerBuilder linearizes the source
array in column major order, making it a one-dimensional array. PowerBuilder
then uses the rules for one-dimensional arrays (described above) to assign the
array to the target.

Not all array assignments are allowed, as described in the following rules.

One multidimensional array to another If the dimensions of the two arrays
match, the target array becomes an exact copy of the source:

integer a[2,10], b[2,10]
a = b

If both source and target are multidimensional but do not have matching
dimensions, the assignment is not allowed and the compiler reports an error:

integer a[2,10], b[4,10]
a = b // Compiler error

One-dimensional array to a multidimensional array A one-dimensional
array can be assigned to a multidimensional array. The values are mapped onto
the multidimensional array in column major order:

integer a[], b[2,2]
b = a

Multidimensional array to a one-dimensional array A multidimensional
array can also be assigned to a one-dimensional array. The source is linearized
in column major order and assigned to the target:

integer a[], b[2,2]
a = b

Examples Suppose you declare three arrays (a, b, and c). One (c) is unbounded and
one-dimensional; the other two (a and b) are multidimensional with different
dimensions:

integer c[], a[2,2], b[3,3] = {1,2,3,4,5,6,7,8,9}

Array b is laid out like this:

This statement causes a compiler error, because a and b have different
dimensions:

a = b // Compiler error

1 for b[1,1] 4 for b[1,2] 7 for b[1,3]

2 for b[2,1] 5 for b[2,2] 8 for b[2,3]

3 for b[3,1] 6 for b[3,2] 9 for b[3,3]
PowerScript Reference 55

Declaring arrays
This statement explicitly linearizes b into c:

c = b

You can then assign the linearized version of the array to a:

a = c

The values in array a are laid out like this:

Initializing a with an arraylist produces the same result:

integer a[2,2] = {1,2,3,4}

The following section describes arraylists.

Using arraylists to assign values to an array
General information In PowerBuilder, an arraylist is a list of values enclosed in braces used to

initialize arrays. An arraylist represents a one-dimensional array, and its values
are assigned to the target array using the rules for assigning arrays described in
“Assigning one array to another” on page 54.

Examples In this declaration, a variable-size array is initialized with four values:

integer a[] = {1,2,3,4}

In this declaration, a fixed-size array is initialized with four values (the rest of
its values are zeros):

integer a[10] = {1,2,3,4}

In this declaration, a fixed-size array is initialized with four values. Because the
array’s size is set at 4, the rest of the values in the arraylist are ignored:

integer a[4] = {1,2,3,4,5,6,7,8}

In this declaration, values 1, 2, and 3 are assigned to the first column and the
rest to the second column:

integer a[3,2] = {1,2,3,4,5,6}

1 for a[1,1] 3 for a[1,2]

2 for a[2,1] 4 for a[2,2]

1 4

2 5

3 6
56 PowerBuilder Classic

CHAPTER 3 Declarations
If you think of a three-dimensional array as having pages of rows and columns,
then the first column of the first page has the values 1 and 2, the second column
on the first page has 3 and 4, and the first column on the second page has 5
and 6.

The second column on the second page has zeros:

integer a[2,2,2] = {1,2,3,4,5,6}

Errors that occur when addressing arrays
Fixed-size arrays In PowerBuilder, referring to array elements outside the declared size causes

an error at runtime; for example:
int test[10]
test[11]=50 // This causes an execution error.
test[0]=50 // This causes an execution error.
int trial[5,10]
trial [6,2]=75 // This causes an execution error.
trial [4,11]=75 // This causes an execution error.

Variable-size arrays Assigning a value to an element of a variable-size array that is outside its
current values increases the array’s size. However, accessing a variable-size
array above its largest assigned value or below its lower bound causes an error
at runtime:

integer li_stock[]
li_stock[50]=200

// Establish array size 50 elements.
IF li_stock[51]=0 then Beep(1)

// This causes an execution error.
IF li_stock[0]=0 then Beep(1)

// This causes an execution error.

1 3 5 0

2 4 6 0
PowerScript Reference 57

Declaring external functions
Declaring external functions
Description External functions are functions written in languages other than PowerScript

and stored in dynamic link libraries. On Windows, dynamic libraries have the
extension DLL. If you deploy a component written in PowerBuilder to a UNIX
server, the dynamic libraries it calls have the extension .so, .sl, or .a, depending
on the UNIX operating system. You can use external functions that are written
in any language that supports dynamic libraries.

Before you can use an external function in a script, you must declare it as one
of two types:

• Global external functions These are available anywhere in the
application.

• Local external functions These are defined for a particular type of
window, menu, user object, or user-defined function. These functions are
part of the object’s definition and can always be used in scripts for the
object itself. You can also choose to make these functions accessible to
other scripts.

To understand how to declare and call an external function, see the
documentation from the developer of the external function library.

Syntax External function syntax Use the following syntax to declare an external
function:

{ access } FUNCTION returndatatype name ({ { REF } datatype1 arg1,
..., { REF } datatypen argn }) LIBRARY "libname"
ALIAS FOR "extname{;ansi}”

External subroutine syntax To declare external subroutines (which are the
same as external functions except that they do not return a value), use this
syntax:

{ access } SUBROUTINE name ({ { REF } datatype1 arg1, ...,
{ REF } datatypen argn }) LIBRARY "libname"
ALIAS FOR "extname{;ansi}”

The following table describes the parameters used to declare external functions
and subroutines:

Table 3-7: External function or subroutine declaration parameters

Parameter Description

access
(optional)

(Local external functions only) Public, Protected, or Private
specifies the access level of a local external function. The
default is Public.

For more information, see the section about specifying access
of local functions in "Usage" next.
58 PowerBuilder Classic

CHAPTER 3 Declarations
Usage Specifying access of local functions When declaring a local external
function, you can specify its access level—which scripts have access to the
function.

FUNCTION or
SUBROUTINE

A keyword specifying the type of call, which determines the
way return values are handled. If there is a return value, declare
it as a FUNCTION; if it returns nothing or returns VOID, specify
SUBROUTINE.

returndatatype The datatype of the value returned by the function.

name The name of a function or subroutine that resides in a DLL.
Function names cannot contain special characters, such as the
@ character, because they cause a compiler error. Use the
ALIAS FOR clause described later in this table if the function
name in the DLL contains special characters.

REF A keyword that specifies that you are passing by reference the
argument that follows REF. The function can store a value in
arg that will be accessible to the rest of the PowerBuilder
script.

datatype arg The datatype and name of the arguments for the function or
subroutine. The list must match the definition of the function in
the DLL. Each datatype arg pair can be preceded by REF.

For more information on passing arguments, see Application
Techniques.

LIBRARY
"libname" A keyword followed by a string containing the name of the

dynamic library in which the function or subroutine is stored.
libname is a dynamic link library, which is a file that usually
has the extension DLL on Windows. For components
deployed to EAServer on UNIX, the file has an extension of
.so, .sl, or .a, depending on the operating system.

ALIAS FOR
"extname"
(optional)

Keywords followed by a string giving the name of the function
as defined in the dynamic library. If the name in the dynamic
library is not the name you want to use in your script, or if the
name in the database is not a legal PowerScript name, you must
specify ALIAS FOR "extname" to establish the association
between the PowerScript name and the external name.

;ansi Required if the function passes a string as an argument or
returns a string that uses ANSI encoding. Even if you use
the default name for an ANSI function, you must always
use the ALIAS keyword if you want to specify that the
string uses ANSI encoding, because you must qualify
the ALIAS with the ansi keyword

Parameter Description
PowerScript Reference 59

Declaring external functions
The following table describes where local external functions can be used when
they are declared with a given access level:

Table 3-8: Access levels for local external functions

Use of the access keyword with local external functions works the same as the
access-right keywords for instance variables.

Availability of the
dynamic library at
runtime

To be available to a PowerBuilder application running on any Windows
platform, the DLL must be in one of the following directories:

• The current directory

• The Windows directory

• The Windows System subdirectory

• Directories on the DOS path

If you are deploying a PowerBuilder custom class user object as an EAServer
component, you must make sure any dynamic library it references is available
on the server. If you do not specify the location of the library when you declare
it, make sure it is installed in an accessible location:

• On a Windows server, the DLL must be in the application path of the
server’s executable file.

• On a UNIX server, the location of the shared library must be listed in the
server’s library path environment variable (for example,
LD_LIBRARY_PATH on Solaris) or the library must be in the lib directory
of the EAServer installation.

Examples In the examples application that comes with PowerBuilder, external functions
are declared as local external functions in a user object called
u_external_function_win32. The scripts that call the functions are user object
functions, but because they are part of the same user object, you do not need to
use object notation to call them.

Access level Where you can use the local external function

Public Any script in the application.

Private Scripts for events in the object for which the function is
declared. You cannot use the function in descendants of the
object.

Protected Scripts for the object for which the function is declared and its
descendants.
60 PowerBuilder Classic

CHAPTER 3 Declarations
Example 1 These declarations allow PowerBuilder to call the functions
required for playing a sound in the WINMM.DLL:

//playsound
FUNCTION boolean sndPlaySoundA (string SoundName,

uint Flags) LIBRARY "WINMM.DLL" ALIAS FOR
"sndPlaySoundA;ansi"

FUNCTION uint waveOutGetNumDevs () LIBRARY "WINMM.DLL"

A function called uf_playsound in the examples application provided with
PowerBuilder calls the external functions. Uf_playsound is called with two
arguments (as_filename and ai_option) that are passed through to
sndPlaySoundA.

Values for ai_option are as defined in the Windows documentation, as
commented here:

//Options as defined in mmystem.h.
//These may be or'd together.
//#define SND_SYNC 0x0000
//play synchronously (default)
//#define SND_ASYNC 0x0001
//play asynchronously
//#define SND_NODEFAULT 0x0002
//do not use default sound
//#define SND_MEMORY 0x0004
//lpszSoundName points to a memory file
//#define SND_LOOP 0x0008
//loop the sound until next sndPlaySound
//#define SND_NOSTOP 0x0010
//do not stop any currently playing sound

uint lui_numdevs

lui_numdevs = WaveOutGetNumDevs()
IF lui_numdevs > 0 THEN

sndPlaySoundA(as_filename,ai_option)
RETURN 1

ELSE
RETURN -1

END IF

Example 2 This is the declaration for the Windows GetSysColor function:

FUNCTION ulong GetSysColor (int index) LIBRARY
"USER32.DLL"
PowerScript Reference 61

Declaring external functions
This statement calls the external function. The meanings of the index argument
and the return value are specified in the Windows documentation:

RETURN GetSysColor (ai_index)

Example 3 This is the declaration for the Windows GetSysColor function:

FUNCTION int GetSystemMetrics (int index) LIBRARY
"USER32.DLL"

These statements call the external function to get the screen height and width:

RETURN GetSystemMetrics(1)
RETURN GetSystemMetrics(0)

Datatypes for external function arguments
When you declare an external function in PowerBuilder, the datatypes of the
arguments must correspond with the datatypes as declared in the function’s
source definition. This section documents the correspondence between
datatypes in external functions and datatypes in PowerBuilder. It also includes
information on byte alignment when passing structures by value.

Use the tables to find out what PowerBuilder datatype to use in an external
function declaration. The PowerBuilder datatype you select depends on the
datatype in the source code for the function. The first column lists datatypes in
source code. The second column describes the datatype so you know exactly
what it is. The third column lists the PowerBuilder datatype you should use in
the external function declaration.

Boolean BOOL and Boolean on Windows are 16-bit, signed. Both are declared in
PowerBuilder as boolean.

Pointers Table 3-9: PowerBuilder datatypes for pointers

Windows 32-bit FAR pointers, such as LPBYTE, LPDWORD, LPINT, LPLONG,
LPVOID, and LPWORD, are declared in PowerBuilder as long datatypes.
HANDLE is defined as 32 bits unsigned and is declared in PowerBuilder as an
UnsignedLong.

Near-pointer datatypes (such as PSTR and NPSTR) are not supported in
PowerBuilder.

Datatype in source
code Size, sign, precision

PowerBuilder
datatype

* (any pointer) 32-bit pointer Long

char * Array of bytes of variable length Blob
62 PowerBuilder Classic

CHAPTER 3 Declarations
Characters and
strings

Table 3-10: PowerBuilder datatypes for characters and strings

The Windows 32-bit FAR pointer LPSTR is declared in PowerBuilder as string.

Reference arguments
When you pass a string to an external function by reference, all memory
management is done in PowerBuilder. The string variable must be long enough
to hold the returned value. To ensure that this is true, first declare the string
variable, and then use the Space function to fill the variable with blanks equal
to the maximum number of characters that you expect the function to return.

Fixed-point values Table 3-11: PowerBuilder datatypes for fixed-point values

The Windows definition WORD is declared in PowerBuilder as
UnsignedInteger and the Windows definition DWORD is declared as an
UnsignedLong. You cannot call external functions with return values or
arguments of type short.

Floating-point values Table 3-12: PowerBuilder datatypes for floating-point values

PowerBuilder does not support 80-bit doubles on Windows.

Datatype in source
code Size, sign, precision

PowerBuilder
datatype

char 8 bits, signed Char

string 32-bit pointer to a null-terminated
array of bytes of variable length

String

Datatype in source
code Size, sign, precision

PowerBuilder
datatype

byte 8 bits, unsigned Byte

short 16 bits, signed Integer

unsigned short 16 bits, unsigned UnsignedInteger

int 32 bits, signed Long

unsigned int 32 bits, unsigned UnsignedLong

long 32 bits, signed Long

unsigned long 32 bits, unsigned UnsignedLong

longlong 64 bits, signed LongLong

Datatype in source
code Size, sign, precision

PowerBuilder
datatype

float 32 bits, single precision Real

double 64 bits, double precision Double
PowerScript Reference 63

Declaring external functions
Date and time The PowerBuilder datatypes Date, DateTime, and Time are structures and have
no direct equivalent for external functions in C.

Passing structures by
value

You can pass PowerBuilder structures to external C functions if they have the
same definitions and alignment as the structure’s components. The DLL or
shared library must be compiled using byte alignment; no padding is added to
align fields within the structure.

Calling external functions
Global external
functions

In PowerBuilder, you call global external functions using the same syntax as
for calling user-defined global and system functions. As with other global
functions, global external functions can be triggered or posted but not called
dynamically.

Local external
functions

Call local functions using the same syntax as for calling object functions. They
can be triggered or posted and called dynamically.

For information For information, see “Syntax for calling PowerBuilder functions and events”
on page 111.

Defining source for external functions
You can use external functions written in any language that supports the
standard calling sequence for 32-bit platforms. If you are calling functions on
Windows in libraries that you have written yourself, remember that you need
to export the functions. Depending on your compiler, you can do this in the
function prototype or in a linker definition (.DEF) file. For more information
about using external functions, see Application Techniques.

Use _stdcall
convention

C and C++ compilers typically support several calling conventions, including
_cdecl (the default calling convention for C programs), _stdcall (the standard
convention for Windows API calls), _fastcall, and thiscall. PowerBuilder, like
many other Windows development tools, requires external functions to be
exported using the WINAPI (_stdcall) format. Attempting to use a different
calling convention can cause an application crash.

When you create your own C or C++ DLLs containing functions to be used in
PowerBuilder, make sure that they use the standard convention for Windows
API calls.
64 PowerBuilder Classic

CHAPTER 3 Declarations
For example, if you are using a DEF file to export function definitions, you can
declare the function like this:

LONG WINAPI myFunc()
{
...
};

Declaring DBMS stored procedures as remote
procedure calls
Description In PowerBuilder, you can use dot notation for calling non-result-set stored

procedures as remote procedure calls (RPCs):

object.function

You can call database procedures in Sybase, Oracle, Informix, and other
ODBC databases with stored procedures.

RPCs provide support for Oracle PL/SQL tables and parameters that are
defined as both input and output. You can call overloaded procedures.

Applies to Transaction object

Syntax FUNCTION rtndatatype functionname ({ { REF } datatype1 arg1,...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

SUBROUTINE functionname ({ { REF } datatype1 arg1 , ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

Table 3-13: RPC declaration parameters

Argument Description

FUNCTION or
SUBROUTINE

A keyword specifying the type of call, which determines the
way return values are handled. If there is a return value, declare
it as a FUNCTION. If it returns nothing or returns VOID, specify
SUBROUTINE.

rtndatatype In a FUNCTION declaration, the datatype of the value returned
by the function.

functionname The name of the database procedure as you will call it in
PowerBuilder. If the name in the DBMS is different, use ALIAS
FOR to associate the DBMS name with the PowerBuilder
name.
PowerScript Reference 65

Declaring DBMS stored procedures as remote procedure calls
Usage If a function does not return a value (for example, it returns Void), specify the
declaration as a subroutine instead of a function.

RPC declarations are always associated with a transaction object. You declare
them as local external functions. The Declare Local External Functions dialog
box has a Procedures button (if the connected database supports stored
procedures), which gives you access to a list of stored procedures in the
database.

For more information, see Application Techniques.

Examples Example 1 This declaration of the GIVE_RAISE_PROC stored procedure is
declared in the User Object painter for a transaction object (the declaration
appears on one line):

FUNCTION double GIVE_RAISE(ref double SALARY) RPCFUNC
ALIAS FOR "GIVE_RAISE_PROC"

REF Specifies that you are passing by reference the argument that
follows REF. The stored procedure can store a value in arg that
will be accessible to the rest of the PowerBuilder script.

When you pass a string by reference, all memory management
is done in PowerBuilder. The string variable must be long
enough to hold the returned value. To ensure that this is true,
first declare the string variable, and then use the Space function
to fill the variable with blanks equal to the maximum number
of characters that you expect the function to return.

datatype arg The datatype and name of the arguments for the stored
procedure. The list must match the definition of the stored
procedure in the database. Each datatype arg pair can be
preceded by REF.

RPCFUNC A keyword indicating that this declaration is for a stored
procedure in a DBMS, not an external function in a DLL. For
information on declaring external functions, see “Declaring
external functions” on page 58.

ALIAS FOR
"spname"
(optional)

Keywords followed by a string naming the procedure in the
database. If the name in the database is not the name you want
to use in your script or if the name in the database is not a legal
PowerScript name, you must specify ALIAS FOR "spname" to
establish the association between the PowerScript name and
the database name.

Argument Description
66 PowerBuilder Classic

CHAPTER 3 Declarations
This code calls the function in a script:

double val = 20000
double rv
rv = SQLCA.give_raise(val)

Example 2 This declaration for the stored procedure SPM8 does not need an
ALIAS FOR phrase, because the PowerBuilder and DBMS names are the same:

FUNCTION integer SPM8(integer value) RPCFUNC

This code calls the SPM8 stored procedure:

int myresult
myresult = SQLCA.spm8(myresult)
IF SQLCA.sqlcode <> 0 THEN

messagebox("Error", SQLCA.sqlerrtext)
END IF
PowerScript Reference 67

Declaring DBMS stored procedures as remote procedure calls
68 PowerBuilder Classic

C H A P T E R 4 Operators and Expressions

About this chapter This chapter describes the operators supported in PowerScript and how to
use them in expressions.

Contents

Operators in PowerBuilder
General information Operators perform arithmetic calculations; compare numbers, text, and

boolean values; execute relational operations on boolean values; and
concatenate strings and blobs.

Three types PowerScript supports three types of operators:

• Arithmetic operators for numeric datatypes

• Relational operators for all datatypes

• Concatenation operator for string datatypes

Operators used in DataWindow objects
The documentation for DataWindows describes how operators are used in
DataWindow expressions.

Topic Page

Operators in PowerBuilder 69

Operator precedence in PowerBuilder expressions 74

Datatype of PowerBuilder expressions 75
PowerScript Reference 69

Operators in PowerBuilder
Arithmetic operators in PowerBuilder
Description The following table lists the arithmetic operators used in PowerBuilder.

Table 4-1: PowerBuilder arithmetic operators

Usage Operator shortcuts for assignments For information about shortcuts that
combine arithmetic operators with assignments (such as ++ and +=), see
Assignment on page 120.

Subtraction If the option Allow Dashes in Identifiers is checked on the
Script tab in the Options dialog box, you must always surround the subtraction
operator and the -- operator with spaces. Otherwise, PowerBuilder interprets
the expression as an identifier.

For information about dashes in identifiers, see “Identifier names” on page 5.

Multiplication and division Multiplication and division are carried out to
full precision (16–28 digits). Decimal numbers are rounded (not truncated) on
assignment.

Calculation with NULL When you form an arithmetic expression that
contains a NULL value, the expression’s value is null. Thinking of null as
undefined makes this easier to understand.

For more information about null values, see “NULL values” on page 8.

Errors and overflows The following problems can occur when using
arithmetic operators:

• Division by zero, exponentiation of negative values, and so on cause errors
at runtime.

• Overflow of real, double, and decimal values causes errors at runtime.

Operator Meaning Example

+ Addition Total=SubTotal+Tax

- Subtraction Price=Price–Discount

Unless you have prohibited the use of dashes in
identifier names, you must surround the minus
sign with spaces.

* Multiplication Total=Quantity*Price

/ Division Factor=Discount/Price

^ Exponentiation Rank=Rating^2.5
70 PowerBuilder Classic

CHAPTER 4 Operators and Expressions
• Overflow of signed or unsigned integers and longs causes results to wrap.
However, because integers are promoted to longs in calculations,
wrapping does not occur until the result is explicitly assigned to an integer
variable.

For more information about type promotion, see “Datatype of
PowerBuilder expressions” on page 75.

Examples Subtraction This statement always means subtract B from A:

A - B

If DashesInIdentifiers is set to 1, the following statement means a variable
named A-B, but if DashesInIdentifiers is set to 0, it means subtract B from A:

A-B

Precision for division These examples show the values that result from
various operations on decimal values:

decimal {4} a,b,d,e,f
decimal {3} c
a = 20.0/3 // a contains 6.6667
b = 3 * a // b contains 20.0001
c = 3 * a // c contains 20.000
d = 3 * (20.0/3) // d contains 20.0000
e = Truncate(20.0/3, 4) // e contains 6.6666
f = Truncate(20.0/3, 5) // f contains 6.6667

Calculations with null When the value of variable c is null, the following
assignment statements all set the variable a to null:

integer a, b=100, c

SetNULL(c)

a = b+c // all statements set a to NULL
a = b - c
a = b*c
a = b/c

Overflow This example illustrates the value of the variable i after overflow
occurs:

integer i
i = 32767
i = i + 1 // i is now -32768
PowerScript Reference 71

Operators in PowerBuilder
Relational operators in PowerBuilder
Description PowerBuilder uses relational operators in boolean expressions to evaluate two

or more operands. Logical operators can join relational expressions to form
more complex boolean expressions.

The result of evaluating a boolean expression is always true or false.

The following table lists relational and logical operators.

Table 4-2: PowerBuilder relational and logical operators

Usage Comparing strings When PowerBuilder compares strings, the comparison
is case sensitive. Trailing blanks are significant.

For information on comparing strings regardless of case, see the functions
Upper on page 1196 and Lower on page 750.

To remove trailing blanks, use the RightTrim function. To remove leading
blanks, use the LeftTrim function. To remove leading and trailing blanks, use the
Trim function. For information about these functions, see RightTrim on page
952, LeftTrim on page 718, and Trim on page 1185.

Decimal operands Relational operators that operate on numeric values
(including =, >, <, <>, >=, and <=) can take decimal operands. The precision
of the decimal operand is maintained in comparisons.

Null value evaluations When you form a boolean expression that contains
a null value, the AND and OR operators behave differently. Thinking of null as
undefined (neither true nor false) makes the results easier to calculate.

For more information about null values, see “NULL values” on page 8.

Operator Meaning Example

= Equals if Price=100 then Rate=.05

> Greater than if Price>100 then Rate=.05

< Less than if Price<100 then Rate=.05

<> Not equal if Price<>100 then Rate=.05

>= Greater than or equal if Price>=100 then Rate=.05

<= Less than or equal if Price<=100 then Rate=.05

NOT Logical negation if NOT Price=100 then Rate=.05

AND Logical and if Tax>3 AND Ship <5 then

Rate=.05

OR Logical or if Tax>3 OR Ship<5 then Rate=.05
72 PowerBuilder Classic

CHAPTER 4 Operators and Expressions
Examples Case-sensitive comparisons If you compare two strings with the same text
but different case, the comparison fails. But if you use the Upper or Lower
function, you can ensure that the case of both strings are the same so that only
the content affects the comparison:

City1 = "Austin"
City2 = "AUSTIN"
IF City1 = City2 ... // Returns FALSE

City1 = "Austin"
City2 = "AUSTIN"
IF Upper(City1) = Upper(City2)... // Returns TRUE

Trailing blanks in comparisons In this example, trailing blanks in one
string cause the comparison to fail:

City1 = "Austin"
City2 = "Austin "
IF City1 = City2 ... // Returns FALSE

Logical expressions with null values In this example, the expressions
involving the variable f, which has been set to null, have null values:

boolean d, e = TRUE, f
SetNull(f)
d = e and f // d is NULL
d = e or f // d is TRUE

Concatenation operator in PowerBuilder
Description The PowerBuilder concatenation operator joins the contents of two variables

of the same type to form a longer value. You can concatenate strings and blobs.

The following table shows the concatenation operator.

Table 4-3: PowerBuilder concatenation operator

Examples Example 1 These examples concatenate several strings:

string Test
Test = "over" + "stock" // Test contains "overstock"
string Lname, Fname, FullName
FullName = Lname + ', ' + Fname
 // FullName contains last name and first name,
 // separated by a comma and space.

Operator Meaning Example

+ Concatenate "cat " + "dog"
PowerScript Reference 73

Operator precedence in PowerBuilder expressions
Example 2 This example shows how a blob can act as an accumulator when
reading data from a file:

integer i, fnum, loops
blob tot_b, b
. . .
FOR i = 1 to loops
 bytes_read = FileRead(fnum, b)
 tot_b = tot_b + b
NEXT

Operator precedence in PowerBuilder expressions
Order of precedence To ensure predictable results, all operators in a PowerBuilder expression are

evaluated in a specific order of precedence. When the operators have the same
precedence, PowerBuilder evaluates them left to right.

These are the operators in descending order of precedence:

Table 4-4: Order of precedence of operators

How to override To override the order, enclose expressions in parentheses. This identifies the
group and order in which PowerBuilder will evaluate the expressions. When
there are nested groups, the groups are evaluated from the inside out.

For example, in the expression (x+(y*(a+b))), a+b is evaluated first. The
sum of a and b is then multiplied by y, and this product is added to x.

Operator Purpose

() Grouping (see note below on overriding)

+, - Unary plus and unary minus (indicates positive or negative
number)

^ Exponentiation

*, / Multiplication and division

+, - Addition and subtraction; string concatenation

=, >, <, <=, >=, <> Relational operators

NOT Negation

AND Logical and

OR Logical or
74 PowerBuilder Classic

CHAPTER 4 Operators and Expressions
Datatype of PowerBuilder expressions
General information The datatype of an expression is important when it is the argument for a

function or event. The expression’s datatype must be compatible with the
argument’s definition. If a function is overloaded, the datatype of the argument
determines which version of the function to call.

There are three types: numeric, string, and char datatypes.

Numeric datatypes in PowerBuilder
General information All numeric datatypes are compatible with each other.

What PowerBuilder
does

PowerBuilder converts datatypes as needed to perform calculations and make
assignments. When PowerBuilder evaluates a numeric expression, it converts
the datatypes of operands to datatypes of higher precedence according to the
operators and the datatypes of other values in the expression.

Datatype promotion when evaluating numeric expressions
Order of precedence The PowerBuilder numeric datatypes are listed here in order of highest to

lowest precedence (the order is based on the range of values for each datatype):

Double
Real
Decimal
LongLong
UnsignedLong
Long
UnsignedInteger
Integer
Byte

Rules for type
promotion

Datatypes of operands If operands in an expression have different
datatypes, the value whose type has lower precedence is converted to the
datatype with higher precedence.

Unsigned versus signed Unsigned has precedence over signed, so if one
operand is signed and the other is unsigned, both are promoted to the unsigned
version of the higher type. For example, if one operator is a long and another
UnsignedInteger, both are promoted to UnsignedLong.
PowerScript Reference 75

Datatype of PowerBuilder expressions
Operators The effects of operators on an expression’s datatype are:

• +, -, * The minimum precision for addition, subtraction, and
multiplication calculations is long. Integer types are promoted to long types
before doing the calculation and the expression’s resulting datatype is, at
a minimum, long. When operands have datatypes of higher precedence,
other operands are promoted to match based on the Datatypes of operands
rule above.

• / and ^ The minimum precision for division and exponentiation is
double. All types are promoted to double before doing the calculation, and
the expression’s resulting datatype is double.

• Relational Relational operators do not cause promotion of numeric
types.

Datatypes of literals When a literal is an operand in an expression, its datatype is determined by the
literal’s value. The datatype of a literal affects the type promotion of the literal
and other operands in an expression.

Table 4-5: Datatypes of literal operands in an expression

Out of range
Integer literals beyond the range of LongLong cause compiler errors.

Literal Datatype

Integer literals (no decimal point or exponent) within the
range of Long

Long

Integer literals beyond the range of Long and within the
range of UnsignedLong

UnsignedLong

Integer literals beyond the range of UnsignedLong and
within the range of LongLong

LongLong

Numeric literals with a decimal point (but no exponent) Decimal

Numeric literals with a decimal point and explicit
exponent

Double
76 PowerBuilder Classic

CHAPTER 4 Operators and Expressions
Assignment and datatypes
General information Assignment is not part of expression evaluation. In an assignment statement,

the value of an expression is converted to the datatype of the left-hand variable.
In the expression

c = a + b

the datatype of a+b is determined by the datatypes of a and b. Then, the result
is converted to the datatype of c.

Overflow on
assignment

Even when PowerBuilder performs a calculation at high enough precision to
handle the results, assignment to a lower precision variable can cause overflow,
producing the wrong result.

Example 1 Consider this code:

integer a = 32000, b = 1000
long d
d = a + b

The final value of d is 33000. The calculation proceeds like this:

Convert integer a to long
Convert integer b to long
Add the longs a and b
Assign the result to the long d

Because the variable d is a long, the value 33000 does not cause overflow.

Example 2 In contrast, consider this code with an assignment to an integer
variable:

integer a = 32000, b = 1000, c
long e
c = a + b
e = c

The resulting value of c and e is -32536. The calculation proceeds like this:

Add the integers a and b
Assign the result to c
Convert integer c to long and assign the result to e

The assignment to the integer variable c causes the long result of the addition
to be truncated, causing overflow and wrapping. Assigning c to e cannot
restore the lost information.
PowerScript Reference 77

Datatype of PowerBuilder expressions
String and char datatypes in PowerBuilder
General information There is no explicit char literal type.

String literals convert to type char using the following rules:

• When a string literal is assigned to a char variable, the first character of the
string literal is assigned to the variable. For example:

char c = "xyz"

results in the character x being assigned to the char variable c.

• Special characters (such as newline, formfeed, octal, hex, and so on) can
be assigned to char variables using string conversion, such as:

char c = "~n"

String variables assigned to char variables also convert using these rules. A
char variable assigned to a string variable results in a one-character string.

Assigning strings to
char arrays

As with other datatypes, you can use arrays of chars. Assigning strings to char
arrays follows these rules:

• If the char array is unbounded (defined as a variable-size array), the
contents of the string are copied directly into the char array.

• If the char array is bounded and its length is less than or equal to the length
of the string, the string is truncated in the array.

• If the char array is bounded and its length is greater than the length of the
string, the entire string is copied into the array along with its zero
terminator. Remaining characters in the array are undetermined.

Assigning char arrays
to strings

When a char array is assigned to a string variable, the contents of the array are
copied into the string up to a zero terminator, if found, in the char array.

Using both strings and
chars in an expression

Expressions using both strings and char arrays promote the chars to strings
before evaluation. For example, the following promotes the contents of c to a
string before comparison with the string “x”:

char c
. . .
if (c = "x") then

Using chars in
PowerScript functions

All PowerScript functions that take strings also take chars and char arrays,
subject to the conversion rules described above.
78 PowerBuilder Classic

C H A P T E R 5 Structures and Objects

About this chapter This chapter describes basic concepts for structures and objects and how
you define, declare, and use them in PowerScript.

Contents

About structures
General information A structure is a collection of one or more variables (sometimes called

elements) that you want to group together under a single name. The
variables can have any datatype, including standard and object datatypes
and other structures.

Defining structures When you define a structure in the Structure painter or an object painter
(such as Window, Menu, or User Object), you are creating a structure
definition. To use the structure, you must declare it. When you declare it,
an instance of it is automatically created for you. When it goes out of
scope, the structure is destroyed.

For details about defining structures, see the PowerBuilder Users Guide.

Declaring structures If you have defined a global structure in the Structure painter called
str_emp_data, you can declare an instance of the structure in a script or in
an object’s instance variables. If you define the structure in an object
painter, you can only declare instances of the structure in the object’s
instance variables and scripts.

This declaration declares two instances of the structure str_emp_data:

str_emp_data str_emp1, str_emp2

Topic Page

About structures 79

About objects 80

Assignment for objects and structures 86
PowerScript Reference 79

About objects
Referring to structure
variables

In scripts, you refer to the structure’s variables using dot notation:

structurename.variable

These statements assign values to the variables in str_emp_data:

str_emp1.emp_id = 100
str_emp1.emp_lname = "Jones"
str_emp1.emp_salary = 200

str_emp2.emp_id = 101
str_emp2.emp_salary = str_emp1.salary * 1.05

Using structures as
instance variables

If the structure is declared as part of an object, you can qualify the structure
name using dot notation:

objectname.structurename.variable

Suppose that this declaration is an instance variable of the window
w_customer:

str_cust_data str_cust1

The following statement in a script for the object refers to a variable of
str_cust_data. The pronoun This is optional, because the structure declaration
is part of the object:

This.str_cust1.name

The following statement in a script for some other object qualifies the structure
with the window name:

w_customer.str_cust1.name

About objects
What an object is In object-oriented programming, an object is a self-contained module

containing state information and associated methods. Most entities in
PowerBuilder are objects: visual objects such as windows and controls on
windows, nonvisual objects such as transaction and error objects, and user
objects that you design yourself.

An object class is a definition of an object. You create an object’s definition in
the appropriate painter: Window, Menu, Application, Structure, or User Object
painter. In the painter, you add controls to be part of the object, specify initial
values for the object’s properties, define its instance variables and functions,
and write scripts for its events and functions.
80 PowerBuilder Classic

CHAPTER 5 Structures and Objects
An object instance is an occurrence of the object created during the execution
of your application. Your code instantiates an object when it allocates memory
for the object and defines the object based on the definition in the object class.

An object reference is your handle to the object instance. To interact with an
object, you need its object reference. You can assign an object reference to a
variable of the appropriate type.

System objects versus
user objects

There are two categories of objects supported by PowerBuilder: system objects
(also referred to as system classes) defined by PowerBuilder and user objects
you in define in painters.

System objects The PowerBuilder system objects or classes are inherited
from the base class PowerObject. The system classes are the ancestors of all
the objects you define. To see the system class hierarchy, select the System tab
in the Browser, select PowerObject, and select Show Hierarchy and Expand
All from the pop-up menu.

User objects You can create user object class definitions in several painters:
Window, Menu, Application, Structure, and User Object painters. The objects
you define are inherited from one of the system classes or another of your
classes.

Some painters use many classes. In the Window and User Object painters, the
main definition is inherited from the window or user object class. The controls
you use are also inherited from the system class for that control.

About user objects
Two types There are two major types of user objects: visual and class.

Visual user objects A visual user object is a reusable control or set of controls that has a certain
behavior. There are three types—standard, custom, and external.
PowerScript Reference 81

About objects
Table 5-1: Visual user object types

Class user objects Class user objects consist of properties, functions, and sometimes events. They
have no visual component. There are two types—standard and custom.

Table 5-2: Class user object types

For information on defining and using user objects, see the PowerBuilder
Users Guide.

Visual user objects Description

Standard Inherited from a specific visual control. You can set
properties and write scripts so that the control is ready
for use.

It has the same events and properties as the control it is
inherited from plus any that you add.

Custom Inherited from the UserObject system class. You can
include many controls in the user object and write
scripts for their events.

Each control in the user object has the same events and
properties as the controls from which they are inherited
plus any that you add.

External A user object that displays a visual control defined in a
DLL. The control is not part of the PowerBuilder object
hierarchy. The DLL developer provides information for
setting style bits that control its presentation.

Its events, functions, and properties are specified by the
developer of the DLL.

An external user object is not the same as an OCX,
which you can put in an OLE control.

Class user objects Description

Standard Inherits its definition from a nonvisual PowerBuilder
object, such as the Transaction or Error object. You can
add instance variables and functions.

A few nonvisual objects have events—to write scripts
for these events, you have to define a class user object.

Custom An object of your own design for which you define
instance variables, events, and functions in order to
encapsulate application-specific programming in an
object.
82 PowerBuilder Classic

CHAPTER 5 Structures and Objects
Instantiating objects
Classes versus
instances

Because of the way PowerBuilder object classes and instances are named, it is
easy to think they are the same thing. For example, when you define a window
in the Window painter, you are defining an object class.

One instance When you open a window with the simplest format of the Open function, you
are instantiating an object instance. Both the class definition and the instance
have the same name. In your application, w_main is a global variable of type
w_main:

Open(w_main)

When you open a window this way, you can only open one instance of the
object.

Several instances If you want to open more than one instance of a window class, you need to
define a variable to hold each object reference:

w_main w_1, w_2
Open(w_1)
Open(w_2)

You can also open windows by specifying the class in the Open function:

window w_1, w_2
Open(w_1, "w_main")
Open(w_2, "w_main")

For class user objects, you always define a variable to hold the object reference
and then instantiate the object with the CREATE statement:

uo_emp_data uo_1, uo_2
uo_1 = CREATE uo_emp_data
uo_2 = CREATE uo_emp_data

You can have more than one reference to an object. You might assign an object
reference to a variable of the appropriate type, or you might pass an object
reference to another object so that it can change or get information from the
object.

For more information about object variables and assignment, see “User objects
that behave like structures” on page 85.
PowerScript Reference 83

About objects
Using ancestors and descendants
Descendent objects In PowerBuilder, an object class can be inherited from another class. The

inherited or descendent object has all the instance variables, events, and
functions of the ancestor. You can augment the descendant by adding more
variables, events, and functions. If you change the ancestor, even after editing
the descendant, the descendant incorporates the changes.

Instantiating When you instantiate a descendent object, PowerBuilder also instantiates all its
ancestor classes. You do not have programmatic access to these ancestor
instances, except in a few limited ways, such as when you use the scope
operator to access an ancestor version of a function or event script.

Garbage collection
What garbage
collection does

The PowerBuilder garbage collection mechanism checks memory
automatically for unreferenced and orphaned objects and removes any it finds,
thus taking care of most memory leaks. You can use garbage collection to
destroy objects instead of explicitly destroying them using the DESTROY
statement. This lets you avoid runtime errors that occur when you destroy an
object that was being used by another process or had been passed by reference
to a posted event or function.

When garbage
collection occurs

Garbage collection occurs:

• When a reference is removed from an object A reference to an
object is any variable whose value is the object. When the variable goes
out of scope, or when it is assigned a different value, PowerBuilder
removes a reference to the object, counts the remaining references, and
destroys the object if no references remain.

• When the garbage collection interval is exceeded When
PowerBuilder completes the execution of a system-triggered event, it
makes a garbage collection pass if the set interval between garbage
collection passes has been exceeded. The default interval is 0.5 seconds.
The garbage collection pass removes any objects and classes that cannot
be referenced, including those containing circular references (otherwise
unreferenced objects that reference each other).

When you post an event or function and pass an object reference, PowerBuilder
adds an internal reference to the object to prevent it from being collected
between the time of the post and the actual execution of the event or function.
This reference is removed when the event or function is executed.
84 PowerBuilder Classic

CHAPTER 5 Structures and Objects
Exceptions to garbage
collection

There are a few objects that are prevented from being collected:

• Visual objects Any object that is visible on your screen is not collected
because when the object is created and displayed on your screen, an
internal reference is added to the object. When any visual object is closed
it is explicitly destroyed.

• Timing objects Any Timing object that is currently running is not
collected because the Start function for a Timing object adds an internal
reference. The Stop function removes the reference.

• Shared objects Registered shared objects are not collected because the
SharedObjectRegister function adds an internal reference.
SharedObjectUnregister removes the internal reference.

Controlling when
garbage collection
occurs

Garbage collection occurs automatically in PowerBuilder, but you can use the
functions GarbageCollect, GarbageCollectGetTimeLimit, and
GarbageCollectSetTimeLimit to force immediate garbage collection or to
change the interval between reference count checks. By setting the interval
between garbage collection passes to a very large number, you can effectively
turn off garbage collection.

User objects that behave like structures
In PowerBuilder, a nonvisual user object can provide functionality similar to
that of a structure. Its instance variables form a collection similar to the
variables for the structure. In scripts, you use dot notation to refer to the user
object’s instance variables, just as you do for structure variables.

Advantages of user
objects

The user object can include functions and its own structure definitions, and it
allows you to inherit from an ancestor class. None of this is possible with a
structure definition.

Memory allocation
differences

Memory allocation is different for user objects and structures. An object
variable is a reference to the object. Declaring the variable does not allocate
memory for the object. After you declare it, you must instantiate it with a
CREATE statement. Assignment for a user object is also different (described in
"Assignment for objects and structures" next).

Autoinstantiated
objects

If you want a user object that has methods and inheritance but want the memory
allocation of a structure, you can define an autoinstantiated object.
PowerScript Reference 85

Assignment for objects and structures
You do not have to create and destroy autoinstantiated objects. Like structures,
they are created when they are declared and destroyed when they go out of
scope. However, because assignment for autoinstantiated objects behaves like
structures, the copies made of the object can be a drawback.

To make a custom class user object autoinstantiated, select the Autoinstantiate
check box on the user object’s property sheet.

Assignment for objects and structures
In PowerBuilder, assignment for objects is different from assignment for
structures or autoinstantiated objects:

• When you assign one structure to another, the whole structure is copied so
that there are two copies of the structure.

• When you assign one object variable to another, the object reference is
copied so that both variables point to the same object. There is only one
copy of the object.

Events

Assignment for structures
Declaring a structure variable creates an instance of that structure:

str_emp_data str_emp1, str_emp2 // Two structure
// instances

When you assign a structure to another structure, the whole structure is copied
and a second copy of the structure data exists:

str_emp1 = str_emp2

The assignment copies the whole structure from one structure variable to the
other. Each variable is a separate instance of the structure str_emp_data.

Restriction on
assignment

If the structures have different definitions, you cannot assign one to another,
even if they have the same set of variable definitions.
86 PowerBuilder Classic

CHAPTER 5 Structures and Objects
For example, this assignment is not allowed:

str_emp str_person1
str_cust str_person2
str_person2 = str_person1 // Not allowed

For information about passing structures as function arguments, see “Passing
arguments to functions and events” on page 106.

Assignment for objects
Declaring an object variable declares an object reference:

uo_emp_data uo_emp1, uo_emp2 // Two object references

Using the CREATE statement creates an instance of the object:

uo_emp1 = CREATE uo_emp_data

When you assign one object variable to another, a reference to the object
instance is copied. Only one copy of the object exists:

uo_emp2 = uo_emp1 // Both point to same object instance

Ancestor and
descendent objects

 Assignments between ancestor and descendent objects occur in the same way,
with an object reference being copied to the target object.

Suppose that uo_emp_data is an ancestor user object of uo_emp_active and
uo_emp_inactive.

Declare variables of the ancestor type:

uo_emp_data uo_emp1, uo_emp2

Create an instance of the descendant and store the reference in the ancestor
variable:

uo_emp1 = CREATE USING "uo_emp_active"

Assigning uo_emp1 to uo_emp2 makes both variables refer to one object that
is an instance of the descendant uo_emp_active:

uo_emp2 = uo_emp1

For information about passing objects as function arguments, see “Passing
arguments to functions and events” on page 106.
PowerScript Reference 87

Assignment for objects and structures
Assignment for autoinstantiated user objects
Declaring an autoinstantiated user object creates an instance of that object (just
like a structure). The CREATE statement is not allowed for objects with the
Autoinstantiate setting. In the following example, uo_emp_data has the
Autoinstantiate setting:

uo_emp_data uo_emp1, uo_emp2 // Two object instances

When you assign an autoinstantiated object to another autoinstantiated object,
the whole object is copied to the second variable:

uo_emp1 = uo_emp2

You never have multiple references to an autoinstantiated user object.

Passing to a function When you pass an autoinstantiated user object to a function, it behaves like a
structure:

• Passing by value passes a copy of the object.

• Passing by reference passes a pointer to the object variable, just as for any
standard datatype.

• Passing as read-only passes a copy of the object but that copy cannot be
modified.

Restrictions for
copying

Assignments are allowed between autoinstantiated user objects only if the
object types match or if the target is a nonautoinstantiated ancestor.

Rule 1 If you assign one autoinstantiated object to another, they must be of
the same type.

Rule 2 If you assign an autoinstantiated descendent object to an ancestor
variable, the ancestor cannot have the Autoinstantiate setting. The ancestor
variable will contain a reference to a copy of its descendant.

Rule 3 If you assign an ancestor object to a descendent variable, the ancestor
must contain an instance of the descendant or an execution error occurs.

Examples To illustrate, suppose you have these declarations. Uo_emp_active and
uo_emp_inactive are autoinstantiated objects that are descendants of non-
autoinstantiated uo_emp_data:

uo_emp_data uo_emp1 // Ancestor
uo_emp_active uo_empa, uo_empb // Descendants
uo_emp_inactive uo_empi // Another descendant
88 PowerBuilder Classic

CHAPTER 5 Structures and Objects
Example of rule 1 When assigning one instance to another from the user
objects declared above, some assignments are not allowed by the compiler:

uo_empb = uo_empa // Allowed, same type
uo_empa = uo_empi // Not allowed, different types

Example of rule 2 After this assignment, uo_emp1 contains a copy of the
descendent object uo_empa. Uo_emp_data (the type for uo_emp1) must not be
autoinstantiated. Otherwise, the assignment violates rule 1. If uo_emp1 is
autoinstantiated, a compiler error occurs:

uo_emp1 = uo_empa

Example of rule 3 This assignment is only allowed if uo_emp1 contains an
instance of its descendant uo_empa, which it would if the previous assignment
had occurred before this one:

uo_empa = uo_emp1

If it did not contain an instance of target descendent type, an execution error
would occur.

For more information about passing arguments to functions and events, see
“Passing arguments to functions and events” on page 106.
PowerScript Reference 89

Assignment for objects and structures
90 PowerBuilder Classic

C H A P T E R 6 Calling Functions and Events

About this chapter This chapter provides background information that will help you
understand the different ways you can use functions and events. It then
provides the syntax for calling functions and events.

Contents

About functions and events
Importance of functions
and events

Much of the power of the PowerScript language resides in the built-in
PowerScript functions that you can use in expressions and assignment
statements.

Types of functions and
events

PowerBuilder objects have built-in events and functions. You can enhance
objects with your own user-defined functions and events, and you can
declare local external functions for an object. The PowerScript language
also has system functions that are not associated with any object. You can
define your own global functions and declare external functions and
remote procedure calls.

Topic Page

About functions and events 91

Finding and executing functions and events 94

Triggering versus posting functions and events 96

Static versus dynamic calls 98

Overloading, overriding, and extending functions and events 104

Passing arguments to functions and events 106

Using return values 109

Syntax for calling PowerBuilder functions and events 111

Calling functions and events in an object’s ancestor 114
PowerScript Reference 91

About functions and events
The following table shows the different types of functions and events.

Table 6-1: Types of functions and events

Category Item Definition

Events Event An action in an object or control that can start the
execution of a script. A user can initiate an event
by an action such as clicking an object or entering
data, or a statement in another script can initiate
the event.

User event An event you define to add functionality to an
object. You specify the arguments, return value,
and whether the event is mapped to a system
message. For information about defining user
events, see the PowerBuilder Users Guide.

System or
built-in event

An event that is part of an object’s PowerBuilder
definition. System events are usually triggered by
user actions or system messages. PowerBuilder
passes a predefined set of arguments for use in the
event’s script. System events either return a long or
do not have a return value.

Functions Function A program or routine that performs specific
processing.

System function A built-in PowerScript function that is not
associated with an object.

Object function A function that is part of an object’s definition.
PowerBuilder has many predefined object
functions and you can define your own.

User-defined
function

A function you define. You define global functions
in the Function painter and object functions in
other painters with Script views.

Global function A function you define that can be called from any
script. PowerScript’s system functions are globally
accessible, but they have a different place in the
search order.

Local external
function

An external function that belongs to an object. You
declare it in the Window or User Object painter. Its
definition is in another library.

Global external
function

An external function that you declare in any
painter, making it globally accessible. Its
definition is in another library.

Remote
procedure call
(RPC)

A stored procedure in a database that you can call
from a script. The declaration for an RPC can be
global or local (belonging to an object). The
definition for the procedure is in the database.
92 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Comparing functions
and events

Functions and events have the following similarities:

• Both functions and events have arguments and return values.

• You can call object functions and events dynamically or statically. Global
or system functions cannot be called dynamically.

• You can post or trigger a function or event call.

Functions and events have the following differences:

• Functions can be global or part of an object’s definition. Events are
associated only with objects.

• PowerBuilder uses different search orders when looking for events and
functions.

• A call to an undefined function triggers an error. A call to an undefined
event does not trigger an error.

• Object-level functions can be overloaded. Events (and global functions)
cannot be overloaded.

• When you define a function, you can restrict access to it. You cannot add
scope restrictions when you define events.

• When functions are inherited, you can extend the ancestor function by
calling it in the descendant’s script. You can also override the function
definition. When events are inherited, the scripts for those events are
extended by default. You can choose to extend or override the script.

Which to use Whether you write most of your code in user-defined functions or in event
scripts is one of the design decisions you must make. Because there is no
performance difference, the decision is based on how you prefer to interact
with PowerBuilder: whether you prefer the interface for defining user events
or that for defining functions, how you want to handle errors, and whether your
design includes overloading.

It is unlikely that you will use either events or functions exclusively, but for
ease of maintenance, you might want to choose one approach for handling most
situations.
PowerScript Reference 93

Finding and executing functions and events
Finding and executing functions and events
PowerBuilder looks for a matching function or event based on its name and its
argument list. PowerBuilder can make a match between compatible datatypes
(such as all the numeric types). The match does not have to be exact.
PowerBuilder ranks compatible datatypes to quantify how closely one datatype
matches another.

A major difference between functions and events is how PowerBuilder looks
for them.

Finding functions
When calling a function, PowerBuilder searches until it finds a matching
function and executes it—the search ends. Using functions with the same name
but different arguments is called function overloading. For more information,
see “Overloading, overriding, and extending functions and events” on page
104.

Unqualified function
names

If you do not qualify a function name with an object, PowerBuilder searches
for the function and executes the first one it finds that matches the name and
arguments. It searches for a match in the following order:

1 A global external function.

2 A global function.

3 An object function and local external function. If the object is a
descendant, PowerBuilder searches upward through the ancestor
hierarchy to find a match for the function prototype.

4 A system function.

DataWindow expression functions
The functions that you use in the DataWindow painter in expressions for
computed fields, filters, validation rules, and graphed data cannot be
overridden. For example, if you create a global function called Today, it is used
instead of the PowerScript system function Today, but it is not used instead of
the DataWindow expression function Today.
94 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Qualified function
names

You can qualify an object function using dot notation to ensure that the object
function is found, not a global function of the same name. With a qualified
name, the search for a matching function involves the ancestor hierarchy only
(item 3 in the search list above), as shown in the following examples of
function calls:

dw_1.Update()
w_employee.uf_process_list()
This.uf_process_list()

When PowerBuilder searches the ancestor hierarchy for a function, you can
specify that you want to call an ancestor function instead of a matching
descendent function.

For the syntax for calling ancestor functions, see “Calling functions and events
in an object’s ancestor” on page 114.

Finding events
PowerBuilder events in descendent objects are, by default, extensions of
ancestor events. PowerBuilder searches for events in the object’s ancestor
hierarchy until it gets to the top ancestor or finds an event that overrides its
ancestor. Then it begins executing the events, from the ancestor event down to
the descendent event.

Finding functions
versus events

The following illustration shows the difference between searching for events
and searching for functions:
PowerScript Reference 95

Triggering versus posting functions and events
Triggering versus posting functions and events
Triggering In PowerBuilder, when you trigger a function or event, it is called immediately.

Its return value is available for use in the script.

Posting When you post a function or event, it is added to the object’s queue and
executed in its turn. In most cases, it is executed when the current script is
finished; however, if other system events have occurred in the meantime, its
position in the queue might be after other scripts. Its return value is not
available to the calling script.

Because POST makes the return value unavailable to the caller, you can think
of it as turning the function or event call into a statement.

Use posting when activities need to be finished before the code checks state
information or does further processing (see Example 2 below).

PowerBuilder
messages processed
first

All events posted by PowerBuilder are processed by a separate queue from the
Windows system queue. PowerBuilder posted messages are processed before
Windows posted messages, so PowerBuilder events that are posted in an event
that posts a Windows message are processed before the Windows message.

For example, when a character is typed into an EditMask control, the
PowerBuilder pdm_keydown event posts the Windows message WM_CHAR to
enter the character. If you want to copy the characters as they are entered from
the EditMask control to another control, do not place the code in an event
posted in the pdm_keydown event. The processing must take place in an event
that occurs after the WM_CHAR message is processed, such as in an event
mapped to pdm_keyup.

Restrictions for POST Because no value is returned, you:

• Cannot use a posted function or event as an operand in an expression

• Cannot use a posted function or event as the argument for another function

• Can only use POST on the last call in a cascaded sequence of calls

These statements cause a compiler error. Both uses require a return value:

IF POST IsNull() THEN ...
w_1.uf_getresult(dw_1.POST GetBorderStyle(2))
96 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Asynchronous
processing in
EAServer

Using POST is not supported in the context of calls to EAServer components.
For how to simulate asynchronous processing by posting a call to a shared
object on an EAServer client, see the SharedObjectGet function in the online
Help. For information about asynchronous processing in EAServer, see the
EAServer documentation for the ThreadManager and MessageService
modules.

TriggerEvent and PostEvent functions
For backward compatibility, the TriggerEvent and PostEvent functions are still
available, but you cannot pass arguments to the called event. You must pass
data to the event in PowerBuilder’s Message object.

Examples of posting The following examples illustrate how to post events.

Example 1 In a sample application, the Open event of the w_activity_manager
window calls the functions uf_setup and uf_set_tabpgsystem. (The functions
belong to the user object u_app_actman.) Because the functions are posted, the
Open event is allowed to finish before the functions are called. The result is that
the window is visible while setup processing takes place, giving the user
something to look at:

guo_global_vars.iuo_app_actman.POST uf_setup()
guo_global_vars.iuo_com_actman.POST
uf_set_tabpgsystem(0)

Example 2 In a sample application, the DoubleClicked event of the
tv_roadmap TreeView control in the u_tabpg_amroadmap user object posts a
function that processes the TreeView item. If the event is not posted, the code
that checks whether to change the item’s picture runs before the item’s
expanded flag is set:

parent.POST uf_process_item ()
PowerScript Reference 97

Static versus dynamic calls
Static versus dynamic calls
Calling functions and
events

PowerBuilder calls functions and events in three ways, depending on the type
of function or event and the lookup method defined.

Table 6-2: How PowerBuilder calls functions and events

Specifying static or
dynamic lookup

For object functions and events, you can choose when PowerBuilder looks for
them by specifying static or dynamic lookup. You specify static or dynamic
lookup using the STATIC or DYNAMIC keywords. The DYNAMIC keyword
applies only to functions that are associated with an object. You cannot call
global or system functions dynamically.

Static calls
By default, PowerBuilder makes static lookups for functions and events. This
means that it identifies the function or event by matching the name and
argument types when it compiles the code. A matching function or event must
exist in the object at compile time.

Results of static calls Static calls do not guarantee that the function or event identified at compile
time is the one that is executed. Suppose that you define a variable of an
ancestor type and it has a particular function definition. If you assign an
instance of a descendent object to the variable and the descendant has a
function that overrides the ancestor’s function (the one found at compile time),
the function in the descendant is executed.

Type of function Compiler typing Comments

Global and system
functions

Strongly typed. The
function must exist when
the script is compiled.

These functions must exist and
are called directly. They are not
polymorphic, and no
substitution is ever made at
execution time.

Object functions with
STATIC lookup

Strongly typed. The
function must exist when
the script is compiled.

The functions are polymorphic.
They must exist when you
compile, but if another class is
instantiated at execution time,
its function is called instead.

Object functions with
DYNAMIC lookup

Weakly typed. The
function does not have to
exist when the script is
compiled.

The functions are polymorphic.
The actual function called is
determined at execution time.
98 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Dynamic calls
When you specify a dynamic call in PowerBuilder, the function or event does
not have to exist when you compile the code. You are indicating to the compiler
that there will be a suitable function or event available at execution time.

For a dynamic call, PowerBuilder waits until it is time to execute the function
or event to look for it. This gives you flexibility and allows you to call functions
or events in descendants that do not exist in the ancestor.

Results of dynamic
calls

To illustrate the results of dynamic calls, consider these objects:

• Ancestor window w_a with a function Set(integer).

• Descendent window w_a_desc with two functions: Set(integer) overrides
the ancestor function, and Set(string) is an overload of the function.

Situation 1 Suppose you open the window mywindow of the ancestor
window class w_a:

w_a mywindow
Open(mywindow)

This is what happens when you call the Set function statically or dynamically:

Situation 2 Now suppose you open mywindow as the descendant window
class w_a_desc:

w_a mywindow
Open(mywindow, "w_a_desc")

This statement Has this result

mywindow.Set(1)
Compiles correctly because function is
found in the ancestor w_a.

At runtime, Set(integer) in the ancestor
is executed.

mywindow.Set("hello")
Fails to compile; no function prototype
in w_a matches the call.

mywindow.DYNAMIC Set("hello")
Compiles successfully because of the
DYNAMIC keyword.

An error occurs at runtime because no
matching function is found.
PowerScript Reference 99

Static versus dynamic calls
This is what happens when you call the Set function statically or dynamically
in the descendant window class:

Disadvantages of
dynamic calls

Slower performance Because dynamic calls are resolved at runtime, they
are slower than static calls. If you need the fastest performance, design your
application to avoid dynamic calls.

Less error checking When you use dynamic calls, you are foregoing error
checking provided by the compiler. Your application is more open to
application errors, because functions that are called dynamically might be
unavailable at execution time. Do not use a dynamic call when a static call will
suffice.

Example using
dynamic call

A sample application has an ancestor window w_datareview_frame that defines
several functions called by the menu items of m_datareview_framemenu. They
are empty stubs with empty scripts so that static calls to the functions will
compile. Other windows that are descendants of w_datareview_frame have
scripts for these functions, overriding the ancestor version.

The wf_print function is one of these—it has an empty script in the ancestor and
appropriate code in each descendent window:

guo_global_vars.ish_currentsheet.wf_print ()

The wf_export function called by the m_export item on the m_file menu does
not have a stubbed-out version in the ancestor window. This code for m_export
uses the DYNAMIC keyword to call wf_export. When the program runs, the
value of variable ish_currentsheet is a descendent window that does have a
definition for wf_export:

guo_global_vars.ish_currentsheet.DYNAMIC wf_export()

This statement Has this result

mywindow.Set(1)
Compiles correctly because function is
found in the ancestor w_a.

At runtime, Set(integer) in the
descendant is executed.

mywindow.Set("hello")
Fails to compile; no function prototype
in the ancestor matches the call.

mywindow.DYNAMIC Set("hello")
Compiles successfully because of the
DYNAMIC keyword.

At runtime, Set(string) in the
descendant is executed.
100 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Errors when calling functions and events dynamically

If you call a function or event dynamically, different conditions create different
results, from no effect to an execution error. The tables in this section illustrate
this.

Functions The rules for functions are similar to those for events, except functions must
exist: if a function is not found, an error always occurs. Although events can
exist without a script, if a function is defined it has to have code. Consider the
following statements:

1 This statement calls a function without looking for a return value:

object.DYNAMIC funcname()

2 This statement looks for an integer return value:

int li_int
li_int = object.DYNAMIC funcname()

3 This statement looks for an Any return value:

any la_any
la_any = object.DYNAMIC funcname()

The following table uses these statements as examples.

Table 6-3: Dynamic function calling errors

Events Consider these statements:

1 This statement calls an event without looking for a return value:

object.EVENT DYNAMIC eventname()

2 This example looks for an integer return value:

int li_int
li_int = object.EVENT DYNAMIC eventname()

Condition 1 Condition 2 Result Example

The function
does not exist.

None. Execution error 65:
Dynamic function
not found.

All the
statements cause
error 65.

The function is
found and
executed but is
not defined with
a return value.

The code is looking
for a return value.

Execution error 63:
Function/event with
no return value used
in expression.

Statements 2 and
3 cause error 63.
PowerScript Reference 101

Static versus dynamic calls
3 This example looks for an Any return value:

any la_any
la_any = object.EVENT DYNAMIC eventname()

The following table uses these statements as examples.

Table 6-4: Dynamic event calling errors

Condition 1 Condition 2 Result Example

The event does
not exist.

The code is not
looking for a return
value.

Nothing; the call fails
silently.

Statement 1 fails
but does not
cause an error.

The code is looking
for a return value.

A null of the Any
datatype is returned.

La_any is set to
null in statement
3.

If the expected
datatype is not Any,
execution error 19
occurs: Cannot
convert Any in Any
variable to datatype.

The assignment
to li_int causes
execution error
19 in statement
2.

The event is
found but is not
implemented
(there is no
script).

The event has a
defined return
value.

A null of the defined
datatype is returned.

If eventname is
defined to return
integer, li_int is
set to null in
statement 2.

The event does not
have a defined
return value.

A null of the Any
datatype is returned.

La_any is set to
null in statement
3.

If the expected
datatype is not Any,
execution error 19
occurs: Cannot
convert Any in Any
variable to datatype.

The assignment
to li_int causes
execution error
19 in statement
2.

The event is
found and
executed but is
not defined with
a return value.

The code is looking
for a return value.

Execution error 63:
Function/event with
no return value used
in expression.

Statements 2 and
3 cause error 63.
102 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
When an error occurs You can surround a dynamic function call in a try-catch block to prevent the
application from terminating when an execution error occurs. Although you
can also handle the error in the SystemError event, you should not allow the
application to continue once the SystemError event is invoked—the
SystemError event should only clean up and halt the application.

For information on using try-catch blocks, see the chapter on exception
handling in Application Techniques.

If the arguments do
not match

Function arguments are part of the function’s definition. Therefore, if the
arguments do not match (a compatible match, not an exact match), it is
essentially a different function. The result is the same as if the function did not
exist.

If you call an event dynamically and the arguments do not match, the call fails
and control returns to the calling script. There is no error.

Error-proofing your
code

Calling functions and events dynamically opens up your application to
potential errors. The surest way to avoid these errors is to always make static
calls to functions and events. When that is not possible, your design and testing
can ensure that there is always an appropriate function or event with the correct
return datatype.

One type of error you can check for and avoid is data conversion errors.

The preceding tables illustrated that a function or event can return a null value
either as an Any variable or as a variable of the expected datatype when a
function or event definition exists but is not implemented.

If you always assign return values to Any variables for dynamic calls, you can
test for null (which indicates failure) before using the value in code.

This example illustrates the technique of checking for null before using the
return value.

any la_any
integer li_gotvalue
la_any = object.DYNAMIC uf_getaninteger()
IF IsNull(la_any) THEN

... // Error handling
ELSE

li_gotvalue = la_any
END IF
PowerScript Reference 103

Overloading, overriding, and extending functions and events
Overloading, overriding, and extending functions and
events

In PowerBuilder, when functions are inherited, you can choose to overload or
override the function definition, described in “Overloading and overriding
functions” next.

When events are inherited, the scripts for those events are extended by default.
You can choose to extend or override the script, described in “Extending and
overriding events” on page 106.

Overloading and overriding functions
To create an overloaded function, you declare the function as you would any
function using Insert>Function.

Overriding means defining a function in a descendent object that has the same
name and argument list as a function in the ancestor object. In the descendent
object, the function in the descendant is always called instead of the one in the
ancestor—unless you use the scope resolution operator (::).

To override a function, open the descendent object in the painter, select the
function in the Script view, and code the new script. The icon that indicates that
there is a script for a function is half shaded when the function is inherited from
an ancestor.

You can overload or override object functions only—you cannot overload
global functions.

Type promotion when matching arguments for overloaded functions

When you have overloaded a function so that one version handles numeric
values and another version handles strings, it is clear to the programmer what
arguments to provide to call each version of the function. Overloading with
unrelated datatypes is a good idea and can provide needed functionality for
your application.
104 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Problematic
overloading

If different versions of a function have arguments of related datatypes
(different numeric types or strings and chars), you must consider how
PowerBuilder promotes datatypes in determining which function is called.
This kind of overloading is undesirable because of potential confusion in
determining which function is called.

When you call a function with an expression as an argument, the datatype of
the expression might not be obvious. However, the datatype is important in
determining what version of an overloaded function is called.

Because of the intricacies of type promotion for numeric datatypes, you might
decide that you should not define overloaded functions with different numeric
datatypes. Changes someone makes later can affect the application more
drastically than expected if the change causes a different function to be called.

How type promotion
works

When PowerBuilder evaluates an expression, it converts the datatypes of
constants and variables so that it can process or combine them correctly.

Numbers When PowerBuilder evaluates numeric expressions, it promotes
the datatypes of values according to the operators and the datatypes of the other
operands. For example, the datatype of the expression n/2 is double because it
involves division—the datatype of n does not matter.

Strings When evaluating an expression that involves chars and strings,
PowerBuilder promotes chars to strings.

For more information on type promotion, see “Datatype of PowerBuilder
expressions” on page 75.

Using conversion
functions

You can take control over the datatypes of expressions by calling a conversion
function. The conversion function ensures that the datatype of the expression
matches the function prototype you want to call.

For example, because the expression n/2 involves division, the datatype is
double. However, if the function you want to call expects a long, you can use
the Long function to ensure that the function call matches the prototype:

CalculateHalf(Long(n/2))
PowerScript Reference 105

Passing arguments to functions and events
Extending and overriding events
In PowerBuilder, when you write event scripts in a descendent object, you can
extend or override scripts that have been written in the ancestor. Extending (the
default) means executing the ancestor’s script first, then executing code in the
descendant’s event script.

Overriding means ignoring the ancestor’s script and only executing the script
in the descendant.

No overloaded events
You cannot overload an event by defining an event with the same name but
different arguments. Event names must be unique.

To select extending or overriding, open the script in the Script view and check
or clear the Extend Ancestor Script item in the Edit or pop-up menu.

Passing arguments to functions and events
In PowerBuilder, arguments for built-in or user-defined functions and events
can be passed three ways:

Table 6-5: Passing arguments to functions and events

Method of passing Description

By value A copy of the variable is available in the function or event
script. Any changes to its value affect the copy only. The
original variable in the calling script is not affected.

By reference A pointer to the variable is passed to the function or event
script. Changes affect the original variable in the calling
script.

Read-only The variable is available in the function or event. Its value
is treated as a constant—changes to the variable are not
allowed and cause a compiler error.

Read-only provides a performance advantage for some
datatypes because it does not create a copy of the data, as
with by value. Datatypes for which read-only provides a
performance advantage are string, blob, date, time, and
DateTime.

For other datatypes, read-only provides documentation for
other developers by indicating something about the
purpose of the argument.
106 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Passing objects
When you pass an object to a function or event, the object must exist when you
refer to its properties and functions. If you call the function but the object has
been destroyed, you get the execution error for a null object reference. This is
true whether you pass by reference, by value, or read-only.

To illustrate, suppose you have a window with a SingleLineEdit. If you post a
function in the window’s Close event and pass the SingleLineEdit, the object
does not exist when the function executes. To use information from the
SingleLineEdit, you must pass the information itself, such as the object’s text,
rather than the object. When passing an object, you never get another copy of
the object. By reference and by value affect the object reference, not the object
itself.

Objects passed by
value

When you pass an object by value, you pass a copy of the reference to the
object. That reference is still pointing to the original object. If you change
properties of the object, you are changing the original object. However, you can
change the value of the variable so that it points to another object without
affecting the original variable.

Objects passed by
reference

When you pass an object by reference, you pass a pointer to the original
reference to the object. Again, if you change properties of the object, you are
changing the original object. You can change the value of the variable that was
passed, but the result is different—the original reference now points to the new
object.

Objects passed as
read-only

When you pass an object as read-only, you get a copy of the reference to the
object. You cannot change the reference to point to a new object (because
read-only is equivalent to a CONSTANT declaration), but you can change
properties of the object.

Passing structures
Structures as arguments behave like simple variables, not like objects.

Structures passed by
value

When you pass a structure by value, PowerBuilder passes a copy of the
structure. You can modify the copy without affecting the original.

Structures passed by
reference

When you pass a structure by reference, PowerBuilder passes a reference to the
structure. When you changes values in the structure, you are modifying the
original. You will not get a null object reference, because structures always
exist until they go out of scope.
PowerScript Reference 107

Passing arguments to functions and events
Structures passed as
read-only

When you pass a structure as read-only, PowerBuilder passes a copy of the
structure. You cannot modify any members of the structure.

Passing arrays
When an argument is an array, you specify brackets as part of the argument
name in the declaration for the function or event.

Variable-size array as
an argument

For example, suppose a function named uf_convertarray accepts a variable-size
array of integers. If the argument’s name is intarray, then for Name enter
intarray[] and for Type enter integer.

In the script that calls the function, you either declare an array variable or use
an instance variable or value that has been passed to you. The declaration of
that variable, wherever it is, looks like this:

integer a[]

When you call the function, omit the brackets, because you are passing the
whole array. If you specified brackets, you would be passing one value from
the array:

uf_convertarray(a)

Fixed-size array as an
argument

For comparison, suppose the uf_convertarray function accepts a fixed-size
array of integers of 10 elements instead. If the argument’s name is intarray,
then for Name enter intarray[10], and for Type enter integer.

The declaration of the variable to be passed looks like this:

integer a[10]

You call the function the same way, without brackets:

uf_convertarray(a)

If the array dimensions do not match
If the dimensions of the array variable passed do not match the dimensions
declared for the array argument, then array-to-array assignment rules apply.
For more information, see “Declaring arrays” on page 48.
108 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Using return values
You can use return values of functions and events.

Functions
All built-in PowerScript functions return a value. You can use the return value
or ignore it. User-defined functions and external functions might or might not
return a value.

To use a return value, assign it to a variable of the appropriate datatype or call
the function wherever you can use a value of that datatype.

Posting a function
If you post a function, you cannot use its return value.

Examples The built-in Asc function takes a string as an argument and returns the Unicode
code point value of the string’s first character:

string S1 = "Carton"
long Test
Test=32+Asc(S1) // Test now contains the value 99

// (the code point value of "C" is 67).

The SelectRow function expects a row number as the first argument. The return
value of the GetRow function supplies the row number:

dw_1.SelectRow(dw_1.GetRow(), true)

To ignore a return value, call the function as a single statement:

Beep(4) // This returns a value, but it is
// rarely needed.

Events
Most system events return a value. The return value is a long—numeric codes
have specific meanings for each event. You specify the event’s return code with
a RETURN statement in the event script.

When the event is triggered by user actions or system messages, the value is
returned to the system, not to a script you write.
PowerScript Reference 109

Using return values
When you trigger a system or user-defined event, the return value is returned
to your script and you can use the value as appropriate. If you post an event,
you cannot use its return value.

Using cascaded calling and return values
PowerBuilder dot notation allows you to chain together several object function
or event calls. The return value of the function or event becomes the object for
the following call.

This syntax shows the relationship between the return values of three cascaded
function calls:

func1returnsobject().func2returnsobject().func3returnsanything()

Disadvantage of cascaded calls
When you call several functions in a cascade, you cannot check their return
values and make sure they succeeded. If you want to check return values (and
checking is always a good idea), call each function separately and assign the
return values to variables. Then you can use the verified variables in dot
notation before the final function name.

Dynamic calls If you use the DYNAMIC keyword in a chain of cascaded calls, it carries over to
all function calls that follow.

In this example, both func1 and func2 are called dynamically:

object1.DYNAMIC func1().func2()

The compiler reports an error if you use DYNAMIC more than once in a
cascaded call. This example would cause an error:

object1.DYNAMIC func1().DYNAMIC func2() // error

Posted functions and
events

Posted functions and events do not return a value to the calling scripts.
Therefore, you can only use POST for the last function or event in a cascaded
call. Calls before the last must return a valid object that can be used by the
following call.

System events System events can only be last in a cascaded list of calls, because their return
value is a long (or they have no return value). They do not return an object that
can be used by the next call.

An event you have defined can have a return value whose datatype is an object.
You can include such events in a cascaded call.
110 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Syntax for calling PowerBuilder functions and events
Description This syntax is used to call all PowerBuilder functions and events. Depending

on the keywords used, this syntax can be used to call system, global, object,
user-defined, and external functions as well as system and user-defined events.

Syntax { objectname.} { type } { calltype } { when } name ({ argumentlist })

The following table describes the arguments used in function and event calls.

Table 6-6: Arguments for calling functions and events

Argument Description

objectname
(optional)

The name of the object where the function or event is defined
followed by a period or the descendant of that object/the name of
the ancestor class followed by two colons.

If a function name is not qualified, PowerBuilder uses the rules for
finding functions and executes the first matching function it finds.

For system or global functions, omit objectname.

For the rules PowerBuilder uses to find unqualified function names,
see “Finding and executing functions and events” on page 94.

type
(optional)

A keyword specifying whether you are calling a function or event.
Values are:

• FUNCTION (Default)

• EVENT

calltype
(optional)

A keyword specifying when PowerBuilder looks for the function or
event. Values are:

• STATIC (Default)

• DYNAMIC

For more information about static versus dynamic calls, see “Static
versus dynamic calls” on page 98. For more information on
dynamic calls, see “Dynamic calls” on page 99.

when
(optional)

A keyword specifying whether the function or event should execute
immediately or after the current script is finished. Values are:

• TRIGGER – (Default) Execute it immediately.

• POST – Put it in the object’s queue and execute it in its turn, after
other pending messages have been handled.

For more about triggering and posting, see “Triggering versus
posting functions and events” on page 96.

name The name of the function or event you want to call.

argumentlist
(optional)

The values you want to pass to name. Each value in the list must
have a datatype that corresponds to the declared datatype in the
function or event definition or declaration.
PowerScript Reference 111

Syntax for calling PowerBuilder functions and events
Usage Function and event names are not case sensitive. For example, the following
three statements are equivalent:

Clipboard("PowerBuilder")
clipboard("PowerBuilder")
CLIPBOARD("PowerBuilder")

Calling arguments The type, calltype, and when keywords can be in any
order after objectname.

Not all options in the syntax apply to all types. For example, there is no point
in calling a system PowerScript object function dynamically. It always exists,
and the dynamic call incurs extra overhead. However, if you had a user-defined
function of the same name that applied to a different object, you might call that
function dynamically.

User-defined global functions and system functions can be triggered or posted
but they cannot be called dynamically.

Finding functions If a global function does not exist with the given name,
PowerBuilder will look for an object function that matches the name and
argument list before it looks for a PowerBuilder system function.

Calling functions and events in the ancestor If you want to circumvent
the usual search order and force PowerBuilder to find a function or event in an
ancestor object, bypassing it in the descendant, use the ancestor operator (::).

For more information about the scope operator for ancestors, see “Calling
functions and events in an object’s ancestor” on page 114.

Cascaded calls Calls can be cascaded using dot notation. Each function or
event call must return an object type that is the appropriate object for the
following call.

For more information about cascaded calls, see “Using cascaded calling and
return values” on page 110.

Using return values If the function has a return value, you can call the
function on the right side of an assignment statement, as an argument for
another function, or as an operand in an expression.

External functions Before you can call an external function, you must
declare it. For information about declaring external functions, see “Declaring
external functions” on page 58.
112 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Examples Example 1 The following statements show various function calls using the
most simple construction of the function call syntax.

This statement calls the system function Asc:

charnum = Asc("x")

This statement calls the DataWindow function in a script that belongs to the
DataWindow:

Update()

This statement calls the global user-defined function gf_setup_appl:

gf_setup_appl(24, "Window1")

This statement calls the system function PrintRect:

PrintRect(job, 250, 250, 7500, 1000, 50)

Example 2 The following statements show calls to global and system
functions.

This statement posts the global user-defined function gf_setup_appl. The
function is executed when the calling script finishes:

POST gf_setup_appl(24, "Window1")

This statement posts the system function PrintRect. It is executed when the
calling script finishes. The print job specified in job must still be open:

POST PrintRect(job, 250, 250, 7500, 1000, 50)

Example 3 In a script for a control, these statements call a user-defined
function defined in the parent window. The statements are equivalent, because
FUNCTION, STATIC, and TRIGGER are the defaults:

Parent.FUNCTION STATIC TRIGGER wf_process()
Parent.wf_process()

Example 4 This statement in a DataWindow control’s Clicked script calls
the DoubleClicked event for the same control. The arguments the system
passed to Clicked are passed on to DoubleClicked. When triggered by the
system, PowerBuilder passes DoubleClicked those same arguments:

This.EVENT DoubleClicked(xpos, ypos, row, dwo)

This statement posts the same event:

This.EVENT POST DoubleClicked(xpos, ypos, row, dwo)
PowerScript Reference 113

Calling functions and events in an object’s ancestor
Example 5 The variable iw_a is an instance variable of an ancestor window
type w_ancestorsheet:

w_ancestorsheet iw_a

A menu has a script that calls the wf_export function, but that function is not
defined in the ancestor. The DYNAMIC keyword is required so that the script
compiles:

iw_a.DYNAMIC wf_export()

At execution time, the window that is opened is a descendant with a definition
of wf_export. That window is assigned to the variable iw_a and the call to
wf_export succeeds.

Calling functions and events in an object’s ancestor
Description In PowerBuilder, when an object is instantiated with a descendant object, even

if its class is the ancestor and that descendant has a function or event script that
overrides the ancestor’s, the descendant’s version is the one that is executed. If
you specifically want to execute the ancestor’s version of a function or event,
you can use the ancestor operator (::) to call the ancestor’s version explicitly.

Syntax { objectname. } ancestorclass ::{ type } { when } name ({ argumentlist })

The following table describes the arguments used to call functions and events
in an object’s ancestor.

Table 6-7: Arguments for calling ancestor functions and events

Argument Description

objectname
(optional)

The name of the object whose ancestor contains the function you
want to execute.

ancestorclass The name of the ancestor class whose function or event you want to
execute. The pronoun Super provides the appropriate reference
when ancestorobject is the immediate ancestor of the current object.

type
(optional)

A keyword specifying whether you are calling a function or event.
Values are:

• (Default) FUNCTION

• EVENT
114 PowerBuilder Classic

CHAPTER 6 Calling Functions and Events
Usage The AncestorReturnValue variable When you extend an event script in a
descendent object, the compiler automatically generates a local variable called
AncestorReturnValue that you can use if you need to know the return value of
the ancestor event script. The variable is also generated if you override the
ancestor script and use the CALL syntax to call the ancestor event script.

The datatype of the AncestorReturnValue variable is always the same as the
datatype defined for the return value of the event. The arguments passed to the
call come from the arguments that are passed to the event in the descendent
object.

Extending event scripts The AncestorReturnValue variable is always
available in extended event scripts. When you extend an event script,
PowerBuilder generates the following syntax and inserts it at the beginning of
the event script:

CALL SUPER::event_name

You only see the statement if you export the syntax of the object or look at it in
the Source editor.

The following example illustrates the code you can put in an extended event
script:

If AncestorReturnValue = 1 THEN
// execute some code
ELSE
// execute some other code
END IF

Overriding event scripts The AncestorReturnValue variable is only
available when you override an event script after you call the ancestor event
using either of these versions of the CALL syntax:

CALL SUPER::event_name

CALL ancestor_name::event_name

when
(optional)

A keyword specifying whether the function or event should execute
immediately or after the current script is finished. Values are:

• TRIGGER – (Default) Execute it immediately

• POST – Put it in the object’s queue and execute it in its turn, after
other pending messages have been handled

name The name of the object function or event you want to call.

argumentlist
(optional)

The values you want to pass to name. Each value in the list must
have a datatype that corresponds to the declared datatype in the
function definition.

Argument Description
PowerScript Reference 115

Calling functions and events in an object’s ancestor
The compiler cannot differentiate between the keyword SUPER and the name
of the ancestor. The keyword is replaced with the name of the ancestor before
the script is compiled.

The AncestorReturnValue variable is only declared and a value assigned when
you use the CALL event syntax. It is not declared if you use the new event
syntax:

ancestor_name::EVENT event_name()

You can use the same code in a script that overrides its ancestor event script,
but you must insert a CALL statement before you use the AncestorReturnValue
variable.

// execute code that does some preliminary processing
CALL SUPER::uo_myevent
IF AncestorReturnValue = 1 THEN
...

For information about CALL, see CALL on page 123.

Examples Example 1 Suppose a window w_ancestor has an event ue_process. A
descendent window has a script for the same event.

This statement in a script in the descendant searches the event chain and calls
all appropriate events. If the descendant extends the ancestor script, it calls a
script for each ancestor in turn followed by the descendent script. If the
descendant overrides the ancestor, it calls the descendent script only:

EVENT ue_process()

This statement calls the ancestor event only (this script works if the calling
script belongs to another object or the descendent window):

w_ancestor::EVENT ue_process()

Example 2 You can use the pronoun Super to refer to the ancestor. This
statement in a descendent window script or in a script for a control on that
window calls the Clicked script in the immediate ancestor of that window.

Super::EVENT Clicked(0, x, y)

Example 3 These statements call a function wf_myfunc in the ancestor
window (presumably, the descendant also has a function called wf_myfunc):

Super::wf_myfunc()
Super::POST wf_myfunc()
116 PowerBuilder Classic

P A R T 2 Statements, Events, and
Functions

This part provides reference information about each of the
components of the PowerScript language.

C H A P T E R 7 PowerScript Statements

About this chapter This chapter describes the PowerScript statements and how to use them in
scripts.

Contents Topic Page

Assignment 120

CALL 123

CHOOSE CASE 124

CONTINUE 126

CREATE 127

DESTROY 130

DO...LOOP 131

EXIT 133

FOR...NEXT 134

GOTO 136

HALT 137

IF...THEN 138

RETURN 140

THROW 141

THROWS 142

TRY...CATCH...FINALLY...END TRY 143
PowerScript Reference 119

Assignment
Assignment
Description Assigns values to variables or object properties or object references to object

variables.

Syntax variablename = expression

Usage Use assignment statements to assign values to variables. To assign a value to a
variable anywhere in a script, use the equal sign (=). For example:

String1 = "Part is out of stock"
TaxRate = .05

No multiple assignments Since the equal sign is also a logical operator, you
cannot assign more than one variable in a single statement. For example, the
following statement does not assign the value 0 to A and B:

A=B=0 // This will not assign 0 to A and B.

This statement first evaluates B=0 to true or FALSE and then tries to assign this
boolean value to A. When A is not a boolean variable, this line produces an
error when compiled.

Assigning array values You can assign multiple array values with one
statement, such as:

int Arr[]
Arr = {1, 2, 3, 4}

You can also copy array contents. For example, this statement copies the
contents of Arr2 into array Arr1:

Arr1 = Arr2

Argument Description

variablename The name of the variable or object property to which you
want to assign a value. Variablename can include dot
notation to qualify the variable with one or more object
names.

expression An expression whose datatype is compatible with
variablename.
120 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
Operator shortcuts The PowerScript shortcuts for assigning values to
variables in the following table have slight performance advantages over their
equivalents.

Table 7-1: Shortcuts for assigning values

Unless you have prohibited the use of dashes in variable names, you must leave
a space before -- and -=. If you do not, PowerScript reads the minus sign as
part of a variable name. For more information, see “Identifier names” on page
5.

Examples Example 1 These statements each assign a value to the variable ld_date:

date ld_date
ld_date = Today()
ld_date = 2006-01-01
ld_date = Date("January 1, 2006")

Example 2 These statements assign the parent of the current control to a
window variable:

window lw_current_window
lw_current_window = Parent

Example 3 This statement makes a CheckBox invisible:

cbk_on.Visible = FALSE

Example 4 This statement is not an assignment—it tests the value of the
string in the SingleLineEdit sle_emp:

IF sle_emp.Text = "N" THEN Open(win_1)

Assignment Example Equivalent to

++ i ++ i = i + 1

-- i -- i = i - 1

+= i += 3 i = i + 3

-= i -= 3 i = i -3

*= i *= 3 i = i * 3

/= i /= 3 i = i / 3

^= i ^=3 i = i ^ 3
PowerScript Reference 121

Assignment
Example 5 These statements concatenate two strings and assign the value to
the string Text1:

string Text1
Text1 = sle_emp.Text+".DAT"

Example 6 These assignments use operator shortcuts:

int i = 4
i ++ // i is now 5.
i -- // i is 4 again.
i += 10 // i is now 14.
i /= 2 // i is now 7.

These shortcuts can be used only in pure assignment statements. They cannot
be used with other operators in a statement. For example, the following is
invalid:

int i, j
i = 12
j = i ++ // INVALID

The following is valid, because ++ is used by itself in the assignment:

int i, j
i = 12
i ++
j = i
122 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
CALL
Description Calls an ancestor script from a script for a descendent object. You can call

scripts for events in an ancestor of the user object, menu, or window. You can
also call scripts for events for controls in an ancestor of the user object or
window.

When you use the CALL statement to call an ancestor event script, the
AncestorReturnValue variable is generated. For more information on the
AncestorReturnValue variable, see “About events” on page 183.

Syntax CALL ancestorobject {`controlname}::event

Usage Using the standard syntax
For most purposes, you should use the standard syntax for calling functions and
events. For more information about the standard syntax, see “Syntax for
calling PowerBuilder functions and events” on page 111.

The standard syntax allows you to trigger or post an event or function in an
ancestor and then pass arguments, but it does not allow you to call a script for
a control in the ancestor.

In some circumstances, you can use the pronoun Super when ancestorobject is
the descendant object’s immediate ancestor. See the discussion of “Super
pronoun” on page 14.

If the call is being made to an ancestor event, the arguments passed to the
current event are automatically propagated to the ancestor event. If you call a
non-ancestor event and pass arguments, you need to use the new syntax,
otherwise null will be passed for each argument.

Examples Example 1 This statement calls a script for an event in an ancestor window:

CALL w_emp::Open

Example 2 This statement calls a script for an event in a control in an
ancestor window:

CALL w_emp`cb_close::Clicked

Parameter Description

ancestorobject An ancestor of the descendent object

controlname
(optional)

The name of a control in an ancestor window or custom
user object

event An event in the ancestor object
PowerScript Reference 123

CHOOSE CASE
CHOOSE CASE
Description A control structure that directs program execution based on the value of a test

expression (usually a variable).

Syntax CHOOSE CASE testexpression
CASE expressionlist

statementblock
{ CASE expressionlist

statementblock
. . .
CASE expressionlist

statementblock }
CASE ELSE

statementblock }
END CHOOSE

Usage At least one CASE clause is required. You must end a CHOOSE CASE control
structure with END CHOOSE.

If testexpression at the beginning of the CHOOSE CASE statement matches a
value in expressionlist for a CASE clause, the statements immediately
following the CASE clause are executed. Control then passes to the first
statement after the END CHOOSE clause.

If multiple CASE expressions exist, then testexpression is compared to each
expressionlist until a match is found or the CASE ELSE or END CHOOSE is
encountered.

Parameter Description

testexpression The expression on which you want to base the execution
of the script

expressionlist One of the following expressions:

• A single value

• A list of values separated by commas (such as 2, 4, 6,
8)

• A TO clause (such as 1 TO 30)

• IS followed by a relational operator and comparison
value (such as IS>5)

• Any combination of the above with an implied OR
between expressions (such as 1, 3, 5, 7, 9, 27 TO 33,
IS >42)

statementblock The block of statements you want PowerBuilder to
execute if the test expression matches the value in
expressionlist
124 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
If there is a CASE ELSE clause and the test value does not match any of the
expressions, statementblock in the CASE ELSE clause is executed. If no CASE
ELSE clause exists and a match is not found, the first statement after the END
CHOOSE clause is executed.

Examples Example 1 These statements provide different processing based on the value
of the variable Weight:

CHOOSE CASE Weight
CASE IS<16

Postage=Weight*0.30
Method="USPS"

CASE 16 to 48
Postage=4.50
Method="UPS"

CASE ELSE
Postage=25.00
Method="FedEx"

END CHOOSE

Example 2 These statements convert the text in a SingleLineEdit control to a
real value and provide different processing based on its value:

CHOOSE CASE Real(sle_real.Text)
CASE is < 10.99999

sle_message.Text = "Real Case < 10.99999"
CASE 11.00 to 48.99999

sle_message.Text = "Real Case 11 to 48.9999
CASE is > 48.9999

sle_message.Text = "Real Case > 48.9999"
CASE ELSE

sle_message.Text = "Cannot evaluate!"
END CHOOSE
PowerScript Reference 125

CONTINUE
CONTINUE
Description In a DO...LOOP or a FOR...NEXT control structure, skips statements in the loop.

CONTINUE takes no parameters.

Syntax CONTINUE

Usage When PowerBuilder encounters a CONTINUE statement in a DO...LOOP or
FOR...NEXT block, control passes to the next LOOP or NEXT statement. The
statements between the CONTINUE statement and the loop’s end statement are
skipped in the current iteration of the loop. In a nested loop, a CONTINUE
statement bypasses statements in the current loop structure.

For information on how to break out of the loop, see EXIT on page 133.

Examples Example 1 These statements display a message box twice: when B equals 2
and when B equals 3. As soon as B is greater than 3, the statement following
CONTINUE is skipped during each iteration of the loop:

integer A=1, B=1
DO WHILE A < 100

A = A+1
B = B+1
IF B > 3 THEN CONTINUE
MessageBox("Hi", "B is " + String(B))

LOOP

Example 2 These statements stop incrementing B as soon as Count is greater
than 15:

integer A=0, B=0, Count
FOR Count = 1 to 100

A = A + 1
IF Count > 15 THEN CONTINUE
B = B + 1

NEXT
// Upon completion, a=100 and b=15.
126 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
CREATE
Description Creates an object instance for a specified object type. After a CREATE

statement, properties of the created object instance can be referenced using dot
notation.

The CREATE statement returns an object instance that can be stored in a
variable of the same type.

Syntax 1 specifies the object type at compilation. Syntax 2 allows the
application to choose the object type dynamically.

Syntax Syntax 1 (specifies the object type at compilation):

objectvariable = CREATE objecttype

Syntax 2 (allows the application to choose the object type dynamically):

objectvariable = CREATE USING objecttypestring

Usage Use CREATE as the first reference to any class user object. This includes
standard class user objects such as mailSession or Transaction.

The system provides one instance of several standard class user objects:
Message, Error, Transaction, DynamicDescriptionArea, and
DynamicStagingArea. You only need to use CREATE if you declare additional
instances of these objects.

If you need a menu that is not part of an open window definition, use CREATE
to create an instance of the menu. (See the function PopMenu on page 858.)

To create an instance of a visual user object or window, use the appropriate
Open function (instead of CREATE).

Parameter Description
objectvariable A global, instance, or local variable whose datatype

is objecttype

objecttype The object datatype

Parameter Description
objectvariable A global, instance, or local variable whose datatype

is the same class as the object being created or an
ancestor of that class

objecttypestring A string whose value is the name of the class datatype
to be created
PowerScript Reference 127

CREATE
You do not need to use CREATE to allocate memory for:

• A standard datatype, such as integer or string

• Any structure, such as the Environment object

• Any object whose AutoInstantiate setting is true

• Any object that has been instantiated using a function, such as Open

Specifying the object type dynamically CREATE USING allows your
application to choose the object type dynamically. It is usually used to
instantiate an ancestor variable with an instance of one of its descendants. The
particular descendant is chosen at execution time.

For example, if uo_a has two descendants, uo_a_desc1 and uo_a_desc2, then
the application can select the object to be created based on current conditions:

uo_a uo_a_var
string ls_objectname

IF ... THEN
ls_objectname = "uo_a_desc1"

ELSE
ls_objectname = "uo_a_desc2"

END IF
uo_a_var = CREATE USING ls_objectname

Destroying objects you create When you have finished with an object you
created, you can call DESTROY to release its memory. However, you should
call DESTROY only if you are sure that the object is not referenced by any other
object. PowerBuilder’s garbage collection mechanism maintains a count of
references to each object and destroys unreferenced objects automatically.

For more information about garbage collection, see “Garbage collection” on
page 84.

Examples Example 1 These statements create a new transaction object and stores the
object in the variable DBTrans:

transaction DBTrans
DBTrans = CREATE transaction
DBTrans.DBMS = 'ODBC'

Example 2 These statements create a user object when the application has
need of the services it provides. Because the user object might or might not
exist, the code that accesses it checks whether it exists before calling its
functions.
128 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
The object that creates the service object declares invo_service as an instance
variable:

n_service invo_service

The Open event for the object creates the service object:

//Open event of some object
IF (some condition) THEN

invo_service = CREATE n_service
END IF

When another script wants to call a function that belongs to the n_service class,
it verifies that invo_service is instantiated:

IF IsValid(invo_service) THEN
invo_service.of_perform_some_work()

END IF

If the service object was created, then it also needs to be destroyed:

IF isvalid(invo_service) THEN DESTROY invo_service

Example 3 When you create a DataStore object, you also have to give it a
DataObject and call SetTransObject before you can use it:

l_ds_delete = CREATE u_ds
l_ds_delete.DataObject = 'd_user_delete'
l_ds_delete.SetTransObject(SQLCA)
li_cnt = l_ds_delete.Retrieve(lstr_data.name)

Example 4 In this example, n_file_service_class is an ancestor object, and
n_file_service_class_ansi and n_file_service_class_dbcs are its descendants.
They hold functions and variables that provide services for the application. The
code chooses which object to create based on whether the user is running in a
DBCS environment:

n_file_service_class lnv_fileservice
string ls_objectname
environment luo_env

GetEnvironment (luo_env)
IF luo_env.charset = charsetdbcs! THEN

ls_objectname = "n_file_service_class_dbcs"
ELSE

ls_objectname = "n_file_service_class_ansi"
END IF

lnv_fileservice = CREATE USING ls_objectname
PowerScript Reference 129

DESTROY
DESTROY
Description Eliminates an object instance that was created with the CREATE statement.

After a DESTROY statement, properties of the deleted object instance can no
longer be referenced.

Syntax DESTROY objectvariable

Usage When you are finished with an object that you created, you can call DESTROY
to release its memory. However, you should call DESTROY only if you are sure
that the object is not referenced by any other object. PowerBuilder’s garbage
collection mechanism maintains a count of references to each object and
destroys unreferenced objects automatically.

For more information about garbage collection, see “Garbage collection” on
page 84.

All objects are destroyed automatically when your application terminates.

Examples Example 1 The following statement destroys the transaction object DBTrans
that was created with a CREATE statement:

DESTROY DBTrans

Example 2 This example creates an OLEStorage variable istg_prod_pic in a
window’s Open event. When the window is closed, the Close event script
destroys the object. The variable’s declaration is:

OLEStorage istg_prod_pic

The window’s Open event creates an object instance and opens an OLE storage
file:

integer li_result
istg_prod_pic = CREATE OLEStorage
li_result = stg_prod_pic.Open("PICTURES.OLE")

The window’s Close event destroys istg_prod_pic:

integer li_result
li_result = istg_prod_pic.Save()
IF li_result = 0 THEN

DESTROY istg_prod_pic
END IF

Parameter Description

objectvariable A variable whose datatype is a PowerBuilder object
130 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
DO...LOOP
Description A control structure that is a general-purpose iteration statement used to execute

a block of statements while or until a condition is true.

DO... LOOP has four formats:

• DO UNTIL Executes a block of statements until the specified condition
is true. If the condition is true on the first evaluation, the statement block
does not execute.

• DO WHILE Executes a block of statements while the specified condition
is true. The loop ends when the condition becomes false. If the condition
is false on the first evaluation, the statement block does not execute.

• LOOP UNTIL Executes a block of statements at least once and continues
until the specified condition is true.

• LOOP WHILE Executes a block of statements at least once and continues
while the specified condition is true. The loop ends when the condition
becomes false.

In all four formats of the DO...LOOP control structure, DO marks the beginning
of the statement block that you want to repeat. The LOOP statement marks the
end.

You can nest DO...LOOP control structures.

Syntax DO UNTIL condition
statementblock

LOOP

DO WHILE condition
statementblock

LOOP

DO
statementblock

LOOP UNTIL condition

DO
statementblock

LOOP WHILE condition

Parameter Description

condition The condition you are testing

statementblock The block of statements you want to repeat
PowerScript Reference 131

DO...LOOP
Usage Use DO WHILE or DO UNTIL when you want to execute a block of statements
only if a condition is true (for WHILE) or false (for UNTIL). DO WHILE and DO
UNTIL test the condition before executing the block of statements.

Use LOOP WHILE or LOOP UNTIL when you want to execute a block of
statements at least once. LOOP WHILE and LOOP UNTIL test the condition after
the block of statements has been executed.

Examples DO UNTIL The following DO UNTIL repeatedly executes the Beep function
until A is greater than 15:

integer A = 1, B = 1

DO UNTIL A > 15
Beep(A)
A = (A + 1) * B

LOOP

DO WHILE The following DO WHILE repeatedly executes the Beep function
only while A is less than or equal to 15:

integer A = 1, B = 1

DO WHILE A <= 15
Beep(A)
A = (A + 1) * B

LOOP

LOOP UNTIL The following LOOP UNTIL executes the Beep function and
then continues to execute the function until A is greater than 1:

integer A = 1, B = 1
DO

Beep(A)
A = (A + 1) * B

LOOP UNTIL A > 15

LOOP WHILE The following LOOP WHILE repeatedly executes the Beep
function while A is less than or equal to 15:

integer A = 1, B = 1

DO
Beep(A)
A = (A + 1) * B

LOOP WHILE A <= 15
132 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
EXIT
Description In a DO...LOOP or a FOR...NEXT control structure, passes control out of the

current loop. EXIT takes no parameters.

Syntax EXIT

Usage An EXIT statement in a DO...LOOP or FOR...NEXT control structure causes
control to pass to the statement following the LOOP or NEXT statement. In a
nested loop, an EXIT statement passes control out of the current loop structure.

For information on how to jump to the end of the loop and continue looping,
see CONTINUE on page 126.

Examples Example 1 This EXIT statement causes the loop to terminate if an element in
the Nbr array equals 0:

int Nbr[10]
int Count = 1
// Assume values get assigned to Nbr array...

DO WHILE Count < 11
IF Nbr[Count] = 0 THEN EXIT
Count = Count + 1

LOOP

MessageBox("Hi", "Count is now " + String(Count))

Example 2 This EXIT statement causes the loop to terminate if an element in
the Nbr array equals 0:

int Nbr[10]
int Count
// Assume values get assigned to Nbr array...

FOR Count = 1 to 10
IF Nbr[Count] = 0 THEN EXIT

NEXT

MessageBox("Hi", "Count is now " + String(Count))
PowerScript Reference 133

FOR...NEXT
FOR...NEXT
Description A control structure that is a numerical iteration, used to execute one or more

statements a specified number of times.

Syntax FOR varname = start TO end {STEP increment}
statementblock

NEXT

Ending statement
You can end the FOR loop with the keywords END FOR instead of NEXT.

Usage Using the start and end parameters For a positive increment, end must be
greater than start. For a negative increment, end must be less than start.

When increment is positive and start is greater than end, statementblock does
not execute. When increment is negative and start is less than end,
statementblock does not execute.

When start and end are expressions, they are reevaluated on each pass through
the loop. If the expression’s value changes, it affects the number of loops.
Consider this example—the body of the loop changes the number of rows,
which changes the result of the RowCount function:

FOR n = 1 TO dw_1.RowCount()
dw_1.DeleteRow(1)

NEXT

A variable as the step increment
If you need to use a variable for the step increment, you can use one of the
DO...LOOP constructions and increment the counter yourself within the loop.

Parameter Description

varname The name of the iteration counter variable. It can be any
numerical type (byte, integer, double, real, long,
longlong, or decimal), but integers provide the fastest
performance.

start Starting value of varname.

end Ending value of varname.

increment
(optional)

The increment value. Increment must be a constant and
the same datatype as varname. If you enter an increment,
STEP is required. +1 is the default increment.

statementblock The block of statements you want to repeat.
134 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
Nesting You can nest FOR...NEXT statements. You must have a NEXT or END
FOR for each FOR.

Avoid overflow
If start or end is too large for the datatype of varname, varname will overflow,
which might create an infinite loop. Consider this statement for the integer
li_int:

FOR li_int = 1 TO 50000

The end value 50000 is too large for an integer. When li_int is incremented, it
overflows to a negative value before reaching 50000, creating an infinite loop.

Examples Example 1 These statements add 10 to A as long as n is >=5 and <=25:

FOR n = 5 to 25
A = A+10

NEXT

Example 2 These statements add 10 to A and increment n by 5 as long as n is
>= 5 and <=25:

FOR N = 5 TO 25 STEP 5
A = A+10

NEXT

Example 3 These statements contain two lines that will never execute
because increment is negative and start is less than end:

FOR Count = 1 TO 100 STEP -1
 IF Count < 1 THEN EXIT // These 2 lines
 Box[Count] = 10 // will never execute.
NEXT

Example 4 These are nested FOR...NEXT statements:

Int Matrix[100,50,200]
FOR i = 1 to 100

FOR j = 1 to 50
FOR k = 1 to 200

Matrix[i,j,k]=1
NEXT
NEXT

NEXT
PowerScript Reference 135

GOTO
GOTO
Description Transfers control from one statement in a script to another statement that is

labeled.

Syntax GOTO label

Examples Example 1 This GOTO statement skips over the Taxable=FALSE line:

Goto NextStep
Taxable=FALSE //This statement never executes.
NextStep:
Rate=Count/Count4

Example 2 This GOTO statement transfers control to the statement
associated with the label OK:

GOTO OK
.
.
.
OK:
.
.
.

Parameter Description

label The label associated with the statement to which you
want to transfer control. A label is an identifier followed
by a colon (such as OK:). Do not use the colon with a
label in the GOTO statement.
136 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
HALT
Description Terminates an application.

Syntax HALT {CLOSE}

Usage When PowerBuilder encounters Halt without the keyword CLOSE, it
immediately terminates the application.

When PowerBuilder encounters Halt with the keyword CLOSE, it immediately
executes the scripts for application Close event and for the CloseQuery, Close,
and Destructor events on all instantiated objects before terminating the
application. If there are no scripts for these events, PowerBuilder immediately
terminates the application.

You should not code a HALT statement in a component that will run in a server
environment. When a PowerBuilder component is running in a server such as
EAServer or J2EE, and a HALT statement is encountered, instead of aborting
the application, which is in this case the server itself, the PowerBuilder VM
throws a runtime error and continues. The container is responsible for
managing the lifecycle of the component. In EAServer, the error message is
written to the Jaguar log, even if the runtime error causes a transaction rollback
and the transaction is overridden by a new transaction.

Examples Example 1 This statement stops the application if the user enters a password
in the SingleLineEdit named sle_password that does not match the value stored
in a string named CorrectPassword:

IF sle_password.Text <> CorrectPassword THEN HALT

Example 2 This statement executes the script for the Close event for the
application before it terminates the application if the user enters a password in
sle_password that does not match the value stored in the string
CorrectPassword:

IF sle_password.Text <> CorrectPassword &
THEN HALT CLOSE
PowerScript Reference 137

IF...THEN
IF...THEN
Description A control structure used to cause a script to perform a specified action if a

stated condition is true. Syntax 1 uses a single-line format, and Syntax 2 uses a
multiline format.

Syntax Syntax 1 (the single-line format):

IF condition THEN action1 {ELSE action2}

Syntax 2 (the multiline format):

IF condition1 THEN
action1

{ ELSEIF condition2 THEN
action2

. . . }
{ ELSE

action3 }
END IF

Parameter Description
condition The condition you want to test.
action1 The action you want performed if the condition is true.

The action must be a single statement on the same line as
the rest of the IF statement.

action2
(optional)

The action you want performed if the condition is false.
The action must be a single statement on the same line as
the rest of the IF statement.

Parameter Description
condition1 The first condition you want to test.
action1 The action you want performed if condition1 is true. The

action can be a statement or multiple statements that are
separated by semicolons or placed on separate lines. At
least one action is required.

condition2
(optional)

The condition you want to test if condition1 is false. You
can have multiple ELSEIF...THEN statements in an
IF...THEN control structure.

action2 The action you want performed if condition2 is true. The
action can be a statement or multiple statements that are
separated by semicolons or placed on separate lines.

action3
(optional)

The action you want performed if none of the preceding
conditions is true. The action can be a statement or
multiple statements that are separated by semicolons or
placed on separate lines.
138 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
Usage You can use continuation characters to place the single-line format on more
than one physical line in the script.

You must end a multiline IF...THEN control structure with END IF (which is two
words).

Examples Example 1 This single-line IF...THEN statement opens window w_first if Num
is equal to 1; otherwise, w_rest is opened:

IF Num = 1 THEN Open(w_first) ELSE Open(w_rest)

Example 2 This single-line IF...THEN statement displays a message if the
value in the SingleLineEdit sle_State is “TX”. It uses the continuation
character to continue the single-line statement across two physical lines in the
script:

IF sle_State.text="TX" THEN &
MessageBox("Hello","Tex")

Example 3 This multiline IF...THEN compares the horizontal positions of
windows w_first and w_second. If w_first is to the right of w_second, w_first is
moved to the left side of the screen:

IF w_first.X > w_second.X THEN
w_first.X = 0

END IF

Example 4 This multiline IF...THEN causes the application to:

• Beep twice if X equals Y

• Display the Parts list box and highlight item 5 if X equals Z

• Display the Choose list box if X is blank

• Hide the Empty button and display the Full button if none of the above
conditions is true

IF X=Y THEN
Beep(2)

ELSEIF X=Z THEN
Show (lb_parts); lb_parts.SetState(5,TRUE)

ELSEIF X=" " THEN
Show (lb_choose)

ELSE
Hide(cb_empty)
Show(cb_full)

END IF
PowerScript Reference 139

RETURN
RETURN
Description Stops the execution of a script or function immediately.

Syntax RETURN { expression }

Usage When a user’s action triggers an event and PowerBuilder encounters RETURN
in the event script, it terminates execution of that script immediately and waits
for the next user action.

When a script calls a function or event and PowerBuilder encounters RETURN
in the code, RETURN transfers (returns) control to the point at which the
function or event was called.

Examples Example 1 This script causes the system to beep once; the second beep
statement will not execute:

Beep(1)
RETURN
Beep(1) // This statement will not execute.

Example 2 These statements in a user-defined function return the result of
dividing Arg1 by Arg2 if Arg2 is not equal to zero; they return -1 if Arg2 is
equal to zero:

IF Arg2 <> 0 THEN
RETURN Arg1/Arg2

ELSE
RETURN -1

END IF

Parameter Description

expression In a function, any value (or expression) you want the
function to return. The return value must be the datatype
specified as the return type in the function.
140 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
THROW
Description Used to manually trigger exception handling for user-defined exceptions.

Syntax THROW exlvalue

Usage The variable following the THROW reserved word must be a valid object
instance or an expression that produces a valid object instance that derives
from the Throwable datatype. For example, you can use an expression such as:

THROW create ExceptionType

where ExceptionType is an object of type Throwable.

If you attempt to throw a noninstantiated exception, you will not get back the
exception information you want, since the only exception information you
retrieve will be a NullObjectError.

In a method script, you can only throw an exception that you declare in the
method prototype or that you handle in a try-catch block. The PowerScript
compiler displays an error message if you try to throw a user-defined exception
without declaring it in the prototype Throws statement and without
surrounding it in an appropriate try-catch block.

When a RuntimeError, or a descendant of RuntimeError, is thrown, the
instance variable containing line number information will be filled in at the
point where the THROW statement occurs. If the error is handled and thrown
again, this information will not be updated unless it has specifically been set to
null.

Examples long ll_result
ll_result = myConnection.ConnectToServer()

ConnectionException ex
ex = create ConnectionException
ex.connectResult = ll_result
THROW ex

end if

Parameter Description

exlvalue Variable (or expression that evaluates to a valid instance of an
object) of type Throwable. Usually the object type thrown is a
user-defined exception class derived from the system Exception
class that inherits from Throwable.
PowerScript Reference 141

THROWS
THROWS
Description Used to declare the type of exception that a method triggers. It is part of the

method prototype.

Syntax methodname ({arguments}) THROWS ExceptionType { , ExceptionType, ... }

Usage Internal use only.

You do not type or otherwise add the THROWS clause to function calls in a
PowerBuilder script. However, you can add a THROWS clause to any
PowerBuilder function or to any user event that is not defined by a pbm event
ID.

For more information about adding a THROWS clause to a function or event
prototype, see the PowerBuilder Users Guide. For more information about
exception handling, see Application Techniques.

Parameter Description

methodname Name of the method that throws an exception.

arguments Arguments of the method that throws an exception. Depending
on the method, the method arguments can be optional.

ExceptionType Object of type Throwable. Usually the object type thrown is a
user-defined exception class derived from the system Exception
class. If you define multiple potential exceptions for a method,
you can throw each type of exception in the same clause by
separating the exception types with commas.
142 PowerBuilder Classic

CHAPTER 7 PowerScript Statements
TRY...CATCH...FINALLY...END TRY
Description Isolates code that can cause an exception, describes what to do if an exception

of a given type is encountered, and allows you to close files or network
connections (and return objects to their original state) whether or not an
exception is encountered.

Syntax TRY
trystatements

CATCH (ThrowableType1 exIdentifier1)
catchstatements1

CATCH (ThrowableType2 exIdentifier2)
catchstatements2

...
CATCH (ThrowableTypeN exIdentifierN)

catchstatementsN
FINALLY

cleanupstatements
END TRY

Usage The TRY block, which is the block of statements between the TRY and CATCH
keywords (or the TRY and FINALLY keywords if there is no CATCH clause), is
used to isolate code that might potentially throw an exception. The statements
in the TRY block are run unconditionally until either the entire block of
statements is executed or some statement in the block causes an exception to
be thrown.

Use a CATCH block or multiple CATCH blocks to handle exceptions thrown in
a TRY block. In the event that an exception is thrown, execution of the TRY
block is stopped and the statements in the first CATCH block are executed—if
and only if the exception thrown is of the same type or a descendant of the type
of the identifier following the CATCH keyword.

Parameter Description

trystatements Block of code that might potentially throw an exception.

ThrowableTypeN Object type of exception to be caught. A CATCH block is
optional if you include a FINALLY block. You can include
multiple CATCH blocks. Every CATCH block in a try-catch
block must include a corresponding exception object type
and a local variable of that type.

exIdentifierN Local variable of type ThrowableTypeN.

catchstatementsN Code to handle the exception being caught.

cleanupstatements Cleanup code. The FINALLY block is optional if you include
one or more CATCH block.
PowerScript Reference 143

TRY...CATCH...FINALLY...END TRY
If the exception thrown is not the same type or a descendant type of the
identifier in the first CATCH block, the exception is not handled by this CATCH
block. If there are additional CATCH blocks, they are evaluated in the order
they appear. If the exception cannot be handled by any of the CATCH blocks,
the statements in the FINALLY block are executed.

The exception then continues to unwind the call stack to any outer nested
try-catch blocks. If there are no outer nested blocks, the SystemError event on
the Application object is fired.

If no exception is thrown, execution continues at the beginning of the FINALLY
block if one exists; otherwise, execution continues on the line following the
END TRY statement.

FINALLY clause restriction
Do not use RETURN statements in the FINALLY clause of a TRY-CATCH block.
This can prevent the exception from being caught by its invoker.

See also THROW
144 PowerBuilder Classic

C H A P T E R 8 SQL Statements

About this chapter This chapter describes the embedded SQL and dynamic SQL statements
and how to use them in scripts.

Contents Topic Page

Using SQL in scripts 146

CLOSE Cursor 149

CLOSE Procedure 150

COMMIT 151

CONNECT 152

DECLARE Cursor 153

DECLARE Procedure 153

DELETE 155

DELETE Where Current of Cursor 156

DISCONNECT 156

EXECUTE 157

FETCH 158

INSERT 159

OPEN Cursor 160

ROLLBACK 160

SELECT 161

SELECTBLOB 162

UPDATE 164

UPDATEBLOB 165

UPDATE Where Current of Cursor 166

Using dynamic SQL 167

Dynamic SQL Format 1 171

Dynamic SQL Format 2 172

Dynamic SQL Format 3 173

Dynamic SQL Format 4 176
PowerScript Reference 145

Using SQL in scripts
Using SQL in scripts
PowerScript supports standard embedded SQL statements and dynamic SQL
statements in scripts. In general, PowerScript supports all DBMS-specific
clauses and reserved words that occur in the supported SQL statements. For
example, PowerBuilder supports DBMS-specific built-in functions within a
SELECT command.

For information about embedded SQL, see online Help.

Referencing
PowerScript variables
in scripts

Wherever constants can be referenced in SQL statements, PowerScript
variables preceded by a colon (:) can be substituted. Any valid PowerScript
variable can be used. This INSERT statement uses a constant value:

INSERT INTO EMPLOYEE (SALARY)
VALUES (18900) ;

The same statement using a PowerScript variable to reference the constant
might look like this:

int Sal_var
Sal_var = 18900
INSERT INTO EMPLOYEE (SALARY)

VALUES (:Sal_var) ;

Using indicator
variables

PowerBuilder supports indicator variables, which are used to identify null
values or conversion errors after a database retrieval. Indicator variables are
integers that are specified in the HostVariableList of a FETCH or SELECT
statement.

Each indicator variable is separated from the variable it is indicating by a space
(but no comma). For example, this statement is a HostVariableList without
indicator variables:

:Name, :Address, :City

The same HostVariableList with indicator variables looks like this:

:Name :IndVar1, :Address :IndVar2, :City :IndVar3

Indicator variables have one of these values:

Page Meaning

 0 Valid, non-null value

-1 Null value

-2 Conversion error
146 PowerBuilder Classic

CHAPTER 8 SQL Statements
Error reporting
Not all DBMSs return a conversion error when the datatype of a column does
not match the datatype of the associated variable.

The following statement uses the indicator variable IndVar2 to see if Address
contains a null value:

if IndVar2 = -1 then...

You can also use the PowerScript IsNull function to accomplish the same result
without using indicator variables:

if IsNull(Address) then ...

This statement uses the indicator variable IndVar3 to set City to null:

IndVar3 = -1

You can also use the PowerScript SetNull function to accomplish the same
result without using indicator variables:

SetNull(City)

Error handling in
scripts

The scripts shown in the SQL examples above do not include error handling,
but it is good practice to test the success and failure codes (the SQLCode
attribute) in the transaction object after every statement. The codes are:

After certain statements, such as DELETE, FETCH, and UPDATE, you should
also check the SQLNRows property of the transaction object to make sure the
action affected at least one row.

About SQLErrText and SQLDBCode The string SQLErrText in the
transaction object contains the database vendor-supplied error message. The
long named SQLDBCode in the transaction object contains the database
vendor-supplied status code:

IF SQLCA.SQLCode = -1 THEN
MessageBox("SQL error", SQLCA.SQLErrText)

END IF

Value Meaning

0 Success.

100 Fetched row not found.

-1 Error; the statement failed. Use SQLErrText or SQLDBCode to obtain
the detail.
PowerScript Reference 147

Using SQL in scripts
Painting standard
SQL

You can paint the following SQL statements in scripts and functions:

• Declarations of SQL cursors and stored procedures

• Cursor FETCH, UPDATE, and DELETE statements

• Noncursor SELECT, INSERT, UPDATE, and DELETE statements

For more information about scope, see “Where to declare variables” on page
34.

You can declare cursors and stored procedures at the scope of global, instance,
shared, or local variables. A cursor or procedure can be declared in the Script
view using the Paste SQL button in the PainterBar.

You can paint standard embedded SQL statements in the Script view, the
Function painter, and the Interactive SQL view in the Database painter using
the Paste SQL button in the PainterBar or the Paste Special>SQL item from the
pop-up menu.

Supported SQL
statements

In general, all DBMS-specific features are supported in PowerScript if they
occur within a PowerScript-supported SQL statement. For example,
PowerScript supports DBMS-specific built-in functions within a SELECT
command.

However, any SQL statement that contains a SELECT clause must also contain
a FROM clause in order for the script to compile successfully. To solve this
problem, add a FROM clause that uses a “dummy” table to SELECT statements
without FROM clauses. For example:

string res
select user_name() into:res from dummy;
select db_name() into:res from dummy;
select date('2001-01-02:21:20:53') into:res from dummy;

Disabling database
connection when
compiling and building

When PowerBuilder compiles an application that contains embedded SQL, it
connects to the database profile last used in order to check for database access
errors during the build process. For applications that use multiple databases,
this can result in spurious warnings during the build since the embedded SQL
can be validated only against that single last-used database and not against the
databases actually used by the application. In addition, an unattended build,
such as a lengthy overnight rebuild, can stall if the database connection cannot
be made.

To avoid these issues, you can select the Disable Database Connection When
Compiling and Building check box on the general page of the System Options
dialog box.
148 PowerBuilder Classic

CHAPTER 8 SQL Statements
Caution
Select the check box only when you want to compile without signing on to the
database. Compiling without connecting to a database prevents the build
process from checking for database errors and may therefore result in runtime
errors later.

CLOSE Cursor
Description Closes the SQL cursor CursorName; ends processing of CursorName.

Syntax CLOSE CursorName ;

Usage This statement must be preceded by an OPEN statement for the same cursor.
The USING TransactionObject clause is not allowed with CLOSE; the
transaction object was specified in the statement that declared the cursor.

CLOSE often appears in the script that is executed when the SQL code after a
fetch equals 100 (not found).

Error handling
It is good practice to test the success/failure code after executing a CLOSE
cursor statement.

Examples This statement closes the Emp_cursor cursor:

CLOSE Emp_cursor ;

Parameter Description

CursorName The cursor you want to close
PowerScript Reference 149

CLOSE Procedure
CLOSE Procedure
Description Closes the SQL procedure ProcedureName; ends processing of

ProcedureName.

DBMS-specific
Not all DBMSs support stored procedures.

Syntax CLOSE ProcedureName;

Usage This statement must be preceded by an EXECUTE statement for the same
procedure. The USING TransactionObject clause is not allowed with CLOSE;
the transaction object was specified in the statement that declared the
procedure.

Use CLOSE only to close procedures that return result sets. PowerBuilder
automatically closes procedures that do not return result sets (and sets the
return code to 100).

CLOSE often appears in the script that is executed when the SQL code after a
fetch equals 100 (not found).

Error handling
It is good practice to test the success/failure code after executing a CLOSE
Procedure statement.

Examples This statement closes the stored procedure named Emp_proc:

CLOSE Emp_proc ;

Parameter Description

ProcedureName The stored procedure you want to close
150 PowerBuilder Classic

CHAPTER 8 SQL Statements
COMMIT
Description Permanently updates all database operations since the previous COMMIT,

ROLLBACK, or CONNECT for the specified transaction object.

Using COMMIT and ROLLBACK in a server component
COMMIT and ROLLBACK commands embedded in a server component might
have different effects depending on the setting of the UseContextObject
DBParm parameter.

For information on the UseContextObject parameter see Connecting to Your
Database. For information on deploying components to a transaction server,
see Application Techniques.

Syntax COMMIT {USING TransactionObject};

Usage COMMIT does not cause a disconnect, but it does close all open cursors or
procedures. (But note that the DISCONNECT statement in PowerBuilder does
issue a COMMIT.)

Error handling
It is good practice to test the success/failure code after executing a COMMIT
statement.

Examples Example 1 This statement commits all operations for the database specified
in the default transaction object:

COMMIT ;

Example 2 This statement commits all operations for the database specified
in the transaction object named Emp_tran:

COMMIT USING Emp_tran ;

Parameter Description

TransactionObject The name of the transaction object for which you want to
permanently update all database operations since the
previous COMMIT, ROLLBACK, or CONNECT. This
clause is required only for transaction objects other than
the default (SQLCA).
PowerScript Reference 151

CONNECT
CONNECT
Description Connects to a specified database.

Syntax CONNECT {USING TransactionObject};

Usage This statement must be executed before any actions (such as INSERT, UPDATE,
or DELETE) can be processed using the default transaction object or the
specified transaction object.

Error handling
It is good practice to test the success/failure code after executing a CONNECT
statement.

Examples Example 1 This statement connects to the database specified in the default
transaction object:

CONNECT ;

Example 2 This statement connects to the database specified in the
transaction object named Emp_tran:

CONNECT USING Emp_tran ;

Parameter Description

TransactionObject The name of the transaction object containing the
required connection information for the database to
which you want to connect. This clause is required only
for transaction objects other than the default (SQLCA).
152 PowerBuilder Classic

CHAPTER 8 SQL Statements
DECLARE Cursor
Description Declares a cursor for the specified transaction object.

Syntax DECLARE CursorName CURSOR FOR SelectStatement
{USING TransactionObject};

Usage DECLARE Cursor is a nonexecutable command and is analogous to declaring a
variable.

To declare a local cursor, open the script in the Script view and select Paste
SQL from the PainterBar or the Edit>Paste Special menu. To declare a global,
instance, or shared cursor, select Declare from the first drop-down list in the
Script view and Global Variables, Instance Variables, or Shared Variables from
the second drop-down list, then select Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 34.

Examples This statement declares the cursor called Emp_cur for the database specified in
the default transaction object. It also references the Sal_var variable, which
must be set to an appropriate value before you execute the OPEN Emp_cur
command:

DECLARE Emp_cur CURSOR FOR
SELECT employee.emp_number, employee.emp_name
FROM employee
WHERE employee.emp_salary > :Sal_var ;

DECLARE Procedure
Description Declares a procedure for the specified transaction object.

DBMS-specific
Not all DBMSs support stored procedures.

Parameter Description

CursorName Any valid PowerBuilder name.

SelectStatement Any valid SELECT statement.

TransactionObject The name of the transaction object for which you want to
declare the cursor. This clause is required only for
transaction objects other than the default (SQLCA).
PowerScript Reference 153

DECLARE Procedure
Syntax DECLARE ProcedureName PROCEDURE FOR
StoredProcedureName
@Param1=Value1, @Param2=Value2,...
{USING TransactionObject};

Usage DECLARE Procedure is a nonexecutable command. It is analogous to declaring
a variable.

To declare a local procedure, open the script in the Script view and select Paste
SQL from the PainterBar or the Edit>Paste Special menu. To declare a global,
instance, or shared procedure, select Declare from the first drop-down list in
the Script view and Global Variables, Instance Variables, or Shared Variables
from the second drop-down list, then select Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 34.

Examples Example 1 This statement declares the Sybase ASE procedure Emp_proc for
the database specified in the default transaction object. It references the
Emp_name_var and Emp_sal_var variables, which must be set to appropriate
values before you execute the EXECUTE Emp_proc command:

DECLARE Emp_proc procedure for GetName
@emp_name = :Emp_name_var,
@emp_salary = :Emp_sal_var ;

Example 2 This statement declares the ORACLE procedure Emp_proc for
the database specified in the default transaction object. It references the
Emp_name_var and Emp_sal_var variables, which must be set to appropriate
values before you execute the EXECUTE Emp_proc command:

DECLARE Emp_proc procedure for GetName
(:Emp_name_var, :Emp_sal_var) ;

Parameter Description

ProcedureName Any valid PowerBuilder name.

StoredProcedureName Any stored procedure in the database.

@Paramn=Valuen The name of a parameter (argument) defined in the
stored procedure and a valid PowerBuilder
expression; represents the number of the parameter
and value.

TransactionObject The name of the transaction object for which you want
to declare the procedure. This clause is required only
for transaction objects other than the default
(SQLCA).
154 PowerBuilder Classic

CHAPTER 8 SQL Statements
DELETE
Description Deletes the rows in TableName specified by Criteria.

Syntax DELETE FROM TableName WHERE Criteria {USING TransactionObject};

Usage Error handling
It is good practice to test the success/failure code after executing a DELETE
statement. To see if the DELETE was successful, you can test SLQCode for a
failure code. However, if nothing matches the WHERE clause and no rows are
deleted, SQLCode is still set to zero. To make sure the delete affected at least
one row, check the SQLNRows property of the transaction object.

Examples Example 1 This statement deletes rows from the Employee table in the
database specified in the default transaction object where Emp_num is less
than 100:

DELETE FROM Employee WHERE Emp_num < 100 ;

Example 2 These statements delete rows from the Employee table in the
database named in the transaction object named Emp_tran where Emp_num is
equal to the value entered in the SingleLineEdit sle_number:

int Emp_num
Emp_num = Integer(sle_number.Text)
DELETE FROM Employee

WHERE Employee.Emp_num = :Emp_num ;

The integer Emp_num requires a colon in front of it to indicate it is a variable
when it is used in a WHERE clause.

Parameter Description

TableName The name of the table from which you want to delete
rows.

Criteria Criteria that specify which rows to delete.

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).
PowerScript Reference 155

DELETE Where Current of Cursor
DELETE Where Current of Cursor
Description Deletes the row in which the cursor is positioned.

DBMS-specific
Not all DBMSs support DELETE Where Current of Cursor.

Syntax DELETE FROM TableName WHERE CURRENT OF CursorName;

Usage The USING TransactionObject clause is not allowed with this form of DELETE
Where Current of Cursor; the transaction object was specified in the statement
that declared the cursor.

Error handling
It is good practice to test the success/failure code after executing a DELETE
Where Current of Cursor statement.

Examples This statement deletes from the Employee table the row in which the cursor
named Emp_cur is positioned:

DELETE FROM Employee WHERE current of Emp_curs ;

DISCONNECT
Description Executes a COMMIT for the specified transaction object and then disconnects

from the specified database.

Syntax DISCONNECT {USING TransactionObject};

Parameter Description

TableName The name of the table from which you want to delete a
row

CursorName The name of the cursor in which the table was specified

Parameter Description

TransactionObject The name of the transaction object that identifies the
database you want to disconnect from and in which you
want to permanently update all database operations since
the previous COMMIT, ROLLBACK, or CONNECT. This
clause is required only for transaction objects other than
the default (SQLCA).
156 PowerBuilder Classic

CHAPTER 8 SQL Statements
Usage Error handling
It is good practice to test the success/failure code after executing a
DISCONNECT statement.

Examples Example 1 This statement disconnects from the database specified in the
default transaction object:

DISCONNECT ;

Example 2 This statement disconnects from the database specified in the
transaction object named Emp_tran:

DISCONNECT USING Emp_tran ;

EXECUTE
Description Executes the previously declared procedure identified by ProcedureName.

Syntax EXECUTE ProcedureName;

Usage The USING TransactionObject clause is not allowed with EXECUTE; the
transaction object was specified in the statement that declared the procedure.

Error handling
It is good practice to test the success/failure code after executing an EXECUTE
statement.

Examples This statement executes the stored procedure Emp_proc:

EXECUTE Emp_proc ;

Parameter Description

ProcedureName The name assigned in the DECLARE statement of the
stored procedure you want to execute. The procedure
must have been declared previously. ProcedureName is
not necessarily the name of the procedure stored in the
database.
PowerScript Reference 157

FETCH
FETCH
Description Fetches the row after the row on which Cursor | Procedure is positioned.

Syntax FETCH Cursor | Procedure INTO HostVariableList;

Usage The USING TransactionObject clause is not allowed with FETCH; the
transaction object was specified in the statement that declared the cursor or
procedure.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR, or
FETCH LAST.

Error handling
It is good practice to test the success/failure code after executing a FETCH
statement. To see if the FETCH was successful, you can test SLQCode for a
failure code. However, if nothing matches the WHERE clause and no rows are
fetched, SQLCode is still set to 100. To make sure the fetch affected at least
one row, check the SQLNRows property of the transaction object.

Examples Example 1 This statement fetches data retrieved by the SELECT clause in the
declaration of the cursor named Emp_cur and puts it into Emp_num and
Emp_name:

int Emp_num
string Emp_name
FETCH Emp_cur INTO :Emp_num, :Emp_name ;

Example 2 If sle_emp_num and sle_emp_name are SingleLineEdits, these
statements fetch from the cursor named Emp_cur, store the data in Emp_num
and Emp_name, and then convert Emp_num from an integer to a string, and put
them in sle_emp_num and sle_emp_name:

int Emp_num
string Emp_name
FETCH Emp_cur INTO :emp_num, :emp_name ;
sle_emp_num.Text = string(Emp_num)
sle_emp_name.Text = Emp_name

Parameter Description

Cursor or Procedure The name of the cursor or procedure from which you
want to fetch a row

HostVariableList PowerScript variables into which data values will be
retrieved
158 PowerBuilder Classic

CHAPTER 8 SQL Statements
INSERT
Description Inserts one or more new rows into the table specified in RestOfInsertStatement.

Syntax INSERT RestOfInsertStatement
{USING TransactionObject} ;

Usage Error handling
It is good practice to test the success/failure code after executing an INSERT
statement.

Examples Example 1 These statements insert a row with the values in EmpNbr and
EmpName into the Emp_nbr and Emp_name columns of the Employee table
identified in the default transaction object:

int EmpNbr
string EmpName
...
INSERT INTO Employee (employee.Emp_nbr,

employee.Emp_name)
VALUES (:EmpNbr, :EmpName) ;

Example 2 These statements insert a row with the values entered in the
SingleLineEdits sle_number and sle_name into the Emp_nbr and Emp_name
columns of the Employee table in the transaction object named Emp_tran:

int EmpNbr
string EmpName
EmpNbr = Integer(sle_number.Text)
EmpName = sle_name.Text
INSERT INTO Employee (employee.Emp_nbr,

employee.Emp_name)
VALUES (:EmpNbr, :EmpName) USING Emp_tran ;

Parameter Description

RestOfInsertStatement The rest of the INSERT statement (the INTO clause,
list of columns and values or source).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).
PowerScript Reference 159

OPEN Cursor
OPEN Cursor
Description Causes the SELECT specified when the cursor was declared to be executed.

Syntax OPEN CursorName ;

Usage The USING TransactionObject clause is not allowed with OPEN; the
transaction object was specified in the statement that declared the cursor.

Error handling
It is good practice to test the success/failure code after executing an OPEN
Cursor statement.

Examples This statement opens the cursor Emp_curs:

OPEN Emp_curs ;

ROLLBACK
Description Cancels all database operations in the specified database since the last

COMMIT, ROLLBACK, or CONNECT.

Using COMMIT and ROLLBACK in a server component
COMMIT and ROLLBACK commands embedded in a server component might
have different effects depending on the setting of the UseContextObject
DBParm parameter.

For information on the UseContextObject parameter see Connecting to Your
Database. For information on deploying components to a transaction server,
see Application Techniques.

Syntax ROLLBACK {USING TransactionObject} ;

Parameter Description

CursorName The name of the cursor you want to open

Parameter Description

TransactionObject The name of the transaction object that identifies the
database in which you want to cancel all operations since
the last COMMIT, ROLLBACK, or CONNECT. This
clause is required only for transaction objects other than
the default (SQLCA).
160 PowerBuilder Classic

CHAPTER 8 SQL Statements
Usage ROLLBACK does not cause a disconnect, but it does close all open cursors and
procedures.

Error handling
It is good practice to test the success/failure code after executing a ROLLBACK
statement.

Examples Example 1 This statement cancels all database operations in the database
specified in the default transaction object:

ROLLBACK ;

Example 2 This statement cancels all database operations in the database
specified in the transaction object named Emp_tran:

ROLLBACK USING emp_tran ;

SELECT
Description Selects a row in the tables specified in RestOfSelectStatement.

Syntax SELECT RestOfSelectStatement
{USING TransactionObject} ;

Usage An error occurs if the SELECT statement returns more than one row.

Error handling
It is good practice to test the success/failure code after executing a SELECT
statement. You can test SQLCode for a failure code.

When you use the INTO clause, PowerBuilder does not verify whether the
datatype of the retrieved column matches the datatype of the host variable; it
only checks for the existence of the columns and tables. You are responsible
for checking that the datatypes match. Keep in mind that not all database
datatypes are the same as PowerBuilder datatypes.

Parameter Description

RestOfSelectStatement The rest of the SELECT statement (the column list
INTO, FROM, WHERE, and other clauses).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).
PowerScript Reference 161

SELECTBLOB
Examples The following statements select data in the Emp_LName and Emp_FName
columns of a row in the Employee table and put the data into the
SingleLineEdits sle_LName and sle_FName (the transaction object Emp_tran
is used):

int Emp_num
string Emp_lname, Emp_fname
Emp_num = Integer(sle_Emp_Num.Text)

SELECT employee.Emp_LName, employee.Emp_FName
INTO :Emp_lname, :Emp_fname
FROM Employee
WHERE Employee.Emp_nbr = :Emp_num
USING Emp_tran ;

IF Emp_tran.SQLCode = 100 THEN
MessageBox("Employee Inquiry", &
"Employee Not Found")

ELSEIF Emp_tran.SQLCode > 0 then
MessageBox("Database Error", &
Emp_tran.SQLErrText, Exclamation!)

END IF
sle_Lname.text = Emp_lname
sle_Fname.text = Emp_fname

SELECTBLOB
Description Selects a single blob column in a row in the table specified in

RestOfSelectStatement.

Syntax SELECTBLOB RestOfSelectStatement
{USING TransactionObject} ;

Usage An error occurs if the SELECTBLOB statement returns more than one row.

Parameter Description

RestOfSelectStatement The rest of the SELECT statement (the INTO, FROM,
and WHERE clauses).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).
162 PowerBuilder Classic

CHAPTER 8 SQL Statements
Error handling
It is good practice to test the success/failure code after executing an
SELECTBLOB statement. To make sure the update affected at least one row,
check the SQLNRows property of SQLCA or the transaction object. The
SQLCode or SQLDBCode property will not indicate the success or failure of
the SELECTBLOB statement.

You can include an indicator variable in the host variable list (target
parameters) in the INTO clause to check for an empty blob (a blob of zero
length) and conversion errors.

Database information
Sybase ASE users must set the AutoCommit property of the transaction object
to true before calling the SELECTBLOB function. For information about the
AutoCommit property, see Connecting to Your Database.

Examples The following statements select the blob column Emp_pic from a row in the
Employee table and set the picture p_1 to the bitmap in Emp_id_pic (the
transaction object Emp_tran is used):

Blob Emp_id_pic
SELECTBLOB Emp_pic

INTO :Emp_id_pic
FROM Employee
WHERE Employee.Emp_Num = 100
USING Emp_tran ;

p_1.SetPicture(Emp_id_pic)

The blob Emp_id_pic requires a colon to indicate that it is a host (PowerScript)
variable when you use it in the INTO clause of the SELECTBLOB statement.
PowerScript Reference 163

UPDATE
UPDATE
Description Updates the rows specified in RestOfUpdateStatement.

Syntax UPDATE TableName RestOfUpdateStatement {USING TransactionObject} ;

Usage Error handling
It is good practice to test the success/failure code after executing a UPDATE
statement. You can test SQLCode for a failure code. However, if nothing
matches the WHERE clause and no rows are updated, SQLCode is still set to
zero. To make sure the update affected at least one row, check the SQLNRows
property of the transaction object.

Examples These statements update rows from the Employee table in the database
specified in the transaction object named Emp_tran, where Emp_num is equal
to the value entered in the SingleLineEdit sle_Number:

int Emp_num
Emp_num=Integer(sle_Number.Text)
UPDATE Employee

SET emp_name = :sle_Name.Text
WHERE Employee.emp_num = :Emp_num
USING Emp_tran ;

IF Emptran.SQLNRows > 0 THEN
COMMIT USING Emp_tran ;

END IF

The integer Emp_num and the SingleLineEdit sle_name require a colon to
indicate they are host (PowerScript) variables when you use them in an
UPDATE statement.

Parameter Description

TableName The name of the table in which you want to update
rows.

RestOfUpdateStatement The rest of the UPDATE statement (the SET and
WHERE clauses).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is required
only for transaction objects other than the default
(SQLCA).
164 PowerBuilder Classic

CHAPTER 8 SQL Statements
UPDATEBLOB
Description Updates the rows in TableName in BlobColumn.

Syntax UPDATEBLOB TableName
SET BlobColumn = BlobVariable
RestOfUpdateStatement {USING TransactionObject} ;

Usage Error handling
It is good practice to test the success/failure code after executing an
UPDATEBLOB statement. To make sure the update affected at least one row,
check the SQLNRows property of SQLCA or the transaction object. The
SQLCode or SQLDBCode property will not indicate the success or failure of
the UPDATEBLOB statement.

Database information
Sybase ASE users must set the AutoCommit property of the transaction object
to True before calling the UPDATEBLOB function. For information about the
AutoCommit property, see Connecting to Your Database.

Examples These statements update the blob column emp_pic in the Employee table, where
emp_num is 100:

int fh
blob Emp_id_pic
fh = FileOpen("c:\emp_100.bmp", StreamMode!)

Parameter Description

TableName The name of the table you want to update.

BlobColumn The name of the column you want to update in
TableName. The datatype of this column must be
blob.

BlobVariable A PowerScript variable of the datatype blob.

RestOfUpdateStatement The rest of the UPDATE statement (the WHERE
clause).

TransactionObject The name of the transaction object that identifies the
database containing the table. This clause is
required only for transaction objects other than the
default (SQLCA).
PowerScript Reference 165

UPDATE Where Current of Cursor
IF fh <> -1 THEN
FileRead(fh, emp_id_pic)
FileClose(fh)
UPDATEBLOB Employee SET emp_pic = :Emp_id_pic
WHERE Emp_num = 100
USING Emp_tran ;

END IF

IF Emptran.SQLNRows > 0 THEN
COMMIT USING Emp_tran ;

END IF

The blob Emp_id_pic requires a colon to indicate it is a host (PowerScript)
variable in the UPDATEBLOB statement.

UPDATE Where Current of Cursor
Description Updates the row in which the cursor is positioned using the values in

SetStatement.

Syntax UPDATE TableName SetStatement
WHERE CURRENT OF CursorName ;

Usage The USING Transaction Object clause is not allowed with UPDATE Where
Current of Cursor; the transaction object was specified in the statement that
declared the cursor.

Examples This statement updates the row in the Employee table in which the cursor
called Emp_curs is positioned:

UPDATE Employee
SET salary = 17800
WHERE CURRENT of Emp_curs ;

Parameter Description

TableName The name of the table in which you want to update the
row

SetStatement The word SET followed by a comma-separated list of the
form ColumnName = value

CursorName The name of the cursor in which the table is referenced
166 PowerBuilder Classic

CHAPTER 8 SQL Statements
Using dynamic SQL
General information Because database applications usually perform a specific activity, you usually

know the complete SQL statement when you write and compile the script.
When PowerBuilder does not support the statement in embedded SQL (as with
a DDL statement) or when the parameters or the format of the statements are
unknown at compile time, the application must build the SQL statements at
runtime. This is called dynamic SQL. The parameters used in dynamic SQL
statements can change each time the program is executed.

Using SQL Anywhere
For information about using dynamic SQL with SQL Anywhere®, see the SQL
Anywhere documentation.

Four formats PowerBuilder has four dynamic SQL formats. Each format handles one of the
following situations at compile time:

To handle these situations, you use:

• The PowerBuilder dynamic SQL statements

• The dynamic versions of CLOSE, DECLARE, FETCH, OPEN, and
EXECUTE

• The PowerBuilder datatypes DynamicStagingArea and
DynamicDescriptionArea

About the examples
The examples assume that the default transaction object (SQLCA) has been
assigned valid values and that a successful CONNECT has been executed.
Although the examples do not show error checking, you should check the
SQLCode after each SQL statement.

Format When used

Format 1 Non-result-set statements with no input parameters

Format 2 Non-result-set statements with input parameters

Format 3 Result-set statements in which the input parameters and result-set
columns are known at compile time

Format 4 Result-set statements in which the input parameters, the result-set
columns or both are unknown at compile time
PowerScript Reference 167

Using dynamic SQL
Dynamic SQL
statements

The PowerBuilder dynamic SQL statements are:

DESCRIBE DynamicStagingArea
INTO DynamicDescriptionArea ;

EXECUTE {IMMEDIATE} SQLStatement
{USING TransactionObject} ;

EXECUTE DynamicStagingArea
USING ParameterList ;

EXECUTE DYNAMIC Cursor | Procedure
USING ParameterList ;

OPEN DYNAMIC Cursor | Procedure
USING ParameterList ;

EXECUTE DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

OPEN DYNAMIC Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

PREPARE DynamicStagingArea
FROM SQLStatement {USING TransactionObject} ;

Two datatypes DynamicStagingArea DynamicStagingArea is a PowerBuilder datatype.
PowerBuilder uses a variable of this type to store information for use in
subsequent statements.

The DynamicStagingArea is the only connection between the execution of a
statement and a transaction object and is used internally by PowerBuilder; you
cannot access information in the DynamicStagingArea.

PowerBuilder provides a global DynamicStagingArea variable named SQLSA
that you can use when you need a DynamicStagingArea variable.

If necessary, you can declare and create additional object variables of the type
DynamicStagingArea. These statements declare and create the variable, which
must be done before referring to it in a dynamic SQL statement:

DynamicStagingArea dsa_stage1
dsa_stage1 = CREATE DynamicStagingArea

After the EXECUTE statement is completed, SQLSA is no longer referenced.

DynamicDescriptionArea DynamicDescriptionArea is a PowerBuilder
datatype. PowerBuilder uses a variable of this type to store information about
the input and output parameters used in Format 4 of dynamic SQL.

PowerBuilder provides a global DynamicDescriptionArea named SQLDA that
you can use when you need a DynamicDescriptionArea variable.
168 PowerBuilder Classic

CHAPTER 8 SQL Statements
If necessary, you can declare and create additional object variables of the type
DynamicDescriptionArea. These statements declare and create the variable,
which must be done before referring to it in a dynamic SQL statement:

DynamicDescriptionArea dda_desc1
dsa_desc1 = CREATE DynamicDescriptionArea

For more information about SQLDA, see Dynamic SQL Format 4 on page
176.

Preparing to use
dynamic SQL

When you use dynamic SQL, you must:

• Prepare the DynamicStagingArea in all formats except Format 1

• Describe the DynamicDescriptionArea in Format 4

• Execute the statements in the appropriate order

Preparing and describing the datatypes Since the SQLSA staging area is
the only connection between the execution of a SQL statement and a
transaction object, an execution error will occur if you do not prepare the SQL
statement correctly.

In addition to SQLSA and SQLDA, you can declare other variables of the
DynamicStagingArea and DynamicDescriptionArea datatypes. However, this
is required only when your script requires simultaneous access to two or more
dynamically prepared statements.

This is a valid dynamic cursor:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
PREPARE SQLSA FROM "SELECT emp_id FROM employee" ;
OPEN DYNAMIC my_cursor ;

This is an invalid dynamic cursor. There is no PREPARE, and therefore an
execution error will occur:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
OPEN DYNAMIC my_cursor ;

Statement order Where you place the dynamic SQL statements in your
scripts is unimportant, but the order of execution is important in Formats 2, 3,
and 4. You must execute:

1 The DECLARE and the PREPARE before you execute any other dynamic
SQL statements

2 The OPEN in Formats 3 and 4 before the FETCH

3 The CLOSE at the end
PowerScript Reference 169

Using dynamic SQL
If you have multiple PREPARE statements, the order affects the contents of
SQLSA.

These statements illustrate the correct ordering:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA
string sql1, sql2
sql1 = "SELECT emp_id FROM department "&
WHERE salary > 90000"
sql2 = "SELECT emp_id FROM department "&
WHERE salary > 20000"

IF deptId = 200 then
PREPARE SQLSA FROM :sql1 USING SQLCA ;

ELSE
PREPARE SQLSA FROM :sql2 USING SQLCA ;

END IF
OPEN DYNAMIC my_cursor ; // my_cursor maps to the

// SELECT that has been
// prepared.

Declaring a procedure
with the SQL Native
Client database
interface

When you connect to Microsoft SQL Server using the PowerBuilder SQL
Native Client (SNC) database interface, the syntax for declaring a procedure is:

DECLARE logical_procedure_name PROCEDURE FOR
[@rc=]procedure_name
{@param1 = value1 [OUTPUT], @param2 = value2 [OUTPUT], ...}
{USING transaction_object};

[@rc=] indicates that you want to get the procedure's return value.

Use the keyword OUTPUT or OUT to indicate an output parameter if you want
to get the output parameter’s value.

If the BindSPInput database parameter is 0, value1, value2,... can be either
PowerBuilder script variables or literal values. If BindSPInput is 1, value1,
value2,… must be PowerBuilder script variables. If you specify literal values,
the SNC interface returns a runtime error.

When you declare a dynamic SQL statement with a procedure, enter a question
mark (?) for each IN/OUT parameter in the statement. Value substitution is
positional. For examples, see Dynamic SQL Format 3 and 4.
170 PowerBuilder Classic

CHAPTER 8 SQL Statements
Dynamic SQL Format 1
Description Use this format to execute a SQL statement that does not produce a result set

and does not require input parameters. You can use this format to execute all
forms of Data Definition Language (DDL).

Syntax EXECUTE IMMEDIATE SQLStatement
{USING TransactionObject} ;

Examples These statements create a database table named Trainees. The statements use
the string Mysql to store the CREATE statement.

For Sybase ASE users
If you are connected to an ASE database, set AUTOCOMMIT to true before
executing the CREATE.

string MyASE
MyASE = "CREATE TABLE Trainees "&

+"(emp_id integer not null,"&
+"emp_fname char(10) not null, "&
+"emp_lname char(20) not null)"

EXECUTE IMMEDIATE :MyASE ;

These statements assume a transaction object named My_trans exists and is
connected:

string MyASE
MyASE="INSERT INTO department Values (1234,"&

+"'Purchasing',1234)"
EXECUTE IMMEDIATE :MyASE USING My_trans ;

Parameter Description

SQLStatement A string containing a valid SQL statement. The string
can be a string constant or a PowerBuilder variable
preceded by a colon (such as :mysql). The string must be
contained on one line and cannot contain expressions.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.
PowerScript Reference 171

Dynamic SQL Format 2
Dynamic SQL Format 2
Description Use this format to execute a SQL statement that does not produce a result set

but does require input parameters. You can use this format to execute all forms
of Data Definition Language (DDL).

Syntax PREPARE DynamicStagingArea FROM SQLStatement
{USING TransactionObject} ;

EXECUTE DynamicStagingArea USING {ParameterList} ;

Usage To specify a null value, use the SetNull function.

Examples These statements prepare a DELETE statement with one parameter in SQLSA
and then execute it using the value of the PowerScript variable Emp_id_var:

INT Emp_id_var = 56
PREPARE SQLSA

FROM "DELETE FROM employee WHERE emp_id=?" ;
EXECUTE SQLSA USING :Emp_id_var ;

Parameter Description

DynamicStagingArea The name of the DynamicStagingArea (usually SQLSA).

If you need a DynamicStagingArea variable other than
SQLSA, you must declare it and instantiate it with the
CREATE statement before using it.

SQLStatement A string containing a valid SQL statement. The string can be
a string constant or a PowerBuilder variable preceded by a
colon (such as :mysql). The string must be contained on one
line and cannot contain expressions.

Enter a question mark (?) for each parameter in the statement.
Value substitution is positional; reserved word substitution is
not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.

ParameterList
(optional)

A comma-separated list of PowerScript variables. Note that
PowerScript variables are preceded by a colon (:).
172 PowerBuilder Classic

CHAPTER 8 SQL Statements
These statements prepare an INSERT statement with three parameters in
SQLSA and then execute it using the value of the PowerScript variables
Dept_id_var, Dept_name_var, and Mgr_id_var (note that Mgr_id_var is null):

INT Dept_id_var = 156
INT Mgr_id_var
String Dept_name_var
Dept_name_var = "Department"
SetNull(Mgr_id_var)
PREPARE SQLSA

FROM "INSERT INTO department VALUES (?,?,?)" ;
EXECUTE SQLSA
 USING :Dept_id_var,:Dept_name_var,:Mgr_id_var ;

Dynamic SQL Format 3
Description Use this format to execute a SQL statement that produces a result set in which

the input parameters and result set columns are known at compile time.

Syntax DECLARE Cursor | Procedure
DYNAMIC CURSOR | PROCEDURE
FOR DynamicStagingArea ;

PREPARE DynamicStagingArea FROM SQLStatement
{USING TransactionObject} ;

OPEN DYNAMIC Cursor
{USING ParameterList} ;

EXECUTE DYNAMIC Procedure
{USING ParameterList} ;

FETCH Cursor | Procedure
INTO HostVariableList ;

CLOSE Cursor | Procedure ;

Parameter Description

Cursor or Procedure The name of the cursor or procedure you want to use.

DynamicStagingArea The name of the DynamicStagingArea (usually
SQLSA).

If you need a DynamicStagingArea variable other than
SQLSA, you must declare it and instantiate it with the
CREATE statement before using it.
PowerScript Reference 173

Dynamic SQL Format 3
Usage To specify a null value, use the SetNull function.

The DECLARE statement is not executable and can be declared globally.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR, or
FETCH LAST.

The FETCH and CLOSE statements in Format 3 are the same as in standard
embedded SQL.

To declare a local cursor or procedure, open the script in the Script view and
select Paste SQL from the PainterBar or the Edit>Paste Special menu. To
declare a global, instance, or shared cursor or procedure, select Declare from
the first drop-down list in the Script view, and select Global Variables, Instance
Variables, or Shared Variables from the second drop-down list. Then, select
Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 34.

SQLStatement A string containing a valid SQL SELECT statement
The string can be a string constant or a PowerBuilder
variable preceded by a colon (such as :mysql). The
string must be contained on one line and cannot contain
expressions.

Enter a question mark (?) for each parameter in the
statement. Value substitution is positional; reserved
word substitution is not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.

ParameterList
(optional)

A comma-separated list of PowerScript variables. Note
that PowerScript variables are preceded by a colon (:).

HostVariableList The list of PowerScript variables into which the data
values will be retrieved.

Parameter Description
174 PowerBuilder Classic

CHAPTER 8 SQL Statements
Examples Example 1 These statements associate a cursor named my_cursor with
SQLSA, prepare a SELECT statement in SQLSA, open the cursor, and return
the employee ID in the current row into the PowerScript variable Emp_id_var:

integer Emp_id_var
DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
PREPARE SQLSA FROM "SELECT emp_id FROM employee" ;
OPEN DYNAMIC my_cursor ;
FETCH my_cursor INTO :Emp_id_var ;
CLOSE my_cursor ;

You can loop through the cursor as you can in embedded static SQL.

Example 2 These statements associate a cursor named my_cursor with
SQLSA, prepare a SELECT statement with one parameter in SQLSA, open the
cursor, and substitute the value of the variable Emp_state_var for the parameter
in the SELECT statement. The employee ID in the active row is returned into
the PowerBuilder variable Emp_id_var:

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
integer Emp_id_var
string Emp_state_var = "MA"
string sqlstatement

sqlstatement = "SELECT emp_id FROM employee "&
+"WHERE state = ?"

PREPARE SQLSA FROM :sqlstatement ;
OPEN DYNAMIC my_cursor using :Emp_state_var ;
FETCH my_cursor INTO :Emp_id_var ;
CLOSE my_cursor ;

Example 3 These statements perform the same processing as the preceding
example but use a database stored procedure called Emp_select:

// The syntax of emp_select is:
// create procedure emp_select (@stateparm char(2)) as
// SELECT emp_id FROM employee WHERE state=@stateparm.
DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;
integer Emp_id_var
string Emp_state_var

PREPARE SQLSA FROM "execute emp_select @stateparm=?" ;
Emp_state_var = "MA"
EXECUTE DYNAMIC my_proc USING :Emp_state_var ;
FETCH my_proc INTO :Emp_id_var ;
CLOSE my_proc ;
PowerScript Reference 175

Dynamic SQL Format 4
Example 4 These statements are for a stored procedure with a return value
for a SQL Native Client (SNC) connection:

integer var1, ReturnVal
string var2

PREPARE SQLSA FROM "execute @rc = myproc @parm1=?,
@parm2=? OUTPUT ";
DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;

EXECUTE DYNAMIC my_proc USING :var1, :var2 ;

//fetch result set
. . .

//fetch return value and output parameter
FETCH my_proc INTO : ReturnVal, :var2;

CLOSE my_proc ;

Dynamic SQL Format 4
Description Use this format to execute a SQL statement that produces a result set in which

the number of input parameters, or the number of result-set columns, or both,
are unknown at compile time.

Syntax DECLARE Cursor | Procedure
DYNAMIC CURSOR | PROCEDURE
FOR DynamicStagingArea ;

PREPARE DynamicStagingArea FROM SQLStatement
{USING TransactionObject} ;

DESCRIBE DynamicStagingArea
INTO DynamicDescriptionArea ;

OPEN DYNAMIC Cursor
USING DESCRIPTOR DynamicDescriptionArea ;

EXECUTE DYNAMIC Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

FETCH Cursor | Procedure
USING DESCRIPTOR DynamicDescriptionArea ;

CLOSE Cursor | Procedure ;
176 PowerBuilder Classic

CHAPTER 8 SQL Statements
Usage The DECLARE statement is not executable and can be defined globally.

If your DBMS supports formats of FETCH other than the customary (and
default) FETCH NEXT, you can specify FETCH FIRST, FETCH PRIOR, or
FETCH LAST.

To declare a local cursor or procedure, open the script in the Script view and
select Paste SQL from the PainterBar or the Edit>Paste Special menu. To
declare a global, instance, or shared cursor or procedure, select Declare from
the first drop-down list in the Script view and Global Variables, Instance
Variables, or Shared Variables from the second drop-down list, then select
Paste SQL.

For information about global, instance, shared, and local scope, see “Where to
declare variables” on page 34.

Accessing attribute information When a statement is described into a
DynamicDescriptionArea, this information is available to you in the attributes
of that DynamicDescriptionArea variable:

Parameter Description

Cursor or Procedure The name of the cursor or procedure you want to use.

DynamicStagingArea The name of the DynamicStagingArea (usually
SQLSA).

If you need a DynamicStagingArea variable other than
SQLSA, you must declare it and instantiate it with the
CREATE statement before using it.

SQLStatement A string containing a valid SQL SELECT statement.
The string can be a string constant or a PowerBuilder
variable preceded by a colon (such as :mysql). The
string must be contained on one line and cannot
contain expressions.

Enter a question mark (?) for each parameter in the
statement. Value substitution is positional; reserved
word substitution is not allowed.

TransactionObject
(optional)

The name of the transaction object that identifies the
database.

DynamicDescriptionArea The name of the DynamicDescriptionArea (usually
SQLDA).

If you need a DynamicDescriptionArea variable other
than SQLDA, you must declare it and instantiate it
with the CREATE statement before using it.
PowerScript Reference 177

Dynamic SQL Format 4
Setting and accessing parameter values The array of input parameter
values and the array of output parameter values are also available. You can use
the SetDynamicParm function to set the values of an input parameter and the
following functions to obtain the value of an output parameter:

For information about these functions, see GetDynamicDate on page 566,
GetDynamicDateTime on page 568, GetDynamicDecimal on page 569,
GetDynamicNumber on page 570, GetDynamicString on page 571, and
GetDynamicTime on page 572.

Parameter values The following enumerated datatypes are the valid values
for the input and output parameter types:

Input parameters You can set the type and value of each input parameter
found in the PREPARE statement. PowerBuilder populates the SQLDA
attribute NumInputs when the DESCRIBE is executed. You can use this value
with the SetDynamicParm function to set the type and value of a specific input
parameter. The input parameters are optional; but if you use them, you should
fill in all the values before executing the OPEN or EXECUTE statement.

Information Attribute

Number of input parameters NumInputs

Array of input parameter types InParmType

Number of output parameters NumOutputs

Array of output parameter types OutParmType

GetDynamicDate
GetDynamicDateTime
GetDynamicDecimal

GetDynamicNumber
GetDynamicString
GetDynamicTime

TypeBoolean!
TypeByte!
TypeDate!
TypeDateTime!
TypeDecimal!
TypeDouble!
TypeInteger!

TypeLong!
TypeLongLong!
TypeReal!
TypeString!
TypeTime!
TypeUInt!
TypeULong!
TypeUnknown!
178 PowerBuilder Classic

CHAPTER 8 SQL Statements
Output parameters You can access the type and value of each output
parameter found in the PREPARE statement. If the database supports output
parameter description, PowerBuilder populates the SQLDA attribute
NumOutputs when the DESCRIBE is executed. If the database does not support
output parameter description, PowerBuilder populates the SQLDA attribute
NumOutputs when the FETCH statement is executed.

You can use the number of output parameters in the NumOutputs attribute in
functions to obtain the type of a specific parameter from the output parameter
type array in the OutParmType attribute. When you have the type, you can call
the appropriate function after the FETCH statement to retrieve the output value.

Examples Example 1 These statements assume you know that there will be only one
output descriptor and that it will be an integer. You can expand this example to
support any number of output descriptors and any datatype by wrapping the
CHOOSE CASE statement in a loop and expanding the CASE statements:

string Stringvar, Sqlstatement
integer Intvar
Long LongVar

Sqlstatement = "SELECT emp_id FROM employee"
PREPARE SQLSA FROM :Sqlstatement ;
DESCRIBE SQLSA INTO SQLDA ;
DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
OPEN DYNAMIC my_cursor USING DESCRIPTOR SQLDA ;
FETCH my_cursor USING DESCRIPTOR SQLDA ;
// If the FETCH is successful, the output
// descriptor array will contain returned
// values from the first row of the result set.
// SQLDA.NumOutputs contains the number of
// output descriptors.
// The SQLDA.OutParmType array will contain
// NumOutput entries and each entry will contain
// a value of the enumerated datatype ParmType
// (such as TypeInteger!, TypeLongLong!, or
// TypeString!).
CHOOSE CASE SQLDA.OutParmType[1]

CASE TypeString!
Stringvar = GetDynamicString(SQLDA, 1)

CASE TypeInteger!
Intvar = GetDynamicNumber(SQLDA, 1)

 CASE TypeLongLong!
 Longvar = GetDynamicDecimal(SQLDA, 1)
END CHOOSE
CLOSE my_cursor ;
PowerScript Reference 179

Dynamic SQL Format 4
Example 2 These statements assume you know there is one string input
descriptor and sets the parameter to MA:

string Sqlstatement, sValue
Sqlstatement = "SELECT emp_fname, emp_lname " &

+ "FROM employee WHERE state = ?"
PREPARE SQLSA FROM :Sqlstatement ;

DESCRIBE SQLSA INTO SQLDA ;

// If the DESCRIBE is successful, the input
// descriptor array will contain one input
// descriptor that you must fill prior to the OPEN

DECLARE my_cursor DYNAMIC CURSOR FOR SQLSA ;
SetDynamicParm(SQLDA, 1, "MA")

OPEN DYNAMIC my_cursor USING DESCRIPTOR SQLDA ;

FETCH my_cursor USING DESCRIPTOR SQLDA ;

// If the FETCH is successful, the output
// descriptor array will contain returned
// values from the first row of the result set
// as in the first example.

// To test and see the values:
sValue = SQLDA.GetDynamicString(1)
//messagebox("",sValue)
sValue = SQLDA.GetDynamicString(2)
//messagebox("",sValue)
Do While sqlca.sqlcode <> 100

FETCH my_cursor USING DESCRIPTOR SQLDA ;
sValue = SQLDA.GetDynamicString(1)
//messagebox("",sValue)
sValue = SQLDA.GetDynamicString(2)
//messagebox("",sValue)

Loop

CLOSE my_cursor ;
180 PowerBuilder Classic

CHAPTER 8 SQL Statements
Example 3 This example is for a stored procedure with a return value for a
SQL Native Client (SNC) connection:

integer var1, ReturnVal
string var2

PREPARE SQLSA FROM "execute @rc = myproc @parm1=?,
@parm2=? OUTPUT ";

DESCRIBE SQLSA INTO SQLDA ;

DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;

SetDynamicParm(SQLDA, 1, var1)
SetDynamicParm(SQLDA, 2, var2)

EXECUTE DYNAMIC my_proc USING DESCRIPTOR SQLDA ;

//fetch result set
. . .

//fetch return value and output parameter
FETCH my_proc USING DESCRIPTOR SQLDA ;

//get return value
CHOOSE CASE SQLDA.OutParmType[1]
CASE TypeInteger!

rc = GetDynamicNumber(SQLDA, 1)
CASE TypeLong!

rc = GetDynamicNumber(SQLDA, 1)
CASE TypeString!

Var2 = GetDynamicString(SQLDA, 1)
END CHOOSE

//get output value

CHOOSE CASE SQLDA.OutParmType[2]
CASE TypeString!

Var2 = GetDynamicString(SQLDA, 2)
CASE TypeInteger!

rc = GetDynamicNumber(SQLDA, 2)
CASE TypeLong!

rc = GetDynamicNumber(SQLDA, 2)
END CHOOSE

CLOSE my_proc ;
PowerScript Reference 181

Dynamic SQL Format 4
182 PowerBuilder Classic

C H A P T E R 9 PowerScript Events

About this chapter This chapter discusses events in general and then documents the
arguments, event IDs, and return codes for the events defined for all
PowerBuilder controls and objects except the DataWindow and
DataStore. Usage notes and examples provide information about what is
typically done in an event’s script.

For information about DataWindow and DataStore events, see the
DataWindow Reference.

Contents The events are listed in alphabetical order.

About events
In PowerBuilder, there are several types of events.

Table 9-1: PowerBuilder event types

The following information about event IDs, arguments, and return values
applies to all types of events.

Event IDs An event ID connects an event to a system message. Events that can be
triggered by user actions or other system activity have event IDs. In
PowerBuilder’s objects, PowerBuilder defines events for commonly used
event IDs. These events are documented in this chapter. You can define
your own events for other system messages using the event IDs listed in
the Event Declaration dialog box.

Type Occurs in response to

System events with an ID User actions or other system messages or a call
in your scripts

System events without an ID PowerBuilder messages or a call in your scripts

User-defined events with an
ID

User actions or other system messages or a call
in your scripts

User-defined events without
an ID

A call in your scripts
PowerScript Reference 183

About events
Events without IDs Some system events, such as the application object’s
Open event, do not have an event ID. They are associated with PowerBuilder
activity, not system activity. PowerBuilder triggers them itself when
appropriate.

Arguments System-triggered events Each system event has its own list of zero or more
arguments. When PowerBuilder triggers the event in response to a system
message, it supplies values for the arguments, which become available in the
event script.

Events you trigger If you trigger a system event in another event script, you
specify the expected arguments. For example, in the Clicked event for a
window, you can trigger the DoubleClicked event with this statement, passing
its flags, xpos, and ypos arguments on to the DoubleClicked event.

w_main.EVENT DoubleClicked(flags, xpos, ypos)

Because DoubleClicked is a system event, the argument list is fixed—you
cannot supply additional arguments of your own.

Calling events without specifying their arguments
If you use the CALL statement, you can trigger a system event without
specifying its arguments. However, CALL is obsolete and you should not use it
in new applications except as described in CALL on page 123.

Return values Where does the return value go? Most events have a return value. When
the event is triggered by the system, the return value is returned to the system.

When your script triggers a user-defined or system event, you can capture the
return value in an assignment statement:

li_rtn = w_main.EVENT process_info(mydata)

When you post an event, the return value is lost because the calling script is no
longer running when the posted script is actually run. The compiler does not
allow a posted event in an assignment statement.

Return codes System events with return values have a default return code of
0, which means, “take no special action and continue processing.” Some events
have additional codes that you can return to change the processing that happens
after the event. For example, a return code might allow you to suppress an error
message or prevent a change from taking place.

A RETURN statement is not required in an event script, but for most events it
is good practice to include one. For events with return values, if you do not
have a RETURN statement, the event returns 0.
184 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Some system events have no return value. For these events, the compiler does
not allow a RETURN statement.

Ancestor event script
return values

Sometimes you want to perform some processing in an event in a descendent
object, but that processing depends on the return value of the ancestor event
script. You can use a local variable called AncestorReturnValue that is
automatically declared and assigned the value of the ancestor event.

For more information about AncestorReturnValue, see “Calling functions and
events in an object’s ancestor” on page 114.

User-defined events With an ID When you declare a user-defined event that will be triggered by a
system message, you select an event ID from the list of IDs. The pbm
(PowerBuilder Message) codes listed in the Event dialog box map to system
messages.

The return value and arguments associated with the event ID become part of
your event declaration. You cannot modify them.

When the corresponding system message occurs, PowerBuilder triggers the
event and passes values for the arguments to the event script.

Without an ID When you declare a user event that will not be associated with
a system message, you do not select an event ID for the event.

You can specify your own arguments and return datatype in the Event
Declaration dialog box.

The event will never be triggered by user actions or system activity. You trigger
the event yourself in your application’s scripts.

For more information If you want to trigger events, including system events, see “Syntax for calling
PowerBuilder functions and events” on page 111 for information on the calling
syntax.

To learn more about user-defined events, see the PowerBuilder Users Guide.
PowerScript Reference 185

Activate
Activate
Description Occurs just before the window becomes active.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When an Activate event occurs, the first object in the tab order for the window
gets focus. If there are no visible objects in the window, the window gets focus.

An Activate event occurs for a newly opened window because it is made active
after it is opened.

The Activate event is frequently used to enable and disable menu items.

Examples Example 1 In the window’s Activate event, this code disables the Sheet
menu item for menu m_frame on the File menu:

m_frame.m_file.m_sheet.Enabled = FALSE

Example 2 This code opens the sheet w_sheet in a layered style when the
window activates:

w_sheet.ArrangeSheets(Layer!)

See also Close
Open
Show

Event ID Objects

pbm_activate Window
186 PowerBuilder Classic

CHAPTER 9 PowerScript Events
BeginDownload
Description Occurs at the beginning of a download procedure

Event ID

Arguments None

Return codes None

Usage Use this event to add custom actions at the beginning of the download stage of
a synchronization.

When the MobiLink synchronization server receives data, it updates the
consolidated database, then builds a download stream that contains all relevant
changes and sends it back to the remote site. At the end of each successful
synchronization, the consolidated and remote databases are consistent. Either
a whole transaction is synchronized, or none of it is synchronized. This ensures
transactional integrity at each database.

The BeginDownload event marks the beginning of the download transaction.

For a complete list of connection and synchronization events, and examples of
their use, see the MobiLink documentation.

See also BeginSync
BeginUpload
ConnectMobiLink

Event ID Objects

None MLSynchronization, MLSync
PowerScript Reference 187

BeginDrag
BeginDrag
The BeginDrag event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when the user presses the left mouse button in the ListView control and

begins dragging.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage BeginDrag and BeginRightDrag events occur when the user presses the mouse
button and drags, whether or not dragging is enabled. To enable dragging, you
can:

• Set the DragAuto property to true. If the ListView’s DragAuto property is
true, a drag operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginDrag event
script, the programmer can call the Drag function to begin the drag
operation.

Dragging a ListView item onto another control causes its standard drag events
(DragDrop, DragEnter, DragLeave, and DragWithin) to occur. The standard
drag events occur for ListView when another control is dragged within the
borders of the ListView.

Examples This example moves a ListView item from one ListView to another.
Ilvi_dragged_object is a window instance variable whose type is
ListViewItem. To copy the item, omit the code that deletes it from the source
ListView.

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnbegindrag ListView

Argument Description

index Integer by value (the index of the ListView item being
dragged)
188 PowerBuilder Classic

CHAPTER 9 PowerScript Events
This code is in the BeginDrag event script of the source ListView:

// If the TreeView's DragAuto property is FALSE
This.Drag(Begin!)

This.GetItem(This.SelectedIndex(), &
ilvi_dragged_object)

// To copy, rather than move, omit these two lines
This.DeleteItem(This.SelectedIndex())
This.Arrange()

This code is in the DragDrop event of the target ListView:

This.AddItem(ilvi_dragged_object)
This.Arrange()

See also BeginRightDrag
DragDrop
DragEnter
DragLeave
DragWithin

Syntax 2 For TreeView controls
Description Occurs when the user presses the left mouse button on a label in the TreeView

control and begins dragging.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage BeginDrag and BeginRightDrag events occur when the user presses the mouse
button and drags, whether or not dragging is enabled. To enable dragging, you
can:

• Set the DragAuto property to true. If the TreeView’s DragAuto property is
true, a drag operation begins automatically when the user clicks.

Event ID Objects

pbm_tvnbegindrag TreeView

Argument Description

handle Long by value (handle of the TreeView item being
dragged)
PowerScript Reference 189

BeginDrag
• Call the Drag function. If DragAuto is false, then in the BeginDrag event
script, the programmer can call the Drag function to begin the drag
operation.

The user cannot drag a highlighted item.

Dragging a TreeView item onto another control causes the control’s standard
drag events (DragDrop, DragEnter, DragLeave, and DragWithin) to occur. The
standard drag events occur for TreeView when another control is dragged
within the borders of the TreeView.

Examples This example moves the first TreeView item in the source TreeView to another
TreeView when the user drags there. Itvi_dragged_object is a window instance
variable whose type is TreeViewItem. To copy the item, omit the code that
deletes it from the source TreeView.

This code is in the BeginDrag event script of the source TreeView:

long itemnum

// If the TreeView's DragAuto property is FALSE
This.Drag(Begin!)
itemnum = 1
This.GetItem(itemnum, itvi_dragged_object)

// To copy, rather than move, omit these two lines
This.DeleteItem(itemnum)
This.SetRedraw(TRUE)

This code is in the DragDrop event of the target TreeView:

This.InsertItemLast(0, ilvi_dragged_object)
This.SetRedraw(TRUE)

Instead of deleting the item from the source TreeView immediately, consider
deleting it after the insertion in the DragDrop event succeeds.

See also BeginRightDrag
DragDrop
DragEnter
DragLeave
DragWithin
190 PowerBuilder Classic

CHAPTER 9 PowerScript Events
BeginLabelEdit
The BeginLabelEdit event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when the user clicks on the label of an item after selecting the item.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow editing of the label
1 Prevent editing of the label

Usage When editing is allowed, a box appears around the label with the text
highlighted. The user can replace or change the existing text.

Examples This example uses the BeginLabelEdit event to display the name of the
ListView item being edited:

ListViewItem lvi
This.GetItem(index lvi)
sle_info.text = "Editing " + string(lvi.label)

See also EndLabelEdit

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnbeginlabeledit ListView

Argument Description

index Integer by value (the index of the selected ListView item)
PowerScript Reference 191

BeginLabelEdit
Syntax 2 For TreeView controls
Description Occurs when the user clicks on the label of an item after selecting the item.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow editing of the label
1 Prevent editing of the label

Usage When editing is allowed, a box appears around the label with the text
highlighted. The user can replace or change the existing text.

Examples This example uses the BeginLabelEdit to display the name of the TreeView
item being edited in a SingleLineEdit:

TreeViewItem tvi
This.GetItem(index, tvi)
sle_info.text = "Editing " + string(tvi.label)

See also EndLabelEdit

Event ID Objects

pbm_tvnbeginlabeledit TreeView

Argument Description

handle Long by value (the handle of the selected TreeView item)
192 PowerBuilder Classic

CHAPTER 9 PowerScript Events
BeginLogScan
Description Occurs before dbmlsync scans the transaction log to assemble the upload data

stream.

Event ID

Arguments

Return codes None

Usage Use this event to add custom actions immediately before the transaction log is
scanned for upload. The following events are triggered while the upload stream
is prepared, but before synchronization begins: BeginLogScan, ProgressInfo,
and EndLogScan.

If this is the first time the transaction log has been scanned for this
synchronization, the rescanlog value is false; otherwise it is true. The log is
scanned twice when the MobiLink synchronization server and dbmlsync have
different information about where scanning should begin.

See also EndLogScan
ProgressIndex

BeginRightDrag
The BeginRightDrag event has different arguments for different objects:

Event ID Objects

None MLSync

Argument Description

rescanlog Boolean indicating whether the log has already been
scanned for the current synchronization.

Object See

ListView control Syntax 1

TreeView control Syntax 2
PowerScript Reference 193

BeginRightDrag
Syntax 1 For ListView controls
Description Occurs when the user presses the right mouse button in the ListView control

and begins dragging.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage BeginDrag and BeginRightDrag events occur when the user presses the mouse
button and drags, whether or not dragging is enabled. To enable dragging, you
can:

• Set the DragAuto property to true. If the ListView’s DragAuto property is
true, a drag operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginRightDrag
event script, the programmer can call the Drag function to begin the drag
operation.

Dragging a ListView item onto another control causes its standard drag events
(DragDrop, DragEnter, DragLeave, and DragWithin) to occur. The standard
drag events occur for ListView when another control is dragged within the
borders of the ListView.

Examples See the example for the BeginDrag event. It is also effective for the
BeginRightDrag event.

See also BeginDrag
DragDrop
DragEnter
DragLeave
DragWithin

Event ID Objects

pbm_lvnbeginrightdrag ListView

Argument Description

index Integer by value (the index of the ListView item being
dragged)
194 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For TreeView controls
Description Occurs when the user presses the right mouse button in the TreeView control

and begins dragging.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage BeginDrag and BeginRightDrag events occur when the user presses the mouse
button and drags, whether or not dragging is enabled. To enable dragging, you
can:

• Set the DragAuto property to true. If the ListView’s DragAuto property is
true, a drag operation begins automatically when the user clicks.

• Call the Drag function. If DragAuto is false, then in the BeginRightDrag
event script, the programmer can call the Drag function to begin the drag
operation.

The user cannot drag a highlighted item. Dragging a TreeView item onto
another control causes its standard drag events (DragDrop, DragEnter,
DragLeave, and DragWithin) to occur. The standard drag events occur for
TreeView when another control is dragged within the borders of the TreeView.

Examples See the example for the BeginDrag event.

See also BeginDrag
DragDrop
DragEnter
DragLeave
DragWithin

Event ID Objects

pbm_tvnbeginrightdrag TreeView

Argument Description

handle Long by value (the handle of the TreeView item being dragged)
PowerScript Reference 195

BeginSync
BeginSync
Description Occurs at the beginning of the synchronization.

Event ID

Arguments

Return codes None

Usage Use this event to add custom actions at the beginning of a synchronization. The
following synchronization object events correspond to events occuring on the
synchronization server (in the order displayed): BeginSync,
ConnectMobiLink, BeginUpload, EndUpload, BeginDownload,
EndDownload, DisconnectMobiLink, and EndSync.

See also BeginDownload
BeginUpload
ConnectMobiLink

Event ID Objects

None MLSynchronization, MLSync

Argument Description

mlusername Read-only string identifying the MobiLink user name.

pubnames Read-only string identifying the publication to be
synchronized. If there is more than one publication, this is
a comma-separated list.
196 PowerBuilder Classic

CHAPTER 9 PowerScript Events
BeginUpload
Description Occurs at the beginning of the synchonization upload procedure.

Event ID

Arguments None

Return codes None

Usage Use this event to add custom actions immediately before the transmission of
the upload to the MobiLink synchronization server.

The BeginUpload event marks the beginning of the upload transaction.
Applicable inserts and updates to the consolidated database are performed for
all remote tables, then rows are deleted as applicable for all remote tables. After
EndUpload, upload changes are committed.

See also BeginDownload
ConnectMobiLink
EndUpload

Clicked
The Clicked event has different arguments for different objects:

For information about the DataWindow control’s Clicked event, see the
DataWindow Reference or the online Help.

Event ID Objects

None MLSynchronization, MLSync

Object See

Menus Syntax 1

ListView and Toolbar controls Syntax 2

Tab controls Syntax 3

TreeView controls Syntax 4

Window and progress bar controls Syntax 5

Other controls Syntax 6
PowerScript Reference 197

Clicked
Syntax 1 For menus
Description Occurs when the user chooses an item on a menu.

Event ID

Arguments None

Return codes None (do not use a RETURN statement)

Usage If the user highlights the menu item without choosing it, its Selected event
occurs.

If the user chooses a menu item that has a cascaded menu associated with it,
the Clicked event occurs, and the cascaded menu is displayed.

Examples This script is for the Clicked event of the New menu item for the frame
window. The wf_newsheet function is a window function. The window
w_genapp_frame is part of the application template you can generate when you
create a new application:

/* Create a new sheet */
w_genapp_frame.wf_newsheet()

See also Selected

Event ID Objects

None Menu
198 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For ListView controls
Description Occurs when the user clicks within the ListView control, either on an item or

in the blank space around items.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the user presses the mouse button. The Clicked
event can occur during a double-click, in addition to the DoubleClicked event.

In addition to the Clicked event, ItemChanging and ItemChanged events can
occur when the user clicks on an item that does not already have focus.
BeginLabelEdit can occur when the user clicks on a label of an item that has
focus.

Using the ItemActivate event for ListView controls
You can use the ItemActivate event (with the OneClickActivate property set to
true) instead of the Clicked event for ListView controls.

Examples This code changes the label of the item the user clicks to uppercase:

IF index = -1 THEN RETURN 0

This.GetItem(index, llvi_current)
llvi_current.Label = Upper(llvi_current.Label)
This.SetItem(index, llvi_current)
RETURN 0

See also ColumnClick
DoubleClicked
ItemActivate
ItemChanged
ItemChanging
RightClicked
RightDoubleClicked

Event ID Objects

pbm_lvnclicked ListView

Argument Description

index Integer by value (the index of the ListView item the user
clicked). The value of index is -1 if the user clicks within
the control but not on a specific item.
PowerScript Reference 199

Clicked
Syntax 3 For Tab controls
Description Occurs when the user clicks on the tab portion of a Tab control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the mouse button is released.

When the user clicks in the display area of the Tab control, the tab page user
object (not the Tab control) gets a Clicked event.

The Clicked event can occur during a double-click, in addition to the
DoubleClicked event.

In addition to the Clicked event, the SelectionChanging and SelectionChanged
events can occur when the user clicks on a tab page label. If the user presses an
arrow key to change tab pages, the Key event occurs instead of Clicked before
SelectionChanging and SelectionChanged.

Examples This code makes the tab label bold for the fourth tab page only:

IF index = 4 THEN
This.BoldSelectedText = TRUE

ELSE
This.BoldSelectedText = FALSE

END IF

See also DoubleClicked
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Event ID Objects

pbm_tcnclicked Tab

Argument Description

index Integer by value (the index of the tab page the user clicked)
200 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 4 For TreeView controls
Description Occurs when the user clicks an item in a TreeView control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the user presses the mouse button.

The Clicked event can occur during a double-click, in addition to the
DoubleClicked event.

In addition to the Clicked event, GetFocus occurs if the control does not
already have focus.

Examples This code in the Clicked event changes the label of the item the user clicked to
uppercase:

TreeViewItem ltvi_current

This.GetItem(handle, ltvi_current)
ltvi_current.Label = Upper(ltvi_current.Label)
This.SetItem(handle, ltvi_current)

See also DoubleClicked
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Event ID Objects

pbm_tvnclicked TreeView

Argument Description

handle Long by value (the handle of the TreeView item the user
clicked)
PowerScript Reference 201

Clicked
Syntax 5 For windows and progress bars
Description Occurs when the user clicks in an unoccupied area of the window or progress

bar (any area with no visible, enabled object).

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the user presses the mouse button down in
progress bars and when the user releases the mouse button in windows.

If the user clicks on a control or menu in a window, that object (rather than the
window) gets a Clicked event. No Clicked event occurs when the user clicks
the window’s title bar.

When the user clicks on a window, the window’s MouseDown and MouseUp
events also occur.

When the user clicks on a visible disabled control or an invisible enabled
control, the window gets a Clicked event.

Event ID Objects

pbm_lbuttonclk Window

pbm_lbuttondwn HProgressBar, VProgressBar

Argument Description

flags UnsignedLong by value (the modifier keys and mouse
buttons that are pressed).

Values are:

• 1 – Left mouse button

• 2 – Right mouse button (windows only)

• 4 – Shift key

• 8 – Ctrl key

• 16 – Middle mouse button (windows only)

In the Clicked event for windows, the left mouse button is
being released, so 1 is not summed in the value of flags.

For an explanation of flags, see Syntax 2 of MouseMove
on page 274.

xpos Integer by value (the distance of the pointer from the left
edge of the window workspace or control in pixels).

ypos Integer by value (the distance of the pointer from the top of
the window’s workspace or control in pixels).
202 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Examples If the user clicks in the upper left corner of the window, this code sets focus to
the button cb_clear:

IF (xpos <= 600 AND ypos <= 600) THEN
cb_clear.SetFocus()

END IF

See also DoubleClicked
MouseDown
MouseMove
MouseUp
RButtonDown

Syntax 6 For other controls
Description Occurs when the user clicks on the control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Clicked event occurs when the user releases the mouse button.

If another control had focus, then a GetFocus and a Clicked event occur for the
control the user clicks.

Examples This code in an OLE control’s Clicked event activates the object in the control:

integer li_success
li_success = This.Activate(InPlace!)

See also GetFocus
RButtonDown

Event ID Objects

pbm_bnclicked CheckBox, CommandButton, Graph, OLE, Picture,
PictureHyperLink, PictureButton, RadioButton,
StaticText, StaticHyperLink

pbm_lbuttondown DatePicker, MonthCalendar
PowerScript Reference 203

Close
Close
The Close event has different arguments for different objects:

Syntax 1 For the application object
Description Occurs when the user closes the application.

Event ID

Arguments None

Return codes None (do not use a RETURN statement)

Usage The Close event occurs when the last window (for MDI applications the MDI
frame) is closed.

See also Open
SystemError

Object See

Application Syntax 1

OLE control Syntax 2

Window Syntax 3

Event ID Objects

None Application
204 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For OLE controls
Description Occurs when the object in an OLE control has been activated offsite (the OLE

server displays the object in the server’s window) and that server is closed.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Usage If the user closed the OLE server, the user’s choices might cause the OLE
object in the control to be updated, triggering the Save or DataChange events.

If you want to retrieve the ObjectData blob value of an OLE control during the
processing of this event, you must post a user event back to the control or you
will generate a runtime error.

See also DataChange
Save

Syntax 3 For windows
Description Occurs just before a window is removed from display.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When you call the Close function for the window, a CloseQuery event occurs
before the Close event. In the CloseQuery event, you can specify a return code
to prevent the Close event from occurring and the window from closing.

Do not trigger the Close event to close a window; call the Close function
instead. Triggering the event simply runs the script and does not close the
window.

See also CloseQuery
Open

Event ID Objects

pbm_omnclose OLE

Event ID Objects

pbm_close Window
PowerScript Reference 205

CloseQuery
CloseQuery
Description Occurs when a window is closed, before the Close event.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the window to be closed
1 Prevent the window from closing

Usage If the CloseQuery event returns a value of 1, the closing of the window is
aborted and the Close event that usually follows CloseQuery does not occur.

If the user closes the window with the Close box (instead of using buttons
whose scripts can evaluate the state of the data in the window), the CloseQuery
event still occurs, allowing you to prompt the user about saving changes or to
check whether data the user entered is valid.

Obsolete techniques
You no longer need to set the ReturnValue property of the Message object. Use
a RETURN statement instead.

Examples This statement in the CloseQuery event for a window asks if the user really
wants to close the window and if the user answers no, prevents it from closing:

IF MessageBox("Closing window", "Are you sure?", &
Question!, YesNo!) = 2 THEN
RETURN 1

ELSE
RETURN 0

END IF

This script for the CloseQuery event tests to see if the DataWindow dw_1 has
any pending changes. If it has, it asks the user whether to update the data and
close the window, close the window without updating, or leave the window
open without updating:

integer li_rc

// Accept the last data entered into the datawindow
dw_1.AcceptText()

Event ID Objects

pbm_closequery Window
206 PowerBuilder Classic

CHAPTER 9 PowerScript Events
//Check to see if any data has changed
IF dw_1.DeletedCount()+dw_1.ModifiedCount() > 0 THEN

li_rc = MessageBox("Closing", &
"Update your changes?", Question!, &
YesNoCancel!, 3)

//User chose to up data and close window
IF li_rc = 1 THEN

Window lw_window
lw_window = w_genapp_frame.GetActiveSheet()
lw_window.TriggerEvent("ue_update")
RETURN 0

//User chose to close window without updating
ELSEIF li_rc = 2 THEN

RETURN 0

//User canceled
ELSE

RETURN 1
END IF

ELSE
// No changes to the data, window will just close
RETURN 0

END IF

See also Close

CloseUp
Description Occurs when the user has selected a date from the drop-down calendar and the

calendar closes.

Event ID

Arguments None.

Return codes Long. Return code: Ignored.

Event ID Objects

pbm_dtpcloseup DatePicker
PowerScript Reference 207

ColumnClick
ColumnClick
Description Occurs when the user clicks a column header.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The ColumnClicked event is only available when the ListView displays in
report view and the ButtonHeader property is set to true.

Examples This example uses the ColumnClicked event to set up a instance variable for
the column argument, retrieve column alignment information, and display it to
the user:

string ls_label, ls_align
integer li_width
alignment la_align

ii_col = column
This.GetColumn(column, ls_label, la_align, &

li_width)

CHOOSE CASE la_align
CASE Right!

rb_right.Checked = TRUE
ls_align = "Right!"

CASE Left!
rb_left.Checked = TRUE
ls_align = "Left!"

CASE Center!
rb_center.Checked = TRUE
ls_align = "Center!"

CASE Justify!
rb_just.Checked = TRUE
ls_align = "Justify!"

END CHOOSE

Event ID Objects

pbm_lvncolumnclick ListView

Argument Description

column The index of the clicked column
208 PowerBuilder Classic

CHAPTER 9 PowerScript Events
sle_info.Text = String(column) &
+ " " + ls_label &
+ " " + ls_align &
+ " " + String(li_width)

See also Clicked

ConnectMobiLink
Description Occurs when the MobiLink synchronization server connects to the

consolidated database server.

Event ID

Arguments None

Return codes None

Usage When an application forms or reforms a connection with the MobiLink
synchronization server, the MobiLink synchronization server temporarily
allocates one connection with the database server for the duration of that
synchronization.

Use the ConnectMobiLink event to add custom actions immediately before the
remote database connects to the MobiLink synchronization server. At this
stage, dbmlsync has generated the upload stream.

The following synchronization object events correspond to events occuring on
the synchronization server (in the order displayed): BeginSync,
ConnectMobiLink, BeginUpload, EndUpload, BeginDownload,
EndDownload, DisconnectMobiLink, and EndSync.

See also BeginDownload
BeginSync
BeginUpload
DisconnectMobiLink

Event ID Objects

None MLSynchronization, MLSync
PowerScript Reference 209

Constructor
Constructor
Description Occurs when the control or object is created, just before the Open event for the

window that contains the control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage You can write a script for a control’s Constructor event to affect the control’s
properties before the window is displayed.

When a window or user object opens, a Constructor event for each control in
the window or user object occurs. The order of controls in a window’s Control
property (which is an array) determines the order in which Constructor events
are triggered. If one of the controls in the window is a user object, the
Constructor events of all the controls in the user object occur before the
Constructor event for the next control in the window.

When you call OpenUserObject to add a user object to a window dynamically,
its Constructor event and the Constructor events for all of its controls occur.

When you use the CREATE statement to instantiate a class (nonvisual) user
object, its Constructor event occurs.

When a class user object variable has an Autoinstantiate setting of true, its
Constructor event occurs when the variable comes into scope. Therefore, the
Constructor event occurs for:

• Global variables when the system starts up

• Shared variables when the object with the shared variables is loaded

• Instance variables when the object with the instance variables is created

• Local variables when the function that declares them begins executing

Examples This example retrieves data for the DataWindow dw_1 before its window is
displayed:

dw_1.SetTransObject(SQLCA)
dw_1.Retrieve()

See also Destructor
Open

Event ID Objects

pbm_constructor All objects
210 PowerBuilder Classic

CHAPTER 9 PowerScript Events
DataChange
Description Occurs when the server application notifies the control that data has changed.

Event ID

Arguments None

Return codes Long. Return code: Ignored

See also PropertyRequestEdit
PropertyChanged
Rename
ViewChange

DateChanged
Description Occurs immediately after a date is selected.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Usage If you code a call to a MessageBox function in this event, the message box does
not display if the user selects a new date using the mouse. This is because the
mouse click captures the mouse. Message boxes do not display when the
mouse is captured because unexpected results can occur. The message box
does display if the user selects a new date using the arrow keys.

SetSelectedDate and SetSelectedRange trigger a DateChanged event. You
should not call either method in a DateChanged event, paticularly using the
Post method.

See also DateSelected

Event ID Objects

pbm_omndatachange OLE

Event ID Objects

pbm_mcdatechanged MonthCalendar
PowerScript Reference 211

DateSelected
DateSelected
Description Occurs when the user selects a date using the mouse.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Usage This event is similar to DateChanged, but it occurs only when the user has
selected a specific date using the mouse. The DateChanged event occurs
whenever the date changes—when a date is selected using the mouse, when the
date is changed in a script, and when the user uses the arrow key on the
keyboard to select a different date or the arrow on the control to scroll to a
different month.

Examples The following script in the DateSelected event writes the date the user selected
using the mouse to a single-line edit box:

date dt_selected
integer li_ret
string ls_date

li_ret = GetSelectedDate(dt_selected)
ls_date = string(dt_selected)
sle_2.text = ls_date

See also DateChanged

Event ID Objects

pbm_mcdatesel MonthCalendar
212 PowerBuilder Classic

CHAPTER 9 PowerScript Events
DBError
Description Triggered when an error occurs during a transaction or an attempted

transaction.

Event ID

Arguments

Return codes Long, but this return code has no meaning to PowerBuilder.

Usage Error codes For any database related error, the error code comes from the
database driver. The error text is also from the database drivers. The sqlsyntax
argument shows what SQL syntax was executing when the error occured.

For errors that are not related to database drivers, the code argument is set to -
4. If the PowerBuilder VM cannot get the syntax for these types of errors, an
empty string is passed to the sqlsyntax argument. PowerBuilder cannot get the
syntax for the following types of errors:

Event ID Objects

None Transaction objects

Argument Description

code Long by value. A database-specific error code.

See your DBMS documentation for information on the
meaning of the code.

When there is no error code from the DBMS, code
contains one of these values:

-1 – Cannot connect to the database
-2 – Writing a blob to the database failed
-4 – All other errors (see Usage note for more detail)

sqlerrortext String by value. A database-specific error message.

sqlsyntax String by value. The full text of the SQL statement being
sent to the DBMS when the error occurred.

• “Cursor is not open” • “Cursor is already open”
• “Procedure has not been

executed or has no results”
• “Procedure has already been

executed”
• “Transaction not connected” • “Transaction already connected”
• “Transaction not connected.

Transaction Pool limit
exceeded”

• “Database does not support FETCH
(FIRST/LAST/PRIOR)”
PowerScript Reference 213

DBError
The PowerBuilder VM can get the SQL syntax for the following types of
errors, and passes it to the Transaction object’s DBError event for the following
types of errors:

Use with embedded SQL By default, whenever an error occurs in the
Transaction object, the DBError event is called. The error code and error
message are passed to this event. You can add code to the DBError event to
handle these errors.

Use with DataWindow/DataStore When using a Transaction object with a
DataWindow, the DataWindow DBError event is triggered before the DBError
event of the Transaction object. The return value for the DataWindow DBError
event is used to indicate whether the Transaction object's DBError event should
be triggered in turn. When the return value of the DataWindow DBError event
is 0 or 1, the Transaction object’s DBError event is also triggered if it is
defined. When the return value of the DataWindow DBError event is 2 or 3, the
Transaction object’s DBError event is ignored.

Examples The following code in the DBError event displays the error message and the
SQL statement sent to the DBMS when a transaction error occurs:

Messagebox("Transaction error","Error message: "&
+sqlerrortext + "~r~n Occurred for this statement:"&
+sqlsyntax)

See also DBError in the DataWindow Reference
SQLPreview

• “Select returned more than one
row”

• “Blob variable for UPDATEBLOB
cannot be empty”

• “Mismatch between prepared
number of substitution variables
and execute parameters”

• “Open <cursor> or execute
<procedure> must reference
DESCRIPTOR”

• “Mismatch between retrieve
columns and fetch columns”

• “Database does not support WHERE
CURRENT OF <cursor-name>”

• “Database statement must refer to
blob variable”
214 PowerBuilder Classic

CHAPTER 9 PowerScript Events
DBNotification
Description Triggered by a PowerBuilder script or DataWindow database operation

command if a PowerBuilder database driver receives a notification from the
database server. This event is supported only with the Oracle 10g (O10) native
database interface.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

• 0 Continue to process the database command. If the event does not exist
or does not have a script, the return value is 0 by default.

• Any other value Ignored if the notification argument is DBFailover!. If
the value of the notification argument is DBServerDown! or
DBDataTruncate!, the current command returns with an error.
SQLCA.SQLCode is set to -1 and SQLCA.SQLDBCode is set to the
return value.

Event ID Objects

pbm_dbnotification Transaction

Argument Description

notification A value of the DBNotification enumerated datatype. The
database interface determines the type of the notification
received from the server, triggers the DBNotification
event, and passes the notification type in this argument.
Values are:

• DBServerDown! = 1. The server has been shut down.
This notification type is used only by the O10 (Oracle
10g) database interface.

• DBFailover! = 2. The database client is failing over.

• DBDataTruncate! = 3. Data has been truncated.

DBServerDown! is used for Oracle RAC database HA
events. DBFailover! and DBDataTruncate! can be used
with other databases for failover and data truncation
warnings.

command A string that informs users which command was being
executed when the notification occurred.

dbmessage A string that describes the reason why the event occurred.
PowerScript Reference 215

DBNotification
Usage Oracle Real Application Clusters (RAC) is a cluster database that uses a shared
cache architecture. In Oracle 10g Release 2, a High Availability (HA) client
connected to an RAC database can register a callback to indicate that it wants
the server to notify it in case of a database failure event that affects a connection
made by the client. The DBNotification event is triggered when the client is
notified that such an event has occurred.

The default transaction object, SQLCA, does not support this event. To use the
event, create a new standard class user object that inherits from the Transaction
object and add code to the DBNotification event script. You can then use this
Transaction object in your application, or substitute it for SQLCA on the
Variable Types tab page in the Application Properties dialog box.

To be notified when the server shuts down, your application must be connected
to an Oracle 10g RAC database using the O10 database interface and the
HANotification database parameter must be set to 1. When the server shuts
down, the O10 driver is notified. The DBNotification event is triggered if the
application continues to attempt to access the server. The value of the
notification argument is set to DBServerDown!, the command string is set to
the syntax of the current command, and the dbmessage string is populated with
information about the shutdown.

If your application does not execute any SQL statements on the current
connection after the server shuts down, the DBNotification event is not
triggered until Disconnect is called.

You can code the return value of the DBNotification event to specify whether
the application should continue to execute the current command:

• If the event returns 0, the current command continues executing until
failover occurs and completes successfully (if failover is supported), then
the application continues. If failover is not supported, the application will
receive an error for the current command.

• If the event returns any other value, the current command execution is
stopped immediately and the Transaction object property SQLCode is set
to -1, SQLDBCode is set to the return value, SQLErrText is set to the value
of the dbmessage string, and failover does not happen. After the event,
only Disconnect can be called on the current transaction.

Inside the DBNotification event script, the current connection of the
Transaction object is protected and database operations with the connection
are not allowed. All database commands will return as failed. However, the
application can still access the database with another Transaction object.

If the SvrFailover database parameter is set to Yes, the DBNotification event is
triggered with the notification argument set to DBFailover!
216 PowerBuilder Classic

CHAPTER 9 PowerScript Events
The event can be triggered several times during the failover, as when the
failover begins and ends. You do not need to be connected to an Oracle RAC
database or to set the HANotification database parameter to be notified when
a failover occurs.

Deactivate
Description Occurs when the window becomes inactive.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When a window is closed, a Deactivate event occurs.

See also Activate, Show

DeleteAllItems
Description Occurs when all the items in the ListView are deleted.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example uses the DeleteAllItems event to ensure that there is a default
item in the ListView control:

This.AddItem("Default item", 1)

See also DeleteItem, InsertItem

Event ID Objects

pbm_deactivate Window

Event ID Objects

pbm_lvndeleteallitems ListView
PowerScript Reference 217

DeleteItem
DeleteItem
The DeleteItem event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when an item is deleted.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example for the DeleteItem event displays a message with the number of
the deleted item:

MessageBox("Message", "Item " + String(index) &
+ " deleted.")

See also DeleteAllItems
InsertItem

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvndeleteitem ListView

Argument Description

index Integer by value (the index of the deleted item)
218 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For TreeView controls
Description Occurs when an item is deleted.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example displays the name of the deleted item in a message:

TreeViewItem ll_tvi

This.GetItem(handle, ll_tvi)
MessageBox("Message", String(ll_tvi.Label) &

+ " has been deleted.")

Destructor
Description Occurs when the user object or control is destroyed, immediately after the

Close event of a window.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When a window is closed, each control’s Destructor event destroys the control
and removes it from memory. After they have been destroyed, you can no
longer refer to those controls in other scripts. If you do, a runtime error occurs.

See also Constructor
Close

Event ID Objects

pbm_tvndeleteitem TreeView

Argument Description

handle Long by value (the handle of the deleted item)

Event ID Objects

pbm_destructor All objects
PowerScript Reference 219

DisconnectMobiLink
DisconnectMobiLink
Description Occurs when the MobiLink synchronization server disconnects from the

consolidated database server.

Event ID

Arguments None

Return codes None

Usage Use this event to add custom actions immediately after the remote database
disconnects from the MobiLink synchronization server.

When an application forms or reforms a connection with the MobiLink
synchronization server, the MobiLink synchronization server temporarily
allocates one connection with the database server for the duration of that
synchronization.

The following synchronization object events correspond to events occuring on
the synchronization server (in the order displayed): BeginSync,
ConnectMobiLink, BeginUpload, EndUpload, BeginDownload,
DisconnectMobiLink, and EndSync.

See also ConnectMobiLink
EndDownload
EndSync
EndUpload

Event ID Objects

None MLSynchronization, MLSync
220 PowerBuilder Classic

CHAPTER 9 PowerScript Events
DisplayMessage
Description Occurs on display of an informational message from a MobiLink

synchronization.

Event ID

Arguments

Return codes None

Usage The following events are triggered when different types of messages are sent
by the synchronization server: DisplayMessage, ErrorMessage, FileMessage,
and WarningMessage.

See also ErrorMessage
FileMessage
WarningMessage

DoubleClicked
The DoubleClicked event has different arguments for different objects:

For information about the DataWindow control’s DoubleClicked event, see the
DataWindow Reference or the online Help.

Event ID Objects

None MLSynchronization, MLSync

Argument Description

infomsg Read-only string containing the text of an informational
message returned from the synchronization server.

Object See

ListBox, PictureListBox, ListView, and Tab controls Syntax 1

TreeView control Syntax 2

Window Syntax 3

Other controls Syntax 4
PowerScript Reference 221

DoubleClicked
Syntax 1 For ListBox, PictureListBox, ListView, and Tab controls
Description Occurs when the user double-clicks on the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage You can use the ItemActivate event (with the OneClickActivate property set to
false) instead of the DoubleClicked event for ListView controls.

In a ListBox or PictureListBox, double-clicking on an item also triggers a
SelectionChanged event.

Examples This example uses the DoubleClicked event to begin editing the double-clicked
ListView item:

This.EditLabels = TRUE

See also Clicked
ColumnClick
ItemActivate
ItemChanged
ItemChanging
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Event ID Objects

pbm_lbndblclk ListBox, PictureListBox

pbm_lvndoubleclicked ListView

pbm_tcndoubleclicked Tab

Argument Description

index Integer by value. The index of the item the user double-
clicked (for tabs, the index of the tab page).
222 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For TreeView controls
Description Occurs when the user double-clicks on the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example turns on editing for the double-clicked TreeView item:

TreeViewItem ltvi_current
ltvi_current = tv_1.FindItem(CurrentTreeItem!, 0)
This.EditLabel(ltvi_current)

See also Clicked
RightClicked
RightDoubleClicked
SelectionChanged
SelectionChanging

Event ID Objects

pbm_tvndoubleclicked TreeView

Argument Description

handle Long by value (the handle of the item the user double-
clicked)
PowerScript Reference 223

DoubleClicked
Syntax 3 For windows
Description Occurs when the user double-clicks in an unoccupied area of the window (any

area with no visible, enabled object).

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The xpos and ypos arguments provide the same values the functions PointerX
and PointerY return when you call them for the window.

See also Clicked
MouseDown
MouseMove
MouseUp
RButtonDown

Event ID Objects

pbm_lbuttondblclk Window

Argument Description

flags UnsignedLong by value (the modifier keys and mouse
buttons that are pressed).

Values are:

• 1 – Left mouse button

• 2 – Right mouse button

• 4 – Shift key

• 8 – Ctrl key

• 16 – Middle mouse button

In the Clicked event, the left mouse button is being
released, so 1 is not summed in the value of flags.

For an explanation of flags, see Syntax 2 of MouseMove
on page 274.

xpos Integer by value (the distance of the pointer from the left
edge of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top
of the window’s workspace in pixels).
224 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 4 For other controls
Description Occurs when the user double-clicks on the control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The DoubleClicked event for DropDownListBoxes is only active when the
Always Show List property is on.

See also Clicked
RButtonDown

DragDrop
The DragDrop event has different arguments for different objects:

For information about the DataWindow control’s DragDrop event, see the
DataWindow Reference or the online Help.

Event ID Objects

pbm_bndoubleclicked Graph, OLE, Picture, PictureHyperLink, StaticText,
StaticHyperLink

pbm_cbndblclk DropDownListBox, DropDownPictureListBox

pbm_lbuttondblclk DatePicker, MonthCalendar

pbm_prndoubleclicked HProgressBar, VProgressBar

pbm_rendoubleclicked RichTextEdit

Object See

ListBox, PictureListBox, ListView, and
Tab controls

Syntax 1

TreeView control Syntax 2

Windows and other controls Syntax 3
PowerScript Reference 225

DragDrop
Syntax 1 For ListBox, PictureListBox, ListView, and Tab controls
Description Occurs when the user drags an object onto the control and releases the mouse

button to drop the object.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

Examples For ListView controls, see the example for BeginDrag.

This example inserts the dragged ListView item:

This.AddItem(ilvi_dragged_object)
This.Arrange()

See also BeginDrag
BeginRightDrag
DragEnter
DragLeave
DragWithin

Event ID Objects

pbm_lbndragdrop ListBox, PictureListBox

pbm_lvndragdrop ListView

pbm_tcndragdrop Tab

Argument Description

source DragObject by value (a reference to the control being
dragged)

index Integer by value (the index of the target ListView item)
226 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For TreeView controls
Description Occurs when the user drags an object onto the control and releases the mouse

button to drop the object.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

Examples This example inserts the dragged object as a child of the TreeView item it is
dropped upon:

TreeViewItem ltv_1
This.GetItem(handle, ltv_1)
This.SetDropHighlight(handle)
This.InsertItemFirst(handle, itvi_drag_object)
This.ExpandItem(handle)
This.SetRedraw(TRUE)

See also DragEnter
DragLeave
DragWithin

Event ID Objects

pbm_tvndragdrop TreeView

Argument Description

source DragObject by value (a reference to the control being
dragged)

handle Long by value (the handle of the target TreeView item)
PowerScript Reference 227

DragDrop
Syntax 3 For windows and other controls
Description Occurs when the user drags an object onto the control and releases the mouse

button to drop the object.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When a control’s DragAuto property is true, a drag operation begins when the
user presses a mouse button.

Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

Examples Example 1 In this example, the code in the DoubleClicked event for the
DataWindow dw_orddetail starts a drag operation:

IF dw_orddetail.GetRow() > 0 THEN
dw_orddetail.Drag(Begin!)
This.DragIcon = "dragitem.ico"

END IF

Event ID Objects

pbm_bndragdrop CheckBox, CommandButton, Graph, InkEdit, InkPicture,
Picture, PictureHyperLink, PictureButton, RadioButton

pbm_cbndragdrop DropDownListBox, DropDownPictureListBox

pbm_dragdrop DatePicker, MonthCalendar

pbm_endragdrop SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_omndragdrop OLE

pbm_prndragdrop HProgressBar, VProgressBar

pbm_rendragdrop RichTextEdit

pbm_sbndragdrop HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_uondragdrop UserObject

pbm_dragdrop Window

Argument Description

source DragObject by value (a reference to the control being
dragged)
228 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Then, in the DragDrop event for a trashcan Picture control, this code deletes
the row the user clicked and dragged from the DataWindow control:

long ll_currow
dwitemstatus ldwis_delrow

ll_currow = dw_orddetail.GetRow()

// Save the row's status flag for later use
ldwis_delrow = dw_orddetail.GetItemStatus &

(ll_currow, 0, Primary!)

// Now, delete the current row from dw_orddetail
dw_orddetail.DeleteRow(0)

Example 2 This example for a trashcan Picture control’s DragDrop event
checks whether the source of the drag operation is a DataWindow. If so, it asks
the user whether to delete the current row in the source DataWindow:

DataWindow ldw_Source
Long ll_RowToDelete
Integer li_Choice

IF source.TypeOf() = DataWindow! THEN

ldw_Source = source
ll_RowToDelete = ldw_Source.GetRow()

IF ll_RowToDelete > 0 THEN
li_Choice = MessageBox("Delete", &
"Delete this row?", Question!, YesNo!, 2)
IF li_Choice = 1 THEN
ldw_Source.DeleteRow(ll_RowToDelete)
END IF

ELSE
Beep(1)

END IF

ELSE
Beep(1)

END IF

See also DragEnter
DragLeave
DragWithin
PowerScript Reference 229

DragEnter
DragEnter
Description Occurs when the user is dragging an object and enters the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

Examples This example for a Picture control’s DragDrop event adds a border to itself
when another Picture control (the source) is dragged within its boundaries:

IF source.TypeOf() = Picture! THEN
This.Border = TRUE

END IF

See also DragDrop
DragLeave
DragWithin

Event ID Objects

pbm_bndragenter CheckBox, CommandButton, Graph, InkEdit, InkPicture,
Picture, PictureHyperlink, PictureButton, RadioButton

pbm_cbndragenter DropDownListBox, DropDownPictureListBox

pbm_dragenter DatePicker, MonthCalendar

pbm_dwndragenter DataWindow

pbm_endragenter SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_lbndragenter ListBox, PictureListBox

pbm_lvndragenter ListView

pbm_omndragenter OLE

pbm_prndragenter HProgressBar, VProgressBar

pbm_rendragenter RichTextEdit

pbm_sbndragenter HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcndragenter Tab

pbm_tvndragenter TreeView

pbm_uondragenter UserObject

pbm_dragenter Window

Argument Description

source DragObject by value (a reference to the control being dragged)
230 PowerBuilder Classic

CHAPTER 9 PowerScript Events
DragLeave
Description Occurs when the user is dragging an object and leaves the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

Examples This example checks the name of the control being dragged, and if it is, cb_1 it
cancels the drag operation:

IF ClassName(source) = "cb_1" THEN
cb_1.Drag(Cancel!)

END If

Event ID Objects

pbm_bndragleave CheckBox, CommandButton, Graph, InkEdit, InkPicture,
Picture, PictureHyperLink, PictureButton, RadioButton

pbm_cbndragleave DropDownListBox, DropDownPictureListBox

pbm_dragleave DatePicker, MonthCalendar

pbm_dwndragleave DataWindow

pbm_endragleave SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_lbndragleave ListBox, PictureListBox

pbm_lvndragleave ListView

pbm_omndragleave OLE

pbm_prndragleave HProgressBar, VProgressBar

pbm_rendragleave RichTextEdit

pbm_sbndragleave HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcndragleave Tab

pbm_tvndragleave TreeView

pbm_uondragleave UserObject

pbm_dragleave Window

Argument Description

source DragObject by value (a reference to the control being
dragged)
PowerScript Reference 231

DragWithin
This example for a Picture control’s DragDrop event removes its own border
when another Picture control (the source) is dragged beyond its boundaries:

IF source.TypeOf() = Picture! THEN
This.Border = TRUE

END IF

See also DragDrop
DragEnter
DragWithin

DragWithin
The DragWithin event has different arguments for different objects:

For information about the DataWindow control’s DragWithin event, see the
DataWindow Reference or the online Help.

Syntax 1 For ListBox, PictureListBox, ListView, and Tab controls
Description Occurs when the user is dragging an object within the control.

Event ID

Arguments

Object See

ListBox, PictureListBox, ListView, and
Tab controls

Syntax 1

TreeView control Syntax 2

Windows and other controls Syntax 3

Event ID Objects

pbm_lbndragwithin ListBox, PictureListBox

pbm_lvndragwithin ListView

pbm_tcndragwithin Tab

Argument Description

source DragObject by value (a reference to the control being
dragged)

index Integer by value (a reference to the ListView item under
the pointer in the ListView control)
232 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

Examples This example changes the background color of the ListView when a
DragObject enters its border:

This.BackColor = RGB(128, 0, 128)

See also DragDrop
DragEnter
DragLeave

Syntax 2 For TreeView controls
Description Occurs when the user is dragging an object within the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

Examples This example changes the background color of the TreeView when a
DragObject enters its border:

This.BackColor = RGB(128, 0, 128)

See also DragDrop
DragEnter
DragLeave

Event ID Objects

pbm_tvndragwithin TreeView

Argument Description

source DragObject by value (a reference to the control being
dragged)

handle Long (a reference to the ListView item under the pointer in
the TreeView control)
PowerScript Reference 233

DragWithin
Syntax 3 For windows and other controls
Description Occurs when the user is dragging an object within the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Obsolete functions You no longer need to call the DraggedObject function in
a drag event. Use the source argument instead.

See also DragDrop
DragEnter
DragLeave

Event ID Objects

pbm_bndragwithin CheckBox, CommandButton, Graph, InkEdit,
InkPicture, Picture, PictureHyperLink, PictureButton,
RadioButton

pbm_cbndragwithin DropDownListBox, DropDownPictureListBox

pbm_dragwithin DatePicker, MonthCalendar

pbm_endragwithin SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_omndragwithin OLE

pbm_prndragwithin HProgressBar, VProgressBar

pbm_rendragwithin RichTextEdit

pbm_sbndragwithin HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_uondragwithin UserObject

pbm_dragwithin Window

Argument Description

source DragObject by value (a reference to the control being
dragged)
234 PowerBuilder Classic

CHAPTER 9 PowerScript Events
DropDown
Description Occurs when the user has clicked the drop-down arrow in a DatePicker control

just before the drop-down calendar displays.

Event ID

Arguments None.

Return codes Long. Return code: Ignored.

EndDownload
Description Occurs at the end of a download procedure

Event ID

Arguments

Return codes None

Usage Use this event to add custom actions at the end of the download stage of
synchronization.

The BeginDownload event marks the beginning of the download transaction.
Applicable deletes are performed for all remote tables, and then rows are added
as applicable for all remote tables in the download cursor. After EndDownload,
download changes are committed.

See also BeginDownload
ConnectMobiLink
EndSync
EndUpload

Event ID Objects

pbm_dtpdropdown DatePicker

Event ID Objects

None MLSynchronization, MLSync

Argument Description

upsertrows Long identifying the inserted and updated rows.

deleterows Long identifying the deleted rows.
PowerScript Reference 235

EndLabelEdit
EndLabelEdit
The EndLabelEdit event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs when the user finishes editing an item’s label.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the new text to become the item’s label.
1 Prevent the new text from becoming the item’s label.

Usage The user triggers this event by pressing Enter or Tab after editing the text.

Examples This example displays the old label and the new label in a SingleLineEdit:

ListViewItem lvi
sle_info.text = "Finished editing " &

+ String(lvi.label) &
+". Item changed to "+ String(newlabel)

See also BeginLabelEdit

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnendlabeledit ListView

Argument Description

index Integer. The index of the ListView item for which you
have edited the label.

newlabel The string that represents the new label for the ListView
item.
236 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For TreeView controls
Description Occurs when the user finishes editing an item’s label.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the new text to become the item’s label
1 Prevent the new text from becoming the item’s label

Usage The user triggers this event by pressing Enter or Tab after editing the text.

Examples This example displays the old label and the new label in a SingleLineEdit:

TreeViewItem tvi

This.GetItem(handle, tvi)
sle_info.Text = "Finished editing " &

+ String(tvi.Label) &
+ ". Item changed to " &
+ String(newtext)

See also BeginLabelEdit

Event ID Objects

pbm_tvnendlabeledit TreeView

Argument Description

handle Integer. The index of the TreeView item for which you
have edited the label.

newtext The string that represents the new label for the TreeView
item.
PowerScript Reference 237

EndLogScan
EndLogScan
Description Occurs after the scan of the transaction log completes for upload.

Event ID

Arguments None

Return codes None

Usage Use this event to add custom actions immediately after the transaction log is
scanned for upload.

The following events are triggered while the upload stream is prepared, but
before synchronization begins: BeginLogScan, ProgressInfo, and
EndLogScan.

See also BeginLogScan, ProgressIndex

EndSync
Description Occurs at the end of synchronization.

Event ID

Arguments

Return codes None

Usage Use this event to add custom actions when a synchronization is complete.

An rc value of 0 indicates a successful synchronization. When the rc value is
anything other than 0, an error has occured. If the restart value changes to true,
dbmlsync restarts the synchronization.

See also BeginSync, DisconnectMobiLink, EndDownload, EndUpload

Event ID Objects

None MLSync

Event ID Objects

None MLSynchronization, MLSync

Argument Description

rc Long datatype value that indicates whether a
synchronization error occurred.

restart Boolean value passed by reference that, if true, causes
dbmlsync to restart the syncrhonization.
238 PowerBuilder Classic

CHAPTER 9 PowerScript Events
EndUpload
Description Occurs after transmission of the upload to the synchronization server.

Event ID

Arguments None

Return codes None

Usage Use this event to add custom actions immediately after transmission of the
upload stream from dbmlsync to the MobiLink synchronization server.

The BeginUpload event marks the beginning of the upload transaction.
Applicable inserts and updates to the consolidated database are performed for
all remote tables, then rows are deleted as applicable for all remote tables. After
EndUpload, upload changes are committed.

See also BeginUpload
DisconnectMobiLink
EndDownload
EndSync

Error
Description Occurs when an error is found in a data or property expression for an external

object or a DataWindow object. Also occurs when a communications error is
found in a client connecting to EAServer.

Improved error-handling capability in PowerBuilder
The Error event is maintained for backward compatibility. If you do not script
the Error event or change its action argument, information from this event is
passed to RuntimeError objects, such as DWRuntimeError or
OLERuntimeError. You can handle these errors in a try-catch block.

Event ID

Event ID Objects

None MLSynchronization, MLSync

Event ID Objects

None Connection, DataWindow, DataStore, JaguarORB, OLE,
OLEObject, OLETxnObject
PowerScript Reference 239

Error
Arguments

Return codes None. Do not use a RETURN statement.

Usage DataWindow and OLE objects are dynamic. Expressions that use dot notation
to refer to data and properties of these objects might be valid under some
runtime conditions but not others. The Error event allows you to respond to this
dynamic situation with error recovery logic.

Argument Description

errornumber Unsigned integer by value (PowerBuilder’s error number)

errortext String, read-only (PowerBuilder’s error message)

errorwindowmenu String, read-only (the name of the window or menu that is
the parent of the object whose script caused the error)

errorobject String, read-only (the name of the object whose script
caused the error)

errorscript String, read-only (the full text of the script in which the
error occurred)

errorline Unsigned integer by value (the line in the script where the
error occurred)

action ExceptionAction by reference.

A value you specify to control the application’s course of
action as a result of the error. Values are:

• ExceptionFail! – fail as if this script were not
implemented. The error condition triggers any active
event handlers, or if none, the SystemError event.

• ExceptionIgnore! – ignore this error and return as if no
error occurred (use this option with caution because the
conditions that caused the error can cause another
error).

• ExceptionRetry! – execute the function or evaluate the
expression again in case the OLE server was not ready.
This option is not valid for DataWindows.

• ExceptionSubstituteReturnValue! – use the value
specified in the returnvalue argument instead of the
value returned by the OLE server or DataWindow, and
cancel the error condition.

returnvalue Any by reference (a value whose datatype matches the
expected value that the OLE server or DataWindow would
have returned).

This value is used when the value of action is
ExceptionSubstituteReturnValue!.
240 PowerBuilder Classic

CHAPTER 9 PowerScript Events
The Error event also allows you to respond to communications errors in the
client component of a distributed application. In the Error event for a custom
connection object, you can tell PowerBuilder what action to take when an error
occurs during communications between the client and the server.

The Error event gives you an opportunity to substitute a default value when the
error is not critical to your application. Its arguments also provide information
that is helpful in debugging. For example, the arguments can help you debug
DataWindow data expressions that cannot be checked by the compiler—such
expressions can only be evaluated at runtime.

When to substitute a return value
The ExceptionSubstituteReturnValue! action allows you to substitute a return
value when the last element of an expression causes an error. Do not use it to
substitute a return value when an element in the middle of an expression causes
an error. The substituted return value does not match the datatype of the
unresolved object reference and causes a system error.

The ExceptionSubstituteReturnValue! action can be useful for handling errors
in data expressions.

For DataWindows, when an error occurs while evaluating a data or property
expression, error processing occurs like this:

1 The Error event occurs.

2 If the Error event has no script or its action argument is set to
ExceptionFail!, any active exception handler for a DWRuntimeError or its
RuntimeError ancestor is invoked.

3 If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event is triggered.

4 If the SystemError event has no script, an application error occurs and the
application is terminated.

The error processing in the client component of a distributed application is the
same as for DataWindows.

For information about error processing in OLE controls, see the
ExternalException event. For information about data and property expressions
for DataWindow objects, see the DataWindow Reference or the online Help.

For information about handling communications errors in a multitier
application, see the discussion of distributed applications in Application
Techniques.
PowerScript Reference 241

ErrorMessage
Examples This example displays information about the error that occurred and allows the
script to continue:

MessageBox("Error Number " + string(errornumber)&
+ " Occurred", "Errortext: " + String(errortext))

action = ExceptionIgnore!

See also DBError in the DataWindow Reference or the online Help
ExternalException
SystemError

ErrorMessage
Description Occurs on display of an error message from a MobiLink synchronization.

Event ID

Arguments

Return codes None

Usage Use this event to receive error information logged by dbmlsync.

The following events can be triggered when different types of messages are
sent by the synchronization server: DisplayMessage, ErrorMessage,
FileMessage, and WarningMessage.

See also DisplayMessage
FileMessage
WarningMessage

Event ID Objects

None MLSynchronization, MLSync

Argument Description

errmsg Read-only string containing the text of the error message
returned from the synchronization server.
242 PowerBuilder Classic

CHAPTER 9 PowerScript Events
ExternalException
Description Occurs when an OLE automation command caused an exception on the OLE

server.

Improved error-handling capability in PowerBuilder
The ExternalException event is maintained for backward compatibility. If you
do not script this event or change its action argument, information from this
event is passed to RuntimeError objects, such as OLERuntimeError. You can
handle these errors in a try-catch block.

Event ID

Arguments

Event ID Objects

None OLE, OLEObject, OLETxnObject

Argument Description

resultcode UnsignedLong by value (a PowerBuilder number identifying
the exception that occurred on the server).

exceptioncode UnsignedLong by value (a number identifying the error that
occurred on the server. For the meaning of the code, see the
server documentation).

source String by value (the name of the server, which the server
provides).

description String by value (a description of the exception, which the server
provides).

helpfile String by value (the name of a Help file containing information
about the exception, which the server provides).

helpcontext UnsignedLong by value (the context ID of a Help topic in
helpfile containing information about the exception, which the
server provides).
PowerScript Reference 243

ExternalException
Return codes None. (Do not use a RETURN statement.)

Usage OLE objects are dynamic. Expressions that refer to data and properties of these
objects might be valid under some runtime conditions but not others. If the
expression causes an exception on the server, PowerBuilder triggers the
ExternalException event. The ExternalException event gives you information
about the error that occurred on the OLE server.

The server defines what it considers exceptions. Some errors, such as
mismatched datatypes, generally do not cause an exception but do trigger the
Error event. In some cases you might not consider the cause of the exception
to be an error. To determine the reason for the exception, see the documentation
for the server.

When an exception occurs because of a call to an OLE server, error handling
occurs like this:

1 The ExternalException event occurs.

2 If the ExternalException event has no script or its action argument is set
to ExceptionFail!, the Error event occurs.

3 If the Error event has no script or its action argument is set to
ExceptionFail!, any active exception handler for an OLERuntimeError or
its RuntimeError ancestor is invoked.

action ExceptionAction by reference.

A value you specify to control the application’s course of action
as a result of the error. Values are:

• ExceptionFail! – fail as if this script were not implemented.
The error condition triggers the SystemError event.

• ExceptionIgnore! – ignore this error and return as if no error
occurred (use this option with caution because the
conditions that caused the error can cause another error).

• ExceptionRetry! – execute the function or evaluate the
expression again in case the OLE server was not ready.

• ExceptionSubstituteReturnValue! – use the value specified
in the returnvalue argument instead of the value returned by
the OLE server or DataWindow and cancel the error
condition.

returnvalue Any by reference.

A value whose datatype matches the expected value that the
OLE server would have returned. This value is used when the
value of action is ExceptionSubstituteReturnValue!.

Argument Description
244 PowerBuilder Classic

CHAPTER 9 PowerScript Events
4 If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event is triggered.

5 If the SystemError event has no script, an application error occurs and the
application is terminated.

Examples Suppose your window has two instance variables: one for specifying the
exception action, and another of type Any for storing a potential substitute
value. Before accessing the OLE property, a script sets the instance variables
to appropriate values:

ie_action = ExceptionSubstituteReturnValue!
ia_substitute = 0
li_currentsetting = ole_1.Object.Value

If the command fails, a script for the ExternalException event displays the Help
topic named by the OLE server, if any. It substitutes the return value you
prepared and returns control to the calling script. The assignment of the
substitute value to li_currentsetting works correctly because their datatypes are
compatible:

string ls_context

// Command line switch for WinHelp numeric context ID
ls_context = "-n " + String(helpcontext)
If Len(HelpFile) > 0 THEN

Run("winhelp.exe " + ls_context + " " + helpfile)
END IF

action = ie_action
returnvalue = ia_substitute

Because the event script must serve for every automation command for the
control, you need to set the instance variables to appropriate values before each
automation command.

See also Error
PowerScript Reference 245

FileExists
FileExists
Description Occurs when a file is saved in the RichTextEdit control and the file already

exists.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing
1 Saving of document is canceled

Usage The SaveDocument function can trigger the FileExists event.

Examples This script for FileExists checks a flag to see if the user is performing a save
(which will automatically overwrite the opened file) or wants to rename the file
using Save As. For the Save As case, the script asks the user to confirm
overwriting the file:

integer li_answer

// If user asked to Save to same file,
// do not prompt for overwriting
IF ib_saveas = FALSE THEN RETURN 0

li_answer = MessageBox("FileExists", &
filename + " already exists. Overwrite?", &

Exclamation!, YesNo!)
MessageBox("Filename arg", filename)

// Returning a non-zero value cancels save
IF li_answer = 2 THEN RETURN 1

Event ID Objects

pbm_renfileexists RichTextEdit

Argument Description

filename The name of the file
246 PowerBuilder Classic

CHAPTER 9 PowerScript Events
FileMessage
Description Occurs on display of a detailed information message from a MobiLink

synchronization.

Event ID

Arguments

Return codes None

Usage Use this event to receive information logged by dbmlsync.

The following events can be triggered when different types of messages are
sent by the synchronization server: DisplayMessage, ErrorMessage,
FileMessage, and WarningMessage.

See also DisplayMessage
ErrorMessage
WarningMessage

Gesture
Description Occurs when an application gesture recognized by the control is completed. A

gesture is a stroke or series of strokes that is recognized by the application as
indicating an action. This event can only be triggered on a Tablet PC.

Event ID

Arguments

Return codes Boolean. Return false to accept the gesture and true to ignore it.

Event ID Objects

None MLSynchronization, MLSync

Argument Description

filemsg Read-only string containing the text of the message
returned from the synchronization server.

Event ID Objects

pbm_inkegesture InkEdit

pbm_inkpgesture InkPicture

Argument Description

gest Integer identifying the gesture recognized. See the tables in
the Usage section for argument values.
PowerScript Reference 247

Gesture
Usage The Gesture event is triggered only on a Tablet PC. On a Tablet PC, the InkEdit
control recognizes the following gestures that represent keystrokes that are
frequently used in edit controls. To ensure that the gestures are recognized,
users should draw straight lines and sharp right angles without removing the
stylus from the control. InkEdit controls on other computers behave as
MultiLineEdit controls and cannot accept ink input from a mouse.

On a Tablet PC, the InkPicture control recognizes the following gestures that
are equivalent to mouse clicks:

When you tap the stylus or click a mouse in an InkPicture control on a Tablet
PC, the Gesture event is triggered. On other computers, a mouse click triggers
the Stroke event. The CollectionMode property must be set to GestureOnly! for
a double tap to be recognized. Only single-stroke gestures are recognized when
CollectionMode is set to InkAndGesture!. If a gesture is not recognized, the
value of the argument is 0.

Gesture Gesture name Argument value Keystroke

Left 0 Backspace

Right 1 Space

UpRightLong 2 Tab

DownLeftLong 3 Enter

UpRight 4 Tab

DownLeft 5 Enter

Gesture name Argument value Mouse action

Tap 1 Left Click

Double Tap 2 Left Double Click
248 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Examples This code in the Gesture event of an InkEdit control confirms to the user that
the gesture was recognized:

CHOOSE CASE gest
CASE 0

MessageBox("Gesture recognized", &
"You entered a space")

CASE 1
MessageBox("Gesture recognized", &

"You entered a backspace")

CASE 2,4
MessageBox("Gesture recognized", &

"You entered a tab")
CASE 3,5

MessageBox("Gesture recognized", &
"You entered a return")

END CHOOSE

return false

See also RecognitionResult
Stroke
PowerScript Reference 249

GetFocus
GetFocus
Description Occurs just before the control receives focus (before it is selected and becomes

active).

GetFocus applies to all controls

Event ID

Arguments None

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples Example 1 This example in a SingleLineEdit control’s GetFocus event
selects the text in the control when the user tabs to it:

This.SelectText(1, Len(This.Text))

Example 2 In Example 1, when the user clicks the SingleLineEdit rather than
tabbing to it, the control gets focus and the text is highlighted, but then the click
deselects the text. If you define a user event that selects the text and then post
that event in the GetFocus event, the highlighting works when the user both
tabs and clicks. This code is in the GetFocus event:

This. EVENT POST ue_select()

This code is in the ue_select user event:

This.SelectText(1, Len(This.Text))

See also Clicked, LoseFocus

Event ID Objects

pbm_bnsetfocus CheckBox, CommandButton, Graph, OLE, Picture,
PictureHyperLink, PictureButton, RadioButton

pbm_cbnsetfocus DropDownListBox, DropDownPictureListBox

pbm_dwnsetfocus DataWindow

pbm_ensetfocus SingleLineEdit, EditMask, MultiLineEdit, StaticText,
StaticHyperLink

pbm_lbnsetfocus ListBox, PictureListBox

pbm_lvnsetfocus ListView

pbm_rensetfocus RichTextEdit

pbm_sbnsetfocus HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_setfocus HProgressBar, VProgressBar, DatePicker,
MonthCalendar, InkEdit, InkPicture

pbm_tcnsetfocus Tab

pbm_tvnsetfocus TreeView
250 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Help
Description Occurs when the user drags the question-mark button from the title bar to a

menu item or a control and then clicks, or when the user clicks in a control
(giving it focus) and then presses the F1 key.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Usage The question-mark button only appears in the title bar of response windows.
You must set the ContextHelp property to true to enable this event.

You can script Help messages for individual menu items and controls.
PowerBuilder dispatches the associated Windows message to the appropriate
menu item or control.

Examples This example codes a message box to open when the user drags and clicks the
question-mark button over a TrackBar control:

MessageBox("Context Help Message", "Move the TrackBar"
&
 + " slider to~r~n change the DataWindow
magnification.")

See also ShowHelp

Event ID Objects

pbm_help Window, Menu, DragObject

Argument Description

xpos Integer by value (the distance of the Help message from the
left edge of the screen, in PowerBuilder units)

ypos Integer by value (the distance of the Help message from the
top of the screen, in PowerBuilder units)
PowerScript Reference 251

Hide
Hide
Description Occurs just before the window is hidden.

Event ID

Arguments None

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Usage A Hide event can occur when a sheet in an MDI frame is closed. It does not
occur when closing a main, response, or pop-up window.

See also Close
Show

HotLinkAlarm
Description Occurs after a Dynamic Data Exchange (DDE) server application has sent new

(changed) data and the client DDE application has received it.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage After establishing a hot link with a DDE server application with the
StartHotLink function, actions on the server can trigger the HotLinkAlarm
event.

Examples This script in the HotLinkAlarm event gets information about the DDE server
application and the new data:

string ls_data, ls_appl, ls_topic, ls_item
GetDataDDEOrigin(ls_appl, ls_topic, ls_item)
GetDataDDE(ls_data)

Event ID Objects

pbm_hidewindow Window

Event ID Objects

pbm_ddedata Window
252 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Idle
Description Occurs when the Idle function has been called in an application object script

and the specified number of seconds have elapsed with no mouse or keyboard
activity.

Event ID

Arguments None

Return codes None. (Do not use a RETURN statement.)

Examples This statement in an application script causes the Idle event to be triggered after
300 seconds of inactivity:

Idle(300)

In the Idle event itself, this statement closes the application:

HALT CLOSE

InputFieldSelected
Description In a RichTextEdit control, occurs when the user double-clicks an input field,

allowing the user to edit the data in the field.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This script for the InputFieldSelected event of a RichTextEdit control gets the
data in the input field the user is about to edit:

string ls_fieldvalue
ls_fieldvalue = This.InputFieldGetData(fieldname)

See also PictureSelected

Event ID Objects

None Application

Event ID Objects

pbm_reninputfieldselected RichTextEdit

Argument Description

fieldname String by value (the name of the input field that was selected)
PowerScript Reference 253

InsertItem
InsertItem
Description Occurs when an item is inserted in the ListView.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples This example displays the label and index of the inserted item:

ListViewItem lvi
This.GetItem(index, lvi)
sle_info.Text = "Inserted "+ String(lvi.Label) &

+ " into position " &
+ String(index)

See also DeleteItem

Event ID Objects

pbm_lvninsertitem ListView

Argument Description

index An integer that represents the index of the item being
inserted into the ListView
254 PowerBuilder Classic

CHAPTER 9 PowerScript Events
ItemActivate
Description Occurs when a ListView item is clicked or double-clicked. The actual firing

mechanism depends on the OneClickActivate and TwoClickActivate property
settings.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Use the ItemActivate event instead of the Clicked or DoubleClicked event in
new applications.

The following ListView property settings determine which user action fires the
event:

Examples This code changes a ListView item text label to uppercase lettering. The
change is made in the second column of the item the user clicks or
double-clicks, depending on the ListView property settings:

listviewitem llvi_current

This.GetItem(index, 2, llvi_current)
llvi_current.Label = Upper(llvi_current.Label)
This.SetItem(index, 2, llvi_current)
RETURN 0

See also ItemChanged
ItemChanging

Event ID Objects

pbm_lvnitemactivate ListView

Argument Description

Index An integer that represents the index of the item being
inserted into the ListView

OneClickActivate TwoClickActivate Firing mechanism

True True Single click

True False Single click

False True Single click on selected item or
double-click on nonselected item

False False Double-click
PowerScript Reference 255

ItemChanged
ItemChanged
Description Occurs when an ListView item has changed.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example checks whether the event is occurring because focus has changed
to the item:

ListViewItem l_lvi

lv_list.GetItem(index, l_lvi)
IF focuschange and hasfocus THEN

sle1.Text = String(lvi.label) +" has focus."
END IF

See also ItemChanged in the DataWindow Reference or the online Help
ItemChanging

Event ID Objects

pbm_lvnitemchanged ListView

Argument Description

index The index of the item that is changing

focuschanged Boolean (specifies if focus has changed for the item)

hasfocus Boolean (specifies whether the item has focus)

selectionchange Boolean (specifies whether the selection has changed for
the item)

selected Boolean (specifies whether the item is selected)

otherchange Boolean (specifies if anything other than focus or selection
has changed for the item)
256 PowerBuilder Classic

CHAPTER 9 PowerScript Events
ItemChanging
Description Occurs just before a ListView changes.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also ItemChanged

Event ID Objects

pbm_lvnitemchanging ListView

Argument Description

index The index of the item that has changed

focuschange Boolean (specifies if focus is changing for the item)

hasfocus Boolean (specifies whether the item has focus)

selectionchange Boolean (specifies whether the selection is changing for
the item)

selected Boolean (specifies whether the item is selected)

otherchange Boolean (specifies if anything other than focus or selection
has changed for the item)
PowerScript Reference 257

ItemCollapsed
ItemCollapsed
Description Occurs when a TreeView item has collapsed.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples This example changes the picture for the collapsed item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
CASE 1

l_tvi.PictureIndex = 1
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 2
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 3
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 4

END CHOOSE
This.SetItem(handle, l_tvi)

See also ItemCollapsing

Event ID Objects

pbm_tvnitemcollapsed TreeView

Argument Description

handle Long by reference (the handle of the collapsed
TreeViewItem)
258 PowerBuilder Classic

CHAPTER 9 PowerScript Events
ItemCollapsing
Description Occurs when a TreeView item is collapsing.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The ItemCollapsing event occurs before the ItemCollapsed event.

Examples This example changes the picture for the collapsing item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_vti)

CHOOSE CASE l_tvi.level
CASE 1

l_tvi.PictureIndex = 1
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 2
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 3
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 4

END CHOOSE

This.SetItem(handle, l_tvi)

See also ItemCollapsed

Event ID Objects

pbm_tvnitemcollapsing TreeView

Argument Description

handle Long by reference (the handle of the collapsing item)
PowerScript Reference 259

ItemExpanded
ItemExpanded
Description Occurs when a TreeView item has expanded.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The ItemExpanded event occurs after the ItemExpanding event.

Examples This example sets the picture and selected picture for the expanded item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
CASE 1

l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 5

END CHOOSE
This.SetItem(handle, l_tvi)

See also ItemExpanding

Event ID Objects

pbm_tvnitemexpanded TreeView

Argument Description

handle Long by reference (the handle of the expanded item)
260 PowerBuilder Classic

CHAPTER 9 PowerScript Events
ItemExpanding
Description Occurs while a TreeView item is expanding.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Prevents the TreeView from expanding

Usage The ItemExpanding event occurs before the ItemExpanded event.

Examples This example sets the picture and selected picture for the expanding item:

TreeViewItem l_tvi
integer li_level

This.GetItem(handle, l_tvi)

CHOOSE CASE l_tvi.Level
CASE 1

l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 1

CASE 2
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 2

CASE 3
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 3

CASE 4
l_tvi.PictureIndex = 4
l_tvi.SelectedPictureIndex = 5

END CHOOSE

This.SetItem(handle, l_tvi)

See also ItemExpanded

Event ID Objects

pbm_tvnitemexpanding TreeView

Argument Description

handle Long by reference (the handle of the expanding
TreeView item)
PowerScript Reference 261

ItemPopulate
ItemPopulate
Description Occurs when a TreeView item is being populated with children.

Event ID

Arguments

Return codes Long. Return code choices (specified in a RETURN statement):

0 Continue processing

Examples This example displays the name of the TreeView item you are populating in a
SingleLineEdit:

TreeViewItem tvi

This.GetItem(handle, tvi)
sle_get.Text = "Populating TreeView item " &

+ String(tvi.Label) + " with children"

See also ItemExpanding

Event ID Objects

pbm_tvnitempopulate TreeView

Argument Description

handle Long by reference (the handle of the TreeView item
being populated)
262 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Key
Description Occurs when the user presses a key.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Do not process the key (RichTextEdit controls only)

Usage Some PowerBuilder controls capture keystrokes so that the window is
prevented from getting a Key event. These include ListView, TreeView, Tab,
RichTextEdit, and the DataWindow edit control. When these controls have
focus you can respond to keystrokes by writing a script for an event for the
control. If there is no predefined event for keystrokes, you can define a user
event and associate it with a pbm code.

For a RichTextEdit control, pressing a key can perform document formatting.
For example, Ctrl+b applies bold formatting to the selection. If you specify a
return value of 1, the document formatting associated with the key will not be
performed.

Event ID Objects

pbm_lvnkeydown ListView

pbm_renkey RichTextEdit

pbm_tcnkeydown Tab

pbm_tvnkeydown TreeView

pbm_keydown Window

Argument Description

key KeyCode by value. A value of the KeyCode enumerated
datatype indicating the key that was pressed (for example,
KeyA! or KeyF1!).

keyflags UnsignedLong by value (the modifier keys that were
pressed with the key).

Values are:

1 Shift key
2 Ctrl key
3 Shift and Ctrl keys
PowerScript Reference 263

Key
If the user presses a modifier key and holds it down while pressing another key,
the Key event occurs twice: once when the modifier key is pressed and again
when the second key is pressed. If the user releases the modifier key before
pressing the second key, the value of keyflags will change in the second
occurrence.

When the user releases a key, the Key event does not occur. Therefore, if the
user releases a modifier key, you do not know the current state of the modifier
keys until another key is pressed.

Examples This example causes a beep when the user presses F1 or F2, as long as Shift
and Ctrl are not pressed:

IF keyflags = 0 THEN
IF key = KeyF1! THEN

Beep(1)
ELSEIF key = KeyF2! THEN

Beep(20)
END IF

END IF

This line displays the value of keyflags when a key is pressed.

st_1.Text = String(keyflags)

See also SystemKey
264 PowerBuilder Classic

CHAPTER 9 PowerScript Events
LineDown
Description Occurs when the user clicks the down arrow of the vertical scroll bar or presses

the down arrow on the keyboard when the focus is on a track bar.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar or presses the down arrow key with
focus in a vertical track bar, nothing happens unless you have scripts that
change the bar’s Position property. For the scroll bar arrows and arrow keys for
the track bar, use the LineUp and LineDown events; for clicks in the scroll bar
or track bar background above and below the thumb, use the PageUp and
PageDown event; for dragging the thumb itself, use the Moved event.

Examples This code in the LineDown event causes the thumb to move down when the
user clicks on the down arrow of the vertical scroll bar and displays the
resulting position in the StaticText control st_1:

IF This.Position > This.MaxPosition - 1 THEN
This.Position = MaxPosition

ELSE
This.Position = This.Position + 1

END IF

st_1.Text = "LineDown " + String(This.Position)

See also LineLeft
LineRight
LineUp
PageDown

Event ID Objects

pbm_sbnlinedown VScrollBar, VTrackBar
PowerScript Reference 265

LineLeft
LineLeft
Description Occurs when the user clicks in the left arrow of the horizontal scroll bar or

presses the left arrow key on the keyboard when focus is on a horizontal track
bar.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar or presses the left arrow key on
the keyboard in a horizontal track bar, nothing happens unless you have scripts
that change the bar’s Position property. For the scroll bar arrows and left arrow
keys in a track bar, use the LineLeft and LineRight events; for clicks in the
background above and below the thumb, use the PageLeft and Right events; for
dragging the thumb itself, use the Moved event.

Examples This code in the LineLeft event causes the thumb to move left when the user
clicks on the left arrow of the horizontal scroll bar and displays the resulting
position in the StaticText control st_1:

IF This.Position < This.MinPosition + 1 THEN
This.Position = MinPosition

ELSE
This.Position = This.Position - 1

END IF

st_1.Text = "LineLeft " + String(This.Position)

See also LineDown
LineRight
LineUp
PageLeft

Event ID Objects

pbm_sbnlineup HScrollBar, HTrackBar
266 PowerBuilder Classic

CHAPTER 9 PowerScript Events
LineRight
Description Occurs when the user clicks in the right arrow of the horizontal scroll bar or

presses the right arrow key on the keyboard when focus is on a horizontal track
bar.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar or presses the right arrow key on
the keyboard in a horizontal track bar, nothing happens unless you have scripts
that change the bar’s Position property. For the scroll bar arrows and arrow
keys in a track bar, use the LineLeft and LineRight events; for clicks in the
background above and below the thumb, use the PageLeft and Right events; for
dragging the thumb itself, use the Moved event.

Examples This code in the LineRight event causes the thumb to move right when the user
clicks on the right arrow of the horizontal scroll bar and displays the resulting
position in the StaticText control st_1:

IF This.Position > This.MaxPosition - 1 THEN
This.Position = MaxPosition

ELSE
This.Position = This.Position + 1

END IF

st_1.Text = "LineRight " + String(This.Position)

See also LineDown
LineLeft
LineUp
PageRight

Event ID Objects

pbm_sbnlinedown HScrollBar, HTrackBar
PowerScript Reference 267

LineUp
LineUp
Description Occurs when the user clicks the up arrow of the vertical scroll bar or presses

the up arrow on the keyboard when the focus is on a track bar

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar or presses the up arrow key with
focus in a vertical track bar, nothing happens unless you have scripts that
change the bar’s Position property. For the scroll bar arrows and arrow keys for
the track bar, use the LineUp and LineDown events; for clicks in the scroll bar
or track bar background above and below the thumb, use the PageUp and
PageDown event; for dragging the thumb itself, use the Moved event.

Examples This code in the LineUp event causes the thumb to move up when the user
clicks on the up arrow of the vertical scroll bar and displays the resulting
position in the StaticText control st_1:

IF This.Position < This.MinPosition + 1 THEN
This.Position = MinPosition

ELSE
This.Position = This.Position - 1

END IF

st_1.Text = "LineUp " + String(This.Position)

See also LineDown
LineLeft
LineRight
PageUp

Event ID Objects

pbm_sbnlineup VScrollBar, VTrackBar
268 PowerBuilder Classic

CHAPTER 9 PowerScript Events
LoseFocus
Description Occurs just before a control loses focus (before it becomes inactive).

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Write a script for a control’s LoseFocus event if you want some processing to
occur when the user changes focus to another control.

For controls that contain editable text, losing focus can also cause a Modified
event to occur.

In a RichTextEdit control, a LoseFocus event occurs when the user clicks on
the control’s toolbar. The control does not actually lose focus.

Because the MessageBox function grabs focus, you should not use it when
focus is changing, such as in a LoseFocus event. Instead, you might display a
message in the window’s title or a MultiLineEdit.

Examples Example 1 In this script for the LoseFocus event of a SingleLineEdit
sle_town, the user is reminded to enter information if the text box is left empty:

IF sle_town.Text = "" THEN
st_status.Text = "You have not specified a town."

END IF

Event ID Description

pbm_controltypekillfocus UserObject (standard visual user objects only)

pbm_bnkillfocus CheckBox, CommandButton, Graph, OLE, Picture,
PictureHyperLink, PictureButton, RadioButton,
StaticText, StaticHyperLink

pbm_cbnkillfocus DropDownListBox, DropDownPictureListBox

pbm_dwnkillfocus DataWindow

pbm_enkillfocus SingleLineEdit, EditMask, MultiLineEdit

pbm_killfocus HProgressBar, VProgressBar, DatePicker,
MonthCalendar, InkEdit, InkPicture

pbm_lbnkillfocus ListBox, PictureListBox

pbm_lvnkillfocus ListView

pbm_renkillfocus RichTextEdit

pbm_sbnkillfocus HScrollBar, HTrackBar, VScrollBar, VTrackBar

pbm_tcnkillfocus Tab

pbm_tvnkillfocus TreeView
PowerScript Reference 269

Modified
Example 2 Statements in the LoseFocus event for a DataWindow control
dw_emp can trigger a user event whose script validates the last item the user
entered.

This statement triggers the user event ue_accept:

dw_emp.EVENT ue_accept()

This statement in ue_accept calls the AcceptText function:

dw_emp.AcceptText()

This script for the LoseFocus event of a RichTextEdit control performs
processing when the control actually loses focus:

GraphicObject l_control

// Check whether the RichTextEdit still has focus
l_control = GetFocus()
IF TypeOf(l_control) = RichTextEdit! THEN RETURN 0

// Perform processing only if RichTextEdit lost focus
...

This script gets the name of the control instead:

GraphicObject l_control
string ls_name
l_control = GetFocus()
ls_name = l_control.Classname()

See also GetFocus

Modified
Description Occurs when the contents in the control have changed.

Event ID

Arguments None

Event ID Objects

pbm_cbnmodified DropDownListBox, DropDownPictureListBox

pbm_enmodified SingleLineEdit, EditMask, MultiLineEdit

pbm_inkemodified InkEdit

pbm_renmodified RichTextEdit
270 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage For plain text controls, the Modified event occurs when the user indicates being
finished by pressing Enter or tabbing away from the control.

For InkEdit and RichText Edit controls, the value of the Modified property
controls the Modified event. If the property is false, the event occurs when the
first change occurs to the contents of the control. The change also causes the
property to be set to true, which suppresses the Modified event. You can restart
checking for changes by setting the property back to false.

Resetting the Modified property is useful when you insert text or a document
in the control, which triggers the event and sets the property (it is reporting the
change to the control’s contents). To find out when the user begins making
changes to the content, set the Modified property back to false in the script that
opens the document. When the user begins editing, the property will be reset to
true and the event will occur again.

A Modified event can be followed by a LoseFocus event.

Examples In this example, code in the Modified event performs validation on the text the
user entered in a SingleLineEdit control sle_color. If the user did not enter
RED, WHITE, or BLUE, a message box indicates what is valid input; for valid
input, the color of the text changes:

string ls_color

This.BackColor = RGB(150,150,150)

ls_color = Upper(This.Text)
CHOOSE CASE ls_color

CASE "RED"
This.TextColor = RGB(255,0,0)

CASE "BLUE"
This.TextColor = RGB(0,0,255)

CASE "WHITE"
This.TextColor = RGB(255,255,255)

CASE ELSE
This.Text = ""
MessageBox("Invalid input", &
"Enter RED, WHITE, or BLUE.")

END CHOOSE

This is not a realistic example: user input of three specific choices is more
suited to a list box; in a real situation, the allowed input might be more general.

See also LoseFocus
PowerScript Reference 271

MouseDown
MouseDown
The MouseDown event has different arguments for different objects:

Syntax 1 For RichTextEdit controls
Description Occurs when the user presses the left mouse button on the RichTextEdit

control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This code in a RichTextEdit control’s MouseDown event assigns text to the
SingleLineEdit sle_1 when the user presses the left mouse button:

sle_1.text = "Mouse Down"

See also Clicked
MouseMove
MouseUp

Syntax 2 For windows
Description Occurs when the user presses the left mouse button in an unoccupied area of

the window (any area with no visible, enabled object).

Event ID

Object See

RichTextEdit control Syntax 1

Window Syntax 2

Event ID Objects

pbm_renlbuttondown RichTextEdit

Event ID Objects

pbm_lbuttondown Window
272 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples Example 1 This code in the MouseDown event displays the window
coordinates of the pointer as reported in the xpos and ypos arguments:

sle_2.Text = "Position of Pointer is: " + &
String(xpos) + "," + String(ypos)

Example 2 This code in the MouseDown event checks the value of the flags
argument, and reports which modifier keys are pressed in the SingleLineEdit
sle_modkey:

CHOOSE CASE flags
CASE 1

sle_mkey.Text = "No modifier keys pressed"
CASE 5

sle_mkey.Text = "SHIFT key pressed"
CASE 9

sle_mkey.Text = "CONTROL key pressed"
CASE 13

sle_mkey.Text = "SHIFT and CONTROL keys pressed"
END CHOOSE

See also Clicked
MouseMove
MouseUp

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons
that are pressed).

 Values are:

• 1 – Left mouse button

• 2 – Right mouse button

• 4 – Shift key

• 8 – Ctrl key

• 16 – Middle mouse button

In the MouseDown event, the left mouse button is always
down, so 1 is always summed in the value of flags. For an
explanation of flags, see Syntax 2 of MouseMove on page 274.

xpos Integer by value (the distance of the pointer from the left edge
of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the
window’s workspace in pixels).
PowerScript Reference 273

MouseMove
MouseMove
The MouseMove event has different arguments for different objects:

Syntax 1 For RichTextEdit controls
Description Occurs when the mouse has moved within the RichTextEdit control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also Clicked
MouseDown
MouseUp

Object See

RichTextEdit control Syntax 1

Window Syntax 2

Event ID Objects

pbm_renmousemove RichTextEdit
274 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For windows
Description Occurs when the pointer is moved within the window.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Because flags is a sum of button and key numbers, you can find out what keys
are pressed by subtracting the largest values one by one and checking the value
that remains. For example:

• If flags is 5, the Shift key (4) and the left mouse button (1) are pressed.

• If flags is 14, the Ctrl key (8), the Shift key (4), and the right mouse button
(2) are pressed.

Event ID Objects

pbm_mousemove Window

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons
that are pressed).

 Values are:

• 1 – Left mouse button

• 2 – Right mouse button

• 4 – Shift key

• 8 – Ctrl key

• 16– Middle mouse button

Flags is the sum of all the buttons and keys that are pressed.

xpos Integer by value (the distance of the pointer from the left edge
of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the
window’s workspace in pixels).
PowerScript Reference 275

MouseMove
This code handles all the buttons and keys (the local boolean variables are
initialized to false by default):

boolean lb_left_button, lb_right_button
boolean lb_middle_button, lb_Shift_key, lb_control_key
integer li_flags

li_flags = flags
IF li_flags 15 THEN

// Middle button is pressed
lb_middle_button = TRUE
li_flags = li_flags - 16

END IF

IF li_flags 7 THEN
// Control key is pressed
lb_control_key = TRUE
li_flags = li_flags - 8

END IF

IF li_flags > 3 THEN
// Shift key is pressed
lb_Shift_key = TRUE
li_flags = li_flags - 4

END IF

IF li_flags > 1 THEN
// Right button is pressed
lb_lb_right_button = TRUE
li_flags = li_flags - 2

END IF

IF li_flags = 1 THEN lb_left_button = TRUE

Most controls in a window do not capture MouseMove events—the
MouseMove event is not mapped by default. If you want the window’s
MouseMove event to be triggered when the mouse moves over a control, you
must map a user-defined event to the pbm_mousemove event for the control.
The following code in the control’s user-defined MouseMove event triggers
the window’s MouseMove event:

Parent.EVENT MouseMove(0, Parent.PointerX(),
Parent.PointerY())
276 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Examples This code in the MouseMove event causes a meter OLE custom control to rise
and fall continually as the mouse pointer is moved up and down in the window
workspace:

This.uf_setmonitor(ypos, ole_verticalmeter, &
This.WorkspaceHeight())

Uf_setmonitor is a window function that scales the pixels to the range of the
gauge. It accepts three arguments: the vertical position of the mouse pointer, an
OLECustomControl reference, and the maximum range of the mouse pointer
for scaling purposes:

double ld_gaugemax, ld_gaugemin
double ld_gaugerange, ld_value

// Ranges for monitor-type control
ld_gaugemax = ocxitem.Object.MaxValue
ld_gaugemin = ocxitem.Object.MinValue
ld_gaugerange = ld_gaugemax - ld_gaugemin

// Horizontal position of mouse within window
ld_value = data * ld_gaugerange / range + ld_gaugemin

// Set gauge
ocxitem.Object.Value = Round(ld_value, 0)

RETURN 1

The OLE custom control also has a MouseMove event. This code in that event
keeps the gauge responding when the pointer is over the gauge. (You need to
pass values for the arguments that are usually handled by the system; the mouse
position values are specified in relation to the parent window.) For example:

Parent.EVENT MouseMove(0, Parent.PointerX(), &
Parent.PointerY())

See also Clicked
MouseDown
MouseUp
PowerScript Reference 277

MouseUp
MouseUp
The MouseUp event has different arguments for different objects:

Syntax 1 For RichTextEdit controls
Description Occurs when the user releases the left mouse button in a RichTextEdit control.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage A Clicked event also occurs when the mouse button is released.

Examples The following code in a RichTextEdit control’s MouseUp event assigns text to
the SingleLineEdit sle_1 when the user releases the left mouse button:

sle_1.Text = "Mouse Up"

See also Clicked
MouseDown
MouseMove

Object See

RichTextEdit control Syntax 1

Window Syntax 2

Event ID Objects

pbm_renlbuttonup RichTextEdit
278 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For windows
Description Occurs when the user releases the left mouse button in an unoccupied area of

the window (any area with no visible enabled object).

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage A Clicked event also occurs when the mouse button is released.

Examples Example 1 This code in the window’s MouseUp event displays in the
SingleLineEdit sle_2 the window coordinates of the pointer when the button is
released as reported in the xpos and ypos arguments.

sle_2.Text = "Position of Pointer is: " + &
String(xpos) + "," + String(ypos)

Event ID Objects

pbm_lbuttonup Window

Argument Description

flags UnsignedLong by value (the modifier keys and mouse buttons
that are pressed).

Values are:

• 1 – Left mouse button

• 2 – Right mouse button

• 4 – Shift key

• 8 – Ctrl key

• 16 – Middle mouse button

In the MouseUp event, the left mouse button is being released,
so 1 is not summed in the value of flags. For an explanation of
flags, see Syntax 2 of MouseMove on page 274.

xpos Integer by value (the distance of the pointer from the left edge
of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of the
window’s workspace in pixels).
PowerScript Reference 279

MouseUp
Example 2 This code in the window’s MouseUp event checks the value of
the flags argument and reports which modifier keys are pressed in the
SingleLineEdit sle_modkey.

CHOOSE CASE flags
CASE 0

sle_mkey.Text = "No modifier keys pressed"

CASE 4
sle_mkey.Text = "SHIFT key pressed"

CASE 8
sle_mkey.Text = "CONTROL key pressed"

CASE 12
sle_mkey.Text = "SHIFT and CONTROL keys pressed"

END CHOOSE

See also Clicked
MouseDown
MouseMove
280 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Moved
Description Occurs when the user moves the scroll box, either by clicking on the arrows or

by dragging the box itself.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Moved event updates the Position property of the scroll bar with the value
of scrollpos.

Examples This statement in the Moved event displays the new position of the scroll box
in a StaticText control:

st_1.Text = "Moved " + String(scrollpos)

See also LineDown
LineLeft
LineRight
LineUp
PageDown
PageLeft
PageRight
PageUp

Event ID Objects

pbm_sbnthumbtrack HScrollBar, HTrackBar, VScrollBar, VTrackBar

Argument Description

scrollpos Integer by value (a number indicating position of the scroll
box within the range of values specified by the
MinPosition and MaxPosition properties)
PowerScript Reference 281

Notify
Notify
Description Occurs when a TreeView control sends a WM_NOTIFY message to its parent.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The lparam argument can point to an NMHDR structure or to a larger structure
that contains an NMHDR structure as its first member. Since the wparam value
is not guaranteed to be unique, you should use the identifier in the NMHDR
structure.

You can use this event to process custom drawing messages.

Event ID Objects

pbm_notify TreeView controls

Argument Description

wparam UnsignedLong by value containing the ID of the control
sending the message. This value is not guaranteed to be
unique.

lparam Long by value containing a pointer to a structure that
contains the window handle and identifier of the control
sending a message and a notification code.
282 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Open
The Open event has different arguments for different objects:

Syntax 1 For the application object
Description Occurs when the user starts the application.

Event ID

Arguments

Return codes None (do not use a RETURN statement)

Usage This event can establish database connection parameters and open the main
window of the application.

On Windows
You can specify command line arguments when you use the Run command
from the Start menu or as part of the Target specification when you define a
shortcut for your application.

There is no way to specify command line values when you are testing your
application in the development environment.

In other events and functions, you can call the CommandParm function to get
the command line arguments.

For an example of parsing the string in commandline, see CommandParm on
page 402.

Object See

Application Syntax 1

Window Syntax 2

Event ID Objects

None Application

Argument Description

commandline String by value. Additional arguments are included on the
command line after the name of the executable program.
PowerScript Reference 283

Open
Examples This example populates the SQLCA global variable from the application’s
initialization file, connects to the database, and opens the main window:

/* Populate SQLCA from current myapp.ini settings */
SQLCA.DBMS = ProfileString("myapp.ini", "database", &

"dbms", "")
SQLCA.Database = ProfileString("myapp.ini", &

"database", "database", "")
SQLCA.Userid = ProfileString("myapp.ini", "database", &

"userid", "")
SQLCA.DBPass = ProfileString("myapp.ini", "database", &

"dbpass", "")
SQLCA.Logid = ProfileString("myapp.ini", "database", &

"logid", "")
SQLCA.Logpass = ProfileString("myapp.ini", &

"database", "LogPassWord", "")
SQLCA.Servername = ProfileString("myapp.ini", &

"database", "servername", "")
SQLCA.DBParm = ProfileString("myapp.ini", "database", &

"dbparm", "")

CONNECT;

IF SQLCA.Sqlcode <> 0 THEN
MessageBox("Cannot Connect to Database", &

SQLCA.SQLErrText)
RETURN

END IF

/* Open MDI frame window */
Open(w_genapp_frame)

See also Close
284 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Syntax 2 For windows
Description Occurs when a window is opened by one of the Open functions. The event

occurs after the window has been opened but before it is displayed.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage These functions trigger the Open event:

Open
OpenWithParm
OpenSheet
OpenSheetWithParm

When the Open event occurs, the controls on the window already exist (their
Constructor events have occurred). In the Open event script, you can refer to
objects in the window and affect their appearance or content. For example, you
can disable a button or retrieve data for a DataWindow.

Some actions are not appropriate in the Open event, even though all the
controls exist. For example, calling the SetRedraw function for a control fails
because the window is not yet visible.

Closing a window by calling the Close function in any of the window's events
or in an event of any control on the window can cause PowerBuilder to crash
if the Close function is not the last statement in the event script. You can avoid
this issue by calling the Close function in the last statement of the event script,
or in a user-defined event that is posted from the event script. For example, the
following code in the Open event script for a window called w_1 can cause a
crash:

// w_1 Open event script
close(this)
open(w_2) // causes crash

Event ID Objects

pbm_open Window
PowerScript Reference 285

Open
This code does not cause a crash:

// w_1 ue_postopen event script
close(this)

// w_1 Open event script
open(w_2)
this.Post Event ue_postopen()

Changing the WindowState property
Do not change the WindowState property in the Open event of a window
opened as a sheet. Doing so might result in duplicate controls on the title bar.
You can change the property in other scripts once the window is open.

When a window is opened, other events occur, such as Constructor for each
control in the window, Activate and Show for the window, and GetFocus for
the first control in the window’s tab order.

When a sheet is opened in an MDI frame, other events occur, such as Show and
Activate for the sheet and Activate for the frame.

Examples When the window contains a DataWindow control, you can retrieve data for it
in the Open event. In this example, values for the transaction object SQLCA
have already been set up:

dw_1.SetTransObject(SQLCA)
dw_1.Retrieve()

See also Activate
Constructor
Show
286 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Other
Description Occurs when a system message occurs that is not a PowerBuilder message.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Other event is no longer useful, because you can define your own user
events. You should avoid using it, because it slows performance while it checks
every Windows message.

Event ID Objects

pbm_other Windows and controls that can be placed in windows

Argument Description

wparam UnsignedLong by value

lparam Long by value
PowerScript Reference 287

PageDown
PageDown
Description Occurs when the user clicks in the open space below the scroll box.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar, nothing happens unless you have
scripts that change the scroll bar’s Position property. For the scroll bar arrows,
use the LineUp and LineDown events; for clicks in the scroll bar background
above and below the thumb, use the PageUp and PageDown events; for
dragging the thumb itself, use the Moved event.

Examples Example 1 This code in the VScrollBar’s PageDown event uses a
predetermined paging value stored in the instance variable ii_pagesize to
change the position of the scroll box (you would need additional code to
change the view of associated controls according to the scroll bar position):

IF This.Position > &
This.MaxPosition - ii_pagesize THEN
This.Position = MaxPosition

ELSE
This.Position = This.Position + ii_pagesize

END IF
RETURN 0

Example 2 This example changes the position of the scroll box by a
predetermined page size stored in the instance variable ii_pagesize and scrolls
forward through a DataWindow control 10 rows for each page:

long ll_currow, ll_nextrow

This.Position = This.Position + ii_pagesize
ll_currow = dw_1.GetRow()
ll_nextrow = ll_currow + 10
dw_1.ScrollToRow(ll_nextrow)
dw_1.SetRow(ll_nextrow)

See also LineDown
PageLeft
PageRight
PageUp

Event ID Objects

pbm_sbnpagedown VScrollBar, VTrackBar
288 PowerBuilder Classic

CHAPTER 9 PowerScript Events
PageLeft
Description Occurs when the open space to the left of the scroll box is clicked.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar, nothing happens unless you
have scripts that change the scroll bar’s Position property. For the scroll bar
arrows, use the LineLeft and LineRight events; for clicks in the scroll bar
background above and below the thumb, use the PageLeft and Right events; for
dragging the thumb itself, use the Moved event.

Examples This code in the PageLeft event causes the thumb to move left a predetermined
page size when the user clicks on the left arrow of the horizontal scroll bar (the
page size is stored in the instance variable ii_pagesize):

IF This.Position < &
This.MinPosition + ii_pagesize THEN

This.Position = MinPosition
ELSE

This.Position = This.Position - ii_pagesize
END IF

See also LineLeft
PageDown
PageRight
PageUp

Event ID Objects

pbm_sbnpageup HScrollBar, HTrackBar
PowerScript Reference 289

PageRight
PageRight
Description Occurs when the open space to the right of the scroll box is clicked.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a horizontal scroll bar, nothing happens unless you
have scripts that change the scroll bar’s Position property:

• For the scroll bar arrows, use the LineLeft and LineRight events.

• For clicks in the scroll bar background above and below the thumb, use the
PageLeft and Right event.

• For dragging the thumb itself, use the Moved event.

Examples This code in the PageRight event causes the thumb to move right when the user
clicks on the right arrow of the horizontal scroll bar (the page size is stored in
the instance variable ii_pagesize):

IF This.Position > &
This.MaxPosition - ii_pagesize THEN

This.Position = MaxPosition
ELSE

This.Position = This.Position + ii_pagesize
END IF

See also LineRight
PageDown
PageLeft
PageUp

Event ID Objects

pbm_sbnpagedown HScrollBar, HTrackBar
290 PowerBuilder Classic

CHAPTER 9 PowerScript Events
PageUp
Description Occurs when the user clicks in the open space above the scroll box (also called

the thumb).

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in a vertical scroll bar, nothing happens unless you have
scripts that change the scroll bar’s Position property:

• For the scroll bar arrows, use the LineUp and LineDown events.

• For clicks in the scroll bar background above and below the thumb, use the
PageUp and PageDown events.

• For dragging the thumb itself, use the Moved event.

Examples Example 1 This code in the PageUp event causes the thumb to move up when
the user clicks on the up arrow of the vertical scroll bar (the page size is stored
in the instance variable ii_pagesize):

IF This.Position < &
This.MinPosition + ii_pagesize THEN

This.Position = MinPosition
ELSE

This.Position = This.Position - ii_pagesize
END IF

Example 2 This example changes the position of the scroll box by a
predetermined page size stored in the instance variable ii_pagesize and scrolls
backwards through a DataWindow control 10 rows for each page:

long ll_currow, ll_prevrow
This.Position = This.Position - ii_pagesize
ll_currow = dw_1.GetRow()
ll_prevrow = ll_currow - 10
dw_1.ScrollToRow(ll_prevrow)
dw_1.SetRow(ll_prevrow)

See also LineUp
PageDown
PageLeft
PageRight

Event ID Objects

pbm_sbnpageup VScrollBar, VTrackBar
PowerScript Reference 291

PictureSelected
PictureSelected
Description Occurs when the user selects a picture in the RichTextEdit control by clicking

it.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples When the user clicks a picture in a RichTextEdit control rte_1, the picture is
selected. This code for the PictureSelected event selects the rest of the contents,
copies the contents to a string with RTF formatting intact, and pastes the
formatted text into a second RichTextEdit rte_2:

string ls_transfer_rtf

This.SelectTextAll()
ls_transfer_rtf = This.CopyRTF()

rte_2.PasteRTF(ls_transfer_rtf)

See also InputFieldSelected

PipeEnd
Description Occurs when pipeline processing is completed.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage You can use the PipeEnd event to check the status of pipeline processing.

The Start and Repair functions initiate pipeline processing.

Event ID Objects

pbm_renpictureselected RichTextEdit

Event ID Objects

pbm_pipeend Pipeline
292 PowerBuilder Classic

CHAPTER 9 PowerScript Events
For a complete example of using a Pipeline object, see Application Techniques.

Examples This code in a Pipeline user object’s PipeEnd event reports pipeline status in a
StaticText control:

ist_status.Text = "Finished Pipeline Execution ..."

See also PipeMeter
PipeStart

PipeMeter
Description Occurs during pipeline processing after each block of rows is read or written.

The Commit factor specified for the Pipeline in the Pipeline painter determines
the size of each block.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Start and Repair functions initiate pipeline processing.

In the Pipeline painter, you can specify a Commit factor specifying the number
of rows that will be transferred before they are committed to the database. The
PipeMeter event occurs for each block of rows as specified by the Commit
factor.

For a complete example of using a Pipeline object, see Application Techniques.

Examples This code in a Pipeline user object’s PipeMeter event report the number of rows
that have been piped to the destination database:

ist_status.Text = String(This.RowsWritten) &
+ " rows written to the destination database."

See also PipeEnd
PipeStart

Event ID Objects

pbm_pipemeter Pipeline
PowerScript Reference 293

PipeStart
PipeStart
Description Occurs when pipeline processing begins.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage You can use the PipeStart event to check the status of pipeline processing.

The Start and Repair functions initiate pipeline processing.

For a complete example of using a Pipeline object, see Application Techniques.

Examples This code in a Pipeline user object’s PipeStart event reports pipeline status in a
StaticText control:

ist_status.Text = "Beginning Pipeline Execution ..."

See also PipeEnd
PipeMeter

PrintFooter
Description Occurs when the footer of a page of the document in the RichTextEdit control

is about to be printed.

Obsolete event
The PrintHeader and PrintFooter events are obsolete. They are no longer
triggered under any circumstance. You must use the ShowHeadFoot function to
edit headers and footers of pages in a rich text control at runtime.

Event ID

Event ID Objects

pbm_pipestart Pipeline

Event ID Objects

pbm_renprintfooter RichTextEdit
294 PowerBuilder Classic

CHAPTER 9 PowerScript Events
PrintHeader
Description Occurs when the header of a page of the document in the RichTextEdit control

is about to be printed.

Obsolete event
The PrintHeader and PrintFooter events are obsolete. They are no longer
triggered under any circumstance. You must use the ShowHeadFoot function to
edit headers and footers of pages in a rich text control at runtime.

Event ID

ProgressIndex
Description Occurs periodically during synchronization after updates to a synchronization progress

bar.

Event ID

Arguments

Return codes None

Usage Use this event to update a progress indicator such as a progress bar.

A progress_max value of 0 indicates the maximum value has not changed since
the last time the event was fired.

See also BeginLogScan
EndLogScan

Event ID Objects

pbm_renprintheader RichTextEdit

Event ID Objects

None MLSynchronization, MLSync

Argument Description

progress_idx Long value representing the progress of the
synchronization.

progress_max Long value indicating the progress limit of the
synchronization.
PowerScript Reference 295

PropertyChanged
PropertyChanged
Description Occurs after the OLE server changes the value of a property of the OLE object.

Event ID

Arguments

Return codes None (do not use a RETURN statement)

Usage Property change notifications are not supported by all OLE servers. The
PropertyRequestEdit and PropertyChanged events occur only when the server
supports these notifications.

Property notifications are not sent when the object is being created or loaded.
Otherwise, notifications are sent for all bindable properties, no matter how the
property is being changed.

The PropertyChanged event occurs after the property’s value has changed. You
can obtain the new value through the automation interface. The change can no
longer be canceled. If you want to cancel a change, write a script for the
PropertyRequestEdit event.

See also DataChange
PropertyRequestEdit
Rename
ViewChange

Event ID Objects

None OLE

Argument Description

propertyname The name of the property whose value changed. If
propertyname is an empty string, a more general change
occurred, such as changes to more than one property.
296 PowerBuilder Classic

CHAPTER 9 PowerScript Events
PropertyRequestEdit
Description Occurs when the OLE server is about to change the value of a property of the

object in the OLE control.

Event ID

Arguments

Return codes None. Do not use a RETURN statement.

Usage Property change notifications are not supported by all OLE servers. The
PropertyRequestEdit and PropertyChanged events only occur when the server
supports these notifications.

Property notifications are not sent when the object is being created or loaded.
Otherwise, notifications are sent for all bindable properties, no matter how the
property is being changed.

The PropertyRequestEdit event gives you a chance to access the property’s old
value using the automation interface and save it. To cancel the change, set the
cancelchange argument to true.

See also DataChange
PropertyChanged
Rename
ViewChange

Event ID Objects

None OLE

Argument Description

propertyname String by value (the name of the property whose value
changed).

If propertyname is an empty string, a more general change
occurred, such as changes to more than one property.

cancelchange Boolean by reference; determines whether the change will
be canceled. Values are:

• FALSE – (Default) the change is allowed.

• TRUE – the change is canceled.
PowerScript Reference 297

RButtonDown
RButtonDown
The RButtonDown event has different arguments for different objects:

Syntax 1 For controls and windows, except RichTextEdit
Description For a window, occurs when the right mouse button is pressed in an unoccupied

area of the window (any area with no visible, enabled object). The window
event will occur if the cursor is over an invisible or disabled control.

For a control, occurs when the right mouse button is pressed on the control.

Event ID

Arguments

Object See

Controls and windows, except
RichTextEdit

Syntax 1

RichTextEdit control Syntax 2

Event ID Objects

pbm_rbuttondown Windows and controls that can be placed on a window,
except RichTextEdit

Argument Description

flags UnsignedLong by value (the modifier keys and mouse
buttons that are pressed).

Values are:

• 1 – Left mouse button

• 2 – Right mouse button

• 4 – Shift key

• 8 – Ctrl key

• 16 – Middle mouse button

In the RButtonDown event, the right mouse button is
always pressed, so 2 is always summed in the value of
flags.

For an explanation of flags, see Syntax 2 of MouseMove
on page 274.

xpos Integer by value (the distance of the pointer from the left
edge of the window’s workspace in pixels).

ypos Integer by value (the distance of the pointer from the top of
the window’s workspace in pixels).
298 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples These statements in the RButtonDown script for the window display a pop-up
menu at the cursor position. Menu4 was created in the Menu painter and
includes a menu called m_language. Menu4 is not the menu for the active
window and therefore needs to be created. NewMenu is an instance of Menu4
(datatype Menu4):

Menu4 NewMenu
NewMenu = CREATE Menu4
NewMenu.m_language.PopMenu(xpos, ypos)

In a Multiple Document Interface (MDI) application, the arguments for
PopMenu need to specify coordinates relative to the MDI frame:

NewMenu.m_language.PopMenu(&
w_frame.PointerX(), w_frame.PointerY())

See also Clicked

Syntax 2 For RichTextEdit controls
Description Occurs when the user presses the right mouse button on the RichTextEdit

control and the control’s PopMenu property is set to false.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage If the control’s PopMenu property is true, the standard RichTextEdit pop-up
menu is displayed instead, and the RButtonDown event does not occur.

You can use the RButtonDown event to implement your own pop-up menu.

See also Clicked
RButtonDown

Event ID Objects

pbm_renrbuttondown RichTextEdit
PowerScript Reference 299

RButtonUp
RButtonUp
Description Occurs when the right mouse button is released.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing
1 Prevent processing

See also RButtonDown

RecognitionResult
Description Occurs when an InkEdit control gets results from a call to the RecognizeText

function.

Event ID

Arguments None

Return codes None

Examples This code in the RecognitionResult event allows the application to wait a few
seconds while the Text property of the ie_id InkEdit control is updated, then
writes the recognized text to the string variable ls_inktext:

Sleep(3)
ls_inktext = ie_id.Text

See also GetFocus
Stroke

Event ID Objects

pbm_renrbuttonup RichTextEdit

Event ID Objects

pbm_inkerecognition InkEdit
300 PowerBuilder Classic

CHAPTER 9 PowerScript Events
RemoteExec
Description Occurs when a DDE client application has sent a command.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also RemoteRequest
RemoteSend

RemoteHotLinkStart
Description Occurs when a DDE client application wants to start a hot link.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples When both the DDE client and server are PowerBuilder applications, this
example in a script in the client application triggers the RemoteHotLinkStart
event in the server application window:

StartHotLink("mysle","pb_dde_server","mytest")

In the RemoteHotLinkStart event in the server application, set a boolean
instance variable indicating that a hot link has been established:

ib_hotlink = TRUE

See also HotLinkAlarm
RemoteHotLinkStop
SetDataDDE
StartServerDDE
StopServerDDE

Event ID Objects

pbm_ddeexecute Window

Event ID Objects

pbm_ddeadvise Window
PowerScript Reference 301

RemoteHotLinkStop
RemoteHotLinkStop
Description Occurs when a DDE client application wants to end a hot link.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples When both the DDE client and server are PowerBuilder applications, this
example in a script in the client application triggers the RemoteHotLinkStop
event in the server application window:

StopHotLink("mysle","pb_dde_server","mytest")

In the RemoteHotLinkStart event in the server application, set a boolean
instance variable indicating that a hot link no longer exists:

ib_hotlink = FALSE

See also HotLinkAlarm
RemoteHotLinkStart
SetDataDDE
StartServerDDE
StopServerDDE

RemoteRequest
Description Occurs when a DDE client application requests data.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also RemoteExec
RemoteSend

Event ID Objects

pbm_ddeunadvise Window

Event ID Objects

pbm_dderequest Window
302 PowerBuilder Classic

CHAPTER 9 PowerScript Events
RemoteSend
Description Occurs when a DDE client application has sent data.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also RemoteExec
RemoteRequest

Rename
Description Occurs when the server application notifies the control that the object has been

renamed.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Usage If you want to retrieve the ObjectData blob value of an OLE control during the
processing of this event, you must post a user event back to the control or you
will generate a runtime error.

See also DataChange
PropertyRequestEdit
PropertyChanged
ViewChange

Event ID Objects

pbm_ddepoke Window

Event ID Objects

pbm_omnrename OLE
PowerScript Reference 303

Resize
Resize
Description Occurs when the user or a script opens or resizes the client area of a window or

DataWindow control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Event ID Objects

pbm_dwnresize DataWindow

pbm_size Window

Argument Description

sizetype UnsignedLong by value. The values are:

• 0 – (SIZE_RESTORED) The window or DataWindow
has been resized, but it was not minimized or
maximized. The user might have dragged the borders or
a script might have called the Resize function.

• 1 – (SIZE_MINIMIZED) The window or DataWindow
has been minimized.

• 2 – (SIZE_MAXIMIZED) The window or
DataWindow has been maximized.

• 3 – (SIZE_MAXSHOW) This window is a pop-up
window and some other window in the application has
been restored to its former size (does not apply to
DataWindow controls).

• 4 – (SIZE_MAXHIDE) This window is a pop-up
window and some other window in the application has
been maximized (does not apply to DataWindow
controls).

newwidth Integer by value (the width of the client area of a window
or DataWindow control in PowerBuilder units).

newheight Integer by value (the height of the client area of a window
or DataWindow control in PowerBuilder units).
304 PowerBuilder Classic

CHAPTER 9 PowerScript Events
RightClicked
The RightClicked event has different arguments for different objects:

Syntax 1 For ListView and Tab controls
Description Occurs when the user clicks the right mouse button on the ListView control or

the tab portion of the Tab control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage When the user clicks in the display area of the Tab control, the tab page user
object gets an RButtonDown event rather than a RightClicked event for the Tab
control.

Examples This example for the RightClicked event of a ListView control displays a pop-
up menu when the user clicks the right mouse button:

// Declare a menu variable of type m_main
m_main m_lv_popmenu
// Create an instance of the menu variable
m_lv_popmenu = CREATE m_main
// Display menu at pointerposition
m_lv_popmenu.m_entry.PopMenu(Parent.PointerX(), &

Parent.PointerY())

See also Clicked
RightDoubleClicked

Object See

ListView and Tab control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnrclicked ListView

pbm_tcnrclicked Tab

Argument Description

index Integer by value (the index of the item or tab the user
clicked)
PowerScript Reference 305

RightClicked
Syntax 2 For TreeView controls
Description Occurs when the user clicks the right mouse button on the TreeView control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example for the RightClicked event of a TreeView control displays a
pop-up menu when the user clicks the right mouse button:

// Declare a menu variable of type m_main
m_main m_tv_popmenu

// Create an instance of the menu variable
m_tv_popmenu = CREATE m_main

// Display menu at pointer position
m_tv_popmenu.m_entry.PopMenu(Parent.PointerX(), &

Parent.PointerY())

See also Clicked
RightDoubleClicked

Event ID Objects

pbm_tvnrclicked TreeView

Argument Description

handle Long by value (the handle of the item the user clicked)
306 PowerBuilder Classic

CHAPTER 9 PowerScript Events
RightDoubleClicked
The RightDoubleClicked event has different arguments for different objects:

Syntax 1 For ListView and Tab controls
Description Occurs when the user double-clicks the right mouse button on the ListView

control or the tab portion of the Tab control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example deletes an item from the ListView when the user
right-double-clicks on it and then rearranges the items:

integer li_rtn

// Delete the item
li_rtn = This.DeleteItem(index)

IF li_rtn = 1 THEN
This.Arrange()

ELSE
MessageBox("Error", Deletion failed!")

END IF

See also DoubleClicked
RightClicked

Object See

ListView and Tab control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnrdoubleclicked ListView

pbm_tcnrdoubleclicked Tab

Argument Description

index Integer by value (the index of the item or tab the user
double-clicked)
PowerScript Reference 307

RightDoubleClicked
Syntax 2 For TreeView controls
Description Occurs when the user double-clicks the right mouse button on the TreeView

control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples This example toggles between displaying and hiding TreeView lines when the
user right-double-clicks on the control:

IF This.HasLines = FALSE THEN
This.HasLines = TRUE
This.LinesAtRoot = TRUE

ELSE
This.HasLines = FALSE
This.LinesAtRoot = FALSE

END IF

See also DoubleClicked
RightClicked

Event ID Objects

pbm_tvnrdoubleclicked TreeView

Argument Description

handle Long by value (the handle of the item the user double-
clicked)
308 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Save
Description Occurs when the server application notifies the control that the data has been

saved.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Usage If you want to retrieve the ObjectData blob value of an OLE control during the
processing of this event, you must post a user event back to the control or you
generate a runtime error.

Examples In this example, a table in a database tracks changes of OLE objects; when the
user saves an Excel spreadsheet in an OLE control, this code puts the current
date in a DataWindow so that the database table can be updated:

long ll_row
// Find the row with information for the Excel file
ll_row = dw_1.Find("file_name = 'expenses.xls'", &

1, 999)

IF ll_row > 0 THEN
// Make the found row current
dw_1.SetRow(ll_row)

// Put today's date in the last_updated column
dw_1.Object.last_updated[ll_row] = Today()

// Update and refresh the DataWindow
dw_1.Update()
dw_1.Retrieve()

ELSE
MessageBox("Find", "No row found")

END IF

See also Close
SaveObject

Event ID Objects

pbm_omnsave OLE
PowerScript Reference 309

SaveObject
SaveObject
Description Occurs when the server application saves the object in the control.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Usage Using the SaveObject event is the preferred technique for retrieving the
ObjectData blob value of an OLE control when the server saves the data in the
embedded object. Unlike the Save and Close events, the SaveObject event does
not require you to post a user event back to the control to prevent the generation
of a runtime error.

Because of differences in the behavior of individual servers, this event is not
triggered consistently across all server applications. Using Microsoft Word or
Excel, the SaveObject event is triggered when the DisplayType property of the
control is set to DisplayAsActiveXDocument! or DisplayAsIcon!, but not
when it is set to DisplayAsContent!. For other applications, such as Paint Shop
Pro, the event is triggered when the display type is DisplayAsContent! but not
when it is DisplayAsActiveXDocument!.

Because some servers might also fire the PowerBuilder Save event and the
relative timing of the two events cannot be guaranteed, your program should
handle only the SaveObject event.

Examples In this example, when the user or the server application saves a Word document
in an OLE control, the data is saved as a blob in a file. The file can then be
opened as a Word document:

blob l_myobjectdata
l_myobjectdata = this.objectdata
integer l_file

l_file = FileOpen("c:\myfile.doc", StreamMode!, Write!)
FileWrite(l_file, l_myobjectdata)
FileClose(l_file)

See also Close
Save

Event ID Objects

pbm_omnsaveobject OLE
310 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Selected
Description Occurs when the user highlights an item on the menu using the arrow keys or

the mouse, without choosing it to be executed.

Event ID

Arguments None

Return codes None. (Do not use a RETURN statement.)

Usage You can use the Selected event to display MicroHelp for the menu item. One
way to store the Help text is in the menu item’s Tag property.

Examples This example uses the tag value of the current menu item to display Help text.
The function wf_SetMenuHelp takes the text passed (the tag) and assigns it to a
MultiLineEdit control. A Timer function and the Timer event are used to clear
the Help text.

This code in the Selected event calls the function that sets the text:

w_test.wf_SetMenuHelp(This.Tag)

This code for the wf_SetMenuHelp function sets the text in the MultiLineEdit
mle_menuhelp; its argument is called menuhelpstring:

mle_menuhelp.Text = menuhelpstring
Timer(4)

This code in the Timer event clears the Help text and stops the timer:

w_test.wf_SetMenuHelp("")
Timer(0)

See also Clicked

Event ID Objects

None Menu
PowerScript Reference 311

SelectionChanged
SelectionChanged
The SelectionChanged event has different arguments for different objects:

Syntax 1 For Listboxes
Description Occurs when an item is selected in the control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage For DropDownListBoxes, the SelectionChanged event applies to selections in
the drop-down portion of the control, not the edit box.

The SelectionChanged event occurs when the user clicks on any item in the list,
even if it is the currently selected item. When the user makes a selection using
the mouse, the Clicked (and if applicable the DoubleClicked event) occurs
after the SelectionChanged event.

Examples This example is for the lb_value ListBox in the window
w_graph_sheet_with_list in the PowerBuilder Examples application. When the
user chooses values, they are graphed as series in the graph gr_1. The
MultiSelect property for the ListBox is set to true, so index has no effect. The
script checks all the items to see if they are selected:

Object See

DropDownListBox,
DropDownPictureListBox, ListBox,
PictureListBox controls

Syntax 1

Tab control Syntax 2

TreeView control Syntax 3

Event ID Objects

pbm_cbnselchange DropDownListBox, DropDownPictureListBox

pbm_lbnselchange ListBox, PictureListBox

Argument Description

index Integer by value (the index of the item that has become
selected)
312 PowerBuilder Classic

CHAPTER 9 PowerScript Events
integer itemcount,i,r
string ls_colname

gr_1.SetRedraw(FALSE)

// Clear out categories, series and data from graph
gr_1.Reset(All!)

// Loop through all selected values and
// create as many series as the user specified
FOR i = 1 to lb_value.TotalItems()

IF lb_value.State(i) = 1 THEN
ls_colname = lb_value.Text(i)

// Call window function to set up the graph
wf_set_a_series(ls_colname, ls_colname, &
lb_category.text(1))

END IF
NEXT
gr_1.SetRedraw(TRUE)

See also Clicked

Syntax 2 For Tab controls
Description Occurs when a tab is selected.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The SelectionChanged event occurs when the Tab control is created and the
initial selection is set.

See also Clicked, SelectionChanging

Event ID Objects

pbm_tcnselchanged Tab

Argument Description

oldindex Integer by value (the index of the tab that was previously
selected)

newindex Integer by value (the index of the tab that has become
selected)
PowerScript Reference 313

SelectionChanged
Syntax 3 For TreeView controls
Description Occurs when the item is selected in a TreeView control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The SelectionChanged event occurs after the SelectionChanging event.

Examples This example tracks items in the SelectionChanged event:

TreeViewIteml_tvinew, l_tviold

// get the treeview item that was the old selection
This.GetItem(oldhandle, l_tviold)

// get the treeview item that is currently selected
This.GetItem(newhandle, l_tvinew)

// Display the labels for the two items in sle_get
sle_get.Text = "Selection changed from " &

+ String(l_tviold.Label) + " to " &
+ String(l_tvinew.Label)

See also Clicked
SelectionChanging

Event ID Objects

pbm_tvnselchanged TreeView

Argument Description

oldhandle Long by value (the handle of the previously selected item)

newhandle Long by value (the handle of the currently selected item)
314 PowerBuilder Classic

CHAPTER 9 PowerScript Events
SelectionChanging
The SelectionChanging event has different arguments for different objects:

Syntax 1 For Tab controls
Description Occurs when another tab is about to be selected.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the selection to change
1 Prevent the selection from changing

Usage Use the SelectionChanging event to prevent the selection from changing or to
do processing for the newly selected tab page before it becomes visible. If
CreateOnDemand is true and this is the first time the tab page is selected, the
controls on the page do not exist yet, and you cannot refer to them in the event
script.

Examples When the user selects a tab, this code sizes the DataWindow control on the tab
page to match the size of another DataWindow control. The resizing happens
before the tab page becomes visible. This example is from tab_uo in the
w_phone_dir window in the PowerBuilder Examples:

u_tab_dirluo_Tab
luo_Tab = This.Control[newindex]
luo_Tab.dw_dir.Height = dw_list.Height
luo_Tab.dw_dir.Width = dw_list.Width

See also Clicked
SelectionChanged

Object See

Tab control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_tcnselchanging Tab

Argument Description

oldindex Integer by value (the index of the currently selected tab)

newindex Integer by value (the index of the tab that is about to be
selected)
PowerScript Reference 315

SelectionChanging
Syntax 2 For TreeView controls
Description Occurs when the selection is about to change in the TreeView control.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Allow the selection to change
1 Prevent the selection from changing

Usage The SelectionChanging event occurs before the SelectionChanged event.

Examples This example displays the status of changing TreeView items in a
SingleLineEdit:

TreeViewItem l_tvinew, l_tviold

// Get TreeViewItem that was the old selection
This.GetItem(oldhandle, l_tviold)

// Get TreeViewItem that is currently selected
This.GetItem(newhandle, l_tvinew)

//Display the labels for the two items in display
sle_status.Text = "Selection changed from " &

+ String(l_tviold.Label) + " to " &
+ String(l_tvinew.Label)

See also Clicked
SelectionChanged

Event ID Objects

pbm_tvnselchanging TreeView

Argument Description

oldhandle Long by value (the handle of the currently selected item)

newhandle Long by value (the handle of the item that is about to be
selected)
316 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Show
Description Occurs just before the window is displayed.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The Show event occurs when the window is opened.

See also Activate
Hide
Open

Event ID Objects

pbm_showwindow Window

Argument Description

show Boolean by value (whether the window is being shown).
The value is always true.

status Long by value (the status of the window).

Values are:

• 0 – The current window is the only one affected.

• 1 – The window’s parent is also being minimized or a
pop-up window is being hidden.

• 3 – The window’s parent is also being displayed or
maximized or a pop-up window is being shown.
PowerScript Reference 317

Sort
Sort
The Sort event has different arguments for different objects:

Syntax 1 For ListView controls
Description Occurs for each comparison when the ListView is being sorted.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

-1 index1 is less than index2
0 index1 is equal to index2
1 index1 is greater than index2

Usage The Sort event allows you to fine-tune the sort order of the items being sorted.
You can examine the properties of each item and tell the Sort function how to
sort them by selecting one of the return codes.

You typically use the Sort event when you want to sort ListView items based
on multiple criteria such as a PictureIndex and Label.

The Sort event occurs if you call the Sort event, or when you call the Sort
function using the UserDefinedSort! argument.

Object See

ListView control Syntax 1

TreeView control Syntax 2

Event ID Objects

pbm_lvnsort ListView

Argument Description

index1 Integer by value (the index of one item being compared
during a sorting operation)

index2 Integer by value (the index of the second item being
compared)

column Integer by value (the number of the column containing the
items being sorted)
318 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Examples This example sorts ListView items according to PictureIndex and Label sorting
by PictureIndex first, and then by label:

ListViewItem lvi, lvi2

This.GetItem(index1, lvi)
This.GetItem(index2, lvi2)

IF lvi.PictureIndex > lvi2.PictureIndex THEN
RETURN 1

ELSEIF lvi.PictureIndex < lvi2.PictureIndex THEN
RETURN -1

ELSEIF lvi.label > lvi2.label THEN
RETURN 1

ELSEIF lvi.label < lvi2.label THEN
RETURN -1

ELSE
RETURN 0

END IF

Syntax 2 For TreeView controls
Description Occurs for each comparison when the TreeView is being sorted.

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

-1 handle1 is less than handle2
0 handle1 is equal to handle2
1 handle1 is greater than handle2

Event ID Objects

pbm_tvnsort TreeView

Argument Description

handle1 Long by value (the handle of one item being compared
during a sorting operation)

handle2 Long by value (the handle of the second item being
compared)
PowerScript Reference 319

SQLPreview
Usage The Sort event allows you to fine-tune the sort order of the items being sorted.
You can examine the properties of each item and tell the Sort function how to
sort them by selecting one of the return codes.

You typically use the Sort event when you want to sort TreeView items based
on multiple criteria such as a PictureIndex and Label.

The Sort event occurs if you call the Sort event, or when you call the Sort
function using the UserDefinedSort! argument.

Examples This example sorts TreeView items according to PictureIndex and Label
sorting by PictureIndex first, then by label:

TreeViewItem tvi, tvi2

This.GetItem(handle1, tvi)
This.GetItem(handle2, tvi2)

IF tvi.PictureIndex > tvi2.PictureIndex THEN
RETURN 1

ELSEIF tvi.PictureIndex < tvi2.PictureIndex THEN
RETURN -1

ELSEIF tvi.Label > tvi2.Label THEN
RETURN 1

ELSEIF tvi.Label < tvi2.Label THEN
RETURN -1

ELSE
RETURN 0

END IF

SQLPreview
Description Occurs immediately before a SQL statement is submitted to the DBMS.

Event ID

Arguments

Event ID Objects

None Transaction objects

Argument Description

sqlfunc The SQLFunction system enumeration passed by value. This
enumeration indicates the function that initiated database activity.
Values for this enumeration are: SQLDBInsert! SQLDBUpdate!,
SQLDBDelete!, SQLDBSelect!, SQLDBProcedure!,
SQLDBRPC!, and SQLDBOthers!.
320 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Return codes Long. Set the return code to affect the outcome of the event:

0 Continue processing
1 Stop processing

Usage Use with embedded SQL This event is triggered before SQL statements are
passed to the DBMS.

Use with DataWindow/DataStore When using this event of the Transaction
object with a DataWindow that also defines a SQLPreview event, the
DataWindow’s event is fired first. If the return value of DataWindow
SQLPreview event is 0 (continue processing), the Transaction object’s
SQLPreview event is triggered next.

Examples In this embedded SQL cursor example, the SQLPreview event is invoked just
before the OPEN Emp_curs; statement is executed:

DECLARE Emp_cur CURSOR FOR SELECT employee.emp_number,
employee.emp_name FROM employee

WHERE employee.emp_salary > :Sal_var ;
OPEN Emp_curs ;

In this dynamic SQL example, the SQLPreview event is invoked just before the
EXECUTE DYNAMIC my_proc DESCRIPTOR SQLDA statement is
executed:

PREPARE SQLSA FROM "execute @rc = myproc @parm1=?,
@parm2=? OUTPUT ";

DESCRIBE SQLSA INTO SQLDA ;
DECLARE my_proc DYNAMIC PROCEDURE FOR SQLSA ;
SetDynamicParm(SQLDA, 1, var1)
SetDynamicParm(SQLDA, 2, var2)
EXECUTE DYNAMIC my_proc DESCRIPTOR SQLDA ;

See also DBError
SQLPreview in the DataWindow Reference

sqlsyntax String by value. The full text of the SQL statement.

Argument Description
PowerScript Reference 321

Start
Start
Description Occurs when an animation has started playing.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also Stop

Stop
Description Occurs when an animation has stopped playing.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

See also Timer

Event ID Objects

pbm_animatestart Animation

Event ID Objects

pbm_animatestop Animation
322 PowerBuilder Classic

CHAPTER 9 PowerScript Events
Stroke
Description Occurs when the user draws a new stroke.

Event ID

Arguments None

Return codes Boolean. Return true to erase the stroke and false otherwise.

Usage If the InkMode property of an InkEdit control is set to InkDisabled!, or the
InkCollectionMode property of an InkPicture control is set to GestureOnly!,
the Stroke event is not triggered.

See also Gesture, RecognitionResult

SyncPreview
Description Returns generated dbmlsync command arguments immediately prior to launching the

synchronization process.

Event ID

Arguments

Return codes None

Usage Use this event to receive and display dbmlsync command line arguments. The
event is called by the Synchronize function just before it launches dbmlsync.
The generated command arguments for dbmlsync are passed by reference in the
command_args string. You can change the command_args string with
PowerScript code or with the debugger. If command_args are changed, the
Synchronize function will use the new argument string.

See also BeginDownload, BeginSync

Event ID Objects

pbm_inkestroke,
pbm_inkpstroke

InkEdit, InkPicture

Event ID Objects

None MLSynchronization, MLSync

Argument Description

command_args String passed by reference that includes dbmlsync
command arguments for launching the synchronization
process.
PowerScript Reference 323

SystemError
SystemError
Description Occurs when a serious runtime error occurs (such as trying to open a

nonexistent window) if the error is not handled in a try-catch block.

Event ID

Arguments None

Return codes None. (Do not use a RETURN statement.)

Usage If there is no script for the SystemError event, PowerBuilder displays a
message box with the PowerBuilder error number and error message text. For
information about error messages, see the PowerBuilder Users Guide.

If you comment out the entire script in the SystemError event, a Windows
Forms application behaves as if there is no script for the event and the message
box displays, but in a standard PowerBuilder application the event is still
triggered and the message box does not display.

For errors involving external objects and DataWindows, you can handle the
error in the ExternalException or Error events and prevent the SystemError
event from occurring. The ExternalException and Error events are maintained
for backward compatibility.

You can prevent the SystemError event from occurring by handling errors in
try-catch blocks. Well-designed exception-handling code gives application
users a better chance to recover from error conditions and run the application
without interruption. For information about exception handling, see
Application Techniques.

When a SystemError event occurs, your current script terminates and your
system might become unstable. It is generally not a good idea to continue
running the application, but you can use the SystemError event script to clean
up and disconnect from the DBMS before closing the application.

Examples This statement in the SystemError event halts the application immediately:

HALT CLOSE

See also Error
ExternalException
TRY...CATCH...FINALLY...END TRY

Event ID Objects

None Application
324 PowerBuilder Classic

SystemKey
Description Occurs when the insertion point is not in a line edit, and the user presses the Alt

key (alone or with another key).

Event ID

Arguments

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage Pressing the Ctrl key prevents the SystemKey event from firing when the Alt
key is pressed.

Examples This example displays the name of the key that was pressed with the Alt key:

string ls_key

CHOOSE CASE key

CASE KeyF1!
ls_key = "F1"

CASE KeyA!
ls_key = "A"

CASE KeyF2!
ls_key = "F2"

END CHOOSE

This example causes a beep if the user presses Alt+Shift+F1.

IF keyflags = 1 THEN
IF key = KeyF1 THEN

Beep(1)
END IF

END IF

See also Key

Event ID Objects

pbm_syskeydown Window

Argument Description

key KeyCode by value. A value of the KeyCode enumerated datatype
indicating the key that was pressed, for example, KeyA! or KeyF1!.

keyflags UnsignedLong by value (the modifier keys that were pressed with the
key). The only modifier key is the Shift key.
PowerScript Reference 325

Timer
Timer
Description Occurs when a specified number of seconds elapses after the Start or Timer

function has been called.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Examples These examples show how to use a timing object’s Timer event and a window’s
Timer event.

Using a timing object This example uses a timing object to refresh a list of
customers retrieved from a database at specified intervals. The main window
of the application, w_main, contains a DataWindow control displaying a list of
customers and two buttons, Start Timer and Retrieve. The window’s Open
event connects to the database:

CONNECT using SQLCA;

IF sqlca.sqlcode <> 0 THEN
MessageBox("Database Connection", &

sqlca.sqlerrtext)
END IF

The following code in the clicked event of the Start Timer button creates an
instance of a timing object, nvo_timer, and opens a response window to obtain
a timing interval. Then, it starts the timer with the specified interval:

MyTimer = CREATE nvo_timer
open(w_interval)
MyTimer.Start(d_interval)

MessageBox("Timer", "Timer Started. Interval is " &
+ string(MyTimer.interval) + " seconds")

In the timing object’s Constructor event, the following code creates an instance
of a datastore:

ds_datastore = CREATE datastore

Event ID Objects

pbm_timer Timing or Window
326 PowerBuilder Classic

The timing object’s Timer event calls an object-level function called
refresh_custlist that refreshes the datastore. This is the code for refresh_custlist:

long ll_rowcount

ds_datastore.dataobject = "d_customers"
ds_datastore.SetTransObject (SQLCA)
ll_rowcount = ds_datastore.Retrieve()

RETURN ll_rowcount

The Retrieve button on w_main simply shares the data from the DataStore with
the DataWindow control:

ds_datastore.ShareData(dw_1)

Using a window object This example causes the current time to be
displayed in a StaticText control in a window. Calling Timer in the window’s
Open event script starts the timer. The script for the Timer event refreshes the
displayed time.

In the window’s Open event script, this code displays the time initially and
starts the timer:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

In the window’s Timer event, which is triggered every minute, this code
displays the current time in the StaticText st_time:

st_time.Text = String(Now(), "hh:mm")

See also Start
Timer
PowerScript Reference 327

ToolbarMoved
ToolbarMoved
Description Occurs in an MDI frame window when the user moves any FrameBar or

SheetBar.

Event ID

Arguments None

Return codes Long. Return code choices (specify in a RETURN statement):

0 Continue processing

Usage The event is not triggered for sheet windows.

To get information about the toolbars’ positions, call the GetToolbar and
GetToolbarPos functions.

This event occurs when you change a toolbar’s position with SetToolbarPos.

Event ID Objects

pbm_tbnmoved Window
328 PowerBuilder Classic

UploadAck
Description Occurs on completion of upload processing.

Event ID

Arguments

Return codes None

Usage Use this event to add custom actions after dbmlsync has received
acknowledgement of the upload stream from the MobiLink synchronization
server.

Values for the uploadack_status argument can be:

• StatCommitted Indicates that the upload stream was received by the
MobiLink synchronization server and committed.

• StatRetry Indicates that the MobiLink synchronization server and the
remote database had different values for the log offset from which the
upload stream should start. The upload stream was not committed by the
MobiLink synchronization server. The component attempts to send
another upload stream starting from the MobiLink synchronization
server's log offset.

• StatFailed Indicates that the MobiLink synchronization server did not
commit the upload stream.

See also BeginUpload
ConnectMobiLink
EndUpload
WaitForUploadAck

Event ID Objects

None MLSynchronization, MLSync

Argument Description

uploadack_status Long indicating the status returned by MobiLink to the
remote after the upload stream is processed. Values are:

• 0 for StatCommitted

• 1 for StatFailed

• 248 for StatRetry

See the Usage note for the meaning of these values.
PowerScript Reference 329

UserString
UserString
Description Occurs when the user has edited the contents of the control and the control has

lost focus. The AllowEdit property must be set to true.

Event ID

Arguments

Return codes Long. Return code: Ignored.

Usage When a user tabs into a DatePicker control, it is in normal editing mode and
one part of the date (year, month, or day) can be edited. If the AllowEdit
property is set to true, the user can press F2 or click in the control to select all
the text in the control for editing. When the control loses focus, the control
returns to normal editing mode and the UserString event is fired, allowing you
to test whether the text in the control is a valid date. The UserString event fires
whether or not the text was modified.

The text entered in the control must be in a format that can be converted into a
valid DateTime variable. If the string entered by the user can be converted to a
valid DateTime value, you can assign the parsed DateTime value to the dtm
argument to change the Value property of the control.

The ValueChanged event is fired after the UserString event if the value
changed.

Examples This code in the UserString event script tests whether the string entered by the
user is a valid date. If it is valid, the code converts the date to a DateTime so
that it can be assigned to the DatePicker’s Value property. Otherwise it displays
an error message to the user:

IF IsDate(userstr) THEN
dtm = DateTime(Date(userstr))

ELSE
MessageBox("Invalid date", userstr)

END IF

Event ID Objects

pbm_dtpuserstring DatePicker

Argument Description

flag Unsigned long by reference. The value of flag is 0 by
default and should not be changed.

userstr String entered in the control by the user.

dtm A DateTime value by reference to which the validated date
should be assigned.
330 PowerBuilder Classic

ValueChanged
Description Occurs when the Value property in a DatePicker control changes.

Event ID

Arguments

Return codes Long. Return code: Ignored.

Usage When a user selects a date from the drop-down calendar or changes the date
using the up-down control, the DateTime value selected is passed to the
ValueChanged event.

Examples This code in the ValueChanged event script displays a confirmation message to
the user:

MessageBox("Start date", "You selected " + &
String(dtm, "mmm dd, yyyy") + ".~r~n" + &
"If this is incorrect, please select again.")

ViewChange
Description Occurs when the server application notifies the control that the view shown to

the user has changed.

Event ID

Arguments None

Return codes Long. Return code: Ignored

Usage If you want to retrieve the ObjectData blob value of an OLE control during the
processing of this event, you must post a user event back to the control or you
will generate a runtime error.

See also DataChange
PropertyRequestEdit
PropertyChanged
Rename

Event ID Objects

pbm_dtpvaluechanged DatePicker

Argument Description

flag Unsigned long that defaults to 0 and can be ignored

dtm The new DateTime value

Event ID Objects

pbm_omnviewchange OLE
PowerScript Reference 331

WaitForUploadAck
WaitForUploadAck
Description Occurs when the synchronization process starts a new waiting period for

upload acknowledgement.

Event ID

Arguments None

Return codes None

Usage Use this event to add custom actions when the component is waiting for upload
acknowledgement from the MobiLink synchronization server.

See also BeginUpload
EndUpload

WarningMessage
Description Occurs on display of a warning message.

Event ID

Arguments

Return codes None

Usage Use this event to receive warning information logged by dbmlsync.

The following events can be triggered when different types of messages are
sent by the synchronization server: DisplayMessage, ErrorMessage,
FileMessage, and WarningMessage.

See also DisplayMessage
ErrorMessage
FileMessage

Event ID Objects

None MLSynchronization, MLSync

Event ID Objects

None MLSynchronization, MLSync

Argument Description

warnmsg Read-only string containing the text of the warning
message returned from the synchronization server.
332 PowerBuilder Classic

PowerScript Reference 333

C H A P T E R 1 0 PowerScript Functions

About this chapter This chapter provides syntax, descriptions, and examples for PowerScript
functions.

Contents The functions are listed alphabetically.

See also For information about functions that apply to DataWindows or
DataStores, see also the DataWindow Reference. Methods that apply to
DataWindows, but not to other PowerBuilder controls, are listed only in
the DataWindow Reference.

Abs
Abs
Description Calculates the absolute value of a number.

Syntax Abs (n)

Return value The datatype of n. Returns the absolute value of n. If n is null, Abs returns null.

Examples All these statements set num to 4:

integer i, num

i = 4
num = Abs(i)
num = Abs(4)
num = Abs(+4)
num = Abs(-4)

This statement returns 4.2:

Abs(-4.2)

See also Abs method for DataWindows in the DataWindow Reference or online Help

ACos
Description Calculates the arccosine of an angle.

Syntax ACos (n)

Return value Double. Returns the arccosine of n.

Examples This statement returns 0:

ACos(1)

This statement returns 3.141593 (rounded to six places):

ACos(-1)

Argument Description

n The number for which you want the absolute value

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want
a corresponding angle (in radians). The ratio must be a value
between -1 and 1.
334 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This statement returns 1.000000 (rounded to six places):

ACos(.540302)

This code in the Clicked event of a button catches a runtime error that occurs
when an arccosine is taken for a user-entered value—passed in a variable—that
is outside of the permitted range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.getmessage())
END TRY

See also Cos
ASin
ATan
ACos method for DataWindows in the DataWindow Reference or online Help

Activate
Description Activates the object in an OLE container, allowing the user to work with the

object using the server’s commands.

Applies to OLE controls and OLE DWObjects (objects within a DataWindow object that
is within a DataWindow control)

Syntax objectref.Activate (activationtype)

Argument Description

objectref The name of the OLE control or the fully qualified name of a OLE
DWObject within a DataWindow control that contains the object
you want to activate.

The fully qualified name for a DWObject has this syntax:

dwcontrol.Object.dwobjectname
PowerScript Reference 335

Activate
Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Container is empty
-2 Invalid verb for object
-3 Verb not implemented by object
-4 No verbs supported by object
-5 Object cannot execute verb now
-9 Other error

If any argument’s value is null, Activate returns null.

Examples This example activates the object in ole_1 in the server application:

integer result
result = ole_1.Activate(OffSite!)

This example activates the OLE DWObject ole_graph in the DataWindow
control dw_1 in the Microsoft Graph server application:

integer result
result = dw_1.Object.ole_graph.Activate(OffSite!)

See also DoVerb
OLEActivate in the DataWindow Reference or the online Help
SelectObject

activationtype
(optional)

A value of the enumerated datatype omActivateType specifying
where the user will work with the OLE object. Values are:

• InPlace! – (Default) The object is activated within the control.
The subset of menus provided by the server application are
merged with the PowerBuilder application’s menus.

• OffSite! – The object is activated in the server application, which
gives the user access to more of the server application’s
functionality.

For the OLE control, activationtype is required.

Argument Description
336 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
AddCategory
Description Adds a new category to the category axis of a graph. AddCategory is for a

category axis whose datatype is string.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects because their data comes directly from the DataWindow.

Syntax controlname.AddCategory (categoryname)

Return value Integer. Returns the number assigned to the category if it succeeds. If
categoryname already exists as a label on the category axis, AddCategory
returns the number of the existing category. Returns -1 if an error occurs. If any
argument’s value is null, AddCategory returns null.

Usage AddCategory adds a category to the end of the category axis. The category
becomes an empty slot in each series to which you can assign a data point. A
tick mark exists on the category axis for all the categories associated with the
graph.

When the datatype of the category axis is string, you can specify the empty
string ("") as the category name. However, because category names must be
unique, there can be only one category with that name. Category names are
unique if they have different capitalization.

To add categories when the axis datatype is date, DateTime, number, or time,
use InsertCategory. To insert a category in the middle of a series, use
InsertCategory. You can also use InsertCategory to add a category to the end of
a series, as AddCategory does, but it requires an additional argument to do so.

To add data to a series in the graph, use the AddData or InsertData function. You
can add a data value and put it in a new category, or you can add or change data
in an existing category. To add a series to the graph, use the AddSeries function.

Examples This statement adds a category named PCs to the graph gr_product_data:

gr_product_data.AddCategory("PCs")

See also AddData
AddSeries
DeleteData
DeleteSeries

Argument Description

controlname The name of the graph to which you want to add a category.

categoryname A string whose value is the name of the category you want to
add to controlname. The category will appear as a label on the
category axis.
PowerScript Reference 337

AddColumn
AddColumn
Description Adds a column with a specified label, alignment, and width.

Applies to ListView controls

Syntax listviewname.AddColumn (label, alignment, width)

Return value Integer. Returns the column index if it succeeds and -1 if an error occurs.

Usage The AddColumn function adds a column at the end of the existing columns
unlike the InsertColumn function which inserts a column at a specified location.

Use SetItem and SetColumn to change the values for existing items. To add new
items, use AddItem. To create columns for the report view of a ListView
control, use AddColumn.

Examples This script for a ListView event creates three columns in a ListView control:

integer index

FOR index = 3 to 25
 This.AddItem ("Category " + String (index), 1)
NEXT

This.AddColumn("Name" , Left! , 1000)
This.AddColumn("Size" , Left! , 400)
This.AddColumn("Date" , Left! , 300)

See also AddItem
DeleteColumn
InsertColumn

Argument Description

listviewname The name of the ListView control to which you want to
add a column.

label A string whose value is the name of the column you are
adding.

alignment A value of the enumerated datatype Alignment specifying
the alignment of the column you are adding. Values are:

• Center!

• Justify!

• Left!

• Right!

width An integer whose value is the width of the column you are
adding, in PowerBuilder units.
338 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
AddData
Adds a value to the end of a series of a graph. The syntax you use depends on
the type of graph.

Syntax 1 For all graph types except scatter
Description Adds a data point to a series in a graph. Use Syntax 1 for any graph type except

scatter graphs.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects because their data comes directly from the DataWindow.

Syntax controlname.AddData (seriesnumber, datavalue {, categoryvalue })

Return value Long. Returns the position of the data value in the series if it succeeds and -1 if
an error occurs. If any argument’s value is null, AddData returns null.

To add data to Use

Any graph type except scatter Syntax 1

Scatter graphs Syntax 2

Argument Description

controlname The name of the graph in which you want to add data to a
series. The graph’s type should not be scatter.

seriesnumber The number that identifies the series to which you want to add
data.

datavalue The value of the data you want to add.

categoryvalue
(optional)

The category for this data value on the category axis. The
datatype of the categoryvalue should match the datatype of
the category axis. In most cases you should include
categoryvalue. Otherwise, an uncategorized value will be
added to the series.
PowerScript Reference 339

AddData
Usage When you use Syntax 1, AddData adds a value to the end of the specified series
or to the specified category, if it already exists. If categoryvalue is a new
category, the category is added to the end of the series with a label for the data
point’s tick mark. If the axis is sorted, the new category is incorporated into the
existing order. If the category already exists, the new data replaces the old data
at the data point for the category.

For example, if the third category label specified in series 1 is March and you
add data in series 4 and specify the category label March, the data is added at
data point 3 in series 4.

When the axis datatype is string, you can specify the empty string ("") as the
category name. Because category names must be unique, there can be only one
category with a blank name. If you use AddData to add data without specifying
a category, you will have data points without categories, which is not the same
as a category whose name is "".

To insert data in the middle of a series, use InsertData. You can also use
InsertData to add data to the end of a series, as AddData does, although it
requires an additional argument to do it.

For a comparison of AddData, InsertData, and ModifyData, see Equivalent
Syntax in InsertData.

Examples These statements add a data value of 1250 to the series named Costs and assign
the data point the category label Jan in the graph gr_product_data:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.AddData(SeriesNbr, 1250, "Jan")

These statements add a data value of 1250 to the end of the series named Costs
in the graph gr_product_data but do not assign the data point to a category:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.AddData(SeriesNbr, 1250)

See also DeleteData
FindSeries
GetData
InsertData
340 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For scatter graphs
Description Adds a data point to a series in a scatter graph.

Syntax controlname.AddData (seriesnumber, xvalue, yvalue)

Return value Long. Returns the position of the data value in the series if it succeeds and -1 if
an error occurs. If any argument’s value is null, AddData returns null.

Examples These statements add the x and y values of a data point to the series named
Costs in the scatter graph gr_sales_yr:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = gr_sales_yr.FindSeries("Costs")
gr_sales_yr.AddData(SeriesNbr, 12, 3)

See also DeleteData
FindSeries
GetData

AddItem
Adds an item to a list control.

Argument Description

controlname The name of the scatter graph in which you want to add data
to a series. The graph’s type should be scatter.

seriesnumber The number that identifies the series to which you want to add
data.

xvalue The x value of the data point you want to add.

yvalue The y value of the data point you want to add.

To add an item to Use

A ListBox or DropDownListBox control Syntax 1

A PictureListBox or DropDownPictureListBox control Syntax 2

A ListView control when you only need to specify the item
name and picture index

Syntax 3

A ListView control when you need to specify all the
properties for the item

Syntax 4
PowerScript Reference 341

AddItem
Syntax 1 For ListBox and DropDownListBox controls
Description Adds a new item to the list of values in a list box.

Applies to ListBox and DropDownListBox controls

Syntax listboxname.AddItem (item)

Return value Integer. Returns the position of the new item. If the list is sorted, the position
returned is the position of the item after the list is sorted. Returns -1 if it fails.
If any argument’s value is null, AddItem returns null.

Usage If the ListBox already contains items, AddItem adds the new item to the end of
the list. If the list is sorted (its Sorted property is true), PowerBuilder re-sorts
the list after the item is added.

A list can have duplicate items. Items in the list are tracked by their position in
the list, not their text.

AddItem and InsertItem do not update the Items property array. You can use
FindItem to find items added at runtime.

Adding many items to a list with a horizontal scroll bar If a ListBox or
the ListBox portion of a DropDownListBox will have a large number of items
and you want to display an HScrollBar, call the SetRedraw function to turn
Redraw off, add the items, call SetRedraw again to set Redraw on, and then set
the HScrollBar property to true. Otherwise, it may take longer than expected to
add the items.

Examples This example adds the item Edit File to the ListBox lb_Actions:

integer rownbr
string s

s = "Edit File"
rownbr = lb_Actions.AddItem(s)

If lb_Actions contains Add and Run and the Sorted property is false, the
statement above returns 3 (because Edit File becomes the third and last item).
If the Sorted property is true, the statement above returns 2 (because Edit File
becomes the second item after the list is sorted alphabetically).

See also DeleteItem, FindItem, InsertItem, Reset, TotalItems

Argument Description

listboxname The name of the ListBox or DropDownListBox in which you want
to add an item

item A string whose value is the text of the item you want to add
342 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For PictureListBox and DropDownPictureListBox
controls

Description Adds a new item to the list of values in a picture list box.

Applies to PictureListBox and DropDownPictureListBox controls

Syntax listboxname.AddItem (item {, pictureindex })

Return value Integer. Returns the position of the new item. If the list is sorted, the position
returned is the position of the item after the list is sorted. Returns -1 if it fails.
If any argument’s value is null, AddItem returns null.

Usage If you do not specify a picture index, the newly added item will not have a
picture.

If you specify a picture index that does not exist, that number is still stored with
the picture. If you add pictures to the picture array so that the index becomes
valid, the item will then show the corresponding picture.

For additional notes about items in list boxes, see Syntax 1.

Examples This example adds the item Cardinal to the PictureListBox plb_birds:

integer li_pic, li_position
string ls_name, ls_pic

li_pic = plb_birds.AddPicture("c:\pics\cardinal.bmp")
ls_name = "Cardinal"
li_position = plb_birds.AddItem(ls_name, li_pic)

If plb_birds contains Robin and Swallow and the Sorted property is false, the
AddItem function above returns 3 because Cardinal becomes the third and last
item. If the Sorted property is true, AddItem returns 1 because Cardinal is first
when the list is sorted alphabetically.

See also DeleteItem
FindItem
InsertItem
Reset
TotalItems

Argument Description

listboxname The name of the PictureListBox or DropDownPictureListBox in
which you want to add an item

item A string whose value is the text of the item you want to add

pictureindex
(optional)

An integer specifying the index of the picture you want to associate
with the newly added item
PowerScript Reference 343

AddItem
Syntax 3 For ListView controls
Description Adds an item to a ListView control.

Applies to ListView controls

Syntax listviewname.AddItem (label, pictureindex)

Return value Integer. Returns the index of the item if it succeeds and -1 if an error occurs.

Usage Use this syntax if you only need to specify the label and picture index of the
item you are adding to the ListView. If you need to specify more than the label
and picture index, use Syntax 4.

Examples This example uses AddItem in the Constructor event to add three items to a
ListView control:

lv_1.AddItem("Sanyo" , 1)
lv_1.AddItem("Onkyo" , 1)
lv_1.AddItem("Aiwa" , 1)

See also DeleteItem
FindItem
InsertItem
Reset
TotalItems

Argument Description

listviewname The name of the ListView control to which you are adding a
picture or item

label The name of the item you are adding

pictureindex The index of the picture you want to associate with the newly
added item
344 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 4 For ListView controls
Description Adds an item to a ListView control by referencing all the attributes in the

ListView item.

Applies to ListView controls

Syntax listviewname.AddItem (item)

Return value Integer. Returns the index of the item if it succeeds and -1 if an error occurs.

Usage Use this syntax if you need to specify all the properties for the item you want
to add. If you only need to specify the label and picture index, use Syntax 3.

Examples This example uses AddItem in a CommandButton Clicked event to add a
ListView item for each click:

count = count + 1
listviewitem l_lvi
l_lvi.PictureIndex = 2
l_lvi.Label = "Item "+ string(count)
lv_1.AddItem(l_lvi)

See also DeleteItem
FindItem
InsertItem
Reset
TotalItems

Argument Description

listviewname The name of the List View control to which you are adding a
picture or item

item The ListViewItem variable containing properties of the item
you are adding
PowerScript Reference 345

AddLargePicture
AddLargePicture
Description Adds a bitmap, icon, or cursor to the large image list.

Applies to ListView controls

Syntax listviewname.AddLargePicture (picturename)

Return value Integer. Returns the picture index if it succeeds and -1 if an error occurs.

Usage When you add a large picture to a ListView, it is given the next available
picture index in the ListView. For example, if your ListView has two pictures,
the next picture you add will be assigned picture index number 3.

Before you add large pictures, you can specify scaling for the pictures by
setting the LargePictureWidth and LargePictureHeight properties. The
dimensions in effect when you add the first picture determine the scaling for all
pictures. Changing the property values after you add pictures has no effect.

If you do not specify values for LargePictureWidth and LargePictureHeight
before you add pictures, the dimensions of the first image determine the scaling
for all pictures you add.

When you add a bitmap, specify the color in the bitmap that will be transparent
by setting the LargePictureMaskColor property before calling
AddLargePicture. You can change the LargePictureMaskColor property
between calls.

Examples This example adds the file folder.ico"to the large picture index of the ListView
lv_files:

// Add large picture
integer index
index = lv_files.AddLargePicture("folder.ico")

See also DeleteLargePicture

Argument Description

listviewname The name of the ListView control to which you are adding
a bitmap, icon, or cursor

picturename The name of the bitmap, icon, or cursor you are adding to
the large image list
346 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
AddPicture
Description Adds a bitmap, icon, or cursor to the main image list.

Applies to PictureListBox, DropDownPictureListBox, and TreeView controls

Syntax controlname.AddPicture (picturename)

Return value Integer. Returns the picture index number if it succeeds and -1 if an error
occurs.

Usage The picture is assigned an index in the order in which it is added to the control.

Adding pictures at runtime does not update the PictureName property array.
Because the picture is added at the end of the list, the return value from
AddPicture is the number of pictures associated with the control.

Before you add pictures, you can specify scaling for the pictures by setting the
PictureWidth and PictureHeight properties. The dimensions in effect when you
add the first picture determine the scaling for all pictures. Changing the
property values after you add pictures has no effect.

If you do not specify values for PictureWidth and PictureHeight before you add
pictures, the dimensions of the first image determine the scaling for all pictures
you add.

When a you add a bitmap, specify the color in the bitmap that will be
transparent by setting the PictureMaskColor property before calling
AddPicture. You can change the PictureMaskColor property between calls.

Examples This example adds a picture to a TreeView control and associates it with a new
TreeView item:

long ll_tvi
integer li_picture
li_picture = &
tv_list.AddPicture("c:\apps_pb\staff.ico")
ll_tvi = tv_list.FindItem(RootTreeItem!, 0)
tv_list.InsertItemFirst(ll_tvi, "Dept.", li_picture)

See also DeletePicture

Argument Description

controlname The name of the control to which you want to add an icon, cursor,
or bitmap to the main image list

picturename The name of the icon, cursor, or bitmap you want to add to the main
image list
PowerScript Reference 347

AddSeries
AddSeries
Description Adds a series to a graph, naming it with the specified name. The new series is

also assigned a number. A graph’s series are numbered consecutively,
according to the order in which they are added.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects because their data comes directly from the DataWindow.

Syntax controlname.AddSeries (seriesname)

Return value Integer. Returns the number assigned to the series if it succeeds. If seriesname
is a duplicate, AddSeries returns the number of the existing series. If an error
occurs, it returns -1. If any argument’s value is null, AddSeries returns null.

Usage Adds seriesname to the graph controlname and assigns the series a number.
The number identifies the series within the graph. The numbers are assigned in
sequence. The first series you add to the graph is assigned number 1 and is the
first series displayed in the graph; the next is assigned 2; and so on.

The series name must be unique within the graph. If you specify a name that
already exists in the graph, AddSeries returns the number of the existing series.
Series names are unique if they have different capitalization. The series name
can be an empty string (""). However, because series names must be unique,
only one series can have a blank name. If you want to insert a series in the
middle of the list, use InsertSeries. You can also use InsertSeries to add a series
to the end of the list, as AddSeries does, although it requires an additional
argument to do it.

To add data to a series in the graph, use the AddData or InsertData function. To
add a category to a series, use the InsertCategory or AddCategory function.

Examples These statements add the series named Costs to the graph gr_product_data:

integer series_nbr
series_nbr = gr_product_data.AddSeries("Costs")

These statements add an unnamed series to the graph gr_product_data:

integer series_nbr
series_nbr = gr_product_data.AddSeries("")

See also AddCategory, AddData, DeleteData, DeleteSeries, FindSeries,
InsertCategory, InsertSeries, SeriesCount, SeriesName

Argument Description

controlname The name of the graph in which you want to add a series

seriesname A string whose value is the name of the series you want to add to
controlname
348 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
AddSmallPicture
Description Adds a bitmap, icon, or cursor to the small image list.

Applies to ListView controls

Syntax listviewname.AddSmallPicture (picturename)

Return value Integer. Returns the picture index if it succeeds and -1 if an error occurs.

Usage When you add a small picture to a ListView control, it is given the next
available picture index in the ListView. For example, if your ListView has two
pictures, the next picture you add will have index number 3.

Before you add small pictures, you can specify scaling for the pictures by
setting the SmallPictureWidth and SmallPictureHeight properties. The
dimensions in effect when you add the first picture determine the scaling for all
pictures. Changing the property values after you add pictures has no effect.

If you do not specify values for SmallPictureWidth and SmallPictureHeight
before you add pictures, the dimensions of the first image determine the scaling
for all pictures you add.

Before you call AddSmallPicture, specify the color in the bitmap that will be
transparent by setting the SmallPictureMaskColor property. You can change
the SmallPictureMaskColor property between calls.

Examples This example adds the file "shortcut.ico" to the small picture index of the
ListView lv_files:

//Add small picture
integer index
index = lv_files.AddSmallPicture("shortcut.ico")

See also DeleteSmallPicture

Argument Description

listviewname The name of the ListView control to which you are adding a small
image

picturename The name of the bitmap, icon, or cursor you are adding to the
ListView control small image list
PowerScript Reference 349

AddStatePicture
AddStatePicture
Description Adds a bitmap, icon, or cursor to the state image list.

Applies to ListView and TreeView controls

Syntax controlname.AddStatePicture (picturename)

Return value Integer. Returns the picture index if it succeeds and -1 if an error occurs.

Usage For ListViews in large icon view, the state picture is a picture displayed to the
left of the large picture, by default in a smaller size. For TreeViews, the state
picture is displayed to the left of the regular picture and the item is moved to
the right to make room for it.

If you specify either StatePictureWidth or StatePictureHeight, the picture is
scaled to the size specified by that property.

When a you add a bitmap, specify the color in the bitmap that will be
transparent by setting the StatePictureMaskColor property before calling
AddPicture. You can change the StatePictureMaskColor property between
calls.

Examples This example adds the file star.ico to the state picture index of the ListView
lv_files:

//Add state picture
integer index
index = lv_files.AddStatePicture("star.ico")

See also DeleteStatePicture

Argument Description

controlname The name of the ListView or TreeView control to which you are
adding a bitmap, cursor, or icon

picturename The name of the bitmap, icon, or cursor you are adding
350 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
AddToLibraryList
Description Adds new files to the library search path of an application or component at

runtime.

Syntax AddToLibraryList (filelist)

Return value Integer. Returns 1 if it succeeds. If an error occurs, it returns:

-1 The application or component is being run in the PowerBuilder
development environment, rather than from a standalone executable or
server.

-2 The new library list or existing library list is empty, or another internal
error has occurred.

Usage When an application needs to load an object, PowerBuilder searches for the
object first in the executable file and then in the dynamic libraries specified for
the application. For a deployed component, PowerBuilder searches the PBD
files in the component’s library list. You can specify additional library files
with AddToLibraryList.

Calling AddToLibraryList appends a new list of files, in the order in which they
are specified in filelist, to the list of library files specified in the target. If filelist
contains a file name that is already in the library list, that file name is not added
to the library list. If filelist contains more than one occurrence of a given file
name, the first occurrence is added to the library list.

To avoid problems that can occur when components share resources, you
should use AddToLibraryList instead of SetLibraryList to add additional PBD
files to the search list of a component deployed to EAServer.

PowerBuilder cannot check whether the libraries you specify are appropriate
for the application. It is up to you to make sure the libraries contain the objects
that the application or component needs.

This function has no effect in the PowerBuilder development environment.

Argument Description

filelist A comma-separated list of file names. Specify the full file
name with its extension. If you do not specify a path,
PowerBuilder uses the system’s search path to find the file.
PowerScript Reference 351

Arrange
Examples This example adds different PBDs to the library search path depending on
whether product or customer processing is to be performed:

CHOOSE CASE processkind
CASE "product"

AddToLibraryList(prod.pbd)
CASE "customer"

AddToLibraryList(cust.pbd)
END CHOOSE

See also GetLibraryList
SetLibraryList

Arrange
Description Arranges the icons in rows.

Applies to ListView controls

Syntax listviewname.Arrange ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Can only be used with large icon and small icon views.

Examples This example arranges the icons in a ListView control:

lv_list.Arrange()

Argument Description

listviewname The name of the ListView control in which you want to arrange
icons
352 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ArrangeSheets
Description Arranges the windows contained in an MDI frame. (Windows that are

contained in an MDI frame are called sheets.) You can arrange the open sheets
and the icons of minimized sheets or just the icons.

Applies to MDI frame windows

Syntax mdiframe.ArrangeSheets (arrangetype)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ArrangeSheets returns null.

Examples This statement in the script for the Clicked event for an item on a menu tiles
the open sheets that are not minimized in the MDI frame window called
MDI_User:

MDI_User.ArrangeSheets(Tile!)

This statement in the script for the Clicked event for an item on a menu
arranges the icons of the minimized sheets at the bottom of the MDI frame
window called MDI_User:

MDI_User.ArrangeSheets(Icons!)

See also GetActiveSheet
OpenSheet

Argument Description

mdiframe The name of an MDI frame window.

arrangetype A value of the ArrangeTypes enumerated datatype specifying how
you want the open sheets arranged in the MDI frame window.
Values are:

• Cascade! – Cascade the sheets that are not minimized so that
each sheet’s title bar is visible and arrange icons of minimized
sheets in a row at the bottom of the frame.

• Layer! – Layer the sheets that are not minimized so that each
sheet completely covers the one below it and arrange icons of
minimized sheets in a row at the bottom of the frame.

• Tile! – Tile the sheets that are not minimized so that they do not
overlap and arrange icons of minimized sheets in a row at the
bottom of the frame.

• TileHorizontal! – Tile the sheets that are not minimized so that
each is beside the other without overlapping and arrange icons of
minimized sheets in a row at the bottom of the frame.

• Icons! – Arrange the minimized sheets in a row at the bottom of
the frame.
PowerScript Reference 353

Asc
Asc
Description Converts the first character of a string to its Unicode code point. A code point

is the numerical integer value given to a Unicode character. .

Syntax Asc (string)

Return value Unsigned Integer. Returns the code point value of the first character in string.
If string is null, Asc returns null.

Usage You can use Asc to find out the case of a character by testing whether its code
point value is within the appropriate range.

Examples This statement returns 65, the code point value for uppercase A:

Asc("A")

This example checks if the first character of string ls_name is uppercase:

String ls_name
IF Asc(ls_name) > 64 and Asc(ls_name) < 91 THEN ...

See also AscA
Char
Mid
Asc method for DataWindows in the DataWindow Reference or online Help

AscA
Description Converts the first character of a string to its ASCII integer value.

Syntax AscA (string)

Return value Integer. Returns the ASCII value of the first character in string. If string is null,
AscA returns null.

Usage You can use AscA to find out the case of a character by testing whether its
ASCII value is within the appropriate range. A separate function, Asc, is
provided to return the Unicode code point of a character.

Argument Description

string The string for which you want the code point value of the first
character

Argument Description

string The string for which you want the ASCII value of the first character
354 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This statement returns 65, the ASCII value for uppercase A:

AscA("A")

This example checks if the first character of string ls_name is uppercase:

String ls_name
IF AscA(ls_name) > 64 and AscA(ls_name) < 91 THEN ...

This example is a function that converts an array of integers into a string. Each
integer specifies two characters. Its low byte is the first character in the pair and
the high byte (ASCII * 256) is the second character. The function has an
argument (iarr) which is the integer array:

string str_from_int, hold_str
integer arraylen

arraylen = UpperBound(iarr)

FOR i = 1 to arraylen
 // Convert first character of pair to a char
 hold_str = CharA(iarr[i])

 // Add characters to string after converting
 // the integer's high byte to char
 str_from_int += hold_str + &

CharA((iarr[i] - AscA(hold_str)) / 256)
NEXT

For sample code that builds the integer array from a string, see Mid.

See also Asc
CharA
Mid
AscA method for DataWindows in the DataWindow Reference or online Help
PowerScript Reference 355

ASin
ASin
Description Calculates the arcsine of an angle.

Syntax ASin (n)

Return value Double. Returns the arcsine of n.

Examples This statement returns .999998 (rounded to six places):

ASin(.84147)

This statement returns .520311 (rounded to six places):

ASin(LogTen (Pi (1)))

This statement returns 0:

ASin(0)

This code in the Clicked event of a button catches a runtime error that occurs
when an arcsine is taken for a user-entered value—passed in a variable—that
is outside of the permitted range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (asin (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.getmessage())
END TRY

See also Sin
ACos
ATan
Pi
ASin method for DataWindows in the DataWindow Reference or online Help

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want
a corresponding angle (in radians). The ratio must be a value
between -1 and 1.
356 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ATan
Description Calculates the arctangent of an angle.

Syntax ATan (n)

Return value Double. Returns the arctangent of n.

Examples This statement returns 0:

ATan(0)

This statement returns 1.000 (rounded to three places):

ATan(1.55741)

This statement returns 1.267267 (rounded to six places):

ATan(Pi(1))

See also Tan
ASin
ACos
ATan method for DataWindows in the DataWindow Reference or online Help

Beep
Description Causes the computer to beep up to 10 times.

Syntax Beep (n)

Return value Integer. Returns 1 if it succeeds and -1 if it fails. If n is null, Beep returns null.
The return value usually is not used.

Examples This statement causes the computer to beep five times:

Beep(5)

Argument Description

n The ratio of the lengths of two sides of a triangle for which you want
a corresponding angle (in radians)

Argument Description

n The number of times you want the computer to beep. If n is greater
than 10, the computer beeps 10 times.
PowerScript Reference 357

BeginTransaction
BeginTransaction
Description Creates an EAServer transaction and associates it with the calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.BeginTransaction ()

Return value Boolean. Returns true if it succeeds and false if the transaction could not be
created.

Usage The BeginTransaction function creates a transaction and modifies the
transaction context of the calling thread so that it is associated with the
transaction. This enables the calling thread to obtain information about the
transaction and control commits and rollbacks. BeginTransaction can be called
by a client or a component that is marked as OTS style. EAServer must be
using the two-phase commit transaction coordinator (OTS/XA). If the calling
thread is already associated with a transaction, BeginTransaction returns false.
Nested transactions are not supported.

Examples This example shows the use of BeginTransaction to create a transaction from a
client:

// Instance variables:
// CORBACurrent corbcurr
// Connection myconnect
long ll_rc
integer li_rc1, li_rc2
boolean lb_success
ll_rc = myconnect.ConnectToServer()
// insert error handling ...
li_rc1 = this.GetContextService("CORBACurrent", &
 corbcurr)
// insert error handling ...
li_rc2 = corbcurr.Init(myconnect)
// insert error handling ...
lb_success = corbcurr.BeginTransaction()
IF NOT lb_success THEN
MessageBox ("Create Transaction Failed", &
 "The client may already be in a transaction")
 RETURN
ELSE
 ll_rc = myconnect.CreateInstance(lcst_mybookstore)
 // begin processing
...

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
358 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
See also CommitTransaction, GetContextService, GetStatus, GetTransactionName,
Init, ResumeTransaction, RollbackOnly, RollbackTransaction, SetTimeout,
SuspendTransaction

Blob
Converts a string or byte array to a blob.

Syntax 1 Convert a string to a blob
Description Converts a string to a blob datatype.

Syntax Blob (text {, encoding})

Return value Blob. Returns the converted string in a blob with the requested encoding, if
specified. If text is null, Blob returns null.

Usage If the encoding argument is not provided, Blob converts a Unicode string to a
Unicode blob. You must provide the encoding argument if the blob has a
different encoding.

Examples This example saves a text string as a Unicode blob:

Blob B
B = Blob("Any Text")

This example saves a text string as a blob with UTF-8 encoding:

Blob Blb
Blb = Blob("Any Text", EncodingUTF8!)

To Use

Convert a string to a blob Syntax 1

Convert a string or byte array to a blob Syntax 2

Argument Description

text The string you want to convert to a blob datatype

encoding Character encoding of the resulting blob. Values are:

• EncodingANSI!

• EncodingUTF8!

• EncodingUTF16LE! (default)

• EncodingUTF16BE!
PowerScript Reference 359

Blob
See also BlobEdit
BlobMid
String

Syntax 2 Convert a string or a byte array to a blob
Description Converts a string or an array of bytes to a blob datatype.

Syntax Blob (array[])

Return value Blob. Returns the converted string or byte array in a blob.

Examples This example saves an array of bytes as a blob, then copies the contents of the
blob to another byte array:

Blob lblb_1
Any a
byte lbyte_array[], lbyte_array2[]

// initialize array
lbyte_array[] = {1,10,100,200,255}

a = lbyte_array
lblb_1 = Blob(a)

lbyte_array2[] = GetByteArray(lblb_1)

See also GetByteArray

Argument Description

stringorbytear
ray

An Any variable that holds a string or an array of bytes you want to
convert to a blob datatype
360 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
BlobEdit
Description Inserts data of any PowerBuilder datatype into a blob variable.

Syntax BlobEdit (blobvariable, n, data {, encoding})

Return value Unsigned long. Returns the position at which the next data can be copied if it
succeeds, and returns null if there is not enough space in blobvariable to copy
the data. If any argument’s value is null, BlobEdit returns null.

If the data argument is a string, the position in the blobvariable in which you
want to copy data will be the length of the string + 2. If the data argument is a
string converted to a blob, the position will be the length of the string + 1. This
is because a string contains a null terminating character that it loses when it is
converted to a blob. Thus, BlobEdit (blob_var, 1, "ZZZ'') returns 5,
while BlobEdit (blob_var, 1, blob (''ZZZ'')) returns 4.

Use the encoding parameter if the data argument is a string and you want to
generate a blob with a specific encoding.

Examples This example copies a bitmap in the blob emp_photo starting at position 1,
stores the position at which the next copy can begin in nbr, and then copies a
date into the blob emp_photo after the bitmap data:

blob{1000} emp_photo
blob temp
date pic_date
ulong nbr

... // Read BMP file containing employee picture

... // into temp using FileOpen and FileRead.
pic_date = Today()

Argument Description

blobvariable An initialized variable of the blob datatype into which you want to
copy a standard PowerBuilder datatype

n The number (1 to 4,294,967,295) of the position in blobvariable at
which you want to begin copying the data

data Data of a valid PowerBuilder datatype that you want to copy into
blobvariable

encoding Character encoding of the blob variable in which you want to insert
data of datatype string. Values are:

• EncodingANSI!

• EncodingUTF8!

• EncodingUTF16LE! (default)

• EncodingUTF16BE!
PowerScript Reference 361

BlobMid
nbr = BlobEdit(emp_photo, 1, temp)
BlobEdit(emp_photo, nbr, pic_date)
UPDATEBLOB Employee SET pic = :emp_photo
 WHERE ...

This example copies a string into the blob blb_data starting at position 1 and
specifies that the blob should use ANSI encoding:

blob{100} blb_data
string str1 = "This is a string"
ulong ul_pos

ul_pos = BlobEdit (blb_data, 1, str1, EncodingANSI!)

See also Blob
BlobMid

BlobMid
Description Extracts data from a blob variable.

Syntax BlobMid (data, n {, length })

Return value Blob. Returns length bytes from data starting at byte n. If n is greater than the
number of bytes in data, BlobMid returns an empty blob. If together length and
n add up to more bytes than the blob contains, BlobMid returns the remaining
bytes, and the returned blob will be shorter than the specified length. If any
argument’s value is null, BlobMid returns null.

Include terminator character
String variables contain a zero terminator, which accounts for one byte. Include
the terminator character when calculating how much data to extract.

Argument Description

data Data of the blob datatype

n The number (1 to 4,294,967,295) of the first byte you want returned

length
(optional)

The number of bytes (1 to 4,294,967,295) you want returned
362 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples In this example, the first call to BlobMid stores 10 bytes of the blob datablob
starting at position 5 in the blob data_1; the second call stores the bytes of
datablob from position 5 to the end in data_2:

blob data_1, data_2, datablob

... // Read a blob datatype into datablob.

data_1 = BlobMid(datablob, 5, 10)
data_2 = BlobMid(datablob, 5)

This code copies a bitmap in the blob emp_photo starting at position 1, stores
the position at which the next copy can begin in nbr, and then copies a date into
the blob emp_photo after the bitmap data. Then, using the date’s start position,
it extracts the date from the blob and displays it in the StaticText st_1:

blob{1000} emp_photo
blob temp
date pic_date
ulong nbr

... // Read BMP file containing employee picture

... // into temp using FileOpen and FileRead.

pic_date = Today()
nbr = BlobEdit(emp_photo, 1, temp)
BlobEdit(emp_photo, nbr, pic_date)
st_1.Text = String(Date(BlobMid(emp_photo, nbr)))

See also Blob
BlobEdit
PowerScript Reference 363

BuildModel
BuildModel
Description Builds either a performance analysis or trace tree model based on the trace file

you have specified with the SetTraceFileName function. Optional arguments let
you monitor the progress of the build or interrupt it.

You must specify the trace file to be modeled using the SetTraceFileName
function before calling BuildModel.

Applies to Profiling and TraceTree objects

Syntax instancename.BuildModel ({ progressobject, eventname, triggerpercent })

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotSetError! – TraceFileName has not been set

• ModelExistsError! – A model has already been built

• EnterpriseOnlyFeature! – This function is supported only in the Enterprise
edition of PowerBuilder

• EventNotFoundError! – The event cannot be found on the passed
progressobject, so the model cannot be built

• EventWrongPrototypeError! – The event was found but does not have the
proper prototype, so the model cannot be built

• SourcePBLError! – The source libraries cannot be found, so the model
cannot be built

Argument Description

instancename Instance name of the Profiling or TraceTree object

progressobject
(optional)

A PowerObject that represents the number of activities that
have been processed

eventname
(optional)

A string specifying the name of an event you define

triggerpercent
(optional)

A long identifying the number of activities the BuildModel
function should process before triggering the eventname event
364 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage The BuildModel function extracts raw data from a trace file and maps it to
objects that can be acted upon by PowerScript functions. If you want to build
a model of your trace file without recording the progress of the build, call
BuildModel without any of its optional arguments. If you want to receive
progress information while the model is being created or if you want to be able
to interrupt a BuildModel that is taking too long to complete, call BuildModel
with its optional arguments.

The event eventname on the passed progressobject is triggered when the
number of activities indicated by the triggerpercent argument are processed. If
the value of triggerpercent is 0, eventname is triggered for every activity. If the
value of triggerpercent is greater than 100, eventname is never triggered. You
define this event using this syntax:

eventname (currentactivity, totalnumberofactivities)

Eventname returns a boolean value. If it returns false, the processing initiated
by the BuildModel function is canceled and any temporary storage is cleaned up.
If you need to stop BuildModel processing that is taking too long, you can return
a false value from eventname. The script you write for eventname determines
how progress is monitored. For example, you might display progress or simply
check whether the processing must be canceled.

Examples This example creates a performance analysis model of a trace file:

Profiling lpro_model
String ls_filename

lpro_model = CREATE Profiling
lpro_model.SetTraceFileName(ls_filename)
lpro_model.BuildModel()

This example creates a trace tree model of a trace file:

TraceTree ltct_model
String ls_filename

ltct_model = CREATE TraceTree
ltct_model.SetTraceFileName(ls_filename)
ltct_model.BuildModel()

Argument Description

eventname Name of the event

currentactivity A long identifying the number of the current activity

totalnumberofactivities A long identifying the total number of activities in the
trace file
PowerScript Reference 365

BuildModel
This example creates a performance analysis model that provides progress
information as the model is built. The eventname argument to BuildModel is
called ue_progress and is triggered each time five percent of the activities have
been processed. The progress of the build is shown in a window called
w_progress that includes a Cancel button:

Profiling lpro_model
String ls_filename
Boolean lb_cancel

lpro_model = CREATE Profiling
lb_cancel = false
lpro_model.SetTraceFileName(ls_filename)

Open(w_progress)
// Call the of_init window function to initialize
// the w_progress window
w_progress.of_init(lpro_model.NumberOfActivities, &
 'Building Model', This, 'ue_cancel')

lpro_model.BuildModel(This, 'ue_progress', 5)

// Clicking the cancel button in w_progress
// sets lb_cancel to true and returns
// false to ue_progress
IF lb_cancel THEN &
 Close(w_progress)
 RETURN -1
END IF

See also SetTraceFileName
DestroyModel
366 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Byte
Description Converts a number into a Byte datatype or obtains a Byte value stored in a blob.

Syntax Byte (stringorblob)

Return value Byte. Returns the value of the stringorblob variable as a Byte datatype if it
succeeds; it returns 0 if the stringorblob variable is not a valid PowerScript
number or if it has an incompatible datatype. If stringorblob is null, Byte returns
null.

Usage If the number you convert exceeds the upper range of the Byte datatype (>255),
the Byte method returns the difference between the number you pass in the
stringorblob argument and the nearest multiple of 256 below that number.

If you pass a blob in the stringorblob argument, only the value of the initial
character is converted to a byte value. (There is no “overflow” when you use a
blob argument.) To get the byte value for a character at a different position in
the blob, you can use the GetByte method.

Examples This example converts a string entered in a SingleLineEdit control to a byte
value:

Byte ly_byte
ly_byte = Byte(sle_1.text)

If the text entered in the SingleLineEdit is 4, the byte value of ly_byte is 4. If
the text entered is 257, the value of ly_byte is 1. For 256 or text such as
“ABC12”, the value of ly_byte is 0.

This example returns the ASCII value of the initial character that you enter in
a SingleLineEdit control:

Byte lb_byte
Blob myBlob
myBlob = Blob(sle_1.text)
lb_byte = Byte(myBlob)

See also GetByte
SetByte

Argument Description

stringorblob A String or any numeric datatype that you want to return as a Byte,
or a Blob datatype in which the initial value is the Byte value that
you want to return. The stringorblob variable can also have an Any
datatype as long as it references a string, integer, uint, long,
longlong, or blob.
PowerScript Reference 367

Cancel
Cancel
Description Stops the execution of a pipeline object.

Applies to Pipeline objects

Syntax pipelineobject.Cancel ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Call this function only when Start or Repair is executing.

When you stop a pipeline with Cancel, data is committed as if the pipeline had
reached the maximum errors limit. You control how the pipeline behaves when
it reaches the limit in the Data Pipeline painter (see the PowerBuilder Users
Guide).

Examples This statement for a CommandButton’s Clicked script allows the user to stop
the execution of the pipeline i_pipe:

i_pipe.Cancel()

See also Repair
Start

Argument Description

pipelineobject The name of a pipeline user object that contains the pipeline
object to be executed
368 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
CancelSync
Description Cancels the synchronization process and rolls back any changes accumulated

during the processing.

Applies to MLSynchronization, MLSync controls

Syntax SyncObject.CancelSync ()

Return value Integer. Returns 1 for success and -1 for failure.

Examples The following code in the Clicked event of the Cancel button on a
wizard-generated synchronization progress window cancels the
synchronization:

long rc
rc = i_uosync.cancelsync()
IF rc = 1 THEN

mle_status.text += 'Synchronization Cancelled~r~n'
ELSE

mle_status.text += 'Cancel request failed.~r~n'
END IF

See also Synchronize

Argument Description

syncObject The name of the synchronization object that started a
synchronization process that you want to stop.
PowerScript Reference 369

CanUndo
CanUndo
Description Tests whether Undo can reverse the most recent edit for an editable control.

Applies to Any editable control (DataWindow, MultiLineEdit, SingleLineEdit,
RichTextEdit)

Syntax editname.CanUndo ()

Return value Boolean. Returns true if the last edit can be reversed (undone) using the Undo
function and false if the last edit cannot be reversed. If editname is null,
CanUndo returns null.

Examples These statements check to see if the last edit in mle_contact can be reversed; if
yes the statements reverse it, and if no they display a message:

IF mle_contact.CanUndo() THEN
 mle_contact.Undo()
ELSE
 MessageBox(Parent.Title, "Nothing to Undo")
END IF

See also Undo

Argument Description

editname The name of the DataWindow control, MultiLineEdit,
SingleLineEdit, or RichTextEdit for which you want to determine
whether the last edit can be reversed by the Undo function. In a
DataWindow, CanUndo applies to the edit control over the current
row and column.
370 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
CategoryCount
Description Counts the number of categories on the category axis of a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.CategoryCount ({ graphcontrol })

Return value Integer. Returns the count if it succeeds and -1 if an error occurs. If any
argument’s value is null, CategoryCount returns null.

Examples These statements get the number of categories in the graph gr_revenues in the
DataWindow control dw_findata:

integer li_count
li_count = &
 dw_findata.CategoryCount("gr_revenues")

These statements get the number of categories in the graph gr_product_data:
integer li_count
li_count = gr_product_data.CategoryCount()

See also DataCount
SeriesCount

Argument Description

controlname The name of the graph for which you want the number of
categories, or the name of a DataWindow control containing
the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow for which you want the number of categories.
Graphcontrol is required if controlname is a DataWindow
control.
PowerScript Reference 371

CategoryName
CategoryName
Description Obtains the category name associated with the specified category number.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls .

Syntax controlname.CategoryName ({ graphcontrol, } categorynumber)

Return value String. Returns the name of categorynumber in controlname. If an error occurs,
it returns the empty string (""). If any argument’s value is null, CategoryName
returns null.

Usage Categories are numbered consecutively, from 1 to the value returned by
CategoryCount. When you delete a category, the categories are renumbered to
keep the numbering consecutive. You can use CategoryName to find out the
named category associated with a category number.

Examples These statements obtain the name of category 5 in the graph gr_product_data:

string ls_name
ls_name = gr_product_data.CategoryName(5)

These statements obtain the name of category 5 in the graph gr_revenues in the
DataWindow control dw_findata:

string ls_name
ls_name = &
 dw_findata.CategoryName("gr_revenues", 5)

See also AddCategory
SeriesName

Argument Description

controlname The name of the graph in which you want to find the name of
a specific category, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow for which you want the name of a specific
category. Graphcontrol is required if controlname is a
DataWindow control.

categorynumber The number of the category for which you want the name.
372 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Ceiling
Description Determines the smallest whole number that is greater than or equal to a

specified limit.

Syntax Ceiling (n)

Return value The datatype of n. Returns the smallest whole number that is greater than or
equal to n. If n is null, Ceiling returns null.

Examples These statements set num to 5:

decimal dec, num
dec = 4.8
num = Ceiling(dec)

These statements set num to –4:

decimal num
num = Ceiling(-4.2)
num = Ceiling(-4.8)

See also Int
Round
Truncate
Ceiling method for DataWindows in the DataWindow Reference or online Help

Argument Description

n The number for which you want the smallest whole number that is
greater than or equal to it
PowerScript Reference 373

ChangeDirectory
ChangeDirectory
Description Changes the current directory.

Syntax ChangeDirectory (directoryname)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Examples This example changes the current directory to the parent directory of the
current directory and displays the new current directory in a SingleLineEdit
control:

ChangeDirectory("..")
sle_1.text= GetCurrentDirectory()

See also CreateDirectory
GetCurrentDirectory

Argument Description

directoryname String for the name of the directory you want to set as the current
directory
374 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ChangeMenu
Description Changes the menu associated with a window. If the window is an MDI frame

window, ChangeMenu appends the list of open sheets to the currently active
menu.

Applies to Window objects

Syntax windowname.ChangeMenu (menuname {, position })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ChangeMenu returns null. The return value is usually not used.

Usage If you are changing the menu associated with an MDI frame window, the new
menu will not be visible if an open sheet with its own menu is active. When a
sheet has its own menu, the list of open sheets appears on its menu, as well as
on the hidden menu for the frame.

In an MDI frame window, if you change to a menu with a different menu and
toolbar style (traditional or contemporary), the style of the menu changes but
the style of the toolbar does not.

Examples This statement changes the top-level menu of the w_Employee window to
m_Emp1:

w_Employee.ChangeMenu(m_Emp1)

Argument Description

windowname The name of the window for which you want to change the
menu.

menuname The name of the menu you want to make the current menu.

position
(MDI frame
windows only)

The number of the item on the menu bar to which you want to
append the names of the open sheets. Items on the menu bar
are numbered from the left, beginning with 1. The default is
0, which lists the open sheets on the menu bar’s next-to-last
menu (or the last menu if there is only one available).
PowerScript Reference 375

Char
Char
Description Extracts the first Unicode character of a string or converts an integer to a char.

Syntax Char (n)

Return value Char. Returns the first Unicode character of n. If n is null, Char returns null.

Examples This example sets ls_S to an asterisk, the character corresponding to the ASCII
value 42:

string ls_S
ls_S = Char(42)

These statements generate delivery codes A to F for the values 1 through 6 of
li_DeliveryNbr:

string ls_Delivery
integer li_DeliveryNbr

FOR li_DeliveryNbr = 1 to 6
 ls_Delivery = Char(64 + li_DeliveryNbr)
 ... // Additional processing of ls_Delivery
NEXT

See also Asc
CharA

Argument Description

n A string that begins with the character you want, an integer you
want to convert to a character, or a blob in which the first value is a
string or integer. The rest of the contents of the string or blob is
ignored. N can also be an Any variable containing a string, integer,
or blob.
376 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
CharA
Description Extracts the first ASCII character of a string or converts an integer to a char.

Syntax CharA (n)

Return value Char. Returns the first character of n. If n is null, CharA returns null.

Examples This example sets ls_S to an asterisk, the character corresponding to the ASCII
value 42:

string ls_S
ls_S = CharA(42)

These statements generate delivery codes A to F for the values 1 through 6 of
li_DeliveryNbr:

string ls_Delivery
integer li_DeliveryNbr

FOR li_DeliveryNbr = 1 to 6
 ls_Delivery = CharA(64 + li_DeliveryNbr)
 ... // Additional processing of ls_Delivery
NEXT

See also AscA
Char
Char method for DataWindows in the DataWindow Reference or online Help

Argument Description

n A string that begins with the character you want, an integer you
want to convert to a character, or a blob in which the first value is a
string or integer. The rest of the contents of the string or blob is
ignored. N can also be an Any variable containing a string, integer,
or blob.
PowerScript Reference 377

Check
Check
Description Displays a checkmark next to a menu item in a drop-down or cascading menu

and sets the menu item’s Checked property to true.

Applies to Menu objects

Syntax menuname.Check ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Check returns null.

Usage A checkmark next to a menu item indicates that the menu option is currently
on and that the user can turn the option on and off by choosing it. For example,
in the Window painter’s Design menu, a checkmark is displayed next to Grid
when the grid is on.

You can use Check in an item’s Clicked script to mark a menu item when the
user turns the option on and Uncheck to remove the check when the user turns
the option off.

Equivalent syntax You can set a menu object’s Checked property instead of
calling Check.

menuname.Checked = true

This statement:

Menu_Appl.M_View.M_Grid.Checked = TRUE

is equivalent to:

Menu_Appl.M_View.M_Grid.Check()

Examples This statement displays a checkmark next to the menu item m_Grid in the
m_View drop-down menu on the menu bar m_Appl:

m_Appl.m_View.m_Grid.Check()

See also Uncheck

Argument Description

menuname The fully qualified name of the menu next to which you want to
display a checkmark. The item must be in a drop-down or cascading
menu, not an item on a menu bar.
378 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ChooseColor
Description Displays the standard color selection dialog box.

Syntax ChooseColor (color {, customcolors [] })

Return value Integer. Returns 1 if the function succeeds, 0 if the user selects cancel (or the
dialog box is closed), -1 if an error occurs.

Examples This example displays the color selection dialog box with a base color of red
and with two different custom colors defined:

long red, green, blue
long custom[]
integer li_color

red = 255
custom[1]=rgb(red, 200, blue)
custom[2]=8344736
li_color = ChooseColor(red, custom [])

See also RGB

Argument Description

color A long passed by reference that represents the color selected in
the dialog box

customcolors
(optional)

A long array of custom colors passed by reference to the color
selection dialog box
PowerScript Reference 379

ClassList
ClassList
Description Provides a list of the classes included in a performance analysis model.

Applies to Profiling object

Syntax instancename.ClassList (list)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The function failed because no model exists

Usage You use the ClassList function to extract a list of the classes included in a
performance analysis model. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
Each class listed is defined as a ProfileClass object and provides the class
name, its parent class and type, and a list of the routines associated with that
class. The classes are listed in no particular order.

Examples This example lists the classes included in the performance analysis model:

ProfileClass lproclass_list[], lproclass_class
Profiling lpro_model
Long ll_limitclass, ll_indexclass

lpro_model = CREATE Profiling
lpro_model.BuildModel()

lpro_model.ClassList(lproclass_list)
ll_limitclass = UpperBound(lproclass_list)

FOR ll_indexclass = 1 TO ll_limitclass
 lproclass_class = lproclass_list[ll_indexclass]
 ...
NEXT

See also BuildModel

Argument Description

instancename Instance name of the Profiling object.

list An unbounded array variable of datatype ProfileClass in which
ClassList stores a ProfileClass object for each class included in the
model. This argument is passed by reference.
380 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ClassName
Determines the class of an object or the datatype of a variable.

Syntax 1 For any object
Description Provides the class (or name) of the specified object.

Applies to Any control

Syntax controlname.Classname ()

Return value String. Returns the class of controlname, the name assigned to the control.
Returns the empty string ("") if an error occurs. If controlname is null,
ClassName returns null.

Usage The class is the name of an object. You assign the name when you save the
object in its painter. Usually the class and the object itself appear to be the same
(because PowerBuilder declares a variable with the same name as the class for
the object). However, if you have declared multiple instances of an object, it is
clear that the object’s class and the object’s variable are different.

If an ancestor object has been instantiated with one of its descendants, you can
use ClassName to find the name of the descendant.

TypeOf reports an object’s built-in object type. The types are values of the
Object enumerated datatype, such as Window! or CheckBox!. ClassName
reports the class of the object in the ancestor-descendant hierarchy.

Examples These statements return the class of the dragged control Source:
DragObject Source
string which_class

Source = DraggedObject()
which_class = Source.ClassName()

To determine Use

The class of an object Syntax 1

The class (or datatype) of a variable Syntax 2

Argument Description

controlname The name of the control for which you want to know the name
assigned to the control in the style window (the class of the control)
PowerScript Reference 381

ClassName
These statements return the class of the objects in the control array and store
them in the_class array:

string the_class[]
windowobject the_object[]
integer i

FOR i = 1 TO UpperBound(control[])
 the_object[i] = control[i]
 the_class[i] = the_object[i].ClassName()
NEXT

Suppose your object hierarchy has a window named ancestor_window and it
has descendants called win1 and win2, and the user can choose which
descendant to open as a sheet. The following code tests which descendent
window class is currently active (the MDI frame is w_frame):

ancestor_window active_window
active_window = w_frame.GetActiveSheet()
IF ClassName(active_window) = "win1" THEN
 . . .
END IF

See also DraggedObject
TypeOf

Syntax 2 For variables
Description Provides the datatype of a variable.

Syntax ClassName (variable)

Return value String. Returns the name of variable. Returns the empty string ("") if variable
is an enumerated datatype or if an error occurs. If variable is null, ClassName
returns null.

Usage ClassName cannot determine the datatype if variable is an enumerated
datatype. In this case, ClassName returns the empty string.

Examples If gd_double is a global double variable, ClassName sets varname to double:

string varname
varname = ClassName(gd_double)

Argument Description

variable The name of the variable for which you want to know its name (that
is, its datatype)
382 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Clear
Deletes selected text or an OLE object from the specified control, but does not
store it in the clipboard.

Syntax 1 For selected text
Description Deletes selected text or an OLE object from the specified control, but does not

store it in the clipboard.

Applies to DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, DropDownPictureListBox, OLE controls,
and OLEStorage objects

Syntax objectname.Clear ()

Return value Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For edit controls, returns the number of characters that Clear removed from
objectname. If no text is selected, no characters are removed and Clear returns
0. If an error occurs, Clear returns -1.

For OLE controls and storage variables, returns 0 if it succeeds and -9 if an
error occurs.

If objectname is null, Clear returns null.

To Use

Clears selected text in a control Syntax 1

Clears selected text, including table grids, in RichTextEdit
controls

Syntax 2

Argument Description

objectname One of the following:

• The name of the DataWindow control, EditMask,
MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox or DropDownPictureListBox from
which you want to delete (clear) selected text.

• The name of an OLE control or storage object variable
(type OLEStorage) from which you want to release its
OLE object.

If objectname is a DropDownListBox or
DropDownPictureListBox, its AllowEdit property must be
true.
PowerScript Reference 383

Clear
Usage To select text for deleting, the user can use the mouse or keyboard. You can also
call the SelectText function in a script.

To delete selected text and store it in the clipboard, use the Cut function.

Clearing the OLE object from an OLE control deletes all references to it. Any
changes to the object are not saved in its storage object or file.

Clearing an OLEStorage object variable breaks any connections established by
Open or SaveAs between it and a storage file (when Open or SaveAs is called
for the OLEStorage object variable). It also breaks connections between it and
any OLE controls that have called Open or SaveAs to connect to the object in
the storage variable.

Examples If the text in sle_comment1 is Draft and it is selected, this statement clears Draft
from sle_comment1 and returns 5:

sle_comment1.Clear()

If the text in sle_comment1 is Draft, the first statement selects the D and the
second clears D from sle_comment1 and returns 1:

sle_comment1.SelectText(1,1)
sle_comment1.Clear()

This example clears the object associated with the OLE control ole_1, leaving
the control empty:

integer result
result = ole_1.Clear()

This example clears the object in the OLEStorage object variable olest_stuff. It
also leaves any OLE controls that have opened the object in olest_stuff empty:

integer result
result = olest_stuff.Clear()

See also ClearAll
Close
Cut
Paste
ReplaceText
SelectText
384 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For RichTextEdit controls
Description Deletes selected text, but also removes any table grids in the selection when the

gridFlag argument is set to true.

Applies to RichTextEdit

Syntax objectname.Clear (gridFlag)

Return value Long. Returns the number of characters removed from the RichTextEdit
control.

Usage Use to remove table grid lines along with any selected text. If the whole text of
a table row is selected, Clear (true) deletes the text and the grid line for this row.
If only some of the text in a table row is selected, Clear (false) deletes the
selected text only.

See also ClearAll

Argument Description

objectname Name of the RichTextEdit control

gridFlag Boolean that determines whether table grids in selected text are
deleted along with the selected text. Values are:

• TRUE – Table grids in the current selection are deleted along
with the selected text.

• FALSE – (Default) Performs exactly as Syntax 1, deleting
selected text for RichTextEdit controls, but not any table grid
lines in the selection.
PowerScript Reference 385

ClearAll
ClearAll
Description Deletes all content from the specified control, but does not store it in the

clipboard.

Applies to RichTextEdit

Syntax objectname.ClearAll ()

Return value Long. Returns the number of characters removed from the RichTextEdit
control.

Usage Use to remove all content from a RichTextEdit control, including any table
grids. To just delete selected text, use the Clear function. To delete text and
store it in the clipboard, use the Cut function.

Examples This statement clears all content from the rte_1 RichTextEdit control.

rte_1.ClearAll()

See also Clear
Cut

ClearBoldDates
Description Clears all bold date settings that had been set with SetBoldDate.

Applies to MonthCalendar control

Syntax controlname.ClearBoldDates ()

Return value Integer. Returns 0 for success and -1 for failure.

Usage You can use the SetBoldDate function to specify that selected dates, such as
holidays, display in bold. ClearBoldDates clears all such settings. To clear
individual bold dates, use the SetBoldDate function with the onoff parameter set
to false.

Argument Description

objectname Name of the RichTextEdit control

Argument Description

controlname The name of the MonthCalendar control from which you want to
clear the bold dates
386 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example clears all bold settings in the control monthCalVacations:

integer li_return
li_return = monthCalVacation.ClearBoldDates()

See also SetBoldDate

Clipboard
Retrieves or replaces the contents of the system clipboard.

Syntax 1 For text
Description Retrieves or replaces the contents of the system clipboard with text.

Syntax Clipboard ({ string })

Return value String. Returns the current contents of the clipboard if the clipboard contains
text. If string is specified, Clipboard returns the current contents and replaces it
with string.

Returns the empty string ("") if the clipboard is empty or it contains nontext
data, such as a bitmap. If string is specified, the nontext data is replaced with
string. If string is null, Clipboard returns null.

Usage You can use Syntax 1 with the Paste, Replace, or ReplaceText function to insert
the clipboard contents in an editable control or StaticText control.

To Use

Retrieve or replace the contents of the system clipboard
with text

Syntax 1

Replace the contents of the system clipboard with a bitmap
image of a graph

Syntax 2

Argument Description

string
(optional)

A string whose value is the text you want to place in the clipboard.
The string replaces the current contents of the clipboard, if any.
PowerScript Reference 387

Clipboard
Calling Clipboard in a DataWIndow control or DataStore object To
retrieve or replace the contents of the system clipboard with text from a
DataWindow item (cell value), you must first assign the value to a string and
then call the system Clipboard function as follows:

string ls_data = dw_1.object.column_name[row_number]
::Clipboard(ls_data)

The DataWindow version of Clipboard, documented in Syntax 2 (and in the
DataWindow Reference), is only applicable to graphs.

Examples These statements put the contents of the clipboard in the variable ls_CoName:

string ls_CoName
ls_CoName = Clipboard()

The following statements place the contents of the clipboard in Heading, and
then replace the contents of the clipboard with the string Employee Data:

string Heading
Heading = Clipboard("Employee Data")

The following statement replaces the selected text in the MultiLineEdit
mle_terms with the contents of the clipboard:

mle_terms.ReplaceText(Clipboard())

The following statement exchanges the contents of the StaticText st_welcome
with the contents of the clipboard:

st_welcome.Text = Clipboard(st_welcome.Text)

See also Clear
Copy
Cut
Paste
Replace
ReplaceText
388 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For bitmaps of graphs
Description Replaces the contents of the system clipboard with a bitmap image of a graph.

You can paste the image into other applications.

Applies to Graph objects in windows and user objects, and graphs in DataWindow
controls and DataStore objects

Syntax name.Clipboard ({ graphobject })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Clipboard returns null.

Examples This statement copies the graph gr_products_data to the clipboard:

gr_products_data.Clipboard()

This statement copies the graph gr_employees in the DataWindow control
dw_emp_data to the clipboard:

dw_emp_data.Clipboard("gr_employees")

Argument Description

name The name of the graph or the DataWindow control or
DataStore containing the graph you want to copy to the
clipboard

graphobject
(DataWindow
control and
DataStore only)
(optional)

A string whose value is the name of the graph in the
DataWindow object that you want to copy to the clipboard
PowerScript Reference 389

Close
Close
Closes a window, an OLE storage or stream, or a trace file.

Syntax 1 For windows
Description Closes a window and releases the storage occupied by the window and all the

controls in the window.

Applies to Window objects

Syntax Close (windowname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If windowname is null,
Close returns null. The return value is usually not used.

Usage Use Syntax 1 to close a window and release the storage occupied by the
window and all the controls in the window.

When you call Close, PowerBuilder removes the window from view, closes it,
executes the scripts for the CloseQuery and Close events (if any), and then
executes the rest of the statements in the script that called the Close function.
Do not call Close from the CloseQuery or Close events, since this produces an
endless loop.

After a window is closed, its properties, instance variables, and controls can no
longer be referenced in scripts. If a statement in the script references the closed
window or its properties or instance variables, an execution error will result.

To close Use

A window Syntax 1

An OLEStorage object variable, saving the object and
clearing connections between it and a storage file or object

Syntax 2

A stream associated with the specified OLEStream object
variable

Syntax 3

A trace file Syntax 4

Argument Description

windowname The name of the window you want to close
390 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Closing a window by calling the Close function in any of the window's events
or in an event of any control on the window can cause PowerBuilder to crash
if the Close function is not the last statement in the event script. You can avoid
this issue by calling the Close function in the last statement of the event script,
or in a user-defined event that is posted from the event script. For example, the
following code in the Open event script for a window called w_1 can cause a
crash:

// w_1 Open event script
close(this)
open(w_2) // causes crash

This code does not cause a crash:

// w_1 ue_postopen event script
close(this)

// w_1 Open event script
open(w_2)
this.Post Event ue_postopen()

Preventing a window from closing
You can prevent a window from being closed with a return code of 1 in the
script for the CloseQuery event. Use the RETURN statement.

Examples These statements close the window w_employee and then open the window
w_departments:

Close(w_employee)
Open(w_departments)

After you call Close, the following statements in the script for the CloseQuery
event prompt the user for confirmation and prevent the window from closing:

IF MessageBox('ExitApplication', &
'Exit?', Question!, YesNo!) = 2 THEN
 // If no, stop window from closing
 RETURN 1
END IF

See also Hide
Open
PowerScript Reference 391

Close
Syntax 2 For OLEStorage objects
Description Closes an OLEStorage object, saving the object in the associated storage file

or object and clearing the connection between them. Close also severs
connections with any OLE controls that have opened the object. Calling Close
is the same as calling Save and then Clear.

Applies to OLEStorage objects

Syntax olestorage.Close ()

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The storage is not open
-9 Other error

If olestorage is null, Close returns null.

Examples This example saves and clears the object in the OLEStorage object variable
olest_stuff. It also leaves any OLE controls that have opened the object in
olest_stuff empty:

integer result
result = olest_stuff.Close()

See also Open
Save
SaveAs

Argument Description

olestorage The OLEStorage object variable that you want to save and close
392 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 3 For OLEStream objects
Description Closes an OLEStream object.

Applies to OLEStream objects

Syntax olestream.Close ()

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The storage is not open
-9 Other error

If olestream is null, Close returns null.

Examples This example closes the OLEStream object stm_pic_label and releases the
variable’s memory:

integer result
result = stm_pic_label.Close()
DESTROY stm_pic_label

See also Open

Argument Description

olestream The OLEStream object variable that you want to close
PowerScript Reference 393

Close
Syntax 4 For trace files
Description Closes an open trace file.

Applies to TraceFile objects

Syntax instancename.Close ()

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotOpenError! – A trace file has not been opened

Usage You use the Close function to close a trace file you previously opened with the
Open function. You use the Close and Open functions as well as the properties
and functions of the TraceFile object to access the contents of a trace file
directly. You use these functions if you want to perform your own analysis of
the tracing data instead of building a model with the Profiling or TraceTree
object and the BuildModel function.

Examples This example closes a trace file:

ift_file.Close()
DESTROY ift_file

See also Reset
Open
NextActivity

Argument Description

instancename Instance name of the TraceFile object
394 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
CloseChannel
Description Closes a DDE channel.

Syntax CloseChannel (handle {, windowhandle })

Return value Integer. Returns 1 if it succeeds.If an error occurs, CloseChannel returns a
negative integer. Possible values are:

-1 Open failed
-2 The channel refuses to close
-3 No confirmation from the server
-9 Handle is null

Usage Use CloseChannel to close a channel to a DDE server application that was
opened by calling the OpenChannel function.

Although you can usually close the DDE channel by specifying just the
channel’s handle, it is a good idea to also specify the handle for PowerBuilder
window associated with the channel. If you specify windowhandle,
CloseChannel closes the DDE channel in the window identified by
windowhandle. If you do not specify windowhandle, CloseChannel only closes
the channel if it is associated with the active window. You can use the Handle
function to obtain a window’s handle.

Examples These statements open and close the channel identified by handle. The channel
is associated with the window w_sheet:

long handle
handle = OpenChannel("Excel", "REGION.XLS", &
 Handle(w_sheet))
... // Some processing
CloseChannel(handle, Handle(w_sheet))

See also GetRemote
OpenChannel
SetRemote

Argument Description

handle A long that identifies the DDE channel that will be closed. It
is the same value returned by the OpenChannel function that
opened the DDE channel.

windowhandle
(optional)

The handle to the PowerBuilder window that is acting as the
DDE client.
PowerScript Reference 395

CloseTab
CloseTab
Description Removes a tab page from a Tab control that was opened previously with the

OpenTab or OpenTabWithParm function. CloseTab executes the scripts for the
user object’s Destructor event.

Applies to Tab controls

Syntax tabcontrolname.CloseTab (userobjectvar)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, CloseTab returns null. The return value is usually not used.

Usage CloseTab closes a user object that has been opened as a tab page and releases
the storage occupied by the object and its controls.

When you call CloseTab, PowerBuilder removes the tab page from the control,
closes it, executes the script for the Destructor event (if any), and then executes
the rest of the statements in the script that called the CloseTab function.

CloseTab also removes the user object from the Tab control’s Control array,
which is a property that lists the tab pages within the Tab control. If the closed
tab page was not the last element in the array, the index for all subsequent tab
pages is reduced by one.

After a user object is closed, its properties, instance variables, and controls can
no longer be referenced in scripts. If a statement in the script references the
closed user object or its properties or instance variables, an execution error will
result.

Examples These statements close the tab page user object u_employee and then open the
user object u_departments in the Tab control tab_personnel:

tab_personnel.CloseTab(u_employee)
tab_personnel.OpenTab(u_departments)

Argument Description

tabcontrolname The name of the Tab control containing the tab page you want
to close

userobjectvar The name of the user object you want to close
396 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
When the user chooses a menu item that closes a user object, the following
excerpt from the menu item’s script prompts the user for confirmation before
closing the u_employee user object in the window to which the menu is
attached:

IF MessageBox("Close ", "Close?", &
 Question!, YesNo!) = 1 THEN
 // User chose Yes, close user object.
 ParentWindow.CloseTab(u_employee)
 // If user chose No, take no action.
END IF

See also OpenTab

CloseUserObject
Description Closes a visual user object by removing it from view and executing the scripts

for its Destructor event.

Applies to Window objects and visual user objects

Syntax objectname.CloseUserObject (targetobjectname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, CloseUserObject returns null. The return value is usually not used.

Usage Use CloseUserObject to close a user object and release the storage occupied by
the object and its controls.

When you call CloseUserObject, PowerBuilder removes the target object from
view, closes it, executes the script for the Destructor event (if any), and then
executes the rest of the statements in the script that called the CloseUserObject
function.

CloseUserObject also removes the target object from the first object’s Control
array, which is a property that lists the object’s controls. If the closed user
object was not the last element in the array, the index for all subsequent user
objects is reduced by one.

Argument Description

objectname The name of the window or user object that will close the
target user object

targetobjectname The name of the visual user object to be closed.
PowerScript Reference 397

CloseWithReturn
After the target object is closed, its properties, instance variables, and controls
can no longer be referenced in scripts. If a script references the closed user
object or its properties or instance variables, an execution error results.

Examples This statement prompts the user for confirmation before the parent of the
current object closes the u_employee target:

IF MessageBox("Close ", "Close?", &
 Question!, YesNo!) = 1 THEN
 // User chose Yes, close user object.
 parent.CloseUserObject(u_employee)
 // If user chose No, take no action.
END IF

See also OpenUserObject

CloseWithReturn
Description Closes a window and stores a return value in the Message object. You should

use CloseWithReturn only for response windows.

Applies to Window objects

Syntax CloseWithReturn (windowname, returnvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, CloseWithReturn returns null. The return value is usually not used.

Usage The purpose of CloseWithReturn is to close a response window and return
information from the response window to the window that opened it. Use
CloseWithReturn to close a window, release the storage occupied by the
window and all the controls in the window, and return a value.

Argument Description

windowname The name of the window you want to close.

returnvalue The value you want to store in the Message object when the
window is closed. Returnvalue must be one of these datatypes:

• String

• Numeric

• PowerObject
398 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Just as with Close, CloseWithReturn removes a window from view, closes it,
and executes the script for the CloseQuery and Close events, if any. Do not call
Close or CloseWithReturn from these events, since this produces an endless
loop.

Before executing the event scripts, CloseWithReturn stores returnvalue in the
Message object, and PowerBuilder executes the rest of the script that called the
CloseWithReturn function.

After a window is closed, its properties, instance variables, and controls can no
longer be referenced in scripts. If a statement in the script references the closed
window or its properties or instance variables, an execution error results.

PowerBuilder stores returnvalue in the Message object properties according to
its datatype. In the script that called CloseWithReturn, you can access the
returned value by specifying the property of the Message object that
corresponds to the return value’s datatype.

Table 10-1: Message object properties where return values are stored

Returning several values as a structure
To return several values, create a user-defined structure to hold the values and
access the PowerObjectParm property of the Message object in the script that
opened the response window. The structure is passed by value so you can
access the information even if the original variable has been destroyed.

Referencing controls
User objects and controls are passed by reference, not by value. You cannot use
CloseWithReturn to return a reference to a control on the closed window
(because the control no longer exists after the window is closed). Instead,
return the value of one or more properties of that control.

Preventing a window from closing
You can prevent a window from being closed with a return code of 1 in the
script for the CloseQuery event. Use a RETURN statement.

Return value datatype Message object property

Numeric Message.DoubleParm

PowerObject (such as a structure) Message.PowerObjectParm

String Message.StringParm
PowerScript Reference 399

CloseWithReturn
Examples This statement closes the response window w_employee_response, returning
the string emp_name to the window that opened it:

CloseWithReturn(Parent, "emp_name")

Suppose that a menu item opens one window if the user is a novice and another
window if the user is experienced. The menu item displays a response window
called w_signon to prompt for the user’s experience level. The user types an
experience level in the SingleLineEdit control sle_signon_id. The OK button in
the response window passes the text in sle_signon_id back to the menu item
script. The menu item script checks the StringParm property of the Message
object and opens the desired window.

The script for the Clicked event of the OK button in the w_signon response
window is a single line:

CloseWithReturn(Parent, sle_signon_id.Text)

The script for the menu item is:

string ls_userlevel

// Open the response window
Open(w_signon)

// Check text returned in Message object
ls_userlevel = Message.StringParm

IF ls_userlevel = "Novice" THEN
 Open(win_novice)
ELSE
 Open(win_advanced)
END IF

See also Close
OpenSheetWithParm
OpenUserObjectWithParm
OpenWithParm
400 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
CollapseItem
Description Collapses the specified item.

Applies to TreeView controls

Syntax treeviewname.CollapseItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage If there is only one level-one entry, you can use the RootTreeItem handle as the
argument to collapse the tree so that only the top-level node is displayed.
However, CollapseItem collapses only the current item, so that if the children
of the top-level item were expanded when the tree was collapsed, they will still
be expanded when the top-level item is expanded.

If there is more than one level-one entry, using the RootTreeItem handle as the
argument collapses only the first level-one entry.

Examples This example collapses an item in a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(currenttreeitem!, 0)
tv_list.CollapseItem(ll_tvi)

This example collapses the top-level item in a TreeView control that has only
one level-one entry:

long ll_tvi
ll_tvi = tv_list.FindItem(roottreeitem!, 0)
tv_list.CollapseItem(ll_tvi)

See also ExpandItem
ExpandAll
FindItem

Argument Description

treeviewname The TreeView control in which you want to collapse an item

itemhandle The handle of the item you want to collapse
PowerScript Reference 401

CommandParm
CommandParm
Description Retrieves the argument string, if any, that followed the program name when the

application was executed.

Syntax CommandParm ()

Return value String. Returns the application’s argument string if it succeeds and the empty
string ("") if it fails or if there were no arguments.

Usage Command arguments can follow the program name in the command line of a
Windows program item or in the Program Manager’s Run response window.
For example, when the user chooses File>Run in the Program Manager and
enters:

MyAppl C:\EMPLOYEE\EMPLIST.TXT

CommandParm retrieves the string C:\EMPLOYEE\EMPLIST.TXT.

If the application’s command line includes several arguments, CommandParm
returns them all as a single string. You can use string functions, such as Mid and
Pos, to parse the string.

You do not need to call CommandParm in the application’s Open event. Use the
commandline argument instead.

Examples These statements retrieve the command line arguments and save them in the
variable ls_command_line:

string ls_command_line
ls_command_line = CommandParm()

If the command line holds several arguments, you can use string functions to
separate the arguments. This example stores a variable number of arguments,
obtained with CommandParm, in an array. The code assumes each argument is
separated by one space. For each argument, the Pos function searches for a
space; the Left function copies the argument to the array; and Replace removes
the argument from the original string so the next argument moves to the first
position:

string ls_cmd, ls_arg[]
integer i, li_argcnt

// Get the arguments and strip blanks
// from start and end of string
ls_cmd = Trim(CommandParm())

li_argcnt = 1

DO WHILE Len(ls_cmd) > 0
 // Find the first blank
402 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
 i = Pos(ls_cmd, " ")

 // If no blanks (only one argument),
 // set i to point to the hypothetical character
 // after the end of the string
 if i = 0 then i = Len(ls_cmd) + 1

 // Assign the arg to the argument array.
 // Number of chars copied is one less than the
 // position of the space found with Pos
 ls_arg[li_argcnt] = Left(ls_cmd, i - 1)

 // Increment the argument count for the next loop
 li_argcnt = li_argcnt + 1

 // Remove the argument from the string
 // so the next argument becomes first
 ls_cmd = Replace(ls_cmd, 1, i, "")
LOOP

CommitTransaction
Description Declares that the EAServer transaction associated with the calling thread

should be committed.

Applies to CORBACurrent objects

Syntax CORBACurrent.CommitTransaction (breportheuristics)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Failed for unknown reason

-2 No transaction is associated with the calling thread

-3 The calling thread does not have permission to commit the transaction

-4 The HeuristicRollback exception was raised

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
breportheuristics A boolean specifying whether heuristic decisions should be

reported for the transaction associated with the calling thread
PowerScript Reference 403

CommitTransaction
-5 The HeuristicMixed exception was raised

-6 The HeuristicHazard exception was raised

Usage The CommitTransaction function completes the transaction associated with the
calling thread. Use the BeginTransaction function to begin a transaction and
associate it with the calling thread. The transaction is not completed if any
other participants in the transaction vote to roll back the transaction.

CommitTransaction can be called by a client or a component that is marked as
OTS style. EAServer must be using the two-phase commit transaction
coordinator (OTS/XA).

Examples In this example, the client calls the dopayroll method on the CmpnyAcct
EAServer component, which processes a company payroll. The method returns
1 if the company has sufficient funds to meet the payroll, and the client then
commits the transaction:

// Instance variables:
// CORBACurrent corbcurr
integer li_rc
boolean lb_rv
long ll_rc

// Create an instance of the CORBACurrent object
// and initialize it
...
lb_rv = corbcurr.BeginTransaction()
IF lb_rv THEN
 ll_rc = myconnect.CreateInstance(CmpnyAcct)
 // handle error
 li_rc = CmpnyAcct.dopayroll()
 IF li_rc = 1 THEN
 corbcurr.CommitTransaction(
 ELSE
 corbcurr.RollbackTransaction()
 END IF
ELSE
 // handle error
END IF

See also BeginTransaction, GetContextService, GetStatus, GetTransactionName, Init,
ResumeTransaction, RollbackOnly, RollbackTransaction, SetTimeout,
SuspendTransaction
404 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ConnectToNewObject
Description Creates a new object in the specified server application and associates it with a

PowerBuilder OLEObject variable. ConnectToNewObject starts the server
application if necessary.

Applies to OLEObject objects, OLETxnObject objects

Syntax oleobject.ConnectToNewObject (classname)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Invalid Call: the argument is the Object property of a control
-2 Class name not found
-3 Object could not be created
-4 Could not connect to object
-9 Other error
-15 COM+ is not loaded on this computer
-16 Invalid Call: this function not applicable

If any argument’s value is null, ConnectToNewObject returns null.

Usage The OLEObject variable can be used for automation, in which the
PowerBuilder application asks the server application to manipulate the OLE
object programmatically. It can also be used to connect to a COM object that is
registered on a local or remote computer or that is installed in COM+.

The OLETxnObject variable is used to provide COM+ transaction control to
PowerBuilder clients. Calling ConnectToNewObject with an OLETxnObject
variable creates a new object instance within the transaction context associated
with the variable. If COM+ is not loaded on the client computer, the
ConnectToNewObject call fails. Use SetAbort to abort the transaction or
SetComplete to complete it if all other participants in the transaction concur.

For more information about automation and connecting to COM objects, see
ConnectToObject.

Argument Description

oleobject The name of an OLEObject variable that you want to connect to an
automation server or COM object. You cannot specify an
OLEObject that is the Object property of an OLE control.

classname A string whose value is a programmatic identifier or class ID that
identifies an automation server or COM server.
PowerScript Reference 405

ConnectToNewObject
Deprecated support for COM and COM+ components
COM and COM+ are deprecated technologies and might not be supported in
future releases of PowerBuilder.

Examples This example creates an OLEObject variable and calls ConnectToNewObject to
create a new Excel object and connect to it:

integer result
OLEObject myoleobject
myoleobject = CREATE OLEObject
result = myoleobject.ConnectToNewObject(&
 "excel.application")

This example creates an OLETxnObject variable and calls
ConnectToNewObject to create and connect to a new instance of a
PowerBuilder COM object on a COM+ server:

OLETxnObject EmpObj
Integer li_rc
EmpObj = CREATE OLETxnObject
li_rc = EmpObj.ConnectToNewObject("PB125COM.employee")
IF li_rc < 0 THEN
 DESTROY EmpObj
 MessageBox("Connecting to COM Object Failed", &
 "Error: " + String(li_rc))
 Return
END IF

// Perform some work with the COM object
...
// If the work completed successfully, commit
// the transaction and disconnect the object
EmpObj.SetComplete()
EmpObj.DisconnectObject()

See also ConnectToObject
DisconnectObject
SetAbort
SetComplete
406 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ConnectToNewRemoteObject
Description Creates a new OLE object in the specified remote server application (if security

on the server allows it) and associates the new object with a PowerBuilder
OLEObject variable. ConnectToNewRemoteObject starts the server application
if necessary.

Applies to OLEObject objects

Syntax oleobject.ConnectToNewRemoteObject (hostname, classname)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Invalid call: the argument is the Object property of a control
 -2 Class name not found
 -3 Object could not be created
 -4 Could not connect to object
 -9 Other error

-10 Feature not supported on this platform
-11 Server name is invalid
-12 Server does not support operation
-13 Access to remote host denied
-14 Server unavailable
-15 COM+ is not loaded on this computer
-16 Invalid Call: this function not applicable to OLETxnObject

Usage The OLEObject variable is used for OLE automation, in which the
PowerBuilder application asks the server application to manipulate the OLE
object programmatically. ConnectToNewRemoteObject can only be used with
servers that support remote activation.

For more information about OLE automation, see ConnectToObject. For
information about connecting to objects on a remote host, see
ConnectToRemoteObject.

Argument Description

oleobject The name of an OLEObject variable which you want to connect to
an OLE object. You cannot specify an OLEObject that is the Object
property of an OLE control.

hostname A string whose value is the name of the remote host where the COM
server is located.

classname A string whose value is the name of an OLE class, which identifies
an OLE server application and a type of object that the server can
manipulate via OLE.
PowerScript Reference 407

ConnectToObject
Examples This example creates an OLEObject variable and calls
ConnectToNewRemoteObject to create and connect to a new Excel object on a
remote host named ulysses:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToNewRemoteObject(&
 "ulysses", "Excel.application")

See also ConnectToObject
ConnectToRemoteObject

ConnectToObject
Description Associates an OLE object with a PowerBuilder OLEObject variable and starts

the server application. The OLEObject variable and ConnectToObject are used
for OLE automation, in which the PowerBuilder application asks the server
application to manipulate the OLE object programmatically.

Applies to OLEObject objects

Syntax oleobject.ConnectToObject (filename {, classname })

Argument Description

oleobject The name of an OLEObject variable which you want to connect to
an OLE object. You cannot specify an OLEObject that is the Object
property of an OLE control.

filename A string whose value is the name of an OLE storage file.

You can specify the empty string for filename, in which case you
must specify classname. Oleobject is connected to the active object
in the server application specified in classname.

classname
(optional)

A string whose value is the name of an OLE class, which identifies
an OLE server application and a type of object that the server can
manipulate via OLE.

If you omit classname, PowerBuilder uses the extension of filename
to determine what server application to start.
408 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Invalid call: the argument is the Object property of a control
-2 Class name not found
-3 Object could not be created
-4 Could not connect to object
-5 Ca not connect to the currently active object
-6 Filename is not valid
-7 File not found or file could not be opened
-8 Load from file not supported by server
-9 Other error
-15 COM+ is not loaded on this computer
-16 Invalid Call: this function not applicable to OLETxnObject

If any argument’s value is null, ConnectToObject returns null.

Usage After you have created an OLEObject variable and connected it to an OLE
object and its server application, you can set properties and call functions
supported by the OLE server. PowerBuilder’s compiler will not check the
syntax of functions that you call for an OLEObject variable. If the functions are
not present when the application is run or the property names are invalid, an
execution error occurs.

Declare and create an OLEObject variable
You must use the CREATE statement to allocate memory for an OLEObject
variable, as shown in the example below.

When you create an OLEObject variable, make sure you destroy the object
before it goes out of scope. When the object is destroyed it is disconnected
from the server and the server is closed. If the object goes out of scope without
disconnecting, there will be no way to halt the server application.

Check the documentation for the server application to find out what properties
and functions it supports. Some applications support a large number. For
example, Excel has approximately 4000 operations you can automate.

The OLEObject datatype supports OLE automation as a background activity in
your application. You can also invoke server functions and properties for an
OLE object in an OLE control. To do so, specify the Object property of the
control before the server function name. When you want to automate an object
in a control, you do not need an OLEObject variable.
PowerScript Reference 409

ConnectToObject
For example, the following changes a value in an Excel cell for the object in
the OLE control ole_1:

ole_1.Object.application.cells(1,1).value = 14

Examples This example declares and creates an OLEObject variable and connects to an
Excel worksheet, which is opened in Excel. It then sets a value in the
worksheet, saves it, and destroys the OLEObject variable, which exits the
Excel:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToObject(&
 "c:\excel\expense.xls")

IF result = 0 THEN
 myoleobject.application.workbooks(1).&
 worksheets(1).cells(1,1).value = 14
 myoleobject.application.workbooks(1).save()
END IF
DESTROY myoleobject

This example connects to an Excel chart (using a Windows path name):

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToObject(&
 "c:\excel\expense.xls", "excel.chart")

This example connects to the currently active object in Excel, which is already
running:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToObject("", &
 "excel.application")

See also ConnectToNewObject
DisconnectObject
410 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ConnectToRemoteObject
Description Associates an OLE object with a PowerBuilder OLEObject variable and starts

the server application.

Applies to OLEObject objects

Syntax oleobject.ConnectToRemoteObject (hostname, filename {, classname })

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Invalid call: the argument is the Object property of a control
-2 Class name not found
-3 Object could not be created
-4 Could not connect to object
-5 Could not connect to the currently active object
-6 File name is invalid
-7 File not found or could not be opened
-8 Load from file not supported by server
-9 Other error

-10 Feature not supported on this platform
-11 Server name is invalid
-12 Server does not support operation
-13 Access to remote host denied

Argument Description

oleobject The name of an OLEObject variable that you want to connect
to an OLE object. You cannot specify an OLEObject that is the
Object property of an OLE control.

hostname A string whose value is the name of the remote host where the
COM server is located.

filename A string whose value is the name of an OLE storage file. You
cannot specify an empty string. COM looks for filename on the
local (client) machine. If filename is located on the remote host,
its location must be made available to the local host by sharing.
Use the share name for the remote drive to specify a file on a
remote host—for example,
\\hostname\shared_directory\test.ext.

classname
(optional)

A string whose value is the name of an OLE class, which
identifies an OLE server application and a type of object that
the server can manipulate via OLE. If you omit classname and
filename, is an OLE structured storage file, PowerBuilder uses
the class ID in filename. Otherwise, PowerBuilder uses the
filename extension to determine what server application to
start.
PowerScript Reference 411

ConnectToRemoteObject
-14 Server unavailable
-15 COM+ is not loaded on this computer
-16 Invalid Call: this function not applicable to OLETxnObject

Usage The OLEObject variable is used for OLE automation, in which the
PowerBuilder application asks the server application to manipulate the OLE
object programmatically. ConnectToRemoteObject can only be used with
servers that support remote activation.

The following information applies to creating or instantiating and binding to
OLE objects on remote hosts.

For general information about OLE automation, see ConnectToObject.

Security Security on the server must be configured correctly to launch
objects on remote hosts. Security is configured using registry keys. You must
specify attributes for allowing and disallowing launching of servers and
connections to running objects to allow client access. You can update the
registry manually or with a tool such as DCOMCNFG.EXE or OLE Viewer.

Registry entries The server application must be registered on both the server
and the client.

To find files other than OLE structured storage files, registry entries must
include a file extension entry, such as .xls for Excel. If the file is a structured
storage file, then COM reads the file and extracts the server identity from the
file; otherwise, the registry entry for the file extension is used and the
appropriate server application is launched.

If the DCOM server uses a custom interface, the proxy/stub DLL for the
interface must be registered on the client. The proxy/stub DLL is created by the
designer of the custom interface. It handles the marshaling of parameters
through the proxy on the client and the stub on the server so that a remote
procedure call can take place.

Examples This example declares and creates an OLEObject variable and connects to an
Excel worksheet on a remote host named falco. The drive where the worksheet
resides is mapped as f:\excel on the local host:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToRemoteObject(&
 "falco", "f:\excel\expense.xls")
412 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example connects to the same object on the remote host but opens it as an
Excel chart:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToRemoteObject(&
 "falco", "f:\excel\expense.xls", "Excel.chart")

See also ConnectToNewRemoteObject
ConnectToObject
DisconnectObject

ConnectToServer
Description Connects a client application to a server component. The client application

must call ConnectToServer before it can use a remote object on the server.

This function applies to distributed applications only.

Applies to Connection objects

Syntax connection.ConnectToServer ()

Return value Long. Returns 0 if it succeeds and one of the following values if an error
occurs:

50 Distributed service error
52 Distributed communications error
53 Requested server not active
54 Server not accepting requests
55 Request terminated abnormally
56 Response to request incomplete
57 Connection object not connected to server
62 Server busy
92 Required property is missing or invalid

Argument Description

connection The name of the Connection object you want to use to establish the
connection. The Connection object has properties that specify how
the connection will be established.
PowerScript Reference 413

ConnectToServer
Usage Before calling ConnectToServer, you assign values to the properties of the
Connection object.

Examples In this example, the client application connects to a server application using the
Connection object myconnect:

// Global variable:
// connection myconnect
long ll_rc
myconnect = create connection
myconnect.driver = "jaguar"
myconnect.location = "Jagserver1:2000"
myconnect.application = "PB_pkg_1"
myconnect.userID = "bjones"
myconnect.password = "mypass"
ll_rc = myconnect.ConnectToServer()
IF ll_rc <> 0 THEN
 MessageBox("Connection failed", ll_rc)
END IF

You can enclose the ConnectToServer function in a try-catch block to catch
exceptions thrown during the attempt to connect. This example uses
SSLServiceProvider and SSLCallBack objects to create a secure connection.
An exception or other error in any of the SSLCallback functions raises the
CTSSecurity::UserAbortedException. The error-handling code shown in the
example displays a message box with the text of the error message, but your
code should take additional appropriate action:

SSLServiceProvider sp
// set QOP
getcontextservice("SSLServiceProvider", sp)
sp.setglobalproperty("QOP", "sybpks_simple")
// set PB callback handler
sp.setglobalproperty("CallbackImpl", &

"uo_sslcallback_handler")

// connect to the server
connection cxn
cxn.userid = "jagadmin"
cxn.password = "sybase"
cxn.driver = "jaguar"
cxn.application = "dbgpkg"
cxn.options = "ORBLogFile='d:\PBJagClient.Log'"
cxn.location = "iiops://localhost:9001"

TRY
l_rc = cxn.ConnectToServer()
414 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
CATCH (userabortedexception uae)
MessageBox("UserAbortedException Caught", &

"ConnectToServer caught: " + uae.getMessage())
l_rc = 999

CATCH (CORBASystemException cse)
MessageBox("CORBASystemException Caught", &

"ConnectToServer caught: " + cse.getMessage())
l_rc = 998

CATCH (RuntimeError re)
MessageBox("RuntimeError Exception Caught", &

"ConnectToServer caught: " + re.getMessage())
l_rc = 997

CATCH (Exception ex)
MessageBox("Exception Caught", &

"ConnectToServer caught: " + ex.getMessage())
l_rc = 996

END TRY

IF l_rc <> 0 THEN
MessageBox("Error", "Connection Failed - code: " &

+ string(l_rc))
MessageBox("Error Info", "ErrorCode= " + &

string(cxn.ErrCode) + "~nErrText= " + &
cxn.ErrText)

ELSE
MessageBox("OK", "Connection Established")

END IF

See also DisconnectServer
PowerScript Reference 415

Copy
Copy
Description Puts selected text or an OLE object on the clipboard. Copy does not change the

source text or object.

Applies to DataWindow, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, DropDownPictureListBox, OLE controls, and OLE
DWObjects (objects within a DataWindow object that is within a DataWindow
control)

Syntax objectref.Copy ()

Return value Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For RichTextEdit controls, Copy returns a long. For other edit controls and OLE
objects, Copy returns an integer.

For edit controls, Copy returns the number of characters that were copied to the
clipboard. If no text is selected in objectref, no characters are copied and Copy
returns 0. If an error occurs, Copy returns -1.

For OLE controls and OLE DWObjects, Copy returns 0 if it succeeds and one
of the following negative values if an error occurs:

-1 Container is empty
-2 Copy Failed
-9 Other error

If objectref is null, Copy returns null.

Argument Description

objectref One of the following:

• The name of the DataWindow control, EditMask, InkEdit,
MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox or DropDownPictureListBox containing the
text you want to copy to the clipboard.

• The name of the OLE control or the fully qualified name of a
OLE DWObject within a DataWindow control that contains the
object you want to copy to the clipboard.

The fully qualified name for a DWObject has this syntax:

dwcontrol.Object.dwobjectname
If objectref is a DataWindow, text is copied from the edit control
over the current row and column. If objectref is a
DropDownListBox or DropDownPictureListBox, its AllowEdit
property must be true.
416 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage To select text for copying, the user can use the mouse or keyboard. You can also
call the SelectText function in a script. For RichTextEdit controls, there are
several additional functions for selecting text: SelectTextAll, SelectTextLine, and
SelectTextWord.

To insert the contents of the clipboard into a control, use the Paste function.

Copy does not delete the selected text or OLE object. To delete the data, use the
Clear or Cut function.

Examples Assuming the selected text in mle_emp_address is Temporary Address, these
statements copy Temporary Address from mle_emp_address to the clipboard
and store 17 in copy_amt:

integer copy_amt
copy_amt = mle_emp_address.Copy()

This example copies the OLE object in the OLE control ole_1 to the clipboard:

integer result
result = ole_1.Copy()

See also Clear
Clipboard
Cut
Paste
ReplaceText
SelectText
PowerScript Reference 417

CopyRTF
CopyRTF
Description Returns the selected text, pictures, and input fields in a RichTextEdit control or

RichText DataWindow as a string with rich text formatting. Bitmaps and input
fields are included in the string.

Applies to DataWindow controls, DataStore objects, and RichTextEdit controls

Syntax rtename.CopyRTF ({ selected {, band } })

Return value String. Returns the selected text as a string.

CopyRTF returns an empty string ("") if:

• There is no selection and selected is true

• An error occurs

Usage CopyRTF does not involve the clipboard. The copied information is stored in a
string. If you use the standard clipboard functions (Copy and Cut) the clipboard
will contain the text without any formatting.

To incorporate the text with RTF formatting into another RichTextEdit control,
use PasteRTF. For more information about rich text format, see the chapter
about implementing rich text in Application Techniques.

Examples This statement returns the text that is selected in the RichTextEdit rte_message
and stores it in the string ls_richtext:

string ls_richtext
ls_richtext = rte_message.CopyRTF()

Argument Description

rtename The name of the DataWindow control, DataStore object, or
RichTextEdit control from which you want to copy the selection in
rich text format. The DataWindow object in the DataWindow
control or DataStore must be a RichText DataWindow.

selected
(optional)

A boolean value indicated whether to copy selected text only.
Values are:

• TRUE – (Default) Copy selected text only

• FALSE – Copy the entire contents of the band

band
(optional)

A value of the Band enumerated datatype specifying the band from
which to copy text. Values are:

• Detail! – Copy text from the detail band

• Header! – Copy text from the header band

• Footer! – Copy text from the footer band

The default is the band that contains the insertion point.
418 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example copies the text in rte_1, saving it in ls_richtext, and pastes it into
rte_2. The user clicks the RadioButton rb_true to copy selected text and rb_false
to copy all the text. The number of characters pasted is saved in ll_numchars
reported in the StaticText st_status:

string ls_richtext
boolean lb_selected
long ll_numchars

IF rb_true.Checked = TRUE THEN
 lb_selected = TRUE
ELSE
 lb_selected = FALSE
END IF

ls_richtext = rte_1.CopyRTF(lb_selected)
ll_numchars = rte_2.PasteRTF(ls_richtext)
st_status.Text = String(ll_numchars)

See also PasteRTF

Cos
Description Calculates the cosine of an angle.

Syntax Cos (n)

Return value Double. Returns the cosine of n. If n is null, Cos returns null.

Examples This statement returns 1:

Cos(0)

This statement returns .540302:

Cos(1)

This statement returns -1:

Cos(Pi(1))

See also ACos, Pi, Sin, Tan, Cos method for DataWindows in the DataWindow
Reference or online Help

Argument Description

n The angle (in radians) for which you want the cosine
PowerScript Reference 419

Cpu
Cpu
Description Reports the amount of CPU time that has elapsed since the application started.

Syntax Cpu ()

Return value Long. Returns the number of milliseconds of CPU time elapsed since the start
of your PowerBuilder application.

Examples These statements determine the amount of CPU time that elapsed while a group
of statements executed:

long ll_start, ll_used
// Set the start equal to the current CPU usage.
ll_start = Cpu()
... // Executable statements being timed

// Set ll_used to the number of CPU seconds
// that were used (current CPU time - start).
ll_used = Cpu() - ll_start

CreateDirectory
Description Creates a directory.

Applies to File system

Syntax CreateDirectory (directoryname)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Examples This example creates a new subdirectory in the current path and then makes the
new subdirectory the current directory:

string ls_path="my targets"
integer li_filenum
CreateDirectory (ls_path)
li_filenum = ChangeDirectory(ls_path)

See also GetCurrentDirectory
RemoveDirectory

Argument Description

directoryname String for the name of the directory you want to create
420 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
CreateInstance
Creates an instance of a remote object running on a middle-tier server.

Syntax 1 For creating an object instance on a remote server
Description Creates an instance of a component running on EAServer. This function can be

used to instantiate a remote object from a PowerBuilder client. In addition, it
can be used within a component running on EAServer to instantiate another
component running on a different server.

Applies to Connection objects

Syntax connection.CreateInstance (objectvariable {, classname })

Return value Long. Returns 0 if it succeeds and one of the following values if an error
occurs:

50 Distributed service error
52 Distributed communications error
53 Requested server not active
54 Server not accepting requests
55 Request terminated abnormally
56 Response to request incomplete
57 Not connected
62 Server busy

Usage Before calling CreateInstance, you need to connect to a server. To do this, you
need to call the ConnectToServer function.

CreateInstance allows you to create an object on a remote server. If you want
to create an object locally, you need to use the CREATE statement.

To create a remote object instance Use

From a PowerBuilder client Syntax 1

From within an EAServer or COM+ component Syntax 2

Argument Description
connection The name of the Connection object used to establish the

connection.
objectvariable A global, instance, or local variable whose datatype is the same

class as the object being created or an ancestor of that class.
classname
(optional)

A string whose value is the name of the class datatype to be
created. You can optionally prepend a package name followed by
a slash to the class name (for example, "mypkg/mycomponent").
PowerScript Reference 421

CreateInstance
When you deploy a remote object’s class definition in a client application, the
definition on the client has the same name as the remote object definition
deployed in the server application. Variables declared with this type are able to
hold a reference to a local object or a remote object. Therefore, at execution
time you can instantiate the object locally (with the CREATE statement) or
remotely (with the CreateInstance function) depending on your application
requirements. In either case, once you have created the object, its physical
location is transparent to client-side scripts that use the object.

Examples The following statements create an object locally or remotely depending on the
outcome of a test. The statements use the CreateInstance function to create a
remote object and the CREATE statement to create a local object:

boolean bWantRemote
connection myconnect
uo_customer iuo_customer

//Determine whether you want a remote
//object or a local object.
...
//Then create the object.
IF bWantRemote THEN
 //Create a remote object
 IF myconnect.CreateInstance(iuo_customer) <> 0 THEN
 //deal with the error
 ...
 END IF
ELSE
 //Create a local object
 iuo_customer = CREATE uo_customer
END IF

//Call a function of the object.
//The function call is the same whether the object was
//created on the server or the client.
IF isValid(iou_customer) THEN
 iuo_customer.GetCustomerData()
END IF

See also ConnectToServer
422 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For creating a component instance on the current
server

Description Creates an instance of a component running on the current EAServer or COM+
server. This function is called from within a component instance running on
EAServer or COM+.

Applies to TransactionServer objects

Syntax transactionserver.CreateInstance (objectvariable {, classname })

Return value Long. Returns 0 if it succeeds and one of the following values if an error occurs:

50 Distributed service error
52 Distributed communications error
53 Requested server not active
54 Server not accepting requests
55 Request terminated abnormally
56 Response to request incomplete
57 Not connected
62 Server busy

Usage The CreateInstance function on the TransactionServer context object allows
you to access other EAServer or COM+ components running on the current
server. The created instance inherits all the transaction and security attributes
of the current object.

Argument Description
transactionserver Reference to the TransactionServer service instance.
objectvariable A global, instance, or local variable whose datatype is the same

class as the object being created or an ancestor of that class.
classname
(optional)

A string whose value is the name of the class datatype to be
created.

For EAServer components, you can optionally prepend a
package name followed by a slash to the class name (for
example, "mypackage/mycomponent").

For COM+ components, you can optionally prepend a ProgID
followed by a period to the class name (for example,
"PowerBuilder.HTMLDataWindow".
PowerScript Reference 423

CreateInstance
On EAServer, the TransactionServer CreateInstance method invokes the
EAServer name service to create proxies. Proxies for remote components
might be returned by the name service rather than an instance that is running
locally. To guarantee that a locally installed instance is used, specify the
component name as “local:package/component”, where package is the
package name and component is the component name. The call fails if the
component is not installed in the same server.

The CreateInstance function on the TransactionServer context object uses the
same user and password information that applies to the component from which
it is called.

Before you can use the transaction context service, you need to declare a
variable of type TransactionServer and call the GetContextService function to
create an instance of the service.

Examples The following statements show how an EAServer component might instantiate
another component in the same server and call one of its methods:

Integer rc
rc = this.GetContextService("TransactionServer", &
 ts)
IF rc <> 1 THEN
 // handle the error
END IF
rc = this.CreateInstance(mycomp2, &
 "mypackage/nvo_comp2")

IF IsValid(mycomp2) = FALSE THEN
 // handle the error
END IF
mycomp2.method1()
424 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example shows the syntax for creating an instance of a COM component:

Integer rc
OleObject lole
TransactionServer lts

lole = create OleObject
rc = this.GetContextService("TransactionServer", lts)
IF rc <> 1 THEN

return "Error from GetContextService " + String (rc)
END IF

// PBCOM is the ProgID, n_genapp is the class name
rc = lts.CreateInstance(lole, "PBCOM.n_genapp")

IF rc <> 0 THEN
return "Error from CreateInstance " + String (rc)

END IF
iole.my_func ()

See also EnableCommit
IsInTransaction
IsTransactionAborted
Lookup
SetAbort
SetComplete
Which
PowerScript Reference 425

CreatePage
CreatePage
Description Creates a tab page if it has not already been created.

Applies to User objects used as tab pages

Syntax userobject.CreatePage ()

Return value Integer. Returns one of the following values:1 if the page is successfully
created and -1 if the page was already created or if it is not a tab page.

 1 – The tab page was successfully created
 0 – The tab page has already been created
-1 – The user object is not a tab page

Usage A window will open more quickly if the creation of graphical representations
is delayed for tab pages with many controls. However, scripts cannot refer to a
control on a tab page until the control’s Constructor event has run and a
graphical representation of the control has been created. When the
CreateOnDemand property of the Tab control is selected, scripts cannot
reference controls on tab pages that the user has not viewed. CreatePage allows
you to create a tab page if it has not already been created.

Examples This example tests whether tabpage_2 has been created and, if not, creates it:

IF tab_1.CreateOnDemand = True THEN
 IF tab_1.tabpage_2.PageCreated() = False THEN
 tab_1.tabpage_2.CreatePage()
 END IF
END IF

See also PageCreated

Argument Description

userobject The name of the tab page you want to create
426 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Cut
Description Deletes selected text or an OLE object from the specified control and stores it

on the clipboard, replacing the clipboard contents with the deleted text or
object.

Applies to DataWindow, InkEdit, MultiLineEdit, SingleLineEdit, DropDownListBox,
DropDownPictureListBox, and OLE controls

Syntax controlname.Cut ()

Return value Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For editable controls, Cut returns the number of characters that were cut from
controlname and stored in the clipboard. If no text is selected, no characters are
cut and Cut returns 0. If an error occurs, Cut returns -1.

For OLE controls, Cut returns 0 if it succeeds and one of the following negative
values if an error occurs:

-1 Container is empty
-2 Cut failed
-9 Other error

If controlname is null, Cut returns null.

Argument Description

controlname The name of the DataWindow, InkEdit, MultiLineEdit,
SingleLineEdit, RichTextEdit, DropDownListBox,
DropDownPictureListBox, or OLE control containing the text or
object to be cut.

If controlname is a DataWindow, text is cut from the edit control
over the current row and column. If controlname is a
DropDownListBox or DropDownPictureListBox, the AllowEdit
property must be true.
PowerScript Reference 427

DataCount
Usage To select text for deleting, the user can use the mouse or keyboard. You can also
call the SelectText function in a script. For RichTextEdit controls, there are
several additional functions for selecting text: SelectTextAll, SelectTextLine, and
SelectTextWord.

To insert the contents of the clipboard into a control, use the Paste function.

To delete selected text or an OLE object but not store it in the clipboard, use
the Clear function.

Cutting an OLE object breaks any connections between it and its source file or
storage, just as Clear does.

Examples Assuming the selected text in mle_emp_address is Temporary, this statement
deletes Temporary from mle_emp_address, stores it in the clipboard, and
returns 9:

mle_emp_address.Cut()

This example cuts the OLE object in the OLE control ole_1 and puts it on the
clipboard:

integer result
result = ole_1.Cut()

See also Copy
Clear
ClearAll
Clipboard
DeleteItem
Paste

DataCount
Description Reports the number of data points in the specified series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls and DataStore objects

Syntax controlname.DataCount ({ graphcontrol, } seriesname)

Argument Description

controlname The name of the graph in which you want the number of data
points in a specific series, or the name of the DataWindow control
or DataStore containing the graph
428 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Long. Returns the number of data points in the specified series if it succeeds
and -1 if an error occurs. If any argument’s value is null, DataCount returns null.

Examples These statements store in ll_count the number of data points in the series
named Costs in the graph gr_product_data:

long ll_count
ll_count = gr_product_data.DataCount("Costs")

These statements store in ll_count the number of data points in the series
named Salary in the graph gr_dept in the DataWindow control dw_employees:

long ll_count
ll_count = &
 dw_employees.DataCount("gr_dept", "Salary")

See also AddSeries
InsertSeries
SeriesCount

DataSource
Description Allows a RichTextEdit control to share data with a DataWindow and display

the data in its input fields. If there are input fields in the RichTextEdit control
that match the names of columns in the DataWindow, the data in the
DataWindow is assigned to those input fields. The document in the
RichTextEdit control is repeated so that there is an instance of the document
for each row in the DataWindow.

Applies to RichTextEdit controls

Syntax rtename.DataSource (dwsource)

graphcontrol
(DataWindow
control or
DataStore only)

(Optional) The name of the graph in the DataWindow control or
DataStore for which you want the data point count for the series

seriesname A string whose value is the name of the series for which you want
the number of data points

Argument Description

Argument Description

rtename The name of the RichTextEdit control for which you want to get
data in a DataWindow
PowerScript Reference 429

DataSource
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When names of input fields match names of columns in the DataWindow
object, the data in the columns is assigned to the matching input fields.

The document in the RichTextEdit control is associated with one row in the
DataWindow. There is an instance of the document for each retrieved row. The
text in the RichTextEdit control is repeated, with all its formatting, in every
document instance. The content of the input fields changes as the data in each
row changes. Except for the contents of the input fields, the contents of each
instance is the same—you cannot make changes to the surrounding text that
affect individual instances only.

If the InputFieldNamesVisible property of the RichTextEdit control is true, the
fields will show their names instead of the data they contain. Change the
property value to false to see the data. The following RichTextEdit functions
operate on or report information about an instance of the document:

The following RichTextEdit function affects the collection of documents:

Print

Examples This example establishes the DataWindow control dw_1 as the data source for
the RichTextEdit rte_1:

rte_1.DataSource(dw_1)

This example inserts a document called LETTER.RTF into the RichTextEdit
rte_letter (the names of the document’s input fields match the columns in a
DataWindow object d_emp), creates a DataStore, associates it with d_emp, and
retrieves data. Then it inserts the document in rte_letter and sets up the
DataStore as the data source for rte_1:

DataStore ds_empinfo
ds_empinfo = CREATE DataStore
ds_empinfo.DataObject = "d_emp"
ds_empinfo.SetTransObject(SQLCA)

dwsource The name of the DataWindow control, DataStore, or child
DataWindow that contains the data to be connected with input
fields in rtename

Argument Description

LineCount

PageCount

InsertDocument

SaveDocument

SelectedPage

SelectedStart
SelectedLine
SelectText
SelectTextAll
430 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ds_empinfo.Retrieve()

rte_letter.InsertDocument("LETTER.RTF", TRUE)
rte_letter.DataSource(ds_empinfo)

See also InputFieldChangeData, InputFieldCurrentName, InputFieldDeleteCurrent,
InputFieldGetData, InputFieldInsert

Date
Converts DateTime, string, or numeric data to data of type date or extracts a
date value from a blob. You can use one of several syntaxes, depending on the
datatype of the source data.

Platform information for Windows
To make sure you get correct return values for the year, you must verify that
yyyy is the Short Date Style for year in the Regional Settings of the user’s
Control Panel. Your program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or have
the application change it (by calling the RegistrySet function). The user may
need to reboot after the setting is changed.

Syntax 1 For DateTime data and blobs
Description Extracts a date from a DateTime value or from a blob whose first value is a date

or DateTime value.

Syntax Date (datetime)

To Use

Extract the date from DateTime data or extract a date stored
in a blob

Syntax 1

Convert a string to a date Syntax 2

Combine numeric data into a date Syntax 3
PowerScript Reference 431

Date
Return value Date. Returns the date in datetime as a date. If datetime contains an invalid date
or an incompatible datatype, Date returns 1900-01-01. If datetime is null, Date
returns null.

Examples After a value for the DateTime variable ldt_StartDateTime has been retrieved
from the database, this example sets ld_StartDate equal to the date in
ldt_StartDateTime:

DateTime ldt_StartDateTime
date ld_StartDate
ld_StartDate = Date(ldt_StartDateTime)

Assuming the value of a blob variable ib_blob contains a DateTime value
beginning at byte 32, the following statement converts it to a date value:

date ld_date
ld_date = Date(BlobMid(ib_blob, 32))

See also DateTime

Syntax 2 For strings
Description Converts a string whose value is a valid date to a date value.

Syntax Date (string)

Return value Date. Returns the date in string as a date. If string contains an invalid date or
an incompatible datatype, Date returns 1900-01-01. If string is null, Date
returns null.

Argument Description

datetime A DateTime value or a blob in which the first value is a date or
DateTime value. The rest of the contents of the blob is ignored.
Datetime can also be an Any variable containing a DateTime or
blob.

Argument Description

string A string containing a valid date (such as January 1, 2002, or
12-31-99) that you want returned as a date. Datetime can also be an
Any variable containing a string.
432 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage Valid dates in strings can include any combination of day (1 to 31), month (1
to 12 or the name or abbreviation of a month), and year (2 or 4 digits).
PowerBuilder assumes a 4-digit number is a year. Leading zeros are optional
for month and day. The month, whether a name, an abbreviation, or a number,
must be in the month location specified in the system setting for a date’s
format. If you do not know the system setting, use the standard datatype date
format yyyy-mm-dd.

PowerBuilder attempts to match the input string to a date format in the regional
settings on the computer. If a complete match is not found, PowerBuilder
attempts a partial match. For example, if you use Date('01-JAN-1900') and
PowerBuilder finds the partial match (dd-MMM-yy), PowerBuilder parses the
first two numbers of the year and gets 19. The 2-digit year is interpreted as a
year between 1930 and 2029, and the date returned is 1/1/2019.

Date literals do not need to be converted with the Date function.

Examples Example 1 These statements all return the date datatype for text expressing
the date July 4, 2004 (2004-07-04). The system setting for a date’s format is set
with the month’s position in the middle:

Date("2004/07/04")
Date("2004 July 4")
Date("04 July 2004")

Example 2 The following groups of statements check to be sure the date in
sle_start_date is a valid date and display a message if it is not. The first version
checks the result of the Date function to see if the date was valid. The second
uses the IsDate function to check the text before using Date to convert it:

Version 1:

// Windows Control Panel date format is YY/MM/DD
date ld_my_date

ld_my_date = Date(sle_start_date.Text)
IF ld_my_date = Date("1900-01-01") THEN
 MessageBox("Error", "This date is invalid: " &
 + sle_start_date.Text)
END IF

Version 2:

date ld_my_date

IF IsDate(sle_start_date.Text) THEN
 ld_my_date = Date(sle_start_date.Text)
ELSE
 MessageBox("Error", "This date is invalid: " &
PowerScript Reference 433

DateTime
 + sle_start_date.Text)
END IF

See also DateTime
IsDate
RelativeDate
RelativeTime
Date method for DataWindows in the DataWindow Reference or the online
Help

Syntax 3 For combining numbers into a date
Description Combines numbers representing the year, month, and day into a date value.

Syntax Date (year, month, day)

Return value Date. Returns the date specified by the integers for year, month, and day as a
date datatype. If any value is invalid (out of the range of values for dates), Date
returns 1900-01-01. If any argument’s value is null, Date returns null.

Examples These statements use integer values to set ld_my_date to 2005-10-15:

date ld_my_date
ld_my_date = Date(2005, 10, 15)

See also DateTime, DaysAfter, RelativeDate, RelativeTime

DateTime
Manipulates DateTime values. There are two syntaxes.

Argument Description

year The 4-digit year (1 to 9999) of the date

month The 1- or 2-digit integer for the month (1 to 12) of the year

day The 1- or 2-digit integer for the day (1 to 31) of the month

To Use

Combine a date and a time value into a DateTime value Syntax 1

Obtain a DateTime value that is stored in a blob Syntax 2
434 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 1 For creating DateTime values
Description Combines a date value and a time value into a DateTime value.

Syntax DateTime (date {, time })

Return value DateTime. Returns a DateTime value based on the values in date and optionally
time. If any argument’s value is null, DateTime returns null.

Usage DateTime data is used only for reading and writing DateTime values to and
from a database. To use the date and time values in scripts, use the Date and
Time functions to assign values to date and time variables.

Examples These statements convert the date and time stored in ld_OrderDate and
lt_OrderTime to a DateTime value that can be used to update the database:

DateTime ldt_OrderDateTime
date ld_OrderDate
time lt_OrderTime

ld_OrderDate = Date(sle_orderdate.Text)
lt_OrderTime = Time(sle_ordertime.Text)
ldt_OrderDateTime = DateTime(&
 ld_OrderDate, lt_OrderTime)

See also Date
Time
DateTime method for DataWindows in the DataWindow Reference or the
online Help

Syntax 2 For extracting DateTime values from blobs
Description Extracts a DateTime value from a blob.

Syntax DateTime (blob)

Argument Description

date A value of type date.

time
(optional)

A value of type time. If you omit time, PowerBuilder sets time to
00:00:00.000000 (midnight). If you specify time, only the hour
portion is required.

Argument Description

blob A blob in which the first value is a DateTime value. The rest of the
contents of the blob is ignored. Blob can also be an Any variable
containing a blob.
PowerScript Reference 435

DateTime
Return value DateTime. Returns the DateTime value stored in blob. If blob is null, DateTime
returns null.

Usage DateTime data is used only for reading and writing DateTime values to and
from a database. To use the date and time values in scripts, use the Date and
Time functions to assign values to date and time variables.

Examples After assigning blob data from the database to lb_blob, the following example
obtains the DateTime value stored at position 20 in the blob (the length you
specify for BlobMid must be at least as long as the DateTime value but can be
longer):

DateTime dt
dt = DateTime(BlobMid(lb_blob, 20, 40))

See also Date
Time
436 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Day
Description Obtains the day of the month in a date value.

Syntax Day (date)

Return value Integer. Returns an integer (1 to 31) representing the day of the month in date.
If date is null, Day returns null.

Examples These statements extract the day (31) from the date literal 2004-01-31 and set
li_day_portion to that value:

integer li_day_portion
li_day_portion = Day(2004-01-31)

These statements check to be sure the date in sle_date is valid, and if so set
li_day_portion to the day in the sle_date:

integer li_day_portion

IF IsDate(sle_date.Text) THEN
 li_day_portion = Day(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also Date
IsDate
Month
Year
Day method for DataWindows in the DataWindow Reference or the online Help

Argument Description

date A date value from which you want the day
PowerScript Reference 437

DayName
DayName
Description Determines the day of the week in a date value and returns the weekday’s

name.

Syntax DayName (date)

Return value String. Returns a string whose value is the weekday (Sunday, Monday, and so
on) of date. If date is null, DayName returns null.

Usage DayName returns a name in the language of the runtime files available on the
machine where the application is run. If you have installed localized runtime
files in the development environment or on a user’s machine, then on that
machine the name returned by DayName is in the language of the localized
files.

For information about localized runtime files, which are available in French,
German, Italian, Spanish, Dutch, Danish, Norwegian, and Swedish, see
Application Techniques.

Examples These statements evaluate the date literal 2003-07-04 and set day_name to
Sunday:

string day_name
day_name = DayName(2003-07-04)

These statements check to be sure the date in sle_date is valid, and if so set
day_name to the day in sle_date:

string day_name

IF IsDate(sle_date.Text) THEN
 day_name = DayName(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also Day
DayNumber
IsDate
DayName in the DataWindow Reference

Argument Description

date A date value for which you want the name of the day
438 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DayNumber
Description Determines the day of the week of a date value and returns the number of the

weekday.

Syntax DayNumber (date)

Return value Integer. Returns an integer (1-7) representing the day of the week of date.
Sunday is day 1, Monday is day 2, and so on. If date is null, DayNumber returns
null.

Examples These statements evaluate the date literal 2000-01-31 and set day_nbr to 4
(January 31, 2000, was a Wednesday):

integer day_nbr
day_nbr = DayNumber(2000-01-31)

These statements check to be sure the date in sle_date is valid, and if so set
day_nbr to the number of the day in the sle_date:

integer day_nbr

IF IsDate(sle_date.Text) THEN
 day_nbr = DayNumber(Date(sle_date.Text))
ELSE
 MessageBox("Error", &
 "This date is invalid: " &
 + sle_date.Text)
END IF

See also Day
DayName
IsDate
DayNumber in the DataWindow Reference

Argument Description

date The date value from which you want the number of the day of the
week
PowerScript Reference 439

DaysAfter
DaysAfter
Description Determines the number of days one date occurs after another.

Syntax DaysAfter (date1, date2)

Return value Long. Returns a long whose value is the number of days date2 occurs after
date1. If date2 occurs before date1, DaysAfter returns a negative number. If any
argument’s value is null, DaysAfter returns null.

Examples This statement returns 4:

DaysAfter(2002-12-20, 2002-12-24)

This statement returns -4:

DaysAfter(2002-12-24, 2002-12-20)

This statement returns 0:

DaysAfter(2003-12-24, 2003-12-24)

This statement returns 5:

DaysAfter(2003-12-29, 2004-01-03)

If you declare date1 and date2 date variables and assign February 16, 2003, to
date1 and April 28, 2003, to date2 as follows:

date date1, date2

date1 = 2003-02-16
date2 = 2003-04-28

then each of the following statements returns 71:

DaysAfter(date1, date2)
DaysAfter(2003-02-16, date2)
DaysAfter(date1, 2003-04-28)
DaysAfter(2003-02-16, 2003-04-28)

See also RelativeDate
RelativeTime
SecondsAfter
DaysAfter in the DataWindow Reference

Argument Description

date1 A date value that is the start date of the interval being measured

date2 A date value that is the end date of the interval
440 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DBHandle
Description Reports the handle for your DBMS.

Applies to Transaction objects

Syntax transactionobject.DBHandle ()

Return value UnsignedLong. Returns the handle for your DBMS. Transactionobject must
exist, and the database must be connected. If transactionobject is null,
DBHandle returns null. If transactionobject does not exist, an execution error
occurs. If there is not enough memory to connect to your DBMS, DBHandle
returns a negative number.

Usage DBHandle returns a valid handle only if you are connected to the database. It is
not able to determine if the database connection does not exist or has been lost.

PowerBuilder uses the database handle internally to communicate with the
database. If your database supports an API with functions that PowerBuilder
does not support, you can use DBHandle to provide the handle as an argument
to one of these external functions.

Examples For examples, search for DBHandle in online Help.

DebugBreak
Description Suspends execution and opens the Debug window.

Syntax DebugBreak ()

Return value None

Usage Insert a call to the DebugBreak function into a script at a point at which you
want to suspend execution and examine the application. Then enable
just-in-time debugging and run the application in the development
environment.

When PowerBuilder encounters the DebugBreak function, the Debug window
opens showing the current context.

Examples This statement tests whether a variable is null and opens the Debug window if
it is:

IF IsNull(auo_ext) THEN DebugBreak()

Argument Description

transactionobject The current transaction object
PowerScript Reference 441

Dec
Dec
Description Converts a string to a decimal number or obtains a decimal value stored in a

blob.

Syntax Dec (stringorblob)

Return value Decimal. Returns the value of stringorblob as a decimal. If stringorblob is not
a valid PowerScript number or if it contains an incompatible datatype, Dec
returns 0. If stringorblob is null, Dec returns null.

Examples This statement returns 24.3 as a decimal datatype:

Dec("24.3")

This statement returns the contents of the SingleLineEdit sle_salary as a
decimal number:

Dec(sle_salary.Text)

For an example of assigning and extracting values from a blob, see Real.

See also Double
Integer
Long
Real

Argument Description

stringorblob A string whose value you want returned as a decimal value or a blob
in which the first value is the decimal you want. The rest of the
contents of the blob is ignored. Stringorblob can also be an Any
variable containing a string or blob.
442 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DeleteCategory
Description Deletes a category and the data values for that category from the category axis

of a graph.

Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (because their data comes directly from the
DataWindow).

Syntax controlname.DeleteCategory (categoryvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, DeleteCategory returns null.

Examples These statements delete the category whose name is entered in the
SingleLineEdit sle_delete from the graph gr_product_data:

string CategName
CategName = sle_delete.Text
gr_product_data.DeleteCategory(CategName)

See also DeleteData
DeleteSeries

Argument Description

controlname The graph in which you want to delete a category.

categoryvalue A value that is the category you want to delete from
controlname. The value you specify must be the same
datatype as the datatype of the category axis.
PowerScript Reference 443

DeleteColumn
DeleteColumn
Description Deletes a column.

ListView controls

Syntax listviewname.DeleteColumn (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes the second column in a ListView control:

lv_list.DeleteColumn(2)

See also DeleteColumns

DeleteColumns
Description Deletes all columns.

Applies to ListView controls

Syntax listviewname.DeleteColumns ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all columns in a ListView control:

lv_list.DeleteColumns()

See also DeleteColumn

Argument Description

listviewname The name of the ListView control from which you want to delete a
column

index The index number of the column you want to delete

Argument Description

listviewname The name of the ListView control from which you want to
delete all columns
444 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DeleteData
Description Deletes a data point from a series of a graph. The remaining data points in the

series are shifted left to fill the data point’s category.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (because their data comes directly from the
DataWindow).

Syntax controlname.DeleteData (seriesnumber, datapointnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, DeleteData returns null.

Examples These statements delete the data at data point 7 in the series named Costs in the
graph gr_product_data:

integer SeriesNbr
// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.DeleteData(SeriesNbr, 7)

See also AddData
DeleteCategory
DeleteSeries
FindSeries

Argument Description

controlname The name of the graph in which you want to delete a data
value

seriesnumber The number of the series containing the data value you want
to delete from controlname

datapointnumber The number of the data point containing the data you want to
delete
PowerScript Reference 445

DeleteItem
DeleteItem
Deletes an item from a ListBox, DropDownListBox, or ListView control.

Syntax 1 For ListBox and DropDownListBox controls
Description Deletes an item from the list of values for a list box control.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.DeleteItem (index)

Return value Integer. Returns the number of items remaining in the list of values after the
item is deleted. If an error occurs, DeleteItem returns -1. If any argument’s
value is null, DeleteItem returns null.

Usage If the control’s Sorted property is set, the order of the list is probably different
from the order you specified when you defined the control. If you know the
item’s text, use FindItem to determine the item’s index.

Examples Assuming lb_actions contains 10 items, this statement deletes item 5 from
lb_actions and returns 9:

lb_actions.DeleteItem(5)

These statements delete the first selected item in lb_actions:

integer li_Index
li_Index = lb_actions.SelectedIndex()
lb_actions.DeleteItem(li_Index)

This statement deletes the item "Personal" from the ListBox lb_purpose:

lb_purpose.DeleteItem(&
 lb_purpose.FindItem("Personal", 1))

See also AddItem, FindItem, InsertItem, SelectItem

To delete an item from Use

A ListBox or DropDownListBox control Syntax 1

A ListView control Syntax 2

A TreeView control Syntax 3

Argument Description

listboxname The name of the ListBox, DropDownListBox, PictureListBox, or
DropDownPictureListBox from which you want to delete an item

index The position number of the item you want to delete
446 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For ListView controls
Description Deletes the specified item from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteItem (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example uses SelectedIndex to find the index of the selected ListView
item and then deletes the corresponding item:

integer index
index = lv_list.selectedindex()
lv_list.DeleteItem(index)

See also AddItem
FindItem
InsertItem
SelectItem
DeleteItems

Syntax 3 For TreeView controls
Description Deletes an item from a control and all its child items, if any.

Applies to TreeView controls

Syntax treeviewname.DeleteItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage If all items are children of a single item at the root level, you can delete all items
in the TreeView with the handle for RootTreeItem as the argument for
DeleteItem. Otherwise, you need to loop through the items at the first level.

Argument Description

listviewname The name of the ListView control from which you want to delete an
item

index The index number of the item you want to delete

Argument Description

treeviewname The name of the TreeView control from which you want to delete
an item

itemhandle The handle of the item you want to delete
PowerScript Reference 447

DeleteItems
Examples This example deletes an item from a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
tv_list.DeleteItem(ll_tvi)

This example deletes all items from a TreeView control when there are several
items at the first level:

long tvi_hdl = 0
DO UNTIL tv_1.FindItem(RootTreeItem!, 0) = -1
 tv_1.DeleteItem(tvi_hdl)
LOOP

See also AddItem
FindItem
InsertItem
SelectItem
DeleteItems

DeleteItems
Description Deletes all items from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteItems ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all the items in a ListView control:

lv_list.DeleteItems()

See also DeleteItem

Argument Description

listviewname The name of the ListView control from which you want to delete all
items
448 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DeleteLargePicture
Description Deletes a picture from the large image list.

Applies to ListView controls

Syntax listviewname.DeleteLargePicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes a large picture from a ListView control:

lv_list.DeleteLargePicture(1)

See also DeleteLargePictures

DeleteLargePictures
Description Deletes all large pictures from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteLargePictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all large pictures from a ListView control:

lv_list.DeleteLargePictures()

See also DeleteLargePicture

Argument Description

listviewname The name of the ListView control to which you want to delete a
large picture from the image list

index The index entry for the large picture you want to delete

Argument Description

listviewname The name of the ListView control from which you want to delete all
pictures from the large picture image list
PowerScript Reference 449

DeletePicture
DeletePicture
Description Deletes a picture from the image list.

Applies to PictureListBox, DropDownPictureListBox, and TreeView controls

Syntax controlname.DeletePicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When you delete a picture from the image list for a control, all subsequent
pictures in the list are renumbered to fill the gap. Because the picture index for
an item does not change, the pictures for items that use the affected index
numbers will change.

Examples This example deletes the sixth image from the image list:

tv_list.DeletePicture(6)

See also AddPicture
DeletePictures

DeletePictures
Description Deletes all pictures from an image list.

Applies to PictureListBox, DropDownPictureListBox, and TreeView controls

Syntax controlname.DeletePictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all images from a TreeView control image list:

tv_list.DeletePictures()

See also AddPicture
DeletePicture

Argument Description

controlname The control from which you want to delete a picture

index The index number of the picture you want to delete from the
TreeView control’s image list

Argument Description

controlname The control in which you want to delete all pictures from the image
list
450 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DeleteSeries
Description Deletes a series and its data values from a graph.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (because their data comes directly from the
DataWindow).

Syntax controlname.DeleteSeries (seriesname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, DeleteSeries returns null.

Usage The series in a graph are numbered consecutively, in the order they were added
to the graph. When a series is deleted, the remaining series are renumbered.

Examples This script for the SelectionChanged event of a DropDownListBox assumes
that the list box lists the series in the graph gr_data. When the user chooses an
item, DeleteSeries deletes the series from the graph and DeleteItem deletes the
name from the list box:

string ls_name
ls_name = This.Text
gr_data.DeleteSeries(ls_name)
This.DeleteItem(This.FindItem(ls_name, 0))

See also AddSeries
DeleteCategory
DeleteData
FindSeries

Argument Description

controlname The graph in which you want to delete a series

seriesname A string whose value is the name of the series you want to delete
from controlname
PowerScript Reference 451

DeleteSmallPicture
DeleteSmallPicture
Description Deletes a small picture from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteSmallPicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes a small picture from a ListView control:

lv_list.DeleteSmallPicture(1)

See also DeleteSmallPictures

DeleteSmallPictures
Description Deletes all small pictures from a ListView control.

Applies to ListView controls

Syntax listviewname.DeleteSmallPictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all small pictures from a ListView control:

lv_list.DeleteSmallPictures()

See also DeleteSmallPicture

Argument Description

listviewname The name of the ListView control from which you want to delete a
small picture from the image list

index The index number of the small picture you want to delete

Argument Description

listviewname The name of the ListView control from which you want to delete all
small pictures
452 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DeleteStatePicture
Description Deletes a state picture from a control.

Applies to ListView and TreeView controls

Syntax controlname.DeleteStatePicture (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes a state picture from a ListView control:

lv_list.DeleteStatePicture(1)

See also DeleteStatePictures

DeleteStatePictures
Description Deletes all state pictures from a control.

Applies to ListView and TreeView controls

Syntax controlname.DeleteStatePictures ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example deletes all state pictures from a ListView control:

lv_list.DeleteStatePictures()

See also DeleteStatePicture

Argument Description

controlname The name of the ListView or TreeView control from which you
want to delete a picture from the state image list

index The index number of the state picture you want to delete

Argument Description

controlname The name of the ListView or TreeView control from which you
want to delete all state pictures
PowerScript Reference 453

DestroyModel
DestroyModel
Description Destroys the current performance analysis or trace tree model.

Applies to Profiling and TraceTree objects

Syntax instancename.DestroyModel ()

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The function failed because no model exists

Usage When you are finished with the performance analysis or trace tree model you
created using the BuildModel function, you must call DestroyModel to destroy
the model as well as all the objects associated with that model. The memory
allocated to a model will not be released until the object is destroyed.

Examples This example destroys the performance analysis model previously created
using the BuildModel function:

lpro_model.DestroyModel()
DESTROY lpro_model

See also BuildModel

Argument Description

instancename Instance name of the Profiling or TraceTree object
454 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DirectoryExists
Description Determines if the named directory exists.

Syntax DirectoryExists (directoryname)

Return value Returns true if the directory exists. Returns false if the directory does not exist
or if you pass a file name in the directoryname argument.

Usage You can use this method before attempting to move a file or delete a directory
using other file system methods.

Examples This example determines if a directory exists before attempting to move a file
to it; otherwise it displays a message box indicating that the path does not exist:

string ls_path="monthly targets"

If DirectoryExists (ls_path) Then
 FileMove ("2000\may.csv", ls_path+"\may.csv")
 MessageBox ("File Mgr", "File moved to "&
 + ls_path + ".")
Else
 MessageBox ("File Mgr", "Directory " + ls_path+&
 " does not exist")
End If

See also FileMove
GetCurrentDirectory
RemoveDirectory

Argument Description

directoryname String for the name of the directory you want to verify as existing
PowerScript Reference 455

DirList
DirList
Description Populates a ListBox with a list of files. You can specify a path, a mask, and a

file type to restrict the set of files displayed. If the window has an associated
StaticText control, DirList can display the current drive and directory as well.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.DirList (filespec, filetype {, statictext })

Return value Boolean. Returns true if the search path is valid so that the ListBox is populated
or the list is empty. DirList returns false if the ListBox cannot be populated (for
example, filespec is a file, not a directory, or specifies an invalid path). If any
argument’s value is null, DirList returns null.

Usage You can call DirList when the window opens to populate the list initially. You
should also call DirList in the script for the SelectionChanged event to
repopulate the list box based on the new selection. (See the example in
DirSelect.)

Argument Description

listboxname The name of the ListBox control you want to populate.

filespec A string whose value is the file pattern. This is usually a mask (for
example, *.INI or *.TXT). If you include a path, it becomes the
current drive and directory.

filetype An unsigned integer representing one or more types of files you
want to list in the ListBox. Types are:

• 0 – Read/write files

• 1 – Read-only files

• 2 – Hidden files

• 4 – System files

• 16 – Subdirectories

• 32 – Archive (modified) files

• 16384 – Drives

• 32768 – Exclude read/write files from the list

To list several types, add the numbers associated with the types. For
example, to list read-write files, subdirectories, and drives, use
0+16+16384 or 16400 for filetype.

statictext
(optional)

The name of the StaticText in which you want to display the current
drive and directory.
456 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Alternatives
Although DirList’s features allow you to emulate the standard File Open and
File Save windows, you can get the full functionality of these standard
windows by calling GetFileOpenName and GetFileSaveName instead of DirList.

Examples This statement populates the ListBox lb_emp with a list of read/write files with
the file extension TXT in the search path C:\EMPLOYEE*.TXT:

lb_emp.DirList("C:\EMPLOYEE*.TXT", 0)

This statement populates the ListBox lb_emp with a list of read-only files with
the file extension DOC in the search path C:\EMPLOYEE*.DOC and displays
the path specification in the StaticText st_path:

lb_emp.DirList("C:\EMPLOYEE*.DOC", 1, st_path)

These statements in the script for a window Open event initialize a ListBox to
all files in the current directory that match *.TXT:

String s_filespec
s_filespec = "*.TXT"
lb_filelist.DirList(s_filespec, 16400, st_filepath)

See also DirSelect
GetFolder
PowerScript Reference 457

DirSelect
DirSelect
Description When a ListBox has been populated with the DirList function, DirSelect

retrieves the current selection and stores it in a string variable.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.DirSelect (selection)

Return value Boolean. Returns true if the current selection is a drive letter or a directory name
(which can contain files and other directories) and false if it is a file (indicating
the user’s final choice). If any argument’s value is null, DirSelect returns null.

Usage Use DirSelect in the SelectionChanged event to find out what the user chose.
When the user’s selection is a drive or directory, use the selection as a new
directory specification for DirList.

Examples The following script for the SelectionChanged event for the ListBox lb_FileList
calls DirSelect to test whether the user’s selection is a file. If not, the script joins
the directory name with the file pattern, and calls DirList to populate the
ListBox and display the current drive and directory in the StaticText
st_FilePath. If the current selection is a file, other code processes the file name:

string ls_filename, ls_filespec = "*.TXT"

IF lb_FileList.DirSelect(ls_filename) THEN
 //If ls_filename is not a file,
 //append directory to ls_filespec.
 ls_filename = ls_filename + ls_filespec
 lb_filelist.DirList(ls_filename, &
 16400, st_FilePath)
ELSE
 ... //Process the file.
END IF

See also DirList
GetFolder

Argument Description

listboxname The name of the ListBox control from which you want to retrieve
the current selection. The ListBox must have been populated using
DirList, and the selection must be a drive letter, a file, or the name
of a directory.

selection A string variable in which the selected path name will be put.
458 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Disable
Description Disables an item on a menu. The menu item is dimmed (its color is changed to

the user’s disabled text color, usually gray), and the user cannot select it.

Applies to Menu objects

Syntax menuname.Disable ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Disable returns null.

Equivalent syntax Setting the menu’s Enabled property is the same as
calling Disable.

menuname.Enabled = false

This statement:

m_appl.m_edit.Enabled = FALSE

is equivalent to:

m_appl.m_edit.Disable()

Examples This statement disables the m_edit menu item on the menu m_appl:

m_appl.m_edit.Disable()

See also Enable

Argument Description

menuname The name of the menu selection you want to deactivate (disable)
PowerScript Reference 459

DisableCommit
DisableCommit
Description Declares that a component’s transaction updates are inconsistent and cannot be

committed in their present state.

Applies to TransactionServer objects

Syntax transactionserver.DisableCommit ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The DisableCommit function indicates that the current transaction cannot be
committed because the component’s work has not been completed; the instance
remains active after the current method returns. The DisableCommit function
corresponds to the disallowCommit transaction primitive in EAServer.

Examples The following example shows the use of the DisableCommit in a component
method that performs database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts
Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", &
 ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
ll_rv = ids_datastore.Update()

IF ll_rv = 1 THEN
 ts.EnableCommit()
ELSE
 ts.DisableCommit()
END IF

See also EnableCommit
IsInTransaction
IsTransactionAborted
SetAbort
SetComplete
Which

Argument Description
transactionserver Reference to the TransactionServer service instance
460 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DisconnectObject
Description Releases any object that is connected to the specified OLEObject variable.

Applies to OLEObject objects

Syntax oleobject.DisconnectObject ()

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Invalid call: the argument is the Object property of a control
-9 Other error

If oleobject is null, DisconnectObject returns null.

Usage The OLEObject variable is used for OLE automation, in which the
PowerBuilder application asks the server application to manipulate the OLE
object programmatically.

For more information about OLE automation, see ConnectToObject.

Examples This example creates an OLEObject variable and connects it to a new Excel
object; then after some unspecified code, it disconnects:

integer result
OLEObject myoleobject

myoleobject = CREATE OLEObject
result = myoleobject.ConnectToNewObject(&
 "excel.application")
. . .
result = myoleobject.DisconnectObject()

See also ConnectToObject
ConnectToNewObject

Argument Description

oleobject The name of an OLEObject variable that you want to disconnect
from an OLE object. You cannot specify an OLEObject that is the
Object property of an OLE control.
PowerScript Reference 461

DisconnectServer
DisconnectServer
Description Disconnects a client application from a server application.

Applies to Connection objects

Syntax connection.DisconnectServer ()

Return value Long. Returns 0 if it succeeds and one of the following values if an error occurs:

50 Distributed service error
52 Distributed communications error
53 Requested server not active
54 Server not accepting requests
55 Request terminated abnormally
56 Response to request incomplete
57 Not connected
62 Server busy

Usage After disconnecting from the server application, the client application needs to
destroy the Connection object.

DisconnectServer causes all remote objects and proxy objects created for the
client connection to be destroyed.

Examples In this example, the client application disconnects from the server application
using the Connection object myconnect:

myconnect.DisconnectServer()
destroy myconnect

See also ConnectToServer

Argument Description

connection The name of the Connection object used to establish the connection
you want to delete
462 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Double
Description Converts a string to a double or obtains a double value that is stored in a blob.

Syntax Double (stringorblob)

Return value Double. Returns the contents of stringorblob as a double. If stringorblob is not
a valid PowerScript number or if it contains a non-numeric datatype, Double
returns 0. If stringorblob is null, Double returns null.

Usage To distinguish between a string whose value is the number 0 and a string whose
value is not a number, use the IsNumber function before calling the Double
function.

Examples This statement returns 24.372 as a double:

Double("24.372")

This statement returns the contents of the SingleLineEdit sle_distance as a
double:

Double(sle_distance.Text)

After assigning blob data from the database to lb_blob, this example obtains the
double value stored at position 20 in the blob (the length you specify for
BlobMid must be at least as long as the value but can be longer):

double lb_num
lb_num = Double(BlobMid(lb_blob, 20, 40))

For an example of assigning and extracting values from a blob, see Real.

See also Dec
Integer
Long
Real

Argument Description

stringorblob A string whose value you want returned as a double or a blob in
which the first value is the double value. The rest of the contents of
the blob is ignored. Stringorblob can also be an Any variable
containing a double or blob.
PowerScript Reference 463

DoVerb
DoVerb
Description Requests the OLE server application to execute the specified verb for the OLE

object in an OLE control or OLE DWObject.

Applies to OLE controls and OLE DWObjects (objects within a DataWindow object that
is within a DataWindow control)

Syntax objectref.DoVerb (verb)

Return value Integer. Returns 0 if it succeeds and one of the following values if an error
occurs:

-1 Container is empty
-2 Invalid verb for object
-3 Verb not implemented by object
-4 No verbs supported by object
-5 Object cannot execute verb now
-9 Other error

If any argument’s value is null, DoVerb returns null.

Examples This example executes verb 7 for the object in the OLE control ole_1:

integer result
result = ole_1.DoVerb(7)

This example executes verb 7 for the object in the OLE DWObject ole_graph:

integer result
result = dw_1.Object.ole_graph.DoVerb(7)

See also Activate
OLEActivate in the DataWindow Reference
SelectObject

Argument Description

objectref The name of the OLE control or the fully qualified name of a OLE
DWObject within a DataWindow control for which you want to
execute a verb. The fully qualified name for a DWObject has this
syntax:

dwcontrol.Object.dwobjectname

verb An integer identifying a verb known to the OLE server application.
Verbs are operations that the server can perform on the OLE object.
Check the documentation for the server’s OLE implementation to
find out what verbs it supports.
464 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Drag
Description Starts or ends the dragging of a control.

Applies to All controls except drawing objects (Lines, Ovals, Rectangles, and Rounded
Rectangles)

Syntax control.Drag (dragmode)

Return value Integer. For all controls except OLE controls, returns 1 if it succeeds and -1 if
you try to nest drag events or try to cancel the drag when control is not in drag
mode. The return value is usually not used.

For OLE controls, returns the following values:

 2 Object was moved
 1 Drag was canceled
 0 Drag succeeded
-1 Control is empty
-9 Unspecified error

If any argument’s value is null, Drag returns null.

Usage To see the list of draggable controls, open the Browser. All the objects in the
hierarchy below dragobject are draggable.

If you set the control’s DragAuto property to true, PowerBuilder automatically
puts the control in drag mode when the user clicks it. The user must hold the
mouse button down to drag.

When you use Drag(Begin!) in a control’s Clicked event to manually put the
control in drag mode, the user can drag the control by moving the mouse
without holding down the mouse button. Clicking the left mouse button ends
the drag. CANCEL! and END! are required only if you want to end the drag
without requiring the user to click the left mouse button.

Argument Description

control The name of the control you want to drag or stop dragging

dragmode A value of the DragMode datatype indicating the action you want
to take on control:

• Begin! – Put control in drag mode

• Cancel! – Stop dragging control but do not cause a DragDrop
event

• End! – Stop dragging control and if control is over a target
object, cause a DragDrop event
PowerScript Reference 465

Drag
Dragging DataWindow controls
The Clicked event of a DataWindow control occurs when the user presses the
mouse button, not when the mouse button is released. If you place Drag(Begin!)
in a DataWindow control’s Clicked event, releasing the mouse button ends the
drag. To achieve the same behavior as with other controls, define a user-
defined event for the DataWindow control called lbuttonup and map it to the
pbm_lbuttonup event ID. Then place the following code in the lbuttonup event
script (ib_dragflag is a boolean instance variable):

IF NOT ib_dragflag THEN
 this.Drag(Begin!)
 ib_dragflag = TRUE
ELSE
 ib_dragflag = FALSE
END IF

To make something happen when the user drags a control onto a target object,
write scripts for one or more of the target’s drag events (DragDrop, DragEnter,
DragLeave, and DragWithin).

Examples This statement puts sle_emp into drag mode:

sle_emp.Drag(Begin!)

See also DraggedObject
466 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
DraggedObject
Description Returns a reference to the control that triggered a drag event.

Obsolete function
You no longer need to call the DraggedObject function in a drag event. Use the
event’s source argument instead.

Syntax DraggedObject ()

Return value DragObject, a special datatype that includes all draggable controls (all the
controls but no drawing objects). Returns a reference to the control that is
currently being dragged.

No control
If no control is being dragged, an execution error message is displayed.

Usage Call DraggedObject in a drag event for the target object. The drag events are
DragDrop, DragEnter, DragLeave, and DragWithin. Use TypeOf to obtain the
datatype of the control. To access the properties of the control, you can assign
the DragObject reference to a variable of that control’s datatype (see the
example).

Examples These statements set which_control equal to the datatype of the control that is
currently being dragged, and then set ls_text_value to the text property of the
dragged control:

SingleLineEdit sle_which
CommandButton cb_which
string ls_text_value
DragObject which_control

which_control = DraggedObject()

CHOOSE CASE TypeOf(which_control)

CASE CommandButton!
 cb_which = which_control
 ls_text_value = cb_which.Text
CASE SingleLineEdit!
 sle_which = which_control
 ls_text_value = sle_which.Text
END CHOOSE

See also Drag, TypeOf
PowerScript Reference 467

Draw
Draw
Description Draws a picture control at a specified location in the current window.

Applies to Picture controls

Syntax picture.Draw (xlocation, ylocation)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Draw returns null. The return value is usually not used.

Usage Using the Draw function is faster and produces less flicker than successively
changing the X property of a picture. This is because the Draw function draws
directly on the window rather than recreating a small window with the picture
in it for each change. Therefore, use Draw to draw pictures in animation.

To create animation, you can place a picture outside the visible portion of the
window and then use the Draw function to draw it at different locations in the
window. However, the image remains at all the positions where you draw it. If
you change the position by small increments, each new drawing of the picture
covers up most of the previous image.

Using Draw does not change the position of the picture control—it just displays
the control’s image at the specified location. Use the Move function to actually
change the position of the control.

Examples This statement draws the bitmap p_Train at the location specified by the X and
Y coordinates 100 and 200:

p_Train.Draw(100, 200)

These statements draw the bitmap p_Train in many different locations so it
appears to move from left to right across the window:

integer horizontal
FOR horizontal = 1 TO 2000 STEP 8
 p_Train.Draw(horizontal, 100)
NEXT

See also Move

Argument Description

picture The name of the picture control you want to draw in the current
window

xlocation The x coordinate of the location (in PowerBuilder units) at which
you want to draw the picture

ylocation The y coordinate of the location (in PowerBuilder units) at which
you want to draw the picture
468 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
EditLabel
Put a label in a ListView or TreeView control into edit mode.

Syntax 1 For editing a label in a ListView
Description Puts a label in a ListView into edit mode.

Applies to ListView controls

Syntax listviewname.EditLabel (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The EditLabels property for the ListView must be set to true to enable editing
of labels. When this property is true, calling the EditLabel function sets focus
on the item and enables editing. To disable editing when the user has finished
editing the label, set the EditLabels property to false in the EndLabelEdit event.

If the EditLabels property is set to false, the EditLabel function does not enable
editing.

Examples This example allows the user to edit the label of the first selected item in the
ListView control lv_1:

integer li_selected
li_selected = lv_1.SelectedIndex()
lv_1.EditLabels = TRUE
lv_1.EditLabel(li_selected)

See also FindItem

To enable editing of a label in a Use

ListView control Syntax 1

TreeView control Syntax 2

Argument Description

listviewname The ListView control in which you want to enable label editing

index The index of the ListView item to be edited
PowerScript Reference 469

EditLabel
Syntax 2 For editing a label in a TreeView
Description Puts a label in a TreeView into edit mode.

Applies to TreeView controls

Syntax treeviewname.EditLabel (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The EditLabels property for the TreeView must be set to true to enable editing
of labels. When this property is true, calling the EditLabel function sets focus
on the item and enables editing. To disable editing when the user has finished
editing the label, set the EditLabels property to false in the EndLabelEdit event.

If the EditLabels property is set to false, the EditLabel function does not enable
editing.

Examples This example allows the user to edit the label of the current TreeView item:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
tv_list.EditLabels = TRUE
tv_list.EditLabel(ll_tvi)

See also FindItem

Argument Description

treeviewname The TreeView control in which you want to enable label editing

itemhandle The handle of the item to be edited
470 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Enable
Description Enables an item on a menu so a user can select it.

Applies to Menu objects

Syntax menuname.Enable ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Enable returns null.

Usage Enabling a menu item changes its color to the active color (not the dimmed, or
disabled, color). Calling Enable sets the item’s Enabled property to true.

Equivalent syntax Setting the menu’s Enabled property is the same as
calling Enable.

menuname.Enabled = TRUE

This statement:

menu_appl.m_delete.Enabled = TRUE

is equivalent to:

menu_appl.m_delete.Enable()

Examples This statement enables the m_delete menu selection on the menu m_appl:

m_appl.m_delete.Enable()

See also Disable

Argument Description

menuname The name of the menu selection you want to enable
PowerScript Reference 471

EnableCommit
EnableCommit
Description Declares that a component's work may be incomplete but its transaction

updates are consistent and can be committed.

Applies to TransactionServer objects

Syntax transactionserver.EnableCommit ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The EnableCommit function indicates that the component should not be
deactivated after the current method invocation. However, if the component
instance is deactivated, the current transaction can be committed. The
EnableCommit function corresponds to the continueWork transaction primitive
in EAServer.

Examples The following example shows the use of EnableCommit in a component method
that performs database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts
Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer",ts)
IF li_rc <> 1 THEN

// handle the error
END IF
...
ll_rv = ids_datastore.Update()
IF ll_rv = 1 THEN

ts.EnableCommit()
ELSE

ts.DisableCommit()
END IF

See also DisableCommit
IsInTransaction
IsTransactionAborted
Lookup
SetAbort
SetComplete
Which

Argument Description
transactionserver Reference to the TransactionServer service instance
472 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
EntryList
Description Provides a list of the top-level entries included in a trace tree model.

Applies to TraceTree objects

Syntax instancename.EntryList (list)

Return value ErrorReturn. Returns the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The function failed because no model exists

Usage You use the EntryList function to extract a list of the top-level entries or nodes
included in a trace tree model. Each top-level entry listed is defined as a
TraceTreeNode object and provides the type of activity represented by that
node.

You must have previously created the trace tree model from a trace file using
the BuildModel function.

Examples This example gets the top-level entries or nodes in a trace tree model and then
loops through the list extracting information about each node. The
of_dumpnode function takes a TraceTreeNode object and a level as arguments
and returns a string containing information about the node:

TraceTree ltct_model
TraceTreeNode ltctn_list[], ltctn_node
Long ll_index,ll_limit
String ls_line

ltct_model = CREATE TraceTree
ltct_model.BuildModel()
ltct_model.EntryList(ltctn_list)
ll_limit = UpperBound(ltctn_list)
FOR ll_index = 1 TO ll_limit

ltctn_node = ltctn_list[ll_index]
ls_line += of_dumpnode(ltctn_node,0)

NEXT
...

See also BuildModel

Argument Description

instancename Instance name of the TraceTree object.

list An unbounded array variable of datatype TraceTreeNode in which
EntryList stores a TraceTreeNode object for each top-level entry in
the trace tree model. This argument is passed by reference.
PowerScript Reference 473

ExecRemote
ExecRemote
Asks a DDE server application to execute the specified command.

Syntax 1 For sending single commands
Description Sends a single command to a DDE server application, called a cold link.

Syntax ExecRemote (command, applname, topicname)

Return value Integer. Returns 1 if it succeeds. If it fails, it returns a negative integer. Possible
values are:

-1 Link was not started
-2 Request denied
-3 Could not terminate server

If any argument’s value is null, ExecRemote returns null.

Usage The DDE server application must already be running when you call a DDE
function. Use the Run function to start the application if necessary.

The ExecRemote function allows you to start a cold link or use a warm link
between the PowerBuilder client application and the DDE server application.

A cold link is a single DDE command and is not associated with a DDE
channel. Each time you call ExecRemote without opening a channel (Syntax 1),
Windows polls all running applications to find one that acknowledges the
request. The is also true for the related functions GetRemote and SetRemote.

A warm link is associated with a DDE channel (see Syntax 2).

To send Use

A single command to a DDE server application (a cold link) Syntax 1

A command to a DDE server application after you have
opened a channel (a warm link)

Syntax 2

Argument Description

command A string whose value is the command you want a DDE server
application to execute. To determine the correct command format,
see the documentation for the server application.

applname A string whose value is the DDE name of the server application.

topicname A string identifying the data or the instance of the DDE application
you want to use with the command. In Microsoft Excel, for example,
the topic name could be system or the name of an open spreadsheet.
474 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
A DDE hot link, which enables automatic updating of data in the PowerBuilder
client application, involves other functions. For more information, see the
StartHotLink function.

Examples This statement asks Microsoft Excel to save the active spreadsheet as file
REGION.XLS. A channel is not open, so the function arguments specify the
application and topic (the name of the spreadsheet):

ExecRemote("[Save()]", "Excel", "REGION.XLS")

See also CloseChannel
GetRemote
OpenChannel
SetRemote
StartHotLink

Syntax 2 For commands over an opened channel
Description Sends a command to a DDE server application when you have already called

OpenChannel and established a warm link with the server.

Syntax ExecRemote (command, handle {, windowhandle })

Return value Integer. Returns 1 if it succeeds. If an error occurs, ExecRemote returns a
negative integer. Possible values are:

-1 Link was not started
-2 Request denied
-9 Handle is null

Usage The DDE server application must already be running when you call a DDE
function. Use the Run function to start the application if necessary.

Argument Description

command A string whose value is the command you want a DDE server
application to execute. The format of the command depends on the
DDE application you want to execute the command.

handle A long that identifies the channel to the DDE server application.
The OpenChannel function returns handle when you call it to
open a DDE channel.

windowhandle
(optional)

The handle to the window that you want to act as the DDE client.
Specify this parameter to control which window is acting as the
DDE client when you have more than one open window. If you do
not specify windowhandle, the active window acts as the DDE
client.
PowerScript Reference 475

ExecRemote
The ExecRemote function allows you start a cold link or use warm link
between the PowerBuilder client application and the DDE server application.

A cold link is a single DDE command and is not associated with a DDE channel
(see Syntax 1).

A warm link is associated with a DDE channel. You establish a channel for the
DDE conversation with OpenChannel before sending commands with this
syntax of ExecRemote. A warm link is useful when you need to send several
commands to the DDE server application. Because the channel is open,
ExecRemote does not need to have Windows poll all running applications
again. After you have called ExecRemote or the related functions GetRemote
or SetRemote, and finished the work with the DDE server, call CloseChannel
to end the DDE conversation.

A DDE hot link, which enables automatic updating of data in the PowerBuilder
client application, involves other functions. For more information, see the
StartHotLink function.

Examples This excerpt from a script asks the DDE channel to Microsoft Excel to save the
active spreadsheet as file REGION.XLS. The OpenChannel function names the
server application and the topic, so ExecRemote only needs to specify the
channel handle. The script is associated with a button on a window, whose
handle is specified as the last argument of OpenChannel:

long handle

handle = OpenChannel("Excel", "REGION.XLS", &
Handle(Parent))

. . . // Some processing
ExecRemote("[Save]", handle)
CloseChannel(handle, Handle(Parent))

See also CloseChannel
GetRemote
OpenChannel
SetRemote
476 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Exp
Description Raises e to the specified power.

Syntax Exp (n)

Return value Double. Returns e raised to the power n. If n is null, Exp returns null.

Inverse of Exp
The inverse of the Exp function is the Log function.

Examples This statement returns 7.38905609893065.

Exp(2)

These statements convert a natural logarithm (base e) back to a regular number.
When executed, Exp sets value to 200:

double value, x = log(200)
value = Exp(x)

See also Log
LogTen
Exp method for DataWindows in the DataWindow Reference or online Help.

Argument Description

n The power to which you want to raise e (2.71828)
PowerScript Reference 477

ExpandAll
ExpandAll
Description Recursively expands a specified item.

Applies to TreeView controls

Syntax treeviewname.ExpandAll (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage To expand all levels in a TreeViewItem, use the ExpandAll function for the
RootTreeItem.

Examples This example expands all levels of a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(RootTreeItem! , 0)
tv_list.ExpandAll(ll_tvi)

See also CollapseItem
ExpandItem
FindItem

ExpandItem
Description Expands a specified item.

Applies to TreeView controls

Syntax treeviewname.ExpandItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

treeviewname The TreeView control in which you want to expand an item and all
the subordinate items in its hierarchy

itemhandle The handle of the item you want to expand

Argument Description

treeviewname The TreeView control in which you want to expand an item

itemhandle The handle of the item you want to expand
478 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage ExpandItem expands only a single item. To expand a specified item including
its children, use ExpandAll.

Examples This example expands the current level of a TreeView:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
tv_list.ExpandItem(ll_tvi)

See also CollapseItem
ExpandAll
FindItem

Fact
Description Determines the factorial of a number.

Syntax Fact (n)

Return value Double. Returns the factorial of n. If n is null, Fact returns null.

Examples This statement returns 24 (that is, 1 * 2 * 3 * 4):

Fact(4)

Both these statements return 1:

Fact(1)

Fact(0)

See also Fact method for DataWindows in the DataWindow Reference or online Help

Argument Description

n The number for which you want the factorial
PowerScript Reference 479

FileClose
FileClose
Description Closes the file associated with the specified file number. The file number was

assigned to the file with the FileOpen function.

Syntax FileClose (file#)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If file# is null,
FileClose returns null.

Usage The file is saved in the encoding format in which it was opened.

Examples These statements open and then close the file EMPLOYEE.DAT. The variable
li_FileNum stores the number assigned to the file when FileOpen opens the file.
FileClose uses that number to close the file:

integer li_FileNum
li_FileNum = FileOpen("EMPLOYEE.DAT")
. . . // Some processing
FileClose(li_FileNum)

See also FileLength
FileOpen
FileReadEx
FileWriteEx

FileCopy
Description Copies one file to another, optionally overwriting the target file.

Syntax FileCopy (sourcefile, targetfile {, replace })

Return value Integer. Returns values as follows:

1 – Success
-1 – Error opening sourcefile
-2 – Error writing targetfile

Argument Description

file# The integer assigned to the file you want to close. The FileOpen
function returns the file number when it opens the file.

Argument Description

sourcefile String for the name of the file you want to copy

targetfile String for the name of the file you are copying to

replace
(optional)

Boolean specifying whether to replace the target file (true) or not
(false)
480 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage If you do not specify a fully qualified path for sourcefile or for targetfile, the
function works relative to the current directory. If you do not specify the
replace argument, the FileCopy function does not replace a file in the target
directory that has the same name as the name you specify in the targetfile
argument (This is equivalent to setting the replace value to false).

Examples The following example copies a file from the current directory to a different
directory and saves the return value in a variable. It does not replace a file of
the same name if one already exists in the target directory:

integer li_FileNum
li_FileNum = FileCopy ("jazz.gif" , &

"C:\emusic\jazz.gif", FALSE)

See also FileMove
GetCurrentDirectory

FileDelete
Description Deletes the named file.

Syntax FileDelete (filename)

Return value Boolean. Returns true if it succeeds, false if an error occurs. If filename is null,
FileDelete returns null.

Examples These statements delete the file the user selected in the Open File window:

integer ret, value
string docname, named

value = GetFileOpenName("Select File," &
docname, named, "DOC", &

"Doc Files (*.DOC),*.DOC")

IF value = 1 THEN ret = MessageBox("Delete", &
"Delete file?", Question!, OKCancel!)

IF ret = 1 THEN FileDelete(docname)

See also FileExists

Argument Description

filename A string whose value is the name of the file you want to delete
PowerScript Reference 481

FileEncoding
FileEncoding
Description Checks the encoding of the specified file.

Syntax FileEncoding (filename)

Return value A value of the enumerated datatype Encoding. Values are:

EncodingANSI!
EncodingUTF8!
EncodingUTF16LE!
EncodingUTF16BE!

If filename does not exist, returns null.

Usage Use this function to determine the encoding used in an external file before
attempting to use it in a PowerBuilder application.

Examples The following example opens a file in stream mode and tests to determine
whether it uses ANSI encoding. If it does, it reads data from the file into a blob
and uses the String function to convert the blob to a Unicode string:

long ll_filenum
integer li_bytes
string ls_unicode
blob lb_ansi
encoding eRet

ll_filenum = FileOpen("employee.dat",StreamMode!,
Read!, LockWrite!, Replace!)

// test the file’s encoding
eRet = FileEncoding("employee.dat")

if eRet = EncodingANSI! then
li_ bytes = FileReadEx(ll_filenum, lb_ansi)
ls_unicode = string(lb_ansi, EncodingANSI!)

else
li_ bytes = FileReadEx(ll_filenum, ls_unicode)

end if
FileClose(ll_filenum)

See also Blob, FileClose, FileOpen, FileReadEx, FileWriteEx, String

Argument Description

filename The name of the file you want to test for encoding type
482 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FileExists
Description Reports whether the specified file exists.

Syntax FileExists (filename)

Return value Boolean. Returns true if the file exists, false if it does not exist. If filename is
null, FileExists returns null.

Usage If filename is locked by another application, causing a sharing violation,
FileExists also returns false.

Examples This example determines if the file the user selected in the Save File window
exists and, if so, asks the user if the file can be overwritten:

string ls_docname, ls_named
integer li_ret
boolean lb_exist

GetFileSaveName("Select File," ls_docname, &
ls_named, "pbl", &

"Doc Files (*.DOC),*.DOC")

lb_exist = FileExists(ls_docname)
IF lb_exist THEN li_ret = MessageBox("Save", &

"OK to write over" + ls_docname, &
Question!, YesNo!)

See also FileDelete

Argument Description

filename A string whose value is the name of a file
PowerScript Reference 483

FileLength
FileLength
Description Reports the length of a file whose size does not exceed 2GB in bytes.

Syntax FileLength (filename)

Return value Long. Returns the length in bytes of the file identified by filename. If the file
does not exist, FileLength returns -1. If filename is null, FileLength returns null.

Usage Call FileLength before or after you call FileOpen to check the length of a file
before you call FileRead. The FileRead function can read a maximum of 32,765
bytes at a time. The length returned by FileLength always includes the byte-
order mark (BOM). For example, suppose the hexadecimal display of the file
SomeFile.txt is FF FE 54 00 68 00 69 00 73 00, then the following
statement returns 10,which includes the BOM:

ll_length = FileLength("SomeFile.txt")

File security
If any security is set for the file (for example, if you are sharing the file on a
network), you must call FileLength before FileOpen or after FileClose.
Otherwise, you get a sharing violation.

The FileLength function cannot return the length of files whose size exceeds
2GB. Use FileLength64 to find the length of larger files.

Examples This statement returns the length of the file EMPLOYEE.DAT in the current
directory:

FileLength("EMPLOYEE.DAT")

These statements determine the length of the EMP.TXT file in the EAST
directory and open the file:

long LengthA
integer li_FileNum
LengthA = FileLength("C:\EAST\EMP.TXT")
li_FileNum = FileOpen("C:\EAST\EMP.TXT", &

TextMode!, Read!, LockReadWrite!)

The examples for FileRead illustrate reading files of different lengths.

See also FileClose, FileLength64, FileOpen, FileReadEx, FileWriteEx

Argument Description

filename A string whose value is the name of the file for which you want to
know the length. If filename is not on the current application library
search path, you must specify the fully qualified name.
484 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FileLength64
Description Reports the length of a file of any size in bytes.

Syntax FileLength64 (filename)

Return value Longlong. Returns the length in bytes of the file identified by filename. If the
file does not exist, FileLength64 returns -1. If filename is null, FileLength64
returns null.

Usage Call FileLength64 before or after you call FileOpen to check the length of a file
before you call FileRead. The FileRead function can read a maximum of 32,765
bytes at a time. Use the FileReadEx function to read longer files.

The length returned by FileLength64 always includes the byte-order mark
(BOM). For example, suppose the hexadecimal display of the file SomeFile.txt
is FF FE 54 00 68 00 69 00 73 00, then the following statement returns
10,which includes the BOM:

ll_length = FileLength64("SomeFile.txt")

File security
If any security is set for the file (for example, if you are sharing the file on a
network), you must call FileLength64 before FileOpen or after FileClose.
Otherwise, you get a sharing violation.

Examples This statement returns the length of the file EMPLOYEE.DAT in the current
directory:

FileLength64("EMPLOYEE.DAT")

These statements determine the length of the EMP.TXT file in the EAST
directory and open the file:

long LengthA
integer li_FileNum
LengthA = FileLength64("C:\EAST\EMP.TXT")
li_FileNum = FileOpen("C:\EAST\EMP.TXT", &

LineMode!, Read!, LockReadWrite!)

The examples for FileRead illustrate reading files of different lengths.

See also FileClose, FileLength, FileOpen, FileReadEx, FileWriteEx

Argument Description

filename A string whose value is the name of the file for which you want to
know the length. If filename is not on the current application library
search path, you must specify the fully qualified name.
PowerScript Reference 485

FileMove
FileMove
Description Moves a file.

Syntax FileMove (sourcefile, targetfile)

Return value Integer. Returns values as follows:

1 – Success
-1 – Error opening sourcefile
-2 – Error writing targetfile

Usage You cannot write to a target file if a file with the same name already exists in
the target directory. If you want to copy over a target file, you can use FileCopy
and set the replace argument to true.

Examples This example moves a file from the current directory to a different directory
and saves the return value in the li_FileNum variable:

integer li_FileNum
li_FileNum = FileMove ("june.csv", &

"H:/project/june2000.csv")

See also FileCopy
GetCurrentDirectory

Argument Description

sourcefile String for the name of the file you want to move

targetfile String for the name of the location you are moving the file
486 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FileOpen
Description Opens the specified file for reading or writing and assigns it a unique integer

file number. You use this integer to identify the file when you read, write, or
close the file. The optional arguments filemode, fileaccess, filelock, and
writemode determine the mode in which the file is opened.

Syntax FileOpen (filename {, filemode {, fileaccess {, filelock {, writemode
{ encoding }}}}})

Argument Description

filename A string whose value is the name of the file you want to open. If
filename is not on the current directory’s relative search path, you must
enter the fully qualified name.

filemode
(optional)

A value of the FileMode enumerated type that specifies how the end
of a file read or file write is determined. Values are:

• LineMode! – (Default) Read or write the file a line at a time

• StreamMode! – Read blocks of binary data

• TextMode! – Read text blocks

For more information, see Usage below.

fileaccess
(optional)

A value of the FileAccess enumerated type that specifies whether the
file is opened for reading or writing. Values are:

• Read! – (Default) Read-only access

• Write! – Write-only access

If PowerBuilder does not find the file, a new file is created if the
fileaccess argument is set to Write!

filelock
(optional)

A value of the FileLock enumerated type specifying whether others
have access to the opened file. Values are:

• LockReadWrite! – (Default) Only the user who opened the file has
access

• LockRead! – Only the user who opened the file can read it, but
everyone has write access

• LockWrite! – Only the user who opened the file can write to it, but
everyone has read access

• Shared! – All users have read and write access.

writemode
(optional)

A value of the WriteMode enumerated datatype. When fileaccess is
Write!, specifies whether existing data in the file is overwritten. Values
are:

• Append! – (Default) Write data to the end of the file

• Replace! – Replace all existing data in the file

Writemode is ignored if the fileaccess argument is Read!
PowerScript Reference 487

FileOpen
Return value Integer. Returns the file number assigned to filename if it succeeds and -1 if an
error occurs. If any argument’s value is null, FileOpen returns null.

Usage The mode in which you open a file determines the behavior of the functions
used to read and write to a file. There are two functions that read data from a
file: FileRead and FileReadEx, and two functions that write data to a file:
FileWrite and FileWriteEx. FileRead and FileWrite have limitations on the amount
of data that can be read or written and are maintained for backward
compatibility. They do not support text mode. For more information, see
FileRead and FileWrite.

The support for reading from and writing to blobs and strings for the
FileReadEx and FileWriteEx functions depends on the mode. The following
table shows which datatypes are supported in each mode.

Table 10-2: FileReadEx and FileWriteEx datatype support by mode

When a file has been opened in line mode, each call to the FileReadEx function
reads until it encounters a carriage return (CR), linefeed (LF), or end-of-file
mark (EOF). Each call to FileWriteEx adds a CR and LF at the end of each string
it writes.

When a file has been opened in stream mode or text mode, FileReadEx reads
the whole file until it encounters an EOF or until it reaches a length specified
in an optional parameter. FileWriteEx writes the full contents of the string or
blob or until it reaches a length specified in an optional parameter.

The optional length parameter applies only to blob data. If the length parameter
is provided when the datatype of the second parameter is string, the code will
not compile.

encoding Character encoding of the file you want to create. Specify this
argument when you create a new text file using text or line mode. If
you do not specify an encoding, the file is created with ANSI
encoding. Values are:

• EncodingANSI! (default)

• EncodingUTF8!

• EncodingUTF16LE!

• EncodingUTF16BE!

Argument Description

Mode Blob String

Line Not supported Supported

Stream Supported Not supported

Text Supported Supported
488 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
In all modes, PowerBuilder can read ANSI, UTF-16, and UTF-8 files.

The behavior in stream and text modes is very similar. However, stream mode
is intended for use with binary files, and text mode is intended for use with text
files. When you open an existing file in stream mode, the file’s internal pointer,
which indicates the next position from which data will be read, is set to the first
byte in the file.

A byte-order mark (BOM) is a character code at the beginning of a data stream
that indicates the encoding used in a Unicode file. For UTF-8, the BOM uses
three bytes and is EF BB BF. For UTF-16, the BOM uses two bytes and is FF
FE for little endian and FE FF for big endian.

When you open an existing file in text mode, the file’s internal pointer is set
based on the encoding of the file:

• If the encoding is ANSI, the pointer is set to the first byte

• If the encoding is UTF-16LE or UTF-16BE, the pointer is set to the third
byte, immediately after the BOM

• If the encoding is UTF-8, the pointer is set to the fourth byte, immediately
after the BOM

If you specify the optional encoding argument and the existing file does not
have the same encoding, FileOpen returns -1.

File not found
If PowerBuilder does not find the file, it creates a new file, giving it the
specified name, if the fileaccess argument is set to Write!. If the argument is
not set to Write!, FileOpen returns -1.

If the optional encoding argument is not specified and the file does not exist,
the file is created with ANSI encoding.

When you create a new text file using FileOpen, use line mode or text mode. If
you specify the encoding parameter, the BOM is written to the file based on the
specified encoding.

When you create a new binary file using stream mode, the encoding parameter,
if provided, is ignored.
PowerScript Reference 489

FileOpen
Examples This example uses the default arguments and opens the file EMPLOYEE.DAT
for reading. The default settings are LineMode!, Read!, LockReadWrite!, and
EncodingANSI!. FileReadEx reads the file line by line and no other user is able
to access the file until it is closed:

integer li_FileNum
li_FileNum = FileOpen("EMPLOYEE.DAT")

This example opens the file EMPLOYEE.DAT in the DEPT directory in stream
mode (StreamMode!) for write only access (Write!). Existing data is
overwritten (Replace!). No other users can write to the file (LockWrite!):

integer li_FileNum
li_FileNum = FileOpen("C:\DEPT\EMPLOYEE.DAT", &

StreamMode!, Write!, LockWrite!, Replace!)

This example creates a new file that uses UTF8 encoding. The file is called
new.txt and is in the D:\temp directory. It is opened in text mode with
write-only access, and no other user can read or write to the file:

integer li_ret
string ls_file
ls_file = "D:\temp\new.txt"
li_ret = FileOpen(ls_file, TextMode!, Write!, &

LockReadWrite!, Replace!, EncodingUTF8!)

See also FileClose
FileLength64
FileRead
FileReadEx
FileWrite
FileWriteEx
490 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FileRead
Description Reads data from the file associated with the specified file number, which was

assigned to the file with the FileOpen function. FileRead is maintained for
backward compatibility. Use the FileReadEx function for new development.

Syntax FileRead (file#, variable)

Return value Integer. Returns the number of bytes read. If an end-of-file mark (EOF) is
encountered before any characters are read, FileRead returns -100. If the file is
opened in LineMode and a CR or LF is encountered before any characters are
read, FileRead returns 0. If an error occurs, FileRead returns -1. If any
argument’s value is null, FileRead returns null. If the file length is greater than
32,765 bytes, FileRead returns 32,765.

Usage FileRead can read files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.

If the file is an ANSI or UTF-8 file and is read into a string, FileRead converts
the text to Unicode before saving it in the string variable. No conversion is
needed for UTF-16 files. For Unicode files, the BOM is not written to the
string.

If the file is read into a blob, FileRead saves the contents of the file with no conversion.
For Unicode files, the BOM is not written to the blob in text mode, but it is written to
the blob in stream mode.

If the file was opened in line mode, FileRead reads a line of the file (that is, until
it encounters a CR, LF, or EOF). It stores the contents of the line in the
specified variable, skips the line-end characters, and positions the file pointer
at the beginning of the next line. If the second argument is a blob, FileRead
returns -1.

If the file was opened in text mode, FileRead returns -1. Use FileReadEx to read
a file in text mode.

If the file was opened in stream mode, FileRead reads to the end of the file or
the next 32,765 bytes, whichever is shorter. FileRead begins reading at the file
pointer, which is positioned at the beginning of the file when the file is opened
for reading. If the file is longer than 32,765 bytes, FileRead automatically
positions the pointer after each read operation so that it is ready to read the next
chunk of data.

Argument Description

file# The integer assigned to the file when it was opened

variable The name of the string or blob variable into which you want to read
the data
PowerScript Reference 491

FileRead
FileRead can read a maximum of 32,765 bytes at a time. Therefore, before
calling the FileRead function, call the FileLength64 function to check the file
length. If your system has file sharing or security restrictions, you might need
to call FileLength64 before you call FileOpen. Use FileReadEx to read longer
files.

An end-of-file mark is a null character (ASCII value 0). Therefore, if the file
being read contains null characters, FileRead stops reading at the first null
character, interpreting it as the end of the file. For Unicode files and files that
you convert to Unicode, you must make sure that the file length value is an
even number. Otherwise FileRead cannot parse the entire file.

Examples This example reads the file EMP_DATA.TXT if it is short enough to be read
with one call to FileRead:

integer li_FileNum
string ls_Emp_Input
long ll_FLength

ll_FLength = FileLength64("C:\HR\EMP_DATA.TXT")
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &

LineMode!)
IF ll_FLength < 32767 THEN

FileRead(li_FileNum, ls_Emp_Input)
END IF

This example reads the file EMP_PIC1.BMP and stores the data in the blob
Emp_Id_Pic. The number of bytes read is stored in li_bytes:

integer li_fnum, li_bytes
blob Emp_Id_Pic

li_fnum = FileOpen("C:\HR\EMP_PIC1.BMP", &
StreamMode!)

li_bytes = FileRead(li_fnum, Emp_Id_Pic)

See also FileClose
FileLength64
FileOpen
FileReadEx
FileSeek64
FileWriteEx
492 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FileReadEx
Description Reads data from the file associated with the specified file number, which was

assigned to the file with the FileOpen function.

Syntax FileReadEx (file#, blob {, length })

FileReadEx (file#, string)

Return value Long. Returns the number of bytes read. If an end-of-file mark (EOF) is
encountered before any characters are read, FileReadEx returns -100. If the file
is opened in LineMode and a CR or LF is encountered before any characters
are read, FileReadEx returns 0. If an error occurs, FileReadEx returns -1.
FileReadEx returns -1 if you attempt to read from a string in stream mode or
read from a blob in line mode. If any argument’s value is null, FileReadEx
returns null.

FileReadEx returns long
Unlike the FileRead function that it replaces, the FileReadEx function returns a
long value.

Usage FileReadEx can read files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.

If the file is opened in line mode, FileReadEx reads a line of the file (that is,
until it encounters a CR, LF, or EOF). It stores the contents of the line in the
specified variable, skips the line-end characters, and positions the file pointer
at the beginning of the next line.

The optional length parameter applies only to blob data. If the length parameter
is provided when the datatype of the second parameter is string, the code will
not compile.

If the file was opened in stream or text mode, FileReadEx reads to the end of
the file or the next length bytes, whichever is shorter. FileReadEx begins
reading at the file pointer, which is positioned at the beginning of the file when
the file is opened for reading. If the file is longer than length bytes, FileReadEx
automatically positions the pointer after each read operation so that it is ready
to read the next chunk of data.

Argument Description

file# The integer assigned to the file when it was opened.

blob or
string

The name of the string or blob variable into which you want to read
the data.

length In text or stream mode, the number of bytes a retrieve requires. The
default value is the length of the file.
PowerScript Reference 493

FileReadEx
An end-of-file mark is a null character (ASCII value 0). Therefore, if the file
being read contains null characters, FileReadEx stops reading at the first null
character, interpreting it as the end of the file. For Unicode files and files that
you convert to Unicode, you must make sure that the file length value is an
even number. Otherwise FileReadEx cannot parse the entire file.

If the file is an ANSI or UTF-8 file and is read into a string, FileReadEx converts the
text to Unicode before saving it in the string variable. The BOM is not written to the
string.

If the file is an ANSI or UTF-8 file and is read into a blob, FileReadEx saves the contents
of the file with no conversion. The BOM is not written to the blob in text mode, but it
is written to the blob in stream mode.

If the file is in Unicode, no conversion is required.

Examples This example reads the file EMP_DATA.TXT into a string in text mode. If the
file is not in Unicode format, its contents, apart from the BOM, are converted
to Unicode and written to the string:

integer li_FileNum
string ls_Emp_Input

li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &
TextMode!)
FileReadEx(li_FileNum, ls_Emp_Input)

END IF

This example reads the file EMP_PIC1.BMP and stores the data in the blob
Emp_Id_Pic. The number of bytes read is stored in ll_bytes:

integer li_fnum
long ll_bytes
blob Emp_Id_Pic

li_fnum = FileOpen("C:\HR\EMP_PIC1.BMP", &
StreamMode!)

ll_bytes = FileReadEx(li_fnum, Emp_Id_Pic)

See also FileClose
FileLength64
FileOpen
FileRead
FileSeek64
FileWriteEx
494 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FileSeek
Description Moves the file pointer to the specified position in a file whose size does not

exceed 2GB. The file pointer is the position in the file at which the next read
or write begins.

Syntax FileSeek (file#, position, origin)

Return value Long. Returns the file position after the seek operation has been performed. If
any argument’s value is null, FileSeek returns null.

Usage Use FileSeek to move within a binary file that you have opened in stream mode.
FileSeek positions the file pointer so that the next FileReadEx or FileWriteEx
occurs at that position within the file.

If origin is set to FromBeginning!, and the file is not opened in stream mode,
the byte-order mark is ignored automatically. For example, suppose the file’s
hexadecimal display is FF FE 54 00 68 00 69 00 73 00, the following
example illustrates the behavior:

long ll_pos

// after the following statement, the file pointer is
// at 68, not 54, and ll_pos = 2, not 4
ll_pos = FileSeek(filenum, 2, FromBeginning!)

// ll_pos = 2, not 4
ll_pos = FileSeek(filenum, 0, FromCurrent!)

// ll_pos = 2, not 4
ll_pos = FileSeek(filenum, -6, FromEnd!)

The FileSeek function cannot handle files whose size exceeds 2GB. Use
FileSeek64 to move the file pointer in larger files.

Argument Description

file# The integer assigned to the file when it was opened.

position A long whose value is the new position of the file pointer relative to
the position specified in origin, in bytes.

origin The value of the SeekType enumerated datatype specifying where you
want to start the seek. Values are:

• FromBeginning! – (Default) At the beginning of the file

• FromCurrent! – At the current position

• FromEnd! – At the end of the file
PowerScript Reference 495

FileSeek64
Examples This example positions the file pointer 14 bytes from the end of the file:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek(li_FileNum, -14, FromEnd!)

This example moves the file pointer from its current position 14 bytes toward
the end of the file. In this case, if no processing has occurred after FileOpen to
affect the file pointer, specifying FromCurrent! is the same as specifying
FromBeginning!:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek(li_FileNum, 14, FromCurrent!)

See also FileReadEx
FileSeek64
FileWriteEx

FileSeek64
Description Moves the file pointer to the specified position in a file of any size. The file

pointer is the position in the file at which the next read or write begins.

Syntax FileSeek64 (file#, position, origin)

Return value Longlong. Returns the file position after the seek operation has been performed.
If any argument’s value is null, FileSeek64 returns null.

Usage Use FileSeek64 to move within a binary file that you have opened in stream
mode. FileSeek64 positions the file pointer so that the next FileReadEx or
FileWriteEx occurs at that position within the file.

Argument Description

file# The integer assigned to the file when it was opened.

position A long whose value is the new position of the file pointer relative to
the position specified in origin, in bytes.

origin The value of the SeekType enumerated datatype specifying where you
want to start the seek. Values are:

• FromBeginning! – (Default) At the beginning of the file

• FromCurrent! – At the current position

• FromEnd! – At the end of the file
496 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
If origin is set to FromBeginning!, and the file is not opened in stream mode,
the byte-order mark is ignored automatically. For example, suppose the file’s
hexadecimal display is FF FE 54 00 68 00 69 00 73 00, the following
example illustrates the behavior:

long ll_pos

// after the following statement, the file pointer is
// at 68, not 54, and ll_pos = 2, not 4
ll_pos = FileSeek64(filenum, 2, FromBeginning!)

// ll_pos = 2, not 4
ll_pos = FileSeek64(filenum, 0, FromCurrent!)

// ll_pos = 2, not 4
ll_pos = FileSeek64(filenum, -6, FromEnd!)

Examples This example positions the file pointer 14 bytes from the end of the file:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek64(li_FileNum, -14, FromEnd!)

This example moves the file pointer from its current position 14 bytes toward
the end of the file. In this case, if no processing has occurred after FileOpen to
affect the file pointer, specifying FromCurrent! is the same as specifying
FromBeginning!:

integer li_FileNum
li_FileNum = FileOpen("emp_data")
FileSeek64(li_FileNum, 14, FromCurrent!)

See also FileReadEx
FileSeek
FileWriteEx
PowerScript Reference 497

FileWrite
FileWrite
Description Writes data to the file associated with the specified file number. The file

number was assigned to the file with the FileOpen function. FileWrite is
maintained for backward compatibility. Use the FileWriteEx function for new
development.

Syntax FileWrite (file#, variable)

Return value Integer. Returns the number of bytes written if it succeeds and it returns -1 if an
error occurs. If any argument’s value is null, FileWrite returns null.

Usage FileWrite can write to files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.

FileWrite writes its data at the position identified by the file pointer. If the file
was opened with the writemode argument set to Replace!, the file pointer is
initially at the beginning of the file. After each call to FileWrite, the pointer is
immediately after the last write. If the file was opened with the writemode
argument set to Append!, the file pointer is initially at the end of the file and
moves to the end of the file after each write.

FileWrite sets the file pointer following the last character written. If the file was
opened in line mode, FileWrite writes a carriage return (CR) and linefeed (LF)
after the last character in variable and places the file pointer after the CR and
LF.

If the data is in a string and the associated file uses ANSI or UTF-8 encoding, FileWrite
converts the string to ANSI or UTF-8 encoding before saving it to the associated file.

The behavior of the FileWrite function when the file is opened with the
EncodingANSI! parameter or with no encoding parameter is platform
dependent. On the Windows and Solaris platforms, FileWrite does not convert
multilanguage characters to UTF-8 and saves the file with ANSI encoding. On
the Linux platform, if the string contains multilanguage characters, FileWrite
converts the multi-language characters to UTF-8 and saves the file with UTF-8
encoding.

If the file is opened in stream mode, no conversion is done. If the file was
opened in text mode, FileWrite returns -1. Use FileWriteEx to write to files in text
mode.

Argument Description

file# The integer assigned to the file when the file was opened

variable A string or blob whose value is the data you want to write to the file
498 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
For Unicode files and files that you convert to Unicode, you must make sure
that the file length value is an even number. Otherwise FileWrite cannot parse
the entire file.

Length limit
FileWrite can write only 32,766 bytes at a time, which includes the string
terminator character. If the length of variable exceeds 32,765 bytes, FileWrite
writes the first 32,765 bytes and returns 32,765. Use FileWriteEx to handle
variables that have more than 32,765 bytes.

Examples This script excerpt opens EMP_DATA.TXT and writes the string New
Employees at the end of the file. The variable li_FileNum stores the number of
the opened file:

integer li_FileNum
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &

LineMode!, Write!, LockWrite!, Append!)
FileWrite(li_FileNum, "New Employees")

The following example reads a blob from the database and writes it to a file.
The SQL SELECT statement assigns the picture data to the blob Emp_Id_Pic.
Then FileOpen opens a file for writing in stream mode and FileWrite writes the
blob to the file. You could use the Len function to test whether the blob was too
big for a single FileWrite call:

integer li_FileNum
blob emp_id_pic
SELECTBLOB salary_hist INTO : emp_id_pic

FROM Employee WHERE Employee.Emp_Num = 100
USING Emp_tran;

li_FileNum = FileOpen(&
"C:\EMPLOYEE\EMP_PICS.BMP", &
StreamMode!, Write!, Shared!, Replace!)

FileWrite(li_FileNum, emp_id_pic)

See also FileClose
FileLength64
FileOpen
FileRead
FileReadEx
FileSeek64
FileWriteEx
PowerScript Reference 499

FileWriteEx
FileWriteEx
Description Writes data to the file associated with the specified file number. The file

number was assigned to the file with the FileOpen function.

Syntax FileWriteEx (file#, blob {, length })

FileWriteEx (file#, string)

Return value Long. Returns the number of bytes written if it succeeds and -1 if an error
occurs. FileWriteEx returns -1 if you attempt to write to a string in stream mode
or to a blob in line mode. If any argument’s value is null, FileWriteEx returns
null.

FileWriteEx returns long
Unlike the FileWrite function that it replaces, the FileWriteEx function returns a
long value.

Usage FileWriteEx can write to files with ANSI, UTF-8, UTF-16LE, and UTF-16BE
encoding.

FileWriteEx writes its data at the position identified by the file pointer. If the file
was opened with the writemode argument set to Replace!, the file pointer is
initially at the beginning of the file. After each call to FileWriteEx, the pointer
is immediately after the last write. If the file was opened with the writemode
argument set to Append!, the file pointer is initially at the end of the file and
moves to the end of the file after each write.

FileWriteEx sets the file pointer following the last character written. If the file
was opened in line mode, FileWriteEx writes a carriage return (CR) and linefeed
(LF) after the last character in variable and places the file pointer after the CR
and LF.

If the file was opened in stream or text mode, FileWriteEx writes the full
contents of the string or blob or the next length bytes, whichever is shorter. The
optional length parameter applies only to blob data. If the length parameter is
provided when the datatype of the second parameter is string, the code will not
compile.

Argument Description

file# The integer assigned to the file when the file was opened

blob or string A blob or string whose value is the data you want to write to the file.

length In text or stream mode, the number of bytes to be written. The default
value is the length of the file.
500 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
If the data is in a string and the associated file uses ANSI or UTF-8 encoding,
FileWriteEx converts the string to ANSI or UTF-8 encoding before saving it to the
associated file. If the file is opened in stream mode, no conversion is done. For
Unicode files and files that you convert to Unicode, you must make sure that
the file length value is an even number. Otherwise FileWriteEx cannot parse the
entire file.

If the file does not have a byte-order mark (BOM) it is created automatically.

Examples This script excerpt opens EMP_DATA.TXT and writes the string New
Employees at the end of the file. The variable li_FileNum stores the number of
the opened file:

integer li_FileNum
li_FileNum = FileOpen("C:\HR\EMP_DATA.TXT", &

TextMode!, Write!, LockWrite!, Append!)
FileWriteEx(li_FileNum, "New Employees")

The following example reads a blob from the database and writes it to a file.
The SQL SELECT statement assigns the picture data to the blob Emp_Id_Pic.
Then FileOpen opens a file for writing in stream mode and FileWriteEx writes
the blob to the file. You could use the Len function to test whether the blob was
too big for a single FileWrite call:

integer li_FileNum
blob emp_id_pic
SELECTBLOB salary_hist INTO : emp_id_pic

FROM Employee WHERE Employee.Emp_Num = 100
USING Emp_tran;

li_FileNum = FileOpen("C:\EMPLOYEE\EMP_PICS.BMP", &
StreamMode!, Write!, Shared!, Replace!)

FileWriteEx(li_FileNum, emp_id_pic)

See also FileClose
FileLength64
FileOpen
FileReadEx
FileSeek64
PowerScript Reference 501

Fill
Fill
Description Builds a string of the specified length by repeating the specified characters

until the result string is long enough.

Syntax Fill (chars, n)

Return value String. Returns a string n characters long filled with the characters in the
argument chars. If the argument chars has more than n characters, the first n
characters of chars are used to fill the return string. If the argument chars has
fewer than n characters, the characters in chars are repeated until the return
string has n characters. If any argument’s value is null, Fill returns null.

Usage Use Fill in printing routines to create a line or other special effect. For example,
you can fill the amount line of a check with asterisks, or simulate a total line in
a screen display by repeating hyphens below a column of figures.

Examples This statement returns a string whose value is 35 stars:

Fill("*", 35)

This statement returns the string -+-+-+-:

Fill("-+", 7)

This statement returns 10 tildes (~):

Fill("~", 10)

See also Space
Fill method for DataWindows in the DataWindow Reference or online Help

Argument Description

chars A string whose value will be repeated to fill the return string

n A long whose value is the length of the string you want returned
502 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FillA
Description Builds a string of the specified length in bytes by repeating the specified

characters until the result string is long enough.

Syntax FillA (chars, n)

Return value String. Returns a string n bytes long filled with the characters in the argument
chars. If the argument chars has more than n bytes, the first n bytes of chars
are used to fill the return string. If the argument chars has fewer than n bytes,
the characters in chars are repeated until the return string has n bytes. If any
argument’s value is null, FillA returns null.

Usage FillA replaces the functionality that Fill had in DBCS environments in
PowerBuilder 9.

In SBCS environments, Fill, FillW, and FillA return the same results.

FillW
Description Builds a string of the specified length by repeating the specified characters

until the result string is long enough. This function is obsolete. It has the same
behavior as Fill in SBCS and DBCS environments.

Syntax FillW (chars, n)

Find
Description Finds data in a DataWindow control or DataStore, or text in a RichTextEdit

control or RichTextEdit DataWindow or DataStore.

You can specify search direction and whether to match whole words and case.
Finds the specified text in the control and highlights the text if found.

For syntax for DataWindows and DataStores, see the Find method for
DataWindows in the DataWindow Reference or online Help.

Argument Description

chars The string whose value is repeated to fill the return string

n A long specifying the number of bytes in the return string
PowerScript Reference 503

Find
Applies to RichTextEdit controls and DataWindow controls (or DataStore objects) whose
content has the RichTextEdit presentation style

Syntax controlname.Find (searchtext, forward, insensitive, wholeword, cursor)

Return value Integer. Returns the number of characters found. Find returns 0 if no matching
text is found, and returns -1 if the DataWindow’s presentation style is not
RichTextEdit or an error occurs.

Examples This example searches the RichTextEdit rte_1 for text the user specifies in the
SingleLineEdit sle_search. The search proceeds forward from the cursor
position. The search is case insensitive and not limited to whole words:

integer li_charsfound
li_charsfound = rte_1.Find(sle_search.Text, &

TRUE, TRUE, FALSE, TRUE)

See also FindNext

Argument Description

controlname The name of the RichTextEdit, DataWindow control, or
DataStore whose contents you want to search.

searchtext A string whose value is the text you want to find. For the
RichTextEdit control, searchtext is limited to 99 characters.

forward A boolean value indicating the direction you want to search.
Values are:

• TRUE – The search proceeds forward from the cursor position
or, if cursor is false, from the start of the document.

• FALSE – The search proceeds backward from the cursor
position or, if cursor is false, from the end of the document.

insensitive A boolean value indicating the search string and the found text
must match case. Values are:

• TRUE – The search is not sensitive to case.

• FALSE – The search is case-sensitive.

wholeword A boolean value indicating that the found text must be a whole
word. Values are:

• TRUE – The found text must be a whole word.

• FALSE – The found text can be a partial word.

cursor A boolean value indicating where the search begins. Values are:

• TRUE – The search begins at the cursor position.

• FALSE – The search begins at the start of the document if
forward is true or at the end if forward is false.
504 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FindCategory
Description Obtains the number of a category in a graph when you know the category’s

label.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.FindCategory ({ graphcontrol, } categoryvalue)

Return value Integer. Returns the number of the category named in categoryvalue in the
graph controlname, or if controlname is a DataWindow control, in
graphcontrol. If an error occurs, FindCategory returns -1. If any argument’s
value is null, FindCategory returns null.

Usage Most of the category manipulation functions require a category number, rather
than a name. However, when you delete and insert categories, existing
categories are renumbered to keep the numbering consecutive. Use
FindCategory when you know only a category’s label or when the numbering
may have changed.

Examples These statements obtain the number of a category in the graph gr_prod_data.
The category name is the text in the SingleLineEdit sle_ctory:

integer CtgryNbr
CtgryNbr =gr_prod_data.FindCategory(sle_ctgry.Text)

These statements obtain the number of the category named Qty in the graph
gr_computers in the DataWindow control dw_equip:

integer CtgryNbr
CtgryNbr = dw_equip.FindCategory("gr_computers", "Qty")

See also AddCategory
DeleteData
DeleteSeries
FindSeries

Argument Description

controlname A string whose value is the name of the graph in which you want
to find a specific category, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to find a specific
category.

categoryvalue A value that is the category for which you want the number. The
value you specify must be the same datatype as the datatype of
the category axis.
PowerScript Reference 505

FindClassDefinition
FindClassDefinition
Description Searches for an object in one or more PowerBuilder libraries (PBLs) and

provides information about its class definition.

Syntax FindClassDefinition (classname {, librarylist })

Return value ClassDefinition. Returns an object reference with information about the
definition of classname. If any arguments are null, FindClassDefinition returns
null.

Usage There are two ways to get a ClassDefinition object containing class definition
information:

• For an instantiated object in your application, use its ClassDefinition
property

• For an object stored in a PBL, call FindClassDefinition

Examples This example searches the libraries for the running application to find the class
definition for w_genapp_frame:

ClassDefinition cd_windef
cd_windef = FindClassDefinition("w_genapp_frame")

This example searches the libraries in the array ls_libraries to find the class
definition for w_genapp_frame:

ClassDefinition cd_windef
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

cd_windef = FindClassDefinition(
"w_genapp_frame", ls_libraries)

See also FindFunctionDefinition
FindMatchingFunction
FindTypeDefinition

Argument Description

classname The name of an object (also called a class or class definition) for
which you want information.

librarylist
(optional)

An array of strings whose values are the fully qualified
pathnames of PBLs. If you omit librarylist, FindClassDefinition
searches the library list associated with the running application.
506 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FindFunctionDefinition
Description Searches for a global function in one or more PowerBuilder libraries (PBLs)

and provides information about the script definition.

Syntax FindFunctionDefinition (functionname {, librarylist })

Return value ScriptDefinition. Returns an object reference with information about the script
of functionname. If any arguments are null, FindFunctionDefinition returns null.

Usage You can call FindClassDefinition to get a class definition for a global function.
However, the ScriptDefinition object provides information tailored for
functions.

Examples This example searches the libraries for the running application to find the
function definition for f_myfunction:

ScriptDefinition sd_myfunc
sd_myfunc = FindFunctionDefinition("f_myfunction")

This example searches the libraries in the array ls_libraries to find the class
definition for w_genapp_frame:

ScriptDefinition sd_myfunc
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

sd_myfunc = FindFunctionDefinition(&
"f_myfunction", ls_libraries)

See also FindClassDefinition
FindMatchingFunction
FindTypeDefinition

Argument Description

functionname The name of a global function for which you want information.

librarylist
(optional)

An array of strings whose values are the fully qualified
pathnames of PBLs. If you omit librarylist,
FindFunctionDefinition searches the library list associated with
the running application.
PowerScript Reference 507

FindItem
FindItem
Finds the next item in a list.

Syntax 1 For ListBox and DropDownListBox controls
Description Finds the next item in a ListBox that begins with the specified search text.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.FindItem (text, index)

Return value Integer. Returns the index of the first matching item. To match, the item must
start with the specified text; however, the text in the item can be longer than the
specified text. If no match is found or if an error occurs, FindItem returns -1. If
any argument’s value is null, FindItem returns null.

Usage When FindItem finds the matching item, it returns the index of the item but does
not select (highlight) the item. To find and select the item, use the SelectItem
function.

Examples Assume the ListBox lb_actions contains the following list:

To find the next item Use

In a ListBox, DropDownListBox, PictureListBox, or
DropDownPictureListBox

Syntax 1

In a ListView control based upon its label Syntax 2

By relative position in a ListView control Syntax 3

By relative position in a TreeView control Syntax 4

Argument Description

listboxname The name of the ListBox control in which you want to find an item.

text A string whose value is the starting text of the item you want to find.

index The number of the item just before the first item to be searched. To
search the whole list, specify 0.

Index number Item text

1 Open files

2 Close files

3 Copy files

4 Delete files
508 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Then these statements start searching for Delete starting with item 2 (Close
files). FindItem sets Index to 4:

integer Index
Index = lb_actions.FindItem("Delete", 1)

See also AddItem
DeleteItem
InsertItem
SelectItem

Syntax 2 For ListView controls
Description Searches for the next item whose label matches the specified search text.

Applies to ListView controls

Syntax listviewname.FindItem (startindex, label, partial, wrap)

Return value Integer. Returns the index of the item found if it succeeds and -1 if an error
occurs.

Usage The search starts from startindex + 1 by default. To search from the beginning,
specify 0.

If partial is set to true, the search string matches any label that begins with the
specified text. If partial is set to false, the search string must match the entire
label.

If wrap is set to true, the search wraps around to the first index item after
searching to the end. If wrap is set to false, the search stops at the last index item
in the ListView.

FindItem does not select the item it finds. You must use the item’s selected
property in conjunction with FindItem to select the resulting match.

Argument Description

listviewname The ListView control for which you want to search for items

startindex The index number from which you want your search to begin

label The string that is the target of the search

partial If set to true, the search looks for a partial label match

wrap If set to true, the search returns to the first index item after it has
finished
PowerScript Reference 509

FindItem
Examples This example takes the value from a SingleLineEdit control and passes it to
FindItem:

listviewitem l_lvi
integer li_index
string ls_label

ls_label = sle_find.Text
IF ls_label = "" THEN

MessageBox("Error" , &
"Enter the name of a list item")

sle_find.SetFocus()
ELSE

li_index = lv_list.FindItem(0,ls_label,
TRUE,TRUE)
END IF
IF li_index = -1 THEN

MessageBox("Error", "Item not found.")
ELSE

lv_list.GetItem (li_index, l_lvi)
l_lvi.HasFocus = TRUE
l_lvi.Selected = TRUE
lv_list.SetItem(li_index,l_lvi)

END IF

See also AddItem, DeleteItem, InsertItem, SelectItem

Syntax 3 For ListView controls
Description Search for the next item relative to a specific location in the ListView control.

Applies to ListView controls

Syntax listviewname.FindItem (startindex, direction, focused, selected,
cuthighlighted, drophighlighted)

Argument Description

listviewname The ListView control for which you want to search for items.

startindex The index number from which you want your search to begin.

direction The direction in which to search. Values are:

DirectionAll!
DirectionUp!
DirectionDown!
DirectionLeft!
DirectionRight!
510 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns the index of the item found if it succeeds and -1 if an error
occurs.

Usage The search starts from startindex + 1 by default. If you want to search from the
beginning, specify 0.

FindItem does not select the item it finds. You must use the item’s selected
property in conjunction with FindItem to select the resulting match.

If focused, selected, cuthighlighted, and drophighlighted are set to false, the
search finds the next item in the ListView control.

Examples This example uses FindItem to search from the selected ListView item:

listviewitem l_lvi
integer li_index li_startindex

li_startindex = lv_list.SelectedIndex()
li_index = lv_list.FindItem(li_startindex, &

DirectionDown!, FALSE, FALSE ,FALSE, FALSE)

IF li_index = -1 THEN
MessageBox("Error", "Item not found.")

ELSE
lv_list.GetItem (li_index, l_lvi)
l_lvi.HasFocus = TRUE
l_lvi.Selected = TRUE
lv_list.SetItem(li_index,l_lvi)

END IF

See also AddItem
DeleteItem
InsertItem
SelectItem

focused If set to true, the search looks for the next ListView item that has
focus.

selected If set to true, the search looks for the next ListView item that is
selected.

cuthighlighted If set to true, the search looks for the next ListView item that is
the target of a cut operation.

drophighlighted If set to true, the search looks for next ListView item that is the
target of a drag and drop operation.

Argument Description
PowerScript Reference 511

FindItem
Syntax 4 For TreeView controls
Description Find an item based on its position in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.FindItem (navigationcode, itemhandle)

Return value Long. Returns the item handle if it succeeds and -1 if an error occurs.

Usage FindItem does not select the item it finds. You must use the item’s selected
property in conjunction with FindItem to select the result of the FindItem search.

FindItem never finds a collapsed item, except when looking for ChildTreeItem!,
which causes an item to expand. CurrentItem! is not changed until after the
clicked event occurs. To return the correct handle for the current item when the
user clicks it, create a custom event to return the handle and post it in the
clicked event.

If navigationcode is RootTreeItem!, FirstVisibleTreeItem!, CurrentTreeItem!,
or DropHighlightTreeItem!, set itemhandle to 0.

The following table shows valid values for the navigationcode argument.

Table 10-3: Valid values for the navigationcode argument of FindItem

Argument Description

treeviewname The name of the TreeView control in which you want to find
a specified item.

navigationcode A value of the TreeNavigation enumerated datatype
specifying the relationship between itemhandle and the item
you want to find. See the table in Usage note for a list of valid
values.

itemhandle A long for the handle of an item related via navigationcode to
the item for which you are searching.

Navigationcode value What FindItem finds

RootTreeItem! The first item at level 1. Returns -1 if no items have been
inserted into the control.

NextTreeItem! The sibling after itemhandle. A sibling is an item at the
same level with the same parent. Returns -1 if there are
no more siblings.

PreviousTreeItem! The sibling before itemhandle. Returns -1 if there are no
more siblings.

ParentTreeItem! The parent of itemhandle. Returns -1 if the item is at
level 1.
512 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples To return the correct handle when the current item is clicked, place this code in
a custom event that is posted in the item’s clicked event:

long ll_tvi
ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)

This example finds the first item on the first level of a TreeView control:

long ll_tvi
ll_tvi = tv_list.FindItem(RootTreeItem!, 0)

See also DeleteItem
GetItem
InsertItem
SelectItem

ChildTreeItem! The first child of itemhandle. If the item is collapsed,
ChildtreeItem! causes the node to expand. Returns -1 if
the item has no children or if the item is not populated
yet.

FirstVisibleTreeItem! The first item visible in the control, regardless of level.
The position of the scroll bar determines the first visible
item.

NextVisibleTreeItem! The next expanded item after itemhandle, regardless of
level. The NextVisible and PreviousVisible values allow
you to walk through all the visible children and branches
of an expanded node. Returns -1 if the item is the last
expanded item in the control.

To scroll to an item that is beyond the reach of the visible
area of the control, use FindItem and then SelectItem.

PreviousVisibleTreeItem! The next expanded item before itemhandle, regardless
of level. Returns -1 if the item is the first root item.

CurrentTreeItem! The selected item. Returns -1 if the control never had
focus and nothing has been selected.

DropHighlightTreeItem! The item whose DropHighlighted property was most
recently set. Returns -1 if the property was never set or
if it has been set back to false because of other activity
in the control.

Navigationcode value What FindItem finds
PowerScript Reference 513

FindMatchingFunction
FindMatchingFunction
Description Finds out what function in a class matches a specified signature. The signature

is a combination of a script name and an argument list.

Applies to ClassDefinition objects

Syntax classdefobject.FindMatchingFunction (scriptname, argumentlist)

Return value ScriptDefinition. Returns an object instance with information about the
matching function. If no matching function is found, FindMatchingFunction
returns null. If any argument is null, it also returns null.

Usage In searching for the function, PowerBuilder examines the collapsed inheritance
hierarchy. The found function may be defined in the current object or in any of
its ancestors.

Arguments passed by reference To find a function with an argument that is
passed by reference, you must specify the REF keyword. If you have a
VariableDefinition object for a function argument, check the
CallingConvention argument to determine if the argument is passed by
reference.

In documentation for PowerBuilder functions, arguments passed by reference
are described as a variable, rather than simply a value. The PowerBuilder
Browser does not report which arguments are passed by reference.

Argument Description

classdefobject The name of the ClassDefinition object describing the
class in which you want to find a function.

scriptname A string whose value is the name of the function.

argumentlist An unbounded array of strings whose values are the
datatypes of the function arguments. If the variable is
passed by reference, the string must include "ref" before
the datatype. If the variable is an array, you must include
array brackets after the datatype.

The format is:

{ ref } datatype { [] }
For a bounded array, the argument must include the range,
as in:

ref integer[1 TO 10]
514 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example gets the ScriptDefinition object that matches the PowerBuilder
window object function OpenUserObjectWithParm and looks for the version
with four arguments. If it finds a match, the example calls the function
uf_scriptinfo, which creates a report about the script:

string ls_args[]
ScriptDefinition sd

ls_args[1] = "ref dragobject"
ls_args[2] = "double"
ls_args[3] = "integer"
ls_args[4] = "integer"

sd = c_obj.FindMatchingFunction(&
"OpenUserObjectWithParm", ls_args)

IF NOT IsValid(sd) THEN
mle_1.Text = "No matching script"

ELSE
mle_1.Text = uf_scriptinfo(sd)

END IF

The uf_scriptinfo function gets information about the function that matched the
signature and builds a string. Scriptobj is the ScriptDefinition object passed to
the function:

string s, lineend
integer li
lineend = "~r~n"

// Script name
s = s + scriptobj.Name + lineend
// datatype of the return value
s = s + scriptobj.ReturnType.DataTypeOf + lineend

// List argument names
s = s + "Arguments:" + lineend
FOR li = 1 to UpperBound(scriptobj.ArgumentList)

s = s + scriptobj.ArgumentList[li].Name + lineend
NEXT

// List local variables
s = s + "Local variables:" + lineend
FOR li = 1 to UpperBound(scriptobj.LocalVariableList)

s = s + scriptobj.LocalVariableList[li].Name &
+ lineend

NEXT
RETURN s
PowerScript Reference 515

FindNext
See also FindClassDefinition
FindFunctionDefinition
FindTypeDefinition

FindNext
Description Finds the next occurrence of text in the control and highlights it, using criteria

set up in a previous call of the Find function.

Applies to RichTextEdit controls and DataWindow controls whose content has the
RichTextEdit presentation style

Syntax controlname.FindNext ()

Return value Integer. Returns the number of characters found. FindNext returns 0 if no
matching text is found and -1 if the DataWindow’s presentation style is not
RichTextEdit or an error occurs.

Examples This example searches the RichTextEdit rte_1 for text the user specifies in the
SingleLineEdit sle_search. The search proceeds forward from the cursor
position, is case insensitive, and is not limited to whole words:

integer li_charsfound
li_charsfound = rte_1.Find(sle_search.Text, &

TRUE, TRUE, FALSE, TRUE)

A second button labeled FindNext would have a script like this:

rte_1.FindNext()

See also Find

Argument Description

controlname The name of the RichTextEdit or DataWindow control whose
contents you want to search
516 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
FindSeries
Description Obtains the number of a series in a graph when you know the series’ name.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.FindSeries ({ graphcontrol, } seriesname)

Return value Integer. Returns the number of the series named in seriesname in the graph
controlname, or if controlname is a DataWindow control, in graphcontrol. If
an error occurs, FindSeries returns -1. If any argument’s value is null, FindSeries
returns null.

Usage Most of the series manipulation functions require a series number, rather than
a name. However, when you delete and insert series, existing series are
renumbered so that the series are numbered consecutively. Use FindSeries
when you know only a series’ name or when the numbering may have changed.

Examples These statements store the number of the series in the graph gr_product_data
that was entered in the SingleLineEdit sle_series in SeriesNbr:

integer SeriesNbr
SeriesNbr = &

gr_product_data.FindSeries(sle_series.Text)

These statements obtain the number of the series named PCs in the graph
gr_computers in the DataWindow control dw_equipment and store it in
SeriesNbr:

integer SeriesNbr
SeriesNbr = &

dw_equipment.FindSeries("gr_computers", "PCs")

See also AddSeries
DeleteSeries
FindCategory

Argument Description

controlname The name of the graph containing the series for which you
want the number, or the name of the DataWindow control
containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control containing the series

seriesname A string whose value is the name of the series for which you
want the number
PowerScript Reference 517

FindTypeDefinition
FindTypeDefinition
Description Searches for a type in one or more PowerBuilder libraries (PBLs) and provides

information about its type definition. You can also get type definitions for
system types.

Syntax FindTypeDefinition (typename {, librarylist })

Return value TypeDefinition. Returns an object reference with information about the
definition of typename. If any arguments are null, FindTypeDefinition returns
null.

Usage The returned TypeDefinition object is a ClassDefinition,
SimpleTypeDefinition, or EnumerationDefinition object. You can test the
Category property to find out which one it is.

If you want to get information for a class, call FindClassDefinition instead. The
arguments are the same and you are saved the step of checking that the returned
object is a ClassDefinition object.

If you want to get information for a global function, call FindFunctionDefinition.

Examples This example gets a TypeDefinition object for the grGraphType enumerated
datatype. It checks the category of the type definition and, since it is an
enumeration, assigns it to an EnumerationDefinition object type and saves the
name in a string:

TypeDefinition td_graphtype
EnumerationDefinition ed_graphtype
string enumname

Argument Description

typename The name of a simple datatype, enumerated datatype, or
class for which you want information. To find a type
definition for a nested type, use this form:

libraryEntryName`typename

librarylist
(optional)

An array of strings whose values are the fully qualified
pathnames of PBLs. If you omit librarylist,
FindTypeDefinition searches the library list associated
with the running application.

PowerBuilder also searches its own libraries for built-in
definitions, such as enumerated datatypes and system
classes.
518 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
td_graphtype = FindTypeDefinition("grgraphtype")
IF td_graphtype.Category = EnumeratedType! THEN

ed_graphtype = td_graphtype
enumname = ed_graphtype.Enumeration[1].Name

END IF

This example is a function that takes a definition name as an argument. The
argument is typename. It finds the named TypeDefinition object, checks its
category, and assigns it to the appropriate definition object:

TypeDefinition td_def
SimpleTypeDefinition std_def
EnumerationDefinition ed_def
ClassDefinition cd_def

td_def = FindTypeDefinition(typename)
CHOOSE CASE td_def.Category
CASE SimpleType!

std_def = td_def
CASE EnumeratedType!

ed_def = td_def
CASE ClassOrStructureType!

cd_def = td_def
END CHOOSE

This example searches the libraries in the array ls_libraries to find the class
definition for w_genapp_frame:

TypeDefinition td_windef
string ls_libraries[]

ls_libraries[1] = "c:\pwrs\bizapp\windows.pbl"
ls_libraries[2] = "c:\pwrs\framewk\windows.pbl"
ls_libraries[3] = "c:\pwrs\framewk\ancestor.pbl"

td_windef = FindTypeDefinition(
"w_genapp_frame", ls_libraries)

See also FindClassDefinition
FindFunctionDefinition
FindMatchingFunction
PowerScript Reference 519

FromAnsi
FromAnsi
Description Converts a blob containing an ANSI character string to a Unicode string.

Syntax FromAnsi (blob)

Return value String. Returns a character string if it succeeds and an empty string if it fails.

Usage The FromAnsi function converts an ANSI character string contained in a blob
to a Unicode character string.

FromAnsi has the same result as String(blob, EncodingANSI!) and will be
obsolete in a future release of PowerBuilder.

Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files.

See also FromUnicode
String
ToAnsi
ToUnicode

FromUnicode
Description Converts a blob containing a Unicode character string to a string in the file

format of the current version of PowerBuilder.

Syntax FromUnicode (blob)

Return value String. Returns a character string if it succeeds and an empty string if it fails.

Usage The FromUnicode function converts a Unicode blob to a Unicode character
string and has the same result as String(blob). This function will be obsolete in
a future release of PowerBuilder.

Argument Description

blob A blob containing an ANSI character string you want to convert to
a Unicode string

Argument Description

blob A blob containing a Unicode character string you want to convert
to a string in the file format of the current version of PowerBuilder
520 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files. If you are opening a Unicode file in stream mode,
skip the first two bytes if they are present.

See also FromAnsi
ToAnsi
ToUnicode

GarbageCollect
Description Forces immediate garbage collection.

Syntax GarbageCollect ()

Return value None

Usage Forces garbage collection to occur immediately. PowerBuilder makes a pass to
identify unused objects, including those with circular references, then deletes
unused objects and classes.

Examples This statement initiates garbage collection:

GarbageCollect()

See also GarbageCollectGetTimeLimit
GarbageCollectSetTimeLimit

GarbageCollectGetTimeLimit
Description Gets the current minimum interval for garbage collection.

Syntax GarbageCollectGetTimeLimit ()

Return value Long. Returns the current minimum garbage collection interval.

Usage Reads the current minimum period between garbage collection passes.

Examples This statement returns the interval between garbage collection passes in the
variable CollectTime:

long CollectTime
PowerScript Reference 521

GarbageCollectSetTimeLimit
CollectTime = GarbageCollectGetTimeLimit()

See also GarbageCollect, GarbageCollectSetTimeLimit

GarbageCollectSetTimeLimit
Description Sets the minimum interval between garbage collection passes.

Syntax GarbageCollectSetTimeLimit (newtimeinmilliseconds)

Return value Long. Returns the interval that existed before this function was called. If
newTime is null, then null is returned and the current interval is not changed.

Usage Specifies the minimum interval between garbage collection passes: garbage
collection passes will not happen before this interval has expired. Garbage
collection can effectively be disabled by setting the minimum limit to a very
large number. If garbage collection is disabled, unused classes will not be
flushed out of the class cache.

Examples This example sets the interval between garbage collection passes to 1 second
and sets the variable OldTime to the length of the previous interval:

long OldTime, NewTime
NewTime = 1000 /* 1 second */
OldTime = GarbageCollectSetTimeLimit(NewTime)

See also GarbageCollect, GarbageCollectGetTimeLimit

Argument Description

newtimeinmilliseconds A long (in milliseconds) that you want to set as the
minimum period between garbage collection cycles.

If null, the existing interval is not changed.
522 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetActiveSheet
Description Returns the currently active sheet in an MDI frame window.

Applies to MDI frame windows

Syntax mdiframewindow.GetActiveSheet ()

Return value Window. Returns the sheet that is currently active in mdiframewindow. If no
sheet is active, GetActiveSheet returns an invalid value. If mdiframewindow is
null, GetActiveSheet returns null.

Usage Use the IsValid function to determine whether GetActiveSheet has returned a
valid window value.

Examples These statements determine the active sheet in the MDI frame window w_frame
and change the text of the menu selection m_close on the menu m_file on the
menu bar m_main. If no sheet is active, the text is Close Window:

// Declare variable for active sheet
window activesheet
string mtext

activesheet = w_frame.GetActiveSheet()
IF IsValid(activesheet) THEN
 // There is an active sheet, so get its title;
 // change the text of the menu to read
 // Close plus the title of the active sheet
 mtext = "Close " + activesheet.Title
 m_main.m_file.m_close.Text = mtext

ELSE
 // No sheet is active, menu says Close Window
 m_main.m_file.m_close.Text = "Close Window"
END IF

See also IsValid

Argument Description

mdiframewindow The MDI frame window for which you want the active sheet
PowerScript Reference 523

GetAlignment
GetAlignment
Description Obtains the alignment of the paragraph containing the insertion point in a

RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.GetAlignment ()

Return value Alignment. A value of the Alignment enumerated datatype indicating the
alignment of the paragraph containing the insertion point.

Usage When several paragraphs are selected, the insertion point is at the beginning or
end of the selection, depending on how the user made the selection. The value
reported depends on the location of the insertion point.

Examples This examples saves the alignment setting of the paragraph that contains the
insertion point:

alignment l_align
l_align = rte_1.GetAlignment()

See also GetSpacing, GetTextStyle, SetAlignment, SetSpacing, SetTextStyle

GetApplication
Description Gets the handle of the current Application object so you can get and set

properties of the application.

Syntax GetApplication ()

Return value Application. Returns the handle of the current application object.

Usage The GetApplication function lets you write generic code for an application,
making it reusable in other applications. You do not have to code the actual
name of the application when you want to set application properties.

Examples To change whether Toolbar Tips are displayed, you can get the handle of the
application object and set the ToolbarTips property:

application app
app = GetApplication()
app.ToolbarTips = FALSE

Argument Description

rtename The name of the RichTextEdit control in which you want to find out
the alignment of the paragraph containing the insertion point
524 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The previous example could be coded more simply as follows:

GetApplication().ToolbarTips = FALSE

GetArgElement
Description Returns the value in the specified argument.

Applies to Window ActiveX controls

Syntax activexcontrol.GetArgElement (index)

Return value Any. Returns the specified argument.

Usage Call this function after calling InvokePBFunction or TriggerPBEvent to access
the updated value in an argument passed by reference.

JavaScript scripts must use this function to access arguments passed by
reference. VBScript scripts can use this function if they established the
argument list via calls to SetArgElement.

Examples This JavaScript example calls the GetArgElement function:

...
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theFunc = "of_argref";
 retcd = PBRX1.InvokePBFunction(theFunc, numargs);
 rc = parseInt(PBRX1.GetLastReturn());

IF (rc != 1) {
 alert("Error. Empty string.");
 }
 backByRef = PBRX1.GetArgElement(1);
...

See also GetLastReturn, InvokePBFunction, SetArgElement, TriggerPBEvent

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX
control. When used in HTML, the ActiveX control is the NAME
attribute of the OBJECT element. When used in other
environments, references the control that contains the
PowerBuilder window ActiveX.

index Integer specify the argument to return.
PowerScript Reference 525

GetAutomationNativePointer
GetAutomationNativePointer
Description Gets a pointer to the OLE object associated with the OLEObject variable. The

pointer lets you call OLE functions in an external DLL for the object.

Applies to OLEObject

Syntax oleobject.GetAutomationNativePointer (pointer)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage Pointer is a pointer to OLE’s IUnknown interface. You can use it with the OLE
QueryInterface function to get other interface pointers. When you call
GetAutomationNativePointer, PowerBuilder calls OLE’s AddRef function,
which locks the pointer. You can release the pointer in your DLL function or in
a PowerBuilder script with the ReleaseAutomationNativePointer function.

This function is useful only for external DLL calls. It is not related to the
SetAutomationPointer function.

Examples This example creates an OLEObject object, connects to an automation server,
and gets a pointer for making external function calls. After processing, the
pointer is released:

OLEObject oleobj_report
UnsignedLong lul_oleptr
integer li_rtn

oleobj_report = CREATE OLEObject
oleobj_report.ConnectToObject("report.doc")
li_rtn = &
oleobj_report.GetAutomationNativePointer(lul_oleptr)
IF li_rtn = 0 THEN
 ... // Call external functions for automation
 oleobj_report.&
 ReleaseAutomationNativePointer(lul_oleptr)
END IF

See also GetNativePointer
ReleaseAutomationNativePointer
ReleaseNativePointer

Argument Description

oleobject The name of an OLEObject variable containing the object for which
you want the native pointer.

pointer An UnsignedLong variable in which you want to store the pointer.
If GetAutomationNativePointer cannot get a valid pointer, pointer
is set to 0.
526 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetByte
Description Extracts data of type Byte from a blob variable.

Syntax GetByte (blobvariable, n, b)

Return value Integer. Returns 1 if it succeeds or -1 if n exceeds the scope of blobvariable; it
returns null if the value of any of its arguments is null.

Usage If you want to get the value of the initial character in a blob, you can use the
Byte function without using an argument defining the position of the character.

Examples This example converts the text in a SingleLineEdit to a blob before obtaining
the byte value of the character at the third position:

Int li_rtn
Byte lb_byte
Blob myBlob
myBlob = Blob (sle_1.text, EncodingUTF8!)
li_rtn = GetByte(myBlob, 3, lb_byte)
messagebox("getbyte", string(lb_byte))

See also Byte
SetByte

Argument Description

blobvariable A variable of the Blob datatype from which you want to extract a
value of the Byte datatype

n Tthe number of the position in blobvariable at which you want to
retrieve a value of the Byte datatype

b Variable of the Byte datatype in which you want to store the
returned data of type Byte
PowerScript Reference 527

GetByteArray
GetByteArray
Description Obtains an array of Byte values stored in a blob.

Syntax GetByteArray (input)

Return value Any. Returns the value of the input variable as an array of Byte datatypes if it
succeeds; it returns 0 if the input variable is not a valid blob.

Usage The returned value can be assigned drectly to a byte array.

Examples This example converts a blob passed in an argument to an array of bytes:

Byte ly_byte[]
ly_byte[] = GetByteArray(blobarg)

See also Blob
GetByte

GetCertificateLabel
Description Called by EAServer to allow the user to select one of the available SSL

certificate labels for authentication. This function is used by PowerBuilder
clients connecting to EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.GetCertificateLabel (thesessioninfo, labels)

Return value String. Returns one of the labels passed to the function.

Usage A PowerBuilder application does not usually call the GetCertificateLabel
function directly. GetCertificateLabel is called by EAServer when an EAServer
client has not specified a certificate label for an SSL connection that requires it.

Argument Description

input A Blob datatype that you want to return as an array of bytes.

Argument Description
sslcallback An instance of a customized SSLCallBack object.
thesessioninfo A CORBAObject that contains information about the SSL

session. This information can optionally be displayed to the
user to provide details about the session.

labels An array of string values that contains the available certificate
labels. The user must select one of these labels.
528 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
To override the behavior of any of the functions of the SSLCallBack object,
create a standard class user object that descends from SSLCallBack and
customize this object as necessary. To let EAServer know which object to use
when a callback is required, specify the name of the object in the callbackImpl
SSL property. You can set this property value by calling the SetGlobalProperty
function.

If you do not provide an implementation of GetCertificateLabel, EAServer
receives the CORBA::NO_IMPLEMENT exception and the default
implementation of this callback is used. The default implementation always
returns the first certificate in the list of labels. If no labels are supplied, the
CtsSecurity::NoCertificateException is raised. Any exceptions that may be raised
by the function should be added to its prototype.

If your implementation of the callback returns an empty string, the default
implementation described above is used and the first certificate label in the list
is returned. If the server requires mutual authentication and that certificate is
acceptable to the server, the connection proceeds. If the certificate is not
acceptable, the connection is refused.

To obtain a useful return value, provide the user with available certificate labels
from the labels array passed to the function and ask the user to select one of
them. You can also supply additional information obtained from the passed
thesessioninfo object.

You can enable the user to cancel the attempt to connect by throwing an
exception in this callback function. All exceptions thrown in SSLCallback
functions return a CTSSecurity::UserAbortedException to the server. You need
to catch the exception by wrapping the ConnectToServer function in a try-catch
block.
PowerScript Reference 529

GetCertificateLabel
Examples This example checks whether any certificate labels are available. To give the
user more context, it displays host and port information obtained from the SSL
session information object in the message box that informs the user that no
certificates are available. If certificates are available, it opens a response
window that displays available certificate labels.

The response window returns the text of the selected item using
CloseWithReturn:

int idx, numLabels
long rc
String ls_rc, sText, sLocation
w_response w_ssl_response
CTSSecurity_sslSessionInfo mySessionInfo

rc = thesessioninfo._narrow(mySessionInfo, &
"SessionInfo")

sLocation = mySessionInfo.getProperty("host") + &
":" + mySessionInfo.getProperty("port")

numLabels = upperbound(labels)

IF numLabels <= 0 THEN
 MessageBox ("Personal certificate required", &
 "A certificate is required for connection to " &
 + sLocation + "~nNo certificates are available")
 ls_rc = ""
ELSE
 sText = "Available certificates: "
 FOR idx=1 to numLabels
 sText += "~nCertificate[" + &
 string(idx) + "]: " + labels[idx]
 NEXT
 OpenWithParm(w_ssl_response, SText)
 ls_rc = Message.StringParm

 IF ls_rc = "cancel" then
 userabortedexception uae
 uae = create userabortedexception
 uae.setmessage("User cancelled connection" &
 + " when asked for certificate")
 throw uae
 END IF
END IF
RETURN ls_rc

See also ConnectToServer, GetCredentialAttribute, GetPin, TrustVerify
530 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetChildrenList
Description Provides a list of the children of a routine included in a trace tree model.

Applies to TraceTreeObject, TraceTreeRoutine, and TraceTreeGarbageCollect objects

Syntax instancename.GetChildrenList (list)

Return value ErrorReturn. Returns the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The model does not exist

Usage You use the GetChildrenList function to extract a list of the children of a routine
(the classes and routines it calls) included in a trace tree model. Each child
listed is defined as a TraceTreeNode object and provides the type of activity
represented by that child.

You must have previously created the trace tree model from a trace file using
the BuildModel function.

When the GetChildrenList function is called for TraceTreeGarbageCollect
objects, each child listed usually represents the destruction of a garbage
collected object.

Examples This example checks the activity type of a node included in the trace tree
model. If the activity type is an occurrence of a routine, it determines the name
of the class that contains the routine and provides a list of the classes and
routines called by that routine:

TraceTree ltct_node
TraceTreeNode ltctn_list
...
CHOOSE CASE node.ActivityType
 CASE ActRoutine!
 TraceTreeRoutine ltctrt_rout
 ltctrt_rout = ltct_node

Argument Description

instancename Instance name of the TraceTreeObject, TraceTreeRoutine, or
TraceTreeGarbageCollect object.

list An unbounded array variable of datatype TraceTreeNode in which
GetChildrenList stores a TraceTreeNode object for each child of a
routine. This argument is passed by reference.
PowerScript Reference 531

GetColumn
 result += "Enter " + ltctrt_rout.ClassName &
 + "." + ltctrt_rout.name + " " &
 + String(ltctrt_rout.ObjectID) + " " &
 + String(ltctrt_rout.EnterTimerValue) &
 + "~r~n" ltctrt_rout.GetChildrenList(ltctn_list)
...

See also BuildModel

GetColumn
Description Retrieves column information for a DataWindow, child DataWindow, or

ListView control.

For syntax for a DataWindow or a child DataWindow, see the GetColumn
method for DataWindows in the DataWindow Reference or the online Help.

Applies to ListView controls

Syntax listviewname.GetColumn (index, label, alignment, width)

Argument Description

listviewname The name of the ListView control from which you want to find the
properties for a column.

index An integer whose value is the index of the column for which you
want to find properties.

label A string identifying the label of the column for which you want to
find properties. This argument is passed by reference.

alignment A value of the enumerated datatype Alignment specifying the
alignment of the column for which you want to find properties.
Values are:

• Center!

• Justify!

• Left!

• Right!

This argument is passed by reference.

width An integer whose value is the width of the column for which you
want to find properties. This argument is passed by reference.
532 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use label, alignment, and width to retrieve the properties for a specified
column.

Examples This example uses the instance variable li_col to pass the column number to
GetColumn and retrieve the properties for the column. The script uses
SetColumn to change the column’s alignment:

string ls_label,ls_align
int li_width
alignment la_align

IF lv_list.View <> ListViewReport! THEN
 lv_list.View = ListViewReport!
END IF

IF li_col = 0 THEN
 MessageBox("Error!","Click on a Column bar.", &
 StopSign!)
ELSE
 lv_list.GetColumn(li_col, ls_label, la_align, &
 li_width)
 lv_list.SetColumn(li_col, ls_label, Right!, &
 li_width)
END IF

See also SetColumn

GetCommandDDE
Description Obtains the command sent by the client application when your application is a

DDE server.

Syntax GetCommandDDE (string)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If string is null, GetCommandDDE returns
null.

Argument Description

string A string variable in which GetCommandDDE will store the
command
PowerScript Reference 533

GetCommandDDE
Usage When a DDE client application sends a command to your application, the
action triggers a RemoteExec event in the active window. In that event’s script,
you call GetCommandDDE to find out what command has been sent. You
decide how your application will respond to the command.

To enable DDE server mode, use the function StartServerDDE, in which you
decide how your application will be known to other applications.

Examples This excerpt from a script for the RemoteExec event checks to see if the action
requested by the DDE client is Open Next Sheet. If it is, the DDE server opens
another instance of the sheet DataSheet. If the requested action is Shut Down,
the DDE server shuts itself down. Otherwise, it lets the DDE client know the
requested action was invalid.

The variables ii_sheetnum and i_DataSheet[] are instance variables for the
window that responds to the DDE event:

integer ii_sheetnum
DataSheet i_DataSheet[]

This script that follows uses the local variable ls_Action to store the command
sent by the client application:

string ls_Action

GetCommandDDE(ls_Action)
IF ls_Action = "Open Next Sheet" THEN
 ii_sheetnum = ii_sheetnum + 1
 OpenSheet(i_DataSheet[ii_sheetnum], w_frame_emp)
ELSEIF ls_Action = "Shut Down" THEN
 HALT CLOSE
ELSE
 RespondRemote(FALSE)
END IF

See also GetCommandDDEOrigin
StartServerDDE
StopServerDDE
534 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetCommandDDEOrigin
Description When called by the DDE server application, obtains the application name

parameter used by the DDE client sending the command.

Syntax GetCommandDDEOrigin (applstring)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If applstring is null, GetCommandDDEOrigin
returns null.

Usage The server application calling this function can use the application name (its
own DDEname) to determine if it wants to respond to this command.
Otherwise, the function provides no additional information about the client.

Examples This script uses the local variable ls_name to store the name the client
application used to identify the server application:

string ls_name
GetCommandDDEOrigin(ls_name)

See also GetCommandDDE
StartServerDDE
StopServerDDE

Argument Description

applstring A string variable in which GetCommandDDEOrigin will store the
name of the server application
PowerScript Reference 535

GetCommandString
GetCommandString
Description Returns the command string sent by dbmlsync to the synchronization server.

Applies to MLSync controls

Syntax syncObject.GetCommandString ()

Return value String. Returns the command string that is set for submission to the
synchronization server. Returns -1 if required properties are missing.
(Datasource, Publication, and MLUser, and MLServerVersion are required
properties.) When this occurs, a descriptive error is written to the ErrorText
property of the MLSync object.

Usage To minimize confusion to an end user, you might want to hide certain
command line arguments in a customized synchronization options window for
your MobiLink application. In this case you can call the GetCommandString
function to return the command line generated by the options window, then add
on values for the options that you hide from the user.

Examples For MLSync objects, you can allow a user to edit the command line arguments
for a synchronization call as follows:

long rc
string cmd
cmd = myMLSync.GetCommandString()
// Edit cmd however you wish
...
rc = myMLSync.Synchronize(cmd)

See also GetSyncRegistryProperties
SetParm
SetSyncRegistryProperties
Synchronize

Argument Description

syncObject The name of the MLSync object that starts a synchronization for
which you want to get the actual dbmlsync command submitted to
the synchronization server.
536 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetCompanyName
Description Returns the company name for the current execution context.

Applies to ContextInformation objects

Syntax servicereference.GetCompanyName (name)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the company name (such as Sybase, Inc.).

Examples This example calls the GetCompanyName function:

String ls_company
Integer li_return
ContextInformation ci
ci = create ContextInformation
//or GetContextService("ContextInformation", ci)
li_return = ci.GetCompanyName(ls_company)
IF li_return = 1 THEN
 sle_co_name.text = ls_company
END IF

See also GetContextService
GetFixesVersion
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetShortName
GetVersionName

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the company name. This
argument is passed by reference.
PowerScript Reference 537

GetContextKeywords
GetContextKeywords
Description Retrieves one or more values associated with a specified keyword.

Applies to ContextKeyword objects

Syntax servicereference.GetContextKeywords (name, values)

Return value Integer. Returns the number of elements in values if the function succeeds and
-1 if an error occurs.

Usage Call this function to access environment variables.

This function can also be used with a PowerBuilder EAServer component to
return the value of a specific property from the component’s .props file. To
enumerate the properties of an EAServer component, use the
Jaguar::Repository API.

Examples This example calls the GetContextKeywords function:

String ls_keyword
Integer li_count, li_return
ContextKeyword lcx_key

li_return = this.GetContextService &
 ("ContextKeyword", lcx_key)
ls_keyword = sle_name.Text
lcx_key.GetContextKeywords &
 (ls_keyword, is_values)
FOR li_count = 1 to UpperBound(is_values)
 lb_parms.AddItem(is_values[li_count])
NEXT

See also GetContextService

Argument Description

servicereference Reference to the ContextKeyword service instance.

name String specifying the keyword for which the function returns
corresponding values.

values Unbounded String array into which the function places the
values that correspond to name. This argument is passed by
reference.
538 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetContextService
Description Returns a reference to a context-specific instance of the specified service.

Applies to Any object

Syntax GetContextService (servicename, servicereference)

Return value Integer. Returns 1 if the function succeeds and a negative integer if an error
occurs. The return value -1 indicates an unspecified error.

Usage Call this function to establish a reference to a service object, allowing you to
access methods and properties in the service object. You must call this function
before calling service object functions.

In Windows applications, you can use ContextKeyword or Keyword as the
servicename argument when you get an instance of the ContextKeyword
service. On all EAServer platforms except AIX, you must use Keyword.

Argument Description

servicename String specifying the service object. Valid values are:

• ContextInformation – Context information service

• ContextKeyword or Keyword– Context keyword service
(use Keyword as the servicename on all EAServer platforms
except AIX)

• CORBACurrent – CORBA current service for client- or
component-management of EAServer transactions

• ErrorLogging – Error logging service for PowerBuilder
components running in a transaction server such as EAServer
or COM+

• Internet – Internet service

• SSLServiceProvider – SSL service provider service that
allows PowerBuilder clients to establish SSL connections to
EAServer components

• TransactionServer – Transaction server service for
PowerBuilder components running in a transaction server
such as EAServer or COM+

servicereference PowerObject into which the function places a reference to the
service object specified by servicename. This argument is
passed by reference.
PowerScript Reference 539

GetContextService
Using a CREATE statement
You can instantiate these objects with a PowerScript CREATE statement.
However, this always creates an object for the default context (native
PowerBuilder execution environment), regardless of where the application is
running.

Examples This example calls the GetContextService function and displays the class of the
service in a single line edit box:

Integer li_return
ContextKeyword lcx_key

li_return = this.GetContextService &
 ("Keyword", lcx_key)
sle_classname.Text = ClassName(lcx_key)
...

See also BeginTransaction
GetCompanyName
GetContextKeywords
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetShortName
GetURL
GetVersionName
HyperLinkToURL
Init
PostURL
540 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetCredentialAttribute
Description Called by EAServer to allow the user to supply user credentials dynamically.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.GetCredentialAttribute (thesessioninfo, attr, attrvalues)

Return value String. Returns the selected attribute value.

Usage A PowerBuilder application does not usually call the GetCredentialAttribute
function directly. GetCredentialAttribute is called by EAServer if the
useEntrustID property has been set and the EAServer client has not specified
the path name of an Entrust INI file or profile.

To override the behavior of any of the functions of the SSLCallBack object,
create a standard class user object that descends from SSLCallBack and
customize this object as necessary. To let EAServer know which object to use
when a callback is required, specify the name of the object in the callbackImpl
SSL property. You can set this property value by calling the SetGlobalProperty
function.

If you do not provide an implementation of GetCredentialAttribute, EAServer
receives the CORBA::NO_IMPLEMENT exception and the default
implementation of this callback is used. The default implementation always
returns the first value in the list of values supplied. If there are no values
supplied, it raises CtsSecurity::NoValueException. Any exceptions that may be
raised by the function should be added to its prototype.

If your implementation of the callback returns an empty string, the default
implementation described above is used and the first value in the list is
returned. If that value is acceptable to the server, the connection proceeds. If
the value is not acceptable, the connection is refused.

Argument Description
sslcallback An instance of a customized SSLCallBack object.
thesessioninfo A CORBAObject that contains information about the SSL

session. This information can optionally be displayed to the
user to provide details about the session.

attr A long indicating whether the user needs to specify the path
name of an INI file or a profile file. Values are:

• 1 CRED_ATTR_ENTRUST_INIFILE

• 2 CRED_ATTR_ENTRUST_USERPROFILE
attrvalues An array of string values that contains the available attribute

values.
PowerScript Reference 541

GetCredentialAttribute
To obtain a useful return value, provide the user with available attribute values
from the attrvalues array passed to the function and ask the user to select one
of them. You can also supply additional information, such as the server
certificate, obtained from the passed thesessioninfo object.

You can enable the user to cancel the attempt to connect by throwing an
exception in this callback function. All exceptions thrown in SSLCallback
functions return a CTSSecurity::UserAbortedException to the server. You need
to catch the exception by wrapping the ConnectToServer function in a try-catch
block.

Examples This example checks whether the server requires the location of an INI file or
an Entrust user profile and displays an appropriate message. If the attrvalues
array provides a list of choices, it displays the choices in a message box and
prompts the user to enter a selection in a text box:

int idx, numAttrs
String sText, sLocation
numAttrs = upperbound(attrValues)
w_response w_ssl_response

IF attr = 1 THEN
 MessageBox("Entrust INI file required", &
 "Please specify the location of the INI file")
ELSEIF attr = 2 THEN
 MessageBox("Entrust profile required", &
 "Please specify the location of the profile")
END IF

IF numAttrs <> 0 THEN
 sText = "Locations available: "
 FOR idx = 1 to numAttrs
 sText += "~nattrValues[" + string(idx) + "]: " &
 + attrvalues[idx]
 NEXT
 OpenWithParm(w_ssl_response, SText)
 ls_rc = Message.StringParm
 IF ls_rc = "cancel" then
 userabortedexception uae
 uae = create userabortedexception
 uae.setmessage("User cancelled connection")
 throw uae
 END IF
END IF
RETURN ls_rc

See also ConnectToServer, GetCertificateLabel, GetPin, TrustVerify
542 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetCurrentDirectory
Description Gets the current directory for your target application.

Syntax GetCurrentDirectory ()

Return value String. Returns the full path name for the current directory.

Examples This example puts the current directory name in a SingleLineEdit control:

sle_1.text = GetCurrentDirectory()

See also ChangeDirectory, CreateDirectory, DirectoryExists, RemoveDirectory

GetData
Obtains data from a control.

Syntax 1 For data points in graphs
Description Gets the value of a data point in a series in a graph.

Applies to Graph controls in windows and user objects, and in DataWindow controls

Syntax controlname.GetData ({ graphcontrol, } seriesnumber, datapoint
 {, datatype })

To obtain Use

The value of a data point in a series in a graph Syntax 1

The unformatted data from an EditMask control Syntax 2

Data from an OLE server Syntax 3

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph from
which you want the data when controlname is a DataWindow.

seriesnumber The number identifying the series from which you want data.

datapoint The number of the data point for which you want the value.
PowerScript Reference 543

GetData
Return value Double. Returns the value of the data in datapoint if it succeeds and 0 if an error
occurs. If any argument’s value is null, GetData returns null.

Usage You can use GetData only for graphs whose values axis is numeric. For graphs
with other types of values axes, use the GetDataValue function instead.

Examples These statements obtain the data value of data point 3 in the series named Costs
in the graph gr_computers in the DataWindow control dw_equipment:

integer SeriesNbr
double data_value
// Get the number of the series.
SeriesNbr = &
 dw_equipment.FindSeries("gr_computers", "Costs")
data_value = dw_equipment.GetData(&
 "gr_computers" , SeriesNbr, 3)

These statements obtain the data value of the data point under the mouse
pointer in the graph gr_prod_data and store it in data_value:

integer SeriesNbr, ItemNbr
double data_value
grObjectType MouseHit

MouseHit = &
 gr_prod_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF MouseHit = TypeSeries! THEN
 data_value = &
 gr_prod_data.GetData(SeriesNbr, ItemNbr)
END IF

These statements obtain the x value of the data point in the scatter graph
gr_sales_yr and store it in data_value:

integer SeriesNbr, ItemNbr
double data_value
gr_product_data.ObjectAtPointer(SeriesNbr, ItemNbr)
data_value = &
 gr_sales_yr.GetData(SeriesNbr, ItemNbr, xValue!)

See also DeleteData, FindSeries, GetDataValue, InsertData, ObjectAtPointer

datatype
(scatter graph only)

(Optional) A value of the grDataType enumerated datatype
specifying whether you want the x or y value of the data point
in a scatter graph. Values are:

• xValue! – The x value of the data point

• yValue! – (Default) The y value of the data point

Argument Description
544 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For EditMask controls
Description Gets the unformatted text from an EditMask control.

Applies to EditMask controls

Syntax editmaskname.GetData (datavariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetData returns null.

Usage You can find out the datatype of an EditMask control by looking at its
MaskDataType property, which holds a value of the MaskDataType
enumerated datatype.

Examples This example gets data of datatype date from the EditMask control em_date.
Formatting characters for the date are ignored. The String function converts the
date to a string so it can be assigned to the SingleLineEdit sle_date:

date d
em_date.GetData(d)
sle_date.Text = String(d, "mm-dd-yy")

This example gets string data from the EditMask control em_string and assigns
the result to sle_string. Characters in the edit mask are ignored:

string s
em_string.GetData(s)
sle_string.Text = s

Argument Description

editmaskname The name of the EditMask control containing the data.

datavariable A variable to which GetData will assign the unformatted data
in the EditMask control. The datatype of datavariable must
match the datatype of the EditMask control, which you select
in the Window painter. Available datatypes are date,
DateTime, decimal, double, string, and time.
PowerScript Reference 545

GetData
Syntax 3 For data in an OLE server
Description Gets data from the OLE server associated with an OLE control using Uniform

Data Transfer.

Applies to OLE controls and OLE custom controls

Syntax olename.GetData (clipboardformat, data)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage GetData will return an error if you specify a clipboard format that the OLE
server does not support. To find out what formats it supports, see the
documentation for the OLE server.

Argument Description

olename The name of the OLE or custom control containing the object
you want to populate with data

clipboardformat The format for the data. You can specify a standard format
with a value of the ClipboardFormat enumerated datatype.
You can specify a nonstandard format as a string.

Values for clipboardformat are:

ClipFormatBitmap!
ClipFormatDIB!
ClipFormatDIF!
ClipFormatEnhMetafile!
ClipFormatHdrop!
ClipFormatLocale!
ClipFormatMetafilePict!
ClipFormatOEMText!
ClipFormatPalette!
ClipFormatPenData!
ClipFormatRIFF!
ClipFormatSYLK!
ClipFormatText!
ClipFormatTIFF!
ClipFormatUnicodeText!
ClipFormatWave!

If clipboardformat is an empty string or a null value, GetData
uses the format ClipFormatText!

data A string or blob variable that will contain the data from the
OLE server. If the data you want to get is not appropriate for
a string, you must use a blob variable.
546 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetData operates via Uniform Data Transfer, a mechanism defined by
Microsoft for exchanging data with container applications. PowerBuilder
enables data transfer via a global handle. The OLE server must also support
data transfer via a global handle. If it does not, you cannot transfer data to or
from that server.

Examples After the user has activated a Microsoft Word document and edited its contents,
this example gets the contents from the OLE control ole_word6 and stores the
contents in the string ls_oledata. The contents of the string are then displayed
in the MultiLineEdit mle_text:

string ls_oledata
integer li_rtn

li_rtn = ole_word6.GetData(&
 ClipFormatText!, ls_oledata)
mle_text.Text = ls_oledata

One OLE control displays a Microsoft Word document containing a table of
data. This example gets the data in the report and assigns it to a graph in a
second OLE control. Microsoft Graph in the second control interprets the first
row in the table as headings, and subsequent rows as categories or series,
depending on the settings on the Data menu:

string ls_data
integer li_rtn

li_rtn = ole_word.GetData(ClipFormatText!, ls_data)
IF li_rtn <> 1 THEN RETURN

li_rtn = ole_graph.SetData(ClipFormatText!, ls_data)

See also SetData
PowerScript Reference 547

GetDataDDE
GetDataDDE
Description Obtains data sent from another DDE application and stores it in the specified

string variable. PowerBuilder can use GetDataDDE when acting as a DDE
client or a DDE server application.

Syntax GetDataDDE (string)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If string is null, GetDataDDE returns null.

Usage GetDataDDE is usually called in the window-level script for a RemoteSend
event when your application is a DDE server or HotLinkAlarm event when
your application is a DDE client.

Examples Assuming that your PowerBuilder DDE client application has established a hot
link with row 7, column 15 of an Excel spreadsheet, and that the value in that
row and column address has changed from red to green (which triggers the
HotLinkAlarm event in your application), this script for the HotLinkAlarm
event calls GetDataDDE to store the new value in the variable Str20:

// In the script for a HotLinkAlarm event
string Str20
GetDataDDE(Str20)

See also GetDataDDEOrigin
OpenChannel
StopServerDDE
StopServerDDE

Argument Description

string A string variable in which GetDataDDE will put the data received
from a remote DDE application
548 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetDataDDEOrigin
Description Determines the origin of data from a hot-linked DDE server application or a

DDE client application, and if successful, stores the application’s DDE
identifiers in the specified strings. PowerBuilder can use GetDataDDEOrigin
when it is acting as a DDE client or as a DDE server application.

Syntax GetDataDDEOrigin (applstring, topicstring, itemstring)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (such as the function
was called in the wrong context). If any argument’s value is null,
GetDataDDEOrigin returns null.

Usage Call GetDataDDEOrigin in the window-level script for a RemoteSend event or
a HotLinkAlarm event.

When your application is a DDE server, call GetDataDDEOrigin in the script for
the RemoteSend event. Use it to determine the topic and item requested by the
client. The application name is the application specified by the client (the
server’s own DDEname).

When your application is a DDE client, call GetDataDDEOrigin in the script for
the HotLinkAlarm event. Use it to identify the source of the data when hot links
may exist for more than one topic within the server application or for more than
one application.

Examples This example illustrates how to call GetDataDDEOrigin:

string WhichAppl, WhatTopic, WhatLoc
GetDataDDEOrigin(WhichAppl, WhatTopic, WhatLoc)

See also GetDataDDE
OpenChannel
StartServerDDE
StopServerDDE

Argument Description

applstring A string variable in which GetDataDDEOrigin will store the name
of the server application

topicstring A string variable in which GetDataDDEOrigin will store the topic
(for example, in Microsoft Excel, the topic could be REGION.XLS)

itemstring A string variable in which GetDataDDEOrigin will store the item
identification (for example, in Microsoft Excel, the item could be
R1C2)
PowerScript Reference 549

GetDataLabelling
GetDataLabelling
Description Determines whether the data at a given data point is labeled in a DirectX 3D

graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataLabelling ({graphcontrol,} series, datapoint, value)

Return value Returns 1 if it succeeds and -1 if an error occurs. If any argument’s value is null,
GetDataLabelling returns null.

Usage GetDataLabelling determines whether a data label is set for data points from
DirectX 3D Area, Bar, Col, or Line graphs. You cannot use this method with
DirectX 3D Pie graphs.

Examples In a DataWindow Clicked event, these statements obtain the number of the
series and data point clicked by the user in gr_1 and determine whether the
label is set for that data point.

integer SeriesNbr, ItemNbr
boolean refB
grObjectType clickedtype

clickedtype = this.ObjectAtPointer("gr_1", &
SeriesNbr, ItemNbr)

this.GetDataLabelling("gr_1", SeriesNbr, &
ItemNbr, refB)

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control.

seriesnumber The number that identifies the series for which you want the
data label setting.

datapoint The data point for which you want to obtain a label.

value A boolean passed by reference that indicates whether the data
point has a label.
550 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
These statements obtain the number of the series and data point clicked by the
user in a graph object and determine whether the label is set for that data point.

integer SeriesNbr, ItemNbr
boolean refB
grObjectType clickedtype

clickedtype = this.ObjectAtPointer(SeriesNbr, ItemNbr)

this.GetDataLabelling(SeriesNbr, ItemNbr, refB)

See also GetSeriesLabelling
SetDataLabelling
SetSeriesLabelling

GetDataPieExplode
Description Reports the percentage of the pie graph’s radius that a pie slice is exploded. An

exploded slice is moved away from the center of the pie in order to draw
attention to the data.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataPieExplode ({ graphcontrol, } series, datapoint,
 percentage)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetDataPieExplode returns null.

Argument Description

controlname The name of the graph for which you want the percentage a pie
slice is exploded, or the name of the DataWindow control
containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the percentage a pie
slice is exploded

series The number that identifies the series

datapoint The number of the exploded data point (that is, the pie slice)

percentage An integer variable in which you want to store the percentage
of the graph’s radius that the pie slice is exploded
PowerScript Reference 551

GetDataPieExplode
Examples This example reports the percentage that a pie slice is exploded when the user
clicks on that slice. The code checks whether the graph is a pie graph using the
property Graphite. It then finds out whether the user clicked on a pie slice by
checking the series and data point values set by ObjectAtPointer. The script is
for the DoubleClicked event of a graph object:

integer series, datapoint
grObjectType clickedtype
integer percentage

percentage = 50
IF (This.GraphType <> PieGraph! and &
 This.GraphType <> Pie3D!) THEN RETURN
clickedtype = This.ObjectAtPointer(series, &
 datapoint)

IF (series > 0 and datapoint > 0) THEN
 This.GetDataPieExplode(series, datapoint, &
 percentage)
 MessageBox("Explosion Percentage", &
 "Data point " + This.CategoryName(datapoint) &
 + " in series " + This.SeriesName(series) &
 + " is exploded " + String(percentage) + "%")
END IF

See also SetDataPieExplode
552 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetDataStyle
Finds out the appearance of a data point in a graph. Each data point in a series
can have individual appearance settings. There are different syntaxes,
depending on what settings you want to check.

GetDataStyle provides information about a single data point. The series to
which the data point belongs has its own style settings. In general, the style
values for the data point are the same as its series’ settings. Use SetDataStyle
to change the style values for individual data points. Use GetSeriesStyle and
SetSeriesStyle to get and set style information for the series.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can find out the fill pattern for a data
point or a series in a 2-dimensional line graph, but that fill pattern will not be
visible.

For the enumerated datatype values that GetDataStyle stores in linestyle and
enumvariable, see SetDataStyle.

Syntax 1 For the colors of a data point
Description Obtains the colors associated with a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataStyle ({ graphcontrol, } seriesnumber,
 datapointnumber, colortype, colorvariable)

To get the Use

Data point’s colors Syntax 1

Line style and width used by the data point Syntax 2

Fill pattern or symbol for the data point Syntax 3

Argument Description

controlname The name of the graph for which you want the color of a data
point, or the name of the DataWindow control containing the
graph.

graphcontrol
(Data Window
control only)

(Optional) When controlname is a DataWindow control, the
name of the graph for which you want the color of a data point.

seriesnumber The number of the series in which you want the color of a data
point.
PowerScript Reference 553

GetDataStyle
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores a color value
in colorvariable. If any argument’s value is null, GetDataStyle returns null.

Examples This example gets the text (foreground) color used for data point 6 in the series
named Salary in the graph gr_emp_data. It stores the color value in the variable
color_nbr:

long color_nbr
integer SeriesNbr

// Get the number of the series
SeriesNbr = gr_emp_data.FindSeries("Salary")

// Get the color
gr_emp_data.GetDataStyle(SeriesNbr, 6, &
 Foreground!, color_nbr)

This example gets the background color used for data point 6 in the series
entered in the SingleLineEdit sle_series in the DataWindow graph
gr_emp_data. It stores the color value in the variable color_nbr:

long color_nbr
integer SeriesNbr

// Get the number of the series
SeriesNbr = FindSeries("gr_emp_data", sle_series.Text)

// Get the color
dw_emp_data.GetDataStyle("gr_emp_data", &
 SeriesNbr, 6, Background!, color_nbr)

See also FindSeries, GetSeriesStyle, SetDataStyle, SetSeriesStyle

datapointnumber The number of the data point for which you want the color.

colortype A value of the grColorType enumerated datatype specifying
the aspect of the data point for which you want the color.
Values are:

• Background! – The background color

• Foreground! – Text (fill color)

• LineColor! – The color of the line

• Shade! – The shaded area of three-dimensional graphics

colorvariable A long variable in which you want to store the color.

Argument Description
554 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For the line style and width used by a data point
Description Obtains the line style and width for a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataStyle ({ graphcontrol, } seriesnumber,
 datapointnumber, linestyle, linewidth)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. For the specified
series and data point, stores its line style in linestyle and the line’s width in
linewidth. If any argument’s value is null, GetDataStyle returns null.

Usage For the enumerated datatype values that GetDataStyle will store in linestyle, see
SetDataStyle.

Examples This example gets the line style and width of data point 10 in the series named
Costs in the graph gr_product_data. It stores the information in the variables
line_style and line_width:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 line_style, line_width)

Argument Description

controlname The name of the graph for which you want the line style and
width of a data point, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph (in
the DataWindow control) for which you want the line style
and width of a data point.

seriesnumber The number of the series in which you want the line style and
width of a data point.

datapointnumber The number of the data point for which you want the line style
and width.

linestyle A variable of type LineStyle in which you want to store the
line style.

linewidth An integer variable in which you want to store the width of the
line. The width is measured in pixels.
PowerScript Reference 555

GetDataStyle
This example gets the line style and width for data point 6 in the series entered
in the SingleLineEdit sle_series in the graph gr_depts in the DataWindow
control dw_employees. The information is stored in the variables line_style
and line_width:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = dw_employees.FindSeries(&
 " gr_depts " , sle_series.Text)

// Get the line style and width
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, line_style, line_width)

See also FindSeries, GetSeriesStyle, SetDataStyle,SetSeriesStyle

Syntax 3 For the fill pattern or symbol of a data point
Description Obtains the fill pattern or symbol of a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataStyle ({ graphcontrol, } seriesnumber,
 datapointnumber, enumvariable)

Argument Description

controlname The name of the graph for which you want the fill pattern or
symbol type of a data point, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph (in the
DataWindow control) for which you want the fill pattern or
symbol type of a data point.

seriesnumber The number of the series in which you want the fill pattern or
symbol type of a data point.

datapointnumber The number of the data point for which you want the fill
pattern or symbol type.

enumvariable The variable in which you want to store the data style. You can
specify a FillPattern or grSymbolType variable. The data style
information stored will depend on the variable type.
556 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores, according to
the type of enumvariable, a value of that enumerated datatype representing the
fill pattern or symbol used for the specified data point. If any argument’s value
is null, GetDataStyle returns null.

Usage For the enumerated datatype values that GetDataStyle will store in
enumvariable, see SetDataStyle.

Examples This example gets the pattern used to fill data point 10 in the series named
Costs in the graph gr_product_data. The information is stored in the variable
data_pattern:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 data_pattern)

This example gets the pattern used to fill data point 6 in the series entered in
the SingleLineEdit sle_series in the graph gr_depts in the DataWindow control
dw_employees. The information is assigned to the variable data_pattern:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series
SeriesNbr = dw_employees.FindSeries("gr_depts", &
 sle_series.Text)

// Get the pattern
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, data_pattern)

These statements store in the variable symbol_type the symbol of data point 10
in the series named Costs in the graph gr_product_data:

integer SeriesNbr
grSymbolType symbol_type

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")
gr_product_data.GetDataStyle(SeriesNbr, 10, &
 symbol_type)
PowerScript Reference 557

GetDataTransparency
These statements store the symbol for a data point in the variable symbol_type.
The data point is the sixth point in the series named in the SingleLineEdit
sle_series in the graph gr_depts in the DataWindow control dw_employees:

integer SeriesNbr
grSymbolType symbol_type

// Get the number of the series
SeriesNbr = dw_employees.FindSeries("gr_depts", &
 sle_series.Text)

// Get the symbol
dw_employees.GetDataStyle("gr_depts", SeriesNbr, &
 6, symbol_type)

See also FindSeries, GetSeriesStyle, SetDataStyle, SetSeriesStyle

GetDataTransparency
Description Obtains the transparency percentage of a data point in a DirectX 3D graph

(those with 3D rendering).

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataTransparency ({ graphcontrol, } seriesnumber,
datapoint, transparency)

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control from which you want the data.

seriesnumber The number that identifies the series from which you want
data.

datapoint The number of the data point for which you want the
transparency value.

transparency Integer value for percent transparency. A value of 0 means that
the data point is opaque and a value of 100 means that it is
completely transparent.
558 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetDataTransparency returns null.

Usage GetDataTransparency retrieves data from any DirectX 3D graph (those with 3D
rendering).

Examples These statements obtain the transparency percentage of data point 3 in the
series named Costs in the graph gr_computers in the DataWindow control
dw_equipment:

integer SeriesNbr, rtn, transp_value

// Get the number of the series.
SeriesNbr = dw_equipment.FindSeries(&

"gr_computers", "Costs")
rtn = dw_equipment.GetDataTransparency(&

"gr_computers" , SeriesNbr, 3, transp_value)

These statements obtain the transparency percentage of data point 2 in the
series Costs in the graph gr_computers:

integer SeriesNbr, rtn, trans_value

SeriesNbr = gr_computers.FindSeries("Costs")
rtn = gr_computers.GetDataTransparency(SeriesNbr, &

2, transp_value)

See also FindSeries
GetSeriesTransparency
SetSeriesTransparency
SetDataTransparency
PowerScript Reference 559

GetDataValue
GetDataValue
Description Obtains the value of a data point in a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetDataValue ({ graphcontrol, } seriesnumber, datapoint,
 datavariable {, xory })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetDataValue returns null.

Usage GetDataValue retrieves data from any graph. The data is stored in datavariable,
whose datatype must match the datatype of the graph’s values axis. If the
values axis is numeric, you can also use the GetData function.

Examples These statements obtain the data value of data point 3 in the series named Costs
in the graph gr_computers in the DataWindow control dw_equipment:

integer SeriesNbr, rtn
double data_value

// Get the number of the series.
SeriesNbr = dw_equipment.FindSeries(&
 "gr_computers", "Costs")
rtn = dw_equipment.GetDataValue(&
 "gr_computers" , SeriesNbr, 3, data_value)

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control from which you want the data.

seriesnumber The number that identifies the series from which you want
data.

datapoint The number of the data point for which you want the value.

datavariable The name of a variable that will hold the data value. The
variable’s datatype can be date, DateTime, double, string, or
time. The variable must have the same datatype as the values
axis of the graph.

xory
(scatter graph only)

(Optional) A value of the grDataType enumerated datatype
specifying whether you want the x or y value of the data point
in a scatter graph. Values are:

• xValue! – The x value of the data point

• yValue! – (Default) The y value of the data point
560 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
These statements obtain the data value of the data point under the mouse
pointer in the graph gr_prod_data and store it in data_value. If the user does not
click on a data point, then ItemNbr is set to 0. The categories of the graph are
time values:

integer SeriesNbr, ItemNbr, rtn
time data_value
grObjectType MouseHit

MouseHit = &
 gr_prod_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF ItemNbr > 0 THEN
 rtn = gr_prod_data.GetDataValue(&
 SeriesNbr, ItemNbr, data_value)
END IF

These statements obtain the x value of the data point in the scatter graph
gr_sales_yr and store it in data_value. If the user does not click on a data point,
then ItemNbr is set to 0. The datatype of the category axis is Date:

integer SeriesNbr, ItemNbr, rtn
date data_value

gr_product_data.ObjectAtPointer(SeriesNbr, ItemNbr)
IF ItemNbr > 0 THEN
 rtn = gr_sales_yr.GetDataValue(&
 SeriesNbr, ItemNbr, data_value, xValue!)
END IF

See also DeleteData
FindSeries
InsertData
ObjectAtPointer
PowerScript Reference 561

GetDateLimits
GetDateLimits
Description Retrieves the maximum and minimum date limits specified for the calendar.

Applies to MonthCalendar control

Syntax controlname.GetDateLimits (min, max)

Return value Integer. Returns 0 when both limits are retrieved successfully and one of the
following negative values otherwise:

-1 No limits were set

-2 Unknown failure

Usage Use the SetDateLimits function to set minimum and maximum dates. If no date
limits have been set, GetDateLimits returns -1 and sets min and max to January
1, 1900.

Examples This example displays a message box that shows the minimum and maximum
dates set for a control:

integer li_return
Date mindate, maxdate
string str1, str2

li_return = mc_1.GetDateLimits(mindate, maxdate)
If li_return = -1 then

str1 = "No minimum and maximum dates are set"
elseif li_return = -2 then

str1 = "Unknown failure"
else

str1 = "Minimum date is " + string(mindate)
str2 = "Maximum date is " + string(maxdate)

end if

MessageBox("Date Limits", str1 + "~r~n" + str2)

See also SetDateLimits

Argument Description

controlname The name of the MonthCalendar control for which you want to
determine the date limits

min A date value returned by reference that represents the minimum
date that can be referenced or displayed in the calendar

max A date value returned by reference that represents the maximum
date that can be referenced or displayed in the calendar
562 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetDbmlsyncPath
Description Retrieves the full path and file name of the dbmlsync.exe that is installed on the

workstation.

Applies to MLSync and MLSynchronization controls

Syntax SyncObject.GetDbmlsyncPath ()

Return value String. Returns the value of full path and file name of the synchronization
executable. Returns -1 if.dbmlsync.exe is not found.

Usage This property uses the value of the synchronization object’s MLServerVersion
property to decide which version of dbmlsync to return.

Examples This function enables the use of Help buttons for the Additional Options and
Extended Options fields as displayed on the default ML Server tab page of the
w_appname_sync_options dialog box that is generated by the MobiLink
synchronization wizard. The Clicked event for these Help buttons has the
following script:

string sCmd
sCmd = i_uosync.GetDbmlsyncPath()
if len(sCmd) > 0 then

sCmd += " ?"
 // sCmd += ' -l' for help with extended options

run(sCmd, Normal!)
end if

Argument Description

syncObject The name of the synchronization object
PowerScript Reference 563

GetDisplayRange
GetDisplayRange
Description Retrieves the first and last date of the currently displayed date range and returns

the number of months than span the display.

Applies to MonthCalendar control

Syntax controlname.GetDisplayRange (start, end {, d })

Return value Integer. Returns the number of months in the display range if it succeeds and
-1 if it fails.

Usage The GetDisplayRange function retrieves the beginning and end dates of the
range of dates currently displayed in the calendar.

If you do not supply the optional d argument (or specify PartlyDisplayed!),
GetDisplayRange returns the number of months for which any of the days in the
month display. If the calendar displays one month, the return value is 3,
because the last few days of the previous month and the first few days of the
next month are included.

If you supply EntirelyDisplayed! as the d argument, GetDisplayRange returns
the number of months for which all of the days in the month display. It ignores
the leading and trailing days.

For example, if the calendar display shows the 12 months from November
2004 to October 2005 and you do not supply the d argument, GetDisplayRange
returns 14 and the start and end arguments are set to October 25, 2004 and
November 6, 2005.

If you supply EntirelyDisplayed! as the d argument, GetDisplayRange returns
12 and the start and end arguments are set to November 1, 2004 and October
31, 2005.

Argument Description

controlname The name of the MonthCalendar control for which you want the
range of dates

start A date specifying the first date in the displayed range returned by
reference

end A date specifying the last date in the displayed range returned by
reference

d (optional) A value of the MonthCalDisplayState enumerated variable. Values
are:

EntirelyDisplayed! – Gets the range of dates for which all days
in each month are displayed
PartlyDisplayed! – Gets the range of dates for which any days in
each month are displayed (default)
564 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example displays a message box that shows the number of months in the
display range and its start and end dates. Because the third argument is set to
PartlyDisplayed!, the range returned will be greater than the number of full
months displayed. If only one month displays and it neither begins on the first
day of the week nor ends on the last day of the week, li_return will be 3:

integer li_return
Date startdate, enddate
string str1, string str2

li_return = mc_1.GetDisplayRange(startdate, enddate, &
PartlyDisplayed!)

str1 = "Range is " + string(li_return) + " months"
str2 = "Start date is " + string(startdate) + "~r~n"
str2 += "End date is " + string(enddate)

MessageBox(str1, str2)

This example finds out how many complete months are shown in the current
display and sets the scroll rate to that number:

integer li_return
Date startdate, enddate

li_return = mc_1.GetDisplayRange(startdate, enddate, &
EntirelyDisplayed!)

mc_1.ScrollRate = li_return

See also GetSelectedRange
PowerScript Reference 565

GetDynamicDate
GetDynamicDate
Description Obtains data of type Date from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Restriction
You can use this function only after executing Format 4 dynamic SQL
statements.

Syntax DynamicDescriptionArea.GetDynamicDate (index)

Return value Date. Returns the Date data in the output parameter descriptor identified by
index in DynamicDescriptionArea. Returns 1900-01-01 if an error occurs. If
any argument’s value is null, GetDynamicDate returns null.

Usage After you fetch data using Format 4 dynamic SQL statements, the
DynamicDescriptionArea, usually SQLDA, contains information about the
data retrieved. The SQLDA property NumOutputs specifies the number of data
descriptors returned. The property array OutParmType contains values of the
ParmType enumerated datatype specifying the datatype of each value returned.

Use GetDynamicDate when the value of OutParmType is TypeDate! for the
value in the array that you want to retrieve.

Examples These statements set Today to the Date data in the second output parameter
descriptor:

Date Today
Today = GetDynamicDate(SQLDA, 2)

If you have executed Format 4 dynamic SQL statements, data is stored in the
DynamicDescriptionArea. This example finds out the datatype of the stored
data and uses a CHOOSE CASE statement to assign it to local variables.

If the SELECT statement is:

SELECT emp_start_date FROM employee;

then the code at CASE Typedate! will be executed.

Argument Description

DynamicDescriptionArea The name of the DynamicDescriptionArea, usually
SQLDA.

index An integer identifying the output parameter
descriptor from which you want to get the data.
Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.
566 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
For each case, other processing could assign the value to a DataWindow so that
the value would not be overwritten when another value has the same
ParmType:

Date Datevar
Time Timevar
DateTime Datetimevar
Double Doublevar
String Stringvar

FOR n = 1 to SQLDA.NumOutputs
 CHOOSE CASE SQLDA.OutParmType[n]
 CASE TypeString!
 Stringvar = SQLDA.GetDynamicString(n)
 ... // Other processing
 CASE TypeDecimal!, TypeDouble!, &
 TypeInteger!, TypeLong!, &
 TypeReal!, TypeBoolean!
 Doublevar = SQLDA.GetDynamicNumber(n)
 ... // Other processing
 CASE TypeDate!
 Datevar = SQLDA.GetDynamicDate(n)
 ... // Other processing
 CASE TypeDateTime!
 Datetimevar = SQLDA.GetDynamicDateTime(n)
 ... // Other processing
 CASE TypeTime!
 Timevar = SQLDA.GetDynamicTime(n)
 ... // Other processing
 CASE ELSE
 MessageBox("Dynamic SQL", &
 "datatype unknown.")
 END CHOOSE
NEXT

See also GetDynamicDateTime
GetDynamicNumber
GetDynamicString
GetDynamicTime
SetDynamicParm
Using dynamic SQL
PowerScript Reference 567

GetDynamicDateTime
GetDynamicDateTime
Description Obtains data of type DateTime from the DynamicDescriptionArea after you

have executed a dynamic SQL statement.

Restriction
You can use this function only after executing Format 4 dynamic SQL
statements.

Syntax DynamicDescriptionArea.GetDynamicDateTime (index)

Return value DateTime. Returns the DateTime data in the output parameter descriptor
identified by index in DynamicDescriptionArea. Returns 1900-01-01
00:00:00.000000 if an error occurs. If any argument’s value is null,
GetDynamicDateTime returns null.

Usage Use GetDynamicDateTime when the value of OutParmType is TypeDateTime!
for the value that you want to retrieve from the array.

To test for the error value, you must use the DateTime function to construct the
value to which you want to compare the returned value. PowerBuilder does not
support DateTime literals.

Examples These statements set SystemDateTime to the DateTime data in the second
output parameter descriptor:

DateTime SystemDateTime
SystemDateTime = SQLDA.GetDynamicDateTime(2)
IF SystemDateTime = &
 DateTime(1900-01-01, 00:00:00) THEN
 ... // Error handling
END IF

For an example of retrieving data from the DynamicDescriptionArea, see
GetDynamicDate.

See also GetDynamicDate, GetDynamicNumber, GetDynamicString,
GetDynamicTime, SetDynamicParm, Using dynamic SQL

Argument Description

DynamicDescriptionArea The name of the DynamicDescriptionArea, usually
SQLDA.

index An integer identifying the output parameter
descriptor from which you want to get the data.
Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.
568 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetDynamicDecimal
Description Obtains numeric data from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Restriction
You can use this function only after executing Format 4 dynamic SQL
statements.

Syntax DynamicDescriptionArea.GetDynamicDecimal (index)

Return value Decimal. Returns the numeric data in the output parameter descriptor identified
by index in DynamicDescriptionArea. Returns 0 if an error occurs. If any
argument’s value is null, GetDynamicDecimal returns null.

Usage Use GetDynamicDecimal when the value of OutParmType is TypeDecimal! or
TypeLongLong! for the value that you want to retrieve from the array.

Examples These statements set DeptId to the numeric data in the second output parameter
descriptor:

Integer DeptId
DeptId = SQLDA.GetDynamicDecimal(2)

For an example of retrieving data from the DynamicDescriptionArea, see
GetDynamicDate.

See also GetDynamicDate
GetDynamicNumber
GetDynamicString
GetDynamicTime
SetDynamicParm
Using dynamic SQL

Argument Description

DynamicDescriptionArea The name of the DynamicDescriptionArea, usually
SQLDA.

index An integer identifying the output parameter
descriptor from which you want to get the data.
Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.
PowerScript Reference 569

GetDynamicNumber
GetDynamicNumber
Description Obtains numeric data from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Restriction
You can use this function only after executing Format 4 dynamic SQL
statements.

Syntax DynamicDescriptionArea.GetDynamicNumber (index)

Return value Double. Returns the numeric data in the output parameter descriptor identified
by index in DynamicDescriptionArea. Returns 0 if an error occurs. If any
argument’s value is null, GetDynamicNumber returns null.

Usage Use GetDynamicNumber when the value of OutParmType is TypeByte!,
TypeInteger!, TypeDouble!, TypeLong!, TypeReal!, or TypeBoolean! for the
value that you want to retrieve from the array.

For OutParmType values of TypeDecimal! or TypeLongLong!, use
GetDynamicDecimal instead.

Examples These statements set DeptId to the numeric data in the second output parameter
descriptor:

Integer DeptId
DeptId = SQLDA.GetDynamicNumber(2)

For an example of retrieving data from the DynamicDescriptionArea, see
GetDynamicDate.

See also GetDynamicDate
GetDynamicDateTime
GetDynamicDecimal
GetDynamicString
GetDynamicTime
SetDynamicParm
Using dynamic SQL

Argument Description

DynamicDescriptionArea The name of the DynamicDescriptionArea, usually
SQLDA.

index An integer identifying the output parameter
descriptor from which you want to get the data.
Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.
570 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetDynamicString
Description Obtains data of type String from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Restriction
You can use this function only after executing Format 4 dynamic SQL
statements.

Syntax DynamicDescriptionArea.GetDynamicString (index)

Return value String. Returns the string data in the output parameter descriptor identified by
index in DynamicDescriptionArea. Returns the empty string ("") if an error
occurs. If any argument’s value is null, GetDynamicString returns null.

Usage Use GetDynamicString when the value of OutParmType is TypeString! for the
value that you want to retrieve from the array.

Examples These statements set LName to the String data in the second output descriptor:

String LName
LName = SQLDA.GetDynamicString(2)

For an example of retrieving data from the DynamicDescriptionArea, see
GetDynamicDate.

See also GetDynamicDate
GetDynamicDateTime
GetDynamicNumber
GetDynamicTime
SetDynamicParm
Using dynamic SQL

Argument Description

DynamicDescriptionArea The name of the DynamicDescriptionArea, usually
SQLDA.

index An integer identifying the output parameter
descriptor from which you want to get the data.
Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.
PowerScript Reference 571

GetDynamicTime
GetDynamicTime
Description Obtains data of type Time from the DynamicDescriptionArea after you have

executed a dynamic SQL statement.

Restriction
You can use this function only after executing Format 4 dynamic SQL
statements.

Syntax DynamicDescriptionArea.GetDynamicTime (index)

Return value Time. Returns the Time data in the output parameter descriptor identified by
index in DynamicDescriptionArea. Returns 00:00:00.000000 if an error
occurs. If any argument’s value is null, GetDynamicTime returns null.

Usage Use GetDynamicTime when the value of OutParmType is TypeTime! for the
value that you want to retrieve from the array.

Examples These statements set Start to the Time data in the first output parameter
descriptor:

Time Start
Start = SQLDA.GetDynamicTime(1)

For an example of retrieving data from the DynamicDescriptionArea, see
GetDynamicDate.

See also GetDynamicDate
GetDynamicDateTime
GetDynamicNumber
GetDynamicString
SetDynamicParm
Using dynamic SQL

Argument Description

DynamicDescriptionArea The name of the DynamicDescriptionArea, usually
SQLDA.

index An integer identifying the output parameter
descriptor from which you want to get the data.
Index must be less than or equal to the value in
NumOutputs in DynamicDescriptionArea.
572 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetEnvironment
Description Gets information about the operating system, processor, and screen display of

the system.

Syntax GetEnvironment (environmentinfo)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If environmentinfo is
null, GetEnvironment returns null.

Usage In cross-platform development projects, you can call GetEnvironment in scripts
and take actions based on the operating system. You can also find out the
processor (Intel 386 or 486, 68000, and so on). The information also includes
version numbers of the operating system and PowerBuilder.

You can call GetEnvironment to find out the number of colors supported by the
system and the size of the screen. You can use the size information in a
window’s Open script to reset its X and Y properties.

Examples This script runs another PowerBuilder application and uses the OSType
property of the Environment object to determine how to specify the path:

string path
environment env
integer rtn

rtn = GetEnvironment(env)
IF rtn <> 1 THEN RETURN

CHOOSE CASE env.OSType
CASE aix!
 path = "/export/home/pb_apps/analyze.exe"
CASE Windows!, WindowsNT!
 path = "C:\PB_apps\analyze.exe"
CASE ELSE
 RETURN
END CHOOSE
Run(path)

Argument Description

environmentinfo The name of the Environment object that will hold the
information about the environment
PowerScript Reference 573

GetFileOpenName
This example displays a message box that shows the major, minor, and fixes
versions and the build number of PowerBuilder:

string ls_version
environment env
integer rtn

rtn = GetEnvironment(env)

IF rtn <> 1 THEN RETURN
ls_version = "Version: "+ string(env.pbmajorrevision)
ls_version += "." + string(env.pbminorrevision)
ls_version += "." + string(env.pbfixesrevision)
ls_version += " Build: " + string(env.pbbuildnumber)

MessageBox("PowerBuilder Version", ls_version)

GetFileOpenName
Description Displays the system’s Open File dialog box and allows the user to select a file

or enter a file name.

Syntax GetFileOpenName (title, pathname, filename {, extension {, filter { , initdir { ,
aFlag } } } })

GetFileOpenName (title, pathname, filename[] {, extension {, filter { , initdir {
, aFlag } } } })

Argument Description

title A string whose value is the title of the dialog box.

pathname A string variable in which you want to store the returned path. If the
user selects a single file, the pathname variable contains the path
name and file name.

filename,
filename[]

A string variable in which the returned file name is stored or an
array of string variables in which multiple selected file names are
stored. Specifying an array of string variables enables multiple
selection in the dialog box.

extension
(optional)

A string whose value is a 1- to 3-character default file extension.
The default is no extension.
574 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds, 0 if the user clicks the Cancel button or
Windows cancels the display, and -1 if an error occurs. If any argument’s value
is null, GetFileOpenName returns null.

Usage If you specify a DOS-style file extension and the user enters a file name with
no extension, PowerBuilder appends the default extension to the file name. If
you specify a file mask to act as a filter, PowerBuilder displays only files that
match the mask.

If you specify a string for the filename argument, the user can select only one
file. The pathname argument contains the path name and the file name, for
example C:\temp\test.txt.

If you specify a string array for the filename argument, the user can select more
than one file. If the user selects multiple files, the pathname argument contains
the path only, for example C:\temp. If the user selects a single file, its name is
appended to the pathname argument, for example C:\temp\test.txt.

You use the filter argument to limit the types of files displayed in the list box
and to let the user know what those limits are. For example, to display the
description Text Files (*.TXT) and only files with the extension .TXT, specify
the following for filter:

"Text Files (*.TXT),*.TXT"

filter
(optional)

A string whose value is a text description of the files to include in
the list box and the file mask that you want to use to select the
displayed files (for example, *.* or *.exe). The format for filter is:

description,*. ext
To specify multiple filter patterns for a single display string, use a
semicolon to separate the patterns, for example:

"Graphic Files (*.bmp;*.gif;*.jpg;*.jpeg),
.bmp;.gif;*.jpg;*.jpeg"

The default is:

"All Files (*.*),*.*"

initdir
(optional)

A string whose value is the initial directory name. The default is the
current directory.

aFlag
(optional)

An unsigned long whose value determines which options are
enabled in the dialog box. The value of each option’s flag is
calculated as 2 to the power of (index -1), where index is the integer
associated with the option. The value of the aggregate flag passed
to GetFileOpenName is the sum of the individual option flags. See
the table in the Usage section for a list of options, the index
associated with each option, and the option’s meaning.

Argument Description
PowerScript Reference 575

GetFileOpenName
To specify more than one file extension in filter, enter multiple descriptions and
extension combinations and separate them with commas. For example:

"PIF files, *.PIF, Batch files, *.BAT"

The dialog boxes presented by GetFileOpenName and GetFileSaveName are
system dialog boxes. They provide standard system behavior, including control
over the current directory. When users change the drive, directory, or folder in
the dialog box, they change the current directory or folder. The newly selected
directory or folder becomes the default for file operations until they exit the
application, unless the optional initdir argument is passed.

The aFlag argument is used to pass one or more options that determine the
appearance of the dialog box. For each option, the value of the flag is
2^(index -1), where index is an integer associated with each option as shown
in the following table. You can pass multiple options by passing an aggregate
flag, calculated by adding the values of the individual flags.

If you do not pass an aFlag, the Explorer-style open file dialog box is used. If
you do pass a flag, the old-style dialog box is used by default. Some options do
not apply when the Explorer-style dialog box is used. For those that do apply,
add the option value for using the Explorer-style dialog box (2) to the value of
the option if you want to display an Explorer-style dialog box.

For example, passing the flag 32768 (2^15) to the GetFileSaveName function
opens the old-style dialog box with the Read Only check box selected by
default. Passing the flag 32770 opens the Explorer-style dialog box with the
Read Only check box selected by default.

Table 10-4: Option values for GetFileOpenName and GetFileSaveName

Index Constant name Description

1 OFN_CREATEPROMPT If the specified file does not exist, prompt for permission to create
the file. If the user chooses to create the file, the dialog box closes;
otherwise the dialog box remains open.

2 OFN_EXPLORER Use an Explorer-style dialog box.

3 OFN_EXTENSIONDIFFERENT The file extension entered differed from the extensions specified
in extension.

4 OFN_FILEMUSTEXIST Only the names of existing files can be entered.

5 OFN_HIDEREADONLY Hide the Read Only check box.

6 OFN_LONGNAMES Use long file names. Ignored for Explorer-style dialog boxes.

7 OFN_NOCHANGEDIR Restore the current directory to its original value if the user
changed the directory while searching for files. This option has no
effect for GetFileOpenName on Windows NT, 2000, and XP.
576 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Opening a file
Use the FileOpen function to open a selected file.

Examples The following example displays a Select File dialog box that allows multiple
selection. The file types are TXT, DOC, and all files, and the initial directory
is C:\Program Files\Sybase. The option flag 18 specifies that the
Explorer-style dialog box is used (2^1 = 2), and the Read Only check box is
hidden (2^4 = 16). The selected filenames are displayed in a MultiLineEdit
control.

If the user selects a single file, the docpath variable contains both the path and
the file name. The example contains an IF clause to allow for this.

string docpath, docname[]
integer i, li_cnt, li_rtn, li_filenum

8 OFN_NODEREFERENCELINKS Return the path and file name of the selected shortcut (.lnk file);
otherwise the path and file name pointed to by the shortcut are
returned.

9 OFN_NOLONGNAMES Use short file names (8.3 format). Ignored for Explorer-style
dialog boxes.

10 OFN_NONETWORKBUTTON Hide the Network button. Ignored for Explorer-style dialog
boxes.

11 OFN_NOREADONLYRETURN The file returned is not read only and is not in a write-protected
directory.

12 OFN_NOTESTFILECREATE Do not create the file before the dialog box is closed. This option
should be specified if the application saves the file on a netwrok
share where files can be created but not modified. No check is
made for write protection, a full disk, an open drive door, or
network protection.

A file cannot be reopened once it is closed.

13 OFN_NOVALIDATE Invalid characters are allowed in file names.

14 OFN_OVERWRITEPROMPT Used in Save As dialog boxes. Generates a message box if the
selected file already exists.

15 OFN_PATHMUSTEXIST Only valid paths and file names can be entered.

16 OFN_READONLY Select the Read Only check box when the Save dialog box is
created.

Index Constant name Description
PowerScript Reference 577

GetFileOpenName
li_rtn = GetFileOpenName("Select File", &
docpath, docname[], "DOC", &
+ "Text Files (*.TXT),*.TXT," &
+ "Doc Files (*.DOC),*.DOC," &
+ "All Files (*.*), *.*", &
"C:\Program Files\Sybase", 18)

mle_selected.text = ""
IF li_rtn < 1 THEN return
li_cnt = Upperbound(docname)

// if only one file is picked, docpath contains the
// path and file name
if li_cnt = 1 then

mle_selected.text = string(docpath)
else

// if multiple files are picked, docpath contains the
// path only - concatenate docpath and docname

for i=1 to li_cnt
mle_selected.text += string(docpath) &

+ "\" +(string(docname[i]))+"~r~n"
next

end if

In the following example, the dialog box has the title Open and displays text
files, batch files, and INI files in the Files of Type drop-down list. The initial
directory is d:\temp. The option flag 512 specifies that the old-style dialog box
is used and the Network button is hidden (2^9 = 512).

// instance variables
// string is_filename, is_fullname
int li_fileid

if GetFileOpenName ("Open", is_fullname, is_filename, &
"txt", "Text Files (*.txt),*.txt,INI Files " &
+ "(*.ini), *.ini,Batch Files (*.bat),*.bat", &
"d:\temp", 512) < 1 then return

li_fileid = FileOpen (is_fullname, StreamMode!)
FileRead (li_fileid, mle_notepad.text)
FileClose (li_fileid)

See also DirList
DirSelect
GetFileSaveName
GetFolder
578 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetFileSaveName
Description Displays the system’s Save File dialog box with the specified file name

displayed in the File name box. The user can enter a file name or select a file
from the grayed list.

Syntax GetFileSaveName (title, pathname, filename {, extension {, filter { , initdir { ,
aFlag } } } })

GetFileSaveName (title, pathname, filename [] {, extension {, filter { , initdir
{ , aFlag } } } })

Return value Integer. Returns 1 if it succeeds, 0 if the user clicks the Cancel button or
Windows cancels the display, and -1 if an error occurs. If any argument’s value
is null, GetFileSaveName returns null.

Argument Description

title A string whose value is the title of the dialog box.

pathname A string variable whose value is the default path name and which
stores the returned path. If the user selects a single file, the
pathname variable contains the path name and file name. The
default file name is displayed in the File name box; the user can
specify another name.

filename,
filename[]

A string variable in which the returned file name is stored or an
array of string variables in which multiple selected file names are
stored. Specifying an array of string variables enables multiple
selection in the dialog box.

extension
(optional)

A string whose value is a 1- to 3-character default file extension.
The default is no extension.

filter
(optional)

A string whose value is the description of the displayed files and the
file extension that you want use to select the displayed files (the
filter). The format for filter is: description,*. ext

The default is: "All Files (*.*),*.*"

initdir
(optional)

A string whose value is the initial directory name. The default is the
current directory.

aFlag
(optional)

An unsigned long whose value determines which options are
enabled in the dialog box. The value of each option’s flag is
calculated as 2 to the power of (index -1), where index is the integer
associated with the option. The value of the aggregate flag passed
to GetFileOpenName is the sum of the individual option flags. See
the table in the Usage section for GetFileOpenName for a list of
options, the index associated with each option, and the option’s
meaning.
PowerScript Reference 579

GetFileSaveName
Usage If you specify a DOS-style extension and the user enters a file name with no
extension, PowerBuilder appends the default extension to the file name. If you
specify a file mask to act as a filter, PowerBuilder displays only files that match
the mask.

If you specify a string for the filename argument, the user can select only one
file. The pathname argument contains the path name and the file name, for
example C:\temp\test.txt.

If you specify a string array for the filename argument, the user can select more
than one file. If the user selects multiple files, the pathname argument contains
the path only, for example C:\temp. If the user selects a single file, its name is
appended to the pathname argument, for example C:\temp\test.txt. For an
example that shows the use of a string array, see the GetFileOpenName
function.

For usage notes on the filter, initdir, and aFlag arguments, see the
GetFileOpenName function.

Examples These statements display the Select File dialog box so that the user can select
a single file. The default file extension is .DOC, the filter is all files, and the
initial directory is C:\My Documents. The aFlag option 32770 specifies that an
Explorer-style dialog box is used with the Read Only check box selected when
the dialog box is created. If a file is selected successfully, its path displays in a
SingleLineEdit control:

string ls_path, ls_file
int li_rc

ls_path = sle_1.Text
li_rc = GetFileSaveName ("Select File", &

ls_path, ls_file, "DOC", &
"All Files (*.*),*.*" , "C:\My Documents", &
32770)

IF li_rc = 1 Then
sle_1.Text = ls_path

End If

See also DirList
DirSelect
GetFileOpenName
GetFolder
580 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetFirstSheet
Description Obtains the top sheet in the MDI frame, which may or may not be active.

Applies to MDI frame windows

Syntax mdiframewindow.GetFirstSheet ()

Return value Window. Returns the first (top) sheet in the MDI frame. If no sheet is open in
the frame, GetFirstSheet returns an invalid value. If mdiframewindow is null,
GetFirstSheet returns null.

Usage To cycle through the open sheets in a frame, use GetFirstSheet and
GetNextSheet. Do not use these functions in combination with GetActiveSheet.

Did GetFirstSheet return a valid window?
Use the IsValid function to find out if the return value is valid. If it is not, then
no sheet is open.

Examples This script for a menu selection returns the top sheet in the MDI frame:

window wSheet
string wName
wSheet = ParentWindow.GetFirstSheet()
IF IsValid(wSheet) THEN
 // There is an open sheet
 wName = wsheet.ClassName()
 MessageBox("First Sheet is", wName)
END IF

See also GetNextSheet
IsValid

Argument Description

mdiframewindow The MDI frame window for which you want the top sheet
PowerScript Reference 581

GetFixesVersion
GetFixesVersion
Description Returns the fix level for the current PowerBuilder execution context. For

example, at maintenance level 10.2.1, the fix version is 1.

Applies to ContextInformation objects

Syntax servicereference.GetFixesVersion (fixversion)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current fix version.

Examples This example calls the GetFixesVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService ("ContextInformation", ci)
ci.GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_minver <> 0 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

See also GetCompanyName
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetShortName
GetVersionName

Argument Description

servicereference Reference to the ContextInformation service instance.

fixversion Integer into which the function places the fix version. This
argument is passed by reference.
582 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetFocus
Description Determines the control that currently has focus.

Syntax GetFocus ()

Return value GraphicObject. Returns the control that currently has focus. Returns an invalid
control reference if an error occurs.

Use the IsValid function to determine whether GetFocus has returned a valid
control.

Examples These statements set which_control equal to the datatype of the control that
currently has focus, and then set text_value to the text property of the control:

GraphicObject which_control
SingleLineEdit sle_which
CommandButton cb_which
string text_value

which_control = GetFocus()

CHOOSE CASE TypeOf(which_control)

CASE CommandButton!
 cb_which = which_control
 text_value = cb_which.Text

CASE SingleLineEdit!
 sle_which = which_control
 text_value = sle_which.Text

CASE ELSE
 text_value = ""
END CHOOSE

See also IsValid
SetFocus
PowerScript Reference 583

GetFolder
GetFolder
Description Displays a folder selection dialog box.

Syntax GetFolder (title, directory)

Return value Integer. Returns 1 if the function succeeds, 0 if the user selects cancel (or the
dialog box is closed), -1 if an error occurs.

Usage The directory selected by the user is returned in the same variable that is passed
to the folder selection dialog box.

Examples This example displays the folder contents of the Sybase directory in a folder
selection dialog box. The string passed in the title argument displays above the
tree view:

string ls_path = "d:\program files\sybase"
integer li_result

li_result = GetFolder("my targets", ls_path)
sle_1.text=ls_path
// puts the user-selected path in a SingleLineEdit box.

See also DirectoryExists
DirList
DirSelect
GetCurrentDirectory
GetFileOpenName
GetFileSaveName

Argument Description

title String for a title that displays above a list box containing
a tree view for folder selection.

directory String for the directory name passed by reference to the
folder selection dialog box. The directory name is
selected, and its subfolders, if any, are displayed in a
dialog box tree view.
584 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetGlobalProperty
Description Returns the value of an SSL global property. This function is used by

PowerBuilder clients connecting to EAServer.

Applies to SSLServiceProvider object

Syntax sslserviceprovider.GetGlobalProperty (property, values)

Return value Long. Returns one of the following values:

0 Success
-1 Unknown property
-3 Property has no value
-10 An EAServer or SSL failure has occurred
-11 Bad argument list

Usage The GetGlobalProperty function allows PowerBuilder clients that connect to
EAServer through SSL to access global SSL properties.

Any properties set using the SSLServiceProvider interface are global to all
connections made by the client to all EAServer servers. You can override any
of the global settings at the connection level by specifying them as options to
the Connection object or JaguarORB object.

Only clients can get and set SSL properties. Server components do not have
permission to use the SSLServiceProvider service.

Examples The following example shows the use of the GetGlobalProperty function to get
the value of the sessLingerTime property:

SSLServiceProvider ssl
string ls_values[]
long rc
...
this.GetContextService("SSLServiceProvider", ssl)
rc = ssl.GetGlobalProperty("sessLingerTime", ls_values)
...

See also SetGlobalProperty

Argument Description
sslserviceprovider Reference to the SSLServiceProvider service instance.
property The name of the SSL property for which you want to return

values.

For a complete list of supported SSL properties, see your
EAServer documentation or the online Help for the
Connection object.

values An array of string values for the specified SSL property.
PowerScript Reference 585

GetHostObject
GetHostObject
Description Provides a reference to the context’s host object.

Host object support
Currently, host object support is implemented only in the window ActiveX
when running under Internet Explorer. In this situation GetHostObject returns a
reference to the IWebBrowserApp ActiveX automation server object.

Applies to ContextInformation objects

Syntax servicereference.GetHostObject (hostobject)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to obtain a reference to the context object model. If running
the window ActiveX under Internet Explorer 3.0 or greater and hostobject is an
uninstantiated OleObject variable, the function returns a reference to an
ActiveX automation server object, which you can use to control the hosting
browser. If host object support is not available, the function returns -1 and
hostobject is null.

Examples This example calls the GetHostObject function. Ici_info is an instance variable
of type ContextInformation, which has been populated using the
GetContextService function; ole1 is an instance variable of type OLEObject:

Integer li_return

li_return = ici_info.GetHostObject(ole1)
IF li_return = 1 THEN
 sle_1.Text = "GetHostObject succeeded"
ELSE
 sle_1.Text = "GetHostObject failed"
 cb_goback.Enabled = FALSE
 cb_navigate.Enabled = FALSE
END IF

See also GetCompanyName
GetName
GetShortName
GetVersionName

Argument Description

servicereference Reference to the Context Information service instance

hostobject PowerObject into which the function places a reference to
the ActiveX automation server object
586 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetItem
Retrieves data associated with a specified item in ListView and TreeView
controls.

Syntax 1 For ListView controls
Description Retrieves a ListViewItem object from a ListView control so you can examine

its properties.

Applies to ListView controls

Syntax listviewname.GetItem (index, {column}, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores a ListViewItem
object in a ListViewItem variable.

Usage You can retrieve properties for any ListView item with this syntax. If you do
not specify a column, GetItem retrieves properties for the first column of an
item. Only report views display multiple columns.

To retrieve labels only, use syntax 2. You can use GetColumn to obtain column
properties that are not specific to a ListView item.

To change pictures and other property values associated with a ListView item,
use GetItem, change the property values, and use SetItem to apply the changes
back to the ListView.

To retrieve data associated with a specified Use

 ListView control item Syntax 1

 ListView control item and column Syntax 2

TreeView item Syntax 3

Argument Description

listviewname The name of the ListView control for which you want to
retrieve the ListView item

index The index number of the item you want to retrieve

column The index number of the column for which you want item
information

item The ListViewItem variable in which you want to store the
ListViewItem object
PowerScript Reference 587

GetItem
Examples This example uses GetItem to move the second item in the lv_list ListView
control to the fifth item. It retrieves item 2, inserts it into the ListView control
as item 5, and then deletes the original item:

listviewitem l_lvi

lv_list.GetItem(2, l_lvi)
lv_list.InsertItem(5, l_lvi)
lv_list.DeleteItem(2)

See also GetColumn
SetItem

Syntax 2 For ListView controls
Description Retrieves the value displayed for a ListView item in a specified column.

Applies to ListView controls

Syntax listviewname.GetItem (index, column, label)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores the displayed
value of the ListView column in a string variable.

Usage To retrieve property values for a ListView item, use Syntax 1.

Examples This example gets the displayed values from column 1 and column 3 of the first
row of the lv_list ListView and displays them in the sle_info SingleLineEdit
control.

string ls_artist, ls_comp

lv_list.GetItem(1, 1 , ls_comp)
lv_list.GetItem(1, 3 , ls_artist)
sle_info.text = ls_artist +" wrote " + ls_comp + "."

See also SetItem

Argument Description

listviewname The name of the ListView control from which you want to retrieve
a displayed value.

index The index number of the item for which you want to retrieve a
displayed value.

column The index number of the column for which you want to retrieve a
value. If the ListView is not a multicolumn report view, all the items
are considered to be in column 1.

label A string variable in which you store the displayed value.
588 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 3 For TreeView controls
Description Retrieves the data associated with the specified item.

Applies to TreeView controls

Syntax treeviewname.GetItem (itemhandle, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use GetItem to retrieve the state information associated with a specific item in
a TreeView (such as label, handle, or picture index). After you have retrieved
the information, you can use it in your application. To change a property of an
item, call GetItem to assign the item to a TreeViewItem variable, change its
properties, and call SetItem to copy the changes back to the TreeView.

Examples This code for the Clicked event gets the clicked item and changes it overlay
picture. The SetItem function copies the change back to the TreeView:

treeviewitem tvi
This.SetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
This.SetItem(handle, tvi)

This example tracks items in the SelectionChanged event. If there is no prior
selection, the value of l_tviold is zero:

treeviewitem l_tvinew, l_tviold

// Get the treeview item that was the old selection
tv_list.GetItem(oldhandle, l_tviold)

// Get the treeview item that is currently selected
tv_list.GetItem(newhandle, l_tvinew)

// Print the labels for the two items in the
// SingleLineEdit
sle_get.Text = "Selection changed from " &
 + String(l_tviold.Label) + " to " &
 + String(l_tvinew.Label)

See also InsertItem

Argument Description

treeviewname The name of the TreeView control in which you want to get data for
a specified item

itemhandle The handle for the item for which you want to retrieve information

item A TreeViewItem variable in which you want to store the item
identified by the item handle
PowerScript Reference 589

GetItemAtPointer
GetItemAtPointer
Description Gets the handle or the index of the item under the cursor.

Applies to ListView controls, TreeView controls

Syntax controlname.GetItemAtPointer ()

Return value Long. Returns the index (ListView) or handle (TreeView) of the item under the
cursor. Returns -1 for failure.

Usage System events that select an item in a ListView or TreeView control, such as
the Clicked event, already have an argument that passes the index for the
ListView or the handle for the TreeView. The GetItemAtPointer function allows
you to retrieve the index or handle in user events (or system events without an
index or handle argument) for a ListView or TreeView control.

Examples This example places the handle of a TreeView item in a SingleLineEdit box:

integer li_index

li_index= tv_1.GetItematPointer ()
sle_1.text = string (li_index)

See also FindItem
SelectItem

Argument Description

controlname The name of the control whose handle or index you want to obtain.
590 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetLastReturn
Description Returns the return value from the last InvokePBFunction or TriggerPBEvent

function.

Applies to Window ActiveX controls

Syntax activexcontrol.GetLastReturn ()

Return value Any. Returns the last return value.

Usage Call this function after calling InvokePBFunction or TriggerPBEvent to access
the return value. JavaScript scripts must use this function to access return
values from InvokePBFunction and TriggerPBEvent. VBScript scripts can either
use this function or access the return value using an argument in
InvokePBFunction or TriggerPBEvent.

Examples This JavaScript example calls the GetLastReturn function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
if (rc != 1) {
 alert("Error. Empty string.");
 }
...

This VBScript example calls the GetLastReturn function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, &
 numargs, args)
 rc = PBRX1.GetLastReturn()
 IF rc <> 1 THEN
 msgbox "Error. Empty string."
 END IF
...

See also GetArgElement
InvokePBFunction
SetArgElement
TriggerPBEvent

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX
control. When used in HTML, the ActiveX control is the NAME
attribute of the object element. When used in other
environments, this references the control that contains the
PowerBuilder window ActiveX.
PowerScript Reference 591

GetLibraryList
GetLibraryList
Description Gets the files in the library search path of the application.

Syntax GetLibraryList ()

Return value String. Returns the current library list with complete paths. Multiple libraries
are separated by commas.

Usage You should call GetLibraryList and append any libraries you want to add to the
list before updating the search path using the SetLibraryList function.

Examples This example obtains the list of libraries, adds a library to the list, then resets
the list:

string ls_list, ls_newlist

ls_list = getlibrarylist ()
ls_newlist = ls_list + ",c:\my_library.pbl"
setlibrarylist (ls_newlist)

See also AddToLibraryList
SetLibraryList
592 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetMajorVersion
Description Returns the major version for the current PowerBuilder execution context. For

example, at maintenance level 11.5.1 the major version is 11.

Applies to ContextInformation objects

Syntax servicereference.GetMajorVersion (majorversion)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current major version.

Examples This example calls the GetMajorVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService ("ContextInformation", ci)

GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

ELSEIF li_minver <> 0 THEN
MessageBox("Error", &

"Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

END IF

See also GetCompanyName
GetFixesVersion
GetHostObject
GetMinorVersion
GetName
GetShortName
GetVersionName

Argument Description

servicereference Reference to the ContextInformation service instance.

majorversion Integer into which the function places the major version. This
argument is passed by reference.
PowerScript Reference 593

GetMessage
GetMessage
Description Returns the error message from objects of type Throwable.

Syntax throwableobject.GetMessage ()

Return value String. The error text for system error objects, such as RuntimeError, is preset.

Usage You can set the error message for an object of type Throwable using the
SetMessage function.

Examples This example catches a system error message and displays that error in a
message box. Catching the system error prevents the application from
terminating when the arccosine argument, entered by the application user, is
not in the required range:

Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.GetMessage())
END TRY

This example catches and displays a user error message from the Clicked event
of a button that calls the user-defined function, wf_acos. The user-defined
function catches a runtime error—preventing the application from
terminating—and then sets the message for a user object, uo_exception, that
inherits from the Exception object type:

TRY
wf_acos()

CATCH (uo_exception u_ex)
messageBox("Out of Range", u_ex.GetMessage())

END TRY

Code for the wf_acos function is shown in the SetMessage function.

See also SetMessage

Argument Description

throwableobject Object of type Throwable from which you want to
retrieve an error message
594 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetMinorVersion
Description Returns the minor version for the current PowerBuilder execution context. For

example, at maintenance level 11.5.1 the minor version is 5.

Applies to ContextInformation objects

Syntax servicereference.GetMinorVersion (minorversion)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current minor version.

Examples This example calls the GetMinorVersion function:

String ls_name
Constant String ls_currver = "8.0.3"
Integer li_majver, li_minver, li_fixver
ContextInformation ci

this.GetContextService("ContextInformation", ci)

ci.GetMajorVersion(li_majver)
ci.GetMinorVersion(li_minver)
ci.GetFixesVersion(li_fixver)
IF li_majver <> 8 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

ELSEIF li_minver <> 0 THEN
MessageBox("Error", &

"Must be at Version " + ls_currver)
ELSEIF li_fixver <> 3 THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

END IF

See also GetCompanyName
GetFixesVersion
GetHostObject
GetMajorVersion
GetName
GetShortName
GetVersionName

Argument Description

servicereference Reference to the ContextInformation service instance.

minorversion Integer into which the function places the minor version. This
argument is passed by reference.
PowerScript Reference 595

GetName
GetName
Description Gets the name for the current execution context.

Applies to ContextInformation objects

Syntax servicereference.GetName (name)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current execution environment.

The window plug-in and window ActiveX contexts are obsolete in the current
version of PowerBuilder. For PowerBuilder 12.5 applications, the only value
passed for the name argument is “PowerBuilder Runtime”.

Examples This example calls the GetName function. ci is an instance variable of type
ContextInformation:

String ls_name

this.GetContextService("ContextInformation", ci)
ci.GetName(ls_name)
IF ls_name <> "PowerBuilder Runtime" THEN

cb_close.visible = FALSE
END IF

See also GetCompanyName
GetContextService
GetFixesVersion
GetHostObject
GetMajorVersion
GetMinorVersion
GetShortName
GetVersionName

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the name. This
argument is passed by reference.
596 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetNativePointer
Description Gets a pointer to the OLE object associated with the OLE control. The pointer

lets you call OLE functions in an external DLL for the object.

Applies to OLE controls and OLE custom controls

Syntax olename.GetNativePointer (pointer)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage Pointer is a pointer to OLE’s IUnknown interface. You can use it with the OLE
QueryInterface function to get other interface pointers.

When you call GetNativePointer, PowerBuilder calls OLE’s AddRef function,
which locks the pointer. You must release the pointer in your DLL function or
in a PowerBuilder script with the ReleaseNativePointer function.

Only for external DLL calls
This function is only useful for external DLL calls. It is not related to the
SetAutomationPointer function.

Examples This example gets a pointer for the OLECustomControl ocx_spell for making
external function calls for OLE automation:

UnsignedLong lul_oleptr
integer li_rtn

li_rtn = ocx_spell.GetNativePointer(lul_oleptr)
IF li_rtn = 0 THEN

... // Call external functions for automation
ocx_spell.ReleaseNativePointer(lul_oleptr)

END IF

See also GetAutomationNativePointer
ReleaseAutomationNativePointer
ReleaseNativePointer

Argument Description

olename The name of the OLE control containing the object for which you
want the native pointer.

pointer A UnsignedLong variable in which you want to store the pointer. If
GetNativePointer cannot get a valid pointer, pointer is set to 0.
PowerScript Reference 597

GetNextSheet
GetNextSheet
Description Obtains the sheet that is behind the specified sheet in the MDI frame.

Applies to MDI frame windows

Syntax mdiframewindow.GetNextSheet (sheet)

Return value Window. Returns the sheet that is behind sheet in the MDI frame. If there is no
sheet behind sheet, GetNextSheet returns an invalid value. If any argument’s
value is null, GetNextSheet returns null.

Usage To cycle through the open sheets in a frame, use GetFirstSheet to get the front
sheet and GetNextSheet one or more times to get the rest of the sheets. Test each
return value with IsValid to see if you have reached the last sheet. Do not use
GetFirstSheet and GetNextSheet in combination with GetActiveSheet.

Did GetNextSheet return a valid window?
Use the IsValid function to find out if GetNextSheet returned a valid window. If
there is no sheet behind the one you specified, the return value is not valid.

Examples The following script for a menu selection loops through the open sheets in
front-to-back order and displays the names of the open sheets in the ListBox
lb_sheets:

boolean bValid
window wSheet

lb_sheets.Reset()
wSheet = ParentWindow.GetFirstSheet()
IF IsValid(wSheet) THEN

lb_sheets.AddItem(wSheet.Title)
DO
wSheet = ParentWindow.GetNextSheet(wSheet)
bValid = IsValid (wSheet)
IF bValid THEN lb_sheets.AddItem(wSheet.Title)
LOOP WHILE bValid

END IF

See also GetFirstSheet
IsValid

Argument Description

mdiframewindow The MDI frame window in which you want the next sheet

sheet The sheet for which you want the sheet that is behind it
598 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetObjectRevisionFromRegistry
Description Assigns synchronization property values saved in the Windows registry to a

synchronization object.

Applies to MLSynchronization, MLSync controls

Syntax SyncObject.GetObjectRevisionFromRegistry ()

Return value Integer. Returns the value of ObjectRevision. Returns -1 if the registry key is
not found or if the SyncRegistryKey property of the synchronization object is
not set.

Usage The registry key is located under the
HKEY_CURRENT_USER\SyncRegistryKey\DBSyncType where
SyncRegistryKey is the value of the synchronization object’s SyncRegistryKey
property and DBSyncType is MobiLink.

See also GetSyncRegistryProperties
SetSyncRegistryProperties

Argument Description

syncObject The name of the synchronization object
PowerScript Reference 599

GetOrigin
GetOrigin
Description Finds the X and Y coordinates of the upper-left corner of the ListView item.

Applies to ListView controls

Syntax listviewname.GetOrigin (x , y)

Return value Integer. Returns 1 if it succeeds and – 1 if it fails.

Usage Use GetOrigin to find the position of a dragged object relative to the upper left
corner of a ListView control.

Examples This example moves a static text clock to the upper-left coordinates of the
selected ListView item:

integer li_index
listviewitem l_lvi

li_index = lv_list.SelectedIndex()
lv_list.GetItem(li_index, l_lvi)

lv_list.GetOrigin(l_lvi.ItemX, l_lvi.ItemY)

sle_info.Text = "X is "+ String(l_lvi.ItemX) &
+ " and Y is " + String(l_lvi.ItemY)

st_clock.Move(l_lvi.itemx , l_lvi.ItemY)

MessageBox("Clock Location", "X is " &
+ String(st_clock.X) &
+ ", and Y is " &
+ String(st_clock.Y)+".")

Argument Description

listviewname The ListView control for which you want to find the coordinates of
the upper-left corner

x An integer variable in which you want to store the X coordinate for
the ListView control

y An integer variable in which you want to store the Y coordinate for
the ListView control
600 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetParagraphSetting
Description Gets the size of the indentation, left margin, or right margin of the paragraph

containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtecontrol.GetParagraphSetting (whichsetting)

Return value Long. Returns the size of the specified setting in thousandths of an inch.
GetParagraphSetting returns -1 if an error occurs. If whichsetting is null, it
returns null.

Examples This example gets the indentation setting for the current paragraph:

long ll_indent
ll_indent = rte_1.GetParagraphSetting(Indent!))

See also GetAlignment
GetSpacing
GetTextColor
GetTextStyle
SetParagraphSetting

GetParent
Description Obtains the parent of the specified object.

Applies to Any object

Syntax objectname.GetParent ()

Return value PowerObject. Returns a reference to the parent of objectname.

Argument Description

rtecontrol The name of the control for which you want paragraph information.

whichsetting A value of the ParagraphSetting enumerated datatype specifying
the setting for which you want the value. Values are:

• Indent! – Returns the indentation of the paragraph

• LeftMargin! – Returns the left margin of the paragraph

• RightMargin! – Returns the right margin of the paragraph

Argument Description

objectname A control in a window or user object or an item on a menu for which
you want the parent object
PowerScript Reference 601

GetParent
Examples In event scripts for a user object that will be used as a tab page, you can use
code like the following to make references to the parent Tab control generic:

// a_tab is generic;
// it does not know about specific pages
tab a_tab

// a_tab_page is generic;
// it does not know about specific controls
userobject a_tab_page

// Get values for the Tab control and the tab page
a_tab = this.GetParent()
// Somewhat redundant, for illustration only
a_tab_page = this

// Set properties for the tab page
a_tab_page.PowerTipText = "Important property page"
// Set properties for the Tab control
a_tab.PowerTips = TRUE

// Run Tab control functions
a_tab.SelectTab(a_tab_page)

You cannot refer to controls on the user object because a_tab_page does not
know about them. You cannot refer to specific pages in the Tab control because
a_tab does not know about them either.

In event scripts for controls on the tab page user object, you can use two levels
of GetParent to refer to the user object and the Tab control containing the user
object as a tab page:

// For a control, add one more level of GetParent()
// and you can make the same settings as above
tab a_tab
userobject a_tab_page

a_tab_page = this.GetParent()
a_tab = a_tab_page.GetParent()

a_tab_page.PowerTipText = "Important property page"
a_tab.PowerTips = TRUE

a_tab.SelectTab(a_tab_page)

See also ParentWindow
“Pronouns” on page 11
602 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetPin
Description Called by EAServer to obtain a PIN for use with an SSL connection. This

function is used by PowerBuilder clients connecting to EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.GetPin (thesessioninfo, timedout)

Return value String. Returns the PIN specified by the user.

Usage A PowerBuilder application does not usually call the GetPin function directly.
GetPin is called by EAServer when an EAServer client has not specified a PIN
for logging in to a PKCS 11 token for an SSL connection.

To override the behavior of any of the functions of the SSLCallBack object,
create a standard class user object that descends from SSLCallBack and
customize this object as necessary. To let EAServer know which object to use
when a callback is required, specify the name of the object in the callbackImpl
SSL property. You can set this property value by calling the SetGlobalProperty
function.

If you do not provide an implementation of GetPin, EAServer receives the
CORBA::NO_IMPLEMENT exception and an empty string is returned. To obtain
a useful return value, code the function to request the user to provide a PIN.
You can supply information to the user such as the token name from the passed
thesessioninfo object.

If an incorrect PIN or an empty string is returned, EAServer invokes the
TrustVerify callback.

You can enable the user to cancel the attempt to connect by throwing an
exception in this callback function. All exceptions thrown in SSLCallback
functions return a CTSSecurity::UserAbortedException to the server. You need
to catch the exception by wrapping the ConnectToServer function in a try-catch
block.

Argument Description
sslcallback An instance of a customized SSLCallBack object.
thesessioninfo A CORBAObject that contains information about the SSL

session. This information can optionally be displayed to the
user to provide details about the session.

timedout A boolean value that indicates the reason for the callback. A
value of true indicates that the PIN timed out and must be
obtained again. A value of false indicates that the PIN was not
specified at the time of the SSL connection.
PowerScript Reference 603

GetPin
Examples This example prompts the user to enter a PIN for a new SSL session or when a
session has timed out. In practice you would want to replace the user’s entry in
the text box with asterisks and allow the user more than one attempt to enter a
correct PIN:

//instance variables
//string is_tokenName
// SSLServiceProvider issp_jag

CTSSecurity_sslSessionInfo mySessionInfo
is_tokenName = mySessionInfo.getProperty("tokenName")
w_response w_pin

IF timedout THEN
MessageBox("The SSL session has expired", &

"Please reenter the PIN for access to the " + &
ls_tokenName + " certificate database.")

ELSE
MessageBox("The SSL session requires a PIN", &

"Please enter the PIN for access to the " + &
ls_tokenName + " certificate database.")

END IF

string s_PIN
userabortedexception ue_cancelled

// open prompt for PIN
Open(w_pin)
// get value entered
s_PIN = Message.StringParm

// set property if we're not to abort
if s_PIN <> ABORT_VALUE then

issp_jag.setglobalproperty("pin", s_PIN)

// otherwise, abort..
else

ue_cancelled = CREATE userabortedexception
ue_cancelled.text = "User cancelled request when " &

+ "asked for PIN."
throw ue_cancelled

end if
return s_PIN

See also ConnectToServer, GetCertificateLabel, GetCredentialAttribute, TrustVerify
604 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetRecordSet
Description Returns the current ADO Recordset object.

Applies to ADOResultSet objects

Syntax adoresultset.GetRecordSet (adorecordsetobject)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use the GetRecordSet function to return an ADO Recordset as an OLEObject
object that can be used in PowerBuilder as a native ADO Recordset. The
ADOResultSet object that contains the ADO Recordset must first have been
populated using the SetRecordSet or SetResultSet function.

Examples This example generates a result set in a ResultSet object from an existing
DataStore object. The ResultSet object is used to populate a new
ADOResultSet object. The GetRecordSet function on the ADOResultSet
object is used to return an ADO Recordset as an OLEObject that can be used
with ADO Recordset methods.

resultset lrs_resultset
ADOresultset lrs_ADOresultset
OLEObject loo_ADOrecordset
// Generate a result set from an existing DataStore
ds_source.GenerateResultSet(lrs_resultset)

// Create a new ADOResultSet object and populate it
// from the generated result set
lrs_ADOresultset = CREATE ADOResultSet
lrs_ADOresultset.SetResultSet(lrs_resultset)

// Pass the data in the ADOResultSet object
// to an OLEObject you can use as an ADO Recordset
loo_ADOrecordset = CREATE OLEObject
lrs_ADOresultset.GetRecordSet(loo_ADOrecordset)
// Call native ADO Recordset methods on the OLEObject
loo_ADOrecordset.MoveFirst()

See also GenerateResultSet method for DataWindows in the DataWindow Reference or
the online Help
SetRecordSet
SetResultSet

Argument Description

adoresultset An ADOResultSet object that contains an ADO Recordset.

adorecordsetobject An OLEObject object into which the function places the
current ADO Recordset. This argument is passed by reference.
PowerScript Reference 605

GetRemote
GetRemote
Asks a DDE server application to provide data and stores that data in the
specified variable. There are two ways of calling GetRemote, depending on the
type of DDE connection you have established.

Syntax 1 For single DDE requests
Description Asks a DDE server application to provide data and stores that data in the

specified variable without requiring an open channel. This syntax is
appropriate when you will make only one or two requests of the server.

Syntax GetRemote (location, target, applname, topicname {, bAnsi})

To Use

Make a single request of a DDE server application (called a
cold link)

Syntax 1

Request data from a DDE server application after you have
opened a channel (called a warm link)

Syntax 2

Argument Description

location A string whose value is the location of the data you want returned
from the DDE server application. The format of location depends
on the particular DDE server application that will receive the
message.

target A string variable into which the returned data will be placed.

applname A string whose value is the DDE name of the DDE server
application. If another PowerBuilder application is the DDE server,
this is the application name specified in its StartServerDDE
function call.

topicname A string identifying the data or the instance of the application you
want to use with the command (for example, in Microsoft Excel, the
topic name could be system or the name of an open spreadsheet). If
another PowerBuilder application is the DDE server, this is the
topic specified in its StartServerDDE function call.

bAnsi
(optional)

A boolean identifying whether the string to get from the DDE
server is in ANSI format. If bAnsi is NULL, false, or empty,
PowerBuilder will first try to get the DDE data as a UNICODE
formatted string. If bAnsi is true, PowerBuilder will try to get the
DDE data as an ANSI formatted string.
606 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs. Values
are:

-1 Link was not started
-2 Request denied

If any argument’s value is null, GetRemote returns null.

Usage When using DDE, your PowerBuilder application must have an open window,
which will be the client window. For this syntax, the active window is the DDE
client window.

For more information about DDE channels and warm and cold links, see the
two syntaxes of the ExecRemote function.

Examples These statements ask Microsoft Excel to get the data in row 1 column 2 of a
worksheet called PROFIT.XLS and put it in a PowerBuilder string called
ls_ProfData. The single GetRemote call establishes a cold link, gets the data,
and ends the link:

string ls_ProfData
GetRemote("R1C2", ls_ProfData, &

"Excel", "PROFIT.XLS")

See also ExecRemote
SetRemote

Syntax 2 For DDE requests via an open channel
Description Asks a DDE server application to provide data and stores that data in the

specified variable when you have already established a warm link by opening
a channel to the server. A warm link, with an open channel, is more efficient
when you intend to make several DDE requests.

Syntax GetRemote (location, target, handle {, windowhandle} {, bAnsi})

Argument Description

location A string whose value is the location of the data you want
returned. The format of the location depends on the DDE
application that will receive the request.

target A PowerBuilder string variable into which the returned data
will be placed.

handle A long that identifies the channel to the DDE server
application. The OpenChannel function returns handle when
you call it to open a DDE channel.
PowerScript Reference 607

GetRemote
Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs. Values
are:

-1 Link was not started
-2 Request denied
-9 Handle is null

Usage When using DDE, your PowerBuilder application must have an open window,
which will be the client window. For this syntax, you can specify the client
window with the windowhandle argument.

Before using this syntax, call OpenChannel to establish a DDE channel.

For more information about DDE channels and warm and cold links, see the
ExecRemote function.

Examples These statements ask the channel identified by handle (a Microsoft Excel
worksheet) to get the data in row 1 column 2 and save it in a PowerBuilder
string called ls_ProfData. GetRemote utilizes the warm link established by the
OpenChannel function:

String ls_ProfData
long handle

handle = OpenChannel("Excel", "REGION.XLS")
...
GetRemote("R1C2", ls_ProfData, handle)
...
CloseChannel(handle)

windowhandle
(optional)

The handle to the window that is acting as the DDE client.
Specify this parameter to control which window the data is
returned to when you have more than one open window.

bAnsi
(optional)

A boolean identifying whether the string to get from the DDE
server is in ANSI format. If bAnsi is NULL, false, or empty,
PowerBuilder will first try to get the DDE data as a
UNICODE formatted string. If bAnsi is true, PowerBuilder
will try to get the DDE data as an ANSI formatted string.

Argument Description
608 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The following example is similar to the previous one. However, it specifically
associates the DDE channel with the window w_rpt:

String ls_ProfData
long handle

handle = OpenChannel("Excel", "REGION.XLS", &
Handle(w_rpt))

...
GetRemote("R1C2", ls_ProfData, &

handle, Handle(w_rpt))
...
CloseChannel(handle, Handle(w_rpt))

See also CloseChannel, ExecRemote, OpenChannel, SetRemote

GetSelectedDate
Description Retrieves the selected date.

Applies to MonthCalendar control

Syntax controlname.GetSelectedDate (d)

Return value Integer. Returns 0 for success and one of the following negative values
otherwise:

-1 A range of dates is selected

-2 Unknown failure

Usage If a range of dates is selected, GetSelectedDate returns -1 and retrieves the
earliest selected date.

Examples This example retrieves the selected date into seldate:

integer li_return
Date seldate

li_return = mc_1.GetSelectedDate(seldate)

See also GetSelectedRange, SetSelectedDate, SetSelectedRange

Argument Description

controlname The name of the MonthCalendar control for which you want to get
the selected date

d A date value returned by reference that indicates the date selected
PowerScript Reference 609

GetSelectedRange
GetSelectedRange
Description Retrieves the range of selected dates.

Applies to MonthCalendar control

Syntax controlname.GetSelectedRange (start, end)

Return value Integer. Returns 0 for success, -1 if only one date is selected, and -2 for an
unknown failure.

Usage If only one date is selected, GetSelectedRange returns -1 and the selected date
is retrieved in the start and end parameters.

Examples This code in the DateChanged event prompts the user to enter a second date
after the first date in a range is entered, and then asks the user to confirm the
range selected:

date startdate, enddate
integer li_return

li_return = mc_1.GetSelectedRange(startdate, enddate)
if li_return = -1 then

MessageBox("Selected Dates", &
"Please select a return date")

elseif li_return = 0 then
MessageBox("Selected Dates", "You have selected "&

+ string(startdate) + " - " string(enddate) &
+ "~r~nClick OK to confirm")

else
MessageBox("Selected Dates", &

"An error has occurred. Please reselect your " &
+ "travel dates")

end if

See also GetDisplayRange
GetSelectedDate
SetSelectedDate
SetSelectedRange

Argument Description

controlname The name of the MonthCalendar control for which you want to
determine the range of selected dates

start A date value returned by reference that indicates the earliest date
selected when a range of dates has been selected

end A date value returned by reference that indicates the latest date
selected when a range of dates has been selected
610 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetSeriesLabelling
Description Determines whether the data for a given series is labeled in a DirectX 3D

graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesLabelling ({graphcontrol,} series, value)

Return value Returns 1 if it succeeds and -1 if an error occurs. If any argument’s value is null,
GetSeriesLabelling returns null.

Usage GetSeriesLabelling retrieves the data from DirectX 3D Area, Bar, Col, or Line
graphs. You cannot use this method with DirectX 3D Pie graphs.

Examples These statements obtain the number of the series and datapoint for the graph
gr_1 in the DataWindow control dw_employee and then set the series label.

integer SeriesNbr, ItemNbr
boolean refB
string ls_SeriesName
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &

SeriesNbr, ItemNbr)

//Get the name of series
ls_SeriesName = dw_employee.SeriesName("gr_1", &

SeriesNbr)

// Set Series label
dw_employee.GetSeriesLabelling("gr_1", &

ls_SeriesName, refB)

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

{Optional} A string whose value is the name of the graph in
the DataWindow control.

series The string that names the series for which you want the series
label setting.

value A boolean passed by reference that indicates whether the
series has a label.
PowerScript Reference 611

GetSeriesStyle
These statements obtain the number of the series and datapoint for the graph
gr_1 and then set the series label.

integer SeriesNbr, ItemNbr
boolean refB
string ls_SeriesName
grObjectType clickedtype

clickedtype = gr_1.ObjectAtPointer(SeriesNbr, &
ItemNbr)

ls_SeriesName = gr_1.SeriesName(SeriesNbr)

gr_1.GetSeriesLabelling(ls_SeriesName, refB)

See also GetDataLabelling, SetDataLabelling, SetSeriesLabelling

GetSeriesStyle
Finds out the appearance of a series in a graph. The appearance settings for
individual data points can override the series settings, so the values obtained
from GetSeriesStyle may not reflect the current state of the graph. There are
several syntaxes, depending on what settings you want.

GetSeriesStyle provides information about a series. The data points in the series
can have their own style settings. Use SetSeriesStyle to change the style values
for a series. Use GetDataStyle to get style information for a data point and
SetDataStyle to override series settings and set style information for individual
data points.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can find out the fill pattern for a data
point or a series in a two-dimensional line graph, but that fill pattern will not
be visible.

To Use

Get the series’ colors Syntax 1

Get the line style and width used by the series Syntax 2

Get the fill pattern or symbol for the series Syntax 3

Find out if the series is an overlay (a series shown as a line
on top of another graph type)

Syntax 4
612 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 1 For the colors of a series
Description Obtains the colors associated with a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname, colortype,
colorvariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in
colorvariable the RGB value of the specified series and item. If any argument’s
value is null, GetSeriesStyle returns null.

Examples These statements store in the variable color_nbr the text (foreground) color
used for a series in the graph gr_emp_data. The series name is the text in the
SingleLineEdit sle_series:

long color_nbr
gr_emp_data.GetSeriesStyle(sle_series.Text, &

Foreground!, color_nbr)

Argument Description

controlname The name of the graph in which you want to obtain the color
of a series, or the name of the DataWindow control containing
the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the color of a series.

seriesname A string whose value is the name of the series for which you
want the color.

colortype A value of the grColorType enumerated datatype specifying
the aspect of the series for which you want the color:

• Foreground! – Text color

• Background! – Background color

• LineColor! – Line color

• Shade! – Shade (for graphs that are 3-dimensional or have
solid data markers)

colorvariable A long variable in which you want to store the color’s RGB
value.
PowerScript Reference 613

GetSeriesStyle
These statements store in the variable color_nbr the background color used for
the series PCs in the graph gr_computers in the DataWindow control
dw_equipment:

long color_nbr
// Get the color.
dw_equipment.GetSeriesStyle("gr_computers", &

"PCs", Background!, color_nbr)

These statements store the color for the series under the mouse pointer in the
graph gr_product_data in line_color:

string SeriesName
integer SeriesNbr, Data_Point
long line_color
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
LineColor!, line_color)

END IF

See also AddSeries
GetDataStyle
FindSeries
SetDataStyle
SetSeriesStyle
614 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For the line style and width used by a series
Description Obtains the line style and width for a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname, linestyle,
linewidth)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in linestyle a
value of the LineStyle enumerated datatype and in linewidth the width of the
line used for the specified series. If any argument’s value is null, GetSeriesStyle
returns null.

Examples These statements store in the variables line_style and line_width the line style
and width for the series under the mouse pointer in the graph gr_product_data:

string SeriesName
integer SeriesNbr, Data_Point, line_width
LineStyle line_style
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
line_style, line_width)

END IF

See also AddSeries, GetDataStyle, FindSeries, SetDataStyle, SetSeriesStyle

Argument Description

controlname The name of the graph for which you want the line style and
width for a series in a graph, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the line style
information.

seriesname A string whose value is the name of the series for which you
want the line style information.

linestyle A variable of type LineStyle in which you want to store the
line style of seriesname.

linewidth An integer variable in which you want to store the line width
for seriesname. The width is measured in pixels.
PowerScript Reference 615

GetSeriesStyle
Syntax 3 For the fill pattern or symbol of a series
Description Obtains the fill pattern or symbol of a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname, enumvariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in
enumvariable a value of the appropriate enumerated datatype for the fill pattern
or symbol used for the specified series. If any argument’s value is null,
GetSeriesStyle returns null.

Usage See SetSeriesStyle for a list of the enumerated datatype values that
GetSeriesStyle stores in enumvariable.

Examples These statements store in the variable data_pattern the fill pattern for the series
under the mouse pointer in the graph gr_product_data:

string SeriesName
integer SeriesNbr, Data_Point
FillPattern data_pattern
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
data_pattern)

END IF

Argument Description

controlname The name of the graph for which you want the style
information for a series in a graph, or the name of the
DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the style
information.

seriesname A string whose value is the name of the series for which you
want the style information.

enumvariable The variable in which you want to store the style information.
You can specify a FillPattern or grSymbolType variable. The
style information that GetSeriesStyle stores depends on the
variable type.
616 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example stores in the variable data_pattern the fill pattern for the series
under the pointer in the graph gr_depts in the DataWindow control
dw_employees. It then sets the fill pattern for the series Total Salary in the
graph gr_dept_data to that pattern:

string SeriesName
integer SeriesNbr, Data_Point
FillPattern data_pattern
grObjectType MouseHit

MouseHit = &
ObjectAtPointer("gr_depts" , SeriesNbr, &

Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &
 dw_employees.SeriesName("gr_depts" , SeriesNbr)

dw_employees.GetSeriesStyle("gr_depts" , &
SeriesName, data_pattern)

gr_dept_data.SetSeriesStyle("Total Salary", &
data_pattern)

END IF

In these examples, you can change the datatype of data_pattern (the variable
specified as the last argument) to find out the symbol type.

See also AddSeries
GetDataStyle
FindSeries
SetDataStyle
SetSeriesStyle
PowerScript Reference 617

GetSeriesStyle
Syntax 4 For determining whether a series is an overlay
Description Reports whether a series in a graph is an overlay—whether it is shown as a line

on top of another graph type.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesStyle ({ graphcontrol, } seriesname,overlayindicator)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. Stores in
overlayindicator true if the specified series is an overlay and false if it is not. If
any argument’s value is null, GetSeriesStyle returns null.

Examples These statements find out whether a series in the graph gr_emp_data is an
overlay. The series name is the text in the SingleLineEdit sle_series:

boolean is_overlay
gr_emp_data.GetSeriesStyle(sle_series.Text, &

is_overlay)

Argument Description

controlname The name of the graph for which you want the overlay status
of a series in a graph, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the overlay status.

seriesname A string whose value is the name of the series for which you
want the overlay status.

overlayindicator A boolean variable in which you want to store a value
indicating whether the series is an overlay. GetSeriesStyle sets
overlayindicator to true if the series is an overlay and false if
it is not.
618 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetSeriesTransparency
Description Obtains the transparency percentage of a series in a DirectX 3D graph (those

with 3D rendering).

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.GetSeriesTransparency ({ graphcontrol, } series,
transparency)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, GetSeriesTransparency returns null.

Usage GetSeriesTransparency retrieves data from any DirectX 3D graph (those with
3D rendering).

Examples These statements obtain the transparency value of the series named Costs in the
graph gr_computers in the DataWindow control dw_equipment:

string SeriesName
integer rtn, ser_transp_value

// Get the number of the series.
SeriesNbr = dw_equipment.FindSeries(&
 "gr_computers", "Costs")
rtn = dw_equipment.GetSeriesTransparency(&
 "gr_computers" , SeriesNbr, ser_transp_value)

Argument Description

controlname The name of the graph from which you want series
transparency data, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control from which you want the series data.

series The string that identifies the series from which you want the
transparency value.

transparency Integer value for percent transparency. A value of 0 means that
the series is opaque and a value of 100 means that it is
completely transparent.
PowerScript Reference 619

GetShortName
These statements obtain the transparency value of the series named Income in
the graph gr_1.

string SeriesName
integer rtn, ser_transp_value

SeriesNbr = gr_1.FindSeries("Income")
rtn = gr_1.GetSeriesTransparency(SeriesName, &

ser_transp_value)

See also FindSeries, GetDataTransparency, SetDataTransparency,
SetSeriesTransparency

GetShortName
Description Gets the short name for the current PowerBuilder execution context.

Applies to ContextInformation objects

Syntax servicereference.GetShortName (shortname)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the current execution environment. The window
plug-in and window ActiveX contexts are obsolete in the current version of
PowerBuilder. For PowerBuilder 12.5 applications, the only value passed for
the shortname argument is “PBRun”.

Examples This example calls the GetShortName function. ci is an instance variable of
type ContextInformation:

String ls_name

this.GetContextService("ContextInformation", ci)
ci.GetShortName(ls_name)
IF ls_name <> "PBRun" THEN

cb_close.visible = FALSE
END IF

See also GetCompanyName, GetContextService, GetFixesVersion, GetHostObject,
GetMajorVersion, GetMinorVersion, GetName, GetVersionName

Argument Description

servicereference Reference to the ContextInformation service instance.

shortname String into which the function places the short name. This
argument is passed by reference.
620 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetSpacing
Description Obtains the line spacing of the paragraph containing the insertion point in a

RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.GetSpacing ()

Return value Spacing. A value of the Spacing enumerated datatype indicating the line
spacing of the paragraph containing the insertion point.

Usage When the user selects several paragraphs, the insertion point is at the beginning
or end of the selection, depending on how the user made the selection. The
value reported depends on the location of the insertion point.

Examples This example stores a value of the enumerated datatype spacing in the variable
l_spacing. The value is the spacing for the paragraph with the insertion point:

spacing l_spacing
l_spacing = rte_1.GetSpacing()

See also GetTextStyle
SetSpacing
SetTextStyle

Argument Description

rtename The name of the RichTextEdit control in which you want to find out
the line spacing of the paragraph containing the insertion point
PowerScript Reference 621

GetStatus
GetStatus
Description Returns the status of the EAServer transaction associated with the calling

thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.GetStatus ()

Return value Integer. Returns -1 if an error occurs and one of the following positive integers
if it succeeds:

1. Status active

2. Status marked rollback

3. Status prepared

4. Status committed

5. Status rolled back

6. Status unknown

7. Status no transaction

8. Status preparing

9. Status committing

10. Status rolling back

Usage The GetStatus function can be used to determine the current status of a
transaction by the client or component that initiated the transaction using the
BeginTransaction function. EAServer must be using the two-phase commit
transaction coordinator (OTS/XA).

GetStatus returns 1 when the transaction has started and no prepares have been
issued.

When GetStatus returns 4 or 5, heuristics may exist; otherwise, the transaction
would have been completed and destroyed and the value 7 returned.

A return value of 6 indicates that the transaction is in a transient condition and
a subsequent call will eventually return another status. I

If GetStatus returns 8, 9, or 10, the transaction has begun but not yet completed
the process of preparing, committing, or rolling back, probably because
responses from participants in the transaction are pending.

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
622 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example shows the use of GetStatus to obtain the state of the current
transaction:

// Instance variable:
// CORBACurrent corbcurr
integer li_rc, li_status

li_rc = this.GetContextService("CORBACurrent", &
corbcurr)

IF li_rc <> 1 THEN
// handle the error

END IF
li_rc = corbcurr.Init("iiop://jagserver:2000")
IF li_rc <> 1 THEN

// handle the error
ELSE

li_status = corbcurr.GetStatus()
CHOOSE CASE li_status

CASE 1
// take appropriate action for each value
...

END CHOOSE
END IF

See also BeginTransaction
CommitTransaction
GetContextService
GetTransactionName
Init
ResumeTransaction
RollbackOnly
RollbackTransaction
SetTimeout
SuspendTransaction
PowerScript Reference 623

GetSyncRegistryProperties
GetSyncRegistryProperties
Description Returns an integer to determine whether to use synchronization properties

saved in the registry.

Applies to MLSyncrhonization, MLSync controls

Syntax syncObject.GetSyncRegistryProperties ()

Return value Integer. Returns 1 for success and -1 for failure. Failure occurs if
SyncRegistryKey property is not set or if the key does not exist in the Windows
registry.

Usage The GetSyncRegistryProperties function sets synchronization object properties
from values stored in the registry. The properties it can set include:
AdditionalOpts, DownloadOnly, ExtendedOpts, Host, LogFileName,
LogOpts, MLServerVersion, MLUser, ObjectRevision, Port, Publication,
UploadOnly, UseLogFile, and UseWindow.

It cannot set secured properties such as AuthenticateParms, DBPass, and
EncryptionKey that are never saved to the Windows registry.

Examples The MLSync object generated by the MobiLink wizard for SQL Anywhere
uses the following code in its Constructor event:

long rc
long RegistryRevision
RegistryRevision =this.GetObjectRevisionFromRegistry()
IF RegistryRevision < this.ObjectRevision THEN

rc = this.SetSyncRegistryProperties()
ELSE

rc = this.GetSyncRegistryProperties()
END IF

This code gets the values of authentication properties stored in the Windows
registry only if the build number stored in the registry is higher than the build
number of the running application.

See also GetCommandString
GetObjectRevisionFromRegistry
SetParm
SetSyncRegistryProperties

Argument Description

syncObject The name of the synchronization object.
624 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetText
Description Returns the Value property as a text string with the specified Format or

CustomFormat applied.

Applies to DatePicker controls

Syntax controlname.GetText ()

Return value String.

Usage Returns the date and time stored in the Value property as a text string formatted
according to the Format property, or if Format is set to dtfCustom!, according
to the format specified in the CustomFormat property.

Examples This example retrieves the date and time stored in the Value property of dp_1
to the string ls_text:

string ls_text
ls_text = dp_1.GetText()

See also GetValue, SetValue

GetTextColor
Description Obtains the color of selected text in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.GetTextColor ()

Return value Long. Returns the long value that specifies the color of the currently selected
text. If text of different colors is selected, GetTextColor returns the color of the
first selected character. GetTextColor returns -1 if an error occurs.

Examples This example stores a long representing the color of the selected text in rte_1:

long ll_color
ll_color = rte_1.GetTextColor()

Argument Description

controlname The name of the control for which you want to get the text

Argument Description

rtename The name of the RichTextEdit control in which you want to find out
the color of selected text
PowerScript Reference 625

GetTextStyle
See also GetTextStyle, SetTextColor, SetTextStyle

GetTextStyle
Description Finds out whether selected text has text styles (such as bold or italic) assigned

to it.

Applies to RichTextEdit controls

Syntax rtename.GetTextStyle (textstyle)

Return value Boolean. Returns true if the selected text is formatted with the specified text
style and false if it is not. If textstyle is null, GetTextStyle returns null.

Usage Text can be formatted with more than one text style. To test for different styles,
call GetTextStyle more than once.

Examples A previously defined structure is an instance variable istr_text for the current
window. The structure contains the boolean fields: b_isBold, b_isItalic, and
b_isUnderlined. This example checks whether the selected text has these styles
and stores true or false values in the structure for each style:

istr_text.b_isBold = rte_fancy.GetTextStyle(Bold!)
istr_text.b_isItalic = rte_fancy.GetTextStyle(Italic!)
istr_text.b_isUnderlined = &

rte_fancy.GetTextStyle(Underlined!)

See also GetTextColor
SetSpacing
SetTextColor
SetTextStyle

Argument Description

rtename The name of the RichTextEdit control in which you want to find the
formatting of selected text.

textstyle A value of the enumerated datatype TextStyle specifying the text
style you want to check for. Values are:

Bold!
Italic!
Strikeout!
Subscript!
Superscript!
Underlined!
626 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetToday
Description Returns the value that the calendar uses as today’s date.

Applies to DatePicker, MonthCalendar controls

Syntax controlname.GetToday ()

Return value Date.

Usage By default, the current system date is set as the Today date. You can use the
SetToday function to specify a different date.

Examples This example retrieves the Today date in a DatePicker control into currentdate:

Date currentdate
currentdate = dp_1.GetToday()

See also SetToday

GetToolbar
Description Gets the current values for alignment, visibility, and title of the specified

toolbar.

Applies to MDI frame and sheet windows

Syntax window.GetToolbar (toolbarindex, visible {, alignment {, floatingtitle } })

Argument Description

controlname The name of the control for which you want to get today’s date

Argument Description

window The MDI frame or sheet to which the toolbar belongs

toolbarindex An integer whose value is the index of the toolbar for which you
want the current settings

visible A boolean variable in which you want to store a value indicating
whether the toolbar is visible

alignment
(optional)

A variable of the ToolbarAlignment enumerated datatype in which
you want to store the current alignment of the toolbar

floatingtitle
(optional)

A string variable in which you want to store the toolbar title that is
displayed when the alignment is Floating!
PowerScript Reference 627

GetToolbar
Return value Integer. Returns 1 if it succeeds. GetToolbar returns -1 if there is no toolbar for
the index you specify or if an error occurs. If any argument’s value is null,
returns null.

Usage To find out the position of the docked or floating toolbar, call GetToolbarPos.

Examples This example finds out whether toolbar 1 is visible. It also gets the alignment
and title of toolbar 1. The values are stored in the variables lb_visible,
lta_align, and ls_title:

integer li_rtn
boolean lb_visible
toolbaralignment lta_align

li_rtn = w_frame.GetToolbar(1, lb_visible, &
lta_align, ls_title)

This example displays the settings for the toolbar index the user specifies in
sle_index. The IF and CHOOSE CASE statements convert the values to strings
so they can be displayed in mle_toolbar:

integer li_index, li_rtn
boolean lb_visible
toolbaralignment lta_align
string ls_visible, ls_align, ls_title

li_index = Integer(sle_index.Text)
li_rtn = w_frame.GetToolbar(li_index, &

lb_visible, lta_align, ls_title)

IF li_rtn = -1 THEN
MessageBox("Toolbars", "Can't get" &

+ " toolbar settings.")
RETURN -1

END IF

IF lb_visible = TRUE THEN
ls_visible = "TRUE"

ELSE
ls_visible = "FALSE"

END IF

CHOOSE CASE lta_align
CASE AlignAtTop!

ls_align = "top"
CASE AlignAtLeft!

ls_align = "left"
CASE AlignAtRight!
628 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ls_align = "right"
CASE AlignAtBottom!

ls_align = "bottom"
CASE Floating!

ls_align = "floating"
END CHOOSE

mle_1.Text = ls_visible + "~r~n" &
+ ls_align + "~r~n" &

+ ls_title

See also GetToolbarPos
SetToolbar
SetToolbarPos

GetToolbarPos
Gets position information for the specified toolbar.

Syntax 1 For docked toolbars
Description Gets the position of a docked toolbar.

Applies to MDI frame and sheet windows

Syntax window.GetToolbarPos (toolbarindex, dockrow, offset)

To get Use

Docking position of a docked toolbar Syntax 1

Coordinates and size of a floating toolbar Syntax 2

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar for which you
want the current settings.

dockrow An integer variable in which you want to store the number of the
docking row for the specified toolbar. Docking rows are numbered
from left to right or top to bottom.

offset An integer variable in which you want to store the offset of the
toolbar from the beginning of the docking row. For toolbars at the
top or bottom, offset is measured from the left edge. For toolbars at
the left or right, offset is measured from the top.
PowerScript Reference 629

GetToolbarPos
Return value Integer. Returns 1 if it succeeds. GetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
GetToolbarPos returns null.

Usage To find out whether the docked toolbar is at the top, bottom, left, or right edge
of the window, call GetToolbar.

Syntax 1 for GetToolbarPos gets the most recent docked position, even if the
toolbar is currently floating.

Examples In this example, the user has specified a toolbar index in sle_2. The example
gets the toolbar position information and displays it in a MultiLineEdit mle_1:

integer li_index, li_rtn
integer li_dockrow, li_offset

li_index = Integer(sle_2.Text)
li_rtn = w_frame.GetToolbarPos(li_index, &

li_dockrow, li_offset)

// Report the position settings
IF li_rtn = 1 THEN

mle_1.Text = String(li_dockrow) + "~r~n" &
+ String(li_offset)

ELSE
mle_1.Text = "Can't get toolbar position"

END IF

See also GetToolbar
SetToolbar
SetToolbarPos

Syntax 2 For floating toolbars
Description Gets the position and size of a floating toolbar.

Applies to MDI frame and sheet windows

Syntax window.GetToolbarPos (toolbarindex, x, y, width, height)

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar for which you
want the current settings.

x An integer variable in which you want to store the x coordinate of
the floating toolbar. If the toolbar is docked, x is set to the most
recent value.
630 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds. GetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
returns null.

Usage To find out whether the toolbar is floating, call GetToolbar.

Syntax 2 for GetToolbarPos gets the most recent floating position, even if the
toolbar is currently docked.

Examples This example gets the x and y coordinates and the width and height of
toolbar 1:

int ix, iy, iw, ih, li_rtn

li_rtn = w_frame.GetToolbarPos(1, ix, iy, iw, ih)
IF li_rtn = -1 THEN

mle_1.Text = "Can't get toolbar position"
ELSE

mle_1.Text = String(ix) + "~r~n" &
+ String(iy) + "~r~n" &
+ String(iw) + "~r~n" &

+ String(ih)
END IF

See also GetToolbar
SetToolbar
SetToolbarPos

y An integer variable in which you want to store the y coordinate of
the floating toolbar. If the toolbar is docked, y is set to the most
recent value.

width An integer variable in which you want to store the width of the
floating toolbar. If the toolbar is docked, width is set to the most
recent value.

height An integer variable in which you want to store the height of the
floating toolbar. If the toolbar is docked, height is set to the most
recent value.

Argument Description
PowerScript Reference 631

GetTransactionName
GetTransactionName
Description Returns a string describing the EAServer transaction associated with the

calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.GetTransactionName ()

Return value String. Returns a printable string describing the transaction if a transaction
exists and an empty string otherwise.

Usage The GetTransactionName function returns a string identifying the transaction
associated with the calling thread. This string is typically used for debugging.

GetTransactionName can be called by a client or a component that is marked as
OTS style. EAServer must be using the two-phase commit transaction
coordinator (OTS/XA).

Examples This example shows the use of GetTransactionName to return information
about a transaction to a client:

// Instance variables:
// CORBACurrent corbcurr
string ls_transacname

// Get an instance of the CORBACurrent object
// and initialize it
...
ls_transacname = corbcurr.GetTransactionName()

MessageBox("Transaction Name", ls_transacname)

See also BeginTransaction
CommitTransaction
GetContextService
GetStatus
Init
ResumeTransaction
RollbackOnly
RollbackTransaction
SetTimeout
SuspendTransaction

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
632 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
GetURL
Description Returns HTML for the specified URL.

Applies to Inet objects

Syntax servicereference.GetURL (urlname, data)

Return value Integer. Returns values as follows:

1 Success
-1 General error
-2 Invalid URL
-4 Cannot connect to the Internet

Usage Call this function to access HTML source for a URL.

Data references a standard class user object that descends from InternetResult
and that has an overridden InternetData function. This overridden function then
performs the processing you want with the returned HTML. Because the
Internet returns data asynchronously, data must reference a variable that
remains in scope after the function executes (such as a window-level instance
variable).

For more information on the InternetResult standard class user object and the
InternetData function, use the PowerBuilder Browser.

Timeout value for retrieving HTML source
The GetURL function relies on wininet.dll to obtain the HTML source and
returns -1 when the retrieval time exceeds the DLL timeout value. When you
install Internet Explorer 7 or later, the default timeout value for this DLL is 30
seconds. Although it is possible to change the timeout value by configuring a
DWORD ReceiveTimeOut registry key under HKEY_CURRENT_USER\
SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings, this is not
recommended, since it can also affect the behavior of the Internet Explorer
browser.

Argument Description

servicereference Reference to the Internet service instance

urlname String specifying the URL whose source data is returned in
data

data InternetResult descendant containing an overridden
InternetData function that handles the HTML source for
urlname
PowerScript Reference 633

GetValue
Examples This example calls the GetURL function. Iinet_base is an instance variable of
type inet:

iir_msgbox = CREATE n_ir_msgbox
iinet_base.GetURL(sle_url.text, iir_msgbox)

See also HyperLinkToURL, InternetData, PostURL

GetValue
Description Returns the date and time in the Value property of the control.

Applies to DatePicker control

Syntax controlname.GetValue (d, t)

controlname.GetValue (dt)

Return value Integer. Returns 1 for success and one of the following negative values for
failure:

-1 Invalid date and/or time values
-2 Other error

Usage The GetValue function can return the date and time parts of the Value property
in separate date and time variables or a single DateTime variable.

Examples In this example, the GetValue function is called twice, once to return separate
date and time values and once to return a DateTime value. The values returned
are written to a multiline edit control:

date d
time t
datetime dt
integer li_ret1, li_ret2

li_ret1 = dp_1.GetValue(d, t)
li_ret2 = dp_1.GetValue(dt)

mle_1.text += string(d) + " ~r~n"

Argument Description

controlname The name of the control for which you want to get the date and time

d The date value in the Value property returned by reference

t The time value in the Value property returned by reference

dt The DateTime value in the Value property returned by reference
634 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
mle_1.text += string(t) + " ~r~n"
mle_1.text += string(dt) + " ~r~n"

See also GetText, SetValue

GetVersionName
Description Gets complete version information for the current PowerBuilder execution

context. A complete version includes a major version, a minor version, and a
fix level (such as 8.0.3).

Applies to ContextInformation objects

Syntax servicereference.GetVersionName (name)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to determine the maintenance level of the current context.

Examples This example calls the GetVersionName function. ci is an instance variable of
type ContextInformation:

String ls_name
String ls_version
Constant String ls_currver = "8.0.3"

GetContextService("ContextInformation", ci)
ci.GetVersionName(ls_version)
IF ls_version <> ls_currver THEN

MessageBox("Error", &
"Must be at Version " + ls_currver)

END IF

See also GetCompanyName
GetFixesVersion
GetHostObject
GetMajorVersion
GetMinorVersion
GetName
GetShortName

Argument Description

servicereference Reference to the ContextInformation service instance.

name String into which the function places the version name. This
argument is passed by reference.
PowerScript Reference 635

Handle
Handle
Description Obtains the Windows handle of a PowerBuilder object. You can get the handle

of the application, a window, or a control, but not a drawing object.

Syntax Handle (objectname {, previous })

Return value Long. Returns the handle of objectname. If objectname is an application and
previous is true, Handle always returns 0.

If objectname cannot be referenced at runtime, Handle returns 0 (for example,
if objectname is a window and is not open).

Usage Use Handle when you need an object handle as an argument to Windows
Software Development Kit (SDK) functions or the PowerBuilder Send
function.

Use IsValid instead of the Handle function to determine whether a window is
open.

When you ask for the handle of the application, Handle returns 0 when you are
using the PowerBuilder Run command. As far as Windows is concerned, your
application does not have a handle when it is run from PowerBuilder. When
you build and run an executable version of your application, the Handle
function returns a valid handle for the application.

If you ask for the handle of a previous instance of an application by setting the
previous flag to true, Handle always returns 0 in current versions of Windows.
Use the Windows FindWindow function to determine whether an instance of the
application’s main window is already open.

Examples This statement returns the handle to the window w_child:

Handle(w_child)

Argument Description

objectname The name of the PowerBuilder object for which you want the
handle. Objectname can be any PowerBuilder object, including an
application or control, but cannot be a drawing object.

previous
(optional)

(Obsolete argument) A boolean indicating whether you want the
handle of the previous instance of an application. You can use this
argument with the Application object only.

In current versions of Windows, Handle always returns 0 when this
argument is set to true.
636 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
These statements use an external function called FlashWindow to change the
title bar of a window to inactive and then return it to active. The external
function declaration is:

function boolean flashwindow(uint hnd, boolean inst) &
library "user.exe"

The code that flashes the window’s title bar is:

integer nLoop // Loop counter
long hWnd // Handle to control

// Get the handle to a PowerBuilder window.
hWnd = Handle(Parent)
// Make the title bar flash 300 times.
FOR nLoop = 1 to 300

FlashWindow (hWnd, true)
NEXT
// Return the window to its original state.
FlashWindow (hWnd, FALSE)

For applications, the Handle function does not return a useful value when the
previous flag is true. You can use the FindWindow Windows function to
determine whether a Windows application is already running. FindWindow
returns the handle of a window with a given title.

Declare FindWindow and SetForegroundWindow as global external functions:

PUBLIC FUNCTION unsignedlong FindWindow (long &
classname, string windowname) LIBRARY "user32.dll" &
ALIAS FOR FindWindowW

PUBLIC FUNCTION int SetForegroundWindow (unsignedlong &
hwnd) LIBRARY "user32.dll" ALIAS FOR &
SetForegroundWindowW

Then add code like the following to your application’s Open event:

unsignedlong hwnd

hwnd = FindWindow(0, "Main Window")
if hwnd = 0 then

// no previous instance, so open the main window
open(w_main)

else
// open the previous instance window and halt
SetForegroundWindow(hwnd)
HALT CLOSE

end if

See also Send
PowerScript Reference 637

Hide
Hide
Description Makes an object or control invisible. Users cannot interact with an invisible

object. It does not respond to any events, so the object is also, in effect,
disabled.

Applies to Any object

Syntax objectname.Hide ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If objectname is null,
Hide returns null.

Usage If the object you want to hide is already invisible, then Hide has no effect.

You cannot use Hide to hide a drop-down or cascading menu or any menu that
has an MDI frame window as its parent window. Nor can you hide a window
that has been opened as an MDI sheet.

You can use the Disable function to disable menu items, which displays them
in the disabled color and makes them inactive.

To disable an object so that it does not respond to events, but is still visible, set
its Enabled property.

You can set an object’s Visible property instead of calling Hide:

objectname.Visible = false

This statement:

lb_Options.Visible = FALSE

is equivalent to:

lb_Options.Hide()

Examples This statement hides the ListBox lb_options:

lb_options.Hide()

In the script for a menu item, this statement hides the CommandButton
cb_delete on the active sheet in the MDI frame w_mdi. The active sheets are of
type w_sheet:

w_sheet w_active
w_active = w_mdi.GetActiveSheet()
IF IsValid(w_active) THEN w_active.cb_delete.Hide()

See also Show

Argument Description

objectname The name of the object or control you want to make invisible
638 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Hour
Description Obtains the hour in a time value. The hour is based on a 24-hour clock.

Syntax Hour (time)

Return value Integer. Returns an integer (00 to 23) whose value is the hour portion of time.
If time is null, Hour returns null.

Examples This statement returns the current hour:

Hour(Now())

This statement returns 19:

Hour(19:01:31)

See also Minute
Now
Second
Hour method for DataWindows in the DataWindow Reference or online Help

HyperLinkToURL
Description Opens the default Web browser, displaying the specified URL.

Applies to Inet objects

Syntax servicereference.HyperlinkToURL (url)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to display a URL from a PowerBuilder application.

Examples This example calls the HyperlinkToURL function. Iinet_base is an instance
variable of type inet:

GetContextService("Internet", iinet_base)
iinet_base.HyperlinkToURL(sle_url.text)

See also GetURL
PostURL

Argument Description

time The time from which you want to obtain the hour

Argument Description

servicereference Reference to the Internet service instance

url String specifying the URL to open in the default Web browser
PowerScript Reference 639

Idle
Idle
Description Sets a timer so that PowerBuilder triggers an Application Idle event when there

has been no user activity for a specified number of seconds.

Syntax Idle (n)

Return value Integer. Returns 1 if it starts the timer, and -1 if it cannot start the timer or n is
0 and the timer has not been started. Note that when the timer has been started
and you change n, Idle does not start a new timer; it resets the current timer
interval to the new number of seconds. If n is null, Idle returns null. The return
value is usually not used.

Usage Use Idle to shut off or restart an application when there is no user activity. This
is often done for security reasons.

Idle starts a timer after each user activity (such as a keystroke or a mouse click),
and after n seconds of inactivity it triggers an Idle event. The Idle event script
for an application typically closes some windows, logs off the database, and
exits the application or calls the Restart function.

The timer is reset when any of the following activities occur:

• A mouse movement or mouse click in any window of the application

• Any keyboard activity when a window of the PowerBuilder application is
current

• A mouse click or any mouse movement over the icon when a
PowerBuilder application is minimized

• Any keyboard activity when the PowerBuilder application is minimized
and is current (its name is highlighted)

• Any retrieval on a visible DataWindow that causes the edit control to be
painted

Tip
To capture movement, write script in the MouseMove or Key events of the
window or sheet. (Keyboard activity does not trigger MouseMove events.)
Disable the DataWindow control and tab ordering during iterative
retrieves so the Idle timer is not reset.

Argument Description

n The number of seconds of user inactivity allowed before
PowerBuilder triggers an Application Idle event. A value of 0
terminates Idle detection.
640 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This statement sends an Idle event after five minutes of inactivity:

Idle(300)

This statement turns off idle detection:

Idle(0)

This example shows how to use the Idle event to stop the application and restart
it after two minutes of inactivity. This is often used for computers that provide
information in a public place.

Include this statement in the script for the application’s Open event:

Idle(120) // Sends an Idle event after 2 minutes.

Include these statements in the script for the application’s Idle event to
terminate the application and then restart it:

// Statements to set the database to the desired
// state
...
Restart() // Restarts the application

See also Restart
Timer

ImpersonateClient
Description Allows a COM object running on COM+ to take on the security attributes of

the client for the duration of a call.

Applies to TransactionServer objects

Syntax transactionserver.ImpersonateClient ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage ImpersonateClient allows a COM object to run in the client’s security context
for the duration of a call. Running in the client's security context gives the
server process access to the same resources as the client. This can either restrict
or expand the server’s access to resources. For example, if the client does not
have update rights to a database but the server does, impersonating the client
before accessing the database prevents the client from updating the database.

Argument Description
transactionserver Reference to the TransactionServer service instance
PowerScript Reference 641

ImportClipboard
After completing the processing that requires the client’s security context, call
RevertToSelf to revert to the server’s security context.

Examples This example creates an instance of the transaction server context object and
impersonates the client to perform some processing:

TransactionServer txninfo_test
integer li_rc
li_rc = GetContextService("TransactionServer", &
 txninfo_test)
// Handle error if necessary

// Impersonate the client
txninfo_test.ImpersonateClient()
// Perform processing with client security context
...
// Revert to server’s security context
txninfo_test.RevertToSelf()

See also IsCallerInRole
IsImpersonating
IsSecurityEnabled
RevertToSelf

ImportClipboard
Description Inserts data into a DataWindow control, DataStore object, or graph control

from tab-separated, comma-separated, or XML data on the clipboard.

For DataWindow and DataStore syntax, see the ImportClipboard method for
DataWindows in the DataWindow Reference or the online Help.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax graphname.ImportClipboard ({ importtype}, { startrow {, endrow {,
startcolumn } } })
642 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Returns the number of rows that were imported if it succeeds and one of the
following negative integers if an error occurs:

-1 No rows or startrow value supplied is greater than the number of rows in
the string

-2 Input data does not match number of columns or required column type

-3 Invalid argument

-4 Invalid input

Argument Description

importtype
(optional)

An enumerated value of the SaveAsType DataWindow constant.
Valid type arguments for ImportClipboard are:

Text!
CSV!
XML!

If you want to generate an XML trace file, the XML! argument is
required.

graphname The name of the graph control to which you want to copy data from
the clipboard.

startrow
(optional)

The number of the first detail row in the clipboard that you want to
copy. The default is 1.

For default XML import, if startrow is supplied, the first N
(startrow -1) elements are skipped, where N is the DataWindow row
size.

For template XML import, if startrow is supplied, the first
(startrow -1) occurrences of the repetitive row mapping defined in
the template are skipped.

endrow
(optional)

The number of the last detail row in the clipboard that you want to
copy. The default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when
N * endrow elements have been imported, where N is the
DataWindow row size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the
template have been imported.

startcolumn
(optional)

The number of the first column in the clipboard that you want to
copy. The default is 1.

For default XML import, if startcolumn is supplied, import skips
the first (startcolumn - 1) elements in each row.

This argument has no effect on template XML import.
PowerScript Reference 643

ImportClipboard
-11 XML Parsing Error; XML parser libraries not found, or XML not well
formed

-12 XML Template does not exist or does not match the DataWindow

If any argument’s value is null, ImportClipboard returns null. If the optional
importtype argument is specified and is not a valid type, ImportClipboard
returns -3.

Usage The clipboard data must be formatted in tab-separated or comma-separated
columns or in XML. The datatypes and order of the DataWindow object’s
columns must match the data on the clipboard.

For graphs, ImportClipboard uses only three columns and ignores other
columns. Each row of data must contain three pieces of information. The
information depends on the type of graph:

• For all graph types except scatter, the first column to be imported is the
series name, the second column contains the category, and the third
column contains the data.

• For scatter graphs, the first column to be imported is the series name, the
second column is the data’s x value, and the third column is the y value.

If a series or category already exists in the graph, the data is assigned to it.
Otherwise, the series and categories are added to the graph.

You can add data to more than one series by specifying different series names
in the first column.

Examples If the clipboard contains the data shown below and the graph does not have any
data yet, then the next statement produces a graph with two series and three
categories. The clipboard data is:

Sales 94Jan3000
Sales 94Mar2200
Sales 94May2500
Sales 95Jan4000
Sales 95Mar3200
Sales 95May3500

This statement copies all the data in the clipboard, as shown above, to
gr_employee:

gr_employee.ImportClipboard()
644 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This statement copies the data from the clipboard starting with row 2 column
3 and copying to row 30 column 5 to the graph gr_employee:

gr_employee.ImportClipboard(2, 30, 3)

See also ImportFile
ImportString

ImportFile
Description Inserts data into a DataWindow control, DataStore object, or graph control

from data in a file. The data can be tab-separated text, comma-separated text,
XML, or dBase format 2 or 3. The format of the file depends on whether the
target is a DataWindow (or DataStore) or a graph and on the type of graph.

For DataWindow and DataStore syntax, see the ImportFile method for
DataWindows in the DataWindow Reference or the online Help.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax graphname.ImportFile ({ importtype}, filename {, startrow {, endrow {,
startcolumn } } })

Argument Description

graphname The name of the graph control to which you want to copy data from
the specified file.

importtype
(optional)

An enumerated value of the SaveAsType DataWindow constant. If
this argument is specified, the importtype argument can be specified
without an extension. Valid type arguments for ImportFile are:

Text!
CSV!
XML!
DBase2!
DBase3!

filename A string whose value is the name of the file from which you want
to copy data. The file must be an ASCII, tab-separated file (TXT),
comma-separated file (CSV), Extensible), or dBase format 2 or 3
file (DBF). Specify the file’s full name. If the optional importtype
is not specified, the name must end in the appropriate extension.

If filename is an empty string or if it is null, ImportFile displays the
File Open dialog box and allows the user to select a file. The
remaining arguments are ignored.
PowerScript Reference 645

ImportFile
Return value Long. Returns the number of rows that were imported if it succeeds and one of
the following negative integers if an error occurs:

-1 No rows or startrow value supplied is greater than the number of rows in
the file

-2 Empty file or input data does not match number of columns or required
column type

-3 Invalid argument

-4 Invalid input

-5 Could not open the file

-6 Could not close the file

-7 Error reading the text

-8 Unsupported file name suffix (must be *.txt, *.csv, *.dbf or *.xml)

-10 Unsupported dBase file format (not version 2 or 3)

startrow
(optional)

The number of the first detail row in the file that you want to copy.
The default is 1.

For default XML import, if startrow is supplied, the first N
(startrow -1) elements are skipped, where N is the DataWindow row
size.

For template XML import, if startrow is supplied, the first
(startrow -1) occurrences of the repetitive row mapping defined in
the template are skipped.

endrow
(optional)

The number of the last detail row in the file that you want to copy.
The default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when
N * endrow elements have been imported, where N is the
DataWindow row size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the
template have been imported.

startcolumn
(optional)

The number of the first column in the file that you want to copy. The
default is 1.

For default XML import, if startcolumn is supplied, import skips
the first (startcolumn - 1) elements in each row.

This argument has no effect on template XML import.

Argument Description
646 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
-11 XML Parsing Error; XML parser libraries not found or XML not well
formed

-12 XML Template does not exist or does not match the DataWindow

-15 File size exceeds limit

If any argument’s value is null, ImportFile returns null. If the optional importtype
argument is specified and is not a valid type, ImportFile returns -3.

Usage The format of the file can be indicated by specifying the optional importtype
parameter, or by including the appropriate file extension.

For graph controls, ImportFile only uses three columns and ignores other
columns. Each row of data must contain three pieces of information. The
information depends on the type of graph:

• For all graph types except scatter, the first column to be imported is the
series name, the second column contains the category, and the third
column contains the data.

• For scatter graphs, the first column to be imported is the series name, the
second column is the data’s x value, and the third column is the y value.

You can add data to more than one series by specifying different series names
in the first column. To let users select the file to import, specify a null string for
filename. PowerBuilder displays the Select Import File dialog box.

Double quotes The location and number of double quote marks in a field in
a tab delimited file affect how they are handled when the file is imported. If a
string is enclosed in one pair of double quotes, the quotes are discarded. If it is
enclosed in three pairs of double quotes, one pair is retained when the string is
imported. If the string is enclosed in two pairs of double quotes, the first pair is
considered to enclose a null string, and the rest of the string is discarded.

When there is a double quote at the beginning of a string, any characters after
the second double quote are discarded. If there is no second double quote, the
tab character delimiting the fields is not recognized as a field separator and all
characters up to the next occurrence of a double quote, including a carriage
return, are considered to be part of the string. A validation error is generated if
the combined strings exceed the length of the first string.
PowerScript Reference 647

ImportFile
Double quotes after the first character in the string are rendered literally. Here
are some examples of how tab-delimited strings are imported into a
two-column DataWindow:

Specifying a null string for file name
If you specify a null string for filename, the remaining arguments are ignored.
All the rows and columns in the file are imported.

Examples This statement copies all the data in the file D:\EMPLOYEE.TXT to
gr_employee starting at the first row:

gr_employee.ImportFile("D:\EMPLOYEE.TXT")

This statement copies the data from the file D:\EMPLOYEE.TXT starting with
row 2 column 3 and ending with row 30 column 5 to the graph gr_employee:

gr_employee.ImportFile("D:\EMPLOYEE.TXT", 2, 30, 3)

The following statements are equivalent. Both import the contents of the XML
file named myxmldata:

gr_control.ImportFile(myxmldata.xml)
gr_control.ImportFile(XML!, myxmldata)

This example causes PowerBuilder to display the Specify Import File dialog
box:

string null_str
SetNull(null_str)
dw_main.ImportFile(null_str)

See also ImportClipboard
ImportString

Text in file Result

"Joe" TAB "Donaldson" Joe Donaldson

Bernice TAB """Ramakrishnan""" Bernice "Ramakrishnan"

""Mary"" TAB ""Li"" Empty cells

"Mich"ael TAB """Lopes""" Mich "Lopes"

"Amy TAB Doherty" Amy<TAB>Doherty in first cell, second cell
empty

3""" TAB 4" 3""" 4"
648 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ImportString
Description Inserts data into a DataWindow control, DataStore object, or graph control

from tab-separated, comma-separated, or XML data in a string. The way data
is arranged in the string in tab-delimited columns depends on whether the target
is a DataWindow (or DataStore) or a graph, and on the type of graph.

For DataWindow and DataStore syntax, see the ImportString method for
DataWindows in the DataWindow Reference or the online Help.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax graphname.ImportString ({ importtype}, string {, startrow {, endrow {,
startcolumn } } })

Argument Description

graphname The name of the graph control to which you want to copy data from
the specified string.

importtype
(optional)

A value of the SaveAsType enumerated datatype (PowerBuilder) or
a string (Web DataWindow) specifying the format of the imported
string. Valid type arguments are:

Text!
CSV!
XML!

If you want to generate an XML trace file, the XML! argument is
required.

string A string from which you want to copy the data. The string should
contain tab-separated or comma-separated columns or XML with
one row per line (see Usage).

startrow
(optional)

The number of the first detail row in the string that you want to
copy. The default is 1.

For default XML import, if startrow is supplied, the first N
(startrow -1) elements are skipped, where N is the DataWindow row
size.

For template XML import, if startrow is supplied, the first
(startrow -1) occurrences of the repetitive row mapping defined in
the template are skipped.
PowerScript Reference 649

ImportString
Return value Returns the number of data points that were imported if it succeeds and one of
the following negative integers if an error occurs:

-1 No rows or startrow value supplied is greater than the number of rows in
the string

-2 Empty string or input data does not match number of columns or required
column type

-3 Invalid argument

-4 Invalid input

-11 XML Parsing Error; XML parser libraries not found or XML not well
formed

-12 XML Template does not exist or does not match the DataWindow

If any argument’s value is null, ImportString returns null. If the optional
importtype argument is specified and is not a valid type, ImportString returns -3.

Usage For graph controls, ImportString only uses three columns on each line and
ignores other columns. The three columns must contain information that
depends on the type of graph:

• For all graph types except scatter, the first column to be imported is the
series name, the second column contains the category, and the third
column contains the data.

• For scatter graphs, the first column to be imported is the series name, the
second column is the data’s x value, and the third column is the y value.

endrow
(optional)

The number of the last detail row in the string that you want to copy.
The default is the rest of the rows.

For default XML import, if endrow is supplied, import stops when
N * endrow elements have been imported, where N is the
DataWindow row size.

For template XML import, if endrow is supplied, import stops after
endrow occurrences of the repetitive row mapping defined in the
template have been imported.

startcolumn
(optional)

The number of the first column in the string that you want to copy.
The default is 1.

For default XML import, if startcolumn is supplied, import skips
the first (startcolumn - 1) elements in each row.

This argument has no effect on template XML import.

Argument Description
650 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
You can add data to more than one series by specifying different series names
in the first column.

Examples These statements copy the data from the string ls_Text starting with row 2
column 3 and ending with row 30 column 5 to the graph gr_employee:

string ls_Text
ls_Text = . . .
gr_employee.ImportString(ls_Text, 2, 30, 3)

The following script stores data for two series in the string ls_gr and imports
the data into the graph gr_custbalance. The categories in the data are A, B, and
C:

string ls_gr

ls_gr = "series1~tA~t12~r~n"
ls_gr = ls_gr + "series1~tB~t13~r~n"
ls_gr = ls_gr + "series1~tC~t14~r~n"
ls_gr = ls_gr + "series2~tA~t15~r~n"
ls_gr = ls_gr + "series2~tB~t14~r~n"
ls_gr = ls_gr + "series2~tC~t12.5~r~n"

gr_custbalance.ImportString(ls_gr, 1)

See also ImportClipboard
ImportFile

IncomingCallList
Description Provides a list of the callers of a routine included in a performance analysis

model.

Applies to ProfileRoutine object

Syntax iinstancename.IncomingCallList (list, aggregrateduplicateroutinecalls)

Argument Description

instancename Instance name of the ProfileRoutine object.

list An unbounded array variable of datatype
ProfileCall in which IncomingCallList stores a
ProfileCall object for each caller of the routine.
This argument is passed by reference.
PowerScript Reference 651

IncomingCallList
Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The model does not exist

Usage Use this function to extract a list of the callers of a routine included in a
performance analysis model. Each caller is defined as a ProfileCall object and
provides the called routine and the calling routine, the number of times the call
was made, and the elapsed time. The callers are listed in no particular order.

You must have previously created the performance analysis model from a trace
file using the BuildModel function.

The aggregateduplicateroutinecalls argument indicates whether duplicate
routine calls will result in the creation of a single or of multiple ProfileCall
objects. This argument has no effect unless line tracing is enabled and a calling
routine calls the current routine from more than one line. If
aggregateduplicateroutinecalls is true, a new ProfileCall object is created that
aggregates all calls from the calling routine to the current routine. If
aggregateduplicateroutinecalls is false, multiple ProfileCall objects are
returned, one for each line from which the calling routine called the called
routine.

Examples This example gets a list of the routines included in a performance analysis
model and then gets a list of the routines that called each routine:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(i_routinelist)

FOR ll_cnt = 1 TO UpperBound(iprort_list)
 iprort_list[ll_cnt].IncomingCallList(lproc_call, &
 TRUE)
 ...
NEXT

See also BuildModel
OutgoingCallList

aggregateduplicateroutinecalls A boolean indicating whether duplicate routine
calls will result in the creation of a single or of
multiple ProfileCall objects.

Argument Description
652 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Init
Sets ORB property values or initializes an instance of the CORBACurrent
service object.

Syntax 1 For setting ORB property values
Description Sets ORB property values. This function is used by PowerBuilder clients

connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.Init (options)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

Usage ORB properties configure settings required by the EAServer ORB driver.

You do not need to call the Init function to use the JaguarORB object. If you
do not call Init, the EAServer ORB driver uses the default property values.

The Init function can be called multiple times on the same JaguarORB object.
PowerBuilder creates a new internal instance of the JaguarORB object the first
time and uses this object for all subsequent calls.

For additional examples, see the functions on the See also list.

Examples The following example shows the use of the Init function to set the RetryCount
and RetryDelay ORB properties:

JaguarORB my_orb
CORBAObject my_corbaobj
...

To Use

Set ORB property values for client connections to EAServer using
the JaguarORB object

Syntax 1

Initialize an instance of the CORBACurrent service object for
client- or component-managed transactions

Syntax 2

Argument Description
jaguarorb An instance of JaguarORB.

options A string that specifies one or more ORB property values. If you
specify multiple property values, you need to separate the property
values with commas.

For a complete list of supported ORB properties, see the online Help
for the Options property of the Connection object.
PowerScript Reference 653

Init
...
my_orb = CREATE JaguarORB
my_orb.Init("ORBRetryCount=3,ORBRetryDelay=1000")
...
...

See also Object_To_String
Resolve_Initial_References
String_To_Object

Syntax 2 For initializing CORBACurrent
Description Initializes an instance of the CORBACurrent service object.

Applies to CORBACurrent objects

Syntax CORBACurrent.Init ({ connection | URL})

Return value Integer. Returns 0 if it succeeds and one of the following values if the service
object could not be initialized:

-1 Unknown error

-2 Service object not running in EAServer (no argument) or Connection
object not connected to EAServer (argument is Connection object)

-3 ORB initialization error

-4 Error on a call to the
ORB.resolve_initial_references("TransactionCurrent") method

-5 Error on a call to the narrow method

Argument Description
CORBACurrent Reference to the CORBACurrent service instance.

connection The name of the Connection object for which a connection has
already been established to a valid EAServer host. Either
connection or URL is required if the Init function is called by
a client.

URL String. The name of a URL that identifies a valid EAServer
host. Either connection or URL is required if the Init function
is called by a client.
654 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage The Init function can be called from a PowerBuilder component running in
EAServer whose transaction property is marked as OTS style, or by a
PowerBuilder client. The Init function must be called to initialize the
CORBACurrent object before any other functions are called. EAServer must
be using the two-phase commit transaction coordinator (OTS/XA) and a
reference to the CORBACurrent object must first be obtained using the
GetContextService function.

When Init is called from a PowerBuilder component running in EAServer, no
arguments are required. If the calling component is not marked as OTS style,
the CORBACurrent object is not initialized.

When Init is called from a PowerBuilder client and the client is responsible for
the transaction, the CORBACurrent object must be initialized by calling Init
with either a Connection object or a URL string as the argument. In the case of
a Connection object, the client must already be connected to a valid EAServer
host using that Connection object. Using a Connection object is preferred
because the code is more portable.

Examples This example shows the use of Init in a PowerBuilder EAServer component to
initialize an instance of the CORBACurrent object:

// Instance variables:
// CORBACurrent corbcurr
int li_rc

li_rc = this.GetContextService("CORBACurrent",
 corbcurr)
IF li_rc <> 1 THEN
 // handle the error
ELSE
 li_rc = corbcurr.init()
 IF li_rc <> 0 THEN
 // handle the error
 END IF
END IF

In this example, Init is called by a PowerBuilder client application that has
already connected to EAServer using the myconn Connection object and has
created a reference called corbcurr to the CORBACurrent object:

li_rc = corbcurr.init(myconn)
IF li_rc <> 0 THEN
 // handle the error
END IF
PowerScript Reference 655

InputFieldChangeData
In this example, the PowerBuilder client application calls the Init function using
a valid URL:

li_rc = corbcurr.init("iiop://localhost:2000")
IF li_rc <> 0 THEN
 // handle the error
END IF

See also BeginTransaction
CommitTransaction
GetContextService
GetStatus
GetTransactionName
ResumeTransaction
RollbackOnly
RollbackTransaction
SetTimeout
SuspendTransaction

InputFieldChangeData
Description Modifies the data value of input fields in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldChangeData (inputfieldname, inputfieldvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, InputFieldChangeData returns null.

Usage All the input fields that have the same name contain the same data. When you
call InputFieldChangeData, you affect all the fields of the specified name.

Argument Description

rtename The name of the RichTextEdit control in which you want
to change the data in the specified input fields.

inputfieldname A string whose value is the name of input fields whose
value you want to change. There can be more than one
input field with a given name.

inputfieldvalue A string whose value is the data to be assigned to the
specified input fields.
656 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This script is part of the SelectionChanged event for the ListBox
lb_instruments. When the user clicks on an item in the ListBox, the selected
instrument name is assigned to the input field called instrument in the
RichTextEdit rte_1:

integer rtn
rtn = rte_1.InputFieldChangeData &
 ("instrument", lb_instruments.SelectedItem())

st_status.Text = String(rtn)

If the text in rte_1 looks like this:

Dear {title} {lastname}:

We’re happy you have rented a {instrument} for your child. Please perform
regular maintenance for the {instrument} as instructed by your child’s teacher.
You can buy {instrument} supplies and instruction books at your local music
stores.

Then after the user picks trumpet in the ListBox, the script inserts trumpet for
every occurrence of the {instrument} field. The other fields are not affected:

Dear {title} {lastname}:

We’re happy you have rented a trumpet for your child. Please perform regular
maintenance for the trumpet as instructed by your child’s teacher. You can buy
trumpet supplies and instruction books at your local music stores.

See also InputFieldCurrentName
InputFieldDeleteCurrent
InputFieldGetData
InputFieldInsert
InputFieldLocate
DataSource

InputFieldCurrentName
Description Gets the name of the input field when the insertion point is in an input field in

a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldCurrentName ()
PowerScript Reference 657

InputFieldDeleteCurrent
Return value String. Returns the name of the input field. If the insertion point is not in an
input field or if an error occurs, it returns the empty string ("").

Examples This example gets the name of the input field containing the insertion point:

string ls_inputname
ls_inputname = rte_1.InputFieldCurrentName()

See also InputFieldChangeData
InputFieldDeleteCurrent
InputFieldGetData
InputFieldInsert
InputFieldLocate
DataSource

InputFieldDeleteCurrent
Description Deletes the input field that is selected in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldDeleteCurrent ()

Return value Integer. Returns 1 if it succeeds and -1 if there is no input field at the insertion
point, the input field is activated for editing, or an error occurs.

Usage All the input fields that have the same name contain the same data but they can
be deleted independently. If one of a group of input fields with the same name
is deleted, the others are not affected. If all the input fields of the same name
are deleted, the RichTextEdit control remembers the data from those input
fields. It will use that data to initialize a new input field that has the same name
as the deleted fields.

The input field must be the only selection. If other text is selected too,
InputFieldDeleteCurrent fails. When an input field is the current and only
selection, the highlight flashes.

Argument Description

rtename The name of the RichTextEdit control in which you want to get the
input field’s name

Argument Description

rtename The name of the RichTextEdit control in which you want
to delete the input field that is selected
658 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
InputFieldDeleteCurrent deletes only the current field. Other fields with the
same name within the document are not affected. If the RichTextEdit control
uses the DataSource function to share data with a DataWindow, the current
field is deleted from all instances of the document.

Examples This example deletes the input field containing the insertion point:

integer li_rtn
li_rtn = rte_1.InputFieldDeleteCurrent()

See also InputFieldChangeData
InputFieldGetData
InputFieldCurrentName
InputFieldInsert
InputFieldLocate
DataSource

InputFieldGetData
Description Get the data in the specified input field in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldGetData (inputfieldname)

Return value String. The data in the input field. InputFieldGetData returns the empty string
("") if the field does not exist or an error occurs.

Examples This example gets the data in the input field empname:

string ls_name
ls_name = rte_1.InputFieldGetData(empname)

See also InputFieldChangeData
InputFieldCurrentName
InputFieldDeleteCurrent
InputFieldInsert
InputFieldLocate
DataSource

Argument Description

rtename The name of the RichTextEdit control in which you want to
get data from the selected input field

inputfieldname A string whose value is the name of input field from which
you want to get the data
PowerScript Reference 659

InputFieldInsert
InputFieldInsert
Description Inserts a named input field at the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InputFieldInsert (inputfieldname)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If inputfieldname is
null, InputFieldInsert returns null.

Usage There can be several input fields with the same name. Fields of a given name
all have the same data value. When you call InputFieldChangeData for a named
input field, all fields with that name are changed.

Examples If there is a selection, InputFieldInsert inserts the field at the beginning of the
selection. The input field and the selection remain selected:

st_status.Text = String(&
rte_1.InputFieldInsert("lastname"))

See also InputFieldChangeData
InputFieldCurrentName
InputFieldDeleteCurrent
InputFieldGetData
InputFieldLocate
DataSource

InputFieldLocate
Description Locates an input field in a RichTextEdit control and moves the insertion point

there.

Applies to RichTextEdit controls

Syntax rtename.InputFieldLocate (location {, inputfieldname })

Argument Description

rtename The name of the RichTextEdit control in which you want
to insert an input field

inputfieldname A string whose value is the name of input field to be
inserted. The name does not have to be unique
660 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value String. Returns the name of the input field it located if it succeeds.
InputFieldLocate returns an empty string if no matching input field is found or
if an error occurs. If any argument is null, InputFieldLocate returns null.

Usage There can be several input fields with the same name. Fields of a given name
all have the same data value.

Examples This example locates the next input field after the insertion point. If found,
ls_name is set to the name of the input field:

string ls_name
ls_name = rte_1.InputFieldLocate(Next!)

This example locates the last input field in the document:

string ls_name
ls_name = rte_1.InputFieldLocate(Last!)

This example locates the last occurrence in the document of the input field
named address. If found, ls_name is set to the value "address":

string ls_name
ls_name = rte_1.InputFieldLocate(Last!, "address")

Argument Description

rtename The name of the RichTextEdit control in which you want to
locate an input field.

location A value of the Location enumerated datatype that specifies the
occurrence of the input field you want to locate. Values are:

• First! – The first occurrence in the document of
inputfieldname, or if no name is specified, the first input
field in the document

• Last! – The last occurrence in the document of
inputfieldname, or if no name is specified, the last input field
in the document

• Next! – The occurrence of inputfieldname that is after the
insertion point, or if no name is specified, the next input field
of any name after the insertion point

• Prior! – The occurrence of inputfieldname before the
insertion point, or if no name is specified, the next input field
of any name before the insertion point

inputfieldname A string whose value is the name of the input field you want to
locate. If there are multiple occurrences of inputfieldname in
the control, location specifies the one to be located.
PowerScript Reference 661

InsertCategory
See also InputFieldChangeData
InputFieldCurrentName
InputFieldDeleteCurrent
InputFieldGetData
InputFieldInsert
DataSource

InsertCategory
Description Inserts a category on the category axis of a graph at the specified position.

Existing categories are renumbered to keep the category numbering sequential.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax controlname.InsertCategory (categoryvalue, categorynumber)

Return value Integer. Returns the number of the category if it succeeds and -1 if an error
occurs. If the category already exists, it returns the number of the existing
category. If any argument’s value is null, InsertCategory returns null.

Usage Categories are discrete. Even on a date or time axis, each category is separate
with no timeline-style connection between categories. Only scatter graphs,
which do not have discrete categories, have a continuous category axis.

When the axis datatype is string, category names are unique if they have
different capitalization. Also, you can specify the empty string ("") as the
category name. However, because category names must be unique, there can
be only one category with that name.

Argument Description

controlname The name of the graph into which you want to insert a
category.

categoryvalue A value that is the category you want to insert. The category
must be unique within the graph. The value you specify must
be the same datatype as the datatype of the category axis.

categorynumber The number of the category before which you want to insert
the new category. To add the category at the end, specify 0. If
the axis is sorted, the category will be integrated into the
existing order, ignoring categorynumber.
662 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
When you use InsertCategory to create a new category, there will be holes in
each of the series for that category. Use AddData or InsertData to create data
points for the new category.

Equivalent syntax If you want to add a category to the end of a series, you
can use AddCategory instead, which requires fewer arguments.

This statement:

gr_data.InsertCategory("Qty", 0)

is equivalent to:

gr_data.AddCategory("Qty")

Examples These statements insert a category called Macs before the category named PCs
in the graph gr_product_data:

integer CategoryNbr

// Get the number of the category.
CategoryNbr = FindCategory("PCs")
gr_product_data.InsertCategory("Macs", CategoryNbr)

In a graph reporting mail volume in the afternoon, these statements add three
categories to a time axis. If the axis is sorted, the order in which you add the
categories does not matter:

catnum = gr_mail.InsertCategory(13:00, 0)
catnum = gr_mail.InsertCategory(12:00, 0)
catnum = gr_mail.InsertCategory(13:00, 0)

See also AddData
AddCategory
FindCategory
FindSeries
InsertData
InsertSeries
PowerScript Reference 663

InsertClass
InsertClass
Description Inserts a new object of the specified OLE class in an OLE control.

Syntax ole2control.InsertClass (classname)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Invalid class name
-9 Other error

If any argument’s value is null, InsertClass returns null.

Usage Classnames are stored in the Registration database. Examples of classnames
include:

Excel.Sheet
Excel.Chart
Word.Document

Examples This example inserts an empty Excel spreadsheet into the OLE control, ole_1:

integer result
result = ole_1.InsertClass("excel.sheet")

See also InsertFile
InsertObject
LinkTo

InsertColumn
Description Inserts a column with the specified label, alignment, and width at the specified

location.

Applies to ListView controls

Syntax listviewname.InsertColumn (index, label, alignment, width)

Argument Description

ole2control The name of the OLE control in which you want to create a new
object

classname A string whose value is the name of the class of the object you want
to create
664 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns the column index value if it succeeds and -1 if an error occurs.

Usage You can insert a column anywhere in the control. If the index you specify is
greater than the current number of columns, the column is inserted after the last
column.

Examples This example inserts a column named Location, makes it right-aligned, and
sets the column width to 300:

lv_list.InsertColumn(2 , "Location" , Right! , 300)

See also AddColumn
DeleteColumn

InsertData
Description Inserts a data point in a series of a graph. You can specify the category for the

data point or its position in the series. Does not apply to scatter graphs.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax controlname.InsertData (seriesnumber, datapoint, datavalue
 {, categoryvalue })

Argument Description

listviewname The name of the ListView control to which you want to insert a
column.

index An integer whose value is the number of the column before which
you are inserting a new column.

label A string whose value is the name of the column you are inserting.

alignment A value of the enumerated datatype Alignment specifying the
alignment of the column you are inserting. Values are:

Center!
Justify!
Left!
Right!

width An integer whose value is the width of the column you are inserting,
in PowerBuilder units.

Argument Description

controlname The name of the graph in which you want to insert data into a
series.
PowerScript Reference 665

InsertData
Return value Integer. Returns the number of the data value if it succeeds and -1 if an error
occurs. If any argument’s value is null, InsertData returns null.

Usage When you specify datapoint without specifying categoryvalue, InsertData
inserts the data point in the category at that position, shifting existing data
points to the following categories. The shift may cause there to be
uncategorized data points at the end of the axis.

When you specify categoryvalue, InsertData ignores the position in datapoint
and puts the data point in the specified category, replacing any data value that
is already there. If the category does not exist, InsertData creates the category
at the end of the axis.

To modify the value of a data point at a specified position, use ModifyData.

Scatter graphs
To add data to a scatter graph, use Syntax 2 of AddData.

Equivalent syntax If you want to add a data point to the end of a series or to
an existing category in a series, you can use AddData instead, which requires
fewer arguments.

InsertData and ModifyData behave differently when you specify datapoint to
indicate a position for inserting or modifying data. However, they behave the
same as AddData when you specify a position of 0 and a category. All three
modify the value of a data point when the category already exists. All three
insert a category with a data value at the end of the axis when the category does
not exist.

When you specify a position as well as a category, and that category already
exists, InsertData ignores the position and modifies the data of the specified
category, but ModifyData changes the category label at that position.

seriesnumber The number that identifies the series in which you want to
insert data.

datapoint The number of the data point before which you want to insert
the data.

datavalue The value of the data point you want to insert.

categoryvalue
(optional)

The category for this data value on the category axis. The
datatype of categoryvalue should match the datatype of the
category axis. In most cases, you should include
categoryvalue. Otherwise, an uncategorized value will be
added to the series.

Argument Description
666 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This statement:

gr_data.InsertData(1, 0, 44, "Qty")

is equivalent to:

gr_data.ModifyData(1, 0, 44, "Qty")

and is also equivalent to:

gr_data.AddData(1, 44, "Qty")

When you specify a position, the following statements are not equivalent:

• InsertData ignores the position and modifies the data value of the Qty
category:

gr_data.InsertData(1, 4, 44, "Qty")

• ModifyData changes the category label and the data value at position 4:

gr_data.ModifyData(1, 4, 44, "Qty")

Examples Assuming the category label Jan does not already exist, these statements insert
a data value in the series named Costs before the data point for Mar and assign
the data point the category label Jan in the graph gr_product_data:

integer SeriesNbr, CategoryNbr

// Get the numbers of the series and category.
SeriesNbr = gr_product_data.FindSeries("Costs")
CategoryNbr = gr_product_data.FindCategory("Mar")
gr_product_data.InsertData(SeriesNbr, &
 CategoryNbr, 1250, "Jan")

These statements insert the data value 1250 after the data value for Apr in the
series named Revenues in the graph gr_product_data. The data is inserted in the
category after Apr, and the rest of the data, if any, moves over a category:

integer SeriesNbr, CategoryNbr

// Get the number of the series and category.
CategoryNbr = gr_product_data.FindCategory("Apr")
SeriesNbr = gr_product_data.FindSeries("Revenues")

gr_product_data.InsertData(SeriesNbr, &
 CategoryNbr + 1, 1250)

See also AddData
FindCategory
FindSeries
GetData
PowerScript Reference 667

InsertDocument
InsertDocument
Description Inserts a rich text format or plain text file into a RichTextEdit control,

DataWindow control, or DataStore object. The new content is added in one of
two ways:

• The new content can be inserted at the insertion point.

• The new content can replace all existing content.

Applies to RichTextEdit controls, DataWindow controls, and DataStore objects

Syntax rtename.InsertDocument (filename, clearflag { , filetype })

Argument Description

rtename The name of the RichTextEdit control, DataWindow
control, or DataStore object in which you want to display
the file. The DataWindow object in the DataWindow
control (or DataStore) must be a RichTextEdit
DataWindow.

filename A string whose value is the name of the file you want to
display in the RichTextEdit control. Filename can include
the file’s path.

clearflag A boolean value specifying whether the new file will
replace the current contents of the control. Values are:

• true – Replace the current contents with the file

• false – Insert the file into the existing contents at the
insertion point

filetype
(optional)

A value of the FileType enumerated datatype specifying
the type of file being opened. Values are:

• FileTypeRichText! – (Default) The file being opened is
in rich text format (RTF)

• FileTypeText! – The file being opened is plain ASCII
text (TXT)

• FileTypeHTML! – The file being opened is in HTML
format (HTM or HTML)

• FileTypeDoc! – The file being opened is in Microsoft
Word format (DOC)

If filetype is not specified, PowerBuilder uses the filename
extension to decide whether to read the file as rich text or
plain text. If the extension is not one of the supported file
type extensions, PowerBuilder attempts to read the file as
rich text. To insert files with extensions such as INI, LOG,
or SQL, you must specify FileTypeText!.
668 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, InsertDocument returns null.

Usage You cannot insert a document into a rich text control when the control’s
DisplayOnly property is set to true. If you try to do this, PowerBuilder displays
a runtime error message.

When the control supports headers and footers (the HeaderFooter property is
set to true), inserting a document can replace, but not add to, existing header
and footer text. You must set clearflag to true to replace the existing header and
footer text with header and footer text from the inserted document.

Not all RTF formatting is supported. PowerBuilder supports version 1.2 of the
RTF standard, except for the following:

• No support for formatted tables

• No drawing objects

Any unsupported formatting is ignored.

Examples This example inserts a document into rte_1 and reports the return value in a
StaticText control:

integer rtn
rtn = rte_1.InsertDocument("c:\pb\test.rtf", &
 TRUE, FileTypeRichText!)
st_status.Text = String(rtn)

See also InputFieldInsert
InsertPicture
DataSource

InsertFile
Description Inserts an object into an OLE control. A copy of the specified file is embedded

in the OLE object.

Syntax olecontrol.InsertFile (filename)

Argument Description

olecontrol The name of the OLE control.

filename A string whose value is the name of the file whose contents you
want to be the data in the embedded OLE object. Filename should
include the file’s path.
PowerScript Reference 669

InsertItem
Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 File not found
-9 Other error

If any argument’s value is null, InsertFile returns null.

Usage The contents of the specified file is embedded in the OLE object. There is no
further link between the object in PowerBuilder and the file.

Examples This example creates a new OLE object in the control ole_1. It is an Excel
object and contains data from the spreadsheet EXPENSE.XLS:

integer result
result = ole_1.InsertFile("c:\xls\expense.xls")

See also InsertClass
InsertObject
LinkTo
Paste

InsertItem
Inserts an item into a ListBox, DropDownListBox, ListView, or TreeView
control.

To insert an item into a Use

ListBox or DropDownListBox control Syntax 1

PictureListBox or DropDownPictureListBox control Syntax 2

ListView control when only the label and picture index need to be
specified

Syntax 3

ListView control when more than the label and picture index need
to be specified

Syntax 4

TreeView control when only the label and picture index need to be
specified

Syntax 5

TreeView control when more than the label and picture index need
to be specified

Syntax 6
670 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 1 For ListBox and DropDownListBox controls
Description Inserts an item into the list of values in a list box.

Applies to ListBox and DropDownListBox controls

Syntax listboxname.InsertItem (item, index)

Return value Integer. Returns the final position of the item. Returns -1 if an error occurs. If
any argument’s value is null, InsertItem returns null.

Usage InsertItem inserts the new item before the item identified by index. If the items
in listboxname are sorted (its Sorted property is true), PowerBuilder resorts the
items after the new item is inserted. The return value reflects the new item’s
final position in the list.

AddItem and InsertItem do not update the Items property array. You can use
FindItem to find items added at runtime.

Examples This statement inserts the item Run Application before the fifth item in
lb_actions:

lb_actions.InsertItem("Run Application", 5)

If the Sorted property is false, the statement above returns 5 (the previous item
5 becomes item 6). If the Sorted property is true, the list is sorted after the item
is inserted and the function returns the index of the final position of the item.

If the ListBox lb_Cities has the following items in its list and its Sorted property
is set to true, then the following example inserts Denver at the top, sorts the list,
and sets li_pos to 4. If the ListBox’s Sorted property is false, then the statement
inserts Denver at the top of the list and sets li_pos to 1. The list is:

Albany
Boston
Chicago
New York

The example code is:

string ls_City = "Denver"
integer li_pos
li_pos = lb_Cities.InsertItem(ls_City, 1)

Argument Description

listboxname The name of the ListBox or DropDownListBox into which you
want to insert an item

item A string whose value is the text of the item you want to insert

index The number of the item in the list before which you want to insert
the item
PowerScript Reference 671

InsertItem
See also AddItem
DeleteItem
FindItem
Reset
TotalItems

Syntax 2 For ListBox and DropDownListBox controls
Description Inserts an item into the list of values in a picture list box.

Applies to PictureListBox and DropDownPictureListBox controls

Syntax listboxname.InsertItem (item {, pictureindex }, index)

Return value Integer. Returns the final position of the item. Returns -1 if an error occurs. If
any argument’s value is null, InsertItem returns null.

Usage If you do not specify a picture index, the newly added item will not have a
picture.

If you specify a picture index that does not exist, that number is still stored with
the picture. If you add pictures to the picture array so that the index becomes
valid, the item will then show the corresponding picture.

For additional notes about items in ListBoxes and examples of how the Sorted
property affects the item order, see Syntax 1.

Examples This statement inserts the item Run Application before the fifth item in
lb_actions. The item has no picture assigned to it:

plb_actions.InsertItem("Run Application", 5)

This statement inserts the item Run Application before the fifth item in
lb_actions and assigns it picture index 4:

plb_actions.InsertItem("Run Application", 4, 5)

Argument Description

listboxname The name of the PictureListBox or DropDownPictureListBox into
which you want to insert an item

item A string whose value is the text of the item you want to insert

pictureindex
(optional)

An integer specifying the index of the picture you want to associate
with the newly added item

index The number of the item in the list before which you want to insert the
item
672 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
See also AddItem
DeleteItem
FindItem
Reset
TotalItems

Syntax 3 For ListView controls
Description Inserts an item into a ListView control.

Applies to ListView controls

Syntax listviewname.InsertItem (index, label, pictureindex)

Return value Integer. Returns index if it succeeds and -1 if an error occurs.

Usage If you need to set more than the label and picture index, use Syntax 4.

Examples This example inserts an item in the ListView in position 11:

lv_list.InsertItem(11 , "Presentation" , 1)

See also AddItem

Syntax 4 For ListView controls
Description Inserts an item into a ListView control.

Applies to ListView controls

Syntax listviewname.InsertItem (index, item)

Argument Description

listviewname The name of the ListView control to which you are adding an item

index An integer whose value is the index number of the item before
which you are inserting a new item

label A string whose value is the name of the item you are adding

pictureindex An integer whose value is the index number of the picture of the
item you are adding

Argument Description

listviewname The name of the ListView control into which you are inserting an
item

index An integer whose value is the index number of the item you are
adding
PowerScript Reference 673

InsertItem
Return value Integer. Returns index if it succeeds and -1 if an error occurs.

Usage The index you specify is the position of the item you are adding to a ListView.

If you need to insert just the label and picture index into the ListView control,
use Syntax 3.

Examples This example moves a ListView item from the second position into the fifth
position. It uses GetItem to retrieve the state information from item 2, inserts it
into the ListView control as item 5, and then deletes the original item:

listviewitem l_lvi

lv_list.GetItem(2 , l_lvi)
lv_list.InsertItem(5 , l_lvi)
lv_list.DeleteItem(2)

See also AddItem

Syntax 5 For TreeView controls
Description Inserts an item at a specific level and order in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.InsertItem (handleparent, handleafter, label, pictureindex)

Return value Long. Returns the handle of the inserted item if it succeeds and -1 if an error
occurs.

item A system structure of datatype ListViewItem in which InsertItem
stores the item you are inserting

Argument Description

Argument Description

treeviewname The name of the TreeView control in which you want to insert
an item.

handleparent The handle of the item one level above the item you want to
insert. To insert an item at the first level, specify 0.

handleafter The handle of the item on the same level that you will insert
the item immediately after.

label The label of the item you are inserting.

pictureindex The Index of the index of the picture you are adding to the
image list.
674 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage Use this syntax to set just the label and picture index. Use the next syntax if you
need to set additional properties for the item.

If the TreeView’s SortType property is set to a value other than Unsorted!, the
inserted item is sorted with its siblings.

If you are inserting the first child of an item, use InsertItemLast or
InsertItemFirst instead. Those functions do not require a handleafter value.

Examples This example inserts a TreeView item that is on the same level as the current
TreeView item. It uses FindItem to get the current item and its parent, then
inserts the new item beneath the parent item:

long ll_tvi, ll_tvparent
ll_tvi = tv_list.FindItem(currenttreeitem! , 0)
ll_tvparent = tv_list.FindItem(parenttreeitem!,ll_tvi)
tv_list.InsertItem(ll_tvparent,ll_tvi,"Hindemith", 2)

See also GetItem

Syntax 6 For TreeView controls
Description Inserts an item at a specific level and order in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.InsertItem (handleparent, handleafter, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage Use the previous syntax to set just the label and picture index. Use this syntax
if you need to set additional properties for the item.

If the TreeView’s SortType property is set to a value other than Unsorted!, the
inserted item is sorted with its siblings.

Argument Description

treeviewname The name of the TreeView control into which you want to
insert an item.

handleparent The handle of the item one level above the item you want to
insert. To insert an item at the first level, specify 0.

handleafter The handle of the item on the same level that you will insert
the item immediately after.

item A TreeViewItem structure for the item you are inserting.
PowerScript Reference 675

InsertItemFirst
If you are inserting the first child of an item, use InsertItemLast or
InsertItemFirst instead. Those functions do not require a handleafter value.

Examples This example inserts a TreeView item that is on the same level as the current
TreeView item. It uses FindItem to get the current item and its parent, then
inserts the new item beneath the parent item:

long ll_tvi, ll_tvparent
treeviewitem l_tvi

ll_tvi = tv_list.FindItem(currenttreeitem! , 0)
ll_tvparent = tv_list.FindItem(parenttreeitem!,ll_tvi)
tv_list.GetItem(ll_tvi , l_tvi)
tv_list.InsertItem(ll_tvparent,ll_tvi, l_tvi)

See also GetItem

InsertItemFirst
Inserts an item as the first child of a parent item.

Syntax 1 For TreeView controls
Description Inserts an item as the first child of its parent.

Applies to TreeView controls

Syntax treeviewname.InsertItemFirst (handleparent, label, pictureindex)

To insert an item as the first child of its parent Use

When you only need to specify the item label and picture index Syntax 1

When you need to specify more than the item label and picture
index

Syntax 2

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the first child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

label The label of the item you want to specify as the first child of
its parent.

pictureindex The picture index for the item you want to specify as the first
child of its parent.
676 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Examples This example populates the first level of a TreeView using InsertItemFirst:

long ll_lev1, ll_lev2 ,ll_lev3 ,ll_lev4
int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

ll_lev1 = tv_list.InsertItemFirst(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1, &
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2, &
 "Symphonies", 3)

FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " + String(index) , 4)
NEXT

tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

See also InsertItem
InsertItemLast
InsertItemSort

Syntax 2 For TreeView controls
Description Inserts an item as the first child of an item.

Applies to TreeView controls

Syntax treeviewname.InsertItemFirst (handleparent, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the first child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.
PowerScript Reference 677

InsertItemLast
Usage If SortType is anything except Unsorted!, items are sorted after they are added
and the TreeView is always in a sorted state. Therefore, calling InsertItemFirst,
InsertItemLast, and InsertItemSort produces the same result.

Examples This example inserts the current item as the first item beneath the root item in
a TreeView control:

long ll_handle, ll_roothandle
treeviewitem l_tvi
ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemFirst(ll_roothandle, l_tvi)

See also InsertItem
InsertItemLast
InsertItemSort

InsertItemLast
Inserts an item as the last child of a parent item.

Syntax 1 For TreeView controls
Description Inserts an item as the last child of its parent.

Applies to TreeView controls

Syntax treeviewname.InsertItemLast (handleparent, label, pictureindex)

To insert an item as the last child of its parent Use

When you only need to specify the item label and picture
index

Syntax 1

When you need to specify more than item label and picture
index

Syntax 2

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the last child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.
678 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If more than the item label and Index need to be specified, use syntax 2.

If SortType is anything except Unsorted!, items are sorted after they are added
and the TreeView is always in a sorted state. Therefore, calling InsertItemFirst,
InsertItemLast, and InsertItemSort produces the same result.

Examples This example populates the first three levels of a TreeView using
InsertItemLast:

long ll_lev1, ll_lev2, ll_lev3, ll_lev4
int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

ll_lev1 = tv_list.InsertItemLast(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1, &
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2, &
 "Symphonies",3)
FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " String(index), 4)
NEXT

tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

See also InsertItem
InsertItemFirst
InsertItemSort

label The label of the item you want to specify as the last child of
its parent.

pictureindex The picture index for the item you want to specify as the last
child of its parent.

Argument Description
PowerScript Reference 679

InsertItemLast
Syntax 2 For TreeView controls
Description Inserts an item as the last child of its parent.

Applies to TreeView controls

Syntax treeviewname.InsertItemLast (handleparent, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If SortType is anything except Unsorted!, items are sorted after they are added
and the TreeView is always in a sorted state. Therefore, calling InsertItemFirst,
InsertItemLast, and InsertItemSort produces the same result.

Examples This example inserts the current item as the last item beneath the root item in a
TreeView control:

long ll_handle, ll_roothandle
treeviewitem l_tvi

ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemLast(ll_roothandle, l_tvi)

See also InsertItem
InsertItemFirst
InsertItemSort

Argument Description

treeviewname The TreeView control in which you want to specify an item as
the last child of its parent.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.
680 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
InsertItemSort
Inserts a child item in sorted order under the parent item.

Syntax 1 For TreeView controls
Description Inserts an item in sorted order, if possible.

Applies to TreeView controls

Syntax treeviewname.InsertItemSort (handleparent, label, pictureindex)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If SortType is anything except Unsorted!, the TreeView is always in a sorted
state and you do not need to use InsertItemSort—you can use any insert
function.

If SortType is Unsorted!, InsertItemSort attempts to insert the item at the correct
place in alphabetic ascending order. If the list is out of order, it does its best to
find the correct place, but results may be unpredictable.

Examples This example populates the fourth level of a TreeView control:

long ll_lev1, ll_lev2, ll_lev3, ll_lev4
int index

tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

To insert an item in sorted order Use

When you only need to specify the item label and picture
index

Syntax 1

When you need to specify more than the item label and
picture index

Syntax 2

Argument Description

treeviewname The TreeView control in which you want to insert and sort an
item as a child of its parent, according to its label.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

label The label by which you want to sort the item as a child of its
parent.

pictureindex The picture index for the item you want to sort as a child of its
parent, according to its label.
PowerScript Reference 681

InsertItemSort
ll_lev1 = tv_list.InsertItemLast(0,"Composers",1)
ll_lev2 = tv_list.InsertItemLast(ll_lev1,&
 "Beethoven",2)
ll_lev3 = tv_list.InsertItemLast(ll_lev2,&
 "Symphonies",3)
FOR index = 1 to 9
 ll_lev4 = tv_list.InsertItemSort(ll_lev3, &
 "Symphony # " + String(index), 4)
NEXT

tv_list.ExpandItem(ll_lev3)
tv_list.ExpandItem(ll_lev4)

See also InsertItem
InsertItemLast
InsertItemFirst

Syntax 2 For TreeView controls
Description Inserts an item in sorted order, if possible.

Applies to TreeView controls

Syntax treeviewname.InsertItemSort (handleparent, item)

Return value Long. Returns the handle of the item inserted if it succeeds and -1 if an error
occurs.

Usage If SortType is anything except Unsorted!, the TreeView is always in a sorted
state and you do not need to use InsertItemSort—you can use any insert
function.

If SortType is Unsorted!, InsertItemSort attempts to insert the item at the correct
place in alphabetic ascending order. If the list is out of order, it does its best to
find the correct place, but results may be unpredictable.

Argument Description

treeviewname The TreeView control in which you want to sort an item as a
child of its parent, according to its label.

handleparent The handle of the item that will be the inserted item’s parent.
To insert the item at the first level, specify 0.

item A TreeViewItem structure for the item you are inserting.
682 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example inserts the current item beneath the root item in a TreeView
control and sorts it according to its label:

long ll_handle, ll_roothandle
treeviewitem l_tvi

ll_handle = tv_list.FindItem(CurrentTreeItem!, 0)
ll_roothandle = tv_list.FindItem(RootTreeItem!, 0)
tv_list.GetItem(ll_handle , l_tvi)

tv_list.InsertItemSort(ll_roothandle, l_tvi)

See also InsertItem
InsertItemFirst
InsertItemLast

InsertObject
Description Displays the standard Insert Object dialog box, allowing the user to choose a

new or existing OLE object, and inserts the selected object in the OLE control.

Syntax olecontrol.InsertObject ()

Return value Integer. Returns 0 if it succeeds and one of the following values if an error
occurs:

 1 User canceled out of dialog box
-9 Error

If any argument’s value is null, InsertObject returns null.

Examples This example displays the standard Insert Object dialog box so that the user can
select an OLE object. InsertObject inserts the selected object in the ole_1
control:

integer result
result = ole_1.InsertObject()

See also InsertClass
InsertFile
LinkTo

Argument Description

olecontrol The name of the OLE control in which you want to insert an object
PowerScript Reference 683

InsertPicture
InsertPicture
Description Inserts an image at the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.InsertPicture (filename{, format })

Return value Integer. Returns 1 if it succeeds. Returns -2 if the compression format of a .tif
file is not supported and -1 if a different error occurs. If filename is null,
InsertPicture returns null.

Usage If there is a selection, InsertPicture inserts the image at the beginning of the
selection. The image and the selection remain selected. The following file
types are supported: .bmp, .wmf, .jpeg, .png, and .gif. The .tif file type is also
supported if it uses the LZW compression format.

Examples This example inserts a PNG file at the insertion point in the RichTextEdit
control rte_1. The PNG file will be saved in the RTF file in WMF format:

integer li_rtn
li_rtn = rte_1.InsertPicture("c:\windows\earth.png")

This example inserts a JPG file at the insertion point in the RichTextEdit
control rte_1. The JPG file will be saved in the RTF file in JPG format:

integer li_rtn
li_rtn = rte_1.InsertPicture("c:\windows\earth.jpg", 4)

See also InputFieldInsert
InsertDocument

Argument Description

rtename The name of the RichTextEdit control in which you want
to insert an image

filename A string whose value is the name of the file that contains
the image

format An integer whose value determines the format in which the
image is saved in the RTF file. Values are:

• 1 – BMP

• 2 – WMF (default)

• 3 – PNG

• 4 – JPG
684 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
InsertSeries
Description Inserts a series in a graph at the specified position. Existing series in the graph

are renumbered to keep the numbering sequential.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects, because their data comes directly from the DataWindow.

Syntax controlname.InsertSeries (seriesname, seriesnumber)

Return value Integer. Returns the number of the series if it succeeds and -1 if an error occurs.
If the series named in seriesname exists already, it returns the number of the
existing series. If any argument’s value is null, InsertSeries returns null.

Usage Series names are unique if they have different capitalization.

Equivalent syntax If you want to add a series to the end of the list, you can
use AddSeries instead, which requires fewer arguments.

This statement:

gr_data.InsertSeries("Costs", 0)

is equivalent to:

gr_data.AddSeries("Costs")

Examples These statements insert a series before the series named Income in the graph
gr_product_data:

integer SeriesNbr

// Get the number of the series.
SeriesNbr = FindSeries("Income")
gr_product_data.InsertSeries("Costs", SeriesNbr)

See also AddData
AddSeries
FindCategory
FindSeries
InsertCategory
InsertData

Argument Description

controlname The name of the graph in which you want to insert a series.

seriesname A string containing the name of the series you want to insert. The
series name must be unique within the graph.

seriesnumber The number of the series before which you want to insert the new
series. To add the new series at the end, specify 0.
PowerScript Reference 685

Int
Int
Description Determines the largest whole number less than or equal to a number.

Syntax Int (n)

Return value Integer. Returns the largest whole number less than or equal to n. If n is too
small or too large to be represented as an integer, Int returns 0. If n is null, Int
returns null.

Usage When the result for Int would be smaller than -32768 or larger than 32767, Int
returns 0 because the result cannot be represented as an integer.

Examples These statements return 3.0:

Int(3.2)
Int(3.8)

The following statements return -4.0:

Int(-3.2)
Int(-3.8)

These statements remove the decimal portion of the variable and store the
resulting integer in li_nbr:

integer li_nbr
li_nbr = Int(3.2) // li_nbr = 3

See also Ceiling
Round
Truncate
Int method for DataWindows in the DataWindow Reference or the online Help

Integer
Description Converts the value of a string to an integer or obtains an integer value that is

stored in a blob.

Syntax Integer (stringorblob)

Argument Description

n The number for which you want the largest whole number that is
less than or equal to it
686 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns the value of stringorblob as an integer if it succeeds and 0 if
stringorblob is not a valid number or is an incompatible datatype. If
stringorblob is null, Integer returns null.

Usage To distinguish between a string whose value is the number 0 and a string whose
value is not a number, use the IsNumber function before calling the Integer
function.

Examples This statement returns the string 24 as an integer:

Integer("24")

This statement returns the contents of the SingleLineEdit sle_Age as an integer:

Integer(sle_Age.Text)

This statement returns 0:

Integer("3ABC") // 3ABC is not a number.

This example checks whether the text of sle_data is a number before
converting, which is necessary if the user might legitimately enter 0:

integer li_new_data
IF IsNumber(sle_data.Text) THEN
 li_new_data = Integer(sle_data.Text)
ELSE
 SetNull(li_new_data)
END IF

After assigning blob data from the database to lb_blob, this example obtains the
integer value stored at position 20 in the blob:

integer i
i = Integer(BlobMid(lb_blob, 20, 2))

See also Double
Dec
IsNumber
Long
Real
Integer method for DataWindows in the DataWindow Reference or the online
Help

Argument Description

stringorblob A string whose value you want returned as an integer or a blob in
which the first value is the integer value. The rest of the contents of
the blob is ignored. Stringorblob can also be an Any variable
containing a string or blob.
PowerScript Reference 687

InternetData
InternetData
Description Processes the HTML data returned by a GetURL or PostURL function. The

Context object calls this function; you do not call this function explicitly.
Instead, you override this function in a customized descendant of the
InternetResult standard class user object.

Applies to InternetResult objects

Syntax servicereference.InternetData (data)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Override this function in a user object that is a descendant of InternetResult.
The overridden function must contain one argument of type blob, which is
passed by value. It should return an integer, processing data as appropriate for
the situation.

Do not call this function explicitly
Do not code calls to this function. The GetURL and PostURL functions include
an argument that references an instantiated InternetResult descendant. When
these functions complete, the Context object calls the InternetData function,
returning HTML in data.

Examples This example shows code you might use in an overridden InternetData function
to display data from a GetURL function:

MessageBox("HTML from GetURL", &
String(data, EncodingANSI!))

RETURN 1

The blob contains the actual data and is not Unicode encoded, therefore you
must use the EncodingANSI! argument of the String function.

See also GetURL
PostURL

Argument Description

servicereference Reference to the Internet service instance

data Blob containing the complete data requested by a GetURL or
PostURL function
688 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
IntHigh
Description Returns the high word of a long value.

Syntax IntHigh (long)

Return value Integer. Returns the high word of long if it succeeds and -1 if an error occurs.
If long is null, IntHigh returns null.

Usage One use for IntHigh is for decoding values returned by external C functions and
Windows messages.

Examples These statements decode a long value LValue into its low and high integers:

integer nLow, nHigh
long LValue = 274489
nLow = IntLow (LValue) //The Low Integer is 12345.
nHigh = IntHigh(LValue) //The High Integer is 4.

See also IntLow

IntLow
Description Returns the low word of a long value.

Syntax IntLow (long)

Return value Integer. Returns the low word of long if it succeeds and -1 if an error occurs. If
long is null, IntLow returns null.

Usage One use for IntLow is for decoding values returned by external C functions and
Windows messages.

Examples These statements decode a long value LValue into its low and high integers:

integer nLow, nHigh
long LValue = 12345
nLow = IntLow(LValue) //The Low Integer is 12345.
nHigh = IntHigh(LValue) //The High Integer is 0.

See also IntHigh

Argument Description

long A long value

Argument Description

long A long value
PowerScript Reference 689

InvokePBFunction
InvokePBFunction
Description Invokes the specified user-defined window function in the child window

contained in a PowerBuilder window ActiveX control.

Applies to Window ActiveX controls

Syntax activexcontrol.InvokePBFunction (name {, numarguments {, arguments } })

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to invoke a user-defined window function in the child
window contained in a PowerBuilder window ActiveX control.

To check the PowerBuilder function’s return value, call the GetLastReturn
function.

JavaScript cannot use the arguments argument.

Examples This JavaScript example calls the InvokePBFunction function:

function invokeFunc(f) {
 var retcd;
 var rc;
 var numargs;
 var theFunc;
 var theArg;
 retcd = 0;
 numargs = 1;

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder Window ActiveX
control. When used in HTML, this is the NAME attribute of the
object element. When used in other environments, this
references the control that contains the PowerBuilder window
ActiveX.

name String specifying the name of the user-defined window function.
This argument is passed by reference.

numarguments
(optional)

Integer specifying the number of elements in the arguments
array. The default is zero.

arguments
(optional)

Variant array containing function arguments. In PowerBuilder,
Variant maps to the Any datatype. This argument is passed by
reference.

If you specify this argument, you must also specify
numarguments. If you do not specify this argument and the
function contains arguments, populate the argument list by
calling the SetArgElement function once for each argument.

JavaScript cannot use this argument.
690 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theFunc = "of_args";
 retcd = PBRX1.InvokePBFunction(theFunc, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 IF (rc != 1) {
 alert("Error. Empty string.");
 }
 PBRX1.ResetArgElements();
}

This VBScript example calls the InvokePBFunction function:

Sub invokeFunction_OnClick()
 Dim retcd
 Dim myForm
 Dim args(1)
 Dim rc
 Dim numargs
 Dim theFunc
 Dim rcfromfunc
 retcd = 0
 numargs = 1
 rc = 0
 theFunc = "of_args"
 Set myForm = Document.buttonForm
 args(0) = buttonForm.textToPB.value
 retcd = PBRX1.InvokePBFunction(theFunc, &
 numargs, args)
 rc = PBRX1.GetLastReturn()
 IF rc <> 1 THEN
 msgbox "Error. Empty string."
 END IF
 PBRX1.ResetArgElements()
END sub

See also GetLastReturn
SetArgElement
TriggerPBEvent
PowerScript Reference 691

_Is_A
_Is_A
Description Checks to see whether a CORBA object is an instance of a class that

implements a particular interface.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to CORBAObject objects

Syntax corbaobject._Is_A (classname)

Return value Boolean. Returns true if the class of the object implements the specified
interface and false if it does not.

Usage Before making a call to _Narrow, you can call _Is_A to verify that a CORBA
object is an instance of a class that implements the interface to which you want
to narrow the object.

Examples The following example checks to see that a CORBA object reference is an
instance of a class that implements n_Bank_Account:

CORBAObject my_corbaobj
n_Bank_Account my_account
...
...
if (my_corbaobj._is_a("n_Bank_Account")) then
 my_corbaobj._narrow(my_account,"n_Bank_Account")
end if
my_account.withdraw(100.0)

See also _Narrow

Argument Description
corbaobject An object of type CORBAObject that you want to test
classname The interface that will be used for the test
692 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
IsAlive
Description Determines whether a server object is still running.

Applies to OLEObject objects, OLETxnObject objects

Syntax oleobject.IsAlive ()

Return value Boolean. Returns true if the server object appears to be running and false if it is
dead.

Usage Use the IsAlive function to determine whether a server process has died. This
function does not replace the error-handling capability provided by the
ExternalException and Error events. It provides a way to check the viability of
the server at intervals or before specific operations to avoid runtime errors.

If IsAlive returns true, the server may only appear to be running, because the
true state of the server may be masked. This is more likely to occur when the
server is running on a different computer, because DCOM may be using cached
information to determine the state of the server. A false return value always
indicates that the server is dead.

Examples This example creates an OLEObject variable and calls ConnectToNewObject to
create and connect to a new instance of a PowerBuilder COM object. After
performing some processing, it checks whether the server is still running
before performing additional processing:

OLETxnObject EmpObj
Integer li_rc

EmpObj = CREATE OLEObject
li_rc = EmpObj.ConnectToNewObject("PB70COM.employee")
// Perform some work with the COM object
...
IF EmpObj.IsAlive()THEN
// Continue processing
END IF

Argument Description

oleobject The name of an OLEObject or OLETxnObject variable that is
connected to an automation server or COM object
PowerScript Reference 693

IsAllArabic
IsAllArabic
Description Tests whether a particular string is composed entirely of Arabic characters.

Syntax IsAllArabic (string)

Return value Boolean. Returns true if string is composed entirely of Arabic characters and
false if it is not. The presence of numbers, spaces, and punctuation marks will
also result in a return value of false.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsAllArabic is set to false.

Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name is composed entirely of
Arabic characters:

IsAllArabic(sle_name.Text)

See also IsAnyArabic
IsArabic
IsArabicAndNumbers
Reverse

IsAllHebrew
Description Tests whether a particular string is composed entirely of Hebrew characters.

Syntax IsAllHebrew (string)

Return value Boolean. Returns true if string is composed entirely of Hebrew characters and
false if it is not. The presence of numbers, spaces, and punctuation marks will
also result in a return value of false.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsAllHebrew is set to false.

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Arabic characters

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Hebrew characters
694 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name is composed entirely of
Hebrew characters:

IsAllHebrew(sle_name.Text)

See also IsAnyHebrew
IsHebrew
IsHebrewAndNumbers
Reverse

IsAnyArabic
Description Tests whether a particular string contains at least one Arabic character.

Syntax IsAnyArabic (string)

Return value Boolean. Returns true if string contains at least one Arabic character and false
if it does not.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsAnyArabic is set to false.

Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name contains at least one
Arabic character:

IsAnyArabic(sle_name.Text)

See also IsAllArabic
IsArabic
IsArabicAndNumbers
Reverse

Argument Description

string A string whose value you want to test to find out if it contains at
least one Arabic character
PowerScript Reference 695

IsAnyHebrew
IsAnyHebrew
Description Tests whether a particular string contains at least one Hebrew character.

Syntax IsAnyHebrew (string)

Return value Boolean. Returns true if string contains at least one Hebrew character and false
if it does not.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsAnyHebrew is set to false.

Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name contains at least one
Hebrew character:

IsAnyHebrew(sle_name.Text)

See also IsAllHebrew
IsHebrew
IsHebrewAndNumbers
Reverse

IsArabic
Description Tests whether a particular character is an Arabic character. For a string,

IsArabic tests only the first character on the left.

Syntax IsArabic (character)

Return value Boolean. Returns true if character is an Arabic character and false if it is not.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsArabic is set to false.

Argument Description

string A string whose value you want to test to find out if it contains at
least one Hebrew character

Argument Description

character A character or string whose value you want to test to find out if it is
an Arabic character.
696 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name begins with an Arabic
character:

IsArabic(sle_name.Text)

See also IsAllArabic
IsAnyArabic
IsArabicAndNumbers
Reverse

IsArabicAndNumbers
Description Tests whether a particular string is composed entirely of Arabic characters or

numbers.

Syntax IsArabicAndNumbers (string)

Return value Boolean. Returns true if string is composed entirely of Arabic characters or
numbers and false if it is not.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsArabicAndNumbers is set to false.

Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name is composed entirely of
Arabic characters and numbers:

IsArabicAndNumbers(sle_name.Text)

See also IsAllArabic
IsAnyArabic
IsArabic
Reverse

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Arabic characters or numbers
PowerScript Reference 697

IsCallerInRole
IsCallerInRole
Description Indicates whether the direct caller of a COM object running on COM+ is in a

specified role (either individually or as part of a group).

Applies to TransactionServer objects

Syntax transactionserver.IsCallerInRole (role)

Return value Boolean. Returns true if the direct caller is in the specified role and false if it is
not.

Usage In COM+, a role is a name that represents the set of access permissions for a
specific user or group of users. For example, a component that provides access
to a sales database might have different roles for managers and salespersons.

In your code, you use IsCallerInRole to determine whether the caller of the
current method is associated with a specific role before you execute code that
performs a task restricted to users in that role.

IsCallerInRole only determines whether the direct caller of the current method
is in the specified role. The direct caller may be either a client process or a
server process.

Package must run in a dedicated server process
To support role-checking, the COM+ package must be activated as a Server
package, not a Library package. Server packages run in a dedicated server
process. Library packages run in the creator’s process and are used primarily
for debugging.

IsCallerInRole only returns a meaningful value when security checking is
enabled. Security checking can be enabled in the COM/COM+ Project wizard
or the Project painter

Argument Description
transactionserver Reference to the TransactionServer service instance
role A string expression containing the name of a role
698 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples The following example shows a call to a function (f_checkrole) that takes the
name of a role as an argument and returns an integer. In this example only
managers can place orders with a value over $20,000:

integer rc
long ordervalue
IF ordervalue > 20,000 THEN
 rc = f_checkrole("Manager")
 IF rc <> 1
 // handle negative values and exit
 ELSE
 // continue processing
 END IF
END IF

The f_checkrole function checks whether a component is running on COM+
and if security checking is enabled. Then it checks whether the direct caller is
in the role passed in as an argument. If any of the checks fail, the function
returns a negative value:

TransactionServer ts
integer li_rc
string str_role

li_rc = GetContextService("TransactionServer", ts)
// handle error if necessary

// Find out if running on COM+
IF ts.which() <> 2 THEN RETURN -1

// Find out if security is enabled
IF NOT ts.IsSecurityEnabled() THEN RETURN -2

// Find out if the caller is in the role
IF NOT ts.IsCallerInRole(str_role) THEN
 RETURN -3
ELSE
 RETURN 1
END IF

See also ImpersonateClient
IsImpersonating
IsSecurityEnabled
RevertToSelf
PowerScript Reference 699

IsDate
IsDate
Description Tests whether a string value is a valid date.

Syntax IsDate (datevalue)

Return value Boolean. Returns true if datevalue is a valid date and false if it is not. If
datevalue is null, IsDate returns null.

Usage You can use IsDate to test whether a user-entered date is valid before you
convert it to a date datatype. To convert a value into a date value, use the Date
function. The year value must be in the range 01 to 9999.

Examples This statement returns true:

IsDate("Jan 1, 05")

This statement returns false:

IsDate("Jan 32, 2005")

If the SingleLineEdit sle_Date_Of_Hire contains 7/1/99, these statements store
1999-07-01 in HireDate:

Date HireDate
IF IsDate(sle_Date_Of_Hire.text) THEN
 HireDate = Date(sle_Date_Of_Hire.text)
END IF

See also IsDate method for DataWindows in the DataWindow Reference or the online
Help

IsHebrew
Description Tests whether a particular character is a Hebrew character. For a string,

IsHebrew tests only the first character on the left.

Syntax IsHebrew (character)

Argument Description

datevalue A string whose value you want to test to determine whether it is a
valid date

Argument Description

character A character or string whose value you want to test to find out if it is
an Hebrew character
700 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Boolean. Returns true if character is an Hebrew character and false if it is not.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsHebrew is set to false.

Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name begins with a Hebrew
character:

IsHebrew(sle_name.Text)

See also IsAllHebrew
IsAnyHebrew
IsHebrewAndNumbers
Reverse

IsHebrewAndNumbers
Description Tests whether a particular string is composed entirely of Hebrew characters and

numbers.

Syntax IsHebrewAndNumbers (string)

Return value Boolean. Returns true if string is composed entirely of Hebrew characters and
numbers and false if it is not.

Usage If you are not running a version of Windows that supports right-to-left
languages, IsHebrewAndNumbers is set to false.

Examples Under a version of Windows that supports right-to-left languages, this
statement returns true if the SingleLineEdit sle_name is composed entirely of
Hebrew characters and numbers:

IsHebrewAndNumbers(sle_name.Text)

See also IsAllHebrew
IsAnyHebrew
IsHebrew
Reverse

Argument Description

string A string whose value you want to test to find out if it is composed
entirely of Hebrew characters and numbers
PowerScript Reference 701

IsImpersonating
IsImpersonating
Description Queries whether a COM object running on COM+ is impersonating the client.

Applies to TransactionServer objects

Syntax transactionserver.IsImpersonating ()

Return value Boolean. Returns true if the component is impersonating the client and false if
it is not.

Usage COM objects running on COM+ can use the ImpersonateClient function to run
in the client's security context so that the server process has access to the same
resources as the client. Use IsImpersonating to determine whether the
ImpersonateClient function has been called without a matching call to
RevertToSelf.

Examples The following example creates an instance of the TransactionServer service
and checks whether the COM object is currently running on the client’s
security context. If it is not, it impersonates the client, performs some
processing using the client’s security context, then reverts to the object’s
security context:

TransactionServer txninfo_test
integer li_rc

li_rc = GetContextService("TransactionServer", &
 txninfo_test)
IF NOT txninfo_test.IsImpersonating() THEN
 txninfo_test.ImpersonateClient()
END IF
// continue processing as client
txninfo_test.RevertToSelf()

See also ImpersonateClient
IsCallerInRole
IsSecurityEnabled
RevertToSelf

Argument Description
transactionserver Reference to the TransactionServer service instance
702 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
IsInTransaction
Description Indicates whether a component is executing in a transaction.

Applies to TransactionServer objects

Syntax transactionserver.IsInTransaction ()

Return value Boolean. Returns true if the component is executing as part of a transaction and
false if it is not.

Usage Component methods can call IsInTransaction to determine whether they are
executing within a transaction.

Methods in components that are declared to be transactional always execute as
part of a transaction.

Methods in components that have a transaction type of Supports Transaction
may or may not be running in the context of an EAServer transaction,
depending on whether the component is instantiated directly by a base client or
by another component. In components that have this transaction type, you can
use IsInTransaction to determine whether the component is running in a
transaction.

The IsInTransaction function corresponds to the isInTransaction transaction
primitive in EAServer.

Examples The following example shows the use of the IsInTransaction function:

TransactionServer ts
Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", &
 ts)
IF ts.IsInTransaction = TRUE THEN
 // execute logic based on the transaction context
END IF

See also EnableCommit
IsTransactionAborted
Lookup
SetAbort
SetComplete
Which

Argument Description
transactionserver Reference to the TransactionServer service instance
PowerScript Reference 703

IsNull
IsNull
Description Reports whether the value of a variable or expression is null.

Syntax IsNull (any)

Return value Boolean. Returns true if any is null and false if it is not.

Usage Use IsNull to test whether a user-entered value or a value retrieved from the
database is null.

If one or more columns in a DataWindow are required columns, that is, they
must contain data, you do not want to update the database if the columns have
null values. You can use FindRequired to find rows in which those columns
have null values, instead of using IsNull to evaluate each row and column.

Setting a variable to null To set a variable to null, use the SetNull function.
In standard PowerBuilder applications, if a variable is not set to null explicitly
by calling the SetNull function, calling the IsNull function against the variable
returns false.

In general, the same applies in .NET applications. However, if the variable is
of a reference type (a type derived from the PowerObject base class), IsNull
returns true if the variable has not been initialized by assigning an instantiated
object to it. In the following example, IsNull returns false in a standard
PowerBuilder application, but it returns true in a .NET application:

dataStore ds
boolean b

b = IsNull(ds)
MessageBox("IsNull", string(b))

If the variable is explicitly set to null, IsNull returns true in both standard and
.NET applications:

SetNull(ds)
b = IsNull(ds)
MessageBox("IsNull", string(b))

To ensure consistent behavior in standard and .NET applications, use the
IsValid function to check whether an object has been instantiated instead of
using the IsNull function. In the following example, each of the calls to IsValid
returns false in both standard and .NET applications:

Argument Description

any A variable or expression that you want to test to determine whether
its value is null
704 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
dataStore ds
boolean b

b = IsValid(ds)
MessageBox("IsValid", string(b))

SetNull(ds)
b = IsValidl(ds)
MessageBox("IsValid", string(b))

Examples These statements set lb_test to true:

integer a, b
boolean lb_test

SetNull(b)
lb_test = IsNull(a + b)

See also IsValid
SetNull
IsNull method for DataWindows in the DataWindow Reference or the online
Help

IsNumber
Description Reports whether the value of a string is a number.

Syntax IsNumber (string)

Return value Boolean. Returns true if string is a valid PowerScript number and false if it is
not. If string is null, IsNumber returns null.

Usage Use IsNumber to check that text in an edit control can be converted to a number.

To convert a string to a specific numeric datatype, use the Double, Dec, Integer,
Long, or Real function.

Examples This statement returns true:

IsNumber("32.65")

Argument Description

string A string whose value you want to test to determine whether it is a
valid PowerScript number
PowerScript Reference 705

IsPreview
This statement returns false:

IsNumber("A16")

If the SingleLineEdit sle_Age contains 32, these statements store 32 in
li_YearsOld:

integer li_YearsOld
IF IsNumber(sle_Age.Text) THEN
 li_YearsOld = Integer(sle_Age.Text)
END IF

See also Double
Dec
Integer
Long
Real
IsNumber method for DataWindows in the DataWindow Reference or the
online Help

IsPreview
Description Reports whether a RichTextEdit control is in preview mode.

Applies to RichTextEdit controls

Syntax rtename.IsPreview ()

Return value Boolean. Returns true if rtename is in preview mode and false if it is in data
entry mode.

Examples This example switches the RichTextEdit control rte_1 to preview mode if it is
not already in preview mode and then prints it:

IF NOT rte_1.IsPreview() THEN
 rte_1.Preview(TRUE)
 rte_1.Print(1, "1-4", FALSE, TRUE)
END IF

See also Preview

Argument Description

rtename The name of the RichTextEdit control for which you want to know
whether it is in preview mode
706 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
IsSecurityEnabled
Description Indicates whether or not security checking is enabled for a COM object

running on COM+.

Applies to TransactionServer objects

Syntax transactionserver.IsSecurityEnabled ()

Return value Boolean. Returns true if security checking is enabled and false if it is not.

Usage Use IsSecurityEnabled to determine whether security checking is enabled for
the current COM object.

If the COM object is running in the creator’s process, IsSecurityEnabled always
returns false.

Examples The following example determines whether security checking is enabled and,
if it is, checks whether the direct caller is in the Manager role before
completing the call:

TransactionServer ts
integer li_rc
string str_role = "Admin"

li_rc = GetContextService("TransactionServer", &
 ts)
// Find out if security is enabled.
IF ts.IsSecurityEnabled() THEN
 // Find out if the caller is in the role.
 IF NOT ts.IsCallerInRole(str_role) THEN
 // do not complete call
 ELSE
 // execute call normally
 END IF
ELSE
 // security is not enabled
 // do not complete call
END IF

See also ImpersonateClient
IsCallerInRole
IsImpersonating
RevertToSelf

Argument Description
transactionserver Reference to the TransactionServer service instance
PowerScript Reference 707

IsTime
IsTime
Description Reports whether the value of a string is a valid time value.

Syntax IsTime (timevalue)

Return value Boolean. Returns true if timevalue is a valid time and false if it is not. If
timevalue is null, IsTime returns null.

Usage Use IsTime to test to whether a value a user enters in an edit control is a valid
time.

To convert a string to an time value, use the Time function.

Examples This statement returns true:

IsTime("8:00:00 am")

This statement returns false:

IsTime("25:00")

If the SingleLineEdit sle_EndTime contains 4:15 these statements store
04:15:00 in lt_QuitTime:

Time lt_QuitTime
IF IsTime sle_EndTime.Text) THEN
 lt_QuitTime = Time(sle_EndTime.Text)
END IF

See also Time
IsTime method for DataWindows in the DataWindow Reference or the online
Help

Argument Description

timevalue A string whose value you want to test to determine whether it is a
valid time
708 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
IsTransactionAborted
Description Determines whether the current transaction, in which an EAServer component

participates, has been aborted.

Applies to TransactionServer objects

Syntax transactionserver.IsTransactionAborted ()

Return value Boolean. Returns true if the current transaction has been aborted and false if it
has not.

Usage The IsTransactionAborted function allows a component to verify that the
current transaction is still viable before performing updates to the database.The
IsTransactionAborted function corresponds to the isRollbackOnly transaction
primitive in EAServer.

Examples The following example checks to see whether the transaction has been aborted.
If it has not, it updates the database and calls EnableCommit. If it has been
aborted, it calls DisableCommit.

// Instance variables: ids_datastore, ts
Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
IF ts.IsTransactionAborted() = FALSE THEN
 ll_rv = ids_datastore.Update()
 IF ll_rv = 1 THEN
 ts.EnableCommit()
 ELSE
 ts.DisableCommit()
 END IF
END IF

See also EnableCommit
IsInTransaction
Lookup
SetAbort
SetComplete
Which

Argument Description
transactionserver Reference to the TransactionServer service instance
PowerScript Reference 709

IsValid
IsValid
Description Determines whether an object variable is instantiated—whether its value is a

valid object handle.

Syntax IsValid (objectvariable)

Return value Boolean. Returns true if objectvariable is an instantiated object. Returns false
if objectvariable is not an object, or if it is an object that is not instantiated. If
objectvariable is null, IsValid returns null.

Usage Use IsValid instead of the Handle function to determine whether a window is
open.

Examples This statement determines whether the window w_emp is open and if it is not,
opens it:

IF IsValid(w_emp) = FALSE THEN Open(w_emp)

This example returns -1 because the IsValid function returns false. Although the
objectvariable argument is a valid string, it is not an instantiated object. The
IsValid method would return true only if la_value was an instantiated object:

any la_value

la_value = "I’m a string"
IF NOT IsValid(la_value) THEN return -1

See also Handle

Argument Description

objectvariable An object variable or a variable of type Any—typically a reference
to an object that you are testing for validity
710 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
KeyDown
Description Determines whether the user pressed the specified key on the computer

keyboard.

Syntax KeyDown (keycode)

Return value Boolean. Returns true if keycode was pressed and false if it was not. If keycode
is null, KeyDown returns null.

Usage KeyDown does not report what character the user typed—it reports whether the
user was pressing the specified key when the event whose script is calling
KeyDown was triggered.

Events You can call KeyDown in a window’s Key event or a keypress event
for a control to determine whether the user pressed a particular key. The Key
event occurs whenever the user presses a key as long as the insertion point is
not in a line edit. The Key event is triggered repeatedly if the user holds down
a repeating key. For controls, you can define a user event for pbm_keydown or
pbm_dwnkey (DataWindows), and call KeyDown in its script.

You can also call KeyDown in a mouse event, such as Clicked, to determine
whether the user also pressed a modifier key, such as Ctrl.

KeyCodes and ASCII values KeyDown does not distinguish between
uppercase and lowercase letters or other characters and their shifted
counterparts. For example, KeyA! refers to the A key—the user may have typed
"A" or "a." Key9! refers to both "9" and "(". Instead, you can test whether a
modifier key is also pressed.

KeyDown does not test whether Caps Lock or other toggle keys are in a
toggled-on state, only whether the user is pressing it.

KeyDown only detects ASCII values 65-90 (KeyA! - KeyZ!) and 48-57
(Key0!-Key9!). These ASCII values detect whether the key was pressed,
whether or not the user also pressed Shift or Caps Lock. KeyDown does not
detect other ASCII values (such as 97-122 for lowercase letters).

The following table categorizes KeyCode values by type of key and provides
explanations of names that might not be obvious.

Argument Description

keycode A value of the KeyCode enumerated datatype that identifies a key
on the computer keyboard or an integer whose value is the ASCII
code for a key. Not all ASCII values are recognized; see Usage. See
also the table of KeyCode values in Usage.
PowerScript Reference 711

KeyDown
Table 10-5: KeyCode values for keyboard keys

Type of key KeyCode values and descriptions

Mouse buttons KeyLeftButton! Left mouse button
KeyMiddleButton! Middle mouse button
KeyRightButton! Right mouse button

Letters KeyA! - KeyZ! A - Z, uppercase or lowercase

Other symbols KeyQuote! ' and "
KeyEqual! = and +
KeyComma! , and <
KeyDash! - and _
KeyPeriod! . and >
KeySlash! / and ?
KeyBackQuote! ` and ~
KeyLeftBracket! [and {
KeyBackSlash! \ and |
KeyRightBracket!] and }
KeySemiColon! ; and :

Non-printing
characters

KeyBack! Backspace
KeyTab!
KeyEnter!
KeySpaceBar!

Function keys KeyF1! - KeyF12! Function keys F1 to F12

Control keys KeyShift!
KeyControl!
KeyAlt!
KeyPause!
KeyCapsLock!
KeyEscape!
KeyPrintScreen!
KeyInsert!
KeyDelete!

Navigation keys KeyPageUp!
KeyPageDown!
KeyEnd!
KeyHome!
KeyLeftArrow!
KeyUpArrow!
KeyRightArrow!
KeyDownArrow!
712 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples The following code checks whether the user pressed the F1 key or the Ctrl key
and executes some statements appropriate to the key pressed:

IF KeyDown(KeyF1!) THEN
. . . // Statements for the F1 key
ELSEIF KeyDown(KeyControl!) THEN
. . . // Statements for the CTRL key
END IF

This statement tests whether the user pressed Tab, Enter, or any of the scrolling
keys:

IF (KeyDown(KeyTab!) OR KeyDown(KeyEnter!) OR &
 KeyDown(KeyDownArrow!) OR KeyDown(KeyUpArrow!) &
 OR KeyDown(KeyPageDown!) OR
KeyDown(KeyPageUp!))&
 THEN ...

This statement tests whether the user pressed the A key (ASCII value 65):

IF KeyDown(65) THEN ...

This statement tests whether the user pressed the Shift key and the A key:

IF KeyDown(65) AND KeyDown(KeyShift!) THEN ...

This statement in a Clicked event checks whether the Shift is also pressed:

IF KeyDown(KeyShift!) THEN ...

Numeric and symbol
keys

Key0! 0 and)
Key1! 1 and !
Key2! 2 and @
Key3! 3 and #
Key4! 4 and $
Key5! 5 and %
Key6! 6 and ^
Key7! 7 and &
Key8! 8 and *
Key9! 9 and (

Keypad numbers KeyNumpad0! - KeyNumpad9! 0 - 9 on numeric keypad

Keypad symbols KeyMultiply! * on numeric keypad
KeyAdd! + on numeric keypad
KeySubtract! - on numeric keypad
KeyDecimal! . on numeric keypad
KeyDivide! / on numeric keypad
KeyNumLock!
KeyScrollLock!

Type of key KeyCode values and descriptions
PowerScript Reference 713

LastPos
LastPos
Description Finds the last position of a target string in a source string.

Syntax LastPos (string1, string2 {, searchlength })

Return value Long. Returns a long whose value is the starting position of the last occurrence
of string2 in string1 within the characters specified in searchlength. If string2
is not found in string1 or if searchlength is 0, LastPos returns 0. If any
argument’s value is null, LastPos returns null.

Usage The LastPos function is case sensitive. The entire target string must be found
in the source string.

Examples This statement returns 6, because the position of the last occurrence of RU is
position 6:

LastPos("BABE RUTH", "RU")

This statement returns 3:

LastPos("BABE RUTH", "B")

This statement returns 0, because the case does not match:

LastPos("BABE RUTH", "be")

This statement searches the leftmost 4 characters and returns 0, because the
only occurrence of RU is after position 4. The search length must be at least 7
(to include the complete string RU) before the statement returns 6 for the
starting position of the last occurence of RU:

LastPos("BABE RUTH", "RU", 4)

These statements change the text in the SingleLineEdit sle_group. The last
instance of the text NY is changed to North East:

long place_nbr
place_nbr = LastPos(sle_group.Text, "NY")
sle_group.SelectText(place_nbr, 2)
sle_group.ReplaceText("North East")

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

searchlength
(optional)

A long that limits the search to the leftmost searchlength characters
of the source string string1. The default is the entire string.
714 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
These statements separate the return value of GetBandAtPointer into the band
name and row number. The LastPos function finds the position of the (last) tab
in the string and the Left and Mid functions extract the information to the left
and right of the tab:

string s, ls_left, ls_right
integer li_tab

s = dw_groups.GetBandAtPointer()
li_tab = LastPos(s, "~t")

ls_left = Left(s, li_tab - 1)
ls_right = Mid(s, li_tab + 1)

These statements tokenize a source string backwards:

// Tokenize the source string backwards
// Results in "pbsyc125.dll powerbuilder
// shared sybase programs c:

string sSource = &
'c:\programs\sybase\shared\powerbuilder\pbsyc125.dll

'
string sFind = '\'
string sToken
long llStart, llEnd

llEnd = Len(sSource) + 1

DO
llStart = LastPos(sSource, sFind, llEnd)
sToken = Mid(sSource, (llStart + 1), &

(llEnd - llStart))
mle_comment.text += sToken + ' '
llEnd = llStart - 1

LOOP WHILE llStart > 1

See also Pos
PowerScript Reference 715

Left
Left
Description Obtains a specified number of characters from the beginning of a string.

Syntax Left (string, n)

Return value String. Returns the leftmost n characters in string if it succeeds and the empty
string ("") if an error occurs. If any argument’s value is null, Left returns null. If
n is greater than or equal to the length of the string, Left returns the entire string.
It does not add spaces to make the return value’s length equal to n.

Examples This statement returns BABE:

Left("BABE RUTH", 4)

This statement returns BABE RUTH:

Left("BABE RUTH", 40)

These statements store the first 40 characters of the text in the SingleLineEdit
sle_address in emp_address:

string emp_address
emp_address = Left(sle_address.Text, 40)

For sample code that uses Left to parse two tab-separated values, see the Pos
function.

See also Mid
Pos
Right
Left method for DataWindows in the DataWindow Reference or the online Help

Argument Description

string The string you want to search

n A long specifying the number of characters you want to return
716 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LeftA
Description Temporarily converts a string from Unicode to DBCS based on the current

locale, then returns the specified number of bytes from the string.

Syntax LeftA (string, n)

Return value String. Returns the characters for the leftmost n bytes in the source string if it
succeeds and the empty string (“”) if an error occurs. If any argument’s value
is null, LeftA returns null. If n is greater than or equal to the length of the string,
LeftA returns the entire string. It does not add spaces to make the return value’s
length equal to n.

Usage LeftA replaces the functionality that Left had in DBCS environments in
PowerBuilder 9.

In SBCS environments, Left, LeftW, and LeftA return the same results.

LeftW
Description Obtains a specified number of characters from the beginning of a string. This

function is obsolete. It has the same behavior as Left in all environments.

Syntax LeftW (string, n)

Argument Description

string The string you want to search from left to right

n A long specifying the number of bytes of the characters in the return
string
PowerScript Reference 717

LeftTrim
LeftTrim
Description Removes spaces from the beginning of a string.

Syntax LeftTrim (string {, removeallspaces })

Return value String. Returns a copy of string with leading spaces deleted if it succeeds and
the empty string ("") if an error occurs. If string is null, LeftTrim returns null.

Usage If you do not include the optional removeallspaces argument or its value is
false, only the space character (U+0020) is removed from the string.

If the removeallspaces argument is set to true, all types of space characters are
removed.

This is a list of white spaces:

CHARACTER TABULATION (U+0009)
LINE FEED (U+000A)
LINE TABULATION (U+000B)
FORM FEED (U+000C)
CARRIAGE RETURN (U+000D)
SPACE (U+0020)
NO-BREAK SPACE (U+00A0)
EN QUAD (U+2000)
EM QUAD (U+2001)
EN SPACE (U+2002)
EM SPACE (U+2003)
THREE-PER-EM SPACE (U+2004)
FOUR-PER-EM SPACE (U+2005)
SIX-PER-EM SPACE (U+2006)
FIGURE SPACE (U+2007)
PUNCTUATION SPACE (U+2008)
THIN SPACE (U+2009)
HAIR SPACE (U+200A)
ZERO WIDTH SPACE (U+200B)
IDEOGRAPHIC SPACE (U+3000)
ZERO WIDTH NO-BREAK SPACE (U+FEFF)

Examples This statement returns RUTH when the leading spaces are all space characters:

LeftTrim(" RUTH")

Argument Description

string The string you want returned with leading spaces deleted

removeallspaces A boolean indicating that all types of spaces should be deleted
718 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This statement returns RUTH when the leading spaces include other types of
space characters such as tab characters:

LeftTrim(" RUTH", true)

These statements delete leading spaces from the text in the MultiLineEdit
mle_name and store the result in emp_name:

string emp_name
emp_name = LeftTrim(mle_name.Text)

See also RightTrim
Trim
LeftTrim method for DataWindows in the DataWindow Reference or the online
Help

LeftTrimW
Description Removes spaces from the beginning of a string. This function is obsolete. It has

the same behavior as LeftTrim in all environments.

Syntax LeftTrimW (string)

Len
Description Reports the length of a string or a blob.

Syntax Len (stringorblob)

Return value Long. Returns a long whose value is the length of stringorblob if it succeeds
and -1 if an error occurs. If stringorblob is null, Len returns null.

Usage Len counts the number of characters in a string. The null that terminates a string
is not included in the count.

Argument Description

stringorblob The string or blob for which you want the length in number of
characters or in number of bytes
PowerScript Reference 719

Len
If you specify a size when you declare a blob, that is the size reported by Len.
If you do not specify a size for the blob, Len initially reports the blob’s length
as 0. PowerBuilder assigns a size to the blob the first time you assign data to
the blob. Len reports the length of the blob as the number characters it can
contain.

Examples This statement returns 0:

Len("")

These statements store in the variable s_address_len the length of the text in
the SingleLineEdit sle_address:

long s_address_len
s_address_len = Len(sle_address.Text)

The following scenarios illustrate how the declaration of blobs affects their
length, as reported by Len.

In the first example, an instance variable called ib_blob is declared but not
initialized with a size. If you call Len before data is assigned to ib_blob, Len
returns 0. After data is assigned, Len returns the blob’s new length.

The declaration of the instance variable is:

blob ib_blob

The sample code is:

long ll_len
ll_len = Len(ib_blob) // ll_len set to 0
ib_blob = Blob("Test String")
ll_len = Len(ib_blob) // ll_len set to 22

In the second example, ib_blob is initialized to the size 100 when it is declared.
When you call Len for ib_blob, it always returns 100. This example uses
BlobEdit, instead of Blob, to assign data to the blob because its size is already
established. The declaration of the instance variable is:

blob{100} ib_blob

The sample code is:

long ll_len
ll_len = Len(ib_blob) // ll_len set to 100
BlobEdit(ib_blob, 1, "Test String")
ll_len = Len(ib_blob) // ll_len set to 100

See also Len method for DataWindows in the DataWindow Reference or the online Help
720 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LenA
Description When the argument is a string, temporarily converts the string from Unicode to

DBCS based on the current locale, then calculates its length in bytes. When the
argument is a blob, no conversion takes place.

Syntax LenA (stringorblob)

Return value Long. Returns a long whose value is the length of stringorblob if it succeeds
and -1 if an error occurs. If stringorblob is null, Len returns null.

Usage LenA replaces the functionality that Len had in DBCS environments in
PowerBuilder 9.

In SBCS environments, Len, LenW, and LenA return the same results.

If you specify a size when you declare a blob, that is the size reported by LenA.
If you do not specify a size for the blob, LenA initially reports the blob’s length
as 0. PowerBuilder assigns a size to the blob the first time you assign data to
the blob. LenA reports the length of the blob as the number of single-byte
characters it can contain. Len and LenW report the size of the blob as the
number of double-byte characters it can contain.

LenW
Description Reports the length of a string or a blob. This function is obsolete. It has the

same behavior as Len in all environments.

Syntax LenW (stringorblob)

Argument Description

stringorblob The string or blob for which you want the length in number of bytes
PowerScript Reference 721

Length
Length
Description Reports the length in bytes of an open OLE stream.

Len function
To get the length of a string or blob, use the Len function.

Applies to OLEStream objects

Syntax olestream.Length (sizevar)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Stream is not open
-9 Other error

If any argument’s value is null, Length returns null.

Examples This example opens an OLE object in the file MYSTUFF.OLE and assigns it to
the OLEStorage object stg_stuff. Then it opens the stream called info in
stg_stuff and assigns it to the stream object olestr_info. Finally, it finds out the
stream’s length and stores the value in the variable info_len.

The example does not check the function’s return values for success, but you
should be sure to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info
long info_len

stg_stuff = CREATE oleStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

olestr_info.Open(stg_stuff, "info", &
 stgRead!, stgExclusive!)
olestr_info.Length(info_len)

See also Open
Read
Seek
Write

Argument Description

olestream The name of an OLE stream variable that has been opened

sizevar A long variable in which Length will store the size of olestream
722 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LibraryCreate
Description Creates an empty PowerBuilder library with optional comments.

Syntax LibraryCreate (libraryname {, comments })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, LibraryCreate returns null.

Usage LibraryCreate creates a PowerBuilder library file (PBL) in the current directory,
unless you specify a directory path as part of libraryname. If you do not specify
an extension, LibraryCreate adds the extension .PBL.

Examples This statement in Windows NT creates a library named dwTemp in the PB
directory on drive C and associates a comment with the library:

LibraryCreate("c:\pb\dwTemp.pbl", &
 "Temporary library for dynamic DataWindows")

See also LibraryDelete
LibraryDirectory
LibraryExport
LibraryImport

Argument Description

libraryname A string whose value is the name of the PowerBuilder library you
want to create. If you want to create the library somewhere other
than the current directory, enter the full path name.

comments
(optional)

A string whose value is the comments you want to associate with
the library.
PowerScript Reference 723

LibraryDelete
LibraryDelete
Description Deletes a library file or, if you specify a DataWindow object, deletes the

DataWindow object from the library.

Syntax LibraryDelete (libraryname {, objectname, objecttype })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, LibraryDelete returns null.

Usage You can delete DataWindow objects from a library in a script with the
LibraryDelete function. To delete other types of objects, use the Library painter.

Examples This statement deletes a library called dwTemp in the current directory and on
the current application library path:

LibraryDelete("dwTemp.pbl")

See also LibraryCreate
LibraryDirectory
LibraryExport
LibraryImport

Argument Description

libraryname A string whose value is the name of the PowerBuilder library you
want to delete or from which you want to delete a DataWindow
object. If you do not specify a full path, LibraryDelete uses the
system’s standard file search order to find the file.

objectname
(optional)

A string whose value is the name of the DataWindow object you
want to delete from libraryname.

objecttype
(optional)

A value of the LibImportType enumerated datatype identifying the
type of object you want to delete. The only supported object type is
ImportDataWindow!.
724 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LibraryDirectory
Description Obtains a list of the objects in a PowerBuilder library. The information

provided is the object name, the date and time it was last modified, and any
comments for the object. You can get a list of all objects or just objects of a
specified type.

Syntax LibraryDirectory (libraryname, objecttype)

Return value String. LibraryDirectory returns a tab-separated list with one object per line. The
format of the list is:

name ~t date/time modified ~t comments ~n

Returns the empty string ("") if an error occurs. If any argument’s value is null,
LibraryDirectory returns null.

Argument Description

libraryname A string whose value is the name of the PowerBuilder library for
which you want the contents. If you do not specify a full path,
LibraryDirectory uses the operating system’s standard file search
order to find the file.

objecttype A value of the LibDirType enumerated datatype identifying the
type of objects you want listed:

• DirAll! – All objects

• DirApplication! – Application objects

• DirDataWindow! – DataWindow objects

• DirFunction! – Function objects

• DirMenu! – Menu objects

• DirPipeline! – Pipeline objects

• DirProject! – Project objects

• DirQuery! – Query objects

• DirStructure! – Structure objects

• DirUserObject! – User objects

• DirWindow! – Window objects
PowerScript Reference 725

LibraryDirectory
Usage If you call LibraryDirectory with a PBD file as the first argument, no comments
are displayed because they are not included in PBD files.

You can display the result of LibraryDirectory in a DataWindow control by
passing the returned string to the ImportString function for that DataWindow.
The DataWindow should contain three string columns. The columns must be
wide enough to fit the data in the input string. If not, PowerBuilder reports
validation errors.

To return the object’s type, use LibraryDirectoryEx.

For an example of parsing tab-delimited data, see the Pos function.

Examples This code imports the string returned by LibraryDirectory to the DataWindow
dw_list and then redraws the dw_list. The DataWindow was defined with an
external source and three string columns:

String ls_entries

ls_entries = LibraryDirectory(&
 "c:\pb\dwTemp.pbl", DirUserObject!)
dw_list.SetRedraw(FALSE)
dw_list.Reset()
dw_list.ImportString(ls_Entries)
dw_list.SetRedraw(TRUE)

See also ImportString
LibraryCreate
LibraryDelete
LibraryDirectoryEx
LibraryExport
LibraryImport
726 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LibraryDirectoryEx
Description Obtains a list of the objects in a PowerBuilder library. The information

provided is the object name, the date and time it was last modified, any
comments for the object, and the object’s type. You can get a list of all objects
or just objects of a specified type.

Syntax LibraryDirectoryEx (libraryname, objecttype)

Return value String. LibraryDirectoryEx returns a tab-separated list with one object per line.
The format of the list is:

name ~t date/time modified ~t comments ~t type~n

Returns the empty string ("") if an error occurs. If any argument’s value is null,
LibraryDirectoryEx returns null.

Argument Description

libraryname A string whose value is the name of the PowerBuilder library for
which you want the contents. If you do not specify a full path,
LibraryDirectory uses the operating system’s standard file search
order to find the file.

objecttype A value of the LibDirType enumerated datatype identifying the
type of objects you want listed:

• DirAll! – All objects

• DirApplication! – Application objects

• DirDataWindow! – DataWindow objects

• DirFunction! – Function objects

• DirMenu! – Menu objects

• DirPipeline! – Pipeline objects

• DirProject! – Project objects

• DirQuery! – Query objects

• DirStructure! – Structure objects

• DirUserObject! – User objects

• DirWindow! – Window objects
PowerScript Reference 727

LibraryDirectoryEx
Usage If you call LibraryDirectoryEx with a PBD file as the first argument, no
comments are displayed because they are not included in PBD files.

You can display the result of LibraryDirectoryEx in a DataWindow control by
passing the returned string to the ImportString function for that DataWindow.
The DataWindow should contain four string columns. The columns must be
wide enough to fit the data in the input string. If not, PowerBuilder reports
validation errors.

If you do not need to return the object’s type, you can use LibraryDirectory.

For an example of parsing tab-delimited data, see the Pos or LastPos function.

Examples This code imports the string returned by LibraryDirectoryEx to the
DataWindow dw_list and then redraws the dw_list. The DataWindow was
defined with an external source and four string columns:

String ls_entries

ls_entries = LibraryDirectoryEx(&
 "c:\pb\dwTemp.pbl", DirUserObject!)
dw_list.SetRedraw(FALSE)
dw_list.Reset()
dw_list.ImportString(ls_Entries)
dw_list.SetRedraw(TRUE)

See also ImportString
LibraryCreate
LibraryDelete
LibraryDirectory
LibraryExport
LibraryImport
728 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LibraryExport
Description Exports an object from a library. The object is exported as syntax.

Syntax LibraryExport (libraryname, objectname, objecttype)

Return value String. Returns the syntax of the object if it succeeds. The syntax is the same as
the syntax returned when you export an object in the Library painter except that
LibraryExport does not include an export header. Returns the empty string ("")
if an error occurs. If any argument’s value is null, LibraryExport returns null.

Examples These statements export the DataWindow object dw_emp from the library
called dwTemp to a string named ls_dwsyn and then use it to create a
DataWindow:

String ls_dwsyn, ls_errors
ls_dwsyn = LibraryExport("c:\pb\dwTemp.pbl", &
 "d_emp", ExportDataWindow!)
dw_1.Create(ls_dwsyn, ls_errors)

See also Create method for DataWindows in the DataWindow Reference or online Help
LibraryCreate
LibraryDelete
LibraryDirectory
LibraryImport

Argument Description

libraryname A string whose value is the name of the PowerBuilder library from
which you want to export an object. If you do not specify a full path,
LibraryExport uses the system’s standard file search order to find
the file.

objectname A string whose value is the name of the object you want to export

objecttype A value of the LibExportType enumerated datatype identifying the
type of objects you want to export:

• ExportApplication! – Application object

• ExportDataWindow! – DataWindow object

• ExportFunction! – Function object

• ExportMenu! – Menu object

• ExportPipeline! – Pipeline objects

• ExportProject! – Project objects

• ExportQuery! – Query objects

• ExportStructure! – Structure object

• ExportUserObject! – User objects

• ExportWindow! – Window object
PowerScript Reference 729

LibraryImport
LibraryImport
Description Imports a DataWindow object into a library. LibraryImport uses the syntax of the

DataWindow object, which is specified in text format, to recreate the object in
the library.

Syntax LibraryImport (libraryname, objectname, objecttype, syntax, errors
 {, comments })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, LibraryImport returns null.

Usage When you import a DataWindow, any errors that occur are stored in the string
variable you specify for the error argument.

When your application creates a DataWindow dynamically at runtime, you can
use LibraryImport to save that DataWindow object in a library.

Argument Description

libraryname A string specifying the name of the PowerBuilder library into which
you want to import the entry. If you do not specify a full path,
LibraryImport uses the system’s standard file search order to find
the file.

objectname A string specifying the name of the DataWindow object you want
to import.

objecttype A value of the LibImportType enumerated datatype identifying the
type of object you want to import. The only supported object type
is ImportDataWindow!.

syntax A string specifying the syntax of the DataWindow object you want
to import.

errors A string variable that you want to fill with any error messages that
occur.

comments
(optional)

A string specifying the comments you want to associate with the
entry.
730 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples These statements import the DataWindow object d_emp into the library called
dwTemp and store any errors in ErrorBuffer. Note that the syntax is obtained
by using the Describe function:

string dwsyntax, ErrorBuffer
integer rtncode

dwsyntax = dw_1.Describe("DataWindow.Syntax")
rtncode = LibraryImport("c:\pb\dwTemp.pbl", &
 "d_emp", ImportDataWindow!, &
 dwsyntax, ErrorBuffer)

These statements import the DataWindow object d_emp into the library called
dwTemp, store any errors in ErrorBuffer, and associate the comment Employee
DataWindow 1 with the entry:

string dwsyntax, ErrorBuffer
integer rtncode

dwsyntax = dw_1.Describe("DataWindow.Syntax")
rtncode = LibraryImport("c:\pb\dwTemp.pbl", &
 "d_emp", ImportDataWindow!, &
 dwsyntax, ErrorBuffer, &
 "Employee DataWindow 1")

See also Describe method for DataWindows in the DataWindow Reference or the online
Help
LibraryCreate
LibraryDelete
LibraryDirectory
LibraryImport
PowerScript Reference 731

LineCount
LineCount
Description Determines the number of lines in an edit control that allows multiple lines.

Applies to RichTextEdit, MultiLineEdit, EditMask, and DataWindow controls

Syntax editname.LineCount ()

Return value Long. Returns the number of lines in editname if it succeeds and -1 if an error
occurs. If editname is null, LineCount returns null.

Usage LineCount counts each visible line, whether it was the result of wrapping or
carriage returns.

When you call LineCount for a DataWindow, it reports the number of lines in
the edit control over the current row and column. A user can enter multiple
lines in a DataWindow column only if it has a text datatype and its box is large
enough to display those lines. The size of the column’s box determines the
number of lines allowed in the column. When the user is typing, lines do not
wrap automatically; the user must press enter to type additional lines.

In a MultiLineEdit control, lines wrap when the user’s typing fills the control
horizontally, unless either the HScrollBar or AutoHScroll property is true. If
horizontal scrolling is enabled with these properties, the user must press enter
to type additional lines.

A RichTextEdit control always contains an end-of-file mark even if there is no
text in the control. Therefore, its line count is always at least 1. Other edit
controls, when empty, have a line count of 0.

Examples If the MultiLineEdit mle_Instructions has 9 lines, this example sets li_Count to
9:

integer li_Count
li_Count = mle_Instructions.LineCount()

These statements display a MessageBox if fewer than two lines have been
entered in the MultiLineEdit mle_Address:

integer li_Lines
li_Lines = mle_Address.LineCount()
IF li_Lines < 2 THEN
 MessageBox("Warning", "2 lines are required.")
END IF

Argument Description

editname The name of the DataWindow control, EditMask, MultiLineEdit, or
RichTextEdit for which you want the number of lines
732 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LineLength
Description Determines the length of the line containing the insertion point in an edit

control.

Applies to RichTextEdit, MultiLineEdit, and EditMask controls

Syntax editname.LineLength ()

Return value Long. Returns the length of the line containing the insertion point in editname.
Returns -1 if an error occurs. If editname is null, LineLength returns null.

Usage If the control contains a selection instead of a single insertion point, LineLength
counts the line at the beginning of the selection.

PowerBuilder remembers where the insertion point is in each editable control.
When the user moves the focus to another control, you can still find out the
length of the line most recently edited by calling the LineLength function for
that control.

Insertion point in editable controls
Because PowerBuilder remembers the position of the insertion point, users can
resume editing at the insertion point if they make the control active by tabbing
to it. When users make a control active by clicking on it, they move the
insertion point as well.

For an EditMask control, LineLength reports the length of the mask, regardless
of the number of characters the user has entered.

Examples If the insertion point is positioned anywhere in line 5 of mle_Contact and line
5 contains the text Select All, il_linelength is set to 10 (the length of line 5):

integer li_linelength
li_linelength = mle_Contact.LineLength()

See also Position
SelectedLine
SelectedStart
TextLine

Argument Description

editname The name of the RichTextEdit, MultiLineEdit, or EditMask in
which you want to determine the length of the line containing the
insertion point
PowerScript Reference 733

LineList
LineList
Description Provides a list of the lines in a routine included in a performance analysis

model.

Applies to ProfileRoutine object

Syntax iinstancename.LineList (list)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The model does not exist

Usage Use this function to extract a list of the lines in a routine included in the
performance analysis model. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
Each line is defined as a ProfileLine object and provides the number of times
the line was hit, any calls made from the line, and the time spent on the line and
in any called functions. The lines are listed in numeric order.

Lines are not returned for database statements and objects. If line information
was not logged in the trace file, lines are not returned.

Examples This example gets a list of the routines included in a performance analysis
model and then gets a list of the lines in each routine:

Long ll_cnt
ProfileLine lproln_line[]

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)

FOR ll_cnt = 1 TO UpperBound(iprort_list)
 iprort_list[ll_cnt].LineList(lproln_line)
 ...
NEXT

See also BuildModel

Argument Description

instancename Instance name of the ProfileRoutine object.

list An unbounded array variable of datatype ProfileLine in which
LineList stores a ProfileLine object for each line in the routine.
This argument is passed by reference.
734 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LinkTo
Description Establishes a link between an OLE control and a file or an item within the file.

Syntax olecontrol.LinkTo (filename {, sourceitem })

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 File not found
-2 Item not found
-9 Other error

If any argument’s value is null, LinkTo returns null.

Examples This example creates an object in the OLE control, ole_1. The object is linked
to the file C:\XLS\EXPENSE.XLS:

integer result
result = ole_1.LinkTo("c:\xls\expense.xls")

This example links to a section of rows and columns in the same spreadsheet
as in the previous example:

integer result
result = ole_1.LinkTo("c:\xls\expense.xls", &
 "R1C1:R5C5")

See also InsertFile
InsertObject
PasteLink
PasteSpecial

Argument Description

olecontrol The name of the OLE control in which you want to insert a linked
object.

filename A string whose value is the file name containing the data that you
want to insert in olecontrol, with a link connecting the object in
PowerBuilder to the original data. If you do not specify sourceitem,
a link is established with the whole file.

sourceitem
(optional)

A string that names an item within file name to which you want to
link. The way you specify sourceitem is determined by the OLE
server application.
PowerScript Reference 735

LoadInk
LoadInk
Description Loads ink from a file or blob into an InkPicture control.

Applies to InkPicture controls

Syntax inkpicname.LoadInk (t | b)

Return value Integer. Returns 1 for success and -1 for failure.

Usage Use the LoadInk function to load ink that has been saved to a file or a blob into
the control.

Examples The following example loads ink from a file. Since the user will select a single
file, the second argument to GetFileOpenName contains the file’s path and its
name, so the third argument can be ignored:

string ls_inkpath, ls_inkname
GetFileOpenName("Select Ink File", ls_inkpath, &

ls_inkname)
ip_1.LoadInk(ls_inkpath)

The following example loads ink from a blob:

string ls_inkpath, ls_inkname
integer li_filenum
blob lblb_ink

GetFileOpenName("Select Ink File", ls_inkpath, &
ls_inkname)

li_filenum = FileOpen(ls_inkpath, StreamMode!)
If li_filenum <> 1 Then

FileRead(li_filenum, lblb_ink)
FileClose(li_filenum)
ip_1.LoadInk(lblb_ink)

End If

See also LoadPicture
ResetInk
ResetPicture
SaveInk
Save

Argument Description

inkpicname The name of the InkPicture control into which you want to load ink.

t A string containing the name and location of a file that contains the
ink you want to load into the control.

b The name of a blob passed by reference that contains the ink you
want to load into the control.
736 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LoadPicture
Description Loads a picture from a file or blob into an InkPicture control.

Applies to InkPicture controls

Syntax inkpicname.LoadPicture (t | b)

Return value Integer. Returns 1 for success and -1 for failure.

Usage Use the LoadPicture function to load an image into an InkPicture control.

Examples The following example loads an image from a file. Since the user will select a
single file, the second argument to GetFileOpenName contains the file’s path
and its name, so the third argument can be ignored:

string ls_path, ls_name
GetFileOpenName("Select Image", ls_path, ls_name)
ip_1.LoadPicture(ls_path)

The following example loads an image from a blob:

string ls_path, ls_name
integer li_filenum
blob lblb_ink

GetFileOpenName("Select Ink File", ls_path, ls_name)
li_filenum = FileOpen(ls_path, StreamMode!)
If li_filenum <> 1 Then

FileRead(li_filenum, lblb_ink)
FileClose(li_filenum)
ip_1.LoadInk(lblb_ink)

End If

See also LoadInk
ResetInk
ResetPicture
SaveInk
Save

Argument Description

inkpicname The name of the InkPicture control into which you want to load a
picture.

t A string containing the name and location of a file that contains the
picture you want to load into the control.

b The name of a blob passed by reference that contains the picture
you want to load into the control.
PowerScript Reference 737

Log
Log
Returns the natural logarithm of a number. For an ErrorLogging object, this
function can be used to write a string to the log file maintained by the object’s
container.

Syntax 1 For all objects
Description Determines the natural logarithm of a number.

Syntax Log (n)

Return value Double. Returns the natural logarithm of n. An execution error occurs if n is
negative or zero. If n is null, Log returns null.

Inverse of Log
The inverse of the Log function is the Exp function.

Examples This statement returns 2.302585092:

Log(10)

This statement returns –.693147. . . :

Log(0.5)

Both these statements result in an error at runtime:

Log(0)
Log(-2)

After the following statements execute, the value of a is 200:

double a, b = Log(200)
a = Exp(b)// a = 200

See also Exp
LogTen
Log method for DataWindows in the DataWindow Reference or the online Help

To Use

Determine the natural logarithm of a number Syntax 1

Write a string to a log file Syntax 2

Argument Description

n The number for which you want the natural logarithm (base e). The
value of n must be greater than 0.
738 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For ErrorLogging objects
Description Writes a string to the log file maintained by the object’s container.

Applies to ErrorLogging objects

Syntax errorlogobj.Log (message)

Return value None.

Usage The ErrorLogging object provides the ability to write messages to the log file
used by the object’s container, such as jaguar.log for EAServer.

Before you call the Log function, create an instance of the ErrorLogging service
by calling the GetContextService function.

Examples The following example shows how to write a string to the log for EAServer or
COM+:

ErrorLogging el
this.GetContextService("ErrorLogging", el)
el.log("Write this string to log")

See also GetContextService

Argument Description
errorlogobj Reference to the ErrorLogging service instance
message The text string you want to write to the log
PowerScript Reference 739

LogTen
LogTen
Description Determines the base 10 logarithm of a number.

Syntax LogTen (n)

Usage Double. Returns the base 10 logarithm of n. An execution error occurs if n is
negative. If n is null, LogTen returns null.

Inverse of LogTen The expression 10^n is the inverse of LogTen(n). To
obtain the value of n in the equation r = LogTen(n), use n = 10^r.

Examples This statement returns 1:

LogTen(10)

The following statements both return 0:

LogTen(1)

LogTen(0)

This statement results in an execution error:

LogTen(– 2)

After the following statements execute, the value of a is 200:

double a, b = LogTen(200)
a = 10^b// a = 200

See also Exp
LogTen
LogTen method for DataWindows in the DataWindow Reference or the online
Help

Argument Description

n The number for which you want the base 10 logarithm. The value
of n must not be negative.
740 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Long
Converts data into data of type long. There are two syntaxes.

Syntax 1 For combining integers
Description Combines two unsigned integers into a long value.

Syntax Long (lowword, highword)

Return value Long. Returns the long if it succeeds and -1 if an error occurs. If any argument’s
value is null, Long returns null.

Usage Use Long for passing values to external C functions or specifying a value for
the LongParm property of PowerBuilder’s Message object.

Examples These statements convert the UnsignedIntegers nLow and nHigh into a long
value:

UnsignedInt nLow // Low integer 16 bits
UnsignedInt nHigh // High integer 16 bits
long LValue // Long value 32 bits

nLow = 12345
nHigh = 0
LValue = Long(nLow, nHigh)
MessageBox("Long Value", Lvalue)

To Use

Combine two unsigned integers into a long value Syntax 1

Convert a string whose value is a number into a long or to
obtain a long value stored in a blob

Syntax 2

Argument Description

lowword An UnsignedInteger to be the low word in the long

highword An UnsignedInteger to be the high word in the long
PowerScript Reference 741

Long
Syntax 2 For converting strings and blobs
Description Converts a string whose value is a number into a long or obtains a long value

stored in a blob.

Syntax Long (stringorblob)

Return value Long. Returns the value of stringorblob as a long if it succeeds and 0 if
stringorblob is not a valid PowerScript number or if it is an incompatible
datatype. If stringorblob is null, Long returns null.

Usage To distinguish between a string whose value is the number 0 and a string whose
value is not a number, use the IsNumber function before calling the Long
function.

Examples This statement returns 2167899876 as a long:

Long("2167899876")

After assigning blob data from the database to lb_blob, the following example
obtains the long value stored at position 20 in the blob:

long lb_num
lb_num = Long(BlobMid(lb_blob, 20, 4))

For an example of assigning and extracting values from a blob, see Real.

See also Dec
Double
Integer
LongLong
Real
Long method for DataWindows in the DataWindow Reference or the online
Help

Argument Description

stringorblob The string you want returned as a long or a blob in which the first
value is the long value. The rest of the contents of the blob is
ignored. Stringorblob can also be an Any variable containing a
string or blob.
742 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
LongLong
Converts data into data of type longlong. There are two syntaxes.

Syntax 1 For combining longs
Description Combines two unsigned longs into a longlong value.

Syntax LongLong (lowword, highword)

Return value LongLong. Returns the longlong if it succeeds and -1 if an error occurs. If any
argument’s value is null, LongLong returns null.

Usage Use LongLong for passing values to external C++ and Java functions.

Examples These statements convert the UnsignedLongs lLow and lHigh into a long value:

UnsignedLong lLow //Low long 32 bits
UnsignedLong lHigh //High long 32 bits
longlong LLValue //LongLong value 64 bits

lLow = 1234567890
lHigh = 9876543210
LLValue = LongLong(lLow, lHigh)
MessageBox("LongLong Value", LLValue)

To Use

Combine two unsigned long values into a longlong value Syntax 1

Convert a string whose value is a number into a longlong or
obtain a longlong value stored in a blob

Syntax 2

Argument Description

lowword An UnsignedLong to be the low word in the longlong

highword An UnsignedLong to be the high word in the longlong
PowerScript Reference 743

LongLong
Syntax 2 For converting strings and blobs
Description Converts a string whose value is a number into a longlong or obtains a longlong

value stored in a blob.

Syntax LongLong (stringorblob)

Return value LongLong. Returns the value of stringorblob as a longlong if it succeeds and 0
if stringorblob is not a valid PowerScript number or if it is an incompatible
datatype. If stringorblob is null, Long returns null.

Usage To distinguish between a string whose value is the number 0 and a string whose
value is not a number, use the IsNumber function before calling the LongLong
function.

Examples This statement returns 216789987654321 as a longlong:

LongLong("216789987654321")

After assigning blob data from the database to lb_blob, the following example
obtains the longlong value stored at position 20 in the blob:

longlong llb_num
llb_num = LongLong(BlobMid(lb_blob, 20, 4))

For an example of assigning and extracting values from a blob, see Real.

See also Dec
Double
Integer
Real

Argument Description

stringorblob The string you want returned as a longlong or a blob in which the
first value is the longlong value. The rest of the contents of the blob
is ignored. Stringorblob can also be an Any variable containing a
string or blob.
744 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Lookup
Allows a PowerBuilder client or component to obtain a factory or home
interface in order to create an instance of an EAServer component. This
function is used by PowerBuilder clients connecting to components running in
EAServer, and by PowerBuilder components connecting to other components
running on the same server.

Syntax 1 For CORBA-compliant EAServer components
Description Allows a PowerBuilder client or component to obtain the factory interface of

an EAServer component in order to create an instance of the component.

Applies to Connection objects, TransactionServer objects

Syntax objname.Lookup (objectvariable , componentname)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

Usage The Lookup function can be used as an alternative to the CreateInstance
function. It obtains a reference to a factory interface that you can use to create
an instance of a component running in EAServer.

Use the Connection object’s Lookup function to enable a PowerBuilder client
to access a component running in EAServer. You can supply a server name or
a list of server names in the location property of the Connection object.

To Use

Obtain the factory interface of a CORBA-compliant
component running in EAServer

Syntax 1

Obtain the home interface of an EJB component running
in EAServer

Syntax 2

Argument Description
objname The name of the Connection object used to establish the

connection or of an instance of the TransactionServer
context object.

objectvariable A global, instance, or local variable of the factory interface
type.

componentname A string whose value is the name of the component instance
to be created. You can optionally prepend a package name
followed by a slash to the component name (for example,
"mypackage/mycomponent").
PowerScript Reference 745

Lookup
Use the TransactionServer object’s Lookup function to enable a PowerBuilder
component running in EAServer to access another component running on the
same server.

To use the Lookup function, you need to create an EAServer proxy library for
the SessionManager package to obtain a proxy for the factory interface.
Include this proxy library in your library list.

Examples The following example uses Lookup to instantiate the factory interface for the
n_Bank_Account component, then it uses the factory’s create method to create
an instance of the component:

// Instance variable:
// Connection myconnect
Factory my_Factory
CORBAObject mycorbaobj
n_Bank_Account my_account
long ll_result

ll_result = &
 myconnect.lookup(my_Factory,"Bank/n_Bank_Account")
mycorbaobj = my_Factory.create()
mycorbaobj._narrow(my_account, "Bank/n_Bank_Account")
my_account.withdraw(100.0)

See also CreateInstance

Syntax 2 For instances of an EJB component
Description Allows a PowerBuilder client or component to obtain the home interface of an

EJB component in EAServer in order to create an instance of the component.

Applies to Connection objects, TransactionServer objects

Syntax objname.Lookup (objectvariable , componentname {, homeid})

Argument Description
objname The name of the Connection object used to establish the

connection or of an instance of the TransactionServer
context object.

objectvariable A global, instance, or local variable of the type of the home
interface to be created.
746 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

Usage EJBConnection
You can also use the Lookup method of the EJBConnection PowerBuilder
extension object to create an instance of an EJB component running on any
J2EE compliant application server. For more information, see Lookup in the
PowerBuilder Extension Reference.

The Lookup function creates an instance of the home interface of an EJB
component so that you can use it to create an instance of the EJB. Use the
Connection object’s Lookup function to enable a PowerBuilder client to access
a component running in EAServer. You can supply a server name or a list of
server names in the location property of the Connection object. Use the
TransactionServer object’s Lookup function to enable a PowerBuilder
component running in EAServer to access an EJB component running on the
same server.

The Lookup function uses the standard CORBA naming service to resolve
componentname to a CORBA object that is then narrowed to the home
interface name of the component. If you do not specify the third argument to
the Lookup function, PowerBuilder expects the home interface name to have
the format PackageName/CompNameHome. However, most EJB components
use a standard Java package directory structure and the home interface name
has a format such as com/domain/project/CompNameHome.

You can ensure that a PowerBuilder client or component can locate the
component’s home interface by supplying the third argument to the Lookup
function to specify the home interface name. A component’s home interface
name is defined in the com.sybase.jaguar.component.home.ids property in the
EAServer repository. The home.ids property has a format like this:

IDL:com/domain/project/CompNameHome:1.0

componentname A string whose value is the name of the EJB component to
be created. You can optionally prepend a package name
followed by a slash to the component name (for example,
"mypackage/mycomponent").

homeid A string whose value is the name of the home interface to be
created. This argument is optional

Argument Description
PowerScript Reference 747

Lookup
The third argument should be the value of the component’s home.ids string
without the leading IDL: and trailing :1.0. For example:

ts.lookup(MyCartHome, "shopping/cart", &
"com/sybase/shopping/CartHome")

Alternatively, you can use the fully-qualified Java class name of the home
interface specified in dot notation. For example:

ts.lookup(MyCartHome, "shopping/cart", &
"com.sybase.shopping.CartHome")

Lookup is case sensitive
Lookup in EAServer is case sensitive. Make sure that the case in the string you
specify in the argument to the lookup function matches the case in the ejb.home
property.

Examples The following example uses Lookup with the Connection object to locate the
home interface of the Multiply session EJB in the Java package abc.xyz.math:

// Instance variable:
// Connection myconnect
Multiply myMultiply
MultiplyHome myMultiplyHome
long ll_result, ll_product

ll_result = &
myconnect.lookup(myMultiplyHome,"Math/Multiply", &
"abc.xyz.math.MultiplyHome)

IF ll_result <> = 0 THEN
MessageBox("Lookup failed", myconnect.errtext)

ELSE
 try
 myMultiply = myMultiplyHome.create()
 catch (ctscomponents_createexception ce)
 MessageBox("Create exception", ce.getmessage())
 // handle exception
 end try
 ll_product = myMultiply.multiply(1234, 4567)
END IF

Entity beans have a findByPrimaryKey method that you can use to find an EJB
saved in the previous session. This example uses that method to find a
shopping cart saved for Dirk Dent:

// Instance variable:
// Connection myconnect
748 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Cart myCart
CartHome myCartHome
long ll_result

ll_result = &
 myconnect.lookup(myCartHome,"Shopping/Cart", &

"com.mybiz.shopping.CartHome")
IF ll_result <> = 0 THEN
 MessageBox("Lookup failed", myconnect.errtext)
ELSE
 TRY

myCart = myCartHome.findByPrimaryKey("DirkDent")
myCart.addItem(101)

CATCH (ctscomponents_finderexception fe)
MessageBox("Finder exception", &

fe.getmessage())
END TRY

END IF

Nonvisual objects deployed from PowerBuilder to EAServer can use an
instance of the TransactionServer context object to locate the home interface of
an EJB component in the same server:

CalcHome MyCalcHome
Calc MyCalc
TransactionServer ts
ErrorLogging errlog
long ll_result

this.GetContextService("TransactionServer", ts)
this.GetContextService("ErrorLogging", errlog)
ll_result = ts.lookup(MyCalcHome, "Utilities/Calc", &

"com.biz.access.utilities.CalcHome")
IF ll_result <> 0 THEN
 errlog.log("Lookup failed: " + string(ll_result))
ELSE

TRY
MyCalc = MyCalcHome.create()
MyCalc.square(12)

CATCH (ctscomponents_createexception ce)
errlog.log("Create exception: " + ce.getmessage())

END TRY
END IF

See also ConnectToServer
PowerScript Reference 749

Lower
Lower
Description Converts all the characters in a string to lowercase.

Syntax Lower (string)

Return value String. Returns string with uppercase letters changed to lowercase if it succeeds
and the empty string ("") if an error occurs. If string is null, Lower returns null.

Examples This statement returns babe ruth:

Lower("Babe Ruth")

See also Upper
Lower method for DataWindows in the DataWindow Reference or the online
Help

LowerBound
Description Obtains the lower bound of a dimension of an array.

Syntax LowerBound (array {, n })

Return value Long. Returns the lower bound of dimension n of array and -1 if n is greater
than the number of dimensions of the array. If any argument’s value is null,
LowerBound returns null.

Usage For variable-size arrays, memory is allocated for the array when you assign
values to it. Before you assign values, the lower bound is 1 and the upper bound
is 0.

Argument Description

string The string you want to convert to lowercase letters

Argument Description

array The name of the array for which you want the lower bound of a
dimension

n

(optional)

The number of the dimension for which you want the lower bound.
The default is 1
750 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples The following statements illustrate the values LowerBound reports for
fixed-size arrays and for variable-size arrays before and after memory has been
allocated:

integer a[5], b[2,5]
LowerBound(a) // Returns 1
LowerBound(a, 1) // Returns 1
LowerBound(a, 2) // Returns -1, a has only 1 dim
LowerBound(b, 2) // Returns 1

integer c[]
LowerBound(c) // Returns 1
c[50] = 900
LowerBound(c) // Returns 1

integer d[-10 to 50]
LowerBound(d) // Returns - 10

See also UpperBound

mailAddress
Description Updates the mailRecipient array for a mail message.

Applies to mailSession object

Syntax mailsession.mailAddress ({ mailmessage })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnUserAbort!

If any argument’s value is null, mailAddress returns null.

Argument Description

mailsession A mailSession object identifying the session in which you want to
address the message.

mailmessage
(optional)

A mailMessage structure containing information about the
message. If you omit mailmessage, mailAddress displays an
Address dialog box.
PowerScript Reference 751

mailAddress
Usage The mailRecipient array contains information about recipients of a mail
message or the originator of a message. The originator is not used when you
send a message.

If there is an error in the mailRecipient array, mailAddress displays the Address
dialog box so the user can fix the address. If you pass a mailMessage structure
that is a validly addressed message (such as a message that the user received)
nothing happens because the addresses are correct.

If you do not specify a mailMessage, the mail system displays an Address
dialog box that allows users to look for addresses and maintain their personal
address list. The user cannot select addresses for addressing a message.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples These statements create a mail session, send mail with an attached TXT file,
and then log off the mail system and destroy the mail session object:

mailSession mSes
mailReturnCode mRet
mailMessage mMsg
mailFileDescription mAttach
// Create a mail session
mSes = CREATE mailSession
// Log on to the session
mRet = mSes.mailLogon(mailNewSession!)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Logon failed.')
 RETURN
END IF
 mMsg.AttachmentFile[1] = mAttach
 mRet = mSes.mailAddress(mMsg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Addressing failed.')
 RETURN
END IF
// Send the mail
mRet = mSes.mailSend(mMsg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Sending mail failed.')
 RETURN
END IF
mSes.mailLogoff()
DESTROY mSes

See also mailLogoff, mailLogon, mailResolveRecipient, mailSend
752 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
mailDeleteMessage
Description Deletes a mail message from the user’s electronic mail inbox.

Applies to mailSession object

Syntax mailsession.mailDeleteMessage (messageid)

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnInvalidMessage!
mailReturnUserAbort!

If any argument’s value is null, mailDeleteMessage returns null.

Usage To get a list of message IDs in the user’s inbox, call the mailGetMessages
function. Before calling mail functions, you must declare and create a
mailSession object and call mailLogon to establish a mail session.

Examples Assume the DataWindow dw_inbox contains a list of mail items (sender,
subject, postmark, and message ID), and that the mail session mSes has been
created and a successful logon has occurred. This script for the clicked event
for dw_inbox deletes the selected message from the mail system:

string sID
integer nRow
mailReturnCode mRet

nRow = GetClickedRow()
IF nRow > 0 THEN
 sID = GetItemString(nRow, "messageID")
 mRet = mSes.mailDeleteMessage(sID)
END IF

See also mailGetMessages
mailLogon

Argument Description

mailsession A mailSession object identifying the session in which you want to
delete the message

messageid A string whose value is the ID of the mail message to be deleted
PowerScript Reference 753

mailGetMessages
mailGetMessages
Description Populates the messageID array of a mailSession object with the message IDs

in the user’s inbox.

Applies to mailSession object

Syntax mailsession.mailGetMessages ({ messagetype, } { unreadonly })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnNoMessages!
mailReturnUserAbort!

If any argument’s value is null, mailGetMessages returns null.

Usage MailGetMessages only retrieves message IDs, which it stores in the
mailSession object’s MessageID array. A message ID serves as an argument for
other mail functions. With mailReadMessage, for example, it identifies the
message you want to read.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples This example populates a DataWindow with the messages in the user’s inbox.
The DataWindow is defined with an external data source and has three
columns: msgid, msgdate, and msgsubject. MailGetMessages fills the
MessageID array in the mailSession object and mailReadMessage gets the
information for each ID.

Argument Description

mailsession A mailSession object identifying the session in which you want to
get the messages.

messagetype
(optional)

A string whose value is a message type. The default message type
is IPM or an empty string (""), which identifies interpersonal
messages. The other standard type is IPC, which identifies hidden,
interprocess messages. Your mail administrator may have
established other user-defined message types.

unreadonly
(optional)

A boolean value indicating you want only the IDs of unread
messages. Values are:

• TRUE – Get IDs for unread messages only

• FALSE – Get IDs for all messages
754 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The example assumes that the application has already created the mailSession
object mSes and logged on:

mailMessage msg
long n, c_row

mSes.mailGetMessages()
FOR n = 1 to UpperBound(mSes.MessageID[])
 mSes.mailReadMessage(mSes.MessageID[n], &
 msg, mailEnvelopeOnly!, FALSE)
 c_row = dw_1.InsertRow(0)
 dw_1.SetItem(c_row, "msgid", mSes.MessageID[n])
 dw_1.SetItem(c_row, "msgdate", msg.DateReceived)
 // Truncate subject to fit defined column size
 dw_1.SetItem(c_row, "msgsubject", &
 Left(msg.Subject, 50))
NEXT

See also mailDeleteMessage, mailReadMessage

mailHandle
Description Obtains the handle of a mailSession object.

Applies to mailSession object

Syntax mailsession.mailHandle ()

Return value UnsignedLong. Returns the internal handle of the mail session object. If
mailsession is null, mailHandle displays an error message.

Usage After you have logged on, your mailSession has a valid handle. You can use
that handle to call external mail functions. MAPI has additional functions that
PowerBuilder does not implement directly.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples This statement returns the handle of the current mail session:

current_session. mailHandle()

Argument Description

mailsession A mailSession object identifying the session for which you want the
handle
PowerScript Reference 755

mailLogoff
mailLogoff
Description Ends the mail session, breaking the connection between the PowerBuilder

application and mail. If the mail application was already running when
PowerBuilder began the mail session, it is left in the same state.

Applies to mailSession object

Syntax mailsession.mailLogoff ()

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!

Usage To release the memory used by the mailSession object, use the DESTROY
keyword after ending the mail session.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples This statement terminates the current mail session:

current_session. mailLogoff()
DESTROY current_session

See also mailLogon

Argument Description

mailsession A mailSession object identifying the session from which you want
to log off
756 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
mailLogon
Description Establishes a mail session for the PowerBuilder application. The PowerBuilder

application can start a new session or join an existing session.

Applies to mailSession object

Syntax mailsession.mailLogon ({ profile, password } {, logonoption })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnLoginFailure!
mailReturnInsufficientMemory!
mailReturnTooManySessions!
mailReturnUserAbort!

If any argument’s value is null, mailLogon returns null.

Argument Description

mailsession A mailSession object identifying the session you want to logon to.

profile
(optional)

A string whose value is the user’s mail system profile or user ID.

password
(optional)

A string whose value is the user’s mail system password.

logonoption
(optional)

A value of the mailLogonOption enumerated datatype specifying
the logon options:

• mailNewSession! – Starts a new mail session, whether or not the
mail application is already running

• mailDownLoad! – Forces the mail application to download any
new messages from the server to the user’s inbox. Starts a new
mail session only if the mail application is not running

• mailNewSessionWithDownLoad! – Starts a new mail session
and forces new messages to be downloaded from the server to
the user’s inbox

The default is to use an existing session if possible and not to force
new messages to be downloaded.
PowerScript Reference 757

mailLogon
Usage If you do not direct mailLogon to start a new session and the mail application is
already running on the user’s computer, then the PowerBuilder mail session
attaches to the existing session. A profile and password are not necessary.

When mailLogon establishes a new session, then the mail system’s dialog box
prompts for the profile and password if the script does not supply them.

The download option forces the mail server to download the latest messages to
the user’s inbox. This ensures that the inbox is up to date; it does not make the
messages available to PowerBuilder. To access messages, use
mailGetMessages and mailReadMessage.

Before calling mailLogon, you must declare and create a mailSession object.

Examples In this example, the mailSession object new_session is an instance variable of
the window. The window’s Open event script allocates memory for the
mailSession object and logs on. During the logon process, the mail application
displays a dialog box prompting for the profile and password:

new_session = CREATE mailSession
new_session.mailLogon(mailNewSession!)

This example establishes a new mail session and makes the user’s inbox up to
date. The user wo not be prompted for an ID and password because user
information is provided. Here the mailSession object is a local variable:

mailSession new_session
new_session = CREATE mailSession
new_session.mailLogon("jpl", "hotstuff", &
 mailNewSessionWithDownLoad!)

See also mailLogoff
758 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
mailReadMessage
Description Opens a mail message whose ID is stored in the mail session’s message array.

You can choose to read the entire message or the envelope (sender, date
received, and so on) only. If a message has attachments, they are stored in a
temporary file. You can also choose to have the message text written to in a
temporary file.

Applies to mailSession object

Syntax mailsession.mailReadMessage (messageid, mailmessage, readoption,
 mark)

Return value MailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!

If any argument’s value is null, mailReadMessage returns null.

Usage To obtain the message IDs for the messages in the user’s inbox, call
mailGetMessages.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Argument Description

mailsession A mailSession object identifying the session in which you want to
read a message.

messageid A string whose value is the ID of the mail message you want to read.

mailmessage A mailMessage structure in which mailReadMessage stores the
message information.

readoption A value of the mailReadOption enumerated datatype:

• mailEntireMessage! – Obtain header, text, and attachments

• mailEnvelopeOnly! – Obtain header information only

• mailBodyAsFile! – Obtain header, text, and attachments, and
treat the message text as the first attachment, storing it in a
temporary file

• mailSuppressAttachments! – Obtain header and text, but no
attachments

mark A boolean indicating whether you want to mark the message as read
in the user’s inbox. Values are:

• TRUE – Mark the message as read

• FALSE – Do not mark the message as read
PowerScript Reference 759

mailReadMessage
Reading attachments
If a message has an attachment and you do not suppress attachments,
information about it is stored in the AttachmentFile property of the
mailMessage object. The AttachmentFile property is a mailFileDescription
object. Its PathName property has the location of the temporary file that
mailReadMessage created for the attachment. By default, the temporary file is
in the directory specified by the TEMP environment variable.

Be sure to delete this temporary file when you no longer need it.

Examples In this example, mail is displayed in a window with a DataWindow dw_inbox
that lists mail messages and a MultiLineEdit mle_note that displays the
message text. Assuming that the application has created the mailSession object
mSes and successfully logged on, and that dw_inbox contains a list of mail
items (sender, subject, postmark, and message ID); this script for the Clicked
event for dw_inbox displays the text of the selected message in the
MultiLineEdit mle_note:

integer nRow, nRet
string sMessageID
string sRet, sName

// Find out what Mail Item was selected
nRow = GetClickedRow()
IF nRow > 0 THEN
 // Get the message ID from the row
 sMessageID = GetItemString(nRow, 'MessageID')

 // Reread the message to obtain entire contents
 // because previously we read only the envelope
 mRet = mSes.mailReadMessage(sMessageID, mMsg &
 mailEntireMessage!, TRUE)

 // Display the text
 mle_note.Text = mMsg.NoteText
END IF

See mailGetMessages for an example that creates a list of mail messages in a
DataWindow control, the type of setup that this example expects. See also the
mail examples in the Code Examples sample application supplied with
PowerBuilder.

See also mailGetMessages
mailLogon
mailSend
760 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
mailRecipientDetails
Description Displays a dialog box with the specified recipient’s address information.

Applies to mailSession object

Syntax mailsession.mailRecipientDetails (mailrecipient {, allowupdates })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnUnknownRecipient!
mailReturnUserAbort!

If any argument’s value is null, mailRecipientDetails returns null.

Usage The effect of setting allowupdates to true depends on the mail system and the
user’s privileges.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples This example gets the message IDs from the user’s inbox and reads the first
message. It then calls mailRecipientDetails to display address information for
the first recipient. Recipient is an array of structures and a property of
mailMessage. Each array element is one of the message’s recipients. The
example does not check how many values there are in the message ID or
recipient arrays and it assumes that the application has already created a
mailSession object and logged on:

mailMessage msg
integer n
long c_row

Argument Description

mailsession A mailSession identifying the session in which you want to
display the detail information for a recipient.

mailrecipient A mailRecipient structure containing valid address
information. Mailrecipient must contain a recipient identifier
returned by mailAddress, mailResolveRecipient, or
mailReadMessage.

allowupdates
(optional)

A boolean indicating whether updates to the recipient’s name
will be allowed. If the user does not have update privileges for
the mail system, then allowupdates is ignored. The default is
false.
PowerScript Reference 761

mailResolveRecipient
mSes.mailGetMessages()
mSes.mailReadMessage(mSes.MessageID[1], &
 msg, mailEnvelopeOnly!, FALSE)
mSes.mailRecipientDetails(msg.Recipient[1])

See also mailResolveRecipient
mailSend

mailResolveRecipient
Description Obtains a valid e-mail address based on a partial or full user name and

optionally updates information in the system’s address list if the user has
privileges to do so.

Applies to mailSession object

Syntax mailsession.mailResolveRecipient (recipient {, allowupdates })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnUserAbort!

If any argument’s value is null, mailResolveRecipient returns null.

Usage Use mailResolveRecipient to verify that a name is a valid address in the mail
system. The function reports mailReturnFailure! if the name is not found.

Argument Description

mailsession A mailSession object identifying the session in which you
want to resolve the recipient.

recipient A mailRecipient structure or a string variable whose value is
a recipient’s name. The recipient’s name is a property of the
mailRecipient structure. MailResolveRecipient sets the value
of the string to the recipient’s full name or the structure to the
resolved address information.

allowupdates
(optional)

A boolean indicating whether updates to the recipient’s name
will be allowed. If the user does not have update privileges for
the mail system, then allowupdates is ignored. The default is
false.
762 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
If you supply a mailRecipient structure, mailResolveRecipient fills the structure
with valid address information when it resolves the address. If you supply a
name as a string, mailResolveRecipient replaces the string’s value with the full
user name as recognized by the mail system. An address specified as a string is
adequate for users in the local mail system. If you are sending mail through
gateways to other systems, you should obtain full address details in a
mailRecipient structure.

If more than one address on the mail system matches the partial address
information you supply to mailResolveRecipient, the mail system may display
a dialog box allowing the user to choose the desired name.

If you supply a mailRecipient structure that already has address information,
mailResolveRecipient corrects the information if it differs from the mail system.
If you set allowupdates to true and the information differs from the mail
system, mailResolveRecipient corrects the mail system’s information if the user
has rights to do so. Be careful that the address information you have is correct
when you allow updating.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples This example checks whether there is a user J Smith is on the mail system. If
there is a user whose name matches, such as Jane Smith or Jerry Smith, the
variable mname is set to the full name. If both names are on the system, the mail
system displays a dialog box from which the user chooses a name. Mname is
set to the user’s choice. The application has already created the mailSession
object mSes and logged on:

mailReturnCode mRet
string mname
mname = "Smith, J"
mRet = mSes.mailResolveRecipient(mname)
IF mRet = mailReturnSuccess! THEN
 MessageBox("Address", mname + " found.")
ELSEIF mRet = mailReturnFailure! THEN
 MessageBox("Address", "J Smith not found.")
ELSE
 MessageBox("Address", "Request not evaluated.")
END IF
PowerScript Reference 763

mailSaveMessage
In this example, sle_to contains the full or partial name of a mail recipient. This
example assigns the name to a mailRecipient object and calls
mailResolveRecipient to find the name and get address details. If the name is
found, mailRecipientDetails displays the information and the full name is
assigned to sle_to. The application has already created the mailSession object
mSes and logged on:

mailReturnCode mRet
mailRecipient mRecip

mRecip.Name = sle_to.Text
mRet = mSes.mailResolveRecipient(mRecip)
IF mRet <> mailReturnSuccess! THEN
 MessageBox ("Address", &
 sle_to.Text + "not found.")
ELSE
 mRet = mSes.mailRecipientDetails(mRecipient)
 sle_to.Text = mRecipient.Name
END IF

See also mailAddress
mailLogoff
mailLogon
mailRecipientDetails
mailSend

mailSaveMessage
Description Creates a new message in the user’s inbox or replaces an existing message.

Applies to mailSession object

Syntax mailsession.mailSaveMessage (messageid, mailmessage)

Argument Description

mailsession A mailSession object identifying the session in which you want to
save the mail message.

messageid A string whose value is the message ID of the message being
replaced. If you are saving a new message, specify an empty string
("").

mailmessage A mailMessage structure containing the message being saved.
764 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnInvalidMessage!
mailReturnUserAbort!
mailReturnDiskFull!

If any argument’s value is null, mailSaveMessage returns null.

Usage Before saving a message, you must address the message even if you are
replacing an existing message. The message can be addressed to someone else
for sending later.

Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

Examples This example creates a new message in the inbox of the current user, which will
be sent later to Jerry Smith. The application has already created the
mailSession object mSes and logged on:

mailRecipient recip
mailMessage msg
mailReturnCode mRet

recip.Name = "Smith, Jerry"
mRet = mSes.mailResolveRecipient(recip)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Save New Message", &
 "Invalid address.")
 RETURN
 END IF

msg.NoteText = mle_note.Text
msg.Subject = sle_subject.Text
msg.Recipient[1] = recip

mRet = mSes.mailSaveMessage("", msg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Save New Message", &
 "Failed somehow.")
END IF
PowerScript Reference 765

mailSaveMessage
This example replaces the last message in the user Jane Smith’s inbox. It gets
the message ID from the MessageID array in the mailSession object mSes. It
changes the message subject, re-addresses the message to the user, and saves
the message. The application has already created the mailSession object mSes
and logged on:

mailRecipient recip
mailMessage msg
mailReturnCode mRet
string s_ID

mRet = mSes.mailGetMessages()
IF mRet <> mailReturnSuccess! THEN
 MessageBox("No Messages", "Inbox empty.")
 RETURN
END IF
s_ID = mSes.MessageID[UpperBound(mSes.MessageID)]
mRet = mSes.mailReadMessage(s, msg, &
 mailEntireMessage!, FALSE)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Message", "Can't read message.")
 RETURN
END IF

msg.Subject = msg.Subject + " Test"
recip.Name = "Smith, Jane"
mRet = mSes.mailResolveRecipient(recip)
msg.Recipient[1] = recip
mRet = mSes.mailSaveMessage(s_ID, msg)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Save Old Message", "Failed somehow.")
END IF

See also the mail examples in the samples that are supplied with PowerBuilder.

See also mailReadMessage
mailResolveRecipient
766 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
mailSend
Description Sends a mail message. If no message information is supplied, the mail system

provides a dialog box for entering it before sending the message.

Applies to mailSession object

Syntax mailsession.mailSend ({ mailmessage })

Return value mailReturnCode. Returns one of the following values:

mailReturnSuccess!
mailReturnFailure!
mailReturnInsufficientMemory!
mailReturnLoginFailure!
mailReturnUserAbort!
mailReturnDiskFull!
mailReturnTooManySessions!
mailReturnTooManyFiles!
mailReturnTooManyRecipients!
mailReturnUnknownRecipient!
mailReturnAttachmentNotFound!

If any argument’s value is null, mailSend returns null.

Usage Before calling mail functions, you must declare and create a mailSession object
and call mailLogon to establish a mail session.

For mailSend, mailOriginator! is not a valid value for the Recipient property of
the mailMessage object. The valid values are mailto!, mailcc!, and mailbcc!.
To specify that the sender receive a copy of the message, use mailcc!.

Examples These statements create a mail session, send a message, and then log off the
mail system and destroy the mail session object:

mailSession mSes
mailReturnCode mRet
mailMessage mMsg

// Create a mail session
mSes = create mailSession

Argument Description

mailsession A mailSession object identifying the session in which you want to
send the mail message

mailmessage
(optional)

A mailMessage structure
PowerScript Reference 767

mailSend
// Log on to the session
mRet = mSes.mailLogon(mailNewSession!)
IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail", 'Logon failed.')
 RETURN
END IF

// Populate the mailMessage structure
mMsg.Subject = mle_subject.Text
mMsg.NoteText = 'Luncheon at 12:15'
mMsg.Recipient[1].name = 'Smith, John'
mMsg.Recipient[2].name = 'Shaw, Sue'

// Send the mail
mRet = mSes.mailSend(mMsg)

IF mRet <> mailReturnSuccess! THEN
 MessageBox("Mail Send", 'Mail not sent')
 RETURN
END IF

mSes.mailLogoff()
DESTROY mSes

See also the mail examples in the samples supplied with PowerBuilder.

See also mailReadMessage
mailResolveRecipient
768 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Match
Description Determines whether a string’s value contains a particular pattern of characters.

Syntax Match (string, textpattern)

Return value Boolean. Returns true if string matches textpattern and false if it does not.
Match also returns false if either argument has not been assigned a value or the
pattern is invalid. If any argument’s value is null, Match returns null.

Usage Match enables you to evaluate whether a string contains a general pattern of
characters. To find out whether a string contains a specific substring, use the
Pos function.

Textpattern is similar to a regular expression. It consists of metacharacters,
which have special meaning, and ordinary characters, which match
themselves. You can specify that the string begin or end with one or more
characters from a set, or that it contain any characters except those in a set.

A text pattern consists of metacharacters, which have special meaning in the
match string, and nonmetacharacters, which match the characters
themselves.The following tables explain the meaning and use of these
metacharacters.

Table 10-6: Metacharacters used by Match function

Argument Description

string The string in which you want to look for a pattern of characters

textpattern A string whose value is the text pattern

Metacharacter Meaning Example

Caret (^) Matches the beginning of
a string

^C matches C at the beginning of
a string.

Dollar sign ($) Matches the end of a
string

s$ matches s at the end of a
string.

Period (.) Matches any character . . . matches three consecutive
characters.

Backslash (\) Removes the following
metacharacter’s special
characteristics so that it
matches itself

\$ matches $.
PowerScript Reference 769

Match
The metacharacters asterisk (*), plus (+), and question mark (?) are unary
operators that are used to specify repetitions in a regular expression:

Table 10-7: Unary operators used as metacharacters by Match function

Sample patterns The following table shows various text patterns and sample
text that matches each pattern:

Table 10-8: Text pattern examples for Match function

Character class (a
group of characters
enclosed in square
brackets ([]))

Matches any of the
enclosed characters

[AEIOU] matches A, E, I, O, or
U.

You can use hyphens to
abbreviate ranges of characters
in a character class. For example,
[A-Za-z] matches any letter.

Complemented
character class (first
character inside the
brackets is a caret)

Matches any character
not in the group
following the caret

[^0-9] matches any character
except a digit, and [^A-Za-z]
matches any character except a
letter.

Metacharacter Meaning Example

* (asterisk) Indicates zero or more
occurrences

A* matches zero or more As (no
As, A, AA, AAA, and so on)

+ (plus) Indicates one or more
occurrences

A+ matches one A or more than
one A (A, AAA, and so on)

? (question mark) Indicates zero or one
occurrence

A? matches an empty string ("")
or A

This pattern Matches

AB Any string that contains AB; for example, ABA, DEABC,
graphAB_one

B* Any string that contains 0 or more Bs; for example, AC, B,
BB, BBB, ABBBC, and so on

AB*C Any string containing the pattern AC or ABC or ABBC, and
so on (0 or more Bs)

AB+C Any string containing the pattern ABC or ABBC or ABBBC,
and so on (1 or more Bs)

ABB*C Any string containing the pattern ABC or ABBC or ABBBC,
and so on (1 B plus 0 or more Bs)

^AB Any string starting with AB

AB?C Any string containing the pattern AC or ABC (0 or 1 B)

^[ABC] Any string starting with A, B, or C

Metacharacter Meaning Example
770 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This statement returns true if the text in sle_ID begins with one or more
uppercase or lowercase letters (^ at the beginning of the pattern means that the
beginning of the string must match the characters that follow):

Match(sle_ID.Text, "^[A-Za-z]")

This statement returns false if the text in sle_ID contains any digits (^ inside a
bracket is a complement operator):

Match(sle_ID.Text, "[^0-9]")

This statement returns true if the text in sle_ID contains one uppercase letter:

Match(sle_ID.Text, "[A-Z]")

This statement returns true if the text in sle_ID contains one or more uppercase
letters (+ indicates one or more occurrences of the pattern):

Match(sle_ID.Text, "[A-Z]+")

This statement returns false if the text in sle_ID contains anything other than
two digits followed by a letter (^ and $ indicate the beginning and end of the
string):

Match(sle_ID.Text, "^[0-9][0-9][A-Za-z]$")

See also Pos
Match method for DataWindows in the DataWindow Reference or the online
Help

[^ABC] A string containing any characters other than A, B, or C

^[^abc] A string that begins with any character except a, b, or c

^[^a-z]$ Any single-character string that is not a lowercase letter (^
and $ indicate the beginning and end of the string)

[A-Z]+ Any string with one or more uppercase letters

^[0-9]+$ Any string consisting only of digits

^[0-9][0-9][0-9]$ Any string consisting of exactly three digits

^([0-9][0-9][0-9])$ Any consisting of exactly three digits enclosed in parentheses

This pattern Matches
PowerScript Reference 771

MatchW
MatchW
Description Determines whether a string’s value contains a particular pattern of characters.

This function is obsolete. It has the same behavior as Match in all
environments.

Syntax MatchW (string, textpattern)

Max
Description Determines the larger of two numbers.

Syntax Max (x, y)

Return value The datatype of x or y, whichever datatype is more precise. If any argument’s
value is null, Max returns null.

Usage If either of the values being compared is null, Max returns null.

Examples This statement returns 7:

Max(4,7)

This statement returns -4:

Max(- 4, - 7)

This statement returns 8.2, a decimal value:

Max(8.2, 4)

See also Min
Max method for DataWindows in the DataWindow Reference or the online
Help

Argument Description

x The number to which you want to compare y

y The number to which you want to compare x
772 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
MemberDelete
Description Deletes a member from an OLE object in a storage. The member can be another

OLE object (a substorage) or a stream.

Applies to OLEStorage objects

Syntax olestorage.MemberDelete (membername)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The storage is not open
-2 Member not found
-3 Insufficient resources or too many files open
-4 Access denied
-5 Invalid storage state
-9 Other error

If any argument’s value is null, MemberDelete returns null.

Examples This example creates a storage object and opens an OLE object in a file. It
checks whether wordobj is a substorage within that object and, if so, deletes it
and saves the object back to the file:

boolean lb_memexists
integer result

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

stg_stuff.MemberExists("wordobj", lb_memexists)
IF lb_memexists THEN
 result = stg_stuff.MemberDelete("wordobj")
 IF result = 0 THEN stg_stuff.Save()
END IF

See also MemberExists
MemberRename
Open

Argument Description

olestorage The name of an object variable of type OLEStorage containing the
member (substorage or stream) you want to delete

membername A string specifying the name of the member you want to delete from
the storage
PowerScript Reference 773

MemberExists
MemberExists
Description Determines whether the named member is part of an OLE object in a storage.

The member can be another OLE object (a substorage) or a stream.

Applies to OLEStorage objects

Syntax olestorage.MemberExists (membername, exists)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The storage is not open
-9 Other error

If any argument’s value is null, MemberExists returns null.

Examples This example creates a storage object and opens an OLE object in a file. It
checks whether wordobj is a substorage within that object and, if so, deletes it
and saves the object back to the file:

boolean lb_memexists
integer result

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

stg_stuff.MemberExists("wordobj", lb_memexists)
IF lb_memexists THEN
 result = stg_stuff.MemberDelete("wordobj")
 IF result = 0 THEN stg_stuff.Save()
END IF

See also MemberDelete
MemberRename
Open

Argument Description

olestorage The name of an object variable of type OLEStorage that you want
to check

membername A string whose value is the name of the member that you want to
check

exists A boolean variable that will store whether or not the member exists
774 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
MemberRename
Description Renames a member in an OLE storage. The member can be another OLE

object (a substorage) or a stream.

Applies to OLEStorage objects

Syntax olestorage.MemberRename (membername, newname)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The storage is not open
-2 Member not found
-3 Insufficient resources or too many files open
-4 Access denied
-5 Invalid storage state
-6 Duplicate name
-9 Other error

If any argument’s value is null, MemberRename returns null.

Examples This example creates a storage object and opens an OLE object in a file. It
checks whether wordobj is a substorage within that object, and if so renames it
to memo and saves the object back to the file:

boolean lb_memexists
integer result

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

stg_stuff.MemberExists("wordobj", lb_memexists)
IF lb_memexists THEN
 result = &
 stg_stuff.MemberRename("wordobj", "memo")
 IF result = 0 THEN stg_stuff.Save()
END IF

See also MemberDelete
MemberExists
Open

Argument Description

olestorage The name of an object variable of type OLEStorage containing the
member (substorage or stream) you want to rename

membername A string whose value is the name of the member you want to rename

newname A string whose value is the new name to be assigned to the member
PowerScript Reference 775

MessageBox
MessageBox
Description Displays a system MessageBox with the title, text, icon, and buttons you

specify.

Syntax MessageBox (title, text {, icon {, button {, default } } })

Return value Integer. Returns the number of the selected button (1, 2, or 3) if it succeeds and
-1 if an error occurs. If any argument’s value is null, MessageBox returns null.

Usage If the value of title or text is null, the MessageBox does not display. Unless you
specify otherwise, PowerBuilder continues executing the script when the user
clicks the button or presses enter, which is appropriate when the MessageBox
has one button. If the box has multiple buttons, you will need to include code
in the script that checks the return value and takes an appropriate action.

Argument Description

title A string specifying the title of the message box, which appears in
the box’s title bar.

text The text you want to display in the message box. The text can be a
numeric datatype (double or longlong), a string, or a boolean value.

icon
(optional)

A value of the Icon enumerated datatype indicating the icon you
want to display on the left side of the message box. Values are:

• Information! (Default)

• StopSign!

• Exclamation!

• Question!

• None!

button
(optional)

A value of the Button enumerated datatype indicating the set of
CommandButtons you want to display at the bottom of the message
box. The buttons are numbered in the order listed in the enumerated
datatype. Values are:

• OK! – (Default) OK button

• OKCancel! – OK and Cancel buttons

• YesNo! – Yes and No buttons

• YesNoCancel! – Yes, No, and Cancel buttons

• RetryCancel! – Retry and Cancel buttons

• AbortRetryIgnore! – Abort, Retry, and Ignore buttons

default
(optional)

The number of the button you want to be the default button. The
default is 1. If you specify a number larger than the number of
buttons displayed, MessageBox uses the default.
776 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Before continuing with the current application, the user must respond to the
MessageBox. However, the user can switch to another application without
responding to the MessageBox.

When you are running a version of Windows that supports right-to-left
languages and want to display Arabic or Hebrew text for the message and
buttons, set the RightToLeft property of the application object to true. The
characters of the message will display from right to left. However, the button
text will continue to display in English unless you are running a localized
version of PowerBuilder.

When MessageBox does not work
Controls capture the mouse in order to perform certain operations. For
instance, CommandButtons capture the mouse during mouse clicks, Edit
controls capture for text selection, and scroll bars capture during scrolling. If a
MessageBox is invoked while the mouse is captured, unexpected results can
occur.

Because MessageBox grabs focus, you should not use it when focus is
changing, such as in a LoseFocus event. Instead, you might display a message
in the window’s title or a MultiLineEdit.

MessageBox also causes confusing behavior when called after PrintOpen. For
details, see PrintOpen.

Examples This statement displays a MessageBox with the title Greeting, the text Hello
User, the default icon (Information!), and the default button (the OK button):

MessageBox("Greeting", "Hello User")

The following statements display a MessageBox titled Result and containing
the result of a function, the Exclamation icon, and the OK and Cancel buttons
(the Cancel button is the default):

integer Net
long Distance = 3.457

Net = MessageBox("Result", Abs(Distance), &
 Exclamation!, OKCancel!, 2)
IF Net = 1 THEN
 ... // Process OK.
ELSE
 ... // Process CANCEL.
END IF
PowerScript Reference 777

Mid
Mid
Description Obtains a specified number of characters from a specified position in a string.

Syntax Mid (string, start {, length })

Return value String. Returns characters specified in length of string starting at character
start. If start is greater than the number of characters in string, the Mid function
returns the empty string (""). If length is greater than the number of characters
remaining after the start character, Mid returns the remaining characters. The
return string is not filled with spaces to make it the specified length. If any
argument’s value is null, Mid returns null.

Usage To search a string for the position of the substring that you want to extract, use
the Pos function. Use the return value for the start argument of Mid. To extract
a specified number of characters from the beginning or end of a string, use the
Left or the Right function.

Examples This statement returns RUTH:

Mid("BABE RUTH", 5, 5)

This statement returns "":

Mid("BABE RUTH", 40, 5)

This statement returns BE RUTH:

Mid("BABE RUTH", 3)

These statements store the characters in the SingleLineEdit sle_address from
the 40th character to the end in ls_address_extra:

string ls_address_extra
ls_address_extra = Mid(sle_address.Text, 40)

Argument Description

string The string from which you want characters returned.

start A long specifying the position of the first character you want
returned. (The position of the first character of the string is 1).

length
(optional)

A long whose value is the number of characters you want returned.
If you do not enter length or if length is greater than the number of
characters to the right of start, Mid returns the remaining characters
in the string.
778 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The following user-defined function, called str_to_int_array, converts a string
into an array of integers. Each integer in the array will contain two characters
(one characters as the high byte (ASCII value * 256) and the second character
as the low byte). The function arguments are str, a string passed by value, and
iarr, an integer array passed by reference. The length of the array is initialized
before the function is called. If the integer array is longer than the string, the
script stores spaces. If the string is longer, the script ignores the extra
characters.

To call the function, use code like the following:

int rtn
iarr[20]=0// Initialize the array, if necessary
rtn = str_to_int_array("This is a test.", iarr)

The str_to_int_array function is:

long stringlen, arraylen, i
string char1, char2

// Get the string and array lengths
arraylen = UpperBound(iarr)
stringlen = Len(str)

// Loop through the array
FOR i = 1 to arraylen
 IF (i*2 <= stringlen) THEN
 // Get two chars from str
 char1 = Mid(str, i*2, 1)
 char2 = Mid(str, i*2 - 1, 1)
 ELSEIF (i*2 - 1 <= stringlen) THEN
 // Get the last char
 char1 = " "
 char2 = Mid(str, i*2 - 1, 1)
 ELSE
 // Use spaces if beyond the end of str
 char1 = " "
 char2 = " "
 END IF
 iarr[i] = Asc(char1) * 256 + Asc(char2)
NEXT
RETURN 1

For sample code that converts the integer array back to a string, see Asc.

See also AscA, Left, Pos, Right, UpperBound, Mid method for DataWindows in the
DataWindow Reference or the online Help
PowerScript Reference 779

MidA
MidA
Description Temporarily converts a string to DBCS, then returns the specified number of

bytes from the string, starting from a specified position.

Syntax MidA (string, start, {length})

Return value String. Returns characters specified by the number of bytes searched in a source
string, beginning at the byte specified in the start argument. If start is greater
than the number of bytes in string, the MidA function returns an empty string
(“”). If length is greater than the number of bytes remaining after the start
character, MidA returns the remaining bytes. The return string is not filled with
spaces to make it the specified length. If any argument’s value is null, MidA
returns null.

Usage MidA replaces the functionality that Mid had in DBCS environments in
PowerBuilder 9.

MidW
Description Obtains a specified number of characters from a specified position in a string.

This function is obsolete. It has the same behavior as Mid.

Syntax MidW (string, start {, length })

Argument Description

string The string you want to search.

start A long specifying the position of the first byte you want returned.
(The position of the first byte of the string is 1.)

length
(optional)

A long whose value is the number of bytes you want returned. If
you do not enter length or if length is greater than the number of
bytes to the right of start, MidA returns the remaining bytes in the
string.
780 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Min
Description Determines the smaller of two numbers.

Syntax Min (x, y)

Return value The datatype of x or y, whichever datatype is more precise. If any argument’s
value is null, Min returns null.

Usage If either of the values being compared is null, Min returns null.

Examples This statement returns 4:

Min(4,7)

This statement returns -7:

Min(- 4, - 7)

This statement returns 3.0, a decimal value:

Min(9.2,3.0)

See also Max
Min method for DataWindows in the DataWindow Reference or the online Help

Minute
Description Obtains the number of minutes in the minutes portion of a time value.

Syntax Minute (time)

Return value Integer. Returns the minutes portion of time (00 to 59). If time is null, Minute
returns null.

Examples This statement returns 1:

Minute(19:01:31)

See also Hour
Second
Minute method for DataWindows in the DataWindow Reference or online Help

Argument Description

x The number to which you want to compare y

y The number to which you want to compare x

Argument Description

time The time value from which you want the minutes
PowerScript Reference 781

Mod
Mod
Description Obtains the remainder (modulus) of a division operation.

Syntax Mod (x, y)

Return value The datatype of x or y, whichever datatype is more precise. If any argument’s
value is null, Mod returns null.

Examples This statement returns 2:

Mod(20, 6)

This statement returns 1.5:

Mod(25.5, 4)

This statement returns 2.5:

Mod(25, 4.5)

See also Mod method for DataWindows in the DataWindow Reference or the online
Help

ModifyData
Changes the value of a data point in a series on a graph. There are two syntaxes
depending on the type of graph.

Argument Description

x The number you want to divide by y

y The number you want to divide into x

To modify a data point in Use

All graph types except scatter Syntax 1

Scatter graphs Syntax 2
782 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 1 For all graph types except scatter
Description Changes the value of a data point in a series on a graph. You can specify the

data point to be modified by position or by category.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (their data comes directly from the DataWindow).

Syntax controlname.ModifyData (seriesnumber, datapoint, datavalue
 {, categoryvalue })

Usage When you specify categoryvalue, ModifyData changes the category value at the
specified position, as well as the data value. If the name you specify already
exists at another position, the data at that position is modified instead and the
position in datapoint is ignored (the same behavior as InsertData).

When you specify a position of 0, ModifyData always behaves the same as
InsertData. For a comparison of AddData, InsertData, and ModifyData, see the
Usage section in InsertData.

Examples These statements change the data for Apr in the series named Costs in the graph
gr_product_data:

integer SeriesNbr, CategoryNbr
// Get the number of the series.
SeriesNbr = gr_product_data.FindSeries("Costs")
CategoryNbr = gr_product_data.FindCategory("Apr")
gr_product_data.ModifyData(SeriesNbr, &
 CategoryNbr, 1250)

See also AddData
FindCategory
FindSeries
InsertCategory
InsertData

Argument Description

controlname The name of the graph in which you want to modify data.

seriesnumber The number of the series in which you want to modify data.

datapoint The number of the data point for which you want to modify the
data.

datavalue The new value of the data point. The datatype of datavalue is the
same as the datatype of the values axis of the graph.

categoryvalue
(optional)

The category for datavalue. The datatype of categoryvalue is the
same as the datatype of the category axis of the graph.
PowerScript Reference 783

ModifyData
Syntax 2 For scatter graphs
Description Changes the value of a data point in a series on a graph. You specify the data

point by position and provide an x and y value.

Applies to Graph controls in windows and user objects. Does not apply to graphs within
DataWindow objects (their data comes directly from the DataWindow).

Syntax controlname.ModifyData (seriesnumber, datapoint, xvalue, yvalue)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ModifyData returns null.

Usage For scatter graphs, there are no categories. You specify the position in the series
whose data you want to modify and provide the x and y values for the data.

Examples These statements modify the data point 9 in the series named Test One in the
scatter graph gr_product_data:

integer SeriesNbr
SeriesNbr = gr_product.FindSeries("Test One")
gr_product_data.ModifyData(SeriesNbr, &
 9, 4.55, 86.38)

See also AddData
FindSeries

Argument Description

controlname The name of the scatter graph in which you want to modify data in
a series

seriesnumber The number that identifies the series in which you want to modify
data

datapoint The number of the data point for which you want to modify data

xvalue The new x value of the data you want to modify

yvalue The new y value of the data you want to modify
784 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Month
Description Determines the month of a date value.

Syntax Month (date)

Return value Integer. Returns an integer (1 to 12) whose value is the month portion of date.
If date is null, Month returns null.

Examples This statement returns 1:

Month(2004-01-31)

These statements store in start_month the month entered in the SingleLineEdit
sle_start_date:

integer start_month
start_month = Month(date(sle_start_date.Text))

See also Day
Date
Year
Month method for DataWindows in the DataWindow Reference or the online
Help

Move
Description Moves a control or object to another position relative to its parent window, or

for some window objects, relative to the screen.

Applies to Any object or control

Syntax objectname.Move (x, y)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs or if objectname is a
maximized window. If any argument’s value is null, Move returns null.

Argument Description

date The date from which you want the month

Argument Description

objectname The name of the object or control you want to move to a new
location

x The x coordinate of the new location in PowerBuilder units

y The y coordinate of the new location in PowerBuilder units
PowerScript Reference 785

Move
Usage The x and y coordinates you specify are the new coordinates of the upper-left
corner of the object or control. If the shape of the object or control is not
rectangular (such as, a RadioButton or Oval), x and y are the coordinates of the
upper-left corner of the box enclosing it. For a line control, x and y are the
BeginX and BeginY properties.

When you move controls, drawing objects, and child windows, the coordinates
you specify are relative to the upper-left corner of the parent window. When
you use Move to position main, pop-up, and response windows, the coordinates
you specify are relative to the upper-left corner of the display screen.

Move does not move a maximized sheet or window. If the window is
maximized, Move returns –1.

You can specify coordinates outside the frame of the parent window or screen,
which effectively makes the object or control invisible.

To draw the image of a Picture control at a particular position, without actually
moving the control, use the Draw function.

The Move function changes the X and Y properties of the moved object.

Equivalent syntax The syntax below directly sets the X and Y properties of
an object or control. Although the result is equivalent to using the Move
function, it causes PowerBuilder to redraw objectname twice, first at the new
location of X and then at the new X and Y location:

objectname.X = x

objectname.Y = y

These statements cause PowerBuilder to redraw gb_box1 twice:

gb_box1.X = 150
gb_box1.Y = 200

This statement has the same result but redraws gb_box1 once:

gb_box1.Move(150,200)

Examples This statement changes the X and Y properties of gb_box1 to 150 and 200,
respectively, and moves gb_box1 to the new location:

gb_box1.Move(150, 200)

This statement moves the picture p_Train2 next to the picture p_Train1:

P_Train2.Move(P_Train1.X + P_Train1.Width, &
 P_Train1.Y)
786 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
MoveTab
Description Moves a tab page to another position in a Tab control, changing its index

number.

Applies to Tab controls

Syntax tabcontrolname.MoveTab (source, destination)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage MoveTab also reorders the tab pages in the Tab control’s Control array (which
is a property that lists the tab pages within the Tab control) to match the new
tab order.

Examples This example moves the first tab to the end:

tab_1.MoveTab(1, 0)

This example move the fourth tab to the first position:

tab_1.MoveTab(4, 1)

This example move the fourth tab to the third position:

tab_1.MoveTab(4, 3)

See also OpenTab
SelectTab

Argument Description

tabcontrolname The name of the Tab control containing the tab you want to move.

source An integer whose value is the index of the tab you want to move.

destination An integer whose value is the index of the destination tab before
which source is moved. If destination is 0 or greater than the
number of tabs, source is moved to the end.
PowerScript Reference 787

_Narrow
_Narrow
Description Converts a CORBA object reference from a general supertype to a more

specific subtype.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to CORBAObject objects

Syntax corbaobject._Narrow (newremoteobject, classname)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

Usage The _Narrow function allows you to narrow proxy objects in a
CORBA-compatible client that connects to EAServer. For additional
examples, see the functions on the See also list.

Examples The following example narrows a CORBA object reference to the
n_Bank_Account interface:

CORBAObject my_corbaobj
n_Bank_Account my_account
...
...
my_corbaobj._narrow(my_account,"Bank/n_Bank_Account")

my_account.withdraw(100.0)

In this example, the component is an EJB component that resides in a separate
domain in EAServer. In this case, the SimpleBean component’s classes are in
the ../classes/adomain/asimplepackage subdirectory:

CORBAObject my_corbaobj
SimpleBean my_simplebean
SimpleBeanHome my_simplebeanhome
...
my_corbaobj._narrow(my_simplebeanhome,
 "adomain/asimplepackage/SimpleBeanHome")

See also _Is_A
Resolve_Initial_References
String_To_Object

Argument Description
corbaobject An object of type CORBAObject that you want to convert
newremoteobject A variable that will contain the converted object reference
classname The class name of the subtype to which you want to narrow the

object reference
788 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
NextActivity
Description Provides the next activity in a trace file.

Applies to TraceFile objects

Syntax instancename.NextActivity ()

Return value TraceActivityNode

Usage You use the NextActivity function to read the next activity in a trace file. The
activity is returned as a TraceActivityNode object. If there are no more
activities or if the file is not open, an invalid object is returned. You can then
use the LastError property of the TraceFile object to determine what kind of
error occurred. To use this function, you must have previously opened the trace
file with the Open function. You use the NextActivity and Open functions as well
as the other properties and functions provided by the TraceFile object to access
the contents of a trace file directly. For example, you would use these functions
if you want to perform your own analysis of the tracing data instead of using
the available modeling objects.

Examples This example opens a trace file and then uses a user-defined function called
of_dumpactivitynode to report the appropriate information for each activity
depending on its activity type:

String ls_filename, ls_line
TraceFile ltf_file
TraceActivityNode ltan_node
ls_filename = sle_filename.text
ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
ls_line = "CollectionTime = " + &
 String(ltf_file.CollectionTime) + "~r~n" + &
 "Num Activities = " + &
 String(ltf_file.NumberOfActivities) + "~r~n
mle_output.text = ls_line
ltan_node = ltf_file.NextActivity()
DO WHILE IsValid(ltan_node)
 ls_line = of_dumpactivitynode(ltan_node)
 ltan_node = ltf_file.NextActivity()
 mle_output.text = ls_line
LOOP

See also Open, Close, Reset

Argument Description

instancename Instance name of the TraceFile object
PowerScript Reference 789

Now
Now
Description Obtains the current time based on the system time of the client machine.

Syntax Now ()

Return value Time. Returns the current time based on the system time of the client machine.

Usage Use Now to compare a time to the system time or to display the system time on
the screen. You can use the Timer function to trigger a Timer event which
causes Now to refresh the display.

Examples This statement returns the current system time.

Now()

This example displays the current time in the StaticText st_time. It keeps the
time up-to-date by setting a timer that triggers a Timer event every 60 seconds.
Code in the window’s Open event displays the initial time and starts the timer.
Code in the Timer event displays the time again.

The following code appears in the window’s Open event script:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

A single line in the Timer event script refreshes the time display:

st_time.Text = String(Now(), "hh:mm")

See also Today
Now method for DataWindows in the DataWindow Reference or the online
Help
790 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ObjectAtPointer
Description Finds out where the user clicked in a graph. ObjectAtPointer reports the region

of the graph under the pointer and stores the associated series and data point
numbers in the designated variables.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.ObjectAtPointer ({ graphcontrol, } seriesnumber, datapoint)

Return value grObjectType. Returns a value of the grObjectType enumerated datatype if the
user clicks anywhere in the graph (including an empty area) and a null value if
the user clicks outside the graph.

Values of grObjectType and the parts of the graph associated with them are:

• TypeCategory! – A label for a category

• TypeCategoryAxis! – The category axis or between the category labels

• TypeCategoryLabel! – The label of the category axis

• TypeData! – A data point or other data marker

• TypeGraph! – Any place within the graph control that is not another
grObjectType

• TypeLegend! – Within the legend box, but not on a series label

• TypeSeries! – The line that connects the data points of a series when the
graph’s type is line or on the series label in the legend box

• TypeSeriesAxis! – The series axis of a 3D graph

• TypeSeriesLabel! – The label of the series axis of a 3D graph

• TypeTitle! – The title of the graph

Argument Description

controlname The name of the graph object for which you want the object under
the pointer, or the DataWindow control containing the graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control for which you want the object under the
pointer

seriesnumber An integer variable in which you want to store the number of the
series under the pointer

datapoint An integer variable in which you want to store the number of the
data point under the pointer
PowerScript Reference 791

ObjectAtPointer
• TypeValueAxis! – The value axis, including on the value labels

• TypeValueLabel! – The user clicked the label of the value axis

Usage The ObjectAtPointer function allows you to find out how the user is interacting
with the graph. The function returns a value of the grObjectType enumerated
datatype identifying the part of the graph. When the user clicks in a series, data
point, or category, ObjectAtPointer stores the series and/or data point numbers
in designated variables.

When the user clicks a data point (or other data mark, such as line or bar), or
on the series labels in the legend, ObjectAtPointer stores the series number in
the designated variable.

When the user clicks on a data point or category tickmark label, ObjectAtPointer
stores the data point number in the designated variable.

When the user clicks in a series, but not on the actual data point,
ObjectAtPointer stores 0 in datapoint and when the user clicks in a category,
ObjectAtPointer stores 0 in seriesnumber. When the user clicks other parts of
the graph, ObjectAtPointer stores 0 in both variables.

Call ObjectAtPointer first
ObjectAtPointer is most effective as the first function call in the script for the
Clicked event for the graph control. Make sure you enable the graph control
(the default is disabled). Otherwise, the Clicked event script is never run.

Examples These statements store the series number and data point number at the pointer
location in the graph named gr_product in SeriesNbr and ItemNbr. If the object
type is TypeSeries! they obtain the series name, and if it is TypeData! they get
the data value:

integer SeriesNbr, ItemNbr
double data_value
grObjectTypeobject_type
string SeriesName

object_type = &
gr_product.ObjectAtPointer(SeriesNbr, ItemNbr)

IF object_type = TypeSeries! THEN
SeriesName = &

gr_product.SeriesName(SeriesNbr)
ELSEIF object_type = TypeData! THEN

data_value = &
gr_product.GetData(SeriesNbr, ItemNbr)

END IF
792 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
These statements store the series number and data point number at the pointer
location in the graph named gr_computers in the DataWindow control
dw_equipment in SeriesNbr and ItemNbr:

integer SeriesNbr, ItemNbr
dw_equipment.ObjectAtPointer("gr_computers", &

SeriesNbr, ItemNbr)

See also AddData, AddSeries

Object_To_String
Description Gets the string form of an object.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.Object_To_String (object)

Return value String. Returns the string representation of a CORBA object.

Usage The Object_To_String function can be used to serialize a proxy object reference.
By serializing an object reference, you can save the state of the object so that
it persists after the client terminates processing.

Object_To_String is typically used in conjunction with String_To_Object, which
allows you to deserialize an object reference.

Argument Description
jaguarorb An instance of JaguarORB.

object The CORBA object that will be converted to a string.

The string representation of a CORBA object is an
Interoperable Object Reference (IOR) that describes how to
connect to the server hosting the object. EAServer supports
both standard format IORs (which are hex-encoded) and a URL
format that is human-readable.
PowerScript Reference 793

OffsetPos
Examples The following example shows the use of the Object_To_String function to
serialize a proxy object reference:

Payroll payroll
JaguarORB my_orb
...
my_orb = CREATE JaguarORB
my_orb.init("ORBRetryCount=3,ORBRetryDelay=1000")
...
String payroll_ior = my_orb.Object_To_String(payroll)

See also Init
String_To_Object

OffsetPos
Description Sets the offset for progress bar controls.

Applies to Progress bar controls

Syntax control.OffsetPos (increment)

Return value Integer. Returns 1 if it succeeds and -1 if there is an error.

Examples This statement offsets the start position of a horizontal progress bar by 10:

HProgressBar.OffsetPos (10)

See also SelectionRange
SetRange
StepIt

Argument Description

control The name of the progress bar control

increment An integer that is added to the start position of the progress bar
control
794 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Open
Opens a window, an OLE object, or a trace file.

For windows Open displays a window and makes all its properties and
controls available to scripts.

For OLE objects Open loads an OLE object contained in a file or storage into
an OLE control or storage object variable. The source and the target are then
connected for the purposes of saving work.

For trace files Open opens the specified trace file for reading.

To Use

Open an instance of a particular window datatype Syntax 1

Allow the application to select the window’s datatype when
the script is executed

Syntax 2

To open Use

An OLE object in a file and load it into an OLE control Syntax 3

An OLE object in a storage object in memory and load it
into an OLE control

Syntax 4

An OLE object in an OLE storage file and load it into a
storage object in memory

Syntax 5

An OLE object that is a member of an open OLE storage
and load it into a storage object in memory

Syntax 6

A stream in an OLE storage object in memory and load it
into a stream object

Syntax 7

To Use

Open a trace file Syntax 8
PowerScript Reference 795

Open
Syntax 1 For windows of a known datatype
Description Opens a window object of a known datatype. Open displays the window and

makes all its properties and controls available to scripts.

Applies to Window objects

Syntax Open (windowvar {, parent })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Open returns null.

Usage You must open a window before you can access the properties of the window.
If you access the window’s properties before you open it, an execution error
will occur.

To reference an open window in scripts, use windowvar.

Calling Open twice
If you call Syntax 1 of the Open function twice for the same window,
PowerBuilder activates the window twice; it does not open two instances of the
window.

To open an array of windows where each window has different datatype, use
Syntax 2 of Open.

Parent windows for the opened window Generally, if you are opening a
child or a pop-up window and specify parent, the window identified by parent
is the parent of the opened window (windowname or windowvar). When a
parent window is closed, all its child and pop-up windows are closed too.

Not all types of windows can be parent windows. Only a window whose
borders are not confined within another window can be a parent. A child
window or a window opened as a sheet cannot be a parent.

Argument Description

windowvar The name of the window you want to display. You can specify
a window object defined in the Window painter (which is a
window datatype) or a variable of the desired window
datatype. Open places a reference to the opened window in
windowvar.

parent
(child and pop-up
windows only)
(optional)

The window you want make the parent of the child or pop-up
window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.
796 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
If you specify a confined window as a parent, PowerBuilder checks its parent,
and that window’s parent, until it finds a window that it can use as a parent.
Therefore if you open a pop-up window and specify a sheet as its parent,
PowerBuilder makes the MDI frame that contains the sheet its parent.

If you do not specify a parent for a child or pop-up window, the active window
becomes the parent. Therefore, if one pop-up is active and you open another
pop-up, the first pop-up is the parent, not the main window. When the first
pop-up is closed, PowerBuilder closes the second pop-up too.

However, in an MDI application, the active sheet is not the active window and
cannot be the parent. In Windows, it is clear that the MDI frame, not the active
sheet, is the active window—its title bar is the active color and it displays the
menu.

Mouse behavior and response windows
Controls capture the mouse in order to perform certain operations. For
instance, CommandButtons capture during mouse clicks, edit controls capture
for text selection, and scroll bars capture during scrolling. If a response
window is opened while the mouse is captured, unexpected results can occur.

Because a response window grabs focus, you should not open it when focus is
changing, such as in a LoseFocus event.

Examples This statement opens an instance of a window named w_employee:

Open(w_employee)

The following statements open an instance of a window of the type
w_employee:

w_employee w_to_open
Open(w_to_open)

The following code opens an instance of a window of the type child named
cw_data and makes w_employee the parent:

child cw_data
Open(cw_data, w_employee)

The following code opens two windows of type w_emp:

w_emp w_e1, w_e2
Open(w_e1)
Open(w_e2)

See also Close, OpenWithParm, Show
PowerScript Reference 797

Open
Syntax 2 For windows of unknown datatype
Description Opens a window object when you do not know its datatype until the application

is running. Open displays the window and makes all its properties and controls
available to scripts.

Applies to Window objects

Syntax Open (windowvar, windowtype {, parent })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Open returns null.

Usage You must open a window before you can access the properties of the window.
If you access the window’s properties before you open it, an execution error
will occur.

To reference an open window in scripts, use windowvar.

The window object specified in windowtype must be the same datatype as
windowvar (the datatype includes datatypes inherited from it). The datatype of
windowvar is usually window, from which all windows are inherited, but it can
be any ancestor of windowtype. If it is not the same type, an execution error will
occur.

Use this syntax to open an array of windows when each window in the array
will have a different datatype. See the last example, in which the window
datatypes are stored in one array and are used for the windowtype argument
when each window in another array is opened.

Argument Description

windowvar A window variable, usually of datatype window. Open places
a reference to the opened window in windowvar.

windowtype A string whose value is the datatype of the window you want
to open. The datatype of windowtype must be the same or a
descendant of windowvar.

parent
(child and pop-up
windows only)
(optional)

The window you want to make the parent of the child or
pop-up window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.
798 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Considerations when specifying a window type
When you use Syntax 2, PowerBuilder opens an instance of a window of the
datatype specified in windowtype and places a reference to this instance in the
variable windowvar.

If windowtype is a descendent window, you can only reference properties,
events, functions, or structures that are part of the definition of windowvar. For
example, if a user event is declared for windowtype, you cannot reference it.

The object specified in windowtype is not automatically included in your
executable application. To include it, you must save it in a PBD file
(PowerBuilder dynamic library) that you deliver with your application.

For information about the parent of an opened window, see Syntax 1.

Examples This example opens a window of the type specified in the string s_w_name and
stores the reference to the window in the variable w_to_open. The SELECT
statement retrieves data specifying the window type from the database and
stores it in s_w_name:

window w_to_open
string s_w_name

SELECT next_window INTO : s_w_name FROM routing_table
WHERE... ;

Open(w_to_open, s_w_name)

This example opens an array of ten windows of the type specified in the string
is_w_emp1 and assigns a title to each window in the array. The string
is_w_emp1 is an instance variable whose value is a window type:

integer n
window win_array[10]

FOR n = 1 to 10
Open(win_array[n], is_w_emp1)
win_array[n].title = "Window " + string(n)

NEXT

The following statements open four windows. The type of each window is
stored in the array w_stock_type. The window reference from the Open
function is assigned to elements in the array w_stock_win:

window w_stock_win[]
string w_stock_type[4]
PowerScript Reference 799

Open
w_stock_type[1] = "w_stock_wine"
w_stock_type[2] = "w_stock_scotch"
w_stock_type[3] = "w_stock_beer"
w_stock_type[4] = "w_stock_soda"

FOR n = 1 to 4
Open(w_stock_win[n], w_stock_type[n])

NEXT

See also Close
OpenWithParm
Show

Syntax 3 For loading an OLE object from a file into a
control

Description Opens an OLE object in a file and loads it into an OLE control.

Applies to OLE controls

Syntax olecontrol.Open (OLEsourcefile)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The file is not found or its data has an invalid format
-9 Other error

If any argument’s value is null, Open returns null.

Examples This example opens the object in the file MYSTUFF.OLE and loads it into in
the control ole_1:

integer result
result = ole_1.Open("c:\ole2\mystuff.ole")

See also InsertFile
Save
SaveAs

Argument Description

olecontrol The name of the OLE control into which you want to load an
OLE object.

OLEsourcefile A string specifying the name of an OLE storage file containing
the object. The file must already exist and contain an OLE
object. OLEsourcefile can include a path for the file, as well as
path information inside the OLE storage.
800 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 4 For opening an OLE object in memory into a
control

Description Opens an OLE object that is in a OLE storage object in memory and loads it
into an OLE control.

Applies to OLE controls

Syntax olecontrol.Open (sourcestorage, substoragename)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-2 The parent storage is not open
-9 Other error

If any argument’s value is null, Open returns null.

Examples This example opens the object in the substorage excel_obj within the storage
variable stg_stuff and loads it into the control ole_1. Olest_stuff is already open:

integer result
result = ole_1.Open(stg_stuff, "excel_obj")

This example opens a substorage in the storage variable stg_stuff and loads it
into the control ole_1. The substorage name is specified in the variable stuff_1.
Olest_stuff is already open:

integer result
string stuff_1 = "excel_obj"
result = ole_1.Open(stg_stuff, stuff_1)

See also InsertFile
Save
SaveAs

Argument Description

olecontrol The name of the OLE control into which you want to load an
OLE object

sourcestorage The name of an object variable of OLEStorage containing the
object you want to load into olecontrol

substoragename A string specifying the name of a substorage that contains the
desired object within storagename
PowerScript Reference 801

Open
Syntax 5 For opening an OLE object in a file into an
OLEStorage

Description Opens an OLE object in an OLE storage file and loads it into a storage object
in memory.

Applies to OLE storage objects

Syntax olestorage.Open (OLEsourcefile {, readmode {, sharemode } })

Argument Description

olestorage The name of an object variable of type OLEStorage into
which you want to load the OLE object.

OLEsourcefile A string specifying the name of an OLE storage file
containing the object. The file must already exist and contain
OLE objects. OLEsourcefile can include the file’s path, as
well as path information within the storage.

readmode
(optional)

A value of the enumerated datatype stgReadMode that
specifies the type of access you want for OLEsourcefile.
Values are:

• stgReadWrite! – (Default) Read/Write access. If the file
does not exist, Open creates it.

• stgRead! – Read-only access. You cannot change
OLEsourcefile.

• stgWrite! – Write access. You can rewrite OLEsourcefile
but not read its current contents. If the file does not exist,
Open creates it.

sharemode
(optional)

A value of the enumerated datatype stgShareMode that
specifies how other attempts, by your own or other
applications, to open OLEsourcefile will fare. Values are:

• stgExclusive! – (Default) No other attempt to open
OLEsourcefile will succeed.

• stgDenyNone! – Any other attempt to open OLEsourcefile
will succeed.

• stgDenyRead! – Other attempts to open OLEsourcefile for
reading will fail.

• stgDenyWrite – Other attempts to open OLEsourcefile for
writing will fail.
802 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The file is not an OLE storage file
-3 The file is not found
-9 Other error

If any argument’s value is null, Open returns null.

Usage An OLE storage file is structured like a directory. Each OLE object can contain
other OLE objects (substorages) and other data (streams). You can open the
members of an OLE storage belonging to a server application if you know the
structure of the storage. However, the PowerBuilder functions for
manipulating storages are provided so that you can build your own storage files
for organizing the OLE objects used in your applications.

The whole file can be an OLE object and substorages within the file can also
be OLE objects. More frequently, the structure for a storage file you create is a
root level that is not an OLE object but contains independent OLE objects as
substorages. Any level in the storage hierarchy can contain OLE objects or be
simply a repository for another level of substorages.

Opening nested objects
Because you can specify path information within an OLE storage with a
backslash as the separator, you can open a deeply nested object with a single
call to Open. However, there is no error checking for the path you specify and
if the Open fails, you wo not know why. It is strongly recommended that you
open each object in the path until you get to the one you want.

Examples This example opens the object in the file MYSTUFF.OLE and loads it into the
OLEStorage variable stg_stuff:

integer result
OLEStorage stg_stuff

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")

This example opens the same object for reading:

integer result
OLEStorage stg_stuff

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole", &

stgRead!)
PowerScript Reference 803

Open
This example opens the object in the file MYSTUFF.OLE and loads it into the
OLEStorage variable stg_stuff, as in the previous example. Then it opens the
substorage drawing_1 into a second storage variable, using Syntax 6 of Open.
This example does not include code to close and destroy any of the objects that
were opened.

integer result
OLEStorage stg_stuff, stg_drawing

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result >= 0 THEN

stg_drawing = CREATE OLEStorage
result = opest_drawing.Open("drawing_1", &

stgRead!, stgDenyNone!, stg_stuff)
END IF

This example opens the object in the file MYSTUFF.OLE and loads it into the
OLEStorage variable stg_stuff. Then it checks whether a stream called info
exists in the OLE object, and if so, opens it with read access using Syntax 7 of
Open. This example does not include code to close and destroy any of the
objects that were opened.

integer result
boolean str_found
OLEStorage stg_stuff
OLEStream mystream

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result < 0 THEN RETURN

result = stg_stuff.MemberExists("info", str_found)
IF result < 0 THEN RETURN

IF str_found THEN
mystream = CREATE OLEStream
result = mystream.Open(stg_stuff, "info", &

stgRead!, stgDenyNone!)
IF result < 0 THEN RETURN

END IF

See also Close
Save
SaveAs
804 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 6 For opening an OLE storage member into a
storage

Description Opens a member of an open OLE storage and loads it into another OLE storage
object in memory.

Applies to OLE storage objects

Syntax olestorage.Open (substoragename, readmode, sharemode, sourcestorage)

Return value Return value

Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

Argument Description

olestorage The name of a object variable of type OLEStorage into which
you want to load the OLE object.

substoragename A string specifying the name of the storage member within
sourcestorage that you want to open. Note the reversed order
of the sourcestorage and substoragename arguments from
Syntax 4.

readmode A value of the enumerated datatype stgReadMode that
specifies the type of access you want for substoragename.
Values are:

• stgReadWrite! – Read/write access. If the member does not
exist, Open creates it.

• stgRead! – Read-only access. You cannot change
substoragename.

• stgWrite! – Write access. You can rewrite substoragename
but not read its current contents. If the member does not
exist, Open creates it.

sharemode A value of the enumerated datatype stgShareMode that
specifies how other attempts, by your own or other
applications, to open substoragename will fare. Values are:

• stgExclusive! – (Default) No other attempt to open
substoragename will succeed.

• stgDenyNone! – Any other attempt to open
substoragename will succeed.

• stgDenyRead! – Other attempts to open substoragename
for reading will fail.

• stgDenyWrite – Other attempts to open substoragename
for writing will fail.

sourcestorage An open OLEStorage object containing substoragename.
PowerScript Reference 805

Open
-2 The parent storage is not open
-3 The member is not found (when opened for reading)
-9 Other error

If any argument’s value is null, Open returns null.

Usage An OLE storage file is structured like a directory. Each OLE object can contain
other OLE objects (substorages) and other data (streams). You can open the
members of an OLE storage belonging to a server application if you know the
structure of the storage. However, PowerBuilder’s functions for manipulating
storages are provided so that you can build your own storage files for
organizing the OLE objects used in your applications.

The whole file can be an OLE object and substorages within the file can also
be OLE objects. More frequently, the structure for a storage file you create is a
root level that is not an OLE object but contains independent OLE objects as
substorages. Any level in the storage hierarchy can contain OLE objects or be
simply a repository for another level of substorages.

Opening nested objects
Because you can specify path information within an OLE storage with a
backslash as the separator, you can open a deeply nested object with a single
call to Open. However, there is no error checking for the path you specify and
if the Open fails, you will not know why. It is strongly recommended that you
open each object in the path until you get to the one you want.

Examples This example opens the object in the file MYSTUFF.OLE and loads it into the
OLEStorage variable stg_stuff, as in the previous example. Then it opens the
substorage drawing_1 into a second storage variable. This example does not
include code to close and destroy any of the objects that were opened.

integer result
OLEStorage stg_stuff, stg_drawing

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result >= 0 THEN

stg_drawing = CREATE OLEStorage
result = opest_drawing.Open("drawing_1", &

stgRead!, stgDenyNone!, stg_stuff)
END IF

See also Close
Save
SaveAs
806 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 7 For opening OLE streams
Description Opens a stream in an open OLE storage object and loads it into an OLE stream

object.

Applies to OLE stream objects

Syntax olestream.Open (sourcestorage, streamname {, readmode {, sharemode } })

Argument Description

olestream The name of a object variable of type OLEStream into which
you want to load the OLE object.

sourcestorage An OLE storage that contains the stream to be opened.

streamname A string specifying the name of the stream within
sourcestorage that you want to open.

readmode
(optional)

A value of the enumerated datatype stgReadMode that
specifies the type of access you want for streamname. Values
are:

• stgReadWrite! – Read/write access. If streamname does
not exist, Open creates it.

• stgRead! – Read-only access. You cannot change
streamname.

• stgWrite! – Write access. You can rewrite streamname but
not read its current contents. If streamname does not exist,
Open creates it.

sharemode
(optional)

A value of the enumerated datatype stgShareMode that
specifies how other attempts, by your own or other
applications, to open streamname will fare. Values are:

• stgExclusive! – No other attempt to open streamname will
succeed.

• stgDenyNone! – Any other attempt to open streamname
will succeed.

• stgDenyRead! – Other attempts to open streamname for
reading will fail.

• stgDenyWrite – Other attempts to open streamname for
writing will fail.
PowerScript Reference 807

Open
Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Stream not found
-2 Stream already exists
-3 Stream is already open
-4 Storage not open
-5 Access denied
-6 Invalid name
-9 Other error

If any argument’s value is null, Open returns null.

Examples This example opens the object in the file MYSTUFF.OLE and loads it into the
OLEStorage variable stg_stuff. Then it checks whether a stream called info
exists in the OLE object, and if so, opens it with read access. This example does
not include code to close and destroy any of the objects that were opened.

integer result
boolean str_found
OLEStorage stg_stuff
OLEStream mystream

stg_stuff = CREATE OLEStorage
result = stg_stuff.Open("c:\ole2\mystuff.ole")
IF result < 0 THEN RETURN

result = stg_stuff.MemberExists("info", str_found)
IF result < 0 THEN RETURN

IF str_found THEN
mystream = CREATE OLEStream
result = mystream.Open(stg_stuff, "info", &

stgRead!, stgDenyNone!)
IF result < 0 THEN RETURN

END IF

See also Close
808 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 8 For opening trace files
Description Opens the specified trace file for reading.

Applies to TraceFile object

Syntax instancename.Open (filename)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileAlreadyOpenError! – The specified trace file has already been opened

• FileOpenError! – The trace file can not be opened for reading

• FileInvalidFormatError! – The file does not have the correct format

• EnterpriseOnlyFeature! – This function is supported only in the Enterprise
edition of PowerBuilder

• SourcePBLError! – The source libraries cannot be found

Usage You use this syntax to access the contents of a specified trace file created from
a running PowerBuilder application. You can then use the properties and
functions provided by the TraceFile object to perform your own analysis of
tracing data instead of using the available modeling objects.

Examples This example opens a trace file:

TraceFile ltf_file
String ls_filename

ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
...

See also Close
Reset
NextActivity

Argument Description

instancename Instancename of the TraceFile object

filename A string identifying the name of the trace file you want to read
PowerScript Reference 809

OpenChannel
OpenChannel
Description Opens a channel to a DDE server application.

Syntax OpenChannel (applname, topicname {, windowhandle })

Return value Long. Returns the handle to the channel (a positive integer) if it succeeds. If an
error occurs, OpenChannel returns a negative integer. Values are:

-1 Open failed
-9 Handle is null

Usage Use OpenChannel to open a channel to a DDE server application and leave it
open so you can efficiently execute more than one DDE request. This type of
DDE conversation is called a warm link. Because you open a channel, the
operating system does not have to poll all open applications every time you
send or ask for data.

The following is an outline of a warm-link conversation:

• Open a DDE channel with OpenChannel and check that it returns a valid
channel handle (a positive value).

• Execute several DDE functions. You can use the following functions:

ExecRemote (command, handle, <windowhandle>)

GetRemote (location, target, handle, <windowhandle>)

SetRemote (location, value, handle, <windowhandle>)

• Close the DDE channel with CloseChannel.

If you only need to use a remote DDE function once, you can call ExecRemote,
GetRemote, or SetRemote without opening a channel. This is called a cold link.
Without an open channel, the operating system polls all running applications to
find the specified server application each time you call a DDE function.

Your PowerBuilder application can also be a DDE server.

Argument Description

applname A string specifying the DDE name of the DDE server
application.

topicname A string identifying the data or the instance of the application
you want to use (for example, in Microsoft Excel, the topic
name could be System or the name of an open spreadsheet).

windowhandle
(optional)

The handle of the window that you want to act as the DDE
client. Specify this parameter to control which window is
acting as the DDE client when you have more than one open
window.
810 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
For more information, see StartServerDDE.

About server applications
Each application decides how it supports DDE. You must check each potential
server application’s documentation to find out its DDE name, what its valid
topics are, and how it expects locations to be specified.

Examples These statements open a channel to the active spreadsheet REGION.XLS in
Microsoft Excel and set handle to the handle to the channel:

long handle
handle = OpenChannel("Excel", "REGION.XLS")

The following example opens a DDE channel to Excel and requests data from
three spreadsheet cells. In the PowerBuilder application, the data is stored in
the string array s_regiondata. The client window for the DDE conversation is
w_ddewin:

long handle
string s_regiondata[3]
handle = OpenChannel("Excel", "REGION.XLS", &

Handle(w_ddewin))
GetRemote("R1C2", s_regiondata[1], handle, &

Handle(w_ddewin))
GetRemote("R1C3", s_regiondata[2], handle, &

Handle(w_ddewin))
GetRemote("R1C4", s_regiondata[3], handle, &

Handle(w_ddewin))
CloseChannel(handle, Handle(w_ddewin))

See also CloseChannel
ExecRemote
GetRemote
SetRemote
PowerScript Reference 811

OpenSheet
OpenSheet
Description Opens a sheet within an MDI (multiple document interface) frame window and

creates a menu item for selecting the sheet on the specified menu.

Applies to Window objects

Syntax OpenSheet (sheetrefvar {, windowtype }, mdiframe {, position
{, arrangeopen } })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenSheet returns null. In some cases, such as if the windowtype
argument is invalid, OpenSheet throws a runtime error and does not return a
value; therefore, it is recommended that you both test the return value and wrap
the function call in a try-catch block as shown in the first example in the
Examples section.

Usage A sheet is a document window that is contained within an MDI frame window.
MDI applications allow several sheets to be open at the same time. The newly
opened sheet becomes the active sheet. If the opened sheet has an associated
menu, that menu becomes the menu at the top of the frame.

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame
window. OpenSheet places a reference to the open sheet in
sheetrefvar.

windowtype
(optional)

A string whose value is the datatype of the window you want to
open. The datatype of windowtype must be the same or a descendant
of sheetrefvar.

mdiframe The name of an MDI frame window.

position
(optional)

The number of the menu item (in the menu associated with the
sheet) to which you want to append the names of the open sheets.
Menu bar menu items are numbered from the left, beginning with
1. The default value of 0 lists the open sheets under the next-to-last
menu item.

arrangeopen
(optional)

A value of the ArrangeOpen enumerated datatype specifying how
you want the sheet arranged in the MDI frame in relation to other
sheets when it is opened:

• Cascaded! – (Default) Cascade the sheet relative to other open
sheets, so that its title bar is below the previously opened sheet.

• Layered! – Layer the sheet so that it fills the frame and covers
previously opened sheets.

• Original! – Open the sheet in its original size and cascade it.
812 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
When you specify windowtype, the window object specified in windowtype
must be the same datatype as sheetrefvar (a datatype includes datatypes
inherited from it). The datatype of sheetrefvar is usually window, from which
all windows are inherited, but it can be any ancestor of windowtype. If it is not
the same type, an execution error occurs.

PowerBuilder does not automatically copy objects that are dynamically
referenced (through string variables) into your executable. To include the
window object specified in windowtype in your application, list it in the
resource (PBR) file that you use when you build the executable. For more
information about PBR files for an executable, see the PowerBuilder Users
Guide.

OpenSheet opens a sheet and appends its name to the item on the menu bar
specified in position. If position is 0 or greater than the number of items on the
menu bar, PowerBuilder appends the name of the sheet to the next-to-last menu
item in the menu bar. In most MDI applications, the next-to-last menu item on
the menu bar is the Window menu, which contains options for arranging sheets,
as well as the list of open sheets.

PowerBuilder cannot append the sheets to a menu that does not have any other
menu selections. Make sure that the menu you specify or, if you leave out
position, the next-to-last menu, has at least one other item.

If more than nine sheets are open in the frame, the first nine are listed on the
menu specified by position and a final item More Windows is added.

Sheets in a frame cannot be made invisible. When you open a sheet, the value
of the Visible property is ignored. Changing the Visible property when the
window is already open has no effect.

Opening response windows
Do not use the OpenSheet function to open a response window.
PowerScript Reference 813

OpenSheet
Examples This example opens the sheet child_1 in the MDI frame MDI_User in its original
size. It appends the name of the opened sheet to the second menu item in the
menu bar, which is now the menu associated with child_1, not the menu
associated with the frame. OpenSheet might return -1 or throw a runtime error
if the call fails. To ensure that both of these possibilities are trapped, this
example checks the return value of the function and uses a try-catch statement
to catch a possible runtime error:

integer li_return
try

li_return = Opensheet (child_1, MDI_User, 2, &
Original!)

if IsNull(li_return) then
MessageBox ("Failure", "Null argument provided")

elseif li_return= 1 then
MessageBox ("Success", "Sheet opened.")

else
MessageBox ("Failure", "Sheet open failed.")

end if
catch (runtimeerror rt)

Messagebox("Failure","Sheet open failed. " &
+ rt.getmessage()) //Handle the error or not

end try

This example opens an instance of the window object child_1 as an MDI sheet
and stores a reference to the opened window in child. The name of the sheet is
appended to the fourth menu associated with child_1 and is layered:

window child
OpenSheet(child, "child_1", MDI_User, 4, Layered!)

See also ArrangeSheets
GetActiveSheet
OpenSheetWithParm
814 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
OpenSheetWithParm
Description Opens a sheet within an MDI (multiple document interface) frame window and

creates a menu item for selecting the sheet on the specified menu, as
OpenSheet does. OpenSheetWithParm also stores a parameter in the system’s
Message object so that it is accessible to the opened sheet.

Applies to Window objects

Syntax OpenSheetWithParm (sheetrefvar, parameter {, windowtype }, mdiframe
{, position {, arrangeopen } })

Argument Description

sheetrefvar The name of any window variable that is not an MDI frame
window. OpenSheetWithParm places a reference to the open sheet
in sheetrefvar.

parameter The parameter you want to store in the Message object when the
sheet is opened. Parameter must have one of these datatypes:

• String

• Numeric

• PowerObject

windowtype
(optional)

A string whose value is the datatype of the window you want to
open. The datatype of windowtype must be the same or a descendant
of sheetrefvar.

mdiframe The name of the MDI frame window in which you want to open this
sheet.

position
(optional)

The number of the menu item (in the menu associated with the
sheet) to which you want to append the names of the open sheets.
Menu bar menu items are numbered from the left, beginning with
1. The default is to list the open sheets under the next-to-last menu
item.

arrangeopen
(optional)

A value of the ArrangeOpen enumerated datatype specifying how
you want the sheets arranged in the MDI frame when they are
opened:

• Cascaded! – (Default) Cascade the sheet relative to other open
sheets so that its title bar is below the previously opened sheet.

• Layered! – Layer the sheet so that it fills the frame and covers
previously opened sheets.

• Original! – Open the sheet in its original size and cascade it.
PowerScript Reference 815

OpenSheetWithParm
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenSheetWithParm returns null. In some cases, such as if the
windowtype argument is invalid, OpenSheetWithParm throws a runtime error
and does not return a value; therefore, it is recommended that you both test the
return value and wrap the function call in a try-catch block as shown in the first
example in the Examples section.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenSheetWithParm, scripts for the
opened sheet would check one of the following properties.

In the opened window, it is a good idea to access the value passed in the
Message object immediately (because some other script may use the Message
object for another purpose).

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

Opening response windows
Do not use the OpenSheetWithParm function to open a response window.

See the usage notes for OpenSheet, which also apply to OpenSheetWithParm.

Message object property Argument datatype

Message.DoubleParm Numeric

Message.PowerObjectParm PowerObject (PowerBuilder objects, including
user-defined structures)

Message.StringParm String
816 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example opens the sheet w_child_1 in the MDI frame MDI_User in its
original size and stores MA in message.StringParm. It appends the names of the
open sheet to the second menu item in the menu bar of MDI_User (the menu
associated with w_child_1). OpenSheetWithParm might return -1 or throw a
runtime error if the call fails. To ensure that both of these possibilities are
trapped, this example checks the return value of the function and uses a
try-catch statement to catch a possible runtime error:

integer li_return
try

 li_return = OpenSheetWithParm(w_child_1, "MA", &
MDI_User, 2, Original!)

if IsNull(li_return) then
MessageBox ("Failure", "Null argument provided")

elseif li_return= 1 then
MessageBox ("Success", "Sheet opened.")

else
MessageBox ("Failure", "Sheet open failed.")

end if

catch (runtimeerror rt)
Messagebox("Failure", "Sheet open failed. " &

+ rt.getmessage()) //Handle the error
end try

The next example illustrates how to access parameters passed in the Message
object. These statements are in the scripts for two different windows. The script
for the first window declares child as a window and opens an instance of
w_child_1 as an MDI sheet. The name of the sheet is appended to the fourth
menu item associated with w_child_1 and is layered.

The script also passes a reference to the SingleLineEdit control sle_state as a
PowerObject parameter of the Message object. The script for the Open event
of w_child_1 uses the text in the edit control to determine what type of
calculations to perform. Note that this would fail if sle_state no longer existed
when the second script refers to it. As an alternative, you could pass the text
itself, which would be stored in the String parameter of Message.

The second script determines the text in the SingleLineEdit and performs
processing based on that text.

The script for the first window is:

window child
OpenSheetWithParm(child, sle_state, &

"w_child_1", MDI_User, 4, Layered!)
PowerScript Reference 817

OpenTab
The second script, for the Open event in w_child_1, is:

SingleLineEdit sle_state
sle_state = Message.PowerObjectParm
IF sle_state.Text = "overtime" THEN
... // overtime hours calculations
ELSEIF sle_state.Text = "vacation" THEN
... // vacation processing
ELSEIF sle_state.Text = "standard" THEN
... // standard hours calculations
END IF

See also ArrangeSheets
OpenSheet

OpenTab
Opens a visual user object and makes it a tab page in the specified Tab control
and makes all its properties and controls available to scripts.

Syntax 1 For user objects of a known datatype
Description Opens a custom visual user object of a known datatype as a tab page in a Tab

control.

Applies to Tab controls

To open Use

A user object as a tab page Syntax 1

A user object as a tab page, allowing the application to
select the user object’s type at runtime

Syntax 2
818 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax tabcontrolname.OpenTab (userobjectvar, index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTab returns null.

Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

The tab page for the user object does not become selected. Scripts for
constructor events of the controls on the user object do not run until the tab
page is selected.

You must open a user object before you can access the properties of the user
object. If you access the user object’s properties before you open it, an
execution error will occur.

A user object that is part of a Tab control’s definition (that is, it was added to
the Tab control in the Window painter) does not have to be opened in a script.
PowerBuilder opens it when it opens the window containing the Tab control.

OpenTab adds the newly opened user object to the Tab control’s Control array,
which is a property that lists the tab pages within the Tab control.

Opening the same object twice
If you call Syntax 1 twice to open the same user object, PowerBuilder does
open the user object again as another tab page, in contrast to the behavior of
Open and OpenUserObject.

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar The name of the custom visual user object you want to open as
a tab page. You can specify a custom visual user object defined
in the User Object painter (which is a user object datatype) or
a variable of the desired user object datatype. OpenTab places
a reference to the opened custom visual user object in
userobjectvar.

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end.
PowerScript Reference 819

OpenTab
Behavior change
In previous releases, calling the OpenTab function to open a user object as a tab
page displayed the tab page even if the user object’s Visible property was set
to false. In current releases, the user object’s Visible property must be set to true
for the tab page to display.

Examples This statement opens an instance of a user object named u_Employee as a tab
page in the Tab control tab_1:

tab_1.OpenTab(u_Employee, 0)

The following statements open an instance of a user object u_to_open as a tab
page in the Tab control tab_1. It becomes the first tab in the control:

u_employee u_to_open
tab_1.OpenTab(u_to_open, 1)

See also OpenTabWithParm

Syntax 2 For user objects of unknown datatype
Description Opens a visual user object as a tab page within a Tab control when the datatype

of the user object is not known until the script is executed.

Applies to Tab controls

Syntax tabcontrolname.OpenTab (userobjectvar, userobjecttype, index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTab returns null.

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar A variable of datatype UserObject. OpenTab places a
reference to the opened user object in userobjectvar.

userobjecttype A string whose value is the name of the user object you want
to open. The datatype of userobjecttype must be a descendant
of userobjectvar.

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end
820 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

The tab page for the user object does not become selected. Scripts for
Constructor events of the controls on the user object do not run until the tab
page is selected.

You must open a user object before you can access the properties of the user
object. If you access the user object’s properties before you open it, an
execution error will occur.

A user object that is part of a Tab control’s definition (that is, it was added to
the Tab control in the Window painter) does not have to be opened in a script.
PowerBuilder opens it when it opens the window containing the Tab control.

OpenTab adds the newly opened user object to the Tab control’s Control array,
which is a property that lists the tab pages within the Tab control.

Behavior change
In previous releases, calling the OpenTab function to open a user object as a tab
page displayed the tab page even if the user object’s Visible property was set
to false. In current releases, the user object’s Visible property must be set to true
for the tab page to display.

Considerations when specifying a user object type
When you use Syntax 2, PowerBuilder opens an instance of a user object of the
datatype specified in userobjecttype and places a reference to this instance in
the variable userobjectvar. To refer to the instance in scripts, use userobjectvar.

If userobjecttype is a descendent user object, you can only refer to properties,
events, functions, or structures that are part of the definition of userobjectvar.
For example, if a user event is declared for userobjecttype, you cannot
reference it.

The object specified in userobjecttype is not automatically included in your
executable application. To include it, you must save it in a PBD file
(PowerBuilder dynamic library) that you deliver with you application.
PowerScript Reference 821

OpenTabWithParm
Examples The following example opens a user object as the last tab page in the Tab
control tab_1. The user object is of the type specified in the string s_u_name
and stores the reference to the user object in the variable u_to_open:

UserObject u_to_open
string s_u_name

s_u_name = sle_user.Text
tab_1.OpenTab(u_to_open, s_u_name, 0)

See also OpenTabWithParm

OpenTabWithParm
Adds a visual user object to the specified window and makes all its properties
and controls available to scripts, as OpenTab does. OpenTabWithParm also
stores a parameter in the system’s Message object so that it is accessible to the
opened object.

Syntax 1 For user objects of a known datatype
Description Opens a custom visual user object of a known datatype as a tab page in a Tab

control and stores a parameter in the system’s Message object.

Applies to Tab controls

To open Use

A user object as a tab page Syntax 1

A user object as a tab page, allowing the application to
select the user object’s type at runtime

Syntax 2
822 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax tabcontrolname.OpenTabWithParm (userobjectvar, parameter, index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTabWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenTabWithParm, scripts for the
opened user object would check one of the following properties.

In the opened user object, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar The name of the custom visual user object you want to open
as a tab page. You can specify a custom visual user object
defined in the User Object painter (which is a user object
datatype) or a variable of the desired user object datatype.
OpenTabWithParm places a reference to the opened custom
visual user object in userobjectvar.

parameter The parameter you want to store in the Message object when
the user object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end.

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PowerBuilder objects, including
user-defined structures)

message.StringParm String
PowerScript Reference 823

OpenTabWithParm
Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenTab, all of which apply to OpenTabWithParm.

Examples This statement opens an instance of a user object named u_Employee as a tab
page in the Tab control tab_empsettings. It also stores the string James
Newton in Message.StringParm. The Constructor event script for the user
object uses the string parameter as the text of a StaticText control st_empname
in the object. The script that opens the tab page has the following statement:

tab_empsettings.OpenTabWithParm(u_Employee, &
"James Newton", 0)

The user object’s Constructor event script has the following statement:

st_empname.Text = Message.StringParm

The following statements open an instance of a user object u_to_open as the
first tab page in the Tab control tab_empsettings and store a number in
message.DoubleParm. The last statement selects the tab page:

u_employee u_to_open
integer age = 50
tab_1.OpenTabWithParm(u_to_open, age, 1)
tab_1.SelectTab(u_to_open)

See also OpenTab
824 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For user objects of unknown datatype
Description Opens a visual user object as a tab page within a Tab control when the datatype

of the user object is not known until the script is executed. In addition,
OpenTabWithParm stores a parameter in the system’s Message object so that it
is accessible to the opened object.

Applies to Tab controls

Syntax tabcontrolname.OpenTabWithParm (userobjectvar, parameter,
userobjecttype, index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenTabWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenTabWithParm, scripts for the
opened user object would check one of the following properties.

Argument Description

tabcontrolname The name of the Tab control in which you want to open the
user object as a tab page.

userobjectvar A variable of datatype UserObject. OpenTabWithParm
places a reference to the opened user object in userobjectvar

parameter The parameter you want to store in the Message object when
the user object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

userobjecttype A string whose value is the datatype of the user object you
want to open. The datatype of userobjecttype must be a
descendant of userobjectvar.

index The number of the tab before which you want to insert the new
tab. If index is 0 or greater than the number of tabs, the tab
page is inserted at the end.

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PowerBuilder objects, including
user-defined structures)

message.StringParm String
PowerScript Reference 825

OpenTabWithParm
In the opened user object, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you will get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenTab, all of which apply to OpenTabWithParm.

Examples The following statement opens an instance of a user object u_data of type
u_benefit_plan as the last tab page in the Tab control tab_1. The parameter
"Benefits" is stored in message.StringParm:

UserObject u_data
tab_1.OpenTabWithParm(u_data, &

"Benefits", "u_benefit_plan", 0)

These statements open a user object of the type specified in the string
s_u_name and store the reference to the user object in the variable u_to_open.
The script gets the value of s_u_name, the type of user object to open, from the
database. The parameter is the text of the SingleLineEdit sle_loc, so it is stored
in Message.StringParm. The user object becomes the third tab page in the Tab
control tab_1:

UserObject u_to_open
string s_u_name, e_location

e_location = sle_location.Text

SELECT next_userobj INTO : s_u_name
FROM routing_table
WHERE ... ;

tab_1.OpenTabWithParm(u_to_open, &
e_location, s_u_name, 3)
826 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The following statements open a user object of the type specified in the string
s_u_name and store the reference to the user object in the variable u_to_open.
The parameter is numeric so it is stored in message.DoubleParm. The user
object becomes the first tab page in the Tab control tab_1:

UserObject u_to_open
integer age = 60
string s_u_name

s_u_name = sle_user.Text
tab_1.OpenTabWithParm(u_to_open, age, &

s_u_name, 1)

See also OpenTab

OpenUserObject
Adds a user object to a window or visual user object and makes all its
properties and controls available to scripts.

Syntax 1 For user objects of a known datatype
Description Opens a user object of a known datatype.

Applies to Window objects and visual user objects

Syntax objectname.OpenUserObject (targetobjectvar {, x, y })

To Use

Open an instance of a specified visual user object Syntax 1

Open a visual user object, allowing the application to select
the user object’s type at runtime

Syntax 2

Argument Description

objectname The name of the window or user object in which to open the
target user object.

targetobjectvar The name of the user object you want to display. You can
specify a user object defined in the User Object painter (which
is a user object datatype) or a variable of the desired user
object datatype. OpenUserObject places a reference to the
opened user object in targetobjectvar.
PowerScript Reference 827

OpenUserObject
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObject returns null.

Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

You must open a user object before you can access its properties. If you access
the user object’s properties before you open it, an execution error occurs.

A user object that is part of a window definition (for example, if you added it
in the Window painter), you do not need to open it using a script: PowerBuilder
opens the object when it opens the window.

At runtime, OpenUserObject adds the newly opened user object to the first
object’s Control array.

Target objects are not automatically closed at runtime when you open and then
close objectname. You need to explicitly call CloseUserObject to destroy a
target user object, usually when the objectname object closes. If you do not
destroy the target object, it holds on to its allocated memory, resulting in a
memory leak.

PowerBuilder displays the user object when it next updates the display or at the
end of the script, whichever comes first. For example, if you open several user
objects in a script, they all display at once when the script is complete, unless
some other statements cause a change in the screen’s appearance (for example,
the MessageBox function displays a message or the script changes a visual
property of a control).

Calling OpenUserObject twice
If you call Syntax 1 twice to open the same user object, PowerBuilder activates
the user object twice; it does not open two instances of the user object.

Examples This statement displays an instance of a user object named u_Employee in the
upper left corner of window w_emp (coordinates 0,0):

w_emp.OpenUserObject(u_Employee)

x
(optional)

The x coordinate in PowerBuilder units of the target object
within the first object’s frame. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the target object
within the first object’s frame. The default is 0.

Argument Description
828 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The following statements display an instance of a user object u_to_open at
200,100 in the window w_empstatus:

u_employee u_to_open
w_empstatus.OpenUserObject(u_to_open, 200, 100)

The following statement displays an instance of a user object u_data at location
20,100 in w_info:

w_info.OpenUserObject(u_data, 20, 100)

See also OpenUserObjectWithParm

Syntax 2 For user objects of unknown datatype
Description Opens a user object when the datatype of the user object is not known until the

script is executed.

Applies to Window objects and visual user objects

Syntax objectname.OpenUserObject (targetobjectvar, targetobjecttype {, x, y })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObject returns null.

Usage Use Syntax 1 when you know what user object you want to open. Use Syntax
2 when the application will determine what type of user object to open when
the script runs.

You must open a user object before you can access its properties. If you access
the user object’s properties before you open it, an execution error occurs.

Argument Description

objectname The name of the window or user object in which to open the
target user object.

targetobjectvar A variable of datatype DragObject. OpenUserObject places a
reference to the opened user object in targetobjectvar.

targetobjecttype A string whose value is the name of the user object you want
to display. The datatype of targetobjecttype must be a
descendant of targetobjectvar.

x
(optional)

The x coordinate in PowerBuilder units of the user object
within the first object’s frame. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the user object
within the first object’s frame. The default is 0.
PowerScript Reference 829

OpenUserObject
A user object that is part of a window definition (for example, if you added it
in the Window painter), you do not need to open it using a script: PowerBuilder
opens the object when it opens the window.

At runtime, OpenUserObject adds the newly opened user object to the first
object’s Control array.

Target objects are not automatically closed at runtime when you open and then
close objectname. You need to explicitly call CloseUserObject to destroy a
target user object, usually when the objectname object closes. If you do not
destroy the target object, it holds on to its allocated memory, resulting in a
memory leak.

PowerBuilder displays the user object when it next updates the display or at the
end of the script, whichever comes first. For example, if you open several user
objects in a script, they will all display at once when the script is complete,
unless some other statements cause a change in the screen’s appearance (for
example, the MessageBox function displays a message or the script changes a
visual property of a control).

The userobjecttype argument
When you use Syntax 2, PowerBuilder opens an instance of a user object of the
datatype specified in userobjecttype and places a reference to this instance in
the variable userobjectvar. To refer to the instance in scripts, use userobjectvar.

If userobjecttype is a descendent user object, you can only refer to properties,
events, functions, or structures that are part of the definition of userobjectvar.
For example, if a user event is declared for userobjecttype, you cannot
reference it.

The object specified in userobjecttype is not automatically included in your
executable application. To include it, you must save it in a PBD file
(PowerBuilder dynamic library) that you deliver with your application.

Examples The following example displays a user object of the type specified in the string
s_u_name and stores the reference to the user object in the variable u_to_open.
The user object is located at 100,200 in the window w_info:

DragObject u_to_open
string s_u_name

s_u_name = sle_user.Text
w_info.OpenUserObject(u_to_open, s_u_name, 100, 200)

See also OpenUserObjectWithParm
830 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
OpenUserObjectWithParm
Adds a user object to a window or visual user object and makes all its
properties and controls available to scripts, as OpenUserObject does.
OpenUserObjectWithParm also stores a parameter in the system’s Message
object so that it is accessible to the opened object.

Syntax 1 For user objects of a known datatype
Description Opens a user object of a known datatype and stores a parameter in the system’s

Message object.

Applies to Window objects and visual user objects

Syntax objectname.OpenUserObjectWithParm (targetobjectvar, parameter
{, x, y })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObjectWithParm returns null.

To Use

Open an instance of a specified visual user object Syntax 1

Open a visual user object, allowing the application to select
the user object’s type at runtime

Syntax 2

Argument Description

objectname The name of the window or user object in which to open the
target user object.

targetobjectvar The name of the target object you want to display. You can
specify a user object defined in the User Object painter (which
is a user object datatype) or a variable of the desired user
object datatype. OpenUserObject places a reference to the
opened target object in targetobjectvar.

parameter The parameter you want to store in the Message object when
the target object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

x
(optional)

The x coordinate in PowerBuilder units of the target object
within the objectname object. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the target object
within the objectname object. The default is 0.
PowerScript Reference 831

OpenUserObjectWithParm
Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenUserObjectWithParm, scripts
for the opened user object check one of the following properties:

In the target user object, consider accessing the value passed in the Message
object immediately, because some other script may use the Message object for
another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenUserObject, all of which apply to
OpenUserObjectWithParm.

Examples This statement displays an instance of a user object named u_Employee in the
window w_emp and stores the string James Newton in Message.StringParm.
The Constructor event script for the user object uses the string parameter as the
text of a StaticText control st_empname in the object. The script that opens the
user object has the following statement:

w_emp.OpenUserObjectWithParm(u_Employee, "Jim Newton")

The target user object’s Constructor event script has the following statement:

st_empname.Text = Message.StringParm

The following statements display an instance of a user object u_to_open in the
window w_emp and store a number in message.DoubleParm:

u_employee u_to_open
integer age = 50
w_emp.OpenUserObjectWithParm(u_to_open, age)

See also CloseWithReturn
OpenUserObject
OpenWithParm

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PowerBuilder objects, including
user-defined structures)

message.StringParm String
832 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For user objects of unknown datatype
Description Opens a user object when the datatype of the user object is not known until the

script is executed. In addition, OpenUserObjectWithParm stores a parameter in
the system’s Message object so that it is accessible to the opened object.

Applies to Window objects and user objects

Syntax objectname.OpenUserObjectWithParm (targetobjectvar, parameter,
targetobjecttype {, x, y })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenUserObjectWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenUserObjectWithParm, scripts
for the opened user object check one of the following properties.

Argument Description

objectname The name of the window or user object in which to open the
target user object.

targetobjectvar A variable of datatype DragObject.
OpenUserObjectWithParm places a reference to the opened
target object in targetobjectvar.

parameter The parameter you want to store in the Message object when
the target object is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

targetobjecttype A string whose value is the datatype of the target object to
open. The datatype of targetobjecttype must be a descendant
of targetobjectvar.

x
(optional)

The x coordinate in PowerBuilder units of the user object
within the objectname object’s frame. The default is 0.

y
(optional)

The y coordinate in PowerBuilder units of the target object
within the objectname object’s frame. The default is 0.

Message object property Argument datatype

message.DoubleParm Numeric

message.PowerObjectParm PowerObject (PowerBuilder objects, including
user-defined structures)

message.StringParm String
PowerScript Reference 833

OpenUserObjectWithParm
In the target user object, consider accessing the value passed in the Message
object immediately, because some other script may use the Message object for
another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you will get a null
object reference, which causes an error. For example, if you pass the name of
a control on an object that is being closed, that control will not exist when a
script accesses the parameter.

See also the usage notes for OpenUserObject, all of which apply to
OpenUserObjectWithParm.

Examples The following statement displays an instance of a user object u_data of type
u_benefit_plan at location 20,100 in the container object w_hresource. The
parameter "Benefits" is stored in message.StringParm:

DragObject u_data
w_hresource.OpenUserObjectWithParm(u_data, &

"Benefits", "u_benefit_plan", 20, 100)

These statements open a user object of the type specified in the string
s_u_name and store the reference to the object in the variable u_to_open. The
script gets the value of s_u_name, the type of user object to open, from the
database. The parameter is the text of the SingleLineEdit sle_loc, so it is stored
in Message.StringParm. The target object is at the default coordinates 0,0 in the
objectname object w_info:

DragObject u_to_open
string s_u_name, e_location

e_location = sle_location.Text

SELECT next_userobj INTO : s_u_name
FROM routing_table
WHERE ... ;

w_info.OpenUserObjectWithParm(u_to_open, &
e_location, s_u_name)

The following statements display a user object of the type specified in the
string s_u_name and store the reference to the object in the variable u_to_open.
The parameter is numeric, so it is stored in message.DoubleParm. The target
object is at the coordinates 100,200 in the objectname object w_emp:
834 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
userobject u_to_open
integer age = 60
string s_u_name

s_u_name = sle_user.Text
w_emp.OpenUserObjectWithParm(u_to_open, age, &

s_u_name, 100, 200)

See also CloseWithReturn
OpenUserObject
OpenWithParm

OpenWithParm
Displays a window and makes all its properties and controls available to
scripts, as Open does. OpenWithParm also stores a parameter in the system’s
Message object so that it is accessible to the opened window.

Syntax 1 For windows of a known datatype
Description Opens a window object of a known datatype. OpenWithParm displays the

window and makes all its properties and controls available to scripts. It also
stores a parameter in the system’s Message object.

Applies to Window objects

Syntax OpenWithParm (windowvar, parameter {, parent })

To Use

Open an instance of a particular window datatype Syntax 1

Allow the application to select the window’s datatype when
the script is executed

Syntax 2

Argument Description

windowvar The name of the window you want to display. You can specify
a window object defined in the Window painter (which is a
window datatype) or a variable of the desired window
datatype. OpenWithParm places a reference to the open
window in windowvar.
PowerScript Reference 835

OpenWithParm
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenWithParm, your scripts for the
opened window would check one of the following properties.

In the opened window, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you will get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

Passing several values as a structure
To pass several values, create a user-defined structure to hold the values and
access the PowerObjectParm property of the Message object in the opened
window. The structure is passed by value, not by reference, so you can access
the information even if the original structure has been destroyed.

parameter The parameter you want to store in the Message object when
the window is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

parent
(child and pop-up
windows only)
(optional)

The window you want make the parent of the child or pop-up
window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.

Argument Description

Message object property Argument datatype

Message.DoubleParm Numeric

Message.PowerObjectParm PowerObject (PowerBuilder objects, including
user-defined structures)

Message.StringParm String
836 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
See also the usage notes for Open, all of which apply to OpenWithParm.

Examples This statement opens an instance of a window named w_employee and stores
the string parameter in Message.StringParm. The script for the window’s Open
event uses the string parameter as the text of a StaticText control st_empname.
The script that opens the window has the following statement:

OpenWithParm(w_employee, "James Newton")

The window’s Open event script has the following statement:

st_empname.Text = Message.StringParm

The following statements open an instance of a window of the type
w_employee. Since the parameter is a number it is stored in
Message.DoubleParm:

w_employee w_to_open
integer age = 50
OpenWithParm(w_to_open, age)

The following statement opens an instance of a child window named cw_data
and makes w_employee the parent. The window w_employee must already be
open. The parameter benefit_plan is a string and is stored in
Message.StringParm:

OpenWithParm(cw_data, "benefit_plan", w_employee)

See also CloseWithReturn
Open

Syntax 2 For windows of unknown datatype
Description Opens a window object when you do not know its datatype until the application

is running. OpenWithParm displays the window and makes all its properties and
controls available to scripts. It also stores a parameter in the system’s Message
object.

Applies to Window objects

Syntax OpenWithParm (windowvar, parameter, windowtype {, parent })
PowerScript Reference 837

OpenWithParm
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, OpenWithParm returns null.

Usage The system Message object has three properties for storing data. Depending on
the datatype of the parameter specified for OpenWithParm, your scripts for the
opened window would check one of the following properties.

In the opened window, it is a good idea to access the value passed in the
Message object immediately because some other script may use the Message
object for another purpose.

Avoiding null object references
When you pass a PowerObject as a parameter, you are passing a reference to
the object. The object must exist when you refer to it later or you will get a null
object reference, which causes an error. For example, if you pass the name of
a control on a window that is being closed, that control will not exist when a
script accesses the parameter.

Argument Description

windowvar A window variable, usually of datatype window.
OpenWithParm places a reference to the open window in
windowvar.

parameter The parameter you want to store in the Message object when
the window is opened. Parameter must have one of these
datatypes:

• String

• Numeric

• PowerObject

windowtype A string whose value is the datatype of the window you want
to open. The datatype of windowtype must be the same or a
descendant of windowvar.

parent
(child and pop-up
windows only)

The window you want to make the parent of the child or
pop-up window you are opening. If you open a child or pop-up
window and omit parent, PowerBuilder associates the
window being opened with the currently active window.

Message object property Argument datatype

Message.DoubleParm Numeric

Message.PowerObjectParm PowerObject (PowerBuilder objects, including
user-defined structures)

Message.StringParm String
838 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Passing several values as a structure
To pass several values, create a user-defined structure to hold the values and
access the PowerObjectParm property of the Message object in the opened
window. The structure is passed by value, not by reference, so you can access
the information even if the original structure has been destroyed.

See also the usage notes for Open, all of which apply to OpenWithParm.

Examples These statements open a window of the type specified in the string s_w_name
and store the reference to the window in the variable w_to_open. The script
gets the value of s_w_name, the type of window to open, from the database.
The parameter in e_location is text, so it is stored in Message.StringParm:

window w_to_open
string s_w_name, e_location

e_location = sle_location.Text

SELECT next_window INTO :s_w_name
FROM routing_table
WHERE ... ;

OpenWithParm(w_to_open, e_location, s_w_name)

The following statements open a window of the type specified in the string
c_w_name, store the reference to the window in the variable wc_to_open, and
make w_emp the parent window of wc_to_open. The parameter is numeric, so
it is stored in Message.DoubleParm:

window wc_to_open
string c_w_name
integer age = 60

c_w_name = "w_c_emp1"

OpenWithParm(wc_to_open, age, c_w_name, w_emp)

See also CloseWithReturn
Open
PowerScript Reference 839

OutgoingCallList
OutgoingCallList
Description Provides a list of the calls to other routines included in a performance analysis

model.

Applies to ProfileLine and ProfileRoutine objects

Syntax instancename.OutgoingCallList (list, aggregate)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The model does not exist

Usage You use the OutgoingCallList function to extract a list of the calls from a line
and/or routine to other routines in a performance analysis model. You must
have previously created the performance analysis model from a trace file using
the BuildModel function. Each caller is defined as a ProfileCall object and
provides the called routine and the calling routine, the number of times the call
was made, and the elapsed time. The routines are listed in no particular order.

The aggregate argument indicates whether duplicate routine calls result in the
creation of a single or of multiple ProfileCall objects. This argument has no
effect unless line tracing is enabled and a calling routine calls the current
routine from more than one line. If aggregate is true, a new ProfileCall object
is created that aggregates all calls from the calling routine to the current
routine. If aggregate is false, multiple ProfileCall objects are returned, one for
each line from which the calling routine called the called routine.

Argument Description

instancename Instance name of the ProfileLine or ProfileRoutine object.

list An unbounded array variable of datatype ProfileCall in
which OutgoingCallList stores a ProfileCall object for each
call to other routines from within this routine. This argument
is passed by reference.

aggregate
(ProfileRoutine only)

A boolean indicating whether duplicate routine calls will
result in the creation of a single or of multiple ProfileCall
objects.
840 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example gets a list of the routines included in a performance analysis
model and then gets a list of the routines called by each routine:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)

FOR ll_cnt = 1 TO UpperBound(iprort_list)

iprort_list[ll_cnt].OutgoingCallList(lproc_call, &
TRUE)

...
NEXT

See also BuildModel
IncomingCallList

PageCount
Description Returns the total number of pages in the document in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.PageCount ()

Return value Integer. Returns the number of pages in the RichTextEdit control. Returns 1 if
the control contains no text and -1 if an error occurs.

Usage The number of pages in the document is determined by the amount of text and
the layout specifications, such as page size, margins, font size, and so on.

When the RichTextEdit control shares data with a DataWindow, there is an
instance of the document for each row of the DataWindow. PageCount reports
the page count of a single instance. Multiply the value of the DataWindow’s
RowCount function by the page count to get the total number of pages.

Examples This example displays the number of pages in the document in the
RichTextEdit rte_1 as the text of the StaticText st_status:

st_status.Text = String(rte_1.PageCount())

Argument Description

rtename The name of the RichTextEdit control in which you want the page
count
PowerScript Reference 841

PageCount
See also LineCount
LineLength
RowCount method for DataWindows in the DataWindow Reference or the
online Help
842 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PageCreated
Description Reports whether a tab page has been created.

Applies to User objects used as tab pages

Syntax userobject.PageCreated ()

Return value Boolean. Returns true if the user object is a tab page and has been created and
false if the user object is not a tab page or has not been created.

Usage A window will open more quickly if the creation of graphical representations
is delayed for tab pages with many controls. However, scripts cannot refer to a
control on a tab page until the tab page’s Constructor event has run and a
graphical representation of the control has been created. When the
CreateOnDemand property of the Tab control is selected, scripts cannot
reference controls on tab pages that the user has not viewed. PageCreated
allows you to test whether a particular tab page has already been created.

Examples This example tests whether tabpage_2 has been created and, if not, creates it:

IF tab_1.CreateOnDemand = True THEN
IF tab_1.tabpage_2.PageCreated() = False THEN

tab_1.tabpage_2.CreatePage()
END IF

END IF

See also CreatePage

Argument Description

userobject The name of the tab page whose existence you want to test
PowerScript Reference 843

ParentWindow
ParentWindow
Description Obtains the parent window of a window.

Applies to Window objects

Syntax windowname.ParentWindow ()

Return value Window. Returns the parent of windowname. Returns a null object reference if
an error occurs or if windowname is null.

Usage The ParentWindow function, along with the pronoun Parent, allows you to write
more general scripts by avoiding the coding of actual window names. Parent
refers to the window that contains the current object or control—the local
environment. ParentWindow returns the parent window of a specified window.

Whether a window has a parent depends on its type and how it was opened. You
can specify the parent when you open the window. For windows that always
have parents, PowerBuilder chooses the parent if you do not specify it.
Response windows and child windows always have a parent window. The
parent of a sheet in an MDI application is the MDI frame window.

Pop-up windows have a parent window when they are opened from another
window but when used in an MDI application, the parent of the pop-up is the
MDI frame. A pop-up window opened from the application’s Open event does
not have a parent.

The ParentWindow property of the Menu object can be used like a pronoun in
Menu scripts. It identifies the window with which the menu is associated when
your program is running. For more information, see the PowerBuilder Users
Guide.

Examples These statements return the parent of child_1. The parent is a window of the
datatype Win1:

Win1 w_parent
w_parent = child_1.ParentWindow()

The following script for a Cancel button in a pop-up window triggers an event
for the parent window of the button’s parent window (the window that contains
the button). Then it closes the button’s window. The parent window of that
window will have a script for the cancelrequested event:

Parent.ParentWindow().TriggerEvent("cancelrequested")
Close(Parent)

Argument Description

windowname The name of a window for which you want to obtain the parent
object
844 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Paste
Description Inserts (pastes) the contents of the clipboard into the specified control. For

editable controls, text on the clipboard is pasted at the insertion point. For OLE
controls, the OLE object on the clipboard replaces any object already in the
control.

Applies to EditMask, InkEdit, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, DropDownPictureListBox, DataWindow, OLE controls

Syntax controlname.Paste ()

Return value Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For edit controls, returns the number of characters that were pasted into
controlname. If nothing has been cut or copied (the clipboard is empty), the
Paste function does not change the contents of the edit control and returns 0. If
the clipboard contains nontext data (for example, a bitmap or OLE object) and
the control cannot accept that data, Paste does not change the contents and
returns 0.

For OLE controls, returns 0 if it succeeds and one of the following negative
values if an error occurs:

-1 No data or clipboard content is not embeddable
-9 Other error

Usage For editable controls, if text is selected in controlname, Paste replaces the text
with the contents of the clipboard. If the clipboard contains more lines than fit
in the edit control, only the number of lines that fit are pasted.

In a DataWindow control, the text is pasted into the edit control over the current
row and column. If the clipboard contains more text that is allowed for that
column, the text is truncated. If the clipboard text does not match the column’s
datatype, all the text is truncated, so that any selected text is replaced with an
empty string.

Argument Description

controlname The name of the DataWindow control, EditMask, InkEdit,
MultiLineEdit, SingleLineEdit, RichTextEdit, DropDownListBox,
DropDownPictureListBox, or OLE control into which you want to
insert the contents of the clipboard.

If controlname is a DataWindow, text is pasted into the edit control
over the current row and column. If controlname is a
DropDownListBox or DropDownPictureListBox, the AllowEdit
property must be true
PowerScript Reference 845

Paste
You can paste bitmaps, as well as text, into a RichTextEdit control.

To insert a specific string in controlname or to replace selected text with a
specific string, use the ReplaceText function.

When you use Paste to put an OLE object in an OLE control, the data is
embedded in the PowerBuilder application, not linked.

Examples If the clipboard contains Proposal good for 90 days and no text is
selected, this statement pastes Proposal good for 90 days in
mle_Comment1 at the insertion point and returns 25:

mle_Comment1.Paste()

If the clipboard contains the string Final Edition, mle_Comment2 contains
This is a Preliminary Draft, and the text in mle_Comment2 is selected,
this statement deletes This is a Preliminary Draft, replaces it with
Final Edition, and returns 13:

mle_Comment2.Paste()

If the clipboard contains an OLE object, this statement makes it the contents of
the control ole_1 and returns 0:

ole_1.Paste()

See also Copy
Cut
PasteLink
PasteSpecial
ReplaceText
846 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PasteLink
Description Pastes a link to the contents of the clipboard into the control. The server

application for the object on the clipboard must be running.

Applies to OLE controls

Syntax olecontrol.PasteLink ()

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 No data or the contents of the clipboard is not linkable
-9 Other error

If ole2control is null, PasteLink returns null.

Usage When you copy data to the clipboard from an application that supports OLE
(the server application), you can paste the object into PowerBuilder’s OLE
control with a link to the original data. Object information about the source of
the data is only available if the server application is running. You do not need
to worry about running the server application if you are working with an OLE
object that PowerBuilder knows about, such as an object in a PowerBuilder
library or an object that is part of a control’s definition in a window. For these
objects, PowerBuilder runs the server application in the background to enable
the link.

PasteLink fails, however, if the user switches to a server application, copies the
data, quits the application, and then tries to paste and link the object in their
PowerBuilder application.

Examples If the clipboard contains an OLE object and the object’s server application is
running, then the following example pastes the object in the control ole_1 and
sets li_result to 0:

integer li_result
li_result = ole_1.PasteLink()

See also LinkTo
Paste
PasteSpecial

Argument Description

olecontrol The name of the OLE control into which you want to paste the
object on the clipboard
PowerScript Reference 847

PasteRTF
PasteRTF
Description Pastes rich text data from a string into a DataWindow control, DataStore

object, or RichTextEdit control.

Applies to DataWindow controls, DataStore objects, and RichTextEdit controls

Syntax rtename.PasteRTF (richtextstring, { band })

Return value Long. Returns -1 if an error occurs. If richtextstring is null, PasteRTF returns
null.

Usage A DataWindow in the RichText presentation style has only three bands. There
are no summary or trailer bands and there are no group headers and footers.

Examples This statement pastes rich text in the string ls_richtext into the header of the
RichTextEdit rte_message:

string ls_richtext
rte_message.PasteRTF(ls_richtext, Header!)

See also CopyRTF

Argument Description

rtename The name of the DataWindow control, DataStore object, or
RichTextEdit control into which you want to paste data in rich text
format. The DataWindow object in the DataWindow control or
DataStore must be a RichTextEdit DataWindow.

richtextstring A string whose value is data with rich text formatting.

band
(optional)

A value of the Band enumerated datatype specifying the band into
which the rich text data is pasted. Values are:

• Detail! – The data is pasted into the detail band

• Header! – The data is pasted into the header band

• Footer! – The data is pasted into the footer band

The default is the band that contains the insertion point.
848 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PasteSpecial
Description Displays a standard OLE dialog allowing the user to choose whether to embed

or link the OLE object on the clipboard when pasting it in the specified control.
Embedding is the equivalent of calling the Paste function, and linking is the
same as calling PasteLink.

Applies to OLE controls

Syntax olecontrol.PasteSpecial ()

Return value Integer. Returns 0 if it succeeds and one of the following values if an error
occurs:

 1 User canceled without selecting a paste option
-1 No data found
-9 Other error

If ole2control is null, PasteSpecial returns null.

Usage For information about when an object on the clipboard is linkable, see
PasteLink.

Examples If the clipboard contains an OLE object and the object’s server application is
running, then the following example lets the user choose to embed or link the
object in the control ole_1:

integer li_result
li_result = ole_1.PasteSpecial()

See also LinkTo
Paste
PasteLink

Argument Description

olecontrol The name of the OLE control into which you want to paste the
object on the clipboard
PowerScript Reference 849

PBAddCookie
PBAddCookie
Description Adds a cookie to the Web service proxy object that will be sent to the server

each time you call a Web service method.

Syntax proxyObj.PBAddCookie (acookie)

Return value None.

Usage If there is already a cookie with the same name and URI that you set in the
acookie argument, you will replace the existing cookie when you invoke a Web
service method. For the types of information you can include in the acookie
argument, see the methods of the SoapPBCookie class in the PowerBuilder
Extension Reference.

The SoapPBCookie class is defined in the pbwsclient125.pbx extension that
you can import into your application library. It is valid for .NET Web services
only.

Examples The following example adds a cookie named myCookie that is sent to the server
after you connect to a Web service from an objProxy proxy client:

SoapPBCookie acookie
acookie=create SoapPBCookie

acookie.SetUri("http://myServer/webservice/Svc1.wsdl")
acookie.SetName("myCookie")
acookie.SetValue("My Value")
objProxy.PBAddCookie(acookie)

See also PBGetCookies

Argument Description

proxyObj The proxy object that you deploy from a Web Service Proxy project

acookie An any containing information about the cookie you want to add
850 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PBGetCookies
Description Gets the cookies associated with a .NET Web service that you invoke from a

proxy object.

Syntax proxyObj.PBGetCookies (URI)

Return value SoapPBCookie[]. An array of an instance of the SoapPBCookie class.

Usage The SoapPBCookie class is defined in the pbwsclient125.pbx extension that
you can import into your application library. You must first connect to the Web
service with an instance of the SoapConnection class that is also defined in this
extension.

For more information about connecting to a Web service, see “Building a Web
Services Client” in Application Techniques. For cookie properties you can set
or return with the SoapPBCookie class, see the PowerBuilder Extension
Reference.

Examples The following example enters the names and values of the cookies associated
with a Web service in a MultiLineEdit control:

wsproxy_service proxy
soapPBCookie retu_cookies[]
//create instance of a SoapConnection object
//create instance of the Web service proxy
endpoint = "http://sybase.com/webservice/Svc.asmx"
retu_cookies = proxy.pbgetcookies(endpoint)
mle_1.text = string(upperbound(retu_cookies))&

+" total cookies" + "~r~n"
for i= 1 to upperbound(retu_cookies)

mle_1.text += "Cookie"+ string(i)&
+"~r~n=====================~r~n"

mle_1.text +="getName = " &
+ retu_cookies[i].getname() +"~r~n"

mle_1.text +="getValue = " &
+ retu_cookies[i].getvalue()+"~r~n"

next

See also PBAddCookie

Argument Description

proxyObj The proxy object that you deploy from a Web Service Proxy project

URI The URI of the Web service that you invoke with the proxy object
PowerScript Reference 851

PBGetMenuString
PBGetMenuString
Description Gets the name of the item at a given position in a menu.

Syntax PBGetMenuString (hmenu, nPos, caption, nMaxLength)

Return value Long. Returns 1if it succeeds and -1 if an error occurs. If any argument is null,
PBGetMenuString returns null.

Usage Use PBGetMenuString to get the name of a menu item. This function is useful
for some automated testing programs that cannot get menu item names from
the Text property for menus that use the contemporary style.

Examples This statement gets the first menu item of the submenu of the w_main window
using the GetMenu and GetSubMenu WIN32 API functions from the user.dll
library:

string ls_menu
long hmenu
long submenu
int ll_ret

hmenu = GetMenu(handle(w_main))
submenu = GetSubMenu(hmenu,0)
ll_ret = PBGetMenuString(submenu,0,ls_menu,5)
messagebox ("Menu Test", "return value = &

"+string(ll_ret)+ " menu caption is "+ls_menu)

This example assumes you have made the following Local External Functions
declarations:

function long GetMenu (long hwnd) library "user32.dll"
function long GetSubMenu (long hparent,int pos) &

library "user32.dll"

Argument Description

hmenu A long for the menu handle

nPos An integer for the position of the menu item, counting from 0 at the
leftmost or topmost position

caption A string passed by reference that captures the name (Text property)
of the menu item

nMaxLength An integer that sets the maximum length of the value passed in the
caption argument
852 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Pi
Description Multiplies pi by a specified number.

Syntax Pi (n)

Return value Double. Returns the result of multiplying n by pi if it succeeds and -1 if an error
occurs. If n is null, Pi returns null.

Usage Use Pi to convert angles to and from radians.

Examples This statement returns pi:

Pi(1)

Both these statements return the area of a circle with the radius id_Rad, an
instance variable of type double:

Pi(1) * id_Rad^2

Pi(id_Rad^2)

The following statements compute the cosine of a 45-degree angle:

real degree = 45.0, cosine
cosine = Cos(degree * (Pi(2)/360))

See also Cos
Sin
Tan
Pi method for DataWindows in the DataWindow Reference or the online Help

Argument Description

n The number you want to multiply by pi (3.14159265358979323...)
PowerScript Reference 853

PixelsToUnits
PixelsToUnits
Description Converts pixels to PowerBuilder units. Because pixels are not usually square,

you also specify whether you are converting the pixels’ horizontal or vertical
measurement.

Syntax PixelsToUnits (pixels, type)

Return value Integer. Returns the converted value if it succeeds and -1 if an error occurs. If
any argument’s value is null, PixelsToUnits returns null.

Examples These statements convert 35 horizontal pixels to PowerBuilder units and set the
variable Value equal to the converted value:

integer Value
Value = PixelsToUnits(35, XPixelsToUnits!)

See also UnitsToPixels

Argument Description

pixels An integer whose value is the number of pixels you want to convert
to PowerBuilder units.

type A value of the ConvertType enumerated datatype value indicating
how to convert the value:

• XPixelsToUnits! – Convert the pixels in the horizontal direction.

• YPixelsToUnits! – Convert the pixels in the vertical direction.
854 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Play
Description Starts playing an animation (an AVI clip).

Applies to Animation controls

Syntax animationname.Play (from, to, replay)

Return value Integer. Returns 1 for success and -1 for failure.

Usage Start plays an opened AVI file in an animation control. If you specify a value
for any argument that is not in the specified range, Start does nothing and
returns -1.

Examples This example starts playing an AVI clip at the first frame, plays to the last
frame, and continues playing the clip indefinitely:

integer li_return
li_return = am_1.Play(0, -1, -1)

See also Stop

Argument Description

animationname The name of the animation control displaying the AVI clip.

from A long value in the range 0 to 65,535 indicating the frame
where playing starts.The value 0 starts playing the clip at the
first frame.

to A long value in the range -1 to 65,535 indicating the frame
where playing ends. The value -1 stops playing the clip at the
last frame.

replay A long value in the range -1 to 65,535 indicating the number
of times to replay the clip. The value -1 continues playing the
clip indefinitely.
PowerScript Reference 855

PointerX
PointerX
Description Determines the distance of the pointer from the left edge of the specified

object.

Applies to Any object or control

Syntax objectname.PointerX ()

Return value Integer. Returns the pointer’s distance from the left edge of objectname in
PowerBuilder units if it succeeds and -1 if an error occurs.

Examples In a script for a control in a window, the following example stores the distance
of the pointer from the edge of the window in the variable li_dist. If the pointer
is 5 units from the left edge of the window, li_dist equals 5:

integer li_dist
li_dist = Parent.PointerX()

This statement in a control’s RButtonDown script displays a pop-up menu
m_Appl.M_Help at the cursor position:

m_Appl.m_Help.PopMenu(Parent.PointerX(), &
Parent.PointerY())

If the previous example was part of the window’s RButtonDown script, instead
of a control in the window, the following statement displays the pop-up menu
at the cursor position:

m_Appl.m_Help.PopMenu(This.PointerX(), &
This.PointerY())

See also PointerY
PopMenu
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceX
WorkSpaceY

Argument Description

objectname The name of the control or window for which you want the
pointer’s distance from the left edge. If you do not specify
objectname, PointerX reports the distance from the left edge of the
current sheet or window.
856 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PointerY
Description Determines the distance of the pointer from the top of the specified object.

Applies to Any object or control

Syntax objectname.PointerY ()

Return value Integer. Returns the pointer’s distance from the top of objectname in
PowerBuilder units if it succeeds and -1 if an error occurs. If objectname is null,
PointerY returns null.

Examples In a script for a control in a window, the following example stores the distance
of the pointer from the top of the window in the variable li_dist. If the pointer
is 10 units from the top of the window, li_dist equals 10:

integer li_Dist
li_Dist = Parent.PointerY()

This statement in a control’s RButtonDown script displays a pop-up menu
m_Appl.M_Help at the cursor position:

m_Appl.M_Help.PopMenu(Parent.PointerX(), &
Parent.PointerY())

See also PointerX
PopMenu
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceX
WorkSpaceY

Argument Description

objectname The name of the control or window for which you want the
pointer’s distance from the top. If you do not specify objectname,
PointerY reports the distance from the top of the current sheet or
window.
PowerScript Reference 857

PopMenu
PopMenu
Description Displays a menu at the specified location.

Applies to Menu objects

Syntax menuname.PopMenu (xlocation, ylocation)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PopMenu returns null.

Usage If the menu object is not associated with the window so that it was opened
when the window was opened, you must use CREATE to allocated memory for
the menu (see the last example).

If the Visible property of the menu is false, you must make the menu visible
before you can display it as a pop-up menu.

The coordinates you specify for PopMenu are relative to the active window. In
an MDI application, the coordinates are relative to the frame window, which is
the active window. To display a menu at the cursor position, call PointerX and
PointerY for the active window (the frame window in an MDI application) to
get the coordinates of the cursor. (See the examples.)

Calling PopMenu in an object script
PopMenu must be called in an object script. It should not be called in a global
function.

Examples These statements display the menu m_Emp.M_Procedures at location 100, 200
in the active window. M_Emp is the menu associated with the window:

m_Emp.M_Procedures.PopMenu(100, 200)

This statement displays the menu m_Appl.M_File at the cursor position, where
m_Appl is the menu associated with the window.

m_Appl.M_file.PopMenu(PointerX(), PointerY())

Argument Description

menuname The fully qualified name of a menu on a menu bar you want to
display at the specified location

xlocation The distance in PowerBuilder units of the displayed menu from the
left edge of the window

ylocation The distance in PowerBuilder units of the displayed menu from the
top of the window
858 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
These statements display a pop-up menu at the cursor position. Menu4 was
created in the Menu painter and includes a menu called m_language. Menu4 is
not the menu for the active window. NewMenu is an instance of Menu4
(datatype Menu4):

Menu4 NewMenu
NewMenu = CREATE Menu4
NewMenu.m_language.PopMenu(PointerX(), PointerY())

In an MDI application, the last line would include the MDI frame as the object
for the pointer functions:

NewMenu.m_language.PopMenu(&
w_frame.PointerX(), w_frame.PointerY())

PopulateError
Description Fills in the Error object without causing a SystemError event.

Syntax PopulateError (number, text)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. The return value is
usually not used.

Usage If the values you want to populate the Error object with depend on the current
value of a variable in your script, you can use PopulateError to assign values to
the number and text fields in the Error object (the remaining fields of the Error
object will be populated automatically, including the line number of the error).
Then you can call SignalError without arguments to trigger a SystemError. You
will need to include code in the SystemError event script to recognize and
handle the error you have created. If there is no script for the SystemError
event, the SignalError function does nothing.

Examples The gf_DoSomething function takes a table name and a record and returns 0 for
success and a negative number for an error. The following statements set the
number and text values in the Error object according to a script variable, then
trigger a SystemError event once the processing is complete:

li_result = gf_DoSomething("Company", record_id)

Argument Description

number The integer to be stored in the number property of the Error object

text The string to be stored in text property of the Error object
PowerScript Reference 859

Pos
IF (li_result < 0) THEN
CHOOSE CASE li_result
CASE -1

PopulateError(1, "No company record exists &
record id: " + record_id)

CASE -2
PopulateError(2, "That company record is &
currently locked. Please try again later.")

CASE -3
PopulateError(3, "The company record could &
not be updated.")

CASE else
PopulateError(999, "Update failed.")

END CHOOSE
SignalError()

END IF

See also SignalError

Pos
Description Finds one string within another string.

Syntax Pos (string1, string2 {, start })

Return value Long. Returns a long whose value is the starting position of the first occurrence
of string2 in string1 after the position specified in start. If string2 is not found
in string1 or if start is not within string1, Pos returns 0. If any argument’s value
is null, Pos returns null.

Usage The Pos function is case sensitive.

Examples This statement returns 6:

Pos("BABE RUTH", "RU")

This statement returns 1:

Pos("BABE RUTH", "B")

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

start
(optional)

A long indicating where the search will begin in string1. The
default is 1.
860 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This statement returns 0, because the case does not match:

Pos("BABE RUTH", "be")

This statement starts searching at position 4 and returns 0, because position 4
is after the occurrence of BE:

Pos("BABE RUTH", "BE", 4)

These statements change the text NY in the SingleLineEdit sle_group to North
East:

long place_nbr
place_nbr = Pos(sle_group.Text, "NY")
sle_group.SelectText(place_nbr, 2)
sle_group.ReplaceText("North East")

These statements separate the return value of GetBandAtPointer into the band
name and row number. The Pos function finds the position of the tab in the
string and the Left and Mid functions extract the information to the left and right
of the tab:

string s, ls_left, ls_right
integer li_tab

s = dw_groups.GetBandAtPointer()
li_tab = Pos(s, "~t", 1)

ls_left = Left(s, li_tab - 1)
ls_right = Mid(s, li_tab + 1)

You could write similar code for a generic parsing function with three
arguments. The string s would be an argument passed by value and ls_left and
ls_right would be strings passed by reference.

Other functions that return a pair of tab-separated values for which you could
use the parsing function are GetObjectAtPointer and GetValue.

See also GetValue method for DataWindows in the DataWindow Reference or the online
Help
GetObjectAtPointer method for DataWindows in the DataWindow Reference or
the online Help
LastPos
Left
Mid
Right
Pos method for DataWindows in the DataWindow Reference or the online Help
PowerScript Reference 861

PosA
PosA
Description Temporarily converts a string from Unicode to DBCS based on the current

locale, then finds one string within another string.

Syntax PosA (string1, string2, {start})

Return value Long. Returns a long whose value is the starting position of the first occurrence
of string2 in string1 after the position in bytes specified by start. If string2 is
not found in string1 or if start is not within string1, PosA returns 0. If any
argument’s value is null, PosA returns null.

Usage PosA replaces the functionality that Pos had in DBCS environments in
PowerBuilder 9. In SBCS environments, Pos, PosW, and PosA return the same
results.

PosW
Description Finds one string within another string. This function is obsolete. It has the same

behavior as Pos in all environments.

Syntax PosW (string1, string2 {, start })

Position
Reports the position of the insertion point in an editable control.

Argument Description

string1 The string in which you want to find string2.

string2 The string you want to find in string1.

start
(optional)

A long indicating the position in string1 where the search will
begin. The position is indicated by the number of bytes you specify
for this argument. The default is 1.

To report Use

The position of the insertion point in any editable control (except
RichTextEdit)

Syntax 1

The position of the insertion point or the start and end of selected text
in a RichTextEdit control or a DataWindow whose object has the
RichTextEdit presentation style

Syntax 2
862 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 1 For editable controls, except RichTextEdit
Description Determines the position of the insertion point in an edit control.

Applies to DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit, or
DropDownListBox, DropDownPictureListBox controls

Syntax editname.Position ()

Return value Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

Returns the location of the insertion point in editname if it succeeds and -1 if
an error occurs. If editname is null, Position returns null.

Usage Position reports the position number of the character immediately following the
insertion point. For example, Position returns 1 if the cursor is at the beginning
of editname. If text is selected in editname, Position reports the number of the
first character of the selected text.

In a DataWindow control, Position reports the insertion point’s position in the
edit control over the current row and column.

Examples If mle_EmpAddress contains Boston Street, the cursor is immediately after the
n in Boston, and no text is selected, this statement returns 7:

mle_EmpAddress.Position()

If mle_EmpAddress contains Boston Street and Street is selected, this statement
returns 8 (the position of the S in Street):

mle_EmpAddress.Position()

See also SelectedLine
SelectedStart

Argument Description

editname The name of the DataWindow control, EditMask, InkEdit,
MultiLineEdit, SingleLineEdit, or DropDownListBox, or
DropDownPictureListBox control in which you want to find the
location of the insertion point
PowerScript Reference 863

Position
Syntax 2 For RichTextEdit controls
Description Determines the line and column position of the insertion point or the start and

end of selected text in an RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.Position (fromline, fromchar {, toline, tochar })

Return value Band enumerated datatype. Returns the band (Detail!, Header!, or Footer!)
containing the selection or insertion point.

Usage Position reports the position of the insertion point if you omit the toline and
tochar arguments. If text is selected, the insertion point can be at the beginning
or the end of the selection. For example, if the user dragged down to select text,
the insertion point is at the end.

If there is a selection, a character argument can be set to 0 to indicate that the
selection begins or ends at the start of a line, with nothing else selected on that
line. When the user drags up, the selection can begin at the start of a line and
fromchar is set to 0. When the user drags down, the selection can end at the
beginning of a line and tochar is set to 0.

Selection or insertion point To find out whether there is a selection or just
an insertion point, specify all four arguments. If toline and tochar are set to 0,
then there is no selection, only an insertion point. If there is a selection and you
want the position of the insertion point, you will have to call Position again with
only two arguments. This difference is described next.

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to find the location of the insertion point or selected text. The
DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.

fromline A long variable in which you want to save the number of the line
where the insertion point or the start of the selection is.

fromchar A long variable in which you want to save the number in the line of
the first character in the selection or after the insertion point.

toline
(optional)

A long variable in which you want to save the number of the line
where the selection ends.

tochar
(optional)

A long variable in which you want to save the number in the line of
the character before which the selection ends.
864 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The position of the insertion point and end of selection can differ When
reporting the position of selected text, the positions are inclusive—Position
reports the first line and character and the last line and character that are
selected. When reporting the position of the insertion point, Position identifies
the character just after the insertion point. Therefore, if text is selected and the
insertion point is at the end, the values for the insertion point and the end of the
selection differ.

To illustrate, suppose the first four characters in line 1 are selected and the
insertion point is at the end. If you request the position of the insertion point:

rte_1.Position(ll_line, ll_char)

Then:

• ll_line is set to 1

• ll_char is set to 5, the character following the insertion point

If you request the position of the selection:

rte_1.Position(ll_startline, ll_startchar, &
ll_endline, ll_endchar)

• ll_startline and ll_startchar are both set to 1

• ll_endline is 1 and ll_endchar is set to 4, the last character in the selection

Passing values to SelectText Because values obtained with Position
provide more information that simply a selection range, you cannot pass the
values directly to SelectText. In particular, 0 is not a valid character position
when selecting text, although it is meaningful in describing the selection.

Examples This example calls Position to get the band and the line and column values for
the beginning and end of the selection. The values are converted to strings and
displayed in the StaticText st_status:

integer li_rtn
long ll_startline, ll_startchar
long ll_endline, ll_endchar
string ls_s, ls_band
band l_band

// Get the band and start and end of the selection
l_band = rte_1.Position(ll_startline, ll_startchar,&

ll_endline, ll_endchar)
PowerScript Reference 865

Position
// Convert position values to strings
ls_s = "Start line/char: " + String(ll_startline) &

+ ", " + String(ll_startchar)
ls_s = ls_s + " End line/char: " &

+ String(ll_endline) + ", " + String(ll_endchar)

// Convert Band datatype to string
CHOOSE CASE l_band
CASE Detail!

ls_band = " Detail"
CASE Header!

ls_band = " Header"
CASE Footer!

ls_band = " Footer"
CASE ELSE

ls_band = " No band"
END CHOOSE

ls_s = ls_s + ls_band

// Display the information
st_status.Text = ls_s

This example extends the current selection down 1 line. It takes into account
whether there is an insertion point or a selection, whether the insertion point is
at the beginning or end of the selection, and whether the selection ends at the
beginning of a line:

integer rtn
long l1, c1, l2, c2, linsert, cinsert
long l1select, c1select, l2select, c2select

// Get selectio start and end
rte_1.Position(l1, c1, l2, c2)

// Get insertion point
rte_1.Position(linsert, cinsert)

IF l2 = 0 and c2 = 0 THEN //insertion point
l1select = linsert
c1select = cinsert
l2select = l1select + 1 // Add 1 to end line
c2select = c1select

ELSEIF l2 > l1 THEN // Selection, ins pt at end
IF c2 = 0 THEN // End of selection (ins pt)
866 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
// at beginning of a line (char 0)
c2 = 999 // Change to end of prev line
l2 = l2 - 1

END IF

l1select = l1
c1select = c1
l2select = l2 + 1 // Add 1 to end line
c2select = c2

ELSEIF l2 < l1 THEN // selection, ins pt at start
IF c1 = 0 THEN // End of selection (not ins pt)
// at beginning of a line

c1 = 999 // Change to end of prev line
l1 = l1 - 1

END IF
l1select = l2
c1select = c2
l2select = l1 + 1 // Add 1 to end line
// (start of selection)
c2select = c1

ELSE // l1 = l2, selection on one line
l1select = l1
l2select = l2 + 1 // Add 1 to line
IF c1 < c2 THEN // ins pt at end

c1select = c1
c2select = c2

ELSE // c1 > c2, ins pt at start
c1select = c2
c2select = c1

END IF
END IF

// Select the extended selection
rtn = rte_1.SelectText(l1select, c1select, &

l2select, c2select)

For an example of selecting each word in a RichTextEdit control, see
SelectTextWord.

See also SelectedLine
SelectedStart
SelectText
PowerScript Reference 867

Post
Post
Description Adds a message to the message queue for a window, either a PowerBuilder

window or window of another application.

Syntax Post (handle, message#, word, long)

Return value Boolean. If any argument’s value is null, Post returns null.

Usage Use Post or Send when you want to trigger system events that are not
PowerBuilder-defined events. Post is asynchronous; it adds a message to the
end of the window’s message queue. Send is synchronous; its message triggers
an event immediately.

To obtain the handle of a PowerBuilder window, use the Handle function.

To trigger PowerBuilder events, use TriggerEvent or PostEvent. These
functions run the script associated with the event. They are easier to code and
bypass the messaging queue.

When you specify a string for long, Post stores a copy of the string and passes
a pointer to it.

Examples This statement scrolls the window w_date down one page after all the previous
messages in the message queue for the window have been processed:

Post(Handle(w_date), 277, 3, 0)

See also Handle
PostEvent
Send
TriggerEvent

Argument Description

handle A long whose value is the system handle of a window (that you have
created in PowerBuilder or another application) to which you want
to post a message.

message# An UnsignedInteger whose value is the system message number of
the message you want to post.

word A long whose value is the integer value of the message. If this
argument is not used by the message, enter 0.

long The long value of the message or a string.
868 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PostEvent
Description Adds an event to the end of the event queue of an object.

Applies to Any object, except the application object

Syntax objectname.PostEvent (event, { word, long })

Return value Boolean. Returns true if it is successful and false if the event is not a valid event
for objectnameobjectname. Also returns true if no script exists for the event in
objectname. If any argument’s value is null, PostEvent returns null.

Usage You cannot post events to the event queue for an application object. Use
TriggerEvent instead.

You cannot post or trigger events for objects that do not have events, such as
drawing objects. You cannot post or trigger events in a batch application that
has no user interface because the application has no event queue.

After you call PostEvent, check the return code to determine whether PostEvent
succeeded.

You can pass information to the event script with the word and long arguments.
The information is stored in the Message object. In your script, you can
reference the WordParm and LongParm fields of the Message object to access
the information. Note that the Message object is saved and restored just before
the posted event script runs so that the information you passed is available even
if other code has used the Message object too.

Argument Description

objectname The name of any PowerBuilder object or control (except an
application) that has events associated with it.

event A value of the TrigEvent enumerated datatype that identifies a
PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event.
The event must be a valid event for objectname and a script must
exist for the event in objectname.

word
(optional)

A long value to be stored in the WordParm property of the system’s
Message object. If you want to specify a value for long, but not
word, enter 0. (For cross-platform compatibility, WordParm and
LongParm are both longs).

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a string,
a pointer to the string is stored in the LongParm property, which you
can access with the String function (see Usage).
PowerScript Reference 869

PostEvent
If you have specified a string for long, you can access it in the triggered event
by using the String function with the keyword "address" as the format
parameter. (Note that PowerBuilder has stored the string at an arbitrary
memory location and you are relying on nothing else having altered the pointer
or the stored string.) Your event script might begin as follows:

string PassedString
PassedString = String(Message.LongParm, "address")

TriggerEvent and PostEvent are useful for preventing duplication of code. If two
controls perform the same task, you can use PostEvent in one control’s event
script to execute the other’s script, instead of repeating the code in two places.
For example, if both a button and a menu delete data, the button’s Clicked
script can perform the deletion and the menu’s Clicked event script can post an
event that runs the button’s Clicked event script.

Choosing PostEvent or TriggerEvent Both PostEvent and TriggerEvent cause
event scripts to be executed. PostEvent is asynchronous; it adds the event to the
end of an object’s event queue. TriggerEvent is synchronous; the event is
triggered immediately.

Use PostEvent when you want the current event script to complete before the
posted event script runs. TriggerEvent interrupts the current script to run the
triggered event’s script. Use it when you need to interrupt a process, such as
canceling printing.

If the function is the last line in an event script and there are no other events
pending, PostEvent and TriggerEvent have the same effect.

Events and messages in Windows Both PostEvent and TriggerEvent cause a
script associated with an event to be executed. However, these functions do not
send the actual event message. This is important when you are choosing the
target object and event. The following background information explains this
concept.

Many PowerBuilder functions send Windows messages, which in turn trigger
events and run scripts. For example, the Close function sends a Windows close
message (WM_CLOSE). PowerBuilder maps the message to its internal close
message (PBM_CLOSE), then runs the Close event’s script and closes the
window.

If you use TriggerEvent or PostEvent with Close! as the argument,
PowerBuilder runs the Close event’s script but it does not close the window
because it did not receive the close message. Therefore, the choice of which
event to trigger is important. If you trigger the Clicked! event for a button
whose script calls the Close function, PowerBuilder runs the Close event’s
script and closes the window.
870 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Use Post or Send when you want to trigger system events that are not
PowerBuilder-defined events.

Examples This statement adds the Clicked event to the event queue for CommandButton
cb_OK. The event script will be executed after any other pending event scripts
are run:

cb_OK.PostEvent(Clicked!)

This statement adds the user-defined event cb_exit_request to the event queue
in the parent window:

Parent.PostEvent("cb_exit_request")

This example posts an event for cb_exit_request with an argument and then
retrieves that value from the Message object in the event’s script.

The first part of the example is code for a button in a window. It adds the
user-defined event cb_exit_request to the event queue in the parent window.
The value 455 is stored in the Message object for the use of the event’s script:

Parent.PostEvent("cb_exit_request", 455, 0)

The second part of the example is the beginning of the cb_exit_request event
script, which assigns the value passed in the Message object to a local variable.
The script can use the value in whatever way is appropriate to the situation:

integer numarg
numarg = Message.WordParm

See also Post
Send
TriggerEvent

PostURL
Description Performs an HTTP Post, allowing a PowerBuilder application to send a request

through CGI, NSAPI, or ISAPI.

Applies to Inet objects

Syntax servicereference.PostURL (urlname, urldata, headers, {serverport, } data)

Argument Description

servicereference Reference to the Internet service instance.

urlname String specifying the URL to post.
PowerScript Reference 871

PostURL
Return value Integer. Returns values as follows:

1 Success
-1 General error
-2 Invalid URL
-4 Cannot connect to the Internet
-5 Unsupported secure (HTTPS) connection attempted
-6 Internet request failed

Usage Call this function to invoke a CGI, NSAPI, or ISAPI function.

Data references a standard class user object that descends from InternetResult
and that has an overridden InternetData function. This overridden function then
performs the required processing with the returned HTML. Because the
Internet returns data asynchronously, data must reference a variable that
remains in scope after the function executes (such as a window-level instance
variable).

To simulate a form submission, you need to send a header that indicates the
proper Content-Type. For forms, the proper Content-Type header is:

Content-Type: application/x-www-form-urlencoded

For more information on the InternetResult standard class user object and the
InternetData function, use the PowerBuilder Browser.

Timeout value for sending a request
The PostURL function relies on wininet.dll to post a request and returns -1
when the posting time exceeds the DLL timeout value. When you install
Internet Explorer 7 or later, the default timeout value for this DLL is 30
seconds. Although it is possible to change the timeout value by configuring a
ReceiveTimeOut registry key under HKEY_CURRENT_USER\
SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings, this is not
recommended, since it can also affect the behavior of the Internet Explorer
browser.

urldata Blob specifying arguments to the URL specified by urlname.

headers String specifying HTML headers. In Netscape, a newline (~n) is
required after each HTTP header and a final newline after all
headers.

serverport
(optional)

Specifies the server port number for the request. The default
value for this argument is 0, which means that the port number
is determined by the system (port 80 for HTTP requests).

data InternetResult instance into which the function returns HTML.

Argument Description
872 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example calls the PostURL function using server port 8080. Iinet is an
instance variable of type inet:

Blob lblb_args
String ls_headers
String ls_url
Long ll_length

iir_msgbox = CREATE n_ir_msgbox
ls_url = "http://coltrane.sybase.com/"
ls_url += "cgi-bin/pbcgi60.exe/"
ls_url += "myapp/n_cst_html/f_test?"
lblb_args = blob("")
ll_length = Len(lblb_args)
ls_headers = "Content-Length: " &

+ String(ll_length) + "~n~n"
iinet.PostURL &

(ls_url, lblb_args, ls_headers, 8080, iir_msgbox)

This example shows the use of a header with the correct content-type for a
form:

Blob lblb_args
String ls_headers
String ls_url
String ls_args
long ll_length
integer li_rc

li_rc = GetContextService("Internet", iinet_base)
IF li_rc = 1 THEN

ir = CREATE n_ir
ls_url = "http://localhost/Site/testurl.stm?"
ls_args = "user=MyName&pwd=MyPasswd"
lblb_args = Blob(ls_args)
ll_length = Len(lblb_args)
ls_header = "Content-Type: " + &

"application/x-www-form-urlencoded~n" + &
"Content-Length: " + String(ll_length) + "~n~n"

li_rc = iinet.PostURL(ls_url, lblb_args, &
ls_header, ir)

END IF

See also GetURL
HyperLinkToURL
InternetData
PowerScript Reference 873

Preview
Preview
Description Displays the contents of a RichTextEdit control as either a preview of the

document as it would print or in an editing view.

Applies to RichTextEdit controls

Syntax rtename.Preview (previewsetting)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage A RichTextEdit control has two ways of viewing the content: edit mode and
preview mode. The Preview function switches between the two.

Edit mode Edit mode displays the text in readable form. The user can enter,
select, and change text. There are properties for controlling the display of
nonprinting characters in the text, such as carriage returns, spaces, tabs, and
input fields. In edit mode, the toolbar, ruler bar, and tab bar, if visible, display
above the editing area of the control.

Preview mode Preview mode displays a miniature page within the control.
The page is sized to fit within the control. Any selection is canceled when the
control switches to preview mode. The user cannot edit text in preview mode,
but scripts can call functions for selecting and changing text, including
inserting documents. Users can page through the control contents in preview
mode by using the up arrow and down arrow keys, or the Page Up and Page
Down keys.

If you call ShowHeadFoot when the control is in preview mode, you return to
edit mode with the header and footer editing panels displayed.

Make sure the RichTextEdit control is big enough to display the page
formatting and scrolling controls available in preview mode.

Examples This example previews the page layout of the RichTextEdit rte_1:

rte_1.Preview(TRUE)

See also IsPreview

Argument Description

rtename The name of the RichTextEdit control which you want to preview
or edit.

previewsetting A boolean value indicating whether to put the RichTextEdit into
preview or edit mode. Values are:

• True – Preview the contents of the RichTextEdit as it would
look when printed

• False – Displays the contents in editable form
874 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Print
Sends data to the current printer (or spooler, if the user has a spooler set up).
There are several syntaxes.

For syntax for DataWindows or DataStores, see the Print method for
DataWindows in the DataWindow Reference or the online Help.

Syntax 1 For printing a visual object in a print job
Description Includes a visual object, such as a window or a graph control, in a print job that

you have started with the PrintOpen function.

Applies to Any object

Syntax objectname.Print (printjobnumber, x, y {, width, height })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Print returns null.

To Use

Include a visual object, such as a window or a graph control in a
print job

Syntax 1

Send one or more lines of text as part of a print job Syntax 2

Print the contents of an RTE control Syntax 3

Argument Description

objectname The name of the object that you want to print. The object must
either be a window or an object whose ancestor type is
DragObject, which includes all the controls that you can place
in a window.

printjobnumber The number the PrintOpen function assigns to the print job.

x An integer whose value is the x coordinate on the page of the
left corner of the object, in thousandths of an inch.

y An integer whose value is the y coordinate on the page of the
left corner of the object, in thousandths of an inch.

width
(optional)

An integer specifying the printed width of the object in
thousandths of an inch. If omitted, PowerBuilder uses the
object’s original width.

height
(optional)

An integer specifying the printed height of the object in
thousandths of an inch. If omitted, PowerBuilder uses the
object’s original height.
PowerScript Reference 875

Print
Usage PowerBuilder manages print jobs by opening the job, sending data, and closing
the job. When you use Syntax 2 or 3, you must call the PrintOpen function and
the PrintClose or PrintCancel functions yourself to manage the process.

PowerBuilder copies the area of the screen occupied by the control to the
printer. If any other window or application displays on the screen in that area
in front of the control while the control is being printed, that window or
application will also be printed.

Print area and margins The print area is the physical page size minus any
margins in the printer itself.

Examples This example prints the CommandButton cb_close in its original size at
location 500, 1000:

long Job
Job = PrintOpen()
cb_close.Print(Job, 500,1000)
PrintClose(Job)

This example opens a print job, which defines a new page, then prints a title
using the third syntax of Print. Then it uses this syntax of Print to print a graph
on the first page and a window on the second page:

long Job
Job = PrintOpen()
Print(Job, "Report of Year-to-Date Sales")
gr_sales1.Print(Job, 1000,PrintY(Job)+500, &

6000,4500)
PrintPage(Job)
w_sales.Print(Job, 1000,500, 6000,4500)
PrintClose(Job)

See also PrintCancel
PrintClose
PrintOpen
PrintScreen
876 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For printing text in a print job
Description Sends one or more lines of text as part of a print job that you have opened with

the PrintOpen function. You can specify tab settings before or after the text. The
tab settings control the text’s horizontal position on the page.

Applies to Not object-specific

Syntax Print (printjobnumber, { tab1, } string {, tab2 })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Print returns null.

Usage PowerBuilder manages print jobs by opening the job, sending data, and closing
the job. When you use Syntax 2 or 3, you must call the PrintOpen function and
the PrintClose or PrintCancel functions yourself to manage the process.

Print cursor In a print job, PowerBuilder uses a print cursor to keep track of
the print location. The print cursor stores the coordinates of the upper-left
corner of the location at which print will being. PowerBuilder updates the print
cursor after printing text with Print.

Line spacing when printing text Line spacing in PowerBuilder is
proportional to character height. The default line spacing is 1.2 times the
character height. When Print starts a new line, it sets the x coordinate of the
cursor to 0 and increases the y coordinate by the current line spacing. You can
change the line spacing with the PrintSetSpacing function, which lets you
specify a new factor to be multiplied by the character height.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

tab1
(optional)

The position, measured from the left edge of the print area in
thousandths of a inch, to which the print cursor should move
before string is printed. If the print cursor is already at or beyond
the position or if you omit tab1, Print starts printing at the
current position of the print cursor.

string The string you want to print. If the string includes carriage
return-newline character pairs (~r~n), the string will print on
multiple lines. However, the initial tab position is ignored on
subsequent lines.

tab2
(optional)

The new position, measured from the left edge of the print area
in thousandths of a inch, of the print cursor after string printed.
If the print cursor is already at or beyond the specified position,
Print ignores tab2 and the print cursor remains at the end of the
text. If you omit tab2, Print moves the print cursor to the
beginning of a new line.
PowerScript Reference 877

Print
Because Syntax 3 of Print increments the y coordinate each time it creates a
new line, it also handles page breaks automatically. When the y coordinate
exceeds the page size, PowerBuilder automatically creates a new page in the
print job. You do not need to call the PrintPage function, as you would if you
were using the printing functions that control the cursor position (for example,
PrintText or PrintLine).

Print area and margins The print area is the physical page size minus any
margins in the printer itself.

Using fonts You can use PrintDefineFont and PrintSetFont to specify the font
used by the Print function when you are printing a string.

Fonts for multiple languages The default font for print functions is the
system font, but multiple languages cannot be printed correctly using the
system font. The Tahoma font typically produces good results. However, if the
printer font is set to Tahoma and the Tahoma font is not installed on the printer,
PowerBuilder downloads the entire font set to the printer when it encounters a
multilanguage character. Use the PrintDefineFont and PrintSetFont functions to
specify a font that is available on users’ printers and supports multiple
languages.

Examples This example opens a print job, prints the string Sybase Corporation in the
default font, and then starts a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

// Print the string and then start a new line
Print(Job, "Sybase Corporation")
...
PrintClose(Job)

This example opens a print job, prints the string Sybase Corporation in the
default font, tabs 5 inches from the left edge of the print area but does not start
a new line:

long Job

// Define a blank page and assign the job an ID
Job = PrintOpen()

// Print the string but do not start a new line
Print(Job, "Sybase Corporation", 5000)
...
PrintClose(Job)
878 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The first Print statement below tabs half an inch from the left edge of the print
area, prints the string Sybase Corporation, and then starts a new line. The
second Print statement tabs one inch from the left edge of the print area, prints
the string Directors:, and then starts a new line:

long Job
// Define a blank page and assign the job an ID
Job = PrintOpen()
// Print the string and start a new line
Print(Job, 500, "Sybase Corporation")
// Tab 1 inch from the left edge and print
Print(Job, 1000, "Directors:")
...
PrintClose(Job)

The first Print statement below tabs half an inch from the left edge of the print
area prints the string Sybase Corporation, and then tabs 6 inches from the
left edge of the print area but does not start a new line. The second Print
statement prints the current date and then starts a new line:

long Job
// Define a blank page and assign the job an ID
Job = PrintOpen()
// Print string and tab 6 inches from the left edge
Print(Job, 500, "Sybase Corporation", 6000)
// Print the current date on the same line
Print(Job, String(Today()))
...
PrintClose(Job)

In a window that displays a database error message in a MultiLineEdit
mle_message, the following script for a Print button prints a title with the date
and time and the message:

long li_prt
li_prt = PrintOpen("Database Error")
Print(li_prt, "Database error - " &

+ String(Today(), "mm/dd/yyyy") &
+ " - " &
+ String(Now(), "HH:MM:SS"))

Print(li_prt, " ")
Print(li_prt, mle_message.text)
PrintClose(li_prt)

See also PrintCancel, PrintClose, PrintDataWindow, PrintOpen, PrintScreen,
PrintSetFont, PrintSetSpacing
PowerScript Reference 879

Print
Syntax 3 For RichTextEdit controls
Description Prints the contents of a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.Print (copies, pagerange, collate, canceldialog)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When the RichTextEdit control shares data with a DataWindow, the total
number of pages contained in the control is the page count of the document
multiplied by the row count of the DataWindow.

You can specify printed page numbers by including an input field in the header
or footer of your document.

Examples This statement prints one copy of pages 1 to 5 of the document in the
RichTextEdit control rte_1. The output is not collated and a dialog box displays
to allow the user to cancel the printing:

rte_1.Print(1, "1-5", FALSE, TRUE)

See also Preview
PrintEx

Argument Description

rtename The name of the RichTextEdit control whose contents you want to
print.

copies An integer specifying the number of copies you want to print.

pagerange A string describing the pages you want to print. To print all pages,
specify an empty string (""). To specify a subset of pages, use
dashes to specify a range and commas to separate ranges and
individual page numbers—for example, "1-3" or "2,5,8-10".

When rtename shares data with a DataWindow, pagerange refers to
pages based on the total number of pages in the control, not within
each instance of the document.

collate A boolean value indicating whether you want the copies collated.
Values are:

TRUE – Collate copies
FALSE – Do not collate copies

canceldialog A boolean value indicating whether you want to display a nonmodal
dialog box that allows the user to cancel printing. Values are:

TRUE – Display the dialog box
FALSE – Do not display the dialog box
880 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintBitmap
Description Writes a bitmap at the specified location on the current page.

Syntax PrintBitmap (printjobnumber, bitmap, x, y, width, height)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintBitmap returns null.

Usage PrintBitmap does not change the position of the print cursor, which remains
where it was before the function was called. In general, print functions in which
you specify coordinates do not affect the print cursor (see the functions listed
in See also).

Examples These statements define a new blank page and then print the bitmap in file
d:\PB\BITMAP1.BMP in its original size at location 50,100:

long Job

// Define a new blank page.
Job = PrintOpen()

// Print the bitmap in its original size.
PrintBitmap(Job, "d:\PB\BITMAP1.BMP", 50,100, 0,0)
// Send the page to the printer and close Job.
PrintClose(Job)

See also PrintClose
PrintLine
PrintRect
PrintRoundRect
PrintOval
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

bitmap A string whose value is the file name of the bitmap image.

x An integer whose value is the x coordinate (in thousandths of
an inch) on the page of the bitmap image.

y An integer whose value is the y coordinate (in thousandths of
an inch) on the page of the bitmap image.

width The integer width of the bitmap image in thousandths of an
inch. If width is 0, PowerBuilder uses the original width of the
image.

height The integer height of the bitmap image in thousandths of an
inch. If height is 0, PowerBuilder uses the original height of
the image.
PowerScript Reference 881

PrintCancel
PrintCancel
Description Cancels printing and deletes the spool file, if any. Cancels printing of a print

job that you opened with the PrintOpen function. The print job is identified by
the number returned by PrintOpen.

For syntax for DataWindows and DataStores, see the PrintCancel method for
DataWindows in the DataWindow Reference or the online Help.

Syntax PrintCancel (printjobnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If printjobnumber is
null, PrintCancel returns null.

Usage PrintCancel cancels the specified print job by deleting the spool file, if any, and
closing the job. Because PrintCancel closes the print job, do not call the
PrintClose function after you call PrintCancel.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job
882 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples In this example, a script for a Print button opens a print job and then opens a
window with a cancel button. If the user clicks on the cancel button, its script
sets a global variable that indicates that the user wants to cancel the job. After
each printing command in the Print button’s script, the code checks the global
variable and cancels the job if its value is true.

The definition of the global variable is:

boolean gb_printcancel

The script for the Print button is:

long job, li

gb_printcancel = FALSE
job = PrintOpen("Test Page Breaks")
IF job < 1 THEN

MessageBox("Error", "Can't open a print job.")
RETURN

END IF

Open(w_printcancel)

PrintBitmap(Job, "d:\PB\bitmap1.bmp", 5, 10, 0, 0)
IF gb_printcancel = TRUE THEN

PrintCancel(job)
RETURN

END IF

... // Additional printing commands,

... // including checking gb_printcancel

PrintClose(job)
Close(w_printcancel)

The script for the cancel button in the second window is:

gb_printcancel = TRUE
Close(w_printcancel)

See also Print
PrintClose
PrintOpen
PowerScript Reference 883

PrintClose
PrintClose
Description Sends the current page to the printer (or spooler) and closes the job. Call

PrintClose as the last command of a print job unless PrintCancel function has
closed the job.

Syntax PrintClose (printjobnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If printjobnumber is
null, PrintClose returns null.

Usage When you open a print job, you must close (or cancel) it. To avoid hung print
jobs, process and close a print job in the same event in which you open it.

Examples This example opens a print job, which creates a blank page, prints a bitmap on
the page, then sends the current page to the printer or spooler and closes the job:

ulong Job

// Begin a new job and a new page.
Job = PrintOpen()

// Print the bitmap in its original size.
PrintBitmap(Job, d:\PB\BITMAP1, 5,10, 0,0)

// Send the page to the printer and close Job.
PrintClose(Job)

See also PrintCancel
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job
884 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintDataWindow
Description Prints the contents of a DataWindow control or DataStore as a print job.

Syntax PrintDataWindow (printjobnumber, dwcontrol)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintDataWindow returns null.

Usage Do not use PrintDataWindow with any Print functions except PrintOpen and
PrintClose.

When you use PrintDataWindow with PrintOpen and PrintClose, you can print
several DataWindows in one print job. The information in each DataWindow
control starts printing on a new page.

When you print a DataWindow using PrintDataWindow, PowerBuilder uses the
fonts and layout specified in the computer’s printer setup, not the fonts and
layout specified in the DataWindow. The PrintDefineFont and PrintSetFont
methods also have no effect.

When the DataWindow’s presentation style is RichTextEdit, each row begins a
new page in the printed output.

For information on skipping individual pages with return codes in the
PrintPage event, see the Print function.

Examples These statements send the contents of three DataWindow controls to the
current printer in a single print job:

long job
job = PrintOpen()
// Each DataWindow starts printing on a new page.
PrintDataWindow(job, dw_EmpHeader)
PrintDataWindow(job, dw_EmpDetail)
PrintDataWindow(job, dw_EmpDptSum)
PrintClose(job)

See also Print
PrintClose
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

dwcontrol The name of the DataWindow control, child DataWindow, or
DataStore containing the DataWindow object you want to
print
PowerScript Reference 885

PrintDefineFont
PrintDefineFont
Description Creates a numbered font definition that consists of a font supported by your

printer and a set of font properties. You can use the font number in the
PrintSetFont or PrintText functions. You can define up to eight fonts at a time.

Syntax PrintDefineFont (printjobnumber, fontnumber, facename, height, weight,
fontpitch, fontfamily, italic, underline)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintDefineFont returns null.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

fontnumber The number (1 to 8) you want to assign to the font.

facename A string whose value is the name of a typeface supported by
your printer (for example, Courier 10Cpi).

height An integer whose value is the height of the type in thousandths
of an inch (for example, 250 for 18-point 10Cpi) or a negative
number representing the point size (for example, -18 for 18-
point). Specifying the point size is more exact; the height in
thousandths of an inch only approximates the point size.

weight The stroke weight of the type. Normal weight is 400 and bold
is 700.

fontpitch A value of the FontPitch enumerated datatype indicating the
pitch of the font:

Default!
Fixed!
Variable!

fontfamily A value of the FontFamily enumerated datatype indicating the
family of the font:

AnyFont!
Decorative!
Modern!
Roman!
Script!
Swiss!

italic A boolean value indicating whether the font is italic. The
default is false (not italic).

underline A boolean value indicating whether the font is underlined. The
default is false (not underlined).
886 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage You can use as many as eight fonts in one print job. If you require more than
eight fonts in one job, you can call PrintDefineFont again to change the settings
for a font number.

Use PrintSetFont to make a font number the current font for the open print job.

Fonts in Microsoft Windows
Although the fontfamily argument seems to duplicate information in the font
name, Windows uses it along with the font name to identify the correct font or
substitute a similar font if the named font is unavailable.

Font names and sizes
Some font names include a size, especially monospaced fonts which include
characters per inch. This is the recommended size for the font and does not
affect the printed size, which you specify with the height argument.

Examples These statements define a new blank page, and then define print font 1 for Job
as Courier 10Cpi, 18 point, normal weight, default pitch, Decorative font, with
no italic or underline:

long Job
Job = PrintOpen()
PrintDefineFont(Job, 1, "Courier 10Cpi", &

-18, 400, Default!, Decorative!, FALSE, FALSE)

See also PrintClose
PrintOpen
PrintSetFont
PowerScript Reference 887

PrintEx
PrintEx
Description Prints the contents of a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.PrintEx (canceldialog)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If the user presses
Cancel in the Print dialog box, PrintEx returns -1. If the user presses Cancel in
the Cancel dialog box, PrintEx returns 1.

Usage To specify a range of pages and the number of copies to print and whether
pages should be collated, use the Print function.

Examples This statement prints the document in the RichTextEdit control rte_1. A Cancel
dialog box displays to allow the user to cancel the printing:

rte_1.PrintEx(TRUE)

See also Preview
Print

Argument Description

rtename The name of the RichTextEdit control whose contents you want to
print.

canceldialog A boolean value indicating whether you want to display a nonmodal
Cancel dialog box that allows the user to cancel printing. The
System Print dialog box always displays. Values are:

TRUE – Display the dialog box
FALSE – Do not display the dialog box
888 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintGetPrinter
Description Gets the current printer name.

Syntax PrintGetPrinter ()

Return value String. Returns current printer information in a tab-delimited format:
printername ~t drivername ~t port.

Usage The current printer is the default printer unless you change it with the
PrintSetPrinter method. A PowerBuilder application calling the PrintGetPrinter
method does not get an externally reset default after the application initializes.

Examples This example places the current printer name, driver, and port in separate
SingleLineEdit textboxes:

String ls_fullstring=PrintGetPrinter()
String ls_name, ls_driver, ls_port, ls_temp
Long ll_place

ll_place=pos (ls_fullstring, "~t")
ls_name=left(ls_fullstring, ll_place -1)
ls_temp=mid(ls_fullstring, ll_place +1)
ll_place=pos (ls_temp, "~t")
ls_driver=left(ls_temp, ll_place -1)
ls_port=mid(ls_temp, ll_place +1)

sle_1.text=ls_name
sle_2.text=ls_driver
sle_3.text=ls_port

See also PrintGetPrinters
PrintSetPrinter
PowerScript Reference 889

PrintGetPrinters
PrintGetPrinters
Description Gets the list of available printers.

Syntax PrintGetPrinters ()

Return value String. Each printer is listed in the string in the format printername ~t
drivername ~t port ~n.

Usage The return string can be loaded into a DataWindow using ImportString or
separated using the ~n as shown in the example.

Examples This example parses printer names from the return string on the
PrintGetPrinters call, then places each printer name in an existing
SingleLineEdit control. If you have more printers than SingleLineEdit boxes,
the last SingleLineEdit contains a string for all the printers that are not listed in
the other SingleLineEdits:

singlelineedit sle
long ll_place, i, k
string ls_left, ls_prntrs

ls_prntrs = PrintGetPrinters ()
k = upperbound(control)
FOR i= k to 1 STEP -1

IF parent.control[i].typeof()=singlelineedit! then
sle=parent.control[i]
ll_place=pos (ls_prntrs, "~n")
ls_left = Left (ls_prntrs, ll_place - 1)
sle.text = ls_left
ls_prntrs = Mid (ls_prntrs, ll_place + 1)

END IF
NEXT
sle.text = ls_prntrs

See also ImportString method for DataWindows in the DataWindow Reference or the
online Help
PrintGetPrinter
PrintSetPrinter
890 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintLine
Description Draws a line of a specified thickness between the specified endpoints on the

current print page.

Syntax PrintLine (printjobnumber, x1, y1, x2, y2, thickness)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintLine returns null.

Usage PrintLine does not change the position of the print cursor, which remains where
it was before the function was called.

Examples These statements start a new page in a print job and then print a line starting at
0,5 and ending at 7500,5 with a thickness of 10/1000 of an inch:

long Job
Job = PrintOpen()
... // various print commands

// Start a new page.
PrintPage(Job)
// Print a line at the top of the page
PrintLine(Job,0,5,7500,5,10)
... // Other printing
PrintClose(Job)

See also PrintBitmap
PrintClose
PrintOpen
PrintOval
PrintRect
PrintRoundRect

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x1 An integer specifying the x coordinate in thousandths of an
inch of the start of the line

y1 An integer specifying the y coordinate in thousandths of an
inch of the start of the line

x2 An integer specifying the x coordinate in thousandths of an
inch of the end of the line

y2 An integer specifying the y coordinate in thousandths of an
inch of the end of the line

thickness An integer specifying the thickness of the line in thousandths
of an inch
PowerScript Reference 891

PrintOpen
PrintOpen
Description Opens a print job and assigns it a number, which you use in other printing

statements.

Syntax PrintOpen ({ jobname {, showprintdialog } })

Return value Long. Returns the job number if it succeeds and -1 if an error occurs. If the Print
dialog box displays and the user presses Cancel, PrintOpen returns -1. If any
argument’s value is null, PrintOpen returns null.

Usage A new print job begins on a new page and the font is set to the default font for
the printer. The print cursor is at the upper left corner of the print area.

If you specify true for the showprintdialog argument, the system Print dialog
box displays allowing the user to cancel the print job. The option to specify a
page range in the Print dialog box is disabled because PowerBuilder cannot
determine the number of pages in the print job in advance. If you specify this
argument in a component that runs on a server, the argument is ignored.

Use the job number that PrintOpen returns to identify this print job in all
subsequent print functions.

Calling MessageBox after PrintOpen can cause undesirable behavior that is
confusing to a user. Calling PrintOpen causes the currently active window in
PowerBuilder to be disabled to allow Windows to handle printing. If you
display a MessageBox after calling PrintOpen, Windows assigns the active
window to be its parent, which is often another application, causing that
application to become active.

Balancing PrintOpen and PrintClose
When you open a print job, you must close (or cancel) it. To avoid hung print
jobs, process and close a print job in the same event in which you open it.

Argument Description

jobname (optional) A string specifying a name for the print job. The name is
displayed in the Windows Print Manager dialog box and in
the Spooler dialog box.

showprintdialog
(optional)

A boolean value indicating whether you want to display the
system Print dialog box that allows the user to select a
printer or set print properties. Values are:

TRUE – Display the dialog box
FALSE – (default) Do not display the dialog box
892 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example opens a job but does not give it a name:

ulong li_job
li_job = PrintOpen()

This example opens a job, gives it a name, and displays the Print dialog box:

ulong li_job
li_job = PrintOpen("Phone List", true)

See also Print, PrintBitmap, PrintCancel, PrintClose, PrintDataWindow,
PrintDefineFont, PrintLine, PrintOval, PrintPage, PrintRect, PrintRoundRect,
PrintSend, PrintSetFont, PrintSetup, PrintText, PrintWidth, PrintX, PrintY

PrintOval
Description Draws a white oval outlined in a line of the specified thickness on the print

page.

Syntax PrintOval (printjobnumber, x, y, width, height, thickness)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintOval returns null.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an
inch of the upper-left corner of the oval’s bounding box

y An integer specifying the y coordinate in thousandths of an
inch of the upper-left corner of the oval’s bounding box

width An integer specifying the width in thousandths of an inch of
the oval’s bounding box

height An integer specifying the height in thousandths of an inch of
the oval’s bounding box

thickness An integer specifying the thickness of the line that outlines the
oval in thousandths of an inch
PowerScript Reference 893

PrintOval
Usage The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To
print other shapes or text inside the shapes, draw the filled shape first and then
add text and other shapes or lines inside it. If you draw the filled shape after
other printing functions, it will cover anything inside it. For example, to draw
a border around text and lines, draw the oval or rectangular border first and
then use PrintLine and PrintText to position the lines and text inside.

PrintOval does not change the position of the print cursor, which remains where
it was before the function was called. In general, print functions in which you
specify coordinates do not affect the print cursor.

Examples This example starts a print job with a new blank page, and then prints an oval
that fits in a 1-inch square. The upper-left corner of the oval’s bounding box is
four inches from the top and three inches from the left edge of the print area.
Because its height and width are equal, the oval is actually a circle:

long Job
// Define a new blank page.
Job = PrintOpen()
// Print an oval.
PrintOval(Job, 4000, 3000, 1000, 1000, 10)
... // Other printing
PrintClose(Job)

See also PrintBitmap, PrintClose, PrintLine, PrintOpen, PrintRect, PrintRoundRect
894 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintPage
Description Sends the current page to the printer or spooler and begins a new blank page in

the current print job.

Syntax PrintPage (printjobnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintPage returns null.

Examples This example opens a print job with a new blank page, prints a bitmap on the
page, and then sends the page to the printer and sets up a new blank page.
Finally, the last Print statement prints the company name on the new page:

long Job

// Open a job with new blank page.
Job = PrintOpen()

// Print a bitmap on the page.
PrintBitmap(Job, "d:\PB\BITMAP1.BMP", 100,250, 0,0)

// Begin a new page.
PrintPage(Job)

// Print the company name on the new page.
Print(Job, "Sybase Corporation")

See also PrintClose
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job
PowerScript Reference 895

PrintRect
PrintRect
Description Draws a white rectangle with a border of the specified thickness on the print

page.

Syntax PrintRect (printjobnumber, x, y, width, height, thickness)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintRect returns null.

Usage The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To
print other shapes or text inside the shapes, draw the filled shape first and then
add text and other shapes or lines inside it. If you draw the filled shape after
other printing functions, it will cover anything inside it. For example, to draw
a border around text and lines, draw the oval or rectangular border first and
then use PrintLine and PrintText to position the lines and text inside.

PrintRect does not change the position of the print cursor, which remains where
it was before the function was called. In general, print functions in which you
specify coordinates do not affect the print cursor.

Examples These statements open a print job with a new page and draw a 1-inch square
with a line thickness of 1/8 of an inch. The square’s upper left corner is four
inches from the left and three inches from the top of the print area:

long Job
// Define a new blank page.
Job = PrintOpen()
// Print the rectangle on the page.
PrintRect(Job, 4000,3000, 1000,1000, 125)
... // Other printing
PrintClose(Job)

See also PrintBitmap, PrintClose, PrintLine, PrintOpen, PrintOval, PrintRoundRect

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an
inch of the upper-left corner of the rectangle

y An integer specifying the y coordinate in thousandths of an
inch of the upper-left corner of the rectangle

width An integer specifying the rectangle’s width in thousandths of
an inch

height An integer specifying the rectangle’s height in thousandths of
an inch

thickness An integer specifying the thickness of the rectangle’s border
line in thousandths of an inch
896 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintRoundRect
Description Draws a white rectangle with rounded corners and a border of the specified

thickness on the print page.

Syntax PrintRoundRect (printjobnumber, x, y, width, height, xradius, yradius,
thickness)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintRoundRect returns null.

Usage The PrintOval, PrintRect, and PrintRoundRect functions draw filled shapes. To
print other shapes or text inside the shapes, draw the filled shape first and then
add text and other shapes or lines inside it. If you draw the filled shape after
other printing functions, it will cover anything inside it. For example, to draw
a border around text and lines, draw the oval or rectangular border first and
then use PrintLine and PrintText to position the lines and text inside.

PrintRoundRect does not change the position of the print cursor, which remains
where it was before the function was called. In general, print functions in which
you specify coordinates do not affect the print cursor.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

x An integer specifying the x coordinate in thousandths of an
inch of the upper-left corner of the rectangle

y An integer specifying the y coordinate in thousandths of an
inch of the upper-left corner of the rectangle

width An integer specifying the rectangle’s width in thousandths of
an inch

height An integer specifying the rectangle’s height in thousandths of
an inch

xradius An integer specifying the x radius of the corner rounding

yradius An integer specifying the y radius of the corner rounding

thickness An integer specifying the thickness of the rectangle’s border
line in thousandths of an inch
PowerScript Reference 897

PrintRoundRect
Examples This example starts a new print job, which begins a new page, and prints a
rectangle with rounded corners as a page border. Then it closes the print job,
which sends the page to the printer.

The rectangle is 6 1/4 inches wide by 9 inches high and its upper corner is one
inch from the top and one inch from the left edge of the print area. The border
has a line thickness of 1/8 of an inch and the corner radius is 300:

long Job

// Define a new blank page.
Job = PrintOpen()

// Print a RoundRectangle on the page.
PrintRoundRect(Job, 1000,1000, 6250,9000, &

300,300, 125)

// Send the page to the printer.
PrintClose(Job)

See also PrintBitmap
PrintClose
PrintLine
PrintOpen
PrintOval
PrintRect
898 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintScreen
Description Prints the screen image as part of a print job.

Syntax PrintScreen (printjobnumber, x, y {, width, height })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintScreen returns null.

Examples This statement prints the current screen image in its original size at location
500, 1000:

long Job
Job = PrintOpen()
PrintScreen(Job, 500,1000)
PrintClose(Job)

See also Print
PrintClose
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigns to the print job.

x An integer whose value is the x coordinate on the page, in
thousandths of an inch, of the upper-left corner of the screen
image.

y An integer whose value is the y coordinate on the page, in
thousandths of an inch, of the upper-left corner of the screen
image.

width
(optional)

The integer width of the printed screen in thousandths of an
inch. If you omit width, PowerBuilder prints the screen at its
original width. If you specify width, you must also specify
height.

height
(optional)

The integer height of the printed screen in thousandths of an
inch. If you omit height, PowerBuilder prints the screen at its
original height.
PowerScript Reference 899

PrintSend
PrintSend
Description Sends an arbitrary string of characters to the printer. PrintSend is usually used

for sending escape sequences that change the printer’s setup.

Obsolete function
PrintSend is an obsolete function and is provided for backward compatibility
only. The ability to use this function is dependent upon the printer driver.

Syntax PrintSend (printjobnumber, string {, zerochar })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintSend returns null.

Usage Use PrintSend to send escape sequences to specific printers (for example, to set
condensed mode or to set margins). Escape sequences are printer specific.

As with any string, the number zero terminates the string argument. If the
printer code you want to send includes a zero, you can use another character
for zero in string and specify the character that represents zero in zerochar. The
character you select should be a character you do not usually use. When
PowerBuilder sends the string to the printer it converts the substitute character
to a zero.

A typical print job, in which you want to make printer-specific settings, might
consist of the following function calls:

1 PrintOpen

2 PrintSend, to change the printer orientation, select a tray, and so on

3 PrintDefineFont and PrintSetFont to specify fonts for the job

4 Print to output job text

5 PrintClose

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

string A string you want to send to the printer. In the string, use
ASCII values for nonprinting characters.

zerochar
(optional)

An ASCII value (1 to 255) that you want to use to represent
the number zero in string.
900 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example opens a print job and sends an escape sequence to a printer in
IBM Proprinter mode to change the margins. There is no need to designate a
character to represent zero:

long Job

// Open a print job.
Job = PrintOpen()

/* Send the escape sequence.
1B is the escape character in hexadecimal.
X indicates that you are changing the margins.
030 sets the left margin to 30 character spaces.
040 sets the right margin to 40 character spaces.
*/
PrintSend(Job," ~ h1BX ~ 030 ~ 040")
... // Print text or DataWindow

// Send the job to the printer or spooler.
PrintClose(Job)

This example opens a print job and sends an escape sequence to a printer in
IBM Proprinter mode to change the margins. The decimal ASCII code 255
represents zero:

long Job

// Open a print job.
Job = PrintOpen()

/* Send the escape sequence.
1B is the escape character, in hexadecimal.
X indicates that you are changing the margins.
255 sets the left margin to 0.
040 sets the right margin to 40 character spaces.
*/
PrintSend(Job, "~h1BX~255~040", 255)
PrintDataWindow(Job, dw_1)

// Send the job to the printer or spooler.
PrintClose(Job)

See also PrintClose
PrintOpen
PowerScript Reference 901

PrintSetFont
PrintSetFont
Description Designates a font to be used for text printed with the Print function. You specify

the font by number. Use PrintDefineFont to associate a font number with the
desired font, a size, and a set of properties.

Syntax PrintSetFont (printjobnumber, fontnumber)

Return value Integer. Returns the character height of the current font if it succeeds and -1 if
an error occurs. If any argument’s value is null, PrintSetFont returns null.

Examples This example starts a new print job and specifies that font number 2 is Courier,
18 point, bold, default pitch, in modern font, with no italic or underline. The
PrintSetFont statement sets the current font to font 2. Then the Print statement
prints the company name:

long Job

// Start a new print job and a new page.
Job = PrintOpen()

// Define the font for Job.
PrintDefineFont(Job, 2, "Courier 10Cps", &

250, 700, Default!, Modern!, FALSE, FALSE)

// Set the font for Job.
PrintSetFont(Job, 2)

// Print the company name in the specified font.
Print(Job,"Sybase Corporation")

See also PrintDefineFont
PrintOpen

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

fontnumber The number (1 to 8) of a font defined for the job in
PrintDefineFont or 0 (the default font for the printer)
902 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintSetPrinter
Description Sets the printer to use for the next print function call. This function does not

affect open jobs.

Syntax PrintSetPrinter (printername)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage The printername argument must use the same format as returned by the
PrintGetPrinter function.

Examples This example sets the printer to the first printer in the list retrieved by the
PrintGetPrinters function:

long ll_place
string ls_setprn
string ls_prntrs = PrintGetPrinters ()

ll_place=pos (ls_prntrs, "~n")
mle_1.text = PrintGetPrinters ()
ls_setprn = Left (ls_prntrs, ll_place - 1)
PrintSetPrinter (ls_setprn)

See also PrintGetPrinter
PrintGetPrinters

PrintSetSpacing
Description Sets the factor that PowerBuilder uses to calculate line spacing.

Syntax PrintSetSpacing (printjobnumber, spacingfactor)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, PrintSetSpacing returns null.

Argument Description

printername String for the name of the printer you want to use

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

spacingfactor The number by which you want to multiply the character
height to determine the vertical line-to-line spacing. The
default is 1.2.
PowerScript Reference 903

PrintSetup
Usage Line spacing in PowerBuilder is proportional to character height. The default
line spacing is 1.2 times the character height. When Print starts a new line, it
sets the x coordinate of the cursor to 0 and increases the y coordinate by the
current line spacing. The PrintSetSpacing function lets you specify a new factor
to be multiplied by the character height for an open print job.

Examples These statements start a new print job and set the vertical spacing factor to 1.5
(one and a half spacing):

long Job

// Define a new blank page.
Job = PrintOpen()

// Set the spacing factor.
PrintSetSpacing(Job, 1.5)

See also PrintOpen

PrintSetup
Description Calls the Printer Setup dialog box provided by the system printer driver and lets

the user specify settings for the printer.

Syntax PrintSetup ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs or if the application
user clicks Cancel in the Printer Setup dialog box.

Usage The user’s settings have effect for the duration of the application only. After the
application exits, printer settings revert to their previous values.

Examples These statements call the Printer Setup dialog box for the current system
printer and then start a new print job:

long Job

// Call the printer setup program.
PrintSetup()

// Start a job and a new page.
Job = PrintOpen()

See also PrintOpen
904 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintSetupPrinter
Description Displays the printer setup dialog box

Syntax PrintSetupPrinter ()

Return value Integer. Returns 1 if the function succeeds, 0 for cancel, -1 if an error occurs.

Usage You can display the printer setup dialog box for different printers by first
calling the PrintSetPrinter function. You cannot change the printer by calling
PrintSetupPrinter as you can with the PrintSetup function.

Examples This example displays the printer setup dialog box for the last printer in the list
retrieved by the PrintGetPrinters function.

long ll_place
string ls_setptr
string ls_prntrs = PrintGetPrinters ()

ll_place=lastpos (ls_prntrs, "~n")
ls_setptr = Mid (ls_prntrs, ll_place + 1)
PrintSetPrinter (ls_setptr)
PrintSetupPrinter ()

See also PrintGetPrinter
PrintSetPrinter
PrintSetup

PrintText
Description Prints a single line of text starting at the specified coordinates.

Syntax PrintText (printjobnumber, string, x, y {, fontnumber })

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job.

string A string whose value is the text you want to print.

x An integer specifying the x coordinate in thousandths of an inch
of the beginning of the text.

y An integer specifying the y coordinate in thousandths of an inch
of the beginning of the text.

fontnumber
(optional)

The number (1 to 8) of a font defined for the job by using the
PrintDefineFont function or 0 (the default font for the printer). If
you omit fontnumber, the text prints in the current font for the
print job.
PowerScript Reference 905

PrintText
Return value Integer. Returns the x coordinate of the new cursor location (that is, the value
of the parameter x plus the width of the text) if it succeeds. PrintText returns -1
if an error occurs. If any argument’s value is null, PrintText returns null.

Usage PrintText does change the position of the print cursor, unlike the other print
functions for which you specify coordinates. The print cursor moves to the end
of the printed text. PrintText also returns the x coordinate of the print cursor.
You can use the return value to determine where to begin printing additional
text.

PrintText does not change the print cursor’s y coordinate, which is its vertical
position on the page.

Examples These statements start a new print job and then print PowerBuilder in the
current font 3.7 inches from the left edge at the top of the page (location
3700,10):

long Job

// Define a new blank page.
Job = PrintOpen()

// Print the text.
PrintText(Job,"PowerBuilder", 3700, 10)
... // Other printing
PrintClose(Job)

The following statements define a new blank page and then print
Confidential in bold (as defined for font number 3), centered at the top of
the page:

long Job

// Start a new job and a new page.
Job = PrintOpen()

// Define the font.
PrintDefineFont(Job, 3, &

"Courier 10Cps", 250,700, &
Default!, AnyFont!, FALSE, FALSE)

// Print the text.
PrintText(Job, "Confidential", 3700, 10, 3)
... // Other printing
PrintClose(Job)
906 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example prints four lines of text in the middle of the page. The coordinates
for PrintText establish a new vertical position for the print cursor, which the
subsequent Print functions use and increment. The first Print function uses the
x coordinate returned by PrintText to continue the first line. The rest of the Print
functions print additional lines of text, after tabbing to the x coordinate used
initially by PrintText. In this example, each Print function increments the y
coordinate so that the following Print function starts a new line:

long Job

// Start a new job and a new page.
Job = PrintOpen()

// Print the text.
x = PrintText(Job,"The material ", 2000, 4000)
Print(Job, x, " in this report")
Print(Job, 2000, "is confidential and should not")
Print(Job, 2000, "be disclosed to anyone who")
Print(Job, 2000, "is not at this meeting.")
... // Other printing
PrintClose(Job)

See also Print
PrintClose
PrintOpen

PrintWidth
Description Determines the width of a string using the current font of the specified print

job.

Syntax PrintWidth (printjobnumber, string)

Return value Integer. Returns the width of string in thousandths of an inch using the current
font of printjobnumber if it succeeds and -1 if an error occurs. If any
argument’s value is null, PrintWidth returns null. If the returned width exceeds
the maximum integer limit (+32767), PrintWidth returns -1.

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

string A string whose value is the text for which you want to
determine the width
PowerScript Reference 907

PrintX
Examples These statements define a new blank page and then set W to the length of the
string PowerBuilder in the current font and then use the length to position the
next text line:

long Job
int W

// Start a new print job.
Job = PrintOpen()

// Determine the width of the text.
W = PrintWidth(Job,"PowerBuilder")

// Use the width to get the next print position.
Print(Job, W - 500, "Features List")

See also PrintClose
PrintOpen

PrintX
Description Reports the x coordinate of the print cursor.

Syntax PrintX (printjobnumber)

Return value Integer. Returns the x coordinate of the print cursor if it succeeds and -1 if an
error occurs. If any argument’s value is null, PrintX returns null.

Examples These statements set LocX to the x coordinate of the cursor and print End of
Report an inch beyond that location:

integer LocX
long Job

Job = PrintOpen()
... //Print statements
LocX = PrintX(Job)
Print(LocX+1000, "End of Report")

See also PrintY

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job
908 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
PrintY
Description Reports the y coordinate of the print cursor.

Syntax PrintY (printjobnumber)

Return value Integer. Returns the y coordinate of the cursor if it succeeds and -1 if an error
occurs. If any argument’s value is null, PrintY returns null.

Examples These statements print a bitmap one inch below the location of the print cursor:

integer LocX, LocY
long Job
Job = PrintOpen()
... //Print statements
LocX = PrintX(Job)
LocY = PrintY(Job) + 1000
PrintBitmap(Job, "CORP.BMP", LocX, LocY, 1000,1000)

See also PrintX

ProfileInt
Description Obtains the integer value of a setting in the profile file for your application.

Syntax ProfileInt (filename, section, key, default)

Argument Description

printjobnumber The number the PrintOpen function assigned to the print job

Argument Description

filename A string whose value is the name of the profile file. If you do not
specify a full path, ProfileInt uses the operating system’s standard
file search order to find the file.

section A string whose value is the name of a group of related values in the
profile file. In the file, section names are in square brackets. Do not
include the brackets in section. Section is not case sensitive.

key A string specifying the setting name in section whose value you
want. The setting name is followed by an equal sign in the file. Do
not include the equal sign in key. Key is not case sensitive.

default An integer value that ProfileInt will return if filename is not found,
if section or key does not exist in filename, or if the value of key
cannot be converted to an integer.
PowerScript Reference 909

ProfileInt
Return value Integer. Returns default if filename is not found, section is not found in
filename, or key is not found in section, or the value of key is not an integer.
Returns -1 if an error occurs. If any argument’s value is null, ProfileInt returns
null.

Usage Use ProfileInt or ProfileString to get configuration settings from a profile file that
you have designed for your application.

You can use SetProfileString to change values in the profile file to customize
your application’s configuration at runtime. Before you make changes, you can
use ProfileInt and ProfileString to obtain the original settings so you can restore
them when the user exits the application.

ProfileInt, ProfileString, and SetProfileString can read or write to files with ANSI
or UTF16-LE encoding on Windows systems, and ANSI or UTF16-BE
encoding on UNIX systems.

Windows registry
ProfileInt can also be used to obtain configuration settings from the Windows
system registry. For information on how to use the system registry, see the
discussion of initialization files and the Windows registry in Application
Techniques.

Examples These examples use a file called PROFILE.INI, which contains the following:

[Pb]
Maximized=1
[security]
Class=7

This statement returns the integer value for the keyword Maximized in section
PB of file PROFILE.INI. If there were no PB section or no Maximized
keyword in the PB section, it would return 3:

ProfileInt("C:\PROFILE.INI", "PB", "maximized", 3)
910 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The following statements display a MessageBox if the integer value for the
Class setting in section Security of file C:\PROFILE.INI is less than 10. The
default security setting is 6 if the profile file is not found or does not contain a
Class setting:

IF ProfileInt("C:\PROFILE.INI", "Security", &
"Class", 6) < 10 THEN
// Class is < 10
MessageBox("Warning", "Access Denied")

ELSE
 ... // Some processing
END IF

See also ProfileString
SetProfileString
ProfileInt method for DataWindows in the DataWindow Reference or the online
Help

ProfileString
Description Obtains the string value of a setting in the profile file for your application.

Syntax ProfileString (filename, section, key, default)

Return value String, with a maximum length of 4096 characters. Returns the string from key
within section within filename. If filename is not found, section is not found in
filename, or key is not found in section, ProfileString returns default. If an error
occurs, it returns the empty string (""). If any argument’s value is null,
ProfileString returns null.

Argument Description

filename A string whose value is the name of the profile file. If you do not
specify a full path, ProfileString uses the operating system’s
standard file search order to find the file.

section A string whose value is the name of a group of related values in the
profile file. In the file, section names are in square brackets. Do not
include the brackets in section. Section is not case sensitive.

key A string specifying the setting name in section whose value you
want. The setting name is followed by an equal sign in the file. Do
not include the equal sign in key. Key is not case sensitive.

default A string value that ProfileString will return if filename is not found,
if section or key does not exist in filename, or if the value of key
cannot be converted to an integer.
PowerScript Reference 911

ProfileString
Usage Use ProfileInt or ProfileString to get configuration settings from a profile file that
you have designed for your application.

You can use SetProfileString to change values in the profile file to customize
your application’s configuration at runtime. Before you make changes, you can
use ProfileInt and ProfileString to obtain the original settings so you can restore
them when the user exits the application.

ProfileInt, ProfileString, and SetProfileString can read or write to files with ANSI
or UTF16-LE encoding on Windows systems, and ANSI or UTF16-BE
encoding on UNIX systems.

Windows registry
ProfileString can also be used to obtain configuration settings from the
Windows system registry. For information on how to use the system registry,
see the discussion of initialization files and the Windows registry in
Application Techniques.

Examples These examples use a file called PROFILE.INI, which contains the following
lines. Quotes around string values in the INI file are optional:

[Employee]
Name=Smith

[Dept]
Name=Marketing

This statement returns the string contained in keyword Name in section
Employee in file C:\PROFILE.INI and returns None if there is an error. In the
example, the return value is Smith:

ProfileString("C:\PROFILE.INI", "Employee", &
"Name", "None")

The following statements open w_marketing if the string in the keyword Name
in section Department of file C:\PROFILE.INI is Marketing:

IF ProfileString("C:\PROFILE.INI", "Department", &
"Name", "None") = "Marketing" THEN
Open(w_marketing)

END IF

See also ProfileInt
SetProfileString
ProfileString method for DataWindows in the DataWindow Reference or the
online Help
912 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Rand
Description Obtains a random whole number between 1 and a specified upper limit.

Syntax Rand (n)

Return value A numeric datatype, the datatype of n. Returns a random whole number
between 1 and n inclusive. If n is null, Rand returns null.

Usage The sequence of numbers generated by repeated calls to the Rand function is a
pseudorandom sequence. You can control whether the sequence is different
each time your application runs by calling the Randomize function to initialize
the random number generator.

Examples This statement returns a random whole number between 1 and 10:

Rand(10)

See also Randomize

Argument Description

n The upper limit of the range of random numbers you want returned.
The lower limit is always 1. The upper limit is 32,767.
PowerScript Reference 913

Randomize
Randomize
Description Initializes the random number generator so that the Rand function begins a new

series of pseudorandom numbers.

Syntax Randomize (n)

Return value Integer. If n is null, Randomize returns null. The return value is never used.

Usage The sequence of numbers generated by repeated calls to the Rand function is a
computer-generated pseudorandom sequence. You can use the Randomize
function to initialize the random number generator with a value from the
system clock, or some other changing value, so that the sequence is always
different. For testing purposes, you can select a specific seed value, which you
can reuse to make the pseudorandom sequence repeatable each time you run
the application.

Include Randomize in the script for the Open event in the application.

Examples This statement sets the seed for the random number generator to 0 so that calls
to Rand generate a new sequence each time the script is run:

Randomize(0)

This statement sets the seed for the random number generator to 4 so that calls
to Rand repeat a specific sequence each time the random number generator is
initialized:

Randomize(4)

See also Rand

Argument Description

n The starting value (seed) for the random number generator. When n
is 0, PowerBuilder takes the seed from the system clock and begins
a nonrepeatable sequence. A nonzero number generates a different
but repeatable sequence for each seed value. n cannot exceed
32,767.
914 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Read
Reads data from an opened OLE stream object.

Syntax 1 For reading into a string
Description Reads data from an OLE stream object into a string.

Applies to OLEStream objects

Syntax olestream.Read (variable {, stopforline })

Return value Integer. Returns the number of characters or bytes read. If an end-of-file mark
(EOF) is encountered before any characters are read, Read returns -100. Read
returns one of the following negative values if an error occurs:

-1 Stream is not open
-2 Read error
-9 Other error

If any argument’s value is null, Read returns null.

To Use

Read data into a string Syntax 1

Read data into a character array or blob Syntax 2

Argument Description

olestream The name of an OLE stream variable that has been opened.

variable The name of a string variable into which want to read data from
olestream.

stopforline
(optional)

A boolean value that specifies whether to read a line at a time. In
other words, Read will stop reading at the next carriage
return/linefeed. Values are:

• TRUE – (Default) Stop at the end of a line and leave the read
pointer positioned after the carriage return/linefeed so the next
read will read the next line

• FALSE – Read the whole stream or a maximum of 32,765 bytes
PowerScript Reference 915

Read
Examples This example opens an OLE object in the file MYSTUFF.OLE and assigns it to
the OLEStorage object stg_stuff. Then it opens the stream called info in
stg_stuff and assigns it to the stream object olestr_info. Finally, it reads the
contents of olestr_info into the string ls_info.

The example does not check the functions’ return values for success, but you
should be sure to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info
blob ls_info

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

olestr_info.Open(stg_stuff, "info", &
 stgRead!, stgExclusive!)
olestr_info.Read(ls_info)

See also Open, Length, Seek, Write

Syntax 2 For character arrays or blobs
Description Reads data from an OLE stream object into a character array or blob.

Applies to OLEStream objects

Syntax olestream.Read (variable {, maximumread })

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Stream is not open
-2 Read error
-9 Other error

If any argument’s value is null, Read returns null.

Argument Description

olestream The name of an OLE stream variable that has been opened.

variable The name of a blob variable or character array into which want
to read data from olestream.

maximumread
(optional)

A long value specifying the maximum number of bytes to be
read. The default is 32,765 or the length of olestream.
916 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example opens an OLE object in the file MYSTUFF.OLE and assigns it to
the OLEStorage object stg_stuff. Then it opens the stream called info in
stg_stuff and assigns it to the stream object olestr_info. Finally, it reads the
contents of olestr_info into the blob lb_info.

The example does not check the functions’ return values for success, but you
should be sure to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info
blob lb_info

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole2\mystuff.ole")

olestr_info.Open(stg_stuff, "info", &
 stgRead!, stgExclusive!)
olestr_info.Read(lb_info)

See also Open
Length
Seek
Write
PowerScript Reference 917

Real
Real
Description Converts a string value to a real datatype or obtains a real value that is stored

in a blob.

Syntax Real (stringorblob)

Return value Real. Returns the value of stringorblob as a real. If stringorblob is not a valid
PowerScript number or is an incompatible datatype, Real returns 0. If
stringorblob is null, Real returns null.

Examples This statement returns 24 as a real:

Real("24")

This statement returns the contents of the SingleLineEdit sle_Temp as a real:

Real(sle_Temp.Text)

The following example, although of no practical value, illustrates how to
assign real values to a blob and how to use Real to extract those values. The
two BlobEdit statements store two real values in the blob, one after the other. In
the statements that use Real to extract the values, you have to know where the
beginning of each real value is. Specifying the correct length in BlobMid is not
important because the Real function knows how many bytes to evaluate:

blob{20} lb_blob
real r1, r2
integer len1, len2

len1 = BlobEdit(lb_blob, 1, 32750E0)
len2 = BlobEdit(lb_blob, len1, 43750E0)

// Extract the real value at the beginning and
// ignore the rest of the blob
r1 = Real(lb_blob)
// Extract the second real value stored in the blob
r2 = Real(BlobMid(lb_blob, len1, len2 - len1))

See also Double
Integer
Long
Real method for DataWindows in the DataWindow Reference or online Help

Argument Description

stringorblob The string whose value you want returned as a real value or a blob
in which the first value is the real value. The rest of the contents of
the blob is ignored. Stringorblob can also be an Any variable
containing a string or blob.
918 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RecognizeText
Description Specifies that text in an InkEdit control should be recognized.

Applies to InkEdit controls

Syntax inkeditname.RecognizeText ()

Return value Integer. Returns 1 if text is recognized and 0 otherwise.

Usage By default, ink is recognized automatically when the user pauses while
entering ink and the number of milliseconds specified in the RecognitionTimer
property elapses. To enable a user to pause without having text recognized,
increase the RecognitionTimer interval and code the RecognizeText function in
a button clicked event or another event.

Examples This code in the clicked event of a “Done” button causes the recognition engine
to recognize the strokes entered by the user as text:

boolean lb_success
lb_success = ie_1.RecognizeText()

RegistryDelete
Description Deletes a key or a value for a key in the Windows system registry.

Syntax RegistryDelete (key, valuename)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage For more information about entries in the system registry, see RegistrySet.

Argument Description

inkeditname The name of the InkEdit control in which you want to recognize
text.

Argument Description

key A string whose value is the key in the system registry you want
to delete or whose value you want to delete.

To uniquely identify a key, specify the list of parent keys above
it in the hierarchy, starting with the root key. The keys in the list
are separated by backslashes.

valuename A string containing the name of a value in the registry. If the
specified key does not have a subkey, specifying an empty
string deletes the key and its named values.
PowerScript Reference 919

RegistryGet
Examples This statement deletes the value name Title and its associated value from the
registry. The key is not deleted:

RegistryDelete(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts", &
 "Title")

See also RegistryGet
RegistryKeys
RegistrySet
RegistryValues

RegistryGet
Description Gets a value from the Windows system registry.

Syntax RegistryGet (key, valuename, { valuetype }, valuevariable)

Argument Description

key A string whose value names the key in the system registry whose
value you want.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

valuename A string containing the name of a value in the registry. Each key can
have one unnamed value and several named values. For the
unnamed value, specify an empty string.

valuetype A value of the RegistryValueType enumerated datatype identifying
the datatype of a value in the registry. Values are:

• RegString! – A null-terminated string

• RegExpandString! – A null-terminated string that contains
unexpanded references to environment variables

• RegBinary! – Binary data

• ReguLong! – A 32-bit number

• ReguLongBigEndian! – A 32-bit number

• RegLink! – A Unicode symbolic link

• RegMultiString! – An unbounded array of strings

valuevariable A variable corresponding to the datatype of valuetype in which you
want to store the value obtained from the system registry for the
specified key and value name.
920 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. An error is returned
if the datatype of valuevariable does not correspond to the datatype specified
in valuetype.

Usage Long string values (more than 2048 bytes) should be stored as files and the file
name stored in the registry. For more information about keys and value names
in the system registry, see RegistrySet.

Examples This statement obtains the value for the name Title and stores it in the string
ls_titlefont:

string ls_titlefont
RegistryGet(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts", &

"Title", RegString!, ls_titlefont)

This statement obtains the value for the name NameOfEntryNum and stores it in
the long ul_num:

ulong ul_num
RegistryGet("HKEY_USERS\MyApp.Settings\Fonts", &

"NameOfEntryNum", RegULong!, ul_num)

See also RegistryDelete
RegistryKeys
RegistrySet
RegistryValues
PowerScript Reference 921

RegistryKeys
RegistryKeys
Description Obtains a list of the keys that are child items (subkeys) one level below a key

in the Windows system registry.

Syntax RegistryKeys (key, subkeys)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage For more information about entries in the system registry, see RegistrySet.

Examples This example obtains the subkeys associated with the key
HKEY_CLASSES_ROOT\MyApp. The subkeys are stored in the variable-size
array ls_subkeylist:

string ls_subkeylist[]
integer li_rtn
li_rtn = RegistryKeys("HKEY_CLASSES_ROOT\MyApp", &
 ls_subkeylist)
IF li_rtn = -1 THEN
 ... // Error processing
END IF

See also RegistryDelete
RegistryGet
RegistrySet
RegistryValues

Argument Description

key A string whose value names the key in the system registry whose
subkeys you want.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

subkeys An array variable of strings in which you want to store the subkeys.

If the array is variable size, its upper bound will reflect the number
of subkeys found.

If the array is fixed size, it must be large enough to hold all the
subkeys. However, there will be no way to know how many
subkeys were actually found.
922 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RegistrySet
Description Sets the value for a key and value name in the system registry. If the key or

value name does not exist, RegistrySet creates a new key or name and sets its
value.

Syntax RegistrySet (key, valuename, valuetype, value)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. An error is returned
if the datatype of valuevariable does not correspond to the datatype specified
in valuetype.

Argument Description

key A string whose value names the key in the system registry whose
value you want to set.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

If key does not exist in the registry, RegistrySet creates a new key.
To create a key without a named value, specify an empty string for
valuename.

valuename A string containing the name of a value in the registry. Each key
may have several named values. To specify the unnamed value,
specify an empty string.

If valuename does not exist in the registry, RegistrySet causes a
new name to be created for key.

valuetype A value of the RegistryValueType enumerated datatype identifying
the datatype of a value in the registry. Values are:

• RegString! – A null-terminated string

• RegExpandString! – A null-terminated string that contains
unexpanded references to environment variables

• RegBinary! – Binary data

• ReguLong! – A 32-bit number

• ReguLongBigEndian! – A 32-bit number

• RegLink! – A Unicode symbolic link

• RegMultiString! – An unbounded array of strings

value A variable corresponding to the datatype of valuetype containing a
value to be set in the registry.
PowerScript Reference 923

RegistrySet
Usage Long string values (more than 2048 bytes) should be stored as files and the file
name stored in the registry.

Examples This example sets a value for the key Fonts and the value name Title:

RegistrySet(&
 "HKEY_LOCAL_MACHINE\Software\MyApp\Fonts", &
 "Title", RegString!, sle_font.Text)

This statement sets a value for the key Fonts and the value name
NameOfEntryNum:

ulong ul_num
RegistrySet(&
 "HKEY_USERS\MyApp.Settings\Fonts", &
 "NameOfEntryNum", RegULong!, ul_num)

See also RegistryDelete
RegistryGet
RegistryKeys
RegistryValues

Item Description

Key An element in the registry. A key is part of a tree of keys,
descending from one of the predefined root keys. Each key is
a subkey or child of the parent key above it in the hierarchy.

There are four root strings:

• HKEY_CLASSES_ROOT

• HKEY_LOCAL_MACHINE

• HKEY_USERS

• HKEY_CURRENT_USER

A key is uniquely identified by the list of parent keys above
it. The keys in the list are separated by slashes, as shown in
these examples:

HKEY_CLASSES_ROOT\Sybase.Application

HKEY_USERS\MyApp\Display\Fonts

Value name The name of a value belonging to the key. A key can have one
unnamed value and one or more named values.

Value type A value identifying the datatype of a value in the registry.

Value A value associated with a value name or an unnamed value.
Several string, numeric, and binary datatypes are supported
by the registry.
924 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RegistryValues
Description Obtains the list of named values associated with a key.

Syntax RegistryValues (key, valuename)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage For more information about entries in the system registry, see RegistrySet.

Examples This example gets the value names associated with the key Fonts and stores
them in the array ls_valuearray:

string ls_valuearray[]
RegistryValues(&
 "HKEY_LOCAL_MACHINE\Software\MyApp.Settings\Fonts",&
 ls_valuearray)

See also RegistryDelete
RegistryGet
RegistryKeys
RegistrySet

Argument Description

key A string whose value is the key in the system registry for which you
want the values of its subkeys.

To uniquely identify a key, specify the list of parent keys above it in
the hierarchy, starting with the root key. The keys in the list are
separated by backslashes.

valuename An array variable of strings in which you want to store the names.

If the array is variable size, its upper bound will reflect the number
of named values found.

If the array is fixed size, it must be large enough to hold all the
names. However, there will be no way to know how many names
were actually found.
PowerScript Reference 925

RelativeDate
RelativeDate
Description Obtains the date that occurs a specified number of days after or before another

date.

Syntax RelativeDate (date, n)

Return value Date. Returns the date that occurs n days after date if n is greater than 0.
Returns the date that occurs n days before date if n is less than 0. If any
argument’s value is null, RelativeDate returns null.

Examples This statement returns 2006-02-10:

RelativeDate(2006-01-31, 10)

This statement returns 2006-01-21:

RelativeDate(2006-01-31, - 10)

See also DaysAfter
RelativeDate method for DataWindows in the DataWindow Reference or the
online Help

RelativeTime
Description Obtains a time that occurs a specified number of seconds after or before

another time within a 24-hour period.

Syntax RelativeTime (time, n)

Return value Time. Returns the time that occurs n seconds after time if n is greater than 0.
Returns the time that occurs n seconds before time if n is less than 0. The
maximum return value is 23:59:59. If any argument’s value is null, RelativeTime
returns null.

Argument Description

date A value of type date

n An integer indicating a number of days

Argument Description

time A value of type time

n A long number of seconds
926 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage All PowerBuilder functions except RelativeTime use the Windows API to
process dates and times, so in most instances processing of Daylight Savings
Time (DST) is dependent on the operating system. However, the RelativeTime
function is not DST-aware and therefore may return an incorrect time in a
region that is using DST.

Examples This statement returns 19:01:41:

RelativeTime(19:01:31, 10)

This statement returns 19:01:21:

RelativeTime(19:01:31, - 10)

See also SecondsAfter, RelativeTime method for DataWindows in the DataWindow
Reference or the online Help

ReleaseAutomationNativePointer
Description Releases the pointer to an OLE object that you got with

GetAutomationNativePointer.

Applies to OLEObject

Syntax oleobject.ReleaseAutomationNativePointer (pointer)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage Pointer is a pointer to OLE’s IUnknown interface. You can use
IUnknown::QueryInterface to get other interface pointers.

When you call GetAutomationNativePointer, PowerBuilder calls OLE’s AddRef
function, which locks the pointer. You can release the pointer in your DLL
function or in a PowerBuilder script with the ReleaseAutomationNativePointer
function.

Examples See GetAutomationNativePointer.

See also GetAutomationNativePointer, GetNativePointer, ReleaseNativePointer

Argument Description

oleobject The name of an OLEObject variable containing the object for which
you want to release the native pointer.

pointer A UnsignedLong variable that holds the pointer you want to
release. ReleaseAutomationNativePointer sets pointer to 0 so that
it is clearly no longer a valid pointer.
PowerScript Reference 927

ReleaseNativePointer
ReleaseNativePointer
Description Releases the pointer to an OLE object that you got with GetNativePointer.

Applies to OLE controls and OLE custom controls

Syntax olename.ReleaseNativePointer (pointer)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage Pointer is a pointer to OLE’s IUnknown interface. You can use
IUnknown::QueryInterface to get other interface pointers.

When you call GetNativePointer, PowerBuilder calls OLE’s AddRef function,
which locks the pointer. You can release the pointer in your DLL function or in
a PowerBuilder script with the ReleaseNativePointer function.

Examples See GetNativePointer.

See also GetAutomationNativePointer
GetNativePointer
ReleaseAutomationNativePointer

Argument Description

olename The name of the OLE control containing the object for which you
want the native pointer.

pointer A UnsignedLong variable that holds the pointer you want to
release. ReleaseNativePointer sets pointer to 0 so that it is clearly
no longer a valid pointer.
928 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RemoveDirectory
Description Removes a directory.

Syntax RemoveDirectory (directoryname)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage The directory must be empty and must not be the current directory for this
function to succeed.

Examples This example removes a subdirectory from the current directory:

string ls_path="my targets"
integer li_filenum

li_filenum = RemoveDirectory (ls_path)
If li_filename <> 1 then
MessageBox("Remove directory failed", &

+ "Check that the directory exists, is empty, and " &
+ "is not the current directory")

else
MessageBox("Success", "Directory " + ls_path + &
 " deleted")
end if

See also DirectoryExists
GetCurrentDirectory

Argument Description

directoryname String for the name of the directory you want to remove. If you
do not specify an absolute path, this function deletes relative to
the current working directory.
PowerScript Reference 929

Repair
Repair
Description Updates the target database with corrections that have been made in the

pipeline user object’s Error DataWindow.

Applies to Pipeline objects

Syntax pipelineobject.Repair (destinationtrans)

Return value Integer. Returns 1 if it succeeds and a negative number if an error occurs. Error
values are:

 -5 Missing connection
 -9 Fatal SQL error in destination
-10 Maximum number of errors exceeded
-11 Invalid window handle
-12 Bad table syntax
-15 Pipe already in progress
-17 Error in destination database
-18 Destination database is read-only

If any argument’s value is null, Repair returns null.

Usage When errors have occurred during a pipeline data transfer, Start populates its
pipeline-error DataWindow control with the rows that caused the errors. The
user or a script can then make corrections to the data. The Repair function is
usually associated with a CommandButton that the user can click after
correcting data in the pipeline-error DataWindow.

If errors occur again, the rows that are in error remain in the pipeline-error
DataWindow. The user can correct the data again and click the button that calls
Repair.

Examples This statement connects to the destination database using the transaction
instance variable i_dst. It then updates the database with the corrections made
in the Error DataWindow for pipeline i_pipe:

i_pipe.Repair(i_dst)

See also Cancel
Repair
Start

Argument Description

pipelineobject The name of a pipeline user object that contains the pipeline
object being executed

destinationtrans The name of a transaction object with which to connect to the
target database
930 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Replace
Description Replaces a portion of one string with another.

Syntax Replace (string1, start, n, string2)

Return value String. Returns the string with the characters replaced if it succeeds and the
empty string if it fails. If any argument’s value is null, Replace returns null.

Usage If the start position is beyond the end of the string, Replace appends string2 to
string1. If there are fewer characters after the start position than specified in n,
Replace replaces all the characters to the right of character start.

If n is zero, then, in effect, Replace inserts string2 into string1.

Examples These statements change the value of Name from Davis to Dave:

string Name
Name = "Davis"
Name = Replace(Name, 4, 2, "e")

This statement returns BABY RUTH:

Replace("BABE RUTH", 1, 4, "BABY")

This statement returns Closed for the Winter:

Replace("Closed for Vacation", 12, 8, "the Winter")

This statement returns ABZZZZEF:

Replace("ABCDEF", 3, 2, "ZZZZ")

This statement returns ABZZZZ:

Replace("ABCDEF", 3, 50, "ZZZZ")

This statement returns ABCDEFZZZZ:

Replace("ABCDEF", 50, 3, "ZZZZ")

Argument Description

string1 The string in which you want to replace characters with string2.

start A long whose value is the number of the first character you want
replaced. (The first character in the string is number 1.)

n A long whose value is the number of characters you want to replace.

string2 The string that will replace characters in string1. The number of
characters in string2 can be greater than, equal to, or less than the
number of characters you are replacing.
PowerScript Reference 931

Replace
These statements replace all occurrences of red within the string mystring with
green. The original string is taken from the SingleLineEdit sle_1 and the result
becomes the new text of sle_1:

long start_pos=1
string old_str, new_str, mystring

mystring = sle_1.Text
old_str = "red"
new_str = "green"

// Find the first occurrence of old_str.
start_pos = Pos(mystring, old_str, start_pos)

// Only enter the loop if you find old_str.
DO WHILE start_pos > 0

 // Replace old_str with new_str.
 mystring = Replace(mystring, start_pos, &
 Len(old_str), new_str)
 // Find the next occurrence of old_str.
 start_pos = Pos(mystring, old_str, &
 start_pos+Len(new_str))
LOOP

sle_1.Text = mystring

See also Replace method for DataWindows in the DataWindow Reference or the online
Help
932 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ReplaceA
Description Temporarily converts a string to DBCS based on the current locale, then

replaces a portion of one string with another.

Syntax ReplaceA (string1, start, n, string2)

Return value String. Returns the string with the characters replaced if it succeeds and the
empty string if it fails. If any argument’s value is null, ReplaceA returns null.

Usage ReplaceA replaces the functionality that Replace had in DBCS environments in
PowerBuilder 9. ReplaceA replaces a string by number of bytes, whereas
Replace replaces a string by number of characters in both SBCS and DBCS
environments. ReplaceA also specifies the starting position of the string to be
replaced by number of bytes, whereas Replace specifies the starting position by
number of characters.

In SBCS environments, Replace, ReplaceW, and ReplaceA return the same
results.

Argument Description

string1 The string containing characters you want to replace.

start A long whose value is the position in bytes of the first character you
want to replace in string1.

n A long whose value is the number of bytes you want to replace in
string1.

string2 The string that will replace characters in string1. The number of
characters in string2 can be greater than, equal to, or less than the
number of characters you are replacing.
PowerScript Reference 933

ReplaceText
ReplaceText
Description Replaces selected text in an edit control with a specified string.

Applies to DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, and DropDownPictureListBox controls

Syntax editname.ReplaceText (string)

Return value Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

For InkEdit, returns 1 for success and -1 if an error occurs. For other controls,
returns the number of characters in string and -1 if an error occurs. If any
argument’s value is null, ReplaceText returns null.

Usage If there is no selection, ReplaceText inserts the replacement text at the cursor
position.

In a RichTextEdit control, the selection can include pictures.

Other ways to replace text
To use the contents of the clipboard as the replacement text, call the Paste
function, instead of ReplaceText.

To replace text in a string, rather than a control, use the Replace function.

Examples If the MultiLineEdit mle_Comment contains Offer Good for 3 Months and
the selected text is 3 Months, this statement replaces 3 Months with 60 Days
and returns 7. The resulting value of mle_Comment is Offer Good for 60
Days:

mle_Comment.ReplaceText("60 Days")

If there is no selected text, this statement inserts "Draft" at the cursor position
in the SingleLineEdit sle_Comment3:

sle_Comment3.ReplaceText("Draft")

See also Copy, Cut, Paste

Argument Description

editname The name of the DataWindow, EditMask, InkEdit, MultiLineEdit,
SingleLineEdit, RichTextEdit, DropDownListBox, or
DropDownPictureListBox control in which you want to replace the
selected string.

In a DataWindow control, the text is replaced in the edit control
over the current row and column.

string The string that replaces the selected text.
934 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ReplaceW
Description Replaces a portion of one string with another. This function is obsolete. It has

the same behavior as Replace in all environments.

Syntax ReplaceW (string1, start, n, string2)

Reset
Clears data from a control or object. The syntax you choose depends on the
target object.

For syntax for DataWindows and DataStores see the Reset method for
DataWindows in the DataWindow Reference or the online Help.

Syntax 1 For list boxes
Description Deletes all the items from a list.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.Reset ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If listboxname is null,
Reset returns null. The return value is usually not used.

Examples This statement deletes all items in the ListBox portion of ddlb_Actions:

ddlb_Actions.Reset()

See also DeleteItem

To Use

Delete all items from a list Syntax 1

Delete all the data (and optionally the series and categories)
from a graph

Syntax 2

Return to the beginning of a trace file Syntax 3

Argument Description

listboxname The name of the ListBox control from which to delete all items
PowerScript Reference 935

Reset
Syntax 2 For graphs
Description Deletes the data, the categories, or the series from a graph.

Applies to Graph controls in windows and user objects and graphs within a DataWindow
object with an external data source.

Does not apply to other graphs within DataWindow objects because their data
comes directly from the DataWindow.

Syntax controlname.Reset (graphresettype)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, Reset returns null. The return value is usually not used.

Usage Use Reset to clear the data in a graph before you add new data.

Examples This statement deletes the series and data, but leaves the categories, in the
graph gr_product_data:

gr_product_data.Reset(Series!)

See also AddData
AddSeries

Argument Description

controlname The name of the graph object in which you want to delete all
the data values or all series and all data values

graphresettype A value of the grResetType enumerated datatype specifying
whether you want to delete only data values or all series and
all data values:

• All! – Delete all series, categories, and data in controlname

• Category! – Delete categories and data in controlname

• Data! – Delete data in controlname

• Series! – Delete the series and data in controlname
936 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 3 For trace files
Description Goes back to the beginning of the trace file so you can begin rereading the file

contents.

Applies to TraceFile objects

Syntax instancename.Reset ()

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotOpenError! – The specified trace file has not been opened

Usage Use this function to return to the start of the open trace file and begin rereading
the contents of the file. To use the Reset function, you must have previously
opened the trace file with the Open function. You use the Reset and Open
functions as well as the other properties and functions provided by the
TraceFile object to access the contents of a trace file directly. You use these
functions if you want to perform your own analysis of the tracing data instead
of using the available modeling objects.

Examples This example returns execution to the start of the open trace file ltf_file so that
the file’s contents can be reread:

TraceFile ltf_file
string ls_filename

ltf_file = CREATE TraceFile
ltf_file.Open(ls_filename)
...
ltf_file.Reset(ls_filename)
...

See also Open
NextActivity
Close

Argument Description

instancename Instance name of the TraceFile object
PowerScript Reference 937

ResetArgElements
ResetArgElements
Description Clears the argument list.

Applies to Window ActiveX controls

Syntax activexcontrol.ResetArgElements ()

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function after calling InvokePBFunction or TriggerPBEvent to clear the
argument list.

If you populate the argument list with SetArgElement, you should call this
function to clear the argument list after using InvokePBFunction or
TriggerPBEvent to call an event or function with arguments.

Examples This JavaScript example calls the ResetArgElements function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 IF (rc != 1) {
 alert("Error. Empty string.");
 }
 PBRX1.ResetArgElements();
...

This VBScript example calls the ResetArgElements function:

...
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs)
 rc = PBRX1.GetLastReturn()
 IF rc <> 1 THEN
 msgbox "Error. Empty string."
 END IF
 PBRX1.ResetArgElements()
...

See also GetLastReturn
InvokePBFunction
SetArgElement
TriggerPBEvent

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX
control. When used in HTML, this is the NAME attribute of the
object element. When used in other environments, this
references the control that contains the PowerBuilder window
ActiveX.
938 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ResetDataColors
Description Restores the color of a data point to the default color for its series.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.ResetDataColors ({ graphcontrol, } seriesnumber,
 datapointnumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, ResetDataColors returns null.

Default color for data points
To set the color for a series, use SetSeriesStyle. The color you set for the series
is the default color for all data points in the series.

Examples These statements change the color of data point 10 in the series named Costs
in the graph gr_product_data to the color for the series:

SeriesNbr = gr_product_data.FinSeries("Costs")
gr_product_data.ResetDataColors(SeriesNbr, 10)

These statements change the color of data point 10 in the series named Costs
in the graph gr_comps in the DataWindow control dw_equip to the color for the
series:

SeriesNbr = dw_equipment.FindSeries("Costs")
dw_equip.ResetDataColors("gr_comps", SeriesNbr, 10)

See also GetDataStyle
SeriesName
GetSeriesStyle
SetDataStyle
SetSeriesStyle

Argument Description

controlname The name of the graph in which you want to reset the color of
a data point, or the name of the DataWindow containing the
graph

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to reset the color

seriesnumber The number of the series in which you want to reset the color
of a data point

datapointnumber The number of the data point for which you want to reset the
color
PowerScript Reference 939

ResetInk
ResetInk
Description Clears ink from an InkPicture control.

Applies to InkPicture controls

Syntax inkpicname.ResetInk ()

Return value Integer. Returns 1 for success and -1 for failure.

Usage Use the ResetInk function to clear the ink from an InkPicture control.

Examples The following example clears the ink from an InkPicture control:

ip_1.ResetInk()

See also LoadInk
LoadPicture
ResetPicture
SaveInk
Save

ResetPicture
Description Clears a picture from an InkPicture control.

Applies to InkPicture controls

Syntax inkpicname.ResetPicture ()

Return value Integer. Returns 1 for success and -1 for failure.

Usage Use the ResetInk function to clear the image from an InkPicture control.

Examples The following example clears the image from an InkPicture control:

ip_1.ResetPicture()

See also LoadInk, LoadPicture, ResetInk, SaveInk, Save

Argument Description

inkpicname The name of the InkPicture control from which you want to clear
ink.

Argument Description

inkpicname The name of the InkPicture control from which you want to clear a
picture.
940 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Resize
Description Resizes an object or control by setting its Width and Height properties and then

redraws the object.

Applies to Any object, except a child DataWindow

Syntax objectname.Resize (width, height)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs or if objectname is a
minimized or maximized window. If any argument’s value is null, Resize
returns null.

Usage You cannot use Resize for a child DataWindow.

Resize does not resize a minimized or maximized sheet or window. If the
window is minimized or maximized, Resize returns –1.

Equivalent syntax You can set object’s Width and Height properties instead
of calling the Resize function. However, the two statements cause
PowerBuilder to redraw objectname twice; first with the new width, and then
with the new width and height.

objectname.Width = width

objectname.Height = height

The first two statements, although they redraw gb_box1 twice, achieve the
same result as the third statement:

gb_box1.Width = 100 // These lines resize
gb_box1.Height = 150 // gb_box1 to 100 x 150
gb_box1.Resize(100, 150)// So does this line

Examples This statement changes the Width and Height properties of gb_box1 and
redraws gb_box1 with the new properties:

gb_box1.Resize(100, 150)

This statement doubles the width and height of the picture control p_1:

p_1.Resize(p_1.Width*2, p_1.Height*2)

Argument Description

objectname The name of the object or control you want to resize

width The new width in PowerBuilder units

height The new height in PowerBuilder units
PowerScript Reference 941

Resolve_Initial_References
Resolve_Initial_References
Description Uses the CORBA naming service API to obtain the initial naming context for

an EAServer component.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.Resolve_Initial_References (objstring, object)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

Usage If you want to use the Jaguar naming service API, you can use the
Resolve_Initial_References function to obtain the initial naming context.
However, this technique is not recommended because it requires use of a
deprecated SessionManager::Factory create method. Most PowerBuilder
clients do not need to use the CORBA naming service explicitly. Instead, they
can rely on the name resolution that is performed automatically when they
create EAServer component instances using the CreateInstance and Lookup
functions of the Connection object.

You can also use the JaguarORB object’s String_To_Object function to
instantiate a proxy instance without using the CORBA naming service
explicitly. For more information about connecting to EAServer using the
JaguarORB object, see Application Techniques.

When you use the CORBA naming service, you need to generate proxies for
the naming service interface and include these proxies in the library list for the
client.

Examples The following example shows the use of the Resolve_Initial_References
function to obtain an initial naming context. After obtaining the naming
context, it uses the naming context’s resolve method to obtain a reference to a
Factory object for the component and then narrows that reference to the
SessionManager’s Factory interface.

Argument Description
jaguarorb An instance of JaguarORB
objstring A string that has the value "NameService"
object A reference variable of type CORBAobject that will contain a

reference to the COS naming service
942 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The resolve method takes a name parameter, which is a sequence of
NameComponent structures. Each NameComponent structure has an id
attribute that identifies the component and a kind attribute that can be used to
describe the component. In the example below, the name has only one
component. The create method of the Factory object obtains proxies for the
component. It returns a CORBA object reference that you can convert into a
reference to the component’s interface using the _Narrow function.

The NamingContext and NameComponent types used in the example are
proxies imported from the CosNaming package in EAServer, and the Factory
type is imported from the SessionManager package:

CORBAObject my_corbaobj
JaguarORB my_orb
NamingContext my_nc
NameComponent the_name[]
Factory my_Factory
n_jagcomp my_jagcomp

my_orb = CREATE JaguarORB
// Enclose the name of the URL in single quotes
my_orb.init("ORBNameServiceURL='iiop://server1:2000'")

my_orb.Resolve_Initial_References("NameService", &
 my_corbaobj)
my_corbaobj._narrow(my_nc, &
 "omg.org/CosNaming/NamingContext")

the_name[1].id = "mypackage/n_jagcomp"
the_name[1].kind = ""

TRY
my_corbaobj = my_nc.resolve(the_name)
my_corbaobj._narrow(my_Factory, &

 "SessionManager/Factory")
my_corbaobj = my_Factory.create("jagadmin","")
my_corbaobj._narrow(my_jagcomp, &

"mypackage/n_jagcomp")
CATCH (Exception e)

MessageBox("Exception Raised!", e.getMessage())
END TRY
my_jagcomp.getdata()

See also Init
_Narrow
String_To_Object
PowerScript Reference 943

RespondRemote
RespondRemote
Description Sends a DDE message indicating whether the command or data received from

a remote DDE application was acceptable.

Syntax RespondRemote (boolean)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs (for example, the
function was called in wrong context). If boolean is null, RespondRemote
returns null.

Usage You can use RespondRemote when the PowerBuilder application is the DDE
server or DDE client application.

You usually call RespondRemote after these functions:

GetCommandDDE
GetCommandDDEOrigin
GetDataDDE
GetDataDDEOrigin

For more information about PowerBuilder as a client, see OpenChannel and
ExecRemote. For more information about PowerBuilder as a server, see
StartServerDDE.

Examples In a script for the HotLinkAlarm event, these statements tell a remote
application named Gateway that its data was successfully received:

String Applname, Topic, Item, Value
GetDataDDEOrigin(Applname, Topic, Item)
IF Applname = "Gateway" THEN
 IF GetDataDDE(Value) = 1 THEN
 RespondRemote(TRUE)
 END IF
END IF

See also GetCommandDDE
GetCommandDDEOrigin
GetDataDDE
GetDataDDEOrigin

Argument Description

boolean A boolean expression. true indicates that the previously received
command or data was acceptable. false indicates that it was not.
944 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Restart
Description Stops the execution of all scripts, closes all windows (without executing the

scripts for the Close events), commits and disconnects from the database,
restarts the application, and executes the application-level script for the Open
event.

Syntax Restart ()

Return value Integer. Returns 1 if it succeeds and -1 if it fails. The return value is usually not
used.

Usage You can use Restart in the application-level script for the Idle event to restart
the application after a period of user inactivity, a typical behavior of kiosk
applications.

Examples In the application-level script for the Idle event, this statement restarts the
application:

Restart()

See also HALT on page 137

ResumeTransaction
Description Associates the EAServer transaction passed as an argument with the calling

thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.ResumeTransaction (handletrans)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Unknown failure

-2 The transaction referred to by handletrans is no longer valid

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
handletrans An unsignedlong containing the handle of a suspended

transaction
PowerScript Reference 945

ResumeTransaction
Usage The ResumeTransaction function associates the transaction referred to by the
handletrans argument with the calling thread. The argument is obtained from
a call to SuspendTransaction and may refer to a transaction that was previously
associated with the current thread or with a different thread in the same
execution environment.

Caution
The handletrans argument must be obtained from the SuspendTransaction
function. Using any other value as the argument to ResumeTransaction may
have unpredictable results.

ResumeTransaction can be called by a client or a component that is marked as
OTS style. must be using the two-phase commit transaction coordinator
(OTS/XA).

Examples This example shows the use of the ResumeTransaction function to associate the
calling thread with the transaction referred to by the ll_handle argument
returned by SuspendTransaction:

// Instance variable:
// CORBACurrent corbcurr
integer li_rc
unsignedlong ll_handle

li_rc = this.GetContextService("CORBACurrent", &
 corbcurr)
li_rc = corbcurr.Init()
li_rc = corbcurr.BeginTransaction()
// do some transactional work
ll_handle = corbcurr.SuspendTransaction()
//do some non-transactional work
li_rc = corbcurr.ResumeTransaction(ll_handle)
// do some more transactional work
li_rc = corbcurr.CommitTransaction()

See also BeginTransaction
CommitTransaction
GetContextService
GetStatus
GetTransactionName
Init
RollbackOnly
RollbackTransaction
SetTimeout
SuspendTransaction
946 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Reverse
Description Reverses the order or characters in a string.

Syntax Reverse (string)

Return value String. Returns a string with the characters of string in reversed order. Returns
the empty string if it fails.

Usage Reverse is useful with the IsArabic and IsHebrew functions, which help you
implement right-to-left character display when you are using a version of
Windows that supports right-to-left languages.

Examples Under a a version of Windows that supports right-to-left languages, this
statement returns a string with the characters in reverse order from the
characters entered in sle_name:

string ls_name
ls_name = Reverse(sle_name.Text)

See also IsArabic
IsHebrew

Argument Description

string A string whose characters you want to reorder so that the last
character is first and the first character is last
PowerScript Reference 947

RevertToSelf
RevertToSelf
Description Restores the security attributes for a COM object that is running on COM+ and

impersonating the client.

Applies to TransactionServer objects

Syntax transactionserver.RevertToSelf ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage COM objects running on COM+ can use the ImpersonateClient function to run
in the client's security context so that the object has access to the same
resources as the client. Use RevertToSelf to restore the object’s security context.

Examples The following example creates an instance of the TransactionServer service
and checks whether the COM object is currently running in the client’s security
context. If it is, it reverts to the object’s security context:

TransactionServer txninfo_test
integer li_rc

li_rc = GetContextService("TransactionServer", &
 txninfo_test)
IF txninfo_test.IsImpersonating() THEN &
 txninfo_test.RevertToSelf()

See also ImpersonateClient
IsCallerInRole
IsImpersonating
IsSecurityEnabled

Argument Description
transactionserver Reference to the TransactionServer service instance
948 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RGB
Description Calculates the long value that represents the color specified by numeric values

for the red, green, and blue components of the color.

Syntax RGB (red, green, blue)

Return value Long. Returns the long that represents the color created by combining the
values specified in red, green, and blue. If an error occurs, RGB returns -1. If
any argument’s value is null, RGB returns null.

Usage The formula for combining the colors is:

65536 * Blue+ 256 * Green+ Red

Use RGB to obtain the long value required to set the color for text and drawing
objects. You can also set an object’s color to the long value that represents the
color. The RGB function provides an easy way to calculate that value.

About color values
The value of a component of a color is an integer between 0 and 255 that
represents the amount of the color that is required to create the color you want.
The lower the value, the darker the color; the higher the value, the lighter the
color.

To determine the values for the components of a color (known as the RGB
values), use the Edit Color Entry window. To access the Edit Color Entry
window, select a color in the color bar at the bottom of the workspace and then
double-click the selected color when it displays in the first box of the color bar.

Argument Description

red The integer value of the red component of the desired color

green The integer value of the green component of the desired color

blue The integer value of the blue component of the desired color
PowerScript Reference 949

RGB
The following table lists red, green, and blue values for the 16 standard colors.

Table 10-9: Red, green, and blue color values for use with RGB

Examples This statement returns a long that represents black:

RGB(0, 0, 0)

This statement returns a long that represents white:

RGB(255, 255, 255)

These statements set the color properties of the StaticText st_title to be green
letters on a dark magenta background:

st_title.TextColor = RGB(0, 255, 0)
st_title.BackColor = RGB(128, 0, 128)

See also RGB method for DataWindows in the DataWindow Reference or the online
Help

Color Red value Green value Blue value

Black 0 0 0

White 255 255 255

Light Gray 192 192 192

Dark Gray 128 128 128

Red 255 0 0

Dark Red 128 0 0

Green 0 255 0

Dark Green 0 128 0

Blue 0 0 255

Dark Blue 0 0 128

Magenta 255 0 255

Dark Magenta 128 0 128

Cyan 0 255 255

Dark Cyan 0 128 128

Yellow 255 255 0

Brown 128 128 0
950 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Right
Description Obtains a specified number of characters from the end of a string.

Syntax Right (string, n)

Return value String. Returns the rightmost n characters in string if it succeeds and the empty
string ("") if an error occurs. If any argument’s value is null, Right returns null.
If n is greater than or equal to the length of the string, Right returns the entire
string. It does not add spaces to make the return value’s length equal to n.

Examples This statement returns RUTH:

Right("BABE RUTH", 4)

This statement returns BABE RUTH:

Right("BABE RUTH", 75)

See also Left, Mid, Pos, Right method for DataWindows in the DataWindow Reference
or online Help

RightA
Description Temporarily converts a string from Unicode to DBCS based on the current

locale, then returns the specified number of bytes from the end of the string.

Syntax RightA (string, n)

Return value String. Returns the rightmost n characters in string if it succeeds and the empty
string (“”) if an error occurs. If any argument’s value is null, RightA returns null.
If n is greater than or equal to the length of the string, RightA returns the entire
string. It does not add spaces to make the return value’s length equal to n.

Argument Description

string The string from which you want characters returned

n A long whose value is the number of characters you want returned
from the right end of string

Argument Description

string The string you want to search

n A long whose value is the number of bytes you want returned from
the right end of string
PowerScript Reference 951

RightW
Usage RightA replaces Right in DBCS environments in PowerBuilder 9. In SBCS
environments, Right, RightW, and RightA return the same results.

RightW
Description Obtains a specified number of characters from the end of a string. This function

is obsolete. It has the same behavior as Right in all environments.

Syntax RightW (string, n)

RightTrim
Description Removes spaces from the end of a string.

Syntax RightTrim (string {, removeallspaces })

Return value String. Returns a copy of string with trailing blanks deleted if it succeeds and
the empty string ("") if an error occurs. If any argument’s value is null, RightTrim
returns null.

Usage If you do not include the optional removeallspaces argument or its value is
false, only the space character (U+0020) is removed from the string.

If the removeallspaces argument is set to true, all types of space characters are
removed. See LeftTrim for a list of space characters.

Examples This statement returns RUTH if all the trailing blanks are space characters:

RightTrim("RUTH ")

This statement returns RUTH if the trailing blanks include other types of white
space characters:

RightTrim("RUTH ", true)

See also LeftTrim,Trim, RightTrim method for DataWindows in the DataWindow
Reference or the online Help

Argument Description

string The string you want returned with trailing blanks deleted

removeallspaces A boolean indicating that all types of spaces should be deleted
952 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RightTrimW
Description Removes spaces from the end of a string. This function is obsolete. It has the

same behavior as RightTrim in all environments.

Syntax RightTrimW (string)

RollbackOnly
Description Modifies an EAServer transaction associated with a calling thread so that the

only possible outcome is to roll back the transaction.

Applies to CORBACurrent objects

Syntax CORBACurrent.RollbackOnly ()

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Failed for unknown reason

-2 No transaction is associated with the calling thread

Usage RollbackTransaction is typically called by the originator of the transaction.
Another participant in a client- or OTS style transaction can call RollbackOnly
to vote that the transaction should be rolled back.

RollbackOnly can be called by a client or a component that is marked as OTS
style. EAServer must be using the two-phase commit transaction coordinator
(OTS/XA).

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
PowerScript Reference 953

RollbackOnly
Examples In this example, a participant in a transaction has determined that it should be
rolled back. It creates and initializes an instance of the CORBACurrent service
object and votes to roll back the transaction:

// Instance variable:
// CORBACurrent corbcurr
int li_rc

li_rc = this.GetContextService("CORBACurrent", &
 corbcurr)
IF li_rc <> 1 THEN
// handle the error
END IF

li_rc = corbcurr.Init()
IF li_rc <> 0 THEN
// handle the error
ELSE
 corbcurr.RollbackOnly()
END IF

See also BeginTransaction
CommitTransaction
GetContextService
GetStatus
GetTransactionName
Init
ResumeTransaction
RollbackTransaction
SetTimeout
SuspendTransaction
954 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RollbackTransaction
Description Rolls back the EAServer transaction associated with the calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.RollbackTransaction ()

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Failed for unknown reason

-2 No transaction is associated with the calling thread

-3 The calling thread does not have permission to commit the transaction

-4 The HeuristicCommit exception was raised

Usage The RollbackTransaction function rolls back the transaction associated with the
calling thread. The call fails if the HeuristicCommit exception is raised.
Heuristic decisions are usually made when normal processing cannot continue,
such as when a communications failure occurs. The HeuristicCommit
exception is raised when all relevant updates have been committed.

RollbackTransaction can be called by a client or a component that is marked as
OTS style. EAServer must be using the two-phase commit transaction
coordinator (OTS/XA).

Examples This example shows the use of RollbackTransaction to roll back a transaction
when an update does not succeed:

// Instance variables:
// CORBACurrent corbcurr
int li_rc1, li_rc2
long ll_rc

this.GetContextService("CORBACurrent", corbcurr)
li_rc1 = corbcurr.Init()
IF li_rc1 <> 1 THEN
 // handle the error
ELSE
 ll_rc = CreateInstance(mycomp)
 // invoke methods on the instantiated component
 // test return values and roll back
 // if unsatisfactory

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
PowerScript Reference 955

Round
 IF li_rc2 = 1 THEN
 corbcurr.CommitTransaction()
 ELSE
 corbcurr.RollbackTransaction()
 END IF
END IF

See also BeginTransaction, CommitTransaction, GetContextService, GetStatus,
GetTransactionName, Init, ResumeTransaction, RollbackOnly, SetTimeout,
SuspendTransaction

Round
Description Rounds a number to the specified number of decimal places.

Syntax Round (x, n)

Return value Decimal. Returns x rounded to the specified number of decimal places if it
succeeds, and null if it fails or if any argument’s value is null.

Examples This statement returns 9.62:

Round(9.624, 2)

This statement returns 9.63:

Round(9.625, 2)

This statement returns 9.600:

Round(9.6, 3)

This statement returns –9.63:

Round(-9.625, 2)

This statement returns null:

Round(-9.625, -1)

See also Ceiling, Int, Truncate, Round method for DataWindows in the DataWindow
Reference or the online Help

Argument Description

x The number you want to round.

n The number of decimal places to which you want to round x. Valid
values are 0 through 30.
956 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
RoutineList
Description Provides a list of the routines included in a performance analysis model.

Applies to ProfileClass and Profiling objects

Syntax instancename.RoutineList (list)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• ModelNotExistsError! – No model exists

Usage Use this function to extract a list of the routines included in the performance
analysis model in a particular class. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
Each routine is defined as a ProfileRoutine object and provides the time spent
in the routine, any called routines, the number of times each routine was called,
and the class to which the routine belongs. The routines are listed in no
particular order.

Object creation and destruction for a class are each indicated by a routine in this
list as well as by embedded SQL statements.

Examples This example lists the routines included in each class found in a performance
analysis model:

Long ll_cnt
ProfileCall lproc_call[]

lpro_model.BuildModel()
lpro_model.RoutineList(iprort_list)
...

See also ClassList

Argument Description

instancename Instance name of the ProfileClass or Profiling object.

list An unbounded array variable of datatype ProfileRoutine in
which RoutineList stores a ProfileRoutine object for each routine
that exists in the model within a class. This argument is passed
by reference.
PowerScript Reference 957

Run
Run
Description Runs the specified application program.

Syntax Run (string {, windowstate })

Return value Integer. Returns 1 if it is successful and -1 if an error occurs. If any argument’s
value is null, Run returns null.

Usage You can use Run for any program that you can run from the operating system.
If you do not specify parameters, Run opens the application and displays the
first application window. If you specify windowstate, the application window
is displayed in the specified state.

If you specify parameters, the application determines the meaning of those
parameters. A typical use is to identify a data file to be opened when the
program is executed. If you are running another PowerBuilder application, that
application can call the CommandParm function to retrieve the parameters and
process them as it sees fit.

If the file extension is omitted from the file name, PowerBuilder assumes the
extension is .EXE. To run a program with another extension (for example,
.BAT, .COM, or .PIF), you must specify the extension.

Argument Description

string A string whose value is the file name of the program you want to
execute. Optionally, string can contain one or more parameters for
the program.

windowstate
(optional)

A value of the WindowState enumerated datatype indicating the
state in which you want to run the program:

• Maximized! – Maximized; enlarge the program window to its
maximum size when it starts

• Minimized! – Minimized; shrink the program window to an icon
when it starts

• Normal! – (Default) Run the program window in its normal size
958 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This statement runs the Microsoft Windows Clock accessory application in its
normal size:

Run("Clock")

This statement runs the Microsoft Windows Clock accessory application
minimized:

Run("Clock", Minimized!)

This statement runs the program WINNER.COM on the C drive in a maximized
state. The parameter passed to WINNER.COM opens the file EMPLOYEE.INF:

Run("C:\WINNER.COM EMPLOYEE.INF", Maximized!)

This example runs the DOS batch file MYBATCH.BAT and passes the
parameter TEST to the batch file. In the batch file, you include percent
substitution characters in the commands to indicate where the parameter is
used:

Run("MYBATCH.BAT TEST")

In the batch file the following statement renames FILE1 to TEST:

RENAME c:\PB\FILE1 %1
PowerScript Reference 959

Save
Save
Saves saves a picture and optionally overlay ink to a file or blob from an
InkPicture control or saves an OLE object in an OLE control or an OLE storage
object. The syntax you use depends on the type of object you want to save.

Syntax 1 For InkPicture controls
Description Saves a picture and optionally overlay ink to a file or blob from an InkPicture

control.

Applies to InkPicture controls

Syntax inkpicname.Save(t | b , format { , WithInk })

Return value Integer. Returns 1 for success and -1 for failure.

Usage Use the Save function to save the image in an InkPicture control to a file or
blob with or without any ink annotations that have been made to it. By default,
the ink is saved with the image.

To To

Save the contents of an InkPicture control Syntax 1

Save an OLE object Syntax 2

Argument Description

inkpicname The name of the InkPicture control from which you want to save a
picture.

t A string containing the name and location of the file into which the
picture will be saved.

b The name of a blob passed by reference that will hold the picture in
the control.

format An integer specifying the format in which the picture is to be saved.
Values are:

0 – BMP (bitmap)
1 – JPEG (Joint Photographic Experts Group)
2 – GIF (Graphics Interchange Format)
3 – TIFF (Tagged Image File Format)
4 – PNG (Portable Network Graphics)

WithInk
(optional)

A boolean specifying whether overlay ink should be saved with the
picture. Values are:

True – overlay ink is saved with the picture (default)
False – overlay ink is not saved with the picture
960 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples The following example saves the image in an InkPicture control and its ink
annotations in bitmap format into a blob, and attempts to update the image in
the database:

int li_return
blob lblb_ink

li_return = ip_1.save(lblb_ink, 0, true)

UPDATEBLOB employee SET backimage = :lbb_ink WHERE
emp_id = :gi_id;

IF sqlca.SQLNRows > 0 THEN
COMMIT;

ELSE
messagebox("Update failed",sqlca.sqlerrtext)

END IF

The following example saves the image in an InkControl into a GIF file
without any ink annotations:

int li_return
string ls_pathname, ls_filename

GetFileSaveName("Save As", ls_pathname, ls_filename,
"GIF")
li_return = ip_1.save(ls_pathname, 2, false)

See also LoadInk
LoadPicture
ResetInk
ResetPicture
SaveInk
PowerScript Reference 961

Save
Syntax 2 For OLE objects
Description Saves an OLE object in an OLE control or an OLE storage object.

Syntax oleobject.Save ()

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Control is empty
-9 Other error

If oleobject is null, Save returns null.

Usage When you save an OLE object, PowerBuilder saves it according to the current
connection between it and an open storage or file. You establish an initial
connection when you call the Open function. When you call SaveAs, the old
connection is ended and a new connection is established with another storage
or file.

When you call Save for an OLE control, PowerBuilder saves the object in the
OLE control to the storage to which it is currently connected. The storage can
be a storage object variable or a OLE storage file.

If the data has never been saved in the server application, so that there is no file
on disk, the Save function in PowerBuilder returns an error.

When you call Save for a storage object variable, PowerBuilder saves the
storage to the file, or substorage within the file, to which it is currently
connected. You must have previously established a connection to an OLE
storage file on disk, or a substorage within the file, either with Open or SaveAs.

When do you have to save twice?
If you create a storage object variable and then open that object in an OLE
control, you need to call Save twice to write changed OLE information to disk:
once to save from the object in the control to the storage, and again to save the
storage to its associated file.

Examples This example saves the object in the control ole_1 back to the storage from
which it was loaded, either a storage object variable or a file on disk:

integer result
result = ole_1.Save()

Argument Description

oleobject The name of an OLE control or an OLE storage variable
962 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example saves a storage object to its file. Olestor_1 is an instance variable
of type olestorage:

integer result
result = olestor_1.Save()

In a window’s Open script, this code creates a storage variable ole_stor, which
is declared as an instance variable, and associates it with a storage file that
contains several Visio drawings. The script then opens one of the drawings into
the control ole_draw. After the user activates and edits the object, the script for
a Save button saves the object to the storage and then to the storage’s file.

The script for the window’s Open event includes:

OLEStorage stg_stor
stg_stor = CREATE OLEStorage
stg_stor.Open("myvisio.ole")
ole_draw.Open(ole_stor, "visio_drawing1")

The script for the Save button’s Clicked event is:

integer result
result = ole_draw.Save()
IF result = 0 THEN ole_stor.Save()

See also Close
SaveAs

SaveAs
Saves the contents of a DataWindow, DataStore, graph, OLE control, or OLE
storage in a file. The syntax you use depends on the type of object you want to
save.

For DataWindow and DataStore syntax, see the SaveAs method for
DataWindows in the DataWindow Reference or the online Help.

To To

Save the data in a graph Syntax 1

Save the OLE object in an OLE control to a storage file Syntax 2

Save the OLE object in an OLE control to a storage object
in memory

Syntax 3

Save an OLE storage and any controls that have opened that
storage in a file

Syntax 4

Save an OLE storage object in another OLE storage object Syntax 5
PowerScript Reference 963

SaveAs
Syntax 1 For graph objects
Description Saves the data in a graph in the format you specify.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls and DataStores

Syntax controlname.SaveAs ({ filename, } { graphcontrol, saveastype, colheading { ,
encoding } })

Argument Description

controlname The name of the graph control whose contents you want to
save or the name of the DataWindow DataStore containing the
graph.

filename
(optional)

A string whose value is the name of the file in which you want
to save the data in the graph. If you omit filename or specify
an empty string (""), PowerBuilder prompts the user for a file
name.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control or DataStore whose contents you want to
save.
964 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
saveastype
(optional)

A value of the SaveAsType enumerated datatype specifying
the format in which to save the data represented in the graph.
Values are:

• Clipboard! – Save an image of the graph to the clipboard

• CSV! – Comma-separated values

• dBASE2! – dBASE-II format

• dBASE3! – dBASE-III format

• DIF! – Data Interchange Format

• EMF! – Enhanced Metafile Format

• Excel! – Microsoft Excel format

• Excel5! – Microsoft Excel version 5 format

• Excel8! – Microsoft Excel version 8 and higher format

• HTMLTable! – HTML TABLE, TR, and TD elements

• PDF! – Adobe Portable Document Format

• PSReport! – Powersoft Report (PSR) format

• SQLInsert! – SQL syntax

• SYLK! – Microsoft Multiplan format

• Text! – (Default) Tab-separated columns with a return at
the end of each row

• WKS! – Lotus 1-2-3 format

• WK1! – Lotus 1-2-3 format

• WMF! – Windows Metafile Format

• XLSB! – Excel 2007 format for binary data

• XLSX! – Excel 2007 format for XML data

• XML! – Extensible Markup Language

• XSLFO! – Extensible Stylesheet Language Formatting
Objects

Obsolete values
The following SaveAsType values are considered to be
obsolete and will be removed in a future release: Excel!,
WK1!, WKS!, SYLK!, dBase2!, WMF!. Use Excel8!,
XLSB!, or XLSX! for current versions of Microsoft Excel!
and EMF! in place of WMF!.

colheading
(optional)

A boolean value indicating whether you want column
headings with the saved data. The default value is true.
Colheading is ignored for dBASE files; column headings are
always saved.

Argument Description
PowerScript Reference 965

SaveAs
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SaveAs returns null.

Usage You must use zero or three arguments. If you do not specify any arguments for
SaveAs, PowerBuilder displays the Save As dialog box, letting the user specify
the format of the saved data.

Regional settings
If you use date formats in your graph, you must verify that yyyy is the Short
Date Style for year in the Regional Settings of the user’s Control Panel. Your
program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or to
have the application change it (by calling the RegistrySet function). The user
may need to reboot after the setting is changed.

Examples This statement saves the contents of the graph gr_History. The file and format
information are not specified, so PowerBuilder prompts for the file name and
save the graph as tab-delimited text:

gr_History.SaveAs()

This statement saves the contents of gr_History to the file
G:\HR\EMPLOYEE.HIS. The format is CSV without column headings:

gr_History.SaveAs("G:\HR\EMPLOYEE.HIS" ,CSV!, FALSE)

This statement saves the contents of gr_computers in the DataWindow control
dw_equipmt to the file G:\INVENTORY\SALES.XLS. The format is Excel with
column headings:

dw_equipmt.SaveAs("gr_computers", &
"G:\INVENTORY\SALES.XLS", Excel!, TRUE)

See also Print

encoding (optional) Character encoding of the file to which the data is saved. This
parameter applies only to the following formats: TEXT, CSV,
SQL, HTML, and DIF. If you do not specify an encoding
parameter, the file is saved in ANSI format. Values are:

• EncodingANSI! (default)

• EncodingUTF8!

• EncodingUTF16LE!

• EncodingUTF16BE!

Argument Description
966 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For saving an OLE control to a file
Description Saves the object in an OLE control in a storage file.

Applies to OLE controls

Syntax olecontrol.SaveAs (OLEtargetfile)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The control is empty
-2 The storage is not open
-3 The storage name is invalid
-9 Other error

If any argument’s value is null, SaveAs returns null.

Usage The Open function establishes a connection between a storage file and a
storage object, or a storage file or object and an OLE control. The Save
function uses this connection to save the OLE data.

When you call SaveAs for an OLE control, it closes the current connection
between the OLE object and its storage, either file or storage object. It
establishes a new connection with the new storage, which will be the target of
subsequent calls to the Save function.

Examples This example saves the object in the control ole_1:

integer result
result = ole_1.SaveAs("c:\ole\expense.ole")

See also Open
Save

Argument Description

olecontrol The name of the OLE control containing the object you want
to save.

OLEtargetfile A string specifying the name of an OLE storage file. The file
can already exist. OLEtargetfile can include a path, as well as
information about where to store the object in the file’s
internal structure.
PowerScript Reference 967

SaveAs
Syntax 3 For saving an OLE control to an OLE storage
Description Saves the object in an OLE control to an OLE storage object in memory.

Applies to OLE controls

Syntax olecontrol.SaveAs (targetstorage, substoragename)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The control is empty
-2 The storage is not open
-3 The storage name is invalid
-9 Other error

If any argument’s value is null, SaveAs returns null.

Usage The Open function establishes a connection between a storage file and a
storage object, or a storage file or object and an OLE control. The Save
function uses this connection to save the OLE data.

When you call SaveAs for an OLE control, it closes the current connection
between the OLE object and its storage, either file or storage object. It
establishes a new connection with the new storage, which will be the target of
subsequent calls to the Save function.

Examples This example saves the object in the control ole_1 in the storage variable
stg_stuff:

integer result
result = ole_1.SaveAs(stg_stuff)

See also Open
Save

Argument Description

olecontrol The name of the OLE control containing the object you want
to save.

targetstorage The name of an object variable of OLEStorage in which to
store the object in olecontrol.

substoragename A string whose value is the name of a substorage within
targetstorage. If substorage does not exist, SaveAs creates it.
968 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 4 For saving an OLE storage object to a file
Description Saves an OLE storage object to a file. If OLE controls have opened the OLE

storage object, this syntax of SaveAs puts them in a saved state too.

Applies to OLE storage objects

Syntax olestorage.SaveAs (OLEtargetfile)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The storage is not open
-2 The storage name is invalid
-3 The parent storage is not open
-4 The file already exists
-5 Insufficient memory
-6 Too many files open
-7 Access denied
-9 Other error

If any argument’s value is null, SaveAs returns null.

Usage The Open function establishes a connection between a storage file and a
storage object, or a storage file or object and an OLE control. The Save
function uses this connection to save the OLE data.

When you call SaveAs for a storage object, it closes the current connection
between the storage object and a file and creates a new file for the storage
object’s data.

For information about the structure of storage files, see the Open function.

Examples This example saves the storage object stg_stuff to the file MYSTUFF.OLE.
Olest_stuff is an instance variable:

integer result
result = stg_stuff.SaveAs("c:\ole\mystuff.ole")

Argument Description

olestorage The name of an object variable of type OLEStorage
containing the OLE object you want to save.

OLEtargetfile A string specifying the name of a new OLE storage file.
OLEtargetfile can include a path.
PowerScript Reference 969

SaveAs
This example opens a substorage in one file and saves it in another file. An
OLE storage file called MYROOT.OLE contains several substorages; one is
called sub1. To open sub1 and save it in another file, the example defines two
storage objects: stg1 and stg2. First MYROOT.OLE is opened into stg1. Next,
sub1 is opened into stg2. Finally, stg2 is saved to the new file MYSUB.OLE.
Just as when you open a word processing document and save it to a new name,
the open object in stg2 is no longer associated with MYROOT.OLE; it is now
connected to MYSUB.OLE:

olestorage stg1, stg2
stg1 = CREATE OLEStorage
stg2 = CREATE OLEStorage
stg1.Open("myroot.ole")
stg2.Open("sub1", stg1)

stg2.SaveAs("mysub.ole")

See also Close
Open
Save

Syntax 5 For saving an OLE storage object in another OLE
storage

Description Saves an OLE storage object to another OLE storage object variable in
memory.

Applies to OLE storage objects

Syntax olestorage.SaveAs (substoragename, targetstorage)

Argument Description

olestorage The name of an object variable of type OLEStorage
containing the OLE object you want to save.

substoragename A string whose value is the name of a substorage within
targetstorage. If substorage does not exist, SaveAs creates it.

targetstorage The name of an object variable of OLEStorage in which to
store the object in olestorage. Note the reversed order of the
substoragename and targetstorage arguments from Syntax 4.
970 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 The storage is not open
-2 The storage name is invalid
-3 The parent storage is not open
-4 The file already exists
-5 Insufficient memory
-6 Too many files open
-7 Access denied
-9 Other error

If any argument’s value is null, SaveAs returns null.

Usage The Open function establishes a connection between a storage file and a
storage object, or a storage file or object and an OLE control. The Save
function uses this connection to save the OLE data.

When you call SaveAs for a storage object, it closes the current connection
between the storage object and a file and creates a new file for the storage
object’s data.

For information about the structure of storage files, see the Open function.

Examples This example saves the object in the OLEStorage variable stg_stuff in a second
storage variable stg_clone as the substorage copy1:

integer result
result = stg_stuff.SaveAs("copy1", stg_clone)

See also Close
Open
Save
PowerScript Reference 971

SaveDocument
SaveDocument
Description Saves the contents of a RichTextEdit control in a file. You can specify either

rich-text format (RTF) or text format for the file.

Applies to RichTextEdit controls

Syntax rtename.SaveDocument (filename {, filetype {, encoding }})

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage SaveDocument triggers a FileExists event when the file you name already
exists. If you do not specify a filetype, SaveDocument saves the file as a text
file if you specify a file name with the extension .txt, as a Microsoft Word
document if you specify a file name with the extension .doc, and as an RTF file
if you specify a file name with the .rtf extension.

The format that you specify in the encoding argument is valid only if you
specified FileTypeText! for the filetype argument. SaveDocument saves text in
ANSI format only for all other file types.

Argument Description

rtename The name of the RichTextEdit control whose contents you want to
save.

filename A string whose value is the name of the file to be saved. If the file
already exists, the FileExists event is triggered.

filetype
(optional)

A value of the FileType enumerated datatype specifying the format
of the saved file. Values are:

• FileTypeRichText! – Save the file in rich text format

• FileTypeText! – Save the file as text

• FileTypeDoc! – Save the file in Microsoft Word format

• FileTypeHTML! – Save the file in HTML format

• FileTypePDF! – Save the file in PDF format

encoding
(optional)

Character encoding of the file to which the data is saved. This
parameter applies only to text files. If you do not specify an
encoding parameter, the file is saved in ANSI format.

The filetype argument must be set to FileTypeText! If the filetype
argument is set to any other file type, this argument is ignored.
Values are:

• EncodingANSI! (default)

• EncodingUTF8!

• EncodingUTF16LE!

• EncodingUTF16BE!
972 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This code for a CommandButton saves the document in the RichTextEdit rte_1:

integer li_rtn
li_rtn = rte_1.SaveDocument("c:\test.rtf", &
FileTypeRichText!)

If the file TEST.RTF already exists, PowerBuilder triggers the FileExists event
with the following script. OpenWithParm displays a response window that asks
the user if it is OK to overwrite the file. The return value from FileExists
determines whether the file is saved:

OpenWithParm(w_question, &
"The specified file already exists. " + &

"Do you want to overwrite it?")
IF Message.StringParm = "Yes" THEN

RETURN 0 // File is saved
ELSE

RETURN -1 // Saving is canceled
END IF

This code for a CommandButton saves the document in the RichTextEdit rte_1
in a text file with UTF-16LE encoding:

integer li_rtn
li_rtn = rte_1.SaveDocument("c:\test.txt", &

FileTypeText!, EncodingUTF16LE!)

See also InsertDocument
PowerScript Reference 973

SaveInk
SaveInk
Description Saves ink to a file or blob from an InkPicture control.

Applies to InkPicture controls

Syntax inkpicname.SaveInk (t | b {, format {, mode } })

Return value Integer. Returns 1 for success and -1 for failure.

Usage Use the SaveInk function to save annotations made to an image in an InkPicture
control to a separate file or blob.

InkSerializedFormat! (ISF) provides the most compact persistent ink
representation. This format can be embedded inside a binary document format
or added to the clipboard. Base64InkSerializedFormat! encodes the ISF format
as a base64 stream, which allows the ink to be encoded in an XML or HTML
file.

GIFFormat! saves the image in a Graphics Interchange Format (GIF) file in
which ISF is embedded as metadata. This format can be viewed in applications
that are not ink enabled. Base64GIFFormat! is persisted by using a base64
encoded fortified GIF. Use this format if the ink is to be encoded directly in an
XML or XHTML file and will be converted to an image at a later time. It
supports XSLT transformations to HTML.

Argument Description

inkpicname The name of the InkPicture control from which you want to save
ink.

t A string containing the name and location of a file that will hold the
ink you want to save from the control.

b The name of a blob passed by reference that will hold the ink you
want to save from the control.

format
(optional)

A value of the InkPersistenceFormat enumerated variable that
specifies the format in which you want to save the ink. Values are:

• Base64GIFFormat!

• Base64InkSerializedFormat!

• GIFFormat!

• InkSerializedFormat! (default)

mode
(optional)

A value of the InkCompressionMode enumerated variable that
specifies the compression mode in which you want to save the ink.
Values are:

• DefaultCompression! (default)

• MaximumCompression!

• NoCompression!
974 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples The following example saves the ink in an InkPicture control into an ISF file
with default compression:

int li_return
string ls_pathname, ls_filename

GetFileSaveName("Save As", ls_pathname, ls_filename,
"ISF")
li_return = ip_1.SaveInk(ls_pathname)

The following example saves the ink in an InkPicture control into a GIF file
with maximum compression:

int li_return
string ls_pathname, ls_filename

GetFileSaveName("Save As", ls_pathname, ls_filename,
"GIF")
li_return = ip_1.SaveInk(ls_pathname, GIFFormat!,
MaximumCompression!)

See also LoadInk
LoadPicture
ResetInk
ResetPicture
Save
PowerScript Reference 975

Scroll
Scroll
Description Scrolls a multiline edit control or the edit control of a DataWindow a specified

number of lines up or down.

Applies to DataWindow, MultiLineEdit, and RichTextEdit controls

Syntax editname.Scroll (number)

Return value Long. For RichTextEdit controls, Scroll returns 1 if it succeeds. For other
controls, Scroll returns the line number of the first visible line in editname if it
succeeds. Scroll returns -1 if an error occurs. If any argument’s value is null,
Scroll returns null.

Usage If the number of lines left in the list is less than the number of lines that you
want to scroll, then Scroll scrolls to the beginning or end, depending on the
direction specified.

Examples This statement scrolls mle_Employee down 4 lines:

mle_Employee.Scroll(4)

This statement scrolls mle_Employee up 4 lines:

mle_Employee.Scroll(-4)

See also The following functions implement scrolling in a DataWindow or a
RichTextEdit:

ScrollNextPage
ScrollNextRow
ScrollPriorPage
ScrollPriorRow
ScrollToRow

Argument Description

editname The name of the DataWindow, RichTextEdit, or MultiLineEdit in
which you want to scroll up or down. If editname is a DataWindow,
then Scroll affects its edit control.

number A long specifying the direction and number of lines you want to
scroll. To scroll down, use a positive long value. To scroll up, use a
negative long value.
976 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ScrollNextPage
Description Scrolls to the next page of the document in a RichTextEdit control or

RichTextEdit DataWindow.

For DataWindow syntax, see the ScrollNextPage method for DataWindows in
the DataWindow Reference or the online Help.

Applies to RichTextEdit controls

Syntax rtename.ScrollNextPage ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When the RichTextEdit control shares data with a DataWindow, the
RichTextEdit contains multiple instances of the document, one instance for
each row.

When the last page of the document for one row is visible, calling
ScrollNextPage advances to the first page for the next row.

ScrollNextPage and ScrollPriorPage work in the RichTextEdit control edit mode
only when the HeaderFooter property of a rich text control is selected. They
work in print preview mode regardless of the HeaderFooter property setting
and they work for the RichText DataWindow control in edit mode whether or
not the DataWindow has header or footer bands.

Examples This statement scrolls to the next page of the document in the RichTextEdit
control rte_1. If there are multiple instances of the document, it can scroll to the
next instance:

rte_1.ScrollNextPage()

See also Scroll
ScrollNextRow
ScrollPriorPage
ScrollPriorRow

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to scroll to the next page.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.
PowerScript Reference 977

ScrollNextRow
ScrollNextRow
Description Scrolls to the next instance of the document in a RichTextEdit control or

RichTextEdit DataWindow. A RichTextEdit control has multiple instances of
its document when it shares data with a DataWindow. The next instance of the
document is associated with the next row in the DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollNextRow method for DataWindows in the DataWindow Reference or the
online Help.

Applies to DataWindow and RichTextEdit controls

Syntax rtename.ScrollNextRow ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When the RichTextEdit shares data with a DataWindow, the RichTextEdit
contains multiple instances of the document, one instance for each row.

ScrollNextRow advances to the next instance of the RichTextEdit document. In
contrast, repeated calls to ScrollNextPage advance through all the pages of the
document instance and then on to the pages for the next row.

Examples This statement scrolls to the next instance of the document in the RichTextEdit
control rte_1. Each document instance is associated with a row of data.

rte_1.ScrollNextRow()

See also Scroll
ScrollNextPage
ScrollPriorPage
ScrollPriorRow

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to scroll to the next document instance. Each instance is
associated with a DataWindow row.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.
978 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ScrollPriorPage
Description Scrolls to the prior page of the document in a RichTextEdit control or

RichTextEdit DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollPriorPage method for DataWindows in the DataWindow Reference or the
online Help.

Applies to DataWindow and RichTextEdit controls

Syntax rtename.ScrollPriorPage ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When the RichTextEdit shares data with a DataWindow, the RichTextEdit
contains multiple instances of the document, one instance for each row.

When the first page of the document for one row is visible, calling
ScrollPriorPage goes to the last page for the prior row.

ScrollNextPage and ScrollPriorPage work in the RichTextEdit control edit mode
only when the HeaderFooter property of a rich text control is selected. They
work in print preview mode regardless of the HeaderFooter property setting
and they work for the RichText DataWindow control in edit mode whether or
not the DataWindow has header or footer bands.

Examples This statement scrolls to the prior page of the document in the RichTextEdit
control rte_1. If there are multiple instances of the document, it can scroll to the
prior instance:

rte_1.ScrollPriorPage()

See also Scroll
ScrollNextPage
ScrollNextRow
ScrollPriorRow

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to scroll to the prior page.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.
PowerScript Reference 979

ScrollPriorRow
ScrollPriorRow
Description Scrolls to the prior instance of the document in a RichTextEdit control or

RichTextEdit DataWindow. A RichTextEdit control has multiple instances of
its document when it shares data with a DataWindow. The next instance of the
document is associated with the next row in the DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollPriorRow method for DataWindows in the DataWindow Reference or the
online Help.

Applies to DataWindow and RichTextEdit controls

Syntax rtename.ScrollPriorRow ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When the RichTextEdit shares data with a DataWindow, the RichTextEdit
contains multiple instances of the document, one instance for each row.

ScrollPriorRow goes to the prior instance of the RichTextEdit document. In
contrast, repeated calls to ScrollPriorPage pages back through all the pages of
the document instance and then back to the pages for the prior row.

Examples This statement scrolls to the prior instance of the document in the RichTextEdit
control rte_1. Each document instance is associated with a row of data.

rte_1.ScrollPriorRow()

See also Scroll
ScrollNextPage
ScrollNextRow
ScrollPriorPage

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to scroll to the prior document instance. Each instance is
associated with a DataWindow row.

The DataWindow object in the DataWindow control must be a
RichTextEdit DataWindow.
980 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ScrollToRow
Description Scrolls to the document instance associated with the specified row when the

RichTextEdit controls shares data with a DataWindow.

For syntax specific to DataWindow controls and child DataWindows, see the
ScrollToRow method for DataWindows in the DataWindow Reference or the
online Help.

Applies to RichTextEdit controls

Syntax rtename.ScrollToRow (row)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage When the RichTextEdit shares data with a DataWindow, the RichTextEdit
contains multiple instances of the document, one instance for each row.
ScrollToRow goes to the instance associated with the specified row.

Examples In this example, dw_1 has retrieved at least 25 rows of data. After calling
DataSource, the RichTextEdit control contains at least 25 instances of its
document. ScrollToRow scrolls to the 25th instance:

rte_1.DataSource(dw_1)
rte_1.ScrollToRow(25)

See also Scroll
ScrollNextPage
ScrollNextRow
ScrollPriorPage
ScrollPriorRow

Argument Description

rtename The name of the RichTextEdit control in which you want to scroll
to a document instance associated with the specified row.

row A long identifying the row to which you want to scroll. If row, is 0,
ScrollToRow scrolls to the first row. If row is greater than the
number of rows in the associated DataWindow, it scrolls to the last
row.
PowerScript Reference 981

Second
Second
Description Obtains the number of seconds in the seconds portion of a time value.

Syntax Second (time)

Return value Integer. Returns the seconds portion of time (00 to 59). If time is null, Second
returns null.

Examples This statement returns 31:

Second(19:01:31)

See also Hour
Minute
Second method for DataWindows in the DataWindow Reference or the online
Help

SecondsAfter
Description Determines the number of seconds one time occurs after another.

Syntax SecondsAfter (time1, time2)

Return value Long. Returns the number of seconds time2 occurs after time1. If time2 occurs
before time1, SecondsAfter returns a negative number. If any argument’s value
is null, SecondsAfter returns null.

Examples This statement returns 15:

SecondsAfter(21:15:30, 21:15:45)

This statement returns -15:

SecondsAfter(21:15:45, 21:15:30)

This statement returns 0:

SecondsAfter(21:15:45, 21:15:45)

Argument Description

time The time value from which you want the seconds

Argument Description

time1 A time value that is the start time of the interval being measured

time2 A time value that is the end time of the interval
982 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
If you declare start_time and end_time time variables and assign 19:02:16 to
start_time and 19:02:28 to end_time as shown below:

time start_time, end_time
start_time = 19:02:16
end_time = 19:02:28

then each of these statements returns 12:

SecondsAfter(start_time, end_time)
SecondsAfter(19:02:16, end_time)
SecondsAfter(start_time, 19:02:28)
SecondsAfter(19:02:16, 19:02:28)

See also DaysAfter
RelativeDate
RelativeTime
SecondsAfter method for DataWindows in the DataWindow Reference or the
online Help

Seek
Moves the file pointer in an OLE stream object or displays a specified frame in
an AVI clip in an animation control.

Syntax 1 For OLE stream objects
Description Moves the read/write pointer to the specified position in an OLE stream object.

The pointer is the position in the stream at which the next read or write begins.

Applies to OLEStream objects

Syntax olestream.Seek (position {, origin })

To To

Move the read/write pointer in an OLE stream object. Syntax 1

Displays a specific frame in an AVI clip Syntax 2

Argument Description

olestream The name of an OLE stream variable that has been opened.
PowerScript Reference 983

Seek
Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Stream is not open
-2 Seek error
-9 Other error

If any argument’s value is null, Seek returns null.

Examples This example writes additional data to an OLE stream. First, it opens an OLE
object in the file MYSTUFF.OLE and assigns it to the OLEStorage object
stg_stuff. Then it opens the stream called info in stg_stuff and assigns it to the
stream object olestr_info. Seek positions the read/write pointer at the end of the
stream so that the contents of the instance blob variable lb_info is written at the
end.

The example does not check the functions’ return values for success, but you
should be sure to check the return values in your code:

boolean lb_memexists
OLEStorage stg_stuff
OLEStream olestr_info

stg_stuff = CREATE OLEStorage
stg_stuff.Open("c:\ole\mystuff.ole")
olestr_info.Open(stg_stuff, "info", &

stgReadWrite!, stgExclusive!)
olestr_info.Seek(0, FromEnd!)
olestr_info.Write(lb_info)

See also Open
Length
Read
Write

position A long whose value is the position relative to origin to which you
want to move the read/write pointer.

origin
(optional)

The value of the SeekType enumerated datatype specifying where
you want to start the seek. Values are:

• FromBeginning! – (Default) At the beginning of the file

• FromCurrent! – At the current position

• FromEnd! – At the end of the file

Argument Description
984 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For animation controls
Description Displays a specific frame in an AVI clip in an animation control.

Applies to Animation controls

Syntax animationname.Seek (s)

Return value Integer. Returns 1 for success and -1 for failure.

Usage Seek displays the specified frame. If you specify a value that is greater than the
number of frames in the clip, Seek displays the last frame in the clip and returns
1. If you specify a value that is not in the specified range, Seek does nothing
and returns -1. If the animation was playing, Seek always triggers the Stop
event.

Examples This code in a button’s clicked event displays the frame specified by a number
in a single line edit control, then increments the number by one. Each click of
the button advances the clip by one frame:

// instance variable number
integer li_return

number = long (sle_seek.text)
li_return = am_1.Seek(number)
number +=1
sle_seek.text = string(number)

See also Play
Stop

Argument Description

animationname The name of animation control displaying the AVI clip

s A long value in the range 0 to 65,535 indicating the frame to
display
PowerScript Reference 985

SelectedColumn
SelectedColumn
Description Obtains the number of the character column just after the insertion point in a

RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SelectedColumn ()

Return value Long. Returns the number of the character just after the insertion point in
rtename. If an error occurs, SelectedColumn returns -1.

Usage The insertion point can be at the beginning or end of the selection. Therefore,
SelectedColumn can return the first character of the selection or the character
just after the selection, depending on the position of the insertion point.

Examples If the insertion point is positioned before the fifth character on line 8 of the
RichTextEdit rte_Contact, the following example sets ll_col to 5 and ll_line to
8:

long ll_col, ll_line
ll_col = rte_Contact.SelectedColumn()
ll_line = rte_Contact.SelectedLine()

See also LineLength
Position
SelectedLine
SelectedPage
SelectedText
TextLine

Argument Description

rtename The name of the RichTextEdit in which you want the number of the
character after the insertion point
986 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectedIndex
Description Obtains the number of the selected item in a ListBox or ListView control.

Applies to ListBox and ListView controls

Syntax listcontrolname.SelectedIndex ()

Return value Integer. Returns the index of the selected item in listcontrolname. If more than
one item is selected, SelectedIndex returns the index of the first selected item.
If there are no selected items or an error occurs, SelectedIndex returns -1. If
listcontrolname is null, SelectedIndex returns null.

Usage SelectedIndex and SelectedItem are meant for lists that allow a single selection
only (when the MultiSelect property for the control is false).

When the MultiSelect property is true, SelectedIndex gets the index of the first
selected item only. Use the State function, instead of SelectedIndex, to check
each item in the list and find out if it is selected. Use the Text function to get the
text of any item in the list.

Examples If item 5 in lb_actions is selected, then this example sets li_Index to 5:

integer li_Index
li_Index = lb_actions.SelectedIndex()

These statements open the window w_emp if item 5 in lb_actions is selected:

integer li_X
li_X = lb_actions.SelectedIndex()
If li_X = 5 then Open(w_emp)

See also SelectedItem

Argument Description

listcontrolname The name of the ListBox or ListView control in which you
want to locate the selected item
PowerScript Reference 987

SelectedItem
SelectedItem
Description Obtains the text of the selected item in a ListBox control.

Applies to ListBox and PictureListBox controls

Syntax listboxname.SelectedItem ()

Return value String. Returns the text of the selected item in listboxname. Returns the empty
string ("") if no items are selected. If listboxname is null, SelectedItem returns
null.

Usage SelectedIndex and SelectedItem are meant for lists that allow a single selection
only (when the MultiSelect property for the control is false).

When the MultiSelect property is true, SelectedItem gets the text of the first
selected item only. Use the State function, instead of SelectedItem, to check
each item in the list and find out if it is selected. Use the Text function to get the
text of any item in the list.

Examples If the text of the selected item in the ListBox lb_shortcuts is F1, then this
example sets ls_item to F1:

string ls_Item
ls_Item = lb_Shortcuts.SelectedItem()

See also SelectedIndex
State

SelectedLength
Description Determines the total number of characters in the selected text in an editable

control, including spaces and line endings.

Applies to DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, and DropDownPictureListBox controls

Syntax editname.SelectedLength ()

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want the
text of the currently selected item
988 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer for DataWindow, InkEdit, and list boxes, Long for other controls.

Returns the length of the selected text in editname. If no text is selected,
SelectedLength returns 0. If an error occurs, it returns -1. If editname is null,
SelectedLength returns null.

Usage Except for text in rich text controls, the characters that make up a line ending
(produced by typing Ctrl+Enter or Enter) can be different on different
platforms. On Windows, it is a carriage return plus a line feed and equals two
characters when calculating the length. On other platforms, a line ending is a
single character. A line that has wrapped has no line-ending character. For
DropDownListBox and DropDownPictureListBox controls, SelectedLength
returns -1 if the control’s AllowEdit property is set to false.

RichTextEdit controls
For rich text controls, a carriage return plus a line feed always count as a single
character when calculating the text length.

Focus and the selection in a drop-down list
When a DropDownListBox or DropDownPictureListBox loses focus, the
selected text is no longer selected.

Examples If the selected text in the MultiLineEdit mle_Contact is John Smith, then this
example sets li_length to 10:

long ll_length
ll_length = mle_Contact.SelectedLength()

See also LineLength
SelectedItem
SelectedLine
SelectedPage
SelectedStart
TextLine

Argument Description

editname The name of the DataWindow, EditMask, MultiLineEdit,
SingleLineEdit, RichTextEdit, DropDownListBox, or
DropDownPictureListBox control in which you want the length of
the selected text.

For a DataWindow, it reports the length of the selected text in the
edit control over the current row and column.
PowerScript Reference 989

SelectedLine
SelectedLine
Description Obtains the number of the line that contains the insertion point in an editable

control. The insertion point moves to the next line if the current line contains a
carriage return.

Applies to DataWindow, MultiLineEdit, and RichTextEdit controls

Syntax editname.SelectedLine ()

Return value Long. Returns the number of the line containing the insertion point in
editname. If an error occurs, SelectedLine returns -1. If editname is null,
SelectedLine returns null.

Usage For EditMask controls, SelectedLine compiles but always returns 1.

The insertion point can be at the beginning or end of the selection. Therefore,
SelectedLine can return the first or last selected line, depending on the position
of the insertion point.

Examples If the insertion point is positioned anywhere in line 5 of the MultiLineEdit
mle_Contact, the following example sets li_SL to 5:

integer li_SL
li_SL = mle_Contact.SelectedLine()

In this example, the line the user selects in the MultiLineEdit mle_winselect
determines which window to open:

integer li_SL
li_SL = mle_winselect.SelectedLine()
IF li_SL = 1 THEN

Open(w_emp_data)
ELSEIF li_SL = 2 THEN

Open(w_dept_data)
END IF

See also LineLength
Position
SelectedColumn
SelectedPage
SelectedText
TextLine

Argument Description

editname The name of the DataWindow, MultiLineEdit, or RichTextEdit in
which you want the number of the line containing the insertion
point. For a DataWindow, it reports the line number in the edit
control over the current row and column.
990 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectedPage
Description Obtains the number of the current page in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SelectedPage ()

Return value Integer. Returns the number of the current page in rtename. If an error occurs,
SelectedPage returns -1.

Usage The current page in a RichTextEdit control is the page that contains the
insertion point in text entry mode or the page currently being displayed in
preview mode.

When the RichTextEdit shares data with a DataWindow, SelectedPage returns
the page number within the document instance for the current row.

For more information about document instances, see DataSource.

Examples This example returns the page number of the current page:

integer li_pagect
li_pagect = rte_1.SelectedPage()

See also DataSource
PageCount
Preview
SelectedLength
SelectedLine
SelectedStart
SelectedText

Argument Description

rtename The name of the RichTextEdit control in which you want
the number of the current page
PowerScript Reference 991

SelectedStart
SelectedStart
Description Reports the position of the first selected character in an editable control.

Applies to DataWindow, EditMask, MultiLineEdit, SingleLineEdit, RichTextEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax editname.SelectedStart ()

Return value Long. Returns the starting position of the selected text in editname. If no text is
selected, SelectedStart returns the position of the character immediately
following the insertion point. If an error occurs, SelectedStart returns -1. If
editname is null, SelectedStart returns null.

Usage For all controls except RichTextEdit, SelectedStart counts from the start of the
text and includes spaces and line endings.

For RichTextEdit controls, SelectedStart counts from the start of the line on
which the selection begins. The start is at the opposite end of the selection from
the insertion point. For example, if the user dragged back to make the selection,
the start of the selection is at the end of the highlighted text and the insertion
point is before the start. Use the Position function to get information about the
start and end of the selection.

Focus and the selection in a drop-down list
When a DropDownListBox or DropDownPictureListBox loses focus, the
selected text is no longer selected.

Examples If the MultiLineEdit mle_Comment contains Closed for Vacation July
3 to July 10, and Vacation is selected, then this example sets li_Start to
12 (the position of the first character in Vacation):

integer li_Start
li_Start = mle_Comment.SelectedStart()

See also Position
SelectedLine
SelectedPage

Argument Description

editname The name of the DataWindow, EditMask, MultiLineEdit,
SingleLineEdit, RichTextEdit, DropDownListBox, or
DropDownPictureListBox control in which you want to determine
the starting position of selected text.

For a DataWindow, it reports the starting position in the edit control
over the current row and column.
992 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectedText
Description Obtains the selected text in an editable control.

Applies to DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit,
RichTextEdit, DropDownListBox, and DropDownPictureListBox controls

Syntax editname.SelectedText ()

Return value String. Returns the selected text in editname. If there is no selected text or if an
error occurs, SelectedText returns the empty string (""). If editname is null,
SelectedText returns null.

Usage In a RichTextEdit control, any pictures in the selection are ignored. If the
selection contains input fields, the names of the input fields, enclosed in
brackets, become part of the string SelectedText returns. The contents of the
input fields are not returned.

For example, when the salutation of a letter is selected, SelectedText might
return:

Dear {title} {lastname}:

Focus and the selection in a drop-down list
When a DropDownListBox or DropDownPictureListBox loses focus, the
selected text is no longer selected.

Examples If the text in the MultiLineEdit mle_Contact is James B. Smith and James
B. is selected, these statements set the value of emp_fname to James B:

string ls_emp_fname
ls_emp_fname = mle_Contact.SelectedText()

Argument Description

editname The name of the DataWindow, EditMask, MultiLineEdit,
SingleLineEdit, RichTextEdit, DropDownListBox, or
DropDownPictureListBox control from which you want the
selected text.

For a DropDownListBox or DropDownPictureListBox, the
AllowEdit property must be true.

For a DataWindow, it reports the selected text in the edit control
over the current row and column.
PowerScript Reference 993

SelectionRange
If the selected text in the edit portion of the DropDownListBox ddlb_Location
is Maine, these statements display the ListBox lb_LBMaine:

string ls_Loc
ls_Loc = ddlb_Location.SelectedText()
IF ls_Loc = "Maine" THEN

lb_LBMaine.Show()
ELSE

...
END IF

See also SelectText

SelectionRange
Description Highlights a range of contiguous values in a trackbar control. The range you

select is highlighted in the trackbar channel, with an arrow at each end of the
range.

Applies to Trackbar controls

Syntax control.SelectionRange (startpos, endpos)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use this function to indicate a range of preferred values.

In a scheduling application, the selection range could indicate a block of time
that is unavailable. Setting a selection range does not prevent the user from
selecting a value either inside or outside the range.

Examples This statement highlights the trackbar values between 30 and 70:

HTrackBar.SelectionRange(30, 70)

See also HTrackBar in PowerBuilder Objects and Controls
VTrackBar in PowerBuilder Objects and Controls

Argument Description

control The name of the trackbar control

startpos An integer that specifies the starting position of the range

endpos An integer that specifies the ending position of the range
994 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectItem
Finds and highlights an item in a ListBox, DropDownListBox, or TreeView
control.

Syntax 1 When you know the text of an item
Description Finds and highlights an item in a ListBox when you can specify some or all of

the text of the item.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.SelectItem (item, index)

Return value Integer. Returns the index number of the selected item. If no match is found,
SelectItem returns 0; it returns -1 if an error occurs. If any argument’s value is
null, SelectItem returns null.

Usage SelectItem begins searching for the desired item after the item identified by
index. To match, the item must start with the specified text; however, the text
in the item can be longer than the specified text.

To find an item but not select it, use the FindItem function.

MultiSelect ListBoxes
SelectItem has no effect on a ListBox or PictureListBox whose MultiSelect
property is true. Instead, use SetState to select items without affecting the
selected state of other items in the list.

To select an item Use

In a ListBox control when you know the text of the item, but
not its position

Syntax 1

In a ListBox control when you know the position of the item
in the control’s list, or to clear the current selection

Syntax 2

In a TreeView control Syntax 3

Argument Description

listboxname The name of the ListBox control in which you want to select a line

item A string whose value is the starting text of the item you want to
select

index The number of the item after which you want to begin the search
PowerScript Reference 995

SelectItem
Clearing the edit box of a drop-down list
To clear the edit box of a DropDownListBox or DropDownPictureListBox that
the user cannot edit, use Syntax 2 of SelectItem.

Examples If item 5 in lb_Actions is Delete Files, this example starts searching after item
2, finds and highlights Delete Files, and sets li_Index to 5:

integer li_Index
li_Index = lb_Actions.SelectItem("Delete Files", 2)

If item 4 in lb_Actions is Select Objects, this example starts searching after item
2, finds and highlights Select Objects, and sets li_Index to 4:

integer li_Index
li_Index = lb_Actions.SelectItem("Sel", 2)

See also AddItem
DeleteItem
FindItem
InsertItem
SetState

Syntax 2 When you know the item number
Description Finds and highlights an item in a ListBox when you can specify the index

number of the item. You can also clear the selection by specifying zero as the
index number.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.SelectItem (itemnumber)

Argument Description

listboxname The name of the ListBox control in which you want to select an item

itemnumber An integer whose value is the location (index) of the item in the
ListBox or the ListBox portion of the drop-down list.

Specify 0 for itemnumber to clear the selected item. For a ListBox
or PictureListBox, 0 removes highlighting from the selected item.
For a DropDownListBox or DropDownPictureListBox, 0 clears the
text box.
996 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns the index number of the selected item. SelectItem returns 0 if
itemnumber is not valid or if you specified 0 in order to clear the selected item.
It returns -1 if an error occurs. If any argument’s value is null, SelectItem returns
null.

Usage To find an item but not select it, use the FindItem function.

MultiSelect ListBoxes
SelectItem has no effect on a ListBox or PictureListBox whose MultiSelect
property is true. Instead, use SetState to select items without affecting the
selected state of other items in the list.

Clearing the text box of a drop-down list
To clear the text box of a DropDownListBox or DropDownPictureListBox that
the user cannot edit, set itemnumber to 0. Setting the control’s text to the empty
string does not work if the control’s AllowEdit property is false.

Examples This example highlights item number 5:

integer li_Index
li_Index = lb_Actions.SelectItem(5)

This example clears the selection from the text box of the DropDownListBox
ddlb_choices and sets li_Index to 0:

integer li_Index
li_Index = ddlb_choices.SelectItem(0)

See also AddItem
DeleteItem
FindItem
InsertItem
SetState
PowerScript Reference 997

SelectItem
Syntax 3 For TreeView controls
Description Selects a specified item.

Applies to TreeView controls

Syntax treeviewname.SelectItem (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use the FindItem function to get handles for items at specific positions in the
TreeView control.

Examples This example selects the parent of the current TreeView item:

long ll_tvi, ll_tvparent
int li_tvret
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
ll_tvparent = tv_list.FindItem(ParentTreeItem! , &

ll_tvi)
li_tvret = tv_list.SelectItem(ll_tvparent)

See also FindItem

Argument Description

treeviewname The name of the TreeView control in which you want to select
an item

itemhandle The handle of the specified item
998 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectObject
Description Selects or clears the object in an OLE control but does not activate the server

application. The server’s menus are added to the PowerBuilder application’s
menus.

Applies to OLE controls

Syntax olecontrol.SelectObject (selectstate)

Return value Integer. Returns 0 if it succeeds and one of the following negative values if an
error occurs:

-1 Control is empty
-9 Other error

If any argument’s value is null, SelectObject returns null.

Examples This example selects the object in the OLE control ole_1:

integer result
result = ole_1.SelectObject(TRUE)

Argument Description

olecontrol The name of the OLE control containing the object you want to
select

selectstate A boolean value indicating whether you want to select or deselect
the object
PowerScript Reference 999

SelectTab
SelectTab
Description Selects the specified tab, displaying its tab page in the Tab control.

Applies to Tab controls

Syntax tabcontrolname.SelectTab (tabidentifier)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Equivalent syntax You can select a tab by setting the SelectedTab property
to the tab’s index number:

tab_1.SelectedTab = 3

Examples These three examples select the third tab in tab_1. They could be in the script
for a CommandButton on the window containing the Tab control tab_1:

tab_1.SelectTab(3)

tab_1.SelectTab(tab_1.uo_3)

string ls_tabpage
ls_tabpage = "uo_3"
tab_1.SelectTab(ls_tabpage)

This example opens an instance of the user object uo_fontsettings as a tab page
and selects it:

userobject uo_tabpage
string ls_tabpage

ls_tabpage = "uo_fontsettings"
tab_1.OpenTab(uo_tabpage, ls_tabpage, 0)
tab_1.SelectTab(uo_tabpage)

See also OpenTab

Argument Description

tabcontrolname The name of the Tab control in which you want to select a tab

tabidentifier The tab you want to select. You can specify:

• The tab page index (an integer)

• The name of the user object (datatype DragObject or
UserObject)

• A string holding the name of the user object
1000 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectText
Selects text in an editable control.

Syntax 1 For editable controls (except RichTextEdit)
Description Selects text in an editable control. You specify where the selection begins and

how many characters to select.

Applies to DataWindow, EditMask, InkEdit, MultiLineEdit, SingleLineEdit,
DropDownListBox, and DropDownPictureListBox controls

Syntax editname.SelectText (start, length)

Return value Integer for DataWindow and list boxes, Long for other controls.

Returns the number of characters selected. If an error occurs, SelectText returns
-1.

Usage If the control does not have the focus when you call SelectText, then the text is
not highlighted until the control has focus. To set focus on the control so that
the selected text is highlighted, call the SetFocus function.

How much to select
When you want to select all the text of a line edit or select the contents from a
specified position to the end of the edit, use the Len function to obtain the
length of the control’s text.

To select text in Use

Any editable control, other than a RichTextEdit Syntax 1

A RichTextEdit control or a DataWindow whose object has
the RichTextEdit presentation style

Syntax 2

Argument Description

editname The name of the DataWindow, EditMask, InkEdit, MultiLineEdit,
SingleLineEdit, DropDownListBox, or DropDownPictureListBox
control in which you want to select text.

start A long specifying the position at which you want to start the
selection.

length A long specifying the number of characters you want to select. If
length is 0, no text is selected but PowerBuilder moves the insertion
point to the location specified in start.
PowerScript Reference 1001

SelectText
To select text in a DataWindow with the RichTextEdit presentation style, use
Syntax 2.

Examples This statement sets the insertion point at the end of the text in the
SingleLineEdit sle_name:

sle_name.SelectText(Len(sle_name.Text), 0)

This statement selects the entire contents of the SingleLineEdit sle_name:

sle_name.SelectText(1, Len(sle_name.Text))

The rest of these examples assume the MultiLineEdit mle_EmpAddress
contains Boston Street.

The following statement selects the string ost and returns 3:

mle_EmpAddress.SelectText(2, 3)

The next statement selects the string oston Street and returns 12:

mle_EmpAddress.SelectText(2, &
Len(mle_EmpAddress.Text))

These statements select the string Bos, returns 3, and sets the focus to
mle_EmpAddress so that Bos is highlighted:

mle_EmpAddress.SelectText(1, 3)
mle_EmpAddress.SetFocus()

See also Len
Position
SelectedItem
SelectedText
SetFocus
TextLine
1002 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For RichTextEdit controls and presentation styles
Description Selects text beginning and ending at a line and character position in a

RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectText (fromline, fromchar, toline, tochar { band })

Return value Long. Returns the number of characters selected. A carriage return with a line
feed counts as a single character. If an error occurs SelectText returns -1. If any
argument’s value is null, it returns null.

Usage The insertion point is at the "to" end of the selection, that is, the position
specified by toline and tochar. If toline and tochar are before fromline and
fromchar, then the insertion point is at the beginning of the selection.

You cannot specify 0 for a character position when making a selection.

You cannot always use the values returned by Position to make a selection.
Position can return a character position of 0 when the insertion point is at the
beginning of a line.

To select an entire line, set the insertion point and call SelectTextLine. To select
the rest of a line, set the insertion point and call SelectText with a character
position greater than the line length.

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to select text. The DataWindow object in the DataWindow
control must be a RichTextEdit DataWindow.

fromline A long specifying the line number where the selection starts.

fromchar A long specifying the number in the line of the first character in the
selection.

toline A long specifying the line number where the selection ends. To
specify an insertion point, set toline and tochar to 0.

tochar A long specifying the number in the line of the character before
which the selection ends.

band
(optional)

A value of the Band enumerated datatype specifying the band in
which to make the selection. Values are:

• Detail!

• Header!

• Footer!

The default is the band that contains the insertion point.
PowerScript Reference 1003

SelectText
Examples This statement selects text from the first character in the RichTextEdit control
to the fourth character on the third line:

rte_1.SelectText(1,1, 3,4)

This statement sets the insertion point at the beginning of line 2:

rte_1.SelectText(2,1, 0,0)

This example sets the insertion point at the end of line 2 by specifying a large
number of characters. The selection highlight extends past the end of the line:

rte_1.SelectText(2,999, 0,0)

This example sets the insertion point at the end of line 2 by finding out how
long the line really is. The code moves the insertion point to the beginning of
the line, gets the length, and then sets the insertion point at the end:

long ll_length
//Make line 2 the current line
rte_1.SelectText(2,1, 0,0)
// Specify a position after the last character
ll_length = rte_1.LineLength() + 1
// Set the insertion point at the end
rte_1.SelectText(2,ll_length, 0,0)
rte_1.SetFocus()

This example selects the text from the insertion point to the end of the current
line. If the current line is the last line, the reported line length is 1 greater than
the number of character you can select, so the code adjusts for it:

long ll_insertline, ll_insertchar
long ll_line, ll_count
// Get the insertion point
rte_1.Position(ll_insertline, ll_insertchar)
// Get the line number and line length
ll_line = rte_1.SelectedLine()
ll_count = rte_1.LineLength()
// Line length includes the eof file character,
// which can't be selected
IF ll_line = rte_1.LineCount() THEN ll_count -= 1
// Select from the insertion point to the end of
// line
rte_1.SelectText(ll_insertline, ll_insertchar, &
ll_line, ll_count)

See also SelectedText
SelectTextAll
SelectTextLine
SelectTextWord
1004 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectTextAll
Description Selects all the contents of a RichTextEdit control including any special

characters such as carriage return and end-of-file (EOF) markers.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectTextAll ({ band })

Return value Integer. Returns the number of characters selected. A carriage return with a line
feed counts as a single character. If an error occurs, SelectTextAll returns -1.

Examples This statement selects all the text in the detail band:

rte_1.SelectTextAll()

This statement selects all the text in the header band:

rte_1.SelectTextAll(Header!)

See also SelectedText
SelectText
SelectTextLine
SelectTextWord

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to select all the contents. The DataWindow object in the
DataWindow control must be a RichTextEdit DataWindow.

band
(optional)

A value of the Band enumerated datatype specifying the band in which
you want to select all the text. Values are:

• Detail!

• Header!

• Footer!

The default is the band that contains the insertion point.
PowerScript Reference 1005

SelectTextLine
SelectTextLine
Description Selects the line containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectTextLine ()

Return value Integer. Returns the number of characters selected if it succeeds and -1 if an
error occurs.

Usage If the RichTextEdit control contains a selection, the insertion point is either at
the beginning or end of the selection. The way the text was selected determines
which. If the user made the selection by dragging toward the end, then calling
SelectTextLine selects the line at the end of the selection. If the user dragged
back, then SelectTextLine selects the line at the beginning of the selection.

SelectTextLine does not select the line-ending characters (carriage return and
linefeed in Windows).

Examples This statement selects the current line:

rte_1.SelectTextLine()

See also SelectedText
SelectText
SelectTextAll
SelectTextWord

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want select a line. The DataWindow object in the DataWindow
control must be a RichTextEdit DataWindow.
1006 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SelectTextWord
Description Selects the word containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit and DataWindow controls

Syntax rtename.SelectTextWord ()

Return value Integer. Returns the number of characters selected if it succeeds and -1 if a
word cannot be selected or an error occurs.

Usage A word is any group of alphanumeric characters. A word can include
underscores and single quotes but does not include punctuation and special
characters such as $ or #. If punctuation or special characters follow the
selected word, they are not selected.

If the character after the insertion point is a space, punctuation, special
character, or end-of-line mark, SelectTextWord does not select anything and
returns -1.

Examples The following statement selects the word containing the insertion point:

rte_1.SelectTextWord()

This example selects the word at the insertion point. If there is no word, it
increments the position until it finds a word. It checks when it reaches the end
of a line and wraps to the next line as it looks for a word. If this script is
assigned to a command button and the button is clicked repeatedly, you step
through the text word by word:

integer li_rtn
long llstart, lcstart, ll_lines, ll_chars

ll_lines = rte_1.LineCount()
ll_chars = rte_1.LineLength()

li_rtn = rte_1.SelectTextWord()

// -1 if a word is not found at the insertion point
DO WHILE li_rtn = -1

Argument Description

rtename The name of the RichTextEdit or DataWindow control in which you
want to select a word. The DataWindow object in the DataWindow
control must be a RichTextEdit DataWindow.
PowerScript Reference 1007

SelectTextWord
// Get the position of the cursor
rte_1.Position(llstart, lcstart)

// Increment by 1 to look for next word
lcstart += 1
// If at end of line move to next line
IF lcstart >= ll_chars THEN

lcstart = 1 // First character
llstart += 1 // next line

// If beyond last line, return
IF llstart > ll_lines THEN

RETURN 0
END IF

END IF

// Set insertion point
rte_1.SelectText(llstart, lcstart, 0, 0)
// In case it's a new line, get new line length
// Can't do this until the ins pt is in the line
ll_chars = rte_1.LineLength()

// Select word, if any
li_rtn = rte_1.SelectTextWord()

LOOP

// Add code here to process the word (for example,
// passing the word to a spelling checker)

See also SelectedText
SelectText
SelectTextAll
SelectTextLine
1008 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Send
Description Sends a message to a window so that it is executed immediately.

Syntax Send (handle, message#, lowword, long)

Return value Long. Returns the value returned by SendMessage in Windows if it succeeds
and -1 if an error occurs. If any argument’s value is null, Send returns null.

Usage PowerBuilder’s Send function sends the message identified by message# and
optionally, lowword and long, to the window identified by handle to the
Windows function SendMessage. The message is sent directly to the object,
bypassing the object’s message queue. Send waits until the message is
processed and obtains the value returned by SendMessage.

Messages in Windows
Use the Handle function to get the Windows handle of a PowerBuilder object.

You specify Windows messages by number. They are documented in the file
WINDOWS.H that is part of the Microsoft Windows Software Development
Kit (SDK) and other Windows development tools.

Posting a message
Messages sent with Send are executed immediately. To post a message to the
end of an object’s message queue, use the Post function.

Examples This statement scrolls the window w_emp up one page:

Send(Handle(w_emp), 277, 2, 0)

Both of the following statements click the CommandButton cb_OK:

Send(Handle(Parent), 273, 0, Handle(cb_OK))

cb_OK.TriggerEvent(Clicked!)

Argument Description

handle A long whose value is the system handle of a window (that you have
created in PowerBuilder or another application) to which you want
to send a message.

message# An UnsignedInteger whose value is the system message number of
the message you want to send.

lowword A long whose value is the integer value of the message. If this
argument is not used by the message, enter 0.

long The long value of the message or a string.
PowerScript Reference 1009

Send
You can send messages to maximize or minimize a DataWindow, and return it
to normal. To use these messages, enable the TitleBar, Minimize, and
Maximize properties of your DataWindow control. Also, you should give your
DataWindow control an icon for its minimized state.

This statement minimizes the DataWindow:

Send(Handle(dw_whatever), 274, 61472, 0)

This statement maximizes the DataWindow:

Send(Handle(dw_whatever), 274, 61488, 0)

This statement returns the DataWindow to its normal, defined size:

Send(Handle(dw_whatever), 274, 61728, 0)

You can send a Windows message to determine the last item clicked in a
multiselect ListBox. The following script for the SelectionChanged event of a
ListBox control gets the return value of the LB_GETCURSEL message which is
the item number in the list (where the first item is 0, not 1).

To get PowerBuilder’s index for the list item, the example adds 1 to the return
value from Send. In this example, idx is an integer instance variable for the
window:

// Send the Windows message for LB_GETCURSEL
// to the list box
idx = Send(Handle(This), 1033, 0, 0)
idx = idx + 1

See also Handle
Post
1010 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SeriesCount
Description Counts the number of series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SeriesCount ({ graphcontrol })

Return value Integer. Returns the number of series in the graph if it succeeds and -1 if an
error occurs. If any argument’s value is null, SeriesCount returns null.

Examples These statements store in the variable li_series_count the number of series in
the graph gr_product_data:

integer li_series_count
li_series_count = gr_product_data.SeriesCount()

These statements store in the variable li_series_count the number of series in
the graph gr_computers in the DataWindow control dw_equipment:

integer li_series_count
li_series_count = &

dw_equipment.SeriesCount("gr_computers")

See also CategoryCount
DataCount

Argument Description

controlname The name of the graph for which you want the number of
series, or the name of the DataWindow control containing the
graph

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control for which you want the number of series
PowerScript Reference 1011

SeriesName
SeriesName
Description Obtains the series name associated with the specified series number.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SeriesName ({ graphcontrol, } seriesnumber)

Return value String. Returns the name assigned to the series. If an error occurs, it returns the
empty string (""). If any argument’s value is null, SeriesName returns null.

Usage Series are numbered consecutively, from 1 to the value returned by
SeriesCount. When you delete a series, the series are renumbered to keep the
numbering consecutive. You can use SeriesName to find out the name of the
series associated with a series number.

Examples These statements store in the variable ls_SeriesName the name of series 5 in
the graph gr_product_data:

string ls_SeriesName
ls_SeriesName = gr_product_data.SeriesName(5)

These statements store in the variable ls_SeriesName the name of series 5 in
the graph gr_computers in the DataWindow control dw_equipment:

string ls_SeriesName
ls_SeriesName = &

dw_equipment.SeriesName("gr_computers", 5)

See also CategoryName
DeleteSeries
FindSeries

Argument Description

controlname The name of the graph in which you want the name of a series,
or the name of the DataWindow containing the graph

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control for which you want the name of a series

seriesnumber The number of the series for which you want to obtain the
name
1012 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetAbort
Declares that a transaction on a transaction server should be rolled back.

Syntax 1 For OLETxnObject objects
Description Declares that the current transaction should be rolled back.

Applies to OLETxnObject objects

Syntax oletxnobject.SetAbort ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Call the SetAbort function from the client to force a COM+ transaction to be
rolled back. The default is to complete the transaction if all participants in the
transaction on the COM+ server have called SetComplete or EnableCommit.

Examples The following example shows the use of SetAbort in a component method that
performs database updates:

integer li_rc
OleTxnObject lotxn_obj
lotxn_obj = CREATE OleTxnObject
li_rc = lotxn_obj.ConnectToNewObject("pbcom.n_test")
IF li_rc <> 0 THEN

Messagebox("Connect Error", string(li_rc))
 // handle error
END IF
lotxn_obj.f_dowork()
lotxn_obj.f_domorework()
IF /* test for client satisfaction */ THEN

lotxn_obj.SetComplete()
ELSE

lotxn_obj.SetAbort()
END IF
lotxn_obj.DisconnectObject()

See also SetComplete

To roll back a transaction Use

For OLETxnObject objects Syntax 1

For TransactionServer objects Syntax 2

Argument Description
oletxnobject The name of the OLETxnObject variable that is connected to

the COM object
PowerScript Reference 1013

SetAbort
Syntax 2 For TransactionServer objects
Description Declares that a component cannot complete its work for the current transaction

and that the transaction should be rolled back. The component instance are
deactivated when the method returns.

Applies to TransactionServer objects

Syntax transactionserver.SetAbort ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The SetAbort function corresponds to the rollbackWork transaction primitive in
EAServer.

Any component that participates in a transaction can roll back the transaction
by calling the rollbackWork primitive. Only the action of the root component
(the component instance that began the transaction) determines when
EAServer commits the transaction.

Examples The following example shows the use of SetAbort in a component method that
performs database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts

Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", ts)
IF li_rc <> 1 THEN

// handle the error
END IF
...
...
ll_rv = ids_datastore.Update()
IF ll_rv = 1 THEN

ts.SetComplete()
ELSE

ts.SetAbort()
END IF

See also DisableCommit, EnableCommit, IsInTransaction, IsTransactionAborted,
Lookup, SetComplete, Which

Argument Description
transactionserver Reference to the TransactionServer service instance
1014 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetAlignment
Description Sets the alignment of the selected paragraphs in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SetAlignment (align)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example sets the alignment of the selected paragraphs in the RichTextEdit
control rte_1:

integer li_success
li_success = rte_1.SetAlignment(Right!)

See also GetAlignment
GetSpacing
GetTextStyle
SetSpacing
SetTextStyle

Argument Description

rtename The name of the RichTextEdit control in which you want to set the
alignment of selected paragraphs.

align A value of the Alignment enumerated datatype specifying how to
align the paragraphs. Values are:

• Left! – Align each line at the left margin

• Right! – Align each line at the right margin

• Center! – Center the text between the left and right margins

• Justify! – Justify the paragraphs
PowerScript Reference 1015

SetArgElement
SetArgElement
Description Sets the value in the specified argument element.

Applies to Window ActiveX controls

Syntax activexcontrol.SetArgElement (index, argument)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function before calling InvokePBFunction or TriggerPBEvent to specify
an argument for the passed function.

JavaScript scripts must use this function to specify function and event
arguments. VBScript scripts can either use this function or specify the
arguments array directly.

Examples This JavaScript example calls the SetArgElement function:

function triggerEvent(f) {
var retcd;
var rc;
var numargs;
var theEvent;
var theArg;
retcd = 0;
numargs = 1;
theArg = f.textToPB.value;
PBRX1.SetArgElement(1, theArg);
theEvent = "ue_args";
retcd = PBRX1.TriggerPBEvent(theEvent, numargs);

...

See also GetArgElement
GetLastReturn
InvokePBFunction
TriggerPBEvent

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window ActiveX
control. When used in HTML, this is the NAME attribute of the
object element. When used in other environments, this references
the control that contains the PowerBuilder window ActiveX.

index Integer specifying argument placement.

argument Any specifying the argument value.
1016 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetAutomationLocale
Description Sets the language to be used in automation programming for an OLE object.

Call SetAutomationLocale if you have programmed automation commands in a
language other than the user’s locale.

Applies to OLE objects

Syntax olename.SetAutomationLocale (language, sortorder)

Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Argument Description

olename The name of the object for which you want to set the automation
locale.

language A value of the LanguageID enumerated datatype specifying the
language you have used for automation commands. The OLE server
must have function and property names defined in the language you
specify.

Some values of LanguageID are:

• LanguageNeutral! – No language is assumed. Automation
commands match the server’s default command set.

• LanguageUserDefault! – The language locale is taken from the
user’s settings in the International control panel.

• LanguageSystemDefault! – The language locale is taken from
the version of Windows that is installed on the user’s machine.

You can also specify a language or dialect, such as
LanguagePolish! or LanguagePortuguese_Brazilian!

For the list of language-specific values for LanguageID, use the
PowerBuilder Browser.

sortorder A value of the LanguageSortID enumerated datatype specifying the
sort order for the language. Values are:

• LanguageSortNative! – Use the traditional sort order of the
selected language.

• LanguageSortUnicode! – Use the sort order defined for Unicode
PowerScript Reference 1017

SetAutomationLocale
Usage For most situations, you do not need to call SetAutomationLocale. If an
automation command fails, PowerBuilder makes additional attempts to
execute it in other languages before it triggers the Error event. It attempts to
execute the command using these languages:

1 The command as is (the command is in a language the server understands)

2 The current locale (if it is different from the user’s default locale)

3 The user’s default locale (LanguageUserDefault!)

4 The system’s default locale (LanguageSystemDefault!)

5 English (LanguageEnglish!)

If PowerBuilder is successful in validating the name in any of the languages
above, it resets the locale to the value that succeeded. While this may result in
the wrong locale in ambiguous cases, it will probably simplify access to
standard Microsoft Office products that ship with both localized and English
function and property names.

If you specify a language with SetAutomationLocale, but the OLE server does
not have function and property names in that language, your OLE automation
commands will fail unless the above procedure finds a language that works. If
you have called SetAutomationLocale, PowerBuilder’s procedure for finding
the correct language can reset it, as described in the previous paragraph.

Examples This example sets the language to German for an OLEObject called
oleobj_report:

oleobj_report.SetAutomationLocale(LanguageGerman!)

This example sets the language to German for an OLE control ole_1:

ole_1.Object.SetAutomationLocale(LanguageGerman!)
1018 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetAutomationPointer
Description Sets the automation pointer of an OLEObject object to the value of the

automation pointer of another object.

Applies to OLEObject

Syntax oleobject.SetAutomationPointer (object)

Return value Integer. Returns 0 if it succeeds and -1 if the object does not contain a valid
OLE automation pointer.

Usage SetAutomationPointer assigns the underlying automation pointer used by OLE
into a descendant of OLEObject.

Examples This example creates an OLEObject variable and calls ConnectToNewObject to
create a new Excel object and connect to it. It also creates an object of type
oleobjectchild (which is a descendant of OLEObject) and sets the automation
pointer of the descendant object to the value of the automation pointer in the
OLEObject object. Then it sets a value in the worksheet using the descendent
object, saves it to a different file, and destroys both objects:

OLEObject ole1
oleobjectchild oleChild
integer rs

ole1= CREATE OLEObject
rs = ole1.ConnectToNewObject("Excel.Application")
oleChild = CREATE oleobjectchild
rs = oleChild.SetAutomationPointer(ole1)
IF (rs = 0) THEN

oleChild.workbooks.open("d:\temp\expenses.xls")
oleChild.cells(1,1).value = 11111
oleChild.activeworkbook.saveas(&

"d:\temp\newexp.xls")
oleChild.activeworkbook.close()
oleChild.quit()

END IF
ole1.disconnectobject()
DESTROY oleChild
DESTROY ole1

Argument Description

oleobject The name of an OLEObject variable whose automation pointer you
want to set. You cannot specify an OLEObject that is the Object
property of an OLE control.

object The name of an OLEObject variable that contains the automation
pointer you want to use to set the pointer value in oleobject.
PowerScript Reference 1019

SetAutomationTimeout
SetAutomationTimeout
Description Sets the number of milliseconds that a PowerBuilder client waits before

canceling an OLE procedure call to the server.

Applies to OLEObject objects

Syntax oleobject.SetAutomationTimeout (interval)

Return value Integer. Returns 0 if it succeeds and -1 if it fails.

Usage This function passes the value of interval to PowerBuilder’s implementation of
the IMessageFilter interface and determines how long PowerBuilder tries to
complete an OLE procedure call. The value applies only when PowerBuilder
is the OLE client, not when PowerBuilder is the OLE server.

Default timeout period
For most situations, you do not need to call SetAutomationTimeout. The default
timeout period of five minutes is usually appropriate. Use
SetAutomationTimeout to change the default timeout period if you expect a
specific OLE request to take longer than five minutes.

If the timeout period is too short, you may get a PowerBuilder application
execution error, R0035. In this case, use SetAutomationTimeout to lengthen the
timeout period.

If the timeout period expires, runtime error 1037 occurs. You may want to add
code to handle this error, which is often the only indication of a hung server.
Note that canceling a transaction often causes memory leaks on both the server
and the operating system.

The value that you specify with SetAutomationTimeout applies to all OLE
transactions in the current session, including calls that relate to other objects.

Argument Description

oleobject The name of an OLEObject variable containing the object for
which you want to set the timeout period.

interval A 32-bit signed long integer value (in milliseconds) specifying how
long a PowerBuilder client waits before canceling a procedure call.
The default value is 300,000 milliseconds (5 minutes). Specifying
0 or a negative value resets interval to the default value.
1020 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example calls the ConnectToObject function to connect to an Excel
worksheet and sets a timeout period of 900,000 milliseconds (15 minutes):

OLEObject ole1
integer rs
long interval

interval = 900000
ole1 = create OLEObject
rs = ole1.ConnectToObject("Excel.Application")
rs = ole1.SetAutomationTimeOut(interval)

SetBoldDate
Description Displays the specified date in bold.

Applies to MonthCalendar control

Syntax controlname.SetBoldDate (d, onoff {, rt })

Return value Integer. Returns 0 for success and one of the following negative values for
failure:

-1 Invalid arguments

-2 Unknown failure

Argument Description

controlname The name of the MonthCalendar control in which you want to clear
the bold dates

d The date to be set in bold

onoff A boolean specifying whether the date is to be set to bold. Values
are:

true – Set the date to bold
false – Clear the date’s bold setting

rt (optional) A value of the MonthCalRepeatType enumerated variable. Values
are:

Once! – Set or clear the bold setting for the specified date
(default)
Monthly! – Using the day portion of the specified date, set or
clear the bold setting for this day in all months
Yearly! – Using the day and month portion of the specified date,
set or clear the bold setting for this date in all years
PowerScript Reference 1021

SetBoldDate
Usage You can use the SetBoldDate function to specify that a selected date, such as an
anniversary date, displays in bold. If a specific date has been set to bold, you
can clear the bold setting by passing false as the second parameter.
ClearBoldDates clears all such settings.

Examples This example sets the date January 5, 2005 to bold in the control mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, true)

This example sets the fifth day of every month to bold in the control
mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, true, Monthly!)

This example sets the date January 5 to bold for all years in the control
mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, true, Yearly!)

This example clears the bold setting for the fifth day of every month in the
control mcVacation:

integer li_return
Date d
d = date("January 5, 2005")

li_return = mcVacation.SetBoldDate(d, false, Monthly!)

See also ClearBoldDates
1022 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetByte
Description Sets data of type Byte for a blob variable.

Syntax SetByte (blobvariable, n, b)

Return value Integer. Returns 1 if it succeeds or -1 if n exceeds the scope of blobvariable; it
returns null if the value of any of its arguments is null.

Examples This example adds the byte equivalent of 37 at the initial position of the
emp_photo blob. If no byte is assigned to the second position, the blob displays
as the ASCII equivalent of 37 (the percent character, %) in the second message
box:

blob {100} emp_photo
byte b1 = byte (37)
int li_rtn
li_rtn = SetByte(emp_photo, 1, b1)
messagebox("setbyte", string(b1))
messagebox("setbyte", string(emp_photo))

See also Byte
GetByte

Argument Description

blobvariable A variable of the Blob datatype in which you want to insert a value
of the Byte datatype

n Tthe number of the position in blobvariable at which you want to
insert a value of the Byte datatype

b Data of the Byte datatype that you want to set into blobvariable at
position n.
PowerScript Reference 1023

SetColumn
SetColumn
Description Sets column information for a DataWindow, child DataWindow, or ListView

control.

For syntax for a DataWindow or child DataWindow, see the SetColumn method
for DataWindows in the DataWindow Reference or the online Help.

Applies to ListView controls

Syntax listviewname.SetColumn (index, label, alignment, width)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage SetColumn is used only in report views.

Examples This example sets the second column of a ListView:

lv_list.SetColumn(2 , "Order" , Center! , 800)

See also AddColumn
AddItem
SetItem

Argument Description

listviewname The name of the ListView control for which you want to set column
properties.

index The number of the column for which you want to set column
properties.

label The label of the column for which you want to set column
properties.

alignment A value of the Alignment enumerated datatype specifying how to
align the column. Values are:

• Left! – Align the column at the left margin

• Right! – Align the column at the right margin

• Center! – Center the column between the left and right margins

• Justify! – Not valid for the SetColumn function

width The width of the column for which you want to set column
properties.
1024 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetComplete
Declares that a transaction on a transaction server should be committed.

Syntax 1 For OLETxnObject objects
Description Declares that the current transaction should be committed.

Applies to OLETxnObject objects

Syntax oletxnobject.SetComplete ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Call the SetComplete function from a client to allow a COM+ transaction to be
completed if all participants in the transaction on the COM+ server have called
SetComplete or EnableCommit. If any participant in the transaction has called
DisableCommit or SetAbort, the transaction is not completed.

Examples The following example shows the use of SetComplete in a component method
that performs database updates:

integer li_rc
OleTxnObject lotxn_obj

lotxn_obj = CREATE OleTxnObject
li_rc = lotxn_obj.ConnectToNewObject("pbcom.n_test")
IF li_rc <> 0 THEN

Messagebox("Connect Error", string(li_rc))
 // handle error
END IF

lotxn_obj.f_dowork()
lotxn_obj.f_domorework()
lotxn_obj.SetComplete()
lotxn_obj.DisconnectObject()

See also SetAbort

To commit a transaction Use

For OLETxnObject objects Syntax 1

For TransactionServer objects Syntax 2

Argument Description
oletxnobject The name of the OLETxnObject variable that is connected to

the COM object
PowerScript Reference 1025

SetComplete
Syntax 2 For TransactionServer objects
Description Declares that the transaction in which a component is participating should be

committed and the component instance should be deactivated.

Applies to TransactionServer objects

Syntax transactionserver.SetComplete ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage The SetComplete function corresponds to the completeWork transaction
primitive in EAServer.

Any component that participates in a transaction can roll back the transaction
by calling the rollbackWork primitive. Only the action of the root component
(the component instance that began the transaction) determines when
EAServer commits the transaction.

The transaction is committed if either of the following occurs:

• The root component returns with a state of completeWork and no
participating component has set a state of disallowCommit.

• The root component is deactivated due to an explicit destroy from the
client and no participating component has set a state of disallowCommit. (A
client disconnect that is not preceded by an explicit destroy request always
causes a rollback.)

You can use the transaction state primitives in any component; the component
does not have to be declared transactional. Calling completeWork or
rollbackWork from methods causes early deactivation.

Examples The following example shows the use of SetComplete in a component method
that performs database updates:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts
Integer li_rc
long ll_rv
li_rc = this.GetContextService("TransactionServer", ts)
IF li_rc <> 1 THEN

// handle the error
END IF
...

Argument Description
transactionserver Reference to the TransactionServer service instance
1026 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ll_rv = ids_datastore.Update()
IF ll_rv = 1 THEN

ts.SetComplete()
ELSE

ts.SetAbort()
END IF

See also DisableCommit, EnableCommit, IsInTransaction, IsTransactionAborted,
Lookup, SetAbort, Which

SetData
Description Sets data in the OLE server associated with an OLE control using Uniform

Data Transfer.

Applies to OLE controls and OLE custom controls

Syntax olename.SetData (clipboardformat, data)

Argument Description

olename The name of the OLE or custom control associated with the
OLE server to which you want to transfer data.
PowerScript Reference 1027

SetData
Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage SetData returns an error if you specify a clipboard format that the OLE server
does not support. See the documentation for the OLE server to find out what
formats it supports.

SetData operates via Uniform Data Transfer, a mechanism defined by
Microsoft for exchanging data with container applications. PowerBuilder
enables data transfer via a global handle. The OLE server must also support
data transfer via a global handle. If it does not, you cannot transfer data to or
from that server.

Examples For an example of moving data between two OLE controls (a Microsoft Word
table and a Microsoft Graph), see GetData.

See also GetData

clipboardformat The format of the data. You can specify a standard format with
a value of the ClipboardFormat enumerated datatype. You can
specify a nonstandard format as a string.Values for
ClipboardFormat are:

ClipFormatBitmap!
ClipFormatDIB!
ClipFormatDIF!
ClipFormatEnhMetafile!
ClipFormatHdrop!
ClipFormatLocale!
ClipFormatMetafilePict!
ClipFormatOEMText!
ClipFormatPalette!
ClipFormatPenData!
ClipFormatRIFF!
ClipFormatSYLK!
ClipFormatText!
ClipFormatTIFF!
ClipFormatUnicodeText!
ClipFormatWave!

If clipboardformat is an empty string or a null value, SetData
transfers the data with the format ClipFormatText!.

data A string or blob whose value is the data you want to transfer.

Argument Description
1028 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetDataDDE
Description Sends data to a DDE client application when PowerBuilder is acting as a DDE

server. You would usually call SetDataDDE in the script for the RemoteRequest
event, which is triggered by a DDE request for data from the client application.

Syntax SetDataDDE (string {, applname, topic, item })

Return value Integer. Returns 1 if it succeeds. If an error occurs, SetDataDDE returns a
negative integer. Values are:

-1 Function called in the wrong context
-2 Data not accepted

If any argument’s value is null, SetDataDDE returns null.

Usage To enable DDE server mode in your PowerBuilder application, call the
StartServerDDE function. Then DDE messages from a DDE client trigger
events in the PowerBuilder window. It is up to you to decide how your
application responds by writing code for those events. When an application
requests data of the DDE server, it triggers a RemoteRequest event. You
typically call SetDataDDE in the script for a window’s RemoteRequest event.

If a client application has established a hot link with a location in your
PowerBuilder application, you can call SetDataDDE in an event for the object
associated with the location. As a server application, you decide how location
names map to the controls in your application. For example, your application
can decide that the DDE name loc1 refers to the SingleLineEdit sle_name and
a client application can establish a hot link with "loc1." Then in the Modified
event for sle_name, you can call SetDataDDE so that the client application
receives changes each time sle_name is changed. Likewise, if loc1 referred to
a DataWindow, you can call SetDataDDE in the ItemChanged event for the
DataWindow.

Argument Description

string The data you want to send to a DDE client application

applname
(optional)

The DDE name for the client application

topic
(optional)

A string whose value is the basic data grouping the DDE client
application referenced

item
(optional)

A string (data within topic)
PowerScript Reference 1029

SetDataLabelling
The applname argument refers to the client application that has established a
channel or a hot link with your application. Topic and item refer to a topic and
location recognized by your server application. You only need to specify these
arguments to make it clear to the client application who should receive the
message and what is being sent.

Examples This statement illustrates how SetDataDDE is used in a script for a
RemoteRequest event when another DDE application requests data. The data
sent is the text of the SingleLineEdit sle_Address:

SetDataDDE(sle_Address.Text)

This statement illustrates how the optional arguments are specified:

SetDataDDE(sle_Address.Text, "MYDB", &
"Employee", "Address")

See also GetDataDDE
StartServerDDE

SetDataLabelling
Description Set the data label for a DirectX 3D graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataLabelling ({graphcontrol}, series, datapoint, value)

Return value Returns 1 if it succeeds and -1 if an error occurs. If any argument’s value is null,
SetDataLabelling returns null.

Argument Description

controlname The name of the graph from which you want data, or the name
of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control.

seriesnumber The number that identifies the series in which you want to
label a data point.

datapoint The data point that you want to label.

value Indicates whether to label the data with its value.
1030 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage SetDataLabelling is used to indicate whether or not to label the data with the
numbers for DirectX 3D Area, Bar, Col, or Line graphs. You cannot use this
method with DirectX 3D Pie graphs.

Examples These statements set the series and datapoint for the graph gr_1 in the
DataWindow control dw_employee.

integer SeriesNbr, ItemNbr
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &

SeriesNbr, ItemNbr)

// Set data label
dw_employee.SetDataLabelling("gr_1", &

SeriesNbr, ItemNbr, true)

These statements set the series and datapoint for the graph gr_1.

integer SeriesNbr, ItemNbr
grObjectType clickedtype

clickedtype = gr_1.ObjectAtPointer(SeriesNbr, &
ItemNbr)

gr_1.SetDataLabeling(SeriesNbr, ItemNbr, true)

See also GetDataLabelling
GetSeriesLabelling
SetSeriesLabelling

SetDataPieExplode
Description Explodes a pie slice in a pie graph. The exploded slice is moved away from the

center of the pie, which draws attention to the data. You can explode any
number of slices of the pie.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls
PowerScript Reference 1031

SetDataPieExplode
Syntax controlname.SetDataPieExplode ({ graphcontrol, } seriesnumber,
datapoint, percentage)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataPieExplode returns null.

Usage If the graph is not a pie graph, the function has no effect.

Examples This example explodes the pie slice under the pointer to 50% when the user
double-clicks within the graph. The code checks the property GraphType to
make sure the graph is a pie graph. It then finds out whether the user clicked on
a pie slice by checking the series and data point values set by ObjectAtPointer.
The script is for the DoubleClicked event of a graph object:

integer series, datapoint
grObjectType clickedtype
integer percentage

percentage = 50
IF (This.GraphType <> PieGraph! AND &

This.GraphType <> Pie3D!) THEN RETURN
clickedtype = This.ObjectAtPointer(&

series, datapoint)
IF (series > 0 and datapoint > 0) THEN

This.SetDataPieExplode(series, datapoint, &
percentage)

END IF

See also GetDataPieExplode

Argument Description

controlname The name of the graph in which you want to explode a pie
slice, or the name of the DataWindow containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to explode a pie slice.

seriesnumber The number that identifies the series.

datapoint The number of the data point (that is, the pie slice) to be
exploded.

percentage A number between 0 and 100 which is the percentage of the
radius that the pie slice is moved away from the center. When
percentage is 100, the tip of the slice is even with the
circumference of the pie’s circle.
1032 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetDataStyle
Specifies the appearance of a data point in a graph. The data point’s series has
appearance settings that you can override with SetDataStyle.

Syntax 1 For setting a data point’s colors
Description Specifies the colors of a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataStyle ({ graphcontrol, } seriesnumber,
datapointnumber, colortype, color)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataStyle returns null.

To Use

Set the data point’s colors Syntax 1

Set the line style and width for the data point Syntax 2

Set the fill pattern or symbol for the data point Syntax 3

Argument Description

controlname The name of the graph in which you want to set the color of a
data point, or the DataWindow containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the color of a
data point.

seriesnumber The number of the series in which you want to set the color of
a data point.

datapointnumber The number of the data point for which you want to set the
color.

colortype A value of the grColorType enumerated datatype specifying
the aspect of the data point for which you want to set the color.
Values are:

• Foreground! – Text color

• Background! – Background color

• LineColor! – Line color

• Shade! – Shade (for graphics that are three-dimensional or
have solid objects)

color A long whose value is the new color for colortype.
PowerScript Reference 1033

SetDataStyle
Usage To change the appearance of a series, use SetSeriesStyle. The settings you make
for the series are the defaults for all data points in the series.

To reset the color of individual points back to the series color, call
ResetDataColors.

For a graph in a DataWindow, you can specify the appearance of a data point
in the graph before PowerBuilder draws the graph. To do so, define a user event
for pbm_dwngraphcreate and call SetDataStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Using SetDataStyle with DirectX 3D Graphs
You can only set the color for the foreground. Background, line color, and
shade are not supported.

Examples This example checks the background color for data point 6 in the series named
Salary in the graph gr_emp_data. If it is red, SetDataStyle sets it to black:

long color_nbr
integer SeriesNbr
// Get the number of the series
SeriesNbr = gr_emp_data.FindSeries("Salary")
// Get the background color
gr_emp_data.GetDataStyle(SeriesNbr, 6, &

Background!, color_nbr)
// If color is red, change it to black
IF color_nbr = 255 THEN &

gr_emp_data.SetDataStyle(SeriesNbr, 6, &
Background!, 0)

These statements set the text (foreground) color to black for data point 6 in the
series named Salary in the graph gr_depts in the DataWindow control
dw_employees:

integer SeriesNbr
// Get the number of the series
SeriesNbr = &

dw_employees.FindSeries("gr_depts" , "Salary")
// Set the background color
dw_employees.SetDataStyle("gr_depts" , SeriesNbr, &

6, Background!, 0)

See also GetDataStyle, GetSeriesStyle, ResetDataColors, SeriesName, SetSeriesStyle
1034 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For the line associated with a data point
Description Specifies the style and width of a data point’s line in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataStyle ({ graphcontrol, } seriesnumber,
datapointnumber, linestyle, linewidth)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataStyle returns null.

Usage To change the appearance of a series, use SetSeriesStyle. The settings you make
for the series are the defaults for all data points in the series.

For a graph in a DataWindow, you can specify the appearance of a data point
in the graph before PowerBuilder draws the graph. To do so, define a user event
for pbm_dwngraphcreate and call SetDataStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Argument Description

controlname The name of the graph in which you want to set the line style
and width of a data point, or the name of the DataWindow
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the line style
and width.

seriesnumber The number of the series in which you want to set the line style
and width of a data point.

datapointnumber The number of the data point for which you want to set the line
style and width.

linestyle A value of the LineStyle enumerated datatype. Values are:

Continuous!
Dash!
DashDot!
DashDotDot!
Dot!
Transparent!

linewidth An integer whose value is the width of the line in pixels.
PowerScript Reference 1035

SetDataStyle
Examples This example checks the line style used for data point 10 in the series named
Costs in the graph gr_computers in the DataWindow control dw_equipment. If
it is dash-dot, the SetDataStyle sets it to continuous. The line width stays the
same:

integer SeriesNbr, line_width
LineStyle line_style

// Get the number of the series
SeriesNbr = dw_equipment.FindSeries(&

"gr_computers", "Costs")

// Get the current line style
dw_equipment.GetDataStyle("gr_computers", &

SeriesNbr, 10, line_style, line_width)

// If the pattern is dash-dot, change to continuous
IF line_style = DashDot! THEN &

dw_equipment.SetDataStyle("gr_computers", &
SeriesNbr, 10, Continuous!, line_width)

See also GetDataStyle
GetSeriesStyle
SeriesName
SetSeriesStyle

Syntax 3 For the fill pattern and symbol of a data point
Description Specifies the fill pattern and symbol for a data point in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataStyle ({ graphcontrol, } seriesnumber,
datapointnumber, enumvalue)

Argument Description

controlname The name of the graph in which you want to set the
appearance of a data point, or the name of the DataWindow
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the appearance.
1036 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataStyle returns null.

Usage To change the appearance of a series, use SetSeriesStyle. The settings you make
for the series are the defaults for all data points in the series.

For a graph in a DataWindow, you can specify the appearance of a data point
in the graph before PowerBuilder draws the graph. To do so, define a user event
for pbm_dwngraphcreate and call SetDataStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

seriesnumber The number of the series in which you want to set the
appearance of a data point.

datapointnumber The number of the data point for which you want to set the
appearance.

enumvalue An enumerated datatype specifying the appearance setting for
the data point. You can specify a FillPattern or grSymbolType
value.

To change the fill pattern, use a FillPattern value:

Bdiagonal! – Lines from lower left to upper right
Diamond!
Fdiagonal! – Lines from upper left to lower right
Horizontal!
Solid!
Square!
Vertical!

To change the symbol type, use a grSymbolType value:

NoSymbol!
SymbolHollowBox!
SymbolX!
SymbolStar!
SymbolHollowUpArrow!
SymbolHollowCircle!
SymbolHollowDiamond!
SymbolSolidDownArrow!
SymbolSolidUpArrow!
SymbolSolidCircle!
SymbolSolidDiamond!
SymbolPlus!
SymbolHollowDownArrow!
SymbolSolidBox!

Argument Description
PowerScript Reference 1037

SetDataStyle
Using SetDataStyle with DirectX 3D Graphs
You cannot use a fill pattern or specify specific symbols for the data point.

Examples This example checks the fill pattern used for data point 10 in the series named
Costs in the graph gr_product_data. If it is diamond, then SetDataStyle changes
it to solid:

integer SeriesNbr
FillPattern data_pattern

// Get the number of the series
SeriesNbr = gr_product_data.FindSeries("Costs")

// Get the current fill pattern
gr_product_data.GetDataStyle(SeriesNbr, 10, &

data_pattern)

// If the pattern is diamond, change it to solid
IF data_pattern = Diamond! THEN &

gr_product_data.SetDataStyle(SeriesNbr, &
10, Solid!)

See also GetDataStyle
GetSeriesStyle
SeriesName
SetSeriesStyle
1038 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetDataTransparency
Description Sets the tranparency percentage of a data point in a series in a DirectX 3D

graph (those with 3D rendering).

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetDataTransparency ({ graphcontrol, } seriesnumber,
datapoint, transparency)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDataTransparency returns null.

Usage SetDataTransparency sets the transparency value for a data point in any
DirectX 3D graph (those with 3D rendering).

Examples These statements set the transparency percentage to 50% for the clicked data
in the graph gr_1 in the DataWindow control dw_employee:

integer SeriesNbr, ItemNbr, TransNbr
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &

SeriesNbr, ItemNbr)

//The following statement sets Transparency to 50%
TransNbr = 50

dw_employee.SetDataTransparency("gr_1", &
SeriesNbr , ItemNbr, TransNbr)

Argument Description

controlname The name of the graph in which you want to set data, or the
name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to set the tranparency
value of a data point.

seriesnumber The number that identifies the series in which you want to set
data.

datapoint The number of the data point for which you want to set a
transparency value.

transparency Integer value for percent transparency. A value of 0 means that
the data point is opaque and a value of 100 means that it is
completely transparent.
PowerScript Reference 1039

SetDateLimits
These statements set the transparency percentage to 50% for the clicked data
point in the graph gr_employee.

integer SeriesNbr, ItemNbr, TransNbr
grObjectType clickedtype

clickedtype = gr_employee.ObjectAtPointer(&
SeriesNbr, ItemNbr)

TransNbr = 50

gr_employee.SetDataTransparency(SeriesNbr, &
ItemNbr, TransNbr)

See also FindSeries
GetDataTransparency
GetSeriesTransparency
SetSeriesTransparency

SetDateLimits
Description Sets the maximum and minimum date limits for the calendar.

Applies to MonthCalendar control

Syntax controlname.SetDateLimits (min, max)

Return value Integer. Returns 0 when both limits are set successfully and one of the
following negative values otherwise:

-1 Invalid arguments

-2 Unknown failure

Usage Use the SetDateLimits function to set minimum and maximum dates.
SetDateLimits uses the maximum date as the minimum date and vice versa if
you set a maximum date that is earlier than the minimum date.

Argument Description

controlname The name of the MonthCalendar control for which you want to set
the date limits

min A date value to be set as the minimum date that can be referenced
or displayed in the calendar

max A date value to be set as the maximum date that can be referenced
or displayed in the calendar
1040 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example sets the minimum and maximum dates for a control using today’s
date as the minimum date and a date specified in an EditMask control as the
maximum date:

integer li_return
Date mindate, maxdate

mindate = Today()
maxdate = Date(em_1.Text)
li_return = mc_1.SetDateLimits(mindate, maxdate)

See also GetDateLimits

SetDropHighlight
Description Highlights the specified item as the drop target.

Applies to TreeView controls

Syntax treeviewname.SetDropHighlight (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use in a drag operation to specify a drop target.

Examples This example uses the TreeView Clicked event to set the current TreeView item
as the drop target:

handle = tv_list.FindItem(CurrentTreeItem!,0)
tv_list.SetDropHighlight(handle)

See also FindItem
SetItem

Argument Description

treeviewname The TreeView control in which you want to highlight an item
as the target of a drag-and-drop operation

itemhandle The handle of the item you want to highlight as the target in a
drag-and-drop operation
PowerScript Reference 1041

SetDynamicParm
SetDynamicParm
Description Specifies a value for an input parameter in the DynamicDescriptionArea that is

used in an SQL OPEN or EXECUTE statement.

Only for Format 4 dynamic SQL
Use this function only in conjunction with Format 4 dynamic SQL statements.

Syntax DynamicDescriptionArea.SetDynamicParm (index, value)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetDynamicParm returns null.

Usage SetDynamicParm specifies a value for the parameter identified by index in the
array of input parameter descriptors in DynamicDescriptionArea.

Use SetDynamicParm to fill the parameters in the input parameter descriptor
array in the DynamicDescriptionArea before executing an OPEN or EXECUTE
statement.

Examples This statement fills the first input parameter descriptor in SQLDA with the
string MA:

SQLDA.SetDynamicParm(1, "MA")

This statement fills the fourth input parameter descriptor in SQLDA with the
number 01742:

SQLDA.SetDynamicParm(4, "01742")

This statement fills the third input parameter descriptor in SQLDA with the
date 12-31-2002:

SQLDA.SetDynamicParm(3, "12-31-2002")

See also GetDynamicDate, GetDynamicDateTime, GetDynamicNumber,
GetDynamicString, GetDynamicTime, Using dynamic SQL, OPEN Cursor

Argument Description

DynamicDescriptionArea The name of the DynamicDescriptionArea, usually
SQLDA.

index An integer identifying the input parameter descriptor
in which you want to set the data. Index must be less
than or equal to the value in NumInputs in
DynamicDescriptionArea.

value The value you want to use to fill the input parameter
descriptor identified by index.
1042 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetFirstVisible
Description Sets the specified item as the first visible item in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.SetFirstVisible (itemhandle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use to give focus to the TreeView item specified by the itemhandle and scroll
it to the top of the TreeView control (or as close to the top as the item list
allows; if the item is the last item in a TreeView control, for example, it cannot
scroll to the top of the control).

Examples This example sets the current TreeView item as the first item visible in a
TreeView control:

long ll_tvi
int li_tvret

ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)

li_tvret = tv_list.SetFirstVisible(ll_tvi)
IF li_tvret = -1 THEN

MessageBox("Warning!" , "Didn't Work")
END IF

See also FindItem
SetItem

Argument Description

treeviewname The TreeView control in which you want to identify an item as the
first visible item

itemhandle The handle of the item you are identifying as the first visible item
in the TreeView control
PowerScript Reference 1043

SetFocus
SetFocus
Description Sets the focus on the specified object or control.

Applies to Any object

Syntax objectname.SetFocus ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If objectname is null,
SetFocus returns null.

Usage If objectname is a ListBox, SetFocus displays the focus rectangle around the
first item. If objectname is a DropDownListBox, SetFocus highlights the edit
box. To select an item in a ListBox or DropDownListBox, use SelectItem.

Drawing objects cannot have focus. Therefore, you cannot use SetFocus to set
focus to in a Line, Oval, Rectangle, or RoundRectangle.

Examples This statement in the script for the Open event in a window moves the focus to
the first item in lb_Actions:

lb_Actions.SetFocus()

See also SetItem
SetState
SetTop

Argument Description

objectname The name of the object or control in which you want to set the focus
1044 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetGlobalProperty
Description Sets the value of an SSL global property.

Applies to SSLServiceProvider object

Syntax sslserviceprovider.SetGlobalProperty (property, value)

Return value Long. Returns one of the following values:

0 Success
-1 Unknown property
-2 Property is read only
-3 Invalid value for property
-10 An EAServer or SSL failure has occurred
-11 Bad argument list

Usage The SetGlobalProperty function allows PowerBuilder clients that connect to
EAServer through SSL to set global SSL properties.

Any properties set using the SSLServiceProvider interface are global to all
connections made by the client to all EAServer servers. You can override any
of the global settings at the connection level by specifying them as options to
the Connection object or JaguarORB object.

Only clients can get and set SSL properties. Server components do not have
permission to use the SSLServiceProvider service.

Examples The following example shows the use of the SetGlobalProperty function to set
the value of the cacheSize property to 300:

SSLServiceProvider ssl
long rc
...
this.GetContextService("SSLServiceProvider", ssl)
rc = ssl.SetGlobalProperty("cacheSize", "300")
...

See also GetGlobalProperty

Argument Description
sslserviceprovider Reference to the SSLServiceProvider service instance.
property The name of the SSL property you want to set.

For a complete list of supported SSL properties, see your
EAServer documentation or the online Help for the
Connection object.

value String value of the SSL property.
PowerScript Reference 1045

SetItem
SetItem
Sets the value of an item in a list.

For use with DataWindows and DataStores, see the SetItem method for
DataWindows in the DataWindow Reference or the online Help.

Syntax 1 For ListView controls
Description Sets data associated with a ListView item to the property values you specify in

a ListViewItem variable.

Applies to ListView controls

Syntax listviewname.SetItem (index, { column }, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage You can set properties for any ListView item with this syntax. If you do not
specify a column, SetItem sets properties for the first column of an item. Only
report views display multiple columns.

To add items to a ListView control, use the AddItem function. To add columns
to a ListView control, use AddColumn. To set display values for the columns of
a ListView item, use Syntax 2.

If you want to set column properties, such as alignment or width, use
SetColumn. These column properties are independent of the ListViewItem
objects.

To set the values of Use

A ListView control item Syntax 1

A ListView control item and column Syntax 2

A TreeView control item Syntax 3

Argument Description

listviewname The ListView for which you are setting item properties

index The index number of the item for which you are setting properties

column The index number of the column of the item for which you want to
set properties

item The ListViewItem variable containing property values you want to
assign to a ListView item
1046 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
To change pictures and other property values associated with a ListView item,
use GetItem, change the property values, and use SetItem to apply the changes
back to the ListView.

Examples This example uses SetItem to change the state picture index for the selected
lv_list ListView item:

listviewitem lvi_1

lv_list.GetItem(lv_list.SelectedIndex(), lvi_1)
lvi_1.StatePictureIndex = 2
lv_list.SetItem(lv_list.SelectedIndex () , lvi_1)

See also AddColumn
AddItem
GetItem
SetColumn

Syntax 2 For ListView controls
Description Sets the value displayed for a particular column of a ListView item.

Applies to ListView control

Syntax listviewname.SetItem (index, column, label)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage You must include the column number as an argument, even if you are only
assigning values to a single-column ListView control. To specify the properties
for a ListView item, use Syntax 1.

Argument Description

listviewname The ListView control for which you are setting a display value

index The index number of the item for which you are setting a display
value

column The index number of the column for which you want to set a display
value

label The string value or variable which you are assigning to the specified
column of the specified ListView item
PowerScript Reference 1047

SetItem
Examples This example assigns display values to three columns in a report view for three
lv_list ListView items:

listviewitem l_lvi
integer li_count, li_index

FOR li_index = 1 to 3
li_count=li_count+1
lv_1ist.AddItem("Category " + String(li_index),

1)
NEXT

lv_list.AddColumn("Composition", Left! , 860)
lv_list.AddColumn(" Album", Left! , 610)
lv_list.AddColumn(" Artist", Left! , 710)

lv_list.SetItem(1 , 1 , "St. Thomas")
lv_list.SetItem(1 , 2 , "The Bridge")
lv_list.SetItem(1 , 3 , "Sonny Rollins")

lv_list.SetItem(2 , 1 , "So What")
lv_list.SetItem(2 , 2 , "Kind of Blue")
lv_list.SetItem(2 , 3 , "Miles Davis")

lv_list.SetItem(3 , 1 , "Goodbye, Porkpie Hat")
lv_list.SetItem(3 , 2 , "Mingus-Ah-Um")
lv_list.SetItem(3 , 3 , "Charles Mingus")

See also GetItem
1048 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 3 For TreeView controls
Description Sets the data associated with a specified item.

Applies to TreeView controls

Syntax treeviewname.SetItem (itemhandle, item)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Typically, you would call GetItem first, edit the data, and then call SetItem to
reflect your changes in the TreeView control.

Examples This example uses the ItemExpanding event to change the picture index and
selected picture index of the current TreeView item:

treeviewitem l_tvi
long ll_tvi

ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)
tv_list.GetItem(ll_tvi , l_tvi)
l_tvi.PictureIndex = 5
l_tvi.SelectedPictureIndex = 5

tv_list.SetItem(ll_tvi, l_tvi)

See also GetItem

Argument Description

treeviewname The name of the TreeView control in which you want to set the
data for a specific item

itemhandle The handle associated with the item you want to change

item The TreeView item you want to change
PowerScript Reference 1049

SetLevelPictures
SetLevelPictures
Description Sets the picture indexes for all items at a particular level.

Applies to TreeView controls

Syntax treeviewname.SetLevelPictures (level, pictureindex, selectedpictureindex,
statepictureindex, overlaypictureindex)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage To set pictures for individual items, call GetItem, set the picture properties, and
call SetItem to copy the changes to the TreeView. You must specify a value for
all four indexes. To display nothing, specify 0.

Examples This example sets the pictures for TreeView level 3, then inserts two new
TreeView items:

long ll_tvi, ll_child, ll_child2
int li_pict, li_level
treeviewitem l_tvi

li_level = 6
tv_list.SetLevelPictures(3, li_level, li_level, &

li_level, li_level)

ll_tvi = tv_list.FindItem(RootTreeItem! , 0)
ll_child = tv_list.InsertItemLast(ll_tvi, "Walton",2)
ll_child2 = tv_list.InsertItemLast(ll_child, &

"Spitfire Suite", li_level)
tv_list.ExpandItem(ll_child)
tv_list.SetFirstVisible(ll_child)

See also AddPicture

Argument Description

treeviewname The TreeView control in which you want to set the
pictures for a given TreeView level

level The TreeView level for which you are setting the picture
indexes

pictureindex An index from the regular picture list specifying the
picture to be displayed when the item is not selected

selectedpictureindex An index from the regular picture list specifying the
picture to be displayed when the item is selected

statepictureindex An index from the state picture list specifying the picture
to be displayed to the left of the regular picture

overlaypictureindex An index from the overlay picture list specifying the
picture to be displayed on top of the regular picture
1050 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetLibraryList
Description Changes the files in the library search path of the application at runtime.

Obsolete syntax
You can still use the old syntax with the name of the application object before
the function call: applicationname.SetLibraryList (filelist).

Syntax SetLibraryList (filelist)

Return value Integer. Returns 1 if it succeeds. If an error occurs, it returns:

-1 The application is being run from PowerBuilder, rather than from a
standalone executable.

-2 A currently instantiated object is in a library that is not on the new list. If
any argument’s value is null, SetLibraryList returns null.

Usage When your application needs to load an object, PowerBuilder searches for the
object first in the executable file and then in the dynamic libraries specified for
the application. You can specify a different list of library files from those
specified in the executable with SetLibraryList.

To avoid problems that can occur when components share resources, you
should use AddToLibraryList instead of SetLibraryList to add additional PBD
files to the search list of a component deployed to EAServer.

Calling SetLibraryList replaces the list of library files specified in the executable
with a new list of files. For example, you might use SetLibraryList to configure
the library list for an application containing many subsystems. You should
always use GetLibraryList to return the current library search path and then
append any files you want to add to this list. You can then pass the complete
list in the filelist argument.

PowerBuilder cannot check whether the libraries you specify are appropriate
for the application. It is up to you to make sure the libraries contain the objects
that the application needs.

The executable file is always first in the library search path. If you include it in
filelist, it is ignored.

Argument Description

filelist A comma-separated list of file names. Specify the full file
name with its extension. If you do not specify a path,
PowerBuilder uses the system’s search path to find the file.
PowerScript Reference 1051

SetMask
If you are running your application in the PowerBuilder development
environment, this function has no effect.

Examples This example specifies different files in the library search path based on the
selected application subsystem:

string ls_list

ls_list = getlibrarylist ()
CHOOSE CASE configuration

CASE "Config1"
SetLibraryList(ls_list + ",lib1.pbd, lib2.pbd, &

lib5.pbd")
CASE "Config2"

SetLibraryList(ls_list + ",lib1.pbd, lib3.pbd, &
lib4.pbd")

END CHOOSE

See also AddToLibraryList
GetLibraryList

SetMask
Description Sets the edit mask and edit mask datatype for an EditMask control.

Applies to EditMask controls

Syntax editmaskname.SetMask (maskdatatype, mask)

Argument Description

editmaskname The name of the EditMask for which you want to specify the
edit mask.

maskdatatype A MaskDataType enumerated datatype indicating the
datatype of the mask. Values are:

• DateMask!

• DateTimeMask!

• DecimalMask!

• NumericMask!

• StringMask!

• TimeMask!

mask A string whose value is the edit mask.
1052 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetMask returns null.

Usage In an edit mask, a fixed set of characters represent a type of character that the
user can enter. In addition, punctuation controls the format of the entered value.
Each mask datatype has its own set of valid characters.

For example, the following is a mask of type string for a telephone number. The
EditMask control displays the punctuation (the parentheses and dash). The
pound signs represent the digits that the user enters. The user cannot enter any
characters other than digits.

(###) ###-####

For help in specifying a valid mask, see the Edit Mask Style dialog box for an
EditMask control in the Window painter. A ListBox in the dialog box shows
the meaning of the special mask characters for each datatype, as well as masks
that have already been defined.

If you are specifying the mask for a number, the format must use U.S. notation.
That is, comma represents the thousands delimiter and a period represents the
decimal place. At runtime, the locally correct symbols are displayed.

You cannot use SetMask to change the maskdatatype if the
DropDownCalendar, Spin, or UseCodeTable properties of the EditMask
control are set to true. If any of these properties is set to true, set the property
value to false before calling SetMask, then reset the value to true.

You cannot use color for edit masks as you can for display formats.

Examples These statements set the mask for the EditMask password_mask to the mask in
pword_code. The mask requires the user to enter a digit followed by four
characters of any type:

string pword_code
pword_code = "#xxxx"
password_mask.SetMask(StringMask!, pword_code)

This statement sets the mask for the EditMask password_mask to a 5-digit
numeric mask:

password_mask.SetMask(NumericMask!, "#####")
PowerScript Reference 1053

SetMessage
SetMessage
Description Sets an error message for an object of type Throwable.

Syntax throwableobject.SetMessage (newMessage)

Return value None

Usage Use to set a customized message on a user-defined exception object. Although
it is possible to use SetMessage to modify the preset error messages for
RuntimeError objects, this is not recommended.

Examples This statement is an example of a message set on a user object of type
Throwable:

MyException.SetMessage ("MyException thrown")

This example uses SetMessage in the try-catch block for a user-defined
function that takes an input value from one text box and outputs the arccosine
for that value into another text box:

uo_exception lu_error
Double ld_num
ld_num = Double (sle_1.text)

TRY
sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

lu_error = Create uo_exception
lu_error.SetMessage("Value must be between -1" +&

"and 1")
Throw lu_error

END TRY

See also GetMessage

Argument Description

throwableobject Object of type Throwable for which you want to set an error
message.

newMessage String containing the message you want to set. Must be
surrounded by quotation marks.
1054 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetMicroHelp
Description Specifies the text to be displayed in the MicroHelp box in an MDI frame

window.

Applies to MDI frame windows

Syntax windowname.SetMicroHelp (string)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetMicroHelp returns null.

Usage The Tag property of a control is a useful place to store MicroHelp text. When
the control gets the focus, you can use SetMicroHelp in the GetFocus event
script to display the Tag property’s text in the MicroHelp box on the window
frame.

For menus, PowerBuilder automatically displays the MicroHelp text you have
specified in the Menu painter when the user selects the menu item. You can use
SetMicroHelp in the script for a menu item’s Selected event to override the
predefined MicroHelp and display some other text in the MicroHelp box.
SetMicroHelp does not change the predefined MicroHelp text.

Examples This statement changes the MicroHelp displayed in the frame of W_New to
Delete selected text:

W_New.SetMicroHelp("Delete selected text")

In this example, the string Close the Window is a tag value associated with the
CommandButton cb_done in W_New. In the script for the GetFocus event in
cb_done, this statement displays Close the Window as MicroHelp in W_New
when cb_done gets focus:

W_New.SetMicroHelp(This.Tag)

Argument Description

windowname The name of the MDI frame window with MicroHelp for
which you want to set the MicroHelp text

string A string whose value is the new MicroHelp text
PowerScript Reference 1055

SetNewMobiLinkPassword
SetNewMobiLinkPassword
Description Sets a new password for the current MobiLink user.

Applies to MLSynchronization, MLSync, and ULSync controls

Syntax syncObject.SetNewMobiLinkPassword (newPW)

Return value Integer. Returns 1 for succes and -1 for failure.

Usage SetNewMobiLinkPassword uses the properties in the synchronization object to
generate a typical dbmlsync command line. The command line includes the -pi
(ping) option as well as the -mn option to set the new MobiLink password
(newPW). The new password will not be set if any of the required properties
(Datasource, Publication, MLServerVersion, or MLUser) are missing from the
synchronization object.

See also GetCommandString
SetParm
SetSyncRegistryProperties
Synchronize

Argument Description

syncObject The name of the synchronization object that starts a connection to
the synchronization server.

newPW A string consisting of the new password that you want to set for
MobiLink.
1056 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetNull
Description Sets a variable to null. The variable can be any datatype except for a structure

or autoinstantiated object.

Syntax SetNull (anyvariable)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetNull returns null.

Usage Use SetNull to set a variable to null before writing it to the database. Note that
PowerBuilder does not initialize variables to null; it initializes variables to the
default initial value for the datatype unless you specify a value when you
declare the variable.

If you assign a value to a variable whose datatype is Any and then set the
variable to null, the datatype of the null value is still the datatype of the assigned
value. You cannot untype an Any variable with the SetNull function.

Examples This statement sets the variable Salary to null:

SetNull(Salary)

See also IsNull

Argument Description

anyvariable The variable you want to set to null
PowerScript Reference 1057

SetOverlayPicture
SetOverlayPicture
Description Puts an image in the control’s image list into an overlay image list.

Applies to ListView and TreeView controls

Syntax controlname.SetOverlayPicture (overlayindex, imageindex)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage An overlay picture must have the same height and width as the picture it is used
to overlay. The color specified in the SetPictureMask property when the picture
is inserted becomes transparent when the picture is used as an overlay, allowing
part of the original image to be visible beneath the overlay.

The overlay list acts as a pointer back to the source image in the regular picture
lists. If you delete an image that is also used in the overlay list, the displayed
overlay pictures are affected too.

Argument Description

controlname The name of the ListView or TreeView control to which you want to
add an overlay image.

overlayindex The index number of the overlay picture in the overlay image list. The
overlay image list is a 1-based array. Overlayindex must be 1 (for the
first image), a previously designated index (replacing an image), or 1
greater than the current largest index (adding another image).
SetOverlayPicture fails if you specify an index that creates gaps in the
array.

imageindex The index number of an image in the control’s main image list. For
ListViews, both the large and small pictures at that index become
overlay images. The image is still available for use as an item’s main
image.
1058 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example designates overlay images in a ListView control. The same
picture is used for large and small images:

// Set up the overlay images
integer index
index = lv_1.AddLargePicture("shortcut.ico")
index = lv_1.AddSmallPicture("shortcut.ico")
lv_1.SetOverlayPicture(1, index)
index = lv_1.AddLargePicture("not.ico")
index = lv_1.AddSmallPicture("not.ico")
lv_1.SetOverlayPicture(2, index)

// Assign the second overlay image to the first item
listviewitem lvi
integer i
i = lv_1.GetItem(1, lvi)
lvi.OverlayPictureIndex = 2
i = lv_1.SetItem(1, lvi)

This example designates the first picture in the TreeView’s main image list as
the first overlay picture. The picture was added to the main image list on the
TreeView’s property sheet:

tv_list.SetOverlayPicture(1, 1)

This code in the TreeView’s Clicked event assigns the overlay image to the
clicked item:

treeviewitem tvi
tv_list.GetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
tv_list.SetItem(handle, tvi)
PowerScript Reference 1059

SetParagraphSetting
SetParagraphSetting
Description Sets the size of the indentation, left margin, or right margin of the paragraph

containing the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtecontrol.SetParagraphSetting (whichsetting, value)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument is null,
it returns null.

Usage Each paragraph has indentation, left margin, and right margin settings. To set
all three for the current paragraph, call SetParagraphSetting three times.

Examples This example sets the indentation setting for the current paragraph to a quarter
inch:

ll_indent = rte_1.SetParagraphSetting(Indent!, 250)

This example sets the left margin for the current paragraph to an inch:

rte_1.SetParagraphSetting(LeftMargin!, 1000)

See also GetParagraphSetting
SetAlignment
SetSpacing
SetTextColor
SetTextStyle

Argument Description

rtecontrol The name of the control for which you want paragraph information.

whichsetting A value of the ParagraphSetting enumerated datatype specifying
the setting you want to change. Values are:

• Indent! – Returns the indentation of the paragraph

• LeftMargin! – Returns the left margin of the paragraph

• RightMargin! – Returns the right margin of the paragraph

value A long whose value is the width of the margin or indent in units of
1000ths of an inch. For example, a value of 500 specifies a width of
half an inch.
1060 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetParm
Description Sets the parameters to send to the MobiLink synchronization server.

Applies to MLSynchronization, MLSync, and ULSync controls

Syntax SyncObject.SetParm (syncparm)

Return value Integer. Returns 1 for success and -1 for failure.

Examples The code fragment below creates an instance of an MLSync object and
programmatically populates all of the necessary properties—as well as some
optional properties—using an instance of the system SyncParm structure.
Then it calls the Synchronize function to start the database synchronization.

SyncParm Parms
MLSync mySync
Long rc

mySync = CREATE MLSync
mySync.MLServerVersion = 9// required property
mySync.Publication = 'salesapi'// required property
mySync.UseLogFile = TRUE// optional
mySync.LogFileName = "C:\temp\sync.log"// optional
mySync.Datasource = 'salesdb_remote'// required
Parms.MLUser = '50'// required
Parms.MLPass = 'xyz123'// required

//The following values are required if they are not
//set by the DSN
Parms.DBUser = 'dba'
Parms.DBPass = 'sql'

// Apply the property values to the sync object
mySync.SetParm(Parms)
// Launch the synchronization process
rc = mySync.Synchronize()
destroy mySync

Argument Description

syncObject The name of the synchronization object.

syncparm A structure of type SyncParm containing property values that can
be set as synchronization parameters.
PowerScript Reference 1061

SetPicture
Maintaining property settings in the MLSync object
Normally when you call SetParm(SyncParm) from an MLSync object, you
automatically override any authentication values (AuthenticateParms,
Datasource, DBUser, DBPass, EncryptionKey, MLUser, and MLPass) that you
set for properties of the MLSync object—even when the value of a particular
SyncParm property is an empty string. However, if you call SetNull to set a
particular property of the SyncParm object to NULL before you call SetParm,
the property value in the MLSync object will be used instead.

See also GetCommandString
SetNewMobiLinkPassword
SetSyncRegistryProperties

SetPicture
Description Assigns an image stored in a blob to be the image in a Picture control.

Applies to Picture controls

Syntax picturecontrol.SetPicture (bimage)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetPicture returns null.

Usage If you use FileRead to get the bitmap image from a file, remember that the
FileRead function can read a maximum of 32,765 bytes at a time. To check the
length of a file, call FileLength. If the file is over 32,765 bytes, you can call
FileRead more than once and concatenate the return values, or you can call
FileReadEx.

For Unicode files and files that you convert to Unicode, you must make sure
that the file length value is an even number. Otherwise FileRead or FileReadEx
cannot parse the entire file.

Argument Description

picturecontrol The name of a Picture control in which you want to set the bitmap.

bimage A blob containing the new bitmap. bimage must be a valid picture
in bitmap (BMP), Compuserve Graphics Interchange Format
(GIF), Joint Photographic Experts Group (JPEG), run-length
encoded (RLE), or Windows Metafile (WMF).
1062 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples These statements allow the user to select a file and then open the file and set
the Picture control p_1 to the bitmap in the selected file:

integer fh, ret
blob Emp_pic
string txtname, named
string defext = "BMP"
string Filter = "bitmap Files (*.bmp), *.bmp"
ret = GetFileOpenName("Open Bitmap", txtname, &

named, defext, filter)
IF ret = 1 THEN

fh = FileOpen(txtname, StreamMode!)
IF fh <> -1 THEN

FileRead(fh, Emp_pic)
FileClose(fh)
p_1.SetPicture(Emp_pic)

END IF
END IF

SetPointer
Sets the mouse pointer to a specified shape.

Syntax 1 System-defined shape
Description Sets the mouse pointer to a specified system-defined shape.

Syntax SetPointer (type)

To Use

Specifies a system-defined designated shape Syntax 1

Specifies a file-defined designated shape Syntax 2
PowerScript Reference 1063

SetPointer
Return value Pointer. Returns the enumerated type of the pointer it replaced so the script can
restore it, if necessary. If type is null, SetPointer returns null.

Usage Use SetPointer to display an hourglass at the beginning of a script when the
script will take a long time to execute. The pointer remains set until you change
it again in the script or the script terminates.

Restoring the arrow pointer
The pointer automatically changes back to an arrow when the script finishes
executing. You do not have to change it back to an arrow.

In PowerBuilder’s painters, you can specify the pointer shape that
PowerBuilder displays when the user moves the pointer over a window, a
control, or specific parts of a DataWindow object. The available shapes include
the stock pointers listed above, as well as any custom cursor files you have.

Examples This statement sets the pointer to the hourglass shape:

SetPointer(HourGlass!)

This example saves the old pointer and restores it when a long activity is
completed:

pointer oldpointer // Declares a pointer variable
oldpointer = SetPointer(HourGlass!)
... // Performs some long activity
SetPointer(oldpointer)

Argument Description

type A value of the Pointer enumerated datatype indicating the type of
pointer you want. Values are:

AppStarting!
Arrow!
Cross!
Beam!
Help!
HourGlass!
Hyperlink!
Icon!
None!
Size!
SizeNS!
SizeNESW!
SizeWE!
SizeNWSE!
UpArrow!
1064 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 File-defined shape
Description Sets the mouse pointer to a specified system-defined shape.

Syntax SetPointer (shape)

Return value Pointer. Returns an enumerated type for the pointer. However, this value should
be ignored when you set the pointer with a shape from a CUR file. If shape is
null, SetPointer returns null.

SetPosition
Specifies the front-to-back position of a control in a window, a window, or an
object within a DataWindow.

Syntax 1 For positioning windows and controls in windows
Description For controls in a window, specifies the position of a control in the front-to-back

order within a window. For a window, specifies whether it always displays on
top of other open windows.

Applies to A control within a window or a window

Syntax objectname.SetPosition (position {, precedingobject })

Argument Description

shape A string reference to a CUR file specifying the pointer type that you
want to use.

To Use

Specify the front-to-back position of a control in a window, or specify
that a window should always display on top of other windows

Syntax 1

Move an object in a DataWindow to another band or to specify its front-
to-back position within a band

Syntax 2

Argument Description

objectname The name of a control for which you want to specify a location
in the front-to-back order within the window, or the name of a
window for which you want to specify whether it always
displays on top. Objectname cannot be a child window or a sheet.
PowerScript Reference 1065

SetPosition
Return value Integer. Returns 1 when it succeeds and -1 if an error occurs. If any argument’s
value is null, SetPosition returns null.

Usage The front-to-back order for controls determines which control covers another
when they overlap. If a control completely covers another control, the control
that is in back becomes inaccessible to the user.

When you specify TopMost! for more than one window, the most recently
executed SetPosition function controls which window displays on top.

Examples This statement positions cb_two on top:

cb_two.SetPosition(ToTop!)

This statement positions cb_two behind cb_three:

cb_two.SetPosition(Behind!, cb_three)

This statement makes the window w_signon the topmost window:

w_signon.SetPosition(TopMost!)

This statement makes the window w_signon no longer necessarily the topmost
window:

w_signon.SetPosition(NoTopMost!)

position A SetPosType enumerated datatype. The values you can specify
depend on whether objectname is a control or a window.

For controls, values are:

• Behind! – Position objectname behind precedingobject in the
order

• ToTop! – Position objectname on top of all other controls

• ToBottom! – Position objectname behind all other controls

For windows, values are:

• TopMost! – Always display objectname on top of all other
open windows

• NoTopMost! – Do not always display objectname on top of
all other open windows

precedingobject
(optional)

The name of the object you want to position objectname behind.
Precedingobject is required if position is Behind!.

Argument Description
1066 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For positioning objects within a DataWindow
Description Moves an object within the DataWindow to another band or changes the front-

to-back order of objects within a band.

Applies to DataWindow controls and DataStores

Syntax dwcontrol.SetPosition (objectname, band, bringtofront)

Return value Integer. Returns 1 when it succeeds and -1 if an error occurs. If any argument’s
value is null, SetPosition returns null.

Examples This statement moves oval_red in dw_rpt to the header and brings it to the front:

dw_rpt.SetPosition("oval_red", "header", TRUE)

This statement does not change the position of oval_red , but does bring it to
the front:

dw_rpt.SetPosition("oval_red", "", TRUE)

This statement moves oval_red to the footer but does not bring it to the front:

dw_rpt.SetPosition("oval_red", "footer", FALSE)

Argument Description

dwcontrol The name of the DataWindow control or DataStore containing the
object.

objectname The name of the object within the DataWindow that you want to
move. You assign names to the DataWindow objects in the
DataWindow painter.

band The name of the band or layer in which you want to position
objectname.

Layer names are background and foreground.

Band names are detail, header, footer, summary, header.#, and
trailer.#.

is the group level number. Enter the empty string ("") if you do not
want to change the band

bringtofront A boolean indicating whether you want to bring objectname to the
front within the band:

• TRUE – Bring it to the front

• FALSE – Do not bring it to the front
PowerScript Reference 1067

SetProfileString
SetProfileString
Description Writes a value in a profile file for a PowerBuilder application.

Syntax SetProfileString (filename, section, key, value)

Return value Integer. Returns 1 when it succeeds and -1 if it fails because filename is not
found or cannot be accessed. If any argument’s value is null, SetProfileString
returns null.

Usage A profile file consists of section labels, which are enclosed in square brackets,
and keys, which are followed by an equal sign and a value. By changing the
values assigned to the keys, you can specify custom settings for each
installation of your application. When you are planning your own profile file,
you select the section and key names and determine how the values are used.

For example, a profile file might contain information about the user. In the
sample below, User Info is the section name and the other values are the keys.
There is no space before and after the equal sign used in the keys or in the
section label (if you use a section name such as Section=1):

[User Info]
Name="James Smith"
JobTitle="Window Washer"
SecurityClearance=9
Password=

Call SetProfileString to store configuration information, supplied by you or the
user, in a profile file. You can call the functions ProfileInt and ProfileString to use
that information to customize your PowerBuilder application at runtime.

ProfileInt, ProfileString, and SetProfileString can read or write to files with ANSI
or UTF16-LE encoding on Windows systems, and ANSI or UTF16-BE
encoding on UNIX systems.

Argument Description

filename A string whose value is the name of the profile file. If you do not
include the full path in filename, PowerBuilder searches the DOS
path for filename.

section A string whose value is the name of a group of related values in the
profile file. If section does not exist in the file, PowerBuilder adds
it.

key A string whose value is the key in section for which you want to
specify a value. If key does not exist in section, PowerBuilder adds
it.

value A string whose value is the value you want to specify for key.
1068 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Accessing the profile file SetProfileString uses profile calls to write data to the
profile file. Consequently it does not control when the profile file is written and
closed. If you try to read data from the profile file immediately after calling
SetProfileString, the file may still be open and you will receive incomplete or
incorrect data.

To avoid this problem, you can use the PowerScript FileOpen, FileWrite, and
FileClose functions to write data to the profile file instead of using
SetProfileString. Or you can add some additional processing after the
SetProfileString call so that the profile calls have time to complete before you
try to read from the profile file.

Windows registry
SetProfileString can also be used to obtain configuration settings from the
Windows system registry. For information on how to use the system registry,
see the discussion of initialization files and the Windows registry in
Application Techniques.

Examples This statement sets the keyword Title in section Position of file
C:\PROFILE.INI to the string MGR:

SetProfileString("C:\PROFILE.INI", &
"Position", "Title", "MGR")

See also ProfileInt
ProfileString
PowerScript Reference 1069

SetRange
SetRange
Description Sets a duration for a progress bar control or sets the start and end position for

a trackbar control.

Applies to Progress bar controls

Syntax controlname.SetRange (startpos, endpos)

Return value Integer. Returns 1 if it succeeds and -1 if there is an error.

Usage The default range for the progress bar controls is 0 to 100.

Examples This statement sets a range of 1 to 10 for a progress bar control:

HProgressBar.SetRange (1, 10)

See also OffsetPos
SelectionRange
StepIt

SetRecordSet
Description Sets an ADOResultSet object to obtain its data and metadata from a passed

ADO Recordset.

Applies to ADOResultSet objects

Syntax adoresultset.SetRecordSet (adorecordsetobject)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

controlname The name of the progress bar or trackbar

startpos Integer indicating the initial position of the range

endpos Integer indicating the terminal position of the range

Argument Description

adoresultset An ADOResultSet object into which the function places the
passed ADO Recordset.

adorecordsetobject An OLEObject object that contains an ADO Recordset.
Passing an OLEObject that does not contain an ADO
Recordset generates an error.
1070 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage Use the SetRecordSet function to populate an ADOResultSet object with data
passed in an OLEObject that contains an ADO Recordset. Record sets are
returned from COM+ components as ADO Recordsets.

Examples The following example connects to a COM+ component and calls a method on
the component that returns an ADO Recordset to an OLEObject object. Then
it creates an ADOResultSet object and populates it with data from the
OLEObject using SetRecordSet:

OLEObject loo_mycomponent
OLEObject loo_ADOrecordset
ADOresultset lrs_ADOresultset
integer li_rc

loo_mycomponent = CREATE OLEObject
li_rc = loo_mycomponent.ConnectToNewObject("PB.Test")
IF li_rc <> 0 THEN

MessageBox("Connect Failed", string(li_rc))
RETURN

END IF

// Use an OLEObject to hold ADO Recordset
// returned from method on COM+ component
loo_ADOrecordset = loo_mycomponent.GetTestResult()

// Create an ADOResultSet and get its data
// from OLEObject holding passed ADO Recordset
lrs_ADOresultset = CREATE ADOResultSet
lrs_ADOresultset.SetRecordSet(loo_ADOrecordset)

See also CreateFrom method for DataWindows in the DataWindow Reference or the
online Help
GenerateResultSet method for DataWindows in the DataWindow Reference or
the online Help
GetRecordSet
SetResultSet
PowerScript Reference 1071

SetRedraw
SetRedraw
Description Controls the automatic redrawing of an object or control after each change to

its properties.

Applies to Any object except a Menu

Syntax objectname.SetRedraw (boolean)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If boolean is null,
SetRedraw returns null.

Usage By default, PowerBuilder redraws a control after each change to properties that
affect appearance. Use SetRedraw to turn off redrawing temporarily in order to
avoid flicker and reduce redrawing time when you are making several changes
to the properties of an object or control. If the window is not visible, SetRedraw
fails.

Caution
If you turn redraw off, you must turn it on again. Otherwise, problems may
result. In addition, if redraw is off and you change the Visible or Enabled
property of an object in the window, the tabbing order may be affected.

Examples This statement turns off redraw for lb_Location:

lb_Location.SetRedraw(FALSE)

If lb_Location is sorted (lb_Location.Sorted = TRUE), these statements use
SetRedraw to avoid sorting and redrawing the list of lb_Location until all the
new items have been added:

lb_Location.SetRedraw(FALSE)
lb_Location.AddItem("Atlanta")
lb_Location.AddItem("Boston")
lb_Location.AddItem("Washington")
lb_Location.SetRedraw(TRUE)
1072 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetRemote
Asks a DDE server application to accept data and store it in the specified
location. There are two ways of calling SetRemote, depending on the type of
DDE connection you have established.

Syntax 1 For single DDE requests
Description Asks a DDE server application to accept data to be stored in the specified

location without requiring an open channel. This syntax is appropriate when
you will make only one or two requests of the server.

Syntax SetRemote (location, value, applname, topicname {, bAnsi})

Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs. Values
are:

-1 Link was not started
-2 Request denied

If any argument’s value is null, SetRemote returns null.

To Use

Make a single DDE request of a server application (a cold
link)

Syntax 1

Make a DDE request of a server application when you have
established a warm link by opening a channel

Syntax 2

Argument Description

location A string whose value is the location of the data in the server
application that will accept the data. The format of location depends
on the application that will receive the request.

value A string whose value you want to send to the remote application.

applname A string whose value is the DDE name of the server application.

topicname A string identifying the data or the instance of the application that
will accept the data (for example, in Microsoft Excel, the topic
name could be the name of an open spreadsheet).

bAnsi
(optional)

A boolean identifying whether the string to send to the DDE server
is in ANSI format. If bAnsi is NULL, false, or empty, PowerBuilder
will first try to send the data in a UNICODE formatted string. If
bAnsi is true, PowerBuilder will try to send the data in an ANSI
formatted string.
PowerScript Reference 1073

SetRemote
Usage When using DDE, your PowerBuilder application must have an open window,
which will be the client window. For this syntax, the active window is the DDE
client window.

For more information about DDE channels and warm and cold links, see the
ExecRemote function.

Examples This statement asks Microsoft Excel to set the value of the data in row 5,
column 7 of a worksheet called SALES.XLS to 4500:

SetRemote("R5C7", "4500", "Excel", "SALES.XLS")

See also ExecRemote
GetRemote
OpenChannel

Syntax 2 For DDE requests via an open channel
Description Asks a DDE server application to accept data to be stored in the specified

location when you have already established a warm link by opening a channel
to the server. A warm link, with an open channel, is more efficient when you
intend to make several DDE requests.

Syntax SetRemote (location, value, handle {, windowhandle } {, bAnsi})

Argument Description

location A string whose value is the location of the data in the server
application that will accept the data. The format of location
depends on the application that will receive the request.

value A string whose value you want to send to the remote
application.

handle A long that identifies the channel to the DDE server
application. Handle is the value returned by OpenChannel,
which you call to open a DDE channel.

windowhandle
(optional)

The handle to the window that is acting as the DDE client.

bAnsi
(optional)

A boolean identifying whether the string to send to the DDE
server is in ANSI format. If bAnsi is NULL, false, or empty,
PowerBuilder will first try to send the data in a UNICODE
formatted string. If bAnsi is true, PowerBuilder will try to send
the data in an ANSI formatted string.
1074 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and a negative integer if an error occurs. Values
are:

-1 Link was not started
-2 Request denied
-9 Handle is null

Usage When using DDE, your PowerBuilder application must have an open window,
which will be the client window. For this syntax, you can specify a client
window other than the active window with the windowhandle argument.

Before using this syntax of SetRemote, call OpenChannel to establish a DDE
channel.

For more information about DDE channels and warm and cold links, see the
ExecRemote function.

Examples This example opens a channel to a Microsoft Excel worksheet and asks it to set
the value of the data in row 5 column 7 to 4500:

long handle
handle = OpenChannel("Excel", "REGION.XLS")
SetRemote("R5C7", "4500", handle)

See also ExecRemote
GetRemote
OpenChannel
PowerScript Reference 1075

SetResultSet
SetResultSet
Description Populates a new ADOResultSet object with data passed in a ResultSet object.

Applies to ADOResultSet objects

Syntax adoresultset.SetResultSet (resultsetobject)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Use SetResultSet when you want to create an ADOResultSet object and
populate it with data from a ResultSet object. The ResultSet object can be
generated from a DataStore object using the GenerateResultSet function.

After you create the ADOResultSet object using SetResultSet, you can use the
GetRecordSet function to return the ADO result set in an ADO Recordset
object of type OLEObject that you can use as a native ADO Recordset object
in PowerScript.

Examples See GetRecordSet.

See also GenerateResultSet method for DataWindows in the DataWindow Reference or
the online Help
GetRecordSet
SetRecordSet

Argument Description

adoresultset An ADOResultSet object into which the function places the
passed result set as an ADO Recordset

resultsetobject A ResultSet object that contains result set data
1076 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetSelectedDate
Description Selects a specified date.

Applies to MonthCalendar control

Syntax controlname.SetSelectedDate (d)

Return value Integer. Returns 0 for success and one of the following negative values
otherwise:

-1 Invalid arguments

-2 Unknown failure

Usage Use the SetSelectedDate function to select a single date. SetSelectedDate
returns -1 if you try to specify a date that is outside the range of minimum and
maximum dates specified with SetDateLimits.

SetSelectedDate and SetSelectedRange trigger a DateChanged event. You
should not call either method in a DateChanged event, paticularly using the
Post method.

Examples This example sets the selected date to a date passed into a function:

// function argument seldate
integer li_return

li_return = mc_1.SetSelectedDate(seldate)

See also GetSelectedDate
SetDateLimits

Argument Description

controlname The name of the MonthCalendar control for which you want to set
the selected date

d A date value to be set as the date selected
PowerScript Reference 1077

SetSelectedRange
SetSelectedRange
Description Sets the range of selected dates.

Applies to MonthCalendar control

Syntax controlname.SetSelectedRange (start, end)

Return value Integer. Returns 0 for success and one of the following negative values
otherwise:

-1 Invalid arguments

-2 Unknown failure

Usage Use the SetSelectedRange function to select a range of consecutive dates.

SetSelectedRange uses the start date as the end date and vice versa if you
specify an end date that is earlier than the start date. You must set the
MaxSelectedCount property to a value large enough to support the range
before calling SetSelectedRange. SetSelectedRange returns -1 if the dates you
specify are outside the range of minimum and maximum dates specified with
SetDateLimits, or if the range exceeds MaxSelectedCount. If the start and end
dates are the same, a single date is selected.

If the user scrolls the calendar with the navigation buttons when a date range is
selected, the date range changes as the calendar scrolls.

SetSelectedDate and SetSelectedRange trigger a DateChanged event. You
should not call either method in a DateChanged event, paticularly using the
Post method.

Examples This example sets the start date of the selected range to startdate and the end
date to enddate:

integer li_return
Date startdate, enddate
startdate = Today()
enddate = Date("12-31-2007")
li_return = mc_1.SetSelectedRange(startdate, enddate)

See also GetSelectedRange
SetDateLimits

Argument Description

controlname The name of the MonthCalendar control for which you want to set
the selected range

start A date value to be set as the earliest date selected

end A date value to be set as the latest date selected
1078 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetSeriesLabelling
Description Set the series label for a DirectX 3D graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetSeriesLabelling ({graphcontrol, } series, value)

Return value Returns 1 if it succeeds and -1 if an error occurs. If any argument’s value is null,
SetSeriesLabelling returns null.

Usage SetSeriesLabelling is used to indicate whether or not to label the series with the
data numbers for DirectX 3D Area, Bar, Col, or Line graphs. You cannot use
this method with DirectX 3D Pie graphs.

Examples These statements obtain the series and data point of graph gr_1 in the
DataWindow control dw_employee.

integer SeriesNbr, ItemNbr
string ls_SeriesName
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &

SeriesNbr, ItemNbr)

//Get the name of series
ls_SeriesName = dw_employee.SeriesName("gr_1", &

SeriesNbr)

// Set Series label
dw_employee.SetSeriesLabelling("gr_1", &

ls_SeriesName, true)

Argument Description

controlname The name of the graph in which you want to set data, or the
name of the DataWindow control containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control.

series The string that names the series in which you want to change
the series label setting.

value Indicates whether to label the series with its values.
PowerScript Reference 1079

SetSeriesStyle
These statements obtain the series and data point of graph gr_1.

integer SeriesNbr, ItemNbr
string ls_SeriesName
grObjectType clickedtype

clickedtype = gr_1.ObjectAtPointer(SeriesNbr, &
ItemNbr)

ls_SeriesName = gr_1.SeriesName(SeriesNbr)

gr_1.SetSeriesLabelling(ls_SeriesName, true)

See also GetDataLabelling
GetSeriesLabelling
SetDataLabelling

SetSeriesStyle
Specifies the appearance of a series in a graph. There are several syntaxes,
depending on what settings you want to change.

Syntax 1 For setting a series’ colors
Description Specifies the colors of a series in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

To Use

Set the series’ colors Syntax 1

Set the line style and width Syntax 2

Set the fill pattern or symbol for the series Syntax 3

Specify that the series is an overlay Syntax 4
1080 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, colortype, color)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Usage Data points in a series can have their own style settings. Settings made with
SetDataStyle set the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can set the fill pattern in a
two-dimensional line graph or the line style in a bar graph, but that fill pattern
or line style will not be visible.

For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PowerBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Using SetSeriesStyle with DirectX 3D Graphs
You can only set the color for the foreground. Background, line color, and
shade are not supported.

Argument Description

controlname The name of the graph in which you want to set the color of a
series, or the name of the DataWindow control containing the
graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control for which you want to set the color of a
series.

seriesname A string whose value is the name of the series for which you
want to set the color.

colortype A value of the grColorType enumerated datatype specifying
the item for which you want to set the color. Values are:

• Foreground! – Text color

• Background! – Background color

• LineColor! – Line color

• Shade! – Shade (for graphics that are three-dimensional or
have solid objects)

color A long specifying the new color for colortype.
PowerScript Reference 1081

SetSeriesStyle
Examples This statement sets the text (foreground) color of the series named Salary in the
graph gr_emp_data to black:

gr_emp_data.SetSeriesStyle("Salary", &
Foreground!, 0)

This statement sets the background color of the series named Salary in the
graph gr_depts in the DataWindow control dw_employees to black:

dw_employees.SetSeriesStyle("gr_depts", &
"Salary", Background!, 0)

These statements in the Clicked event of the graph control gr_product_data
coordinate line color between it and the graph gr_sales_data. The script stores
the line color for the series under the mouse pointer in the graph
gr_product_data in the variable line_color. Then it sets the line color for the
series northeast in the graph gr_sales_data to that color:

string SeriesName
integer SeriesNbr, Series_Point
long line_color
grObjectType MouseHit

MouseHit = ObjectAtPointer(SeriesNbr,Series_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

gr_product_data.SeriesName(SeriesNbr)

gr_product_data.GetSeriesStyle(SeriesName, &
LineColor!, line_color)

gr_sales_data.SetSeriesStyle("Northeast", &
LineColor!, line_color)

END IF

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle
1082 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For lines in a graph
Description Specifies the style and width of a series’ lines in a graph.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls objects

Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, linestyle,
linewidth)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Usage Data points in a series can have their own style settings. Settings made with
SetDataStyle set the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can set the fill pattern in a
two-dimensional line graph or the line style in a bar graph, but that fill pattern
or line style will not be visible.

For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PowerBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Argument Description

controlname The name of the graph in which you want to set the line style
and width of a series, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the line style
and width.

seriesname A string whose value is the name of the series for which you
want to set the line style and width.

linestyle A value of the LineStyle enumerated datatype. Values are:

Continuous!
Dash!
DashDot!
DashDotDot!
Dot!
Transparent!

linewidth An integer specifying the width of the line in pixels.
PowerScript Reference 1083

SetSeriesStyle
Examples This statement sets the line style and width for the series named Costs in the
graph gr_product_data:

gr_product_data.SetSeriesStyle("Costs", &
Dot!, 5)

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle

Syntax 3 For the fill pattern and symbols in a graph
Description Specifies the fill pattern and symbol for data markers in a series.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, enumvalue)

Argument Description

controlname The name of the graph in which you want to set the
appearance of a series, or the name of the DataWindow
control containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the appearance.

seriesname A string whose value is the name of the series in which you
want to set the appearance.

enumvalue A value of an enumerated datatype specifying an appearance
setting for the series. Values for the FillPattern or
grSymbolType enumerated datatypes follow.
1084 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Usage Data points in a series can have their own style settings. Settings made with
SetDataStyle set the style of individual data points and override series settings.

The graph stores style information for properties that do not apply to the
current graph type. For example, you can set the fill pattern in a
two-dimensional line graph or the line style in a bar graph, but that fill pattern
or line style will not be visible.

For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PowerBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Using SetSeriesStyle with DirectX 3D Graphs
You cannot use a fill pattern or specify specific symbols for a series.

To change the fill pattern, use a FillPattern value:

Bdiagonal! (Lines from lower left to upper right)
Diamond!
Fdiagonal! (Lines from upper left to lower right)
Horizontal!
Solid!
Square!
Vertical!

To change the symbol type, use a grSymbolType value:

NoSymbol!
SymbolHollowBox!
SymbolX!
SymbolStar!
SymbolHollowUpArrow!
SymbolHollowCircle!
SymbolHollowDiamond!
SymbolSolidDownArrow!
SymbolSolidUpArrow!
SymbolSolidCircle!
SymbolSolidDiamond!
SymbolPlus!
SymbolHollowDownArrow!
SymbolSolidBox!

Argument Description
PowerScript Reference 1085

SetSeriesStyle
Examples This statement sets the symbol used for the series named Costs in the graph
gr_product_data to a plus sign:

gr_product_data.SetSeriesStyle("Costs", &
SymbolPlus!)

This statement sets the symbol used for the series named Costs in the graph
gr_computers in the DataWindow control dw_equipment to X:

dw_equipment.SetSeriesStyle("gr_computers", &
"Costs", SymbolX!)

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle

Syntax 4 For creating an overlay in a graph
Description Specifies whether a series is an overlay, meaning that the series is represented

by a line on top of another graph type.

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetSeriesStyle ({ graphcontrol, } seriesname, overlaystyle)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesStyle returns null.

Argument Description

controlname The name of the graph in which you want to set the overlay
status of a series, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)
(optional)

A string whose value is the name of the graph in the
DataWindow control in which you want to set the overlay
status.

seriesname A string whose value is the name of the series whose overlay
status you want to change.

overlaystyle A boolean value indicating whether you want the series to be
an overlay, meaning that the series is shown in front as a line.
Set overlaystyle to true to make the specified series an
overlay. Set it to false to remove the overlay setting.
1086 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage For a graph in a DataWindow, you can specify the appearance of a series in the
graph before PowerBuilder draws the graph. To do so, define a user event for
pbm_dwngraphcreate and call SetSeriesStyle in the script for that event. The
event pbm_dwngraphcreate is triggered just before a graph is created in a
DataWindow object.

Using SetSeriesStyle with DirectX 3D Graphs
You cannot use the overlay style for a series.

Examples This statement sets the style of the series named Costs in the graph
gr_product_data to overlay:

gr_product_data.SetSeriesStyle("Costs", TRUE)

These statements in the Clicked event of the DataWindow control
dw_employees store the style of the series under the pointer in the graph
gr_depts in the variable style_type. If the style of the series is overlay (true), the
script changes the style to normal (false):

string SeriesName
integer SeriesNbr, Data_Point
boolean overlay_style
grObjectType MouseHit

MouseHit = dw_employees.ObjectAtPointer(&
"gr_depts", SeriesNbr, Data_Point)

IF MouseHit = TypeSeries! THEN
SeriesName = &

dw_employees.SeriesName("gr_depts",SeriesNbr)

dw_employees.GetSeriesStyle("gr_depts", &
SeriesName, overlay_style)

IF overlay_style THEN &
dw_employees.SetSeriesStyle("gr_depts", &

SeriesName, FALSE)
END IF

See also GetDataStyle
GetSeriesStyle
SeriesName
SetDataStyle
PowerScript Reference 1087

SetSeriesTransparency
SetSeriesTransparency
Description Sets the tranparency percentage of a series in a DirectX 3D graph (those with

3D rendering).

Applies to Graph controls in windows and user objects, and graphs in DataWindow
controls

Syntax controlname.SetSeriesTransparency ({ graphcontrol, } series,
transparency)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetSeriesTransparency returns null.

Usage SetSeriesTransparency sets the transparency value for a series in any DirectX
3D graph (those with 3D rendering).

Examples These statements set the transparency percentage to 50% for the clicked series
in the graph gr_1 in the DataWindow control dw_employee:

integer SeriesNbr, ItemNbr, TransNbr
string ls_SeriesName
grObjectType clickedtype

// Get the number of the series and datapoint
clickedtype = this.ObjectAtPointer("gr_1", &

SeriesNbr, ItemNbr)

//Get the name of series
ls_SeriesName = dw_employee.SeriesName("gr_1", &

SeriesNbr)

//The following statement sets Transparency to 50%
TransNbr = 50

Argument Description

controlname The name of the graph in which you want to set a series
transparency value, or the name of the DataWindow control
containing the graph.

graphcontrol
(DataWindow
control only)

(Optional) A string whose value is the name of the graph in the
DataWindow control in which you want to set a series
transparency value.

series The string that identifies the series for which you want to set
the transparency value.

transparency Integer value for percent transparency. A value of 0 means that
the series is opaque and a value of 100 means that it is
completely transparent.
1088 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
dw_employee.SetSeriesTransparency("gr_1", &
ls_SeriesName, TransNbr)

These statements set the transparency to 50% for the clicked series in the graph
gr_employee.

integer SeriesNbr, ItemNbr, TransNbr
string ls_SeriesName
grObjectType clickedtype

clickedtype = gr_employee.ObjectAtPointer(&
SeriesNbr, ItemNbr)

ls_SeriesName = gr_employee.SeriesName(SeriesNbr)

TransNbr = 50

gr_employee.SetSeriesTransparency(&
ls_SeriesName, TransNbr)

See also FindSeries
GetSeriesTransparency
GetDataTransparency
SetDataTransparency
PowerScript Reference 1089

SetSpacing
SetSpacing
Description Sets the line spacing for the selected paragraphs or the paragraph containing

the insertion point in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SetSpacing (spacing)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage Because spacing is a setting for paragraphs, not individual lines, then if lines
have wrapped, spacing will change for all the lines in all the paragraphs that are
selected.

When you expand the line spacing, the extra space is added before the affected
lines.

Examples This example specifies double spacing for the selected paragraphs in the
RichTextEdit rte_1:

rte_1.SetSpacing(Spacing2!)

This example specifies one and a half line spacing:

rte_1.SetSpacing(Spacing15!)

See also SetTextColor
SetTextStyle

Argument Description

rtename The name of the RichTextEdit control in which you want to set the
line spacing.

spacing A value of the Spacing enumerated datatype specifying the line
spacing for the text. Values are:

Spacing1! – Single spacing
Spacing15! – One and a half line spacing
Spacing2! – Double spacing
1090 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetState
Description Sets the highlighted state of an item in a list box. SetState is only applicable to

a list box control whose MultiSelect property is set to true.

Applies to ListBox and PictureListBox controls

Syntax listboxname.SetState (index, state)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetState returns null.

Usage When the MultiSelect property for the control is false, use SelectItem, instead
of SetState, to select one item at a time.

Examples This statement turns on the highlight for item 6 in lb_Actions:

lb_Actions.SetState(6, TRUE)

This statement deselects all items in lb_Actions:

lb_Actions.SetState(0, FALSE)

This statement turns off the highlight for item 6 in lb_Actions if it is selected
and turns it on again if it is not selected:

IF lb_Actions.State(6) = 1 THEN
lb_Actions.SetState(6, FALSE)

ELSE
lb_Actions.SetState(6, TRUE)

END IF

See also SelectItem
SetTop
State

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want to
set the state (highlighted or not highlighted) for an item. The
MultiSelect property for the control must be set to true.

index The number of the item for which you want to set the state. Specify
0 to set the state of all the items in the ListBox.

state A boolean value that determines the state of the item:

• TRUE – Selected

• FALSE – Not selected
PowerScript Reference 1091

SetSyncRegistryProperties
SetSyncRegistryProperties
Description Sets synchronization properties in the local machine registry.

Applies to MLSynchronization, MLSync, and ULSync controls

Syntax SyncObject.SetSyncRegistryProperties ()

Return value Integer. Returns 1 for success and -1 for failure.

Usage If necessary, the SetSyncRegistryProperties function can create a key in the
Windows registry from the value of the SyncRegistryKey property of the
synchronization object. Failure occurs if the SyncRegistryKey property is not
set in the synchronization object.

Examples The MLSync object generated by the MobiLink wizard for SQL Anywhere
uses the following code in its Constructor event:

IF d_Registry_Build < d_this_object_build THEN
// First time deployment of new revision - set
//"ObjectRevision" to this revision of the wizard
// objects and override all registry values

rc = this.SetSyncRegistryProperties()
ELSE

rc = this.GetSyncRegistryProperties()
END IF

This code sets the values of authentication properties in the Windows registry
when the build number of the running application is higher than the build
number in the registry (or when the build number in the registry cannot be
found).

See also GetCommandString
GetSyncRegistryProperties
SetParm

Argument Description

syncObject The name of the synchronization object.
1092 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetTextColor
Description Sets the color of selected text in a RichTextEdit control.

Applies to RichTextEdit controls

Syntax rtename.SetTextColor (colornumber)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage For more information about calculating color values, see RGB.

Examples This example sets the selected text in RichTextEdit rte_1 to dark red:

rte_1.SetTextColor(RGB(100, 0, 0))

See also GetTextColor
RGB
SetTextStyle

Argument Description

rtename The name of the RichTextEdit control in which you want to set the
color of selected text

colornumber A long specifying the color of the selected text
PowerScript Reference 1093

SetTextStyle
SetTextStyle
Description Specifies the text formatting for selected text in a RichTextEdit control. You

can make the text bold, underlined, italic, and struck out. You can also make it
either a subscript or superscript.

Applies to RichTextEdit controls

Syntax rtename.SetTextStyle (bold, underline, {subscript}, {superscript}, italic,
strikeout)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Examples This example makes selected text in the RichTextEdit rte_1 bold and italic:

rte_1.SetTextStyle(TRUE, FALSE, &
TRUE, FALSE)

This example makes the selected text italic but keeps other text formatting as
it was:

rte_1.SetTextStyle(rte_1.GetTextStyle(Bold!), &
rte_1.GetTextStyle(Underlined!), &

TRUE, rte_1.GetTextStyle(Strikeout!))

See also GetTextStyle
SetSpacing
SetTextColor

Argument Description

rtename The name of the RichTextEdit control in which you want to specify
formatting for selected text.

bold A boolean value specifying whether the selected text is bold.

underline A boolean value specifying whether the selected text is underlined.

subscript
(obsolete)

Maintained for backward compatibility only. A boolean value
specifying whether the selected text is a subscript. This value is
currently ignored.

superscript
(obsolete)

A boolean value specifying whether the selected text is a
superscript. Maintained for backward compatibility only. If both
subscript and superscript are true, subscript takes precedence and
the text is subscripted. This value is currently ignored.

italic A boolean value specifying whether the selected text is italic.

strikeout A boolean value specifying whether the selected text is has a line
drawn through it.
1094 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetTimeout
Description Sets the timeout value for subsequent EAServer transactions. The transaction

is rolled back if it does not complete before the timeout expires.

Applies to CORBACurrent objects

Syntax CORBACurrent.SetTimeout (seconds)

Return value Boolean. Returns true if it succeeds and false if an error occurs.

Usage The SetTimeout function specifies the number of seconds that can elapse before
a transaction is rolled back. The timeout period applies to transactions created
by subsequent invocations of BeginTransaction. If seconds is 0, no timeout
period is in effect.

SetTimeout can be called by a client or a component that is marked as OTS
style. EAServer must be using the two-phase commit transaction coordinator
(OTS/XA).

Examples This example shows how to set the timeout period to five minutes:

// Instance variables:
// CORBACurrent corbcurr
boolean lb_timeout
integer li_rc

li_rc = this.GetContextService("CORBACurrent", &
corbcurr)

IF li_rc <> 1 THEN
// handle the error

END IF
li_rc = corbcurr.Init("iiop://server1:9003")
IF li_rc <> 1 THEN

// handle the error
ELSE

lb_timeout = corbcurr.SetTimeout(300)
li_rc = corbcurr.BeginTransaction()

END IF

See also BeginTransaction, CommitTransaction, GetContextService, GetStatus,
GetTransactionName, Init, ResumeTransaction, RollbackOnly,
RollbackTransaction, SuspendTransaction

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
seconds An unsignedlong that specifies the number of seconds that

elapse before a transaction is rolled back
PowerScript Reference 1095

SetToday
SetToday
Description Sets the value that is used by the calendar as today’s date.

Applies to DatePicker, MonthCalendar controls

Syntax controlname.SetToday (d)

Return value Integer. Returns 0 for success and -1 for failure.

Usage By default, the current system date is set as the Today date. You can use the
SetToday function to specify a different date. If the date is set to any date other
than the current system date, the following restrictions apply:

• The control does not automatically update the Today selection when the
time passes midnight for the current day.

• The control does not automatically update its display based on locale
changes.

Examples This example gets a date from an EditMask control and sets it as the Today date
in a MonthCalendar control:

Date currentdate
integer li_return

currentdate = Date(em_1.Text)
li_return = mc_1.SetToday(currentdate)

See also GetToday

Argument Description

controlname The name of the control for which you want to set the Today date

d The date you want to specify as the Today date
1096 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetToolbar
Description Specifies the alignment, visibility, and title for the specified toolbar.

Applies to MDI frame and sheet windows

Syntax window.SetToolbar (toolbarindex, visible {, alignment {, floatingtitle } })

Return value Integer. Returns 1 if it succeeds. SetToolbar returns -1 if there is no toolbar for
the index you specify or if an error occurs. If any argument’s value is null,
returns null.

Usage When you use SetToolbar to change the toolbar alignment from a docked
position to Floating!, PowerBuilder uses the last known position information
unless you also call SetToolbarPos to adjust the position.

The toolbars are not redrawn until the script ends, so setting the alignment with
SetToolbar and the position with SetToolbarPos looks like a single change to the
user.

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar whose settings
you want to change.

visible A boolean value specifying whether to make the toolbar visible.
Values are:

• TRUE – Make the toolbar visible

• FALSE – Hide the toolbar

alignment
(optional)

A value of the ToolbarAlignment enumerated datatype specifying
the alignment for the toolbar. Values are:

• AlignAtTop! – Dock the toolbar at the top of the frame.

• AlignAtLeft! – Dock the toolbar on the left side of the frame.

• AlignAtRight! – Dock the toolbar on the right side of the frame.

• AlignAtBottom! – Dock the toolbar at the bottom of the frame.

• Floating! – Float the toolbar. The floating toolbar has its own
frame and miniature title bar

floatingtitle
(optional)

A string whose value is the title for the toolbar when its alignment
is Floating!.
PowerScript Reference 1097

SetToolbar
Examples This example allows the user to choose an alignment in a ListBox lb_position.
The selected string is converted to a ToolbarAlignment enumerated value,
which is used to change the alignment of toolbar index 1:

toolbaralignment tba_align

CHOOSE CASE lb_position.SelectedItem()

CASE "Top"
tba_align = AlignAtTop!

CASE "Left"
tba_align = AlignAtLeft!

CASE "Right"
tba_align = AlignAtRight!

CASE "Bottom"
tba_align = AlignAtBottom!

CASE "Floating"
tba_align = Floating!

END CHOOSE

w_frame.SetToolbar(1, TRUE, tba_align)

In this example, the user clicks a radio button to choose an alignment. The radio
button’s Clicked event sets an instance variable of type ToolbarAlignment.
Here the radio buttons are packaged as a custom visual user object.
I_toolbaralign is an instance variable of the user object. This is the script for
the Top radio button:

Parent.i_toolbaralign = AlignAtTop!

This script changes the toolbar alignment:

w_frame.SetToolbar(1, TRUE, &
uo_toolbarpos.i_toolbaralign)

See also GetToolbar
GetToolbarPos
SetToolbarPos
1098 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetToolbarPos
Sets the position of the specified toolbar.

Syntax 1 For docked toolbars
Description Sets the position of a docked toolbar.

Applies to MDI frame and sheet windows

Syntax window.SetToolbarPos (toolbarindex, dockrow, offset, insert)

To set Use

Docking position of a docked toolbar Syntax 1

Coordinates and size of a floating toolbar Syntax 2

Argument Description

window The MDI frame or sheet to which the toolbar belongs.

toolbarindex An integer whose value is the index of the toolbar whose settings
you want to change.

dockrow An integer whose value is the number of the docking row for the
toolbar. Docking rows are numbered from left to right or top to
bottom.

offset An integer whose value specifies the distance of the toolbar from
the beginning of the docking row. For toolbars at the top or bottom,
offset is measured from the left edge. For toolbars on the left or
right, offset is measured from the top.

If insert is true, the offset you specify is adjusted so that the toolbar
does not overlap others in the row.

Specify an offset of 0 to position the toolbar ahead of other toolbars
in dockrow.

insert A boolean value specifying whether you want to insert the specified
toolbar before the toolbars in dockrow causing them to move over
or down a row, or you want to add toolbarindex to dockrow. Values
are:

• TRUE – Move any toolbars already in dockrow or higher rows
over or down a row so that the toolbar you are moving is the only
toolbar in the row.

• FALSE – Add the toolbar you are moving to dockrow. Its
position in relation to other toolbars in the row is determined by
offset.
PowerScript Reference 1099

SetToolbarPos
Return value Integer. Returns 1 if it succeeds. SetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
returns null.

Usage To find out whether the docked toolbar is at the top, bottom, left, or right edge
of the window, call GetToolbar.

If the toolbar’s alignment is floating, instead of docked, then values you specify
with Syntax 1 of SetToolbarPos take effect when you change the alignment to
a docked position with SetToolbar.

When insert is false, to move the toolbar before other toolbars in dockrow,
specify a value that is less than the offset for the existing toolbars. If there is
already a toolbar at offset 1, then you can move the toolbar to the beginning of
the row by setting offset to 0. If offset is equal to or greater than the offset of
existing toolbars, but less than their end, the newly positioned toolbar will
begin just after the existing one. Otherwise, the toolbar will be positioned at
offset.

If the user drags the toolbar to a docked position, the new row and offset
replace values set with SetToolbarPos.

Examples This example docks toolbar 1 at the left, adding it to docking row 1:

w_frame.SetToolbar(1, TRUE, AlignAtLeft!)
w_frame.SetToolbarPos(1, 1, 1, FALSE)

This example docks toolbar 2 at the left, adding it to docking row 1. If the
toolbars already in the dock extend past offset 250, then the offset of toolbar 2
is increased to accommodate them. Otherwise, it is positioned at offset 250:

w_frame.SetToolbar(2, TRUE, AlignAtLeft!)
w_frame.SetToolbarPos(2, 1, 250, FALSE)

This example docks toolbar 2 at the left in docking row 2. Any toolbar docked
on the left in row 2 or higher is moved over a row:

w_frame.SetToolbar(1, TRUE, AlignAtLeft!)
w_frame.SetToolbarPos(1, 2, 1, TRUE)

See also GetToolbar
GetToolbarPos
SetToolbar
1100 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For floating toolbars
Description Sets the position and size of a floating toolbar.

Applies to MDI frame and sheet windows

Syntax window.SetToolbarPos (toolbarindex, x, y, width, height)

Return value Integer. Returns 1 if it succeeds. SetToolbarPos returns -1 if there is no toolbar
for the index you specify or if an error occurs. If any argument’s value is null,
SetToolbarPos returns null.

Usage If the toolbar’s alignment is a docked position, instead of floating, then values
you specify with Syntax 2 of SetToolbarPos take effect when you change the
alignment to floating in a script with SetToolbar.

If the user drags the toolbar to a floating position, the new position values
replace values set with SetToolbarPos.

The floating toolbar is never too large or too small for the buttons. If you
specify width and height values that are too small to accommodate the buttons,
the width and height are adjusted to make room for the buttons. If both width
and height are larger than needed, the height is reduced.

If you specify x and y coordinates that are outside the frame, the toolbar
becomes inaccessible to the user.

Examples This example displays toolbar 1 near the upper-left corner of the frame. An
arbitrary width and height lets PowerBuilder size the toolbar as needed:

w_frame.SetToolbarPos(1, 10, 10, 400, 1)
w_frame.SetToolbar(1, TRUE, Floating!)

Argument Description

window The MDI frame or sheet to which the toolbar belongs

toolbarindex An integer whose value is the index of the toolbar whose settings
you want to change

x An integer whose value is the x coordinate of the floating toolbar

y An integer whose value is the y coordinate of the floating toolbar

width An integer whose value is the width of the floating toolbar

height An integer whose value is the height of the floating toolbar
PowerScript Reference 1101

SetToolbarPos
This example displays toolbar 2 close to the lower-right corner of the frame.
GetToolbarPos gets the current width and height of the toolbar so that the
toolbar stays the same size:

integer ix, iy, iw, ih

w_frame.GetToolbarPos(2, ix, iy, iw, ih)

w_frame.SetToolbarPos(2, &
w_frame.WorkspaceWidth()-400, &

w_frame.WorkspaceHeight()-400, &
iw, ih)

w_frame.SetToolbar(2, TRUE, Floating!)

This example positions floating toolbar 2 just inside the lower-right corner of
the MDI frame. GetToolbarPos gets the current width and height of the toolbar.
These values and the height of the MicroHelp are used to calculate the x and y
coordinates for the floating toolbar:

integer ix, iy, iw, ih

// Find out toolbar size
w_frame.GetToolbarPos(2, ix, iy, iw, ih)

// Set the position, taking the size into account
w_frame.SetToolbarPos(2, &

w_frame.WorkspaceWidth() - iw, &
w_frame.WorkspaceHeight() &

- ih - w_frame.MDI_1.MicroHelpHeight, &
iw, ih)

// Set the alignment to floating
w_frame.SetToolbar(2, TRUE, Floating!)

See also GetToolbar
SetToolbar
SetToolbarPos
1102 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetTop
Description Scrolls a list box control so that the specified item is the first visible item.

Applies to ListBox and PictureListBox controls

Syntax listboxname.SetTop (index)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If any argument’s
value is null, SetTop returns null.

Examples This statement scrolls item 6 in lb_Actions to the top of the ListBox so that it is
the first visible item:

lb_Actions.SetTop(6)

The following statement scrolls the currently selected item in lb_Actions to the
top of the list of items:

lb_Actions.SetTop(lb_Actions.SelectedIndex())

See also SetFocus
SetState

Argument Description

listboxname The name of the ListBox or PictureListBox that you want to scroll

index The number of the item you want to become the first visible item
PowerScript Reference 1103

SetTraceFileName
SetTraceFileName
Description Specifies the name of the trace file PowerBuilder will analyze when the

BuildModel function is called.

Applies to Profiling and TraceTree objects

Syntax instancename.SetTraceFileName (tracefilename)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileOpenError! – The file could not be opened

• FileInvalidFormatError! – The trace file is not in the correct format

• ModelExistsError! – A model has already been built

If an error occurs, the name is not set.

Usage Use this function to specify the trace file PowerBuilder should analyze with the
BuildModel function. You call the SetTraceFileName function before calling the
BuildModel function.

Examples This example provides the name of the trace file for which a performance
analysis model is to be built:

Profiling lpro_model
String ls_line

lpro_model = CREATE Profiling

lpro_model.SetTraceFileName (filename)
ls_line = "CollectionTime = " + &

String(lpro_model.CollectionTime) + "~r~n" &
+ "Num Activities = " &
+ String(lpro_model.NumberOfActivities) +

"~r~n"

lpro_model.BuildModel()
...

See also BuildModel

Argument Description

instancename Instance name of the Profiling or TraceTree object

tracefilename A string that identifies the name of the trace file PowerBuilder
will analyze
1104 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SetTransPool
Description Sets up a pool of database transactions for a distributed application.

SetTransPool was used with a feature that has been removed from
PowerBuilder and is an obsolete function.

Applies to Application object

Syntax applicationname.SetTransPool (minimum, maximum, timeout)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Argument Description

applicationname The name of the application object for which you want to
establish a transaction pool

minimum The minimum number of transactions to be kept open in the
pool

maximum The maximum number of transactions that can be open in the
pool

timeout The number of seconds to allow a request to wait for a
connection in the transaction pool
PowerScript Reference 1105

SetValue
SetValue
Description Sets the date and time in the Value property of the control.

Applies to DatePicker control

Syntax controlname.SetValue (d, t)

controlname.SetValue (dt)

Return value Integer. Returns 1 for success and one of the following negative values for
failure:

-1 The value cannot be set
-2 Other error

Usage The SetValue function can set the Value property using separate date and time
variables or a single DateTime variable.

Examples This example sets the Value property of a DatePicker control using separate
date and time values:

date d
time t

d=date("2007/12/27")
t=time("12:00:00")

dp_1.SetValue(d, t)

This example sets the Value property using a DateTime value:

date d
time t
datetime dt
dt = DateTime(d, t)

dp_1.SetValue(dt)

See also GetText
GetValue

Argument Description

controlname The name of the control for which you want to set the date and time

d The date value to be set in the Value property

t The time value to be set in the Value property

dt The DateTime value to be set in the Value property
1106 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SharedObjectDirectory
Description Retrieves the list of objects that have been registered for sharing.

Syntax SharedObjectDirectory (instancenames {, classnames })

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FeatureNotSupportedError! – This function is not supported on this
platform

Usage Use this function to obtain a list of objects that have been registered for sharing.

Examples In this example, the application retrieves the list of shared objects and their
class names:

errorreturn status
string InstanceNames[]
string ClassNames[]

status = SharedObjectDirectory(InstanceNames, &
 ClassNames)

See also SharedObjectGet
SharedObjectRegister

Argument Description

instancenames An unbounded array of type string in which you want to store the
names of objects that have been registered for sharing

classnames
(optional)

An unbounded array of type string in which you want to store the
class names of objects registered for sharing
PowerScript Reference 1107

SharedObjectGet
SharedObjectGet
Description Gets a reference to a shared object instance.

Syntax SharedObjectGet (instancename , objectinstance)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• SharedObjectCreateInstanceError! – The local reference to the shared
object could not be created

• SharedObjectNotExistsError! – The instance name has not been registered

Usage SharedObjectGet retrieves a reference to an object that was created with
SharedObjectRegister.

You can use a shared object on a PowerBuilder client to simulate an
asynchronous call to EAServer. The main thread on the client makes an
asynchronous call to a function on the shared object, passing it a callback
object that is notified when processing has finished on the server. The method
on the shared object makes a synchronous call to the EAServer component
method that performs processing. Since the shared object is running in a
separate thread on the client, the main thread on the client can proceed with
other work while the process runs on the server.

Examples This example shows how you might use a shared object to make an
asynchronous request against an EAServer component method and return data
back to a client application window. The client has a Retrieve button on a
window, a SetDW function, a shared object, and a callback handler. The
component deployed to EAServer retrieves employee information from a
database.

Argument Description

instancename The name of a shared object instance to which you want to obtain
references. The name you specify must match the name given to the
object instance when it was first registered with the
SharedObjectRegister function.

objectinstance An object variable of type PowerObject in which you want to store
an instance of a shared object.
1108 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The Retrieve button on the window creates a shared object that communicates
with EAServer as well as an instance of a callback handler:

// instance variables
// uo_sharedobject iuo_sharedobject
// uo_callback iuo_callback
long ll_rv

SharedObjectRegister("uo_sharedobject","myshare")
SharedObjectGet("myshare",iuo_sharedobject)

iuo_callback = CREATE uo_callback
// Pass a reference to the window to
// the callback object
iuo_callback.passobject (parent)

iuo_sharedobject.post retrievedata(iuo_callback)

The SetDW function applies the contents of the DataWindow blob returned
from the EAServer component to a DataWindow control in the window:

long ll_rv

ll_rv = dw_employee.SetFullState(ablb_data)
if ll_rv = -1 then
 MessageBox("Error", "SetFullState call failed!")
end if

return ll_rv

The Constructor event of the shared object uses a custom Connection object
called n_jagclnt_connect to connect to the server. Then it creates an instance of
the EAServer component:

// Instance variables
// uo_employee iuo_employee
// n_jagclnt_connect myconnect
Constructor event
long ll_rc
myconnect = create n_jagclnt_connect
ll_rc = myconnect.ConnectToServer()
ll_rv = myconnect.CreateInstance(iuo_employee, &
 "uo_employee")
PowerScript Reference 1109

SharedObjectGet
The shared object has a single function called RetrieveData that makes a
synchronous call to the RetrieveData function on the EAServer component.

When the function completes processing, it calls the Notify function
asynchronously on the callback object, posting it to the DataWindow blob
returned from the server component:

blob lblb_data
long ll_rv
ll_rv = iuo_employee.retrievedata(lblb_data)
auo_callback.post notify(lblb_data)
return ll_rv

When the EAServer component has finished processing, the shared object
notifies a user object called uo_callback, which in turns notifies the w_employee
window. The uo_callback object has two functions, Notify and PassObject.The
Notify function calls a function called SetDW on the w_employee window,
passing it the DataWindow blob returned from the server component:

long ll_rv
ll_rv = iw_employee.setdw(ablb_data)
if ll_rv = -1 then
 MessageBox("Error", "SetDW call failed!")
end if
return ll_rv

The callback handler’s PassObject function caches a reference to the
w_employee window in the iw_employee instance variable. The function takes
the argument aw_employee, which is of type w_employee, and returns a long
value:

iw_employee = aw_employee
return 1

The EAServer component is a PowerBuilder user object called uo_employee.
The uo_employee object has a function called RetrieveData that uses a
DataStore to retrieve employee rows from the database:

// instance variables
// protected TransactionServer txnsrv
// protected DataStore ids_datastore
long ll_rv
ll_rv = ids_datastore.Retrieve()
ll_rv = ids_datastore.GetFullState(ablb_data)
txnsrv.SetComplete()
return ll_rv

See also SharedObjectRegister, SharedObjectUnregister, GetFullState and SetFullState
methods for DataWindows in the DataWindow Reference or the online Help
1110 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SharedObjectRegister
Description Registers a user object so that it can be shared.

Syntax SharedObjectRegister (classname , instancename)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• SharedObjectExistsError! – The instance name has already been used

• SharedObjectCreateInstanceError! – The object could not be created

• SharedObjectCreatePBSessionError! – The shared object session could
not be created

Usage When you call the SharedObjectRegister function, PowerBuilder opens a
separate runtime session for the shared object and creates the shared object.
The name you specify for the object instance provides a way for you to access
the object instance with the SharedObjectGet function.

You can use a shared object on a PowerBuilder client to simulate an
asynchronous call to EAServer. For more information, see the description of
the SharedObjectGet function.

Examples In this example, the user object uo_customers is registered so that it can be
shared. The name assigned to the shared object instance is share1. After
registering the object, the application uses the SharedObjectGet function to
store an instance of the object in an object variable:

SharedObjectRegister("uo_customers", "share1")
SharedObjectGet("share1",shared_object)

See also SharedObjectGet
SharedObjectUnregister

Argument Description

classname The name of the user object that you want to share

instancename A string whose value is the name you want to assign to the shared
object instance
PowerScript Reference 1111

SharedObjectUnregister
SharedObjectUnregister
Description Unregisters a user object that was previously registered.

Syntax SharedObjectUnregister (instancename)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• SharedObjectNotExistsError! – The instance name has not been registered

Usage This function marks a shared object for destruction. But the object is not
actually destroyed until there are no more references to the object.

You can use a shared object on a PowerBuilder client to simulate an
asynchronous call to EAServer. For more information, see the description of
the SharedObjectGet function.

Examples In this example the application unregisters the object instance called share1:

SharedObjectUnregister("share1")

See also SharedObjectRegister

Argument Description

instancename The name assigned to the shared object instance when it was first
registered
1112 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Show
Description Makes an object or control visible, if it is hidden. If the object is already visible,

Show brings it to the top.

Applies to Any object

Syntax objectname.Show ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If objectname is null,
Show returns null.

Usage If the specified object is a window that is not open, an execution error occurs.

You cannot use Show to show a drop-down or cascading menu, or any menu
that has an MDI frame window as its parent window.

Equivalent syntax You can set the object’s Visible property instead of
calling Show:

objectname.Visible = true

This statement:

m_status.m_options.Visible = TRUE

is equivalent to:

m_status.m_options.Show()

Examples This statement makes visible the menu selection called m_options on the menu
m_status:

m_status.m_options.Show()

This statement makes the child window w_child visible:

w_child.Show()

See also Hide

Argument Description

objectname The name of the object or control you want to make visible (show)
PowerScript Reference 1113

ShowHeadFoot
ShowHeadFoot
Description Displays the panels for editing the header and footer in a RichTextEdit control

or hides the panels and returns to editing the main text.

Applies to RichTextEdit controls and DataWindow controls with the RichTextEdit style

Syntax rtename.ShowHeadFoot (editheadfoot, {headerfooter})

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage ShowHeadFoot takes effect when the control is in preview mode or when it is
in edit mode for the main text. If the control is in preview mode, calling
ShowHeadFoot returns to edit mode.

The headerfooter argument is ignored if the editheadfoot argument is false.
The headerfooter argument defaults to “true” if a value is not provided. The
header and footer can include input fields for page numbers and dates.

For a DataWindow control, ShowHeadFoot has no effect if the DataWindow
object does not have the RichTextEdit presentation style.

Examples This example displays the header and footer editing panels, allowing the user
to specify the contents of the footer:

rte_1.ShowHeadFoot(TRUE, FALSE)

The following script inserts the current page number in the footer, then returns
the focus to the body of the document in the rich text control:

rte_1.ShowHeadFoot(true,false)
rte_1.SetAlignment (Center!)
rte_1.InputFieldInsert("PAGENO")
rte_1.ShowHeadFoot(false,false)

See also Preview

Argument Description

rtename The name of the RichTextEdit or DataWindow control for which
you want to edit header and footer information.

editheadfoot A boolean value specifying the editing panel to display. Values are:

• TRUE – Display the header and footer editing panels

• FALSE – Display the detail editing panel for the document body

headerfooter
(optional)

A boolean value specifying whether the insertion point (caret) for
editing the header/footer panel is in the header or the footer section.
Values are:

• True Caret is in the header section.

• False Caret is in the footer section.
1114 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ShowHelp
Description Provides access to a Microsoft Windows-based Help system or to compiled

HTML Help files that you have created for your PowerBuilder application.
When you call ShowHelp, PowerBuilder starts the Help executable and
displays the Help file you specify.

Syntax ShowHelp (helpfile, helpcommand {, typeid })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. ShowHelp returns -1
if you specify typeid when helpcommand is Finder! or Index!. If any
argument’s value is null, ShowHelp returns null.

Usage To provide context-sensitive Help, use ShowHelp in appropriate scripts
throughout your application with specific topic IDs or keywords.

If you specify Keyword! for helpcommand and the string in typeid is not
unique, the Help Search window displays.

For information on how to create online Help files for your PowerBuilder
application, see the chapter on providing online Help in PowerBuilder
Application Techniques.

Examples This statement displays the Help index in the INQ.HLP file:

ShowHelp("C:\PB\INQ.HLP", Index!)

Argument Description

helpfile A string whose value is the name of the compiled HLP file or
the CHM (HTML Help) file.

helpcommand A value of the HelpCommand enumerated type. Values are:

• Finder! – Displays the Help file in its most recently used
state (the Help Topics dialog box in WinHelp or the
Navigator pane in the HTML Help viewer open to the last-
used tab or the default tab for the Help file).

• Index! – Displays the top-level contents topic in the Help
file.

• Keyword! – Goes to the topic identified by the keyword in
typeid.

• Topic! – Displays the topic identified by the number in
typeid.

typeid
(optional)

A number identifying the topic if helpcommand is Topic! or a
string whose value is a keyword of a help topic if
helpcommand is Keyword!.

Do not specify typeid when helpcommand is Finder! or
Index!.
PowerScript Reference 1115

ShowPopupHelp
This statement displays Help topic 143 in the file EMP.HLP file:

ShowHelp("EMP.HLP", Topic!, 143)

This statement displays the Help topic associated with the keyword Part# in the
file EMP.HLP:

ShowHelp("EMP.HLP", Keyword!, "Part#")

This statement displays the Help search window. The word in the box above
the keyword list is the first keyword that begins with M:

ShowHelp("EMP.HLP", Keyword!, "M")

See also Help
ShowPopupHelp

ShowPopupHelp
Description Displays pop-up help for the specified control.

Applies to Any control

Syntax ShowPopupHelp (helpfile, control, contextid)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage A typical location for the ShowPopupHelp call is in the Help event of a response
window with the Context Help property enabled. Events relating to movement
of the cursor over a control or to the dragging of a control or object are also
logical places for a ShowPopupHelp call.

You must type a correct context ID number for the contextid argument or you
get a message that a Help topic does not exist for the item calling the
ShowPopupHelp function.

Examples This example calls a help file in a subdirectory of the current directory:

ShowPopupHelp ("Help/my_app.hlp", this, 510)

See also Help
ShowHelp

Argument Description

helpfile String for the Help file name to be used

control Dragobject for which the pop-up help is displayed

contextid Long for the context ID number
1116 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Sign
Description Reports whether a number is negative, zero, or positive.

Syntax Sign (n)

Return value Integer. Returns a number (-1, 0, or 1) indicating the sign of n. If n is null, Sign
returns null.

Examples This statement returns 1 (the number is positive):

Sign(5)

This statement returns 0 (zero has no sign):

Sign(0)

This statement returns -1 (the number is negative):

Sign(-5)

See also Sign method for DataWindows in the DataWindow Reference or online Help

SignalError
Description Causes a SystemError event at the application level.

Syntax SignalError ({ number }, { text })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. The return value is
usually not used.

Argument Description

n The number for which you want to find out the sign

Argument Description

number
(optional)

The integer (stored in the number property of the Error
object) to be used in the message object

text
(optional)

The string (stored in the text property of the Error object) to
be used in the message object
PowerScript Reference 1117

SignalError
Usage During development you can use SignalError to test error-processing
scripts.You can call PopulateError to populate the Error object and call
SignalError without arguments. You can examine how the SystemError event
script handles the forced error. If you pass the optional number and text
arguments to SignalError, it populates all the fields in the Error object and then
triggers a SystemError event.

In an application, SignalError can also be useful. For example, if a user error is
so severe that you do not want the application to continue, you can set values
in the Error object, including your own error number, and call SignalError. You
need to include code in the SystemError event script to recognize and handle
the error you have created.If there is no script for the SystemError event, the
SignalError function does nothing.

For the runtime error numbers assigned to the Number property of the Error
object when an application error occurs, see the PowerBuilder Users Guide.

Examples These statements set values in the Error object and then trigger a SystemError
event so the error processing for these values can be tested:

int error_number
string error_text
Error.Number = 1010
Error.Text = "Salary must be a positive number."
Error.Windowmenu = "w_emp"

error_number = Error.Number
error_text = Error.Text

SignalError(error_number, error_text)

See also PopulateError
1118 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Sin
Description Calculates the sine of an angle.

Syntax Sin (n)

Return value Double. Returns the sine of n. If n is null, Sin returns null.

Examples This statement returns .8414709848078965:

Sin(1)

This statement returns 0:

Sin(0)

This statement returns 0:

Sin(Pi(1))

See also ASin
Cos
Pi
Tan
Sin method for DataWindows in the DataWindow Reference or the online Help

Sleep
Description Causes the application to pause for a specified time.

Syntax Sleep (seconds)

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Examples This example pauses the application for 5 seconds:

Sleep (5)

Argument Description

n The angle (in radians) for which you want the sine

Argument Description

seconds Long for the number of seconds you want the application to pause
PowerScript Reference 1119

Sort
Sort
Sorts rows in a DataWindow control, DataStore, or child DataWindow, or
items in a TreeView or ListView control.

For syntax for DataWindows and DataStores, see the Sort method for
DataWindows in the DataWindow Reference or the online Help.

Syntax 1 For TreeView controls
Description Sorts the children of an item in a TreeView control.

Applies to TreeView controls

Syntax treeviewname.Sort (itemhandle , sorttype)

Return value Integer. Returns 1 if it succeeds and -1 if it fails.

Usage The Sort function only sorts the immediate level beneath the specified item. If
you want to sort multiple levels, use SortAll. If you specify UserDefinedSort!
as your sorttype, define your sort criteria in the Sort event of the TreeView
control. To sort level 1 of a TreeView, set itemhandle to 0.

Examples This example sorts the children of the current TreeView item:

long ll_tvi
ll_tvi = tv_foo.FindItem(CurrentTreeItem! , 0)
tv_foo.SetRedraw(false)
tv_foo.Sort(ll_tvi , Ascending!)
tv_foo.SetRedraw(true)

See also SortAll

To sort Use

Items in a TreeView Syntax 1

Items in a ListView Syntax 2

Argument Description

treeviewname The name of the TreeView control in which you want to sort items.

itemhandle The item for which you want to sort its children.

sorttype The sort method you want to use. Valid values are:

Ascending!
Descending!
UserDefinedSort!
1120 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For ListView controls
Description Sorts items in ListView controls.

Applies to ListView controls

Syntax listviewname.Sort (sorttype, { column })

Return value Integer. Returns 1 if it succeeds and -1 if it fails.

Usage The default sort is alphanumeric.

If you do not specify a column to sort, the first column is sorted.

Examples This example sorts the items in column three of a ListView:

lv_list.SetRedraw(false)
lv_list.Sort(Ascending! , 3)
lv_list.SetRedraw(true)

See also SortAll

Argument Description

listviewname The ListView in which you want to sort items.

sorttype The method you want to use when you sort the ListView items.
Values are:

Ascending!
Descending!
Unsorted!
UserDefinedSort!

column
(optional)

The number of the column by which you wish to sort the ListView
items.
PowerScript Reference 1121

SortAll
SortAll
Description Sorts all the levels below an item in the TreeView item hierarchy.

Applies to TreeView controls

Syntax treeviewname.SortAll (itemhandle, sorttype)

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs.

Usage If you specify UserDefinedSort! as your sorttype, define your sort criteria in
the Sort event of the TreeView control.

The SortAll function cannot sort level 1 of a TreeView. However, level 1 is
sorted automatically when the TreeView’s SortType property calls for sorting.

Examples This example sorts the subsequent levels recursively under the current
TreeView item:

long ll_tvi

//Find the current treeitem
ll_tvi = tv_list.FindItem(CurrentTreeItem! , 0)

//Sort all children
tv_list.SortAll(ll_tvi , Ascending!)

This example recursively sorts the entire TreeView control:

long ll_tvi

//Find the root treeitem
ll_tvi = tv_list.FindItem(RootTreeItem! , 0)

//Sort all children
tv_list.SortAll(ll_tvi , Ascending!)

See also Sort

Argument Description

treeviewname The TreeView control in which you want to sort the
subsequent levels in an item’s hierarchy.

itemhandle The item for which you want to sort all the levels below it.

sorttype The sort method you want to use. Values are:

Ascending!
Descending!
Unsorted!
UserDefinedSort!
1122 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Space
Description Builds a string of the specified length whose value consists of spaces.

Syntax Space (n)

Return value String. Returns a string filled with n spaces if it succeeds and the empty string
("") if an error occurs. If n is null, Space returns null.

Examples This statement puts a string whose value is four spaces in Name:

string Name
Name = Space(4)

This statement assigns 40 spaces to the string Name:

string Name
Name = Space(40)

See also Fill, Space method for DataWindows in the DataWindow Reference or Help

Sqrt
Description Calculates the square root of a number.

Syntax Sqrt (n)

Return value Double. Returns the square root of n. If n is null, Sqrt returns null.

Usage Sqrt(n) is the same as n^.5. Taking the square root of a negative number causes
an execution error.

Examples This statement returns 1.414213562373095:

Sqrt(2)

This statement results in an error at execution time:

Sqrt(-2)

See also Sqrt method for DataWindows in the DataWindow Reference or online Help

Argument Description

n A long whose value is the length of the string to be filled with
spaces. The maximum value is 2,147,483,647.

Argument Description

n The number for which you want the square root
PowerScript Reference 1123

Start
Start
Start has two basic syntaxes.

Syntax 1 For executing pipeline objects
Description Executes a pipeline object, which transfers data from the source to the

destination as specified by the SQL query in the pipeline object. This pipeline
object is a property of a user object inherited from the pipeline system object.

Applies to Pipeline objects

Syntax pipelineobject.Start (sourcetrans, destinationtrans, errorobject
 {, arg1, arg2,..., argn })

Return value Integer. Returns 1 if it succeeds and a negative number if an error occurs. Error
values are:

-1 Pipe open failed
-2 Too many columns
-3 Table already exists
-4 Table does not exist
-5 Missing connection
-6 Wrong arguments
-7 Column mismatch
-8 Fatal SQL error in source
-9 Fatal SQL error in destination

To Use

Execute a pipeline object Syntax 1

Activate a timing object Syntax 2

Argument Description

pipelineobject The name of a pipeline user object that contains the pipeline
object to be executed

sourcetrans The name of a transaction object with which to connect to the
source database

destinationtrans The name of a transaction object with which to connect to the
target database

errorobject The name of a DataWindow control or Data Store in which to
store the pipeline error DataWindow

argn
(optional)

One or more retrieval arguments as specified for the pipeline
object in the Data Pipeline painter
1124 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
-10 Maximum number of errors exceeded
-12 Bad table syntax
-13 Key required but not supplied
-15 Pipe already in progress
-16 Error in source database
-17 Error in destination database
-18 Destination database is read-only

If any argument’s value is null, Start returns null.

Usage A pipeline transfer involves several PowerBuilder objects. You need:

• A pipeline object, which you define in the Data Pipeline painter. It
contains the SQL statements that specify what data is transferred and how
that data is mapped from the tables in the source database to those in the
target database.

• A user object inherited from the pipeline system object. It inherits
properties that let you check the progress of the pipeline transfer. In the
painter, you define instance variables and write scripts for pipeline events.

• A window that contains a DataWindow control or a Data Store for the
pipeline-error DataWindow. Do not put a DataWindow object in the
DataWindow control. The control displays PowerBuilder’s pipeline-error
DataWindow object if errors occur when the pipeline executes.

The window can also include buttons, menus, or some other means to execute
the pipeline, repair errors, and cancel the execution. The scripts for these
actions use the functions Start, Repair, and Cancel.

Before the application executes the pipeline, it needs to connect to the source
and destination databases, create an instance of the user object, and assign the
pipeline object to the user object’s DataObject property. Then it can call Start
to execute the pipeline. This code may be in one or several scripts.

When you execute the pipeline, the piped data is committed according to the
settings you make in the Data Pipeline painter. You can specify that:

• The data is committed when the pipeline finishes. If the maximum error
limit is exceeded, all data is rolled back.

• Data is committed at regular intervals, after a specified number of rows
have been transferred. When the maximum error limit is exceeded, all
rows already transferred are committed.
PowerScript Reference 1125

Start
For information about specifying the pipeline object in the Data Pipeline
painter and how the settings affect committing, see the PowerBuilder Users
Guide. For more information on using a pipeline in an application, see
Application Techniques.

When you dynamically assign the pipeline object to the user object’s
DataObject property, you must remember to include the pipeline object in a
dynamic library when you build your application’s executable.

Examples The following script creates an instance of the pipeline user object, assigns a
pipeline object to the pipeline user object’s DataObject property, and executes
the pipeline. I_src and i_dst are transaction objects that have been previously
declared and created. Another script has established the database connections.

U_pipe is the user object inherited from the pipeline system object. I_upipe is
an instance variable of type u_pipe. P_pipe is a pipeline object created in the
Data Pipeline painter:

i_upipe = CREATE u_pipe
i_upipe.DataObject = "p_pipe"
i_upipe.Start(i_src, i_dst, dw_1)

See also Cancel
Repair
1126 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For activating timing objects
Description Activates a timing object causing a Timer event to occur repeatedly at the

specified interval.

Applies to Timing objects

Syntax timingobject.Start (interval)

Return value Integer. Returns 1 if it succeeds and -1 if the timer is already running, the
interval specified is invalid, or there are no system timers available.

Usage This syntax of the Start function is used to activate a nonvisual timing object.
Timing objects can be used to trigger a Timer event that is not associated with
a PowerBuilder window, and they are therefore useful for distributed
PowerBuilder servers or shared objects that do not have a window for each
client connection.

A timing object is a standard class user object inherited from the Timing system
object. Once you have created a timing object and coded its timer event, you
can create any number of instances of the object within the constraints of your
operating system. An operating system supports a fixed number of timers.
Some of those timers will already be in use by PowerBuilder and other
applications and by the operating system itself.

To activate an instance of the timing object, call the Start function, specifying
the interval that you want between Timer events. The Timer event of that
instance is triggered as soon as possible after the specified interval, and will
continue to be triggered until you call the Stop function on that instance of the
timing object or the object is destroyed.

When the Timer event occurs
The interval specified for the Start function is the minimum interval between
Timer events. All other posted events occur before the Timer event.

The resolution of the interval depends on your operating system.

Argument Description

timingobject The name of the timing object you want to activate.

interval An expression of type double specifying the number of
seconds that you want between timer events. The interval can
be a whole number or fraction greater than 0 and less than or
equal to 4,294,967 seconds. An interval of 0 is invalid.
PowerScript Reference 1127

Start
You can determine what the timing interval is and whether a timer is running
by accessing the timing object’s Interval and Running properties. These
properties are read-only. You must stop and restart a timer in order to change
the value of the timing interval.

Garbage collection
If a timing object is running, it is not subject to garbage collection. Garbage
collection can occur only if the timing object is not running and there are no
references to it.

Examples Example 1 Suppose you have a distributed application in which the local
client performs some processing, such as calculating the value of a stock
portfolio, based on values in a database. The client requests a user object on a
remote server to retrieve the data values from the database.

Create a standard class user object on the server called uo_timer, inherited from
the Timing system object, and code its Timer event to refresh the data. Then
the following code creates an instance, MyTimer, of the timing object uo_timer.
The Start function activates the timer with an interval of 60 seconds so that the
request to the server is issued at 60-second intervals:

uo_timer MyTimer

MyTimer = CREATE uo_timer
MyTimer.Start(60)

Example 2 The following example uses a timing object as a shared object in
a window that has buttons for starting a timer, getting a hit count, stopping the
timer, and closing the window. Status is shown in a single line edit called
sle_state. The timing object, uo_timing, is a standard class user object inherited
from the Timing system object. It has one instance variable that holds the
number of times a connection is made:

long il_hits

The timing object uo_timing has three functions:

• of_connect increments il_hits and returns an integer (this example omits
the connection code for simplicity):

il_hits++
// connection code omitted
RETURN 1

• of_hitcount returns the value of il_hits:

RETURN il_hits
1128 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
• of_resetcounter resets the value of the counter to 0:

il_hits = 0

The timer event in uo_timing calls the of_connect function:

integer li_err

li_err = This.of_connect()
IF li_err <> 1 THEN
 MessageBox("Timer Error", "Connection failed ")
END IF

When the main window (w_timer) opens, its Open event script registers the
uo_timing user object as a shared object:

ErrorReturn result
string ls_result

SharedObjectRegister("uo_timing","Timing")
result = SharedObjectGet("Timing", iuo_timing)
// convert enumerated type to string
ls_result = of_converterror(result)

IF result = Success! THEN
 sle_stat.text = "Object Registered"
ELSE
 MessageBox("Failed", "SharedObjectGet failed, " &
 + "Status code: "+ls_result)
END IF

The Start Timer button starts the timer with an interval of five seconds:

double ld_interval
integer li_err

IF (isvalid(iuo_timing)) THEN
 li_err = iuo_timing.Start(5)
 ld_interval = iuo_timing.interval
 sle_2.text = "Timer started. Interval is " &
 + string(ld_interval) + " seconds"
 // disable Start Timer button
 THIS.enabled = FALSE
ELSE
 sle_2.text = "No timing object"
END IF
PowerScript Reference 1129

Start
The Get Hits button calls the of_hitcount function and writes the result in a
single line edit:

long ll_hits

IF (isvalid(iuo_timing)) THEN
 ll_hits = iuo_timing.of_hitcount()
 sle_hits.text = string(ll_hits)
ELSE
 sle_hits.text = ""
 sle_stat.text = "Invalid timing object..."
END IF

The Stop Timer button stops the timer, reenables the Start Timer button, and
resets the hit counter:

integer li_err

IF (isvalid(iuo_timing)) THEN
 li_err = iuo_timing.Stop()

 IF li_err = 1 THEN
 sle_stat.text = "Timer stopped"
 cb_start.enabled = TRUE
 iuo_timing.of_resetcounter()
 ELSE
 sle_stat.text = "Error - timer could " &
 not be stopped"
 END IF

ELSE
 sle_stat.text = "Error - no timing object"
END IF

The Close button checks that the timer has been stopped and closes the window
if it has:

IF iuo_timing.running = TRUE THEN
 MessageBox("Error","Click the Stop Timer " &
 + "button to clean up before closing")
ELSE
 close(parent)
END IF

The Close event for the window unregisters the shared timing object:

SharedObjectUnregister("Timing")
1130 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
The of_converterror window function converts the ErrorReturn enumerated
type to a string. It takes an argument of type ErrorReturn:

string ls_result

CHOOSE CASE a_error
CASE Success!
 ls_result = "The function succeeded"
CASE FeatureNotSupportedError!
 ls_result = "Not supported on this platform"
CASE SharedObjectExistsError!
 ls_result = "Instance name already used"
CASE MutexCreateError!
 ls_result = "Locking mechanism unobtainable"
CASE SharedObjectCreateInstanceError!
 ls_result = "Object could not be created"
CASE SharedObjectCreatePBSessionError!
 ls_result = "Could not create context session"
CASE SharedObjectNotExistsError!
 ls_result = "Instance name not registered"
CASE ELSE
 ls_result = "Unknown Error Code"
END CHOOSE

RETURN ls_result

See also Stop

StartHotLink
Description Establishes a hot link with a DDE server application so that PowerBuilder is

notified immediately of any changes in the specified data. When the data
changes in the server application, it triggers a HotLinkAlarm event in the
current application.

Syntax StartHotLink (location, applname, topic {, bAnsi})

Argument Description

location A string whose value is the location of the data in which a change
of value triggers a HotLinkAlarm event. The format of the location
depends on the application that contains the data.

applname A string whose value is the DDE name of the server application.
PowerScript Reference 1131

StartHotLink
Return value Integer. Returns 1 if it succeeds. If an error occurs, StartHotLink returns a
negative integer. Values are:

-1 No server
-2 Request denied

If any argument’s value is null, StartHotLink returns null.

Usage After establishing a hot link, you can include the following functions in the
HotLinkAlarm event:

• GetDataDDEOrigin – To determine what application sent the notification of
changed data

• GetDataDDE – To obtain the new data

• RespondRemote – To acknowledge receipt of the data

Examples In this example, another PowerBuilder application has called the
StartServerDDE function and identified itself as MyPBApp. This statement in
your application establishes a hot link to data in MyPBApp. The values you
specify for location and topic depend on conventions established by
MyPBApp:

StartHotLink("Any", "MyPBApp", "Any")

This statement establishes a hot link with Microsoft Excel, which notifies the
PowerBuilder window when the data at row 1 column 2 of REGION.XLS
changes:

StartHotLink("R1C2", "Excel", "Region.XLS")

See also StopHotLink

topic A string identifying the data or the instance of the application in
which a change triggers a HotLinkAlarm event (for example, in
Microsoft Excel, the topic name could be the name of an open
spreadsheet).

bAnsi
(optional)

A boolean identifying whether the string to get from the DDE
server is in ANSI format. If bAnsi is NULL, false, or empty,
PowerBuilder will first try to get the data in a UNICODE formatted
string. If bAnsi is true, PowerBuilder will try to get the data in an
ANSI formatted string.

Argument Description
1132 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
StartServerDDE
Description Establishes your application as a DDE server. You specify the DDE name,

topic, and items that you support.

Syntax StartServerDDE ({ windowname, } applname, topic {, item })

Return value Integer. Returns 1 if it succeeds. If an error occurs, StartServerDDE returns -1,
meaning the your application is already started as a server. If any argument’s
value is null, StartServerDDE returns null.

Usage When a DDE client application sends a DDE request, the request includes one
of the items you have declared that you support. You determine how your
application responds to each of those items.

A window must be open to provide a handle for the DDE conversation. You
cannot call StartServerDDE and other DDE functions in an application object’s
events.

When your application has established itself as a DDE server, other
applications can send DDE requests that trigger these events in your
application.

Argument Description

windowname
(optional)

The name of the server window. The default is the current window.

applname The DDE name for your application.

topic A string whose value is the basic data grouping the DDE client
application references.

item
(optional)

A comma-separated list of one or more strings (data within topic)
that specify what your DDE server application supports (for
example, "Table1","Table2").
PowerScript Reference 1133

State
Table 10-10: Events triggered by DDE requests and DDE functions
available to each event

Examples This statement causes your PowerBuilder application to begin acting as a
server. It is known to other DDE applications as MyPBApp; its topic is System,
and it supports items called Table1 and Table2:

StartServerDDE(w_emp, "MyPBApp","System", &
 "Table1", "Table2")

See also StopServerDDE

State
Description Determines whether an item in a ListBox control is highlighted.

Applies to ListBox and PictureListBox controls

Syntax listboxname.State (index)

Return value Integer. Returns 1 if the item in listboxname identified by index is highlighted
and 0 if it is not. If the index does not point to a valid item number, State returns
-1. If any argument’s value is null, State returns null.

Client action Event triggered Functions available Purpose of function

Sends a request for a hot
link

RemoteHotLinkStart — —

Sends a command to your
application

RemoteExec GetCommandDDE

GetCommandDDEOrigin

Obtain the command

Find out what client
application sent the command

Sends data RemoteSend GetDataDDE

GetDataDDEOrigin

Obtain the data

Find out what client
application sent the data

Requests data from your
server application

RemoteRequest SetDataDDE

RespondRemote

Send the requested data

Acknowledge the request

Wants to terminate the hot
link

RemoteHotLinkStop — —

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want to
obtain the state (highlighted or not highlighted) of the item
identified by index

index The number of the item for which you want to obtain the state
1134 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage The State and SetState functions are meant for a ListBox that allows multiple
selections (its MultiSelect property is true). To find all of a list’s selected items,
loop through the list, checking the state of each item.

The SelectedItem and SelectItem functions are meant for single-selection
ListBox controls. SelectedItem reports the selection directly with no need for
looping. In a multiple-selection ListBox control, SelectedItem reports the first
selected item only.

When you know the index of an item, you can use the Text function to get the
item’s text.

Examples If item 3 in lb_Contact is selected (highlighted), then this example sets li_Item
to 1:

integer li_Item
li_Item = lb_Contact.State(3)

The following statements obtain the text of all the selected items in a ListBox
that allows the user to select more than one item. The MessageBox function
displays each item as it is found. You could include other processing that
created an array or list of the selected values:

integer li_ItemTotal, li_ItemCount

// Get the number of items in the ListBox.
li_ItemTotal = lb_contact.TotalItems()

// Loop through all the items.
FOR li_ItemCount = 1 to li_ItemTotal
 // Is the item selected? If so, display the text
 IF lb_Contact.State(li_ItemCount) = 1 THEN &
 MessageBox("Selected Item", &
 lb_Contact.text(li_ItemCount))
NEXT

This statement executes some statements if item 3 in the ListBox lb_Contact is
highlighted:

IF lb_Contact.State(3) = 1 THEN ...

See also SelectedItem
SetState
PowerScript Reference 1135

StepIt
StepIt
Description Increments the current position in a progress bar control by the value specified

in the SetStep property of the control.

Applies to Progress bar controls

Syntax control.StepIt ()

Return value Integer. Returns 1 if it succeeds and -1 if there is an error.

Usage StepIt causes the position in a progress bar to wrap if the value of the SetStep
takes the current position out of range. For example, if the SetStep value is 40,
the current position 80, and the range is set from 0 to 100, the position on the
redrawn progress bar after you call StepIt is 20.

The SetStep property can have a negative value. The default value for SetStep
is 10.

Examples This statement adds the SetStep increment to a progress bar control:

HProgressBar.StepIt ()

See also SetRange

Stop
Stop has two syntaxes.

Argument Description

control The name of the progress bar

To Use

Deactivate a timing object Syntax 1

Stop playing an animation Syntax 2
1136 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 1 For deactivating timing objects
Description Deactivates a timing object.

Applies to Timing objects

Syntax timingobject.Stop ()

Return value Integer. Returns 1 if it succeeds and -1 if the timer is not running or could not
be stopped.

Usage Use this function to deactivate a timing object. A stopped timer can be
reactivated with the Start function.

Examples This statement stops the timing object instance MyTimer:

MyTimer.Stop()

See also Start

Syntax 2 For stopping an animation from playing
Description Stops an animation (an AVI clip) from playing.

Applies to Animation controls

Syntax animationname.Stop ()

Return value Integer. Returns 1 if it succeeds and -1 if the animation is not running or could
not be stopped.

Usage Use this function to stop an animation that is playing. A stopped animation can
be restarted with the Play function.

Examples This statement stops the AVI clip that is playing in the animation control
MyAnimation:

MyAnimation.Stop()

See also Play

Argument Description

timingobject The name of the timing object you want to deactivate

Argument Description

animationname The name of the animation control displaying the AVI clip
PowerScript Reference 1137

StopHotLink
StopHotLink
Description Terminates a hot link with a DDE server application.

Caution
All arguments must match the arguments in an earlier StartHotLink call.

Syntax StopHotLink (location, applname, topic)

Return value Integer. Returns 1 if it succeeds. If an error occurs, StopHotLink returns a
negative integer. Values are:

-1 Link was not started
-2 Request denied
-3 Could not terminate server

If any argument’s value is null, StopHotLink returns null.

Examples If another PowerBuilder application called StartServerDDE to establish itself as
a server using the name MyPBApp, then your application can act as a DDE
client and call StartHotLink to establish a hot link with MyPBApp. The
following statement ends that hot link. The values you specify for location and
topic depend on conventions established by MyPBApp:

StopHotLink("Any", "MyPBApp", "Any")

This statement stops the hot link with Microsoft Excel for row 1 column 2 in
the spreadsheet REGION.XLS:

StopHotLink("R1C2", "Excel", "Region.XLS")

See also StartHotLink

Argument Description

location A string whose value is the location at which you want to end the
hot link, as specified in the StartHotLink function that established
the link

applname A string whose value is the DDE name of the server application, as
specified in the StartHotLink function

topic A string identifying the data or the instance of the application in
which the hot link is stopped, as specified in the StartHotLink
function
1138 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
StopServerDDE
Description Causes your application to stop acting as a DDE server application. Any

subsequent requests from a DDE client application fail.

Syntax StopServerDDE ({ windowname, } applname, topic)

Return value Integer. Returns 1 if it succeeds. If an error occurs, StopServerDDE returns -1,
meaning the DDE server was not started. If any argument’s value is null,
StopServerDDE returns null.

Caution
The arguments applname and topic must match the arguments in a prior
StartServerDDE call.

Examples This statement causes the PowerBuilder application MyPBApp to stop acting
as a server:

StopServerDDE(w_emp, "MyPBApp", "System")

See also StartServerDDE

String
String has two syntaxes.

Argument Description

windowname
(optional)

The name of the server window. The default is the current window.
If you have more than one server window, windowname is required.

applname The DDE name for your PowerBuilder application.

topic A string whose value is the topic you declared when you called
StartServerDDE.

To Use

Format data as a string according to a specified display
format mask

Syntax 1

Convert a blob to a string Syntax 2
PowerScript Reference 1139

String
Syntax 1 For formatting data
Description Formats data, such as time or date values, according to a format mask. You can

convert and format date, DateTime, numeric, and time data. You can also apply
a display format to a string.

Syntax String (data, { format })

Return value String. Returns data in the specified format if it succeeds and the empty string
("") if the datatype of data does not match the type of display mask specified,
format is not a valid mask, or data is an incompatible datatype.

Usage For date, DateTime, numeric, and time data, PowerBuilder uses the system’s
default format for the returned string if you do not specify a format. For
numeric data, the default format is the [General] format.

For string data, a display format mask is required. (Otherwise, the function
would have nothing to do.)

The format can consist of one or more masks:

• Formats for date, DateTime, string, and time data can include one or two
masks. The first mask is the format for the data; the second mask is the
format for a null value.

• Formats for numeric data can have up to four masks. A format with a
single mask handles both positive and negative data. If there are additional
masks, the first mask is for positive values, and the additional masks are
for negative, zero, and null values.

To display additional characters as part of the mask for a decimal value, you
must precede each character with a backslash. For example, to display a
decimal number with two digits of precision preceded by four asterisks, you
must type a backslash before each asterisk:

dec{2} amount
string = ls_result

Argument Description

data The data you want returned as a string with the specified formatting.
Data can have a date, DateTime, numeric, time, or string datatype.
Data can also be an Any variable containing one of these datatypes.

format
(optional)

A string whose value is the display masks you want to use to format
the data. The masks consists of formatting information specific to
the datatype of data. If data is type string, format is required.

The format can consist of more than one mask, depending on the
datatype of data. Each mask is separated by a semicolon. (For
details on each datatype, see Usage).
1140 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
amount = 123456.32
ls_result = string(amount,"****0.00")

The resulting string is ****123456.32.

For more information on specifying display formats, see the PowerBuilder
Users Guide. Note that, although a format can include color specifications, the
colors are ignored when you use String in PowerScript. Colors appear only for
display formats specified in the DataWindow painter.

If the display format does not match the datatype, PowerBuilder tries to apply
the mask, which can produce unpredictable results.

Times and dates from a DataWindow control
When you call GetItemTime or GetItemString as an argument for the String
function and do not specify a display format, the value is formatted as a
DateTime value. This statement returns a string like "2/26/03 00:00:00":

String(dw_1.GetItemTime(1, "start_date"))

International deployment When you use String to format a date and the
month is displayed as text (for example, the display format includes "mmm"),
the month is in the language of the runtime DLLs available when the
application is run. If you have installed localized runtime files in the
development environment or on a user’s machine, then on that machine, the
month in the resulting string is in the language of the localized files.

For information about the localized runtime files, which are available in
French, German, Italian, Spanish, Dutch, Danish, Norwegian, and Swedish,
see the chapter on internationalization in Application Techniques.

Handling ANSI data Since this function does not have an encoding argument
to allow you to specify the encoding of the data, the string returned can contain
garbage characters if the data has ANSI encoding. You can handle this by
converting the ANSI string returned from the String function to a Unicode blob,
and then converting the ANSI string in the blob to a Unicode string, using the
encoding parameters provided in the Blob and String conversion functions:

ls_temp = String(long, "address")
lb_blob = blob(ls_temp) //EncodingUTF16LE! is default
ls_result = string(lb_blob, EncodingANSI!)

Message object You can also use String to extract a string from the Message
object after calling TriggerEvent or PostEvent. For more information, see the
TriggerEvent or PostEvent functions.
PowerScript Reference 1141

String
Examples This statement applies a display format to a date value and returns Jan 31,
2002:

String(2002-01-31, "mmm dd, yyyy")

This example applies a format to the value in order_date and sets date1 to
6-11-02:

Date order_date = 2002-06-11
string date1
date1 = String(order_date,"m-d-yy")

This example includes a format for a null date value so that when order_date is
null, date1 is set to none:

Date order_date = 2002-06-11
string date1
SetNull(order_date)
date1 = String(order_date, "m-d-yy;'none'")

This statement applies a format to a DateTime value and returns Jan 31,
2001 6 hrs and 8 min:

String(DateTime(2001-01-31, 06:08:00), &
 'mmm dd, yyyy h "hrs and" m "min"')

This example builds a DateTime value from the system date and time using the
Today and Now functions. The String function applies formatting and sets the
text of sle_date to that value, for example, 6-11-02 8:06 pm:

DateTime sys_datetime
string datetime1
sys_datetime = DateTime(Today(), Now())
sle_date.text = String(sys_datetime, &
 "m-d-yy h:mm am/pm;'none'")

This statement applies a format to a numeric value and returns $5.00:

String(5,"$#,##0.00")

These statements set string1 to 0123:

integer nbr = 123
string string1
string1 = String(nbr,"0000;(000);****;empty")

These statements set string1 to (123):

integer nbr = -123
string string1
string1 = String(nbr,"000;(000);****;empty")
1142 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
These statements set string1 to ****:

integer nbr = 0
string string1
string1 = String(nbr,"0000;(000);****;empty")

These statements set string1 to "empty":

integer nbr
string string1
SetNull(nbr)
string1 = String(nbr,"0000;(000);****;empty")

This statement formats string data and returns A-B-C. The display format
assigns a character in the source string to each @ and inserts other characters in
the format at the appropriate positions:

String("ABC", "@-@-@")

This statement returns A*B:

String("ABC", "@*@")

This statement returns ABC:

String("ABC", "@@@")

This statement returns a space:

String("ABC", " ")

This statement applies a display format to time data and returns 6 hrs and 8
min:

String(06:08:02,'h "hrs and" m "min"')

This statement returns 08:06:04 pm:

String(20:06:04,"hh:mm:ss am/pm")

This statement returns 8:06:04 am:

String(08:06:04,"h:mm:ss am/pm")

See also String method for DataWindows in the DataWindow Reference or online Help
PowerScript Reference 1143

String
Syntax 2 For blobs
Description Converts data in a blob to a string value. If the blob’s value is not text data,

String attempts to interpret the data as characters.

Syntax String (blob {,encoding})

Return value String. Returns the value of blob as a string if it succeeds and the empty string
("") if it fails. It the blob does not contain string data, String interprets the data
as characters, if possible, and returns a string. If blob is null, String returns null.

Usage If the encoding argument is not provided, String converts a Unicode blob to a
Unicode string. You must provide the encoding argument if the blob has a
different encoding.

If the blob has a byte-order mark (BOM), String filters it out automatically. For
example, suppose the blob’s hexadecimal display is: FF FE 54 00 68 00 69
00 73 00. The BOM is FF FE, which indicates that the blob has UTF-16LE
encoding, and is filtered out. The string returned is “This”.

You can also use String to extract a string from the Message object after calling
TriggerEvent or PostEvent. For more information, see the TriggerEvent or
PostEvent functions.

Examples This example converts the blob instance variable ib_sblob, which contains
string data in ANSI format, to a string and stores the result in sstr:

string sstr
sstr = String(ib_sblob, EncodingANSI!)

This example stores today’s date and test status information in the blob bb.
Pos1 and pos2 store the beginning and end of the status text in the blob. Finally,
BlobMid extracts a "sub-blob" that String converts to a string. Sle_status
displays the returned status text:

blob{100} bb
long pos1, pos2
string test_status

Argument Description

blob The blob whose value you want returned as a string. Blob can also
be an Any variable containing a blob.

encoding Character encoding of the blob you want converted. Values are:

• EncodingANSI!

• EncodingUTF8!

• EncodingUTF16LE! (default)

• EncodingUTF16BE!
1144 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
date test_date

test_date = Today()
IF DayName(test_date) = "Wednesday" THEN &
 test_status = "Coolant Test"
IF DayName(test_date) = "Thursday" THEN &
 test_status = "Emissions Test"

// Store data in the blob
pos1 = BlobEdit(bb, 1, test_date)
pos2 = BlobEdit(bb, pos1, test_status)

... // Some processing

// Extract the status stored in bb and display it
sle_status.text = String(&
 BlobMid(bb, pos1, pos2 - pos1))

See also Blob
String method for DataWindows in the DataWindow Reference or online Help

String_To_Object
Description Gets an object reference based on a passed string.

This function is used by PowerBuilder clients connecting to EAServer.

Applies to JaguarORB objects

Syntax jaguarorb.String_To_Object (objstring , object)

Return value Long. Returns 0 if it succeeds and a negative number if an error occurs.

Argument Description
jaguarorb An instance of JaguarORB.
objstring A string that represents a CORBA object.

The string representation of a CORBA object is an
Interoperable Object Reference (IOR) that describes how to
connect to the server hosting the object. EAServer supports
both standard format IORs (which are hex-encoded) and a URL
format that is human-readable.

object A variable of type CORBAobject that will contain the object
reference.
PowerScript Reference 1145

String_To_Object
Usage The String_To_Object function allows you to instantiate a proxy instance
without using the Jaguar naming service.

Connecting to EJB components
In PowerBuilder 7 and earlier releases, the JaguarORB String_To_Object
function was used to access EJB components in EAServer. In PowerBuilder 8
and later, the Lookup function on the Connection object can be used to
instantiate a proxy for the home interface of an EJB component in EAServer.

In PowerBuilder 9, the Lookup function on the EJBConnection PowerBuilder
extension object can be used to instantiate proxies for EJB components running
in any J2EE-compliant server.

When you use String_To_Object for proxy instantiation, you instantiate the
object directly. The disadvantage of this approach is that you lose the benefits
of server address abstraction that are provided by the naming service.

To use the naming service API explicitly, you can use the
Resolve_Initial_References function to obtain an initial naming context.
However, this technique is not recommended because it requires use of
deprecated SessionManager::Factory methods. For more information about
connecting to EAServer using the JaguarORB object, see Application
Techniques.

The String_To_Object can be used to obtain an EAServer authentication
manager instance by using a URL format IOR. IOR strings in URL format
must have the form:

protocol : // host : iiop_port

where:

• protocol is iiops if connecting to a secure port and iiop otherwise

• host is the EAServer host address or machine name

• iiop_port is the port number for IIOP requests

An example of a URL-format IOR is:

iiop://hosta:2000

If the server is part of a cluster, the objstring argument can contain a list of
IORs separated by semicolons.
1146 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
After calling String_To_Object, you can use the Manager interface to obtain an
instance of the Session interface, which allows you to create component
instances. When you use the Manager and Session interfaces, you need to
generate proxies for these interfaces and include these proxies in the library list
for the client. For information about methods on these interfaces, see the
interface repository documentation at the URL http://yourhost:yourport/ir/,
where yourhost is the server's host name and yourport is the HTTP port
number.

The String_To_Object function can also be used to deserialize a Proxy object
reference. By serializing an object reference, you can save the state of the
object so that it persists after the client terminates processing. Deserializing the
object reference gets an object reference from a serialized string.
String_To_Object is often used in conjunction with Object_To_String, which
allows you to serialize an object reference.

Examples The following example shows the use of the String_To_Object function to
obtain an EAServer authentication manager instance. The function uses a URL
format IOR:

JaguarORB my_orb
CORBAObject my_corbaobj
Manager my_manager
Session my_session
Factory my_Factory
n_Bank_Account my_account

my_orb = CREATE JaguarORB
my_orb.init("ORBRetryCount=3,ORBRetryDelay=1000")
my_orb.String_To_Object("iiop://myhost:2000", &
 my_corbaobj)

my_corbaobj._narrow(my_manager, &
 "SessionManager/Manager")
my_session = my_manager.createSession("jagadmin", "")
my_corbaobj = my_session.lookup("Bank/n_Bank_Account")
my_corbaobj._narrow(my_Factory,

"SessionManager/Factory")
my_corbaobj = my_Factory.create()
my_corbaobj._narrow(my_account,"Bank/n_Bank_Account")

my_account.withdraw(100.0)
PowerScript Reference 1147

String_To_Object
In this example, the component is an EJB component. When the _Narrow
function is called to convert the object reference returned from the Lookup call
on the Session object, the second argument includes the domain name as well
as the package name. This is necessary if the Java package name uses the
domainname.packagename format:

JaguarORB my_orb
CORBAObject my_corbaobj
Manager my_mgr
Session my_session
CartHome my_cartHome
Cart my_cart
long ll_return

my_orb = CREATE JaguarORB
my_orb.init("ORBLogFile='c:\temp\orblog'")
my_orb.String_to_Object("iiop://svr1:2000", &

my_corbaObj)
my_corbaObj._narrow(my_mgr, "SessionManager/Manager")
my_Session = my_mgr.createSession("jagadmin", "")
my_corbaObj = my_session.lookup("Cart")
ll_return = my_corbaObj._narrow(my_CartHome,
 "com/shopping/CartHome")

my_corbaObj = my_CartHome.create()

my_Cart.addItem()

See also Init
Lookup
_Narrow
Object_To_String
Resolve_Initial_References
1148 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SuspendTransaction
Description Suspends the EAServer transaction associated with the calling thread.

Applies to CORBACurrent objects

Syntax CORBACurrent.SuspendTransaction ()

Return value Unsigned long. Returns a handle that refers to the transaction associated with
the thread or 0 if an error occurs.

Usage The SuspendTransaction function returns a handle referring to the transaction
associated with the calling thread. This handle can be passed to the
ResumeTransaction function on the same or a different thread. When
SuspendTransaction is called, the current thread is no longer associated with a
transaction.

SuspendTransaction can be called by a client or a component that is marked as
OTS style. must be using the two-phase commit transaction coordinator
(OTS/XA).

Examples This example shows the use of the SuspendTransaction function to disassociate
the calling thread from the current transaction:

// Instance variable:
// CORBACurrent corbcurr
integer li_rc
unsignedlong ll_handle

// Get and initialize an instance of CORBACurrent
...
li_rc = corbcurr.BeginTransaction()
// do some transactional work
ll_handle = corbcurr.SuspendTransaction()
// do some nontransactional work
li_rc = corbcurr.ResumeTransaction(ll_handle)
// do some more transactional work
li_rc = corbcurr.CommitTransaction()

See also BeginTransaction
CommitTransaction
GetTransactionName
ResumeTransaction
RollbackTransaction
SetTimeout

Argument Description
CORBACurrent Reference to the CORBACurrent service instance
PowerScript Reference 1149

Synchronize
Synchronize
Starts synchronization between a remote and consolidated database. The
syntax you use depends on whether you include command line parameters with
the dbmlsync synchronization call.

Syntax 1 For synchronization without parameters
Description Starts synchronization between a remote and consolidated database.

Applies to MLSynchronization, MLSync, and ULSync controls

Syntax SyncObject.Synchronize ()

Return value Integer. Returns 1 for success and -1 for failure. Any other return value is an
error code from dbmlsync.

Examples If all the properties of a synchronization object are initialized, including userids
and passwords, it is ready for immediate use. To launch a synchronization
requires very little coding, as in the following example for an MLsync object
named “nvo_my_mlsync”:

nvu_my_mlsync mySync
Long rc
mySync = CREATE nvo_my_mlsync
mySync.Synchronize()
destroy mySync

You would typically add the above code to the Clicked event for a menu item
or a command button on an application window.

Syntax 2 For synchronization with parameters
Description Starts dbmlsync synchronization with command line parameters that are passed

from the values of a syncparm structure.

Applies to MLSync controls

To start synchronization Use

Without including command line parameters Syntax 1

With command line parameters that you include in the
synchroniztion call

Syntax 2

Argument Description

syncObject The name of the synchronization object.
1150 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax SyncObject.Synchronize (cmdstring)

Return value Integer. Returns 1 for success and any other value for failure.

Usage The following is an example of a command string for a Synchronize call:

C:\Program Files\Sybase\SQL Anywhere 11\Bin32\

dbmlsync.exe

-c "DSN=salesdb_remote;UID=dba;PWD=sql" -n salesapi
-u 50 -mp "pw10" -wc salesapi_50_sync
-o "C:\temp\dbmlsync.log" -v+ -q -k

If the path to the dbmlsync executable (C:\Program Files\Sybase\SQL
Anywhere 11\Bin32\dbmlsync.exe in the above example) is not part of the
command string, the application searches the Windows registry to find it.

Examples For MLSync objects, you can allow a user to edit the command line arguments
for a synchronization call as follows:

long rc
string cmd
cmd = myMLSync.GetCommandString()
// Edit cmd however you wish
...
rc = myMLSync.Synchronize(cmd)

See also CancelSync
GetCommandString
SetParm

Argument Description

syncObject The name of the synchronization object.

cmdstring A read-only string containing command line arguments for a
synchronization call.
PowerScript Reference 1151

SyntaxFromSQL
SyntaxFromSQL
Description Generates DataWindow source code based on a SQL SELECT statement.

Applies to Transaction objects

Syntax transaction.SyntaxFromSQL (sqlselect, presentation, err)

Return value String. Returns the empty string ("") if an error occurs. If SyntaxFromSQL fails,
err may contain error messages if warnings or soft errors occur (for example,
a syntax error). If any argument’s value is null, SyntaxFromSQL returns null.

Usage To create a DataWindow object, you can pass the source code returned by
SyntaxFromSQL directly to the Create function.

Table owner in the SQL statement If the value of the LogID property of the
Transaction object is not the owner of the table being accessed in the SQL
statement for the SyntaxFromSQL function, then the table name in the SQL
SELECT statement must be qualified with the owner name.

Argument Description

transaction The name of a connected transaction object.

sqlselect A string whose value is a valid SQL SELECT statement.

presentation A string whose value is the default presentation style you want
for the DataWindow. The simple format is:

Style(Type=presentationstyle)
Values for presentationstyle correspond to selected styles in
the New DataWindow dialog box in the DataWindow painter.
Keywords are:

(Default) Tabular
Grid
Form (for freeform)
Graph
Group
Label

The Usage section lists the keywords you can use in
presentation.

err A string variable to which PowerBuilder will assign any error
messages that occur.
1152 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Note for Adaptive Server Enterprise
If your DBMS is Adaptive Server Enterprise and you call SyntaxFromSQL,
PowerBuilder must determine whether the tables are updatable through a
unique index. This is only possible if you set AutoCommit to true before
calling SyntaxFromSQL, as shown here:

sqlca.autocommit=TRUE
ls_dws=sqlca.syntaxfromsql (sqlstmt, presentation, err)
sqlca.autocommit=FALSE

The presentation string can also specify object keywords followed by
properties and values to customize the DataWindow. You can specify the style
of a column, the entire DataWindow, areas of the DataWindow, and text in the
DataWindow. The object keywords are:

Column
DataWindow
Group
Style
Text
Title

A full presentation string has the format:

"Style (Type=value property=value ...)

 DataWindow (property=value ...)

 Column (property=value ...)

 Group groupby_colnum1 Fby_colnum2 ... property ...)

 Text property=value ...)

 Title ('titlestring')"

The checklists in the DataWindow object properties chapter in the
DataWindow Reference identify the properties that you can use for each object
keyword.

If a database column has extended attributes with font information, then font
information you specify in the SyntaxFromSQL presentation string is ignored.

Examples The following statements display the DataWindow source for a tabular
DataWindow object generated by the SyntaxFromSQL function in a
MultiLineEdit.
PowerScript Reference 1153

SyntaxFromSQL
If errors occur, PowerBuilder fills the string ERRORS with any error messages
that are generated:

string ERRORS, sql_syntax

sql_syntax = "SELECT emp_data.emp_id," &
 + "emp_data.emp_name FROM emp_data " &
 + "WHERE emp_data.emp_salary >45000"

mle_sql.text = &
 SQLCA.SyntaxFromSQL(sql_syntax, "", ERRORS)

The following statements create a grid DataWindow dw_1 from the
DataWindow source generated in the SyntaxFromSQL function. If errors occur,
the string ERRORS contains any error messages that are generated, which are
displayed to the user in a message box. Note that you need to call
SetTransObject with SQLCA as its argument before you can call the Retrieve
function:

string ERRORS, sql_syntax
string presentation_str, dwsyntax_str

sql_syntax = "SELECT emp_data.emp_id,"&
 + "emp_data.emp_name FROM emp_data "&
 + "WHERE emp_data.emp_salary > 45000"

presentation_str = "style(type=grid)"

dwsyntax_str = SQLCA.SyntaxFromSQL(sql_syntax, &
 presentation_str, ERRORS)

IF Len(ERRORS) > 0 THEN
 MessageBox("Caution", &
 "SyntaxFromSQL caused these errors: " + ERRORS)
 RETURN
END IF

dw_1.Create(dwsyntax_str, ERRORS)

IF Len(ERRORS) > 0 THEN
 MessageBox("Caution", &
 "Create cause these errors: " + ERRORS)
 RETURN
END IF

See also Create method for DataWindows in the DataWindow Reference or online Help
Information on DataWindow object properties in the DataWindow Reference
1154 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
SystemRoutine
Description Provides the routine node representing the system root in a performance

analysis model.

Applies to Profiling object

Syntax instancename.SystemRoutine (theroutine)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• ModelNotExistsError! – The function failed because no model exists

Usage Use this function to extract the routine node representing the system root in a
performance analysis model. You must have previously created the
performance analysis model from a trace file using the BuildModel function.
The routine node is defined as a ProfileRoutine object and provides the time
spent in the routine, any called routines, the number of times each routine was
called, and the class to which the routine belongs.

Examples This example provides the routine that represents the system root in a
performance analysis model:

Profiling lpro_model
ProfileRoutine lprort_routine

lpro_model.BuildModel()
lpro_model.SystemRoutine(lprort_routine)
...

See also BuildModel

Argument Description

instancename Instance name of the Profiling object.

theroutine A value of type ProfileRoutine containing the routine node
representing the system root. This argument is passed by
reference.
PowerScript Reference 1155

TabPostEvent
TabPostEvent
Description Posts the specified event for each tab page in a Tab control, adding them to the

end of the event queues for the tab page user objects.

Applies to Tab controls

Syntax tabcontrolname.TabPostEvent (event {, word, long })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs, if the event is not a
valid event for the tab page user object, or if a script does not exist for the event.

Examples Suppose tab_address contains several tab pages inherited from uo_list and
uo_list has a user event called ue_display. This statement posts the event
ue_display for each the tab pages in tab_address:

tab_address.TabPostEvent("ue_display")

See also TabTriggerEvent

Argument Description

tabcontrolname The name of the Tab control for which you want to post events
for its tab page user objects.

event A value of the TrigEvent enumerated datatype that identifies a
PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event.
The event must be a valid event for a tab page user object in
tabcontrolname and a script must exist for the event in
tabcontrolname.

word
(optional)

A long value to be stored in the WordParm property of the
system’s Message object. If you want to specify a value for long,
but not word, enter 0. (For cross-platform compatibility,
WordParm and LongParm are both longs).

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a
string, a pointer to the string is stored in the LongParm property,
which you can access with the String function (see Usage for
PostEvent).
1156 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
TabTriggerEvent
Description Triggers the specified event for each tab page in a Tab control, which executes

the scripts immediately in the index order of the tab pages.

Applies to Tab controls

Syntax tabcontrolname.TabTriggerEvent (event {, word, long })

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs, if the event is not a
valid event for the tab page user object, or if a script does not exist for the event.

Examples Suppose tab_address contains several tab pages inherited from uo_list and
uo_list has a user event called ue_display. This statement executes immediately
the script for ue_display for each the tab pages in tab_address:

tab_address.TabTriggerEvent("ue_display")

See also TabPostEvent

Argument Description

tabcontrolname The name of the Tab control for which you want to trigger
events for its tab page user objects.

event A value of the TrigEvent enumerated datatype that identifies
a PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an
event. The event must be a valid event for a tab page user
object in tabcontrolname and a script must exist for the event
in tabcontrolname.

word
(optional)

A long value to be stored in the WordParm property of the
system’s Message object. If you want to specify a value for
long, but not word, enter 0. (For cross-platform compatibility,
WordParm and LongParm are both longs).

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a
string, a pointer to the string is stored in the LongParm
property, which you can access with the String function (see
Usage for TriggerEvent).
PowerScript Reference 1157

Tan
Tan
Description Calculates the tangent of an angle.

Syntax Tan (n)

Return value Double. Returns the tangent of n. An execution error occurs if n is not valid. If
n is null, Tan returns null.

Examples Both these statements return 0:

Tan(0)
Tan(Pi(1))

This statement returns 1.55741:

Tan(1)

See also ATan
Cos
Pi
Sin
Tan method for DataWindows in the DataWindow Reference or online Help

Text
Description Obtains the text of an item in a ListBox control.

Applies to ListBox, DropDownListBox, PictureListBox, and DropDownPictureListBox
controls

Syntax listboxname.Text (index)

Return value String. Returns the text of the item in listboxname identified by index. If the
index does not point to a valid item number, Text returns the empty string (“”).
If any argument’s value is null, Text returns null.

Argument Description

n The angle (in radians) for which you want the tangent

Argument Description

listboxname The name of the ListBox control in which you want the text of an
item

index The number of the item for which you want the text
1158 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples Assume the ListBox lb_Cities contains:

Atlanta
Boston
Chicago

Then these statements store the text of item 3, which is Chicago, in
current_city:

string current_city
current_city = lb_Cities.Text(3)

See also FindItem, SelectedItem, SelectedText

TextLine
Description Obtains the text of the line that contains the insertion point. TextLine works for

controls that can contain multiple lines.

Applies to DataWindow, EditMask, MultiLineEdit, and RichTextEdit controls

Syntax editname.TextLine ()

Return value String. Returns the text on the line with the insertion point in editname. If an
error occurs, TextLine returns the empty string (“”). If editname is null, TextLine
returns null.

Usage If editname is a DataWindow control, then TextLine reports information about
the edit control over the current row and column.

Examples In the MultiLineEdit mle_state, if the insertion point is on line 4 and its text is
North Carolina, then this example sets linetext to North Carolina:

string linetext
linetext = mle_state.TextLine()

If the insertion point is on a line whose text is Y in the MultiLineEdit
mle_contact, then some processing takes place:

IF mle_contact.TextLine() = "Y" THEN ...

See also SelectedItem, SelectTextLine

Argument Description

editname The name of the DataWindow control, EditMask, MultiLineEdit, or
RichTextEdit control in which you want the text on the line that
contains the insertion point
PowerScript Reference 1159

Time
Time
Converts DateTime, string, or numeric data to data of type time. It also extracts
a time value from a blob. You can use one of three syntaxes, depending on the
datatype of the source data.

Syntax 1 For DateTime and blob values
Description Extracts a time value from a DateTime value or a blob.

Syntax Time (datetime)

Return value Time. Returns the time in datetime as a time. If datetime does not contain a
valid time or is an incompatible datatype, Time returns 00:00:00.000000. If
datetime is null, Time returns null.

Examples After StartDateTime has been retrieved from the database, this example sets
StartTime equal to the time in StartDateTime:

DateTime StartDateTime
time StartTime
...
StartTime = Time(StartDateTime)

Suppose that the value of a blob variable ib_blob contains a DateTime value
beginning at byte 32. The following statement extracts the time from the value:

time lt_time
lt_time = Time(BlobMid(ib_blob, 32))

See also Time method for DataWindows in the DataWindow Reference or online Help

To Use

Extract the time from DateTime data, or to extract a time
stored in a blob

Syntax 1

Convert a string to a time Syntax 2

Combine numbers for hours, minutes, and seconds into a
time value

Syntax 3

Argument Description

datetime A DateTime value or a blob in which the first value is a time or
DateTime value. The rest of the contents of the blob is ignored.
Datetime can also be an Any variable containing a DateTime or
blob.
1160 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Syntax 2 For strings
Description Converts a string containing a valid time into a time value.

Syntax Time (string)

Return value Time. Returns the time in string as a time. If string does not contain a valid time
or is an incompatible datatype, Time returns 00:00:00.000000. If string is null,
Time returns null.

Usage Valid times can include any combination of hours (00 to 23), minutes (00 to
59), seconds (00 to 59), and microseconds (0 to 999999).

Examples These statements set What_Time to null:

Time What_Time
string null_string

SetNull(null_string)
What_Time = Time(null_string)

This statement returns a time value for 45 seconds before midnight (23:59:15),
which is specified as a string:

Time("23:59:15")

This statement converts the text in the SingleLineEdit sle_Time_Received to a
time value:

Time(sle_Time_Received.Text)

See also Time method for DataWindows in the DataWindow Reference or online Help

Argument Description

string A string whose value is a valid time (such as 8am or 10:25) that you
want returned as a time. Only the hour is required; you do not have
to include the minutes, seconds, or microseconds of the time or am
or pm.

The default value is 00 for minutes and seconds and 000000 for
microseconds. PowerBuilder determines whether the time is am or
pm based on a 24-hour clock.

String can also be an Any variable containing a string or blob.
PowerScript Reference 1161

Time
Syntax 3 For integers
Description Combines integers representing hours, minutes, seconds, and microseconds

into a time value.

Syntax Time (hour, minute, second {, microsecond })

Return value Time. Returns the time as a time datatype and 00:00:00 if the value in any
argument is not valid (out of the specified range of values). If any argument is
null, Time returns null.

Examples These statements set What_Time to a time value with microseconds, and
display the resulting time as a string in st_1. The default display format does
not include microseconds, so the String function specifies a display format with
microseconds. Leading zeros are appended to the string value for
microseconds:

Time What_Time
What_Time = Time(10, 15, 45, 234)
st_1.Text = String(What_Time, "hh:mm:ss.ffffff")

The time in the string variable is set to 10:15:45.000234.

These statements set What_Time to 10:15:45:

Time What_Time
What_Time = Time(10, 15, 45)

See also Time method for DataWindows in the DataWindow Reference or online Help

Argument Description

hour The integer for the hour (00 to 23) of the time

minute The integer for the minutes (00 to 59) of the time

second The integer for the seconds (0 to 59) of the time

microsecond
(optional)

The integer for the microseconds (0 to 32767) of the time (note that
the range of values supported for this argument is less than the total
range of values possible for a microsecond)
1162 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Timer
Description Causes a Timer event in a window to occur repeatedly at the specified interval.

When you call Timer, it starts a timer. When the interval is over, PowerBuilder
triggers the Timer event and resets the timer.

Syntax Timer (interval {, windowname })

Return value Integer. Returns 1 if succeeds and -1 if an error occurs. If any argument’s value
is null, Timer returns null.

Usage Do not call the Timer function in the Timer event. The timer gets reset
automatically and the Timer event retriggers at the interval that has already
been established. Call the Timer function in another event’s script when you
want to stop the timer or change the interval.

Examples This statement triggers a Timer event every two seconds in the active window:

Timer(2)

This statement stops the triggering of the Timer event in the active window:

Timer(0)

These statements trigger a Timer event every half second in the window
w_Train:

Open(w_Train)
Timer(0.5, w_Train)

This example causes the current time to be displayed in a StaticText control in
a window. Calling Timer in the window’s Open event script starts the timer. The
script for the Timer event refreshes the displayed time.

In the window’s Open event script, the following code displays the time
initially and starts the timer:

st_time.Text = String(Now(), "hh:mm")
Timer(60)

Argument Description

interval The number of seconds that you want between Timer events.
interval can be a whole number or fraction greater than 0 and less
than or equal to 4,294,967 seconds. If interval is 0, Timer turns off
the timer so that it no longer triggers Timer events.

windowname
(optional)

The window in which you want the timer event to be triggered.
The window must be an open window. If you do not specify a
window, the Timer event occurs in the current window.
PowerScript Reference 1163

ToAnsi
In the window’s Timer event, which is triggered every minute, this code
displays the current time in the StaticText st_time:

st_time.Text = String(Now(), "hh:mm")

See also Idle

ToAnsi
Description Converts a character string to an ANSI blob.

Syntax ToAnsi (string)

Return value Blob. Returns an ANSI blob if it succeeds and an empty blob if it fails.

Usage The ToAnsi function converts a Unicode character string to an ANSI blob.
ToAnsi has the same result as Blob(string, EncodingANSI!) and will be obsolete
in a future version of PowerBuilder.

Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files. If you are opening a Unicode file in stream mode,
skip the first two bytes if they are present

See also Blob
FromAnsi
FromUnicode
ToUnicode

Argument Description

string A character string you want to convert to an ANSI blob
1164 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Today
Description Obtains the system date and, in some cases, the system time.

Syntax Today ()

Return value Date. Returns the current system date.

Usage Although the datatype of the Today function is date, it can also return the
current time. This occurs when Today is used as an argument for another
function and that argument allows different datatypes.

For example, if you call Today as an argument to the String function, String
returns both the date and time when you use a date-plus-time display format. A
second example: if you call Today as an argument for the SetItem function and
the datatype of the target column is DateTime, both the date and time are
assigned to the DataWindow.

Examples This statement returns the current system date:

Today()

This statement executes some statements when the current system date is
before April 15, 2003:

IF Today() < 2003-04-15 THEN ...

This statement displays the current date in the StaticText st_date in the corner
of a window:

st_date.Text = String(Today(), "m/d/yy")

This statement displays the current date and time in the StaticText st_date:

st_date.Text = String(Today(), "m/d/yy hh:mm")

See also Now
Today method for DataWindows in the DataWindow Reference or online Help
PowerScript Reference 1165

Top
Top
Description Obtains the index number of the first visible item in a ListBox control. Top lets

you to find out how the user has scrolled the list.

Applies to ListBox and PictureListBox controls

Syntax listboxname.Top ()

Return value Integer. Returns the index of the first visible item in listboxname. Top returns -
1 if an error occurs. If listboxname is null, Top returns null.

Usage The index of a list item is its position in the full list of items, regardless of how
many are currently visible in the control.

Examples If item 15 has been scrolled to the top of the list in lb_Contacts, then this
example sets Num to 15:

integer Num
Num = lb_Contacts.Top()

If the user has not scrolled the list in lb_Contacts, then Num is set to 1:

integer Num
Num = lb_Contacts.Top()

If the item at the top of the list in lb_Contacts is not the currently selected item,
the following statements scroll the currently selected item to the top:

integer Num
Num = lb_Contacts.SelectedIndex()
IF lb_Contacts.Top() <> Num THEN &
 lb_contacts.SetTop(Num)

See also SelectedIndex
SetTop

Argument Description

listboxname The name of the ListBox or PictureListBox in which you want the
index of the first visible item in the list
1166 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
TotalColumns
Description Finds the number of columns in a ListView control.

Applies to ListView controls

Syntax listviewname.TotalColumns ()

Return value Integer. Returns the number of columns if it succeeds and -1 if an error occurs.

Usage Use when the ListView control is set to report view.

Examples This example displays the number of columns in a ListView report view in a
SingleLineEdit:

int li_cols
li_cols = lv_list.TotalColumns()
sle_info.text = "Total columns = " + string(li_cols)

See also TotalItems
TotalSelected

TotalItems
Description Determines the total number of items in a ListBox control.

Applies to ListBox, DropDownListBox, PictureListBox, DropDownPictureListBox, and
ListView controls

Syntax listcontrolname.TotalItems ()

Return value Integer. Returns the total number of items in listcontrolname. If
listcontrolname contains no items, TotalItems returns 0. If an error occurs, it
returns -1. If listcontrolname is null, TotalItems returns null.

Examples If lb_Actions contains a total of five items, this example sets Total to 5:

integer Total
Total = lbx_Actions.TotalItems()

Argument Description

listviewname The name of the ListView control for which you want to find the
number of columns

Argument Description

listcontrolname The name of the ListBox, DropDownListBox,
PictureListBox, DropDownPictureListBox, or ListView in
which you want the total number of items
PowerScript Reference 1167

TotalSelected
This FOR loop is executed for each item in lb_Actions:

integer Total, n
Total = lb_Actions.TotalItems()
FOR n = 1 to Total
... // Some processing
NEXT

See also TotalSelected

TotalSelected
Description Determines the number of items in a ListBox control that are selected.

Applies to ListBox, PictureListBox, and ListView controls

Syntax listcontrolname.TotalSelected ()

Return value Integer. Returns the number of items in listcontrolname that are selected. If no
items in listcontrolname are selected, TotalSelected returns 0. If an error occurs,
it returns -1. If listcontrolname is null, TotalSelected returns null.

Usage TotalSelected works only if the MultiSelect property of listcontrolname is
TRUE.

Examples If three items are selected in lb_Actions, this example sets SelectedTotal to 3:

integer SelectedTotal
SelectedTotal = lb_Actions.TotalSelected()

These statements in the SelectionChanged event of lb_Actions display a
MessageBox if the user tries to select more than three items:

IF lb_Actions.TotalSelected() > 3 THEN
 MessageBox("Warning", &
 "You can only select 3 items!")
ELSE
... // Some processing
END IF

See also TotalItems

Argument Description

listcontrolname The name of the ListBox, PictureListBox, or ListView in
which you want the number of items that are selected
1168 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
ToUnicode
Description Converts a character string to a Unicode blob.

Syntax ToUnicode (string)

Return value Blob. Returns a Unicode blob if it succeeds and an empty blob if it fails.

Usage The ToUnicode function converts an ANSI character string to a Unicode blob.
ToUnicode has the same result as Blob(string) and will be obsolete in a future
version of PowerBuilder.

Unicode file format
Unicode files sometimes have two extra bytes at the start of the file to indicate
that they are Unicode files.

See also FromAnsi
FromUnicode
ToAnsi

TraceBegin
Description Inserts an activity type value in the trace file indicating that logging has begun

and then starts logging all the enabled application trace activities. Before
calling TraceBegin, you must have opened the trace file using the TraceOpen
function.

Syntax TraceBegin (identifier)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotOpenError! – TraceOpen has not been called yet

• TraceStartedError! – TraceBegin has already been called

Argument Description

string A character string you want to convert to a Unicode blob

Argument Description

identifier A read-only string, logged to the trace file, used to identify a
tracing block. If identifier is null, an empty string is placed in the
trace file.
PowerScript Reference 1169

TraceBegin
Usage The TraceBegin call inserts an activity type value of ActBegin! in the trace file
to indicate that logging has begun and then begins logging all the application
activities you have selected for tracing.

TraceBegin can only be called following a TraceOpen call. And all activities to
be logged must be enabled using the TraceEnableActivity function before
calling TraceBegin.

If you want to generate a trace file for an entire application run, you typically
include the TraceBegin function in your application’s open script. If you want
to generate a trace file for only a portion of the application run, you typically
include the TraceBegin function in the script that initiates the functionality on
which you’re trying to collect data.

You can use the identifier argument to identify the tracing blocks within a trace
file. A tracing block represents the data logged between calls to TraceBegin and
TraceEnd. There may be multiple tracing blocks within a single trace file if you
are tracing more than one portion of the application run.

Examples This example opens a trace file with the name you entered in a single line edit
box and a timer kind selected from a drop-down list. It then begins logging the
enabled activities for the first block of code to be traced:

TimerKind ltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)
TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect!)
TraceEnableActivity(ActObjectCreate!)
TraceEnableActivity(ActObjectDestroy!)

TraceBegin("Trace_block_1")

See also TraceOpen
TraceEnableActivity
TraceEnd
1170 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
TraceClose
Description Closes the trace file.

Syntax TraceClose ()

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotOpenError! – TraceOpen has not been called yet

• FileCloseError! – The log file is full

Usage TraceClose closes the trace file. If you have not already called TraceEnd,
TraceClose will call that function before proceeding with its processing.

You typically include the TraceClose function in your application’s Close
script.

Examples This example stops logging of application trace activities and then closes the
open trace file:

TraceEnd()
TraceClose()

See also TraceBegin
TraceEnd
TraceOpen
PowerScript Reference 1171

TraceDisableActivity
TraceDisableActivity
Description Disables logging of the specified trace activity.

Syntax TraceDisableActivity (activity)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotOpenError! – TraceOpen has not been called yet

• TraceStartedError! – You have called TraceDisableActivity after
TraceBegin and before TraceEnd

Usage Use this function to disable the logging of the specified trace activities. You
typically use this function if you are tracing only portions of an application run
(and thus you are calling TraceBegin multiple times) and you want to log
different activities during each portion of the application.

Unless specifically disabled with TraceDisableActivity, activities that were
previously enabled with a call to the TraceEnableActivity function remain
enabled throughout the entire application run.

You must always call the TraceEnd function before calling TraceDisableActivity.

Argument Description

activity A value of the enumerated datatype TraceActivity that identifies
the activity for which logging should be disabled. Values are:

• ActError! – Occurrences of system errors and warnings

• ActESQL! – Embedded SQL statement entry and exit

• ActGarbageCollect! – Start and finish of garbage collection

• ActLine! – Routine line hits

• ActObjectCreate! – Object creation entry and exit

• ActObjectDestroy! – Object destruction entry and exit

• ActProfile! – Abbreviation for the ActRoutine!, ActESQL!,
ActObjectCreate!, ActObjectDestroy!, and
ActGarbageCollect! values

• ActRoutine! – Routine entry and exit (if this value is disabled,
ActLine! is automatically disabled)

• ActTrace! – Abbreviation for all activities except ActLine!

• ActUser! – Occurrences of an activity you selected
1172 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples This example logs the enabled activities for the first block of code to be traced.
Then it stops logging and disables two activity types for a second trace block.
When logging is resumed for another portion of the application run, the
activities that are not specifically disabled remain enabled until TraceClose is
called:

TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect)
TraceEnableActivity(ActObjectCreate!)
TraceEnableActivity(ActObjectDestroy!)

TraceBegin("Trace_block_1")

TraceEnd()

TraceDisableActivity(ActESQL!)
TraceDisableActivity(ActGarbageCollect!)

TraceBegin("Trace_block_2")

See also TraceEnd
TraceEnableActivity
PowerScript Reference 1173

TraceEnableActivity
TraceEnableActivity
Description Enables logging of the specified trace activity.

Syntax TraceEnableActivity (activity)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotOpenError! – TraceOpen has not been called yet

• TraceStartedError! – You have called TraceEnableActivity after TraceBegin
and before TraceEnd

Usage Call the TraceEnableActivity function following the TraceOpen function.
TraceEnableActivity allows you to specify the types of activities you want
logged in the trace file. The default activity type logged is a user-defined
activity type identified by the value ActUser!. This activity is enabled by the
TraceOpen call. You must call TraceEnableActivity to specify the activities to be
logged before you call TraceBegin.

Each call to TraceOpen resets the activity types to be logged to the default (that
is, only ActUser! activities are logged).

Since the ActError! and ActUser! values require the passing of strings to the
trace file, you must call the TraceError and TraceUser functions to log this
information.

Argument Description

activity A value of the enumerated datatype TraceActivity that identifies
the activity to be logged. Values are:

• ActError! – Occurrences of system errors and warnings

• ActESQL! – Embedded SQL statement entry and exit

• ActGarbageCollect! – Start and finish of garbage collection

• ActLine! – Routine line hits (if this value is enabled,
ActRoutine! is automatically enabled)

• ActObjectCreate! – Object creation entry and exit

• ActObjectDestroy! – Object destruction entry and exit

• ActProfile! – Abbreviation for the ActRoutine!, ActESQL!,
ActObjectCreate!, ActObjectDestroy, and
ActGarbageCollect! values

• ActRoutine! – Routine entry and exit

• ActTrace! – Abbreviation for all activities except ActLine!
1174 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Unless specifically disabled with a call to the TraceDisableActivity function,
activities that are enabled with TraceEnableActivity remain enabled throughout
the entire application run.

Examples This example opens a trace file with the name you entered in a single line edit
box and a timer kind selected from a drop-down list. Then it begins logging the
enabled activities for the first block of code to be traced:

TimerKindltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)

TraceEnableActivity(ActRoutine!)
TraceEnableActivity(ActESQL!)
TraceEnableActivity(ActGarbageCollect!)
TraceEnableActivity(ActError!)
TraceEnableActivity(ActCreateObject!)
TraceEnableActivity(ActDestroyObject!)

TraceBegin("Trace_block_1")

See also TraceOpen
TraceBegin
TraceDisableActivity
PowerScript Reference 1175

TraceEnd
TraceEnd
Description Inserts an activity type value in the trace file indicating that logging has ended

and then stops logging application trace activities.

Syntax TraceEnd ()

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileNotOpenError! – TraceOpen has not been called yet

• TraceNotStartedError! – TraceBegin has not been called yet

Usage The TraceEnd call inserts an activity type value of ActBegin! in the trace file
to indicate that logging has ended and then stops logging all application
activities that you selected for tracing.

If you have not already called TraceEnd when you call TraceClose, TraceClose
calls TraceEnd before proceeding.

If you want to generate a trace file for an entire application run, you would
typically include the TraceEnd function in your application’s Close script. If
you want to generate a trace file for only a portion of the application run, you
typically include the TraceEnd function in the script that terminates the
functionality on which you’re trying to collect data.

Examples This example stops logging of application trace activities and then closes the
open trace file:

TraceEnd()
TraceClose()

See also TraceOpen
TraceBegin
TraceClose
TraceDisableActivity
1176 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
TraceError
Description Logs your own error message and its severity level to the trace file if tracing of

this activity type has been enabled.

Syntax TraceError (severity, message)

Return value ErrorReturn. This function always returns Success!.

If severity or message is null, TraceError returns null and no entry is made in the
trace file.

Usage TraceError logs an activity type value of ActError! to the trace file if you
enabled the tracing of this type with the TraceEnableActivity function and then
called the TraceBegin function. You use the TraceError function to record your
own error message. It works just like the TraceUser function except that you
use it to identify more severe problems. The severity and message values are
passed without modification to the trace file.

Examples This example logs an error message to the trace file when a database retrieval
fails:

dw_1.SetTransObject(SQLCA)

TraceUser(100, "Starting database retrieval")
IF dw_1.Retrieve() = -1 THEN
 TraceError(999, "Retrieve for dw_1 failed")
ELSE
 TraceUser(200, "Database retrieval complete")
END IF

See also TraceEnableActivity
TraceUser

Argument Description

severity A long whose value is a number you want to indicate the severity
of the error

message A string whose value is the error message you want to add to the
trace file
PowerScript Reference 1177

TraceOpen
TraceOpen
Description Opens a trace file with the specified name and enables logging of application

trace activities.

Syntax TraceOpen (filename, timer)

Return value ErrorReturn. Returns one of the following values:

• Success! – The function succeeded

• FileAlreadyOpenError! – TraceOpen has been called again without an
intervening TraceClose

• FileOpenError! – The file could not be opened for writing

• EnterpriseOnlyFeature! – This function is only supported in the Enterprise
edition of PowerBuilder.

If filename is null, TraceOpen returns null.

Usage TraceOpen opens the specified trace file and enables logging of application
trace activities. When it opens the trace file, TraceOpen logs the current
application and library list to the trace file. It also enables logging of the default
activity type, a user-defined activity type identified by the value ActUser!.

After calling TraceOpen, you can select any additional activities to be logged
in the trace file using the TraceEnableActivity function. Once you have called
TraceOpen and TraceEnableActivity, you must then call TraceBegin for logging
to begin.

To stop logging of application trace activity, you must call the TraceEnd
function followed by TraceClose to close the trace file. Each call to TraceOpen
resets the logging of activity types to the default ActUser!

You typically include the TraceOpen function in your application’s Open script.

Argument Description

filename A read-only string used to identify the trace file

timer A value of the enumerated datatype TimerKind that identifies
the timer. Values are:

• Clock! – Use the clock timer

• Process! – Use the process timer

• Thread! – Use the thread timer

• TimerNone! – Do not log timer values
1178 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Caution
If the trace file runs out of disk space, no error is generated, but logging is
stopped, and the trace file cannot be used for analysis.

By default, the time at which each activity begins and ends is recorded using
the clock timer, which measures an absolute time with reference to an external
activity, such as the machine’s startup time. The clock timer measures time in
microseconds. Depending on the speed of your machine’s central processing
unit, the clock timer can offer a resolution of less than one microsecond. A
timer’s resolution is the smallest unit of time the timer can measure.

You can also use process or thread timers, which measure time in microseconds
with reference to when the process or thread being executed started. Use the
thread timer for distributed applications. Both process and thread timers give
you a more accurate measurement of how long the process or thread is taking
to execute, but both have a lower resolution than the clock timer.

If your analysis does not require timing information, you can omit timing
information from the trace file.

Collection time The timestamps in the trace file exclude the time taken to
collect the trace data.

Examples This example opens a trace file with the name you entered in a single line edit
box and a timer kind selected from a drop-down list. Then it begins logging the
enabled activities for the first block of code to be traced:

TimerKindltk_kind

CHOOSE CASE ddlb_timestamp.text
CASE "None"
 ltk_kind = TimerNone!
CASE "Clock"
 ltk_kind = Clock!
CASE "Process"
 ltk_kind = Process!
CASE "Thread"
 ltk_kind = Thread!
END CHOOSE

TraceOpen(sle_filename.text,ltk_kind)

See also TraceBegin
TraceClose
TraceEnableActivity
TraceEnd
PowerScript Reference 1179

TraceUser
TraceUser
Description Logs the activity type value you specify to the trace file.

Syntax TraceUser (info, message)

Return value ErrorReturn. This function always returns Success!.

If info or message is null, TraceUser returns null and no entry is made in the log
file.

Usage TraceUser logs an activity type value of ActUser! to the trace file. This is the
default activity type and is enabled when the TraceOpen function is called. You
use the TraceUser function to record your own message identifying a specific
occurrence during an application run. For example, you may want to log the
occurrences of a specific return value or the beginning and end of a body of
code. TraceUser works just like the TraceError function except that you use
TraceError to identify more severe problems. The info and message values are
passed without modification to the trace file.

Examples This example logs user messages to the trace file identifying when a database
retrieval is started and when it is completed:

dw_1.SetTransObject(SQLCA)

TraceUser(100, "Starting database retrieval")
IF dw_1.Retrieve() = -1 THEN
 TraceError(999, "Retrieve for dw_1 failed")
ELSE
 TraceUser(200, "Database retrieval complete")
END IF

See also TraceEnableActivity
TraceError

Argument Description

info A long whose value is a reference number you want to associate
with the logged activity

message A string whose value is the activity type value you want to add
to the trace file
1180 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
TriggerEvent
Description Triggers an event associated with the specified object, which executes the

script for that event immediately.

Applies to Any object

Syntax objectname.TriggerEvent (event {, word, long })

Return value Integer. Returns 1 if it is successful and the event script runs and -1 if the event
is not a valid event for objectname, or no script exists for the event in
objectname. If any argument’s value is null, TriggerEvent returns null.

Usage If you specify the name of an event instead of a value of the TrigEvent
enumerated datatype, enclose the name in double quotation marks.

Check return code
It is a good idea to check the return code to determine whether TriggerEvent
succeeded and, based on the result, perform the appropriate processing.

You can pass information to the event script with the word and long arguments.
The information is stored in the Message object. In your script, you can
reference the WordParm and LongParm fields of the Message object to access
the information.

Argument Description

objectname The name of any PowerBuilder object or control that has events
associated with it.

event A value of the TrigEvent enumerated datatype that identifies a
PowerBuilder event (for example, Clicked!, Modified!, or
DoubleClicked!) or a string whose value is the name of an event.
The event must be a valid event for objectname and a script must
exist for the event in objectname.

word
(optional)

A long value to be stored in the WordParm property of the system’s
Message object. If you want to specify a value for long, but not
word, enter 0. (For cross-platform compatibility, WordParm and
LongParm are both longs.)

long
(optional)

A long value or a string that you want to store in the LongParm
property of the system’s Message object. When you specify a string,
a pointer to the string is stored in the LongParm property, which you
can access with the String function (see Usage).
PowerScript Reference 1181

TriggerEvent
If you have specified a string for long, you can access it in the triggered event
by using the String function with the keyword “address” as the format
parameter. Your event script might begin as follows:

string PassedString
PassedString = String(Message.LongParm, "address")

Caution
Do not use this syntax unless you are certain the long argument contains a valid
string value.

For more information about events and when to use PostEvent and
TriggerEvent, see PostEvent.

To trigger system events that are not PowerBuilder-defined events, use Post or
Send, instead of PostEvent and TriggerEvent. Although Send can send
messages that trigger PowerBuilder events, as shown below, you have to know
the codes for a particular message. It is easier to use the PowerBuilder
functions that trigger the desired events.

Equivalent syntax Both of the following statements click the CheckBox
cb_OK. The following call to the Send function:

Send(Handle(Parent), 273, 0, Long(Handle(cb_OK), 0))

is equivalent to:

cb_OK.TriggerEvent(Clicked!)

Examples This statement executes the script for the Clicked event in the CommandButton
cb_OK immediately:

cb_OK.TriggerEvent(Clicked!)

This statement executes the script for the user-defined event cb_exit_request in
the parent window:

Parent.TriggerEvent("cb_exit_request")

This statement executes the script for the Clicked event in the menu selection
m_File on the menu m_Appl:

m_Appl.m_File.TriggerEvent(Clicked!)

See also Post
PostEvent
Send
1182 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
TriggerPBEvent
Description Triggers the specified user event in the child window contained in a

PowerBuilder window ActiveX control.

Applies to Window ActiveX controls

Syntax activexcontrol.TriggerPBEvent (name {, numarguments {, arguments } })

Return value Integer. Returns 1 if the function succeeds and -1 if an error occurs.

Usage Call this function to trigger a user event in the child window contained in a
PowerBuilder window ActiveX control.

To check the PowerBuilder function’s return value, call the GetLastReturn
function.

JavaScript cannot use the arguments argument.

Examples This JavaScript example calls the TriggerPBEvent function:

function triggerEvent(f) {
 var retcd;
 var rc;
 var numargs;
 var theEvent;
 var theArg;
 retcd = 0;
 numargs = 1;

Argument Description

activexcontrol Identifier for the instance of the PowerBuilder window
ActiveX control. When used in HTML, this is the NAME
attribute of the object element. When used in other
environments, this references the control that contains the
PowerBuilder window ActiveX.

name String specifying the name of the user event. This argument
is passed by reference.

numarguments
(optional)

Integer specifying the number of elements in the arguments
array. The default is zero.

arguments
(optional)

Variant array containing event arguments. In PowerBuilder,
Variant maps to the Any datatype. This argument is passed by
reference.

If you specify this argument, you must also specify
numarguments. If you do not specify this argument and the
function contains arguments, populate the argument list by
calling the SetArgElement function once for each argument.

JavaScript cannot use this argument.
PowerScript Reference 1183

TriggerPBEvent
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theEvent = "ue_args";
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 if (rc != 1) {
 alert("Error. Empty string.");
 }
 PBRX1.ResetArgElements();
}

This VBScript example calls the TriggerPBEvent function:

Sub TrigEvent_OnClick()
 Dim retcd
 Dim myForm
 Dim args(1)
 Dim rc
 Dim numargs
 Dim theEvent
 retcd = 0
 numargs = 1
 rc = 0
 theEvent = "ue_args"
 Set myForm = Document.buttonForm
 args(0) = buttonForm.textToPB.value
 retcd = PBRX1.TriggerPBEvent(theEvent, &
 numargs, args)
 rc = PBRX1.GetLastReturn()
 if rc <> 1 then
 msgbox "Error. Empty string."
 end if
end sub

See also GetLastReturn
SetArgElement
InvokePBFunction
1184 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Trim
Description Removes leading and trailing spaces from a string.

Syntax Trim (string {, removeallspaces })

Return value String. Returns a copy of string with all leading and trailing spaces deleted if it
succeeds and the empty string (“”) if an error occurs. If string is null, Trim
returns null.

Usage Trim is useful for removing spaces that a user may have typed before or after
newly entered data.

If you do not include the optional removeallspaces argument or its value is
false, only the space character (U+0020) is removed from the string.

If the removeallspaces argument is set to true, all types of space characters are
removed. See LeftTrim for a list of space characters.

Examples This statement returns BABE RUTH if all the leading and trailing spaces are
space characters:

Trim(" BABE RUTH ")

This statement returns BABE RUTH if the leading and trailing spaces include
other types of white space characters:

Trim(" BABE RUTH ", true)

This example removes the leading and trailing spaces from the user-entered
value in the SingleLineEdit sle_emp_fname and saves the value in emp_fname:

string emp_fname
emp_fname = Trim(sle_emp_fname.Text)

See also LeftTrim
RightTrim
Trim method for DataWindows in the DataWindow Reference or online Help

Argument Description

string The string you want returned with leading and trailing spaces
deleted

removeallspac
es

A boolean indicating that all types of spaces should be deleted
PowerScript Reference 1185

TrimW
TrimW
Description Removes leading and trailing spaces from a string. This function is obsolete. It

has the same behavior as Trim in all environments.

Syntax TrimW (string)

Truncate
Description Truncates a number to the specified number of decimal places.

Syntax Truncate (x, n)

Return value Decimal. Returns the result of the truncation if it succeeds and null if it fails or
if any argument is null.

Using Truncate on a computed field
A real number loaded into a floating point register (used for calculation) is
represented as precisely as the binary storage will permit. For example, the real
number displayed as 2.07 is actually stored as
2.06999999999999999999999997.

Truncating such a number may not give the expected result. To avoid this
problem, you can change the initial real datatype to long, integer, or decimal,
or you can append a constant in the truncate argument:
Truncate (x + 0.0000001, n)

Examples This statement returns 9.2:

Truncate(9.22, 1)

This statement returns 9.2:

Truncate(9.28, 1)

This statement returns 9:

Truncate(9.9, 0)

Argument Description

x The number you want to truncate.

n The number of decimal places to which you want to truncate x.
Valid values are 0 through 28.
1186 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This statement returns –9.2:

Truncate(-9.29, 1)

See also Ceiling
Int
Round
Truncate method for DataWindows in the DataWindow Reference or online
Help

TrustVerify
Description Called by EAServer when an SSL certificate chain needs to be approved for

use by a client. This function is used by PowerBuilder clients connecting to
EAServer.

Applies to SSLCallBack objects

Syntax sslcallback.TrustVerify (thesessioninfo, reason)

Return value Long. Returns one of the following values:

1 TRUST_ONCE (accept the current connection)
2 TRUST_FAIL (reject the current connection)
3 TRUST_ALWAYS (accept and mark as trusted in the database)
4 TRUST_NEVER (reject and mark as untrusted in the database)
5 TRUST_SESSION (accept now and throughout the current session)
6 TRUST_FAIL_SESSION (reject throughout the current session)

Argument Description
sslcallback An instance of a customized SSLCallBack object
thesessioninfo A CORBAObject that contains information about the SSL

session
reason A long value indicating the reason for the call back. Values are:

• 1 REASON_CHAIN_INCOMPLETE

• 2 REASON_UNKNOWN_CA

• 3 REASON_CHAIN_EXPIRED

• 4 REASON_TRUSTDBPINNOTSET

• 5 REASON_TRUSTDBLOGINFAILED
PowerScript Reference 1187

TrustVerify
Usage A PowerBuilder application does not usually call the TrustVerify function
directly. TrustVerify is called by EAServer when the internal SSL trust
verification check fails to verify the server's certificate chain or when the PIN
to log in to the Sybase PKCS11 token was not supplied or incorrect. TrustVerify
can be invoked when you are using any SSL protocol, because server
authentication is a required step in the SSL handshake process.

To override the behavior of any of the functions of the SSLCallBack object,
create a standard class user object that descends from SSLCallBack and
customize this object as necessary. To let EAServer know which object to use
when a callback is required, specify the name of the object in the callbackImpl
SSL property. You can set this property value by calling the SetGlobalProperty
function.

If you do not provide an implementation of TrustVerify, EAServer receives the
CORBA::NO_IMPLEMENT exception and the connection is rejected.

To obtain a useful return value, provide the user with information about the
reason for failure and ask the user to determine whether the server certificate
chain can be trusted so that the session can continue. If the user specifies
TRUST_FAIL or TRUST_ONCE, the function may be called again during the
current session.

You can enable the user to cancel the attempt to connect by throwing an
exception in this callback function. You need to catch the exception by
wrapping the ConnectToServer function in a try-catch block.

Examples This example checks whether the failure was called by a bad or missing PIN
and returns TRUST_FAIL to call GetPin if it was. If not, it displays the reason
why the server failed to verify the certificate chain and prompts the user to
choose whether to continue with the session:

long rc
string stmp, stmp2
w_response w_ssl_response
string ls_rc

sslSessionInfo mySessionInfo
rc = thesessioninfo._narrow(mySessionInfo, &

"thesessioninfo")

is_tokenName = mySessionInfo.getProperty("tokenName")

CHOOSE CASE reason
CASE 4

MessageBox("The SSL session requires a PIN", &
"Please enter the PIN for access to the " + &
1188 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
is_tokenName + " certificate database.")
return 2

CASE 5
MessageBox("The PIN you entered is incorrect", &

 "Please reenter the PIN for access to the " + &
 is_tokenName + " certificate database.")
 return 2
CASE 1
 MessageBox("Certificate verification failed", &
 "Server's certificate chain is incomplete.ORB " &
 + "~nis unable to complete the chain using the " &
 + "CA certificates in the " &
 + "~nSybase PKCS11 Token.")

CASE 2
 MessageBox("Certificate verification failed", &
 "Server's certificate chain expired. One or " &
 + " more of the certificates in the " &
 + "chain is no longer valid.")
CASE 3
 MessageBox("Certificate verification failed", &
 "Server's certificate chain contains an " &
 + "unknown root certification authority. " &
 + "This CA is not found in the trust data in " &
 + "the Sybase PKCS11 Token.")
END CHOOSE

sTmp = "~nVersion: "
stmp += mySessionInfo.getProperty("Version")

sTmp = "~nHost: "
stmp += mySessionInfo.getProperty("host")

stmp += "~nport: "
stmp += mySessionInfo.getProperty("port")
stmp += "~nciphersuite: "
stmp += mySessionInfo.getProperty("ciphersuite")
stmp += "~nCertificateLabel: "
stmp += mySessionInfo.getProperty("certificateLabel")
stmp += "~nUserData: "
stmp += mySessionInfo.getProperty("UserData")
stmp += "~ntokenName: "
stmp += mySessionInfo.getProperty("tokenName")
stmp += "~npkcs11Module: "
stmp += mySessionInfo.getProperty("pkcs11Module")
stmp += "~nPlease enter your choice: "
PowerScript Reference 1189

TypeOf
stmp += "~n 1: Accept this connection"
stmp += "~n 2: Reject this connection"
stmp += "~n 3: Accept this connection and mark CA as
 trusted"
stmp += "~n 4: Reject this connection and mark CA as
 untrusted"
stmp += "~n 5: Accept this CA throughout this session"
stmp += "~n 6: Reject this CA throughout this session"
// Display information in a response window and return
// response with CloseWithReturn
openwithparm(w_response, stmp)
ls_rc = Message.StringParm
return long(ls_rc)

See also ConnectToServer
GetCertificateLabel
GetCredentialAttribute
GetPin

TypeOf
Description Determines the type of an object or control, reported as a value of the Object

enumerated datatype.

Applies to Any object

Syntax objectname.TypeOf ()

Return value Object enumerated datatype. Returns the type of objectname. If objectname is
null, TypeOf returns null.

Usage Use TypeOf to determine the type of a selected or dragged control.

Examples If dw_Customer is a DataWindow control, this statement returns DataWindow!:

dw_Customer.Typeof()

Argument Description

objectname The name of the object or control for which you want the type
1190 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example looks at the first five controls in the w_dept window’s Control
array property. The loop executes some statements for each control that is a
CheckBox:

integer n
FOR n = 1 to 5
 IF w_dept.Control[n].TypeOf() = CheckBox! THEN
 ... // Some processing
 END IF
NEXT

This loop stores in the winobject array the type of each object in the window’s
Control array property:

object winobjecttype[]
long ll_count
FOR ll_count = 1 to UpperBound(Control[])
 winobjecttype[ll_count] = &
 TypeOf(Control[ll_count])
NEXT

If you do not know the type of a control passed via PowerObjectParm in the
Message object, the following example assigns the passed object to a graphic
object variable, the ancestor of all the control types, and assigns the type to a
variable of type object, which is the enumerated datatype that TypeOf returns.
The CHOOSE CASE statement can include processing for each control type
that you want to handle. This code would be in the Open event for a window
that was opened with OpenWithParm:

graphicobject stp_obj
object type_obj

stp_obj = Message.PowerObjectParm
type_obj = stp_obj.TypeOf()

CHOOSE CASE type_obj
CASE DataWindow!
 MessageBox("The object"," Is a datawindow")

CASE SingleLineEdit!
 MessageBox("The object"," Is a sle")

... // Cases for additional object types
CASE ELSE
 MessageBox("The object"," Is irrelevant!")
END CHOOSE

See also ClassName
PowerScript Reference 1191

Uncheck
Uncheck
Description Removes the check mark, if any, next to an item a drop-down or cascading

menu and sets the item’s Checked property to false.

Applies to Menu objects

Syntax menuname.Uncheck ()

Return value Integer. Returns 1 if it succeeds and -1 if an error occurs. If menuname is null,
Uncheck returns null.

Usage A checkmark next to a menu item indicates that the menu option is currently
on and that the user can turn the option on and off by choosing it. For example,
in the Window painter’s Design menu, a checkmark is displayed next to Grid
when the grid is on.

You can use Check in an item’s Clicked script to mark a menu item when the
user turns the option on and Uncheck to remove the check when the user turns
the option off.

Equivalent syntax You can set the object’s Checked property instead of
calling Uncheck:

menuname.Checked = false

This statement:

m_appl.m_view.m_grid.Checked = FALSE

is equivalent to:

m_appl.m_view.m_grid.Uncheck()

Examples This statement removes the checkmark next to the m_grid menu selection in the
drop-down menu m_view on the menu bar m_appl:

m_appl.m_view.m_grid.Uncheck()

Argument Description

menuname The fully qualified name of the menu selection from which you
want to remove the checkmark, if any. The menu must be on a drop-
down or cascading menu, not an item on a menu bar.
1192 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
This example checks whether the m_grid menu selection in the drop-down
menu m_view of the menu bar m_appl is currently checked. If so, the script
unchecks the item. If it is not checked, the script checks the item:

IF m_appl.m_view.m_grid.Checked = TRUE THEN
 m_appl.m_view.m_grid.Uncheck()
ELSE
 m_appl.m_view.m_grid.Check()
END IF

See also Check

Undo
Description Cancels the last edit in an edit control, restoring the text to the content before

the last change.

Applies to DataWindow, MultiLineEdit, RichTextEdit, and SingleLineEdit controls

Syntax editname.Undo ()

Return value Integer. Returns 1 when it succeeds and -1 if an error occurs. If editname is null,
Undo returns null.

Usage To determine whether the last action can be canceled, call the CanUndo
function.

Examples This statement reverses the last edit in MultiLineEdit mle_Contact:

mle_Contact.Undo()

The following statement checks to see if the last edit in the MultiLineEdit
mle_Contact can be reversed, and if so reverse it:

IF mle_Contact.CanUndo() THEN mle_Contact.Undo()

See also CanUndo

Argument Description

editname The name of the DataWindow control, MultiLineEdit,
RichTextEdit, or SingleLineEdit in which you want to cancel
(reverse) the last edit. For a DataWindow control, reverses the last
edit in the edit control over the current row and column.
PowerScript Reference 1193

UnitsToPixels
UnitsToPixels
Description Converts PowerBuilder units to pixels and reports the measurement. Because

pixels are not usually square, you also specify whether to convert in the
horizontal or vertical direction.

Syntax UnitsToPixels (units, type)

Return value Integer. Returns the converted value if it succeeds and -1 if an error occurs. If
any argument’s value is null, UnitsToPixels returns null.

Examples These statements convert 350 vertical PowerBuilder units to vertical pixels and
set value equal to the converted value:

integer Value
Value = UnitsToPixels(350, YUnitsToPixels!)

See also PixelsToUnits

UpdateLinksDialog
Description Attempts to find a file linked to an OLE container. If the linked file is not found,

a dialog box tells the user and lets them bring up a second dialog box for find
the file or changing the link.

Applies to OLE controls and OLE DWObjects (objects within a DataWindow object that
is within a DataWindow control)

Syntax objectref.UpdateLinksDialog ()

Argument Description

units An integer whose value is the number of PowerBuilder units you
want to convert to pixels

type A value of the ConvertType enumerated datatype indicating how to
convert the value:

• XUnitsToPixels! – Convert the units in the horizontal direction

• YUnitsToPixels! – Convert the units in the vertical direction

Argument Description

objectref The name of the OLE control or the fully qualified name of
a OLE DWObject within a DataWindow control that
contains the object for which you want to establish a link.

The fully qualified name for a DWObject has this syntax:

dwcontrol.Object.dwobjectname
1194 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Integer. Returns 0 if it succeeds and -1 if an error occurs.

Usage If a container’s LinkUpdateOptions property is set for automatic update,
PowerBuilder tries to update the link when the OLE container is created and
the object is loaded (for example, when the window is opened). If the linked
file is not found, a message informs the user and he or she can choose to edit
the link (for example, break the link or browse for the correct file).

UpdateLinksDialog and LinkTo are useful when a linked file has been moved and
the container’s LinkUpdateOptions property is set for manual update.

UpdateLinksDialog Calling this function triggers the same process that
occurs for automatic update. PowerBuilder tries to find the file and if it fails it
gives the user the opportunity to edit the link.

LinkTo If you want to establish a link without involving the user, call the
LinkTo function. Its arguments specify the file and item you want to link. If you
want to display your own dialog for selecting the linked file, you can take the
information the user specifies and call the LinkTo function.

If the OLE container holds an embedded object, calling UpdateLinksDialog has
no effect. It returns zero because no link is broken.

For more information about updating links, see Application Techniques.

Examples This example looks for the linked file for an OLE control ole_report. If the file
is missing, it prompts the user to display the Links dialog and edit the link:

ole_report.UpdateLinksDialog()

This example looks for the linked file for an OLE DWObject ole_word in the
DataWindow control dw_customer_data. If the file is missing, the user can
choose to edit the link using the Links dialog:

dw_customer_data.Object.ole_word.UpdateLinksDialog()

See also InsertObject
LinkTo
PowerScript Reference 1195

Upper
Upper
Description Converts all the characters in a string to uppercase.

Syntax Upper (string)

Return value String. Returns string with lowercase letters changed to uppercase if it succeeds
and the empty string (“”) if an error occurs. If string is null, Upper returns null.

Examples This statement returns BABE RUTH:

Upper("Babe Ruth")

See also Lower
Upper method for DataWindows in the DataWindow Reference or online Help

UpperBound
Description Obtains the upper bound of a dimension of an array.

Syntax UpperBound (array {, n })

Return value Long. Returns the upper bound of dimension n of array. If n is greater than the
number of dimensions of the array, UpperBound returns -1. If any argument’s
value is null, UpperBound returns null.

Usage For variable-size arrays, memory is allocated for the array when you assign
values to it. UpperBound returns the largest value that has been defined for the
array in the current script. Before you assign values, the lower bound is 1 and
the upper bound is 0. For fixed arrays, whose size is specified when it is
declared, UpperBound always returns the declared size.

Argument Description

string The string you want to convert to uppercase letters

Argument Description

array The name of the array for which you want the upper bound of a
dimension

n
(optional)

The number of the dimension for which you want the upper bound.
The default is 1
1196 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples The following statements illustrate the values UpperBound reports for
fixed-size arrays and for variable-size arrays before and after memory has been
allocated:

integer a[5]
UpperBound(a) // Returns 5
UpperBound(a,1) // Returns 5
UpperBound(a,2) // Returns -1; no 2nd dimension

integer b[10,20]
UpperBound(b,1) // Returns 10
UpperBound(b,2) // Returns 20

integer c[]
UpperBound(c) // Returns 0; no memory allocated
c[50] = 900
UpperBound(c) // Returns 50
c[60] = 800
UpperBound(c) // Returns 60
c[60] = 800
c[50] = 700
UpperBound(c) // Returns 60

integer d[10 to 50]
UpperBound(d) // Returns 50

This example determines the position of a menu bar item called File, and if the
item has a cascading menu with an item called Update, disables the Update
item. The code could be a script for a control in a window.

The code includes a rather complicated construct: Parent.Menuid.Item. Its
components are:

• Parent – The parent window of the control that is running the script.

• Menuid – A property of a window whose value identifies the menu
associated with the window.

• Item – A property of a menu that is an array of items in that menu. If Item
is itself a drop-down or cascading menu, it has its own item array, which
can be a fourth qualifier.
PowerScript Reference 1197

Which
The script is:

long i, k, tot1, tot2

// Determine how many menu bar items there are.
tot1 = UpperBound(Parent.Menuid.Item)

FOR i = 1 to tot1
 // Find the position of the File item.
 IF Parent.Menuid.Item[i].text = "File" THEN
 MessageBox("Position", &
 "File is in Position "+ string(i))
 tot2 = UpperBound(Parent.Menuid.Item[i].Item)

 FOR k = 1 to tot2
 // Find the Update item under File.
 IF Parent.Menuid.Item[i].Item[k].Text = &
 "Update" THEN
 // Disable the Update menu option.
 Parent.Menuid.Item[i].Item[k].Disable()
 EXIT
 END IF
 NEXT
 EXIT
 END IF
NEXT

See also LowerBound

Which
Description Allows a component to find out whether it is running on a transaction server.

Applies to TransactionServer objects

Syntax transactionserver.Which ()

Return value Integer. Returns 0 if the object is not running on a transaction server, 1 if it is
running on EAServer, or 2 if it is running on COM+.

Usage The Which function allows a custom class user object to perform different
processing depending on its runtime context.

Argument Description
transactionserver Reference to the TransactionServer service instance
1198 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples The code in the following example checks to see whether the runtime context
is a transaction server (EAServer or COM+). If it is, it uses transaction
semantics that are appropriate for a transaction server; otherwise, it uses
COMMIT and ROLLBACK to communicate directly with the database:

// Instance variables:
// DataStore ids_datastore
// TransactionServer ts

Integer li_rc
long ll_rv

li_rc = this.GetContextService("TransactionServer", &
 ts)
IF li_rc <> 1 THEN
 // handle the error
END IF
...
...
ll_rv = ids_datastore.Update()

IF ts.Which() > 0 THEN
 IF ll_rv = 1 THEN
 ts.EnableCommit()
 ELSE
 ts.DisableCommit()
 END IF
ELSE
 IF ll_rv = 1 THEN
 COMMIT USING SQLCA;
 ELSE
 ROLLBACK USING SQLCA;
 END IF
END IF

See also EnableCommit
IsInTransaction
IsTransactionAborted
Lookup
SetAbort
SetComplete
PowerScript Reference 1199

WordCap
WordCap
Description Capitalizes the first letter of each word in a passed script. It sets the remaining

letters in each word to lowercase.

Applies to All text objects

Syntax WordCap (text)

Return value String. If it succeeds, returns the text passed in the function argument with the
first letter of each word in uppercase and the remaining letters in lowercase.
Returns null if an error occurs.

Examples This example takes user-entered text from a SingleLineEdit control,
capitalizing the first letter in each word and setting the other letters to
lowercase, before passing it in a string variable:

string ls_fullname
ls_fullname = WordCap (sle_1.text)

The text joe MaCdonald would be rendered as Joe Macdonald by the
WordCap function.

WorkSpaceHeight
Description Obtains the height of the workspace within the boundaries of the specified

window.

Applies to Window objects

Syntax windowname.WorkSpaceHeight ()

Return value Integer. Returns the height of the workspace area in PowerBuilder units in
windowname. If an error occurs, WorkSpaceHeight returns -1. If windowname
is null, WorkSpaceHeight returns null.

Argument Description

text String to be modified

Argument Description

windowname The name of the window for which you want the height of the
workspace area
1200 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Usage The workspace height does not include the thickness of the frame, the title bar,
menu bar, horizontal scroll bar, or any toolbars at the top or bottom. The
workspace height includes the MicroHelp status bar.

The workspace width does not include the thickness of the frame, the vertical
scroll bar, or any toolbars on the left or right.

Examples This example returns the height of the workspace area in the w_employee
window:

Integer Height
Height = W_employee.WorkSpaceHeight()

This example resizes the client area of a custom MDI frame window (that is, a
frame window in which you have placed controls). P_logo is the control that
has been placed on the window. The code belongs in the script for the frame’s
Resize event:

integer lw, lh
// Get the current workspace measurements
lw = This.WorkSpaceWidth()
lh = This.WorkSpaceHeight()

// Subtract the logo, MicroHelp from the height
lh = lh - (p_logo.Y + p_logo.Height)
lh = lh - MDI_1.MicroHelpHeight

// Add the distance between the top of the frame
// (just below the menu bar or toolbar, if any)
// and top of the workspace.
lh = lh + This.WorkspaceY()

// Move the client area below the picture control
MDI_1.Move(This.WorkspaceX(), &
 p_logo.Y + p_logo.Height)

// Resize the client area using the calculated dims
mdi_1.Resize(lw, lh)

See also WorkSpaceWidth
WorkSpaceX
WorkSpaceY
PointerX
PointerY
PowerScript Reference 1201

WorkSpaceWidth
WorkSpaceWidth
Description Obtains the width of the workspace within the boundaries of the specified

window.

Applies to Window objects

Syntax windowname.WorkSpaceWidth ()

Return value Integer. Returns the width of the workspace area (in PowerBuilder units) in
windowname. If an error occurs, WorkSpaceWidth returns -1. If windowname is
null, WorkSpaceWidth returns null.

Usage The workspace height does not include the thickness of the frame, the title bar,
menu bar, horizontal scroll bar, or any toolbars at the top or bottom. The
workspace height includes the MicroHelp status bar.

The workspace width does not include the thickness of the frame, the vertical
scroll bar, or any toolbars on the left or right.

Examples This example returns the width of the workspace area in the w_employee
window:

integer Width
Width = w_employee.WorkSpaceWidth()

See also PointerX
PointerY
WorkSpaceHeight
WorkSpaceX
WorkSpaceY

Argument Description

windowname The name of the window for which you want the width of the
workspace area
1202 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
WorkSpaceX
Description Obtains the distance between the left edge of a window’s workspace and the

left edge of the screen.

For custom MDI frames, WorkSpaceX obtains the distance between the left
edge of the frame window and the left side of the workspace area.

Applies to Window objects

Syntax windowname.WorkSpaceX ()

Return value Integer. Returns the distance that the left edge of the workspace area of
windowname is from the left edge of the screen (in PowerBuilder units).
WorkSpaceX returns -1 if an error occurs. If windowname is null, WorkSpaceX
returns null.

Usage The workspace area is the area between the sides of the window (not including
the thickness of the frame or the vertical scroll bar, if any) and the top and
bottom of the window (not including the thickness of the frame or the title bar,
menu bar, or horizontal scroll bar, if any).

Examples This example returns the distance from the left edge of the screen to the left
edge of the workspace area in the w_employee window:

integer workx
workx = w_employee.WorkSpaceX()

See also PointerX
PointerY
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceY

Argument Description

windowname The name of the window for which you want the distance
between the left edge of the workspace area and the left edge
of the screen
PowerScript Reference 1203

WorkSpaceY
WorkSpaceY
Description Obtains the distance between the top of a window’s workspace and the top of

the screen.

For custom MDI frames, WorkSpaceY obtains the distance from the top of the
frame window and the top of the workspace area. The top of the frame window
is the lower edge of the menu bar or toolbar, if any.

Applies to Window objects

Syntax windowname.WorkSpaceY ()

Return value Integer. Returns the distance that the top of the workspace area of windowname
is from the top of the screen (in PowerBuilder units). If an error occurs,
WorkSpaceY returns -1. If windowname is null, WorkSpaceY returns null.

Usage The workspace area is the area between the sides of the window (not including
the thickness of the frame or the vertical scroll bar, if any) and the top and
bottom of the window (not including the thickness of the frame or the title bar,
menu bar, or horizontal scroll bar, if any).

Examples This example returns the distance from the top of the screen to the top of the
workspace area in the w_employee window:

integer worky
worky = w_employee.WorkSpaceY()

See also PointerX
PointerY
WorkSpaceHeight
WorkSpaceWidth
WorkSpaceX

Argument Description

windowname The name of the window for which you want the distance
between the top of the workspace area and the top of the
screen
1204 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Write
Description Writes data to an opened OLE stream object.

Applies to OLEStream objects

Syntax olestream.Write (dataforstream)

Return value Long. Returns the number of characters or bytes written if it succeeds and one
of the following negative values if an error occurs:

-1 Stream is not open
-2 Read error
-9 Other error

If any argument’s value is null, Write returns null.

Examples This example opens an OLE object in the file MYSTUFF.OLE and assigns it to
the OLEStorage object olest_stuff. Then it opens the stream called info in
olest_stuff and assigns it to the stream object olestr_info. It writes the contents
of the blob variable lb_info to the stream olestr_info. Finally, it saves the
storage olest_stuff:

boolean lb_memexists
OLEStorage olest_stuff
OLEStream olestr_info
integer li_result
long ll_result

olest_stuff = CREATE OLEStorage
li_result = olest_stuff.Open("c:\ole2\mystuff.ole")
IF li_result <> 0 THEN RETURN

li_result = olestr_info.Open(olest_stuff, "info", &
 stgReadWrite!, stgExclusive!)
IF li_result <> 0 THEN RETURN
ll_result = olestr_info.Write(lb_info)
IF ll_result = 0 THEN olest_stuff.Save()

See also Length
Open
Read
Seek

Argument Description

olestream The name of an OLE stream variable that has been opened

dataforstream A string, blob, or character array whose value you want to
write to olestream
PowerScript Reference 1205

XMLParseFile
XMLParseFile
Description Parses an XML file and determines whether the file is well formed or complies

with a specified grammar.

Syntax XMLParseFile (xmlfilename {, validationscheme }{, parsingerrors } {,
namespaceprocessing {, schemaprocessing {, schemafullchecking }}})

Argument Description

xmlstring A string whose value is the name of the XML file to be
parsed.

validationscheme
(optional)

A value of the ValSchemeType enumerated datatype
specifying the validation method used by the SAX parser.
Values are:

• ValNever! – Do not report validation errors.

• ValAlways! – Always report validation errors.

• ValAuto! – (default) Report validation errors only if a
grammar is specified.

parsingerrors
(optional)

A string buffer to which error messages can be saved. If
not specified or set to null, errors display in a message box.

namespaceprocessing
(optional)

A boolean specifying whether name space rules are
enforced. When set to true, the parser enforces the
constraints and rules defined by the W3C
recommendation on namespaces in XML.

If validationscheme is set to ValAlways! or ValAuto!, the
document must contain a grammar that supports the use of
namespaces.

The default is false.

schemaprocessing
(optional)

A boolean specifying whether schema support is enabled.
When set to false, the parser does not process any schema
found.

If schemaprocessing is true, namespaceprocessing must
also be set to true.

The default is false.

schemafullchecking
(optional)

A boolean specifying whether schema constraints are
checked. When set to true, the schema grammar is
checked for errors.

Setting schemafullchecking to true has no effect unless
schemaprocessing is also set to true.

The default is false.
1206 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Return value Long. Returns 0 for success and one of the following negative values if an error
occurs:

-1 Parsing error

-2 Argument error

Usage Use XMLParseFile to validate an XML file against a DTD or XML schema
before proceeding with additional processing.

If no DTD or schema is included or referenced in the file, XMLParseFile checks
whether the document contains well-formed XML. If the XML document fails
validation or is not well-formed, XMLParseFile returns -1.

Because XSD You can also check the well-formedness of an XSD file because
they are in XML format. The validation scheme must be ValAuto!, which is the
default validation scheme.

To suppress the display of message boxes if errors occur, specify a string value
for the parsingerrors argument.

The files pbxercesNN.dll and xerces-c_XX.dll, where NN represents the
PowerBuilder version and XX represents the Xerces version, must be deployed
with the other PowerBuilder runtime files in the search path of any application
or component that uses this function.

Examples These statements parse an XML document. If a DTD is included or referenced,
the document is validated. Otherwise the parser checks for well-formedness. If
the document passes validation, it is imported into a DataWindow control:

long ll_ret

ll_ret = XMLParseFile("c:\temp\mydoc.xml")
if ll_ret = 0 then dw_1.ImportFile("c:\temp\mydoc.xml")

These statements parse an XML document and save any errors in the string
variable ls_err. If errors occur, no message boxes display. If a DTD is included
or referenced, the document is validated. Otherwise the parser checks for
well-formedness:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ls_err)

These statements parse an XML document. If an XMLSchema is included or
referenced, the document is validated, otherwise the parser checks for
well-formedness:

long ll_ret
ll_ret = XMLParseFile("c:\temp\mydoc.xml", TRUE, TRUE)
PowerScript Reference 1207

XMLParseFile
These statements parse an XML document, validate against a given XML
schema, and save any errors that occur in a string variable. If errors occur, no
message boxes display. If no schema is included or referenced in the file,
XMLParseFile returns -1:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValAlways!,

ls_err, TRUE, TRUE)

These statements parse an XML document, validate against a given XML
schema, and parse the schema itself for additional errors. If no schema is
included or referenced in the file, XMLParseFile returns -1:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValAlways!,

ls_err, TRUE, TRUE, TRUE)

These statements parse an XML document, validate against a given DTD, and
save any errors that occur in a string variable. If errors occur, no message boxes
display. If no DTD is included or referenced in the file, XMLParseFile returns
-1:

long ll_ret
string ls_err
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValAlways!,

ls_err)

These statements parse an XSD file and test it for well-formedness. You must
use ValAuto! when you parse an XSD file because there is no external schema
associated with it. However, you do not need to specify the option when you
call the function because it is the default validation method:

long ll_ret
ll_ret = XMLParseFile ("c:\mydoc.xsd")

See also ImportFile
XMLParseString
ImportFile in the DataWindow Reference or online Help
1208 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
XMLParseString
Description Parses an XML string and determines whether the string is well formed or

complies with a specified grammar.

Syntax XMLParseString (xmlstring {, validationscheme }{, parsingerrors } {,
namespaceprocessing {, schemaprocessing {, schemafullchecking }}})

Argument Description

xmlstring A string that holds the XML document to be parsed.

validationscheme
(optional)

A value of the ValSchemeType enumerated datatype
specifying the validation method used by the SAX parser.
Values are:

• ValNever! – Do not report validation errors.

• ValAlways! – Always report validation errors. Use
ValAlways! only when you know there is a DTD or
schema against which the file can be validated.

• ValAuto! – (default) Report validation errors only if a
grammar is specified.

parsingerrors
(optional)

A string buffer to which error messages can be saved. If
not specified or set to null, errors are shown to the user in
a dialog box.

namespaceprocessing
(optional)

A boolean specifying whether name space rules are
enforced. When set to true, the parser enforces the
constraints and rules defined by the W3C
recommendation on namespaces in XML.

If validationscheme is set to ValAlways! or ValAuto!, the
document must contain a grammar that supports the use of
namespaces.

The default is false.

schemaprocessing
(optional)

A boolean specifying whether schema support is enabled.
When set to false, the parser does not process any schema
found.

If schemaprocessing is true, namespaceprocessing must
also be set to true.

The default is false.

schemafullchecking
(optional)

A boolean specifying whether schema constraints are
checked. When set to true, the schema grammar is
checked for errors.

Setting schemafullchecking to true has no effect unless
schemaprocessing is also set to true.

The default is false.
PowerScript Reference 1209

XMLParseString
Return value Long. Returns 0 for success and one of the following negative values if an error
occurs:

-1 Parsing error

-2 Argument error

Usage Use XMLParseString to validate an XML string against a DTD or XML schema
before proceeding with additional processing.

If no DTD or schema is included or referenced in the string, XMLParseString
checks whether the string contains well-formed XML. If the XML string fails
validation or is not well-formed, XMLParseString returns -1.

XSD (schema) files are in XML format and you can check them for
well-formedness. The validation scheme must be ValAuto!, which is the
default validation scheme, because ValAlways! requires that there be a schema
or DTD against which to validate the file.

For example, given the following schema file, the parser fails because there is
no external XSD file that defines xs:schema, xs:element, and
xs:complextype. The schema is defined by the namespace
http://www.w3.org/2001/XMLSchema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="test3">

<xs:complexType>
<xs:sequence>

<xs:element ref="test3_row" maxOccurs=
"unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Using ValAlways! also fails for an XML file if there is no schema defined or
the reference does not point to a valid schema. If you use ValAuto!, validation
is performed only if the schema or DTD file is present in the desired location.
If it is not present, only well-formedness is checked.

To suppress the display of message boxes if errors occur, specify a string value
for the parsingerrors argument.

The files pbxercesNN.dll and xerces-c_XX.dll, where NN represents the
PowerBuilder version and XX represents the Xerces version, must be deployed
with the other PowerBuilder runtime files in the search path of any application
or component that uses this function.
1210 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Examples These statements parse an XML string. If a DTD is included or referenced, the
string is validated. Otherwise the parser checks for well-formedness:

// string argument as_xmlstring passed in
long ll_ret

ll_ret = XMLParseString(as_xmlstring)

These statements parse an XML string, validate against a given XML schema,
and save any errors that occur in a string variable. If errors occur, no message
boxes display. If no schema is included or referenced in the string,
XMLParseString returns -1:

long ll_ret
string ls_xmlstr, ls_err

ll_ret = XMLParseString(ls_xmlstr, ValAlways!,
ls_err, TRUE, TRUE)

These statements parse an XML string, validate against a given DTD, and save
any errors that occur in a string variable. If errors occur, no message boxes
display. If no DTD is included or referenced in the string, XMLParseString
returns -1. If the string passes validation, it is imported into a DataWindow
control:

long ll_ret
string ls_xmlstr, ls_err

ll_ret = XMLParseString(ls_xmlstr, ValAlways!, ls_err)
if ll_ret = 1 then dw_1.ImportString(ls_xmlstr)

See also ImportString
XMLParseFile
ImportString in the DataWindow Reference or online Help
PowerScript Reference 1211

Year
Year
Description Determines the year of a date value.

Syntax Year (date)

Return value Integer. Returns an integer whose value is a 4-digit year adapted from the year
portion of date if it succeeds and 1900 if an error occurs. If date is null, Year
returns null.

When you convert a string that has a two-digit year to a date, then
PowerBuilder chooses the century, as follows. If the year is between 00 to 49,
PowerBuilder assumes 20 as the first two digits; if it is between 50 and 99,
PowerBuilder assumes 19.

Usage PowerBuilder handles years from 1000 to 3000 inclusive.

If your data includes date before 1950, such as birth dates, always specify a
4-digit year so that Year and other PowerBuilder functions, such as Sort,
interpret the date as intended.

Windows settings
To make sure you get correct return values for the year, you must verify that
yyyy is the Short Date Style for year in the Regional Settings of the user’s
Control Panel. Your program can check this with the RegistryGet function.

If the setting is not correct, you can ask the user to change it manually or have
the application change it (by calling the RegistrySet function). The user may
need to reboot after the setting is changed.

Examples This statement returns 2005:

Year(2005-01-31)

See also Day
Month
Year method for DataWindows in the DataWindow Reference or online Help

Argument Description

date The date from which you want the year
1212 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
Yield
Description Yields control to other graphic objects, including objects that are not

PowerBuilder objects. Yield checks the message queue and if there are
messages in the queue, it pulls them from the queue.

Syntax Yield ()

Return value Boolean. Returns true if it pulls messages from the message queue and false if
there are no messages.

Usage Include Yield within a loop so that other processes can happen. For example,
use Yield to allow end users to interrupt a loop. By yielding control, you allow
the user time to click on a cancel button in another window. Then code in the
loop can check whether a global variable’s status has changed. You can also use
Yield in a loop in which you are waiting for something to finish so that other
processing can take place, in either your or some other application.

Using other applications while retrieving data
Although the user cannot do other activities in a PowerBuilder application
while retrieving data, you can allow them to use other applications on their
system. Put Yield in the RetrieveRow event so that other applications can run
during the retrieval.

Of course, Yield will make your PowerBuilder application run slower because
processing time will be shared with other applications.

Examples In this example, some code is processing a long task. A second window
includes a button that the user can click to interrupt the loop by setting a shared
boolean variable sb_interrupt. When the user clicks the button, its Clicked
script sets sb_interrupt, shown here:

sb_interrupt = TRUE
PowerScript Reference 1213

Yield
The script that is doing the processing checks the shared variable sb_interrupt
and interrupts the processing if it is true. The Yield function allows a break in
the processing so the user has the opportunity to click the button:

integer n
// sb_interrupt is a shared variable.
sb_interrupt = FALSE

FOR n = 1 to 3000
 Yield()
 IF sb_interrupt THEN // var set in other script
 MessageBox("Debug","Interrupted!")
 sb_interrupt = FALSE
 EXIT
 ELSE
 ... // Some processing
 END IF
NEXT

In this example, this script doing some processing runs in one window while
users interact with controls in a second window. Without Yield, users could
click in the second window, but they would not see focus change or their
actions processed until the loop completed:

integer n

FOR n = 1 to 3000
 Yield()
 ... // Some processing
NEXT
1214 PowerBuilder Classic

CHAPTER 10 PowerScript Functions
In this example, a script wants to open a DDE channel with Lotus Notes, whose
executable name is stored in the variable mailprogram. If the program is not
running, the script starts it and loops, waiting until the program’s startup is
finished and it can establish a DDE channel. The loop includes Yield, so that the
computer can spend time actually starting the other program:

time starttime
long hndl

SetPointer(HourGlass!)
//Try to establish a handle; SendMail is the topic.
hndl = OpenChannel("Notes","SendMail")

//If the program is not running, start it
IF hndl < 1 then
 Run(mailprogram, Minimized!)
 starttime = Now()

 // Wait up to 2 minutes for Notes to load
 // and the user to log on.
 DO
 //Yield control occasionally.
 Yield()
 //Is Notes active yet?
 hndl = OpenChannel("Notes","SendMail")
 // If Notes is active.
 IF hndl > 0 THEN EXIT
 LOOP Until SecondsAfter(StartTime,Now()) > 120

 // If 2 minutes pass without opening a channel
 IF hndl < 1 THEN
 MessageBox("Error", &
 "Can't start Notes.", StopSign!)
 SetPointer(Arrow!)
 RETURN
 END IF
END IF
PowerScript Reference 1215

Yield
1216 PowerBuilder Classic

Index
- see dashes
-- (assignment shortcut) 122

Symbols
! (enumerated value) 30
& see ampersand
* (multiplication) 70
+ (addition) 70
++, += (assignment shortcuts) 122
/ (division) 70
// (comments) 4
/= (assignment shortcut) 122
; (SQL) 15
< (less than) 72
<= (less than or equal) 72
<> (not equal) 72
= (assignment) 40
= (relational) 72
> (greater than) 72
>= (greater than or equal) 72
? (dynamic SQL) 172, 174, 177
^ (exponentiation) 70
_Is_A function 692
_Narrow function 788
~ see tilde
’ see quotes

A
Abs function 334
absolute value 334
access levels

functions 60
group label 46
variables 43

ACos function 334
Activate event 186
PowerScript Reference
Activate function 335
active sheet 812
active window 858
Adaptive Server Enterprise 1153
AddCategory function 337
AddColumn function 338
AddData function 339, 359
AddItem function 341
addition operator 70
AddLargePicture function 346
AddPicture function 347
address keyword 1181
address, mail 752, 761, 762
AddSeries function 348
AddSmallPicture function 349
AddStatePicture function 350
AddToLibraryList function 351
AllowEdit property 997
ampersand (&) 15
ancestor

calling function or event 114
hierarchy 381
objects 84
return values from events 115
script, calling 123

AncestorReturnValue variable 115
AND operator 72
angle

calculating arccosine 334
calculating arcsine 356
calculating arctangent 357
calculating cosine 419
calculating sine 1119
calculating tangent 1158
converting to/from radians 852, 853

animation
starting 855
stopping 1137

ANSI, string conversion 520, 1164, 1169
Any datatype 26
1217

Index
API and database handles 441
application

closing DDE channel 395
connecting to 407, 408, 411
elapsed time 420
exporting object as syntax 729
handle 524, 636
listing objects 725
posting messages 868
recreating objects from syntax 730
restarting 945
retrieving arguments 402
running 958
server 1133, 1139
terminating 137
yielding to 1213

application name 1132, 1133, 1139
Application objects, SetTransPool function 1105
Arabic functions

IsAllArabic 694
IsAnyArabic 695
IsArabic 696
IsArabicAndNumbers 697

arccosine 334
arcsine 356
arctangent 357
arguments

command line 402
for events 184
functions and events 106
hot link 1131, 1138
server application 1133, 1139

arithmetic operators 70
Arrange function 352
ArrangeOpen enumerated datatype 812
ArrangeSheets function 353
ArrangeTypes enumerated datatype 353
array functions

LowerBound 750
UpperBound 1196

arraylists 56
arrays

about 48
assigning values 54, 56, 120
chars and strings 78
copying 120
1218
default values 51
errors 57
example 355
initializing 56
input parameter for dynamic SQL 1042
mailRecipient 751
message ID 753
passing as arguments 108
stream 916, 1205
variable-size 53

arrow pointer 1063
Asc function 354
AscA function 354
ASCII values

converting characters to 354
of nonprinting characters 900

ASin function 356
assignment

arrays 51, 54, 56
overflow 77
shortcut operators 122
statements 120

asterisk in text patterns 770
ATan function 357
AttachmentFile property 760
audio (beep) 357
AutoCommit 1153
Autoinstantiate setting 85
automation 1017, 1019, 1020
axis, graphs

categories 337, 371, 443, 662
inserting data 666

B
back quote 123
background color, graphs

data points 553, 1033
series 613, 1080

background layer of DataWindow 1067
backslash in text patterns 769
backspace, specifying 7
bands, DataWindow, moving objects to 1067
BAT file 958
batch applications 869
PowerBuilder Classic

Index
beam pointer 1063
Beep function 357
BeginDownload event 187
BeginDrag event 188
BeginLabelEdit event 191
BeginLogScan event 193
BeginRightDrag event 193
BeginSync event 196
BeginTransaction function 358
BeginUpload event 197
birth dates 1212
bitmaps

assigning to picture control 1062
in rich text 684
printing 881
retrieving from clipboard 387

blob datatype 21
Blob function 359, 360
blob functions

Blob 359, 360
BlobEdit 361
BlobMid 362
Len 719, 721

BlobEdit function 361
BlobMid function 362
blobs

assigning to picture control 1062
converting 528
converting to byte arrays 528
converting to bytes 367, 527
converting to string 359, 1140
declaring 37
extracting values from 431, 435, 442, 686, 742,

744, 918, 1160
inserting data into 361
reading streams into 916
selecting from database 162
updating 165
writing to stream 1205

boolean datatype 21
border

determining distance from 856, 857
printing 893, 896, 897

bottom layer of DataWindow 1067
bound 750, 1196
brackets in text patterns 770
PowerScript Reference
BuildModel function 364
byte array

converting to blob 360
obtaining from blob 528

byte datatype 22
Byte function 367

C
C functions

decoding returned values 689
passing values to 741

CALL statement
about 123
not using 184

Cancel button 776
Cancel function 368
cancellation

allowing 1213
of edits 1193
of pipeline object 368
of printing 882

CancelSync function 369
CanUndo function 370
capitalization

in category names 337, 662
in series names 348
lowercase 750
uppercase 1196

caret in text patterns 769
carriage return

in INI files 912
specifying 7

cascaded windows, arranging sheets 353
cascading opened windows 812
case sensitivity, comparisons 72
categories, graphs

adding data values to series 337, 340
adding to a series 337
clicked 791
counting 371
deleting 443, 936
identifying 371, 372
importing data 642, 645, 649
InsertCategory function 337
1219

Index
inserting 662
new 337

CategoryCount function 371
CategoryName function 372
Ceiling function 373
century 1212
ChangeDirectory function 374
ChangeMenu function 375
channel, DDE 395, 810
char datatype

about 22
array 78
converting to string 78

CharA function 377
character array 1205
characters

array 916
changing capitalization 750, 1196
converting to ASCII values 354
extracting 376, 377, 778
mask 1053
matching 769
returning rightmost 951, 952
selected 988, 992
selecting 1001

CharW function 376
Check function 378
Checked property 1192
child windows

obtaining parent 844
opening 797, 835

CHOOSE CASE statement 124
ChooseColor function 379
class

contrasted with object 80
of object 381
OLE 664

class hierarchy 29
class user objects 82
ClassDefinition objects, FindMatchingFunction 514
ClassList function 380
ClassName function 381
Clear function 383
ClearAll function 386
ClearBoldDates function 386
clearing text 383, 386
1220
Clicked event 197, 792
clipboard

contents as replacement text 934
copying 416
cutting 427
importing data from 642
pasting and linking 847
pasting from 845
retrieving and replacing contents 387

Clipboard function 387
CLOSE Cursor statement 149
Close event 204, 390, 945
Close function 390
CLOSE Procedure statement 150
CloseChannel function 395
CloseQuery event 206, 390
CloseTab function 396
CloseUp event 207
CloseUserObject function 397
CloseWithReturn function 398
closing

DDE channel 395
print job 884
windows 390

code
generating DataWindow 1152
object 729
reusing 870

cold link 474, 606, 810, 1073
CollapseItem function 401
colors

and edit masks 1053
data point 553, 939, 1033
red, green, and blue components of 949
series 613, 1080
supported 573
table of standard colors 949

ColumnClick event 208
columns

determining insertion point position 862
in list 664
pasting text into 845

COM file 958
command line, retrieving arguments 402
CommandParm function 402
commands
PowerBuilder Classic

Index
getting from DDE client 533
receiving form DDE application 944

comments
in library 723
using 4

COMMIT statement 151
CommitTransaction function 403
comparing

numbers 686, 772, 781
comparing strings 72
computer

beeping 357
reporting CPU time 420

concatenation operator 73
condensed mode 900
conditional compilation 18
configuration settings

reading 910, 912
saving 1068

CONNECT statement 152
Connection objects

ConnectToServer function 413
CreateInstance function 423
DisconnectServer function 462

connections, to OLE object 407
ConnectMobiLink event 209
ConnectToNewRemoteObject function 407
ConnectToServer function 413
constants

assigning values 40
declaring 47
where to declare 34

Constructor event 210
ContextInformation objects

GetCompanyName function 537
GetFixesVersion function 582
GetHostObject function 586
GetMajorVersion function 593
GetMinorVersion function 595
GetName function 596
GetShortName function 620
GetVersionName function 635

ContextKeyword objects, GetContextKeywords
function 538

context-sensitive Help 1115
continuation character 15
PowerScript Reference
CONTINUE statement 126
continuous line style

setting for data points 1035
setting for series 1083

Control array 828, 829
control structures

CHOOSE CASE 124
DO...LOOP 131
FOR...NEXT 134
IF...THEN 138

controls
determining type 1190
dragging 465
focus of 583, 1044
hiding 638, 785
moving 785
obtaining handle 636
redrawing 1072
referencing 400
resizing 941
yielding 1213

conventions xxv
coordinates

ListView items 600
of print cursor 908, 909
of print objects 881, 893, 896, 897

Copy function 416
copying

importing from clipboard 642
to clipboard 416

CopyRTF function 418
CORBACurrent, initializing 653
Cos function 419
cosine 419
count, of data points in a series 428
CPU

getting information about 573
time 420

Cpu function 420
CREATE statement 127, 858
CreateDirectory function 420
CreateInstance function 423
CreatePage function 426
cross mouse pointer 1063
crosstabs, creating from source code 1152
current
1221

Index
row and scrolling 978, 980
sheet 812

cursor
custom 1064
displaying pop-up menus 858
print 877

cursors, database
closing 149
declaring 148, 153
opening 160

custom class user objects 85
Cut function 427
cutting, to clipboard 427

D
dash line style

about 1035, 1083
setting for series 1083

dashes, prohibiting in variable names 5
DashesInIdentifiers option 5
data

adding to a graph series 339, 341
clearing 935
converting to type long 741, 743
correcting pipeline 930
finding in DataWindow 503
from OLE server 546
getting DDE 548
importing 642
inserting into a blob 361
obtaining from control 543
receiving from DDE application 944
sending to DDE client 1029
sharing 429
to OLE server 1027
transferring 1124
writing to file 498, 500
writing to stream 1205

data expressions, Any datatype 28
Data Pipeline painter 368, 1125
data points

adding to a scatter graph 341
clicked 791
deleting 443
1222
inserting 665
reporting appearance of 553
reporting explosion percent 551
resetting colors 939
setting style 1033
value of 543, 560

data types
literals 23

database stored procedures 145
databases

canceling changes 160
commiting changes 151
connecting to 152
cursor, opening 160
deleting rows 155, 156
disconnecting from 156
fetching rows 158
handle 441
inserting rows 159
on restart 945
repairing 930
selecting rows 161
transactions 1105
transferring data between 1124
updating 164
updating cursored row 166

DataChange event 211
DataSource function 429
datatype checking and conversion functions

Asc 355
Char 376, 377
Date 431
DateTime 434
Dec 442
Double 463
Integer 686
IsDate 700
IsNull 704
IsNumber 705
IsTime 708
Long 741, 743
Real 918
String 1139
Time 1160

datatype mappings, EAServer 31
datatypes
PowerBuilder Classic

Index
about 21
assignment 77
blob 359, 360
byte 367, 528
date 434
determining 381
effect of operators 75
enumerated 30
external functions 62
literals 22, 23, 24, 26, 76
mismatch when pasting 845
numeric 75
promotion 75
promotion for function arguments 104
real 918
setting to NULL 1057
standard 21
string 1139
system object 29
time 1160
unknown 26
windows 795

DataWindow control
data expressions and Any datatype 28
for pipline errors 1125

DataWindow functions
CanUndo 370
CategoryCount 371
CategoryName 372
Clear 383
ClearAll 386
Clipboard 387
Copy 416
Cut 427
DataCount 428
FindCategory 505
FindNext 516
FindSeries 517
GetData 543
GetDataPieExplode 551
GetDataStyle 553
GetSeriesStyle 612
LineCount 732
ObjectAtPointer 791
Paste 845
PasteRTF 848
PowerScript Reference
Position 863
ReplaceText 934
ResetDataColors 939
Scroll 976
SelectedLength 988
SelectedLine 990
SelectedStart 992
SelectedText 993
SelectText 1001
SeriesCount 1011
SeriesName 1012
SetDataPieExplode 1031
SetDataStyle 1033
SetPosition 1067
SetSeriesStyle 1080
TextLine 1159
Undo 1193

DataWindow object
creating from SELECT statement 1152
deleting from libraries 724
exporting as syntax 729
listing 725
recreating from syntax 730

date datatype 22
Date function 431
date, day, and time functions

Day 437
DayName 438
DayNumber 439
DaysAfter 440
Hour 639
Minute 781
Month 785
Now 790
RelativeDate 926
RelativeTime 926
Second 982
SecondsAfter 982
Today 1165
Year 1212

DateChanged event 211
dates

checking string 700
converting to 432
DateTime datatype 431, 435
day of week 438, 439
1223

Index
determining interval 440
getting dynamic 566, 568
in blobs 431
obtaining current 1165
obtaining day of month 437

DateSelected event 212
DateTime datatype 22
DateTime function 434
Day function 437
DayName function 438
DayNumber function 439
DaysAfter function 440
dBase file, importing data from 645, 649
DBError event 213
DBHandle function 441
DBNotification event 215
dbsign 148
DDE channel

closing 395
requesting data 607

DDE client functions
CloseChannel 395
ExecRemote 474
GetDataDDE 548
GetDataDDEOrigin 549
GetRemote 606
OpenChannel 810
RespondRemote 944
SetRemote 1073
StartHotLink 1131
StopHotLink 1138

DDE server functions
GetCommandDDE 533
GetCommandDDEOrigin 535
GetDataDDE 548
GetDataDDEOrigin 549
RespondRemote 944
SetDataDDE 1029
StartServerDDE 1133
StopServerDDE 1139

DDL, executing through dynamic SQL 171, 172
Deactivate event 217
DEBUG symbol 18
DebugBreak function 441
Dec function 442
decimal datatype
1224
about 23
converting to 442
declaring 37

declarations
access levels 43
arrays 48
constants 47
expressions as initial values 41
external functions 58
syntax 37
variables 33
where to declare 34

DECLARE Cursor statement 153
DECLARE Procedure statement 153
definition, font for printing 886
DELETE statement 155
DELETE Where Current of Cursor statement 156
DeleteAllItems event 217
DeleteCategory function 443
DeleteColumn function 444
DeleteColumns function 444
DeleteData function 445
DeleteItem event 218
DeleteItem function 446
DeleteLargePicture function 449
DeleteLargePictures function 449
DeletePicture function 450
DeletePictures function 450
DeleteSeries function 451
DeleteSmallPicture function 452
DeleteSmallPictures function 452
DeleteStatePicture function 453
DeleteStatePictures function 453
descendant

determining class of 381
opening user object 819, 821, 828, 830
opening window 798
return values from events 115

DESTROY statement
about 130
ending a mail session 756

DestroyModel function 454
Destructor event 219, 396, 397
detail bands, moving objects to 1067
diagonal fill pattern 1037, 1084
dialog
PowerBuilder Classic

Index
Insert Object 683
Open File 574
PasteSpecial 849
Save File 579

diamond fill pattern 1037, 1085
dimension 750
dimension of array 1196
directory, of library 725, 727
DirectoryExists function 455
DirList function 456
DirSelect function 458
Disable function 459
DisableCommit function 460
DISCONNECT statement 156
DisconnectMobiLink event 220
DisconnectObject function 461
DisconnectServer function 462
display format, applying to string 1139
DisplayMessage event 221
distributed applications

ConnectToServer function 413
DisconnectServer function 462
SharedObjectDirectory function 1107
SharedObjectGet function 1108
SharedObjectRegister function 1111, 1112

division 782
division operator 70, 71
DLL files, executing functions from 64
DLLs for external functions 60
document windows 812
dollar sign in text patterns 769
dot notation

about 36
instance variables 35
structures 80

dotted line style
setting for data points 1035
setting for series 1083

double colon 123
double datatype 23
Double function 463
DoubleClicked event 221
DoubleParm property 816, 823, 826, 832, 834
DoVerb function 464
Drag function 465
DragDrop event 225
PowerScript Reference
DragEnter event 230
DraggedObject function 467
dragging, TreeView items 1041
DragLeave event 231
DragObject functions

ClassName 381
Drag 465
Hide 638
Move 786
PointerX 856
PointerY 857
PostEvent 869
Print 875
Resize 941
SetFocus 1044
SetPosition 1065
SetRedraw 1072
Show 1113
TriggerEvent 1181
TypeOf 1190

DragWithin event 232
Draw function 468
drawing objects

and SetFocus function 1044
posting events 869
setting color of 949

DrawObject functions
ClassName 381
Hide 638
Move 786
Print 875
Resize 941
Show 1113
TypeOf 1190

DropDown event 235
DropDownListBox control, deleting text 383
DropDownListBox functions

AddItem 342
Clear 383
ClearAll 386
Copy 416
Cut 427
DeleteItem 446
DirList 456
DirSelect 458
DraggedObject 467
1225

Index
FindItem 508
InsertItem 671
Paste 845
Position 863
Post 868
ReplaceText 934
Reset 935
SelectedLength 988
SelectedStart 992
SelectedText 993
SelectItem 995
SelectText 1001
Text 1158
TotalItems 1167

DropDownPictureListBox functions
AddItem 343
AddPicture 347
Clear 383
ClearAll 386
Copy 416
Cut 427
DeletePicture 450
DeletePictures 450
FindItem 508
InsertItem 672
Paste 845
Position 863
ReplaceText 934
SelectedLength 988
SelectedStart 992
SelectedText 993
SelectItem 995
SelectText 1001
Text 1158
TotalItems 1167

DWObjects, OLE functions 335, 416, 464, 1194
dynamic calls

about 99
errors 101

dynamic libraries 351, 1051
dynamic library (DLL) 1131
dynamic SQL

about 167
considerations 169
DynamicDescriptionArea 168
DynamicStagingArea 168
1226
Format 1 171
Format 2 172
Format 3 173
Format 4 176
formats listed 167
NULL values 172, 174
ordering statements 169
preparing DynamicStagingArea 169
statements 168

dynamic SQL functions
GetDynamicDate 566
GetDynamicDateTime 568
GetDynamicDecimal 569
GetDynamicNumber 570
GetDynamicString 571
GetDynamicTime 572
SetDynamicParm 1042

DynamicDescriptionArea
about 168
properties 177

DynamicStagingArea
about 168
preparing 169

E
EAServer datatype mappings 31
edit control

counting lines in 732
deleting text from 383
determining insertion point position 862
inserting clipboard contents 387
replacing text 934
selected text 988, 992

EditLabel function 421, 469
EditMask functions

CanUndo 370
Clear 383
Copy 416
Cut 427
GetData 545
LineCount 732
LineLength 733
Paste 845
Position 863
PowerBuilder Classic

Index
ReplaceText 934
Scroll 976
SelectedLength 988
SelectedLine 990
SelectedStart 992
SelectedText 993
SelectText 1001
SetMask 1052
TextLine 1159
Undo 1193

embedded SQL 145
Enable function 471
EnableCommit function 472
Enabled property 638, 1072
EndDownload event 235
EndLabelEdit event 236
EndLogScan event 238
EndSync event 238
EndUpload event 239
EntryList function 473
enumerated datatypes 30
envelope, mail message header 759
environment

getting information about 573
TEMP variable 760

error checking
cascaded calls 110
compiling scripts 100

Error DataWindow 930
Error event 239
error handling

after SQL statements 147
calling functions or events 101, 103

error objects, creating 127
ErrorMessage event 242
errors

displaying pipeline 1125
runtime 71

escape sequences 900
events

about 91, 183
adding to queue 869
ancestor 114
and hidden objects 638
and print jobs 884
arguments 106, 184
PowerScript Reference
cascaded calls 110, 112
defined 92
errors when calling 101
extending 106
finding 95
overriding 106
posting 96, 110, 1156
return codes 184
return values 109, 184
similarities to functions 93
static and dynamic 98
system 92, 183
triggering 96, 184, 1157, 1181
user-defined 183, 185

exclamation point icon 776
exclusive share mode 802, 805
ExecRemote function 474
executable

returning application handle 636
running 958

EXECUTE statement 157, 1042
execution errors 100
EXIT statement 133
Exp function 477
ExpandAll function 478
ExpandItem function 478
exponent 477
exponentiation operator 70
expressions

Any datatype 27
checking for NULL 704
datatype promotion 75
datatypes 75
DataWindows and Any datatype 28
in declaration 41
literals 76
operators and datatypes 75

external functions 58
ExternalException event 243

F
Fact function 479
FETCH statement 158
file functions
1227

Index
FileClose 480
FileDelete 481
FileExists 483
FileLength 484, 485
FileOpen 487
FileRead 491
FileReadEx 493
FileSeek 495, 496
FileWrite 498
FileWriteEx 500
GetFileOpenName 574
GetFileSaveName 579

FileClose function 480
FileCopy function 480
FileDelete function 481
FileEncoding function 482
FileExists event 246
FileExists function 483
FileLength function 484
FileLength64 function 485
FileMessage event 247
FileMove function 486
FileOpen function 487
FileRead function 491
FileReadEx function 493
files

importing data from 645
linking 735
security and sharing violation 484, 485

FileSeek function 495, 496
FileWrite function 498
FileWriteEx function 500
Fill function

about 502
and printing 502

FillA function 503
FillPattern 555, 1036, 1084
FillW function 502, 503
filtering filenames 574, 579
Find function 503
FindCategory function 505
FindClassDefinition function 506
FindFunctionDefinition function 507
FindItem function 508
FindMatchingFunction function 514
FindNext function 516
1228
FindSeries function 517
FindTypeDefinition function 518
flicker 1072
focus

and line length 733
finding control with 583
selected text 989, 992, 993, 1001
setting 1044

folder 725
fonts

and string length when printing 907
defining for printing 886
FontFamily enumerated datatype 886
FontPitch enumerated datatype 886
names and sizes 887
setting 902
when printing 878
when printing DataWindow controls 885

footer, moving objects to 1067
foreground color

data points 553, 1033
series 613, 1080

foreground layer of DataWindow 1067
Form presentation style 1152
formats, applying to strings 1140
formfeed, specifying 7
frame window 858, 1203, 1204
FromAnsi function 520
FromUnicode function 520
function object

exporting as syntax 729
listing 725
re-creating from syntax 730

functions
about 91
access level for external 60
ancestor 114
arguments 106
calling global and system 112
cascaded calls 110, 112
case sensitivity 112
chars as arguments 78
DLLs 60
errors when calling 101
external 58
external datatypes 62
PowerBuilder Classic

Index
external, defined 92
external, mail 755
external, reporting database handle 441
finding 94
overloading 104
overriding 104
posting 96, 110
return values 109
similarities to events 93
static and dynamic 98
system, defined 92
triggering 96
type promotion 104
user-defined 92

G
garbage collection 84, 128, 130
GarbageCollect function 521
GarbageCollectGetTimeLimit function 521
GarbageCollectSetTimeLimit function 522
Gesture event 247, 300
GetActiveSheet function 523
GetAlignment function 524
GetApplication function 524
GetArgElement function 525
GetAutomationNativePointer function 526
GetByte function 527
GetByteArray function 528
GetCertificateLabel function 528
GetChildrenList function 531
GetColumn function 532
GetCommandDDE function 533
GetCommandDDEOrigin function 535
GetCommandString function 536
GetCompanyName function 537
GetContextKeywords function 538
GetContextService function 539
GetCredentialAttribute function 541
GetCurrentDirectory function 543
GetData function 543
GetDataDDE function 548
GetDataDDEOrigin function 549
GetDataLabelling function 550
GetDataPieExplode function 551
PowerScript Reference
GetDataStyle function 553
GetDataTransparency function 558
GetDataValue function 560
GetDateLimits function 562
GetDbmlsyncPath function 563
GetDisplayRange function 564
GetDynamicDate 178
GetDynamicDate function 566
GetDynamicDateTime 178
GetDynamicDateTime function 568
GetDynamicDecimal 178
GetDynamicDecimal function 569
GetDynamicNumber 178
GetDynamicNumber function 570
GetDynamicString 178
GetDynamicString function 571
GetDynamicTime 178
GetDynamicTime function 572
GetEnvironment function 573
GetFileOpenName function 574
GetFileSaveName function 579
GetFirstSheet function 581
GetFixesVersion function 582
GetFocus event 250
GetFocus function 583
GetFolder function 584
GetGlobalProperty function 585
GetHostObject function 586
GetItem function 587
GetItemAtPointer function 590
GetLastReturn function 591
GetLibraryList function 592
GetMajorVersion function 593
GetMinorVersion function 595
GetName function 596
GetNativePointer function 597
GetNextSheet function 598
GetObjectRevisionFromRegistry function 599
GetOrigin function 600
GetParagraphSetting function 601
GetParent function 601
GetPin function 603
GetRecordSet function 605
GetRemote function 606
GetSelectedDate function 609
GetSelectedRange function 610
1229

Index
GetSeriesLabelling function 611
GetSeriesStyle function 612
GetSeriesTransparency function 619
GetShortName function 620
GetStatus function 622
GetSyncRegistryProperties function 624
GetText function 625
GetToday function 627
GetToolbar function 627
GetToolbarPos function 629, 1099
GetTransactionName function 632
GetURL function 633
GetValue function 634
GetVersionName function 635
global functions

calling 112
defined 92

global scope operator 35
global variables

about 34
scope operator 35

GOTO statement 136
Graph functions

AddCategory 337
AddData 339, 359
AddSeries 348
CategoryCount 371
CategoryName 372
Clipboard 389
DataCount 428
DeleteCategory 443
DeleteData 445
DeleteSeries 451
FindCategory 505
FindSeries 517
GetData 543
GetDataPieExplode 551
GetDataStyle 553
GetSeriesStyle 612
ImportClipboard 642
ImportFile 645
ImportString 649
InsertCategory 662
InsertData 665
InsertSeries 685
ModifyData 782
1230
Reset 936
SaveAs 964
SeriesCount 1011
SeriesName 1012
SetDataPieExplode 1031
SetDataStyle 1033
SetSeriesStyle 1080

graphics, printing 881
graphs

categories 340
overlay 618
series 348

grColorType enumerated datatype 553
grDataType enumerated datatype 544, 560, 619, 1039,

1088
Grid presentation style 1152
grObjectType enumerated datatype 791
Group presentation style 1152
grResetType enumerated datatype 936
grSymbolType enumerated datatype 1085

H
HALT statement 137
handle

database 441
DDE 395, 810, 1133
mailSession object 755, 1009
validating 710

Handle function 636
header band, moving objects to 1067
Hebrew functions

IsAllHebrew 694
IsAnyHebrew 696
IsHebrew 700
IsHebrewAndNumbers 701

height
object 941
workspace 1200

Help
calling Winhelp 1115
displaying MicroHelp 1055

Help event 251
Help Search window 1115
hidden objects 1113
PowerBuilder Classic

Index
Hide event 252
Hide function 638
hierarchies

child items in a list 676, 678, 681
items in TreeView 401, 478
sorting 1122
sorting children 1120
system 29, 381

high word of long 689
highlighting

items in lists 995, 1134
scrolling 980
setting 1091

horizontal fill pattern 1037, 1085
horizontal scrollbar for lists 342
horizontal scrolling, when adding items to lists 342
host variables in SQL 146
hot link

about 1029
determining origin of 549
determining source of data 549
establishing 1131
terminating 1138

HotLinkAlarm event 252
Hour function 639
hourglass pointer 1063
HyperlinkToURL function 639
hyphens, prohibiting in variable names 5

I
icons

arranging in ListView 352
arranging windows 353
in message box 776

identifier names, rules for 5
Idle event 253
IDs for events 183
IF...THEN statement

about 138
multiline 139
single-line 138

image
assigning to picture control 1062
retrieving from clipboard 387
PowerScript Reference
ImpersonateClient function 641
ImportClipboard function 642
ImportFile function 645
importing, data 645, 649
ImportString function 649
inbox

deleting messages from 753
downloading messages to 758
reading mail messages 759
retrieving message IDs from 753, 754
saving messages in 764

IncomingCallList function 651
index

highlight state of 1091, 1134
obtaining top 1166
of listbox item 987, 996

indicator variables in SQL 146
Inet objects

GetURL function 633
HyperlinkToURL function 639
PostURL function 871

Information icon 776
inheritance 84

back quote 123
double colon 123
PowerBuilder objects 29

INI file
reading 909, 911
writing values to 1068

Init function 653, 654
InkEdit functions

RecognizeText 919
InkPicture functions

LoadInk 736
LoadPicture 737
ResetInk 940
ResetPicture 940
Save 960
SaveInk 974

input fields in rich text 656, 657, 658, 659, 660
InputFieldChangeData function 656
InputFieldCurrentName function 657
InputFieldDeleteCurrent function 658
InputFieldGetData function 659
InputFieldInsert function 660
InputFieldLocate function 660
1231

Index
InputFieldSelected event 253
Insert Object dialog 683
INSERT statement 159
InsertCategory function 662
InsertClass function 664
InsertColumn function 664
InsertData function 665
InsertFile function 669
inserting strings 931, 935
insertion point

character position 986
in editable controls 733
in text line 990, 1159
when pasting from clipboard 845

InsertItem event 254
InsertItem function 670
InsertItemFirst function 676
InsertItemLast function 678
InsertItemSort function 681
InsertObject function 683
InsertPicture function 684
InsertSeries function 685
instance variables

about 34
class of 381
dot notation 35
initialized 42

instances
checking if valid 710
defined 80
of user object 818, 822, 827, 831

Int function 686
integer

combining into long value 741, 743
converting to 686
converting to char 376, 377
obtaining from blob 686

integer datatype 23
Integer function 686
Intel 573
InternetData function 688
InternetRequest objects, InternetData function 688
interpersonal messages 754
interprocess messages 754
interval 1163
IntHigh function 689
1232
IntLow function 689
InvokePBFunction function 690
Is_A (_Is_A) function 692
IsAlive function 693
IsAllArabic function 694
IsAllHebrew function 694
IsAnyArabic function 695
IsAnyHebrew function 696
IsArabic function 696
IsArabicAndNumbers function 697
IsCallerInRole function 698
IsDate function 700
IsHebrew function 700
IsHebrewAndNumbers function 701
IsImpersonating function 702
IsInTransaction function 703
IsNull function 704
IsNumber function 686, 705
IsPreview function 706
IsSecurityEnabled function 707
IsTime function 708
IsTransactionAborted function 709
IsValid function

about 710
and Handle function 636
description 710
getting active sheet 523
getting open sheets 581, 598

ItemActivate event 255
ItemChanging event 257
ItemCollapsed event 258
ItemCollapsing event 259
ItemExpanded event 260
ItemExpanding event 261
ItemPopulate event 262
items

adding to lists 341, 670
deleting from list 446, 935
determining number of selected 1168
determining total number of 1167
highlight state of 1091, 1134
index number of 987
linking 735
selecting 995
text of 988, 1158
top 1103, 1166
PowerBuilder Classic

Index
J
JaguarORB, initializing 653
JavaScript keywords, reserved 10

K
Key event 263
keyboard

determining key pressed 710
selecting text 417

KeyCode enumerated datatype
about 710
values 711

KeyDown function 711
keywords 10

L
Label presentation style 1152
labels for GOTO 6
language for OLE automation 1017, 1020
LastPos function 714
Layer enumerated datatype 353
Layered window 816
layering opened windows 812
layout 885
Left function 716, 717
LeftA function 717
LeftTrim function 718, 719
LeftW function 716, 717
Len function 719, 721
LenA function 721
length

line 733
OLE stream 722
selected text 988
string or blob 719, 721

Length function 722
LibDirType enumerated datatype 725
LibDirType enumerated datetype 727
LibExportType enumerated datatype 729
libraries

deleting objects from 725, 727
pasting and linking object from 847
PowerScript Reference
search path 351, 592, 1051
Library functions

LibraryCreate 723
LibraryDelete 724
LibraryDirectory 725
LibraryDirectoryEx 727
LibraryExport 729
LibraryImport 730

LibraryCreate function 723
LibraryDelete function 724
LibraryDirectory function 725
LibraryDirectoryEx function 727
LibraryExport function 729
LibraryImport function 730
limit, numeric 373
line spacing

setting 903
when printing text 877

LineCount function 732
LineDown event 265
LineLeft event 266
LineLength function 733
LineList function 734
LineRight event 267
lines

and SetFocus function 1044
color for data points 553
counting number of 732
determining length 733
graphs, color for data points 1033
graphs, color for series 613, 1080
graphs, style for data points 555, 1035
graphs, style for series 615, 616, 1083
printing 891, 905
scrolling 976
selected text 990
spacing in rich text 621
text 1159
width 555

LineUp event 268
linking

clipboard contents 847, 849
establishing 735

LinkTo function 735
ListBox functions

AddItem 342
1233

Index
DeleteItem 446
DirList 456
DirSelect 458
FindItem 508
InsertItem 671
Reset 935
SelectedIndex 987
SelectedItem 988
SelectItem 995
SetState 1091
SetTop 1103
State 1134
Text 1158
Top 1166
TotalItems 1167
TotalSelected 1168

lists
adding items 670
adding new item 341
deleting items from 935
horizontal scrollbar 342
of files in listbox 456
of objects in libraries 725, 727
sorted 342

ListView control, columns 1047
ListView functions

AddColumn 338
AddItem 344, 345
AddLargePicture 346
AddSmallPicture 349
AddStatePicture 350
Arrange 352
DeleteColumn 444
DeleteColumns 444
DeleteItem 447
DeleteLargePicture 449
DeleteLargePictures 449
DeleteSmallPicture 452
DeleteSmallPictures 452
DeleteStatePicture 453
DeleteStatePictures 453
EditLabel 469
FindItem 509, 510
GetColumn 532
GetItem 588
GetOrigin 600
1234
InsertColumn 664
InsertItem 673
ListView 1167
SelectedIndex 987
SetItem 1046
SetOverlayPicture 1058
Sort 1121
TotalItems 1167
TotalSelected 1168

literals
datatypes of 76
specifying 22, 23, 24, 26

LoadInk function 736
LoadPicture function 737
local variables 34
Log function

about 739
inverse 738
natural logarithm 738

logarithms 738, 740
logical operators 72
LogTen function

about 740
inverse 740

long datatype
about 23
converting to 741, 743
returning high word 689
returning low word 689

Long function 741, 743
longlong datatype 23
LongParm

posting events 869
specifying values for 741
triggering events 1181

Lookup function 745
LOOP 131
LOOP, in DO...LOOP statement 131
loops

about 131
iterative 134
leaving 133
skipping current iteration 126
yielding within 1213

LoseFocus event 269, 777
low word of long 689
PowerBuilder Classic

Index
Lower function 750
LowerBound function 750
lowercase 750

M
mail functions

mailAddress 752
mailDeleteMessage 753
mailGetMessages 754
mailHandle 755
mailLogoff 756
mailLogon 757
mailReadMessage 759
mailRecipientDetails 761
mailResolveRecipient 762
mailReturnCode 757
mailSaveMessage 764
mailSend 767

mailAddress function 751
mailDeleteMessage function 753
mailHandle function 755
mailLogoff function 756
mailLogon function 757
mailLogonOption enumerated datatype 757
mailReadMessage function 759
mailReadOption enumerated datatype 760
mailRecipient structure 762
mailRecipientDetails function 761
mailResolveRecipient function 762
mailReturnCode function 757
mailSaveMessage function 764
mailSend function 767
main window 786
MAPI 755
margins 878, 900, 1060
masks

applying to strings 1140
matching 769
reporting length of 733
setting 1052

Match function 769
Max function 772
maximum value below a limit 686
maximum value of two numbers 772
PowerScript Reference
MDI Client (MDI_1) functions
ClassName 381
Hide 638
Print 875
Resize 941
SetRedraw 1072
Show 1113
TypeOf 1190

MDI frame
arranging windows 353
changing menus 375
displaying pop-up menus 858
getting active 523
opening sheets 797, 812, 815
specifying MicroHelp text 1055

MDI frame functions
ArrangeSheets 353
GetActiveSheet 523
GetFirstSheet 581
GetNextSheet 598
GetToolbar 627
GetToolbarPos 629, 1099
OpenSheet 812
OpenSheetWithParm 815
Print 875
SetMicroHelp 1055
SetToolbar 1097

measurement 1194
member, OLE 773, 774, 775
MemberDelete function 773
MemberExists function 774
MemberRename function 775
memory

allocation for arrays 53
and variable-sized arrays 1196
releasing after mail session 756

Menu functions
Check 378
ClassName 381
Disable 459
Enable 471
PopMenu 858
Show 1113
TriggerEvent 1181
TypeOf 1190
Uncheck 1192
1235

Index
Menu objects
exporting as syntax 729
listing 725
recreating from syntax 730

menus
changing 375
Checked property 378
creating object 127
displaying 858
for sheet 812

message ID array 754
Message object

accessing parameters 835
and TriggerEvent function 1181
close return value 398
creating 127
determining type 1192
extracting strings from 1141, 1144
open sheet parameters 815
PowerObjectParm property 399
properties 823, 826, 832, 834
specifying values for 741

MessageBox function 776, 892
messages

deleting 753
posting 868
saving 764, 767
sending to a window 1009

metacharacters 769
MicroHelp 1055
Microsoft Windows

and DDE 606
and timers 1163
calling Winhelp 1115
defining fonts for printing 887
displaying Save File response window 579
events and messages in 870
getting filenames 574
getting information about 573
message numbers 1009
obtaining handle 636
returned messages 689
RightToLeft version 694, 695, 696, 697, 700, 701,

947
Mid function 778
MidA function 780
1236
MidW function 778, 780
Min function 781
minimum value

above a limit 373
of two numbers 781

Minute function 781
miscellaneous functions

IsValid 710
KeyDown 711
MessageBox 854
PixelsToUnits 854
RGB 949
SetNull 1057
SetPointer 1063
TypeOf 1190
UnitsToPixels 1194

Mod function 782
Modified event 270
ModifyData function 782
modulus 782
monitor 573
Month function 785
month, obtaining the day of 437
More Windows menu item 813
mouse

selecting text 417
setting shape of pointer 1063

MouseDown event 272
MouseMove event 274
MouseUp event 278
Move function 785
Moved event 281
multidimensional arrays 50, 54
MultiLineEdit functions

CanUndo 370
Clear 383
ClearAll 386
Copy 416
Cut 427
LineCount 732
LineLength 733
Paste 845
Position 863
ReplaceText 934
Scroll 976
SelectedLength 988
PowerBuilder Classic

Index
SelectedLine 990
SelectedStart 992
SelectedText 993
SelectText 1001
TextLine 1159
Undo 1193

multiplication operator 70, 71
MultiSelect property

highlighted state 1091, 1138
selecting items 987, 988, 997

N
names, rules for 5
naming conventions 39
Narrow (_Narrow) function 788
negative numbers 1117
nested OLE objects 803, 806
newline, specifying 7
NEXT, in FOR...NEXTstatement 134
NextActivity function 789
NOT operator 72
Notify event 282
Now function 790
null object references 816, 823, 826, 832, 834, 836,

839
NULL values

about 8
checking 704
dynamic SQL 174
in boolean expressions 72
setting variables to 1057
testing for 8

numbers
category 372
checking string 705
comparing 772, 781
converting char 376, 377, 432, 442
determining maximum 373
determining sign of 1117
getting dynamic 569, 570
logarithm of 738, 740
multiplying by pi 853
of day of week 439
of lines, counting 732
PowerScript Reference
random 913, 914
returning remainder 782
rounding 956
truncating 1186

numeric functions
Abs 334
ACos 334
ASin 356
ATan 357
Ceiling 373
Cos 419
Exp 477
Fact 479
Int 686
Log 738
Max 772
Min 781
Mod 782
Pi 853
Rand 913
Randomize 914
Round 956
Sign 1117
Sin 1119
Sqrt 1123
Tan 1158
Truncate 1186

N-Up presentation style 1152

O
ObjectAtPointer function 791
objects

about 80
ancestor 84
assignment 86
changing position 1067
creating instance 127
deleting from libraries 724
destroying instance 130
determining class of 381
determining type 1190
garbage collection 84, 130
general references 11
hiding 638, 786
1237

Index
inserting 664, 669, 683
instantiating 83
linking 735
loading 351, 1051
moving 786
obtaining handle 636
parent object 601
passing as arguments 107
posting events 869
recreating 730
redrawing 1072
reference handle 80
saving OLE 962
selecting 999
setting focus 1044
triggering events 1181
under pointer 791

objects, Connection
ConnectToServer function 413
CreateInstance function 421, 423
DisconnectServer function 462

objects, shared
SharedObjectDirectory function 1107
SharedObjectGet function 1108
SharedObjectRegister function 1111
SharedObjectUnregister function 1112

ObjectToString function 793
OffsetPos function 794
Offsite enumerated datatype 336
OK button 776
OLE DWObject functions

Activate 335
Copy 416
DoVerb 464
UpdateLinksDialog 1194

OLE expressions and Any datatype 28
OLEControl functions

Activate 335
Clear 383
ClearAll 386
Copy 416
Cut 427
DoVerb 464
GetData 546
GetNativePointer 597
InsertClass 664
1238
InsertFile 669
InsertObject 683
LinkTo 735
Open 795
Paste 845
PasteLink 847
PasteSpecial 849
ReleaseAutomationPointer 928
Save 962
SaveAs 967, 968
SelectObject 999
SetAutomationLocale 1017
SetData 1027
UpdateLinksDialog 1194

OLECustomControl functions
GetData 546
GetNativePointer 597
ReleaseAutomationPointer 928
SetAutomationLocale 1017
SetData 1027

OLEObject functions
ConnectToNewRemoteObject 407
ConnectToObject 408
ConnectToRemoteObject 411
DisconnectObject 461
GetAutomationNativePointer 526
ReleaseAutomationPointer 927
SetAutomationPointer 1019
SetAutomationTimeout 1020

OLEStorage functions
Clear 383
ClearAll 386
Close 392
MemberDelete 773
MemberExists 774
MemberRename 775
Open 795
SaveAs 969, 970

OLEStream functions
Close 393
Length 722
Open 795
Read 915
Seek 983
Write 1205

OPEN Cursor statement 160
PowerBuilder Classic

Index
Open event 283, 945
Open function 795
OpenChannel function 810
OpenSheet function 812
OpenSheetWithParm 815
OpenTab function 818
OpenTabWithParm function 822
OpenUserObject function 827
OpenUserObjectWithParm function 831
OpenWithParm 835
operating system

information about 573
RightToLeft version 694, 695, 696, 697, 700,

701, 947
operators

about 69
arithmetic 70
assignment shortcuts 120, 122
concatenation 73
effect on datatypes 75
logical 72
precedence 74
relational 72

OR operator 72
Original window 816
Other event 287
OutgoingCallList function 840
oval

and SetFocus function 1044
printing 893

overflow on assignment 77
overlay 618, 1086
overloading functions 104
overriding functions 104

P
page

printing 895
printing borders 894, 896, 897
size 878

PageCreated function 843
PageDown event 288
PageLeft event 289
PageRight event 290
PowerScript Reference
PageUp event 291
paging functions

ScrollNextPage 977
ScrollPriorPage 979

paragraphs 1060
parameters

command line 402
opening sheets with 815
opening tab pages with 822
opening user objects with 819, 821, 828, 830, 831
opening windows with 835
specifying for DynamicDescriptionArea 1042

Parent pronoun 12
parent window

changing position relative to 786
obtaining 844
of open window 796, 797, 835

parentheses in expressions 74
ParentWindow function 844
parsing strings 860, 862
password 758
Paste function 845
PasteLink function 847
PasteSpecial function 849
pasting

embedding or linking 849
from clipboard 845, 847

path
of library file 723
OLE storage 797
returning 574
saving files 579

pattern matching 769
PBAddCookie function 850
PBDOTNET symbol 18
PBGetCookies function 851
PBGetMenuString function 852
PBL file

creating 723
deleting 724
listing contents of 725, 727

pbm_dwngraphcreate event 1081
PBNATIVE symbol 18
PBWEBFORM symbol 18
PBWEBSERVICE symbol 18
PBWINFORM symbol 18
1239

Index
PDB file 798
performance

and Yield function 1213
Any datatype 29
dynamic function and event calls 100

period in text patterns 769
Pi function 853
Picture functions

ClassName 381
Drag 465
Draw 468
Hide 638
Move 786
PointerX 856
PointerY 857
PostEvent 869
Print 875
SetFocus 1044
SetPicture 1062
SetPosition 1065
SetRedraw 1072
Show 1113
TriggerEvent 1181
TypeOf 1190

PictureListBox functions
AddItem 343
AddPicture 347
DeletePicture 450
DeletePictures 450
FindItem 508
InsertItem 672
SelectedItem 988
SelectItem 995
SetTop 1103
State 1134
Text 1158
Top 1166
TotalItems 1167
TotalSelected 1168

pictures
for TreeView items 1050
in listboxes 347
in rich text 684
in TreeView controls 347
ListView controls 346, 349, 350
overlay in lists 1058
1240
TreeView controls 350
PictureSelected event 292
pie graphs 551, 1031
PIF file 958
PipeEnd event 292
Pipeline functions

Cancel 368
Repair 930
Start 1124

PipeMeter event 293
PipeStart event 294
pixels 854, 1194
PixelsToUnits function 854
Play function 855
plus sign in text patterns 770
point size 886
pointer

determining distance from edge 856
distance from top 857
file 495, 496, 498, 500
read/write 983
returning object under 791
setting shape 1063

PointerX function 856
PointerY function 857
polymorphism for functions and events 98
PopMenu function 858
PopulateError function 859
pop-up windows

moving 786
obtaining parent 844
opening 797, 835

Pos function 860, 862
PosA function 862
position

changing 786
of insertion point 862
setting for control 1065

Position function 862
positive numbers 1117
Post function 868
PostEvent function 869
posting functions or events 96
PostURL function 871
PowerBuilder units 854, 1194
PowerBuilder, datatypes for external functions 62
PowerBuilder Classic

Index
PowerObject base class 29, 81
PowerObject functions

ClassName 381
GetContextService 539
GetParent 601

PowerObjectParm
and CloseWithReturn function 399
determining type 1192
opening sheets with parameters 816, 823, 826,

832, 834
PowerScript statements 120
precedence of numeric datatypes 75
precedence of operators 74
preprocessor symbols 18
presentation styles 1152
print cursor

getting coordinates of 908, 909
in print jobs 877

Print function 875
print functions

Print 875
PrintBitmap 881
PrintCancel 882
PrintClose 884
PrintDataWindow 885
PrintDefineFont 886
PrintOpen 892
PrintOval 893
PrintPage 895
PrintRect 896
PrintRoundRect 897
PrintScreen 899
PrintSend 900
PrintSetFont 902
PrintSetSpacing 903
PrintSetup 904
PrintText 905
PrintWidth 907
PrintX 908
PrintY 909

print job 892
PrintBitmap function 881
PrintCancel function 882
PrintClose function 884
PrintDataWindow function 885
PrintDefineFont function 886
PowerScript Reference
printer setup 900
Printer Setup dialog box 904
PrintEx function 888
PrintFooter event 294
PrintGetPrinter function 889
PrintGetPrinters function 890
PrintHeader event 295
PrintLine function 891
PrintOpen function

about 892
and message boxes 777

PrintOval function 893
PrintPage function 895
PrintRect function 896
PrintRoundRect function 897
PrintScreen function 899
PrintSend function 900
PrintSetFont function 902
PrintSetPrinter function 903
PrintSetSpacing function 903
PrintSetup function 904
PrintSetupPrinter function 905
PrintText function 905
PrintWidth function 907
PrintX function 908
PrintY function 909
private access

functions 60
variables and constants 43

PRIVATEREAD access modifier 43
PRIVATEWRITE access modifier 44
processor 573
profile files

reading 909, 911
writing to 1068

ProfileClass objects, RoutineList function 957
ProfileInt function 909
ProfileLine objects, OutgoingCallList function 840
ProfileRoutine objects

IncomingCallList function 651
LineList function 734
OutgoingCallList function 840

ProfileString function 911
Profiling functions

BuildModel 364
ClassList 380
1241

Index
DestroyModel 454
RoutineList 957
SetTraceFileName 1104
SystemRoutine 1155

ProgressIndex event 295
pronouns

about 11
instance variables 36
Parent 12
Super 14
This 13

properties
and GetFocus function 583
font, for printing 886
getting and setting 524
Message object 816
setting width and height 941
window 796, 798

property expressions, Any datatype 28
PropertyChanged event 296
PropertyRequestEdit event 297
protected access

functions 60
variables and constants 43

PROTECTEDREAD access modifier 43
PROTECTEDWRITE access modifier 44
public access

functions 60
variables and constants 43

Q
question mark

dynamic SQL 172, 174, 177
icon in message box 776
in text patterns 770

quoted strings, continuing 15
quotes

nesting 24
rules for 25
specifying 7
with tilde 24
1242
R
radians 852, 853
Rand function 913
random numbers

initializing generator 914
obtaining 913

Randomize function 914
RButtonDown event 298
RButtonUp event 300
Read function 915
read-only arguments 106
real datatype 23
Real function 918
recipient, mail 761
RecognizeText function 919
rectangle

and SetFocus function 1044
printing 896, 897

references
and CloseWithReturn function 400
passing arguments by 106
passing parameters 816, 823, 826, 832, 834, 836,

839
Registration database 665
RegistryDelete function 919
RegistryGet function 920
RegistryKeys function 922
RegistrySet function 923
RegistryValues function 925
relational operators 72
RelativeDate function 926
RelativeTime function 926
ReleaseAutomationNativePointer function 927
ReleaseNativePointer function 928
remainder 782
remote DDE application 944
remote procedure calls

declaring 65
defined 92

RemoteExec event 301, 534, 1133
RemoteHotLink event 301
RemoteHotLinkStart event 1133
RemoteHotLinkStop event 302, 1133
RemoteRequest event 302, 1029, 1133
RemoteSend event 303, 549, 1133
RemoveDirectory function 929
PowerBuilder Classic

Index
Rename event 303
Repair function 930
repairing pipeline, canceling 368
Replace function 931
ReplaceA function 933
ReplaceText function 934
ReplaceW function 935
report view for ListView 588
reserved words 10
Reset function 935
ResetArgElements function 938
ResetDataColors function 939
ResetInk function 940
ResetPicture function 940
Resize event 304
Resize function 941
ResolveInitialReferences function 942
RespondRemote function 944
response windows

closing 398
moving 786

Restart function 945
ResumeTransaction function 945
retry button 776
RETURN statement 140
return values

about 109
event return codes 184
from ancestor events 115
from mail session 757
TriggerEvent function 1181

Reverse function 947
RevertToSelf function 948
RGB function 949
rich text

alignment 524, 1015
and data 429
copying with formatting 418, 848
data 656, 657, 658, 659, 660
determining insertion point position 864
editing header and footer 1114
find again 516
finding text 503
formatting 601, 621, 626, 1060
line spacing 1090
preview 706
PowerScript Reference
preview document 706, 874
printing 880, 888
save file 972
selecting 1003
selecting a line 1006
selecting a word 1007
selecting all 1005
text color 625, 1093
text settings 1094

RichTextEdit functions
CanUndo 370
Clear 383
ClearAll 386
Copy 416
CopyRTF 418
Cut 427
DataSource 429
Find 503
FindNext 516
GetAlignment 524
GetParagraphSetting 601
GetSpacing 621
GetTextColor 625
GetTextStyle 626
InputFieldChangeData 656
InputFieldCurrentName 657
InputFieldDeleteCurrent 658
InputFieldGetData 659
InputFieldInsert 660
InputFieldLocate 660
InsertPicture 684
IsPreview 706
LineCount 732
LineLength 733
Paste 845
PasteRTF 848
Position 864
Preview 874
Print 880
PrintEx 888
ReplaceText 934
SaveDocument 972
Scroll 976
ScrollNextPage 977, 978
ScrollPriorPage 979
ScrollPriorRow 980
1243

Index
ScrollToRow 981
SelectedColumn 986
SelectedLength 988
SelectedLine 990
SelectedPage 991
SelectedStart 992
SelectedText 993
SelectText 1003
SelectTextAll 1005
SelectTextLine 1006
SelectTextWord 1007
SetAlignment 1015
SetParagraphSetting 1060
SetSpacing 1090
SetTextColor 1093
SetTextStyle 1094
ShowHeadFoot 1114
Undo 1193

Right function 951
RightA 951
RightClicked event 305
RightDoubleClicked event 307
RightToLeft operating system 947
RightToLeft software 694, 695, 696, 697, 700, 701
RightTrim function 952, 953
RightW function 952
ROLLBACK statement 160
RollbackOnly function 953
RollbackTransaction function 955
Round function 956
RoutineList function 957
rows

correcting pipeline data 930
determining insertion point position 863
scrolling 977, 978, 980, 981

rows, database
deleting 155, 156
fetching 158
inserting 159
updating 164
updating cursored row 166

RPC see remote procedure calls
Run function 958
1244
S
Save As dialog box 966
Save event 309
Save File response window 579
Save function 962
Save function (InkPicture controls) 960
SaveDocument function 972
SaveInk function 974
SaveObject event 310
scatter graphs

adding values to series 341
changing data point values 784
importing data 642, 645, 647, 649
inserting data from strings 650
obtaining data point values 544

scope operator 112
screen

changing position relative to 786
display 573
distance to workspace 1203, 1204
printing 899

scripts
stopping execution 945
terminating 140
triggering events 1181

Scroll function 976
ScrollHorizontal event 777
scrolling

ListBox 1103
TreeView 1043

scrolling functions
Scroll 976
ScrollNextPage 977
ScrollNextRow 978
ScrollPriorPage 979
ScrollPriorRow 980
ScrollToRow 981
Top 1166

ScrollNextPage function 977
ScrollNextRow function 978
ScrollPriorPage function 979
ScrollPriorRow function 980
ScrollToRow function 981
ScrollVertical event 777
searching, rich text 503, 516
Second function 982
PowerBuilder Classic

Index
SecondsAfter function 982
Seek function 983, 985
SeekType enumerated datatype 983
SELECT statement 161
SELECTBLOB statement 162
Selected event 311, 1055
SelectedColumn function 986
SelectedIndex function 987
SelectedItem function 988
SelectedLength function 988
SelectedLine function 990
SelectedPage function 991
SelectedStart function 992
SelectedText function 993
selection, clearing in list 996
SelectionChanged event 312
SelectionChanging event 315
SelectionRange function 994
SelectItem function 995
SelectObject function 999
SelectText function

about 1001
copying to clipboard 417

SelectTextAll function 1005
SelectTextLine function 1006
SelectTextWord function 1007
Send function 1009
sender 759
SendMessage function 1009
series, graphs

adding to 348
adding values to 339, 359
clicked 791
counting 1011
data points 428, 445, 544, 560, 782, 939
deleting 451, 936
finding number of 517
importing 642, 645, 649
inserting 685
inserting data 665
obtaining name 1012
reporting appearance of 612
setting style 1080

SeriesCount function 1011
SeriesName function 1012
server application
PowerScript Reference
activating 336, 999
closing DDE channel 398
connecting to 407, 408, 409, 411
DDE support 811
pasting and linking 847
providing data 606
sending data to 1073
sending to DDE client 1029
stopping 1139

SetAbort function 1013
SetAlignment function 1015
SetArgElement function 1016
SetAutomationPointer function 1019
SetAutomationTimeout function 1020
SetBoldDate function 1021
SetByte function 1023
SetComplete function 1025
SetData function 1027
SetDataDDE function 1029
SetDataPieExplode function 1031
SetDataStyle function 1033
SetDataTransparency function 1039
SetDateLimits function 1040
SetDropHighlight function 1041
SetDynamicParm function 1042
SetFirstVisible function 1043
SetFocus function 1044
SetGlobalProperty function 1045
SetItem function 1046
SetLevelPictures function 1050
SetLibraryList function 1051
SetMask function 1052
SetMicroHelp function 1055
SetNewMobiLinkPassword function 1056
SetNull function 1057
SetOverlayPicture function 1058
SetParm function 1061
SetPicture function 1062
SetPointer function 1063, 1065
SetPosition function 1065
SetProfileString function 1068
SetRange function 1070
SetRecordSet function 1070
SetRedraw function 1072
SetRemote function 1073
SetResultSet function 1076
1245

Index
SetSelectedDate function 1077
SetSelectedRange function 1078
SetSeriesStyle function 1080
SetSeriesTransparency function 1088
SetState function 1091
SetSyncRegistryProperties function 1092
SetTimeout function 1095
SetToday function 1096
SetToolbar function 1097
SetTop function 1103
SetTraceFileName function 1104
SetTransPool function 1105
setup printer 900
SetValue function 1106
shade

data points 553, 1033
series 613, 1080

shapes
mouse pointer 1063
printing 894, 896, 897

shared objects
about 1110
SharedObjectDirectory function 1107
SharedObjectGet function 1108
SharedObjectRegister function 1111
SharedObjectUnregister function 1112

shared variables
about 34
initialized 41

SharedObjectDirectory function 1107
SharedObjectGet function 1108
SharedObjectRegister function 1111
SharedObjectUnregister function 1112
sharing data 429
sheets

arranging 353
getting active 523
getting first open 581
getting next open 598
obtaining parent 844
opening 797, 812, 815
toolbars 627, 629, 1097, 1099

Show event 317
Show function 1113
ShowHeadFoot function 1114
ShowHelp function 1115
1246
ShowPopupHelp function 1116
Sign function 1117
SignalError function 1117
signing on to database during compile, preventing 148
Sin function 1119
sine 1119
SingleLineEdit functions

CanUndo 370
Clear 383
ClearAll 386
Copy 416
Cut 427
Move 786
Paste 845
Position 863
ReplaceText 934
SelectedLength 988
SelectedStart 992
SelectedText 993
SelectText 1001
Undo 1193

size
changing 941
of screen 573
of string or blob 719, 721

Sleep function 1119
SNC, declaring procedure 170, 176, 181
solid fill pattern 1037, 1085
Sort event 318
Sort function 1120
sort order

and GetCalc function 636
when inserting items into lists 671

SortAll function 1122
sounds (beep) 357
source database 1124
Space function 1123
spaces

deleting leading 718, 719
deleting trailing 952, 953
inserting in a string 1123
removing from strings 1185, 1186

special ASCII characters in strings 6
SQL Native Client, declaring procedure 170
SQL statements

about 146
PowerBuilder Classic

Index
CLOSE Cursor 149
CLOSE Procedure 150
COMMIT 151
CONNECT 152
continuing 15
DECLARE Procedure 153
DISCONNECT 156
error handling 147
EXECUTE 157, 1042
FETCH 158
in pipeline execution 1125
INSERT 159
OPEN 1042
OPEN Cursor 160
painting 148
ROLLBACK 160
SELECT 161
SELECTBLOB 162
UPDATE 164
UPDATE Where Current of Cursor 166
UPDATEBLOB 165

SQLCode property 147
SQLDBCode property 147
SQLErrText property 147
SQLPreview event 320
Sqrt function 1123
square fill pattern 1037, 1085
square root 1123
Start event 322
Start function

about 1124
canceling pipeline 368
server application 408, 411

StartHotLink function 1131
StartServerDDE function 1133
state

of listbox items 1134
setting highlighted 1091

State function 1134
statements, PowerScript

assignment 120
CALL 123
CHOOSE CASE 124
CONTINUE 126
CREATE 127
DESTROY 130
PowerScript Reference
DO...LOOP 131
EXIT 133
FOR...NEXT 134
GOTO 136
HALT 137
IF...THEN 138
listed 119
RETURN 140
separating 16

static calls 98
StaticText control, inserting clipboard 387
stgShareMode enumerated datatype 802, 805
Stop function 1136
stop sign icon 776
StopHotLink function 1138
StopServerDDE function 1139
storages, OLE

file 967
releasing 392
saving 962

stored procedures
closing 150
declaring 148, 153
executing 157

stored procedures, declaring 65
streams, OLE

checking 774
deleting 773
renaming 775

string datatype 23
String function 1139
string functions

Asc 354, 355
Char 376
CharA 377
Fill 502
FillW 502, 503
Left 716, 717
LeftTrim 718, 719
LeftW 716, 717
Len 719, 721
Lower 750
Match 769
Mid 778
MidW 778
Pos 860, 862
1247

Index
Replace 931, 935
Right 951
RightTrim 952, 953
RightW 952
Space 1123
Trim 1185, 1186
Upper 1196

StringParm property 816, 823, 826, 832, 834
strings

char arrays 78
comparing 72
concatenating 73
continuing 15
converting 355, 359, 367, 432, 442, 463, 742, 744,

918
converting to char 78
deleting leading spaces 718, 719
detecting contents 700, 705, 708
determining width for printing 907
extracting 376, 377, 778
finding substrings 860, 862
getting dynamic 571
importing data from 649
lowercase 750
nested 24
uppercase 1196
writing to stream 1205

StringToObject function 1145
Stroke event 323
structure objects

exporting as syntax 729
listing 725
recreating from syntax 730

structures
about 79
assignment 86
autoinstantiated user objects 85
for return values 399
mailRecipient 762
passing as arguments 107
passing to external functions 64
passing values as 836, 839

substorages, OLE
checking 774
deleting 773
renaming 775
1248
saving 967
substrings

extracting 778
finding 860, 862
replacing 931, 935

subtraction operator
list of arithmetic operators 70
surrounded by spaces 17, 70

summary, moving objects to 1067
Super pronoun 14
SuspendTransaction function 1149
symbol types, graphs

data points 555, 1036
series 1084

Synchronize function 1150
syntax

exporting object as 729
recreating objects from 730

SyntaxFromSQL function 1152
system

date 1165
events 183, 868
events, defined 92
functions 112
object classes 81
object datatypes 29
object hierarchy 29
registry 919, 920, 922, 923, 925
time 790

system and environment functions
Clipboard 387
CommandParm 402
DebugBreak 441
FindClassDefinition 506
FindFunctionDefinition 507
FindTypeDefinition 518
GarbageCollect 521
GarbageCollectGetTimeLimit 521
GarbageCollectSetTimeLimit 522
GetApplication 524
GetEnvironment 573
Handle 636
PopulateError 859
Post 868
ProfileInt 909
ProfileString 911
PowerBuilder Classic

Index
Restart 945
Run 958
Send 1009
SetProfileString 1068
ShowHelp 1115
SignalError 1117
Yield 1213

SystemError event 324
SystemKey event 325
SYSTEMREAD modifier 44
SystemRoutine function 1155
SYSTEMWRITE modifier 44

T
tab character, specifying 7
Tab functions

CloseTab 396
MoveTab 787
SelectTab 1000
TabPostEvent 1156
TabTriggerEvent 1157

tab pages
changing order 787
CreatePage function 426
opening user objects 818, 822
PageCreated function 843
selecting 1000

tables, database, transferring data between databases
1124

Tabular presentation style 1152
Tag property

and GetFocus function 583
storing MicroHelp text 1055

Tan function 1158
tangent 1158
target database for pipeline 1124
temporary files 759
terminator for string 362
text

deleting from edit controls 383, 386
finding in RichTextEdit 503, 516
finding substrings 860, 862
importing data from string 649
line spacing when printing 877
PowerScript Reference
metacharacters 769
MicroHelp 1055
obtaining current line 1158, 1159
of listbox item 988
of message box 776
on clipboard 387, 417, 427
pasting over 845
printing 877, 905
replacing 934
restoring 1193
save rich text as ASCII 972
selecting 988, 993, 1001
setting color of 949

text file
importing data from 645
saving to 964

Text function 1158
Text property 583
TextLine function 1159
This pronoun 13
tilde

in strings 24
rules for 25
specifying 7

time
checking string 708
converting to datatype 1160
CPU 420
DateTime datatype 435
getting dynamic 568, 572
minutes 781
now 790
relative 926
seconds 982

time datatype 25
Time function 1160
Timer event 326
Timer function 1163
timers, triggering event 1163
timing functions

CPU 420
Idle 640
Timer 1163

timing object
deactivating 1137
starting 1127
1249

Index
stopping 1137
title of message box 776
ToAnsi function 1164
Today function 1165
ToolbarMoved event 328
toolbars 627, 629, 1097, 1099
top

bringing object to 1113
determining distance from 857
moving listbox item to 1103
moving objects to 1067

Top function 1166
topics

calling Help 1115
ending server application 1139
starting server application 1133

TotalColumns function 1167
TotalItems function 1167
TotalSelected function 1168
ToUnicode 1169
ToUnicode function 1169
Trace file functions, Open 795
TraceBegin function 1169
TraceClose function 1171
TraceDisableActivity function 1172
TraceEnableActivity function 1174
TraceEnd function 1176
TraceError function 1177
TraceFile objects

Close function 394
NextActivity function 789
Reset function 937

TraceOpen function 1178
TraceTree objects

BuildModel function 364
DestroyModel function 454
EntryList function 473
SetTraceFileName function 1104

TraceTreeGarbageCollect objects, GetChildrenList function
531

TraceTreeObject objects, GetChildrenList function 531
TraceTreeRoutine objects, GetChildrenList function 531
TraceUser function 1180
tracing functions

TraceBegin 1169
TraceClose 1171
1250
TraceDisableActivity 1172
TraceEnableActivity 1174
TraceEnd 1176
TraceError 1177
TraceOpen 1178
TraceUser 1180

trailer, moving objects to 1067
Transaction object functions

DBHandle 441
SyntaxFromSQL 1152

Transaction objects, creating 127
transparent line style, graphs

setting for data points 1035
setting for series 1083

TreeView functions
AddPicture 347
CollapseItem 401
DeleteItem 447
DeletePicture 450
DeletePictures 450
DeleteStatePicture 453
DeleteStatePictures 453
EditLabel 470
ExpandAll 478
ExpandItem 478
FindItem 512
GetItem 589
InsertItem 674, 675
InsertItemFirst 676
InsertItemLast 678
InsertItemSort 681
SelectItem 998
SetDropHighlight 1041
SetFirstVisible 1043
SetItem 1049
SetLevelPictures 1050
SetOverlayPicture 1058
Sort 1120
SortAll 1122

TrigEvent enumerated datatype 869
TriggerEvent function 1181
triggering

events 184
functions or events 96

TriggerPBEvent function 1183
Trim function 1185, 1186
PowerBuilder Classic

Index
Truncate function 1186
TrustVerify function 1187
TypeOf function 1190
typographical conventions xxv

U
Uncheck function 1192
Undo function 1193
Undo, testing 370
Unicode, string conversion 520, 1164, 1169
Uniform Data Transfer 546, 1027
units

converting from pixels 854
converting to pixels 1194
distance from edge 856

UnitsToPixels function 1194
unread messages 754
unsigned integer datatype 26
unsigned long datatype 26
UNTIL, in DO...LOOP statement 131
UPDATE statement 164
UPDATE Where Current of Cursor statement 166
UPDATEBLOB statement 165
UploadAck event 329
Upper function 1196
UpperBound function 1196
uppercase 1196
user events

defined 92
pbm_dwngraphcreate 1081

user ID 757
user name 762
user objects

about 81
autoinstantiated 85
closing 397
closing tab page 396
creating 127
creating dynamically 128
exporting as syntax 729
listing 725
opening 818, 819, 821, 827, 828, 830, 831
pipeline 1124
re-creating from syntax 730
PowerScript Reference
tab pages 818, 822
used like structures 85

user-defined events 183, 185
UserString event 330

V
value, passing arguments by 106
ValueChanged event 331
values

adding to lists 341
checking for NULL 704
data points 560
deleting from list 446
detecting numeric 705
inserting into lists 670

variables
access levels 43
assigning literals 22, 23, 24, 26
assigning values 40
checking for NULL 704
datatype 39
declaring 33
declaring initial values 40
default values 40
determining datatype of 381
extracting data from a blob 362
host 146
indicator 146
initializing with expression 41
inserting data into a blob 361
names 39
OLEObject 409
referencing in SQL 146
search order 35
setting to NULL 8, 1057
validating 711
where to declare 34

variable-size arrays, memory allocation 53, 1196
vertical fill pattern 1037, 1085
video monitor 573
ViewChange event 331
Visible property

and SetRedraw function 1072
displaying pop-up menus 858
1251

Index
setting 1113
visual user objects 81

W
WaitForUploadAck event 332
warm link 474, 607, 810, 1074
WarningMessage event 332
week, day of 438, 439
Which function 1198
WHILE, in DO...LOOP statement 131
white space 17
width

data point's line 1035
series line 1083
setting 941
string 907
workspace 1202

Window ActiveX controls
GetArgElement function 525
GetLastReturn function 591
InvokePBFunction function 690
ResetArgElements function 938
SetArgElement function 1016
TriggerPBEvent function 1183

Window functions
ArrangeSheets 353
ChangeMenu 375
ClassName 381
CloseUserObject 397
Draw 468
GetActiveSheet 523
GetFirstSheet 581
GetNextSheet 598
Hide 638
Move 786
Open 795
OpenSheet 812
OpenSheetWith Parm 815
OpenTab 818
OpenUserObject 827
OpenWith Parm 835
ParentWindow 844
PointerX 856
PointerY 857
1252
PostEvent 869
print 875
Resize 941
SetFocus 1044
SetMicroHelp 1055
SetPosition 1065
SetRedraw 1072
Show 1113
TriggerEvent 1181
TypeOf 1190
WorkSpaceHeight 1200
WorkSpaceWidth 1202
WorkSpaceX 1203
WorkSpaceY 1204

Window objects
closing user objects 397
exporting as syntax 729
listing 725, 727
recreating from syntax 730

Window painter 828, 829
windows

adding user objects 818, 827, 831
arranging 353, 812
changing menus 375
closing 390
custom frames 1203, 1204
datatype of 795
DDE conversation handle 1133
getting active 523
obtaining handle 636
obtaining workspace height 1200
obtaining workspace width 1202
opening 795, 835
posting messages 868
setting position of 1065

WordCap function 1200
WordParm field

and TriggerEvent function 1181
posting events 869

workspace
distance to screen 1203, 1204
obtaining height of 1200
obtaining width 1202

WorkSpaceHeight function 1200
WorkSpaceWidth function 1202
WorkSpaceX function 1203
PowerBuilder Classic

Index
WorkSpaceY function 1204
Write function 1205
Writes 1205

X
x value

data point 544, 560, 619, 784, 1039, 1088
importing data 642, 645, 647, 649
inserting from strings 650

XMLParseFile function 1206
XMLParseString function 1209
xValue enumerated datatype 544, 560, 619, 1039,

1088

Y
y value

data point 544, 560, 619, 784, 1039, 1088
importing data 642, 645, 647, 649
inserting from strings 650

Year function 1212
year, about 434
Yield function 1213
yValue enumerated datatype 544, 560, 619, 1039,

1088

Z
zero, determining 1117
PowerScript Reference
 1253

Index
1254
 PowerBuilder Classic

	PowerScript Reference
	About This Book
	PART 1 PowerScript Topics
	CHAPTER 1 Language Basics
	Comments
	Identifier names
	Labels
	Special ASCII characters
	NULL values
	Reserved words
	Pronouns
	Parent pronoun
	This pronoun
	Super pronoun

	Statement continuation
	Statement separation
	White space
	Conditional compilation

	CHAPTER 2 Datatypes
	Standard datatypes
	The Any datatype
	System object datatypes
	Enumerated datatypes
	PowerBuilder datatypes in EAServer

	CHAPTER 3 Declarations
	Declaring variables
	Where to declare variables
	About using variables
	Syntax of a variable declaration
	Datatype of a variable
	Variable names
	Initial values for variables
	Access for instance variables
	Another format for access-right keywords

	Declaring constants
	Declaring arrays
	Values for array elements
	Size of variable-size arrays
	More about arrays
	Assigning one array to another
	Using arraylists to assign values to an array
	Errors that occur when addressing arrays

	Declaring external functions
	Datatypes for external function arguments
	Calling external functions
	Defining source for external functions

	Declaring DBMS stored procedures as remote procedure calls

	CHAPTER 4 Operators and Expressions
	Operators in PowerBuilder
	Arithmetic operators in PowerBuilder
	Relational operators in PowerBuilder
	Concatenation operator in PowerBuilder

	Operator precedence in PowerBuilder expressions
	Datatype of PowerBuilder expressions
	Numeric datatypes in PowerBuilder
	Datatype promotion when evaluating numeric expressions
	Assignment and datatypes

	String and char datatypes in PowerBuilder

	CHAPTER 5 Structures and Objects
	About structures
	About objects
	About user objects
	Instantiating objects
	Using ancestors and descendants
	Garbage collection
	User objects that behave like structures

	Assignment for objects and structures
	Assignment for structures
	Assignment for objects
	Assignment for autoinstantiated user objects

	CHAPTER 6 Calling Functions and Events
	About functions and events
	Finding and executing functions and events
	Finding functions
	Finding events

	Triggering versus posting functions and events
	Static versus dynamic calls
	Static calls
	Dynamic calls
	Errors when calling functions and events dynamically

	Overloading, overriding, and extending functions and events
	Overloading and overriding functions
	Type promotion when matching arguments for overloaded functions

	Extending and overriding events

	Passing arguments to functions and events
	Passing objects
	Passing structures
	Passing arrays

	Using return values
	Functions
	Events
	Using cascaded calling and return values

	Syntax for calling PowerBuilder functions and events
	Calling functions and events in an object’s ancestor

	PART 2 Statements, Events, and Functions
	CHAPTER 7 PowerScript Statements
	Assignment
	CALL
	CHOOSE CASE
	CONTINUE
	CREATE
	DESTROY
	DO...LOOP
	EXIT
	FOR...NEXT
	GOTO
	HALT
	IF...THEN
	RETURN
	THROW
	THROWS
	TRY...CATCH...FINALLY...END TRY

	CHAPTER 8 SQL Statements
	Using SQL in scripts
	CLOSE Cursor
	CLOSE Procedure
	COMMIT
	CONNECT
	DECLARE Cursor
	DECLARE Procedure
	DELETE
	DELETE Where Current of Cursor
	DISCONNECT
	EXECUTE
	FETCH
	INSERT
	OPEN Cursor
	ROLLBACK
	SELECT
	SELECTBLOB
	UPDATE
	UPDATEBLOB
	UPDATE Where Current of Cursor
	Using dynamic SQL
	Dynamic SQL Format 1
	Dynamic SQL Format 2
	Dynamic SQL Format 3
	Dynamic SQL Format 4

	CHAPTER 9 PowerScript Events
	About events
	Activate
	BeginDownload
	BeginDrag
	BeginLabelEdit
	BeginLogScan
	BeginRightDrag
	BeginSync
	BeginUpload
	Clicked
	Close
	CloseQuery
	CloseUp
	ColumnClick
	ConnectMobiLink
	Constructor
	DataChange
	DateChanged
	DateSelected
	DBError
	DBNotification
	Deactivate
	DeleteAllItems
	DeleteItem
	Destructor
	DisconnectMobiLink
	DisplayMessage
	DoubleClicked
	DragDrop
	DragEnter
	DragLeave
	DragWithin
	DropDown
	EndDownload
	EndLabelEdit
	EndLogScan
	EndSync
	EndUpload
	Error
	ErrorMessage
	ExternalException
	FileExists
	FileMessage
	Gesture
	GetFocus
	Help
	Hide
	HotLinkAlarm
	Idle
	InputFieldSelected
	InsertItem
	ItemActivate
	ItemChanged
	ItemChanging
	ItemCollapsed
	ItemCollapsing
	ItemExpanded
	ItemExpanding
	ItemPopulate
	Key
	LineDown
	LineLeft
	LineRight
	LineUp
	LoseFocus
	Modified
	MouseDown
	MouseMove
	MouseUp
	Moved
	Notify
	Open
	Other
	PageDown
	PageLeft
	PageRight
	PageUp
	PictureSelected
	PipeEnd
	PipeMeter
	PipeStart
	PrintFooter
	PrintHeader
	ProgressIndex
	PropertyChanged
	PropertyRequestEdit
	RButtonDown
	RButtonUp
	RecognitionResult
	RemoteExec
	RemoteHotLinkStart
	RemoteHotLinkStop
	RemoteRequest
	RemoteSend
	Rename
	Resize
	RightClicked
	RightDoubleClicked
	Save
	SaveObject
	Selected
	SelectionChanged
	SelectionChanging
	Show
	Sort
	SQLPreview
	Start
	Stop
	Stroke
	SyncPreview
	SystemError
	SystemKey
	Timer
	ToolbarMoved
	UploadAck
	UserString
	ValueChanged
	ViewChange
	WaitForUploadAck
	WarningMessage

	CHAPTER 10 PowerScript Functions
	Abs
	ACos
	Activate
	AddCategory
	AddColumn
	AddData
	AddItem
	AddLargePicture
	AddPicture
	AddSeries
	AddSmallPicture
	AddStatePicture
	AddToLibraryList
	Arrange
	ArrangeSheets
	Asc
	AscA
	ASin
	ATan
	Beep
	BeginTransaction
	Blob
	BlobEdit
	BlobMid
	BuildModel
	Byte
	Cancel
	CancelSync
	CanUndo
	CategoryCount
	CategoryName
	Ceiling
	ChangeDirectory
	ChangeMenu
	Char
	CharA
	Check
	ChooseColor
	ClassList
	ClassName
	Clear
	ClearAll
	ClearBoldDates
	Clipboard
	Close
	CloseChannel
	CloseTab
	CloseUserObject
	CloseWithReturn
	CollapseItem
	CommandParm
	CommitTransaction
	ConnectToNewObject
	ConnectToNewRemoteObject
	ConnectToObject
	ConnectToRemoteObject
	ConnectToServer
	Copy
	CopyRTF
	Cos
	Cpu
	CreateDirectory
	CreateInstance
	CreatePage
	Cut
	DataCount
	DataSource
	Date
	DateTime
	Day
	DayName
	DayNumber
	DaysAfter
	DBHandle
	DebugBreak
	Dec
	DeleteCategory
	DeleteColumn
	DeleteColumns
	DeleteData
	DeleteItem
	DeleteItems
	DeleteLargePicture
	DeleteLargePictures
	DeletePicture
	DeletePictures
	DeleteSeries
	DeleteSmallPicture
	DeleteSmallPictures
	DeleteStatePicture
	DeleteStatePictures
	DestroyModel
	DirectoryExists
	DirList
	DirSelect
	Disable
	DisableCommit
	DisconnectObject
	DisconnectServer
	Double
	DoVerb
	Drag
	DraggedObject
	Draw
	EditLabel
	Enable
	EnableCommit
	EntryList
	ExecRemote
	Exp
	ExpandAll
	ExpandItem
	Fact
	FileClose
	FileCopy
	FileDelete
	FileEncoding
	FileExists
	FileLength
	FileLength64
	FileMove
	FileOpen
	FileRead
	FileReadEx
	FileSeek
	FileSeek64
	FileWrite
	FileWriteEx
	Fill
	FillA
	FillW
	Find
	FindCategory
	FindClassDefinition
	FindFunctionDefinition
	FindItem
	FindMatchingFunction
	FindNext
	FindSeries
	FindTypeDefinition
	FromAnsi
	FromUnicode
	GarbageCollect
	GarbageCollectGetTimeLimit
	GarbageCollectSetTimeLimit
	GetActiveSheet
	GetAlignment
	GetApplication
	GetArgElement
	GetAutomationNativePointer
	GetByte
	GetByteArray
	GetCertificateLabel
	GetChildrenList
	GetColumn
	GetCommandDDE
	GetCommandDDEOrigin
	GetCommandString
	GetCompanyName
	GetContextKeywords
	GetContextService
	GetCredentialAttribute
	GetCurrentDirectory
	GetData
	GetDataDDE
	GetDataDDEOrigin
	GetDataLabelling
	GetDataPieExplode
	GetDataStyle
	GetDataTransparency
	GetDataValue
	GetDateLimits
	GetDbmlsyncPath
	GetDisplayRange
	GetDynamicDate
	GetDynamicDateTime
	GetDynamicDecimal
	GetDynamicNumber
	GetDynamicString
	GetDynamicTime
	GetEnvironment
	GetFileOpenName
	GetFileSaveName
	GetFirstSheet
	GetFixesVersion
	GetFocus
	GetFolder
	GetGlobalProperty
	GetHostObject
	GetItem
	GetItemAtPointer
	GetLastReturn
	GetLibraryList
	GetMajorVersion
	GetMessage
	GetMinorVersion
	GetName
	GetNativePointer
	GetNextSheet
	GetObjectRevisionFromRegistry
	GetOrigin
	GetParagraphSetting
	GetParent
	GetPin
	GetRecordSet
	GetRemote
	GetSelectedDate
	GetSelectedRange
	GetSeriesLabelling
	GetSeriesStyle
	GetSeriesTransparency
	GetShortName
	GetSpacing
	GetStatus
	GetSyncRegistryProperties
	GetText
	GetTextColor
	GetTextStyle
	GetToday
	GetToolbar
	GetToolbarPos
	GetTransactionName
	GetURL
	GetValue
	GetVersionName
	Handle
	Hide
	Hour
	HyperLinkToURL
	Idle
	ImpersonateClient
	ImportClipboard
	ImportFile
	ImportString
	IncomingCallList
	Init
	InputFieldChangeData
	InputFieldCurrentName
	InputFieldDeleteCurrent
	InputFieldGetData
	InputFieldInsert
	InputFieldLocate
	InsertCategory
	InsertClass
	InsertColumn
	InsertData
	InsertDocument
	InsertFile
	InsertItem
	InsertItemFirst
	InsertItemLast
	InsertItemSort
	InsertObject
	InsertPicture
	InsertSeries
	Int
	Integer
	InternetData
	IntHigh
	IntLow
	InvokePBFunction
	_Is_A
	IsAlive
	IsAllArabic
	IsAllHebrew
	IsAnyArabic
	IsAnyHebrew
	IsArabic
	IsArabicAndNumbers
	IsCallerInRole
	IsDate
	IsHebrew
	IsHebrewAndNumbers
	IsImpersonating
	IsInTransaction
	IsNull
	IsNumber
	IsPreview
	IsSecurityEnabled
	IsTime
	IsTransactionAborted
	IsValid
	KeyDown
	LastPos
	Left
	LeftA
	LeftW
	LeftTrim
	LeftTrimW
	Len
	LenA
	LenW
	Length
	LibraryCreate
	LibraryDelete
	LibraryDirectory
	LibraryDirectoryEx
	LibraryExport
	LibraryImport
	LineCount
	LineLength
	LineList
	LinkTo
	LoadInk
	LoadPicture
	Log
	LogTen
	Long
	LongLong
	Lookup
	Lower
	LowerBound
	mailAddress
	mailDeleteMessage
	mailGetMessages
	mailHandle
	mailLogoff
	mailLogon
	mailReadMessage
	mailRecipientDetails
	mailResolveRecipient
	mailSaveMessage
	mailSend
	Match
	MatchW
	Max
	MemberDelete
	MemberExists
	MemberRename
	MessageBox
	Mid
	MidA
	MidW
	Min
	Minute
	Mod
	ModifyData
	Month
	Move
	MoveTab
	_Narrow
	NextActivity
	Now
	ObjectAtPointer
	Object_To_String
	OffsetPos
	Open
	OpenChannel
	OpenSheet
	OpenSheetWithParm
	OpenTab
	OpenTabWithParm
	OpenUserObject
	OpenUserObjectWithParm
	OpenWithParm
	OutgoingCallList
	PageCount
	PageCreated
	ParentWindow
	Paste
	PasteLink
	PasteRTF
	PasteSpecial
	PBAddCookie
	PBGetCookies
	PBGetMenuString
	Pi
	PixelsToUnits
	Play
	PointerX
	PointerY
	PopMenu
	PopulateError
	Pos
	PosA
	PosW
	Position
	Post
	PostEvent
	PostURL
	Preview
	Print
	PrintBitmap
	PrintCancel
	PrintClose
	PrintDataWindow
	PrintDefineFont
	PrintEx
	PrintGetPrinter
	PrintGetPrinters
	PrintLine
	PrintOpen
	PrintOval
	PrintPage
	PrintRect
	PrintRoundRect
	PrintScreen
	PrintSend
	PrintSetFont
	PrintSetPrinter
	PrintSetSpacing
	PrintSetup
	PrintSetupPrinter
	PrintText
	PrintWidth
	PrintX
	PrintY
	ProfileInt
	ProfileString
	Rand
	Randomize
	Read
	Real
	RecognizeText
	RegistryDelete
	RegistryGet
	RegistryKeys
	RegistrySet
	RegistryValues
	RelativeDate
	RelativeTime
	ReleaseAutomationNativePointer
	ReleaseNativePointer
	RemoveDirectory
	Repair
	Replace
	ReplaceA
	ReplaceText
	ReplaceW
	Reset
	ResetArgElements
	ResetDataColors
	ResetInk
	ResetPicture
	Resize
	Resolve_Initial_References
	RespondRemote
	Restart
	ResumeTransaction
	Reverse
	RevertToSelf
	RGB
	Right
	RightA
	RightW
	RightTrim
	RightTrimW
	RollbackOnly
	RollbackTransaction
	Round
	RoutineList
	Run
	Save
	SaveAs
	SaveDocument
	SaveInk
	Scroll
	ScrollNextPage
	ScrollNextRow
	ScrollPriorPage
	ScrollPriorRow
	ScrollToRow
	Second
	SecondsAfter
	Seek
	SelectedColumn
	SelectedIndex
	SelectedItem
	SelectedLength
	SelectedLine
	SelectedPage
	SelectedStart
	SelectedText
	SelectionRange
	SelectItem
	SelectObject
	SelectTab
	SelectText
	SelectTextAll
	SelectTextLine
	SelectTextWord
	Send
	SeriesCount
	SeriesName
	SetAbort
	SetAlignment
	SetArgElement
	SetAutomationLocale
	SetAutomationPointer
	SetAutomationTimeout
	SetBoldDate
	SetByte
	SetColumn
	SetComplete
	SetData
	SetDataDDE
	SetDataLabelling
	SetDataPieExplode
	SetDataStyle
	SetDataTransparency
	SetDateLimits
	SetDropHighlight
	SetDynamicParm
	SetFirstVisible
	SetFocus
	SetGlobalProperty
	SetItem
	SetLevelPictures
	SetLibraryList
	SetMask
	SetMessage
	SetMicroHelp
	SetNewMobiLinkPassword
	SetNull
	SetOverlayPicture
	SetParagraphSetting
	SetParm
	SetPicture
	SetPointer
	SetPosition
	SetProfileString
	SetRange
	SetRecordSet
	SetRedraw
	SetRemote
	SetResultSet
	SetSelectedDate
	SetSelectedRange
	SetSeriesLabelling
	SetSeriesStyle
	SetSeriesTransparency
	SetSpacing
	SetState
	SetSyncRegistryProperties
	SetTextColor
	SetTextStyle
	SetTimeout
	SetToday
	SetToolbar
	SetToolbarPos
	SetTop
	SetTraceFileName
	SetTransPool
	SetValue
	SharedObjectDirectory
	SharedObjectGet
	SharedObjectRegister
	SharedObjectUnregister
	Show
	ShowHeadFoot
	ShowHelp
	ShowPopupHelp
	Sign
	SignalError
	Sin
	Sleep
	Sort
	SortAll
	Space
	Sqrt
	Start
	StartHotLink
	StartServerDDE
	State
	StepIt
	Stop
	StopHotLink
	StopServerDDE
	String
	String_To_Object
	SuspendTransaction
	Synchronize
	SyntaxFromSQL
	SystemRoutine
	TabPostEvent
	TabTriggerEvent
	Tan
	Text
	TextLine
	Time
	Timer
	ToAnsi
	Today
	Top
	TotalColumns
	TotalItems
	TotalSelected
	ToUnicode
	TraceBegin
	TraceClose
	TraceDisableActivity
	TraceEnableActivity
	TraceEnd
	TraceError
	TraceOpen
	TraceUser
	TriggerEvent
	TriggerPBEvent
	Trim
	TrimW
	Truncate
	TrustVerify
	TypeOf
	Uncheck
	Undo
	UnitsToPixels
	UpdateLinksDialog
	Upper
	UpperBound
	Which
	WordCap
	WorkSpaceHeight
	WorkSpaceWidth
	WorkSpaceX
	WorkSpaceY
	Write
	XMLParseFile
	XMLParseString
	Year
	Yield

	Index

