
Heterogeneous Replication Guide

Replication Server® 15.7.1

DOCUMENT ID: DC36924-01-1571-01
LAST REVISED: April 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Conventions ...1
Replication System Overview ...5

Basic Replication System ...5
Heterogeneous Replication System6
Sybase Replication System Components7

Primary Data Server ..8
Replication Agent ...8
Replication Server ...9
Replication Server System Database (RSSD)10
Database Gateway ..12
ExpressConnect for Oracle12
Replicate Data Server ..12

Non-ASE Replication ...13
Primary Database ...13
Replicate Database ...14
Character Sets ...15

Heterogeneous Replication Limitations15
Stored Procedure Replication15
Owner-Qualified Object Names15
Large Object Replication16
Setup for Replicate Databases17
Replication Server Support for Encrypted

Columns ..17
Subscription Materialization18
Replication Server rs_dump Command18
Replication Server rs_marker Command18
Replication Server rs_dumptran Command19
Replication Server rs_subcmp Utility19
Dynamic SQL ..19
Bulk Copy ..19
Replication Server rs_ticket Stored Procedure20

Heterogeneous Replication Guide iii

Replication System Non-ASE Configurations20
Non-ASE Primary to Adaptive Server Replicate

...20
ASE Server Primary to Non-ASE Server

Replicate ...21
Non-ASE Primary to Non-ASE Replicate21
Bidirectional Non-ASE to Non-ASE Replication

...22
Sybase Replication Products ...25

Replication Server ..25
How Replication Server Works25
Publish-and-subscribe Model26
Replicated Functions ...27
Transaction Management27
Relationship with Other System Components28
Database Connections ..31
DDL User Purpose ..33
Datatypes, Datatype Definitions, and Restricted

Datatypes ..34
Error and Function-string Classes for Non-ASE

Data Servers ...34
Object Publication and Subscriptions

Limitations ...34
Replication Agent ...34

How Replication Agent Works35
DDL User Processing ..37
Non-ASE Replication Agents37

Enterprise Connect Data Access38
How ECDA Works ..38
ECDA Database Gateways40
ECDA Option for ODBC40
ECDA Option for Oracle41
Mainframe Connect DirectConnect for z/OS

Option ..41
ExpressConnect for Oracle ...41

Contents

iv Replication Server

IBM DB2 for z/OS as Primary Data Server43
Replication Agent for DB2 UDB43
Replication Intrusions and Impacts43
DB2 UDB Primary Database Permissions44
Primary Data Server Connectivity 44
Replication Server Connectivity45
Replication Server System Database Connectivity 45
DB2 UDB Primary Database Configuration45
Replication Definitions for Primary Tables in DB2 for

z/OS ... 46
DB2 for z/OS Primary Datatype Translation 47

Character Sets ...47
Materialization .. 48

IBM DB2 for Linux, UNIX, and Windows as Primary Data
Server ...49

Replication Agent for UDB ..49
DB2 UDB System Management49
Replication Manager Limitations50
Replication Intrusions and Impacts on the DB2 UDB ...50
DB2 UDB Primary Database Permissions and

Limitations ..50
Primary Data Server Connectivity 50
Replication Server and RSSD Connectivity51
Replication Agent Objects .. 51

Java Procedures for Truncation52
Getting Actual Names of the Replication Objects

...52
DB2 UDB Primary Database Configuration52

Java Runtime Environment53
rs_source_ds and rs_source_db Configuration

Parameters ..53
filter_maint_userid Configuration Parameters53
ltl_character_case Configuration Parameter53
Object Names Stored in Uppercase54

Contents

Heterogeneous Replication Guide v

Replication Definitions for Primary Tables in DB2 UDB
..54

DB2 UDB Primary Datatype Translation54
Microsoft SQL Server as Primary Data Server55

Replication Agent for Microsoft SQL Server55
sybfilter Driver ...55
Microsoft SQL Server System Management55
Replication Manager ...56
Replication Agent Permissions56
Primary Data Server Connectivity56

Setting the CLASSPATH Environment Variable ...56
Replication Server and RSSD Connectivity57
Replication Agent Objects ...57

Table, Procedures, Marker, and Trigger Objects
...58

Microsoft SQL Server Primary Database
Configuration ...58

rs_source_ds and rs_source_db Configuration
Parameters ..58

filter_maint_userid Configuration Parameters58
ltl_character_case Configuration Parameter58

Replication Definitions for Primary Tables in Microsoft
SQL Server ...59

Microsoft SQL Server Primary Datatype Translation ...59
Oracle as Primary Data Server ..61

Replication Agent for Oracle ...61
Replication Definitions for Primary Tables in

Oracle ..61
Replication Manager Limitations62

Oracle System Management62
Replication Intrusions and Impacts in Oracle62
Oracle Primary Database Permissions62
Primary Data Server Connectivity63
Replication Server and RSSD Connectivity63
Replication Agent Objects ..63

Contents

vi Replication Server

Oracle Primary Database Configuration64
Java Runtime Environment64
JDBC Driver Required ...64
rs_source_ds and rs_source_db Configuration

Parameters ..64
filter_maint_userid Configuration Parameters65
ltl_character_case Configuration Parameter65

Oracle Primary Datatype Translation65
Automatic Storage Management66
Real Application Clusters ..66

IBM DB2 for z/OS as Replicate Data Server69
DB2 UDB for z/OS Replicate Data Server

Environment ...69
DB2 UDB for z/OS System Management69
Replication Intrusions and Impacts in DB2 UDB for z/

OS ..69
DB2 for z/OS Replicate Database Permissions70
Replicate Database Connectivity for DB2 UDB for z/

OS ..71
Replicate Database Limitations in DB2 for z/OS71
DB2 for z/OS Replicate Database Configuration71

Replication Server Installation72
Connection Profiles ..72
Additional Settings ...74

IBM DB2 for Linux, UNIX, and Windows as Replicate
Data Server ...77

DB2 UDB Replicate Data Servers77
Replication Intrusions and Impacts in DB2 UDB77
DB2 UDB Replicate Database Permissions and

Limitations ..78
Connectivity for DB2 UDB Replicate Database78
DB2 UDB Replicate Database Configuration79

Replication Server Installation79
Connection Profiles ..80
Additional Settings ...81

Contents

Heterogeneous Replication Guide vii

Parallel DSI Threads for IBM DB2 Replicate Database
..82

External Commit Control82
Internal Commit Control83
Transaction Serialization Methods83

Microsoft SQL Server as Replicate Data Server87
Microsoft SQL Server Replicate Data Servers87
Replication Intrusions and Impacts on Microsoft SQL

Server ...87
Replicate Database Limitations on Microsoft SQL

Server ...88
Microsoft SQL Server Replicate Database

Permissions ..89
Replicate Database Connectivity for Microsoft SQL

Server ...89
Microsoft SQL Server Replicate Database

Configuration ..90
Replication Server Installation90
Connection Profiles ..91
Additional Settings ...92

Parallel DSI Threads for Microsoft SQL Server
Replicate Database ..93

External and Internal Commit Control94
Transaction Serialization Methods94

Oracle as Replicate Data Server ..99
Oracle Replicate Data Servers99
Replication Intrusions and Impacts on Oracle99
Oracle Replicate Database Permissions100
Replicate Database Connectivity for Oracle100
Oracle Replicate Database Configuration101

Replication Server Installation102
Connection Profiles ..102
Additional Settings ...104

Parallel DSI Threads for Oracle Replicate Database
..107

Contents

viii Replication Server

External and Internal Commit Control108
Transaction Serialization Methods108

Sybase IQ as Replicate Data Server113
Real-Time Loading Solution113

RTL Compilation and Bulk Apply114
Net-Change Database116
RTL Processing and Limitations116

Sybase IQ Replicate Data Servers118
Replication Intrusions and Impacts on Sybase IQ118
Replicate Database Connectivity for Sybase IQ119
Sybase IQ Replicate Database Permissions120

Granting Authority to a Maintenance User ID120
Sybase IQ Replicate Database Configuration121

Replication Server Installation121
Enable RTL ..123
RTL Configuration Parameters124
Enhanced Retry Mechanism126
Memory Consumption Control127

Multi-Path Replication to Sybase IQ130
Creating Alternate Replicate Connections to

Sybase IQ ...130
Altering or Dropping Alternate Replicate Sybase

IQ Connections ..132
Displaying Replicate Connection Information132
Replication Load Distribution132

Tables with Referential Constraints134
Replication Definitions Creation and Alteration . 134

Display RTL Information ...135
System Table Support in Replication Server136
Mixed-Version Support and Backward Compatibility . .136
Scenario for Replication to Sybase IQ136

Creating Interfaces File Entries137
Creating Test Tables ..137
Creating the Connection to the Primary and

Replicate Databases138

Contents

Heterogeneous Replication Guide ix

Enabling RTL ...139
Marking Tables to Prepare for Replication

Testing ...139
Creating Replication Definitions and

Subscriptions ...140
Verifying That RTL Works141

Migration from the Staging Solution to RTL141
Preparing to Migrate from the Staging Solution .142
Migrating to the Real-Time Loading Solution142
Cleaning Up After Migration144

Replication Server and Sybase IQ InfoPrimer
Integration ..144

Using the Replication Server and Sybase IQ
InfoPrimer Integration145

Parameters ..150
Replication Server Components151
Default Datatype Translation153
Unsupported Features153

Heterogeneous Multi-Path Replication155
Parallel Transaction Streams156
Default and Alternate Connections157
Interfaces File Requirements for Sybase IQ157
Dedicated Routes ...158

Creating Dedicated Routes158
Commands to Manage Dedicated Routes158
Display Dedicated Route Information161

Heterogeneous Multi-Path Replication Scenarios161
Multi-Path Replication from Adaptive Server to

Sybase IQ ..161
Multi-Path Replication from Oracle to Sybase IQ

...165
Multi-Path Replication from Adaptive Server to

Oracle ..169
Multi-Path Replication from Oracle to Adaptive

Server ..172

Contents

x Replication Server

Multi-Path Replication from Oracle to Oracle176
Heterogeneous Warm Standby for Oracle181

How a Warm Standby for Oracle Works181
Warm Standby Application182

Warm Standby Requirements and Restrictions182
Function Strings for Maintaining Standby Database ...183
Replicated Information for an Oracle Warm Standby

Application ..183
Setting Up Warm Standby Databases184

Creating the Logical Connection184
Initializing the Replication Agent for the Active

Database ...185
Adding the Active Database to the Replication

System ..187
Initializing the Standby Database188
Initializing the Replication Agent for the Standby

Database ...188
Creating Connection to the Standby Database . 190
Resuming Connection to the Active Database

and the Standby Database190
Resuming the Replication Agents for the Active

and Standby Databases190
Switching the Active and Standby Databases191

Before Switching Active and Standby Databases
...191

Internal Switching Steps192
After Switching Active and Standby Databases .193

Warm Standby Application Monitoring194
Replication Definitions and Subscriptions194

Additional Replication Definitions for Warm
Standby Databases194

Subscriptions with Warm Standby Applications .195
Upgrade Considerations ...196
Downgrade Considerations ...196

Resuming Replication After Downgrade196

Contents

Heterogeneous Replication Guide xi

Oracle Replicate Databases Resynchronization197
Product Compatibility ..197
Configuring Database Resynchronization197

Instructing Replication Server to Skip
Transactions ..198

Send the Resync Database Marker to
Replication Server ...198

Obtain a Dump of the Database200
Send the Dump Database Marker to Replication

Server ..201
Monitor DSI Thread Information202
Apply the Dump to a Database to be

Resynchronized ...202
Reinitializing the Replicate Database203

Database Resynchronization Scenarios203
Resynchronize One or More Replicate

Databases Directly from a Primary Database
...203

Resynchronizing Using a Third-Party Dump
Utility ..205

Resynchronizing Both the Primary and
Replicate Databases from the Same Dump ..207

Resynchronizing the Active and Standby
Databases in a Warm Standby Application ...208

Datatype Translation and Mapping211
DB2 Datatypes ..211

Adaptive Server to DB2 Datatypes211
DB2 to Adaptive Server Datatypes212
DB2 to Microsoft SQL Server Datatypes213
DB2 to Oracle Datatypes 213
Replication Server Datatype Names for DB2214

Microsoft SQL Server Datatypes214
Adaptive Server to Microsoft SQL Server

Datatypes ..215
Microsoft SQL Server to DB2 Datatype215

Contents

xii Replication Server

Microsoft SQL Server to Oracle Datatypes216
Replication Server Datatype Names for

Microsoft SQL Server216
Oracle Datatypes ..216

Adaptive Server to Oracle Datatypes216
Oracle to Adaptive Server Datatypes217
Oracle to DB2 Datatypes218
Oracle to Microsoft SQL Server datatypes218
Replication Server Datatype Names for Oracle

...218
Materialization ...221

Types of Materialization ..221
Heterogeneous Materialization221
Bulk Materialization Options222
Unload Data from a Primary Database222
Datatype Translation ..223
Load Data Into Replicate Databases223
Atomic Bulk Materialization ...223

Preparation for Materialization223
Performing Atomic Bulk Materialization224

Nonatomic Bulk Materialization226
Preparation For Materialization226
Performing Nonatomic Bulk Materialization226
Autocorrection ..228

Heterogeneous Database Reconciliation231
Sybase rs_subcmp Utility ...231
Database Comparison Application231

Troubleshoot Heterogeneous Replication Systems233
Inbound Queue Problems ...233

Determining the Reason the Inbound Queue is
Not Being Updated ..233

Outbound Queue Problems ..234
Determining the Reason the Outbound Queue Is

Not Being Updated ..235

Contents

Heterogeneous Replication Guide xiii

Determining Why Replicate Database Is Not Updated
..236

HDS Issues and Limitations ..237
Source Value Exceeds Target Datatype Bounds

...237
Exact Numeric Datatype Issues237
Numeric Translation and Identity Columns in

Microsoft SQL Server239
Troubleshoot Specific Errors240

Updates to rs_lastcommit Fail240
Expected Datatype Translations Do Not Occur

...240
Log Transfer Language Generation and Tracing

...242
Reference Implementation for Oracle to Oracle

Replication ...245
Platform Support ...245
Supported Product Component Versions for Oracle

Reference Implementation246
Glossary ...247
Obtaining Help and Additional Information261

Technical Support ...261
Downloading Sybase EBFs and Maintenance Reports

..261
Sybase Product and Component Certifications262
Creating a MySybase Profile262
Accessibility Features ...262

Index ..265

Contents

xiv Replication Server

Conventions

These style and syntax conventions are used in Sybase® documentation.

Style conventions

Key Definition

monospaced(fixed-
width)

• SQL and program code

• Commands to be entered exactly as shown

• File names

• Directory names

italic monospaced In SQL or program code snippets, placeholders for user-specified
values (see example below).

italic • File and variable names

• Cross-references to other topics or documents

• In text, placeholders for user-specified values (see example be-
low)

• Glossary terms in text

bold san serif • Command, function, stored procedure, utility, class, and meth-
od names

• Glossary entries (in the Glossary)

• Menu option paths

• In numbered task or procedure steps, user-interface (UI) ele-
ments that you click, such as buttons, check boxes, icons, and so
on

If necessary, an explanation for a placeholder (system- or setup-specific values) follows in
text. For example:

Run:
installation directory\start.bat

where installation directory is where the application is installed.

Conventions

Heterogeneous Replication Guide 1

Syntax conventions

Key Definition

{ } Curly braces indicate that you must choose at least one of the enclosed options. Do
not type the braces when you enter the command.

[] Brackets mean that choosing one or more of the enclosed options is optional. Do
not type the brackets when you enter the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options shown.

, The comma means you can choose as many of the options shown as you like,
separating your choices with commas that you type as part of the command.

... An ellipsis (three dots) means you may repeat the last unit as many times as you
need. Do not include ellipses in the command.

Case-sensitivity

• All command syntax and command examples are shown in lowercase. However,
replication command names are not case-sensitive. For example, RA_CONFIG,
Ra_Config, and ra_config are equivalent.

• Names of configuration parameters are case-sensitive. For example, Scan_Sleep_Max is
not the same as scan_sleep_max, and the former would be interpreted as an invalid
parameter name.

• Database object names are not case-sensitive in replication commands. However, to use a
mixed-case object name in a replication command (to match a mixed-case object name in
the primary database), delimit the object name with quote characters. For example:
pdb_get_tables "TableName"

• Identifiers and character data may be case-sensitive, depending on the sort order that is in
effect.
• If you are using a case-sensitive sort order, such as “binary,” you must enter identifiers

and character data with the correct combination of uppercase and lowercase letters.
• If you are using a sort order that is not case-sensitive, such as “nocase,” you can enter

identifiers and character data with any combination of uppercase or lowercase letters.

Terminology
Replication Agent™ is a generic term used to describe the Replication Agents for Adaptive
Server® Enterprise, Oracle, IBM DB2 UDB, and Microsoft SQL Server. The specific names
are:

• RepAgent – Replication Agent thread for Adaptive Server Enterprise
• Replication Agent for Oracle

Conventions

2 Replication Server

• Replication Agent for Microsoft SQL Server
• Replication Agent for UDB – for IBM DB2 on Linux, Unix, and Windows

Conventions

Heterogeneous Replication Guide 3

Conventions

4 Replication Server

Replication System Overview

Sybase supports a basic replication system from an Adaptive Server Enterprise (ASE) server
to another ASE server, and a heterogeneous replication system, where one or more servers is
not an ASE.

Basic Replication System
A basic Sybase replication system consists of a primary Adaptive Server Enterprise (ASE)
database, a Replication Server®, and a replicate ASE database.

ASE includes all the features necessary to support a Sybase replication system, with no
additional components other than the Replication Server.

The three components include:

• Primary database – a database in which original data-changing operations (or transactions)
are performed. Only completed transactions are captured for replication.

• Replication Server – a Sybase Open Client™ and Open Server™ product that receives
transactions to be replicated from a primary database, and delivers them to a replicate
database.

• Replicate database – a database that receives replicated transactions from a Replication
Server and applies those transactions to its own “copy” of the primary data.

The Basic Sybase replication system diagram illustrates a basic Sybase replication system,
showing the flow of data between two Adaptive Servers and a Replication Server.

Figure 1: Basic Sybase Replication System

Data flows from the primary database to the Replication Server, and then to the replicate
database.

For more information about basic Sybase replication system concepts and Replication Server
features, see the Replication Server Administration Guide.

Replication System Overview

Heterogeneous Replication Guide 5

Heterogeneous Replication System
A heterogeneous Sybase replication system consists of data-changing operations between two
databases of the same or different vendors (except ASE to ASE).

For information on ASE to ASE replication, see the Replication Server Administration Guide
Volume 1 and Volume 2.

Heterogeneous replication includes:

• A replication system in which Adaptive Server Enterprise (ASE) is either the primary or
the replicate data server, and a non-ASE data server (such as IBM DB2 UDB) is the other
data server.

• A replication system in which the primary and replicate data servers are both non-ASE
data servers (for example, Oracle is the primary data server and IBM DB2 UDB is the
replicate data server, or Microsoft SQL Server is the primary server and Microsoft SQL
Server is the replicate server).

ASE was enhanced to support Replication Server. All of the data server elements required to
support Replication Server (that is, a data-change capture mechanism in the primary database,
and system tables and stored procedures in the replicate database) are either built into
Adaptive Server Enterprise or enabled by utilities that are provided with the Replication
Server or Adaptive Server software.

Additional components are required to implement a Sybase replication system with non-ASE
data servers:

• A Replication Agent
• Enterprise Connect™ Data Access (ECDA) or a data server for which connectivity

requirements are compatible with Replication Server, or ExpressConnect for Oracle.

Sybase Replication System with Non-ASE Data Servers diagram illustrates a typical Sybase
replication system with non-ASE data servers, showing the flow of data between the data
servers, through:

• Replication Agent, Replication Server, and Enterprise Connect Data Access database
gateway, and,

• Replication Agent, Replication Server, and ExpressConnect for Oracle.

Replication System Overview

6 Replication Server

Figure 2: Sybase Replication System with Non-ASE Data Servers

If you are using ECDA database gateways, data flows from the primary database to the
Replication Agent, from the Replication Agent to the Replication Server, from the Replication
Server to the ECDA database gateway, and then from the database gateway to the replicate
database.

ECDA database gateways support IBM DB2 UDB, Microsoft SQL Server, and Oracle data
servers by providing connectivity between Sybase Open Client and Open Server and either
ODBC or the native protocol of the replicate data server, and by providing SQL
transformation and other services. Replication Server also includes datatype support for non-
ASE data servers.

If you are using ExpressConnect for Oracle, data flows from the primary database to the
Replication Agent, from the Replication Agent to the Replication Server, and then from the
Replication Server directly to the replicate database.

Replication Agents support non-ASE primary data servers by reading the completed
transactions in the primary database and sending them to Replication Server for distribution.

Sybase Replication System Components
The replication system components are described by their function and role in a Sybase
replication system.

The replication system components include:

• Primary data server

Replication System Overview

Heterogeneous Replication Guide 7

• Replication Agent
• Replication Server
• Database gateway
• ExpressConnect for Oracle
• Replicate data server

See also
• Sybase Replication Products on page 25

Primary Data Server
A primary data server manages one or more primary databases, which are the sources of the
data-changing operations or transactions in a replication system. The primary data server is
configured to capture information needed for replication.

All primary data servers are supported by Replication Agents. ASE has an internal
Replication Agent. The non-ASE servers require an external Replication Agent.

See also
• Primary Database on page 13

Supported Primary Database Servers
Sybase replication technology actively supports transaction replication from different
relational database servers aside from Adaptive Server Enterprise.

The supported relational database servers include:

• IBM DB2 UDB on z/OS
• IBM DB2 UDB on UNIX/Windows
• Microsoft SQL Server
• Oracle

To find out about the most current, supported versions of these data servers, see the
documentation for the Replication Agent that supports a particular non-ASE data server.

Replication Agent
Replication Agent transfers transaction information, which represents changes made to data
schemas and execution of stored procedures, from a primary data server to a Replication
Server, for distribution to other (replicate) databases.

A Replication Agent is required for each database that contains primary data or for each
database where replicated stored procedures are executed.

In Adaptive Server Enterprise, an embedded Replication Agent is provided with the database
management system software. The Replication Agent for ASE is called RepAgent, and it is an
Adaptive Server thread.

Replication System Overview

8 Replication Server

For non-ASE data servers, Sybase provides these Replication Agent products:

• Replication Agent for DB2 UDB – provides primary data server support for IBM DB2
UDB servers that run on IBM z/OS platforms.

• Replication Agent – provides primary data server support for DB2 UDB, Microsoft SQL
Server, and Oracle data servers that run on Linux, UNIX, or Microsoft Windows
platforms.

Replication Agents read the primary database transaction log. The primary Replication Server
reconstructs the transaction and forwards it to replicate sites that have subscriptions for the
data.

Replication Server
The Replication Server at each primary or replicate site coordinates data replication activities
for local data servers and exchanges data with Replication Servers at other sites.

Replication Server provides guaranteed delivery of transactions to each replicate site by:

• Receiving transactions from primary databases through a Replication Agent and
distributing them to replicate database sites that have subscriptions for the data

• Receiving transactions from other Replication Servers and applying them to local
replicate databases or forwarding them to other replication servers that have subscriptions
for the data

• Receiving requests for data updates from a replicate database and applies them to a
primary database

The information needed to accomplish these tasks is stored in Replication Server system
tables that are stored in the Replication Server System Database.

See Replication Server Administration Guide Volume 2 > Performance Tuning > Replication
Server Internal Processing for more information about the internal elements of the Replication
Server.

ID Server
The ID Server is a Replication Server that registers all Replication Servers and databases in the
replication system.

In addition to the usual Replication Server tasks, the Replication Server acting as the ID Server
assigns a unique ID number to every Replication Server and database in the replication
system. The ID Server also maintains version information for the replication system.
Otherwise, the ID Server is like any other Replication Server.

To allow a new Replication Server, or the Replication Server that manages the new database,
to log in and retrieve an ID number, the ID Server must be running each time a:

• Replication Server is installed
• Route is created

Replication System Overview

Heterogeneous Replication Guide 9

• Database connection is created or dropped

Because of these requirements, the ID Server is the first Replication Server that you install and
start when you install a replication system. If you have only one Replication Server, or if you
are installing Replication Server for the first time, then that Replication Server is also the ID
Server. If you are adding a Replication Server to an existing replication system, you must
know the name of the Replication Server in the system that is the ID Server.

The ID Server must have a login name for Replication Servers to use when they connect to the
ID Server. The login name is recorded in the configuration files of all Replication Servers in
the replication system by the rs_init configuration program when you are setting up and
managing the replication system.

Warning! The ID Server is critical to your replication environment, and is difficult to move
once it has been installed. Once you have selected a name for the ID Server, you cannot change
to a different Replication Server. Sybase does not support any procedures that change the
name of the ID Server in the configuration files.

Replication System Domain
Replication system domain refers to all replication system components that use the same ID
Server.

Some organizations have multiple independent replication systems. Since the ID Server
determines member Replication Servers and databases in a replication system, one replication
system in an organization with multiple replication systems is also called an ID Server
domain.

No special steps are required to set up multiple ID Server domains. Every Replication Server
or database belongs to one replication system and has a unique ID number in that ID Server
domain.

You can set up multiple replication system domains, with the following restrictions:

• Replication Servers in different domains cannot exchange data. Each domain must be
treated as a separate replication system with no cross-communication between them. You
cannot create a route between Replication Servers in different domains.

• A database can be managed by only one Replication Server in one domain. Any given
database is in one, and only one, ID Server’s domain. This means that you cannot create
multiple connections to the same database from different domains.

Replication Server System Database (RSSD)
The Replication Server System Database (RSSD) is a database that contains the Replication
Server system tables.

Each Replication Server requires an RSSD or an Embedded Replication Server System
Database (ERSSD) to hold the system tables for one Replication Server. The RSSD is
managed by the Adaptive Server. The ERSSD is managed by SQL Anywhere®.

Replication System Overview

10 Replication Server

System Tables
Replication Server system tables hold information that Replication Server requires to send
and receive replicated data.

System tables hold information such a:

• Descriptions of replicated data and related information
• Descriptions of replication objects, such as replication definitions and subscriptions
• Security records for Replication Server users
• Routing information for other Replication Server sites
• Access methods for the local databases
• Other administrative information

The Replication Server system tables are loaded into the RSSD during Replication Server
installation.

See Replication Server Reference Manual > Replication Server System Tables for a
comprehensive list of system tables.

System table contents are modified during Replication Server activities, such as the execution
of RCL commands or Sybase Central™ procedures. Only the replication system
administrator, or members of the rs_systabgroup group, can alter the system tables.

To query the system tables and find status information:

• Use Sybase Central to view replication system details and properties.
• Use Replication Server system information or system administration commands. See

Replication Server Reference Manual > Introduction to the Replication Command
Language > System Information Commands and Replication Server Reference Manual >
Introduction to the Replication Command Language > System Administration
Commands.

• Use Adaptive Server stored procedures to display information about the replication
system. See Replication Server Reference Manual > Adaptive Server Commands and
System Procedures.

Warning! RSSD tables are for internal use by Replication Server only. You should never
modify RSSD tables directly unless directed by Sybase Technical Support.

RSSD and Replication Agent Specifications
A Replication Agent is needed for the RSSD if the Replication Server is the source for any
route.

If Replication Server is the source for any route, Replication Server distributes some of the
information in its RSSD to other Replication Servers.

The RSSD is dedicated to the Replication Server that it supports; do not use it to store user
data. However, a single data server may contain the RSSD and user databases. The database

Replication System Overview

Heterogeneous Replication Guide 11

device space for the RSSD must be at least 20MB (10MB for data and 10MB for the log). It is
best to put the database and the database log on separate devices.

Database Gateway
Database gateway allows clients using one communication protocol to connect with data
servers that use a different protocol.

The Sybase Enterprise Connect Data Access product line consists of database gateway servers
that allow clients using the Sybase Open Client and Open Server protocol (such as Replication
Server) to connect with non-Sybase data servers, using either the data server’s native
communication protocol or the standard, ODBC protocol.

Sybase Enterprise Connect Data Access products also allow the retrieval of metadata from
non-ASE replicate data servers.

See also
• Enterprise Connect Data Access on page 38

ExpressConnect for Oracle
ExpressConnect for Oracle provides direct communication between Replication Server and a
replicate Oracle data server.

ExpressConnect for Oracle which is available with Replication Server Options 15.5 and later,
eliminates the need for installing and setting up a separate gateway server, thereby improving
performance and reducing the complexities of managing a replication system.

See also
• ExpressConnect for Oracle on page 41

Replicate Data Server
Replicate data server manages a database that contains replicate data, which is data that is a
“copy” of the data in a primary database.

Replication Server maintains the data in a replicate data server by logging in as a database user.
In the case of non-ASE data servers, Replication Server logs in to the replicate data server
through a database gateway server or directly to the data server.

Replication Server can treat any server as a data server if it supports a set of required data
operations and transaction processing directives, either directly (such as Adaptive Server
Enterprise) or indirectly (such as a Enterprise Connect Data Access database gateway server).

See also
• Replicate Database on page 14

Replication System Overview

12 Replication Server

Supported Replicate Database Servers
Sybase replication technology supports transaction replication in different relational database
servers.

The relational database servers include :

• IBM DB2 UDB on z/OS
• IBM DB2 UDB on UNIX/Windows
• Microsoft SQL Server
• Oracle
• Sybase IQ

For more information regarding the current supported versions of Oracle, Microsoft SQL
Server, and DB2 UDB data servers, see the documentation for the ECDA database gateway
associated with a particular non-ASE data server. For information on the supported Oracle
data server version for ExpressConnect, see the ExpressConnect for Oracle Installation and
Configuration Guide.

Non-ASE Replication
When replicating with non-ASE servers, you must consider issues that are specific to the data
server's role in the replication system regardless of the type or brand of a data server.

The biggest challenge in implementing a successful heterogeneous replication system is
accommodating the unique characteristics of data servers that are supplied by different
vendors. When a single data server acts as both a primary data server and a replicate data server
(bidirectional replication), there are still more issues to consider.

Primary Database
There are primary database issues that must be addressed in a successful heterogeneous
replication system.

When using a non-ASE primary database, consider:

• The requirements of the Replication Agent and the intrusions and impacts of the
Replication Agent on the data server. For example, some Replication Agents create and
use database objects in the primary database to support replication.

• The access and permissions required in the data server for other replication system
components. Both the primary Replication Server and the Replication Agent for a
database must have user IDs and passwords defined in the database with appropriate
permissions to access primary database objects.

• The connectivity required to support communication between the data server and other
replication system components. Replication Agents use the native communication
protocol of the data server, ODBC protocols, or JDBC protocols to communicate with the

Replication System Overview

Heterogeneous Replication Guide 13

primary database. Replication Server may require a database gateway to communicate
with a data server.

• The specific limitations on replication from the particular data server. For example, some
Replication Agents restrict the configuration options of some data servers. Replication
Server may impose size limitations on some native datatypes in some databases.

• How replication definitions stored in the RSSD are used by the Replication Agent for the
particular data server. For example, both Replication Server and Replication Agents are
case-sensitive in identifying database object names, but some databases are not.

• The datatype conversions that may be required when replicating transactions from one
particular data server to another type of data server. For example, almost every type of data
server has a unique way of representing temporal data. The TIMESTAMP datatype in one
database may need to be “translated” to be stored as a datetime datatype in another
database.

• The replication system management issues specific to the particular data server. For
example, different data servers allow different system management options.

For more information about specific primary database issues for specific databases, see the
appropriate topic for your database.

Replicate Database
There are replicate database issues that must be addressed in a successful heterogeneous
replication system.

When using a non-ASE replication database, consider:

• The requirements of the ECDA database gateway for the particular database server.
Configure the DirectConnect™ access services to work with the replicate database server
and Replication Server.

• The access and permissions required in the data server for the replication system to apply
transactions to the replicate database. Both the replicate Replication Server and the ECDA
gateway for a database must have user IDs and passwords defined in the database, with
appropriate permissions to access replicate database objects.

• The connectivity required to support communication between the replicate data server and
other replication system components. ECDA gateways use either the native
communication protocol of a data server, or standard ODBC or JDBC protocols to
communicate with a replicate database. Replication Server generally requires a database
gateway to communicate with a non-ASE data server.

• The limitations on replication into the particular data server. For example, Replication
Server imposes limitations on some native datatypes in some databases.

• The intrusion and impact of the database objects required to support Replication Server
operations. Replication Server requires two tables and may require some stored
procedures to manage a replicate database.

• The replication system management issues specific to the particular data server. For
example, different data servers allow different system management options.

Replication System Overview

14 Replication Server

For more information about specific replicate database issues for specific databases, see the
appropriate topic for your database.

Character Sets
Setting character sets avoid problem that can produce data inconsistencies between the
primary database and the replicate database.

In a heterogeneous replication system, in which the primary and replicate data servers are
different types, servers may not support all the same character sets. In such cases, replication
system components must perform at least one character set conversion (from the primary data
server’s character set to the replicate data server’s character set).

Even in a homogeneous replication system, in which both primary and replicate data servers
are the same type, character set conversions might be required if replication system
components reside on more than one type of platform.

To avoid character set problems, you must either:

• Use the same character set on all servers and platforms in the replication system, or
• Use compatible character sets on all servers and platforms in the replication system, and

configure replication system components to perform the appropriate character set
conversions.

For more information about setting and overriding the default character set, see the
appropriate Replication Agent documentation.

Heterogeneous Replication Limitations
There are some possible limitations of a heterogeneous replication system, depending on the
particular databases involved, and based on Sybase replication technology.

Stored Procedure Replication
Stored procedure replication allows the execution call of a stored procedure to be replicated,
including the parameter values passed as arguments to the primary stored procedure call.

The availability of stored procedure replication depends on the capabilities of the primary and
replicate databases, as well as support from the associated Replication Agent and ECDA
database gateway. Refer to the documentation for the specific Replication Agent and ECDA
components to determine if stored procedure replication is available for your databases.

Owner-Qualified Object Names
Access to replicate tables and stored procedures in a non-ASE database often requires that the
reference to the replicate table or stored procedure be owner-qualified.

For example, suppose the Replication Server maintenance user assigned to apply transactions
to an Oracle replicate database is orauser. A replicate insert command to table table1 may

Replication System Overview

Heterogeneous Replication Guide 15

fail with a “table not found” error if the owner of table1 is bob. When attempting to find
table1, Oracle looks for orauser.table1, not bob.table1. To properly identify the
replicate table to be updated, you can:

• Create an alias at the Oracle replicate database that refers to the correct replicate table. For
example, create a synonym object in Oracle named table1, which refers to the fully
qualified name of “bob.table1.”

• When creating the replication definition, use the with replicate table named [table_owner.
['table_name']] clause. Continuing with the same example, the clause is:
with replicate table named bob.table1

Owner Qualifying with Multiple Replicate Databases
The problem becomes a little more complicated when table1 is to be replicated to more than
one replicate database (for example, Oracle replicate table bob.table1). The option of
using the with replicate table named clause in the replication definition supports only one
replicate table name.

To work around this issue, create multiple replication definitions, one for each unique
replicate table name required. Make sure each subscription refers to the correct replication
definition and each replication definition uses the with replicate table named clause.

Large Object Replication
Large object (LOB) datatypes (such as BLOB, CLOB, IMAGE, and TEXT) provide support for
the longest streams of character and binary data in a single column. The size of the LOB
datatypes poses unique challenges, both as primary and replicate data.

Primary Database LOB Replication Issues
The LOB datatypes impact the transaction logging function at the primary database.

For Replication Agents, the log resources must be adequate to support retention of the changes
in LOB data, only after images of LOB data are logged. The ability of LOB replication
depends on the capabilities of the Replication Agent.

Replicate Database LOB Replication Issues
When a non-Sybase database is the replicate database, the database gateway used to
communicate with the replicate database must be able to emulate the Adaptive Server text
pointer processing.

The ECDA Option for ODBC, ECDA Option for Oracle, ExpressConnect for Oracle, and the
Mainframe Connect™ DirectConnect for z/OS Option gateways provide this feature.

Adaptive Server Enterprise uses a text pointer to identify the location of text and image
column data. The text pointer is passed to system functions that perform the actual updates to
data in these large columns. The same technique is used internally in Replication Server to
apply LOB datatypes. Replication Server obtains a text pointer, and data server function calls
are made to apply the data to replicate databases.

Replication System Overview

16 Replication Server

The ECDA Option for ODBC provides support for LOB replication into Microsoft SQL
Server databases.

See also
• Microsoft SQL Server as Replicate Data Server on page 87

Setup for Replicate Databases
Replication Server provides a utility named rs_init, which sets up Adaptive Server databases.

rs_init sets up an Adaptive Server database as a primary or replicate database as follows:

• Creates the Replication Server database connection
• Creates the required tables and stored procedures in the replicate database
• Defines the Replication Server maintenance user ID

Heterogeneous replication support does not include a utility that is equivalent to rs_init.
Instead, Replication Server commands for creating connections, and primary and replicate
data server commands for creating objects that did support replication including a
maintenance user, may be used. In Replication Server 15.2, the introduction of the “using
profile” clause of the create connection command may be used to accomplish many of these
tasks.

Replication Server Support for Encrypted Columns
Replication Server supports replication of encrypted column data between Adaptive Server
databases. However, replication of encrypted column data to any non-ASE replicate database
is not supported.

To replicate non-encrypted data to an ASE database containing an encrypted column, disable
the rs_set_ciphertext function string for the Adaptive Server connection. The
rs_set_ciphertext function string is executed for all ASE connections by default. It indicates
to the replicate ASE database that the data to be replicated is already encrypted and the
assumption is that the primary database is also an ASE with the same encryption usage. By
disabling the rs_set_ciphertext function string, you allow the replicate ASE to perform
encryption on the incoming replicated data. Allowing ASE to encrypt the incoming data is
appropriate if the primary database is non-ASE, or if the primary ASE database does not use
enrypted columns.

rs_set_ciphertext Function String
rs_set_ciphertext controls replication of encrypted columns to an Adaptive Server table.

Alter function string rs_set_ciphertext to turn off execution of the ASE-specific command
“set ciphertext on.”
alter function string rs_set_ciphertext
for some_function_string_class
output language
''

Replication System Overview

Heterogeneous Replication Guide 17

Subscription Materialization
Materialization is creating and activating subscriptions, and copying data from the primary
database to the replicate database, thereby initializing the replicate database.

Before you can replicate data from a primary database, you must set up and populate each
replicate database so that it is in a state consistent with that of the primary database. There are
two types of subscription materialization supported by Replication Server:

• Bulk materialization – manually creating and activating a subscription and populating a
replicate database using data unload and load utilities outside the control of the replication
system.

• Automatic materialization – creating a subscription and populating a replicate database
using Replication Server commands.

Heterogeneous replication supports bulk materialization methods with varying complexity
based on the specific Replication Agent capabilities.

See the Replication Server Administration Guide for a general discussion of subscription
materialization, and see the appropriate Replication Agent documentation for details
regarding a particular Replication Agent and its materialization support.

Replication Server rs_dump Command
The rs_dump command is typically used to coordinate database dump activities across a
replication system.

When a replicate connection receives an rs_dump transaction, Replication Server executes
the rs_dump function string for that connection. You can customize the rs_dump function
string to execute whatever commands are required.

For non-ASE primary database replication, some Replication Agents provide a method to
invoke the rs_dump command from a non-Sybase primary database. Refer to the appropriate
Replication Agent documentation to determine if rs_dump execution from the primary
database is supported.

For replicate databases, no default function string for rs_dump is provided.

For more information about the rs_dump command, its use, and function-string
modifications, see the Replication Server Reference Manual.

Replication Server rs_marker Command
The rs_marker command is a primary database transaction log marker mechanism, which
assists with the materialization process.

An rs_marker execution passes activate subscription and validate subscription commands
to a primary Replication Server. Most Replication Agents support an rs_marker invocation to
assist with materialization.

Replication System Overview

18 Replication Server

For more information about rs_marker usage, see the Replication Server Reference Manual.
For more information about the use and availability of rs_marker for a particular database, see
the appropriate Replication Agent documentation.

Replication Server rs_dumptran Command
The rs_dumptran command is typically used to coordinate database transaction dump
activities across a replication system.

When a replicate connection receives an rs_dumptran transaction, the Replication Server
executes the rs_dumptran function string for that connection. You can customize the
rs_dumptran function string to execute whatever commands are required.

Heterogeneous replication does not support rs_dumptran for non-Sybase primary databases.

For replicate databases, no default function string for rs_dumptran is provided.

For more information about the rs_dumptran command, its use, and function-string
modifications, see the Replication Server Reference Manual.

Replication Server rs_subcmp Utility
The rs_subcmp is an executable program that you can use to compare primary and replicate
tables, optionally reconciling any differences found.

For non-Sybase database support, you may use rs_subcmp, provided you have connectivity to
the primary and replicate databases. You must also develop custom SELECT commands for
the primary and replicate databases to generate comparable outputs for both. Additional
options are to buy third-party tools that provide such functionality, or build your own
application.

See also
• Heterogeneous Database Reconciliation on page 231

Dynamic SQL
Dynamic SQL allows the Replication Server Data Server Interface (DSI) to prepare dynamic
SQL statements at the target user database and to run them repeatedly.

Dynamic SQL is available for Oracle, DB2 UDB z/OS, and DB2 UDB on UNIX, Windows,
and Linux. It is not available for Microsoft SQL and Sybase IQ.

Bulk Copy
Bulk-copy allows Replication Server Data Server Interface (DSI) to improve performance
when replicating large batches of insert statements on the same table using the Open Client
Open Server Bulk-Library interface.

Bulk-copy is not available for any of the non-ASE data servers, with the exception of Sybase
IQ, and Oracle when using ExpressConnect for Oracle.

Replication System Overview

Heterogeneous Replication Guide 19

Replication Server rs_ticket Stored Procedure
rs_ticket is a stored procedure in the primary database that you can use to help monitor
Replication Server performance, module heartbeat, replication health, and table-level
quiesce.

rs_ticket is available for Oracle, DB2 UDB on UNIX, Windows, and Linux, and Microsoft
SQL. It is not available for DB2 UDB z/OS. See the Replication Agent Reference Manual.

Replication System Non-ASE Configurations
Replication system issues may arise due to different configurations with heterogeneous or
non-ASE data servers.

Non-ASE Primary to Adaptive Server Replicate
The simplest heterogeneous replication scenario is replicating one-way from a non-ASE
primary database to an Adaptive Server replicate database.

The only unique requirements are a Replication Agent designed to extract transaction data
from the non-ASE primary database, and the application of the Heterogeneous Datatype
Support (HDS) feature of Replication Server to translate primary database native datatypes to
Adaptive Server datatypes.

See Replication Server Administration Guide Volume 1 > Manage Replicated Tables >
Translating Datatypes Using HDS.

Replication System Components
The following components are required for a non-ASE primary to Adaptive Server replicate
configuration:

• Non-ASE primary data server. For example, Oracle.
• Replication Agent designed for the primary data server
• Replication Server
• Adaptive Server replicate data server

Replication System Issues
In a non-ASE primary to Adaptive Server replicate configuration, the Replication Server
database connection for the primary database may require a valid user ID and password for the
primary database (validated only for Replication Agent), even though this user ID does not
apply transactions to the primary database.

Replication System Overview

20 Replication Server

ASE Server Primary to Non-ASE Server Replicate
A simple heterogeneous replication scenario replicates one-way from an Adaptive Server
primary database to a non-ASE replicate.

The only unique requirements are a component to apply transaction data to the replicate
database, and the application of the HDS feature of Replication Server to translate Adaptive
Server datatypes to the native datatypes of the replicate database.

For more detailed information about HDS, see Replication Server Administration Guide
Volume 1 > Manage Replicated Tables > Translating Datatypes Using HDS.

Replication System Components
The components required for an Adaptive Server primary to non-ASE replicate configuration
are:

• Adaptive Server primary database
• Replication Server
• ExpressConnect for Oracle to replicate to Oracle or a relevant ECDA database gateway

designed for the replicate data server, such as ECDA Option for ODBC for Microsoft SQL
Server

• Non-ASE replicate data server. For example, Microsoft SQL Server

Replication System Issues
In an Adaptive Server primary to non-ASE replicate configuration, consider:

• The Replication Server database connection for the replicate database must include a valid
user ID and password (the maintenance user) for the replicate database. This user ID must
have authority to apply replicate transactions in the replicate database.

• Create the Replication Server replicate database connection using the correct profile for
the replicate database. The connection profile specifies the correct function-string class
and error class for the replicate database, and additionally may contain class-level
translation definitions and replicate database object creation, to support replication.

Non-ASE Primary to Non-ASE Replicate
The Non-ASE primary to Non-ASE replicate scenario varies in complexity, depending on the
mix of non-ASE data servers.

Replication System Components
The following components are required for a non-ASE primary to non-ASE replication
configuration:

• Non-ASE primary data server. For example, Oracle.
• Replication Agent designed for the primary data server. For example, Replication Agent

for Oracle.

Replication System Overview

Heterogeneous Replication Guide 21

• Replication Server
• Gateway designed for the replicate data server (for example ECDA Option for ODBC,

ExpressConnect for Oracle).
• Non-ASE replicate data server. For example, Microsoft SQL Server.

Replication System Issues
Consider the following issues in a non-ASE primary to non-ASE replicate configuration:

• The Replication Server primary database connection may require a valid user ID and
password for the primary database. This user ID must have authority to apply replicate
transactions (even if no transactions will be replicated to the primary database).

• The Replication Server replicate database connection must be created using the correct
profile for the replicate database. The connection profile specifies the correct function
string classes and error classes for the replicate database, and additionally may contain
class-level translation definitions and replicate database object creation, to support
replication.

Bidirectional Non-ASE to Non-ASE Replication
Replication occurs both to and from each database in a bidirectional non-ASE to non-ASE
replication scenario.

Each non-ASE database must have both a Replication Agent and an ECDA database gateway.

Replication System Components
The following components are required for a bidirectional non-ASE primary to non-ASE
replicate configuration:

• Non-ASE primary data server. For example, DB2 UDB on UNIX, Windows, and Linux.
• Replication Agent designed for the primary data server. For example, Replication Agent

for Oracle, Microsoft SQL Server, and DB2 UDB.
• ECDA database gateway designed for the “primary” data server acting as a replicate

database. For example, ECDA Option for ODBC (for DB2 UDB).
• Replication Server
• ECDA database gateway designed for the replicate data server. For example, ECDA

Option for ODBC (for Microsoft SQL Server).
• Replication Agent designed for the “replicate” data server acting as a primary database.

For example, Replication Agent for Linux, Microsoft Windows, and UNIX.
• Non-ASE replicate data server. For example, Microsoft SQL Server.

Replication System Issues
From a technical standpoint, you can set up a bidirectional replication scenario using only two
Replication Server database connections (one “primary-and-replicate” connection for each
database).

Replication System Overview

22 Replication Server

Note: In the following description of bidirectional replication issues, the two databases are
referred to as Database #1 and Database #2, because both databases take on both “primary”
and “replicate” roles in the replication system.

Consider the following issues in a bidirectional non-ASE primary to non-ASE replicate
configuration:

• The Replication Server primary database connection for Database #1 must include a valid
user ID and password for the primary database. This user ID must be the same user ID
specified in the Replication Server replicate database connection for Database #2 (the
maintenance user). This user ID must have authority to apply transaction operations to
replicate tables in Database #1.

• The Replication Agent for Database #1 must be configured to bypass maintenance user
transactions to prevent a transaction from returning from the replicate tables in Database
#2. See the appropriate Replication Agent documentation for details on configuring the
Replication Agent to bypass maintenance user transactions.

• The Replication Server primary database connection for Database #2 must include a valid
user ID and password for the primary database. This user ID must be the same user ID
specified in the Replication Server replicate database connection for Database #1 (the
maintenance user). This user ID must have authority to apply transaction operations to
replicate tables in Database #2.

• The Replication Agent for Database #2 must be configured to bypass maintenance user
transactions to prevent a transaction from returning from the replicate tables in Database
#1. Refer to the appropriate Replication Agent documentation for details on configuring
the Replication Agent to bypass maintenance user transactions.

• The Replication Server replicate database connections to Database #1 and Database #2
must be created using the correct profile for the replicate database. The connection profile
specifies the correct function-string classes and error classes for the replicate database, and
additionally may contain class-level translation definitions and replicate database object
creation, to support replication.

Replication System Overview

Heterogeneous Replication Guide 23

Replication System Overview

24 Replication Server

Sybase Replication Products

Sybase offers product lines that specifically support replication systems with heterogeneous
or non-ASE data servers, based on Sybase replication technology.

Sybase Replication products include:

• Replication Server, which is the centerpiece of Sybase advanced replication technology
and incorporates several features specifically to support non-ASE data servers in a Sybase
replication system.

• Replication Server Options that consist of a Replication Agent and either an Enterprise
Connect Data Access (ECDA), or ExpressConnect for Oracle.
• Replication Agents support Replication Server by providing a way to obtain

replication data from non-ASE primary databases. Replication Agents provide this
support for DB2 UDB, Microsoft SQL Server, and Oracle data servers.

• ECDA database gateways support Replication Server by providing access to a variety
of non-ASE databases, allowing them to function as replicate databases in a Sybase
replication system.

• ExpressConnect for Oracle supports Replication Server by providing direct
communication between Replication Server and Oracle database, without a need for a
separate gateway server. Express Connect for Oracle is only available with Replication
Server Options 15.5 or later.

• Replication Agent for IBM DB2 UDB that replicates data from IBM DB2 UDB on the
mainframe.

Replication Server
Replication Server can access data locally instead of from remote, centralized databases.
Compared to a centralized data system, a replication system improves system performance
and data availability, and reduces communication overhead.

Replication Server provides a cost-effective, fault-tolerant system for replicating data.
Because Replication Server replicates transactions—incremental changes instead of data
copies—and stored procedure invocations, rather than the operations that result from
execution of the stored procedures, it enables a high-performance distributed data
environment while maintaining transactional integrity of replicated data across the system.

How Replication Server Works
Replication Server distributes data over a network by managing replicated transactions while
retaining transaction integrity across the network.

It also provides application developers and system administrators with a flexible publish-and-
subscribe model for marking data and stored procedures to be replicated.

Sybase Replication Products

Heterogeneous Replication Guide 25

A Replication Server at each primary or replicate site coordinates the data replication
activities for the local data servers and exchanges data with Replication Servers at other sites.

A Replication Server:

• Receives transactions from primary databases through Replication Agents and distributes
them to sites with subscriptions for the data

• Receives transactions from other Replication Servers and applies them to local databases

Replication Server system tables store the information needed to accomplish these tasks. The
system tables include descriptions of the replicated data and the following replication objects:

• Replication definitions and subscriptions
• Security records for Replication Server users
• Routing information for other sites
• Access methods for local databases
• Other administrative information

Replication Server system tables are stored in a database called the Replication Server System
Database (RSSD).

To manage replication information in Replication Server, use Replication Command
Language (RCL). You can execute RCL commands, which resemble SQL commands, on
Replication Server using isql, the Sybase interactive SQL utility. For a complete reference for
RCL, see the Replication Server Reference Manual.

Publish-and-subscribe Model
Data are published at the primary sites to which Replication Servers at other (replicate sites)
subscribe.

Transactions that occur in a primary database are detected by a Replication Agent and
transferred to the local Replication Server, which distributes the information across a network
to Replication Servers at destination sites. In turn, these Replication Servers update the
replicate database according to the requirements of the remote client.

The primary data is the source of the data that Replication Server replicates in other databases.
To publish and subscribe data, you first create a replication definition to designate the scope
and location of the primary data. The replication definition describes the structure of the table.
A database replication definition can replicate individual tables, functions, and DDLs. A table
replication definition describes the structure of the table and states the key that is to be used to
query the table for updates and deletes.

Creating a replication definition does not, by itself, cause Replication Server to replicate data.
You must also create a subscription against the replication definition to instruct Replication
Server to replicate the data in another database. A subscription resembles a SQL select
statement: It can include a where clause to specify the rows of a table you want to replicate in
the local database.

Sybase Replication Products

26 Replication Server

You can have multiple replication definitions for a primary table to filter different objects.
Replicate tables can subscribe to different replication definitions to obtain different views of
the data.

After you have created subscriptions to replication definitions or publications, Replication
Server replicates transactions to databases with subscriptions for the data.

Replicated Functions
Performance can be improved over normal data replication by encapsulating many changes in
a single replicated function.

Because they are not associated with table replication definitions, replicated functions can
execute stored procedures that may or may not modify data directly.

With some data servers, Replication Server allows you to replicate stored procedure
invocations asynchronously between databases.

Note: Replication Server does not support stored procedure replication on all types of data
servers. For more information about replicating stored procedures on a particular data server,
refer to the appropriate Replication Agent documentation.

With replicated functions, you can execute a stored procedure in another database. A
replicated function allows you to:

• Replicate the execution of a stored procedure to subscribing sites
• Improve performance by replicating only the name and parameters of the stored procedure

rather than the actual database changes

Replication Server supports both applied functions and request functions:

• An applied function is replicated from a primary to a replicate database. Create
subscriptions at replicate sites for the function replication definition and mark the stored
procedure for replication in the primary database.

• A request function is replicated from a replicate to a primary database. There is no
subscription for a request function. Mark the stored procedure for replication in the
replicate database.

Transaction Management
Replication Server depends on data servers to provide transaction-processing services. To
guarantee the integrity of distributed data, data servers must comply with transaction-
processing conventions, such as atomicity and consistency.

Data servers that store primary data provide most of the concurrency control needed for the
distributed database system. If a transaction fails to update a table with primary data,
Replication Server does not distribute the transaction to other sites. When a transaction does
update primary data, Replication Server distributes the changes and, unless a failure occurs,
the update succeeds at all sites that have subscribed to the data.

Sybase Replication Products

Heterogeneous Replication Guide 27

Relationship with Other System Components
Replication Server interacts with other components of a replication system as either a server or
a client.

As a server, Replication Server supports connections from:

• Replication Agents, across which database commands are sent from primary databases
• Other Replication Servers, thus distributing the processing involved in message delivery

and providing a degree of scalability in a replication system
• Users or management tools for administration, data server identification, message

publication and subscription, and so on

As a client, Replication Server connects to:

• A Replication Server System Database (RSSD) which can be on an external Adaptive
Server Enterprise database, or the internal embedded RSSD (ERSSD).

• A database gateway to connect to the replicate non-ASE database.
• The Oracle replicate database directly, when using ExpressConnect for Oracle.

Replication Server Communication Protocols
Replication Server is an Open Client and Open Server application that uses Sybase Tabular
Data Stream™ (TDS) as the underlying communication protocol.

Any clients that request services from Replication Server must implement an Open Client
interface. This includes Replication Agents, system management tools, and user interface
tools such as isql.

As a client distributing messages to other Replication Servers or to replicate data servers,
Replication Server uses an Open Client interface. Therefore, when Replication Server needs
to send a message to a data server, either that data server must support an Open Server interface
running on TDS, or there must be an Open Server/TDS bridge or gateway application between
Replication Server and the replicate data server.

Replication to Sybase IQ does not require an additional gateway software because it appears
as an Open Server to Replication Server. Except for Oracle, which can also use
ExpressConnect to directly connect to the replicate database, the gateway software for
replicating to DB2 UDB, Microsoft SQL Server, and Oracle, is in the form of a Sybase ECDA
database gateway. Some ECDA gateways bridge from Open Server/TDS to the native
interface of the replicate data server (for example, ECDA Option for Oracle), while others
bridge from Open Server/TDS to an ODBC or JDBC driver for the data server. Replication
Server configurations vary, depending on the gateway used.

Replication to Oracle using ExpressConnect does not require an additional gateway;
ExpressConnect uses native Oracle connectivity, allowing Replication Server using
ExpressConnect to connect directly to Oracle.

Sybase Replication Products

28 Replication Server

Replication Server User IDs and Permissions
Replication Server requires several different user IDs. Some user IDs are required for other
components (or users) to access the Replication Server, and others are required for the
Replication Server to have access to other components in a replication system.

You can define user IDs using the Replication Server create connection command.

Note: Depending on how your replication system is configured, some of the user IDs in the
following list might not be required. For example, if you have separate Replication Servers for
primary and replicate databases, the primary Replication Server does not require a user ID to
access a replicate database.

These are the user IDs that are defined in a Replication Server:

• Replication Agent user – used by a Replication Agent to log in to a primary Replication
Server. This user ID must have connect source permission to deliver database commands
through the LTL interface.

• Replication Server user – used by other Replication Servers to log in to a Replication
Server and forward messages. This user ID must have connect source permission to
forward database commands through the RCL interface.

• SysAdmin user – used by system administrators or system administration tools to perform
administration activities. Depending on the task, this user ID must have sa, create object,
or primary subscribe permission.

• Maintenance user – used by Replication Server to deliver messages to a replicate data
server. This user ID must have the necessary permissions in the replicate data server to
execute the commands to which messages to be delivered are mapped to a primary
database. Work performed by the maintenance user is not replicated.

• Replicate user – used by a replicate Replication Server to deliver messages to a primary
data server. For delivery for “request” messages, that is, messages from a replicate data
server that are selected for delivery to the primary data server, Replication Server uses the
user ID of the user who executes the command in the replicate database. This user ID must
have the necessary permissions in the primary data server to execute the commands to
which messages to be delivered are mapped.

• RSI user – used by Replication Server to log in to other Replication Servers to forward
messages to be delivered. This user ID must have connect source permission in the
replicate Replication Server.

• RSSD user – used by Replication Server to log in to the Replication Server System
Database (RSSD) that manages its operational data. This user ID must have full control in
the RSSD to create and drop objects, execute procedures, and query and update tables.

Sybase Replication Products

Heterogeneous Replication Guide 29

Relationship with Replication Agents
While Replication Server is extensible (with customizable function strings and error handling,
custom datatype definitions, and translations between datatypes) to meet the needs of
replicate data servers, Replication Server support of primary data servers is limited.

The Replication Server interface for primary data servers is its proprietary Log Transfer
Language (LTL). Transactions from a primary data server must be translated to LTL to be
delivered to a primary Replication Server. Therefore, support for primary data servers is
limited to those for which Sybase provides a Replication Agent to perform the translation to
LTL for primary database operations.

Replication Server interfaces on both the primary and replicate sides are supported by the
underlying Open Client/Open Server interface running on TDS.

LTM Locator Updates
The primary Replication Server maintains a “locator” value (LTM locator) that identifies the
last point in a transaction log from which all data has been successfully received by the
primary Replication Server.

The Replication Agent periodically requests this value from the Replication Server
connection to identify a position in the transaction log, which can then be used to identify
where older data can be released or removed from the log.

There is a performance trade-off in determining how often to request an LTM locator update.
Frequent queries of the LTM locator value from a Replication Server can slow down
replication (the Replication Agent must stop sending LTL commands long enough to request
and receive the LTM locator value) while it provides more frequent opportunities to release
data from the primary database transaction log. When restarting, the Replication Agent must
re-send all data in the log that exists since the last LTM locator value was received from
Replication Server.

Generally, if replication throughput performance is a priority, acquire enough log resource to
allow less frequent log truncation and less frequent retrieval of the LTM locator value. If log
resources are scarce, more frequent retrieval of the LTM locator value and more frequent
truncation may be necessary.

For more information about using the LTM locator, see the appropriate Replication Agent
documentation.

LTL Generation
The number of bytes of information sent to Replication Server has a direct impact on the
performance of the replication system; more data and commands received by Replication
Server require more work and time to process.

In addition, more data also requires more network resources. There are several configuration
options available for the Replication Agent that you can use to minimize this impact:

Sybase Replication Products

30 Replication Server

• Using the RSSD. By reading replication definitions from the RSSD, the Replication Agent
can send the column data in the same column order as specified by the replication
definition. This allows Replication Server to bypass sorting the column information before
processing. Furthermore, column names are not sent with the data, which reduces the
number of bytes of information required.

• Sending minimal columns. When an update operation occurs on a table, only a portion of
the columns may have been altered. By sending the before and after images of only those
columns that changed, the Replication Agent sends less information.

Note: Do not use minimal columns if the data in the replicate database involves custom
function strings.

• Batch mode. A Replication Agent must “wrap” transactions in a limited amount of
administrative LTL for the Replication Server. In batch mode, the Replication Agent can
wrap multiple commands in the same set of administrative commands, which reduces the
overall LTL generated and processed by the network and the Replication Server.
In addition to batch mode, most Replication Agents have a “batch timeout” parameter,
which allows a partial batch to be sent to the Replication Server after the Replication Agent
waits a specified period of time and no additional transactions are received to fill the batch.

Note: Do not use Replication Agent batch mode if you use any Replication Server user-
defined datatype (UDD) translations, either column-level or class-level.

• Origin time. Each transaction sent to Replication Server has an origin queue ID. The origin
queue ID may include the time that the transaction was committed at the primary database.
If the origin time is not sent by the Replication Agent, the processing effort is reduced
somewhat, but the quantity of LTL sent to the Replication Server is the same.

For a complete description of the Replication Agent configuration parameters that affect LTL
output, see the Replication Agent Administration Guide.

rs_ticket
Some Replication Agents can start rs_ticket transactions.

The transactions provide data for Replication Server performance, module heartbeat,
replication health, and table-level quiesce. See the Replication Server Reference Manual.

Database Connections
Replication Server keeps track of other components in a replication system using connections
that identify primary and replicate databases and routes that identify other Replication
Servers.

Since Replication Server was originally designed for Adaptive Server Enterprise database
replication, the definition of a connection in Replication Server follows the Sybase standard of
<server name>.<database name>. For example, a Replication Server connection to an
Adaptive Server named ASE1 and database PUBS is named ASE1.PUBS.

To connect to a primary non-ASE data server, Replication Server allows a connection from a
Replication Agent on behalf of the non-ASE primary database. For a replicate database,

Sybase Replication Products

Heterogeneous Replication Guide 31

Replication Server connects to an ECDA database gateway, which in turn connects to the
non-ASE replicate data server. For Oracle, Replication Server can also connect directly to the
replicate data server using ExpressConnect. Since Replication Agents, ECDA gateways, and
ExpressConnect are not data servers, the Replication Server connection properties for those
components may have different meanings than they do for a database server connection.

A single Replication Server connection can support data flow in either one or two directions.
Data flows in through a Replication Server connection by way of the Replication Agent user
thread. Data flows out through a Replication Server connection by way of the Data Server
Interface (DSI) thread. Each Replication Server connection can support either outbound data
flow only (through the DSI thread), or both inbound and outbound data flow (through the
Replication Agent User and DSI threads).

Replication Agent User Thread
Replication Server receives all data-change operations or transactions to be replicated from a
primary data server through the Replication Agent User thread of the database connection for
that data server.

Every primary database that supplies transactions to be replicated must be represented by a
Replication Server database connection with an enabled Replication Agent User thread.

Replication Server establishes a connection directly with the primary database, if it resides in
an Adaptive Server. If the primary database resides in a non-ASE data server, a separate
Replication Agent component communicates with the Replication Server, using a Replication
Agent User thread connection, on behalf of the primary database.

Note: Replication Server never attempts to connect to the Replication Agent User thread of a
connection. The only entity that can initiate communication to a Replication Agent User
thread is the primary data server or the Replication Agent.

On a Replication Agent User thread, the primary data server or Replication Agent is the client,
and the primary Replication Server is the server.

DSI Thread
The DSI thread of a Replication Server connection is where the replicated transaction is
delivered by Replication Server.

Every replicate database expected to receive replicated transactions must be represented by a
Replication Server connection with an enabled DSI thread.

Replication Server establishes a connection directly with the replicate database, if it resides in
Adaptive Server. If the replicate database resides in a non-Sybase data server, Replication
Server communicates using:

• An ECDA database gateway by way of the connection’s DSI thread, or,
• ExpressConnect to establish a connection directly with the Oracle replicate database.

Sybase Replication Products

32 Replication Server

Note: A replicate data server or database gateway never attempts to connect to the DSI thread
of a connection. The only entity that can initiate communication to a DSI thread is the
Replication Server.

On a DSI thread, the Replication Server is the client, and the replicate data server or database
gateway is the server.

Maintenance User Purpose
The maintenance user inserts, deletes, and updates rows in replicated tables, and executes
replicated stored procedures. The database owner (or system administrator) must grant the
permission required for the maintenance user to perform these tasks.

To update replicated data, Replication Server logs in to the replicate data server as the
maintenance user. In an Adaptive Server replicate database, Sybase Central or rs_init
automatically creates the user ID for the Replication Server maintenance user and adds the
user to the replicate database.

The maintenance user ID and password are defined to Replication Server automatically with
the Replication Server create connection command for the replicate database. If you change
the password for the maintenance user ID in the data server, you can use Sybase Central or the
Replication Server alter connection command to change the password for the Replication
Server connection.

The Replication Server maintenance user must also have permission to access the
rs_lastcommit and rs_info system tables in the replicate database, and any stored
procedures that use those tables.

Neither Sybase Central nor rs_init grants database permissions to the maintenance user for
user tables and stored procedures. You must grant database permissions on replicated tables
and stored procedures before you can replicate transactions for replicated tables or replicate
executions of the replicated stored procedures. For each table replicated in the database, and
for each stored procedure executed due to replication run:
grant all on table_name to maint_user

Alternatively, you can assign the maintenance user ID (maint_user) to a database
administrator role, if that role has the required authority on all replicate objects.

DDL User Purpose
Replication for Microsoft SQL Server and Oracle can replicate DDL commands that are
entered at the primary database to the subscribers database.

This capability is supported only where the primary and replicate data servers are identical, for
example Oracle to Oracle. For more information, see the Replication Agent Administration
Guide.

Sybase Replication Products

Heterogeneous Replication Guide 33

Datatypes, Datatype Definitions, and Restricted Datatypes
Datatype definitions for a particular data server datatype are grouped in a datatype class.

For more information about datatype definitions (user-defined datatypes), see the Replication
Server Reference Manual > Replication Server System Tables > rs_datatype.

Restricted Datatype
You cannot use the rs_address datatype as either the source or target of column-level or
class-level translations.

Error and Function-string Classes for Non-ASE Data Servers
Sybase provides function-string classes and associated function strings for all supported non-
ASE replicate data servers.

Non-ASE error classes are created by Replication Server and error actions are defined for
different non-ASE error classes. You can create a connection to a non-ASE database with a
corresponding error class by using the appropriate connection profile.

Object Publication and Subscriptions Limitations
Learn about the limitations to object publications and subscriptions in a Sybase replication
system.

The limitations are:

• When declaring columns in a replication definition for a non-ASE primary database, use
the Replication Server datatype that matches the datatype of the column in the primary
database. If there is no matching native Replication Server datatype, find a datatype
definition that matches the primary database datatype.

• When creating subscriptions with where clauses predicated on a column involved in
column-level translation, specify the predicate value in “declared” format (that is, before
translation).

Replication Agent
Replication Agent extends the capabilities of Replication Server by supporting non-ASE data
servers as primary data servers in a Sybase replication system.

The Replication Agent detects any changes to primary data and using Log Transfer Language
(LTL), a subset of Replication Control Language (RCL), sends primary data changes to the
primary Replication Server.

Sybase Replication Products

34 Replication Server

How Replication Agent Works
A Replication Agent is a Replication Server client that retrieves information from a primary
database transaction log and formats it for the primary Replication Server.

Begin by marking for replication the desired primary tables and stored procedures in the
Replication Agent.

A Replication Agent:

1. Logs in to the Replication Server.
2. Sends a connect source command to identify the session as a log transfer source and to

specify the database for which transaction information will be transferred.
3. Retrieves the name of the maintenance user for the database from the Replication Server.
4. Requests the secondary truncation point for the database from the Replication Server.
5. Retrieves records from the transaction log, beginning at the record following the

secondary truncation point, and formats the information into Log Transfer Language
(LTL) commands.

Replication Agent Connections
A Replication Agent sends data to Replication Server. Replication Agent logs in to the
Replication Server, connects to the Replication Agent User thread of a Replication Server
connection, and communicates with Replication Server over that connection.

The implications of the Replication Agent connections:

• A valid user ID, which the Replication Agent uses to log in to the Replication Server, must
be defined at the Replication Server.

• The Replication Agent user ID must be granted connect source permission in Replication
Server. connect source permission allows the Replication Agent to send commands that
are valid only on a Replication Agent User thread.

• The Replication Agent must record this user ID and associated password.
• The Replication Agent must record the server and database portions of the Replication

Server connection definition to identify and connect to the correct Replication Agent User
thread.

• The user_name and password defined in the Replication Server create connection
command may be a valid user ID and password for the primary database.

Note: Replication Agent for Oracle, Microsoft SQL Server and IBM DB2 UDB for UNIX,
requires the user_name and password to be valid and reports an error if the user is not
found in the primary database.

The Replication Agent validates that the connection user_name exists in the primary
database. However, Replication Server does not know if (or when) a DSI thread will be
used. Therefore, the user ID and password must be valid in case the DSI thread is active.

Sybase Replication Products

Heterogeneous Replication Guide 35

Note: The requirement for a valid primary database user ID varies by Replication Agent.
Some Replication Agents do not require (nor do they check for) a valid user ID on the
Replication Server connection.

Interfaces File
For the interaction between a Replication Agent and a Replication Server, the only
interface file entry that may be required is one that identifies the Replication Server.

The Replication Agent for DB2 UDB does not require an interface file. The Replication
Server and RSSD location, if needed, is in the LTMCFG file.

The Replication Agent (for DB2 UDB on UNIX and Windows platforms, Microsoft SQL
Server, and Oracle) does not require an interface file entry, as it records the Replication
Server host name and port number in configuration parameters.

Replication Agent Maintenance User Processing
When the Replication Agent connects to a Replication Server connection, the Replication
Agent requests the maintenance user ID and may validate that the user ID exists in the primary
database.

This validation requires that the maintenance user ID defined in any Replication Server
connection be valid for the database the connection represents, regardless of whether that
connection is for primary transactions only, replicate transactions only, or both.

The Replication Agent does not use the maintenance user ID to log in to the primary database.
Other than validating that the user ID exists, the only reference the Replication Agent makes to
the maintenance user ID is to filter out primary database transactions created by the
maintenance user.

The Replication Agent filters out maintenance user transactions to avoid having a transaction
applied more than once to the primary database. In a bidirectional replication scheme,
replication can occur both to and from the same database (which may have both a primary and
a replicate role). When a primary transaction is applied to a replicate database, the applying
user ID is the maintenance user for the replicate database. A Replication Agent scanning
transactions at the replicate database must ignore the transactions applied by the Replication
Server maintenance user to prevent those transactions from being sent back and applied to the
primary database.

The Replication Agent accesses the database using a user ID defined at the primary database
(or for DB2, a user ID that can access the DB2 log files). This user ID is not the same as the
maintenance user defined in the Replication Server connection. The Replication Agent user
ID used to access the primary database has a different role and purpose than the maintenance
user defined to apply replicated transactions.

There may also be another user ID defined to the Replication Agent that is used to administer
the Replication Agent. This user ID is also separate from the Replication Server maintenance
user that applies replicate transactions.

Sybase Replication Products

36 Replication Server

A Replication Agent can use three different users:

• A user ID defined at the primary database, which the Replication Agent uses to log in to the
primary data server and manipulate primary replication objects or read the database
transaction log.

• A user ID that can log in to the Replication Agent and issue Replication Agent commands
and configure Replication Agent parameters.

• A maintenance user ID, defined at the primary database and recorded in the primary
Replication Server connection. The Replication Agent validates this user ID on behalf of
the Replication Server, and the Replication Agent can be configured to ignore transactions
that are created by this user ID.

DDL User Processing
If DDL replication is available, this user is defined at the primary database.

This user name is included in the LTL in all DDL commands sent by the Replication Agent.
The DSI thread of the Replication Server uses this user name to apply the DDL to the replicate
database.

Non-ASE Replication Agents
Sybase offers non-ASE Replication Agents such as Replication Agent for DB2 UDB and
Replication Agent.

Replication Agent for DB2 UDB
Replication Agent for DB2 UDB provides primary data server support for a DB2 UDB server
running on IBM z/OS platforms.

Replication Agent for DB2 UDB product fits into a replication system as follows:

• The primary data server is DB2 UDB, which runs as a subsystem in IBM z/OS. The
transaction logs are DB2 logs.

• Replication Agent for DB2 UDB runs as a started task or job in IBM z/OS. It reads the DB2
logs and retrieves the relevant DB2 active and archive log entries for the tables marked for
replication for one or more DB2 subsystems. It transfers that data to Replication Server
using the TCP/IP communication protocol.

The DB2 data server logs any changes to rows in DB2 tables as they occur. The information
written to the transaction log includes copies of the data before and after the changes. In DB2,
these records are known as “undo” and “redo” records. Control records are written for
commits and aborts; these records are translated to commit and rollback operations.

The DB2 log consists of a series of data sets, which Sybase Log Extract uses to identify DB2
data changes. Because DB2 writes change records to the active log as they occur, Sybase Log
Extract can process the log records immediately after they are entered.

Sybase Replication Products

Heterogeneous Replication Guide 37

Replication Agent
Replication Agent is a product that reads the database transaction logs in DB2 UDB,
Microsoft SQL Server, or Oracle primary databases on Linux, UNIX, and Microsoft Windows
platforms.

Replication Agent is implemented in the Java programming language. When you install
Replication Agent, a Java Runtime Environment (JRE) is installed on the computer that is
designated as the Replication Agent host machine.

Replication Agent uses the Java Database Connectivity (JDBC) protocol for all of its
communication. It uses a single instance of the Sybase JDBC driver (jConnect™ for JDBC™)
to manage all of its connections to Open Client and Open Server applications, including the
primary Replication Server. In the case of the primary data server, Replication Agent connects
to the primary database using the appropriate JDBC driver for that database.

Enterprise Connect Data Access
The Enterprise Connect Data Access (ECDA) products are Open Server-based software
gateways that support DB-Library™ and CT-Library application programming interfaces
(APIs), and Java Database Connectivity (JDBC) and Open Database Connectivity (ODBC)
protocols.

ECDA products serve as fundamental building blocks for database middleware applications
that allow you to access mainframe and LAN-based non-ASE data sources.

ECDA products provide:

• Access services that provide access to non-ASE data sources
• Administrative services (through DirectConnect Manager) that provide server-side

system management

Note: In Replication Server Options 15.5, you can also use ExpressConnect for Oracle to
replicate to an Oracle data server.

How ECDA Works
All Sybase ECDA Options provide basic connectivity to non-ASE data services. In particular,
they provide access management, copy management, and remote systems management.

Each ECDA Option consists of a DirectConnect server and one or more access service
libraries. The server provides the framework in which the service libraries operate. From the
server, each access service library accesses data from a particular target database, such as DB2
UDB, Microsoft SQL Server, or Oracle.

Each access service library contains one or more access services that are specific sets of
configuration properties. An access service transfers data between Replication Server and the
target databases.

Sybase Replication Products

38 Replication Server

The DirectConnect server listens for, validates, and accepts incoming client connections, such
as language events or remote procedure calls (RPCs). These events are routed to the target data
source (replicate database) through access services, which provide target-specific
connectivity features, including datatype conversion, network connectivity, and SQL
transformation.

Interface File
The interface file contains a list of labels, typically server names, each of which has a
corresponding host name and port number, where the identified server should be “listening”
for login requests.

Replication Server is an Open Server application; the preferred method for determining the
location (host and port number) of another Open Server application is to look up the location in
a file.

In the interaction between an ECDA database gateway and a Replication Server, the
interface file is important. Because the Replication Server attempts to log in to the service
identified by the server name in the Replication Server connection, that service name must
exist in the Replication Server interface file. In addition, the interface file entry must
also exist as a service name in the ECDA gateway configuration file entries.

A single ECDA can act as a gateway for one or many different database instances. In the
ECDA configuration, each database to be accessed by the ECDA is configured as a unique
service name. For the Replication Server to know which configured service name to connect
to, it uses the server name passed at login time and expects to find a matching service name to
use to complete the connection. The connection must match an interface file entry. For
Microsoft SQL Server, the database name must be a valid database for that service. For more
information about the role of service names and their configurations, see the ECDA Access
Service Users Guide.

Connection Shared by Replication Agent and ECDA
A single Replication Server connection can support both an ECDA gateway and a Replication
Agent, because each of these components connects to the Replication Server on a different
thread.

If you replicate information both into and out of the same database, having a common
connection for both a database gateway and a Replication Agent can make the replication
system network topology less resource intensive.

To create a Replication Server connection to a database that is both primary and replicate, you
must define the connection to correctly support the ECDA database gateway, then configure
the Replication Agent appropriately:

• In the Replication Server, use the create connection command to define the server_name
and database_name for the connection. The server_name value must match a configured
service name in the ECDA.

Sybase Replication Products

Heterogeneous Replication Guide 39

• In the Replication Agent, set the value of the rs_source_ds parameter to that
server_name, and set the value of the rs_source_db parameter to the desired
database_name.

ECDA Database Gateways
ECDA database gateway applies transactions from a Replication Server to a non-ASE
replicate database in a Sybase replication system.

To accomplish this, Replication Server logs in to the ECDA gateway using the information
specified for a Replication Server connection. Replication Server logs in to the server using
the user_name and password, and issues a use database command for the database defined
in the connection.

For Replication Server, there is nothing to distinguish an ECDA gateway from an Adaptive
Server replicate database. Replication Server delivers the same commands—and expects the
same results—from any DSI thread it communicates with.

This has the following implications:

• A valid user ID, which the Replication Server uses to log in to the replicate database, must
be defined in a Replication Server connection.

• This user ID must be granted permissions to update replicate tables and execute replicate
procedures.

• The replicate database must be able to maintain a RS_LASTCOMMIT table and a
RS_TICKET_HISTORY table and support rs_get_lastcommit functionality.
Replication Server provides sample connection profiles to set up the tables and functions
required for a replicate database in DB2 UDB, Microsoft SQL Server, and Oracle
databases.
For an overview of the expectations of a replicate data server and gateway, see Replication
Server Design Guide > Data Replication into Non-Adaptive Server Data Servers.

• Datatype representations must be translated to match the native datatypes of the replicate
database. Replication Server provides sample connection profiles to set up the function
strings, function-string classes, and base datatype definitions and translations necessary to
support replication into DB2 UDB, Microsoft SQL Server, and Oracle data servers.

• The Replication Server command resume connection attempts to initiate activity with the
DSI thread of the specified connection. For an ECDA, this is logging in to the
DirectConnect server, accessing the RS_LASTCOMMIT table in the replicate database,
and then applying transactions to the replicate database. Any failure in this sequence is
recorded as a failure in the Replication Server log.

ECDA Option for ODBC
ECDA Option for ODBC provides Replication Server with an Open Client interface to DB2
UDB, Microsoft SQL Server, and ODBC-accessible databases.

Note: The ODBC driver for the ECDA Option for ODBC (the back-end driver connecting to
the target) is not provided by Sybase; you must obtain, install, and configure it.

Sybase Replication Products

40 Replication Server

ECDA Option for ODBC provides access to non-ASE data sources, using the ODBC back-
end (server-side) driver that you obtain for your target database, such as IBM DB2 or
Microsoft SQL Server. Following the vendor’s instructions, install the ODBC driver on the
same server as ECDA Option for ODBC, then configure ECDA Option for ODBC to use that
ODBC driver to access your database.

Note: Verify that your ODBC driver is compatible with Sybase driver manager software or
that it contains a driver manager.

Because ODBC drivers have varying degrees of functionality, it is important that when
working with non-ASE-provided, third-party ODBC drivers, you carefully integrate and test
them to be sure they meet your needs.

ECDA Option for Oracle
ECDA Option for Oracle provides Replication Server with an Open Client interface to Oracle
databases.

To Replication Server, ECDA Option for Oracle appears as an Open Server application that
understands Oracle SQL.

Note: You can also use ExpressConnect for Oracle to replicate to an Oracle data server.
ExpressConnect for Oracle provides a direct interface between Replication Server and Oracle.

See also
• ExpressConnect for Oracle on page 41

Mainframe Connect DirectConnect for z/OS Option
Mainframe Connect DirectConnect for z/OS Option provides Replication Server with an
Open Client interface to DB2 running on a mainframe.

ExpressConnect for Oracle
ExpressConnect for Oracle (ECO) is a library that is loaded by Replication Server 15.5 or later
for Oracle replication.

ECO has these advantages over ECDA:

• It does not require a separate server process for starting up, monitoring, or administering.
• Since Replication Server and ECO run within the same process, no SSL is needed between

them, and also there is no requirement to configure settings previously covered in the
ECDA for Oracle global configuration parameters.

• Server connectivity is configured via Replication Server using the create connection and
alter connection commands, thus there is no need to separately configure the equivalent to

Sybase Replication Products

Heterogeneous Replication Guide 41

the ECDA for Oracle connect_string setting. See Replication Server Reference
Manual.

• Configuration of settings equivalent to the ECDA for Oracle service-specific settings such
as text_chunksize, autocommit, array_size is also not required, as these
settings are automatically determined by Replication Server (in some cases based on the
Replication Agent input) and communicated to ECO.

ECO includes certain features similar to ECDA for Oracle:

• Same set of datatype transformations.
• Language and charset conversion between Sybase data and Oracle data. In ECO, this is

configured using the map.cfg file.

• Replication of empty strings in an ASE primary database to an Oracle replicate database,
results in a string value of 1 or more (depending on whether the column is varchar or
fixed char width datatype) blank spaces in Oracle.

ExpressConnect for Oracle requires only the tnsnames.ora file in order to establish
location transparency. It does not require an interfaces file like ECDA for Oracle. You
must specify the service name defined in the tnsnames.ora file for connection
configuration.

See ExpressConnect for Oracle Installation and Configuration Guide for detailed information
on ECO.

Sybase Replication Products

42 Replication Server

IBM DB2 for z/OS as Primary Data Server

You must consider the primary data server issues and considerations specific to the DB2 UDB
server on a IBM z/OS platform in a Sybase replication system.

Replication Agent for DB2 UDB
As a primary data server, the DB2 UDB interacts with the Replication Agent for DB2 UDB.

When using Replication Agent for DB2 UDB, consider the following:

• The Replication Agent identifies and transfers information about data-changing
operations or transactions from a DB2 UDB primary database to a primary Replication
Server.

• The Replication Agent interacts with the primary Replication Server and with the RSSD of
the primary Replication Server, if so configured.

Replication Intrusions and Impacts
The Replication Agent DB2 libraries must be authorized by the authorized program facility
(APF).

The performance and operation of DB2 UDB primary data servers in a Sybase replication
system might be affected as follows:

• In the DB2 UDB transaction log:
• Replication requires a before and after image of each row that is changed. When you

mark a primary table for replication, the table is altered with the DATA CAPTURE
CHANGES clause. As the number of tables marked for replication increases, so does
the DASD space requirement for the DB2 UDB active log data sets.

• Using Replication Agent for DB2 UDB increases the amount of data stored in DB2
UDB logs. The size of the increase depends on the number, type, and size of the
primary tables, and the types of transactions replicated. For example, update
transactions require both before and after images, and they include all of the columns in
a row, even if those columns do not change. For more detailed information, see the
Replication Agent for DB2 UDB documentation.

• When you install the Replication Agent, two Replication Agent system tables are created
in the primary DB2 UDB:
• LTMOBJECTS contains a row for each primary table marked for replication. Its size

depends on the number of tables marked for replication.
• LTMMARKER, when updated, can be used to aid in the materialization process.

IBM DB2 for z/OS as Primary Data Server

Heterogeneous Replication Guide 43

• A task started in Replication Agent for DB2 UDB can process the log of a single DB2
subsystem, or all logs in a DB2 data sharing group. This behavior is controlled by LTMCFG
parameters: DataSharingOption, DataSharingMember, Log_identifier, and BSDS.

• Primary database limitations:
• LOB replication is not supported.
• charand varchar maximum size is 32767.

• DDL and stored procedure replication is not supported.
• Do not use these DB2 UDB utilities, as doing so may jeopardize replication integrity:

• LOAD LOG NO

• RECOVER

• REORG with RECOVER

• rs_ticket cannot be started in Replication Agent DB2 UDB. In Replication Server 15.5, it
is possible to “inject” the rs_ticket into a Replication Agent DB2 connection. See
Replication Server Reference Manual > Replication Server Commands > sysadmin
issue_ticket.

DB2 UDB Primary Database Permissions
Any updates applied to the primary database by the maintenance user are ignored for
replication, unless the value of the LTM for z/OS LTM_process_maint_uid_trans
configuration parameter is Y.

Create these two user IDs:

• LTMADMIN user – a TSO user, optionally named LTMADMIN, to:
• Install, start, and stop the Replication Agent for DB2 UDB
• Manage the Replication Agent system tables on the DB2 UDB
The LTMADMIN user must have ALTER TABLE authority on any DB2 UDB table to be
marked for replication. This user ID issues an ALTER TABLE DATA CAPTURE CHANGES
command on a primary table that is marked for replication.
The LTMADMIN user must also have TRACE, DISPLAY, and MONITOR2 permission on
the DB2 UDB log files.

• Replication Server maintenance user – the user ID specified in the Replication Server
create connection command for the primary database.

Primary Data Server Connectivity
The Replication Agent for DB2 UDB requires a valid user ID that is defined to IBM z/OS and
granted execute permission to the correct DB2 UDB plan and package to connect to a primary
DB2 UDB data server in an IBM z/OS environment.

Replication Agent for DB2 UDB uses this user ID to log in to the DB2 UDB.

IBM DB2 for z/OS as Primary Data Server

44 Replication Server

Replication Agent for DB2 UDB jobs must have their Job Control Language (JCL) modified
to execute with the correct accounting, user id, DB2 UDB logs, and DB2 UDB subsystem
libraries.

Replication Server Connectivity
Replication Agent for DB2 UDB does not use an interface file to connect to the
Replication Server. The information needed to connect to the Replication Server is in the
LTMCFG file.

The Replication Server interface file does not require an entry for Replication Agent for
DB2, unless the Replication Manager is used to create replication objects.

Replication Server System Database Connectivity
Replication Agent for DB2 UDB does not require access to the Replication Server System
Database (RSSD).

However, you can reduce the amount of data between the Replication Agent for DB2 UDB and
Replication Server by using an RSSD.

If the LTMCFG parameter, Use_repdef=Y, replication definitions are loaded when
Replication Agent for DB2 UDB starts. If the replication definition is changed, stop and
restart the Replication Agent in order for the Replication Agent to recognize the changes.

The information needed to connect to the RSSD is provided in the LTMCFG file. The
parameters will all begin with RSSD, and all parameters must be entered. However, they are
not verified if Use_repdef is set to N.

DB2 UDB Primary Database Configuration
Replication Agent can run against a single DB2 subsystem, or all logs in a DB2 data-sharing
group. LTMCFG parameters describe the DB2 environment for Replication Agent for DB2
UDB (DataSharingOption, DataSharing Member, Log-identifier, and BSDS.)

The Replication Agent for DB2 UDB is a mainframe z/OS application consisting of two tasks
that run simultaneously in a single z/OS address space:
• Sybase Log Extract – continuously scans the DB2 UDB active and archive logs for data-

changing operations on primary tables.
• Replication Agent for DB2 UDB for z/OS – receives replicated transactions from Sybase

Log Extract, converts them to Log Transfer Language (LTL), and sends them to the
primary Replication Server.

When the DataSharingOption is Multi, Replication Agent for DB2 UDB refers to the Boot
Strap Dataset (BSDS) parameter to identify the BSDS for each DB2 member in the data-

IBM DB2 for z/OS as Primary Data Server

Heterogeneous Replication Guide 45

sharing group, and displays the position of the Replication Agent for DB2 UDB and the DB2
log for each member of the group.

All Replication Agent installation and configuration issues are described in the Replication
Agent for DB2 UDB Installation Guide. However, in a heterogeneous replication system:

• The values of the rs_source_ds and rs_source_db parameters are case-sensitive. If you
do not use same case in both Replication Agent and Replication Server parameters, the
connection fails.

• The Replication Agent for DB2 UDB for z/OS LTM_process_maint_uid_trans
configuration parameter controls whether the Replication Agent sends transactions
executed by the maintenance user to the primary Replication Server.
In a bidirectional replication environment (replicating both into and out of the same DB2
UDB region), set the value of the LTM_process_maint_uid_trans parameter should be set
to N. If you do not, transactions replicated to another site may return to be applied at the
originating site, creating an endless loop.

Replication Definitions for Primary Tables in DB2 for z/OS
The Replication Agent for DB2 UDB for z/OS Use_repdef configuration parameter controls
whether the Replication Agent sends Log Transfer Language (LTL) that contains only the
columns specified in a replication definition, or all of the columns in the DB2 UDB primary
table.

When the value of the Use_repdef parameter is set to N, the Replication Agent sends LTL with
data for all of the columns in the DB2 UDB primary table. When the value of the Use_repdef
parameter is set to Y, the Replication Agent sends LTL with data for only the columns
specified in the replication definition.

By sending data for only the columns needed for the replication definition, network traffic is
reduced, which may improve performance.

If you set the value of Use_repdef to Y, you can use other parameters, such as
suppress_col_names, to enhance Replication Agent performance. See the Replication
Agent for DB2 UDB Installation Guide.

The LTL_table_col_case parameter controls the case in which the Replication Agent sends
table and column names to Replication Server. The default in DB2 is uppercase. However,
with this parameter you can change the table and column names to uppercase, lowercase, or
keep the names as defined in DB2.

Names of tables can conflict with reserved words in Replication Server or the target database.
To preserve the table name, you can use with primary table named and with replicate table
named clauses. However, you can have Replication Agent for DB2 change the table name
prior to sending the LTL to Replication Server by using the REPLICATE_NAME option in the
LTMOBJECTS table. See Replication Agent for DB2 UDB User and Troubleshooting Guide

IBM DB2 for z/OS as Primary Data Server

46 Replication Server

> Replication Agent Setup > DB2 Source Table Considerations > DB2 Table Names and
Reserved Keywords.

DB2 for z/OS Primary Datatype Translation
The Replication Agent for DB2 UDB for z/OS Date_in_char, Time_in_char, and
Timestamp_in_char configuration parameters control whether the Replication Agent sends
values in character strings, or converts them to the Sybase datetime format.

See the Replication Agent for DB2 UDB Users and Troubleshooting Guide for a complete
description of these parameters.

Note: If you use any date- or time-related user-defined datatypes (UDDs) in a replication
definition, Sybase recommends that you configure the Replication Agent to send data to the
Replication Server in the format that is native to the primary database. Sybase recommends to
not have the Replication Agent perform any datatype translations.

In general, the Replication Agent for DB2 UDB should not perform datatype translations.
However, when all of the replicate data servers require the same translation, to save processing
time, it is probably better to perform the translation once at the Replication Agent, rather than
at each replicate database DSI.

IBM DB2 UDB represents midnight as 24.00. This format may not be compatible with other
data servers. To change the value from 24.00 to 00.00, you can modify the datatype definition
to automatically change the value.

IBM DB2 UDB allows year values that may be incompatible with other data servers. If the
replicate data server does not allow years as early as the IBM DB2 UDB does, set the
LTMCFG parameter, Minimum_year, so that the DB2 UDB Replication Agent modifies any
year earlier than the Minimum_year parameter to the Date_conv_default parameter.

Character Sets
Data within DB2 can be encoded with multiple character sets. Additionally, Replication
Agent for DB2 can be used to convert the replicated characters to the Replication Servers
character set before it is sent to the Replication Server.

The parameters that control character set properties in Replication Agent DB2 are codepage
and RS_ccsid. For additional information on these parameters, see Replication Agent for
DB2 UDB Installation Guide > LTM for MVS Configuration Parameters.

IBM DB2 for z/OS as Primary Data Server

Heterogeneous Replication Guide 47

Materialization
Materialization is the process of initially populating the replicate database with a copy of the
data from the primary database.

Use Replication Agent for DB2 UDB to materialize the target with the DB2 data. The DB2
unload utility produces a data file and a punch-card file that describes the data. You can use
these files as input to the materialization feature of Replication Agent for DB2 UDB to
initialize the replication target.

See Replication Agent for DB2 UDB User and Troubleshooting Guide > Replication Server
Setup > Task 3: Materializing Replicate Tables > Using Replication Agent Materialization.

IBM DB2 for z/OS as Primary Data Server

48 Replication Server

IBM DB2 for Linux, UNIX, and Windows as
Primary Data Server

Learn about the primary database issues and considerations specific to the DB2 UDB server
on a UNIX, Windows, and Linux platform in a Sybase replication system.

Replication Agent for UDB
As a primary data server, DB2 UDB interacts with Replication Agent. An instance of the
Replication Agent configured for the DB2 UDB is referred to as a Replication Agent for
UDB.

The Replication Agent for UDB identifies and transfers information about data-changing
operations or transactions from a DB2 UDB primary data server to a primary Replication
Server.

Note: A separate Replication Agent for UDB instance is required for each database from
which transactions are replicated.

The Replication Agent interacts with the primary Replication Server and with the RSSD of the
primary Replication Server, if so configured.

Note: Replication Agent is a Java program. Some operating systems may require patches to
support Java. See the Replication Agent Administration Guide and the Replication Agent
Release Bulletin.

DB2 UDB System Management
The Replication Agent provides a number of commands that return metadata information
about the primary database (database names, table names, procedure names, column names,
and so on).

It does this by issuing specific JDBC calls designed to return this information or by querying
the system tables directly.

IBM DB2 for Linux, UNIX, and Windows as Primary Data Server

Heterogeneous Replication Guide 49

Replication Manager Limitations
The Replication Manager plug-in cannot start, but can stop a Replication Agent instance in a
primary DB2 UDB data server.

See the Replication Agent Administration Guide for more information about starting and
stopping a Replication Agent instance.

Replication Intrusions and Impacts on the DB2 UDB
The performance and operation of the DB2 UDB primary data servers in a Sybase replication
system may be affected by the transaction log.

• You must set the LOGARCHMETH1 configuration parameter to LOGRETAIN or
DISK:<path>, where <path> is the directory to which the logs are archived. To determine
the current LOGARCHMETH1 setting, use the following UDB command:
get db cfg for <db-alias>

• Replication requires a before and after image of each row that is changed. When you mark
a primary table for replication, the Replication Agent for UDB sets the table’s DATA
CAPTURE option to DATA CAPTURE CHANGES. As the number of tables marked for
replication increases, so does the space requirement for the DB2 UDB transaction log.

• The primary database must have a user temporary system managed tablespace with a page
size of at least 8KB.

DB2 UDB Primary Database Permissions and Limitations
The Replication Agent for UDB requires an DB2 UDB login that has permission to access
data and create new objects in the primary database.

The DB2 UDB login must have SYSADM or DBADM authority to access the primary
database transaction log.

Replication Agent does not support stored procedure or DDL replication for DB2 UDB. See
the Replication Agent Primary Database Guide.

Primary Data Server Connectivity
Replication Agent for UDB requires some tasks to perform to connect to a primary DB2 data
server.

If the Replication Agent for UDB is installed on a different host machine from the DB2 UDB
server, install the DB2 UDB Administration Client on the Replication Agent host machine.

IBM DB2 for Linux, UNIX, and Windows as Primary Data Server

50 Replication Server

If the Replication Agent for UDB software is installed on the same host machine as the DB2
UDB server, a separate DB2 UDB Administration Client is not required.

On a Windows system, you may configure an ODBC data source in the DB2 UDB
Administration Client, then use the database name and database alias specified for that ODBC
data source when you configure Replication Agent for UDB connectivity.

On a UNIX system, instead of using ODBC, catalog the node and the primary database in
UDB. Then, use the database alias specified when cataloging the primary database to set the
data source Replication Agent configuration parameter.

For details on how to configure connectivity, see Replication Agent Installation Guide >
Installing Sybase Replication Agent > Setting Up Connectivity to the Primary Database.

You can find a description of the Replication Agent configuration parameters that must be set
in Replication Agent Installation Guide > Preparing for Installation.

Replication Server and RSSD Connectivity
Replication Agent uses TCP/IP and the Sybase JDBC driver (jConnect for JDBC, which is
included in Replication Agent installation) to communicate with other Sybase servers. The
Replication Agent does not rely on the Sybase interfaces file for connectivity
information.

You can find a description of the Replication Agent configuration parameters that must be set
to allow Replication Agent to connect to the primary Replication Server in Replication Agent
Installation Guide > Preparing for Installation.

Replication Agent Objects
When you initialize Replication Agent using pdb_xlog init, it creates objects that support
replication in the primary database.

See the Replication Agent Primary Database Guide for details.

Replication Agent for UDB installs SYBRAUJAR.jar and SYBTRUNCJAR.jar into the
following directories:

• On Windows, the files are installed in %DB2DIR%\SQLLIB\FUNCTION\jar
\pds_username. %DB2DIR% is the path to the UDB installation, and pds_username is the
name of the primary database user specified by the pds_username Replication Agent
configuration parameter.

• On UNIX, the files are installed in $HOME/sqllib/function/jar/pds_username.
$HOME is the home directory of the UDB instance owner and the pds_username is the
name of the primary database user specified by the pds_username Replication Agent
configuration parameter.

IBM DB2 for Linux, UNIX, and Windows as Primary Data Server

Heterogeneous Replication Guide 51

These Jar files implement several Java procedures in the UDB primary database. Java
Procedures for Truncation table lists the Java procedures that are created during the
Replication Agent initialization and used in log truncation.

Note: If more than one Replication Agent instance is configured for a UDB server installation
(one for each database from which transactions are replicated), then each Replication Agent
instance must specify a different primary database user name in the pds_username
configuration parameter.

Java Procedures for Truncation
Lists the Java procedures that are created during the Replication Agent initialization and used
in log truncation.

Procedure Database Name

Retrieves the name of the log file that contains the
current LSN

prefixget_log_name_

Retrieves the version of the get_log_name Java
class

prefixget_version_str_

Truncates the database log file or files from the
archive log directory

prefixtrunc_log_files_

Retrieves the version of the trunc_log_files Java
class

prefixget_trunc_ver_str_

Getting Actual Names of the Replication Objects
Find the name of the Replication Agent database objects generated by Replication Agent
instance.

At the Replication Agent administration port, invoke the pdb_xlog command with no
keywords:
pdb_xlog

The pdb_xlog command returns a list of objects created by the Replication Agent in the
primary database.

DB2 UDB Primary Database Configuration
Consider additional issues specific to heterogeneous replication.

All the installation issues and configuration parameter details for a primary DB2 UDB data
server are in the Replication Agent for DB2 UDB Installation Guide.

IBM DB2 for Linux, UNIX, and Windows as Primary Data Server

52 Replication Server

Java Runtime Environment
When you install Replication Agent, a Java Runtime Environment (JRE) that is compatible
with the Replication Agent for UDB is installed.

Check the Replication Agent Release Bulletin for any special instructions for the Java
Runtime Environment.

rs_source_ds and rs_source_db Configuration Parameters
All configuration parameter values in the Replication Agent configuration file are case-
sensitive.

Be careful when specifying the values for the rs_source_ds and rs_source_db parameters, as
Replication Server is also case-sensitive. If the same case is not used in both Replication Agent
and Replication Server parameters, no connection occurs.

filter_maint_userid Configuration Parameters
The Replication Agent filter_maint_userid configuration parameter controls whether the
Replication Agent forwards transactions performed by the maintenance user to the primary
Replication Server.

The maintenance user name is defined in the Replication Server create connection command
for the primary database.

In a bidirectional replication environment (replicating both into and out of the same database),
set the value of the filter_maint_userid parameter to true. If you do not, transactions replicated
to another site may return to be applied at the originating site, creating an endless loop.

ltl_character_case Configuration Parameter
The Replication Agent ltl_character_case configuration parameter controls the case in which
the Replication Agent sends database object names to the primary Replication Server.

For example, if a replication definition is created for all tables named testtab, the
table name sent by the Replication Agent must be testtab, or no match occurs. Because
Replication Server is case-sensitive, a value of TESTTAB does not match a value of
testtab.

If you create replication definitions, choose a default case (for example, create all replication
definitions in either all uppercase or all lowercase), and change the value of the Replication
Agent ltl_character_case parameter to match.

IBM DB2 for Linux, UNIX, and Windows as Primary Data Server

Heterogeneous Replication Guide 53

Object Names Stored in Uppercase
In a DB2 UDB, object names are, by default, stored in uppercase, if no case was assigned when
the object was created. That means the Replication Agent sends object names in uppercase to
the primary Replication Server, unless configured to do otherwise.

For more information about the ltl_character_case parameter, see the Replication Agent
Administration Guide.

Replication Definitions for Primary Tables in DB2 UDB
The Replication Agent use_rssd configuration parameter controls whether the Replication
Agent sends Log Transfer Language (LTL) that contains only the columns specified in a
replication definition, or all of the columns in the primary table.

When the value of the use_rssd parameter is false, the Replication Agent sends LTL with data
for all of the columns in the primary table. When the value of the use_rssd parameter is true,
the Replication Agent sends LTL with data for only the columns specified in the replication
definition for each primary table.

By sending data for only the columns specified in the replication definition, network traffic is
reduced, which may improve performance.

In addition, column names and parameter names are removed from the LTL because the
Replication Agent can send information in the order identified by the replication definition.
The LTL minimal columns and structured tokens options are also available when the value of
the use_rssd parameter is true. For more information, see the Replication Agent
Administration Guide.

DB2 UDB Primary Datatype Translation
The Replication Agent allows you to control how it sends the DB2 UDB DATE, TIME, and
TIMESTAMP column values to the Replication Server.

For a complete list of the DB2 UDB datatype mapping, see the Replication Agent Primary
Database Guide > Replication Agent for UDB > DB2 Universal Database-Specific Issues >
Datatype Compatibility.

IBM DB2 for Linux, UNIX, and Windows as Primary Data Server

54 Replication Server

Microsoft SQL Server as Primary Data Server

Consider primary database issues specific to the Microsoft SQL Server data server in a Sybase
replication system.

Note: Replication Agent for Microsoft SQL Server must be installed on Microsoft Windows.

Replication Agent for Microsoft SQL Server
As a primary data server, Microsoft SQL Server interacts with Replication Agent. The
Replication Agent must be installed on Microsoft Windows and must have direct access to the
Microsoft SQL database log.

The Replication Agent identifies and transfers information about data-changing operations or
transactions from a Microsoft SQL Server primary database to a primary Replication Server.

Note: A separate Replication Agent instance is required for each database from which
transactions are replicated.

The Replication Agent interacts with the primary Replication Server and with the RSSD of the
primary Replication Server, if so configured.

sybfilter Driver
sybfilter driver is use to make the Microsoft SQL Server log files readable before Replication
Agent can replicate data.

Replication Agent must be able to read Microsoft SQL Server log files. However, the
Microsoft SQL Server process opens these log files with exclusive read permission, and the
file cannot be read by any other processes, including Replication Agent. See the Replication
Agent Primary Database Guide.

Microsoft SQL Server System Management
The Replication Agent provides a number of commands that return metadata information
about the primary database (such as database names, table names, procedure names, and
column names).

It does this by issuing specific JDBC calls designed to return this information or by querying
the system tables directly.

Microsoft SQL Server as Primary Data Server

Heterogeneous Replication Guide 55

Replication Manager
The Replication Manager plug-in cannot start, but can stop a Replication Agent instance in a
Microsoft SQL Server primary data server.

For more information about starting and stopping the Replication Agent instance, see the
Replication Agent Administration Guide.

Replication Agent Permissions
The user ID that the Replication Agent instance uses to log in to Microsoft SQL Server must
have access to the primary database.

Replication Agent for Microsoft SQL Server creates database objects to assist with replication
tasks in the primary database. For the list of the required permissions that are automatically
granted, see the Replication Agent Primary Database Guide.

Primary Data Server Connectivity
Replication Agent requires a JDBC driver to communicate with the primary database. JDBC
drivers for Microsoft SQL Server databases are provided by third-party database vendors.

If the JDBC driver for your database is not already installed, obtain the appropriate driver from
the vendor’s Web site. See the Replication Agent Release Bulletin for the latest version of the
Microsoft SQL Server JDBC.

Setting the CLASSPATH Environment Variable
Learn to set the CLASSPATH environment variable.

1. Install the JDBC driver on the host machine where Replication Agent resides or where
Replication Agent can access it.

2. Add the location of the JDBC driver to the CLASSPATH environment variable:

Select Start > Settings > Control Panel > System > Environment, and add the following
to the existing CLASSPATH environment variable, using the semicolon (;) as the path
separator. Or, create the path in the User Variables panel:

drive:\path_name\driver

where:
• drive is the drive letter.
• path_name is where you installed the JDBC driver.

Microsoft SQL Server as Primary Data Server

56 Replication Server

• driver is the name of the JDBC driver. For Microsoft SQL Server, the name is
sqljdbc.jar.

3. Click Apply, then OK.

You can find a description of the Replication Agent configuration parameters that must be set
in the Replication Agent Installation Guide > Preparing for Installation.

Replication Server and RSSD Connectivity
Replication Agent uses TCP/IP and the Sybase JDBC driver (jConnect for JDBC, which is
included in Replication Agent installation) to communicate with other Sybase servers. The
Replication Agent does not rely on the Sybase interfaces file for connectivity
information.

You can find a description of the Replication Agent configuration parameters that must be set
to allow Replication Agent to connect to the primary Replication Server in Replication Agent
Installation Guide > Preparing for Installation.

Replication Agent Objects
Replication Agent creates objects in the primary database to assist with replication tasks.

The Replication Agent objects are automatically created when you invoke the pdb_xlog
command with the init keyword. The existing primary database objects can be marked for
replication.

For more general information, see the Replication Agent Administration Guide.

There are two variables in Replication Agent database object names:

• prefix – represents the one- to three-character string value of the pdb_xlog_prefix
parameter (the default is ra_).

• xxx – represents an alphanumeric counter, a string of characters that is (or may be) added
to a database object name to make that name unique in the database.

The value of the pdb_xlog_prefix parameter is the prefix string used in all Replication Agent
object names. The value of the pdb_xlog_prefix_chars parameter is a list of the
nonalphanumeric characters allowed in the prefix string specified by pdb_xlog_prefix. This
list of allowed characters is database-specific. For example, in Microsoft SQL Server, the only
nonalphanumeric characters allowed in a database object name are the $, #, @, and _
characters.

Use the pdb_xlog command to view the names of Replication Agent transaction log
components in the primary database.

See the Replication Agent Administration Guide for details on setting up log object names.

Microsoft SQL Server as Primary Data Server

Heterogeneous Replication Guide 57

Table, Procedures, Marker, and Trigger Objects
The table and procedure objects, marker procedures and marker shadow tables that are
considered Replication Agent objects, as well as commands that are considered Replication
Agent trigger objects are listed in the Replication Agent Primary Database Guide.

Insert and delete permissions are granted to Public only on the DDL shadow table for the
database name prefixddl_trig_xxx. No permissions are granted on other tables.

The sp_SybSetLogforReplTable and sp_SybSetLogforReplProc procedures are created in
the Microsoft SQL Server mssqlsystemresource system database. Although execute
permission on these procedures is granted to Public, only the Replication Agent
pds_username user can successfully execute the procedures, because only the pds_username
user is granted select permission on the sys.sysschobjs table. No permissions are
granted on the other procedures when they are created.

Microsoft SQL Server Primary Database Configuration
Learn about the additional issues that are specific to heterogeneous replication.

All the installation issues and configuration parameter details for a Microsoft SQL Server
primary data server are in the Replication Agent Installation Guide.

rs_source_ds and rs_source_db Configuration Parameters
All configuration parameter values in the Replication Agent configuration file are case-
sensitive.

Be careful when specifying the values for the rs_source_ds and rs_source_db parameters, as
Replication Server is also case-sensitive. If the same case is not used in both Replication Agent
and Replication Server parameters, no connection occurs.

filter_maint_userid Configuration Parameters
If you use a Microsoft SQL Server login with sysadmin privilege as a maint_user, map the
login to a user in the corresponding database, otherwise, the Replication Agent cannot
correctly filter the transaction performed by this maint_user.

ltl_character_case Configuration Parameter
The Replication Agent ltl_character_case configuration parameter controls the case in which
the Replication Agent sends database object names to the primary Replication Server.

For example, if a replication definition is created for all tables named testtab, the
table name sent by the Replication Agent must be testtab, or no match occurs. Because
Replication Server is case-sensitive, a value of TESTTAB does not match a value of
testtab.

Microsoft SQL Server as Primary Data Server

58 Replication Server

If you create replication definitions, choose a default case (for example, create all replication
definitions in either all uppercase or all lowercase), and change the value of the Replication
Agent ltl_character_case parameter to match.

The following is dependent on the collation you provided when you create the database: In a
Microsoft SQL Server database, object names are stored, by default, in lowercase, if no case
was assigned when the object was created. Replication Agent sends object names in lowercase
to the primary Replication Server, unless configured to do otherwise.

For other information about the ltl_character_case parameter, see the Replication Agent
Administration Guide.

Replication Definitions for Primary Tables in Microsoft SQL
Server

By sending data for only the columns specified in the replication definition, network traffic is
reduced, which may improve performance.

The Replication Agent use_rssd configuration parameter controls whether the Replication
Agent sends Log Transfer Language (LTL) that contains only the columns specified in a
replication definition or all of the columns in the primary table, as follows:

• When the value of the use_rssd parameter is false, the Replication Agent sends LTL with
data for all of the columns in the primary table.

• When the value of the use_rssd parameter is true, the Replication Agent sends LTL with
data for only the columns specified in the replication definition for each primary table.

In addition, column names and parameter names are removed from the LTL because the
Replication Agent can send information in the order identified by the replication definition.
The LTL minimal columns and structured tokens options are also available when the value of
the use_rssd parameter is true. See the Replication Agent Administration Guide.

To alter replication definitions, see the Replication Server Administration Guide Volume 1 >
Manage Replicated Tables > Modify Replication Definitions > Altering Replication
Definitions > Replication Definition Change Request Process.

Microsoft SQL Server Primary Datatype Translation
All Microsoft SQL Server datatypes are compatible with their corresponding Adaptive Server
datatypes.

varchar(max), nvarchar(max) and varbinary(max) datatypes cannot be
replicated to databases other than Microsoft SQL Server.

Microsoft SQL Server as Primary Data Server

Heterogeneous Replication Guide 59

Microsoft SQL Server as Primary Data Server

60 Replication Server

Oracle as Primary Data Server

Learn about the primary database issues and considerations specific to the Oracle data server
in a Sybase replication system.

Replication Agent for Oracle
As a primary data server, Oracle interacts with Replication Agent. The Replication Agent
identifies and transfers information about data-changing operations or transactions from an
Oracle primary data server to a primary Replication Server.

Note: A separate Replication Agent instance is required for each Oracle database from which
transactions are replicated.

The Replication Agent interacts with the primary Replication Server and with the RSSD of the
primary Replication Server, if so configured.

Note: Replication Agent is a Java program. Some operating systems may require patches to
support Java. See the Replication Agent Administration Guide and the Replication Agent
Release Bulletin for more information.

Replication Definitions for Primary Tables in Oracle
By sending data for only the columns specified in the replication definition, network traffic is
reduced, which may improve performance.

The Replication Agent use_rssd configuration parameter controls whether the Replication
Agent sends Log Transfer Language (LTL) that contains only the columns specified in a
replication definition, or all of the columns in the primary table.

When the value of the use_rssd parameter is false, the Replication Agent sends LTL with data
for all of the columns in the primary table. When the value of the use_rssd parameter is true,
the Replication Agent sends LTL with data for only the columns specified in the replication
definition for each primary table.

In addition, column names and parameter names are removed from the LTL because the
Replication Agent can send information in the order identified by the replication definition.
The LTL minimal columns and structured tokens options are also available when the value of
the use_rssd parameter is true. See the Replication Agent Administration Guide.

To alter replication definitions, see the Replication Server Administration Guide Volume 1 >
Manage Replicated Tables > Modify Replication Definitions > Altering Replication
Definitions > Replication Definition Change Request Process.

Oracle as Primary Data Server

Heterogeneous Replication Guide 61

Replication Manager Limitations
The Replication Manager plug-in cannot start, but can stop a Replication Agent instance in an
Oracle primary data server.

See the Replication Agent Administration Guide for more information about starting and
stopping the Replication Agent instance.

Oracle System Management
The Replication Agent provides a number of commands that return metadata information
about the primary database (such as database names, table names, procedure names, and
column names).

It does this by issuing specific JDBC calls designed to return this information, or by querying
the Oracle system tables directly.

Note: Oracle does not support multiple databases within a single server instance as Adaptive
Server Enterprise does.

Replication Intrusions and Impacts in Oracle
The performance and operation of Oracle primary data servers may be affected if a Sybase
replication system is incorporated.

While the Replication Agent reads the Oracle online and archive redo logs to retrieve
transaction information, it does require a specific log configuration. To provide and maintain
the necessary information, enable these items in Oracle:

• Archiving of redo logs
• Supplemental logging of primary key and unique index data

In addition, the Replication Agent must have direct access to the Oracle redo logs and
Replication Agent must run on the same platform as the primary Oracle server.

Oracle Primary Database Permissions
The Replication Agent requires an Oracle login ID that has permission to access data and
create new objects in the primary database.

For a list of the Oracle login IDs that must have these required permissions, see the Replication
Agent Primary Database Guide.

Oracle as Primary Data Server

62 Replication Server

Note: In addition to the required permissions, the operating system user who starts the
Replication Agent for Oracle instance must have read access to the Oracle redo and archive
logs.

Primary Data Server Connectivity
Replication Agent requires a JDBC driver to connect to an Oracle primary database.

The JDBC driver must be installed and referenced in the CLASSPATH system variable of the
Replication Agent host machine. Java uses the contents of the CLASSPATH system variable
to identify the search locations for Java classes. For the Oracle JDBC driver, the full path and
file name must be included in the CLASSPATH variable, for example:

drive:\<path_name>\ojdbc14.jar

For the version of the JDBC driver that is supported, see the Replication Agent Release
Bulletin.

For JDBC connectivity, the TNS Listener process for the Oracle primary data server must be
running.

You can find a description of the Replication Agent configuration parameters that must be set
in the Replication Agent Installation Guide > Preparing for Installation.

Replication Server and RSSD Connectivity
Replication Agent uses TCP/IP and the Sybase JDBC driver (jConnect for JDBC, which is
included in Replication Agent installation) to communicate with other Sybase servers. The
Replication Agent does not rely on the Sybase interfaces file for connectivity
information.

You can find a description of the Replication Agent configuration parameters that must be set
to allow Replication Agent to connect to the primary Replication Server in Replication Agent
Installation Guide > Preparing for Installation.

Replication Agent Objects
Replication Agent creates objects in the primary database to assist with replication tasks.

There are two variables in Replication Agent database object names:

• prefix – represents the one- to three-character string value of the pdb_xlog_prefix
parameter (the default is ra_).

• xxx – represents an alphanumeric counter, a string of characters that is (or may be) added
to a database object name to make that name unique in the database.

Oracle as Primary Data Server

Heterogeneous Replication Guide 63

The value of the pdb_xlog_prefix parameter is the prefix string used in all Replication Agent
object names, except rs_marker and rs_dump.

The value of the pdb_xlog_prefix_chars parameter is a list of the nonalphanumeric characters
allowed in the prefix string specified by pdb_xlog_prefix. This list of allowed characters is
database-specific. For example, the only nonalphanumeric characters allowed in a database
object name are the $, #, and _ characters.

Use the pdb_xlog command to view the names of Replication Agent transaction log
components in the primary database.

See the Replication Agent Administration Guide for details on setting up object names.

To find the names of the objects created, at the Replication Agent administration port, invoke
the pdb_xlog command with no keywords:
pdb_xlog

The pdb_xlog command returns a list of all the Replication Agent objects.

Oracle Primary Database Configuration
Learn about the additional issues specific to heterogeneous replication.

All the installation issues and configuration parameter details for an Oracle primary data
server are provided in the Replication Agent Installation Guide.

Java Runtime Environment
When you install Replication Agent, a Java Runtime Environment (JRE) that is compatible
with the Replication Agent may be installed for you.

For any special instructions for the Java Runtime Environment, see the Replication Agent
Release Bulletin.

JDBC Driver Required
Replication Agent requires a JDBC driver for connectivity to the primary data server.

Sybase does not provide a JDBC driver for Oracle data servers. For information on how to
obtain a JDBC driver for Oracle data servers, see the Replication Agent Release Bulletin.

rs_source_ds and rs_source_db Configuration Parameters
All configuration parameter values in the Replication Agent configuration file are case-
sensitive.

Be careful when specifying the values for the rs_source_ds and rs_source_db parameters, as
Replication Server is also case-sensitive. If the same case is not used in both Replication Agent
and Replication Server parameters, no connection occurs.

Oracle as Primary Data Server

64 Replication Server

filter_maint_userid Configuration Parameters
The Replication Agent filter_maint_userid configuration parameter controls whether the
Replication Agent forwards transactions performed by the maintenance user to the primary
Replication Server.

The maintenance user name is defined in the Replication Server create connection command
for the primary database.

In a bidirectional replication environment (replicating both into and out of the same database),
set the value of the filter_maint_userid parameter to true. If you do not, transactions replicated
to another site may return to be applied at the originating site, creating an endless loop.

ltl_character_case Configuration Parameter
The Replication Agent ltl_character_case configuration parameter controls the case in which
the Replication Agent sends database object names to the primary Replication Server.

For example, if a replication definition is created for all tables named testtab, the
table name sent by the Replication Agent must be testtab, or no match occurs. Because
Replication Server is case-sensitive, a value of TESTTAB does not match a value of
testtab.

If you create replication definitions, choose a default case (for example, create all replication
definitions in either all uppercase or all lowercase), and change the value of the Replication
Agent ltl_character_case parameter to match.

In an Oracle database, object names are stored, by default, in all uppercase, if no case was
forced when the object was created. The Replication Agent sends object names in uppercase to
the primary Replication Server, unless configured to do otherwise.

For more information about the ltl_character_case parameter, see the Replication Agent
Administration Guide.

Oracle Primary Datatype Translation
Datatype translation and mapping provides a complete list of datatype mapping for Oracle
datatypes.

For more information about UDDs and their use, see the Replication Server Administration
Guide Volume 1.

See also
• Datatype Translation and Mapping on page 211

Oracle as Primary Data Server

Heterogeneous Replication Guide 65

Automatic Storage Management
Replication Agent for Oracle supports the use of the Oracle Automatic Storage Management
(ASM) feature for online and archive redo logs.

ASM provides file system and volume management support for an Oracle database
environment. You can use ASM in both Real Application Cluster (RAC) and non-RAC
environments. ASM provides similar benefits as a redundant array of independent disks
(RAID) or a logical volume manager (LVM).

Similar to those technologies, ASM allows you to define a single disk group from a collection
of individual disks. ASM attempts to balance loads across all of the devices defined in the disk
group. ASM also provides striping and mirroring capabilities. Unlike RAID or LVMs, ASM
only supports files created and read by the Oracle database. You cannot use ASM for a
general-purpose file system and cannot store binaries or flat files. The operating system
cannot access ASM files.

For more information about Replication Agent support for Oracle ASM, see the Replication
Agent Primary Database Guide.

Real Application Clusters
Replication Agent provides support for Oracle 10g and 11g Real Application Cluster (RAC)
environments.

When you initialize a Replication Agent for Oracle instance, the Oracle database is queried to
determine how many nodes are supported by the cluster. Based on this information,
Replication Agent automatically configures itself to process the redo log information from all
nodes.

Note: Replication of a RAC database is the same as replication from a non-RAC database.

To process the redo log data from all nodes in an Oracle RAC cluster, the Replication Agent
must execute from a location that has access to the same shared storage used by the Oracle
nodes to store their redo data. The Replication Agent must have read access to the shared
storage where both the online and archived redo logs exist.

You can configure Replication Agent to connect to a single Oracle instance by supplying the
required host, port, and Oracle SID values to the pds_host_name, pds_port_number and
pds_database_name configuration parameters. In an Oracle RAC environment, Replication
Agent must be able to connect to any node in the cluster in the event that a node fails or
becomes unavailable.

To support the configuration of multiple node locations, Replication Agent supports
connectivity to all possible RAC nodes by obtaining needed information from an Oracle

Oracle as Primary Data Server

66 Replication Server

tnsnames.ora file for one specified entry. As a result, instead of configuring individual
host, port, and instance names for all nodes, Replication Agent requires only the location of a
tnsnames.ora file and the name of the TNS connection to use.

For more information about Replication Agent support for Oracle RAC, see the Replication
Agent Primary Database Guide.

Oracle as Primary Data Server

Heterogeneous Replication Guide 67

Oracle as Primary Data Server

68 Replication Server

IBM DB2 for z/OS as Replicate Data Server

Learn about the only administration tasks that are unique to a Sybase replication system with
non-ASE data servers.

For information about basic replication system administration, see the Replication Server
Administration Guide Volume 1.

DB2 UDB for z/OS Replicate Data Server Environment
As a replicate data server in a gateway environment, DB2 UDB for z/OS interacts with the
Mainframe Connect DirectConnect for z/OS Option database gateway, which accepts
commands from the replicate Replication Server and applies those commands to a replicate
DB2 UDB database.

DB2 UDB for z/OS System Management
With the introduction of heterogeneous datatype support (HDS) in Replication Server version
12.0, the create connection command’s dsi_sql_data_style parameter is now invalid.

The create connection command’s dsi_sql_data_style parameter was used in earlier
versions of Replication Server to provide some data translations for the DB2 UDB for z/OS
replicate database. Do not use this parameter with Replication Server version 12.0 or later. The
default setting should be " "(blank space).

Note: This system management issue is specific to a replicate DB2 UDB for z/OS data server.

Replication Intrusions and Impacts in DB2 UDB for z/OS
The only significant intrusions or impacts to the replicate DB2 UDB are the database objects
created by the connection profile that creates three tables in the replicate database to support
Replication Server operations.

The tables include:

• RS_INFO, which contains information about the sort order and character set used by the
replicate database.

Note: Confirm that the INSERT statements for this table specify the proper character set
and sort order for your data server.

IBM DB2 for z/OS as Replicate Data Server

Heterogeneous Replication Guide 69

When using Replication Server version 12.5 or later, the replicate database sort order and
character set must be recorded in the RS_INFO table. To do so, use the Replication Server
rs_get_charset and rs_get_sortorder functions to retrieve the character set and sort order
from the RS_INFO table in the replicate database.

• RS_LASTCOMMIT, which contains information about replicated transactions applied to
the replicate database.
Each row in the RS_LASTCOMMIT table identifies the most recent committed transaction
that was distributed to the replicate database from a primary database. Replication Server
uses this information to ensure that all transactions are distributed.
The Replication Server rs_get_lastcommit function retrieves information about the last
transaction committed in the replicate database. For non-ASE replicate databases,
rs_get_lastcommit is replaced in the database-specific function-string class by the query
required to access the RS_LASTCOMMIT table in the replicate database.

• RS_TICKET_HISTORY, which contains the execution results of Replication Server
command rs_ticket.You can issue the rs_ticket command for the primary database to
measure the amount of time it takes for a command to move from the primary database to
the replicate database. You can use this information to monitor Replication Server
performance, module heartbeat, replication health, and table-level quiesce. The results of
each execution of rs_ticket is stored in a single row of the RS_TICKET_HISTORY table
in the replicate database. You can query each row of the RS_TICKET_HISTORY table to
obtain results of individual rs_ticket executions, or compare the results from different
rows. The data stored in this table is not required to support replication and you may
manually truncate the data in this table to reclaim space.

Note: The RS_TICKET_HISTORY table is available only in Replication Server 15.1 and
later.

DB2 for z/OS Replicate Database Permissions
Replication Server requires maintenance user ID that you specify in the Replication Server
create connection command to apply transactions in a replicate database.

The maintenance user ID must be defined to the DB2 UDB for z/OS data server and granted
authority to apply transactions in the replicate database. The maintenance user ID must have
permissions in the replicate DB2 UDB database:

• CREATE TABLE authority to create tables used for Replication Server processing
• UPDATE authority to all replicate tables and EXECUTE authority to all replicate stored

procedures

IBM DB2 for z/OS as Replicate Data Server

70 Replication Server

Replicate Database Connectivity for DB2 UDB for z/OS
A Replication Server database connection name is made up of two parts: a data server name
(server_name) and a database name (db_name).

When using the Mainframe Connect DirectConnect for z/OS Option database gateway, the
server_name is the name of the database gateway server, and the db_name is the name of the
replicate DB2 UDB database.

The replicate Replication Server looks for an interface file entry for the database gateway
server_name specified in the Replication Server database connection. The replicate
Replication Server logs in to the replicate data server using the user_name and password
specified in the database connection.

You must make an entry in the Replication Server interface file to identify the host and
port where the Mainframe Connect DirectConnect for z/OS Option database gateway server is
listening. The interface file entry name must match the server_name portion of the
Replication Server database connection.

Replicate Database Limitations in DB2 for z/OS
Replication of large object (LOB) datatypes (BLOB and CLOB) is supported directly by
MainframeConnect DirectConnect for z/OS Option.

Additionally, Replication Server cannot send an DB2 UDB binary value as a binary string
because the MainframeConnect DirectConnect for z/OS Option database gateway performs
an ASCII to EBCDIC translation on the value. Therefore, all binary or varbinary
datatypes replicated to DB2 UDB for z/OS must be mapped to the
rs_db2_char_for_bit or rs_db2_varchar_for_bit datatype.

DB2 for z/OS Replicate Database Configuration
The heterogeneous datatype support (HDS) feature of Replication Server provides
configuration information that allows you to set up the HDS feature in the replicate
Replication Server and the DB2 UDB for z/OS replicate database.

The configuration information is provided as part of the installation process and as part of the
connection profile:

• Replication Server installation:
• Create function strings, error classes, and user defined datatypes

• Connection profile:
• Apply class-level datatype translations to RSSD

IBM DB2 for z/OS as Replicate Data Server

Heterogeneous Replication Guide 71

• Create objects in the DB2 UDB for z/OS
• Set connection properties

• Additional settings:
• Settings in ECDA
• Settings for Dynamic SQL
• Settings for Command Batching

See also
• Class-Level Datatype Translations to RSSD on page 73
• Objects in the DB2 UDB for z/OS and Connection Properties on page 73
• ECDA Settings on page 74
• Dynamic SQL Settings on page 74
• Command Batching Settings on page 74

Replication Server Installation
Replication Server installation automatically installs the required function strings and classes
to support replication.

Function Strings, Error Classes, and User Defined Datatypes
Function strings are added to the Replication Server default rs_db2_function_class.

The function string replaces several default Replication Server function strings with custom
function strings designed to communicate with the DB2 UDB for z/OS replicate database, and
access the tables and procedures that were created.

Connection Profiles
Connection profiles allow you to configure your connection with a predefined set of
properties.

Syntax
create connection to data_server.database
using profile connection_profile;version
set username [to] user
[other_create_connection_options]
[display_only]

Parameters
data_server – The data server that holds the database to be added to the replication system.

database – The database to be added to the replication system.

connection_profile – Indicates the connection profile that you want to use to configure a
connection, modify the RSSD, and build replicate database objects.

version – Specifies the connection profile version to use.

IBM DB2 for z/OS as Replicate Data Server

72 Replication Server

user – The login name of the Replication Server maintenance user for the database.
Replication Server uses this login name to maintain replicated data. You must specify a user
name if network-based security is not enabled.

other_create_connection_options – Use the other create connection options to set connection
options not specified in the profile, such as setting your password, or to override options
specified in the profile, such as specifying a custom function string class to override the
function string class provided in Replication Server. See the Replication Server Reference
Manual > Replication Server Commands > create connection for a complete list of the other
options for create connection command.

display_only – Use display_only with the using profile clause to display the commands that
will be executed and the names of the servers upon which the commands will be executed. See
the client and Replication Server logs for the result of using display_only.

Class-Level Datatype Translations to RSSD
Class-level translations identify the primary and replicate datatypes and the replicate
datatypes into which data is translated.

For example, Oracle DATE should be translated to DB2 UDB replicate database
TIMESTAMP.

Class-level translation is supplied for the replicate DB2 UDB for z/OS replicate database by
the appropriate named connection profile:

• rs_ase_to_db2 – translates Adaptive Server datatypes to DB2 UDB datatypes.

• rs_udb_to_db2 – translates DB2 UDB (for UNIX and Windows) datatypes to DB2
UDB for z/OS datatypes.

• rs_msss_to_db2 – translates Microsoft SQL Server datatypes to DB2 datatypes.

• rs_oracle_to_db2 – translates Oracle datatypes to DB2 UDB datatypes.

• rs_db2_connection_sample – creates a connection to the DB2 database. (The
connection may be to ECDA.)
The connection profile provides a template for creating the Replication Server database
connection for a replicate DB2 UDB for z/OS using the predefined DB2 UDB for z/OS
function-string class provided with Replication Server.

Objects in the DB2 UDB for z/OS and Connection Properties
The connection profile creates the RS_INFO, RS_LASTCOMMIT, and the
RS_TICKET_HISTORY tables in the replicate database.

They also set these connection properties:
set error class rs_db2_error_class
set function string rs_db2_function_class

IBM DB2 for z/OS as Replicate Data Server

Heterogeneous Replication Guide 73

Additional Settings
Learn about the additional settings provided to support replication.

The settings include:

• ECDA settings
• Dynamic SQL settings
• Command Batching settings

ECDA Settings
Learn about the values for the properties of the ECDA and DirectConnect access service
configuration files.

Use the following settings in the ECDA configuration file:

TransactionMode=long
Allocate=connect
SQLTransformation=sybase

If you are using a Mainframe Connect DirectConnect for z/OS Option database gateway for
replication to a DB2 UDB for z/OS replicate database, set the following properties in the
DirectConnect db2.cfg access service configuration file:

SQLTransformation=passthrough
TransactionMode=long

Dynamic SQL Settings
Dynamic SQL is supported in ECDA 12.6.1 and later.

Command Batching Settings
Command batching allows Replication Server to send multiple commands to the data server as
a single command batch.

You can put multiple commands in a language function-string output template, separating
them with semicolons (;). If the database is configured to allow command batches, which is the
default, Replication Server replaces the semicolons with that connection’s DSI command
separator character before sending the function string in a single batch to the data server.

The separator character is defined in the dsi_cmd_separator option of the alter connection
command. If the connection to the database is not configured to allow batches, Replication
Server sends the commands in the function string to the data server one at a time. To enable or
disable batching for a database, use the alter connection command.

To use command batching, enter:
set batch = on

set dsi_cmd_separator = ;

set batch_begin = off

IBM DB2 for z/OS as Replicate Data Server

74 Replication Server

use_batch_markers = on

See the Replication Server Reference Manual > Replication Server Commands > alter
connection for information on setting batch and dsi_cmd_separator options by using the
alter connection command.

IBM DB2 for z/OS as Replicate Data Server

Heterogeneous Replication Guide 75

IBM DB2 for z/OS as Replicate Data Server

76 Replication Server

IBM DB2 for Linux, UNIX, and Windows as
Replicate Data Server

You can perform administration tasks that are unique to a Sybase replication system with
non-ASE data servers.

For information about basic replication system administration, see the Replication Server
Administration Guide Volume 1.

DB2 UDB Replicate Data Servers
As a replicate data server in a replication system, the DB2 UDB interacts with the ECDA
Option for ODBC database gateway.

ECDA Option for ODBC accepts commands from the replicate Replication Server, and
applies the commands to a database residing in a DB2 UDB server.

Replication Intrusions and Impacts in DB2 UDB
The only significant intrusions or impacts to the DB2 UDB replicate database are the database
objects that are created by the connection profile that creates three tables in the replicate
database to support Replication Server operations

The tables include:

• RS_INFO, which contains information about the sort order and character set used by the
replicate database.

Note: Confirm that the INSERT statements for RS_INFO specify the proper character set
and sort order for your DB2 UDB server.

When using Replication Server version 12.0 or later, the replicate database sort order and
character set must be recorded in the RS_INFO table.
The Replication Server rs_get_charset and rs_get_sortorder functions retrieve the
character set and sort order from the RS_INFO table in the replicate database.

• RS_LASTCOMMIT, which contains information about replicated transactions applied to
the replicate database.
Each row in the RS_LASTCOMMIT table identifies the most recent committed transaction
that was distributed to the replicate database from a primary database. Replication Server
uses this information to ensure that all transactions are distributed.
The Replication Server rs_get_lastcommit function retrieves information about the last
transaction committed in the replicate database. For non-ASE replicate databases, the

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

Heterogeneous Replication Guide 77

rs_get_lastcommit function is replaced in the database-specific function-string class by
the query required to access the RS_LASTCOMMIT table in the replicate database.

• RS_TICKET_HISTORY, which contains the execution results of Replication Server
command rs_ticket.You can issue the rs_ticket command for the primary database to
measure the amount of time it takes for a command to move from the primary database to
the replicate database. Use this information to monitor Replication Server performance,
module heartbeat, replication health, and table-level quiesce. The results of each execution
of rs_ticket is stored in a single row of the RS_TICKET_HISTORY table in the replicate
database. You can query each row of the RS_TICKET_HISTORY table to obtain results
of individual rs_ticket executions, or compare the results from different rows. The data
stored in this table is not required to support replication and you may manually truncate the
data in this table to reclaim space.

Note: The RS_TICKET_HISTORY table is available only in Replication Server 15.1 and
later.

DB2 UDB Replicate Database Permissions and Limitations
Replication Server requires a maintenance user ID that you specify using the Replication
Server create connection command to apply transactions in a replicate database.

The maintenance user ID must be defined at the DB2 UDB server and granted authority to
apply transactions in the replicate database. The maintenance user ID must have permissions
in the DB2 UDB replicate database:
• CREATE TABLE authority to create tables used for Replication Server processing
• UPDATE authority on all replicate tables
Replication of large object (LOB) datatypes (BLOB, CLOB, DBCLOB, LONG VARGRAPHIC,
and LONG VARCHAR) is not supported directly from Replication Server to the ECDA Option
for ODBC.

Connectivity for DB2 UDB Replicate Database
A Replication Server database connection name is made up of two parts: a data server name
(server_name) and a database name (db_name). The server_name is the name of the ECDA
Option for ODBC database gateway server, and the db_name is the name of the DB2 UDB
replicate database.

The replicate Replication Server looks for an interfaces file entry for the database
gateway server_name specified in the Replication Server database connection. The replicate
Replication Server logs in to the replicate data server using the user_name and password
specified in the database connection.

You must make an entry in the Replication Server interfaces file to identify the host and
port where the ECDA Option for ODBC database gateway server is listening. The

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

78 Replication Server

interfaces file entry name must match the server_name portion of the Replication Server
database connection.

DB2 UDB Replicate Database Configuration
The heterogeneous datatype support (HDS) feature of Replication Server provides
configuration information that allows you to set up the HDS feature in the replicate
Replication Server and the DB2 UDB replicate database.

You provide this configuration information as part of the installation, and as part of the
connection profile:

• Replication Server installation:
• Create function strings, error classes, and user defined datatypes

• Connection profiles:
• Apply class-level datatype translations to RSSD
• Create objects in the DB2 UDB replicate database
• Set connection properties

• Additional settings
• Settings in ECDA (required)
• Settings for Dynamic SQL (optional)
• Settings for Command Batching (optional)

See also
• Class-Level Datatype Translations to RSSD on page 80

• Objects in the DB2 UDB Replicate Database and Connection Properties on page 81

Replication Server Installation
Replication Server installation automatically installs the required function strings and classes
to support replication.

Function Strings, Error Classes, and User Defined Datatypes
Function strings are added to the Replication Server default rs_udb_function_class.

The function string replaces several default Replication Server function strings with custom
function strings designed to communicate with the DB2 UDB replicate database and access
the tables and procedures that were created.

To find the error action defined for an error class, see the Replication Server Reference Manual
> RSSD Stored Procedures > rs_helperror.

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

Heterogeneous Replication Guide 79

Connection Profiles
Connection profiles allow you to configure your connection with a predefined set of
properties.

Syntax
create connection to data_server.database
using profile connection_profile;version
set username [to] user
[other_create_connection_options]
[display_only]

Parameters
data_server – The data server that holds the database to be added to the replication system.

database – The database to be added to the replication system.

connection_profile – Indicates the connection profile that you want to use to configure a
connection, modify the RSSD, and build replicate database objects.

version – Specifies the connection profile version to use.

user – The login name of the Replication Server maintenance user for the database.
Replication Server uses this login name to maintain replicated data. You must specify a user
name if network-based security is not enabled.

other_create_connection_options – Use the other create connection options to set connection
options not specified in the profile, such as setting your password, or to override options
specified in the profile, such as specifying a custom function string class to override the
function string class provided in Replication Server. See the Replication Server Reference
Manual > Replication Server Commands > create connection for a complete list of the other
options for create connection command.

display_only – Use display_only with the using profile clause to display the commands that
will be executed and the names of the servers upon which the commands will be executed. See
the client and Replication Server logs for the result of using display_only.

Class-Level Datatype Translations to RSSD
Class-level translations identify primary datatypes and the replicate datatypes into which data
is to be translated (for example, Microsoft SQL Server binary should be translated to DB2
UDB CHAR FOR BIT DATA).

These connection profiles supply class-level translation for the DB2 UDB replicate database:

• rs_ase_to_udb – translates Adaptive Server datatypes to DB2 UDB datatypes.

• rs_db2_to_udb – translates DB2 for z/OS datatypes to DB2 UDB datatypes.

• rs_msss_to_udb – translates Microsoft SQL Server datatypes to DB2 UDB
datatypes.

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

80 Replication Server

• rs_oracle_to_udb – translates Oracle datatypes to DB2 UDB datatypes.

Objects in the DB2 UDB Replicate Database and Connection Properties
The connection profile creates the RS_INFO, RS_LASTCOMMIT, and
RS_TICKET_HISTORY tables in the replicate database.

The connection profiles set these connection properties:
set error class rs_udb_error_class
set function string rs_udb_function_class

Additional Settings
Learn about the additional settings provided to support replication.

The settings include:

• Settings in ECDA (required)
Use the following settings in the ECDA configuration file:
Transaction Mode = long
allocate = connect

SQL transformation = Sybase

• Settings for Dynamic SQL (optional)
Dynamic SQL is supported as of Replication Server 15.0.1 and requires DirectConnect
UDB 12.6.1 ESD #2, or later.

• Settings for Command Batching (optional)
Command batching allows Replication Server to send multiple commands to the data
server as a single command batch. You can put multiple commands in a language function-
string output template, separating them with semicolons (;). If the database is configured
to allow command batches, which is the default, Replication Server replaces the
semicolons with that connection’s DSI command separator character before sending the
function string in a single batch to the data server. The separator character is defined in the
dsi_cmd_separator option of the alter connection command.
If the connection to the database is not configured to allow batches, Replication Server
sends the commands in the function string to the data server one at a time. To enable or
disable batching for a database, use the alter connection command.
To use command batching, enter:
set batch = on

set dsi_cmd_separator = ;

set batch_begin = off

use_batch_markers = on

For information on setting batch and dsi_cmd_separator options, see the Replication
Server Reference Manual > alter connection.

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

Heterogeneous Replication Guide 81

Parallel DSI Threads for IBM DB2 Replicate Database
In a heterogeneous replication environment, parallel DSI must ensure that the commit order in
the replicate database is same as in the primary database. DSI can then resolve deadlock
conflict, when deadlock has occurred, and Replication Server can rollback transactions and
execute again.

Replication Server can maintain the order in which transactions are committed and detect
conflicting updates in transactions that are simultaneously executing in parallel either:

• Internally, using Replication Server internal tables and function strings, or,
• Externally, using the rs_threads system table in the replicate database.

For external commit control, you must follow these rules:

• When different sessions operate on the same row, the update operation in session 1 should
block the select operation in session 2.

• When different sessions operate on different rows, the update operation in session 1
should not block update in session 2.

Internal commit control method is better than external commit control because it depends on
fewer conditions. If a deadlock occurs, the internal commit control allows Replication Server
to roll back a single transaction, whereas external commit control rolls back all transactions.

Replication Server provides other options for maximizing parallelism and minimizing
contention between transactions. For example, transaction serialization methods allow you to
choose the degree of parallelism your system can handle without conflicts.

For detailed information on how to use parallel DSI threads, see Replication Server
Administration Guide Volume 2 > Performance Tuning.

External Commit Control
Replication Server can create rs_threads with row-level lock when the replicate database is
IBM DB2 UDB.

By default, the row-level lock is “on”. For example:
create table rs_threads (id int,seq int)

create unique index thread_index on rs_threads(id) cluster

When the isolation level is 3, you must use this function string:
select seq from rs_threads where id = ? with cs

where:

cs is cursor stability, which is the default isolation level in IBM DB2 UDB.

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

82 Replication Server

Internal Commit Control
Replication Server uses the rs_dsi_check_thread_lock function to check whether the current
DSI executor thread is blocking another replicate database process.

For example:

select count(*) as seq from table(snapshot_lock('',-1))

as T1 where TABLE_NAME!= '' AND AGENT_ID in (SELECT

AGENT_ID FROM TABLE(SNAPSHOT_APPL_INFO('',-1)) as T2

WHERE APPL_ID = (VALUES APPLICATION_ID()))

In IBM DB2 UDB, select the lock information of the current session using:
select agent_id from table(snapshot_lock('',-1)) as locktable

To get the current session ID, use:

SELECT APPL.AGENT_ID FROM TABLE(SNAPSHOT_APPL_INFO('',

-1)) AS APPL WHERE APPL.APPL_ID = (VALUES APPLICATION_ID())

Transaction Serialization Methods
Replication Server provides four different serialization methods for specifying the level of
parallelization. The serialization method you choose depends on your replication
environment, and the amount of contention you expect between parallel threads.

Each serialization method defines the degree to which a transaction can start before it must
wait for the previous transaction to commit.

Use the dsi_partitioning_rule parameter to reduce the probability of contention without
reducing the degree of parallelism assigned by the serialization method.

The serialization methods are:

• no_wait

• wait_for_start

• wait_for_commit

• wait_after_commit

Use the alter connection command with the dsi_serialization_method parameter to select the
serialization method for a database connection. For example, enter the following command to
select the wait_for_commit serialization method for the connection to the pubs2 database on
the SYDNEY_DS data server:
alter connection to SYDNEY_DS.pubs2
 set dsi_serialization_method to 'wait_for_commit'

A transaction contains three parts:

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

Heterogeneous Replication Guide 83

• The beginning,
• The body of the transaction, consisting of operations such as insert, update, or delete,

and
• The end of the transaction, consisting of a commit or a rollback.

While providing commit consistency, the serialization method defines whether the beginning
of the transaction waits for the previous transaction to become ready to commit or if the
beginning of the transaction can be processed earlier.

no_wait
The no_wait method instructs the DSI to initiate the next transaction without waiting for the
previous transaction to commit.

no_wait assumes that your primary applications are designed to avoid conflicting updates, or
that dsi_partitioning_rule is used effectively to reduce or eliminate contention. Adaptive
Server does not hold update locks unless dsi_isolation_level has been set to 3. The method
assumes little contention between parallel transactions and results in the nearly parallel
execution shown in the "Thread Timing with wait_for_commit Serialization Method"
diagram.

Note: You can only set dsi_serialization_method to no_wait if dsi_commit_control is set to
“on”.

Figure 3: Thread Timing with the no_wait Serialization Method

no_wait provides the better opportunity for increased performance, but also provides the
greater risk of creating contentions.

wait_for_start
wait_for_start specifies that a transaction can start as soon as the transaction scheduled to
commit immediately before it has started.

Sybase recommends that you do not concurrently set dsi_serialization_method to
wait_for_start and dsi_commit_control to off.

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

84 Replication Server

Figure 4: Thread Timing with wait_for_start Serialization Method

wait_for_commit
In wait_for_commit method, the next thread’s transaction group is not sent for processing
until the previous transaction has processed successfully and the commit is being sent.

This is the default setting. It assumes considerable contention between parallel transactions
and results in the staggered execution shown in the figure.

Figure 5: Thread Timing with wait_for_commit Serialization Method

This method maintains transaction serialization by instructing the DSI to wait until a
transaction is ready to commit before initiating the next transaction. The next transaction can
be submitted to the replicate data server while the first transaction is committing, since the first
transaction already holds the locks that it requires.

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

Heterogeneous Replication Guide 85

wait_after_commit
wait_after_commit specifies that a transaction cannot start until the transaction scheduled to
commit immediately preceding it has committed completely.

Figure 6: Thread Timing with wait_after_commit Serialization Method

IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server

86 Replication Server

Microsoft SQL Server as Replicate Data Server

Learn about the replicate database issues and considerations specific to the Microsoft SQL
Server data server in a Sybase replication system.

Microsoft SQL Server Replicate Data Servers
As a replicate data server, Microsoft SQL Server interacts with the ECDA Option for ODBC
database gateway.

The ECDA Option for ODBC server accepts commands from the replicate Replication Server,
and applies those commands to a Microsoft SQL Server database.

Note: The ECDA Option for ODBC supports replication of large object (LOB) datatypes
(image, ntext, and text) from Replication Server directly to a Microsoft SQL Server
database.

Replication Intrusions and Impacts on Microsoft SQL
Server

The only significant intrusions or impacts to the Microsoft SQL Server replicate database are
the database objects that are created by the connection profile to support Replication Server
replicate database operations.

The connection profile creates three tables in the replicate database to support Replication
Server operations:

• RS_INFO, which contains information about the sort order and character set used by the
replicate database

Note: Confirm that the insert statements for the RS_INFO table specifies the proper
character set and sort order for your Microsoft SQL Server data server.

When using Replication Server version 12.0 or later, the replicate database sort order and
character set must be recorded in the RS_INFO table.
The Replication Server rs_get_charset and rs_get_sortorder functions retrieve the
character set and sort order from the RS_INFO table in the replicate database.

• RS_LASTCOMMIT, which contains information about replicated transactions applied to
the replicate database
Each row in the RS_LASTCOMMIT table identifies the most recent committed transaction
that was distributed to the replicate database from a primary database. Replication Server
uses this information to ensure that all transactions are distributed.

Microsoft SQL Server as Replicate Data Server

Heterogeneous Replication Guide 87

The Replication Server rs_get_lastcommit function retrieves information about the last
transaction committed in the replicate database. For non-ASE replicate databases, the
rs_get_lastcommit function is replaced in the database-specific function string class by
the query required to access the RS_LASTCOMMIT table in the replicate database.

• RS_TICKET_HISTORY, which contains the execution results of Replication Server
command rs_ticket.The rs_ticket command can be issued for the primary database to
measure the amount of time it takes for a command to move from the primary database to
the replicate database. You can use this information to monitor Replication Server
performance, module heartbeat, replication health, and table-level quiesce. The results of
each execution of rs_ticket is stored in a single row of the RS_TICKET_HISTORY table
in the replicate database. You can query each row of the RS_TICKET_HISTORY table to
obtain results of individual rs_ticket executions, or compare the results from different
rows. The data stored in this table may be manually truncated.

Note: The RS_TICKET_HISTORY table is only available in Replication Server release
15.1 and later.

Replicate Database Limitations on Microsoft SQL Server
Microsoft SQL Server supports either 28 digits or 38 digits of precision, depending on the
server’s start-up options. The default precision is 28 digits.

Replication Server does not provide user-defined datatypes (UDDs) to support the default 28
digits of precision.

If you attempt to replicate numeric data to a Microsoft SQL Server database in excess of the
server’s configured precision, Replication Server returns the following error:

E. 2007/12/14 11:14:58. ERROR #1028 DSI EXEC(134(1)
 dcm_gabeat70_devdb.devdb)
 - dsiqmint.c(2888)
 Message from server: Message: 30291, State 0,
 Severity 19 --
 '[VENDORLIB] Vendor Library Error: [[Message
 Iteration=1|Data Source Name=mssql70_devdb|
 SQLState=22003|Native Error=1007|Message=
 [Microsoft] [ODBC SQL Server Driver][SQL
 Server]The number
 '9999999999999999999.9999999999999999999' is out
 of the range for numeric representation (maximum
 precision 28).
 [Message Iteration=2|SQLState=22003|Native
 Error=|Message=[Microsoft][ODBC SQL Server
 Driver][SQL Server]The number
 '0.99999999999999999999999999999999999999' is out
 of the range for numeric representation (maximum
 precision 28).] <DCA>'

Microsoft SQL Server as Replicate Data Server

88 Replication Server

Microsoft SQL Server supports identity columns in the same manner as Adaptive Server
Enterprise, so the Replication Server function strings that set identity insert off and on work
correctly with Microsoft SQL Server. However, to support 28-digit numeric precision, the
Sybase native numeric datatype must be translated to the rs_msss_numeric datatype,
and as a result of this translation, the identity characteristic is lost.

If you choose to use the numeric to rs_msss_numeric datatype translation to support
28-digit precision in a Microsoft SQL Server replicate database, the replicate table cannot
declare the numeric column receiving that data as an identity.

If a replicate Microsoft SQL Server table declares a numeric column receiving translated data
as an identity, Replication Server returns the following error:

E. 2007/12/14 12:05:39. ERROR #1028 DSI EXEC(134(1)
 dcm_gabeat70_devdb.devdb)
 - dsiqmint.c(2888)
 Message from server: Message: 30291, State 0,
 Severity 19 --
 '[VENDORLIB] Vendor Library Error: [[Message
 Iteration=1|Data Source Name=mssql70_devdb|SQL
 Function=INSERT|SQLState=23000|Native
 Error=544|Message=[Microsoft][ODBC SQL Server
 Driver][SQL Server]Cannot insert explicit value
 for identity column in table 'ase_alltypes' when
 IDENTITY_INSERT is set to OFF.] <DCA>'

Microsoft SQL Server Replicate Database Permissions
Replication Server requires a maintenance user ID that you specify using the Replication
Server create connection command to apply transactions in a replicate database.

The maintenance user ID must be defined at the Microsoft SQL Server data server and granted
authority to apply transactions in the replicate database. The maintenance user ID must have
these permissions in the Microsoft SQL Server replicate database:

• create table authority to create tables used for Replication Server processing
• update authority on all replicate tables
• execute authority on all replicate stored procedures

Replicate Database Connectivity for Microsoft SQL Server
A Replication Server database connection name is made up of two parts: a data server name
(server_name) and a database name (db_name).

The server_name is the name of the ECDA for ODBC database gateway server, and the
db_name is the name of the Microsoft SQL Server replicate database.

Microsoft SQL Server as Replicate Data Server

Heterogeneous Replication Guide 89

The replicate Replication Server looks for an interfaces file entry for the database
gateway server_name specified in the Replication Server database connection. The replicate
Replication Server logs in to the replicate data server using the user_name and password
specified in the database connection.

Make an entry in the Replication Server interfaces file to identify the host and port where
the ECDA Option for ODBC database gateway server is listening. The interfaces file
entry name must match the server_name portion of the Replication Server database
connection.

Microsoft SQL Server Replicate Database Configuration
The heterogeneous datatype support (HDS) feature of Replication Server provides
configuration information that allows you to set up the HDS feature in the replicate
Replication Server and the Microsoft SQL Server replicate database.

The configuration information is part of the installation and part of the connection profile:

• Replication Server installation:
• Create function strings, error classes, and user defined datatypes

• Connection profile:
• Apply class-level datatype translations to RSSD
• Create objects in the Microsoft SQL Server database
• Set connection properties

• Additional settings:
• Settings in ECDA
• Settings for Dynamic SQL
• Settings for Command batching

See also
• Class-Level Datatype Translations to RSSD on page 91

• Objects in the Microsoft SQL Server Database and Connection Properties on page 92

Replication Server Installation
Replication Server installation automatically installs the required function strings and classes
to support replication.

Function Strings, Error Classes, and User Defined Datatypes
Function strings are added to the Replication Server default rs_msss_function_class.

The function string replaces several default Replication Server function strings with custom
function strings designed to communicate with Microsoft SQL Server and access the tables
and procedures that were created.

Microsoft SQL Server as Replicate Data Server

90 Replication Server

To find the error action defined for an error class, see Replication Server Reference Manual >
RSSD Stored Procedures > rs_helperror.

Connection Profiles
Connection profiles allow you to configure your connection with a predefined set of
properties.

Syntax
create connection to data_server.database
using profile connection_profile;version
set username [to] user
[other_create_connection_options]
[display_only]

Parameters
data_server – The data server that holds the database to be added to the replication system.

database – The database to be added to the replication system.

connection_profile – Indicates the connection profile that you want to use to configure a
connection, modify the RSSD, and build replicate database objects.

version – Specifies the connection profile version to use.

user – The login name of the Replication Server maintenance user for the database.
Replication Server uses this login name to maintain replicated data. You must specify a user
name if network-based security is not enabled.

other_create_connection_options – Use the other create connection options to set connection
options not specified in the profile, such as setting your password, or to override options
specified in the profile, such as specifying a custom function string class to override the
function string class provided in Replication Server. See the Replication Server Reference
Manual > Replication Server Commands > create connection for a complete list of the other
options for create connection command.

display_only – Use display_only with the using profile clause to display the commands that
will be executed and the names of the servers upon which the commands will be executed. See
the client and Replication Server logs for the result of using display_only.

Class-Level Datatype Translations to RSSD
Class-level translations identify primary datatypes and the replicate datatypes into which data
is to be translated (for example, DB2 UDB TIMESTAMP should be translated to Microsoft
SQL Server datetime).

Note: These translations can affect Replication Server performance. Only the translations
needed for your specific primary database and replicate database should be applied to the
RSSD.

Microsoft SQL Server as Replicate Data Server

Heterogeneous Replication Guide 91

These connection profiles supply class-level translation for the Microsoft SQL Server
replicate database:

• rs_db2_to_msss – translates DB2 UDB for IBM z/OS datatypes to Microsoft SQL
Server datatypes.

• rs_ase_to_msss.sql – translates Adaptive Server datatypes to Microsoft SQL
Server datatypes.

• rs_udb_to_msss – translates DB2 UDB (for UNIX and Windows) datatypes to
Microsoft SQL Server datatypes.

• rs_oracle_to_msss – translates Oracle datatypes to Microsoft SQL Server
datatypes.

Objects in the Microsoft SQL Server Database and Connection Properties
The connection profile creates the RS_INFO, RS_LASTCOMMIT, and
RS_TICKET_HISTORY tables in the replicate database.

The connection profiles set these connection properties:
set error class rs_msss_error_class
set function string rs_msss_function_class

Additional Settings
Learn about the additional settings provided to support replication.

The settings include:

• Settings in ECDA
Use the following settings in the ECDA configuration file:
Transaction Mode = long
allocate = connect

SQL transformation = Sybase

When set batch is “on,” you must also specify:
DelimitSqlRequests = yes

If you have a tinyint datatype at the replicate table, the following parameter must be
added to the Datatype Conversion section of the Microsoft SQL service in ECDA
Microsoft SQL Server.
TinyIntResults=tinyint

• Settings for Dynamic SQL
Dynamic SQL is supported as of Replication Server 15.0.1 and requires ECDA Option for
ODBC 12.6.1 ESD #2, or later.

• Settings for command batching
Command batching allows Replication Server to send multiple commands to the data
server as a single command batch. You can put multiple commands in a language function-
string output template, separating them with semicolons (;). If the database is configured
to allow command batches, which is the default, Replication Server replaces the

Microsoft SQL Server as Replicate Data Server

92 Replication Server

semicolons with that connection’s DSI command separator character before sending the
function string in a single batch to the data server. The separator character is defined in the
dsi_cmd_separator option of the alter connection command.
If the connection to the database is not configured to allow batches, Replication Server
sends the commands in the function string to the data server one at a time. To enable or
disable batching for a database, use the alter connection command.
To use command batching, enter:
batch = on

batch_begin = on or off

The use of on for batch_begin reduces the number of network transfers.
use_batch_markers = off

Additional batch markers are not required.
When set batch is “on,” you must also specify the following configuration:
dsi_cmd_seperator set = ;

If you do not specify this configuration, ECDA ignores the commits after each batch , and
all the replicate requests are rolled back after the dsi connection fades out.
For information on setting batch and dsi_cmd_separator options, see the Replication
Server Reference Manual > alter connection.

Parallel DSI Threads for Microsoft SQL Server Replicate
Database

In a heterogeneous replication environment, parallel DSI must ensure that the commit order in
the replicate database is same as in the primary database.

DSI can then resolve deadlock conflict, when deadlock has occurred, and Replication Server
can rollback transactions and execute again.

Replication Server can maintain the order in which transactions are committed and detect
conflicting updates in transactions that are simultaneously executing in parallel either:

• Internally, using Replication Server internal tables and function strings,
• Externally, using the rs_threads system table in the replicate database.

For external commit control, you must follow these rules:

• When different sessions operate on the same row, the update operation in session 1 should
block the select operation in session 2.

• When different sessions operate on different rows, the update operation in session 1
should not block update in session 2.

Microsoft SQL Server as Replicate Data Server

Heterogeneous Replication Guide 93

Internal commit control method is better than external commit control because it depends on
fewer conditions. If a deadlock occurs, the internal commit control allows Replication Server
to roll back a single transaction, whereas external commit control rolls back all transactions.

Replication Server provides other options for maximizing parallelism and minimizing
contention between transactions. For example, transaction serialization methods allow you to
choose the degree of parallelism your system can handle without conflicts.

For detailed information on how to use parallel DSI threads, see Replication Server
Administration Guide Volume 2 > Performance Tuning.

External and Internal Commit Control
Replication Server can create rs_threads with row-level lock when the replicate database is
Microsoft SQL Server.

By default, the row-level lock is “on” and page level lock is “on”. For external commit control
method, we need to have only row-level locking. When you apply a row-level lock to a table,
you must grant unique index or primary key to that table. For example:

create table rs_threads
(id int,seq int CONSTRAINT PK_rs_threads PRIMARY KEY CLUSTERED(id
ASC)
WITH (ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF))

When the isolation level is 3, use:

Select seq from rs_threads with(nolock) where id =?

For more information on selecting isolation levels for your transactions, see Replication
Server Administration Guide Volume 2 > Performance Tuning.

Replication Server uses the rs_dsi_check_thread_lock function to check whether the current
DSI executor thread is blocking another replicate database process. For example:
select count(*) 'seq' from master..sysprocesses where blocked =
@@spid

Transaction Serialization Methods
Replication Server provides four different serialization methods for specifying the level of
parallelization. The serialization method you choose depends on your replication
environment, and the amount of contention you expect between parallel threads.

Each serialization method defines the degree to which a transaction can start before it must
wait for the previous transaction to commit.

Use the dsi_partitioning_rule parameter to reduce the probability of contention without
reducing the degree of parallelism assigned by the serialization method.

The serialization methods are:

• no_wait

Microsoft SQL Server as Replicate Data Server

94 Replication Server

• wait_for_start
• wait_for_commit
• wait_after_commit

Use the alter connection command with the dsi_serialization_method parameter to select the
serialization method for a database connection. For example, enter the following command to
select the wait_for_commit serialization method for the connection to the pubs2 database on
the SYDNEY_DS data server:
alter connection to SYDNEY_DS.pubs2
 set dsi_serialization_method to 'wait_for_commit'

A transaction contains three parts:
• The beginning,
• The body of the transaction, consisting of operations such as insert, update, or delete,

and
• The end of the transaction, consisting of a commit or a rollback.
While providing commit consistency, the serialization method defines whether the beginning
of the transaction waits for the previous transaction to become ready to commit or if the
beginning of the transaction can be processed earlier.

no_wait
The no_wait method instructs the DSI to initiate the next transaction without waiting for the
previous transaction to commit.

no_wait assumes that your primary applications are designed to avoid conflicting updates, or
that dsi_partitioning_rule is used effectively to reduce or eliminate contention. Adaptive
Server does not hold update locks unless dsi_isolation_level has been set to 3. The method
assumes little contention between parallel transactions and results in the nearly parallel
execution shown in the "Thread Timing with wait_for_commit Serialization Method"
diagram.

Note: You can only set dsi_serialization_method to no_wait if dsi_commit_control is set to
“on”.

Figure 7: Thread Timing with the no_wait Serialization Method

Microsoft SQL Server as Replicate Data Server

Heterogeneous Replication Guide 95

no_wait provides the better opportunity for increased performance, but also provides the
greater risk of creating contentions.

wait_for_start
wait_for_start specifies that a transaction can start as soon as the transaction scheduled to
commit immediately before it has started.

Sybase recommends that you do not concurrently set dsi_serialization_method to
wait_for_start and dsi_commit_control to off.

Figure 8: Thread Timing with wait_for_start Serialization Method

wait_for_commit
In wait_for_commit method, the next thread’s transaction group is not sent for processing
until the previous transaction has processed successfully and the commit is being sent.

This is the default setting. It assumes considerable contention between parallel transactions
and results in the staggered execution shown in the figure.

Figure 9: Thread Timing with wait_for_commit Serialization Method

This method maintains transaction serialization by instructing the DSI to wait until a
transaction is ready to commit before initiating the next transaction. The next transaction can
be submitted to the replicate data server while the first transaction is committing, since the first
transaction already holds the locks that it requires.

Microsoft SQL Server as Replicate Data Server

96 Replication Server

wait_after_commit
wait_after_commit specifies that a transaction cannot start until the transaction scheduled to
commit immediately preceding it has committed completely.

Figure 10: Thread Timing with wait_after_commit Serialization Method

Microsoft SQL Server as Replicate Data Server

Heterogeneous Replication Guide 97

Microsoft SQL Server as Replicate Data Server

98 Replication Server

Oracle as Replicate Data Server

Learn about the replicate database issues and considerations specific to the Oracle data server
in a Sybase replication system.

Oracle Replicate Data Servers
You can replicate to an Oracle data server, using either ECDA Option for Oracle database
gateway or ExpressConnect for Oracle.

The ECDA Option for Oracle accepts commands from the replicate Replication Server, and
applies those commands to an Oracle database.

ExpressConnect for Oracle, which provides direct communication between Replication
Server and the replicate data server. ExpressConnect for Oracle eliminates the need for
installing and setting up a separate gateway server, and makes Oracle data easily accessible in
a heterogeneous replication environment.

Replication Intrusions and Impacts on Oracle
The only significant intrusions or impacts to the Oracle replicate database are the database
objects created through the connection profile that creates three tables in the replicate database
to support Replication Server operations.

The created tables include:

• RS_INFO, which contains information about the sort order and character set used by the
replicate database. When using Replication Server version 12.0 or later, the replicate
database sort order and character set must be recorded in the RS_INFO table.

Note: Confirm that the INSERT statements for this table specify the proper character set
and sort order for your Oracle data server.

The Replication Server rs_get_charset and rs_get_sortorder functions retrieve the
character set and sort order from the RS_INFO table in the replicate database.

• RS_LASTCOMMIT, which contains information about replicated transactions applied to
the replicate database. Each row in the RS_LASTCOMMIT table identifies the most recent
committed transaction that was distributed to the replicate database from a primary
database. Replication Server uses this information to ensure that all transactions are
distributed.
The Replication Server rs_get_lastcommit function retrieves information about the last
transaction committed in the replicate database. For non-ASE replicate databases, the

Oracle as Replicate Data Server

Heterogeneous Replication Guide 99

rs_get_lastcommit function is replaced in the database-specific function string class by
the query required to access the RS_LASTCOMMIT table in the replicate database.

• RS_TICKET_HISTORY, which contains the execution results of Replication Server
command rs_ticket.The rs_ticket command can be issued for the primary database to
measure the amount of time it takes for a command to move from the primary database to
the replicate database. You can use this information to monitor Replication Server
performance, module heartbeat, replication health, and table-level quiesce. The results of
each execution of rs_ticket is stored in a single row of the RS_TICKET_HISTORY table
in the replicate database. You can query each row of the RS_TICKET_HISTORY table to
obtain results of individual rs_ticket executions, or to compare the results from different
rows. The data may be manually truncated.

Note: The RS_TICKET_HISTORY table is only available in Replication Server version
15.1 and later.

Oracle Replicate Database Permissions
Replication Server requires a maintenance user ID that you specify using the Replication
Server create connection command to apply transactions in a replicate database.

The maintenance user ID must be defined at the Oracle data server and granted authority to
apply transactions in the replicate database. The maintenance user ID must have these
permissions in the Oracle replicate database:

• CREATE TABLE authority to create tables used for Replication Server processing.
• UPDATE authority on all replicate tables.
• EXECUTE authority on all replicate stored procedures.

Replicate Database Connectivity for Oracle
Replication Server can connect to an Oracle replicate database using ECDA Option for Oracle
or ExpressConnect for Oracle (ECO).

Using ECDA
A Replication Server database connection name is made up of two parts; a data server name
(server_name) and a database name (db_name). The server_name is the name of the ECDA
Option for Oracle database gateway server, and the db_name is the name of the Oracle SID for
the replicate database.

The replicate Replication Server looks for an interfaces file entry for the database
gateway server_name specified in the Replication Server database connection. The replicate
Replication Server logs in to the replicate data server using the user_name and password
specified in the database connection.

Oracle as Replicate Data Server

100 Replication Server

Make an entry in the Replication Server interfaces file to identify the host and port where
the ECDA Option for Oracle database gateway server is listening. The interface file entry
name must match the server_name portion of the Replication Server database connection.

Using ExpressConnect for Oracle
A Replication Server database connection name is made up of two parts; a data server name
(server_name) and a database name (db_name). The server_name is the name of the desired
service (Oracle instance) in the tnsnames.ora file. The db_name is the name given to the
Oracle database at the time of its installation and configuration (Oracle SID). By default, this
is usually “ORCL.”

ExpressConnect for Oracle looks for an entry in the tnsnames.ora file to match the
server_name specified in the Replication Server database connection. The replicate
Replication Server logs in to the replicate data server using the user_name and password
specified in the database connection. There is no interfaces file entry required for the Oracle
data server for replication using ExpressConnect for Oracle.

Specifying How Replication Server Replicates Stored Procedures
Set dsi_proc_as_rpc on if you use ExpressConnect for Oracle. ECO only supports stored
procedure replication using remote procedure calls (RPC). By default, Replication Server sets
dsi_proc_as_rpc on if you use one of the Oracle ECO connection profiles when you create the
connection to the Oracle database from Replication Server. See Replication Server Options
15.5 > Installation and Configuration Guide ExpressConnect for Oracle 15.5 > Configuring
ExpressConnect for Oracle.

Set dsi_proc_as_rpc off if you use ECDA Option for Oracle. ECDA does not support RPC for
stored procedure replication.

Oracle Replicate Database Configuration
The heterogeneous datatype support (HDS) feature of Replication Server provides
configuration information that allows you to set up the HDS feature in the replicate
Replication Server and the Oracle replicate database.

The configuration information is provided as part of the installation and as part of the
connection profile:

• Replication Server installation:
• Create function strings, error classes, and user defined datatypes

• Connection profile:
• Apply class-level datatype translations to RSSD
• Create objects in the Oracle replicate database
• Set connection properties

You can connect using either an ECDA Server or ExpressConnect for Oracle.
Depending on whether you are connecting using an ECDA Server or ExpressConnect

Oracle as Replicate Data Server

Heterogeneous Replication Guide 101

for Oracle, the version or option name of the connection profile should be “ecda” or
“eco,” respectively.

• Additional settings:
• ECDA settings
• Settings for Command Batching
• Settings for Dynamic SQL

See also
• Class-Level Datatype Translations to RSSD on page 103

• Objects in the Oracle Replicate Database and Connection Properties on page 103

• ECDA Settings on page 104

• Command Batching Settings on page 105

• Dynamic SQL Settings on page 107

Replication Server Installation
Replication Server installation automatically installs the required function strings and classes
to support replication.

Function Strings, Error Classes, and User Defined Datatypes
Function strings are added to the Replication Server default
rs_oracle_function_class.

The function string replaces several default Replication Server function strings with custom
function strings designed to communicate with an Oracle data server and access the tables and
procedures.

Warning! ExpressConnect for Oracle does not support the use of custom function strings for
text and image processing.

Connection Profiles
Connection profiles allow you to configure your connection with a predefined set of
properties.

Syntax
create connection to data_server.database
using profile connection_profile;version
set username [to] user
[other_create_connection_options]
[display_only]

Parameters
data_server – The data server that holds the database to be added to the replication system.

database – The database to be added to the replication system.

Oracle as Replicate Data Server

102 Replication Server

connection_profile – Indicates the connection profile that you want to use to configure a
connection, modify the RSSD, and build replicate database objects.

version – Specifies the connection profile version to use.

user – The login name of the Replication Server maintenance user for the database.
Replication Server uses this login name to maintain replicated data. You must specify a user
name if network-based security is not enabled.

other_create_connection_options – Use the other create connection options to set connection
options not specified in the profile, such as setting your password, or to override options
specified in the profile, such as specifying a custom function string class to override the
function string class provided in Replication Server. See the Replication Server Reference
Manual > Replication Server Commands > create connection for a complete list of the other
options for create connection command.

display_only – Use display_only with the using profile clause to display the commands that
will be executed and the names of the servers upon which the commands will be executed. See
the client and Replication Server logs for the result of using display_only.

Class-Level Datatype Translations to RSSD
Class-level translations identify primary datatypes and the replicate datatypes the data must be
translated into (for example, DB2 UDB TIMESTAMP should be translated to Oracle DATE).

Class-level translation is supplied for the Oracle replicate database by the appropriate named
connection profile:

• rs_ase_to_oracle – translates Adaptive Server datatypes to Oracle datatypes.

• rs_db2_to_oracle – translates DB2 UDB for z/OS datatypes to Oracle datatypes.

• rs_udb_to_oracle – translates DB2 UDB (for UNIX and Windows) datatypes to
Oracle datatypes.

• rs_msss_to_oracle – translates Microsoft SQL Server datatypes to Oracle
datatypes.

An example of a script using ExpressConnect for Oracle version profile for an Adaptive
Server Enterprise (ASE) to Oracle replication environment:
create connection to oracleSID_name.oracleSID_name
using profile rs_ase_to_oracle;eco
set username rs_maint_user
set password rs_maint_user_pwd
go

Objects in the Oracle Replicate Database and Connection Properties
The connection profile creates the RS_INFO, RS_LASTCOMMIT, and
RS_TICKET_HISTORY tables in the replicate database, as well as the
RS_TRIGGERS_CONTROL package.

The connection profiles set these connection properties:

Oracle as Replicate Data Server

Heterogeneous Replication Guide 103

set error class rs_oracle_error_class
set function string rs_oracle_function_class

Additional Settings
Learn about the additional settings provided to support replication.

The settings include:

• ECDA settings
• ExpressConnect settings
• Command Batching settings
• Trigger Firing settings
• Oracle Flashback settings
• Dynamic SQL settings

ECDA Settings
Learn about the issues that must be considered when using an Oracle replicate data server.

The issues include:

• In ECDA Option for Oracle version 12.0 or later, an additional trace flag allows the
replicate Replication Server to control transaction commit boundaries when applying
transactions to an Oracle replicate database.

• Setting the value of the ECDA autocommit trace flag to 0 (zero) in the ECDA Option for
Oracle configuration file allows Replication Server to control when a COMMIT command
should be sent to Oracle. When the value of the autocommit trace flag is not set, ECDA
Option for Oracle commits each individual operation (INSERT, UPDATE, and DELETE)
sent by the replicate Replication Server.

• Having ECDA commit each operation causes a problem at the replicate database if an error
occurs in the middle of a multiple operation transaction. The replicate Replication Server
may attempt to re-send the entire transaction, while ECDA has already committed each
individual operation. To avoid this problem, set the value of the ECDA autocommit trace
flag to 0 (zero).

• In ECDA Option for Oracle 15.0 ESD#3, set the rep_sparse_parse configuration
parameter to 1. This prevents SQL statements in Oracle syntax, sent from Replication
Server directly to Oracle, from being parsed by ECDA Option for Oracle. This not only
improves performance but is also required for using the flashback replication feature.
When rep_sparse_parse parameter is set to 0, some of the DDL and DML SQL
statements sent by Replication Server are parsed and changed by ECDA Option for Oracle.
For example, when ECDA Option for Oracle receives a DDL statement drop table
<table_name> from Replication Server, the DDL statement is parsed by ECDA Option for
Oracle and changed to drop table <table_name> purge. This change should not take place
if you want the replicate database recycle bin to be synchronized with the primary database
recycle bin. This issue can be avoided by setting the value of rep_sparse_parse to 1.

Oracle as Replicate Data Server

104 Replication Server

ExpressConnect Settings
Replication Server provides Oracle connection profiles, which instruct the Replication Server
connection about the settings and function strings needed for appropriate database-specific
behaviors (such as datatype transformation, commit processing, and rs_ticket support) for an
Oracle replication connection.

When creating or altering a Replication Server connection to Oracle, use the appropriate
Oracle connection profile (for example, the profile for ASE-to-Oracle replication or the
profile for Oracle-to-Oracle replication).

Also, the replication of stored procedures in Oracle may require additional customer-provided
function strings. By default, Replication Server generates ASE syntax, which may not be
understood by the target database. Function strings can be added to adjust this syntax to be
appropriate for the target database. For example, to transform a function call
econn_test_basic_proc with one character type and one money type parameter, you must
create a function string as follows:

create function string econn_test_basic_proc.econn_test_basic_proc
for
rs_oracle_function_class with overwrite output language
‘call econn_test_basic_proc(?charcolp!param?, ?moneycolp!param?)’

In this example, the function string causes the keyword call to be placed in front of any
function replication definition and function named econn_test_basic_proc in the
rs_oracle_function_class. An example of another function string that would generate a
syntax acceptable to Oracle is:
create function string econn_test_basic_proc.econn_test_basic_proc
for
rs_oracle_function_class with overwrite output language ‘begin
econn_test_basic_proc(?charcolp!param?, ?moneycolp!param?);; end;;’

In this example, the function string prepends the same function replication definition and
function with the keyword begin and appends the character string “;; end;;”

Warning! ExpressConnect for Oracle does not support the use of custom function strings for
text and image processing.

Command Batching Settings
Command batching allows Replication Server to send multiple commands to the data server as
a single command batch.

You can put multiple commands in a language function-string output template, separating
them with semicolons (;). If the database is configured to allow command batches, which is the
default, Replication Server replaces the semicolons with that connection’s DSI command
separator character before sending the function string in a single batch to the data server.

The separator character is defined in the dsi_cmd_separator option of the alter connection
command. If the connection to the database is not configured to allow batches, Replication

Oracle as Replicate Data Server

Heterogeneous Replication Guide 105

Server sends the commands in the function string to the data server one at a time. To enable or
disable batching for a database, use the alter connection command.

To use command batching, enter:
batch = on

batch_begin = off

When set batch is “on,” you must also specify the following configuration:
dsi_cmd_seperator set = ;

As a result of a placeholder command that is used in the rs_begin function string, setting
batch_begin to “on” may cause problems with starting DSI. Set batch_begin to “off” to allow
the rs_begin and the rs_commit commands to be sent independently of the batches of
commands, and ensures correct SQL in all transferred commands:

use_batch_markers = on

Oracle requires BEGIN and END markers for batches of commands. By configuring
use_batch_markers to “on,” the markers are automatically added from the rs_batch_start
and rs_batch_end function strings. See the Replication Server Administration Guide Volume
2 > Command Batching for Non-ASE Servers.

Trigger Firing Settings
Replication Server supports disabling trigger execution for Oracle at the session or connection
level.

You can control trigger firing each time Replication Server executes PL/SQL commands
against the replicate database. Controlling trigger execution at the replicate database
eliminates data duplication and data inaccuracy errors that were caused by the absence of
trigger control at the replicate database side.

For every trigger to be controlled at the replicate database, re-create the trigger and add the
trigger control statement at the beginning of your trigger action.

Controlling Trigger Firing
Control trigger firing through RS_TRIGGER_CONTROL package, which is automatically
installed when a connection to the replicate Oracle database is created through connection
profiles.

1. Set the connection parameter dsi_keep_triggers to off so that Replication Server sets the
RS_TRIGGERS_CONTROL enable flag when connecting to the replicate database.

2. Add the trigger control PL/SQL code to the first line of your trigger action:

if RS_TRIGGER_CONTROL.IS_ENABLED then return;end if;

This indicates that a trigger is fired by Replication Server and prevents the trigger from
executing the actual application logic.

Oracle as Replicate Data Server

106 Replication Server

See the Replication Server Reference Manual.

Oracle Flashback Settings
Replication Agent supports Oracle Flashback at the table and transaction levels.

Use Oracle Flashback to query historical data, perform change analysis, and perform self-
service repair to recover from logical corruptions while the database is online. Oracle
customers can use flashback to undo the previous data change thereby minimizing application
outages caused by operator or user errors, such as accidental deletion of valuable data,
deletion of the wrong data, and dropping the wrong table.

Replication Agent supports two kinds of flashback:

• Flashback a dropped table. This replicates the flashback DDL commands like drop table,
flashback table to before drop, and purge recyclebin to target Oracle. To replicate purge
dba_recyclebin, use DCO 15.0 ESD#3 or later, and assign the sysdba privilege to the
DDL user.

• Flashback a table to a specific timestamp or SCN. This replicates the DML changes to the
target Oracle database.

To flashback a table to a specific timestamp or SCN:

• Use the pdb_setreptable command to mark the table which needs to be flashbacked to a
specific state.

To replicate flashback DDL statements:

• Enable recycle bin at both primary and replicate database:
alter system set recyclebin=on

• When using ECDA, set the rep_sparse_parse parameter of the ECDA Option for Oracle
to 1. The default value of this parameter is 0 when ECDA Option for Oracle 15.0 ESD #3 is
used.

• Enable DDL replication by using the pdb_setrepddl enable command.

Dynamic SQL Settings
Dynamic SQL is supported as of Replication Server 15.0.1, and requires ECDA Option for
Oracle 15.0 or later, or ExpressConnect.

Parallel DSI Threads for Oracle Replicate Database
In a heterogeneous replication environment, parallel DSI must ensure that the commit order in
the replicate database is same as in the primary database.

DSI can then resolve deadlock conflict, when deadlock has occurred, and Replication Server
can rollback transactions and execute again.

Replication Server can maintain the order in which transactions are committed and detect
conflicting updates in transactions that are simultaneously executing in parallel either:

Oracle as Replicate Data Server

Heterogeneous Replication Guide 107

• Internally, using Replication Server internal tables and function strings,
• Externally, using the rs_threads system table in the replicate database.

For external commit control, you must follow these rules:

• When different sessions operate on the same row, the update operation in session 1 should
block the select operation in session 2.

• When different sessions operate on different rows, the update operation in session 1
should not block update in session 2.

Internal commit control method is better than external commit control because it depends on
fewer conditions. If a deadlock occurs, the internal commit control allows Replication Server
to roll back a single transaction, whereas external commit control rolls back all transactions.

Replication Server provides other options for maximizing parallelism and minimizing
contention between transactions. For example, transaction serialization methods allow you to
choose the degree of parallelism your system can handle without conflicts.

For detailed information on how to use parallel DSI threads, see Replication Server
Administration Guide Volume 2 > Performance Tuning.

External and Internal Commit Control
Replication Server does not support external commit control when Oracle is the replicate
database.

Replication Server uses the rs_dsi_check_thread_lock function to check whether the current
DSI executor thread is blocking another replicate database process. For example:
'select count(*) as seq from DBA_BLOCKERS

 where holding_session in (select sid from v$session

 where audsid = userenv('SESSIONID'));'

Transaction Serialization Methods
Replication Server provides four different serialization methods for specifying the level of
parallelization. The serialization method you choose depends on your replication
environment, and the amount of contention you expect between parallel threads.

Each serialization method defines the degree to which a transaction can start before it must
wait for the previous transaction to commit.

Use the dsi_partitioning_rule parameter to reduce the probability of contention without
reducing the degree of parallelism assigned by the serialization method.

The serialization methods are:

• no_wait

• wait_for_start

• wait_for_commit

Oracle as Replicate Data Server

108 Replication Server

• wait_after_commit

Use the alter connection command with the dsi_serialization_method parameter to select the
serialization method for a database connection. For example, enter the following command to
select the wait_for_commit serialization method for the connection to the pubs2 database on
the SYDNEY_DS data server:
alter connection to SYDNEY_DS.pubs2
 set dsi_serialization_method to 'wait_for_commit'

A transaction contains three parts:

• The beginning,
• The body of the transaction, consisting of operations such as insert, update, or delete,

and
• The end of the transaction, consisting of a commit or a rollback.

While providing commit consistency, the serialization method defines whether the beginning
of the transaction waits for the previous transaction to become ready to commit or if the
beginning of the transaction can be processed earlier.

no_wait
The no_wait method instructs the DSI to initiate the next transaction without waiting for the
previous transaction to commit.

no_wait assumes that your primary applications are designed to avoid conflicting updates, or
that dsi_partitioning_rule is used effectively to reduce or eliminate contention. Adaptive
Server does not hold update locks unless dsi_isolation_level has been set to 3. The method
assumes little contention between parallel transactions and results in the nearly parallel
execution shown in the "Thread Timing with wait_for_commit Serialization Method"
diagram.

Note: You can only set dsi_serialization_method to no_wait if dsi_commit_control is set to
“on”.

Figure 11: Thread Timing with the no_wait Serialization Method

Oracle as Replicate Data Server

Heterogeneous Replication Guide 109

no_wait provides the better opportunity for increased performance, but also provides the
greater risk of creating contentions.

wait_for_start
wait_for_start specifies that a transaction can start as soon as the transaction scheduled to
commit immediately before it has started.

Sybase recommends that you do not concurrently set dsi_serialization_method to
wait_for_start and dsi_commit_control to off.

Figure 12: Thread Timing with wait_for_start Serialization Method

wait_for_commit
In wait_for_commit method, the next thread’s transaction group is not sent for processing
until the previous transaction has processed successfully and the commit is being sent.

This is the default setting. It assumes considerable contention between parallel transactions
and results in the staggered execution shown in the figure.

Figure 13: Thread Timing with wait_for_commit Serialization Method

This method maintains transaction serialization by instructing the DSI to wait until a
transaction is ready to commit before initiating the next transaction. The next transaction can
be submitted to the replicate data server while the first transaction is committing, since the first
transaction already holds the locks that it requires.

Oracle as Replicate Data Server

110 Replication Server

wait_after_commit
wait_after_commit specifies that a transaction cannot start until the transaction scheduled to
commit immediately preceding it has committed completely.

It is recommended to use wait_after_commit serialization method for those databases which
use Multiversion Concurrency Control (MVCC) or Optimistic Concurrency Control such as
Oracle. For all others, wait_for_commit can be used as the default method.

Figure 14: Thread Timing with wait_after_commit Serialization Method

Oracle as Replicate Data Server

Heterogeneous Replication Guide 111

Oracle as Replicate Data Server

112 Replication Server

Sybase IQ as Replicate Data Server

Learn about the replicate database issues and considerations specific to the Sybase IQ data
server in a Sybase replication system and how to connect and configure replication to Sybase
IQ.

Sybase IQ is the ideal platform for reporting and data analysis. However, to be more effective
for reporting, Sybase IQ requires real time data.

Replication Server includes a real-time loading (RTL) solution for replication directly into
Sybase IQ that you can use instead of the continuous replication mode that sends each logged
change to the replicate database according to the primary database log-order.

Compared to the continuous replication mode, RTL achieves better performance when
replicating directly into a Sybase IQ replicate database by performing compilation and bulk
apply.

Real-Time Loading Solution
RTL groups as many compilable transactions as possible, compiles the transactions in the
group into a net change, and then uses the bulk interface in the replicate database to apply the
net change to the replicate database.

When replicating into Sybase IQ replicate databases, RTL uses:

• Compilation – rearranges replicate data by each table, and each insert, update, and delete
operation, and compiling the operations into net-row operations.

• Bulk apply – applies the net result of the compilation operations in bulk using the most
efficient bulk interface for the net result. Replication Server uses an in-memory net-change
database to store the net row changes, which it then applies to the replicate database.

RTL improves performance for replication to Sybase IQ compared to the continuous
replication mode and a staging solution for example, by using:

• Reduced number of external components – reduced maintenance costs and overhead,
since there is no requirement for the staging database.

• Reduced latency – no overhead from the staging solution and with replication directly into
Sybase IQ.

• Improved usability – the RTL configuration does not require any of: function-string
mapping, DSI suspend and resume, data population from staging database to Sybase IQ,
scheduling activities for the staging solution.

• Compilation and bulk apply – instead of sending every logged operation, compilation
removes the intermediate insert, update, or delete operations in a group of operations and
sends only the final compiled state of a replicated transaction. Depending on the

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 113

transaction profile, this generally means that Replication Server sends a smaller number of
commands to Sybase IQ to process.
Sybase IQ provides a bulk interface that improves insert operation performance compared
with the SQL language mode operation. RTL takes advantage of the Sybase IQ bulk
interface to improve performance for insert as well as update and delete operations.
As Replication Server compiles and combines a larger number of transactions into a
group, bulk operation processing improves; therefore, replication throughput and
performance also improves. You can adjust group sizes to control the amount of data that is
grouped together for bulk apply.

License
Replication to Sybase IQ using real-time loading is available in the Real-Time Loading
Edition product edition. See Replication Server Installation Guide > Planning Your
Installation > Obtaining a License.

Database and Platform Support

• Sybase IQ – you can use real-time loading to replicate into Sybase IQ version 12.7 ESD #3
and later. See Replication Server Release Bulletin > Product Compatibility > Replication
Server Interoperability for the latest supported Sybase IQ versions and platforms.

• Adaptive Server – Replication Server supports replication to Sybase IQ from Adaptive
Server version 15.0.3 or version 15.5 and later.

• Oracle – Replication Server supports replication to Sybase IQ from Oracle 10g and 11g.
See Replication Server Options 15.5 > Release Bulletin Replication Agent 15.5 > Product
Summary > Compatible Products.

64-bit Support
You can achieve optimal performance using 64-bit hardware platforms. See Replication
Server New Features Guide > New Features in Replication Server Version 15.5 > Support for
64-bit Computing Platforms.

RTL Compilation and Bulk Apply
During compilation, RTL rearranges data to be replicated by clustering the data together based
on each table, and each insert, update, and delete operation, and then compiling the
operations into net row operations.

RTL distinguishes different data rows by the primary key defined in a replication definition. If
there is no replication definition, all columns except for text and image columns are
regarded as primary keys.

For the combinations of operations found in normal replication environments, and given a
table and row with identical primary keys, RTL follows these compilation rules for operations:

• An insert followed by a delete results in no operation.
• A delete followed by an insert results in no reduction.

Sybase IQ as Replicate Data Server

114 Replication Server

• An update followed by a delete results in a delete.
• An insert followed by an update results in an insert where the two operations are reduced

to a final single operation that contains the results of the first operation, overwritten by any
differences in the second operation.

• An update followed by another update results in an update where the two operations are
reduced to a final single operation that contains the results of the first operation,
overwritten by any differences in the second operation.

Other combinations of operations result in invalid compilation states.

Example 1
This is an example of log-order, row-by-row changes. In this example, T is a table created
earlier by the command: create table T(k int , c int)

1. insert T values (1, 10)
2. update T set c = 11 where k = 1
3. delete T where k = 1
4. insert T values (1, 12)
5. delete T where k =1
6. insert T values (1, 13)

With RTL, the insert in 1 and the update in 2 can be converted to insert T values (1,
11). The converted insert and the delete in 3 cancel each other and can be removed. The
insert in 4 and the delete in 5 can be removed. The final compiled RTL operation is the last
insert in 6:
insert T values (1, 13)

Example 2
In another example of log-order, row-by-row changes:

1. update T set c = 14 where k = 1
2. update T set c = 15 where k = 1
3. update T set c = 16 where k = 1

With RTL, the update in 1 and 2 can be reduced to the update in 2. The updates in 2 and 3 can
be reduced to the single update in 3 which is the net-row change of k = 1.

Replication Server uses uses an insert, delete, and update table in an in-memory net-change
database to store the net-row changes it applies to the replicate database. Net-row changes are
sorted by replicate table and by type of operation—insert, update, or delete—and are then
ready for bulk interface.

RTL directly loads insert operations into the replicate table. Since Sybase IQ does not support
bulk update and delete, RTL loads update and delete operations into temporary worktables
that RTL creates inside the IQ temporary store. RTL then performs join-update or join-delete
operations with the replicate tables to achieve the final result. The worktables are created and
dropped dynamically.

In Example 2, where compilation results in update T set c = 16 where k = 1:

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 115

1. RTL creates the #rs_uT(k int, c int) worktable.
2. RTL performs an insert into the worktable:

insert into #rs_uT(k, c) location ‘idemo.db’ {select * from rs_uT}

3. RTL performs the join-update:
update T set T.c=#rs_uT.c from T,#rs_uT where T.k=#rs_uT.k

As RTL compiles and combines a larger number of transactions into a group, bulk operation
processing improves; therefore, replication throughput and performance also improves. You
can control the amount of data that RTL groups together for bulk apply by adjusting RTL sizes
with configuration parameters.

There is no data loss, although RTL does not apply row changes in the same order in which the
changes are logged:

• For different data rows, the order in which row changes are applied does not affect the
result.

• In the same row, applying delete before insert after compilation maintains consistency.

Net-Change Database
Replication Server has a net-change database that acts as an in-memory repository for storing
the net-row changes of a transaction, that is, the compiled transaction.

There is one net-change database instance for each transaction. Each replicate table can have
up to three tracking tables within a net-change database. You can inspect the net-change
database and the tables within the database to monitor RTL replication and troubleshoot
problems.

See also
• Net-Change Database Size on page 128

Monitoring the Net-Change Database
Access net-change database instances and monitor a net-change database.

Use the sysadmin cdb command to monitor a net-change database.

See Replication Server Reference Manual > Replication Server Commands > sysadmin
cdb.

RTL Processing and Limitations
RTL applies only the net-row changes of a transaction while maintaining the original commit
order, and guarantees transactional consistency even as it skips intermediate row changes.

This has several implications:

• Insert triggers do not fire, as the RTL process performs a bulk load of net new rows directly
into the table. Update and delete triggers continue to fire when Replication Server applies
the net results of compilation to the replicate database. However, row modifications that

Sybase IQ as Replicate Data Server

116 Replication Server

Replication Server compiles, and that are no longer in the net results, are invisible to the
triggers. Triggers can detect only the final row images.
Suppose you use Replication Server to audit user updates using a last_update_user
column in a table schema with a trigger logic that associates a user to any column in the
table modified by the user. If userA modifies colA and colC in the table and then userB
modifies colB and colD, when the trigger fires, the trigger logic can detect only the last
user who modified the table, and therefore the trigger logic associates userB as the user that
modified all four columns. If you define triggers that contain similar logic where every
individual row modification must be detected, you may have to disable RTL compilation
for that table.

• RTL does not apply row changes in the same order in which the changes are logged. To
apply changes to a replicated table in log order, disable RTL compilation for that table.

• If there are referential constraints on replicate tables, you must specify the constraints in
replication definitions. To avoid constraint errors, RTL loads tables according to
replication definitions.

• RTL does not support any parallel DSI serialization methods, except for the default
wait_for_commit method.

• RTL does not support customized function strings and treats customized function strings
as noncompilable commands.

• Replication Server reverts to log-order, row-by-row continuous replication when it
encounters:
• Noncompilable commands – stored procedures, SQL statements, system transactions,

and Replication Server internal markers.
• Noncompilable transactions – a transaction that contains noncompilable commands.
• Noncompilable tables – tables with RTL disabled, with customized function strings,

and with referential constraint relationships with tables that RTL cannot compile.
• Runtime noncompilable tables - this occurs when a transaction contains minimally

packed updates, for example when using the replicate minimal columns clause in the
replication definition for that table, and when the transaction modifies the primary key
value.

• For tables without primary keys where there are no table replication definitions,
Replication Server converts updates to the table to primary-key updates as Replication
Server treats all columns, except text or image columns, as primary keys.

• RTL ignores parameters such as dsi_partition_rule that can stop transaction grouping.
• If errors occur during RTL processing, Replication Server retries compilation with

progressively smaller transaction groups until it identifies the transaction that failed
compilation, then applies the transaction using continuous replication.

• To realize performance benefits, keep the primary and replicate databases synchronized to
avoid the overhead of additional processing by Replication Server when errors occur. You
can set dsi_command_convert to i2di,u2di to synchronize the data although this also
incurs a processing overhead. If the databases are synchronized, reset
dsi_command_convert to none.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 117

• RTL performs row-count validation to ensure replication integrity. The row-count
validation is based on compilation. The expected row count is the number of rows
remaining after compilation.

• When there are columns with identity datatype in a replication definition, Replication
Server executes these Sybase IQ commands in the replicate database:
• set temporary option identity_insert= 'table_name' before identity column inserts and

updates.
• set temporary option identity insert= “” after identity column inserts and updates.

• By default, Oracle performs minimal logging. Therefore, if you are using database
replication definitions, either create table replication definitions or enable full logging to
ensure the update command works correctly. If you choose to create table replication
definitions, you can create the definitions in Replication Agent or Replication Server:
• Replication Agent for Oracle – to automatically create replication definitions at

Replication Server when one or more tables are marked for replication, either set
pdb_auto_create_repdefs to true before you mark the table for replication or execute
rs_create_repdef after you mark the table . See the Replication Agent Reference
Manual in Replication Server Options.

• Replication Server – execute create replication definition with the send standby
clause to create the replication definition directly in Replication Server. See the
Replication Server Reference Manual.

See also
• Tables with Referential Constraints on page 134

• RTL Configuration Parameters on page 124

Sybase IQ Replicate Data Servers
The replicate Replication Server interacts directly with the replicate Sybase IQ data server by
logging in to the Sybase IQ replicate database and applying the replicated transactions.

Replication Intrusions and Impacts on Sybase IQ
The only significant intrusions or impacts to the Sybase IQ replicate database are the system
tables created in the Sybase IQ replicate database through the connection profile, and
temporary tables created in the Sybase IQ replicate database to accommodate RTL bulk apply.

System Tables
The connection profile creates three tables in the Sybase IQ replicate database:

Sybase IQ as Replicate Data Server

118 Replication Server

• rs_threads – used by Replication Server to detect deadlocks and to perform
transaction serialization between parallel DSI threads. An entry is updated in this table
each time a transaction is started and more than one DSI thread is defined for a connection.

• rs_lastcommit – contains information about replicated transactions applied to the
replicate database. Each row in the rs_lastcommit table identifies the most recent
committed transaction that was distributed to the replicate database from a primary
database. Replication Server uses this information to ensure that all transactions are
distributed.
The Replication Server rs_get_lastcommit function retrieves information about the most
recent transaction committed in the replicate database. For non-ASE replicate databases,
the rs_get_lastcommit function is replaced in the database-specific function-string class
by the query required to access the rs_lastcommit table in the replicate database.

• rs_ticket_history – contains the execution results of Replication Server command
rs_ticket. You can isssue the rs_ticket command for the primary database to measure the
amount of time it takes for a command to move from the primary database to the replicate
database. You can use this information to monitor Replication Server performance,
module heartbeat, replication health, and table-level quiesce. The results of each execution
of rs_ticket is stored in a single row of the rs_ticket_history table in the replicate
database. You can query each row of the rs_ticket_history table to obtain results
of individual rs_ticket executions, or to compare the results from different rows. Manually
truncate the data in rs_ticket_history table if necessary.

Worktables
RTL creates temporary worktables inside the IQ temporary store of the Sybase IQ database to
support RTL bulk apply.The worktables are created and dropped dynamically.

The amount of space required for the temporary tables in Sybase IQ depends on the amount of
the data you expect to replicate to Sybase IQ. To adjust the Sybase IQ temporary database
space to accommodate the temporary worktables, use the Sybase IQ alter dbspace command.
See the Sybase IQ documentation for your version for more information. For example in
Sybase IQ 15.0 and later:
ALTER DBSPACE dbspace-name ADD FILE FileHist3
‘/History1/data/file3’ SIZE 500MB

Replicate Database Connectivity for Sybase IQ
You do not need to use a database gateway when you use Sybase IQ as a replicate data server;
the replicate Replication Server connects directly to the Sybase IQ replicate data server.

A Replication Server database connection name is made up of a data server name—
server_name—and a database name—db_name. The replicate Replication Server looks for
an interfaces file entry containing the Sybase IQ replicate database server_name
specified in the database connection.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 119

Use dsedit to make an entry in the Replication Server interfaces file to identify the host
and port where the Sybase IQ replicate data server is listening. The interfaces file entry
name must match the server_name portion of the Replication Server database connection.
Restart Replication Server to activate the new entry in the Replication Server interfaces
file. See Replication Server Configuration Guide > Configure Replication Server and Add
Databases Using rs_init > Configuring a New Replication Server > Editing the Interfaces
File.

Create an entry for the replicate Replication Server in the interfaces file of the Sybase IQ
replicate server to allow Sybase IQ to connect to Replication Server and retrieve data when
Replication Server sends an INSERT ... LOCATION statement to Sybase IQ.

Replication Server logs in to the Sybase IQ replicate data server using the user_name and
password specified in the database connection. For Sybase IQ replicate databases, the
user_name and password should be the maintenance user ID and password.

Sybase IQ Replicate Database Permissions
To apply transactions in a replicate database, Replication Server and Sybase IQ require a
maintenance user ID.

Before replication can start, you must define the maintenance user ID at the Sybase IQ data
server and grant authority to the ID to apply transactions in the replicate database. The
maintenance user ID must have these permissions in the Sybase IQ replicate database:

• RESOURCE authority to create worktables and temporary indexes.
• EXECUTE permission to run the sp_iqwho stored procedure.
• GRANT ALL permission on all replicate tables.
• UPDATE authority on all replicate tables and EXECUTE authority on all replicate stored

procedures.

Granting Authority to a Maintenance User ID
Grant DBA and RESOURCE authority if you are starting with a simple setup or are testing
replication to Sybase IQ.

1. Use the Sybase IQ rssetup.sql sample script to create the maintenance user for
Sybase IQ with relevant privileges.

Warning! If there is already a maintenance user ID, the script resets the password to the
default password.

grant connect to dbmaint identified by dbmaint
grant DBA to dbmaint
grant membership in group rs_systabgroup to dbmaint

-- Create a user for REPSRV to extract -- materialization data,
etc.

Sybase IQ as Replicate Data Server

120 Replication Server

-- Give sa user access to any replicated tables
-- Give sa user access to REPSRV schema
grant connect to sa identified by sysadmin
grant DBA to sa
grant membership in group rs_systabgroup to sa

-- Allow sa and dbmaint to reference replicated tables created by
DBA
grant group to DBA
grant membership in group DBA to dbmaint
grant membership in group DBA to sa
go

This script is in the scripts directory within the Sybase IQ installation directory. For
example, on UNIX platforms in:
• Sybase IQ versions earlier than 15.0 – /$ASDIR/scripts
• Sybase IQ 15.0 and later – /$IQDIR15/scripts

See the Sybase IQ Installation and Configuration Guide for locations of directories.

2. Verify that the Sybase IQ database is compatible with Transact-SQL® (For IQ DBA).

See Sybase IQ Reference: Statements and Options > Database Options > Transact-SQL
Compatibility Options and Sybase IQ Reference: Building Blocks, Tables, and Procedures
> Compatibility with Other Sybase Databases.

3. Grant the appropriate permissions to all tables and stored procedures that are to participate
in replication.

Sybase IQ Replicate Database Configuration
Learn about the configuration issues for the Sybase IQ server.

Replication Server Installation
Replication Server automatically installs the required connection profile which provides
function strings and classes to support replication into Sybase IQ.

Connection Profiles
Connection profiles allow you to configure your connection with a predefined set of properties
by setting the function-string class and error class, installing the user-defined datatypes
(UDD) and translations for Sybase IQ, and creating the tables required for replication in the
replicate Sybase IQ database.

Connection profiles, such as rs_ase_to_iq and rs_oracle_to_iq are a part of the Replication
Server installation package, and are registered when you install Replication Server. A
connection profile:
• Customizes function strings, error classes, and user-defined datatypes. The function string

replaces several default Replication Server function strings with custom function strings
designed to communicate with a Sybase IQ data server and access the tables and

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 121

procedures. These function strings are added to the Replication Server default
rs_iq_function_class. RTL treats customized function strings as non-compilable
commands.

• Customizes class-level datatype translations. Class-level translations identify primary
datatypes and the replicate datatypes the data should be translated into. Class-level
translation is supplied for the Sybase IQ replicate database by the connection profile:
• rs_ase_to_iq – translates Adaptive Server datatypes to Sybase IQ datatypes
• rs_oracle_to_iq – translates Oracle datatypes to Sybase IQ datatypes

• Creates the rs_threads, rs_lastcommit, and rs_ticket_history tables in
the Sybase IQ replicate database.

• Sets the default function-string class and error class connection properties to configure the
connection to Sybase IQ:
set error class rs_iq_error_class
set function string rs_iq_function_class

Creating the Connection to Sybase IQ
Set up the connection to the replicate Sybase IQ database.

1. Use create connection with the using profile clause and the relavant connection profile,
and specify your replicate Sybase IQ data server and database.
For example to create a connection from an Oracle primary data server:
create connection to IQSRVR.iqdb
using profile rs_oracle_to_iq;standard
set username to dbmaint
set password to dbmaint
go

You can create multiple replication paths to the Sybase IQ database to distribute
replication loads. Use a unique maintenance user ID for each path.

2. Use admin who to verify that Replication Server connects successfully to Sybase IQ.

See also
• Multi-Path Replication to Sybase IQ on page 130

Setting Sybase IQ Database Options
You can use the rs_session_setting function with the create function string command to set
the values for Sybase IQ parameters for the duration of the connection to the Sybase IQ
replicate database. For example, you can set parameter values to optimize performance.

1. Create a new function-string class named my_iq_fclass and set rs_iq_function_class as
the parent class:
create function string class my_iq_fclass
set parent to rs_iq_function_class
go

Sybase IQ as Replicate Data Server

122 Replication Server

2. Create the rs_session_setting function string for the my_iq_fclass function-string class,
and include the Sybase IQ parameters and values you want to set.
For example, you can set the values of the LOAD_MEMORY_MB, MINIMIZE_STORAGE,
and JOIN_PREFERENCE Sybase IQ database options to optimize performance:
create function string rs_session_setting
for my_iq_fclass
output language
'set temporary option Load_Memory_MB=''200''
set temporary option Minimize_Storage=''on''
set temporary option join_preference=5'
go

See Replication Server Reference Manual > Replication Server System Functions >
rs_session_setting.

3. Alter the connection to the iqdb database in the IQSRVR data server to use the
my_iq_fclass function-string class:
alter connection to IQSRVR.iqdb
set function string class to my_iq_fclass
go

Enable RTL
After you have granted the relevant permissions and connected to the replicate Sybase IQ
database, you can enable and configure RTL for replication to Sybase IQ.

Use dsi_compile_enable to enable RTL for the connection. If you set dsi_compile_enable
off, Replication Server uses continuous log-order, row-by-row replication mode. For
example, set dsi_compile_enable off for an affected table if replicating net-row changes
causes problems, such as when there is a trigger on the table that requires all operations on the
table to be replicated in log order, and therefore compilation is not allowed.

Note: When you set dsi_compile_enable on, Replication Server disables dsi_cmd_prefetch
and dsi_num_large_xact_threads.

To enable and configure RTL at the database level to affect only the specified database, enter:

alter connection to IQ_data_server.iq_database
set dsi_compile_enable to ‘on’
go

You can also enable and configure RTL at the server or table levels.

• Server level – affects all database connections to Replication Server:
configure replication server
set dsi_compile_enable to ‘on’

• Table level – affects only the replicate tables you specify. If you specify a parameter at both
the table level and database level, the table-level parameter takes precedence over the
database-level parameter. If you do not specify a table-level parameter, the setting for the
parameter applies at the database level. To set a parameter for a table, use alter connection
and the for replicate table named clause, for example:

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 123

alter connection to IQ_data_server.iq_database
for replicate table named dbo.table_name
set dsi_compile_enable to ‘on’

Using the for replicate table name clause alters connection configuration at the table level.
The configuration changes apply to replicate data from all the subscriptions and all the
replication definitions of the tables you specify.

Note: For table-level configuration, you can use only alter connection, as Replication
Server does not support the for clause with create connection.

After you execute dsi_compile_enable, suspend and resume the connection to the replicate
Sybase IQ database.

RTL Configuration Parameters
Replication Server automatically sets the Sybase-recommended default values of several
parameters. You can change the values of these parameters to tune replication performance.

You must execute a separate alter connection command for each parameter you want to
change. Do not enter more than one parameter after entering alter connection.

RTL automatically sets the Sybase-recommended default values for dsi_cdb_max_size,
dsi_compile_max_cmds, dsi_bulk_threshold, dsi_command_convert, and
dsi_compile_retry_threshold. However, you can specify your own values to tune
performance in your replication environment:

See Replication Server Reference Manual > Replication Server Commands > alter
connection for full descriptions of the parameters.

dsi_bulk_threshold
dsi_bulk_threshold specifies the number of net-row change commands after compilation has
occurred on a table for a command type, that when reached, triggers Replication Server to use
bulk copy-in on that table for the same command type. The default is 20 net row change
commands.

Default is 20 net row change commands.

Example:
alter connection to IQSRVR.iqdb
set dsi_bulk_threshold to ‘15’
go

dsi_cdb_max_size
dsi_cdb_max_size specifies, in megabytes (MB), the maximum size of a net-change database
that Replication Server can generate during RTL processing.

Default is 1024MB.

Example:

Sybase IQ as Replicate Data Server

124 Replication Server

alter connection to IQSRVR.iqdb
set dsi_cdb_max_size to ‘2048’
go

Replication Server uses full incremental compilation for real-time loading to Sybase IQ. With
full incremental compilation, if the number of commands in the compiled transaction segment
within a net-change database instance exceeds the dsi_compile_max_cmds threshold, or if
the net-change database instance size exceeds the dsi_cdb_max_size threshold, Replication
Server instructs the net-change database instance to send its transaction to the replicate
database and release the memory that the instance consumed.

dsi_compile_max_cmds
dsi_compile_max_cmds specifies, in number of commands, the maximum size of a group of
transactions and commands that Replication Server can compile into one compiled
transaction. When RTL reaches the maximum group size for the current group that it is
compiling, RTL starts a new group. Replication Server creates a net-change database instance
to store the compiled transaction. Replication Server increases the net-change database size to
accommodate the maximum number of commands that dsi_compile_max_cmds allows for a
group. When Replication Server reaches the maximum group size for the current group that it
is compiling, Replication Server transfers the compiled transaction to the worktables in the
replicate database, releases the memory consumed by that specific net-change database
instance, starts a new group and creates a new net-change database instance for the new group.

If there is no more data to read, and even if the group does not reach the maximum number of
commands, RTL completes grouping the current set of transactions into the current group.

Default is 10,000 commands.

Example:
alter connection to IQSRVR.iqdb
set dsi_compile_max_cmds to ‘50000’
go

dsi_compile_retry_threshold
dsi_compile_retry_threshold specifies a threshold value for the number of commands in a
group. If the number of commands in a group containing failed transactions is smaller than the
value of dsi_compile_retry_threshold, Replication Server does not retry processing the
group in RTL mode, and saves processing time, thus improving performance. Instead,
Replication Server switches to continuous replication mode for the group. Continuous
replication mode sends each logged change to the replicate database according to the primary
database log order.

Default is 100 commands.

You need not suspend and resume database connections when you set
dsi_compile_retry_threshold. The parameter takes effect immediately after you execute the
command.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 125

Example:
alter connection to IQSRVR.iqdb
set dsi_compile_retry_threshold to '200'
go

See Replication Server Administration Guide Volume 2 > Exceptions and Error Handling >
Data Server Error Handling > Row Count Validation > Control Row Count Validation.

dsi_command_convert
dsi_command_convert specifies how to convert a replicate command. A combination of
these operations specifies the type of conversion:

• d – delete
• i – insert
• u – update
• t – truncate
• none – no operation

Combinations of operations for dsi_command_convert include i2none, u2none, d2none,
i2di, t2none, and u2di. The operation before conversion precedes the “2” and the operations
after conversion are after the “2”. For example:

• d2none – do not replicate the delete command. With this option, you need not customize
the rs_delete function string if you do not want to replicate delete operations.

• i2di,u2di – convert both insert and update to delete followed by insert, which is
equivalent to an autocorrection. If you disable row count validation by setting
dsi_row_count _validation off, Sybase recommends that you set dsi_command_convert
to i2di,u2di to avoid duplicate key errors and allow autosynchronization of databases
during replication.

• t2none – do not replicate truncate table.

Default for dsi_command_convert is none, which means there is no command conversion.

Example:
alter connection to IQSRVR.iqdb
set dsi_command_convert to ‘i2di,u2di’
go

See also
• Memory Consumption Control on page 127

Enhanced Retry Mechanism
The enhanced retry mechanism improves replication performance by reducing the number of
times Replication Server retries compilation and bulk apply.

RTL attempts to group as many compilable transactions as possible together, compile the
transactions in the group into a net change, and then use the bulk interface in the replicate

Sybase IQ as Replicate Data Server

126 Replication Server

database to apply the net changes to the replicate database. RTL invokes the retry mechanism
when a replicate transaction resulting from RTL processing fails. If transactions in a group
fail, RTL splits the group into two smaller groups of equal size, and retry the compilation and
bulk application on each group. The retry mechanism identifies the failed transaction, allows
Replication Server to execute error action mapping, and applies all transactions preceding the
failed transaction in case DSI shuts down.

The net-change database in RTL acts as an in-memory repository for storing the net row
changes of a transaction, that is, the compiled transaction. The content of the net-change
database is an aggregation of commands from different primary transactions that RTL is not
applying in log order. Therefore, there is no means to identify a failed transaction without a
retry mechanism. The retry mechanism splits a group and retries compilation and bulk
application continuously as long as a transaction in the group fails. This continuous retry
process can degrade performance.

The enhanced retry mechanism splits the group into three groups of equal size when RTL
encounters a group containing transactions that fail, enabling the mechanism to more
efficiently identify the group containing the failed transaction.

In addition, you can use the dsi_compile_retry_threshold parameter to specify a threshold
value for the number of commands in a group. If the number of commands in a group
containing failed transactions is smaller than the value of dsi_compile_retry_threshold,
Replication Server does not retry processing the group in RTL mode, and saves processing
time, thus improving performance. Instead, Replication Server switches to continuous
replication mode for the group. Continuous replication mode sends each logged change to the
replicate database according to the primary database log order.

Memory Consumption Control
RTL uses full incremental compilation to control memory consumption and you can control
the net-change database size to reduce memory consumption.

SQT Memory Consumption Control for RTL
Control the maximum memory consumed by unpacked commands in the DSI SQT cache
during transaction profiling in RTL .

The SQT thread monitors the memory consumed by commands unpacked by the RTL
transaction profiling processes and referenced by the DSI SQT cache.

When Replication Server is replicating using RTL, the maximum amount of memory
consumed by the DSI thead is the sum of dsi_sqt_max_cache_size, sqt_max_prs_size , and
dsi_cdb_max_size. Setting dsi_sqt_max_cache_size, sqt_max_prs_size , and
dsi_cdb_max_size smaller would reduce memory consumption but reduce replication
performance. Tune your replication environment for optimum memory consumption and
performance. See the Replication Server Reference Manual > Replication Server Commands
to configure the parameters.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 127

Net-Change Database Size
Reduce memory consumption by the net-change database by triggering the net-change
database to flush data to the replicate database once the net-change database size reaches a
threshold size.

Memory consumption refers to Replication Server data structures such as the net-change
database, and the data that the structures store. Net-change databases are in-memory data
structures. Net-change database memory consumption can increase drastically when
Replication Server compiles commands applied on a table with a large number of columns, or
tables with large text and image datatype values. For example, compiling 1,000,000 rows
in a table with 100 columns may consume approximately 10 times more memory than
compiling the same number of rows in a table with 10 columns. Replication performance
suffers when there is insufficient memory available for other processes and modules.

Replication Server uses the values you set for dsi_cdb_max_size and
dsi_compile_max_cmds to control memory consumption. You can use dsi_cdb_max_size to
control the maximum net-change database size that Replication Server can generate. Once the
size reaches the threshold you set, Replication Server stops compiling new commands and
transactions into the compiled transaction that Replication Server is building in the net-change
database, performs the bulk apply of the compiled group to the replicate database, clears the
net-change database, and releases the memory consumed by the net-change database.

The number of of net-change database instances that Replication Server generates depends on
the values you set with dsi_cdb_max_size and memory_limit. The estimated memory
requirements for a replication system using RTL is the number of replicate connections
multiplied by dsi_cdb_max_size.

Full Incremental Compilation
Full incremental compilation improves replication performance for real-time loading (RTL)
by reducing memory consumption during the processing of large compilable transactions that
contain many commands.

Full incremental compilation can compile large transactions containing mixed insert, delete,
or update operations. Replication Server uses full incremental compilation to apply a large
compilable transaction to the replicate database, using multiple in-memory net-change
database instances. Full incremental compilation divides a large transaction into a sequence of
segments. Each segment consists of a group of commands.

Replication Server compiles each segment and creates a dedicated net-change database in
which to to store one segment. Replication Server instructs the net-change database instance
to send and apply the segment to the replicate database. Replication Server then closes the
net-change database instance and releases the memory consumed. Replication Server creates
another net-change database instance for the next transaction segment and continues to create
and close net-change database instances in sequence for all the segments.

Sybase IQ as Replicate Data Server

128 Replication Server

Therefore, instead of consuming a single large portion of memory for a large net-change
database instance to hold a large transaction, full incremental compilation reduces the
memory requirement to the memory consumed by a single smaller net-change database
instance containing just a segment of the transaction. Full incremental compilation divides the
memory requirement by the number of net-change database instances used. For example,
when full incremental compilation applies a large transaction with 10 net-change database
instances, the memory requirement is approximately one-tenth of the requirement without full
incremental compilation.

Memory Control Parameters and Replication Server Processing
Replication Server actions depend on the values you set for memory control parameters.

Setting dsi_cdb_max_size to Different Values

Examples that show Replication Server applying a transaction with 100,000 updates on two
tables. Table1 has 100 columns and requires approximately 4GB of memory, and Table2 has
10 columns requiring approximately one-tenth the memory—400MB.

dsi_cdb_max_size
Value (MB)

Table
Name

Impact on Replication Processing

1024 (default) Table1 Prerequisite: Set memory_limit in Replication Server to a value
large enough to allow the construction of 1GB net-change data-
bases.

Replication Server uses 4 1GB net-change database instances to
apply the transaction.

1024 (default) Table2 Prerequisite: Set memory_limit in Replication Server to a value
large enough to allow the construction of 400MB net-change
databases.

Replication Server uses 1 400MB net-change database instance
to apply the transaction.

4096 Table1 Prerequisite: Set memory_limit in Replication Server to a value
large enough to allow the construction of 4GB net-change data-
bases.

Replication Server uses 1 4GB net-change database instance to
apply the transaction.

4096 Table2 Prerequisite: Set memory_limit in Replication Server to a value
large enough to allow the construction of 400MB net-change
databases.

Replication Server uses 1 400MB net-change database instance
to apply the transaction.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 129

Multi-Path Replication to Sybase IQ
Create multiple connections from Replication Server to the replicate Sybase IQ database to
increase replication throughput and performance, and reduce latency and contention.

With multiple connections from an Adaptive Server or Oracle primary database to Replication
Server and multiple connections from Replication Server to the replicate Sybase IQ database,
you can create end-to-end multiple replication paths.

Database Support

• Primary database:
• Adaptive Server 15.7 and later
• Oracle 10g and 11g. See Replication Server Options > Replication Agent Release

Bulletin > Product Summary > Product Compatibility.
• Replicate database – Sybase IQ version 15.1 and later. See Replication Server Release

Bulletin > Product Compatibility > Replication Server Interoperability .

License
Multi-Path Replication™ is licensed as part of the Advanced Services Option. Replication to
Sybase IQ using RTL is available in the Real-Time Loading Edition (RTLE). See Replication
Server Installation Guide > Planning Your Installation > Obtaining a License.

See also
• Heterogeneous Multi-Path Replication on page 155
• Multi-Path Replication from Adaptive Server to Sybase IQ on page 161
• Multi-Path Replication from Oracle to Sybase IQ on page 165

Creating Alternate Replicate Connections to Sybase IQ
Use create alternate connection with the using profile clause to create an alternate
connection from Replication Server to the replicate Sybase IQ database.

Prerequisites
Create the default connection to the replicate database before you create any alternate
connections.

Task
You must specify the connection profile and connection profile version, and a unique
maintenance user name for the default and each alternate connection.
Create an alternate connection to the Sybase IQ replicate database:
create alternate connection to dataserver.database
named conn_server.conn_db

Sybase IQ as Replicate Data Server

130 Replication Server

using profile connection_profile;version
set username [to] user
set password [to] pwd

where:
• dataserver and database – are the replicate data server and database.
• conn_server.conn_db – the alternate replicate connection, which comprises the data server

name and a connection name.
• Each replicate connection name must be unique in a replication system.
• If conn_server is different from dataserver, there must be an entry for conn_server in

the interface file.
• If conn_server is the same as dataserver, conn_db must be different from database.

• connection_profile – specifies the correct function-string class and error class for the
replicate database, and additionally may contain class-level translation definitions and
support for replicate database object creation:
• rs_ase_to_iq – for Adaptive Server to Sybase IQ replication
• rs_oracle_to_iq – for Oracle to Sybase IQ replication

Note: You must specify the connection profile for each alternate connection you create to a
Sybase IQ database.

• version – the connection profile version to use

Note: You must specify the connection profile version for each alternate connection you
create to a Sybase IQ database

• user – login name of the Replication Server maintenance user for each connection to the
Sybase IQ database. Replication Server uses this login name to maintain replicated data.
You must specify a user name if network-based security is not enabled.

Note: You must use a different maintenance user name for each alternate connection you
create to a Sybase IQ database. Ensure that you use unique maintenance user names even if
you are creating connections from different Replication Servers to a Sybase IQ database. If
you do not use unique user names, data duplication errors may occur. The replication
system cannnot detect if you use the same user name to create connections from different
Replication Servers.

For example, to create an alternate replicate connection named IQSRVR.iqdb_conn2 to
the iqdb replicate database in the IQSRVR Sybase IQ data server where the primary database
is Adaptive Server and dbmaint2 is the maintenance user for IQSRVR.iqdb_conn2:

create alternate connection to IQSRVR.iqdb
named IQSRVR.iqdb_conn2
using profile rs_ase_to_iq;standard
set username to dbmaint2
set password to dbmaint2pwd
go

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 131

Altering or Dropping Alternate Replicate Sybase IQ Connections
Alter or drop default or alternate replicate connections to Sybase IQ by using the alter
connection and drop connection commands.

The data server and database names that you specify in the commands can be the default or
alternate replicate connection names.

You can use configuration parameters available to alter connection when you configure an
alternate or default replicate connection.

For example, to set dsi_bulk_threshold to 15 for the IQSRVR.iqdb_conn2 alternate
replicate connection, enter:
alter connection to IQSRVR.iqdb_conn2
set dsi_bulk_threshold to '15'
go

Displaying Replicate Connection Information
Use the replicate parameter with admin show_connections to display information on all
replicate connections.

For example, at the Replication Server controlling the replicate databases in the IQSRVR data
server, enter:
admin show_connections, 'replicate'

You see:
Connection Name Server Database User
------------------- ---------- -------- ----------
IQSRVR.iqdb IQSRVR iqdb db_maint
IQSRVR.iqdb_conn2 IQSRVR iqdb db_maint2
IQSRVR.iqdb_conn3 IQSRVR iqdb db_maint3

IQSRVR.iqdb is the default connection between the Replication Server and the iqdb
database of the IQSRVR data server because the connection name matches the combination of
the data server and database names.

IQSRVR.iqdb_conn2 and IQSRVR.iqdb_conn3 are alternate connections between the
Replication Server and the iqdb database of the IQSRVR data server because the connection
name does not match the combination of the data server and database names.

Replication Load Distribution
Use the distribution mode supported by the primary database to distribute the replication load
over available replication paths.

Distribution Modes
With the Adaptive Server distribution by object binding mode, you can distribute objects such
as tables and stored procedures over the multiple paths by binding an object to a specific path.

Sybase IQ as Replicate Data Server

132 Replication Server

If you match the primary and replicate connection names, the object follows an end-to-end
replication path from primary to replicate data server. See Replication Server >
Administration Guide: Volume 2 > Performance Tuning > Multi-Path Replication > Multiple
Primary Replication Paths > Binding Objects to a Replication Path.

With the Adaptive Server distribution by connection mode, the Adaptive Server RepAgent
assigns transactions originated by different client processes to the available replication paths.
Over time, the distribution of data tends to be balanced across all available paths. Replication
performance improves and replication load distribution is more uniform if there are more
RepAgent paths available and the number of client processes is large. See Replication Server >
Administration Guide Volume 2 > Performance Tuning > Multi-Path Replication > Parallel
Transaction Streams > Distribution Modes for Multi-Path Replication.

Sybase IQ Multiplex Nodes
You can allocate replicate connections to different nodes in a Sybase IQ multiplex to distribute
the replication load by creating connections to each node and creating the relevant
interfaces file entries. See Sybase IQ > Using Sybase IQ Multiplex.

Setting Distribution Mode
Set the distribution mode for replication through multiple primary replication paths from a
primary Adaptive Server database.

Prerequisites
Create the default and alternate connections from the primary Adaptive Server to Replication
Server, and enable multithreaded RepAgent.

Task
If you change to distribution by connection from distribution by object binding, RepAgent
ignores all the object bindings and displays a warning. RepAgent retains the bindings if you
revert to distribute by object binding and restart RepAgent.

1. Set the distribution mode:
sp_config_rep_agent database, ‘multipath distribution model’, {‘connection' | 'object’}

where:
• multipath distribution model – is the distribution mode parameter for

sp_config_rep_agent

• connection – sets the mode to distribution by connection
• object – sets the mode to distribution by object binding which is the default

2. Quiesce Replication Server and restart RepAgent.

See Replication Server Administration Guide Volume 1 > Manage a Replication System >
Quiesce Replication Server > Quiescing a Replication System.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 133

Tables with Referential Constraints
You can use a replication definition to specify tables that have referential constraints, such as a
foreign key and other check constraints, so that RTL is aware of these tables.

Usually, the referencing table contains referential constraints for a referenced table within the
same primary database. However, RTL extends referential constraints support to referenced
tables from multiple primary databases.

You can specify the referencing table in a replication definition for each primary database.
However, if multiple referential constraints conflict with each other, Replication Server
randomly selects one.

See also
• RTL Processing and Limitations on page 116

Replication Definitions Creation and Alteration
Use the create replication definition command with the references parameter to specify the
table with referential constraints.

create replication definition
 ...
 (column_name [as replicate_column_name]
 ...
 [map to published_datatype]] [quoted]
 [references [table_owner.]table_name [(column_name)]] …)
 ]

Use the alter replication definition command with the references parameter to add or change
a referencing table. Use the null option to drop a reference.

alter replication definition

add column_name [as replicate_column_name]
[map to published_datatype] [quoted]
[references [table_owner.]table_name [(column_name)]
...
| alter columns with column_name references
{[table_owner.]table_name [(column_name)] | NULL}
[, column_name references {[table_owner.]table_name [(column_name)]
| NULL}
 ...

For both alter replication definition and create replication definition with the reference
clause, Replication Server:

• Treats the reference clause as a column property. Each column can reference only one
table.

Sybase IQ as Replicate Data Server

134 Replication Server

• Does not process the column name you provide in the column_name parameter within the
reference clause.

• Does not allow referential constraints with cyclical references. For example, the original
referenced table cannot have a referential constraint to the original referencing table.

During replication processing, RTL loads:

• Inserts to the referenced tables before the referencing table you specify in the replication
definition.

• Deletes to the referenced tables after the table you specify in the replication definition.

In some cases, updates to both tables fail because of conflicts. To prevent RTL from retrying
replication processing, and thus decreasing performance, you can:

• Stop replication updates by setting dsi_command_convert to “u2di,” which converts
updates to deletes and inserts.

• Turn off dsi_compile_enable to avoid compiling the affected tables.

RTL cannot compile tables with customized function strings, and tables that have referential
constraints to an existing table that it cannot compile. By marking out these tables, RTL
optimizes replication processing by avoiding transaction retries due to referential constraint
errors.

Display RTL Information
You can display information on configuration parameter properties and table references.

Display Configuration Parameter Properties
Use admin config to view information about database-level and table-level configuration
parameters as shown in the examples.

• Database-level:
• To display all database-level configuration parameters for the connection to the

nydb1 database of the NY_DS data server (NY_DS.nydb1), enter:

admin config, “connection”, NY_DS, nydb1

• To verify that dsi_compile_enable is on for the connection to NY_DS.nydb1, enter:

admin config, “connection”, NY_DS, nydb1,dsi_compile_enable

• To display all the database-level configuration parameters that have "enable" as part of
the name, such as dsi_compile_enable, enter:
admin config, “connection”, NY_DS, nydb1,"enable"

Note: You must enclose "enable" in quotes because it is a reserved word in Replication
Server. See Replication Server Reference Manual > Topics > Reserved Words.

• Table-level:

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 135

To display all configuration parameters after using dsi_command_convert to set d2none
on the tb1 table in the nydb1 database of the NY_DS data server, enter:

admin config, “table”, NY_DS, nydb1

See Replication Server Reference Manual > Replication Server Commands > admin
config.

Display Table References
Use rs_helprep, which you can execute on the Replication Server System Database (RSSD),
to view information about table references and RTL information.

To display information about the authors_repdef replication definition created using create
replication definition, enter:
rs_helprep authors_repdef

See Replication Server Reference Manual > RSSD Stored Procedures > rs_helprep.

System Table Support in Replication Server
Replication Server uses the rs_tbconfig table to store support table-level configuration
parameters, and the ref_objowner and ref_objname columns in the rs_columns
table to support referential constraints.

See Replication Server Reference Manual > Replication Server System Tables for full table
descriptions.

Mixed-Version Support and Backward Compatibility
RTL can replicate referential constraints specified in replication definitions only if the
outbound route version is later than 15.5.

RTL works if the outbound route version is earlier than 15.5. However, no referential
constraint information is available to a Replication Server with version 15.5 or later

Continuous replication is the default replication mode available to all supported versions of
Replication Server. RTL is available only with Replication Server 15.5 and later.

Scenario for Replication to Sybase IQ
The scenario to set up replication to Sybase IQ using RTL and to test that replication works is
described.

The Adaptive Server database administrator (ASE DBA) or the Oracle database administrator
(Oracle DBA), the Sybase IQ database administrator (IQ DBA), and you, as the replication

Sybase IQ as Replicate Data Server

136 Replication Server

system administrator (RSA), must prepare Adaptive Server or Oracle, Replication Server, and
Sybase IQ for replication and set up the connection to the Sybase IQ database:

In this scenario, dbo is the table owner of the testtab table in the pdb1 database of the
ASE_DS primary Adaptive Server or the ORA_DS primary Oracle server. c1, c2, and c3 are
columns in testtab with int, int, and char(10)datatypes respectively, and IQSRVR
is the replicate Sybase IQ data server containing the iqdb database.

See also
• Multi-Path Replication from Adaptive Server to Sybase IQ on page 161

• Multi-Path Replication from Oracle to Sybase IQ on page 165

Creating Interfaces File Entries
Create an entry in the interfaces files of the replicate Replication Server and the Sybase
IQ data server for each other.

1. Create an entry for the replicate Replication Server in the interfaces file (sql.ini
file in Windows) of the Sybase IQ data server.

Note: Create an interfaces file for the Sybase IQ data server if the file is not in the
$SYBASE directory (%SYBASE% directory in Windows) that Sybase IQ is using.

2. Create an entry for the Sybase IQ data server in the interfaces file of the replicate
Replication Server.

If you are creating connections to different Sybase IQ multiplex nodes, create entries for
each of the affected nodes in the interfaces file of the replicate Replication Server.

Creating Test Tables
Create a test table in the primary and replicate databases, and grant maintenance user
permissions to it to test that replication works.

1. In the primary database pdb1 in the data server, create a table named testtab with three
columns: c1 integer, c2 integer and c3 char(10).
For example, in Adaptive Server:
use pdb1
go
create table dbo.testtab(c1 int primary key, c2 int,
c3 char(10))
go

See Oracle documentation to create a table in the Oracle database.

2. In the replicate database iqdb in the Sybase IQ IQSRVR data server, enter:

use iqdb
go
create table dbo.testtab(c1 int primary key, c2 int,

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 137

c3 char(10))
go
grant all on dbo.testtab to public
go

Creating the Connection to the Primary and Replicate Databases
Create the primary and replicate database connections.

1. Create the connection to the primary database.

• Adaptive Server – use the Replication Server rs_init utility. See Replication Server
Configuration Guide > Configure Replication Server and Add Databases using
rs_init.

• Oracle – see the Heterogeneous Replication Guide and the Replication Server Options
product documentation.

2. Create the connection to the Sybase IQ replicate database.

See Replication Server Reference Manual > Replication Server Commands > create
connection using profile .

Note: You cannot use rs_init to create the connection to Sybase IQ.

This example uses the iqdb database in the IQSRVR data server, and the default dbmaint
Sybase IQ maintenance user.

• Adaptive Server:
create connection to IQSRVR.iqdb
using profile rs_ase_to_iq;standard
set username to dbmaint
set password to dbmaint
go

• Oracle:
create connection to IQSRVR.iqdb
using profile rs_oracle_to_iq;standard
set username to dbmaint
set password to dbmaint
go

If the command is successful, you see:
Connection to ‘IQSRVR.iqdb’ is created.

3. Verify that the connection is running:
admin who
go

If the connection is running, you see:
Spid Name State Info
---- -------- ---------------- -----------------
 63 DSI EXEC Awaiting Command 103(1)IQSRVR.iqdb
 62 DSI Awaiting Message 103 IQSRVR.iqdb
 35 SQM Awaiting Message 103:0 IQSRVR.iqdb

Sybase IQ as Replicate Data Server

138 Replication Server

Enabling RTL
Enable RTL at the database level.

1. To enable and configure RTL at the database level to affect only the specified database,
enter:
alter connection to IQSRVR.iqdb
set dsi_compile_enable to ‘on’
go

2. Suspend and resume the connection to the replicate Sybase IQ database to enable the
change to the connection:
suspend connection to IQSRVR.iqdb
go
resume connection to IQSRVR.iqdb
go

Marking Tables to Prepare for Replication Testing
Mark tables in the primary database that you want to replicate to the Sybase IQ database

In these examples, dbo is the table owner of testtab in the pdb1 primary database. c1,
c2, and c3 are columns in testtab with int, int, and char(10) datatypes,
respectively.

1. Insert data rows into testtab for testing replication and verify the inserts are successful.
For example, in Adaptive Server:
insert into testtab values(1,1,‘testrow 1’)
insert into testtab values(2,2,‘testrow 2’)
insert into testtab values(3,3,‘testrow 3’)
go

If the inserts are successful, you see:
(1 row affected)
(1 row affected)
(1 row affected)

2. Mark testtab for replication.

• Adaptive Server – use the sp_setrepdefmode system procedure.
• Adaptive Server 15.0.3 and later:

sp_setrepdefmode testtab,'owner_on'
go

• Versions earlier than Adaptive Server 15.0.3:
sp_setreptable testtab,'true', 'owner_on'
go

• Oracle – use the pdb_setreptable Replication Agent command:
pdb_setreptable pdb_table, mark, owner

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 139

See Replication Server Options > Replication Agent Administration Guide > Setup
and Configuration > Primary Database Object Marking > Marking a Table in the
Primary Database for more usage information.

Creating Replication Definitions and Subscriptions
Create replication definitions and subscriptions for the tables marked for replication to Sybase
IQ after you enable and configure RTL.

1. Create the repdef_testtab replication definition. Add any required referential constraint
clauses to the replication definition to support RTL:
• Adaptive Server:

create replication definition repdef_testtab
with primary at ASE_DS.pdb1
with primary table named ‘testtab’
with replicate table named dbo.‘testtab’
(c1 int, c2 int, c3 char(10))
primary key(c1)
go

• Oracle:
create replication definition repdef_testtab
with primary at ORA_DS.pdb1
with primary table named ‘TESTTAB’
with replicate table named dbo.‘testtab’
(C1 as c1 int, C2 as c2 int, C3 as c3 char(10))
primary key(C1)
go

Note: The default character case of Oracle is all upper case for object names. You can
convert object names from upper to lower case in the replication definition, as shown in
the example, or by using the ltl_character_case Replication Agent for Oracle
configuration parameter. See Replication Server Options > Replication Agent
Reference Manual > Configuration Parameters > Configuration Parameter Reference
> ltl_character_case.

2. Create subscriptions to match each of the table and stored procedure replication
definitions:
create subscription sub_testtab for repdef_testtab
with replicate at IQSRVR.iqdb
go

3. Verify that testtab is materialized by logging in to Sybase IQ and executing:

select * from dbo.testtab
go

If materialization is successful, you see:
c1 c2 c3
--------- --------- ---------
1 1 testrow 1

Sybase IQ as Replicate Data Server

140 Replication Server

2 2 testrow 2
3 3 testrow 3
(3 rows affected)

See also
• Tables with Referential Constraints on page 134

Verifying That RTL Works
Learn how to check that RTL works.

1. Log in to the primary data server and execute some operations, such as inserting new rows
into testtab.
For example, in Adaptive Server:
insert into testtab values(4,4,'testrow 4')
insert into testtab values(5,5,'testrow 5')
insert into testtab values(6,6,'testrow 6')
go

You should see:
(1 row affected)
(1 row affected)
(1 row affected)

2. Log in to Sybase IQ and verify that the changes to testtab have replicated to the Sybase
IQ database:
select * from dbo.testtab
go

If replication is successful, you see:
c1 c2 c3
--------- --------- ---------
1 1 testrow 1
2 2 testrow 2
3 3 testrow 3
4 4 testrow 4
5 5 testrow 5
6 6 testrow 6
(6 rows affected)

Migration from the Staging Solution to RTL
Migrate to the real-time loading solution if you are currently using the staging solution for
replication to Sybase IQ.

The scenario assumes a replication topology where pdb is the primary database, PRS is the
primary Replication Server, RRS is the replicate Replication Server, staging_db is the
staging database, and iqdb is the replicate Sybase IQ database. The data flow in this scenario
is:

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 141

pdb -----> PRS -----> RRS -----> staging_db -----> iqdb

Preparing to Migrate from the Staging Solution
Before you migrate from the staging solution, you need to perform some tasks.

1. You must upgrade both the primary and replicate Replication Servers to version 15.5 or
later.

See the Replication Server Installation Guide and Replication Server Configuration
Guide.

2. Verify that no transactions flow into pdb and that the replication system is quiesced during
migration:

a) Stop Replication Agent for all primary databases and system databases by executing
on Replication Server:
suspend log transfer from all

b) Stop RepAgent for the RSSD if you are using Adaptive Server as the RSSD:
sp_stop_rep_agent rssd_name

c) Verify that the Replication Server queues have drained and that Replication Server has
been quiesced by executing:
admin quiesce_check

Retry with admin quiesce_force_rsi if Replication Server is not quiesced yet. If
Replication Server is not quiesced, you may lose data.

3. Verify that pdb and iqdb are synchronized.

You can resynchronize the databases by loading data to iqdb from the staging database
after all the data is replicated to the staging database. If you do not resynchronize the
databases, you must purge and materialize iqdb.

4. Add an entry for the replicate Replication Server to the Sybase IQ interfaces file to
allow the Sybase IQ server to connect to the replicate Replication Server and pull data.

Migrating to the Real-Time Loading Solution
Migrate from the staging solution to RTL.

1. Create a maintenance user in the replicate Sybase IQ data server, or you can use the
existing maintenance user.

2. Create the connection to the replicate Sybase IQ database from the replicate Replication
Server using the relevant connection profile and the maintenance user from step 1, such as
dbmaint.
• Adaptive Server:

create connection to IQSRVR.iqdb
using profile rs_ase_to_iq;standard
set username to dbmaint

Sybase IQ as Replicate Data Server

142 Replication Server

set password to dbmaint
go

• Oracle:
create connection to IQSRVR.iqdb
using profile rs_oracle_to_iq;standard
set username to dbmaint
set password to dbmaint
go

3. At the primary database, if a table owned by dbo is not marked as owner_on, you must
enable owner_on for the table so that Sybase IQ can find the table since dbo does not exist
in Sybase IQ.
• Adaptive Server

• Adaptive Server 15.0.3 and later:
sp_setrepdefmode testtab, ‘owner_on’
go

• Versions earlier than Adaptive Server 15.0.3:
sp_setreptable testtab, ‘true’, ‘owner_on’
go

• Oracle
pdb_setreptable testtab, mark, owner
go

4. Recreate the replication definition to include owner information since you have enabled
owner_on for Adaptive Server or owner for Oracle.

5. If there are referential constraints between tables, you must alter the replication definition
to define referential constraints so that Replication Server is aware of the referential
constraints and can perform bulk apply in the proper order.

6. Enable RTL for the connection to the replicate database:

alter connection to iqserver_name.rdb
set dsi_compile_enable to 'on'

After suspending and resuming the connection, the change in the connection takes effect.

7. Create subscriptions for each table. If the primary and replicate database are synchronized,
include the without materialization clause in the subscription. Otherwise you must enable
autocorrection during materialization.

You can now replicate directly from the primary data server to Sybase IQ.

See also
• Tables with Referential Constraints on page 134

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 143

Cleaning Up After Migration
Clean up the systems in the staging solution after enabling and configuring replication using
RTL.

1. Drop subscriptions of the staging database.

2. Drop the replication definition that you are not using.

3. Drop connections to the staging database from the replicate Replication Server.

4. Terminate the environment for pulling data from the staging database to Sybase IQ.

Replication Server and Sybase IQ InfoPrimer Integration
Replication Server integrates with Sybase IQ InfoPrimer to support replication between a
primary Adaptive Server database with a schema that is different from a replicate Sybase IQ
database.

Sybase IQ InfoPrimer provides effective capabilities for transforming and loading data into a
Sybase IQ database, but its extract capability lacks the real-time monitoring of Replication
Server that is needed to maintain a replicate Sybase IQ database with the most current data.
The Replication Server Real-Time Loading (RTL) feature uses bulk operation processing and
compiled operations to achieve high-performance replication, but Replication Server lacks
the data transformation and loading capabilities of Sybase IQ InfoPrimer. With the integration
of Replication Server and Sybase IQ InfoPrimer, you can maintain a near real-time copy of
Adaptive Server data in a replicate Sybase IQ database with different schema than the source.
The integrated Replication Server and Sybase IQ InfoPrimer solution works in two parts:
initial data materialization and ongoing data processing.

Materialization
The integrated Replication Server and Sybase IQ InfoPrimer solution performs a nonatomic
bulk materialization of data from an Adaptive Server primary database to a replicate Sybase
IQ database. The materialization is based on the Replication Server bulk materialization
option and uses autocorrection where required.

Sybase IQ InfoPrimer creates staging tables on the replicate Sybase IQ database and performs
the data-extract step of the materialization process on each primary database table.
Transformation stored procedures execute against the stage tables, and the result is written to
base tables. The base tables, also known as end-user tables, are then used for business analysis.

Ongoing Data Processing
For specified tables, Replication Server uses the same staging tables and transformation stored
procedures that were created in the materialization phase. Where possible, Replication Server
compiles and loads operations to the staging tables, after which Replication Server executes
the transformation stored procedures to update the base tables. In this way, Replication Server
maintains a near real-time copy of data in the replicate Sybase IQ database.

Sybase IQ as Replicate Data Server

144 Replication Server

Licensing
Special licensing requirements apply to the integration of Replication Server and Sybase IQ
InfoPrimer. See Replication Server New Features Guide > New Feature in Replication Server
Version 15.6 ESD #1 > Licensing.

Using the Replication Server and Sybase IQ InfoPrimer Integration
Use Sybase IQ InfoPrimer to materialize data into Sybase IQ with Replication Server
materialization methods, and configure Replication Server to process updates made to
primary data.

1. Before materialization:

• Create an Extract and Load (EL) project in Sybase IQ InfoPrimer, selecting
Materialization with Replication Server.
In the RepServer tab of the EL project editor, you must also specify connection
information for the primary Replication Server and the replicate Replication Server, if
it is different from the primary. Sybase IQ InfoPrimer adds a command to the
Processing tab. Do not modify or delete this command.
For each source table, Sybase IQ InfoPrimer creates the required staging table
definitions. Generate these staging tables on the replicate Sybase IQ database by
selecting the Create missing destination tables icon on the Tables tab of the EL
project editor.

Note: If you are attempting to rematerialize, you must clear the rs_status table.

• Create a SQL Transformation project, and model the transformation for each set of
staging tables (insert, update, and delete) that have been generated in the replicate
Sybase IQ database. Use the SQL Transformation project to deploy each set of
transformations as a stored procedure in the replicate Sybase IQ database.

Note: These transformation stored procedures truncate their corresponding staging
tables when operations have been processed.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 145

2. In your Replication Server instance, use the stage_operations connection parameter to
configure the replicate database connection to stage operations for the tables specified in
your EL project.

Note: If stage_operations is set to on, Replication Server ignores the setting of
dsi_compile_enable and enables RTL for the connection. Operations are compiled, as
when dsi_compile_enable is set to on, and then staged.

In Sybase IQ InfoPrimer, execute your EL project. For each primary table specified, the EL
project:

a) Marks the table for replication.
b) Inserts an autocorrection on record in the primary database log, which results

in suspension of the Replication Server replicate database connection.
c) Creates a table replication definition in the RSSD.

Sybase IQ as Replicate Data Server

146 Replication Server

3. Your Sybase IQ InfoPrimer EL project exports primary data for each table into the
corresponding staging tables on the replicate Sybase IQ, executes the transformation
stored procedures, and inserts an autocorrection off record in the primary
database log.

4. The Replication Server replicate database connection is resumed, and Replication Server
processes any further changes to marked primary database tables using the staging tables
and transformation stored procedures on the replicate Sybase IQ database.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 147

Note: Sybase IQ InfoPrimer is only used for data migration and creating the staging tables
and transformation stored procedures. It is not involved in replication.

Base Tables
Base tables contain data in its final form at the replicate Sybase IQ database.

Base table data can result from:

• SQL transformations – When the Replication Server replicate database connection has
been configured to stage operations, the result of transformation stored procedures
executing against the stage tables is written to the base tables.

• Replication – If a table has been excluded from staging, Replication Server bypasses the
staging tables and replicates data directly to the base tables.

Staging Tables
If your Replication Server replicate database connection has been configured to stage
operations logged for a primary table, these operations are compiled where possible and
written to staging tables on the replicate Sybase IQ database.

For each table to be staged, there are three staging tables, each corresponding to DELETE,
INSERT, and UPDATE operations:

• owner_table_name_DELETE_RS
• owner_table_name_INSERT_RS
• owner_table_name_UPDATE_RS

where owner and table_name are the owner and name of the corresponding primary database
table. The names of these tables are generated by your EL project, and they cannot be changed.

Sybase IQ as Replicate Data Server

148 Replication Server

Note: The Tables tab of your EL project displays only the insert staging table. However, the
Table Creation window displays all three staging tables corresponding to a specified primary
database table.

You must identify which primary database tables are to be staged in a Sybase IQ InfoPrimer
EL project. You may also selectively exclude replicate tables from staging. For a table that has
been excluded from staging, no corresponding staging tables need to be created, and data will
be replicated from the primary table to a replicate table in the replicate Sybase IQ database.

If you configure a replicate database connection to stage tables but no staging tables exist in
the replicate Sybase IQ database, the replicate database connection will be suspended. If a
replication definition includes columns that are declared as identity columns, these will not be
declared as identity columns in the corresponding staging tables.

Table Compilation
Compilation is not performed on noncompilable tables. Tables are considered noncompilable
if they have RTL disabled, modified function strings, or minimal column replication enabled.
Operations to noncompilable tables are captured in an ordered list and applied to the
corresponding replicate table after compilation is complete.

Note: After Replication Server commits a staged operation, the transformation stored
procedures truncate the corresponding staging tables. You should therefore not use the
Replication Server rs_subcmp utility to validate staging tables.

Insert Staging Table Structure
Apart from changes and filtering applied by the corresponding replication definition, the
insert staging table contains the same number of columns and the same column names as the
primary table.

Delete Staging Table Structure
The delete staging table contains only the primary-key columns specified in the corresponding
replication definition.

If no primary key is specified in the replication definition, the delete staging table contains all
published columns except for:

• approximate numeric columns
• encrypted columns
• Java columns
• LOB columns

Note: Sybase recommends that you specify a primary key in your table replication definition
to simplify processing and improve performance.

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 149

Update Staging Table Structure
The update staging table contains two columns for every primary-key column specified in the
corresponding replication definition, one each for the column data before and after a change.

The update staging table also contains a column for each nonprimary-key column specified in
the replication definition. To track whether changes have been made to data in these
nonprimary-key columns, the update staging table contains one or more bitmap columns.
Each bitmap column is of type int and can therefore track 32 non-primary key columns. A
value of 1 constitutes a dirty bit, indicating that data has changed in the column corresponding
to that bit position.

Note: The before-change and bitmap columns of the update staging table are not visible in the
SQL Transformation project in Sybase IQ InfoPrimer.

Transformation Stored Procedures
For every primary database table that is staged, there should be a corresponding
transformation stored procedure in the replicate Sybase IQ database. Replication Server
executes these stored procedures against the staging tables, and the results are written to the
base tables.

You must specify the transformations to be performed by these stored procedures in a Sybase
IQ InfoPrimer SQL Transformation project and deploy the stored procedures to the replicate
Sybase IQ database.

If you attempt to use stored procedures that do not exist in the replicate Sybase IQ database, or
if a stored procedure fails to execute properly, the replicate database connection will be
suspended.

Note: To ensure that you can see all the tables involved in a SQL Transformation project, do
not select a schema in the project properties for the SQL Transformation project until you are
ready to deploy your stored procedures to the replicate Sybase IQ database.

Parameters
Replication Server uses the stage_operations and dsi_stage_all_ops parameters to control
table staging.

stage_operations
Set the stage_operations parameter of the create connection or alter connection command
to have Replication Server write operations to staging tables for the specified connection.

You can configure staging for the replicate database connection. For example:

create connection to SYDNEY_IQ_RS.iq_db
 using profile rs_ase_to_iq;standard
 set username pubs2_maint
 set password pubs2_maint_pw
 set stage_operations to "on"

Sybase IQ as Replicate Data Server

150 Replication Server

To selectively enable or disable staging for individual tables, use the stage_operations
parameter of the alter connection command in reference to a specific replicate table. For
example:

alter connection to SYDNEY_IQ_RS.iq_db
for replicate table named lineitem_5
set stage_operations to "off"

Here, Replication Server will not stage operations for the lineitem_5 table but will instead
replicate operations as normal.

Note: The stage_operations parameter can only be set for a connection to a Sybase IQ
replicate (where the dsi_dataserver_make parameter is set to iq). The dsi_dataserver_make
connection parameter is set appropriately when you use the Sybase IQ connection profile to
create the connection.

dsi_compile_enable
If stage_operations is set to on, Replication Server ignores the setting of
dsi_compile_enable and enables RTL for the connection. Operations are compiled, as when
dsi_compile_enable is set to on, and then staged.

dsi_stage_all_ops
Use the dsi_stage_all_ops parameter of the alter connection command to prevent operation
compilation for specified tables.

If table history must be preserved, as in the case of slowly changing dimension (SCD) tables,
set dsi_stage_all_ops to on. For example:

alter connection to SYDNEY_IQ_RS.iq_db
for replicate table named lineitem_5
set dsi_stage_all_ops to "on"

Replication Server Components
Replication Server requires additional components to support the integration with Sybase IQ
InfoPrimer.

The rs_status Table
The rs_status table stores information about the progress of materialization.

Column Datatype Description

schema varchar
(255)

Owner of table being materialized

table-
name

varchar
(255)

Name of table being materialized

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 151

Column Datatype Description

action varchar
(1)

• I – initial load

• A – autocorrection phase

• R – replication

start-
time

time-
stamp

Time action was started

endtime time-
stamp

Time action completed

status varchar
(1)

• P – action in progress

• X – execution complete

• E – execution error

pid int Reserved

For example, if autocorrection is in progress for my_table, rs_status contains a row
like this:
schema tablename action starttime endtime status pid
------ --------- ------ ----------------------- ------- ------ ---
sys my_table A 2011-07-11 19:11:25.531 P

If autocorrection is complete for my_table, rs_status contains a row like this:

schema tablename action starttime
------ --------- ------ -----------------------
sys my_table A 2011-07-11 19:11:25.531

endtime status pid
----------------------- ------ ---
2011-07-11 19:12:14.326 X

There is no automatic cleanup of rs_status data. Before you attempt to rematerialize a
table, you must delete its corresponding row from rs_status:

delete rs_status where tablename=tablename and schema=owner

Autocorrection Functions
Replication Server uses the rs_autoc_on, rs_autoc_off, and rs_autoc_ignore functions to
update the rs_status table.

See Replication Server Reference Manual > Replication Server System Functions.

System Variables
The rs_autoc_on and rs_autoc_off functions use two system variables when updating the
rs_status table:

Sybase IQ as Replicate Data Server

152 Replication Server

• rs_deliver_as_name – specifies the name of the replicate table affected by autocorrection.
• rs_repl_objowner – specifies the owner of the replicate table affected by autocorrection.

Default Datatype Translation
Sybase IQ supports all Adaptive Server datatypes in their native formats, so no Adaptive
Server-to-Sybase IQ datatype translation is required.

Unsupported Features
The integration of Replication Server with Sybase IQ InfoPrimer is limited to certain features
and platforms.

The integration of Replication Server with Sybase IQ InfoPrimer does not support:

• any replicate database other than Sybase IQ
• any primary database other than Adaptive Server
• replicated stored procedures
• custom function strings
• any pre-staging operation transformations other than those provided by RTL
• any transformations following those performed by the transformation stored procedures in

the replicate Sybase IQ database

Sybase IQ as Replicate Data Server

Heterogeneous Replication Guide 153

Sybase IQ as Replicate Data Server

154 Replication Server

Heterogeneous Multi-Path Replication

Use multiple replication paths to increase replication throughput and performance, and reduce
contention.

In a single-path replication environment, transactions replicate serially from the primary
database to the replicate database to ensure the primary database transaction commit order,
and therefore to ensure that the replicate database is consistent with the primary database. The
serial mode of applying transactions to the replicate database remains, even though multiple
applications typically execute their respective transactions in parallel at the primary database,
or even if there are transactions arriving from multiple primary databases.

There are replication environments that can maintain data consistency within a subset of
tables, without serializing all transactions that originate from the same primary database. A
typical example of this environment is when different applications that access different sets of
data modify a single primary database. The different sets of data within the subset of tables
that are modified by a specific application continue to replicate serially. Data in different
subsets of tables can replicate in parallel.

Multi-Path Replication™ supports the replication of data through different streams, while still
maintaining data consistency within a path, but not adhering to the commit order across
different paths.

A replication path encompasses all the components and modules between the Replication
Server and the primary or replicate database. In multipath replication, you can create multiple
primary replication paths for multiple Replication Agent connections from a primary database
to one or more Replication Servers, and multiple replicate paths from one or more Replication
Servers to the replicate database. You can configure multi-path replication in warm standby
and multisite availability (MSA) environments. You can convey transactions over dedicated
routes between Replication Servers to avoid congestion on shared routes, and you can
dedicate an end-to-end replication path from the primary database through Replication
Servers to the replicate database, to objects such as tables and stored procedures.

See Replication Server > Administration Guide Volume 2 > Performance Tuning > Multi-Path
Replication to configure Adaptive Server as the primary or replicate database in a multipath
replication system.

License
Multi-Path Replication is licensed as part of the Advanced Services Option. See Replication
Server Installation Guide > Planning Your Installation > Obtaining a License.

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 155

System Requirements

Table 1. Primary and Replicate Database Pairs Supported in Heterogeneous
Multi-Path Replication Systems

Primary Database Replicate Database

Adaptive Server Sybase IQ

Oracle Sybase IQ

Adaptive Server Oracle

Oracle Adaptive Server

Oracle Oracle

Table 2. Multi-Path Replication Database Versions Supported

Database Supported Versions

Adaptive Server 15.7 and later

Oracle Oracle 10g and 11g. See Replication Server Op-
tions > Replication Agent Release Bulletin >
Product Summary > Product Compatibility.

Sybase IQ 15.1 and later. See Replication Server Release
Bulletin > Product Compatibility > Replication
Server Interoperability .

Parallel Transaction Streams
Multi-path replication can improve replication performance as long as transactions can be
divided into parallel streams, and do not have to be serially committed across different
streams.

You can improve replication performance by dividing transactions into parallel replication
paths to reduce congestion. You can divide transactions according to parallelization rules such
as transaction attributes or derived data values. For example, you can:

• Dedicate paths to specific objects such as tables or stored procedures. When you bind an
object to a path, Replication Agent sends any replicable actions that you perform upon that
object through the path to the Replication Servers that you define in your multiple
replication path configuration. RepAgent for Adaptive Server and Replication Agent for
Oracle support this replication distribution mode.

Heterogeneous Multi-Path Replication

156 Replication Server

• Divide transactions by the session ID of the client connection on the primary database.
RepAgent for Adaptive Server supports distributing transactions by client connections.

• Dedicate a Replication Server to each path.
• Allocate dedicated paths or less congested paths for priority replication by binding objects

to these paths or by creating dedicated routes between Replication Servers.

Default and Alternate Connections
In multipath replication, connections include the default and one or more alternate
connections.

A connection that accepts data from a Replication Agent is a primary connection, and a
connection that applies data to a database is replicate connection. A default or alternate
connection can be a primary or replicate connection.

The default connection is the one that you create from a Replication Server to a specific
primary or replicate database when you add the database to the replication domain. You can
use rs_init, the Replication Manager Sybase Central plug-in, create connection, or create
connection ... using profile to create the default connection depending on whether the data
server is Adaptive Server or a supported non-ASE data server.

The default connection uses the data server and database names in the form of
dataserver.database as the connection name, where dataserver and database are the actual data
server and database names, respectively.

You can create multiple alternate connections after you create the default connection, which is
required. Each alternate connection must have a unique name.

After you create an alternate connection, you can alter the connection properties or drop the
connection. You can also display the status of all connections and create subscriptions for the
connection.

When you create an alternate connection, the user ID must be a valid user. When you create
connections to Sybase IQ replicate databases, you must specify the connection profile and
connection profile version, and a unique maintenance user name for the default connection
and each alternate connection .

Interfaces File Requirements for Sybase IQ
Create an entry for the Replication Server in the interfaces file (sql.ini file in
Windows) of the Sybase IQ data server. If there are multiple Replication Servers replicating to
a single Sybase IQ server, you must add all Replication Servers to the interfaces file.

If you are creating connections to different Sybase IQ multiplex nodes, create entries for each
of the affected nodes in the interfaces file of the replicate Replication Server.

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 157

Dedicated Routes
A dedicated route distributes only transactions for a specific primary connection. You can
create a dedicated route to the replicate Replication Server to replicate high priority
transactions or to maintain a less congested path for a specific primary connection.

A shared route is between a primary Replication Server and a replicate Replication Server that
distributes transactions for all the primary connections originating from the primary
Replication Server. You do not bind shared routes to a specific connection. Connections that
you do not bind to a dedicated route use any available valid shared route.

You can create a dedicated route only if:

• A shared route exists from the primary Replication Server to the destination Replication
Server and the shared route is a direct route. You cannot create a dedicated route if there is
only an indirect route between the Replication Servers.

• The shared route is valid and not suspended.
• The route version of the shared route is 1570 or later.

Creating Dedicated Routes
Use create route and the with primary at clause to create a dedicated route.

For example, to create a dedicated route between the RS_NY primary Replication Server and
the RS_LON replicate Replication Server for the NY_DS.pdb1 primary connection, at
RS_NY enter:
create route to RS_LON
 with primary at NY_DS.pdb1
 go

After you create a dedicated route for a specific connection, all transactions from the
connection to the destination Replication Server follow the dedicated route.

Commands to Manage Dedicated Routes
Use create route, drop route, resume route, and suspend route to manage and monitor
dedicated routes.

Include the with primary at dataserver.database clause in the command to specify a dedicated
route, where dataserver.database is the primary connection name.

See create route, drop route, suspend route, and resume route in Replication Server
Reference Manual > Replication Server Commands.

Heterogeneous Multi-Path Replication

158 Replication Server

Com-
mand

Syntax Command and Parameter
Changes

create

route

create route to dest_repli-
cation_server {
 with primary at dataserv-
er.database |
 set next site [to]
thru_replication_server |
 [set username [to] user]
 [set password [to] passwd]
 [set route_param to 'val-
ue'
 [set route_param to
'value']...]
 [set security_param to
'value'
 [set security_param to
'value']...]}

If you specify a user ID when you create a
dedicated route, the user ID must be a valid
user.

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 159

Com-
mand

Syntax Command and Parameter
Changes

drop

route

drop route to dest_replica-
tion_server
 [with primary at dataserv-
er.database]
 [with nowait]

You must drop the dedicated route before you
drop a shared route.

After you drop a dedicated route, transactions
from the specified primary connection to the
destination Replication Server go through the
shared route.

Warning! Use the with nowait clause only as
a last resort.

The clause forces Replication Server to drop a
route even if the route contains transactions in
the outbound queue of the route. As a result,
Replication Server may discard some trans-
actions from the primary connections. The
clause instructs Replication Server to drop the
dedicated route even if the route cannot com-
municate with the destination Replication
Server.

If you use the clause, use sysadmin

purge_route_at_replicate at the former des-
tination site to remove subscriptions and route
information from the system tables at the des-
tination.

See Replication Server Administration Guide
Volume 1 > Manage Routes > Drop Routes >
drop route comand.

suspend

route

suspend route to dest_rep-
lication_server
 [with primary at dataserv-
er.database]

resume

route

resume route to dest_repli-
cation_server
 [with primary at dataserv-
er.database]
 [skip transaction with
large message]

Heterogeneous Multi-Path Replication

160 Replication Server

Display Dedicated Route Information
Use admin who to display information on dedicated routes between Replication Servers.

In this example, there is a dedicated route from the RS_NY primary Replication Server to the
RS_LON replicate Replication Server for the NY_DS.pdb1 primary connection. Enter
admin who at the two Replication Servers and you see:

• At RS_LON:

Spid Name State Info
45 SQT Awaiting Wakeup 103:1 DIST NY_DS.pdb1
13 SQM Awaiting Message 103:1 NY_DS.pdb1
32 REP AGENT Awaiting Command NY_DS.pdb1
16 RSI Awaiting Wakeup RS_LON
11 SQM Awaiting Message 16777318:0 RS_LON
55 RSI Awaiting Wakeup RS_LON(103) /* Dedicated RSI
thread */
53 SQM Awaiting Message 16777318:103 RS_LON(103) /
*Dedicated RSI outbound queue */

• At RS_NY:

Spid Name State Info
37 RSI USER Awaiting Command RS_NY(103) /*Dedicated RSI user
*/
32 RSI USER Awaiting Command RS_NY

See Replication Server Reference Manual > Replication Server Commands > admin who.

Heterogeneous Multi-Path Replication Scenarios
Use the scenarios to build multiple replication paths between Adaptive Server, Oracle, and
Sybase IQ databases.

Multi-Path Replication from Adaptive Server to Sybase IQ
Set up a multipath replication replication system with two primary and replicate connections
for end-to-end replication from an Adaptive Server primary to a Sybase IQ replicate database.

The replication system in this scenario consists of the pdb database in the ASE_DS primary
Adaptive Server, the IQSRVR replicate Sybase IQ data server containing the iqdb database,
the PRS primary Replication Server, and the testtab1 and testtab2 tables.

1. At the pdb primary database, select or create two sets of tables or stored procedures that
you want to replicate through two replication paths.

2. Create the default connection to the pdb primary Adaptive Server database.

Use create connection or rs_init to create the default connection. See Replication Server
Configuration Guide > Configure Replication Server and Add Databases using rs_init.

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 161

3. Enable Multithreaded Adaptive Server RepAgent and Multiple Paths for Adaptive Server
RepAgent.

You can also set the memory and send buffers available to Adaptive Server RepAgent. See
Replication Server Administration Guide Volume 2 > Performance Tuning > Multi-Path
Replication > Multiple Primary Replication Paths > Enabling Multithreaded RepAgent
and Multiple Paths for RepAgent.

a) Enable multithreaded RepAgent.
At the primary Adaptive Server, enter:

sp_config_rep_agent pdb, ‘multithread rep agent’, ‘true’

b) Set the number of replication paths for RepAgent.
For example, to enable two paths, enter:

sp_config_rep_agent pdb, 'max number of replication paths', '2'

4. Create an alternate replication path from the pdb primary database to the PRS Replication
Server.

See Replication Server > Administration Guide: Volume 2 > Performance Tuning > Multi-
Path Replication > Multiple Primary Replication Paths > Creating Multiple Primary
Replication Paths.

a) Create an alternate replication path for the Adaptive Server RepAgent named
pdb_conn2 between pdb and PRS Replication Server.
At the primary Adaptive Server, enter:

sp_replication_path "pdb", 'add',
"pdb_conn2", "PRS",
"dbmaint2", "dbmaint2pwd"

(Optionally) Create logical paths that you can use to distribute data and objects bound
to a physical path to multiple Replication Servers. See Replication Server
Administration Guide Volume 2 > Performance Tuning > Multi-Path Replication >
Multiple Primary Replication Paths > Creating Logical Primary Replication Paths .

b) Create the corresponding alternate primary connection in Replication Server and use
the same Adaptive Server data server name with the alternate path name—
pdb_conn2:
At the Replication Server, enter:
create alternate connection to ASE_DS.pdb
named ASE_DS.pdb_conn2
set error class to rs_sqlserver_error_class
set function string class to rs_sqlserver_function_class
set username to dbmaint2
set password to dbmaint2pwd
with primary only

The replication system contains two primary replication paths: the default—
ASE_DS.pdb, and ASE_DS.pdb_conn2.

5. Use admin show_connections, 'primary' to display the primary connections you have
created.

Heterogeneous Multi-Path Replication

162 Replication Server

6. Create the default replicate connection to the Sybase IQ database with dbmaint1 as the
maintenance user.

You must specify the connection profile and connection profile version, and a unique
maintenance user name for the default connection and each alternate connection.
create connection to IQSRVR.iqdb
using profile rs_ase_to_iq;standard
set username to dbmaint1
set password to dbmaint1
go

7. Verify that the connection is running with admin who:

8. Create an alternate replicate connection named IQSRVR.pdb_conn2 to the iqdb
Sybase IQ database with dbmaint2 as the maintenance user.
create alternate connection to IQSRVR.iqdb
named IQSRVR.pdb_conn2
using profile rs_ase_to_iq;standard
set username to dbmaint2
set password to dbmaint2pwd
go

(Optionally) Create alternate connections to available Sybase IQ multiplex nodes. Ensure
that the connection names are unique.

For example, to create the pdb_conn3 alternate connection to the iqdb2 database in the
IQSRVR2 Sybase IQ node, enter:
create alternate connection to IQSRVR2.pdb_conn3
named IQSRVR2.iqdb2_conn1
using profile rs_ase_to_iq;standard
set username to dbmaint3
set password to dbmaint3pwd
go

9. Display the replicate connections you have created with admin show_connections,
'replicate'.

10. Enable RTL for the default and alternate replicate connections to Sybase IQ.

a) Enable RTL for the default connection:
alter connection to IQSRVR.iqdb
set dsi_compile_enable to ‘on’
go

b) Enable RTL for the IQSRVR.pdb_conn2 alternate connection:

alter connection to IQSRVR.pdb_conn2
set dsi_compile_enable to ‘on’
go

c) Suspend and resume the connections to the replicate Sybase IQ database:
suspend connection to IQSRVR.iqdb
go
suspend connection to IQSRVR.pdb_conn2
go
resume connection to IQSRVR.iqdb
go

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 163

resume connection to IQSRVR.pdb_conn2
go

Restart Replication Server if you use configure replication server to enable RTL or if you
want to suspend and resume all connections at the same time.

11. Optionally set values for parameters to configure RTL processing and tune RTL
performance.

12. At the primary database, mark the testtab1 and testtab2 tables for replication.

sp_setreptable testtab1,'true'
go
sp_setreptable testtab2,'true'
go

13. Set the distribution mode at the primary database to distribute by object binding:

sp_config_rep_agent pdb, ‘multipath distribution model’, 'object’

14. Quiesce Replication Server and restart RepAgent.

See Replication Server Administration Guide Volume 1 > Manage a Replication System >
Quiesce Replication Server > Quiescing a Replication System.

15. Bind the testtab2 table to the ASE_DS.pdb_conn2 alternate connection.

sp_replication_path pdb, 'bind', "table", "dbo.testtab2",
"pdb_conn2"

You can only bind objects to alternate replication paths. All objects that you do not bind to
an alternate replication path, such as the testtab1 table, use the default path instead.

16. Create replication definitions for the marked tables. Add any required referential
constraint clauses to the replication definition to support RTL:
To create the repdef_testtab1 replication definition for the testtab1 table, enter:

create replication definition repdef_testtab1
with primary at ASE_DS.pdb1
with primary table named ‘testtab1’
with replicate table named dbo.‘testtab1’
(c1 int, c2 int, c3 char(10))
primary key(c1)
go

To create the repdef_testtab2 replication definition for the testtab2 table, enter:

create replication definition repdef_testtab2
with primary at ASE_DS.pdb1
with primary table named ‘testtab2’
with replicate table named dbo.‘testtab2’
(c1 int, c2 int, c3 char(10))
primary key(c1)
go

All replication definitions refer to the default primary connection.

17. Create a subscription to match each table replication definition and specify the connection:

a) Create the sub_testtab1 subscription for the repdef_testtab1 replication definition
and specify the default connection to replicate transactions:

Heterogeneous Multi-Path Replication

164 Replication Server

create subscription sub_testtab1 for repdef_testtab1
with replicate at IQSRVR.iqdb
without materialization
go

b) Create the sub_testtab2 subscription for the repdef_testtab2 replication definition
and specify the IQSRVR.iqdb_conn2 alternate connection to replicate
transactions:
create subscription sub_testtab2 for repdef_testtab2
with replicate at IQSRVR.pdb_conn2
without materialization
go

See Replication Server > Administration Guide Volume 2 > Performance Tuning >
Multi-Path Replication > Replication Definitions and Subscriptions > Moving
Subscriptions Between Connections.

See also
• Sybase IQ as Replicate Data Server on page 113
• RTL Configuration Parameters on page 124

Multi-Path Replication from Oracle to Sybase IQ
Set up a Multi-Path Replication system with two primary and replicate connections for end-
to-end replication from an Oracle primary to a Sybase IQ replicate.

Prerequisites
This scenario assumes you have already installed and configured:

• a primary Oracle database with LogMiner
• two Replication Agent instances
• Replication Server
• a replicate Sybase IQ database

Task

1. At the primary Oracle database, select or create two tables that you want to replicate
through two replication paths.

2. Create a default connection to the primary Oracle database:
create connection to pds.pdb
set error class rs_sqlserver_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
with log transfer on,
dsi_suspended
go

where:

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 165

• pds is the value of the rs_source_ds parameter specified in Replication Agent.
• pdb is the value of rs_source_db specified in Replication Agent.
• muser is the maintenance user for the primary Oracle database.
• mpwd is the maintenance user password.

3. Create an alternate connection to the primary Oracle database:
create alternate connection to pds.pdb
named pds.conn2
set error class rs_sqlserver_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
with primary only
go

4. Create a connection to the replicate Sybase IQ database using a connection profile:
create connection to rds.rdb
using profile rs_oracle_to_iq;standard
set username muser
set password mpwd
go

where:
• rds is the name of the replicate Sybase IQ server.
• rdb is the replicate Sybase IQ database.
• muser is the maintenance user for the replicate Sybase IQ database.
• mpwd is the replicate Sybase IQ maintenance user password.

5. Create an alternate connection to the replicate Sybase IQ database:
create alternate connection to rds.rdb
named rds.conn2
using profile rs_oracle_to_iq;standard
set username muser2
set password mpwd
go

• You must use a different maintenance user name for each alternate connection you
create to a Sybase IQ database. Ensure that you use unique maintenance user names
even if you are creating connections from different Replication Servers to a Sybase IQ
database.

• If you use a different name for the replicate Sybase IQ server in the alternate
connection than the one you used previously, you must have an entry for the different
name in the Replication Server interfaces file.

6. Grant create object permission to rs_username on Replication Server:

grant create object to rs_username
go

where rs_username is the user login name that Replication Agent uses for Replication
Server access.

Heterogeneous Multi-Path Replication

166 Replication Server

7. For one instance of Replication Agent, set the ra_admin_owner, ra_admin_prefix,
ra_admin_instance_prefix, rs_source_ds, and rs_source_db parameters:
ra_config ra_admin_owner, ra_user_1
ra_config ra_admin_prefix, ra_
ra_config ra_admin_instance_prefix, ri1
ra_config rs_source_ds, pds
ra_config rs_source_db, pdb

where
• ra_user_1 is the user name used to create shared and instance objects in the primary

database for use by Replication Agent instances. This user name must already be
defined at the primary data server.

• ra_ is the prefix used to identify share objects in the primary datbase. This prefix can
be no longer than three characters.

• ri1 is the prefix that uniquely identifies this Replication Agent instance in the
replication group.

• The value of rs_source_ds combined with the value of rs_source_db forms the
connection name that this Replication Agent instance uses to connect to Replication
Server.

8. Initialize the Replication Agent instance:
ra_admin init

9. For the other instance of Replication Agent, set the ra_admin_owner, ra_admin_prefix,
ra_admin_instance_prefix, rs_source_ds, and rs_source_db parameters:
ra_config ra_admin_owner, ra_user_1
ra_config ra_admin_prefix, ra_
ra_config ra_admin_instance_prefix, ri2
ra_config rs_source_ds, pds
ra_config rs_source_db, conn2

where
• ri2 is the prefix that uniquely identifies this Replication Agent instance in the

replication group.
• The values of ra_admin_owner and ra_admin_prefix are the same as all other

Replication Agent instances in the replication group.
• The value of rs_source_ds combined with the value of rs_source_db forms the

connection name that this Replication Agent instance uses to connect to Replication
Server.

10. Initialize the Replication Agent instance:
ra_admin init

11. Mark the two tables from Step1 for replication. On the Replication Agent instance
identified by ri1:

pdb_setreptable ptab1, mark
go

On the Replication Agent instance identified by ri2:

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 167

pdb_setreptable ptab2, mark
go

where ptab1 and ptab2 are the primary database tables to be replicated.

12. Create two replication definitions against the primary Oracle database:
For example, to create the ptab1_repdef replication definition for the ptab1 table:

create replication definition ptab1_repdef
with primary at pds.pdb
with all tables named 'ptab1'
...
go

To create the ptab2_repdef replication definition for the ptab2 table:

create replication definition ptab2_repdef
with primary at pds.pdb
with all tables named 'ptab2'
...
go

Note: These replication definitions must use the default primary connection name.

If the primary connection and alternate primary connection are on different Replication
Servers, create replication definitions on each Replication Server.

13. Resume the Replication Agent instances:
resume

If the Replication Agent instance fails to resume, verify that LogMiner is installed and
configured. See the Replication Agent Primary Database Guide > Replication Agent for
Oracle > Oracle-Specific Considerations > Oracle Transaction and Operation
Troubleshooting > Setting Up Replication Agent and Oracle to use ra_dumptran and
ra_helpop.

14. Create a subscription against the default replicate connection..
For example, to create the ptab1_sub subscription for the ptab1_repdef replication
definition:
create subscription ptab1_sub
for ptab1_repdef
with replicate at rds.rdb
without materialization
go

15. Create a subscription against the alternate replicate connection.
For example, to create the ptab2_sub subscription for the ptab2_repdef replication
definition:
create subscription ptab2_sub
for ptab2_repdef
with replicate at rds.conn2
without materialization
go

Heterogeneous Multi-Path Replication

168 Replication Server

See also
• Sybase IQ as Replicate Data Server on page 113

Multi-Path Replication from Adaptive Server to Oracle
Set up a Multi-Path Replication system with two primary and replicate paths for end-to-end
replication from an Adaptive Server primary to an Oracle replicate.

Prerequisites
This scenario assumes you have already installed and configured:

• a primary Adaptive Server database and RepAgent thread
• Replication Server
• ExpressConnect for Oracle
• a replicate Oracle database

Task

1. At the primary Adaptive Server database, select or create two sets of tables or stored
procedures that you want to replicate through two replication paths. These transaction sets
must be divisible into parallel replication paths.

2. Create a default connection to the primary Adaptive Server database.

Use create connection or rs_init to create the default connection. See Replication Server
Configuration Guide > Configure Replication Server and Add Databases using rs_init.

3. Enable Multithreaded Adaptive Server RepAgent and Multiple Paths for Adaptive Server
RepAgent.

You can also set the memory and send buffers available to Adaptive Server RepAgent. See
Replication Server Administration Guide Volume 2 > Performance Tuning > Multi-Path
Replication > Multiple Primary Replication Paths > Enabling Multithreaded RepAgent
and Multiple Paths for RepAgent.

a) Enable multithreaded RepAgent.
At the primary Adaptive Server, enter:
sp_config_rep_agent pdb, ‘multithread rep agent’, ‘true’

where pdb is the primary Adaptive Server database.
b) Set the number of replication paths for RepAgent.

For example, to enable two paths, enter:
sp_config_rep_agent pdb, 'max number of replication paths', '2'

4. Create an alternate replication path from the primary database.

See Replication Server > Administration Guide: Volume 2 > Performance Tuning > Multi-
Path Replication > Multiple Primary Replication Paths > Creating Multiple Primary
Replication Paths.

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 169

a) Create an alternate replication path named pdb_conn2 between the primary database
and Replication Server.
At the primary database, enter:
sp_replication_path "pdb", 'add',
"pdb_conn2", "PRS",
"muser", "mpwd"

where:
• PRS is the Replication Server.
• muser is the maintenance user.
• mpwd is the maintenance user password.

(Optionally) Create logical paths that you can use to distribute data and objects bound
to a physical path to multiple Replication Servers. See Replication Server
Administration Guide: Volume 2 > Performance Tuning > Multi-Path Replication >
Multiple Primary Replication Paths > Creating Logical Primary Replication Paths .

b) Create the corresponding alternate primary connection in Replication Server, and use
the same Adaptive Server data server name with the alternate path name—
pdb_conn2.
At the Replication Server, enter:
create alternate connection to pds.pdb
named pds.pdb_conn2
set error class to rs_sqlserver_error_class
set function string class to rs_sqlserver_function_class
set username to muser
set password to mpwd
with primary only

where pds is the primary Adaptive Server.

The replication system contains two primary replication paths—the default and
pdb_conn2.

5. Use admin show_connections, 'primary' to display the primary connections you have
created.

6. Copy the tnsnames.ora file for your replicate Oracle database to the Replication
Server RS_installation_directory\ REP-15_5\connector\oraoci
\network\admin directory, and restart Replication Server.

7. Create a connection to the replicate Oracle database through ExpressConnect for Oracle.
create connection to tns_alias_name.rdb
using profile rs_oracle_to_oracle;eco
set username muser
set password mpwd
set dsi_dataserver_make to 'ora'
set dsi_connector_type to 'oci'
set batch to 'off'
go

where:

Heterogeneous Multi-Path Replication

170 Replication Server

• tns_alias_name is the alias name for the replicate Oracle database defined in the
tnsnames.ora file for the replicate Oracle database.

• rdb is the replicate Oracle System ID (SID) that is paired with the above
tns_alias_name in the tnsnames.ora file. The default value is ORCL.

• muser is the maintenance user for the replicate Oracle database.
• mpwd is the replicate Oracle maintenance user password.
See the ExpressConnect for Oracle Installation and Configuration Guide for more
information about naming the default connection.

8. Create an alternate connection to the replicate Oracle database through ExpressConnect
for Oracle.
create alternate connection to tns_alias_name.rdb
named tns_alias_name.conn2
set error class rs_oracle_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
set dsi_dataserver_make to 'ora'
set dsi_dataserver_type to 'oci'
set batch to 'off'
set dsi_proc_as_rpc to 'on'
go

9. At the primary database, mark the ptab1 and ptab2 tables for replication.

sp_setreptable ptab1,'true'
go
sp_setreptable ptab2,'true'
go

10. Set the distribution mode at the primary database to distribute by object binding:
sp_config_rep_agent pdb, ‘multipath distribution model’, 'object’

11. Quiesce Replication Server and restart RepAgent.

See Replication Server Administration Guide Volume 1 > Manage a Replication System >
Quiesce Replication Server > Quiescing a Replication System.

12. Bind the ptab2 table to the pdb_conn2 alternate connection.

sp_replication_path pdb, 'bind', "table", "dbo.ptab2",
"pdb_conn2"

You can only bind objects to alternate replication paths. All objects that you do not bind to
an alternate replication path, such as the ptab1 table, use the default path instead.

13. Create two replication definitions against the primary Adaptive Server database:
For example to create the ptab1_repdef replication definition for the ptab1 table:

create replication definition ptab1_repdef
with primary at pds.pdb
with all tables named 'ptab1'
...
go

To create the ptab2_repdef replication definition for the ptab2 table:

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 171

create replication definition ptab2_repdef
with primary at pds.pdb
with all tables named 'ptab2'
...
go

Note: These replication definitions must use the default primary connection name.

If the primary connection and alternate primary connection are on different Replication
Servers, create replication definitions on each Replication Server.

14. Create a subscription against the default replicate connection.
For example, to create the ptab1_sub subscription for the ptab1_repdef replication
definition:
create subscription ptab1_sub
for ptab1_repdef
with replicate at tns_alias_name.rdb
without materialization
go

15. Create a subscription against the alternate replicate connection.
For example, to create the ptab2_sub subscription for the ptab2_repdef replication
definition:
create subscription ptab2_sub
for ptab2_repdef
with replicate at tns_alias_name.conn2
without materialization
go

See also
• Oracle as Replicate Data Server on page 99

Multi-Path Replication from Oracle to Adaptive Server
Set up a Multi-Path Replication system with two primary and replicate connections for end-
to-end replication from an Oracle primary to an Adaptive Server replicate.

Prerequisites
This scenario assumes you have already installed and configured:

• a primary Oracle database with LogMiner
• two Replication Agent instances
• Replication Server
• a replicate Adaptive Server database

Task

1. At the primary Oracle database, select or create two tables that you want to replicate
through two replication paths.

Heterogeneous Multi-Path Replication

172 Replication Server

2. Use rs_init to add the replicate database to the replication system.

3. Create a default connection to the primary Oracle database:
create connection to pds.pdb
set error class rs_sqlserver_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
with log transfer on,
dsi_suspended
go

where:
• pds is the value of the rs_source_ds parameter specified in Replication Agent.
• pdb is the value of rs_source_db specified in Replication Agent.
• muser is the maintenance user for the primary Oracle database.
• mpwd is the maintenance user password.

4. Create an alternate connection to the primary Oracle database:
create alternate connection to pds.pdb
named pds.conn2
set error class rs_sqlserver_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
with primary only
go

5. Create a connection to the replicate Adaptive Server database:
create connection to rds.rdb
set error class rs_sqlserver_error_class
set function string class rs_sqlserver_function_class
set username muser
set password mpwd
go

where:
• rds is the name of the replicate Adaptive Server data server.
• rdb is the replicate Adaptive Server database.
• muser is the maintenance user for the replicate Adaptive Server database.
• mpwd is the maintenance user password.

6. Create an alternate connection to the replicate Adaptive Server database:
create alternate connection to rds.rdb
named rds.conn2
set error class rs_sqlserver_error_class
set function string class rs_sqlserver_function_class
set username muser
set password mpwd
go

7. Grant create object permission to rs_username on Replication Server:

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 173

grant create object to rs_username
go

where rs_username is the user login name that Replication Agent uses for Replication
Server access.

8. For one instance of Replication Agent, set the ra_admin_owner, ra_admin_prefix,
ra_admin_instance_prefix, rs_source_ds, and rs_source_db parameters:
ra_config ra_admin_owner, ra_user_1
ra_config ra_admin_prefix, ra_
ra_config ra_admin_instance_prefix, ri1
ra_config rs_source_ds, pds
ra_config rs_source_db, pdb

where
• ra_user_1 is the user name used to create shared and instance objects in the primary

database for use by Replication Agent instances. This user name must already be
defined at the primary data server.

• ra_ is the prefix used to identify share objects in the primary datbase. This prefix can
be no longer than three characters.

• ri1 is the prefix that uniquely identifies this Replication Agent instance in the
replication group.

• The value of rs_source_ds combined with the value of rs_source_db forms the
connection name that this Replication Agent instance uses to connect to Replication
Server.

9. Initialize the Replication Agent instance:
ra_admin init

10. For the other instance of Replication Agent, set the ra_admin_owner, ra_admin_prefix,
ra_admin_instance_prefix, rs_source_ds, and rs_source_db parameters:
ra_config ra_admin_owner, ra_user_1
ra_config ra_admin_prefix, ra_
ra_config ra_admin_instance_prefix, ri2
ra_config rs_source_ds, pds
ra_config rs_source_db, conn2

where
• ri2 is the prefix that uniquely identifies this Replication Agent instance in the

replication group.
• The values of ra_admin_owner and ra_admin_prefix are the same as all other

Replication Agent instances in the replication group.
• The value of rs_source_ds combined with the value of rs_source_db forms the

connection name that this Replication Agent instance uses to connect to Replication
Server.

11. Initialize the Replication Agent instance:
ra_admin init

12. Mark the two tables from Step1 for replication. On the Replication Agent instance
identified by ri1:

Heterogeneous Multi-Path Replication

174 Replication Server

pdb_setreptable ptab1, mark
go

On the Replication Agent instance identified by ri2:

pdb_setreptable ptab2, mark
go

where ptab1 and ptab2 are the primary database tables to be replicated.

13. Create two replication definitions against the primary Oracle database:
For example to create the ptab1_repdef replication definition for the ptab1 table:

create replication definition ptab1_repdef
with primary at pds.pdb
with all tables named 'ptab1'
...
go

To create the ptab2_repdef replication definition for the ptab2 table:

create replication definition ptab2_repdef
with primary at pds.pdb
with all tables named 'ptab2'
...
go

Note: These replication definitions must use the default primary connection name.

If the primary connection and alternate primary connection are on different Replication
Servers, create replication definitions on each Replication Server.

14. Resume the Replication Agent instances:
resume

If the Replication Agent instance fails to resume, verify that LogMiner is installed and
configured. See the Replication Agent Primary Database Guide > Replication Agent for
Oracle > Oracle-Specific Considerations > Oracle Transaction and Operation
Troubleshooting > Setting Up Replication Agent and Oracle to use ra_dumptran and
ra_helpop.

15. Create a subscription against the default replicate connection.
For example, to create the ptab1_sub subscription for the ptab1_repdef replication
definition:
create subscription ptab1_sub
for ptab1_repdef
with replicate at rds.rdb
without materialization
go

16. Create a subscription against the alternate replicate connection.
For example, to create the ptab2_sub subscription for the ptab2_repdef replication
definition:
create subscription ptab2_sub
for ptab2_repdef

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 175

with replicate at rds.conn2
without materialization
go

Multi-Path Replication from Oracle to Oracle
Set up a Multi-Path Replication system with two primary and replicate connections for end-
to-end replication from an Oracle primary to an Oracle replicate.

Prerequisites
This scenario assumes you have already installed and configured:

• a primary Oracle database with LogMiner
• two Replication Agent instances
• Replication Server
• ExpressConnect for Oracle
• a replicate Oracle database

Task

1. At the primary Oracle database, select or create two tables that you want to replicate
through two replication paths.

2. Create a default connection to the primary Oracle database:
create connection to pds.pdb
set error class rs_sqlserver_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
with log transfer on,
dsi_suspended
go

where:
• pds is the value of the rs_source_ds parameter specified in Replication Agent.
• pdb is the value of rs_source_db specified in Replication Agent.
• muser is the maintenance user for the primary Oracle database.
• mpwd is the maintenance user password.

3. Create an alternate connection to the primary Oracle database:
create alternate connection to pds.pdb
named pds.conn2
set error class rs_sqlserver_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
with primary only
go

Heterogeneous Multi-Path Replication

176 Replication Server

4. Copy the tnsnames.ora file for your replicate Oracle database to the Replication
Server RS_installation_directory\ REP-15_5\connector\oraoci
\network\admin directory, and restart Replication Server.

5. Create a connection to the replicate Oracle database through ExpressConnect for Oracle.
create connection to tns_alias_name.rdb
using profile rs_oracle_to_oracle;eco
set username muser
set password mpwd
set dsi_dataserver_make to 'ora'
set dsi_connector_type to 'oci'
set batch to 'off'
go

where:
• tns_alias_name is the alias name for the replicate Oracle database defined in the

tnsnames.ora file for the replicate Oracle database.
• rdb is the replicate Oracle System ID (SID) that is paired with the above

tns_alias_name in the tnsnames.ora file. The default value is ORCL.
• muser is the maintenance user for the replicate Oracle database.
• mpwd is the replicate Oracle maintenance user password.
See the ExpressConnect for Oracle Installation and Configuration Guide for more
information about naming the default connection.

6. Create an alternate connection to the replicate Oracle database through ExpressConnect
for Oracle.
create alternate connection to tns_alias_name.rdb
named tns_alias_name.conn2
set error class rs_oracle_error_class
set function string class rs_oracle_function_class
set username muser
set password mpwd
set dsi_dataserver_make to 'ora'
set dsi_dataserver_type to 'oci'
set batch to 'off'
set dsi_proc_as_rpc to 'on'
go

7. Grant create object permission to rs_username on Replication Server:

grant create object to rs_username
go

where rs_username is the user login name that Replication Agent uses for Replication
Server access.

8. For one instance of Replication Agent, set the ra_admin_owner, ra_admin_prefix,
ra_admin_instance_prefix, rs_source_ds, and rs_source_db parameters:
ra_config ra_admin_owner, ra_user_1
ra_config ra_admin_prefix, ra_
ra_config ra_admin_instance_prefix, ri1
ra_config rs_source_ds, pds
ra_config rs_source_db, pdb

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 177

where
• ra_user_1 is the user name used to create shared and instance objects in the primary

database for use by Replication Agent instances. This user name must already be
defined at the primary data server.

• ra_ is the prefix used to identify share objects in the primary datbase. This prefix can
be no longer than three characters.

• ri1 is the prefix that uniquely identifies this Replication Agent instance in the
replication group.

• The value of rs_source_ds combined with the value of rs_source_db forms the
connection name that this Replication Agent instance uses to connect to Replication
Server.

9. Initialize the Replication Agent instance:
ra_admin init

10. For the other instance of Replication Agent, set the ra_admin_owner, ra_admin_prefix,
ra_admin_instance_prefix, rs_source_ds, and rs_source_db parameters:
ra_config ra_admin_owner, ra_user_1
ra_config ra_admin_prefix, ra_
ra_config ra_admin_instance_prefix, ri2
ra_config rs_source_ds, pds
ra_config rs_source_db, conn2

where
• ri2 is the prefix that uniquely identifies this Replication Agent instance in the

replication group.
• The values of ra_admin_owner and ra_admin_prefix are the same as all other

Replication Agent instances in the replication group.
• The value of rs_source_ds combined with the value of rs_source_db forms the

connection name that this Replication Agent instance uses to connect to Replication
Server.

11. Initialize the Replication Agent instance:
ra_admin init

12. Mark the two tables from Step1 for replication. On the Replication Agent instance
identified by ri1:

pdb_setreptable ptab1, mark
go

On the Replication Agent instance identified by ri2:

pdb_setreptable ptab2, mark
go

where ptab1 and ptab2 are the primary database tables to be replicated.

13. Create two replication definitions against the primary Oracle database:
For example to create the ptab1_repdef replication definition for the ptab1 table:

create replication definition ptab1_repdef
with primary at pds.pdb

Heterogeneous Multi-Path Replication

178 Replication Server

with all tables named 'ptab1'
...
go

To create the ptab2_repdef replication definition for the ptab2 table:

create replication definition ptab2_repdef
with primary at pds.pdb
with all tables named 'ptab2'
...
go

Note: These replication definitions must use the default primary connection name.

If the primary connection and alternate primary connection are on different Replication
Servers, create replication definitions on each Replication Server.

14. Resume the Replication Agent instances:
resume

If the Replication Agent instance fails to resume, verify that LogMiner is installed and
configured. See the Replication Agent Primary Database Guide > Replication Agent for
Oracle > Oracle-Specific Considerations > Oracle Transaction and Operation
Troubleshooting > Setting Up Replication Agent and Oracle to use ra_dumptran and
ra_helpop.

15. Create a subscription against the default replicate connection.
For example, to create the ptab1_sub subscription for the ptab1_repdef replication
definition:
create subscription ptab1_sub
for ptab1_repdef
with replicate at tns_alias_name.rdb
without materialization
go

16. Create a subscription against the alternate replicate connection.
For example, to create the ptab2_sub subscription for the ptab2_repdef replication
definition:
create subscription ptab2_sub
for ptab2_repdef
with replicate at tns_alias_name.conn2
without materialization
go

See also
• Oracle as Replicate Data Server on page 99

Heterogeneous Multi-Path Replication

Heterogeneous Replication Guide 179

Heterogeneous Multi-Path Replication

180 Replication Server

Heterogeneous Warm Standby for Oracle

A warm standby application is a pair of databases, one of which is a backup copy of the other.
Client applications update the active database; Replication Server maintains the standby
database as a copy of the active database.

If the active database fails, or if you need to perform maintenance on the active database or on
the data server, a switch to the standby database allows client applications to resume work with
little interruption.

To keep the standby database consistent with the active database, Replication Server
reproduces transaction information retrieved from the active database’s transaction log.
Subscriptions are not needed to replicate data into the standby database.

How a Warm Standby for Oracle Works
The active database and the standby database appear in the replication system as a connection
from the Replication Server to a single logical database in a warm standby application.

In the warm standby application:

• Client applications execute transactions in the active database.
• The Replication Agent for the active database retrieves transactions from the transaction

log and forwards them to Replication Server.
• Replication Server executes the transactions in the standby database.
• Replication Server may also copy transactions to destination databases and remote

Replication Servers.

In many Replication Server applications:

• A primary database is the source of data that is copied to other databases through the use of
replication definitions and subscriptions.

• A destination database receives data from the primary (source) database.

For detailed information about database connections, see Replication Server Administration
Guide Volume 2 > Manage Warm Standby Applications.

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 181

Warm Standby Application
Illustrates the normal operation of an example warm standby application.

Warm Standby Requirements and Restrictions
Be familiar with the requirements and restrictions of Replication Server warm standby
applications.

• One Replication Server manages both the active and standby databases. Both the active
and standby databases must be from the same vendor.

• Replication Server does not switch client applications to the standby database.
• Run the data server for the active and standby databases on different machines. Putting the

active and standby databases on the same data server or hardware resources undermines
the benefits of the warm standby feature.

• Replication Server does not support warm standby replication between different
platforms.

• Sybase recommends that tables in the active and standby databases should have a primary
key defined.

Heterogeneous Warm Standby for Oracle

182 Replication Server

Function Strings for Maintaining Standby Database
Replication Server uses the system-provided function-string class rs_oracle_function_class
for the standby DSI, which is the connection to the standby database.

The function string class includes:

• rs_marker – marks the point in the transaction log of the active database where replication
must be enabled for the standby connection. Everything before the marker is not replicated
while everything after the marker is replicated.

• rs_repl_off – disables replication for the current session.
• rs_triggers_reset – disables all triggers at the replicate database that triggers firing for the

current session.
• rs_trunc_set – moves the truncation point used by the Replication Agent for Oracle to the

end of the transaction log.

Replicated Information for an Oracle Warm Standby
Application

Replication Agent supports different methods for enabling replication to the Oracle standby
database.

The level and type of information that Replication Server copies to the standby database
depends on the method you choose; one of:

• pdb_setrepddl– allows replication of DDL commands and procedures that make changes
to system tables stored in the database. You can use DDL commands to create, alter, and
drop database objects, such as tables and views. Supported DDL system procedures affect
information about database objects, and executed at the standby database by the DDL
user.

• pdb_setreptable – marks all user tables or a specified table for replication.

Optionally, you can also use pdb_setrepproc to tell Replication Agent which user-stored
procedures to replicate to the standby database.

For detailed information on Replication Agent for Oracle configuration parameters, see
Replication Agent Reference Manual > Configuration Parameters.

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 183

Setting Up Warm Standby Databases
Set up databases for a warm standby application.

Prerequisites
Perform these tasks before setting up the databases:

• Install the Replication Server that manages the active and standby databases. A single
Replication Server manages both the active and the standby databases.

• Set up ECDA or ExpressConnect for Oracle connectivity. If using ECDA, one copy at
primary site and one copy at standby site must be running and configured to communicate
with the Oracle databases.

• Configure the Replication Agent, and verify that it is running in admin mode for both the
active and the standby databases.

• Define the DDL user name in both the active and the standby databases, and verify that it is
configured in both the Replication Agents.The ddl_username parameter is the database
user name included in LTL for replicating DDL commands to the standby or target
database. This user must have permission to execute all replicated DDL commands at the
target database. The DDL user must be different from the maintenance user. In addition,
the DDL user must also have alter session permission to execute the DDL command as
the user who executed at the active database. The ddl_password parameter is the password
corresponding to the database user name.

Task

1. Create a single logical connection to be used by both the active and standby databases.

2. Use the Replication Server create connection command to add the active database to the
replication system. You need not add the active database if it has already been added to the
replication system.

3. Use the Replication Server create connection command to add the standby database to the
replication system.

Creating the Logical Connection
Create the logical connection for a warm standby application.

1. Using a login name with sa permission, log in to the Replication Server that will manage
the warm standby databases.

2. Execute the create logical connection command:

logical_ds.logical_db
create logical connection to logical_ds.logical_db

Heterogeneous Warm Standby for Oracle

184 Replication Server

The data server name and database name can be any valid object name. Typical values
might include Oracle System Identifier (SID), to relate the logical connection to the
physical Oracle implementation.

Naming the Logical Connection
Use the form logical_ds.logical_db to name the logical connection.

There are two methods for naming the logical connection:

• If the active database has not yet been added to the replication system, use a different name
for the logical connection than for the active database. Using unique names for the logical
and physical connections makes switching the active database more straightforward.

• If the active database has previously been added to the replication system, use the
data_server and database names of the active database for the logical connection name.
The logical connection inherits any existing replication definitions and subscriptions that
reference this physical database.

When you create a replication definition or subscription for a warm standby application,
specify the logical connection instead of a physical connection. Specifying the logical
connection allows Replication Server to reference the currently active database.

Initializing the Replication Agent for the Active Database
Start the Replication Agent for Oracle (RAO) instance and connect to it using isql.

1. Set the archive log file path of the source Oracle database:

ra_config pdb_include_archives, true
go
ra_config pdb_archive_path, <path-to-oracle-archive-directory>
go

2. Configure connection of Replication Agent to the primary database:

ra_config pds_host_name, <the host name of the source oracle>
go
ra_config pds_port_number <the port number of the source oracle>
go
ra_config pds_database_name,<the source oracle database name>
go
ra_config pds_username, <the oracle user for Replication Agent>
go
ra_config pds_password, <password>
go
test_connection PDS
go

If the connection is established successfully, you see:
Type Connection

---- ----------

PDS succeeded

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 185

3. Configure the Replication Agent connection to Replication Server:

ra_config rs_host_name, <the host name of the Replication Server>
go
ra_config rs_port_number, <the port number of the
Replication Server>
go
ra_config rs_username, <the Replication Server user for
Replication Agent>
go
ra_config rs_password, <password>
go
ra_config rs_source_ds ',' <the DCON server name>
go
ra_config rs_source_db ',' <the source oracle database name>
go

Note: If you are using ExpressConnect for Oracle, replace the DirectConnect server name
with the name of the Oracle instance. For example:
ra_config rs_source_ds, 'ordb'
go
rs_config rs_source_db, 'ordb'
go

4. Configuring the Replication Agent connection to ERSSD:

ra_config rssd_host_name <the host name of the ERSSD>
go
ra_config rssd_port_number, <the port number of the ERSSD>
go
ra_config rssd_username, <the ERSSD user for
Replication Agent>
go
ra_config rssd_password, <password>
go
ra_config rssd_database_name, <the database name of the ERSSD>
go
test_connection RS
go

If the connection is established successfully, you see:
Type Connection

---- ----------

RS succeeded

5. If the character set of Replication Server is not the same as Replication Agent, update the
Replication Server character set:

ra_config rs_charset, <the charset of the Replication Server>

6. Create a replication definition for each table marked for replication:
ra_config pdb_auto_create_repdefs, true
go

Heterogeneous Warm Standby for Oracle

186 Replication Server

7. Set automatic marking of user tables:
ra_config pdb_automark_tables, true
go

8. Initialize the Replication Agent transaction log:

pdb_xlog init

9. Enable DDL replication for the active database. Enter:
pdb_setrepddl enable

Note: Some DDL commands are filtered even when DDL replication is enabled. If you are
enabling DDL replication, you must also set ddl_password and ddl_username.

10. Create replication definitions for tables created before Replication Agent was
initialized:
rs_create_repdef all
go

Note: If you designate as the active database one that has already been added to the replication
system, the Replication Agent for the active database is suspended when you create the logical
connection.

• Resume the Replication Agent:
resume
go

Adding the Active Database to the Replication System
Create connection to the active database.

1. Log in to Replication Server using a login name with suitable permission.

2. Execute:

create connection to active_ds.active_db
using profile …
set username to …
set password to …
with log transfer on
as active for logical_ds.logical_db

If you are using ExpressConnect for Oracle, execute:
create connection to ordb.ordb/*oracle data server name. database
name*/
using profile rs_oracle_to_oracle;eco
set username to ...
set password to ...
with log transfer on
as active for logical_ds.logical_db
go

Alternatively, if you are using ECDA, execute:

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 187

create connection to dco2active.ordb/*dco instance name.database
name*/
using profile rs_oracle_to_oracle;ecda
set username to ...
set password to ...
with log transfer on
as active for logical_ds.logical_db
go

Initializing the Standby Database
Initialize the standby database with data from the active database using the dump and load
technique.

For detailed information about how to dump data from active database and load to standby
database, see the Oracle documentation.

Initializing the Replication Agent for the Standby Database
Start the Replication Agent for Oracle (RAO) instance and connect to it using isql.
1. Set the archive log file path of the standby Oracle databases:

ra_config pdb_include_archives, true
go
ra_config pdb_archive_path, <path-to-oracle-archive-directory>
go

2. Configure connection of Replication Agent to the standby database:

ra_config pds_host_name, <the host name of the standby oracle>
go
ra_config pds_port_number <the port number of the standby oracle>
go
ra_config pds_database_name,<the standby oracle database name>
go
ra_config pds_username, <the oracle user for Replication Agent>
go
ra_config pds_password, <password>
go
test_connection PDS
go

If the connection is established successfully, you see:
Type Connection

---- ----------

PDS succeeded

3. Configure the Replication Agent connection to Replication Server:

ra_config rs_host_name, <the host name of the Replication Server>
go
ra_config rs_port_number, <the port number of the
Replication Server>
go
ra_config rs_username, <the Replication Server user for

Heterogeneous Warm Standby for Oracle

188 Replication Server

Replication Agent>
go
ra_config rs_password, <password>
go
ra_config rs_source_ds ','<the DCON server name>
go
ra_config rs_source_db ','<the standby oracle database name>
go

Note: If you are using ExpressConnect for Oracle, replace the DirectConnect server name
with the name of the Oracle instance. For example:
ra_config rs_source_ds, 'ordb'
go
rs_config rs_source_db, 'ordb'
go

4. Configuring the Replication Agent connection to ERSSD:

ra_config rssd_host_name <the host name of the ERSSD>
go
ra_config rssd_port_number, <the port number of the ERSSD>
go
ra_config rssd_username, <the ERSSD user for
Replication Agent>
go
ra_config rssd_password, <password>
go
ra_config rssd_database_name, <the database name of the ERSSD>
go
test_connection RS
go

If the connection is established successfully, you see:
Type Connection

---- ----------

RS succeeded

5. If the character set of Replication Server is not the same as Replication Agent, update the
Replication Server character set:

ra_config rs_charset, <the charset of the Replication Server>

6. Create a replication definition for each table marked for replication:
ra_config pdb_auto_create_repdefs, true
go

7. Set automatic marking of user tables:
ra_config pdb_automark_tables, true
go

8. Initialize the Replication Agent transaction log:

pdb_xlog init

9. Enable DDL replication for the active database:

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 189

pdb_setrepddl enable

Note: Some DDL commands are filtered even when DDL replication is enabled. If you are
enabling DDL replication, you must also set ddl_password and ddl_username.

10. Configure the Replication Agent to work in standby mode. Set the ra_standby
configuration parameter to “true” to work in standby mode.
ra_config ra_standby,'true'
go

Creating Connection to the Standby Database
Create a standby database connection.

1. Log in to Replication Server using a login name with suitable permission.

2. Execute:

create connection to standby_ds.standby_db
using profile …
set username to …
set password to …
with log transfer on
as standby for logical_ds.logical_db

Resuming Connection to the Active Database and the Standby
Database

Resume the active database and standby database connections.

During initialization of the standby database, Replication Server suspended the connection to
the active database.

1. Execute this command in the Replication Server:
resume connection to active_ds.active_db

2. After resuming connections to the active and standby databases, check the warm standby
status:
admin logical_status [,logical_ds,logical_db]
go

Resuming the Replication Agents for the Active and Standby
Databases

Resume the Replication Agents for the active and standby databases to start scanning the
database log for transactions to replicate.
In each Replication Agent, enter:
resume
go

Heterogeneous Warm Standby for Oracle

190 Replication Server

Switching the Active and Standby Databases
Switch to the standby database when the active database fails, or you want to perform
maintenance on the active database.

1. At the Replication Server, enter:
switch active for logical_ds.logical_db
to standby_ds.standby_db

See "Internal Switching Steps" for information on what Replication Server does when you
switch.

2. To monitor the progress of a switch, enter:
admin logical_status, logical_ds, logical_db

The Operation in Progress and State of Operation in Progress
output columns indicate the switch status.

3. When the active database switch is complete, resume the connection to the active database
in Replication Server:

resume connection to active_ds.active_db

4. Suspend the Replication Agent at the original active site, if not already suspended.
Configure it to standby mode:
ra_config ra_standby,true

5. Replication Agent at the original standby mode is automatically suspended and changed
from standby mode to replication mode. To check, enter:
ra_config ra_standby

The return values must be false.

6. Resume both the Replication Agents at the active and standby sites.

Note: If Replication Server stops in the middle of switching, the switch resumes after you
restart Replication Server. When you resume the Replication Agent at the standby site, it
automatically updates the Replication Agent System Database (RASD).

See also
• Internal Switching Steps on page 192

Before Switching Active and Standby Databases
Illustrates a warm standby application for a database that does not participate in the replication
system other than through the activities of the warm standby application itself.

It represents the warm standby application in normal operation, before you switch the active
and standby databases.

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 191

Figure 15: Warm Standby Application—Before Switching

Figure: Warm Standby Application—Before Switching includes internal details to show that:

• Replication Server writes transactions received from the active database into an inbound
message queue.

• This inbound queue is read by the DSI thread for the standby database, which executes the
transactions in the standby database.
Messages received from the active database cannot be truncated from the inbound queue
until the standby DSI thread has read them and applied them to the standby database.

In this example, transactions are simply replicated from the active database into the standby
database. The logical database itself does not:

• Contain primary data that is replicated to replicate databases or remote Replication
Servers, or

• Receive replicated transactions from another Replication Server.

Internal Switching Steps
Learn about the internal switching steps.

When you switch active and standby databases, Replication Server:

1. Issues suspend log transfer command against the active and standby connections.
2. Reads all messages left in the inbound queue and applies them to the standby database and,

for subscription data or replicated stored procedures, to outbound queues.
Processes all committed transactions in the inbound queue before the switch completes.

3. Suspends the standby DSI.
4. Places a marker in the transaction log of the new active database. Replication Server uses

this marker to determine which transactions to apply to the new standby database and to
any replicate databases.

Heterogeneous Warm Standby for Oracle

192 Replication Server

5. Stops the connection for the new active database. Purges the inbound queue and flushes the
last oqid to rs_oqid table and resets rs_locator table accordingly. Resets the
Replication Server segments flag and suspends the new standby DSI.

6. Updates the ptype parameter for both new active database and standby database.
Replication Server marks subscriptions that are targeted for the old active database as valid
and the subscriptions in the new active database as invalid.

7. Resumes the connection for the new active database, and resumes log transfer for the new
active database so that new messages can be received. Resumes DSI for both the new
active and standby databases.

After Switching Active and Standby Databases
Learn the processes involved and the status of the components in a warm standby environment
after you switch from the active to the standby database.

After you have switched the roles of the active and standby databases, the replication system
will have changed, as shown in this figure:

Figure 16: Warm Standby Application Example—After Switching

• The previous standby database is the new active database. Client applications will have
switched to the new active database.

• The previous active database, in this example, becomes the new standby database.
Messages for the previous active database are queued for application to the new active
database.

Note: After switching, the Replication Agent for the previous active database has shut down,
and the Replication Agent for the new active database has started.

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 193

Warm Standby Application Monitoring
You can monitor warm standby applications using Replication Server log file or using admin
commands.

Warm Standby Applications Using Replication
For warm standby applications that involve replication, the logical database serves as a
primary or replicate database in the replication system.

For detailed information about warm standby applications using replication, see Replication
Server Administration Guide Volume 2 > Manage Warm Standby Applications.

Replication Definitions and Subscriptions
The Replication Agent automatically creates the replication definition during initialization
(execution of pdb_xlog init command) and by setting the configuration parameter
pdb_auto_create_repdefs to true for Oracle warm standby.

When the Replication Agent detects a logical connection (by querying the RSSD), the
replication definitions created by the Replication Agent are customized to support an Oracle
warm standby environment.

In certain scenarios, where the warm standby environment is replicated to a non-warm
standby database, you must create a second replication definition for each table or stored
procedure you plan to replicate.

Additional Replication Definitions for Warm Standby Databases
If you are replicating from a warm standby primary environment to a replicate database
outside the warm standby environment, you may want to create a new replication definition
for each table to be replicated.

The replication definitions that Replication Agent automatically created at initialization have
these attributes:

• Mappings from Oracle datatypes to Replication Server user-defined datatypes (UDD) are
provided.

• By default, tables with clob/blob columns are defined with the always_replicate
clause. If auto_create_repdefs is set to “on”, then clob/blob columns are defined with
replicate_if_change clause.

Note: The always_replicate and replicate_if_change are clauses for creating replication
definitions.

Heterogeneous Warm Standby for Oracle

194 Replication Server

• The replication definitions are created with the send standby replication definition
columns clause.

These are the cases in which you may want to create additional replication definitions:

• Provide mappings from Oracle datatypes to Replication Server UDD.
• Use replicate_if_change clause for table with clob/blob column.

• Include the send standby all columns clause, if a database level subscription is used to
subscribe to the non-warm standby database.

• Specify the primary and replicate function owner. Customize the function string to specify
the target (standby database) function owner information for user procedures.

For example, if a user table TB1 is defined with one of the columns COL5 as Oracle datatype
date, to replicate the column to standby database as expected, the user must create a
replication definition as shown:
create replication definition rep1
with primary at ordb.pdb
with all tables named 'USER1'.'TB1'
(
"COL1" int,
"COL2" int,
"COL3" int,
"COL4" char(255),
"COL5" rs_oracle_datetime,
)
primary key("COL1","COL2","COL3")
searchable columns("COL1","COL2","COL3","COL5")
send standby replication definition columns
replicate minimal columns
go

In this example, the clause send standby replication definition columns in create replication
definition command specifies that this replication definition can be used for a subscribed
database as well as for a standby database.

See also
• Datatype Translation and Mapping on page 211

Subscriptions with Warm Standby Applications
The create subscription and define subscription commands use the logical database and data
server names instead of the physical names.

Although subscriptions are not used in replicating from the active database to the standby
database, you can:

• Create subscriptions for the data in a logical primary database, or
• Create subscriptions to replicate data from other databases into a logical replicate

database.

Heterogeneous Warm Standby for Oracle

Heterogeneous Replication Guide 195

For detailed information about warm standby applications using replication, see Replication
Server Administration Guide Volume 2 > Managing Warm Standby Applications.

Upgrade Considerations
Oracle warm standby feature does not require any special instructions that you may need to
perform after an upgrade.

See Replication Server Configuration Guide > Upgrade or Downgrade Replication Server for
your platform for information on upgrading your Replication Server version.

Downgrade Considerations
After downgrading, the Oracle standby connection will be broken as it is not able to do
function string mapping or data translation. If you did not drop standby connection before
downgrading the RSSD, you can drop it after the downgrade.

After you have completed downgrading the RSSD using the rs_init, your connection to Oracle
data server (if your connection to Oracle is created using the create connection with using
profile clause) may be down because the wait_after_commit configuration parameter
provided in Replication Server 15.5 is no longer available, thus you need to resume the
replication process.

Resuming Replication After Downgrade
Learn to resume replication after downgrading the RSSD.

To resume replication:

1. Execute:

alter connection to data_server.database
set dsi_serialization_method to 'wait_for_commit'
go

2. Resume log transfer to active database.

3. Resume Replication Agent for Oracle.

After you have completed performing these above steps, you can start replicating from active
database to other replicate database with the replication definitions and subscriptions created
before downgrade.

Heterogeneous Warm Standby for Oracle

196 Replication Server

Oracle Replicate Databases
Resynchronization

Replication Server allows you to resynchronize and materialize the replicate database, and
resume further replication without loss or a risk of inconsistent data, and without forcing a
quiesce of your primary database.

Database resynchronization is based on obtaining a dump of data from a trusted source and
applying the dump to the target database you want to resynchronize.

Database resynchronization requires a version of a Replication Agent for your database that
supports this feature. For the specific commands for Replication Agent, see the Replication
Agent documentation.

Product Compatibility
Use the versions of Oracle, Replication Agent for Oracle, ECDA Option for Oracle, and
ExpressConnect for Oracle that support the resynchronization of Oracle databases. With
Replication Server Options 15.5, ExpressConnect for Oracle replaces ECDA Option for
Oracle.

See the Replication Server Options documentation.

Table 3. Product Compatibility for Resynchronizing Oracle Databases

Database Server Ver-
sion

Replication Agent
Version

ExpressConnect and ECDA for
Oracle Versions

Oracle Server 10g, 11g 15.5 ECDA 15.0 ESD #3, ExpressConnect 15.5
for Oracle

Configuring Database Resynchronization
Set up Oracle databases resynchronization.

1. Stop replication processing by suspending Replication Agent.

2. Place Replication Server in resync mode. While in resync mode, Replication Server skips
transactions and purges replication data from replication queues in anticipation of the
replicate database being repopulated from a dump taken from the primary database or
trusted source.

3. Obtain a dump from the primary database.

Oracle Replicate Databases Resynchronization

Heterogeneous Replication Guide 197

4. Restart Replication Agent and send a resync database marker to Replication Server to
indicate that a resynchronization effort is in progress.

When Replication Server detects a dump marker that indicates the completion of the
primary database dump, Replication Server stops skipping transactions and can determine
which transactions to apply to the replicate database.

5. Apply the dump to the replicate database.

6. Reinitialize the replicate database.

7. Resume replication.

You must use commands and parameters from both Replication Server and Replication Agent
for Oracle for database resynchronization.

See also
• Database Resynchronization Scenarios on page 203

Instructing Replication Server to Skip Transactions
Use the skip to resync parameter with the resume connection command to instruct
Replication Server to skip transactions in the DSI outbound queue for the specified replicate
database until Replication Server receives and acknowledges a dump database marker sent by
Replication Agent.

Replication Server skips processing of records in the outbound queue since the data in the
replicate database is expected to be replaced with the dump contents.

See Replication Server Reference Manual > Replication Server Commands > resume
connection.

Run this command:
resume connection to data_server.database
 [skip [n] transaction | execute transaction | skip to resync
marker]

Warning! If you execute resume connection with the skip to resync marker option on the
wrong connection, data on the replicate database becomes unsynchronized.

When you set skip to resync marker, Replication Server does not log the transactions that are
skipped in the Replication Server log or in the database exceptions log. Replication Server
logs transactions that are skipped when you set skip [n] transaction.

Send the Resync Database Marker to Replication Server
You can configure or instruct Replication Agent for Oracle to send a resync database marker to
Replication Server to indicate that a resynchronization effort is in progress.

When you restart Replication Agent in resync mode, Replication Agent sends the resync
database marker to Replication Server as the first message before Replication Agent sends any
SQL data definition language (DDL) or data manipulation language (DML) transactions.

Oracle Replicate Databases Resynchronization

198 Replication Server

Multiple replicate databases for the same primary database all receive the same resync marker
since they each have a DSI outbound queue.

For each DSI that resumes with the skip to resync marker parameter, the DSI outbound queue
records in the Replication Server system log that DSI has received the resync marker and also
records that from that point forward, DSI rejects committed transactions until it receives the
dump database marker.

In Replication Agent for Oracle, use resume with the resync or resync, init parameters to
support these corresponding options for sending the resync database marker. See Replication
Agent Reference Manual > Command Reference > resume.

Send a Resync Marker
Replication Agent can automatically determine whether the truncation point has changed.

You can send a resync marker using resume resync when:

• There is no change to the truncation point and the expectation is that the Replication Agent
should continue processing the transaction log from the last point that the Replication
Agent processed. Each outbound DSI thread and queue receives and processes the resync
database marker. DSI reports to the Replication Server system log when a resync marker
has been received, satisfying the skip to resync marker request of DSI. Subsequently, DSI
rejects committed transactions while it waits for a dump database marker. With this
message and the change of behavior to one of waiting for the dump database marker, you
can apply any dump to the replicate database at this time.

• The truncation point of the primary database has been moved in time. This can occur when
you manually change the truncation point.
In this situation, before sending the resync marker, execute ra_init force in Replication
Agent, which reinitializes the Replication Agent repository. With this reinitialization,
Replication Agent tracks any changes in the database that it might miss as a result of
moving the truncation point and skipping the processing of some transaction log records.
Since the truncation point has changed, open transactions in the Replication Server
inbound queue must be purged because these transactions do not match new activity sent
from the new truncation point. Replication Server resets duplicates checking, since the
changed truncation point could send a record with a previous origin queue ID (OQID).
Since the prior data is purged from the queues, Replication Server does not treat any new
activity from the Replication Agent as duplicate activity, and consequently does not reject
the new activity. The purge option does not change DSI processing because Replication
Server continues to reject outbound queue commands while waiting for the marker.

Send a Resync Marker with the init Command
Send a resync marker with an init command using resume resync, init to instruct Replication
Server to purge all open transactions from the inbound queue, reset duplicate detection, and
suspend the outbound DSI.

Use this option to reload the primary database from the same dump as the replicate database.
Since there is no dump taken from the primary database, Replication Agent does not send a

Oracle Replicate Databases Resynchronization

Heterogeneous Replication Guide 199

dump database marker. Instead of waiting for a dump database marker after the resync marker,
the init option suspends the DSI connection immediately after Replication Server processes
the resync marker.

After DSI is suspended, all subsequent activity through DSI consists of new transactions. You
can resume DSI once you reload the replicate database from the same dump you used for the
primary.

See also
• Resynchronizing Both the Primary and Replicate Databases from the Same Dump on page
207

Obtain a Dump of the Database
Use any dump utility to obtain a dump of the database.

When the dump is complete, you, as the administrator, must determine the desired dump point
based on information obtained from the primary database when the dump was taken. The
dump utility may provide the dump point. The scenarios in later sections use the Oracle
RMAN utility.

In Oracle, use backup database plus archivelog to dump the primary database, and restore
database and recover database to apply the dump to the replicate database. To obtain the
dump point from one RMAN backup set, use the list backup Oracle command. This is an
example of the output from list backup:

RMAN>list backup;
List of Backup Sets
===================

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
8 125.58M DISK 00:00:04 16-MAY-11
 BP Key: 8 Status: AVAILABLE Compressed: NO Tag:
TAG20110516T125049
 Piece Name: /ralinuxsh5/oracle/product/11.1.0/db_2/dbs/
0bmcflp9_1_1

 List of Archived Logs in backup set 8
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 1 1018110 14-MAY-11 1058201 15-MAY-11
 1 2 1058201 15-MAY-11 1103370 15-MAY-11
 1 3 1103370 15-MAY-11 1142662 16-MAY-11
 1 4 1142662 16-MAY-11 1148674 16-MAY-11
 1 5 1148674 16-MAY-11 1150375 16-MAY-11
 1 6 1150375 16-MAY-11 1150477 16-MAY-11

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
9 Full 1.08G DISK 00:00:15 16-MAY-11
 BP Key: 9 Status: AVAILABLE Compressed: NO Tag:

Oracle Replicate Databases Resynchronization

200 Replication Server

TAG20110516T125054
 Piece Name: /ralinuxsh5/oracle/product/11.1.0/db_2/dbs/
0cmcflpe_1_1
 List of Datafiles in backup set 9
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 Full 1150485 16-MAY-11 /work2/oracle11.1/oradata/or11sh1/
system01.dbf
 2 Full 1150485 16-MAY-11 /work2/oracle11.1/oradata/or11sh1/
sysaux01.dbf
 3 Full 1150485 16-MAY-11 /work2/oracle11.1/oradata/or11sh1/
undotbs01.dbf
 4 Full 1150485 16-MAY-11 /work2/oracle11.1/oradata/or11sh1/
users01.dbf
 5 Full 1150485 16-MAY-11 /work2/oracle11.1/oradata/or11sh1/
example01.dbf

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
10 Full 9.36M DISK 00:00:04 16-MAY-11
 BP Key: 10 Status: AVAILABLE Compressed: NO Tag:
TAG20110516T125054
 Piece Name: /ralinuxsh5/oracle/product/11.1.0/db_2/dbs/
0dmcflq1_1_1
 SPFILE Included: Modification time: 14-MAY-11
 SPFILE db_unique_name: OR11SH1
 Control File Included: Ckp SCN: 1150507 Ckp time: 16-MAY-11

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
11 18.50K DISK 00:00:04 16-MAY-11
 BP Key: 11 Status: AVAILABLE Compressed: NO Tag:
TAG20110516T125118
 Piece Name: /ralinuxsh5/oracle/product/11.1.0/db_2/dbs/
0emcflq6_1_1

 List of Archived Logs in backup set 11
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 7 1150477 16-MAY-11 1150513 16-MAY-11
 1 8 1150513 16-MAY-11 1150568 16-MAY-11

The required dump point is one substracted from the maximum value in the "Next SCN"
column in the last Archived Logs backup set. In this example, the last set is set 11 and the
maximum value for "Next SCN" in set 11 is 1150568. Therefore, the dump point in this
example is 1150567.

See the Oracle documentation for more information on the RMAN utility and the list backup
command.

Send the Dump Database Marker to Replication Server
When the Data Server Interface thread (DSI) is in resync mode after you resume DSI using
skip to resync marker, and you restart Replication Agent in resync mode, the dump database

Oracle Replicate Databases Resynchronization

Heterogeneous Replication Guide 201

marker received after the resync database marker suspends DSI and removes any existing
resynchronization state for that DSI connection.

Multiple replicate databases for the same primary database all receive the same dump
database marker. In Replication Agent, the dump database marker is sent based on the
Replication Agent configuration setting, using the lr_dump_marker command with the oracle
scn parameter. See the Replication Agent documentation.

Note: When you restart Replication Agent using resync with init, DSI suspends immediately
after receiving the resync database marker. DSI does not wait for a dump marker before
suspending.

You can manually resume DSI after you apply the dump to the replicate database. DSI no
longer rejects committed transactions and all transactions that commit after the dump point,
which is indicated by the dump database marker, are replicated.

Monitor DSI Thread Information
Use the admin who command to provide information on DSI during database
resynchronization.

State Description

SkipUntil Re-
sync

DSI resumes after you execute skip to resync. This state remains until DSI receives a
resync database marker.

SkipUntil
Dump

DSI has received a resync database marker. This state remains until DSI has pro-
cessed a subsequent dump database marker.

Apply the Dump to a Database to be Resynchronized
You can load the primary database dump to the replicate database only after you see messages
in the system log.

These are the messages:

• When Replication Server receives the resync database marker:
DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

• When Replication Server receives the resync database with init marker:
DSI for data_server.database received and processed
Resync Database Marker. DSI is now suspended. Resume after
database has been reloaded.

• When Replication Server receives the dump database marker:
DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after database has been
reloaded.

See the Oracle documentation for instructions to load the dump to the database you want to
resynchronize.

Oracle Replicate Databases Resynchronization

202 Replication Server

Reinitializing the Replicate Database
After you apply the dump from the primary database or dump source to the replicate database,
reinitialize the replicate database to restore users, tables, and permissions that the dump
removed.

1. If maintenance and DDL users do not exist in the primary database, add them to the
replicate database after you apply the dump from the primary database.

2. Run the hds_oracle_new_setup_for_replicate.sql script on the replicate
database to add the relevant Replication Server system tables to the replicate database.

The script also inserts relevant values and grants the required permissions in the replicate
database.

Database Resynchronization Scenarios
There are procedures you must follow to resynchronize databases in different scenarios. After
completing these procedures, the primary and replicate databases are transactionally
consistent.

To execute these procedures, you must:

• Be a replication system administrator
• Have an existing replication environment that is running successfully
• Have methods and processes available to copy data from the primary database to the

replicate database

For commands and syntax for:

• Replication Agent for Oracle – see the Replication Agent Reference Manual.
• Replication Server – see the Replication Server Reference Manual.

Resynchronize One or More Replicate Databases Directly from a
Primary Database

Resynchronize one or multiple replicate databases from a single primary database.

This procedure with minor variations, allows you to:

• Repopulate the replicate database when the replication latency between primary and
replicate databases is such that to recover a database using replication is not feasible, and
reporting based on the replicate data may not be practical because of the latency.

• Repopulate the replicate database with trusted data from the primary database.
• Coordinate resynchronization when the primary database is the source for multiple

replicate databases.

Oracle Replicate Databases Resynchronization

Heterogeneous Replication Guide 203

• Coordinate resynchronization if the primary site is a logical database that consists of a
warm standby pair of databases that you want to resynchronize with one or more replicate
databases. In a warm standby pair, the active database acts as the primary database, and the
standby acts as the replicate database. Therefore, the active database of a warm standby
pair at a primary site also appears as a primary database to one or multiple replicate
databases.

Resynchronizing Directly from a Primary Database
Resynchronize a replicate database from a primary database.

1. Stop replication processing by Replication Agent. Do not alter the truncation point. In
Replication Agent, execute:

suspend

2. Suspend the Replication Server DSI connection to the replicate database:

suspend connection to dataserver.database

3. Instruct Replication Server to remove data from the replicate database outbound queue and
wait for a resync marker from the primary database Replication Agent:

resume connection to data_server.database skip to
resync marker

4. If the truncation point has not been moved, proceed to step 5. Otherwise, reinitialize the
Replication Agent repository before you obtain a dump of the primary database contents.
In the Replication Agent, execute:
ra_init force
go

5. Obtain a dump of the primary database contents following the instructions in your
database documentation. If you use the Recovery Manager (RMAN) for Oracle, use the
Oracle list backup command to obtain the last System Change Number (SCN) of the
RMAN backup. Then, in Replication Agent, set this SCN as the value of
lr_dump_marker:
lr_dump_marker oracle scn

6. Start your Replication Agent in resync mode and send a resync marker to Replication
Server:
resume resync
go

7. In the Replication Server system log, verify that DSI has received and accepted the resync
marker from Replication Agent by looking for this message:
DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

After DSI processes the resync marker for the replicate database, you can apply the dump
to the replicate database.

Oracle Replicate Databases Resynchronization

204 Replication Server

Note: If you are resynchronizing multiple databases, verify that the DSI connection for
each database you are resynchronizing has accepted the resync marker.

8. Apply the dump of the primary database to the replicate database following the
instructions in your database documentation.

9. Verify that Replication Server has processed the dump database marker by looking for this
message in the Replication Server system log:
DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after database has been
reloaded.

When Replication Server receives the dump marker, the DSI connection automatically
suspends.

10. If the maintenance and DDL users do not exist in the primary database, add these users to
the replicate database after you apply the dump from the primary database.

11. Run the hds_oracle_new_setup_for_replicate.sql script on the replicate
database to add the rs_info and rs_lastcommit tables to the replicate database.

The script also inserts relevant values and grants the required permissions in the replicate
database.

12. After you apply the dump to the replicate database, resume DSI using:
resume connection to data_server.database

Resynchronizing Using a Third-Party Dump Utility
Coordinate resynchronization after you dump the primary database using a third-party dump
utility, such as a disk snapshot.

Third-party tools do not interact as closely with the primary database as native database dump
utilities. If your third-party tool does not record anything in the primary database transaction
log that Replication Agent can use to generate a dump database marker, generate your own
dump database markers to complete the resynchronization process. See your third-party tool
documentation.

1. Stop replication processing by Replication Agent. Do not alter the truncation point. In
Replication Agent, execute:

suspend

2. Suspend the Replication Server DSI connection to the replicate database:

suspend connection to dataserver.database

3. Instruct Replication Server to remove data from the replicate database outbound queue and
wait for a resync marker from the primary database Replication Agent:

resume connection to data_server.database skip to
resync marker

4. If the truncation point has not been moved, proceed to step 5. Otherwise, reinitialize the
Replication Agent repository before you obtain a dump of the primary database contents.
In the Replication Agent, execute:

Oracle Replicate Databases Resynchronization

Heterogeneous Replication Guide 205

ra_init force
go

5. Use the third-party utility to obtain a dump of the primary database contents.

6. Determine the dump point based on information from the primary database when you took
the dump, or information from the third-party utility. With a third-party utility, you are
responsible for determining the dump point. For example, if you are using a disk
replication tool, you can temporarily halt activity at the primary database to eliminate in-
progress transactions from the disk snapshot, and then use the “end of transaction log”
point as the dump database marker.

7. To mark the end of the dump position that you obtained in step 5, execute the stored
procedure on the primary database for Replication Agent:
lr_dump_marker oracle scn

8. Restart Replication Agent in resync mode and send a resync marker to Replication Server:
resume resync
go

Replication Agent automatically generates a dump database marker at a time based on the
end of dump position that you obtained in step 6 and set in step 7, and sends the dump
database marker to Replication Server.

9. Verify that DSI has received and accepted the resync marker from Replication Agent by
looking for this message in the Replication Server system log:
DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

10. Apply the dump of the primary database from the third-party tool to the replicate database,
following the instructions in the database and third-party utility documentation.

11. Verify that Replication Server has processed the dump database marker by looking for this
message in the Replication Server system log:
DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after
database has been reloaded.

When Replication Server receives the dump marker, the DSI connection automatically
suspends.

12. If the maintenance and DDL users do not exist in the primary database, add these users to
the replicate database after you apply the dump from the primary database.

13. Run the hds_oracle_new_setup_for_replicate.sql script on the replicate
database to add the rs_info and rs_lastcommit tables to the replicate database.

The script also inserts relevant values and grants the required permissions in the replicate
database.

14. After you apply the dump to the replicate database, resume DSI:
resume connection to data_server.database

Oracle Replicate Databases Resynchronization

206 Replication Server

Resynchronizing Both the Primary and Replicate Databases from the
Same Dump

Coordinate resynchronization to reload both the primary database and replicate database from
the same dump or copy of data. No dump database marker is needed, since you are not
obtaining a dump from the primary database.

1. Stop replication processing by Replication Agent. Do not alter the truncation point. In
Replication Agent, execute:

suspend

2. Suspend the Replication Server DSI connection to the replicate database:

suspend connection to data_server.database

3. Instruct Replication Server to remove data from the replicate database outbound queue and
wait for a resync marker from the primary database Replication Agent:

resume connection to data_server.database skip to
resync marker

4. Apply the dump of the data from the external source to the primary database.

5. Move the truncation point to the end of the transaction log for the primary database. In
Replication Agent, execute:

pdb_xlog move_truncpt
go

6. Reinitialize Replication Agent repository based on the latest system data from the primary
database:

ra_init force
go

7. Instruct Replication Agent to start in resync mode with the init option. In Replication
Agent, execute:.

resume resync, init

8. Verify that DSI has received and accepted the resync marker from the Replication Agent
by looking for this message in the Replication Server system log:

DSI for data_server.database received and processed
Resync Database Marker. DSI is now suspended. Resume
after database has been reloaded.

When Replication Server receives and processes the resync database with init marker, the
DSI connection suspends.

9. Apply the dump of the data from the external source to the replicate database.

10. If the maintenance and DDL users do not exist in the primary database, add these users to
the replicate database after you apply the dump from the primary database.

11. Run the hds_oracle_new_setup_for_replicate.sql script on the replicate
database to add the rs_info and rs_lastcommit tables to the replicate database.

Oracle Replicate Databases Resynchronization

Heterogeneous Replication Guide 207

The script also inserts relevant values and grants the required permissions in the replicate
database.

12. After you apply the dump to the replicate database, resume DSI to the replicate database to
allow Replication Server to apply transactions from the primary database:

resume connection to data_server.database

Resynchronizing the Active and Standby Databases in a Warm
Standby Application

Resynchronize the active and standby databases in a warm standby environment, when the
warm standby pair is the replicate site for a single primary database.

In this scenario, the active, standby, and primary databases are Oracle databases.

1. Stop replication processing by both the primary database Replication Agent and the warm
standby active database Replication Agent. Do not alter the truncation point. In
Replication Agent, execute:

suspend

2. Suspend the Replication Server DSI connection to the active and standby databases:

suspend connection to dataserver.database

3. Instruct Replication Server to remove data from the outbound queue of the active and
standby databases, and wait for a resync marker from the primary database Replication
Agent:

resume connection to data_server.database skip to
resync marker

4. If the truncation point has not been moved, proceed to step 5. Otherwise, reinitialize the
Replication Agent repository before you obtain a dump of the primary database contents.
In the primary Replication Agent, execute:
ra_init force
go

5. Obtain a dump of the primary database contents following the instructions in your
database documentation. If you use the Recovery Manager (RMAN) for Oracle, use the
Oracle list backup command to obtain the last System Change Number (SCN) of the
RMAN backup. Then, in Replication Agent, set this SCN as the value of
lr_dump_marker:
lr_dump_marker oracle scn

6. Start the primary Replication Agent in resync mode and send a resync marker to
Replication Server:
resume resync
go

7. Verify that DSI for the active database has received and accepted the resync marker from
the primary database Replication Agent by looking for this message in the Replication
Server system log:

Oracle Replicate Databases Resynchronization

208 Replication Server

DSI for data_server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

8. Verify that the Replication Server DSI for the active database has processed the dump
database marker by looking for this message from the active database In the Replication
Server system log:
DSI for data_server.database received and processed
Dump Marker. DSI is now suspended. Resume after
database has been reloaded.

9. Apply the dump of the primary database to the active database following the instructions in
database documentation.

10. Move the truncation point to the end of the transaction log for the active database. In
Replication Agent, execute:
pdb_xlog move_truncpt
go

11. Reinitialize Replication Agent repository based on the latest system data from the active
database:
ra_init force
go

12. Start Replication Agent for the active database in resync mode with the init option. In
Replication Agent, execute:
resume resync, init

13. Verify that DSI for the standby database has received and accepted the resync marker from
the active database Replication Agent by looking for this message in the Replication
Server system log:
DSI for data_server.database received and processed
Resync Database Marker. DSI is now suspended. Resume
after database has been reloaded.

When Replication Server receives and processes the resync database with init marker, the
DSI connection suspends.

14. Obtain a dump of the active database contents and apply the dump to the standby database.
You can also apply the dump of the primary database from step 5 if the dump does not
include database configuration information.

15. Resume DSI to the active and standby databases:
resume connection to data_server.database

Oracle Replicate Databases Resynchronization

Heterogeneous Replication Guide 209

Oracle Replicate Databases Resynchronization

210 Replication Server

Datatype Translation and Mapping

For each supported non-ASE data server, Replication Server provides class-level translations
that define the default mapping from one datatype to another.

Translations are provided for:

• Non-ASE datatypes that do not correspond directly to Adaptive Server datatypes
• Adaptive Server datatypes that do not correspond directly to the non-ASE datatypes
• Non-ASE datatypes that do not correspond directly to the datatypes of another supported

non-ASE data server

Note: Class-level translations are not provided for any datatype that corresponds directly to a
datatype in another data server.

DB2 Datatypes
Information about datatype translation applies to DB2 UDB in either mainframe
environments (such as IBM z/OS), or UNIX and Microsoft Windows environments..

Adaptive Server to DB2 Datatypes
Lists class-level translations from Adaptive Server datatypes to DB2 datatypes.

Adaptive Server Datatype DB2 Datatype

bigdatetime TIMESTAMP

bigint BIGINT

bigtime TIMESTAMP

binary CHAR FOR BIT DATA

bit TINYINT

date DATE (UNIX and Windows only)

datetime TIMESTAMP

decimal DECIMAL

int NUMERIC

money NUMERIC

numeric NUMERIC

Datatype Translation and Mapping

Heterogeneous Replication Guide 211

Adaptive Server Datatype DB2 Datatype

real REAL (UNIX and Windows only)

smalldatetime TIMESTAMP

smallint NUMERIC

smallmoney NUMERIC

time TIME (UNIX and Windows only)

tinyint NUMERIC

unsigned bigint DECIMAL (20,0)

unsigned int BIGINT

unsigned smallint INTEGER

unsigned tinyint SMALLINT

unitext DBCLOB

varbinary VARCHAR FOR BIT DATA

DB2 to Adaptive Server Datatypes
Lists class-level translations from DB2 datatypes to Adaptive Server datatypes.

DB2 Datatype Adaptive Server Datatype

CHAR FOR BIT DATA binary

DATE datetime

DECFLOAT UDB (UNIX and Windows only) float

DOUBLE (UNIX and Windows only) float

REAL (UNIX and Windows only) real

TIME datetime

TIMESTAMP datetime

VARCHAR FOR BIT DATA varbinary

Datatype Translation and Mapping

212 Replication Server

DB2 to Microsoft SQL Server Datatypes
Lists class-level translations from DB2 datatypes to Microsoft SQL Server datatypes.

DB2 Datatype Microsoft SQL Server Datatype

CHAR FOR BIT DATA binary

DATE datetime

DECFLOAT UDB (UNIX and Windows only) float

DOUBLE (UNIX and Windows only) float

REAL (UNIX and Windows only) real

TIME datetime

TIMESTAMP datetime

VARCHAR FOR BIT DATA varbinary

DB2 to Oracle Datatypes
Lists class-level translations from DB2 datatypes to Oracle datatypes.

DB2 Datatype Oracle Datatype

CHAR FOR BIT DATA RAW

DATE DATE

DECFLOAT UDB (UNIX and Windows only) FLOAT

DOUBLE (UNIX and Windows only) FLOAT

REAL (UNIX and Windows only) REAL

TIME DATE (with time)

TIMESTAMP DATE (with time)

VARCHAR FOR BIT DATA RAW

Datatype Translation and Mapping

Heterogeneous Replication Guide 213

Replication Server Datatype Names for DB2
Lists the Replication Server user-defined datatype (UDD) names that identify DB2 datatypes
for DB2 data servers on z/OS platforms.

Table 4. Replication Server Names for DB2 z/OS Datatypes

DB2 z/OS Datatype Replication Server Name

CHAR FOR BIT DATA rs_db2_char_for_bit

DATE rs_db2_date

DECIMAL rs_db2_decimal, rs_db2_numeric

TIME rs_db2_time

TIMESTAMP rs_db2_timestamp

VARCHAR FOR BIT DATA rs_db2_varchar_for_bit

Lists the Replication Server UDD names that identify DB2 datatypes for DB2 data servers on
UNIX and Microsoft Windows platforms.

Table 5. Replication Server Names for DB2 UNIX and Windows Datatypes

DB2 UNIX and Windows Datatypes Replication Server Name

CHAR FOR BIT DATA rs_udb_char_for_bit

DATE rs_udb_date

DECFLOAT rs_udb_decfloat

DOUBLE rs_udb_double

INTEGER rs_udb_bigint

REAL rs_udb_real

TIME rs_udb_time

TIMESTAMP rs_udb_timestamp

VARCHAR FOR BIT DATA rs_udb_varchar_for_bit

Microsoft SQL Server Datatypes
Learn about the class-level translations (default datatype mapping) for Microsoft SQL Server
datatypes and Replication Server datatype names for Microsoft SQL Server datatypes.

Datatype Translation and Mapping

214 Replication Server

Adaptive Server to Microsoft SQL Server Datatypes
Lists class-level translations from Adaptive Server datatypes to Microsoft SQL Server
datatypes for the unsigned datatypes.

The remaining class-level translations are not supplied for Adaptive Server datatypes to
Microsoft SQL Server datatypes (or Microsoft SQL Server datatypes to Adaptive Server
datatypes) because Microsoft SQL Server datatypes are directly compatible with Adaptive
Server datatypes and they require no translation.

Table 6. Class-level Translation from Adaptive Server to Microsoft SQL Server
Datatypes

Adaptive Server Datatype Microsoft SQL Server Datatype

unsigned bigint DECIMAL (20,0)

unsigned int BIGINT

unsigned smallint INT

unsigned tinyint SMALLINT

unitext NTEXT

Microsoft SQL Server to DB2 Datatype
Lists class-level translations from Microsoft SQL Server datatypes to DB2 datatypes.

Table 7. Class-Level Translation from Microsoft SQL Server to DB2 Datatypes

Microsoft SQL Server Datatype DB2 Datatype

binary CHAR FOR BIT DATA

bit TINYINT

datetime TIMESTAMP

decimal DECIMAL

money NUMERIC

numeric NUMERIC

smalldatetime TIMESTAMP

smallmoney NUMERIC

varbinary VARCHAR FOR BIT DATA

Datatype Translation and Mapping

Heterogeneous Replication Guide 215

Microsoft SQL Server to Oracle Datatypes
Lists class-level translations from Microsoft SQL Server datatypes to Oracle datatypes.

Table 8. Class-Level Translation from Microsoft SQL Server to Oracle
Datatypes

Microsoft SQL Server Datatype Oracle Datatype

binary RAW

datetime DATE (with time)

money DECIMAL

smalldatetime DATE

smallmoney DECIMAL

varbinary RAW

Replication Server Datatype Names for Microsoft SQL Server
Lists the Replication Server user-defined datatype (UDD) name that identifies a Microsoft
SQL Server datatype

All Microsoft SQL Server datatypes are compatible with the corresponding Adaptive Server
datatypes. Only one Microsoft SQL Server datatype has a user-defined datatype definition.

Table 9. Replication Server Names for Microsoft SQL Server Datatypes

Microsoft SQL Server Datatype Replication Server Name

integer rs_msss_bigint

Oracle Datatypes
Learn about the class-level translations (default datatype mapping) for Oracle datatypes and
Replication Server datatype names for Oracle datatypes.

Adaptive Server to Oracle Datatypes
Lists class-level translations from Adaptive Server datatypes to Oracle datatypes.

Table 10. Class-Level Translation from Adaptive Server to Oracle Datatypes

Adaptive Server Datatype Oracle Datatype

bigdatetime TIMESTAMP (9)

Datatype Translation and Mapping

216 Replication Server

Adaptive Server Datatype Oracle Datatype

bigint NUMBER

bigtime TIMESTAMP (9)

binary RAW

date DATE

datetime DATE (with time)

money DECIMAL

smalldatetime DATE

smallmoney DECIMAL

time DATE (with time)

unsigned tinyint SMALLINT

unsigned smallint INTEGER

unsigned int NUMBER

unsigned bigint NUMBER

unitext NCLOB

varbinary RAW

Oracle to Adaptive Server Datatypes
Lists class-level translations from Oracle datatypes to Adaptive Server datatypes.

Table 11. Class-Level Translation from Oracle to Adaptive Server Datatypes

Oracle Datatype Adaptive Server Datatype

RAW varbinary

DATE datetime

TIMESTAMP (9) datetime

Datatype Translation and Mapping

Heterogeneous Replication Guide 217

Oracle to DB2 Datatypes
Lists class-level translations from Oracle datatypes to DB2 datatypes.

Table 12. Class-Level Translation from Oracle to DB2 Datatypes

Oracle Datatype DB2 Datatype

RAW CHAR FOR BIT DATA

DATE DATE

DATE (with time) TIMESTAMP

FLOAT DOUBLE (UNIX and Windows only)

INTEGER INTEGER (UNIX and Windows only)

TIMESTAMP (9) TIMESTAMP (UNIX and Windows only)

Oracle to Microsoft SQL Server datatypes
Lists class-level translations from Oracle datatypes to Microsoft SQL Server datatypes.

Table 13. Class-Level Translation from Oracle to Microsoft SQL Server
Datatypes

Oracle Datatype Microsoft SQL Server Datatype

RAW varbinary

DATE datetime

TIMESTAMP (9) datetime

Replication Server Datatype Names for Oracle
Lists the Replication Server user-defined datatype (UDD) names that identify Oracle
datatypes.

Table 14. Replication Server Names for Oracle Datatypes

Oracle Datatype Replication Server Name

RAW rs_oracle_binary

DATE rs_oracle_datetime

ROWID rs_oracle_rowid

INTEGER rs_oracle_int

Datatype Translation and Mapping

218 Replication Server

Oracle Datatype Replication Server Name

INTERVAL rs_oracle_interval

BINARY_FLOAT rs_oracle_float

NUMBER rs_oracle_decimal

TIMESTAMP(n) rs_oracle_timestamp9

TIMESTAMP(n) (with local time zone) rs_oracle_timestamptz

UDD object type opaque

Datatype Translation and Mapping

Heterogeneous Replication Guide 219

Datatype Translation and Mapping

220 Replication Server

Materialization

Learn about the subscription materialization issues that you must consider when
implementing a replication system with heterogeneous or non-ASE data servers, as well as
how to materialize subscriptions to primary tables in a non-ASE database.

Materialization is creating and activating subscriptions and copying data from a primary
database to a replicate database, thereby initializing the replicate database.

Before you can replicate data from a primary database, you must set up and populate each
replicate database so that the replicate objects (such as tables) are in a state consistent with
those in the primary database.

Types of Materialization
Replication Server supports two types of subscription materialization.

The types include:

• Bulk materialization – manually creating and activating a subscription and populating a
replicate database using data unload and load utilities outside the control of the replication
system.

• Automatic materialization – creating a subscription and populating a replicate database
using Replication Server commands.

See the Replication Server Administration Guide Volume 1 > Manage Subscriptions for
information about subscription materialization methods.

Heterogeneous Materialization
You may use a bulk materialization or automatic materialization, if it applies to materialize
subscriptions to primary data in a non-ASE data server.

With bulk materialization methods, you must coordinate and manually perform the following
activities:

• Define, activate, and validate the subscription (or create the subscription without
materialization).

• Unload the subscription data at the primary database.
• Move the unloaded data to the replicate database site.
• Load the primary data into the replicate database tables.
• Resume the database connection from the replicate Replication Server to the replicate data

server so that the replicate database can receive replicated transactions.

Materialization

Heterogeneous Replication Guide 221

• Resume replication at the Replication Agent instance.

Bulk Materialization Options
There are two bulk materialization options for subscriptions to primary data in a non-ASE
database.

The options include:

• Atomic bulk materialization
• Stop updates to the primary table and dump the subscription data from the primary

database.
• In the replicate Replication Server, define the subscription.
• In the primary database, use the rs_marker function to activate the subscription using

the with suspension option. See the Replication Server Reference Manual >
Replication Server System Functions > rs_marker for information about applying this
function.

• Load the subscription data into the replicate table.
• Resume the database connection from the replicate Replication Server to the replicate

database.
• In the replicate Replication Server, validate the subscription.

• Nonatomic bulk materialization
• In the replicate Replication Server, use the set autocorrection command.
• In the replicate Replication Server, define the subscription.
• In the primary database, use the rs_marker stored procedure to activate the

subscription using the with suspension option.
• Dump the subscription data from the primary database.
• In the primary database, use the rs_marker stored procedure to validate the

subscription.
• Load the subscription data into the replicate table.
• Resume the database connection from the replicate Replication Server to the replicate

database.
• When the subscription becomes valid at all Replication Servers, turn off

autocorrection.

Unload Data from a Primary Database
The subscription materialization process involves unloading subscription data from the
primary table so it can be loaded into the replicate table. Subscription data is the data in the
primary table that is requested by the subscription.

Data unloading utilities are usually provided with data server software. You can use one of the
OEM-supplied data unloading utilities or a database unload utility of your choice.

Materialization

222 Replication Server

Note: Once subscription data is unloaded from a primary database, you may need to perform
datatype translation on the unloaded data before loading the data into the replicate database.

See also
• Datatype Translation on page 223

Datatype Translation
If you are not using the unload utility and are using automatic materialization, then
Replication Server performs the translations.

If you use the heterogeneous datatype support (HDS) feature of Replication Server to perform
either column- or class-level translations on replicated data, you must perform datatype
translations on the subscription data you unload from the primary database for
materialization.

Load Data Into Replicate Databases
Part of the subscription materialization process involves loading subscription data from the
primary table into the replicate table.

Note: After subscription data is unloaded from a primary database, you may need to perform
datatype translation on the unloaded data before loading the data into the replicate database.

If you are using Adaptive Server Enterprise as the data server for the replicate database, use the
ASE bcp utility to load subscription data into the replicate database.

If you are using a non-ASE data server as the data server for the replicate database, you can use
the load utility of your choice to load subscription data into the replicate database.

See the Adaptive Server Enterprise Utility Guide > Utility Commands Reference > bcp.

Atomic Bulk Materialization
Atomic bulk materialization assumes that all applications updating the primary table can be
suspended while a copy of the table is made. The copy is then loaded at the replicate site.

You can use this atomic bulk materialization to retrieve data from the primary database if you
can (at least temporarily) suspend updates to the primary data.

Preparation for Materialization
Before you start an atomic bulk materialization, there are things that you need to verify.

You need to verify:

Materialization

Heterogeneous Replication Guide 223

• The primary table exists and contains data.
• You have access to a user ID with ownership or select privilege on the primary table (or a

column to be replicated in the primary table).
• The replicate table exists and contains the appropriate columns, datatypes.
• You have successfully configured all Replication Servers in your replication system.
• You have correctly created the replication definition at the primary Replication Server.
• If you are using Replication Agent for a DB2 UDB, Microsoft SQL Server, or Oracle

primary database:
• You have successfully initialized the Replication Agent which also creates some

objects in the primary database.
• You have marked and enabled replication for the primary table in the primary database.
• You have started the Replication Agent instance and put it in the replicating state.

Performing Atomic Bulk Materialization
Learn to perform atomic bulk materialization.

1. Use isql to log in to the replicate Replication Server as the system administrator (sa):

isql -Usa -Psa_password -SRRS_servername

where:
• sa is the system administrator user ID.
• sa_password is the password for the system administrator user ID.
• RRS_servername is the server name of the replicate Replication Server.

2. At the replicate Replication Server, define the subscription:

1> define subscription subscription_name
2> for replication_definition
3> with replicate at dataserver.database
4> [where search_conditions]
5> go

The dataserver.database must match the Replication Server connection name you use for
the replicate database.

3. Check the subscription at both the primary and replicate Replication Servers. To verify that
the subscription status is DEFINED, enter:

1> check subscription subscription_name
2> for replication_definition
3> with replicate at dataserver.database
4> go

4. Lock the primary table to prevent primary transaction activity. This prevents updates to the
primary table during materialization.

5. Unload the subscription data at the primary site using your site’s preferred database unload
method to select or dump the data from the primary table.

Materialization

224 Replication Server

Note: When unloading subscription data from the primary table, make sure you select only
the columns specified in the replication definition and the rows specified in the
subscription.

6. Perform any datatype translations necessary for the subscription data.

If any column-level translation is specified in the replication definition for this data,
perform the datatype translation specified in the replication definition.

If class-level translations are specified for the subscription, perform the datatype
translations specified for the subscription.

7. At the replicate Replication Server, activate the subscription:

1> activate subscription subscription_name
2> for replication_definition
3> with replicate at dataserver.database
4> with suspension
5> go

8. Wait for the subscription to become active at both the primary and replicate Replication
Servers. Execute check subscription at both the primary and replicate Replication Servers
to verify that the subscription status is ACTIVE.

When the subscription status is ACTIVE at the replicate Replication Server, the database
connection for the replicate database is suspended.

9. Restore the primary table to read-write access (unlock).

10. Use the bcp or your site’s preferred database utility to load the subscription data into the
replicate database.

11. From the replicate Replication Server, resume the database connection for the replicate
database:

1> resume connection
2> to dataserver.database
3> go

12. Validate the subscription at the replicate Replication Server:

1> validate subscription subscription_name
2> for replication_definition
3> with replicate at dataserver.database
4> go

13. Wait for the subscription to become valid at both the primary and replicate Replication
Servers, then execute check subscription at both the primary and replicate Replication
Servers to verify that the status is VALID.

When you complete this procedure, the subscription is created, the replicate data is consistent
with the primary data, and replication is in progress.

See the Replication Server Reference Manual > Replication Server Commands and the
Replication Server Administration Guide Volume 1 for information on configuring
Replication Servers and materialization methods.

Materialization

Heterogeneous Replication Guide 225

See also
• IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server on page 77

Nonatomic Bulk Materialization
Nonatomic bulk materialization assumes applications updating the primary table cannot be
suspended while a copy of the table is made.

Therefore, nonatomic materialization requires the use of the Replication Server
autocorrection feature to get the replicate database synchronized with the primary database.

Note: You cannot use nonatomic materialization if the replicate minimal columns feature is
set for the replication definition for the primary table.

Preparation For Materialization
Before you start a nonatomic bulk materialization procedure, there are things that you need to
verify.

Verify that:

• The primary table exists and contains data.
• You have access to a user ID with ownership or select privilege on the primary table (or a

column to be replicated in the primary table).
• The replicate table exists and contains the appropriate columns.
• You have successfully configured all Replication Servers in your replication system.
• You created the replication definition correctly at the primary Replication Server.
• If you are using Replication Agent for a DB2 UDB, Microsoft SQL Server, or Oracle

primary database:
• You have successfully initialized the Replication Agent which also creates some

objects in the primary database.
• You have marked and enabled replication for the primary table in the primary database.
• You have started the Replication Agent instance and put it in the replicating state.

Performing Nonatomic Bulk Materialization
Learn to perform nonatomic bulk materialization.

1. Use isql to log in to the replicate Replication Server as the system administrator (sa):

isql -Usa -Psa_password -SRRS_servername

where:
• sa is the system administrator user ID.
• sa_password is the password for the system administrator user ID.
• RRS_servername is the server name of the replicate Replication Server.

Materialization

226 Replication Server

2. At the replicate Replication Server, turn on the autocorrection feature:

1> set autocorrection on
2> for replication_definition
3> with replicate at dataserver.database
4> go

3. At the replicate Replication Server, define the subscription using the with suspension
option:

1> define subscription subscription_name
2> for replication_definition
3> with replicate at dataserver.database
4> with suspension
5> go

The dataserver.database must match the Replication Server connection name you use for
the replicate database.

4. In the primary database, invoke the rs_marker stored procedure to activate the
subscription.

5. Check the subscription at both the primary and replicate Replication Servers. Verify that
the subscription status is ACTIVE:

1> check subscription subscription_name
2> for replication_definition
3> with replicate at dataserver.database
4> go

When the subscription status is ACTIVE at the replicate Replication Server, the database
connection for the replicate database is suspended.

6. Unload the subscription data at the primary site using your site’s preferred database unload
method to select or dump the data from the primary tables.

Note: When unloading subscription data from the primary table, make sure you select only
the columns specified in the replication definition and the rows specified in the
subscription.

7. Perform any datatype translations necessary for the subscription data.

If any column-level translation is specified in the replication definition for this data,
perform the datatype translation specified in the replication definition.

If class-level translations are specified for the subscription, perform the datatype
translations specified for the subscription.

8. In the primary database, invoke the rs_marker stored procedure to validate the
subscription.

9. Wait for the subscription to become valid at both the primary and replicate Replication
Servers, then execute check subscription at both the primary and replicate Replication
Servers to verify that the status is VALID.

Materialization

Heterogeneous Replication Guide 227

10. Use the bcp utility or your site’s preferred database load utility to load the subscription
data into the replicate database.

11. From the replicate Replication Server, resume the database connection for the replicate
database:

1> resume connection
2> to dataserver.database
3> go

12. Wait for the subscription to become valid at both the primary and replicate Replication
Servers, then execute the check subscription command at both the primary and replicate
Replication Servers to verify that the status is VALID.

When the subscription’s status is VALID at the replicate Replication Server, the replicate
database is synchronized with the primary database and you can turn off autocorrection:

1> set autocorrection off
2> for replication_definition
3> with replicate at dataserver.database
4> go

13. When you complete this procedure, the subscription is created, the replicate data is
consistent with the primary data, and replication is in progress.

See also:

• Replication Server Reference Manual > Replication Server Commands for information on
Replication Command Language (RCL) commands

• Replication Server Administration Guide Volume 1 for information on configuring
Replication Servers and materialization methods

See also
• IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server on page 77

Autocorrection
Replication Server can set autocorrection on a replication definition to prevent failures that
may otherwise be caused by duplicate rows in a replicated table.

The set autocorrection command corrects discrepancies that may occur during the nonatomic
materialization process by converting each update or insert operation into a delete followed
by an insert.

When you set autocorrection on a marked table using the Replication Agents API,
ra_set_autocorrection, Replication Agent sends all columns, instead of sending only those
columns that have changed in the update statement, to Replication Server. When Replication
Agent sets autocorrection for one specific marked table or for all tables, the corresponding
change applies to the primary database.

The primary databases that support autocorrection are:

Materialization

228 Replication Server

• MS SQL Server
• IBM DB2
• Oracle – the autocorrection feature cannot work on LOB, LONG, LONG RAW, and user-

defined type columns because of Oracle limitations for redo log recording.
• ASE

See the Replication Agent 15.5 Primary Database Guide > > Replication Agent for Microsoft
SQL > Replication Server set autocorrection Command and the Replication Agent 15.5
Reference Manual > Command Reference > ra_set_autocorrection.

Materialization

Heterogeneous Replication Guide 229

Materialization

230 Replication Server

Heterogeneous Database Reconciliation

Learn about the issues involved with comparing and reconciling data from different databases
in a heterogeneous replication system.

Sybase rs_subcmp Utility
rs_subcmp utility allows you to compare primary and replicate tables in Adaptive Server
databases, and reconcile any differences. Sybase provides the rs_subcmp executable program
with Replication Server.

Some other database vendors may provide a similar “compare” utility that can perform the
same function for their own databases, but there is no equivalent utility to support different
types of non-ASE data servers (for example, to compare tables in an Oracle database to tables
in a Microsoft SQL Server database).

For non-ASE database support, you can either acquire third-party tools that provide such
functionality, or build your own application.

Database Comparison Application
You can develop a custom application to perform the same functions as the rs_subcmp utility.
The application’s complexity depends on the number of different data server types, the
complexity of the tables to be compared, the amount of data translation involved, and so forth.

The following list describes the major issues that a database comparison application must
accommodate to be successful in a heterogeneous replication environment:

• Connectivity – the application must be able to communicate with both the primary and
replicate databases. If multiple database vendors are involved, ODBC and JDBC protocols
can provide a common interface and functionality.

• Sort order – the default sort order may be different for different databases. The application
may need to force the sort order to improve comparison performance.

• Character sets – some primary and replicate databases may store character data in different
character sets. Your custom application may need to support these translations.

• Object identification – primary and replicate tables may not have identical names or
exactly the same schema or column names. The comparison application may need to
accept very explicit instructions for location, database, and table and column names to be
referenced.

Heterogeneous Database Reconciliation

Heterogeneous Replication Guide 231

• Subset comparison – the application may need to compare only a portion of a table. The
ability to specify a where clause type of select for both primary and replicate tables may be
important.

• Latency – in a replication system, there is always some latency (a measure of the time it
takes a primary transaction to appear in a replicate table). A comparison application must
include some tolerance to distinguish between rows that are “not there” and “not there
yet.”

• Data transformation – the application must be able to handle differences in precision and
format between different databases, the same way Replication Server supports class-level
translations. To simplify processing you want to allow certain columns to be excluded
from the comparison process, based on datatype (for example, do not compare the DATE
datatypes of different database vendors).

• Large object (LOB) data – large object (for example, LOB, CLOB, TEXT, or IMAGE)
datatypes cause additional processing issues because of their size. To improve
performance, limit the number of bytes used for comparison, if the likelihood of a “non-
match” can still be relied on.

See the Replication Server Administration Guide and the Replication Server Reference
Manual > Executable Programs > rs_subcmp for more information on rs_subcmp.

Heterogeneous Database Reconciliation

232 Replication Server

Troubleshoot Heterogeneous Replication
Systems

Learn to troubleshoot the common problems in Sybase replication systems with
heterogeneous or non-ASE data servers.

Common Replication Server troubleshooting tasks, such as dumping stable queues,
debugging failures with the Data Server Interface (DSI) and Replication Server Interface
(RSI), and diagnosing and correcting problems with subscriptions, are described in the
Replication Server Troubleshooting Guide.

For non-ASE primary and replicate databases, the Replication Agent and ECDA gateway
documentation provide troubleshooting information for each specific database.

Inbound Queue Problems
The inbound queue is where Replication Server stores the data it receives from a primary
database (through a Replication Agent or another Replication Server).

You can tell that the Replication Server inbound queue for a primary database is not being
updated if you issue the Replication Server admin who,sqm command at the primary
Replication Server and the results indicate that:

• The number of blocks being written in the Replication Server inbound queue for the
connection in question is not changing.

• The number of duplicate messages being detected is not increasing.

Determining the Reason the Inbound Queue is Not Being Updated
Learn to determine the reason for unupdated inbound queue.

1. Verify the Replication Server connection Replication Agent User thread status.

You can issue an admin who command in the primary Replication Server to review the
status of the Replication Agent User thread for the Replication Server database connection
in question.
• If there is no Replication Agent User thread for the connection, the connection was not

created with the with log transfer on clause. You can alter the Replication Server
database connection to turn log transfer processing on, if needed.

• If the Replication Agent User thread status is down, the Replication Agent is not
actively connected to the Replication Server. A down status is typical for Replication
Agents that connect to Replication Server only when there is work to be sent, and then
disconnect after a period of inactivity.

Troubleshoot Heterogeneous Replication Systems

Heterogeneous Replication Guide 233

2. Verify that the expected Replication Agent is executing.

Verify that the expected Replication Agent is active, and that the values of the Replication
Agent rs_source_ds and rs_source_db configuration parameters match the desired
Replication Server connection name.

Refer to the appropriate Replication Agent documentation for other tests to validate that
the Replication Agent is executing.

3. Verify that the expected table or procedure is marked for replication.

Replication Agent documentation describes the Replication Agent commands you can use
to check replication status.

Replication Agent provides for separate enabling of replication, in addition to marking. In
this case, make sure the marked object is also enabled for replication.

4. Verify that the Replication Agent is scanning new records.

If the database object is marked for replication, the log scanning process of the Replication
Agent should record that additional information is being scanned.

To verify that new records are being scanned:
• Start tracing in the Replication Agent.
• Update or execute a primary database object that has been marked for replication.
• Verify that scanning occurs.

Refer to the appropriate Replication Agent documentation to determine the trace flags you
can use to validate the scanning process.

Outbound Queue Problems
The outbound queue is where Replication Server stores the data it needs to send to a replicate
site (either a replicate database or another Replication Server).

You can tell that the Replication Server outbound queue for a replicate database is not being
updated if you issue the Replication Server admin who,sqm command at the replicate
Replication Server and the results indicate that:

• The number of blocks being written in the Replication Server outbound queue for the
connection in question is not changing.

• The number of duplicate messages being detected is not increasing.

Problems between inbound and outbound queues are often naming problems.

The primary Replication Server inbound queue can receive data, but when it cannot apply that
data to any replication definition, the reason is that the name of the replication definition does
not match the name presented in the Log Transfer Language (LTL) that was created by the
Replication Agent. This becomes more likely when you are using different non-Sybase
database types with different default character cases.

Troubleshoot Heterogeneous Replication Systems

234 Replication Server

Replication Server processing of replication commands is case-sensitive. In a replication
system with non-ASE data servers, ensure that the LTL generated by Replication Agents
matches the Replication Server connection names and replication definition object names.

Some Replication Agents always use lowercase names when they communicate with
Replication Server (for example, Adaptive Server and DB2 UDB). However, the best option is
to pick one character case (uppercase or lowercase) and use it consistently with all Replication
Server connections, replication definitions, and subscription names.

Validating case-sensitivity is manual. You can use the rs_helprep command to verify the name
of a replication definition. Then, you can then turn on LTL tracing in the Replication Agent
and verify that the name provided in the LTL trace matches the spelling and character case of
the name specified in the replication definition.

If the character case appears to be incorrect, review the Replication Agent documentation to
verify the default character case settings and any possible configuration changes. If a name is
misspelled, delete and then re-create the replication definition.

Determining the Reason the Outbound Queue Is Not Being Updated
Learn to determine the reason for unupdated outbound queue.

1. Verify that any Replication Server routes are active.

See the Replication Server Troubleshooting Guide > Route Problems for route validation
techniques between primary and replicate Replication Servers.

2. Verify that the Replication Server connection DSI thread is not down.

Issue an admin who command in the replicate Replication Server to review the status of
the DSI thread for the Replication Server connection.

If the DSI thread status is down, the Replication Server is not connected to the replicate
database (or ECDA gateway). Review the Replication Server log for errors and attempt to
resume the connection.

3. Verify that the DSI thread connection is not in “Loss Detected” mode by viewing the
replicate Replication Server log for “Loss Detected” messages for the DSI thread in
question.

When Replication Server detects a loss, no further messages are accepted on the DSI
thread connection.

See the Replication Server Administration Guide for information about recovering from
this error.

4. Verify the primary replication definition.

Troubleshoot Heterogeneous Replication Systems

Heterogeneous Replication Guide 235

Determining Why Replicate Database Is Not Updated
Learn to determine why replicate transactions are not applied at the replicate database.

If the Replication Server outbound queue is being updated but transaction data is not being
applied at the replicate database, use this procedure to determine the reason:

1. Determine if the subscription contains a where clause.

Verify that the transaction data expected passes any where clause in the subscription
definition. Use the rs_helpsub stored procedure to list the text of the subscription.

2. Verify HDS installation.

If you are using Replication Server HDS to support replication to or from a non-ASE data
server, verify that the HDS connection profiles have been properly applied.

3. Verify that the rs_lastcommit table is set up correctly.

If you are using Replication Server HDS to support replication to or from a non-ASE data
server, verify that the HDS connection profiles have been properly applied.

4. Review the replicate Replication Server log for errors.

5. Review the replicate database log for errors.

6. Verify manual access to replicate objects.

Log in to the replicate database (or ECDA gateway) using the Replication Server
connection maintenance user ID, and verify that you have update authority to the replicate
table or procedure.

7. Validate commands sent to the replicate database:

• Turn on the DSI_BUF_DUMP trace flag in the replicate Replication Server and record
to the Replication Server log the commands being sent to the replicate database.

• Verify that these commands, when manually applied, produce the expected results.

Note: You can use the DSI_BUF_DUMP trace flag with any Replication Server. By
contrast, the similar DSI_CMD_DUMP trace flag is available only with the diagnostic
version of Replication Server. See the Replication Server Troubleshooting Guide for more
information about Replication Server trace flags.

8. Turn on tracing at the ECDA gateway to see what commands are being received.

For example, these parameters in the ECDA Option for Oracle configuration file cause
ECDA to write additional information to the DCO.log file:

• network_tracing = 1

• traces = 1,2,3,4,5,6,10

See the appropriate ECDA documentation for specific trace availability and syntax.

Troubleshoot Heterogeneous Replication Systems

236 Replication Server

See also
• Expected Datatype Translations Do Not Occur on page 240
• Updates to rs_lastcommit Fail on page 240

HDS Issues and Limitations
Learn about some of the known issues and limitations with the HDS feature in Replication
Server.

Source Value Exceeds Target Datatype Bounds
The datatype translations provided by Sybase, specify that the thread attempting a translation
where the source value exceeds the bounds of the target datatype must be stopped.

This must be with the following error message:
E. 2007/12/14 11:14:54. ERROR #32055 DSI EXEC(135(1)
 snickers_dco.ora805) -
 /nrm/nrm.c(7023)
 Class Level translation for column/parameter
 'datetimecol' failed.
 Source DTID is 'datetime'.
 Target DTID is 'rs_oracle_datetime'.
 Function String Class ID 'rs_oracle_function_class'.
 Value length is '21'; Maximum target length is '20';
 The value is '99991231 23:59:59:010'

Typically, these are the most difficult translation problems to diagnose because there appears
to be no problem with either the pairing of source/target datatypes or the value to be translated.

To diagnose this type of problem, you must be familiar with the datatype value boundary limits
of all the translated target datatypes. For example, to diagnose the error shown, you must know
that the upper boundary of an Oracle DATE value is 12/31/9999.

There are other options for datatype translations:

• Use the maximum value of the datatype definition.
• Use the minimum value for the datatype definition.
• Use the default value for the datatype definition.

Exact Numeric Datatype Issues
There may be problems with exact numeric datatypes when the values replicated are at the
boundaries (maximum or minimum values) of what is supported by the datatype definitions.

Microsoft SQL Server supports either 28 or 38 digits of precision, depending on how the
server is started. By default, Microsoft SQL Server supports 28 digits of precision.

Sybase does not provide datatype definitions that support the Microsoft default of 28 digits of
precision. Datatype definitions are not needed to support 38 digits of precision, because the
Replication Server native numeric datatypes support up to 72 digits of precision.

Troubleshoot Heterogeneous Replication Systems

Heterogeneous Replication Guide 237

When a number exceeds numeric precision of the Microsoft SQL Server replicate database,
Replication Server returns the following error:

E. 2007/12/14 11:14:58. ERROR #1028 DSI EXEC(134(1)
 dcm_gabeat70_devdb.devdb)
 - dsiqmint.c(2888)
 Message from server: Message: 30291, State 0,
 Severity 19 --
 '[VENDORLIB] Vendor Library Error: [[Message
 Iteration=1|Data Source
 Name=mssql70_devdb|SQLState=22003|Native
 Error=1007|Message=[Microsoft][ODBC SQL Server
 Driver][SQL Server]The number
 '9999999999999999999.9999999999999999999' is out of
 the range for numeric representation (maximum
 precision 28).[Message Iteration=2|SQLState=22003|
 Native Error=|Message=[Microsoft][ODBC SQL Server
 Driver][SQL Server]The number
 '0.99999999999999999999999999999999999999' is out of
 the range for numeric representation (maximum
 precision 28).] <DCA>'

The most difficult numeric datatype issues involve precision and scale. Replication Server
does not allow the precision and scale of a decimal datatype to be specified. A datatype
definition can specify the maximum precision and maximum scale to be supported. However,
if this does not equate to the specified precision and scale of an individual replicate column,
then as the data approaches values near or at the boundaries, you may encounter problems that
are reported differently, depending on the replicate data server.

For example, suppose you have a primary column declared as decimal (8,5) (8 digits of
precision and a scale of 5), and suppose the replicate column is declared as decimal
(6,4), even though the replicate data server can support a maximum of 7 digits precision and
a scale of 7. In the replication definition, you specify the translation for the primary data server
decimal datatype and for which there is a class-level translation to the replicate data server
decimal datatype. Both datatype definitions specify the associated data servers maximum
precision and scale.

If the value 999.99999 comes from the primary database, and the replicate data server’s
datatype definition specifies that rounding should be attempted, Replication Server attempts
to apply a value of 1000.000. Even though this value satisfies the replicate database
requirements for maximum precision and scale, it fails the precision and scale specified for
this particular column. And if you specify for the replicate database’s datatype definition that
it should replace the value with the specified maximum value for the datatype definition,
Replication Server attempts to apply a value of 9999999, which also fails the specified
precision and scale for this particular column.

Error messages you might see from various data servers in this case include:

• The following DB2 error:

Troubleshoot Heterogeneous Replication Systems

238 Replication Server

E. 2007/12/14 15:03:11. ERROR #1028 DSI EXEC(129(1)
 dwm5_via_rct.dwmdbas)
 - dsiqmint.c(2888)
 Message from server: Message: 30291, State 0,
 Severity 19 --
 '[VENDORLIB] Vendor Library Error: [[Message
 Iteration=1|SQLState=22003|Native Error=
 -413|Message=[Sybase][ClearConnect ODBC][DB2]The
 decimal or numeric value had an incorrect wire
 length compared to its specified FDOCA length
 10000000000000000000.00000000000] <DCA>'.

• The following Microsoft SQL Server error:

E. 2007/12/14 12:29:16. ERROR #1028 DSI EXEC(134(1)
 dcm_gabeat70_devdb.devdb)
 - dsiqmint.c(2888)
 Message from server: Message: 30291, State 0,
 Severity 19 --
 '[VENDORLIB] Vendor Library Error: [[Message
 Iteration=1|Data Source Name=mssql70_devdb|SQL
 Function=INSERT|SQLState=22003|Native Error=
 8115|Message=[Microsoft][ODBC SQL Server Driver]
 [SQL Server]Arithmetic overflow error converting
 numeric to data type numeric.[Message Iteration=
 2|SQLState=01000|Native Error=|Message=
 [Microsoft][SQL Server]The statement has been
 terminated.] <DCA>'

Numeric Translation and Identity Columns in Microsoft SQL Server
Replication Server function strings to set identity insert off and on work in Microsoft SQL
Server because it supports identity columns in the same manner as Adaptive Server.

However, to support 28-digit precision in a Microsoft SQL Server database, the numeric
datatype must be translated to the rs_msss_numeric datatype, and as a result, the identity
characteristic is lost. To avoid this problem, the Microsoft SQL Server replicate table must not
declare a translated numeric column as an identity.

If you attempt to replicate a translated numeric datatype into an identity column in
Microsoft SQL Server, you receive an error similar to this:

E. 2007/12/14 12:05:39. ERROR #1028 DSI EXEC(134(1)
 dcm_gabeat70_devdb.devdb)
 - dsiqmint.c(2888)
 Message from server: Message: 30291, State 0,
 Severity 19 --
 '[VENDORLIB] Vendor Library Error: [[Message
 Iteration=1 |Data Source Name=mssql70_devdb|SQL
 Function=INSERT|SQLState=23000|Native Error=544
 |Message=[Microsoft][ODBC SQL Server Driver][SQL
 Server]Cannot insert explicit value for identity
 column in table 'ase_alltypes' when IDENTITY_INSERT
 is set to OFF.] <DCA>'

Troubleshoot Heterogeneous Replication Systems

Heterogeneous Replication Guide 239

Troubleshoot Specific Errors
Learn about how to troubleshoot specific errors that you may encounter in a Sybase replication
system with heterogeneous or non-ASE data servers.

Updates to rs_lastcommit Fail
When replicating into a non-ASE replicate database, the replicate Replication Server updates
the rs_lastcommit table as soon as the connection is resumed.

Troubleshooting rs_lastcommit Update Failure
Identify the problem if the replicate Replication Server error log displays a syntax error while
updating the rs_lastcommit table.

1. Verify that the table exists in the replicate database.

2. Verify access authority.

Log in to the replicate database using the Replication Server maintenance user ID and
password specified in the create connection command for that database connection.

Verify that this user ID can update the rs_lastcommit table – you should be able to
insert and delete a dummy entry without error.

3. Trace the actual command.

Turn on tracing in the replicate Replication Server (DSI_BUF_DUMP trace) or in the
ECDA gateway and resume the Replication Server connection.

Identify the failing statement and correct as necessary.

Expected Datatype Translations Do Not Occur
The most common reason for a datatype translation failure is an incomplete installation of the
necessary user-defined datatypes (UDDs) and translations.

Validating UDD and Translation Installation
Learn to validate UDD and translation installation.

1. Restart the Replication Servers. Replication Server caches all function-string information
at start-up.

Subsequent changes to the function strings stored in the RSSD do not take effect until the
Replication Server is restarted.

2. Verify that class-level translations have been applied to the replicate Replication Server.

The Replication Server connection profile provides the SQL statements necessary to apply
class-level translations to the RSSD of the replicate Replication Server for a specific
combination of non-ASE primary databases to non-ASE replicate databases.

Troubleshoot Heterogeneous Replication Systems

240 Replication Server

Note: The connection profile is required for any non-ASE replicate database. For
example, if you are replicating from ASE to Oracle, the rs_ase_to_oracle
connection profile for translations must be applied to ensure Replication Server updates to
the rs_lastcommit table are properly translated and applied to the replicate database.

You can re-run these connection profiles without failure. Verify that your copy of the
connection profiles has been updated with the correct use statement for the database name
of the RSSD.

3. Verify that your replicate database Replication Server connection is associated with the
appropriate function-string class.

To take advantage of class-level translations, the replicate Replication Server connection
must use the correct non-ASE function-string class.

You can use the Replication Server rs_helpdb command to determine which function-
string class is defined for a database connection.

Function-string classes for replicate databases are:
• Adaptive Server Enterprise – rs_sqlserver_function_class

• DB2 UDB on IBM z/OS platforms – rs_db2_function_class

• DB2 UDB on UNIX and Windows platforms – rs_udb_function_class

• Microsoft SQL Server – rs_msss_function_class

• Oracle – rs_oracle_function_class

• Sybase IQ – rs_iq_function_class

Use the Replication Server admin show_function_classes command to display a list of
active function-string classes.

Use the Replication Server alter connection command to change the function-string class
of an existing database connection.

4. Verify that the non-ASE function-string classes have been updated with appropriate
function strings.

Replication Server connection profile rs_xxx_xxx provides the SQL statements
necessary to apply function strings to the RSSD of the replicate Replication Server for a
specific non-ASE replicate database.

For each function string, the connection profile issue a delete followed by an insert. You
can re-run these connection profiles without failure.

Verify that your copy of the connection profile has been updated with the correct use
statement for the database name of the RSSD.

5. Use the Replication Server admin translate command.

The admin translate command allows you to verify the results of a specific translation.
Use this command to verify that the translation engine is providing the translation results
you expect.

Troubleshoot Heterogeneous Replication Systems

Heterogeneous Replication Guide 241

See the Replication Server Administration Guide Volume 1 > Manage Replicated Tables >
Translate Datatypes Using HDS for more information about heterogeneous datatype
support (HDS) and the admin translate command.

Log Transfer Language Generation and Tracing
Learn about the information on how to trace the Log Transfer Language (LTL) commands sent
to a primary Replication Server, as well as other significant Replication Agent traces.

Replication Agent for DB2 UDB for z/OS
You can use the configuration parameters to obtain additional information that is not normally
presented by Replication Agent for DB2 UDB for z/OS.

To print the log record identifier for each log record, and additional messages received from
the DB2 API, enter Logtrace = Y in the LTMCFG file.

Note: There is usually some performance impact when you use these parameters. Review the
full description of a parameter in the Replication Agent for DB2 UDB Installation Guide
before using it.

• If you need additional tracing to help debug the information passed to a Replication Agent
user exit, set the value of the API_com_test configuration parameter to Y. You can also use
this trace when no exit is being used.

• The LTL_test_only configuration parameter controls whether LTM for z/OS connects to
Replication Server and sends transaction operations for replication. When the value of the
LTL_test_only parameter is Y, LTL that would normally be sent to Replication Server is
written to the LTLOUT file instead.

Note: The Replication Agent for DB2 UDB is “not corrected to” the Replication Server
when the value of the LTL_test_only parameter is Y.

• The trace=LTLebcdic configuration parameter writes EBCDIC LTL that is passed to
Replication Server to LTLOUT. If you are replicating a table that contains ASCII data, set
the trace = LTLASCII to write the ASCII characters to the LTLOUT data set. You must set
the value of these parameters to Y to turn on this trace.

• The Use_repdef configuration parameter allows LTM for z/OS to send LTL to Replication
Server that contains only the columns specified in the replication definition.
Setting the value of the use_repdef parameter to N may increase the amount of
information provided in an LTL trace.

• The suppress_col_names configuration parameter determines whether LTM for z/OS
suppresses column names from the LTL that is sent to Replication Server.
If you are tracing LTL output, set the value of suppress_col_names to N to ensure that
column names are present in the generated LTL.

Troubleshoot Heterogeneous Replication Systems

242 Replication Server

Replication Agent
You can use the trace flags and configuration parameters to obtain additional information that
is not normally presented by the Replication Agent (for Microsoft SQL Server, Oracle, and
UDB).

Note: Some performance impact usually occurs when you use these trace flags and
parameters. Before using a flag or parameter, review its full description in the Replication
Agent Administration Guide.

Trace Flags
Normal trace output is sent to the Replication Agent instance log file. However, output from
the LTITRACELTL trace point is sent to a separate LTL output log file
(LTITRACELTL.log).

The following trace flags are particularly useful for troubleshooting Replication Agent
problems:

• LRTRACE – traces general execution of the Log Reader component.
• LTITRACE – traces general execution of the Log Transfer Interface component.
• LTITRACELTL – enables LTL statement tracing in the LTITRACELTL.log file.

• RACONTRC – traces connection and query execution.
• RACONTRCSQL – traces SQL statements sent to the primary database.

Configuration Parameters
The settings of the following Replication Agent configuration parameters affect the trace
information:

• compress_ltl_syntax – when set to false, provides more verbose description of LTL
commands.

• connect_to_rs – when set to false, allows LTL to be generated without actual connection
or sending information to Replication Server.

• log_trace_verbose – when set to true, provides more verbose description of traced
components.

• use_rssd – when set to false, provides a complete generation of LTL commands without
modification for replication definition information.

• column_compression – when set to false, sends complete column information (all
columns in after images) in the generated LTL for update operations.

For a complete description of Replication Agent trace flags and configuration settings, see the
Replication Agent Administration Guide.

Troubleshoot Heterogeneous Replication Systems

Heterogeneous Replication Guide 243

Troubleshoot Heterogeneous Replication Systems

244 Replication Server

Reference Implementation for Oracle to Oracle
Replication

Replication Server includes a toolset for quickly setting up a reference implementation of
Oracle to Oracle replication using the products available in your environment.

You can implement a replication environment as a reference to demonstrate Replication
Server features and functionalities. Use the toolset to:

1. Build Replication Server and the primary and replicate databases.
2. Configure the database replication environment.
3. Perform simple transactions on the primary database and replicate the changes using

database-level replication.
4. Collect statistics and monitors counters from the replication processing in step 3.
5. Clean up the reference replication environment.

The reference implementation toolset consists of scripts that are in $SYBASE/REP-15_5/
REFIMP-01_0.

Note: The reference implementation provides only a single Replication Server, primary
database server, and replicate database server. You cannot configure the reference
environment topology for multiple replication system components.

See Replication Server Administration Guide Volume 2 > Implement a Reference Replication
Environment for requirements, instructions, a sample configuration file, and the objects
created by implementing the reference environment.

Platform Support
You can implement a reference environment on all platforms that Replication Server supports
except for Linux on IBM p-Series (Linux on Power) 64-bit.

However, to set up the reference environment on any Microsoft Windows platform that
Replication Server supports, you must use Cygwin to run the reference implementation
scripts. See the Cygwin Web site at http://www.cygwin.com/.

Reference Implementation for Oracle to Oracle Replication

Heterogeneous Replication Guide 245

http://www.cygwin.com/

Supported Product Component Versions for Oracle
Reference Implementation

Lists the supported versions of Replication Server, Oracle, Replication Agent for Oracle, and
ECDA Option for Oracle that you can use to build a reference implementation environment for
Oracle to Oracle replication.

For Oracle reference implementation, these product component versions are supported:

• Replication Server 15.5
• Oracle 10.2
• Replication Agent for Oracle 15.2
• ECDA Option for Oracle 15.0 ESD #3

For example, you can build a reference implementation environment for Oracle with
Replication Server 15.5, Oracle 10.2, Replication Agent 15.2 for Oracle, and ECDA Option
for Oracle 15.0 ESD #3.

Reference Implementation for Oracle to Oracle Replication

246 Replication Server

Glossary

Glossary of terms used in replication systems.

• active database – In a warm standby application, a database that is replicated to a standby
database. See also warm standby application.

• Adaptive Server – The Sybase version 11.5 and later relational database server. If you
choose the RSSD option when configuring Replication Server, Adaptive Server maintains
Replication Server system tables in the RSSD database.

• application programming interface (API) – A predefined interface through which users
or programs communicate with each other. Open Client and Open Server are examples of
APIs that communicate in a client/server architecture. RCL, the Replication Command
Language, is the Replication Server API.

• applied function – A replicated function, associated with a function replication
definition, that Replication Server delivers from a primary database to a subscribing
replicate database. The function passes parameter values to a stored procedure that is
executed at the replicate database. The stored procedure executed at the replicate database
by the maintenance user. See also replicated function delivery, request function, and
function replication definition.

• article – A replication definition extension for tables or stored procedures that can be an
element of a publication. Articles may or may not contain where clauses, which specify a
subset of rows that the replicate database receives.

• asynchronous procedure delivery – A method of replicating, from a source to a
destination database, a stored procedure that is associated with a table replication
definition.

• asynchronous command – A command that a client submits where the client is not
prevented from proceeding with other operations before the completion status is received.
Many Replication Server commands function as asynchronous commands within the
replication system.

• atomic materialization – A materialization method that copies subscription data from a
primary to a replicate database through the network in a single atomic operation, using a
select operation with a holdlock. No changes to primary data are allowed until data
transfer is complete. Replicate data may be applied either as a single transaction or in
increments of ten rows per transaction, which ensures that the replicate database
transaction log does not fill. Atomic materialization is the default method for the create
subscription command. See also nonatomic materialization, bulk materialization and no
materialization.

• autocorrection – Autocorrection is a setting applied to replication definitions, using the
set autocorrection command, to prevent failures caused by missing or duplicate rows in a
copy of a replicated table. When autocorrection is enabled, Replication Server converts
each update or insert operation into a delete followed by an insert. Autocorrection should

Glossary

Heterogeneous Replication Guide 247

only be enabled for replication definitions whose subscriptions use nonatomic
materialization.

• base class – A function-string class that does not inherit function strings from a parent
class. See also function-string class.

• bitmap subscription – A type of subscription that replicates rows based on bitmap
comparisons. Create columns using the int datatype, and identify them as the
rs_address datatype when you create a replication definition. When you create a
subscription, compare each rs_address column to a bitmask using a bitmap
comparison operator (&) in the where clause. Rows matching the subscription’s bitmap
are replicated.

• bulk copy-in – A feature that improves Replication Server performance when replicating
large batches of insert statements on the same table in Adaptive Server® Enterprise 12.0
and later. Replication Server implements bulk copy-in in Data Server Interface (DSI), the
Replication Server module responsible for sending transactions to replicate databases,
using the Open Client™ Open Server™ Bulk-Library.

Bulk copy-in also improves the performance of subscription materialization. When
dsi_bulk_copy is on, Replication Server uses bulk copy-in to materialize the subscriptions
if the number of insert commands in each transaction exceeds dsi_bulk_threshold.

• bulk materialization – A materialization method whereby subscription data in a replicate
database is initialized outside of the replication system. For example, data may be
transferred from a primary database using media such as magnetic tape, diskette, CD-
ROM, or optical storage disk. Bulk materialization involves a series of commands, starting
with define subscription. You can use bulk materialization for subscriptions to table
replication definitions or function replication definitions. See also atomic materialization,
nonatomic materialization, and no materialization.

• centralized database system – A database system where data is managed by a single
database management system at a centralized location.

• class – See error class and function-string class.
• class tree – A set of function-string classes, consisting of two or more levels of derived and

parent classes, that derive from the same base class. See also function-string class.
• client – A program connected to a server in a client/server architecture. It may be a front-

end application program executed by a user or a utility program that executes as an
extension of the system.

• Client/Server Interfaces (C/SI) – The Sybase interface standard for programs executing
in a client/server architecture.

• concurrency – The ability of multiple clients to share data or resources. Concurrency in a
database management system depends upon the system protecting clients from conflicts
that arise when data in use by one client is modified by another client.

• connection – A connection from a Replication Server to a database. See also Data Server
Interface (DSI) and logical connection.

• connection profiles – Connection profiles allow you to configure your connection with a
pre-defined set of properties.

Glossary

248 Replication Server

• coordinated dump – A set of database dumps or transaction dumps that is synchronized
across multiple sites by distributing an rs_dumpdb or rs_dumptran function through the
replication system.

• database – A set of related data tables and other objects that is organized and presented to
serve a specific purpose.

• database generation number – Stored in both the database and the RSSD of the
Replication Server that manages the database, the database generation number is the first
part of the origin queue ID (qid) of each log record. The origin queue ID ensures that the
Replication Server does not process duplicate records. During recovery operations, you
may need to increment the database generation number so that Replication Server does not
ignore records submitted after the database is reloaded.

• database replication definition – A description of a set of database objects—tables,
transactions, functions, system stored procedures, and DDL—for which a subscription
can be created.

You can also create table replication definitions and function replication definitions. See
also table replication definition and function replication definition.

• database server – A server program, such as Sybase Adaptive Server, that provides
database management services to clients.

• data definition language (DDL) – The set of commands in a query language, such as
Transact-SQL, that describes data and their relationships in a database. DDL commands in
Transact-SQL include those using the create, drop, and alter keywords.

• data manipulation language (DML) – The set of commands in a query language, such as
Transact-SQL, that operates on data. DML commands in Transact-SQL include select,
insert, update, and delete.

• data server – A server whose client interface conforms to the Sybase Client/Server
Interfaces and provides the functionality necessary to maintain the physical representation
of a replicated table in a database. Data servers are usually database servers, but they can
also be any data repository with the interface and functionality Replication Server
requires.

• Data Server Interface (DSI) – Replication Server threads corresponding to a connection
between a Replication Server and a database. DSI threads submit transactions from the
DSI outbound queue to a replicate data server. They consist of a scheduler thread and one
or more executor threads. The scheduler thread groups the transactions by commit order
and dispatches them to the executor threads. The executor threads map functions to
function strings and execute the transactions in the replicate database. DSI threads use an
Open Client connection to a database. See also outbound queue and connection.

• data source – A specific combination of a database management system (DBMS) product
such as a relational or non-relational data server, a database residing in that DBMS, and the
communications method used to access that DBMS from other parts of a replication
system. See also database and data server.

• decision support application – A database client application characterized by ad hoc
queries, reports, and calculations and few data update transactions.

Glossary

Heterogeneous Replication Guide 249

• declared datatype – The datatype of the value delivered to the Replication Server from
the Replication Agent:

• If the Replication Agent delivers a base Replication Server datatype, such as
datetime, to the Replication Server, the declared datatype is the base datatype.

• Otherwise, the declared datatype must be the UDD for the original datatype at the
primary database.

• default function string – The function string that is provided by default for the system-
provided classes rs_sqlserver_function_class and
rs_default_function_class and classes that inherit function strings from these
classes, either directly or indirectly. See also function string.

• dematerialization – The optional process, when a subscription is dropped, whereby
specific rows that are not used by other subscriptions are removed from the replicate
database.

• derived class – A function-string class that inherits function strings from a parent class.
See also function-string class and parent class.

• direct route – A route used to send messages directly from a source to a destination
Replication Server, with no intermediate Replication Servers. See also indirect route and
route.

• disk partition – See partition.
• distributed database system – A database system where data is stored in multiple

databases on a network. The databases may be managed by data servers of the same type
(for example, Adaptive Server) or by heterogeneous data servers.

• Distributor – A Replication Server thread (DIST) that helps to determine the destination
of each transaction in the inbound queue.

• dump marker – A message written by Adaptive Server in a database transaction log when
a dump is performed. In a warm standby application, when you are initializing the standby
database with data from the active database, you can specify that Replication Server use
the dump marker to determine where in the transaction stream to begin applying
transactions in the standby database. See also warm standby application.

• Embedded Replication Server System Database (ERSSD) – The SQL Anywhere (SA)
database that stores Replication Server system tables. You can choose whether to store
Replication Server system tables on the ERSSD or the Adaptive Server RSSD. See also
Replication Server System Database (RSSD).

• Enterprise Connect Data Access (ECDA) – An integrated set of software applications
and connectivity tools that allow access to data within a heterogeneous database
environment, such as a variety of LAN-based, non-ASE data sources, and mainframe data
sources.

• ExpressConnect for Oracle – A set of libraries that can be used to provides direct
communication between Replication Server and an Oracle database.

Glossary

250 Replication Server

• error action – A Replication Server response to a data server error. Possible Replication
Server error actions are ignore, warn, retry_log, log, retry_stop, and stop_replication.
Error actions are assigned to specific data server errors.

• error class – A name for a collection of data server error actions that are used with a
specified database.

• exceptions log – A set of three Replication Server system tables that holds information
about transactions that failed on a data server. The transactions in the log must be resolved
by a user or by an intelligent application. You can use the rs_helpexception stored
procedure to query the exceptions log.

• Failover – Sybase Failover allows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion fails, that server’s devices, databases,
and connections can be taken over by the secondary companion.

For more detailed information about how Sybase Failover works in Adaptive Server, refer
to Using Sybase Failover in a High Availability System, which is part of the Adaptive
Server Enterprise documentation set.

• fault tolerance – The ability of a system to continue to operate correctly even though one
or more of its component parts is malfunctioning.

• function – A Replication Server object that represents a data server operation such as
insert, delete, select, or begin transaction. Replication Server distributes such operations to
other Replication Servers as functions. Each function consists of a function name and a set
of data parameters. In order to execute the function in a destination database, Replication
Server uses function strings to convert a function to a command or set of commands for a
type of database. See also user-defined function, and replicated function delivery.

• function replication definition – A description of a replicated function used in replicated
function delivery. The function replication definition, maintained by Replication Server,
includes information about the parameters to be replicated and the location of the primary
version of the affected data. There are two types of function replication definition, applied
and request. See also replicated function delivery.

• function scope – The range of a function’s effect. Functions have replication definition
scope or function-string class scope. A function with replication definition scope is
defined for a specific replication definition, and cannot be applied to other replication
definitions. A function with function-string class scope is defined once for a function-
string class and is available only within that class.

• function string – A string that Replication Server uses to map a database command to a
data server API. For the rs_select and rs_select_with_lock functions only, the string
contains an input template, used to match function strings with the database command. For
all functions, the string also contains an output template, used to format the database
command for the destination data server.

• function-string class – A named collection of function strings used with a specified
database connection. Function-string classes include those provided with Replication
Server and those you have created. Function-string classes can share function string
definitions through function-string inheritance. The three system-provided function-
string classes are rs_sqlserver_function_class,

Glossary

Heterogeneous Replication Guide 251

rs_default_function_class, and rs_db2_function_class. See also base
class, class tree, derived class, function-string inheritance, and parent class.

• function-string inheritance – The ability to share function string definitions between
classes, whereby a derived class inherits function strings from a parent class. See also
derived class, function-string class, and parent class.

• function-string variable – An identifier used in a function string to represent a value that
is to be substituted at run time. Variables in function strings are enclosed in question marks
(?). They represent column values, function parameters, system-defined variables, or user-
defined variables.

• function subscription – A subscription to a function replication definition (used in both
applied and request function delivery).

• gateway – Connectivity software that allows two or more computer systems with different
network architectures to communicate.

• generation number – See database generation number.
• heterogeneous data servers – Multi-vendor data servers used together in a distributed

database system.
• hibernation mode – A Replication Server state in which all DDL commands, except

admin and sysadmin commands, are rejected; all routes and connections are suspended;
most service threads, such as DSI and RSI, are suspended; and RSI and RepAgent users are
logged off and not allowed to log on. Used during route upgrades, and may be turned on for
a Replication Server to debug problems.

• high availability (HA) – Very low downtime. Computer systems that provide HA usually
provide 99.999% availability, or roughly five minutes unscheduled downtime per year.

• high volume adaptive replication (HVAR) – Compilation of a group of insert, delete,
and update operations to produce a net result and the subsequent bulk application of the
net result to the replicate database.

• hot standby application – A database application in which the standby database can be
placed into service without interrupting client applications and without losing any
transactions. See also warm standby application.

• ID Server – One Replication Server in a replication system is the ID Server. In addition to
performing the usual Replication Server tasks, the ID Server assigns unique ID numbers to
every Replication Server and database in the replication system, and maintains version
information for the replication system.

• inbound queue – A stable queue used to spool messages from a Replication Agent to a
Replication Server.

• indirect route – A route used to send messages from a source to a destination Replication
Server, through one or more intermediate Replication Servers. See also direct route and
route.

• interfaces file – A file containing entries that define network access information for server
programs in a Sybase client/server architecture. Server programs may include Adaptive
Servers, gateways, Replication Servers, and Replication Agents. The interfaces file entries
enable clients and servers to connect to each other in a network.

Glossary

252 Replication Server

• latency – The measure of the time it takes to distribute to a replicate database a data
modification operation first applied in a primary database. The time includes Replication
Agent processing, Replication Server processing, and network overhead.

• local-area network (LAN) – A system of computers and devices, such as printers and
terminals, connected by cabling for the purpose of sharing data and devices.

• locator value – The value stored in the rs_locater table of the Replication Server’s
RSSD that identifies the latest log transaction record received and acknowledged by the
Replication Server from each previous site during replication.

• logical connection – A database connection that Replication Server maps to the
connections for the active and standby databases in a warm standby application. See also
connection and warm standby application.

• login name – The name that a user or a system component such as Replication Server uses
to log in to a data server, Replication Server, or Replication Agent.

• Log Transfer Language (LTL) – A subset of the Replication Command Language
(RCL). A Replication Agent such as RepAgent uses LTL commands to submit to
Replication Server the information it retrieves from primary database transaction logs.

• Log Transfer Manager (LTM) – The Replication Agent program for Sybase SQL Server.
See also Replication Agent and RepAgent thread.

• maintenance user – A data server login name that Replication Server uses to maintain
replicate data. In most applications, maintenance user transactions are not replicated.

• materialization – The process of copying data specified by a subscription from a primary
database to a replicate database, thereby initializing the replicate table. Replicate data can
be transferred over a network, or, for subscriptions involving large amounts of data, loaded
initially from media. See also atomic materialization, bulk materialization, no
materialization, and nonatomic materialization.

• materialization queue – A stable queue used to spool messages related to a subscription
being materialized or dematerialized.

• missing row – A row missing from a replicated copy of a table but present in the primary
table.

• mixed-version system – A replication system containing Replication Servers of different
software versions that have different capabilities based on their different software versions
and site versions. Mixed-version support is available only if the system version is 11.0.2 or
greater.

For example, a replication system containing Replication Servers version 11.5 or later and
version 11.0.2 is a mixed-version system. A replication system containing Replication
Servers of releases earlier than release 11.0.2 is not a mixed-version system, because any
newer Replication Servers are restricted by the system version from using certain new
features. See also site version and system version.

• more columns – Columns in a replication definition exceeding 250, but limited to 1024.
More columns are supported by Replication Server version 12.5 and later.

Glossary

Heterogeneous Replication Guide 253

• multi-site availability (MSA) – Methodology for replicating database objects—tables,
functions, transactions, system stored procedures, and DDL from the primary to the
replicate database. See also database replication definition.

• Multi-Path Replication™ – Replication Server feature that improves performance by
enabling parallel paths of data from the source database to the target database,You can
configure multi-path replication in warm standby and multisite availability (MSA)
environments. These multiple paths process data independently of each other and are
applicable when sets of data can be processed in parallel without transactions consistency
requirements between them. while still maintaining data consistency within a path, but not
adhering to the commit order across different paths.

• name space – The scope within which an object name must be unique.
• nonatomic materialization – A materialization method that copies subscription data

from a primary to a replicate database through the network in a single operation, without a
holdlock. Changes to the primary table are allowed during data transfer, which may cause
temporary inconsistencies between replicate and primary databases. Data is applied in
increments of ten rows per transaction, which ensures that the replicate database
transaction log does not fill. Nonatomic materialization is an optional method for the
create subscription command. See also autocorrection, atomic materialization, no
materialization, and bulk materialization.

• network-based security – Secure transmission of data across a network. Replication
Server supports third-party security mechanisms that provide user authentication, unified
login, and secure message transmission between Replication Servers.

• no materialization – A materialization method that lets you create a subscription when
the subscription data already exists at the replicate site. Use the create subscription
command with the without materialization clause. You can use this method to create
subscriptions to table replication definitions and function replication definitions. See also
atomic materialization and bulk materialization.

• online transaction processing (OLTP) application – A database client application
characterized by frequent transactions involving data modification (inserts, deletes, and
updates).

• Origin Queue ID (qid) – Formed by the RepAgent, the qid uniquely identifies each log
record passed to the Replication Server. It includes the date and timestamp and the
database generation number. See also database generation number.

• orphaned row – A row in a replicated copy of a table that does not match an active
subscription.

• outbound queue – A stable queue used to spool messages. The DSI outbound queue
spools messages to a replicate database. The RSI outbound queue spools messages to a
replicate Replication Server.

• parallel DSI – Configuring a database connection so that transactions are applied to a
replicate data server using multiple DSI threads operating in parallel, rather than a single
DSI thread. See also connection and Data Server Interface (DSI).

• parameter – An identifier representing a value that is provided when a procedure
executes. Parameter names are prefixed with an @ character in function strings. When a

Glossary

254 Replication Server

procedure is called from a function string, Replication Server passes the parameter values,
unaltered, to the data server. See also searchable parameter.

• parent class – A function-string class from which a derived class inherits function strings.
See also function-string class and derived class.

• partition – A raw disk partition or operating system file that Replication Server uses for
stable queue storage. Only use operating system files in a test environment.

• physical connection – See connection.
• primary data – The definitive version of a set of data in a replication system. The primary

data is maintained on a data server that is known to all of the Replication Servers with
subscriptions for the data.

• primary database – Any database that contains data that is replicated to another database
via the replication system.

• primary fragment – A horizontal segment of a table that holds the primary version of a set
of rows.

• primary key – A set of table columns that uniquely identifies each row.
• primary site – A Replication Server where a function-string class or error class is defined.

See error class and function-string class.
• principal user – The user who starts an application. When using network-based security,

Replication Server logs in to remote servers as the principal user.
• profiles – Profiles allow you to configure your connection with a pre-defined set of

properties.
• projection – A vertical slice of a table, representing a subset of the table’s columns.
• publication – A group of articles from the same primary database. A publication lets you

collect replication definitions for related tables and/or stored procedures and then
subscribe to them as a group. You collect replication definitions as articles in a publication
at the source Replication Server and subscribe to them with a publication subscription at
the destination Replication Server. See also article and publication subscription.

• publication subscription – A subscription to a publication. See also article and
publication.

• published datatype – The datatype of the column after the column-level translation (and
before a class-level translation, if any) at the replicate data server. The published datatype
must be either a Replication Server base datatype or a UDD for the datatype in the target
data server. If the published datatype is omitted from the replication definition, it defaults
to the declared datatype.

• query – In a database management system, a query is a request to retrieve data that meets a
given set of criteria. The SQL database language includes the select command for queries.

• quiescent – A quiescent replication system is one in which all updates have been
propagated to their destinations. Some Replication Server commands or procedures
require that you first quiesce the replication system.

• quoted identifiers – Object names that contain special characters such as spaces and non-
alphanumeric characters, start with a character other than an alphabet, or that correspond
to a reserved word, need to be enclosed in double quote characters to be parsed correctly.

Glossary

Heterogeneous Replication Guide 255

• real time loading (RTL) – High volume adaptive replication (HVAR) to a Sybase IQ
database. Uses relevant commands and processes to apply HVAR changes to a Sybase IQ
replicate database. See high volume adaptive replication.

• remote procedure call (RPC) – A request to execute a procedure that resides in a remote
server. The server that executes the procedure could be a Adaptive Server, a Replication
Server, or a server created using Open Server. The request can originate from any of these
servers or from a client application. The RPC request format is a part of the Sybase Client/
Server Interfaces.

• RepAgent thread – The Replication Agent for Adaptive Server databases. RepAgent is an
Adaptive Server thread; it transfers transaction log information from the primary database
to a Replication Server for distribution to other databases.

• replicate database – Any database that contains data that is replicated from another
database via the replication system.

• replicated function delivery – A method of replicating, from a source to a destination
database, a stored procedure that is associated with a function replication definition. See
also applied function, request function, and function replication definition.

• replicated stored procedure – An Adaptive Server stored procedure that is marked as
replicated using the sp_setrepproc or the sp_setreplicate system procedure. Replicated
stored procedures can be associated with function replication definitions or table
replication definitions. See also replicated function delivery and asynchronous procedure
delivery.

• replicated table – A table that is maintained by Replication Server, in part or in whole, in
databases at multiple locations. There is one primary version of the table, which is marked
as replicated using the sp_setreptable or the sp_setreplicate system procedure; all other
versions are replicated copies.

• Replication Agent – A program or module that transfers transaction log information
representing modifications made to primary data from a database server to a Replication
Server for distribution to other databases. RepAgent is the Replication Agent for Adaptive
Server databases.

• Replication Command Language (RCL) – The commands used to manage information
in Replication Server.

• replication definition – Usually, a description of a table for which subscriptions can be
created. The replication definition, maintained by Replication Server, includes
information about the columns to be replicated and the location of the primary version of
the table.

You can also create function replication definitions; sometimes the term “table replication
definition” is used to distinguish between table and function replication definitions. See
also function replication definition.

• Replication Server – The Sybase server program that maintains replicated data, typically
on a LAN, and processes data transactions received from other Replication Servers on the
same LAN or on a WAN.

• Replication Server Interface (RSI) – A thread that logs in to a destination Replication
Server and transfers commands from the RSI outbound stable queue to the destination

Glossary

256 Replication Server

Replication Server. There is one RSI thread for each destination Replication Server that is
a recipient of commands from a primary or intermediate Replication Server. See also
outbound queue and route.

• Replication Monitoring Services (RMS) – A small Java application built using the
Sybase Unified Agent Framework (UAF) that monitors and troubleshoot a replication
environment.

• replication system administrator – The system administrator that manages routine
operations in the Replication Server.

• Replication Server System Database (RSSD) – The Adaptive Server database
containing a Replication Server system tables. You can choose whether to store
Replication Server system tables on the RSSD or the SQL Anywhere (SA) ERSSD. See
also Embedded Replication Server System Database (ERSSD).

• Replication Server system Adaptive Server – The Adaptive Server with the database
containing a Replication Server’s system tables (the RSSD).

• replication system – A data processing system where data is replicated in multiple
databases to provide remote users with the benefits of local data access. Specifically, a
replication system that is based upon Replication Server and includes other components
such as Replication Agents and data servers.

• replication system domain – All replication system components that use the same ID
Server.

• request function – A replicated function, associated with a function replication
definition, that Replication Server delivers from a primary database to a replicate database.
The function passes parameter values to a stored procedure that is executed at the replicate
database. The stored procedure is executed at the replicate site by the same user as it is at
the primary site.See also replicated function delivery, request function, and function
replication definition.

• resync marker – When you restart Replication Agent in resync mode, Replication Agent
sends the resync database marker to Replication Server to indicate that a
resynchronization effort is in progress. The resync marker is the first message Replication
Agent sends before sending any SQL data definition language (DDL) or data manipulation
language (DML) transactions.

• route – A one-way message stream from a source Replication Server to a destination
Replication Server. Routes carry data modification commands (including those for
RSSDs) and replicated functions or stored procedures between Replication Servers. See
also direct route and indirect route.

• route version – The lower of the site version numbers of the route’s source and destination
Replication Servers. Replication Server version 11.5 and later use the route version
number to determine which data to send to the replicate site. See also site version.

• row migration – The process whereby column value changes in rows in a primary version
of a table cause corresponding rows in a replicate version of the table to be inserted or
deleted, based on comparison with values in a subscription’s where clause.

• SQL Server – The Sybase relational database pre-11.5 server.

Glossary

Heterogeneous Replication Guide 257

• SQL statement replication – In SQL statement replication, the Replication Server
receives the SQL statement that modified the primary data, rather than the individual row
changes from the transaction log. Replication Server applies the SQL statement to the
replicated site. RepAgent sends both the SQL Data Manipulation Language (DML) and
individual row changes. Depending on your configuration, Replication Server chooses
either individual row change log replication or SQL statement replication.

• schema – The structure of the database. DDL commands and system procedures change
system tables stored in the database. Supported DDL commands and system procedures
can be replicated to standby databases when you use Replication Server version 11.5 or
later and Adaptive Server version 11.5 or later.

• searchable column – A column in a replicated table that can be specified in the where
clause of a subscription or article to restrict the rows replicated at a site.

• searchable parameter – A parameter in a replicated stored procedure that can be
specified in the where clause of a subscription to help determine whether or not the stored
procedure should be replicated. See also parameter.

• secondary truncation point – See truncation point.
• site – An installation consisting of, at minimum, a Replication Server, data server, and

database, and possibly a Replication Agent, usually at a discrete geographic location. The
components at each site are connected over a WAN to those at other sites in a replication
system. See also primary site.

• site version – The version number for an individual Replication Server. Once the site
version has been set to a particular level, the Replication Server enables features specific to
that level, and downgrades are not allowed. See also software version, route version, and
system version.

• software version – The version number of the software release for an individual
Replication Server. See also site version and system version.

• Stable Queue Manager (SQM) – A thread that manages the stable queues. There is one
Stable Queue Manager (SQM) thread for each stable queue accessed by the Replication
Server, whether inbound or outbound.

• Stable Queue Transaction (SQT) interface – A thread that reassembles transaction
commands in commit order. A Stable Queue Transaction (SQT) interface thread reads
from inbound stable queues, puts transactions in commit order, then sends them to the
Distributor (DIST) thread or a DSI thread, depending on which thread required the SQT
ordering of the transaction.

• stable queues – Store-and-forward queues where Replication Server stores messages
destined for a route or database connection. Messages written into a stable queue remain
there until they can be delivered to the destination Replication Server or database.
Replication Server builds stable queues using its disk partitions. See also inbound queue,
outbound queue, and materialization queue.

• standalone mode – A special Replication Server mode used for initiating recovery
operations.

Glossary

258 Replication Server

• standby database – In a warm standby application, a database that receives data
modifications from the active database and serves as a backup of that database. See also
warm standby application.

• stored procedure – A collection of SQL statements and optional control-of-flow
statements stored under a name in a Adaptive Server database. Stored procedures supplied
with Adaptive Server are called system procedures. Some stored procedures for querying
the RSSD are included with the Replication Server software.

• subscription – A request for Replication Server to maintain a replicated copy of a table, or
a set of rows from a table, in a replicate database at a specified location. You can also
subscribe to a function replication definition, for replicating stored procedures.

• subscription dematerialization – See dematerialization.
• subscription materialization – See materialization.
• subscription migration – See row migration.
• Sybase Central – A graphical tool that provides a common interface for managing Sybase

and Powersoft products. Replication Server uses Replication Manager as a Sybase Central
plug-in. See also Replication Monitoring Services (RMS).

• symmetric multiprocessing (SMP) – On a multiprocessor platform, the ability of an
application’s threads to run in parallel. Replication Server supports SMP, which can
improve server performance and efficiency.

• synchronous command – A command that a client considers complete only after the
completion status is received.

• system function – A function that is predefined and part of the Replication Server product.
Different system functions coordinate replication activities, such as rs_begin, or perform
data manipulation operations, such as rs_insert, rs_delete, and rs_update.

• system-provided classes – Replication Server provides the error class
rs_sqlserver_error_class and the function-string classes
rs_sqlserver_function_class, rs_default_function_class, and
rs_db2_function_class. Function strings are generated automatically for the
system-provided function-string classes and for any derived classes that inherit from these
classes, directly or indirectly. See also error class and function-string class.

• system version – The version number for a replication system that represents the version
for which new features are enabled, for Replication Servers of release 11.0.2 or earlier, and
below which no Replication Server can be downgraded or installed. For a Replication
Server version 11.5, your use of certain new features requires a site version of 1150 and a
system version of at least 1102. See also mixed-version system, site version, and software
version.

• table replication definition – See replication definition.
• table subscription – A subscription to a table replication definition.
• thread – A process running within Replication Server. Built upon Sybase Open Server,

Replication Server has a multi-threaded architecture. Each thread performs a certain
function such as managing a user session, receiving messages from a Replication Agent or

Glossary

Heterogeneous Replication Guide 259

another Replication Server, or applying messages to a database. See also Data Server
Interface (DSI), Distributor, and Replication Server Interface (RSI).

• transaction – A mechanism for grouping statements so that they are treated as a unit:
either all statements in the group are executed or no statements in the group are executed.

• Transact-SQL – The relational database language used with Adaptive Server. It is based
on standard SQL (Structured Query Language), with Sybase extensions.

• truncation point – An Adaptive Server database that holds primary data has an active
truncation point, marking the transaction log location where Adaptive Server has
completed processing. This is the primary truncation point.

The RepAgent for an Adaptive Server database maintains a secondary truncation point,
marking the transaction log location separating the portion of the log successfully
submitted to the Replication Server from the portion not yet submitted. The secondary
truncation point ensures that each operation enters the replication system before its portion
of the log is truncated.

• user-defined function – A function that allows you to create custom applications that use
Replication Server to distribute replicated functions or asynchronous stored procedures
between sites in a replication system. In replicated function delivery, a user-defined
function is automatically created by Replication Server when you create a function
replication definition.

• variable – See function-string variable.
• version – mixed-version system

See mixed-version system, site version, software version, and system version.
• warm standby application – An application that employs Replication Server to maintain

a standby database for a database known as the active database. If the active database fails,
Replication Server and client applications can switch to the standby database.

• wide-area network (WAN) – A system of local-area networks (LANs) connected
together with data communication lines.

• wide columns – Columns in a replication definition containing char, varchar,
binary, varbinary, unichar, univarchar, or Java inrow data that are wider
that 255 bytes. Wide columns are supported by Replication Server version 12.5 and later.

• wide data – Wide data rows, limited to the size of the data page on the data server.
Adaptive Server supports page sizes of 2K, 4K, 8K, and 16K. Wide data is supported by
Replication Server version 12.5 and later.

• wide messages – Messages larger that 16K that span blocks. Wide messages are supported
by Replication Server version 12.5 and later.

Glossary

260 Replication Server

Obtaining Help and Additional Information

Use the Sybase Getting Started CD, Product Documentation site, and online help to learn
more about this product release.

• The Getting Started CD (or download) – contains release bulletins and installation guides
in PDF format, and may contain other documents or updated information.

• Product Documentation at http://sybooks.sybase.com/ – is an online version of Sybase
documentation that you can access using a standard Web browser. You can browse
documents online, or download them as PDFs. In addition to product documentation, the
Web site also has links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, Community Forums/Newsgroups, and other resources.

• Online help in the product, if available.

To read or print PDF documents, you need Adobe Acrobat Reader, which is available as a free
download from the Adobe Web site.

Note: A more recent release bulletin, with critical product or document information added
after the product release, may be available from the Product Documentation Web site.

Technical Support
Get support for Sybase products.

If your organization has purchased a support contract for this product, then one or more of
your colleagues is designated as an authorized support contact. If you have any questions, or if
you need assistance during the installation process, ask a designated person to contact Sybase
Technical Support or the Sybase subsidiary in your area.

Downloading Sybase EBFs and Maintenance Reports
Get EBFs and maintenance reports from the Sybase Web site.

1. Point your Web browser to http://www.sybase.com/support.

2. From the menu bar or the slide-out menu, under Support, choose EBFs/Maintenance.

3. If prompted, enter your MySybase user name and password.

4. (Optional) Select a filter from the Display drop-down list, select a time frame, and click
Go.

5. Select a product.

Padlock icons indicate that you do not have download authorization for certain EBF/
Maintenance releases because you are not registered as an authorized support contact. If

Obtaining Help and Additional Information

Heterogeneous Replication Guide 261

http://sybooks.sybase.com/
http://www.adobe.com/
http://www.sybase.com/support

you have not registered, but have valid information provided by your Sybase
representative or through your support contract, click My Account to add the “Technical
Support Contact” role to your MySybase profile.

6. Click the Info icon to display the EBF/Maintenance report, or click the product description
to download the software.

Sybase Product and Component Certifications
Certification reports verify Sybase product performance on a particular platform.

To find the latest information about certifications:

• For partner product certifications, go to http://www.sybase.com/detail_list?id=9784
• For platform certifications, go to http://certification.sybase.com/ucr/search.do

Creating a MySybase Profile
MySybase is a free service that allows you to create a personalized view of Sybase Web pages.

1. Go to http://www.sybase.com/mysybase.

2. Click Register Now.

Accessibility Features
Accessibility ensures access to electronic information for all users, including those with
disabilities.

Documentation for Sybase products is available in an HTML version that is designed for
accessibility.

Vision impaired users can navigate through the online document with an adaptive technology
such as a screen reader, or view it with a screen enlarger.

Sybase HTML documentation has been tested for compliance with accessibility requirements
of Section 508 of the U.S Rehabilitation Act. Documents that comply with Section 508
generally also meet non-U.S. accessibility guidelines, such as the World Wide Web
Consortium (W3C) guidelines for Web sites.

Note: You may need to configure your accessibility tool for optimal use. Some screen readers
pronounce text based on its case; for example, they pronounce ALL UPPERCASE TEXT as
initials, and MixedCase Text as words. You might find it helpful to configure your tool to
announce syntax conventions. Consult the documentation for your tool.

Obtaining Help and Additional Information

262 Replication Server

http://www.sybase.com/detail_list?id=9784
http://certification.sybase.com/ucr/search.do
http://www.sybase.com/mysybase

For information about how Sybase supports accessibility, see the Sybase Accessibility site:
http://www.sybase.com/products/accessibility. The site includes links to information about
Section 508 and W3C standards.

You may find additional information about accessibility features in the product
documentation.

Obtaining Help and Additional Information

Heterogeneous Replication Guide 263

http://www.sybase.com/products/accessibility

Obtaining Help and Additional Information

264 Replication Server

Index
A

active database 181
Adaptive Server Enterprise

as primary database 21
as replicate database 20
binary datatype 71
char datatype 47
datetime datatype 47
numeric datatype 89
Replication Agent for 8
varbinary datatype 71
varchar datatype 47

adding the active database
creating connection 187
initialize Replication Agent 185

adding the standby database
creating connection 190
initialize Replication Agent 188
resume connection 190
resuming Replication Agents 190

admin commands 191
admin show connection, 'replicate' configuration

parameter 132
admin who command

for dedicated routes 161
alternate replicate connections

altering 132
creating 130
displaying 132

atomic bulk materialization

B

bcp utility 228
bidirectional replication

Replication Agent filtering transactions 45, 53,
65

with non-Sybase data servers 22

C

case sensitivity 45
character case

of configuration parameters 53, 58, 64

of object names in DB2 45
of object names in Microsoft SQL Server 54
of object names in Oracle 62

class-level translations
DB2 for UNIX and Windows datatypes 211
DB2 UDB for z/OS datatypes 211
Microsoft SQL Server datatypes 214
Oracle datatypes 216

See also heterogeneous datatype support
(HDS)

CLASSPATH system variable 63
commands

create connection 29, 39, 45, 53, 65
resume connection 40
rs_dump 18
rs_dumptran 19
rs_marker 18
rs_subcmp 231

commands and configuration parameters
for dedicated route 158

communication
JDBC protocol 63
TCP/IP 51, 57, 63

comparing databases 231
compilation and bulk apply in RTL 114
configuration for replicate Sybase IQ 121
configuration overview 197
configuration parameters

LTM for z/OS 45
pdb_xlog_prefix 63
Replication Agent for DB2 UDB 51
Replication Agent for Oracle 63

configuring database resynchronization 197
applying dump to a database to be

resynchronized 202
instructing Replication Server to skip

transactions 198
monitoring DSI thread information 202
obtaining a dump of the database 200
reinitializing the replicate database 203
sending resync database marker to Replication

Server 198
sending the dump database marker to

Replication Server 202
connect source permission 29, 35

Index

Heterogeneous Replication Guide 265

connection 248, 255
connection profiles

DB2 UDB for z/OS 72, 80, 91, 102
HDS 236
rs_db2_connection_sample 73
rs_msss_setup_for_replicate 87
rs_oracle_setup_for_replicate 99
Sybase IQ 121

connection profiles for Sybase IQ 121
connection to Sybase IQ

creating 122
customizing 122

connectivity for replicate Sybase IQ 119
controlling net-change database size 128
conventions

style 1
syntax 1

create altenate connection configuration parameter
130

create route command 159
creating

connection to Sybase IQ 122

D
data-sharing environment, DB2 UDB for z/OS 44,

45
database gateways 6, 12, 31, 40

for DB2 for z/OS replicate database 69
for Microsoft SQL Server replicate database

87, 89
for Oracle replicate database 99, 104
troubleshooting 236

database objects
transaction log object names 52, 63
transaction log prefix 63

database permissions for replicate Sybase IQ 120
database resynchronization scenarios 203

resynchronizing both the primary and replicate
databases from the same dump 207

resynchronizing replicate databases directly
from a primary database 203

resynchronizing the active and standby
databases in a warm standby
application 208

resynchronizing using a third-party dump
utility 205

database support, real-time loading 114
databases

active 181

loading data into replicate 223
logical 181
materialization 18
owner-qualified object names 15
primary database 5, 8
reconciling 231
replicate database 13
Replication Server connection 31
standby 181
unloading data from primary 222

datatype translations 89
class-level 73
during materialization 223

datatypes
binary, Sybase 71
BLOB, DB2 71, 78
boundary of 237, 239
CHAR, DB2 47
char, Sybase 47, 65
class-level translations for DB2 211
class-level translations for Microsoft SQL

Server 214
class-level translations for Oracle 216
CLOB, DB2 71, 78
DATE, DB2 54
DATE, Oracle 65
datetime, Sybase 54
DBCLOB, DB2 71
decimal, Microsoft SQL Server 238
default HDS translation 211
default translations for DB2 211
default translations for Microsoft SQL Server

214
default translations for Oracle 216
image, Microsoft SQL Server 87
large objects (LOB) 16, 34, 71, 87
LVARCHAR, DB2 78
materialization 223
ntext, Microsoft SQL Server 87
numeric, Microsoft SQL Server 239
numeric, Sybase 89
rs_db2_char_for_bit, HDS 71
rs_db2_varchar_for_bit, HDS 71
rs_mss_numeric, HDS 239
rs_msss_numeric, HDS 89
text, Microsoft SQL Server 87
TIME, DB2 54
TIMESTAMP, DB2 54
translated by Replication Agent 54

Index

266 Replication Server

troubleshooting translations 240
varbinary, Sybase 71
varchar, Sybase 47, 65

DB2 for UNIX and Windows
as primary database 49
BLOB datatype 78
class-level translation scripts 81
class-level translations 214
CLOB datatype 78
for Replication Agent 38, 49
LVARCHAR datatype 78
primary database connectivity 50
primary database limitations 50
primary database permissions 50
replicate database configuration 79
replicate database connectivity 78
replicate database permissions 78
RS_INFO table 77
RS_LASTCOMMIT table 77
translating primary datatypes 54

DB2 for z/OS
class-level translations 214
primary database configuration 45
primary database permissions 44

DB2 fUDB or z/OS
DATE datatype 47

DB2 UDB for UNIX and Windows
class-level translations 211
default datatype translations 211

DB2 UDB for z/OS
as primary database 43
as replicate database 69
BLOB datatype 71
CHAR datatype 47
class-level translations 73, 211
CLOB datatype 71
data-sharing environment 44, 45
DBCLOB datatype 71
default datatype translations 211
LTM for z/OS 45
LTMADMIN user 44
LTMLASTCOMMIT table 43
LTMOBJECTS table 43
primary database configuration 45
replicate database setup 71
Replication Agent 37
rs_info table 69
rs_lastcommit table 70
Sybase Log Extract 45

transaction log 43, 44
translating primary datatypes 47

DB2 UDB for z/OSclass-level translations 73
dedicated routes 158

commands and configuration parameters 158
creating 158

display
dedicated route information 161

drivers, JDBC 63
required for Oracle 64

drop connection configuration parameter 132
drop route command 160
DSI thread
DSI threads

for standby database 192
dsi_bulk_threshold in RTL 124
dsi_cdb_max_size configuration parameter 128
dsi_cdb_max_size in RTL 124
dsi_command_convert in RTL 126
dsi_compile_enable in RTL 123
dsi_compile_max_cmds configuration parameter

128
dsi_compile_max_cmds in RTL 125
dsi_compile_retry_threshold configuration

parameter 126
dsi_compile_retry_threshold in RTL 125
dump database marker, sending 201
dump of database, applying 202
dump of database, obtaining a 200

E
ECDA database gateways 31, 40

DB2 metadata 49
DirectConnect for z/OS Option 69
ECDA Option for ODBC 87, 89
ECDA Option for Oracle 99, 104
interfaces file 39
Mainframe Connect DirectConnect for z/OS

Option 69
Microsoft SQL Server metadata 55
Oracle metadata 62
troubleshooting 236

encrypted columns
replication 17

error class, for Sybase IQ 122
error messages

datatype boundary 237–239
numeric identity 239

example for RTL replication 136

Index

Heterogeneous Replication Guide 267

F
full incremental compilation

dsi_cdb_max_size, effect of 128
for RTL 128

full incremental compilation, in RTL 124
function strings

for rs_dump command 18
for rs_dumptran command 19
for rs_marker command 18
modifying for LOB replication 16

function-string class for Sybase IQ 122
function-string classes

HDS feature 34
modifying for LOB replication 16

G
gateway

See database gateways

H
heterogeneous datatype support (HDS)

DB2 for UNIX and Windows 79
DB2 for z/OS 71
default datatype translation 211
function-string classes 34
limitations 34, 237
Oracle database 101
rs_db2_connection_sample 73
rs_msss_setup_for_replicate 87
rs_oracle_setup_for_replicate 99

heterogeneous multipath replication 161

I
ID Server

login name 10
requirements 9

identifiers
case sensitivity 45
object names in Microsoft SQL Server 54
object names in Oracle 62

inbound queue, troubleshooting 233
interfaces file 36, 39, 71, 90, 100, 119, 157
interfaces file, creating for replication to Sybase IQ

137

intrusions and impacts, replication into Sybase IQ
118

intrusions into Sybase IQ, from temporary
worktables 119

J

Java Runtime Environment (JRE) 61
java stored procedures 52
JDBC communications protocol 63

drivers 64

L

large object (LOB) datatypes
in DB2 for UNIX and Windows 78
in DB2 for z/OS database 71
in Microsoft SQL Server database 17, 87
replication limitations 16
translation limitations 34

Log Transfer Language (LTL)
problems with 242

login names
ID Server 10

LTM for z/OS 45
LTM locator 30

See also origin queue ID
LTMLASTCOMMIT table, in DB2 for z/OS

database 43
LTMOBJECTS table, in DB2 for z/OS database 43

M

maintenance user
granting authority 120

Maintenance User, Replication Server
Replication Agent filtering transactions 36
transactions 45, 53, 65
user ID 33

marker shadow tables 58
materialization

atomic bulk 223
datatype translation 223
loading data into replicate database 223
nonatomic bulk 226
unloading data from primary database 222

memory consumption control
RTL 127, 129

memory consumption parameters interaction 129

Index

268 Replication Server

Microsoft SQL Server class-level translations 92
Microsoft SQL Server data server

class-level translations 214
decimal datatype 238
default datatype translations 214
identity columns 239
image datatype 87
ntext datatype 87
numeric datatype 239
numeric precision 237
Replication Agent 38
rs_info table 87
rs_lastcommit table 87
text datatype 87

migrating from Sybase IQ replication staging
solution to RTL 141

monitoring DSI, for resynchronizing database 202
multi-part replication

parallelization 156
multi-path replication

alternate connections, concept of 157
ASE to IQ 161

Multi-path Replication 155
to Sybase IQ 130

Multi-Path Replication
Adaptive Server to Oracle 169
Oracle to Adaptive Server 172
Oracle to IQ 165
Oracle to Oracle 176

multipath replication 158
setting distribution mode 133
Sybase IQ as replicate 130

multipath replication for heterogeneous databases
161

multiple replication paths 155
dedicated routes 158
to Sybase IQ 130

N
names

transaction log objects 52, 63
net-change database

controlling size 128
net-change database in RTL, displaying 116
nonatomic bulk materialization
none

transaction serialization method 85, 96, 110

O
Oracle 104

Oracle data server
as replicate database 104
class-level translations 216
default datatype translations 216
JDBC driver 63, 64
primary database permissions 62
replicate database setup 101
Replication Agent 38
Replication Agent configuration parameters

63
rs_info table 99
rs_lastcommit table 99, 119
TNS Listener process 63
translating primary datatypes 65

Oracle, rsynchronizing replicate database 197
origin queue ID 30, 31

LTM Locator 30
outbound queue, troubleshooting 234
owner-qualified object names 15

P

pdb_xlog_prefix configuration parameter 63
permissions

DB2 for UNIX and Windows primary database
50

DB2 fUDB for z/OS primary database 44
Oracle primary database 62

permissions, for replicate Sybase IQ 120
platform support, real-time loading 114
prefix, transaction log 63
primary databases 5, 8

DB2 for UNIX and Windows 49
DB2 UDB for z/OS 43
heterogeneous replication issues 13
origin queue ID 31
unloading data from 222

problems
with inbound queue 233
with outbound queue 234

profiles 248, 255
connection 72, 80, 91, 102, 121, 236

Q

QID (origin queue ID) 31
queues, Replication Server

inbound 233
outbound 234

Index

Heterogeneous Replication Guide 269

R
RCL commands

admin logical_status command 191
real-time loading

database support 114
platform support 114

reconciling databases 231
reference implementation

introduction 245
platform support 245

referential constraints in RTL 134
reinitializing the replicate database 203
replicate connections

alternate, altering 132
alternate, creating 130
alternate, displaying 132

replicate database, reinitializing 203
replicate databases 5, 12

DB2 UDB for z/OS 69
heterogeneous replication issues 14
loading data into 223
setting up 87, 99
Sybase IQ 118
troubleshooting 236

replicate databases<$startrange 13
replication

of encrypted columns 17
Replication Agent

connect source permission 29, 35
filtering Maintenance User transactions 45, 53,

65
for DB2 for UNIX and Windows 49
for Microsoft SQL Server 55
LTL batch mode 31
LTM locator 30
origin queue ID 31
Replication Server connection 35
requirements 11
RSSD parameters for 46, 54, 59, 61
transaction log 57
transaction log prefix 63
using the RSSD 46, 49, 54, 55, 59, 61

Replication Agent for DB2 UDB 8
Replication Agent for DB2 UDB for z/OS 8, 37,

43
Date_in_char parameter 47
DB2 configuration issues 45
interfaces file 36

LTL problems 242
LTM for z/OS 45
LTM_process_maint_uid_trans parameter 45
LTMADMIN user 44
RS_source_db parameter 45
RS_source_ds parameter 45
Sybase Log Extract 45
Use_repdef parameter 46

Replication Agent for Microsoft SQL Server
transaction log 57

Replication Agent user thread 32, 35
Replication Command Language (RCL) 26
replication definitions 54, 59, 61
Replication Server

behavior as client 28
behavior as server 28
communication protocols 28
connect source permission 29, 35
create connection command 29, 39, 45, 53, 65
database connections 31
described 9
DSI thread 40
HDS feature 240
heterogeneous replication issues 28
inbound queue 233
interfaces file 36, 39, 71, 90, 100, 119
LTM locator 30
Maintenance User 29, 45, 53, 65
materializing subscriptions 18
outbound queue 234
Replication Agent connection 35
Replication Agent user thread 32, 35
resume connection command 40
rs_db2_char_for_bit datatype 71
rs_db2_varchar_for_bit datatype 71
rs_dump command 18
rs_dumptran command 19
rs_get_lastcommit function 70
rs_marker command 18
rs_mss_numeric datatype 239
rs_msss_numeric datatype 89
rs_subcmp utility 231
RSI user 29
RSSD 26, 29
Sybase IQ replicate database 119
SysAdmin user 29
TCP/IP communication 51, 57, 63
user IDs 29

Index

270 Replication Server

Replication Server and Sybase IQ InfoPrimer data
flow 144, 145

Replication Server System Database (RSSD)
described 10
requirements 11
system tables 11

replication system 5
components of 7
database gateway 12
diagram of 5, 7
primary database 5, 8
replicate database 5, 12
Replication Agent 8
Replication Server 9

restrictions
warm standby applications 182

resume connection, with skip to resync marker 198
resume route command 160
resync marker, sending 198
resynchronizing database

monitoring DSI 202
resynchronizing Oracle database 197

applying dump of database 202
configuration 197
introduction 197
obtaining database dump 200
product compatibility 197
reinitializing the replicate database 203
resuming connection with skip to resync

parameter 198
resync marker, sending 198
scenarios 203
scenarios, from a primary database 204
scenarios, warm standby 208
sending dump database marker 201
skip to resync parameter 198
skipping transactions 198

retry mechanism, enhanced for RTL 126
rs_dump command 18
rs_dumptran command 19
rs_info table

in DB2 UDB for z/OS database 69
in Microsoft SQL Server database 87
in Oracle database 99

rs_lastcommit table
in DB2 UDB for z/OS database 70
in Microsoft SQL Server database 87
in Oracle database 99, 119
problems with 240

rs_marker command 18
rs_session_setting function string 122
rs_status system table 151
rs_subcmp utility
RSSD 26

datatype definitions stored in 34
Replication Agent

using the RSSD 43
Replication Agent, using the 43, 46, 49, 54, 55,

59, 61
Replication Server user ID 29

RTL
admin config command 135
advantages 113
backward compatibility 136
compilation and bulk apply 114
compilation examples 115
compilation rules 114
configuring parameters for replication to

Sybase IQ 124
database and platform support 114
displaying database-level configuration

parameters 135
displaying information 135
displaying net-change database 116
displaying table references 136
displaying table-level configuration

parameters 135
dsi_bulk_threshold 124
dsi_cdb_max_size 124
dsi_command_convert 126
dsi_compile_enable 123
dsi_compile_max_cmds 125
dsi_compile_retry_threshold 125
enabling for replication to Sybase IQ 123
full incremental compilation 124, 128
limitations 116
migrating from the staging solution 141
mixed-version suppport 136
noncompilable commands, tables 117
preparing to migrate from the staging solution

142
referential constraints 117, 134
replication scenario 136
rs_helprep stored procedure 136
system table support 136

RTL, retry mechanism enhanced 126

Index

Heterogeneous Replication Guide 271

S
scenario for RTL replication 136
scenarios, database resynchronization 203
scenarios, database resynchronization, warm

standby 208
serialization methods

no_wait 84, 95, 109
none 84, 95, 109
wait_for_commit 85, 96, 110
wait_for_start 84, 96, 110

setting up
CLASSPATH environment variable 56

settings
command batching 74
ECDA 74

shadow tables
marker 58

skip to resync marker, sending to Replication Server
from Replication Agent 198

skip to resync parameter 198
sql.ini file 157
standby database 181
stored procedures

replication limitations 15
replication of 27

subscriptions 26
materializing 18

suspend route command 160
Sybase IQ

configuration parameters for RTL 124
connection parameters, setting 122
connections profiles 121
creating connection to 122
enabling RTL 123
error class and function-string class 122
intrusions, system tables 118
intrusions, temporary worktables 119
replicate database configuration 121
replicate database connectivity 119
replicate database permissions 120
replication intrusions and impacts 118
RTL compilation and bulk apply 114
staging solution, migrating from 141

Sybase IQ InfoPrimer Integration
autocorrection Functions 152
Replication Server components 151

Sybase Log Extract 45
Sybase Replication Agent 8

DB2 for UNIX and Windows limitations 50

filter_maint_userid parameter 53, 65
for DB2 UDB 49
for Microsoft SQL Server database 55
JDBC communication 63
LTL batch mode 31
LTL problems 243
ltl_character_case parameter 54
metadata commands 49, 55, 62
pdb_convert_datetime parameter 54
primary Replication Server connection 51, 57,

63
Replication Server

connection from Sybase Replication
Agent 51, 57, 63

TCP/IP communication 51, 57, 63
use_rssd parameter 54, 59, 61

SysAdmin user, Replication Server 29
system tables

described 11
rs_status 151

T
tables

problems with rs_lastcommit 240
rs_info, in DB2 UDB for z/OS database 69
rs_info, in Microsoft SQL Server database 87
rs_info, in Oracle database 99
rs_lastcommit, in DB2 UDB for z/OS database

70
rs_lastcommit, in Microsoft SQL Server

database 87
rs_lastcommit, in Oracle database 99, 119

TCP/IP communication protocol 51, 57, 63
TNS Listener process, Oracle 63
transaction logs

DB2 UDB for z/OS 43, 44
object names 52, 63
prefix 63
Replication Agent for Microsoft SQL Server

57
shadow tables 58

transactions
serialization methods 83, 94, 108

trigger
controlling 106

troubleshooting
inbound queues 233
outbound queues 234
replicate databases 236

Index

272 Replication Server

truncation
procedures 52

U
user IDs

LTMADMIN user, DB2 for z/OS 44
Replication Server 29
SysAdmin user 29

utilities
bcp 228
rs_subcmp 231

W
warm standby

resynchronizing Oracle databases 208

warm standby applications
databases 181
effects of switching to the standby database

193
methods 183
restrictions 182

warm standby for Oracle applications 181

Z

z/OS operating system
data-sharing environment 44, 45

Index

Heterogeneous Replication Guide 273

Index

274 Replication Server

	Heterogeneous Replication Guide
	Contents
	Conventions
	Replication System Overview
	Basic Replication System
	Heterogeneous Replication System
	Sybase Replication System Components
	Primary Data Server
	Supported Primary Database Servers

	Replication Agent
	Replication Server
	ID Server
	Replication System Domain

	Replication Server System Database (RSSD)
	System Tables
	RSSD and Replication Agent Specifications

	Database Gateway
	ExpressConnect for Oracle
	Replicate Data Server
	Supported Replicate Database Servers

	Non-ASE Replication
	Primary Database
	Replicate Database
	Character Sets

	Heterogeneous Replication Limitations
	Stored Procedure Replication
	Owner-Qualified Object Names
	Large Object Replication
	Setup for Replicate Databases
	Replication Server Support for Encrypted Columns
	rs_set_ciphertext Function String

	Subscription Materialization
	Replication Server rs_dump Command
	Replication Server rs_marker Command
	Replication Server rs_dumptran Command
	Replication Server rs_subcmp Utility
	Dynamic SQL
	Bulk Copy
	Replication Server rs_ticket Stored Procedure

	Replication System Non-ASE Configurations
	Non-ASE Primary to Adaptive Server Replicate
	ASE Server Primary to Non-ASE Server Replicate
	Non-ASE Primary to Non-ASE Replicate
	Bidirectional Non-ASE to Non-ASE Replication

	Sybase Replication Products
	Replication Server
	How Replication Server Works
	Publish-and-subscribe Model
	Replicated Functions
	Transaction Management
	Relationship with Other System Components
	Replication Server Communication Protocols
	Replication Server User IDs and Permissions
	Relationship with Replication Agents
	LTM Locator Updates
	LTL Generation
	rs_ticket

	Database Connections
	Replication Agent User Thread
	DSI Thread
	Maintenance User Purpose

	DDL User Purpose
	Datatypes, Datatype Definitions, and Restricted Datatypes
	Error and Function-string Classes for Non-ASE Data Servers
	Object Publication and Subscriptions Limitations

	Replication Agent
	How Replication Agent Works
	Replication Agent Connections
	Interfaces File
	Replication Agent Maintenance User Processing

	DDL User Processing
	Non-ASE Replication Agents

	Enterprise Connect Data Access
	How ECDA Works
	Interface File
	Connection Shared by Replication Agent and ECDA

	ECDA Database Gateways
	ECDA Option for ODBC
	ECDA Option for Oracle
	Mainframe Connect DirectConnect for z/OS Option

	ExpressConnect for Oracle

	IBM DB2 for z/OS as Primary Data Server
	Replication Agent for DB2 UDB
	Replication Intrusions and Impacts
	DB2 UDB Primary Database Permissions
	Primary Data Server Connectivity
	Replication Server Connectivity
	Replication Server System Database Connectivity
	DB2 UDB Primary Database Configuration
	Replication Definitions for Primary Tables in DB2 for z/OS
	DB2 for z/OS Primary Datatype Translation
	Character Sets

	Materialization

	IBM DB2 for Linux, UNIX, and Windows as Primary Data Server
	Replication Agent for UDB
	DB2 UDB System Management
	Replication Manager Limitations
	Replication Intrusions and Impacts on the DB2 UDB
	DB2 UDB Primary Database Permissions and Limitations
	Primary Data Server Connectivity
	Replication Server and RSSD Connectivity
	Replication Agent Objects
	Java Procedures for Truncation
	Getting Actual Names of the Replication Objects

	DB2 UDB Primary Database Configuration
	Java Runtime Environment
	rs_source_ds and rs_source_db Configuration Parameters
	filter_maint_userid Configuration Parameters
	ltl_character_case Configuration Parameter
	Object Names Stored in Uppercase

	Replication Definitions for Primary Tables in DB2 UDB
	DB2 UDB Primary Datatype Translation

	Microsoft SQL Server as Primary Data Server
	Replication Agent for Microsoft SQL Server
	sybfilter Driver
	Microsoft SQL Server System Management
	Replication Manager
	Replication Agent Permissions
	Primary Data Server Connectivity
	Setting the CLASSPATH Environment Variable

	Replication Server and RSSD Connectivity
	Replication Agent Objects
	Table, Procedures, Marker, and Trigger Objects

	Microsoft SQL Server Primary Database Configuration
	rs_source_ds and rs_source_db Configuration Parameters
	filter_maint_userid Configuration Parameters
	ltl_character_case Configuration Parameter

	Replication Definitions for Primary Tables in Microsoft SQL Server
	Microsoft SQL Server Primary Datatype Translation

	Oracle as Primary Data Server
	Replication Agent for Oracle
	Replication Definitions for Primary Tables in Oracle
	Replication Manager Limitations

	Oracle System Management
	Replication Intrusions and Impacts in Oracle
	Oracle Primary Database Permissions
	Primary Data Server Connectivity
	Replication Server and RSSD Connectivity
	Replication Agent Objects
	Oracle Primary Database Configuration
	Java Runtime Environment
	JDBC Driver Required
	rs_source_ds and rs_source_db Configuration Parameters
	filter_maint_userid Configuration Parameters
	ltl_character_case Configuration Parameter

	Oracle Primary Datatype Translation
	Automatic Storage Management
	Real Application Clusters

	IBM DB2 for z/OS as Replicate Data Server
	DB2 UDB for z/OS Replicate Data Server Environment
	DB2 UDB for z/OS System Management
	Replication Intrusions and Impacts in DB2 UDB for z/OS
	DB2 for z/OS Replicate Database Permissions
	Replicate Database Connectivity for DB2 UDB for z/OS
	Replicate Database Limitations in DB2 for z/OS
	DB2 for z/OS Replicate Database Configuration
	Replication Server Installation
	Function Strings, Error Classes, and User Defined Datatypes

	Connection Profiles
	Class-Level Datatype Translations to RSSD
	Objects in the DB2 UDB for z/OS and Connection Properties

	Additional Settings
	ECDA Settings
	Dynamic SQL Settings
	Command Batching Settings

	IBM DB2 for Linux, UNIX, and Windows as Replicate Data Server
	DB2 UDB Replicate Data Servers
	Replication Intrusions and Impacts in DB2 UDB
	DB2 UDB Replicate Database Permissions and Limitations
	Connectivity for DB2 UDB Replicate Database
	DB2 UDB Replicate Database Configuration
	Replication Server Installation
	Function Strings, Error Classes, and User Defined Datatypes

	Connection Profiles
	Class-Level Datatype Translations to RSSD
	Objects in the DB2 UDB Replicate Database and Connection Properties

	Additional Settings

	Parallel DSI Threads for IBM DB2 Replicate Database
	External Commit Control
	Internal Commit Control
	Transaction Serialization Methods
	no_wait
	wait_for_start
	wait_for_commit
	wait_after_commit

	Microsoft SQL Server as Replicate Data Server
	Microsoft SQL Server Replicate Data Servers
	Replication Intrusions and Impacts on Microsoft SQL Server
	Replicate Database Limitations on Microsoft SQL Server
	Microsoft SQL Server Replicate Database Permissions
	Replicate Database Connectivity for Microsoft SQL Server
	Microsoft SQL Server Replicate Database Configuration
	Replication Server Installation
	Function Strings, Error Classes, and User Defined Datatypes

	Connection Profiles
	Class-Level Datatype Translations to RSSD
	Objects in the Microsoft SQL Server Database and Connection Properties

	Additional Settings

	Parallel DSI Threads for Microsoft SQL Server Replicate Database
	External and Internal Commit Control
	Transaction Serialization Methods
	no_wait
	wait_for_start
	wait_for_commit
	wait_after_commit

	Oracle as Replicate Data Server
	Oracle Replicate Data Servers
	Replication Intrusions and Impacts on Oracle
	Oracle Replicate Database Permissions
	Replicate Database Connectivity for Oracle
	Oracle Replicate Database Configuration
	Replication Server Installation
	Function Strings, Error Classes, and User Defined Datatypes

	Connection Profiles
	Class-Level Datatype Translations to RSSD
	Objects in the Oracle Replicate Database and Connection Properties

	Additional Settings
	ECDA Settings
	ExpressConnect Settings
	Command Batching Settings
	Trigger Firing Settings
	Controlling Trigger Firing

	Oracle Flashback Settings
	Dynamic SQL Settings

	Parallel DSI Threads for Oracle Replicate Database
	External and Internal Commit Control
	Transaction Serialization Methods
	no_wait
	wait_for_start
	wait_for_commit
	wait_after_commit

	Sybase IQ as Replicate Data Server
	Real-Time Loading Solution
	RTL Compilation and Bulk Apply
	Net-Change Database
	Monitoring the Net-Change Database

	RTL Processing and Limitations

	Sybase IQ Replicate Data Servers
	Replication Intrusions and Impacts on Sybase IQ
	Replicate Database Connectivity for Sybase IQ
	Sybase IQ Replicate Database Permissions
	Granting Authority to a Maintenance User ID

	Sybase IQ Replicate Database Configuration
	Replication Server Installation
	Creating the Connection to Sybase IQ
	Setting Sybase IQ Database Options

	Enable RTL
	RTL Configuration Parameters
	Enhanced Retry Mechanism
	Memory Consumption Control
	SQT Memory Consumption Control for RTL
	Net-Change Database Size
	Full Incremental Compilation
	Memory Control Parameters and Replication Server Processing

	Multi-Path Replication to Sybase IQ
	Creating Alternate Replicate Connections to Sybase IQ
	Altering or Dropping Alternate Replicate Sybase IQ Connections
	Displaying Replicate Connection Information
	Replication Load Distribution
	Setting Distribution Mode

	Tables with Referential Constraints
	Replication Definitions Creation and Alteration

	Display RTL Information
	System Table Support in Replication Server
	Mixed-Version Support and Backward Compatibility
	Scenario for Replication to Sybase IQ
	Creating Interfaces File Entries
	Creating Test Tables
	Creating the Connection to the Primary and Replicate Databases
	Enabling RTL
	Marking Tables to Prepare for Replication Testing
	Creating Replication Definitions and Subscriptions
	Verifying That RTL Works

	Migration from the Staging Solution to RTL
	Preparing to Migrate from the Staging Solution
	Migrating to the Real-Time Loading Solution
	Cleaning Up After Migration

	Replication Server and Sybase IQ InfoPrimer Integration
	Using the Replication Server and Sybase IQ InfoPrimer Integration
	Base Tables
	Staging Tables
	Insert Staging Table Structure
	Delete Staging Table Structure
	Update Staging Table Structure

	Transformation Stored Procedures

	Parameters
	stage_operations
	dsi_stage_all_ops

	Replication Server Components
	The rs_status Table
	Autocorrection Functions

	Default Datatype Translation
	Unsupported Features

	Heterogeneous Multi-Path Replication
	Parallel Transaction Streams
	Default and Alternate Connections
	Interfaces File Requirements for Sybase IQ
	Dedicated Routes
	Creating Dedicated Routes
	Commands to Manage Dedicated Routes
	Display Dedicated Route Information

	Heterogeneous Multi-Path Replication Scenarios
	Multi-Path Replication from Adaptive Server to Sybase IQ
	Multi-Path Replication from Oracle to Sybase IQ
	Multi-Path Replication from Adaptive Server to Oracle
	Multi-Path Replication from Oracle to Adaptive Server
	Multi-Path Replication from Oracle to Oracle

	Heterogeneous Warm Standby for Oracle
	How a Warm Standby for Oracle Works
	Warm Standby Application

	Warm Standby Requirements and Restrictions
	Function Strings for Maintaining Standby Database
	Replicated Information for an Oracle Warm Standby Application
	Setting Up Warm Standby Databases
	Creating the Logical Connection
	Naming the Logical Connection

	Initializing the Replication Agent for the Active Database
	Adding the Active Database to the Replication System
	Initializing the Standby Database
	Initializing the Replication Agent for the Standby Database
	Creating Connection to the Standby Database
	Resuming Connection to the Active Database and the Standby Database
	Resuming the Replication Agents for the Active and Standby Databases

	Switching the Active and Standby Databases
	Before Switching Active and Standby Databases
	Internal Switching Steps
	After Switching Active and Standby Databases

	Warm Standby Application Monitoring
	Replication Definitions and Subscriptions
	Additional Replication Definitions for Warm Standby Databases
	Subscriptions with Warm Standby Applications

	Upgrade Considerations
	Downgrade Considerations
	Resuming Replication After Downgrade

	Oracle Replicate Databases Resynchronization
	Product Compatibility
	Configuring Database Resynchronization
	Instructing Replication Server to Skip Transactions
	Send the Resync Database Marker to Replication Server
	Send a Resync Marker
	Send a Resync Marker with the init Command

	Obtain a Dump of the Database
	Send the Dump Database Marker to Replication Server
	Monitor DSI Thread Information
	Apply the Dump to a Database to be Resynchronized
	Reinitializing the Replicate Database

	Database Resynchronization Scenarios
	Resynchronize One or More Replicate Databases Directly from a Primary Database
	Resynchronizing Directly from a Primary Database

	Resynchronizing Using a Third-Party Dump Utility
	Resynchronizing Both the Primary and Replicate Databases from the Same Dump
	Resynchronizing the Active and Standby Databases in a Warm Standby Application

	Datatype Translation and Mapping
	DB2 Datatypes
	Adaptive Server to DB2 Datatypes
	DB2 to Adaptive Server Datatypes
	DB2 to Microsoft SQL Server Datatypes
	DB2 to Oracle Datatypes
	Replication Server Datatype Names for DB2

	Microsoft SQL Server Datatypes
	Adaptive Server to Microsoft SQL Server Datatypes
	Microsoft SQL Server to DB2 Datatype
	Microsoft SQL Server to Oracle Datatypes
	Replication Server Datatype Names for Microsoft SQL Server

	Oracle Datatypes
	Adaptive Server to Oracle Datatypes
	Oracle to Adaptive Server Datatypes
	Oracle to DB2 Datatypes
	Oracle to Microsoft SQL Server datatypes
	Replication Server Datatype Names for Oracle

	Materialization
	Types of Materialization
	Heterogeneous Materialization
	Bulk Materialization Options
	Unload Data from a Primary Database
	Datatype Translation
	Load Data Into Replicate Databases
	Atomic Bulk Materialization
	Preparation for Materialization
	Performing Atomic Bulk Materialization

	Nonatomic Bulk Materialization
	Preparation For Materialization
	Performing Nonatomic Bulk Materialization
	Autocorrection

	Heterogeneous Database Reconciliation
	Sybase rs_subcmp Utility
	Database Comparison Application

	Troubleshoot Heterogeneous Replication Systems
	Inbound Queue Problems
	Determining the Reason the Inbound Queue is Not Being Updated

	Outbound Queue Problems
	Determining the Reason the Outbound Queue Is Not Being Updated

	Determining Why Replicate Database Is Not Updated
	HDS Issues and Limitations
	Source Value Exceeds Target Datatype Bounds
	Exact Numeric Datatype Issues
	Numeric Translation and Identity Columns in Microsoft SQL Server

	Troubleshoot Specific Errors
	Updates to rs_lastcommit Fail
	Troubleshooting rs_lastcommit Update Failure

	Expected Datatype Translations Do Not Occur
	Validating UDD and Translation Installation

	Log Transfer Language Generation and Tracing
	Replication Agent for DB2 UDB for z/OS
	Replication Agent

	Reference Implementation for Oracle to Oracle Replication
	Platform Support
	Supported Product Component Versions for Oracle Reference Implementation

	Glossary
	Obtaining Help and Additional Information
	Technical Support
	Downloading Sybase EBFs and Maintenance Reports
	Sybase Product and Component Certifications
	Creating a MySybase Profile
	Accessibility Features

	Index

