
DB-Library™/C Reference Manual

Open Client™
15.7

DOCUMENT ID: DC32600-01-1570-01

LAST REVISED: April 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

DB-Library/C Reference Manual iii

About This Book ... xix

CHAPTER 1 Introducing DB-Library... 1
Client/server architecture ... 1

Types of clients ... 2
Types of servers.. 2

The Open Client and Open Server products.................................... 3
Open Client ... 3
Open Server .. 4
Open Client libraries.. 4
What is in DB-Library/C?... 4
Comparing the library approach to Embedded SQL 5

Data structures for communicating with servers 6
DB-Library/C programming .. 6

DB-Library/C datatypes ... 11
DB-Library/C routines... 12

Initialization.. 13
Command processing ... 15
Results processing .. 16
Message and error handling.. 22
Information retrieval... 24
Browse mode .. 26
Text and image handling ... 28
Datatype conversion.. 29
Process control flow .. 30
Remote procedure call processing.. 30
Registered procedure call processing 31
Gateway passthrough routines.. 33
Datetime and money ... 34
Cleanup ... 35
Secure support .. 35
Miscellaneous routines.. 35
Two-phase commit service special library............................... 36

MIT Kerberos on DB-Library .. 36

Contents

iv Open Client

Sample programs... 37

CHAPTER 2 Routines ... 39
db12hour .. 48
dbadata .. 49
dbadlen .. 52
dbaltbind... 54
dbaltbind_ps... 59
dbaltcolid .. 65
dbaltlen... 66
dbaltop ... 67
dbalttype... 68
dbaltutype... 69
dbanullbind... 70
dbbind .. 72
dbbind_ps... 77
dbbufsize.. 82
dbbylist ... 83
dbcancel... 84
dbcanquery .. 85
dbchange ... 86
dbcharsetconv.. 87
dbclose... 88
dbclrbuf .. 88
dbclropt .. 89
dbcmd .. 91
DBCMDROW ... 92
dbcolbrowse ... 93
dbcollen.. 94
dbcolname.. 95
dbcolsource.. 97
dbcoltype.. 98
dbcoltypeinfo .. 99
dbcolutype.. 100
dbconvert ... 102
dbconvert_ps.. 106
DBCOUNT ... 112
DBCURCMD .. 113
DBCURROW.. 114
dbcursor ... 115
dbcursorbind .. 117
dbcursorclose... 119
dbcursorcolinfo... 120
dbcursorfetch ... 121

Contents

DB-Library/C Reference Manual v

dbcursorinfo ... 123
dbcursoropen ... 124
dbdata .. 128
dbdate4cmp ... 129
dbdate4zero ... 130
dbdatechar ... 131
dbdatecmp ... 132
dbdatecrack.. 133
dbdatename ... 135
dbdateorder.. 138
dbdatepart .. 139
dbdatezero ... 140
dbdatlen ... 141
dbdayname .. 142
DBDEAD .. 143
dberrhandle .. 144
dbexit.. 148
dbfcmd ... 149
DBFIRSTROW ... 152
dbfree_xlate ... 153
dbfreebuf .. 154
dbfreequal .. 155
dbfreesort ... 155
dbgetchar ... 157
dbgetcharset .. 157
dbgetloginfo.. 158
dbgetlusername ... 160
dbgetmaxprocs... 161
dbgetnatlang .. 162
dbgetoff .. 162
dbgetpacket.. 164
dbgetrow .. 165
DBGETTIME .. 167
dbgetuserdata .. 167
dbhasretstat ... 168
dbinit... 170
DBIORDESC.. 170
DBIOWDESC ... 172
DBISAVAIL... 173
dbisopt.. 173
DBLASTROW .. 174
dbload_xlate... 175
dbloadsort .. 176
dblogin.. 177

Contents

vi Open Client

dbloginfree ... 179
dbmny4add .. 179
dbmny4cmp.. 180
dbmny4copy... 181
dbmny4divide ... 182
dbmny4minus... 183
dbmny4mul... 184
dbmny4sub... 185
dbmny4zero ... 186
dbmnyadd .. 187
dbmnycmp.. 188
dbmnycopy... 189
dbmnydec... 190
dbmnydivide ... 191
dbmnydown.. 192
dbmnyinc.. 194
dbmnyinit .. 194
dbmnymaxneg.. 196
dbmnymaxpos.. 197
dbmnyminus... 198
dbmnymul... 199
dbmnyndigit .. 200
dbmnyscale .. 206
dbmnysub... 208
dbmnyzero ... 209
dbmonthname .. 209
DBMORECMDS... 210
dbmoretext ... 211
dbmsghandle.. 212
dbname .. 216
dbnextrow... 217
dbnpcreate ... 219
dbnpdefine ... 222
dbnullbind... 224
dbnumalts... 225
dbnumcols.. 225
dbnumcompute .. 227
DBNUMORDERS... 227
dbnumrets .. 228
dbopen ... 229
dbordercol .. 233
dbpoll.. 234
dbprhead .. 239
dbprrow .. 240

Contents

DB-Library/C Reference Manual vii

dbprtype ... 241
dbqual .. 242
DBRBUF .. 246
dbreadpage .. 247
dbreadtext .. 248
dbrecftos .. 250
dbrecvpassthru... 251
dbregdrop... 253
dbregexec .. 254
dbreghandle ... 256
dbreginit ... 260
dbreglist.. 262
dbregnowatch... 263
dbregparam.. 265
dbregwatch... 269
dbregwatchlist .. 274
dbresults... 275
dbretdata .. 278
dbretlen .. 282
dbretname .. 283
dbretstatus ... 285
dbrettype .. 287
DBROWS ... 289
DBROWTYPE .. 289
dbrpcinit.. 290
dbrpcparam .. 292
dbrpcsend .. 294
dbrpwclr.. 295
dbrpwset... 296
dbsafestr .. 297
dbsechandle... 299
dbsendpassthru.. 303
dbservcharset... 305
dbsetavail ... 306
dbsetbusy... 306
dbsetconnect.. 309
dbsetdefcharset.. 310
dbsetdeflang... 311
dbsetidle... 312
dbsetifile ... 313
dbsetinterrupt ... 314
DBSETLAPP .. 317
DBSETLCHARSET .. 318
DBSETLENCRYPT .. 319

Contents

viii Open Client

DBSETLHOST ... 320
DBSETLMUTUALAUTH... 321
DBSETLNATLANG .. 322
DBSETLNETWORKAUTH ... 322
dbsetloginfo.. 323
dbsetlogintime .. 325
DBSETLPACKET... 326
DBSETLPWD... 327
DBSETLSERVERPRINCIPAL ... 328
DBSETLUSER ... 329
dbsetmaxprocs... 329
dbsetnull ... 330
dbsetopt ... 332
dbsetrow... 334
dbsettime.. 336
dbsetuserdata .. 336
dbsetversion... 339
dbspid... 340
dbspr1row .. 341
dbspr1rowlen.. 343
dbsprhead .. 344
dbsprline... 346
dbsqlexec ... 347
dbsqlok... 349
dbsqlsend... 354
dbstrbuild.. 355
dbstrcmp .. 358
dbstrcpy.. 359
dbstrlen .. 361
dbstrsort ... 362
dbtabbrowse... 363
dbtabcount ... 364
dbtabname ... 365
dbtabsource ... 366
DBTDS ... 368
dbtextsize ... 368
dbtsnewlen ... 369
dbtsnewval ... 370
dbtsput ... 371
dbtxptr .. 372
dbtxtimestamp.. 374
dbtxtsnewval .. 375
dbtxtsput... 375
dbuse ... 376

Contents

DB-Library/C Reference Manual ix

dbvarylen.. 377
dbversion.. 378
dbwillconvert .. 379
dbwritepage.. 381
dbwritetext.. 382
dbxlate.. 387
Errors ... 389
Options... 407
Types ... 412

CHAPTER 3 Bulk Copy Routines.. 417
Introduction to bulk copy .. 417

Transferring data into the database 417
Transferring data out of the database to a flat file................. 419

List of bulk copy routines.. 420
bcp_batch... 421
bcp_bind... 422
bcp_colfmt.. 426
bcp_colfmt_ps .. 429
bcp_collen .. 434
bcp_colptr... 435
bcp_columns .. 435
bcp_control... 436
bcp_done ... 439
bcp_exec.. 439
bcp_getl.. 441
bcp_init ... 441
bcp_moretext ... 444
bcp_options.. 447
bcp_readfmt ... 448
bcp_sendrow.. 448
BCP_SETL... 450
bcp_setxlate ... 450
bcp_writefmt... 451

CHAPTER 4 Two-Phase Commit Service... 453
Programming distributed transactions.. 453
The commit service and the application program 454
The probe process ... 456
Two-phase commit routines ... 456
Specifying the commit server ... 457
Two-phase commit sample program.. 458
Program notes.. 464

Contents

x Open Client

Program note 1.. 464
Program note 2.. 464
Program note 3.. 465
Program note 4.. 465
Program note 5.. 466
Program note 6.. 466
Program note 7.. 467
Program note 8.. 467

abort_xact .. 468
build_xact_string .. 468
close_commit ... 469
commit_xact ... 470
open_commit.. 470
remove_xact... 471
scan_xact ... 472
start_xact.. 472
stat_xact... 473

APPENDIX A Cursors... 475
Cursor overview ... 475

DB-Library cursor capability .. 475
Differences between DB-Library cursors and browse mode . 476
Differences between DB-Library and Client-Library cursors . 476

Sensitivity to change .. 477
Static cursor .. 478
Keyset-driven cursor ... 478
Dynamic cursor ... 479
Concurrency control .. 479

DB-Library cursor functions.. 480
Holding locks.. 480
Stored procedures used by DB-Library cursors 481

APPENDIX B DB-Library Error Messages .. 483
20001 ... 483
20002 ... 483
20003 ... 483
20004 ... 484
20005 ... 484
20006 ... 484
20008 ... 485
20009 ... 485
20010 ... 485
20011 ... 486

DB-Library/C Reference Manual xi

20012.. 486
20013.. 486
20014.. 487
20015.. 487
20016.. 487
20017.. 488
20018.. 488
20019.. 488
20020.. 489
20021.. 489
20022.. 490
20023.. 490
20024.. 490
20025.. 491
20026.. 491
20027.. 491
20028.. 492
20029.. 492
20030.. 492
20031.. 493
20033.. 493
20034.. 493
20035.. 494
20036.. 494
20037.. 494
20038.. 495
20039.. 495
20040.. 495
20041.. 496
20042.. 496
20043.. 496
20044.. 497
20045.. 497
20046.. 497
20047.. 498
20048.. 498
20049.. 498
20050.. 499
20051.. 499
20052.. 499
20053.. 500
20054.. 500
20055.. 500
20056.. 501

xii Open Client

20060.. 501
20061.. 501
20062.. 502
20063.. 502
20064.. 502
20065.. 503
20066.. 503
20067.. 503
20068.. 504
20069.. 504
20070.. 504
20071.. 505
20072.. 505
20073.. 505
20074.. 506
20075.. 506
20076.. 506
20077.. 507
20078.. 507
20079.. 507
20080.. 508
20081.. 508
20082.. 508
20083.. 509
20084.. 509
20085.. 509
20086.. 510
20087.. 510
20088.. 510
20091.. 511
20092.. 511
20093.. 512
20094.. 512
20095.. 512
20096.. 513
20097.. 513
20098.. 513
20099.. 514
20100.. 514
20101.. 514
20102.. 515
20103.. 515
20104.. 515
20105.. 516

DB-Library/C Reference Manual xiii

20106.. 516
20107.. 516
20108.. 517
20109.. 517
20110.. 517
20111.. 518
20112.. 518
20113.. 518
20114.. 519
20115.. 519
20116.. 519
20117.. 520
20118.. 520
20119.. 521
20120.. 521
20121.. 521
20122.. 522
20123.. 522
20124.. 522
20125.. 523
20126.. 523
20127.. 523
20128.. 524
20129.. 524
20130.. 524
20131.. 525
20132.. 525
20133.. 525
20134.. 526
20135.. 526
20136.. 526
20137.. 527
20138.. 527
20139.. 527
20140.. 528
20141.. 528
20142.. 528
20143.. 529
20144.. 529
20145.. 529
20146.. 530
20147.. 530
20148.. 530
20149.. 531

xiv Open Client

20150.. 531
20151.. 531
20152.. 532
20153.. 532
20154.. 532
20155.. 533
20156.. 533
20157.. 533
20158.. 534
20159.. 534
20160.. 534
20161.. 535
20162.. 535
20163.. 535
20164.. 536
20165.. 536
20166.. 536
20167.. 537
20168.. 537
20169.. 537
20170.. 538
20171.. 538
20172.. 538
20173.. 539
20174.. 539
20175.. 539
20176.. 540
20177.. 540
20178.. 540
20179.. 541
20180.. 541
20181.. 541
20182.. 542
20183.. 542
20184.. 542
20185.. 543
20186.. 543
20187.. 543
20188.. 544
20189.. 544
20190.. 544
20191.. 545
20192.. 545
20193.. 545

DB-Library/C Reference Manual xv

20194.. 546
20195.. 546
20196.. 546
20197.. 547
20198.. 547
20199.. 547
20200.. 548
20201.. 548
20202.. 548
20203.. 549
20204.. 549
20205.. 549
20206.. 550
20207.. 550
20208.. 550
20209.. 551
20210.. 551
20211.. 551
20212.. 552
20213.. 552
20214.. 552
20215.. 553
20216.. 553
20217.. 553
20218.. 554
20219.. 554
20220.. 554
20221.. 555
20222.. 555
20223.. 555
20224.. 556
20225.. 556
20226.. 556
20227.. 557
20228.. 557
20229.. 557
20230.. 558
20231.. 558
20232.. 558
20233.. 559
20234.. 559
20235.. 559
20236.. 560
20237.. 560

xvi Open Client

20238.. 560
20239.. 561
20240.. 561
20241.. 561
20242.. 562
20243.. 562
20244.. 562
20245.. 563
20246.. 563
20247.. 564
20248.. 564
20249.. 564
20250.. 565
20251.. 565
20252.. 565
20253.. 566
20254.. 566
20255.. 566
20256.. 567
20257.. 567
20258.. 567
20259.. 568
20260.. 568
20261.. 568
20262.. 569
20263.. 569
20264.. 569
20265.. 570
20266.. 570
20267.. 571
20268.. 571
20269.. 571
20270.. 572
20271.. 572
20272.. 572
20273.. 573
20274.. 573
20275.. 573
20276.. 574
20277.. 574
20278.. 574
20279.. 575
20280.. 575
20282.. 575

DB-Library/C Reference Manual xvii

20283.. 576
20284.. 576
20285.. 576
20286.. 577
20287.. 577
20288.. 577
20289.. 578
20290.. 578
20291.. 578
20292.. 579
20293.. 579
20294.. 579
20295.. 580
20296.. 580
20297.. 580
20298.. 581
20299.. 581
20300.. 581
20301.. 582
20302.. 582

Index.. 583

xviii Open Client

DB-Library/C Reference Manual xix

About This Book

This book contains reference information for the C version of Open
Client™ DB-Library™.

Audience This book is intended to serve as a reference manual for programmers who
are writing DB-Library applications. It is written for application
programmers familiar with the C programming language.

How to use this book This book contains these chapters:

• Chapter 1, “Introducing DB-Library,” contains a brief introduction to
DB-Library.

• Chapter 2, “Routines,”contains specific information about each
DB-Library routine, such as what parameters the routine takes and
what it returns.

• Chapter 3, “Bulk Copy Routines,” contains an introduction to bulk
copy and specific information about each bulk copy routine.

• Chapter 4, “Two-Phase Commit Service,” contains a brief
description of two-phase commit service and specific information
about each two-phase commit service routine.

• Appendix A, “Cursors,” introduces DB-Library’s cursor routines.

• Appendix B, “DB-Library Error Messages,” contains information
about DB-Library error messages.

Related documents You can see these books for more information:

• The Open Server and SDK New Features for Windows, Linux, and
UNIX, which describes new features available for Open Server and
the Software Developer’s Kit. This document is revised to include
new features as they become available.

• The Open Server Release Bulletin for your platform contains
important last-minute information about Open Server.

• The Software Developer’s Kit Release Bulletin for your platform
contains important last-minute information about Open Client™ and
SDK.

xx Open Client

• The jConnect™ for JDBC™ Release Bulletin contains important last-
minute information about jConnect.

• The Open Client and Open Server Configuration Guide for your platform
contains information about configuring your system to run Open Client
and Open Server.

• The Open Client Client-Library/C Programmers Guide contains
information on how to design and implement Client-Library applications.

• The Open Client Client-Library/C Reference Manual contains reference
information for Open Client Client-Library™.

• The Open Server Server-Library/C Reference Manual contains reference
information for Open Server Server-Library.

• The Open Client and Open Server Common Libraries Reference Manual
contains reference information for CS-Library, which is a collection of
utility routines that are useful in both Client-Library and Server-Library
applications.

• The Open Client and Open Server Programmers Supplement for your
platform contains platform-specific information for programmers using
Open Client and Open Server. This document includes information about:

• Compiling and linking an application

• The sample programs that are included with Open Client and Open
Server

• Routines that have platform-specific behaviors

• The Installation and Release Bulletin Sybase® SDK DB-Library Kerberos
Authentication Option contains information about installing and enabling
the MIT Kerberos security mechanism to be used on DB-Library. DB-
Library only supports network authentication and mutual authentication in
the Kerberos security mechanism.

• The Open Client and Open Server International Developers Guide
provides information about creating internationalized and localized
applications.

• The Open Client Embedded SQL™/C Programmers Guide explains how
to use Embedded SQL and the Embedded SQL precompiler with C
applications.

• The Open Client Embedded SQL™/COBOL Programmers Guide explains
how to use Embedded SQL and the Embedded SQL precompiler with
COBOL applications.

 About This Book

DB-Library/C Reference Manual xxi

• The jConnect for JDBC Programmers Reference describes the jConnect
for JDBC product and explains how to access data stored in relational
database management systems.

• The Adaptive Server® Enterprise ADO.NET Data Provider Users Guide
provides information on how to access data in Adaptive Server using any
language supported by .NET, such as C#, Visual Basic .NET, C++ with
managed extension, and J#.

• The Adaptive Server Enterprise ODBC Driver by Sybase® Users Guide
for Microsoft Windows and UNIX, provides information on how to access
data from Adaptive Server on Microsoft Windows and UNIX platforms,
using the Open Database Connectivity (ODBC) Driver.

• The Adaptive Server Enterprise OLE DB Provider by Sybase Users Guide
for Microsoft Windows provides information on how to access data from
Adaptive Server on Microsoft Windows platforms, using the Adaptive
Server OLE DB Provider.

• The Adaptive Server Enterprise Database Driver for Perl Programmers
Guide provides information for Perl developers to connect to an Adaptive
Server database and query or change information using a Perl script.

• The Adaptive Server Enterprise extension module for PHP Programmers
Guide provides information for PHP developers to execute queries against
an Adaptive Server database.

• The Adaptive Server Enterprise extension module for Python
Programmers Guide provides information about Sybase-specific Python
interface that can be used to execute queries against an Adaptive Server
database.

Other sources of
information

Use the Sybase Product Documentation Web site to learn more about your
product:

• The Sybase Product Documentation Web site is accessible using a
standard Web browser. In addition to product documentation, you will find
links to EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Documentation Web site, go to Product
Documentation at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

xxii Open Client

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

 About This Book

DB-Library/C Reference Manual xxiii

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions Table 1: Syntax conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Open Client and Open Server documentation has been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

Key Definition

command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.

variable Variables, or words that stand for values that you fill in, are
in italics.

{ } Curly braces indicate that you choose at least one of the
enclosed options. Do not include the braces in the command.

[] Brackets mean choosing one or more of the enclosed items is
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| The vertical bar means you can select only one of the options
shown.

, The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

xxiv Open Client

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the documentation or online help, please
have the designated person contact Sybase Technical Support or the Sybase
subsidiary in your area.

DB-Library/C Reference Manual 1

C H A P T E R 1 Introducing DB-Library

This chapter gives an overview of DB-Library.

Client/server architecture
Client/server architecture divides the work of computing between
“clients” and “servers.”

Clients make requests of servers and process the results of those requests.
For example, a client application might request data from a database
server. Another client application might send a request to an
environmental control server to lower the temperature in a room.

Servers respond to requests by returning data or other information to
clients, or by taking some action. For example, a database server returns
tabular data and information about that data to clients, and an electronic
mail server directs incoming mail toward its final destination.

Client/server architecture has several advantages over traditional program
architectures:

• Application size and complexity can be significantly reduced because
common services are handled in a single location, a server. This
simplifies client applications, reduces duplicate code, and makes
application maintenance easier.

Topic Page
Client/server architecture 1

The Open Client and Open Server products 3

Data structures for communicating with servers 6

DB-Library/C programming 6

DB-Library/C routines 12

MIT Kerberos on DB-Library 36

Sample programs 37

Client/server architecture

2 Open Client

• Client/server architecture facilitates communication between varied
applications. Client applications that use dissimilar communications
protocols cannot communicate directly, but can communicate through a
server that “speaks” both protocols.

• Client/server architecture allows applications to be developed with
distinct components, which can be modified or replaced without affecting
other parts of the application.

Types of clients
A client is any application that makes requests of a server. Clients include:

• Stand-alone utilities provided with Adaptive Server Enterprise, such as
isql and bcp

• Applications written using Open Client libraries

• Applications written using Open Client Embedded SQL™

Types of servers
The Sybase product line includes servers and tools for building servers:

• Adaptive Server Enterprise is a database server. Adaptive Server
Enterprise manages information stored in one or more databases.

• Open Server provides the tools and interfaces needed to create a custom
server, also called an “Open Server application.”

An Open Server application can be any type of server. For example, an Open
Server application can perform specialized calculations, provide access to real
time data, or interface with services such as electronic mail. An Open Server
application is created individually, using the building blocks provided by the
Open Server Server-Library.

Adaptive Server Enterprise and Open Server applications are similar in some
ways:

• Adaptive Server Enterprise and Open Server applications are both servers,
responding to client requests.

• Clients communicate with both Adaptive Server Enterprise and Open
Server applications through Open Client products.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 3

But they also differ:

• An application programmer must create an Open Server application using
Server-Library’s building blocks and supplying custom code. Adaptive
Server Enterprise is complete and does not require custom code.

• An Open Server application can be any kind of server, and can be written
to understand any language. Adaptive Server Enterprise is a database
server, and understands only Transact-SQL.

• An Open Server can communicate with “foreign” applications and servers
that are not based on the TDS protocol, as well as Sybase applications and
servers. Adaptive Server Enterprise can communicate directly only with
Sybase applications and servers, although Adaptive Server Enterprise can
communicate with foreign applications and servers by using an Open
Server gateway application as an intermediary.

The Open Client and Open Server products
Sybase provides two families of products to allow customers to write client and
server application programs.: Open Client and Open Server.

Open Client
Open Client provides customer applications, third-party products, and other
Sybase products with the interfaces needed to communicate with Adaptive
Server Enterprise and Open Server.

Open Client can be thought of as having two components: programming
interfaces and network services.

The programming interfaces component of Open Client is made up of libraries
designed for use in writing client applications: Client-Library, DB-Library, and
CS-Library. (Both Open Client and Open Server include CS-Library, which
contains utility routines that are useful to both client and server applications.

Open Client network services include Net-Library, which provides support for
specific network protocols, such as TCP/IP.

The Open Client and Open Server products

4 Open Client

Open Server
Open Server provides the tools and interfaces needed to create custom server
applications. Like Open Client, Open Server has a programming interfaces
component and a network services component.

The programming interfaces component of Open Server contains Server-
Library and CS-Library. (Both Open Client and Open Server include CS-
Library, which contains utility routines that are useful to both client and server
applications.)

Open Server network services are generally transparent.

Open Client libraries
The libraries that make up Open Client are:

• DB-Library, a collection of routines for use in writing client applications.
DB-Library includes a bulk copy library and the two-phase commit special
library. DB-Library provides source-code compatibility for older Sybase
applications.

• Client-Library, a collection of routines for use in writing client
applications. Client-Library is a library designed to accommodate cursors
and other advanced features.

• CS-Library, a collection of utility routines that are useful to both client and
server applications. All Client-Library applications will include at least
one call to CS-Library, because Client-Library routines use a structure
which is allocated in CS-Library.

What is in DB-Library/C?

Note DB-Library provides source code compatibility for older Sybase
applications. Sybase encourages programmers to implement new applications
with Client-Library or Embedded SQL.

DB-Library/C includes C routines and macros that allow an application to
interact with Adaptive Server Enterprise and Open Server applications.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 5

It includes routines that send commands to Adaptive Server Enterprise and
Open Server applications and others that process the results of those
commands. Other routines handle error conditions, perform data conversion,
and provide a variety of information about the application’s interaction with a
server.

DB-Library/C also contains several header files that define structures and
values used by the routines. Versions of DB-Library have been developed for
a number of languages besides C, including COBOL, FORTRAN, Ada, and
Pascal.

Comparing the library approach to Embedded SQL
Either an Open Client library application or an Embedded SQL application can
be used to send SQL commands to Adaptive Server Enterprise.

Generally, Embedded SQL is a superset of Transact-SQL. An Embedded SQL
application includes Embedded SQL commands intermixed with the
application’s host language statements. The host language precompiler
processes the Embedded SQL commands into calls to Client-Library routines
and leaves the existing host-language statements as is. All version 10.0 or later
precompilers use a runtime library composed solely of documented Client-
Library and CS-Library calls.

In a sense, then, the precompiler transforms an Embedded SQL application into
a Client-Library application.

An Open Client library application sends SQL commands through library
routines, and does not require a precompiler.

Generally, an Embedded SQL application is easier to write and debug, but a
library application can take fuller advantage of the flexibility and power of
Open Client routines.

Data structures for communicating with servers

6 Open Client

Data structures for communicating with servers
A DB-Library/C application communicates with a server through one or more
DBPROCESS structures. Through the DBPROCESS, commands are sent to
the server and query results are returned to the application. One of the first
routines an application typically calls is dbopen, which logs the application into
the server and allocates and initializes a DBPROCESS. This DBPROCESS
then serves as a connection between the application and the server. Most DB-
Library/C routines require a DBPROCESS as the first parameter.

An application can have multiple open DBPROCESSes, connected to one or
more servers. For instance, an application that has to perform database updates
in the midst of processing the results of a query needs a separate DBPROCESS
for each task. As another example, to select data from one server and update a
database on another server, an application needs two DBPROCESSes—one for
each server. Each DBPROCESS in an application functions independently of
any other DBPROCESS.

The DBPROCESS structure points to a command buffer that contains language
commands for transmission to the server. It also points to result rows returned
from the server—either single rows or buffers of rows if buffering has been
specified. In addition, it points to a message buffer that contains error and
informational messages returned from the server.

The DBPROCESS also contains a wealth of information on various aspects of
server interaction. Many of the DB-Library/C routines deal with extracting
information from the DBPROCESS. Applications should access and
manipulate components of the DBPROCESS structure only through DB-
Library/C routines, and not directly.

One other important structure is the LOGINREC. It contains typical login
information, such as the user name and password, which the dbopen routine
uses when logging into a server. DB-Library/C routines can specify the
information in the LOGINREC.

DB-Library/C programming
An application programmer writes a DB-Library program, using calls to DB-
Library routines to set up DB-Library structures, connect to servers, send
commands, process results, and clean up. A DB-Library program is compiled
and run in the same way as any other C language program.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 7

Programming with DB-Library/C typically involves a few basic steps:

1 Logging into a server.

2 Placing language commands into a buffer and sending them to the server.

3 Processing the results, if any, returned from the server, one command at a
time and one result row at a time. The results can be placed in program
variables, where they can be manipulated by the application.

4 Handling DB-Library/C errors and server messages.

5 Closing the connection with the server.

The example below shows the basic framework of many DB-Library/C
applications. The program opens a connection to a Adaptive Server Enterprise,
sends a Transact-SQL select command to the server, and processes the set of
rows resulting from the select. Note that this program does not include the error
or message handling routines; those routines are illustrated in the sample
programs included with DB-Library.

 #include <sybfront.h>
 #include <sybdb.h>
 #include <syberror.h>

 /* Forward declarations of the error handler and message
 ** handler.
 */
 interr_handler();
 intmsg_handler();

 main()
 {
 DBPROCESS *dbproc; /* The connection with */
 /* Adaptive Server Enterprise */
 LOGINREC *login; /* The login information */
 DBCHAR name[40];
 DBCHAR city[20];
 RETCODE return_code;

 /* Initialize DB-Library */
 if (dbinit() == FAIL)
 exit(ERREXIT);

 /*
 ** Install user-supplied error-handling and message-
 ** handling routines. The code for these is omitted
 ** from this example for conciseness.

DB-Library/C programming

8 Open Client

 */
 dberrhandle(err_handler);
 dbmsghandle(msg_handler);

 /* Get a LOGINREC */
 login = dblogin();
 DBSETLPWD(login, "server_password");
 DBSETLAPP(login, "example");

 /* Get a DBPROCESS structure for communication */
 /* with Adaptive Server Enterprise. */
 dbproc = dbopen(login, NULL);

 /*
 ** Retrieve some columns from the "authors" table
 ** in the "pubs2" database.
 */

 /* First, put the command into the command buffer. */
 dbcmd(dbproc, "select au_lname, city from
 pubs2..authors");
 dbcmd(dbproc, "
 where state = ’CA’ ");

 /*
 ** Send the command to Adaptive Server Enterprise and start
execution
 */
 dbsqlexec(dbproc);

 /* Process the command */
 while ((return_code = dbresults(dbproc)) !=
 NO_MORE_RESULTS)
 {
 if (return_code == SUCCEED)
 {
 /* Bind results to program variables. */
 dbbind(dbproc, 1, STRINGBIND, (DBINT)0, name);
 dbbind(dbproc, 2, STRINGBIND, (DBINT)0, city);

 /* Retrieve and print the result rows. */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 printf ("%s: %s\n", name, city);
 }
 }

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 9

 }

 /* Close the connection to Adaptive Server Enterprise */
 dbexit();
 }

The example illustrates features common to most DB-Library/C applications:

• Header files – Two header files, sybfront.h and sybdb.h, are required in all
source files that contain calls to DB-Library/C routines. sybfront.h must
appear first in the file. This file defines symbolic constants such as
function return values, described in the reference pages in Chapter 2,
“Routines” and the exit values STDEXIT and ERREXIT. These exit
values can be used as the argument for the C standard library function exit.
Since they are defined appropriately for the operating system running the
program, their use provides a system-independent approach to exiting the
program. sybfront.h also includes type definitions for datatypes that can be
used in program variable declarations. These datatypes are described later.

sybdb.h contains additional definitions, most of which are meant to be
used only by the DB-Library/C routines and should not be directly
accessed by the program. Of chief importance in sybdb.h is the definition
of the DBPROCESS structure. As discussed earlier, the DBPROCESS
structure should be manipulated only through DB-Library/C routines; you
should not access its components directly. To ensure compatibility with
future releases of DB-Library/C, use the contents of sybdb.h only as
documented in the reference pages in Chapter 2, “Routines.”

The third header file in the example, syberror.h, contains error severity
values and should be included if the program refers to those values.

• dbinit – This routine initializes DB-Library/C. It must be the first DB-
Library/C routine in the program. Not all DB-Library/C environments
currently require the dbinit call. However, to ensure future compatibility
and portability, you should include this call at the start of all DB-Library/C
programs.

• dberrhandle and dbmsghandle – dberrhandle installs a user-supplied error-
handling routine, which gets called automatically whenever the
application encounters a DB-Library/C error. Similarly, dbmsghandle
installs a message-handling routine, which gets called in response to
informational or error messages returned from the server. The error and
message handling routines are user-supplied. Sample handlers have not
been supplied with this example, but are included with the sample
programs provided with DB-Library. See the Open Client and Open
Server Programmers Supplement for your platform.

DB-Library/C programming

10 Open Client

• dblogin – This routine allocates a LOGINREC structure, which DB-
Library/C will use to log in to the server. The two macros that follow set
certain components of the LOGINREC. DBSETLUSER and DBSETLPWD
set the user name and password that DB-Library/C will use when logging
in. DBSETLAPP sets the name of the application, which will appear in
Adaptive Server Enterprise’s sysprocesses table. Routines are available
for setting other aspects of the LOGINREC. However, in most
environments these routines are optional; the LOGINREC contains
default values for each of the values they set.

• dbopen – The dbopen routine opens a connection between the application
and a server. It uses the LOGINREC supplied by dblogin to log in to the
server. It returns a DBPROCESS structure, which serves as the conduit for
information between the application and the server. After this routine has
been called, the application is connected with Adaptive Server Enterprise
and can now send Transact-SQL commands to Adaptive Server Enterprise
and process any results.

• dbcmd – This routine fills the command buffer with Transact-SQL
commands, which can then be sent to Adaptive Server Enterprise. Each
succeeding call to dbcmd simply adds the supplied text to the end of any
text already in the buffer. It is the programmer’s responsibility to supply
necessary blanks between words, such as the blank at the beginning of the
text in the second dbcmd call in the example. Multiple commands can be
included in the buffer. This example only shows how to send and process
a single command, but DB-Library/C is designed to allow an application
to send multiple commands to a server and process each command’s set of
results separately.

• dbsqlexec – This routine executes the command buffer; that is, it sends the
contents of the buffer to Adaptive Server Enterprise, which parses and
executes them.

• dbresults – This routine gets the results of the current Transact-SQL
command ready for processing. In this case, the buffer contains a single
command that returns rows, so the program is required to call dbresults one
time. dbresults is called in a loop, however, because it is good
programming practice to do so. It is recommended that dbresults always be
called in a loop, as it is in this example, even when it is not strictly
necessary.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 11

• dbbind – dbbind binds result columns to program variables. In the example,
the first call to dbbind binds the first result column to the program variable
city. In other words, when the program reads a result row by calling
dbnextrow, the contents of the first result column (au_lname) will get
placed in the program variable name. The second dbbind call binds the
second result column to the variable city.

The bind type of both bindings is STRINGBIND, one of several binding
types available for character data. The binding type must correspond to the
datatype of the specified program variable. In this example, the variable
has a DBCHAR datatype, a DB-Library/C-defined datatype that accepts a
STRINGBIND result. By means of the binding type parameter, dbbind
supports a wide variety of type conversions, allowing the datatype of the
receiving variable to differ from the datatype of the result column.

• dbnextrow – This routine reads a row and places the results in the program
variables specified by the earlier dbbind calls. Each successive call to
dbnextrow reads another result row, until the last row has been read and
NO_MORE_ROWS is returned. Processing of the results must take place
inside the dbnextrow loop, because each call to dbnextrow overwrites the
earlier values in the program variables. This sample program merely prints
each row’s contents.

• dbexit – This routine closes the server connection and deallocates the
DBPROCESS. It also cleans up any structures initialized by dbinit. It must
be the last DB-Library/C routine in the program.

Although DB-Library/C contains a great number of routines, much can be
accomplished with just the few routines shown in this example.

DB-Library/C datatypes
DB-Library/C defines datatypes for Adaptive Server Enterprise data. These
datatypes begin with “SYB” (for example, SYBINT4, SYBCHAR,
SYBMONEY). Various routines require these datatypes as parameters. DB-
Library/C and Server-Library/C also provide type definitions for use in
program variable declarations. These types begin with the prefix “DB” (for
example, DBINT, DBCHAR, DBMONEY, and so on) for DB-Library/C, and
“SRV_” for Server-Library/C (for example, SRV_INT4, SRV_CHAR,
SRV_MONEY). By using them, you ensure that your program variables will
be compatible.

DB-Library/C routines

12 Open Client

See Types on page 412 for a list of Adaptive Server Enterprise datatypes and
corresponding DB-Library/C program variable types. See the Open Server
Server-Library/C Reference Manual for a list of Server-Library datatypes.

The dbconvert_ps routine provides a way to convert data from one server
datatype to another. It supports conversion between most datatypes. Since
Adaptive Server Enterprise and Open Server datatypes correspond directly to
the DB-Library/C datatypes, you can use dbconvert_ps widely within your
application. The routines that bind server result columns to program
variables—dbbind and dbaltbind—also provide type conversion.

DB-Library/C routines
The DB-Library/C routines and macros handle a large variety of tasks, which
are divided in this section into a number of categories:

• Initialization

• Command processing

• Results processing

• Message and error handling

• Information retrieval

• Browse mode

• Text and image handling

• Datatype conversion

• Process control flow

• Remote procedure call processing

• Registered procedure call processing

• Gateway passthrough routines

• Datetime and money

• Cleanup

• Secure support

• Miscellaneous routines

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 13

The routines and macros are described in individual reference pages in Chapter
2, “Routines.” They all begin with the prefix “db.” The routines are named
with lowercase letters; the macros are capitalized.

In addition, DB-Library/C includes two special libraries:

• Bulk Copy, described in Chapter 3, “Bulk Copy Routines”

• Two-Phase Commit Service, described in Chapter 4, “Two-Phase Commit
Service”

The bulk copy routines begin with the prefix “bcp.” The two-phase commit
routines have no standard prefix.

Initialization
These routines set up and define the connection between the application
program and a server. They handle such tasks as allocating and defining a
LOGINREC structure, opening a connection to a server, and allocating a
DBPROCESS structure. Only a few of the routines are absolutely necessary in
every DB-Library/C program; in particular, an application requires dbinit,
dblogin, and dbopen. The lists below specify the initialization routines in the
approximate order in which a program is likely to call them.

Initializing DB-Library/C

These are the top level routines that set up DB-Library’s internal environment:

• dbinit – initializes underlying structures used by DB-Library/C.

• dbsetversion – specifies a DB-Library version level.

• dbsetmaxprocs – sets the maximum number of simultaneously open
DBPROCESS structures.

• dbgetmaxprocs – indicates the current maximum number of
simultaneously open DBPROCESS structures.

Setting up the LOGINREC

These routines place data in a LOGINREC. The LOGINREC contains the user
information that DB-Library sends to the server when the program calls
dbopen to open a connection.

• dblogin – allocates a LOGINREC structure for subsequent use by dbopen.

DB-Library/C routines

14 Open Client

• DBSETLUSER – sets the server user name in the LOGINREC.

• DBSETLPWD – sets the server password in the LOGINREC.

• DBSETLAPP – sets the application name in the LOGINREC.

• DBSETLHOST – sets the host name in the LOGINREC.

• DBSETLCHARSET – sets the character set in the LOGINREC.

• DBSETLPACKET – sets the Tabular Data Stream™ (TDS) packet size for
an application.

• dbgetpacket – returns the current TDS packet size.

• dbrpwset – adds a remote password to a LOGINREC structure. The server
will use this password when it performs a remote procedure call on another
server.

• dbrpwclr – clears all remote passwords from a LOGINREC structure.

• dbloginfree – frees a LOGINREC structure.

Establishing a server connection

The application calls the following routines to set up and open a connection to
a remote server:

• dbsetifile – specifies the interfaces file that dbopen will use to connect to a
server.

• dbsetlogintime – sets the number of seconds DB-Library/C will wait for a
server to respond to a request by dbopen for a DBPROCESS connection.

• dbopen – sets up communication with the network, logs into a server using
the LOGINREC, initializes any options specified in the LOGINREC, and
allocates a DBPROCESS. An application can open multiple connections
to a server, each connection having its own DBPROCESS. An application
can also open multiple connections to multiple servers.

• dbuse – sets the current database. This routine is equivalent to the
Transact-SQL use command and can be called repeatedly in an
application, any time when the connection is open.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 15

Command processing
An application can communicate with a server through language commands.
For Adaptive Server Enterprise, the language is Transact-SQL. For Open
Server, the language is whatever the Open Server has been programmed to
understand. The application enters the commands into a command buffer,
which the DBPROCESS points to. The application can place multiple
commands in the command buffer, and the set of commands in the buffer is
known as the command batch. The application then sends the command batch
to the server, which executes the commands in the order entered in the buffer.

Building the command batch

These routines add commands to the buffer or clear the buffer:

• dbcmd – adds text to the command buffer. It may be called repeatedly to
add multiple commands, or parts of commands. The text added with each
successive call is concatenated to the earlier text.

• dbfcmd – adds text to the command buffer using sprintf-type formatting.
This routine is the same as dbcmd, except that it allows arguments to be
substituted into the text.

• dbfreebuf – clears the command buffer. The command buffer is
automatically cleared before a batch of commands is entered. To clear it at
other times or when the DBNOAUTOFREE option has been set, use
dbfreebuf.

Accessing the command batch

These routines may be used to examine and copy parts of the command buffer:

• dbgetchar – returns a pointer to a particular character in the command
buffer.

• dbstrlen – returns the length of the command buffer.

• dbstrcpy – copies a portion of the command buffer to a program variable.
This routine is particularly valuable for debugging, because it can tell you
exactly what was sent to the server.

Executing the command batch

Once language commands have been entered in the buffer, they can be sent to
a server for execution.

DB-Library/C routines

16 Open Client

• dbsqlsend – sends the contents of the command buffer to a server for
execution. Unlike dbsqlexec, this routine does not wait for a response from
the server. When dbsqlsend returns SUCCEED, dbsqlok must be called to
verify the correctness of the command batch.

• dbpoll – when called between dbsqlsend (or dbrpcsend) and dbsqlok,
checks if a server response has arrived for a DBPROCESS.

• dbsqlok – waits for results from the server and verifies the correctness of
the instructions the server is responding to. This routine is used in
conjunction with dbsqlsend, dbrpcsend, and dbmoretext. After a successful
dbsqlok call, the application must call dbresults to process the results.

• dbsqlexec – sends the contents of the command buffer to a server for
execution. Once dbsqlexec has returned SUCCEED, dbresults must be
called to process the results. Calling dbsqlexec is equivalent to calling
dbsqlsend followed by dbsqlok.

Setting and clearing command options

The application can set a number of Adaptive Server Enterprise and DB-
Library/C command options. Among them are DBPARSEONLY, which
causes Adaptive Server Enterprise to parse but not execute the command batch,
and DBBUFFER, which provides buffering of result rows. For a list of all
available options and their significance, see Options on page 407.

• dbsetopt – sets an option

• dbclropt – clears an option

• dbisopt – determines whether a particular option is set

Results processing
Once a command batch has been executed in the server, indicated by dbsqlexec
or dbsqlok returning SUCCEED, the application must process any results.
Results can include:

• Success or failure indications from the server

• Result rows

Result rows are returned by select commands and execute commands on stored
procedures that contain select commands.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 17

There are two types of result rows: regular rows and compute rows. Regular
rows are generated from columns in a select command’s select list; compute
rows are generated from columns in a select command’s compute clause. Since
these two types of rows contain very different data, the application must
process them separately.

The results for each Transact-SQL command in a batch are returned to the
application separately. Within each command’s set of results, the result rows
are processed one at a time.

If a command batch contains only a single Transact-SQL command and that
command returns rows (for example, a select command), an application must
call dbresults to process the results of the command.

If a command batch contains only a single Transact-SQL command and that
command does not return rows (for example, a use database command or an
insert command), an application does not have to call dbresults to process the
results of the command. However, calling dbresults in these situations causes
no harm. It may result in easier code maintenance if, after every command, you
consistently call dbresults until it returns NO_MORE_RESULTS.

If the command batch contains more than one Transact-SQL command, an
application must call dbresults once for every command in the batch, whether
or not the command returns rows. For this reason, it is recommended that a DB-
Library/C application always call dbresults in a loop after sending a command
or commands to a server.

Table 1-1 lists Transact-SQL commands and the DB-Library/C functions
required to process the results that they return:

DB-Library/C routines

18 Open Client

Table 1-1: DB-Library/C functions required to process Transact-SQL
commands

Setting up the results

dbresults sets up the results of the next command in the batch. dbresults must
be called after dbsqlexec or dbsqlok has returned SUCCEED, but before calls
to dbbind or dbnextrow.

Getting result data

The simplest way to get result data is to bind result columns to program
variables, using dbbind and dbaltbind. Then, when the application calls
dbnextrow to read a result row (see “Reading result rows” on page 19), DB-
Library/C will automatically place copies of the columns’ data into the
program variables to which they are bound. The application must call dbbind
and dbaltbind after a dbresults call but before the first call to dbnextrow.

You can also access a result column’s data directly with dbdata and dbadata,
which return pointers to the data. dbdata and dbadata have the advantage of
providing access to the actual data, not a copy of the data. These routines are
frequently used in conjunction with dbdatlen and dbadlen, which return the
length of the data and are described in the section “Information retrieval” on
page 24. When you are accessing data directly with these routines, you do not
perform any preliminary binding of result columns to program variables.
Simply call dbdata or dbadata after a dbnextrow call.

The following routines are used to retrieve result columns:

Transact-SQL
command Required DB-Library/C functions

All Transact-SQL
commands not listed
elsewhere in this table.

dbresults. In some cases, for example dbcc, the command’s
normal output is considered by DB-Library/C to consist of
errors and messages. The output is thus processed within a
DB-Library/C application’s error and message handlers
instead of in the main program using dbnextrow or other
DB-Library/C routines.

execute A DB-Library/C application must call dbresults once for
every set of results that the stored procedure returns. In
addition, if the stored procedure returns rows, the
application must call dbnextrow or other DB-Library/C
result-row routines.

select dbresults. In addition, a DB-Library/C application must call
dbnextrow or other DB-Library/C result-row routines.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 19

• dbbind – binds a regular row result column to a program variable.

• dbbind_ps – binds a regular row result column to a program variable, with
precision and scale support for numeric and decimal variables.

• dbaltbind – binds a compute row result column to a program variable.

• dbaltbind_ps – binds a compute row result column to a program variable,
with precision and scale support for numeric and decimal variables.

• dbdata – returns a pointer to the data for a regular row result column.

• dbadata – returns a pointer to the data for a compute row result column.

• dbnullbind – associates an indicator variable with a regular row result
column.

• dbanullbind – associates an indicator variable with a compute-row column.

• dbsetnull – defines substitution values to be used when binding null values.

• dbprtype – converts a server type token into a readable string. Tokens are
returned by various routines such as dbcoltype and dbaltop.

Reading result rows

Once dbresults has returned SUCCEED and any binding of columns to
variables has been specified, the application is ready to process the results. The
first step is to make the result rows available to the application. The dbnextrow
routine accomplishes this. Each call to dbnextrow reads the next row returned
from the server. The row is read directly from the network.

Once a row has been read in by dbnextrow, the application can perform any
processing desired on the data in the row. If the result columns have been
bound to program variables, the data in the row will have been automatically
copied into the variables. Alternatively, the data is accessible through dbdata or
dbadata.

DB-Library/C routines

20 Open Client

Rows read in by dbnextrow may be automatically saved in a row buffer, if
desired. The application accomplishes this by setting the DBBUFFER option
with the dbsetopt routine. Row buffering is useful for applications that need to
process result rows in a non-sequential manner. Without row buffering, the
application must process each row as it is read in by dbnextrow, because the
next call to dbnextrow will overwrite the row. If the application has allowed row
buffering, the rows are added to a row buffer as they are read in by dbnextrow.
The application can then use the dbgetrow routine to skip around in the buffer
and return to previously read rows. Since row buffering carries a memory and
performance penalty, use it with discretion. Note that row buffering has
nothing to do with network buffering and is a completely independent issue.

Routines are also available to print result rows in a default format. Because the
format is predetermined, these routines are of limited usefulness and are
appropriate primarily for debugging.

Note that DB-Library/C processes results one command at a time. When the
application has read all the results for one command, it must call dbresults
again to set up the results for the next command in the command buffer. To
ensure that all results are handled, Sybase strongly recommends that dbresults
be called in a loop.

The following routines are used to process result rows:

• dbnextrow – reads in the next row. The return value from dbnextrow tells
the application whether the row is a regular row or a compute row, whether
the row buffer is full, and whether the last result row has been read.

• DBCURROW – returns the number of the row currently being read.

• dbprhead – prints default column headings for result rows. This routine is
used in conjunction with dbprrow.

• dbprrow – prints all the result rows in a default format. When this routine
is used, the program does not need to bind results or call dbnextrow.

Canceling results

The following routines cancel results:

• dbcancel – cancels results from the current command batch. This routine
cancels all the commands in the current batch.

• dbcanquery – cancels any rows pending from the most recently executed
query.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 21

As an example of the difference between these routines, consider an
application that is processing the results of the language batch:

select * from pubs.titles
select * from pubs.authors

If the application calls dbcanquery while processing the titles rows, then the
titles rows are discarded and the application must continue to call dbresults and
process the rows from the next statement. If the application calls dbcancel
while processing the titles rows, then DB-Library discards the titles rows and
the results of all remaining, unprocessed commands in the batch. The
application does not need to continue calling dbresults after calling dbcancel.

Handling stored procedure results

A call to a stored procedure is made through either a remote procedure call,
discussed in “Remote procedure call processing” on page 30, or a Transact-
SQL execute command. The call can generate several types of results. First of
all, a stored procedure that contains select statements will return result rows in
the usual fashion. Each successive call to dbresults will access the set of rows
from the next select statement in the stored procedure. These rows can be
processed, as usual, with dbnextrow.

Second, stored procedures can contain “return parameters.” Return parameters,
also called output parameters, provide stored procedures with a “call-by-
reference” capability. Any change that a stored procedure makes internally to
the value of an output parameter is available to the calling program. The calling
program can retrieve output parameter values once it has processed all of the
stored procedure’s result rows by calling dbresults and dbnextrow. A number of
routines, described below, process return parameter values.

Third, stored procedures can return a status number.

To access a stored procedure’s output parameters and return status through the
following routines:

• dbnumrets – returns the number of return parameter values generated by a
stored procedure. If dbnumrets returns less than or equal to zero, no return
parameter values are available.

• dbretdata – returns a pointer to a return parameter value.

• dbretlen – returns the length of a return parameter value.

• dbrettype – returns the datatype of a return parameter value.

DB-Library/C routines

22 Open Client

• dbretname – returns the name of the return parameter associated with a
particular value.

• dbretstatus – returns the stored procedure’s status number.

• dbhasretstat – indicates whether the current command or remote
procedure call generated a stored procedure status number. If dbhasretstat
returns “FALSE,” then no stored procedure status number is available.

Setting results timeouts

By default, DB-Library will wait indefinitely for the results of a server
command to arrive. Applications can use the routines below to specify a finite
timeout period:

• dbsettime – sets the number of seconds that DB-Library/C will wait for a
server response.

• DBGETTIME – gets the number of seconds that DB-Library/C will wait for
a server response.

Message and error handling
DB-Library/C applications must handle two types of messages and errors:

• Server messages and errors, which range in severity from informational
messages to fatal errors. Server messages and errors are known to DB-
Library/C applications as “messages.” To list all possible Adaptive Server
Enterprise messages, use the Transact-SQL command:

select * from sysmessages

For a list of Adaptive Server Enterprise messages, see the Adaptive Server
Enterprise System Administration Guide. For a list of Open Server
messages, see the Open Server Server-Library/C Reference Manual.

• DB-Library/C warnings and errors, known to DB-Library/C applications
as “errors.” For a list of DB-Library/C errors, see Errors on page 389.

Also, success or failure indications are returned by most DB-Library/C
routines.

To handle server messages, DB-Library/C errors, and success or failure
indications, a DB-Library/C application can:

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 23

• Test DB-Library/C routine return codes in the mainline code, handling
failures on a case-by-case basis.

• Centralize message and error handling by installing a message handler and
an error handler, which are then automatically called by DB-Library/C
when a message or error occurs.

Sybase strongly recommends that all DB-Library/C applications use
centralized message and error handling in addition to mainline error testing.
Centralized message and error handling has substantial benefits for large or
complex applications. For example:

• Centralized message and error handling reduces the need for mainline
error-handling logic. This is because DB-Library/C calls an application’s
message and error handlers automatically whenever a message or error
occurs.

Note, however, that even an application that uses centralized error and
message handling will need some mainline error logic, depending on the
nature of the application.

• Centralized message and error handling provides a mechanism for
gracefully handling unexpected errors. An application using only mainline
error-handling logic may not successfully trap errors which have not been
anticipated.

To provide a DB-Library/C application with centralized message and error
handling, the application programmer must write a message handler and an
error handler and install them using dbmsghandle and dberrhandle.

The DB-Library/C routines for message and error handling are:

• dbmsghandle – installs a user function to handle server informational and
error messages.

• dberrhandle – installs a user function to handle DB-Library/C error
messages.

• DBDEAD – determines whether a particular DBPROCESS is dead. When
a DBPROCESS is dead, the current DB-Library/C routine fails, causing
the error handler to be called.

DB-Library/C routines

24 Open Client

Information retrieval
Information covering several areas, including regular result columns, compute
result columns, row buffers, and the command state, can be retrieved from the
DBPROCESS structure. As mentioned earlier, regular result columns
correspond to columns in the select command’s select list and compute result
columns correspond to columns in the select command’s optional compute
clause.

Regular result column information

These routines can be called after dbsqlexec returns SUCCEED:

• dbnumcols – determines the number of columns in the current set of
results.

• dbcolname – returns the name of a regular result column.

• dbcollen – returns the maximum length for a regular column’s data.

• dbcoltype – returns the server datatype for a regular result column.

• dbdatlen – returns the actual length of a regular column’s data. This routine
is often used in conjunction with dbdata. The value returned by dbdatlen is
different for each regular row read by dbnextrow.

• dbvarylen – indicates whether the column’s data can vary in length.

Compute result column information

These routines can be called after dbsqlexec returns SUCCEED:

• DBROWTYPE – indicates whether the current result row is a regular row
or a compute row.

• dbnumcompute – returns the number of compute clauses in the current set
of results.

• dbnumalts – returns the number of columns in a compute row.

• dbbylist – returns the bylist for a compute row.

• dbaltop – returns the type of aggregate operator for a compute column.

• dbalttype – returns the datatype for a compute column.

• dbaltlen – returns the maximum length for a compute column’s data.

• dbaltcolid – returns the column ID for a compute column.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 25

• dbadlen – returns the actual length of a compute column’s data. This
routine is often used in conjunction with dbadata. The value returned by
dbadlen is different for each compute row read by dbnextrow.

Row buffer information

These macros return information that can be useful when manipulating result
rows in buffers:

• DBFIRSTROW – returns the number of the first row in the buffer.

• DBLASTROW – returns the number of the last row in the buffer.

• dbgetrow – reads the specified row in the row buffer. This routine provides
the application with access to buffered rows that have been previously read
by dbnextrow.

• dbclrbuf – drops rows from the row buffer.

Command state information

These routines return information about the current state of the command
batch. Several of them return information about the “current” command, that
is, the command currently being processed by dbresults.

• DBCURCMD – returns the number of the current command in a batch.

• dbgetoff – checks for the existence of specified Transact-SQL constructs
in the command buffer. This routine is used in conjunction with the
DBOFFSET option.

• DBMORECMDS – indicates whether there are more commands in the
batch.

• DBCMDROW – indicates whether the current command is one that can
return rows (that is, a select or a stored procedure containing a select).

• DBROWS – indicates whether the current command actually did return
rows.

• DBCOUNT – returns the number of rows affected by a command.

• DBNUMORDERS – returns the number of columns specified in a select
command’s order by clause.

• dbordercol – returns the ID of a column appearing in a select command’s
order by clause.

DB-Library/C routines

26 Open Client

Browse mode
Browse mode provides a means for browsing through database rows and
updating their values a row at a time. From the standpoint of the program, the
process involves several steps, because each row must be transferred from the
database into program variables before it can be browsed and updated.

Since a row being browsed is not the actual row residing in the database, but is
instead a copy residing in program variables, the program must be able to
ensure that changes to the variables’ values can be reliably used to update the
original database row. In particular, in multiuser situations, the program needs
to ensure that updates made to the database by one user do not unwittingly
overwrite updates recently made by another user. This can be a problem
because the application typically selects a number of rows from the database at
one time, but the application’s users browse and update the database one row
at a time. A timestamp column in browsable database tables provides the
information necessary to regulate this type of multiuser updating.

Browse mode routines also allow an application to handle ad hoc queries.
Several routines return information that an application can use to examine the
structure of a complicated ad hoc query to update the underlying database
tables.

Conceptually, browse mode involves three steps:

1 Select result rows containing columns derived from one or more database
tables.

2 Where appropriate, change values in columns of the result rows (not the
actual database rows), one row at a time.

3 Update the original database tables, one row at a time, using the new
values in the result rows.

These steps are implemented in a program as follows:

1 Execute a select command, generating result rows containing result
columns. The select command must include the for browse option.

2 Copy the result column values into program variables, one row at a time.

3 If appropriate, change the values of the variables (possibly in response to
user input).

4 If appropriate, execute an update command that updates the database row
corresponding to the current result row. To handle multiuser updates, the
where clause of the update command must reference the timestamp
column. Such a where clause can be obtained through the dbqual function.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 27

5 Repeat steps 2, 3, and 4 for each result row.

To use browse mode, the following conditions must be true:

• The select command must end with the key words for browse.

• The table(s) to be updated must be “browsable” (that is, each must have a
unique index and a timestamp column). Note that because a browse mode
table has unique rows, the keyword distinct has no effect in a select against
a browse-mode table.

• The result columns to be used in the updates must be “updatable”—they
must be derived from browsable tables and cannot be the result of SQL
expressions, such as max(colname). In other words, there must be a valid
correspondence between the result column and the database column to be
updated. In addition, browse mode usually requires two connections
(DBPROCESS pointers)—one for selecting the data and another for
performing updates based on the selected data.

For examples of browse-mode programming, see the sample programs,
example6.c and example7.c, included with DB-Library. See “Sample
programs” on page 37.

The following constitute the browse-mode routines:

• dbqual – returns a pointer to a where clause suitable for use in updating the
current row in a browsable table.

• dbfreequal – frees the memory allocated by dbqual.

• dbtsnewval – returns the new value of the timestamp column after a
browse-mode update.

• dbtsnewlen – returns the length of the new value of the timestamp column
after a browse-mode update.

• dbtsput – puts the new value of the timestamp column into the given table’s
current row in the DBPROCESS.

• dbcolbrowse – indicates whether the source of a result column is updatable
through browse mode.

• dbcolsource – returns a pointer to the name of the database column from
which the specified result column was derived.

• dbtabbrowse – indicates whether a particular table is updatable using
browse mode.

• dbtabcount – returns the number of tables involved in the current select
command.

DB-Library/C routines

28 Open Client

• dbtabname – returns the name of a table based on its number.

• dbtabsource – returns the name and number of the table from which a
particular result column was derived.

Text and image handling
The text and image Adaptive Server Enterprise datatypes are designed to hold
large text or image values. The text datatype will hold up to 2,147,483,647
bytes of printable characters; the image datatype will hold up to 2,147,483,647
bytes of binary data.

Because they can be so large, text and image values are not actually stored in
database tables. Instead, a pointer to the text or image value is stored in the
table. This pointer is called a “text pointer.”

To ensure that competing applications do not wipe out one another’s
modifications to the database, a timestamp is associated with each text or image
column. This timestamp is called a “text timestamp.”

A DB-Library/C application that uses dbwritetext to insert text or image data
into a table must perform the following steps:

1 Use the insert command to insert all data into the row except the text or
image value.

2 Use the update command to update the row, setting the value of the text or
image column to NULL. This step is necessary because a text or image
column row that contains a null value will have a valid text pointer only if
the null value was explicitly entered with the update statement.

3 Use the select command to select the row. You must specifically select the
column that is to contain the text or image value. This step is necessary to
provide the application’s DBPROCESS with correct text pointer and text
timestamp information. The application should throw away the data
returned by this select.

4 Call dbtxtptr to retrieve the text pointer from the DBPROCESS.

5 Call dbtxtimestamp to retrieve the text timestamp from the DBPROCESS.

6 Write the text or image value to Adaptive Server Enterprise. An application
can either:

• Write the value with a single call to dbwritetext, or

• Write the value in chunks, using dbwritetext and dbmoretext.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 29

7 If the application plans to make another update to this text or image value,
it may want to save the new text timestamp that is returned by Adaptive
Server Enterprise at the conclusion of a successful dbwritetext operation.
The new text timestamp may be accessed using dbtxtsnewval and stored for
later retrieval using dbtxtsput.

Several routines are available to facilitate the process of updating text and
image columns in database tables:

• dbreadtext – reads a text or an image value from Adaptive Server
Enterprise.

• dbwritetext – sends a text or an image value to Adaptive Server Enterprise.

• dbmoretext – sends part of a text or an image value to Adaptive Server
Enterprise.

• dbtxptr – returns the text pointer for a column in the current results row.

• dbtxtimestamp – returns the value of the text timestamp for a column in the
current results row.

• dbtxtsnewval – returns the new value of a text timestamp after a call to
dbwritetext.

• dbtxtsput – puts the new value of a text timestamp into the specified
column of the current row in the DBPROCESS.

Datatype conversion
DB-Library/C supports conversions between most server datatypes with the
dbconvert and dbconvert_ps routines. For information on server datatypes, see
Types on page 412.

The dbbind, dbbind_ps, dbaltbind, and dbaltbind_ps routines, which bind result
columns to program variables, can also be used to perform type conversion.
Each of these routines contain a parameter that specifies the datatype of the
receiving program variable. If the data being returned from the server is of a
different datatype, DB-Library/C will usually convert it automatically to the
type specified by the parameter.

These routines are used to perform datatype conversion:

• dbconvert_ps – converts data from one server datatype to another, with
precision and scale support for numeric and decimal datatypes.

• dbconvert – converts data from one server datatype to another.

DB-Library/C routines

30 Open Client

• dbwillconvert – indicates whether a specified datatype conversion is
supported.

Process control flow
These routines allow the application to schedule its actions around its
interaction with a server:

• dbsetbusy – calls a user-supplied function when DB-Library/C is reading
or waiting to read results from the server.

• dbsetidle – calls a user-supplied function when DB-Library/C is finished
reading from the server.

• dbsetinterrupt – calls user-supplied functions to handle interrupts while
waiting on a read from the server.

• DBIORDESC (UNIX only) – provides access to the UNIX file descriptor
used to read data coming from the server, allowing the application to
respond to multiple input data streams.

• DBIOWDESC (UNIX only) – provides access to the UNIX file descriptor
used to write data to the server, allowing the application to effectively
utilize multiple input and output data streams.

• DBRBUF (UNIX only) – determines whether the DB-Library/C network
buffer contains any unread bytes.

Remote procedure call processing
A remote procedure call is simply a call to a stored procedure residing on a
remote server. Either an application or another server makes the call. A remote
procedure call made by an application has the same effect as an execute
command: It executes the stored procedure, generating results accessible
through dbresults. However, a remote procedure call is often more efficient
than an execute command. Note that if the procedure being executed resides on
a server other than the one to which the application is directly connected,
commands executed within the procedure cannot be rolled back.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 31

A server can make a remote procedure call to another server. This occurs when
a stored procedure being executed on one server contains an execute command
for a stored procedure on another server. The execute command causes the first
server to log in to the second server and perform a remote procedure call on the
procedure. This happens without any intervention from the application,
although the application can specify the remote password that the first server
uses to log in.

The following routines are used to perform remote procedure calls:

• dbrpcinit – initializes a remote procedure call to a stored procedure.

• dbrpcparam – adds a parameter to a remote procedure call.

• dbrpcsend – signals the end of a remote procedure call, causing the server
to begin executing the specified procedure.

• dbpoll – when called between dbsqlsend (or dbrpcsend) and dbsqlok,
checks if a server response has arrived for a DBPROCESS.

• dbsqlok – waits for results from the server and verifies the correctness of
the instructions the server is responding to. This routine is used in
conjunction with dbsqlsend, dbrpcsend, and dbmoretext. After a successful
dbsqlok call, the application must call dbresults to process the results.

Registered procedure call processing
A registered procedure is a procedure that is defined and installed in a running
Open Server. Registered procedures require Open Server version 2.0 or later.
At this time, registered procedures are not supported by Adaptive Server
Enterprise.

For DB-Library/C applications, registered procedures provide a way for inter-
application communication and synchronization. This is because DB-
Library/C applications connected to an Open Server can “watch” for a
registered procedure to execute. When the registered procedure executes,
applications watching for it receive a notification that includes the procedure’s
name and the arguments it was called with.

Note DB-Library/C applications may create only a special type of registered
procedure, known as a “notification procedure.” A notification procedure
differs from a normal Open Server registered procedure in that it contains no
executable statements.

DB-Library/C routines

32 Open Client

 For example, suppose the following:

• stockprice is a real-time DB-Library/C application monitoring stock
prices.

• price_change is a notification procedure created in Open Server by the
stockprice application. price_change takes as parameters a stock name and
a price differential.

• sellstock, an application that puts stock up for sale, has requested to be
notified when price_change executes.

When stockprice, the monitoring application, becomes aware that the price of
Extravagant Auto Parts stock has risen $1.10, it executes price_change with the
parameters “Extravagant Auto Parts” and “+1.10”.

When price_change executes, Open Server sends sellstock a notification
containing the name of the procedure (price_change) and the arguments passed
to it (“Extravagant Auto Parts” and “+1.10”). sellstock uses the information
contained in the notification to decide to put 100 shares of Extravagant Auto
Parts stock up for sale.

price_change is the means through which the stockprice and sellstock
applications communicate.

Registered procedures as a means of communication have the following
advantages:

• A single call to execute a registered procedure can result in many client
applications being notified that the procedure has executed. The
application executing the procedure does not need to know how many, or
which, clients have requested notifications.

• The registered procedure communication mechanism is server-based.
Open Server acts as a central repository for connection addresses. Because
of this, client applications can communicate without having to connect
directly to each other. Instead, each client simply connects to the server.

A DB-Library/C application can:

• Create a registered procedure in Open Server

• Drop a registered procedure

• List all registered procedures defined in Open Server

• Request to be notified when a particular registered procedure is executed

• Drop a request to be notified when a particular registered procedure is
executed

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 33

• List all registered procedure notifications

• Execute a registered procedure

• Install a user-supplied handler to be called when an application receives
notification that a registered procedure has executed

• Poll Open Server to see if any registered procedure notifications are
pending

The following are registered procedure routines:

• dbnpcreate – creates a notification procedure.

• dbnpdefine – defines a notification procedure.

• dbregdrop – drops a registered procedure.

• dbreglist – returns a list of all registered procedures currently defined in
Open Server.

• dbreghandle – installs a handler routine for a registered procedure
notification.

• dbreginit – initiates execution of a registered procedure.

• dbregnowatch – cancels a request to be notified when a registered
procedure executes.

• dbregparam – defines a parameter for a registered procedure.

• dbregexec – executes a registered procedure.

• dbregwatch – requests to be notified when a registered procedure executes.

• dbregwatchlist – returns a list of registered procedures that a DBPROCESS
is watching for.

• dbpoll – in an application that uses registered procedure notifications, this
routine is used to check whether any notifications have arrived.

Gateway passthrough routines
Passthrough routines can be called in Open Server gateway applications. They
allow a DB-Library/C application to send and receive whole Tabular Data
Stream™ (TDS) packets and set TDS packet size.

TDS is an application protocol used for the transfer of requests and request
results between clients and servers. These routines are used with the
srvrecvpassthru and srvsendpassthru Open Server Server-Library routines:

DB-Library/C routines

34 Open Client

• dbrecvpassthru – receives a TDS packet from Open Server.

• dbsendpassthru – sends a TDS packet to Open Server.

See the Open Server Server-Library/C Reference Manual for descriptions of
srvrecvpassthru and srvsendpassthru.

Datetime and money
These routines manipulate datetime and money datatypes. datetime and money
datatypes come in long versions, DBDATETIME and DBMONEY, and short
(4-byte) versions, DBDATETIME4 and DBMONEY4. All of the
DBDATETIME4 routines listed below are also available for DBDATETIME,
and all DBMONEY4 routines are available for DBMONEY. For example,
dbmny4add, listed below, is also available as dbmnyadd.

• dbdate4cmp – compares two DATETIME4 values.

• dbdate4zero – initializes a DBDATETIME4 value.

• dbmny4add – adds two DBMONEY4 values.

• dbmny4cmp – compares two DBMONEY4 values.

• dbmny4copy – copies a DBMONEY4 value.

• dbmny4divide – divides one DBMONEY4 value by another.

• dbmny4minus – negates a DBMONEY4 value.

• dbmny4mul – multiplies a DBMONEY4 value.

• dbmny4sub – subtracts a DBMONEY4 value.

• dbmny4zero – initializes a DBMONEY4 value.

• dbmnydec – decrements a DBMONEY value.

• dbmnydown – divides a DBMONEY value by a positive integer.

• dbmnyinc – increments a DBMONEY value.

• dbmnyinit – prepares a DBMONEY value for calls to dbmnyndigit.

• dbmnymaxneg – returns the maximum negative DBMONEY value.

• dbmnymaxpos – returns the maximum positive DBMONEY value.

• dbmnyndigit – returns the rightmost digit of a DBMONEY value as a
DBCHAR.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 35

• dbmnyscale – multiplies a DBMONEY value and adds a specified amount.

Cleanup
These routines sever the connection between the application and a server:

• dbexit – closes and deallocates all DBPROCESS structures. This routine
also cleans up any structures initialized by dbinit.

• dbclose – closes and deallocates a single DBPROCESS structure.

Secure support
These routines provide security for DB-Library applications running against
Adaptive Server Enterprise:

• DBSETLENCRYPT – specifies whether or not password encryption is to be
used when logging into Adaptive Server Enterprise.

• dbsechandle – installs user functions to handle secure logins.

• bcp_options – sets bulk copy options, including BCPLABELED, the
security label option.

Note Calling DBSETLENCRYPT causes an error unless you first set the DB-
Library version to 10.0. Use dbsetversion to set the DB-Library version to 10.0
before calling DBSETLENCRYPT.

Miscellaneous routines
These routines may be useful in some applications:

• dbsetavail – marks a DBPROCESS as being available for general use.

• DBISAVAIL – indicates whether a DBPROCESS is available for general
use.

• dbname – returns the name of the current database.

• dbchange – indicates whether a command batch has changed the current
database.

MIT Kerberos on DB-Library

36 Open Client

• dbsetuserdata – uses a DBPROCESS structure to save a pointer to user-
allocated data. This routine, along with dbgetuserdata, allows the
application to associate user data with a particular DBPROCESS. One
important use for these routines is to transfer information between a server
message handler and the program code that triggered it.

• dbgetuserdata – returns a pointer to user-allocated data from a
DBPROCESS structure.

• dbreadpage – reads in a page of binary data from Adaptive Server
Enterprise.

• dbwritepage – writes a page of binary data to Adaptive Server Enterprise.

• dbsetconnect – sets server connection information in this routine.

Two-phase commit service special library
The routines in this library allow an application to coordinate updates among
two or more Adaptive Server Enterprises.

See Chapter 4, “Two-Phase Commit Service.”

MIT Kerberos on DB-Library
DB-Library uses the MIT Kerberos security mechanism to provide network
and mutual authentication services. This feature allows older Sybase
applications to use Kerberos authentication services, with less need for
modification and recompilation.

These DB-Library macros enable Kerberos support:

• DBSETLNETWORKAUTH – enables or disables network base
authentication.

• DBSETLMUTUALAUTH – enables or disables mutual authentication of the
connection’s security mechanism.

CHAPTER 1 Introducing DB-Library

DB-Library/C Reference Manual 37

• DBSETLSERVERPRINCIPAL – sets the server’s principal name, if
required.

Note DB-Library only supports network authentication and mutual
authentication services in the Kerberos security mechanism.

❖ Installing MIT-Kerberos on DB-Library

These steps provide basic information on installing MIT Kerberos on DB-
Library. For more detailed information, refer to Installation and Release
Bulletin for Sybase SDK DB-Lib Kerberos Authentication Option 15.5.

1 Purchase Sybase SDK DB-Lib Kerberos Authentication Option 15.5.

2 Install Sybase SDK DB-Lib Kerberos Authentication Option 15.5 over
SDK 15.5.

3 In DB-Library, include sybdbn.h instead of sybdb.h.

4 Using dbsetversion, set the DB-Library version to DBVERSION_100 or
above.

5 Call one or more of the following APIs:

DBSETLNETWORKAUTH(LOGINREC *loginrec, DBBOOL enable)

DBSETLMUTUALAUTH(LOGINREC *loginrec, DBBOOL enable)

DBSETLSERVERPRINCIPAL(LOGINREC *loginrec, char *name)

6 Recompile DB-Library.

Sample programs
Several sample programs are provided that demonstrate the use of DB-library
routines and their functionality. These samples are available in the following
directory:

• $SYBASE/$SYBASE_OCS/sample/dblibrary on UNIX

• %SYBASE%\%SYBASE_OCS%\sample\dblib on Windows

See the Open Client and Open Server Programmers Supplement for your
platform.

Sample programs

38 Open Client

DB-Library/C Reference Manual 39

C H A P T E R 2 Routines

This chapter contains a reference page for each DB-Library routine.

Routines Description Page
db12hour Determines whether the specified language uses 12-hour or

24-hour time.
48

dbadata Returns a pointer to the data for a compute column. 49

dbadlen Returns the actual length of the data for a compute column. 52

dbaltbind Binds a compute column to a program variable. 54

dbaltbind_ps Binds a compute column to a program variable, with
precision and scale support for numeric and decimal
datatypes.

59

dbaltcolid Returns the column ID for a compute column. 65

dbaltlen Returns the maximum length of the data for a particular
compute column.

66

dbaltop Returns the type of aggregate operator for a particular
compute column.

67

dbalttype Returns the datatype for a compute column. 68

dbaltutype Returns the user-defined datatype for a compute column. 69

dbanullbind Associates an indicator variable with a compute-row
column.

70

dbbind Binds a regular result column to a program variable. 72

dbbind_ps Binds a regular result column to a program variable, with
precision and scale support for numeric and decimal
datatypes.

77

dbbufsize Returns the size of a DBPROCESS row buffer. 82

dbbylist Returns the bylist for a compute row. 83

dbcancel Cancels the current command batch. 84

dbcanquery Cancels any rows pending from the most recently executed
query.

85

dbchange Determines whether a command batch has changed the
current database.

86

dbcharsetconv Indicates whether the server is performing character set
translation.

87

dbclose Closes and deallocate a single DBPROCESS structure. 88

dbclrbuf Drops rows from the row buffer. 88

40 Open Client

dbclropt Clears an option set by dbsetopt. 89

dbcmd Adds text to the DBPROCESS command buffer. 91

DBCMDROW Determines whether the current command can return rows. 92

dbcolbrowse Determines whether the source of a regular result column is
updatable using the DB-Library browse-mode facilities.

93

dbcollen Returns the maximum length of the data in a regular result
column.

94

dbcolname Returns the name of a regular result column. 95

dbcolsource Returns a pointer to the name of the database column from
which the specified regular result column was derived.

97

dbcoltype Returns the datatype for a regular result column. 98

dbcoltypeinfo Returns precision and scale information for a regular result
column of type numeric or decimal.

99

dbcolutype Returns the user-defined datatype for a regular result
column.

100

dbconvert Converts data from one datatype to another. 102

dbconvert_ps Converts data from one datatype to another, with precision
and scale support for numeric and decimal datatypes.

106

DBCOUNT Returns the number of rows affected by a Transact-SQL
command.

112

DBCURCMD Returns the number of the current command. 113

DBCURROW Returns the number of the row currently being read. 114

dbcursor Inserts, updates, deletes, locks, or refreshes a particular row
in the fetch buffer.

115

dbcursorbind Registers the binding information on the cursor columns. 117

dbcursorclose Closes the cursor associated with the given handle and
release all the data belonging to it.

119

dbcursorcolinfo Returns column information for the specified column
number in the open cursor.

120

dbcursorfetch Fetches a block of rows into the program variables declared
by the user in dbcursorbind.

121

dbcursorinfo Returns the number of columns and the number of rows in
the keyset if the keyset hit the end of the result set.

123

dbcursoropen Opens a cursor and specify the scroll option, concurrency
option, and the size of the fetch buffer (the number of rows
retrieved with a single fetch).

124

dbdata Returns a pointer to the data in a regular result column. 128

dbdate4cmp Compares two DBDATETIME4 values. 129

Routines Description Page

CHAPTER 2 Routines

DB-Library/C Reference Manual 41

dbdate4zero Initializes a DBDATETIME4 variable to Jan 1, 1900
12:00AM.

130

dbdatechar Converts an integer component of a DBDATETIME value
into character format.

131

dbdatecmp Compares two DBDATETIME values. 132

dbdatecrack Converts a machine-readable DBDATETIME value into
user-accessible format.

133

dbdatename Converts the specified component of a DBDATETIME
structure into its corresponding character string.

135

dbdateorder Returns the date component order for a given language. 138

dbdatepart Returns the specified part of a DBDATETIME value as a
numeric value.

139

dbdatezero Initializes a DBDATETIME value to Jan 1, 1900
12:00:00:000AM.

140

dbdatlen Returns the length of the data in a regular result column. 141

dbdayname Determines the name of a specified weekday in a specified
language.

142

DBDEAD Determines whether a particular DBPROCESS is dead. 143

dberrhandle Installs a user function to handle DB-Library errors. 144

dbexit Closes and deallocate all DBPROCESS structures, and
clean up any structures initialized by dbinit.

148

dbfcmd Adds text to the DBPROCESS command buffer using C
runtime library sprintf-type formatting.

149

DBFIRSTROW Returns the number of the first row in the row buffer. 152

dbfree_xlate Frees a pair of character set translation tables. 153

dbfreebuf Clears the command buffer. 154

dbfreequal Frees the memory allocated by dbqual. 155

dbfreesort Frees a sort order structure allocated by dbloadsort. 155

dbgetchar Returns a pointer to a character in the command buffer. 157

dbgetcharset Gets the name of the client character set from the
DBPROCESS structure.

157

dbgetloginfo Transfers Tabular Data Stream (TDS) login response
information from a DBPROCESS structure to a newly
allocated DBLOGINFO structure.

158

dbgetlusername Returns the user name from a LOGINREC structure. 160

dbgetmaxprocs Determines the current maximum number of
simultaneously open DBPROCESSes.

161

dbgetnatlang Gets the national language from the DBPROCESS
structure.

162

Routines Description Page

42 Open Client

dbgetoff Checks for the existence of Transact-SQL constructs in the
command buffer.

162

dbgetpacket Returns the TDS packet size currently in use. 164

dbgetrow Reads the specified row in the row buffer. 165

DBGETTIME Returns the number of seconds that DB-Library will wait
for a server response to a SQL command.

167

dbgetuserdata Returns a pointer to user-allocated data from a
DBPROCESS structure.

167

dbhasretstat Determines whether the current command or remote
procedure call generated a return status number.

168

dbinit Initialize DB-Library. 170

DBIORDESC (UNIX only) Provides program access to the UNIX file
descriptor used by a DBPROCESS to read data coming
from the server.

170

DBIOWDESC (UNIX only) Provides program access to the UNIX file
descriptor used by a DBPROCESS to write data to the
server.

172

DBISAVAIL Determines whether a DBPROCESS is available for
general use.

173

dbisopt Checks the status of a server or DB-Library option. 173

DBLASTROW Returns the number of the last row in the row buffer. 174

dbload_xlate Loads a pair of character set translation tables. 175

dbloadsort Loads a server sort order. 176

dblogin Allocates a login record for use in dbopen. 177

dbloginfree Frees a login record. 179

dbmny4add Adds two DBMONEY4 values. 179

dbmny4cmp Compares two DBMONEY4 values. 180

dbmny4copy Copies a DBMONEY4 value. 181

dbmny4divide Divides one DBMONEY4 value by another. 182

dbmny4minus Negates a DBMONEY4 value. 183

dbmny4mul Multiplies two DBMONEY4 values. 184

dbmny4sub Subtracts one DBMONEY4 value from another. 185

dbmny4zero Initializes a DBMONEY4 variable to $0.0000. 186

dbmnyadd Adds two DBMONEY values. 187

dbmnycmp Compares two DBMONEY values. 188

dbmnycopy Copies a DBMONEY value. 189

dbmnydec Decrements a DBMONEY value by one ten-thousandth of
a dollar.

190

Routines Description Page

CHAPTER 2 Routines

DB-Library/C Reference Manual 43

dbmnydivide Divides one DBMONEY value by another. 191

dbmnydown Divides a DBMONEY value by a positive integer. 192

dbmnyinc Increments a DBMONEY value by one ten-thousandth of a
dollar.

194

dbmnyinit Prepares a DBMONEY value for calls to dbmnyndigit. 194

dbmnymaxneg Returns the maximum negative DBMONEY value
supported.

196

dbmnymaxpos Returns the maximum positive DBMONEY value
supported.

197

dbmnyminus Negates a DBMONEY value. 198

dbmnymul Multiplies two DBMONEY values. 199

dbmnyndigit Returns the rightmost digit of a DBMONEY value as a
DBCHAR.

200

dbmnyscale Multiplies a DBMONEY value by a positive integer and
add a specified amount.

206

dbmnysub Subtracts one DBMONEY value from another. 208

dbmnyzero Initializes a DBMONEY value to $0.0000. 209

dbmonthname Determines the name of a specified month in a specified
language.

209

DBMORECMDS Indicates whether there are more commands to be
processed.

210

dbmoretext Sends part of a text or image value to the server. 211

dbmsghandle Installs a user function to handle server messages. 212

dbname Returns the name of the current database. 216

dbnextrow Reads the next result row into the row buffer and into any
program variables that are bound to column data.

217

dbnpcreate Creates a notification procedure. 219

dbnpdefine Defines a notification procedure. 222

dbnullbind Associates an indicator variable with a regular result row
column.

224

dbnumalts Returns the number of columns in a compute row. 225

dbnumcols Determines the number of regular columns for the current
set of results.

225

dbnumcompute Returns the number of compute clauses in the current set of
results.

227

DBNUMORDERS Returns the number of columns specified in a Transact-
SQL select statement’s order by clause.

227

dbnumrets Determines the number of return parameter values
generated by a stored procedure.

228

Routines Description Page

44 Open Client

dbopen Creates and initialize a DBPROCESS structure. 229

dbordercol Returns the ID of a column appearing in the most recently
executed query’s order by clause.

233

dbpoll Checks if a server response has arrived for a DBPROCESS. 234

dbprhead Prints the column headings for rows returned from the
server.

239

dbprrow Prints all the rows returned from the server. 240

dbprtype Converts a token value to a readable string. 241

dbqual Returns a pointer to a where clause suitable for use in
updating the current row in a browsable table.

242

DBRBUF (UNIX only) Determines whether the DB-Library network
buffer contains any unread bytes.

246

dbreadpage Reads a page of binary data from the server. 247

dbreadtext Reads part of a text or image value from the server. 248

dbrecftos Records all SQL commands sent from the application to the
server.

250

dbrecvpassthru Receives a TDS packet from a server. 251

dbregdrop Drops a registered procedure. 253

dbregexec Executes a registered procedure. 254

dbreghandle Installs a handler routine for a registered procedure
notification.

256

dbreginit Initiates execution of a registered procedure. 260

dbreglist Returns a list of registered procedures currently defined in
Open Server.

262

dbregnowatch Cancels a request to be notified when a registered
procedure executes.

263

dbregparam Defines or describes a registered procedure parameter. 265

dbregwatch Requests to be notified when a registered procedure
executes.

269

dbregwatchlist Returns a list of registered procedures that a DBPROCESS
is watching for.

274

dbresults Sets up the results of the next query. 275

dbretdata Returns a pointer to a return parameter value generated by
a stored procedure.

278

dbretlen Determines the length of a return parameter value
generated by a stored procedure.

282

dbretname Determines the name of the stored procedure parameter
associated with a particular return parameter value.

283

Routines Description Page

CHAPTER 2 Routines

DB-Library/C Reference Manual 45

dbretstatus Determines the stored procedure status number returned by
the current command or remote procedure call.

285

dbrettype Determines the datatype of a return parameter value
generated by a stored procedure.

287

DBROWS Indicates whether the current command actually returned
rows.

289

DBROWTYPE Returns the type of the current row. 289

dbrpcinit Initializes a remote procedure call. 290

dbrpcparam Adds a parameter to a remote procedure call. 292

dbrpcsend Signals the end of a remote procedure call. 294

dbrpwclr Clears all remote passwords from the LOGINREC
structure.

295

dbrpwset Adds a remote password to the LOGINREC structure. 296

dbsafestr Doubles the quotes in a character string. 297

dbsechandle Installs user functions to handle secure logins. 299

dbsendpassthru Sends a TDS packet to a server. 303

dbservcharset Gets the name of the server character set. 305

dbsetavail Marks a DBPROCESS as being available for general use. 306

dbsetbusy Calls a user-supplied function when DB-Library is reading
from the server.

306

dbsetconnect Sets the server connection information. 309

dbsetdefcharset Sets the default character set for an application. 310

dbsetdeflang Sets the default language name for an application. 311

dbsetidle Calls a user-supplied function when DB-Library is finished
reading from the server.

312

dbsetifile Specifies the name and location of the Sybase interfaces
file.

313

dbsetinterrupt Calls user-supplied functions to handle interrupts while
waiting on a read from the server.

314

DBSETLAPP Sets the application name in the LOGINREC structure. 317

DBSETLCHARSET Sets the character set in the LOGINREC structure. 318

DBSETLENCRYPT Specifies whether or not network password encryption is to
be used when logging into Adaptive Server Enterprise.

319

DBSETLHOST Sets the host name in the LOGINREC structure. 320

DBSETLMUTUALAU
TH

Enables or disables mutual authentication of the
connection’s security mechanism.

321

DBSETLNATLANG Sets the national language name in the LOGINREC
structure.

322

Routines Description Page

46 Open Client

DBSETLNETWORKA
UTH

Enables or disables network-based authentication. 322

dbsetloginfo Transfers TDS login information from a DBLOGINFO
structure to a LOGINREC structure.

323

dbsetlogintime Sets the number of seconds that DB-Library waits for a
server response to a request for a DBPROCESS connection.

325

DBSETLPACKET Sets the TDS packet size in an application’s LOGINREC
structure.

326

DBSETLPWD Sets the user server password in the LOGINREC structure. 327

DBSETLSERVERPRI
NCIPAL

SSets the server’s principal name. 328

DBSETLUSER Sets the user name in the LOGINREC structure. 329

dbsetmaxprocs Sets the maximum number of simultaneously open
DBPROCESS structures.

329

dbsetnull Defines substitution values to be used when binding null
values.

330

dbsetopt Sets a server or DB-Library option. 332

dbsetrow Sets a buffered row to “current.” 334

dbsettime Sets the number of seconds that DB-Library will wait for a
server response to a SQL command.

336

dbsetuserdata Uses a DBPROCESS structure to save a pointer to user-
allocated data.

336

dbsetversion Specifies a DB-Library version level. 339

dbspid Gets the server process ID for the specified DBPROCESS. 340

dbspr1row Places one row of server query results into a buffer. 341

dbspr1rowlen Determines how large a buffer to allocate to hold the results
returned by dbsprhead, dbsprline, and dbspr1row.

343

dbsprhead Places the server query results header into a buffer. 344

dbsprline Gets a formatted string that contains underlining for the
column names produced by dbsprhead.

346

dbsqlexec Sends a command batch to the server. 347

dbsqlok Waits for results from the server and verify the correctness
of the instructions the server is responding to.

349

dbsqlsend Sends a command batch to the server and do not wait for a
response.

354

dbstrbuild Builds a printable string from text containing placeholders
for variables.

355

dbstrcmp Compares two character strings using a specified sort order. 358

dbstrcpy Copies all or a portion of the command buffer. 359

Routines Description Page

CHAPTER 2 Routines

DB-Library/C Reference Manual 47

dbstrlen Returns the length, in characters, of the command buffer. 361

dbstrsort Determines which of two character strings should appear
first in a sorted list.

362

dbtabbrowse Determines whether the specified table is updatable using
the DB-Library browse-mode facilities.

363

dbtabcount Returns the number of tables involved in the current select
query.

364

dbtabname Returns the name of a table based on its number. 365

dbtabsource Returns the name and number of the table from which a
particular result column was derived.

366

DBTDS Determines which version of TDS (the Tabular Data Stream
protocol) is being used.

368

dbtextsize Returns the number of bytes of text or image data that
remain to be read for the current row.

368

dbtsnewlen Returns the length of the new value of the timestamp
column after a browse-mode update.

369

dbtsnewval Returns the new value of the timestamp column after a
browse-mode update.

370

dbtsput Puts the new value of the timestamp column into the given
table’s current row in the DBPROCESS.

371

dbtxptr Returns the value of the text pointer for a column in the
current row.

372

dbtxtimestamp Returns the value of the text timestamp for a column in the
current row.

374

dbtxtsnewval Returns the new value of a text timestamp after a call to
dbwritetext.

375

dbtxtsput Puts the new value of a text timestamp into the specified
column of the current row in the DBPROCESS.

375

dbuse Uses a particular database. 376

dbvarylen Determines whether the specified regular result column’s
data can vary in length.

377

dbversion Determines which version of DB-Library is in use. 378

dbwillconvert Determines whether a specific datatype conversion is
available within DB-Library.

379

dbwritepage Writes a page of binary data to the server. 381

dbwritetext Sends a text or image value to the server. 382

dbxlate Translates a character string from one character set to
another.

387

Routines Description Page

db12hour

48 Open Client

db12hour
Description Determine whether the specified language uses 12-hour or 24-hour time.

Syntax DBBOOL db12hour(dbproc, language)

DBPROCESS *dbproc;
char *language;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

language
The name of the language of interest.

Return value “TRUE” if language uses 12-hour time, “FALSE” otherwise.

Usage • db12hour returns “TRUE” if language uses 12-hour time, and “FALSE” if
it uses 24-hour time.

• If language is NULL, dbproc’s current language is signified. If both
language and dbproc are NULL, then DB-Library’s default language (for
any future calls to dbopen) is signified.

• db12hour is useful when retrieving and manipulating DBDATETIME
values using dbsqlexec. When converting DBDATETIME values to
character strings, dbconvert and dbbind always return the month
component of the DBDATETIME value in the local language, but use the
U.S. English date and time order (month-day-year, 12-hour time).
db12hour’s return value informs the application that some further
manipulation is necessary if 24-hour rather than 12-hour time is desired.

• The following code fragment illustrates the use of db12hour:

DBBOOL time_format;

Errors The complete collection of DB-Library errors and error
severities.

389

Options The complete list of DB-Library options. 407

Types Datatypes and symbolic constants for datatypes used by
DB-Library.

412

Routines Description Page

CHAPTER 2 Routines

DB-Library/C Reference Manual 49

 DBCHAR s_date[40];

 /*
 ** Find out whether 12-hour or 24-hour time is
 ** used.
 */
 time_format = db12hour(dbproc, "FRANCAIS");

 /* Put a command into a command buffer */
 dbcmd(dbproc, "select start_date from info_table");

 /* Send the command to the Adaptive Server
Enterprise */
 dbsqlexec(dbproc);

 /* Process the command results */
 dbresults(dbproc);

 /*
 ** Bind column data (start_date) to the program
 ** variable (s_date)
 */
 dbbind(dbproc, 1, NTBSTRINGBIND, 0, s_date);

 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 /*
 ** If we want 24-hour time, re-format
 ** s_date accordingly.
 */
 if (time_format == TRUE)
 format_24(s_date);

 printf("Next start date: %s\n", s_date);
 }

See also dbdateorder, dbdayname, dbmonthname, dbsetopt

dbadata
Description Return a pointer to the data for a compute column.

Syntax BYTE *dbadata(dbproc, computeid, colnum)

dbadata

50 Open Client

DBPROCESS *dbproc;
int computeid;
int colnum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

colnum
The number of the column of interest. The first column returned is number
1. Note that the order in which compute columns are returned is determined
by the order of the corresponding columns in the select list, not by the order
in which the compute columns were originally specified. For example, in the
following query the result of “sum(price)” is referenced by giving colnum a
value of 1, not 2:

select price, advance from titles
compute sum(advance), sum(price)

The relative order of compute columns in the select list, rather than their
absolute position, determines the value of colnum. For instance, given the
following variation of the previous select:

select title_id, price, advance from titles
compute sum(advance), sum(price)

the colnum for “sum(price)” still has a value of 1 and not 2, because the
“title_id” column in the select list is not a compute column and therefore is
ignored when determining the compute column’s number.

Return value A BYTE pointer to the data for a particular column in a particular compute. Be
sure to cast this pointer into the proper type. A BYTE pointer to NULL is
returned if there is no such column or compute or if the data has a null value.

DB-Library allocates and frees the data space that the BYTE pointer points to.
Do not overwrite this space.

Usage • After each call to dbnextrow, you can use this routine to return a pointer to
the data for a particular column in a compute row. The data is not null-
terminated. You can use dbadlen to get the length of the data.

CHAPTER 2 Routines

DB-Library/C Reference Manual 51

• When a column of integer data is summed or averaged, the server always
returns a 4-byte integer, regardless of the size of the column. Therefore, be
sure that the variable that is to contain the result from such a compute is
declared as DBINT.

• Here is a short program fragment which illustrates the use of dbadata:

DBPROCESS *dbproc;
 int rowinfo;
 DBINT sum;

 /*
 ** First, put the commands into the command
 ** buffer
 */
 dbcmd(dbproc, "select db_name(dbid), dbid, size
 from sysusages");
 dbcmd(dbproc, " order by dbid");
 dbcmd(dbproc, " compute sum(size) by dbid");

 /*
 ** Send the commands to Adaptive Server Enterprise
and start
 ** execution
 */
 dbsqlexec(dbproc);

 /* Process the command */
 dbresults(dbproc);

 /* Examine the results of the compute clause */
 while((rowinfo = dbnextrow(dbproc)) !=
 NO_MORE_ROWS)
 {
 if (rowinfo == REG_ROW)
 printf("regular row returned.\n");
 else
 {
 /*
 ** This row is the result of a compute
 ** clause, and "rowinfo" is the computeid
 ** of this compute clause.
 */

 sum = *(DBINT *)(dbadata(dbproc, rowinfo,
 1));
 printf("sum = %ld\n", sum);

dbadlen

52 Open Client

 }
 }

• The function dbaltbind automatically binds compute data to your program
variables. It does a copy of the data, but is often easier to use than dbadata.
Furthermore, it includes a convenient type conversion capability. By
means of this capability, the application can, among other things, easily
add a null terminator to a result string or convert money and datetime data
to printable strings.

See also dbadlen, dbaltbind, dbaltlen, dbalttype, dbgetrow, dbnextrow, dbnumalts

dbadlen
Description Return the actual length of the data for a compute column.

Syntax DBINT dbadlen(dbproc, computeid, column)

DBPROCESS *dbproc;
int computeid;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

Return value The length, in bytes, of the data for a particular compute column. If there is no
such column or compute clause, dbadlen returns -1. If the data has a null value,
dbadlen returns 0.

Usage • This routine returns the actual length of the data for a particular compute
column.

CHAPTER 2 Routines

DB-Library/C Reference Manual 53

• Use the dbaltlen routine to determine the maximum possible length for the
data. Use dbadata to get a pointer to the data.

• Here is a program fragment that illustrates the use of dbadlen:

DBPROCESS *dbproc;
 char biggest_name[MAXNAME+1];
 int namelen;
 int rowinfo;

 /* put the command into the command buffer */
 dbcmd(dbproc, "select name from sysobjects");
 dbcmd(dbproc, " order by name");
 dbcmd(dbproc, " compute max(name)");

 /*
 ** Send the command to Adaptive Server Enterprise
and start
 ** execution.
 */
 dbsqlexec(dbproc);

 /* process the command */
 dbresults(dbproc);

 /* examine each row returned by the command */
 while ((rowinfo = dbnextrow(dbproc)) !=
 NO_MORE_ROWS)
 {
 if (rowinfo == REG_ROW)
 printf("regular row returned.\n");
 else
 {
 /*
 ** This row is the result of a compute
 ** clause, and "rowinfo" is the computeid
 ** of this compute clause.
 */
 namelen = dbadlen(dbproc, rowinfo, 1);
 strncpy(biggest_name,
 (char *)dbadata(dbproc, rowinfo, 1),
 namelen);

 /*
 ** Data pointed to by dbadata() is not
 ** null-terminated.
 */

dbaltbind

54 Open Client

 biggest_name[namelen] = ’\0’;

 printf("biggest name = %s\n",
 biggest_name);
 }
 }

See also dbadata, dbaltlen, dbalttype, dbgetrow, dbnextrow, dbnumalts

dbaltbind
Description Bind a compute column to a program variable.

Syntax RETCODE dbaltbind(dbproc, computeid, column, vartype,
 varlen, varaddr)

DBPROCESS *dbproc;
int computeid;
int column;
int vartype;
DBINT varlen;
BYTE * varaddr;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1.

column
The column number of the row data that is to be copied to a program
variable. The first column is column number 1. Note that the order in which
compute columns are returned is determined by the order of the
corresponding columns in the select list, not by the order in which the
compute columns were originally specified. For example, in the following
query the result of “sum(price)” is referenced by giving column a value of
1, not 2:

select price, advance from titles

CHAPTER 2 Routines

DB-Library/C Reference Manual 55

compute sum(advance), sum(price)

The relative order of compute columns in the select list, rather than their
absolute position, determines the value of column. For instance, given the
following variation of the earlier select:

select title_id, price, advance from titles
compute sum(advance), sum(price)

the column for “sum(price)” still has a value of 1 and not 2, because the
“title_id” column in the select list is not a compute column and therefore is
ignored when determining the compute column’s number.

vartype
This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the data from
the DBPROCESS. The table below shows the correspondence between
vartype values and program variable types.

dbaltbind supports a wide range of type conversions, so the vartype can be
different from the type returned by the SQL query. For instance, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For a list of the data conversions provided by DB-Library, see the reference
page for dbwillconvert.

Note dbaltbind does not offer explicit precision and scale support for numeric
and decimal datatypes. When handling numeric or decimal data, dbaltbind uses
a default precision and scale of 18 and 0, respectively, unless the bind is to a
numeric or decimal column, in which case dbaltbind uses the precision and scale
of the source data. Use dbaltbind_ps to explicitly specify precision and scale
values—calling dbaltbind is equivalent to calling dbaltbind_ps with a NULL
typeinfo value.

For a list of the type definitions used by DB-Library, see Types on page 412.

Table 2-1 lists the legal vartype values recognized by dbaltbind, along with
the server and program variable types that each one refers to:

dbaltbind

56 Open Client

Table 2-1: Bind types (dbaltbind)

 Warning! It is an error to use any of the following values for vartype if the
library version has not been set (with dbsetversion) to DBVERSION_100 or
higher: BOUNDARYBIND, DECIMALBIND, NUMERICBIND, or
SENSITIVITYBIND.

Since SYBTEXT and SYBIMAGE data are never returned through a
compute row, those datatypes are not listed above.

Note that the server type in the table above is listed merely for your
information. The vartype you specify does not necessarily have to
correspond to a particular server type, because, as mentioned earlier,
dbaltbind will convert server data into the specified vartype.

The available representations for character data are shown below. They
differ according to whether the data is blank-padded or null-terminated:

Vartype
Program variable
type Server datatype

CHARBIND DBCHAR SYBCHAR

STRINGBIND DBCHAR SYBCHAR

NTBSTRINGBIND DBCHAR SYBCHAR

VARYCHARBIND DBVARYCHAR SYBCHAR

BINARYBIND DBBINARY SYBBINARY

VARYBINBIND DBVARYBIN SYBBINARY

TINYBIND DBTINYINT SYBINT1

SMALLBIND DBSMALLINT SYBINT2

INTBIND DBINT SYBINT4

FLT8BIND DBFLT8 SYBFLT8

REALBIND DBREAL SYBREAL

NUMERICBIND DBNUMERIC SYBNUMERIC

DECIMALBIND DBDECIMAL SYBDECIMAL

BITBIND DBBIT SYBBIT

DATETIMEBIND DBDATETIME SYBDATETIME

SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4

MONEYBIND DBMONEY SYBMONEY

SMALLMONEYBIND DBMONEY4 SYBMONEY4

BOUNDARYBIND DBCHAR SYBBOUNDARY

SENSITIVITYBIND DBCHAR SYBSENSITIVITY

CHAPTER 2 Routines

DB-Library/C Reference Manual 57

Note that the “\0” in the table above is the null terminator character.

If overflow occurs when converting integer or float data to a character
binding type, the first character of the resulting value will contain an asterisk
(“*”) to indicate the error.

Binary data may be stored in two different ways:

When a column of integer data is summed or averaged, the server always
returns a 4-byte integer, regardless of the size of the column. Therefore, be
sure that the variable which is to contain the result from such a compute is
declared as DBINT and that the vartype of the binding is INTBIND.

varlen
The length of the program variable in bytes.

For vartype values that represent fixed-length types, such as MONEYBIND
or FLT8BIND, this length is ignored.

For character and binary types, varlen must describe the total length of the
available destination buffer space, including any space that may be required
for special terminating bytes, such as a null terminator. If varlen is 0, the
total number of bytes available will be copied into the program variable.
(For char and binary server data, the total number of bytes available is equal
to the defined length of the database column, including any blank padding.
For varchar and varbinary data, the total number of bytes available is equal
to the actual data contained in the column.) Therefore, if you are sure that
your program variable is large enough to handle the results, you can just set
varlen to 0.

varaddr
The address of the program variable to which the data will be copied.

Vartype Program type Padding Terminator

CHARBIND DBCHAR blanks none

STRINGBIND DBCHAR blanks \0

NTBSTRINGBIND DBCHAR none \0

VARYCHARBIND DBVARYCHAR none none

BOUNDARYBIND DBCHAR none \0

SENSITIVITYBIND DBCHAR none \0

Vartype Program Type Padding

BINARYBIND DBBINARY nulls

VARYBINBIND DBVARBINARY none

dbaltbind

58 Open Client

Return value SUCCEED or FAIL.

dbaltbind returns FAIL if the column number is not valid, if the data conversion
specified by vartype is not legal, or if varaddr is NULL.

Usage • This routine directs DB-Library to copy compute column data returned by
the server into a program variable. (A compute column results from the
compute clause of a Transact-SQL select statement.) When each new row
containing compute data is read using dbnextrow or dbgetrow, the data
from the designated column in that compute row is copied into the
program variable with the address varaddr. There must be a separate
dbaltbind call for each compute column that is to be copied. It is not
necessary to bind every compute column to a program variable.

• The server can return two types of rows: regular rows containing data from
columns designated by a select statement’s select list, and compute rows
resulting from the compute clause. dbaltbind binds data from compute
rows. Use dbbind for binding data from regular rows.

• You must make the calls to dbaltbind after a call to dbresults and before the
first call to dbnextrow.

• The typical sequence of calls is:
 DBCHAR name[20];
 DBINT namecount;

 /* read the query into the command buffer */
 dbcmd(dbproc, "select name from emp compute
 count(name)");

 /* send the query to Adaptive Server Enterprise */
 dbsqlexec(dbproc);

 /* get ready to process the query results */
 dbresults(dbproc);

 /* bind the regular row data (name) */
 dbbind(dbproc, 1, STRINGBIND, (DBINT) 0, name);

 /* bind the compute column data (count of name) */
 dbaltbind(dbproc, 1, 1, INTBIND, (DBINT) 0,
 (BYTE *) &namecount);

 /* now process each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 C-code to print or process row data

CHAPTER 2 Routines

DB-Library/C Reference Manual 59

 }

• dbaltbind incurs a little overhead because it causes the data to be copied
into a program variable. To avoid this copying, you can use the dbadata
routine to directly access the returned data.

• You can only bind a result column to a single program variable. If you bind
a result column to multiple variables, only the last binding takes effect.

• The server can return null column values, and DB-Library provides the
following aids for handling null values:

• A pre-defined set of default values, one for each datatype, that DB-
Library automatically substitutes when a bound column contains a
null value. The dbsetnull function allows you to explicitly set your
own null substitution values. See the reference page for the dbsetnull
function for a list of the default substitution values.

• The ability to bind an indicator variable to a column with dbnullbind
(or dbanullbind for compute rows). As rows are fetched, the value of
the indicator variable will be set to indicate whether or not the column
value was null. See the reference page for the dbnullbind function for
indicator values and meanings.

See also dbadata, dbaltbind_ps, dbanullbind, dbbind, dbbind_ps, dbconvert,
dbconvert_ps, dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Types on
page 412

dbaltbind_ps
Description Bind a compute column to a program variable, with precision and scale support

for numeric and decimal datatypes.

Syntax RETCODE dbaltbind_ps(dbproc, computeid, column,
 vartype, varlen, varaddr,
 typeinfo)

DBPROCESS *dbproc;
int computeid;
int column;
int vartype;
DBINT varlen;
BYTE *varaddr;
DBTYPEINFO *typeinfo;

dbaltbind_ps

60 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1.

column
The column number of the row data that is to be copied to a program
variable. The first column is column number 1. Note that the order in which
compute columns are returned is determined by the order of the
corresponding columns in the select list, not by the order in which the
compute columns were originally specified. For example, in the following
query the result of “sum(price)” is referenced by giving column a value of
1, not 2:

select price, advance from titles
compute sum(advance), sum(price)

The relative order of compute columns in the select list, rather than their
absolute position, determines the value of column. For instance, given the
following variation of the earlier select:

select title_id, price, advance from titles
compute sum(advance), sum(price)

the column for “sum(price)” still has a value of 1 and not 2, because the
“title_id” column in the select list is not a compute column and therefore is
ignored when determining the compute column’s number.

CHAPTER 2 Routines

DB-Library/C Reference Manual 61

vartype
This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the data from
the DBPROCESS. The table below shows the correspondence between
vartype values and program variable types.

dbaltbind_ps supports a wide range of type conversions, so the vartype can
be different from the type returned by the SQL query. For instance, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For a list of the data conversions provided by DB-Library, see the reference
page for dbwillconvert.

Note dbaltbind_ps’s parameters are identical to dbaltbind’s, except that
dbaltbind_ps has the additional parameter typeinfo, which contains
information about precision and scale for DBNUMERIC or DBDECIMAL
variables.

For a list of the type definitions used by DB-Library, see Types on page 412.

Table 2-2 lists the legal vartype values recognized by dbaltbind_ps, along
with the server and program variable types that each one refers to:

dbaltbind_ps

62 Open Client

Table 2-2: Bind types (dbaltbind_ps)

 Warning! It is an error to use any of the following values for vartype if the
library version has not been set (with dbsetversion) to DBVERSION_100 or
higher: BOUNDARYBIND, DECIMALBIND, NUMERICBIND, or
SENSITIVITYBIND.

Since SYBTEXT and SYBIMAGE data are never returned through a
compute row, those datatypes are not listed above.

Note that the server type in the table above is listed merely for your
information. The vartype you specify does not necessarily have to
correspond to a particular server type, because, as mentioned earlier,
dbaltbind_ps will convert server data into the specified vartype.

The available representations for character data are shown below. They
differ according to whether the data is blank-padded or null-terminated:

Vartype
Program variable
type Server datatype

CHARBIND DBCHAR SYBCHAR

STRINGBIND DBCHAR SYBCHAR

NTBSTRINGBIND DBCHAR SYBCHAR

VARYCHARBIND DBVARYCHAR SYBCHAR

BINARYBIND DBBINARY SYBBINARY

VARYBINBIND DBVARYBIN SYBBINARY

TINYBIND DBTINYINT SYBINT1

SMALLBIND DBSMALLINT SYBINT2

INTBIND DBINT SYBINT4

FLT8BIND DBFLT8 SYBFLT8

REALBIND DBREAL SYBREAL

NUMERICBIND DBNUMERIC SYBNUMERIC

DECIMALBIND DBDECIMAL SYBDECIMAL

BITBIND DBBIT SYBBIT

DATETIMEBIND DBDATETIME SYBDATETIME

SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4

MONEYBIND DBMONEY SYBMONEY

SMALLMONEYBIND DBMONEY4 SYBMONEY4

BOUNDARYBIND DBCHAR SYBBOUNDARY

SENSITIVITYBIND DBCHAR SYBSENSITIVITY

CHAPTER 2 Routines

DB-Library/C Reference Manual 63

Note that the “\0” in the table above is the null terminator character.

If overflow occurs when converting integer or float data to a character
binding type, the first character of the resulting value will contain an asterisk
(“*”) to indicate the error.

Binary data may be stored in two different ways:

When a column of integer data is summed or averaged, the server always
returns a 4-byte integer, regardless of the size of the column. Therefore, be
sure that the variable which is to contain the result from such a compute is
declared as DBINT and that the vartype of the binding is INTBIND.

varlen
The length of the program variable in bytes.

For values of vartype that represent a fixed-length type, such as
MONEYBIND or FLT8BIND, this length is ignored.

For character and binary types, varlen must describe the total length of the
available destination buffer space, including any space that may be required
for special terminating bytes, such as a null terminator. If varlen is 0, the
total number of bytes available will be copied into the program variable.
(For char and binary server data, the total number of bytes available is equal
to the defined length of the database column, including any blank padding.
For varchar and varbinary data, the total number of bytes available is equal
to the actual data contained in the column.) Therefore, if you are sure that
your program variable is large enough to handle the results, you can just set
varlen to 0.

varaddr
The address of the program variable to which the data will be copied.

Vartype Program type Padding Terminator

CHARBIND DBCHAR blanks none

STRINGBIND DBCHAR blanks \0

NTBSTRINGBIND DBCHAR none \0

VARYCHARBIND DBVARYCHAR none none

BOUNDARYBIND DBCHAR none \0

SENSITIVITYBIND DBCHAR none \0

Vartype Program type Padding

BINARYBIND DBBINARY nulls

VARYBINBIND DBVARBINARY none

dbaltbind_ps

64 Open Client

typeinfo
A pointer to a DBTYPEINFO structure containing information about the
precision and scale of decimal or numeric data. An application sets a
DBTYPEINFO structure with values for precision and scale before calling
dbaltbind_ps to bind columns to DBDECIMAL or DBNUMERIC variables.

If typeinfo is NULL:

• If the result column is of type numeric or decimal, dbaltbind_ps picks up
precision and scale values from the result column.

• If the result column is not numeric or decimal, dbaltbind_ps uses a
default precision of 18 and a default scale of 0.

If vartype is not DECIMALBIND or NUMERICBIND, typeinfo is ignored.

A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo {
 DBINT precision;
 DBINT scale;
 } DBTYPEINFO;

Legal values for precision are from 1 to 77. Legal values for scale are from
0 to 77. scale must be less than or equal to precision.

Return value SUCCEED or FAIL.

dbaltbind_ps returns FAIL if the column number is not valid, if the data
conversion specified by vartype is not legal, or if varaddr is NULL.

Usage • dbaltbind_ps is the equivalent of dbaltbind, except that dbaltbind_ps
provides precision and scale support for numeric and decimal datatypes,
which dbaltbind does not. Calling dbaltbind is equivalent to calling
dbaltbind_ps with typeinfo as NULL.

• dbaltbind_ps directs DB-Library to copy compute column data returned by
the server into a program variable. (A compute column results from the
compute clause of a Transact-SQL select statement.) When each new row
containing compute data is read using dbnextrow or dbgetrow, the data
from the designated column in that compute row is copied into the
program variable with the address varaddr. There must be a separate
dbaltbind_ps call for each compute column that is to be copied. It is not
necessary to bind every compute column to a program variable.

• The server can return two types of rows: regular rows containing data from
columns designated by a select statement’s select list, and compute rows
resulting from the compute clause. dbaltbind_ps binds data from compute
rows. Use dbbind_ps for binding data from regular rows.

CHAPTER 2 Routines

DB-Library/C Reference Manual 65

• You must make the calls to dbaltbind_ps after a call to dbresults and before
the first call to dbnextrow.

• dbaltbind_ps incurs some overhead because it causes the data to be copied
into a program variable. To avoid this copying, you can use the dbadata
routine to directly access the returned data.

• You can only bind a result column to a single program variable. If you bind
a result column to multiple variables, only the last binding takes effect.

• Since the server can return null values, DB-Library provides a set of
default values, one for each datatype, that it will automatically substitute
when binding null values. The dbsetnull function allows you to explicitly
set your own null substitution values. (See the reference page for the
dbsetnull function for a list of the default substitution values.)

See also dbaltbind, dbanullbind, dbbind, dbbind_ps, dbconvert, dbconvert_ps, dbdata,
dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Types on page 412

dbaltcolid
Description Return the column ID for a compute column.

Syntax int dbaltcolid(dbproc, computeid, column)

DBPROCESS *dbproc;
int computeid;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the compute column of interest. The first column in a select
list is 1.

dbaltlen

66 Open Client

Return value The select list ID for the compute column. The first column in a select list is 1.
If either the computeid or the column value is invalid, dbaltcolid returns -1.

Usage • This routine returns the select list ID for a compute column. For example,
given the SQL statement:

select dept, name from employee
order by dept, name
compute count(name) by dept

the call dbaltcolid(dbproc, 1, 1) will return 2, since “name” is the second
column in the select list.

See also dbadata, dbadlen, dbaltlen, dbgetrow, dbnextrow, dbnumalts, dbprtype

dbaltlen
Description Return the maximum length of the data for a particular compute column.

Syntax DBINT dbaltlen(dbproc, computeid, column)

DBPROCESS *dbproc;
int computeid;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

Return value The maximum length, in bytes, possible for the data in a particular compute
column. dbaltlen returns -1 if there is no such column or compute clause.

Usage This routine returns the maximum length for a column in a compute row. In the
case of variable length data, this is not necessarily the actual length of the data,
but rather the maximum length. For the actual data length, use dbadlen.

CHAPTER 2 Routines

DB-Library/C Reference Manual 67

For example, given the SQL statement:

select dept, name from employee
order by dept, name
compute count(name) by dept

the call dbaltlen(dbproc, 1, 1) returns 4 because counts are of SYBINT4 type,
which is 4 bytes long.

See also dbadata, dbadlen, dbalttype, dbgetrow, dbnextrow, dbnumalts

dbaltop
Description Return the type of aggregate operator for a particular compute column.

Syntax int dbaltop(dbproc, computeid, column)

DBPROCESS *dbproc;
int computeid;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

Return value A token value for the type of the compute column’s aggregate operator. In case
of error, dbaltop returns -1.

Usage • This routine returns the type of aggregate operator for a particular column
in a compute row. For example, given the SQL statement:

select dept, name from employee
order by dept, name
compute count(name) by dept

dbalttype

68 Open Client

the call dbaltop(dbproc, 1, 1) will return the token value for count since the
first aggregate operator in the first compute clause is count.

• You can convert the token value to a readable token string with dbprtype.
See the dbprtype reference page for a list of all token values and their
equivalent token strings.

See also dbadata, dbadlen, dbaltlen, dbnextrow, dbnumalts, dbprtype

dbalttype
Description Return the datatype for a compute column.

Syntax int dbalttype(dbproc, computeid, column)

DBPROCESS *dbproc;
int computeid;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

Return value A token value for the datatype for a particular compute column.

In a few cases, the token value returned by this routine may not correspond
exactly with the column’s server datatype:

• SYBVARCHAR is returned as SYBCHAR.

• SYBVARBINARY is returned as SYBBINARY.

• SYBDATETIMN is returned as SYBDATETIME.

• SYBMONEYN is returned as SYBMONEY.

CHAPTER 2 Routines

DB-Library/C Reference Manual 69

• SYBFLTN is returned as SYBFLT8.

• SYBINTN is returned as SYBINT1, SYBINT2, or SYBINT4, depending
on the actual type of the SYBINTN.

dbalttype returns -1 if either the computeid or the column value is invalid.

Usage • This routine returns the datatype for a compute column. For a list of server
datatypes, see Types on page 412.

• dbalttype actually returns an integer token value for the datatype
(SYBCHAR, SYBFLT8, and so on). To convert the token value into a
readable token string, use dbprtype. See the dbprtype reference page for a
list of all token values and their equivalent token strings.

• For example, given the SQL statement:

select dept, name from employee
order by dept, name
compute count(name) by dept

the call dbalttype(dbproc, 1, 1) returns the token value SYBINT4, because
counts are of SYBINT4 type. dbprtype will convert SYBINT4 into the
readable token string “int”.

See also dbadata, dbadlen, dbaltlen, dbnextrow, dbnumalts, dbprtype, Types on page
412

dbaltutype
Description Return the user-defined datatype for a compute column.

Syntax DBINT dbaltutype(dbproc, computeid, column)

DBPROCESS *dbproc;
int computeid;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbanullbind

70 Open Client

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

column
The number of the column of interest. The first column is number 1.

Return value The user-defined datatype of the specified compute column on success; a
negative integer on error.

Usage • dbaltutype returns the user-defined datatype for a compute column.

• For a description of how to add user-defined datatypes to the server
databases or Server-Library programs, see the Adaptive Server Enterprise
Reference Manual or the Open Server Server-Library/C Reference
Manual.

• dbaltutype is defined as type DBINT, since both the DB-Library datatype
DBINT and user-defined datatypes are 32 bits long.

See also dbalttype, dbcolutype

dbanullbind
Description Associate an indicator variable with a compute-row column.

Syntax RETCODE dbanullbind(dbproc, computeid, column,
 indicator)

DBPROCESS *dbproc;
int computeid;
int column;
DBINT *indicator;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

CHAPTER 2 Routines

DB-Library/C Reference Manual 71

computeid
The compute row of interest. A select statement may have multiple compute
clauses, each of which returns a separate compute row. The computeid
corresponding to the first compute clause in a select is 1.

column
The number of the column that is to be associated with the indicator
variable.

indicator
A pointer to the indicator variable.

Note indicator is just the pointer to the indicator variable. It is the variable
itself that is set.

Return value SUCCEED or FAIL.

dbanullbind returns FAIL if either computeid or column is invalid.

Usage • dbanullbind associates a compute-row column with an indicator variable.
The indicator variable indicates whether a particular compute-row column
has been converted and copied to a program variable successfully or
unsuccessfully, or whether it is null.

• The indicator variable is set when compute rows are processed using
dbnextrow. The possible values are:

• -1 if the column is NULL.

• The full length of the column’s data, in bytes if the column was bound
to a program variable using dbaltbind, the binding did not specify any
data conversions, and the bound data was truncated because the
program variable was too small to hold the column’s data.

• 0 if the column was bound and copied to a program variable
successfully.

Note Detection of character string truncation is implemented only for
CHARBIND and VARYCHARBIND.

See also dbadata, dbadlen, dbaltbind, dbnextrow, dbnullbind

dbbind

72 Open Client

dbbind
Description Bind a regular result column to a program variable.

Syntax RETCODE dbbind(dbproc, column, vartype, varlen,
 varaddr)

DBPROCESS *dbproc;
int column;
int vartype;
DBINT varlen;
BYTE *varaddr;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The column number of the row data that is to be copied to a program
variable. The first column is column number 1.

CHAPTER 2 Routines

DB-Library/C Reference Manual 73

vartype
This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the data from
the DBPROCESS. The following table shows the correspondence between
vartype values and program variable types.

dbbind supports a wide range of type conversions, so the vartype can be
different from the type returned by the SQL query. For example, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For a list of the data conversions provided by DB-Library, see the reference
page for dbwillconvert.

Note The dbbind routine does not offer explicit precision and scale support for
numeric and decimal datatypes. When handling numeric or decimal data, dbbind
uses a default precision and scale of 18 and 0, respectively, unless the bind is
to a numeric or decimal column, in which case dbbind uses the precision and
scale of the source data. Use dbbind_ps to explicitly specify precision and scale
values—calling dbbind is equivalent to calling dbbind_ps with a NULL
typeinfo value.

For a list of the type definitions used by DB-Library, see Types on page 412.

Table 2-3 lists the legal vartype values recognized by dbbind, along with the
server and program variable types that each one refers to:

dbbind

74 Open Client

Table 2-3: Bind types (dbbind)

 Warning! An error occurs when you use any of the following values for
vartype if the library version has not been set (with dbsetversion) to
DBVERSION_100 or higher: BOUNDARYBIND, DECIMALBIND,
NUMERICBIND, or SENSITIVITYBIND.

The server type in the table above is listed merely for your information. The
vartype you specify does not necessarily have to correspond to a particular
server type, because, as mentioned earlier, dbbind will convert server data
into the specified vartype.

Note The server types nchar and nvarchar are converted internally to char and
varchar types, which correspond to the DB-Library type constant SYBCHAR.

The available representations for character and text data are shown below.

Vartype
Program
variable type Server datatype

CHARBIND DBCHAR SYBCHAR or SYBTEXT

STRINGBIND DBCHAR SYBCHAR or SYBTEXT

NTBSTRINGBIND DBCHAR SYBCHAR or SYBTEXT

VARYCHARBIND DBVARYCHAR SYBCHAR or SYBTEXT

BINARYBIND DBBINARY SYBBINARY or SYBIMAGE

VARYBINBIND DBVARYBIN SYBBINARY or SYBIMAGE

TINYBIND DBTINYINT SYBINT1

SMALLBIND DBSMALLINT SYBINT2

INTBIND DBINT SYBINT4

FLT8BIND DBFLT8 SYBFLT8

REALBIND DBREAL SYBREAL

NUMERICBIND DBNUMERIC SYBNUMERIC

DECIMALBIND DBDECIMAL SYBDECIMAL

BITBIND DBBIT SYBBIT

DATETIMEBIND DBDATETIME SYBDATETIME

SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4

MONEYBIND DBMONEY SYBMONEY

SMALLMONEYBIND DBMONEY4 SYBMONEY4

BOUNDARYBIND DBCHAR SYBBOUNDARY

SENSITIVITYBIND DBCHAR SYBSENSITIVITY

CHAPTER 2 Routines

DB-Library/C Reference Manual 75

They differ according to whether the data is blank-padded or null-
terminated. Note that if varlen is 0, no padding takes place and that the “\0”
is the null terminator character:

If overflow occurs when converting integer or float data to a character/text
binding type, the first character of the resulting value will contain an asterisk
(“*”) to indicate the error.

Binary and image data can be stored in two different ways:

varlen
The length of the program variable in bytes.

For values of vartype that represent a fixed-length type, such as
MONEYBIND or FLT8BIND, this length is ignored.

For char, text, binary, and image types, varlen must describe the total length
of the available destination buffer space, including any space that may be
required for special terminating bytes, such as a null terminator. If varlen is
0, the total number of bytes available will be copied into the program
variable. (For char and binary server data, the total number of bytes available
is equal to the defined length of the database column, including any blank
padding. For varchar, varbinary, text, and image data, the total number of
bytes available is equal to the actual data contained in the column.)
Therefore, if you are sure that your program variable is large enough to
handle the results, you can just set varlen to 0.

Note that if varlen is 0, no padding takes place.

In some cases, DB-Library issues a message indicating that data conversion
resulted in an overflow. This can be caused by a varlen specification that is
too small for the server data.

Vartype Program type Padding Terminator

CHARBIND DBCHAR blanks none

STRINGBIND DBCHAR blanks \0

NTBSTRINGBIND DBCHAR none \0

VARYCHARBIND DBVARYCHAR none none

BOUNDARYBIND DBCHAR none \0

SENSITIVITYBIND DBCHAR none \0

Vartype Program type Padding

BINARYBIND DBBINARY nulls

VARYBINBIND DBVARBINARY none

dbbind

76 Open Client

varaddr
The address of the program variable to which the data will be copied.

Return value SUCCEED or FAIL.

dbbind returns FAIL if the column number is not valid, if the data conversion
specified by vartype is not legal, or if varaddr is NULL.

Usage • Data comes back from the server one row at a time. This routine directs
DB-Library to copy the data for a regular column (designated in a select
statement’s select list) into a program variable. When each new row
containing regular (not compute) data is read using dbnextrow or dbgetrow,
the data from the designated column in that row is copied into the program
variable with the address varaddr. There must be a separate dbbind call for
each regular column that is to be copied. It is not necessary to bind every
column to a program variable.

• The server can return two types of rows: regular rows and compute rows
resulting from the compute clause of a select statement. dbbind binds data
from regular rows. Use dbaltbind for binding data from compute rows.

• You must make the calls to dbbind after a call to dbresults and before the
first call to dbnextrow.

• The typical sequence of calls is:

DBINT xvariable;
 DBCHAR yvariable[10];

 /* read the query into the command buffer */
 dbcmd(dbproc, "select x = 100, y = ’hello’");

 /* send the query to Adaptive Server Enterprise */
 dbsqlexec(dbproc);

 /* get ready to process the query results */
 dbresults(dbproc);

 /* bind column data to program variables */
 dbbind(dbproc, 1, INTBIND, (DBINT) 0,
 (BYTE *) &xvariable);
 dbbind(dbproc, 2, STRINGBIND, (DBINT) 0,
 yvariable);

 /* now process each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 C-code to print or process row data

CHAPTER 2 Routines

DB-Library/C Reference Manual 77

 }

• dbbind incurs a little overhead, because it causes the data to be copied into
a program variable. To avoid this copying, you can use the dbdata routine
to directly access the returned data.

• You can only bind a result column to a single program variable. If you bind
a result column to multiple variables, only the last binding takes effect.

• Since the server can return null values, DB-Library provides a set of
default values, one for each datatype, that it will automatically substitute
when binding null values. The dbsetnull function allows you to explicitly
set your own null substitution values. (See the reference page for the
dbsetnull function for a list of the default substitution values.)

See also dbaltbind, dbaltbind_ps, dbnullbind, dbbind_ps, dbconvert, dbconvert_ps,
dbdata, dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Types on page 412

dbbind_ps
Description Bind a regular result column to a program variable, with precision and scale

support for numeric and decimal datatypes.

Syntax RETCODE dbbind_ps(dbproc, column, vartype, varlen,
 varaddr, typeinfo)

DBPROCESS *dbproc;
int column;
int vartype;
DBINT varlen;
BYTE *varaddr;
DBTYPEINFO *typeinfo;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The column number of the row data that is to be copied to a program
variable. The first column is column number 1.

dbbind_ps

78 Open Client

vartype
This describes the datatype of the binding. It must correspond to the
datatype of the program variable that will receive the copy of the data from
the DBPROCESS. The table below shows the correspondence between
vartype values and program variable types.

dbbind_ps supports a wide range of type conversions, so the vartype can be
different from the type returned by the SQL query. For instance, a
SYBMONEY result may be bound to a DBFLT8 program variable through
FLT8BIND, and the appropriate data conversion will happen automatically.
For a list of the data conversions provided by DB-Library, see the reference
page for dbwillconvert.

For a list of the type definitions used by DB-Library, see Types on page 412.

Table 2-4 lists the legal vartype values recognized by dbbind_ps, along with
the server and program variable types that each one refers to:

CHAPTER 2 Routines

DB-Library/C Reference Manual 79

Table 2-4: Bind types (dbbind_ps)

 Warning! It is an error to use any of the following values for vartype if the
library version has not been set (with dbsetversion) to DBVERSION_100 or
higher: BOUNDARYBIND, DECIMALBIND, NUMERICBIND, or
SENSITIVITYBIND.*

The server type in the table above is listed merely for your information. The
vartype you specify does not necessarily have to correspond to a particular
server type, because, as mentioned earlier, dbbind_ps will convert server
data into the specified vartype.

Note The server types nchar and nvarchar are converted internally to char and
varchar types, which correspond to the DB-Library type constant SYBCHAR.

The available representations for character and text data are shown below.

Vartype
Program
variable type Server type

CHARBIND DBCHAR SYBCHAR or SYBTEXT

STRINGBIND DBCHAR SYBCHAR or SYBTEXT

NTBSTRINGBIND DBCHAR SYBCHAR or SYBTEXT

VARYCHARBIND DBVARYCHAR SYBCHAR or SYBTEXT

BINARYBIND DBBINARY SYBBINARY or SYBIMAGE

VARYBINBIND DBVARYBIN SYBBINARY or SYBIMAGE

TINYBIND DBTINYINT SYBINT1

SMALLBIND DBSMALLINT SYBINT2

INTBIND DBINT SYBINT4

FLT8BIND DBFLT8 SYBFLT8

REALBIND DBREAL SYBREAL

NUMERICBIND DBNUMERIC SYBNUMERIC

DECIMALBIND DBDECIMAL SYBDECIMAL

BITBIND DBBIT SYBBIT

DATETIMEBIND DBDATETIME SYBDATETIME

SMALLDATETIMEBIND DBDATETIME4 SYBDATETIME4

MONEYBIND DBMONEY SYBMONEY

SMALLMONEYBIND DBMONEY4 SYBMONEY4

BOUNDARYBIND DBCHAR SYBBOUNDARY

SENSITIVITYBIND DBCHAR SYBSENSITIVITY

dbbind_ps

80 Open Client

They differ according to whether the data is blank-padded or null-
terminated. Note that if varlen is 0, no padding takes place and that the “\0”
is the null terminator character:

If overflow occurs when converting integer or float data to a character/text
binding type, the first character of the resulting value will contain an asterisk
(“*”) to indicate the error.

binary and image data may be stored in two different ways:

varlen
The length of the program variable in bytes.

For values of vartype that represent a fixed-length type, such as
MONEYBIND or FLT8BIND, this length is ignored.

For char, text, binary, and image types, varlen must describe the total length
of the available destination buffer space, including any space that may be
required for special terminating bytes, such as a null terminator. If varlen is
0, the total number of bytes available will be copied into the program
variable. (For char and binary server data, the total number of bytes available
is equal to the defined length of the database column, including any blank
padding. For varchar, varbinary, text, and image data, the total number of
bytes available is equal to the actual data contained in the column.)
Therefore, if you are sure that your program variable is large enough to
handle the results, you can just set varlen to 0.

Note If varlen is 0, no padding takes place.

varaddr
The address of the program variable to which the data will be copied.

Vartype Program type Padding Terminator

CHARBIND DBCHAR blanks none

STRINGBIND DBCHAR blanks \0

NTBSTRINGBIND DBCHAR none \0

VARYCHARBIND DBVARYCHAR none none

BOUNDARYBIND DBCHAR none \0

SENSITIVITYBIND DBCHAR none \0

Vartype Program variable type Padding

BINARYBIND DBBINARY nulls

VARYBINBIND DBVARBINARY none

CHAPTER 2 Routines

DB-Library/C Reference Manual 81

typeinfo
A pointer to a DBTYPEINFO structure containing information about the
precision and scale of decimal or numeric data. An application sets a
DBTYPEINFO structure with values for precision and scale before calling
dbbind_ps to bind columns to DBDECIMAL or DBNUMERIC variables.

If typeinfo is NULL:

• If the result column is of type numeric or decimal, dbbind_ps picks up
precision and scale values from the result column.

• If the result column is not numeric or decimal, dbbind_ps uses a default
precision of 18 and a default scale of 0.

If vartype is not DECIMALBIND or NUMERICBIND, typeinfo is ignored.

A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo {
 DBINTprecision;
 DBINTscale;
 } DBTYPEINFO;

Legal values for precision are from 1 to 77. Legal values for scale are from
0 to 77. scale must be less than or equal to precision.

Return value SUCCEED or FAIL.

dbbind_ps returns FAIL if the column number is not valid, if the data
conversion specified by vartype is not legal, or if varaddr is NULL.

Usage • dbbind_ps parameters are identical to dbbind’s, except that dbbind_ps has
the additional parameter typeinfo, which contains information about
precision and scale for DBNUMERIC or DBDECIMAL variables.

• dbbind_ps is the equivalent of dbbind, except that dbbind_ps provides scale
and precision support for numeric and decimal datatypes, which dbbind
does not. Calling dbbind is equivalent to calling dbbind_ps with typeinfo as
NULL.

• Data comes back from the server one row at a time. This routine directs
DB-Library to copy the data for a regular column (designated in a select
statement’s select list) into a program variable. When each new row
containing regular (not compute) data is read using dbnextrow or dbgetrow,
the data from the designated column in that row is copied into the program
variable with the address varaddr. There must be a separate dbbind or
dbbind_ps call for each regular column that is to be copied. It is not
necessary to bind every column to a program variable.

dbbufsize

82 Open Client

• The server can return two types of rows: regular rows and compute rows
resulting from the compute clause of a select statement. Use dbbind_ps to
bind data from regular rows, and dbaltbind_ps to bind data from compute
rows.

• You must make the calls to dbbind_ps after a call to dbresults and before
the first call to dbnextrow.

• dbbind_ps incurs some overhead, because it causes the data to be copied
into a program variable. To avoid this copying, you can use the dbdata
routine to directly access the returned data.

• You can bind a result column only to a single program variable. If you bind
a result column to multiple variables, only the last binding takes effect.

• Since the server can return null values, DB-Library provides a set of
default values, one for each datatype, that it will automatically substitute
when binding null values. The dbsetnull function allows you to explicitly
set your own null substitution values. See the reference page for the
dbsetnull function for a list of the default substitution values.

See also dbaltbind, dbaltbind_ps, dbanullbind, dbbind, dbconvert, dbconvert_ps,
dbdata, dbnullbind, dbsetnull, dbsetversion, dbwillconvert, Types on page 412

dbbufsize
Description Return the size of a DBPROCESS row buffer.

Syntax int dbbufsize(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

Return value An integer representing the size, in rows, of the DBPROCESS row buffer.

If dbproc is NULL or if row buffering is not allowed, dbbufsize returns 0.

Usage • dbbufsize returns the size of a DBPROCESS row buffer.

CHAPTER 2 Routines

DB-Library/C Reference Manual 83

• Row buffering provides a way for an application to keep a specified
number of server result rows in program memory. To allow row buffering,
call dbsetopt(dbproc, DBBUFFER, n), where n is the number of rows to
buffer. An application that is buffering result rows can access rows non-
sequentially, using dbgetrow. See the dbgetrow reference page for a
discussion of the benefits and penalties of row buffering.

See also dbclrbuf, dbgetrow, dbsetopt, Options on page 407

dbbylist
Description Return the bylist for a compute row.

Syntax BYTE *dbbylist(dbproc, computeid, size)

DBPROCESS *dbproc;
int computeid;
int *size;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

size
A pointer to an integer, which dbbylist sets to the number of elements in the
bylist.

Return value A pointer to an array of bytes containing the numbers of the columns that
compose the bylist for the specified compute. The array of BYTEs is part of the
DBPROCESS, so you must not free it. If the computeid is out of range, NULL
is returned.

Call dbcolname to derive the name of a column from its number.

The size of the array is returned in the size parameter. A size of 0 indicates that
either there is no bylist for this particular compute or the computeid is out of
range.

dbcancel

84 Open Client

Usage • dbbylist returns the bylist for a compute row. (A select statement’s compute
clause may contain the keyword by, followed by a list of columns. This
list, known as the “bylist,” divides the results into subgroups, based on
changing values in the specified columns. The compute clause’s row
aggregate is applied to each subgroup, generating a compute row for each
subgroup.)

• dbresults must return SUCCEED before the application calls this routine.

• Assume the following command has been executed:

select dept, name, year, sales from employee
order by dept, name, year
compute count(name) by dept,name

The call dbbylist (dbproc, 1, &size) sets size to 2, because there are two
items in the bylist. It returns a pointer to an array of two BYTEs, which
contain the values 1 and 2, indicating that the bylist is composed of
columns 1 and 2 from the select list.

See also dbadata, dbadlen, dbaltlen, dbalttype, dbcolname, dbgetrow, dbnextrow

dbcancel
Description Cancel the current command batch.

Syntax RETCODE dbcancel(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL.

The most common reasons for failure are a dead DBPROCESS or a network
error. dbcancel will also return FAIL if the server is dead.

CHAPTER 2 Routines

DB-Library/C Reference Manual 85

Usage • This routine cancels execution of the current command batch on the server
and flushes any pending results. The application can call it after calling
dbsqlexec, dbsqlsend, dbsqlok, dbresults, or dbnextrow.The dbcancel
routine sends an attention packet to the server which causes the server to
cease execution of the command batch. Any pending results are read and
discarded.

• dbcancel cancels all the commands in the current command batch. To
cancel only the results from the current command, call dbcanquery instead.

• Some applications may need the ability to cancel a long-running query
while DB-Library is reading from the network. In this case, the application
should use one of these methods:

• Set a time limit for server reads with dbsettime, and add a special case
to your error handler function to respond to SYBETIME errors. See
the reference pages for dberrhandle and dbsettime for details.

• Use dbsetinterrupt to install custom interrupt handling. See the
reference page for dbsetinterrupt for details.

• If you have set your own interrupt handler using dbsetinterrupt, you cannot
call dbcancel in your interrupt handler. This would cause output from the
server to DB-Library to become out of sync. See the reference page for
dbsetinterrupt for an explanation of how to cancel from an interrupt
handler.

See also dbcanquery, dbnextrow, dbresults, dbsetinterrupt, dbsqlexec, dbsqlok,
dbsqlsend

dbcanquery
Description Cancel any rows pending from the most recently executed query.

Syntax RETCODE dbcanquery(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL.

dbchange

86 Open Client

The most common reasons for failure are a dead DBPROCESS or a network
error.

Usage • This routine is an efficient way to throw away any unread rows that result
from the most recently executed SQL query. Calling dbcanquery is
equivalent to calling dbnextrow until it returns NO_MORE_ROWS, but
dbcanquery is faster because it allocates no memory and executes no
bindings to user data.

• If you have set your own interrupt handler using dbsetinterrupt, you cannot
call dbcanquery in your interrupt handler. This would cause output from
the server to DB-Library to become out of sync. If you want to ignore any
unread rows from the current query, the interrupt handler should set a flag
that you can check before the next call to dbnextrow.

• dbresults must return SUCCEED before an application can call
dbcanquery.

• If you want to ignore all of the results from all of the commands in the
current command batch, call dbcancel instead.

See also dbcancel, dbnextrow, dbresults, dbsetinterrupt, dbsqlexec

dbchange
Description Determine whether a command batch has changed the current database.

Syntax char *dbchange(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value A pointer to the null-terminated name of the new database, if any. If the
database has not changed, NULL will be returned.

Usage • dbchange informs the program of a change in the current database. It does
so by catching any instance of the Transact-SQL use command.

CHAPTER 2 Routines

DB-Library/C Reference Manual 87

• Although a use command can appear anywhere in a command batch, the
database change does not actually take effect until the end of the batch.
dbchange is therefore useful only in determining whether the current
command batch has changed the database for subsequent command
batches.

• The internal DBPROCESS flag that dbchange monitors to determine
whether the database has changed is cleared when the program executes a
new command batch by calling either dbsqlexec or dbsqlsend. Therefore,
the simplest way to keep track of database changes is to call dbchange
when dbresults returns NO_MORE_RESULTS at the end of each
command batch.

• Alternatively, you can always get the name of the current database by
calling dbname.

See also dbname, dbresults, dbsqlexec, dbsqlsend, dbuse

dbcharsetconv
Description Indicate whether the server is performing character set translation.

Syntax DBBOOL dbcharsetconv(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

Return value “TRUE” if the server is performing character set translations; “FALSE” if it is
not.

Usage • If a client and a server are using the same character set, the server is not
performing translation. In this case, dbcharsetconv returns “FALSE”.

• To get the name of its own character set, a client can call dbgetcharset.

• To get the name of the server’s character set, a client can call
dbservcharset.

See also dbservcharset, dbgetcharset, DBSETLCHARSET

dbclose

88 Open Client

dbclose
Description Close and deallocate a single DBPROCESS structure.

Syntax void dbclose(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value None.

Usage • dbclose is the inverse of dbopen. It cleans up any activity associated with
one DBPROCESS structure and deallocates the space. It also closes the
corresponding network connection.

• To close every open DBPROCESS structure, use dbexit instead.

• dbclose does not deallocate space associated with a LOGINREC. To
deallocate a LOGINREC, an application can call dbloginfree.

• Calling dbclose with an argument not returned by dbopen is sure to cause
trouble.

See also dbexit, dbopen

dbclrbuf
Description Drop rows from the row buffer.

Syntax void dbclrbuf(dbproc, n)

DBPROCESS* dbproc;
DBINT n;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

CHAPTER 2 Routines

DB-Library/C Reference Manual 89

n
The number of rows you want cleared from the row buffer. If you make n
equal to or greater than the number of rows in the buffer, all but the newest
row will be removed. If n is less than 1, the function call is ignored.

Return value None.

Usage • DB-Library provides a row-buffering service to application programs.
You can turn row buffering on by calling dbsetopt(dbproc, DBBUFFER,
n) where n is the number of rows you would like DB-Library to buffer. If
buffering is on, you can then randomly refer to rows that have been read
from the server, using dbgetrow. See the dbgetrow reference page for a
discussion of the benefits and penalties of row buffering.

• The row buffer can become full for two reasons. Either the server has
returned more than the n rows you said you wanted buffered, or sufficient
space could not be allocated to save the row you wanted. When the row
buffer is full, dbnextrow returns BUF_FULL and refuses to read in the next
row from the server. Once the row buffer is full, subsequent calls to
dbnextrow will continue to return BUF_FULL until at least one row is
freed by calling dbclrbuf. dbclrbuf always frees the oldest rows in the buffer
first.

• Once a result row has been cleared from the buffer, it is no longer available
to the program.

• For an example of row buffering, see the sample program example4.c.

See also dbgetrow, dbnextrow, dbsetopt, Options on page 407

dbclropt
Description Clear an option set by dbsetopt.

Syntax RETCODE dbclropt(dbproc, option, param)

DBPROCESS *dbproc;
int option;
char* param;

dbclropt

90 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server. If dbproc is NULL, the option will be cleared for all active
DBPROCESS structures.

option
The option that is to be turned off. See Options on page 407 for a list of
options.

param
Certain options take parameters. The DBOFFSET option, for example,
takes as a parameter the SQL construct for which offsets are to be returned.
Options on page 407 lists those options that take parameters. If an option
does not take a parameter, param must be NULL.

If the option you are clearing takes a parameter, but there can be only one
instance of the option, dbclropt ignores the param argument. For example,
dbclropt ignores the value of param when clearing the DBBUFFER option,
because row buffering can have only one setting at a time. On the other
hand, the DBOFFSET option can have several settings, each with a different
parameter. It may have been set twice—to look for offsets to select
statements and offsets to order by clauses. In that case, dbclropt needs the
param argument to determine whether to clear the select offset or the order
by offset.

If an invalid parameter is specified for one of the server options, this will be
discovered the next time a command buffer is sent to the server. The
dbsqlexec or dbsqlsend call fails, and DB-Library will invoke the user-
installed message handler. If an invalid parameter is specified for one of the
DB-Library options (DBBUFFER or DBTEXTLIMIT), the dbclropt call
itself fails.

Return value SUCCEED or FAIL.

Usage • This routine clears the server and DB-Library options that have been set
with dbsetopt. Although server options may be set and cleared directly
through SQL, the application should instead use dbsetopt and dbclropt to
set and clear options. This provides a uniform interface for setting both
server and DB-Library options. It also allows the application to use the
dbisopt function to check the status of an option.

• dbclropt does not immediately clear the option. The option is cleared the
next time a command buffer is sent to the server (by invoking dbsqlexec
or dbsqlsend).

CHAPTER 2 Routines

DB-Library/C Reference Manual 91

• For a complete list of options, see Options on page 407.

See also dbisopt, dbsetopt, Options on page 407

dbcmd
Description Add text to the DBPROCESS command buffer.

Syntax RETCODE dbcmd(dbproc, cmdstring)

DBPROCESS *dbproc;
char *cmdstring;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

cmdstring
A null-terminated character string that dbcmd copies into the command
buffer.

Return value SUCCEED or FAIL.

Usage • This routine adds text to the Transact-SQL command buffer in the
DBPROCESS structure. It adds to the existing command buffer—it does
not delete or overwrite the current contents except after the buffer has been
sent to the server (see “Clearing the command buffer” on page 92). A
single command buffer may contain multiple commands; in fact, this
represents an efficient use of the command buffer.

• dbfcmd is a related function. dbfcmd interprets the cmdstring as a format
string that is passed to sprintf along with any additional arguments. The
application can intermingle calls to dbcmd and dbfcmd.

Consecutive calls to dbcmd

• The application may call dbcmd repeatedly. The command strings in
sequential calls are just concatenated together. It is the application’s
responsibility to ensure that any necessary blanks appear between the end
of one string and the beginning of the next.

DBCMDROW

92 Open Client

• Here is a small example of using dbcmd to build up a multiline SQL
command:

DBPROCESS *dbproc;

 dbcmd(dbproc, "select name from sysobjects");
 dbcmd(dbproc, " where id < 5");
 dbcmd(dbproc, " and type=’S’");

Note the required spaces at the start of the second and third command
strings.

• At any time, the application can access the contents of the command buffer
through calls to dbgetchar, dbstrlen, and dbstrcpy.

• Available memory is the only constraint on the size of the DBPROCESS
command buffer created by calls to dbcmd and dbfcmd.

Clearing the command buffer

• After a call to dbsqlexec or dbsqlsend, the first call to either dbcmd or
dbfcmd automatically clears the command buffer before the new text is
entered. If this situation is undesirable, set the DBNOAUTOFREE option.
When DBNOAUTOFREE is set, the command buffer is cleared only by
an explicit call to dbfreebuf.

See also dbfcmd, dbfreebuf, dbgetchar, dbstrcpy, dbstrlen, Options on page 407

DBCMDROW
Description Determine whether the current command can return rows.

Syntax RETCODE DBCMDROW(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL, to indicate whether the command can return rows.

CHAPTER 2 Routines

DB-Library/C Reference Manual 93

Usage • DBCMDROW determines whether the command currently being processed
by dbresults is one that can return rows—that is, a Transact-SQL select
statement or an execute on a stored procedure containing a select. The
application can call it after dbresults returns SUCCEED.

• Even if DBCMDROW macro returns SUCCEED, the command does not
return any rows if none have qualified. To determine whether any rows are
actually being returned, use DBROWS.

See also dbnextrow, dbresults, DBROWS, DBROWTYPE

dbcolbrowse
Description Determine whether the source of a regular result column is updatable through

the DB-Library browse-mode facilities.

Syntax DBBOOL dbcolbrowse(dbproc, colnum)

DBPROCESS *dbproc;
int colnum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

colnum
The number of the result column of interest. Column numbers start at 1.

Return value “TRUE” or “FALSE.”

Usage • dbcolbrowse is one of the DB-Library browse mode routines. See Chapter
1, “Introducing DB-Library” for a detailed discussion of browse mode.

• dbcolbrowse provides a way to determine whether the database column
that is the source of a regular (that is, non-compute) result column in a
select list is updatable using the DB-Library browse-mode facilities. This
routine is useful in examining ad hoc queries. If the query has been hard-
coded into the program, dbcolbrowse obviously is unnecessary.

• To be updatable, a column must be derived from a browsable table (that is,
the table must have a unique index and a timestamp column) and cannot
be the result of a SQL expression. For example, in the following select list:

select title, category=type,

dbcollen

94 Open Client

wholesale=(price * 0.6) ... for browse

result columns 1 and 2 (“title” and “category”) are updatable, but column
3 (“wholesale”) is not, because it is the result of an expression.

• The application can call dbcolbrowse anytime after dbresults.

• To determine the name of the source column given the name of the result
column, use dbcolsource.

• The sample program example7.c contains a call to dbcolbrowse.

See also dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

dbcollen
Description Return the maximum length of the data in a regular result column.

Syntax DBINT dbcollen(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value The maximum length, in bytes, of the data for the particular column. If the
column number is not in range, dbcollen returns -1.

Usage • This routine returns the maximum length of the data in a regular (that is,
non-compute) result column. In the case of variable length data, this is not
necessarily the actual length of the data, but rather the maximum length
that the data can be. For the actual data length, use dbdatlen.

CHAPTER 2 Routines

DB-Library/C Reference Manual 95

• The value that dbcollen returns is not affected by Transact-SQL string
functions such as rtrim and ltrim. For example, if the column au_lname has
a maximum length of 20 characters, and the first row instance of au_lname
is “Goodman ” (a value padded with 13 spaces), dbcollen returns
20 as the length of au_lname, even though the Transact-SQL command
select rtrim(au_lname) from authors returns a string that is 5 characters long.

• Here is a small program fragment that uses dbcollen:

DBPROCESS *dbproc;
 int colnum;
 DBINT column_length;

 /* Put the command into the command buffer */
 dbcmd(dbproc, "select name, id, type from
 sysobjects");

 /*
 ** Send the command to Adaptive Server Enterprise
and begin
 ** execution
 */
 dbsqlexec(dbproc);

 /* process the command results */
 dbresults(dbproc);

 /* examine the column lengths */
 for (colnum = 1; colnum < 4; colnum++)
 {
 column_length = dbcollen(dbproc, colnum);
 printf("column %d, length is %ld.\n", colnum,
 column_length);
 }

See also dbcolname, dbcoltype, dbdata, dbdatlen, dbnumcols

dbcolname
Description Return the name of a regular result column.

Syntax char *dbcolname(dbproc, column)

dbcolname

96 Open Client

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value A CHAR pointer to the null-terminated name of the particular column. If the
column number is not in range, dbcolname returns NULL.

Usage • This routine returns a pointer to the null-terminated name of a regular (that
is, non-compute) result column.

• Here is a small program fragment that uses dbcolname:

DBPROCESS *dbproc;

 /* Put the command into the command buffer */
 dbcmd(dbproc, "select name, id, type from
 sysobjects");

 /*
 ** Send the command to Adaptive Server Enterprise
and begin
 ** execution
 */
 dbsqlexec(dbproc);

 /* Process the command results */
 dbresults(dbproc);

 /* Examine the column names */
 printf("first column name is %s\n",
 dbcolname(dbproc, 1));
 printf("second column name is %s\n",
 dbcolname(dbproc, 2));
 printf("third column name is %s\n",
 dbcolname(dbproc, 3));

See also dbcollen, dbcoltype, dbdata, dbdatlen, dbnumcols

CHAPTER 2 Routines

DB-Library/C Reference Manual 97

dbcolsource
Description Return a pointer to the name of the database column from which the specified

regular result column was derived.

Syntax char *dbcolsource(dbproc, colnum)

DBPROCESS *dbproc;
int colnum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

colnum
The number of the result column of interest. Column numbers start at 1.

Return value A pointer to a null-terminated column name. This pointer will be NULL if the
column number is out of range or if the column is the result of a SQL
expression, such as max(colname).

Usage • dbcolsource is one of the DB-Library browse mode routines. It is usable
only with results from a browse-mode select (that is, a select containing
the key words for browse). See Chapter 1, “Introducing DB-Library” for a
detailed discussion of browse mode.

• dbcolsource provides an application with information it needs to update a
database column, based on an ad hoc query. select statements may
optionally specify header names for regular (that is, non-compute) result
columns:

select author = au_lname from authors for browse

When updating a table, you must use the database column name, not the
header name (in this example, “au_lname”, not “author”). You can use the
dbcolsource routine to get the underlying database column name:

dbcolsource(dbproc, 1)

This call returns a pointer to the string “au_lname”.

• dbcolsource is useful for ad hoc queries. If the query has been hard-coded
into the program, this routine obviously is unnecessary.

• The application can call dbcolsource anytime after dbresults.

• The sample program example7.c contains a call to dbcolsource.

dbcoltype

98 Open Client

See also dbcolbrowse, dbqual, dbtabbrowse, dbtabcount, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

dbcoltype
Description Return the datatype for a regular result column.

Syntax int dbcoltype(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value A token value for the datatype for a particular column.

In a few cases, the token value returned by this routine may not correspond
exactly with the column’s server datatype:

• SYBVARCHAR is returned as SYBCHAR.

• SYBVARBINARY is returned as SYBBINARY.

• SYBDATETIMN is returned as SYBDATETIME.

• SYBMONEYN is returned as SYBMONEY.

• SYBFLTN is returned as SYBFLT8.

• SYBINTN is returned as SYBINT1, SYBINT2, or SYBINT4, depending
on the actual type of the SYBINTN.

If the column number is not in range, dbcoltype returns -1.

Usage • This routine returns the datatype for a regular (that is, non-compute) result
column. For a list of server datatypes, see Types on page 412.

CHAPTER 2 Routines

DB-Library/C Reference Manual 99

• dbcoltype actually returns an integer token value for the datatype
(SYBCHAR, SYBFLT8, and so on). To convert the token value into a
readable token string, use dbprtype. See the dbprtype reference page for a
list of all token values and their equivalent token strings.

• You can use dbvarylen to determine whether a column’s datatype is
variable length.

• Here is a program fragment that uses dbcoltype:

DBPROCESS *dbproc;
 int colnum;
 int coltype;

 /* Put the command into the command buffer */
 dbcmd(dbproc, "select name, id, type from
 sysobjects");

 /* Send the command to Adaptive Server Enterprise
and begin
 ** execution.
 */
 dbsqlexec(dbproc);

 /* Process the command results */
 dbresults(dbproc);

 /* Examine the column types */
 for (colnum = 1; colnum < 4; colnum++)
 {
 coltype = dbcoltype(dbproc, colnum);
 printf("column %d, type is %s.\n", colnum,
 dbprtype(coltype));
 }

See also dbcollen, dbcolname, dbdata, dbdatlen, dbnumcols, dbprtype, dbvarylen,
Types on page 412

dbcoltypeinfo
Description Return precision and scale information for a regular result column of type

numeric or decimal.

dbcolutype

100 Open Client

Syntax DBTYPEINFO * dbcoltypeinfo(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value A pointer to a DBTYPEINFO structure that contains precision and scale values
for a particular numeric or decimal column, or NULL if the specified column
number is not in the result set.

A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo {
 DBINT precision;
 DBINT scale;
 } DBTYPEINFO;

If the datatype of the column is not numeric or decimal, the returned structure
will contain meaningless values. Check that dbcoltype returns SYBNUMERIC
or SYBDECIMAL before calling this function.

Usage • This routine returns a pointer to a DBTYPEINFO structure that provides
precision and scale information for a regular (that is, non-compute) result
column of datatype numeric or decimal.

• The precision and scale values returned for columns with other datatypes
will be meaningless. Check that dbcoltype returns SYBNUMERIC or
SYBDECIMAL before calling dbcoltypeinfo.

See also dbcollen, dbcolname, dbcoltype, dbdata, dbdatlen, dbnumcols, dbprtype,
dbvarylen, Types on page 412

dbcolutype
Description Return the user-defined datatype for a regular result column.

Syntax DBINT dbcolutype(dbproc, column)

CHAPTER 2 Routines

DB-Library/C Reference Manual 101

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value column’s user-defined datatype or a negative integer if column is not in range.

Usage • dbcolutype returns the user-defined datatype for a regular result column.
For a description of how to add user-defined datatypes to Adaptive Server
Enterprise databases, see sp_addtype in the Adaptive Server Enterprise
Reference Manual.

• dbcolutype is defined as datatype DBINT to accommodate the size of user-
defined datatypes. Both DBINT and user-defined datatypes are 32 bits
long.

• The following code fragment illustrates the use of dbcolutype:

DBPROCESS *dbproc;
 int colnum;
 int numcols;

 /* Put the command into the command buffer */
 dbcmd(dbproc, "select * from mytable");

 /*
 ** Send the command to the Adaptive Server
Enterprise and begin
 ** execution.
 */
 dbsqlexec(dbproc);

 /* Process the command results */
 dbresults(dbproc);

 /* Examine the user-defined column types */
 numcols = dbnumcols(dbproc);
 for (colnum = 1; colnum < numcols; colnum++)
 {
 printf ("column %d, user-defined type is \

dbconvert

102 Open Client

 %ld.\n", colnum, dbcolutype(dbproc,
 colnum));
 }

See also dbaltutype, dbcoltype

dbconvert
Description Convert data from one datatype to another.

Syntax DBINT dbconvert(dbproc, srctype, src, srclen,
 desttype, dest, destlen)

DBPROCESS *dbproc;
int srctype;
BYTE *src;
DBINT srclen;
int desttype;
BYTE *dest;
DBINT destlen;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server. In dbconvert, the DBPROCESS is used only to supply any custom
null values that the program may have specified using dbsetnull. If dbproc is
NULL, dbconvert uses the default values for null value data conversions.

srctype
The datatype of the data that is to be converted. This parameter can be any
of the server datatypes, as listed below in Table 2-7 on page 110.

src
A pointer to the data which is to be converted. If this pointer is NULL,
dbconvert will place an appropriate null value in the destination variable.
You can use dbdata to get the server data.

srclen
The length, in bytes, of the data to be converted. If the srclen is 0, the source
data is assumed to be null and dbconvert will place an appropriate null value
in the destination variable. Otherwise, this length is ignored for all datatypes
except char, text, binary, and image. For SYBCHAR, SYBBOUNDARY,
and SYBSENSITIVITY data, a length of -1 indicates that the string is null-
terminated. You can use dbdatlen to get the length of the server data.

CHAPTER 2 Routines

DB-Library/C Reference Manual 103

desttype
The datatype that the source data is to be converted into. This parameter can
be any of the server datatypes, as listed below in Table 2-7 on page 110.

dest
A pointer to the destination variable that will receive the converted data. If
this pointer is NULL, dbconvert will call the user-supplied error handler (if
any) and return -1.

destlen
The length, in bytes, of the destination variable. destlen is ignored for fixed-
length datatypes. For a SYBCHAR, SYBBOUNDARY or
SYBSENSITIVITY destination, the value of destlen must be the total length
of the destination buffer space.

Table 2-5 describes special values for destlen:

Table 2-5: Special values for destlen (dbconvert)

Return value The length of the converted data, in bytes, if the datatype conversion succeeds.

 If the conversion fails, dbconvert returns either -1 or FAIL, depending on the
cause of the failure. dbconvert returns -1 to indicate a NULL destination pointer
or an illegal datatype. dbconvert returns FAIL to indicate other types of failures.

If dbconvert fails, it will first call a user-supplied error handler (if any) and set
the global DB-Library error value.

This routine may fail for several reasons: the requested conversion was not
available; the conversion resulted in truncation, overflow, or loss of precision
in the destination variable; or a syntax error occurred in converting a character
string to some numeric type.

Usage • This routine allows the program to convert data from one representation to
another. To determine whether a particular conversion is permitted, the
program can call dbwillconvert before attempting a conversion.

Value of
destlen Applicable to Meaning

-1 SYBCHAR,
SYBBOUNDARY,
SBYSENSITIVITY

There is sufficient space available.

The string will be trimmed of trailing
blanks and given a terminating null.

-2 SYBCHAR There is sufficient space available.

The string will not be trimmed of trailing
blanks, but will be given a terminating
null.

dbconvert

104 Open Client

• dbconvert can convert data stored in any of the server datatypes (although,
of course, not all conversions are legal). See Table 2-7 on page 110 for a
list of type constants and corresponding program variable types.

• It is an error to use the following datatypes with dbconvert if the library
version has not been set (with dbsetversion) to DBVERSION_100 or
higher: SYBNUMERIC, SYBDECIMAL, SYBBOUNDARY, and
SYBSENSITIVITY.

• Table 2-8 on page 111 lists the datatype conversions that dbconvert
supports. The source datatypes are listed down the leftmost column and
the destination datatypes are listed along the top row of the table. (For
brevity, the prefix “SYB” has been eliminated from each datatype.) T
(“True”) indicates that the conversion is supported; F (“False”) indicates
that the conversion is not supported.

• A conversion to or from the datatypes SYBBINARY and SYBIMAGE is
a straight bit-copy, except when the conversion involves SYBCHAR or
SYBTEXT. When converting SYBCHAR or SYBTEXT data to
SYBBINARY or SYBIMAGE, DBCONVERT interprets the SYBCHAR
or SYBTEXT string as hexadecimal, whether or not the string contains a
leading “0x”. When converting SYBBINARY or SYBIMAGE data to
SYBCHAR or SYBTEXT, dbconvert creates a hexadecimal string without
a leading “0x”.

• Note that SYBINT2 and SYBINT4 are signed types. When converting
these types to character, conversion error can result if the quantity being
converted is unsigned and uses the high bit.

• Converting a SYBMONEY, SYBCHAR, or SYBTEXT value to
SYBFLT8 may result in some loss of precision. Converting a SYBFLT8
value to SYBCHAR or SYBTEXT may also result in some loss of
precision.

• Converting a SYBFLT8 value to SYBMONEY can result in overflow,
because the maximum value for SYBMONEY is
$922,337,203,685,477.58.

• If overflow occurs when converting integer or float data to SYBCHAR or
SYBTEXT, the first character of the resulting value will contain an
asterisk (*) to indicate the error.

• A conversion to SYBBIT has the following effect: If the value being
converted is not 0, the SYBBIT value will be set to 1; if the value is 0, the
SYBBIT value will be set to 0.

CHAPTER 2 Routines

DB-Library/C Reference Manual 105

• dbconvert does not offer precision and scale support for numeric and
decimal datatypes. When converting to SYBNUMERIC or
SYBDECIMAL, dbconvert uses a default precision and scale of 18 and 0,
respectively. To specify a different precision and scale, an application can
use dbconvert_ps.

• SYBBOUNDARY and SYBSENSITIVITY destinations are always null-
terminated.

• In certain cases, it can be useful to convert a datatype to itself. For
instance, a conversion of SYBCHAR to SYBCHAR with a destlen of -1
serves as a useful way to append a null terminator to a string, as the
example below illustrates.

• Here is a short example that illustrates how to convert server data obtained
with dbdata:

DBCHAR title[81];
 DBCHAR price[9];

 /* Read the query into the command buffer */
 dbcmd(dbproc, "select title, price, royalty from \
 pubs2..titles");

 /* Send the query to Adaptive Server Enterprise */
 dbsqlexec(dbproc);

 /* Get ready to process the query results */
 dbresults(dbproc);

 /* Process each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 /*
 ** The first dbconvert() adds a null
 ** terminator to the string.
 */
 dbconvert(dbproc, SYBCHAR, (dbdata(dbproc,1)),
 (dbdatlen(dbproc,1)), SYBCHAR, title,
 (DBINT)-1);
 /*
 ** The second dbconvert() converts money to
 ** string.
 */
 dbconvert(dbproc, SYBMONEY,
 (dbdata(dbproc,2)), (DBINT)-1, SYBCHAR,
 price, (DBINT)-1);

dbconvert_ps

106 Open Client

 if (dbdatlen(dbproc,3) != 0)
 printf ("%s\n $%s %ld\n", title, price,
 *((DBINT *)dbdata(dbproc,3)));
 }

In the dbconvert calls it was not necessary to cast the returns from dbdata,
because dbdata returns a BYTE pointer—precisely the datatype dbconvert
expects in the third parameter.

• If you are binding data to variables with dbbind rather than accessing the
data directly with dbdata, dbbind can perform the conversions itself,
making dbconvert unnecessary.

• The sample program example5.c illustrates several more types of
conversions using dbconvert.

• See Types on page 412 for a list of DB-Library datatypes and the
corresponding Adaptive Server Enterprise datatypes. See the Adaptive
Server Enterprise Reference Manual.

See also dbaltbind, dbaltbind_ps, dbbind, dbbind_ps, dbconvert_ps, dberrhandle,
dbsetnull, dbsetversion, dbwillconvert, Errors on page 389, Types on page 412

dbconvert_ps
Description Convert data from one datatype to another, with precision and scale support for

numeric and decimal datatypes.

Syntax DBINT dbconvert_ps(dbproc, srctype, src, srclen,
 desttype, dest, destlen, typeinfo)

DBPROCESS *dbproc;
int srctype;
BYTE *src;
DBINT srclen;
int desttype;
BYTE *dest;
DBINT destlen;
DBTYPEINFO *typeinfo;

CHAPTER 2 Routines

DB-Library/C Reference Manual 107

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server. In dbconvert_ps, the DBPROCESS is used only to supply any custom
null values that the program may have specified using dbsetnull. If dbproc is
NULL, dbconvert_ps uses the default values for null value data conversions.

srctype
The datatype of the data which is to be converted. This parameter can be any
of the server datatypes, as listed in Table 2-8 on page 111.

src
A pointer to the data that is to be converted. If this pointer is NULL,
dbconvert_ps will place an appropriate null value in the destination variable.
You can use dbdata to get the server data.

srclen
The length, in bytes, of the data to be converted. If the srclen is 0, the source
data is assumed to be NULL and dbconvert_ps will place an appropriate null
value in the destination variable. Otherwise, this length is ignored for all
datatypes except char, text, binary, and image. For SYBCHAR data, a length
of -1 indicates that the string is null-terminated. You can use dbdatlen to get
the length of the server data.

desttype
The datatype that the source data is to be converted into. This parameter can
be any of the server datatypes, as listed in Table 2-8 on page 111.

dest
A pointer to the destination variable that will receive the converted data. If
this pointer is NULL, dbconvert_ps will call the user-supplied error handler
(if any) and return -1.

destlen
The length, in bytes, of the destination variable. destlen is ignored for fixed-
length datatypes. For a SYBCHAR, SYBBOUNDARY, or
SYBSENSITIVITY destination, the value of destlen must be the total length
of the destination buffer space.

Table 2-6 describes special values for destlen:

dbconvert_ps

108 Open Client

Table 2-6: Special values for destlen (dbconvert_ps)

typeinfo
A pointer to a DBTYPEINFO structure containing information about the
precision and scale of decimal or numeric values. An application sets a
DBTYPEINFO structure with values for precision and scale before calling
dbconvert_ps to convert data into DBDECIMAL or DBNUMERIC
variables.

If typeinfo is NULL:

• If the source value is of type SYBNUMERIC or SYBDECIMAL,
dbconvert_ps picks up precision and scale values from the source. In
effect, the source data is copied to the destination space.

• If the source value is not SYBNUMERIC or SYBDECIMAL,
dbconvert_ps uses a default precision of 18 and a default scale of 0.

If srctype is not SYBDECIMAL or SYBNUMERIC, typeinfo is ignored.

A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo {
 DBINT precision;
 DBINT scale;
 } DBTYPEINFO;

Legal values for precision are from 1 to 77. Legal values for scale are from
0 to 77. scale must be less than or equal to precision.

Return value The length of the converted data, in bytes, if the datatype conversion succeeds.

 If the conversion fails, dbconvert_ps returns either -1 or FAIL, depending on
the cause of the failure. dbconvert_ps returns -1 to indicate a NULL destination
pointer or an illegal datatype. dbconvert_ps returns FAIL to indicate other types
of failures.

Value of
destlen Applicable to Meaning

-1 SYBCHAR,
SYBBOUNDARY,
SBYSENSITIVITY

There is sufficient space available.

The string will be trimmed of trailing
blanks and given a terminating null.

-2 SYBCHAR There is sufficient space available.

The string will not be trimmed of trailing
blanks, but will be given a terminating
null.

CHAPTER 2 Routines

DB-Library/C Reference Manual 109

 If dbconvert_ps fails, it will first call a user-supplied error handler (if any) and
set the global DB-Library error value.

This routine may fail for several reasons: the requested conversion was not
available; the conversion resulted in truncation, overflow, or loss of precision
in the destination variable; or a syntax error occurred in converting a character
string to some numeric type.

Usage • dbconvert_ps is the equivalent of dbconvert, except that dbconvert_ps
provides precision and scale support for numeric and decimal datatypes,
which dbconvert does not. Calling dbconvert is equivalent to calling
dbconvert_ps with typeinfo as NULL.

• dbconvert_ps allows a program to convert data from one representation to
another. To determine whether a particular conversion is permitted, the
program can call dbwillconvert before attempting a conversion.

• dbconvert_ps can convert data stored in any of the server datatypes (but not
all conversions are legal—see Table 2-8 on page 111).

Table 2-7 shows type constants for server datatypes and the corresponding
program variable types:

dbconvert_ps

110 Open Client

Table 2-7: Type constants and program variable types

 Warning! It is an error to use the following datatypes with dbconvert_ps
if the library version has not been set (with dbsetversion) to
DBVERSION_100 or higher: SYBNUMERIC, SYBDECIMAL,
SYBBOUNDARY, and SYBSENSITIVITY.

• Table 2-8 shows the datatype conversions that dbconvert_ps supports.
Source datatypes are listed down the left side, and destination datatypes
are listed across the top. (For brevity, the “SYB” datatype prefix is not
shown.)

Server datatype constant Program variable type

SYBCHAR DBCHAR

SYBTEXT DBCHAR

SYBBINARY DBBINARY

SYBIMAGE DBBINARY

SYBINT1 DBTINYINT

SYBINT2 DBSMALLINT

SYBINT4 DBINT

SYBFLT8 DBFLT8

SYBREAL DBREAL

SYBNUMERIC DBNUMERIC

SYBDECIMAL DBDECIMAL

SYBBIT DBBIT

SYBMONEY DBMONEY

SYBMONEY4 DBMONEY4

SYBDATETIME DBDATETIME

SYBDATETIME4 DBDATETIME4

SYBBOUNDARY DBCHAR

SYBSENSITIVITY DBCHAR

CHAPTER 2 Routines

DB-Library/C Reference Manual 111

Table 2-8: Supported datatype conversions

• A conversion to or from the datatypes SYBBINARY and SYBIMAGE is
a straight bit-copy, except when the conversion involves SYBCHAR or
SYBTEXT. When converting SYBCHAR or SYBTEXT data to
SYBBINARY or SYBIMAGE, dbconvert_ps interprets the SYBCHAR or
SYBTEXT string as hexadecimal, whether or not the string contains a
leading “0x.” When converting SYBBINARY or SYBIMAGE data to
SYBCHAR or SYBTEXT, dbconvert_ps creates a hexadecimal string
without a leading “0x.”

• Note that SYBINT2 and SYBINT4 are signed types. When converting
these types to character, conversion error can result if the quantity being
converted is unsigned and uses the high bit.

From:

To:

C
H

A
R

T
E

X
T

B
IN

A
R

Y

IM
A

G
E

IN
T

1

IN
T

2

IN
T

4

F
LT

8

R
E

A
L

N
U

M
E

R
IC

D
E

C
IM

A
L

B
IT

M
O

N
E

Y

M
O

N
E

Y
4

D
A

T
E

T
IM

E

D
A

T
E

T
IM

E
4

B
O

U
N

D
A

R
Y

S
E

N
S

IT
IV

IT
Y

CHAR • • • • • • • • • • • • • • • • • •

TEXT • • • • • • • • • • • • • • • • • •

BINARY • • • • • • • • • • • • • •

IMAGE • • • • • • • • • • • • • •

INT1 • • • • • • • • • • • • • •

INT2 • • • • • • • • • • • • • •

INT4 • • • • • • • • • • • • • •

FLT8 • • • • • • • • • • • • • •

REAL • • • • • • • • • • • • • •

NUMERIC • • • • • • • • • • • • • •

DECIMAL • • • • • • • • • • • • • •

BIT • • • • • • • • • • • • • •

MONEY • • • • • • • • • • • • • •

MONEY4 • • • • • • • • • • • • • •

DATETIME • • • • • •

DATETIME4 • • • • • •

BOUNDARY • • •

SENSITIVITY • • •

DBCOUNT

112 Open Client

• Converting a SYBMONEY, SYBCHAR, or SYBTEXT value to
SYBFLT8 may result in some loss of precision. Converting a SYBFLT8
value to SYBCHAR or SYBTEXT may also result in some loss of
precision.

• Converting a SYBFLT8 value to SYBMONEY can result in overflow,
because the maximum value for SYBMONEY is
$922,337,203,685,477.58.

• If overflow occurs when converting integer or float data to SYBCHAR or
SYBTEXT, the first character of the resulting value will contain an
asterisk (*) to indicate the error.

• A conversion to SYBBIT has the following effect: If the value being
converted is not 0, the SYBBIT value will be set to 1; if the value is 0, the
SYBBIT value will be set to 0.

• SYBBOUNDARY and SYBSENSITIVITY destinations are always null-
terminated.

• In certain cases, it can be useful to convert a datatype to itself. For
instance, a conversion of SYBCHAR to SYBCHAR with a destlen of -1
serves as a useful way to append a null terminator to a string.

• If you are binding data to variables with dbbind or dbbind_ps rather than
accessing the data directly with dbdata, dbbind can perform the
conversions itself, making dbconvert_ps unnecessary.

• The sample program example5.c illustrates several more types of
conversions using dbconvert_ps.

• See Types on page 412 for a list of DB-Library datatypes and the
corresponding Adaptive Server Enterprise datatypes. See the Adaptive
Server Enterprise Reference Manual.

See also dbaltbind, dbaltbind_ps, dbbind, dbbind_ps, dbconvert, dberrhandle,
dbsetnull, dbsetversion, dbwillconvert, Errors on page 389, Types on page 412

DBCOUNT
Description Returns the number of rows affected by a Transact-SQL command.

Syntax DBINT DBCOUNT(dbproc)

DBPROCESS *dbproc;

CHAPTER 2 Routines

DB-Library/C Reference Manual 113

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of rows affected by the command, or -1. DBCOUNT will
return -1 if any of the following are true:

• The Transact-SQL command fails for any reason, such as a syntax error.

• The command is one that never affects rows, such as a print command.

• The command executes a stored procedure that does not execute any select
statements.

• The DBNOCOUNT option is on.

Usage • Once the results of a command have been processed, you can call
DBCOUNT to find out how many rows were affected by the command. For
example, if a select command was sent to the server and you have read all
the rows by calling dbnextrow until it returned NO_MORE_ROWS, you
can call this macro to find out how many rows were retrieved.

• If the current command is one that does not return rows, (for example, a
delete), you can call DBCOUNT immediately after dbresults.

• If the command is one that executes a stored procedure, for example an
exec or remote procedure call, DBCOUNT returns the number of rows
returned by the latest select statement executed by the stored procedure, or
-1 if the stored procedure does not execute any select statements. Note that
a stored procedure that contains no select statements may execute a select
by calling another stored procedure that does contain a select.

See also dbnextrow, dbresults, Options on page 407

DBCURCMD
Description Return the number of the current command.

Syntax int DBCURCMD(dbproc)

DBPROCESS *dbproc;

DBCURROW

114 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of the current command.

Usage • This macro returns the number of the command whose results are
currently being processed.

• The first command in a batch is number 1. The command number is
incremented every time dbresults returns SUCCEED or FAIL.
(Unsuccessful commands are counted.) The command number is reset by
each call to dbsqlexec or dbsqlsend.

See also DBCMDROW, DBMORECMDS, DBROWS

DBCURROW
Description Return the number of the row currently being read.

Syntax DBINT DBCURROW(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of the current row. This routine returns 0 if no rows have been
processed yet.

Usage • This macro returns the number of the row currently being read. Rows are
counted from the first row returned from the server, whose number is 1.
DBCURROW counts both regular and compute rows.

• The row number is reset to 0 by each new call to dbresults.

• The row number grows by one every time dbnextrow returns REG_ROW
or a computeid.

CHAPTER 2 Routines

DB-Library/C Reference Manual 115

• When row buffering is used, the row number does not represent the
position in the row buffer. Rather, it represents the current row’s position
in the rows returned by the server. See the reference pages for dbgetrow
and dbsetrow.

See also dbclrbuf, DBFIRSTROW, dbgetrow, DBLASTROW, dbnextrow, dbsetopt,
Options on page 407

dbcursor
Description Insert, update, delete, lock, or refresh a particular row in the fetch buffer.

Syntax RETCODE dbcursor(hc, optype, bufno, table, values)

DBCURSOR *hc;
DBINT optype;
DBINT bufno;
BYTE *table;
BYTE *values

Parameters hc
Cursor handle previously returned by dbcursoropen.

optype
Type of operation to perform. Table 2-9 lists the operation types.

Table 2-9: Values for optype (dbcursor)

bufno
Row number in the fetch buffer to which the operation applies. The specified
buffer must contain a valid row. If the value of bufno is 0, a CRS_REFRESH
operation applies to all rows in the buffer. In an insert or update operation
where no values parameter is given, the values are read from the bound
variables array in the corresponding bufno value. The number of the first
row in the buffer is 1.

Symbolic value Operation

CRS_UPDATE Updates data.

CRS_DELETE Deletes data.

CRS_INSERT Inserts data.

CRS_REFRESH Fetches another row in the buffer.

CRS_LOCKCC Fetches another row and locks it. The row is actually locked
only if inside a transaction block. The lock is released when
the application commits or ends the transaction.

dbcursor

116 Open Client

table
The table to be inserted, updated, deleted, or locked if the cursor declaration
contains more than one table. If there is only one table, this parameter is not
required.

values
String values to be updated and/or inserted. Use this parameter only with
update and insert to specify the new column values (that is, Quantity =
Quantity + 1). In most cases, you can set this parameter to NULL and the
new values for each column are taken from the fetch buffer (the program
variable specified by dbcursorbind). If the select statement includes a
computation (that is, select 5*5...) and a function (for example, select
getdate(), convert(), and so on), then updating through the buffer array will
surely not work.

There are four possible formats for this parameter: two for updating and two
for inserting. The chosen format must match the optype (update or insert).
Both contain a full and an abbreviated format. The full format is a complete
SQL statement (update or insert) without a where clause. The abbreviated
format is just the set clause (update) or just the values clause (insert). When
the full format is used, the value specified for tablename overrides the table
parameter of dbcursor. Because a where clause is added automatically, do
not include one.

Return value SUCCEED or FAIL.

This function can fail for the following reasons:

• Cursor is opened as read only, no updates allowed.

• Server or connection failure or timeout.

• No permission to update or change the database.

• A trigger in the database caused the lock or update/insert operation to fail.

• Optimistic concurrency control.

Usage • If a column used as a unique index column is updated or changed, the
corresponding row appears to be missing the next time it is fetched.

• See Appendix A, “Cursors”.

See also dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorfetch, dbcursorinfo,
dbcursoropen

CHAPTER 2 Routines

DB-Library/C Reference Manual 117

dbcursorbind
Description Register the binding information on the cursor columns.

Syntax RETCODE dbcursorbind(hc, col, vartype, varlen,
 poutlen, pvaraddr, typeinfo)

DBCURSOR *hc;
int col;
int vartype;
DBINT varlen;
DBINT *poutlen;
BYTE *pvaraddr;
DBTYPEINFO *typeinfo;

Parameters hc
Cursor handle created by dbcursoropen.

col
Number of the column to be bound to a program variable.

vartype
Binding type, which uses the same datatypes as the vartype parameter for
dbbind and is bound by the same conversion rules. If this value is set to
NOBIND for any column, the data is not bound. Instead, a pointer to the data
is returned to the address in the corresponding pvaraddr entry for every row,
and the length of the data is returned to the corresponding varlen array entry.
This feature lets the application access the cursor data as it does with dbdata
and dbdatalen.

varlen
Maximum length of variable-length datatype, such as CHARBIND,
VARYCHARBIND, BINARYBIND, STRINGBIND, NTBSTRINGBIND,
and VARYBINBIND. This parameter is ignored for fixed-length datatypes,
such as INTBIND, FLT8BIND, MONEYBIND, BITBIND, SMALLBIND,
and so on. It is also ignored if the vartype is NOBIND.

dbcursorbind

118 Open Client

poutlen
Pointer to an array of DBINT integers where the actual length of the
column’s data is returned for each row. If poutlen is set to NULL, the lengths
are not returned. The array size must be large enough to hold one DBINT
variable for every row to be fetched at a time (as indicated by the nrows
parameter in dbcursoropen).

When using dbcursor to update or insert with values from bound program
variables, you can specify a null value by setting the corresponding poutlen
to zero before calling dbcursor. Nonzero values are ignored except when
NOBIND or one of the variable-length datatypes such as
VARYCHARBIND or VARYBINBIND has been specified. In that case
poutlen must contain the actual item length. If STRINGBIND or
NTBSTRINGBIND has been specified, any non-zero value for poutlen is
ignored, and the length of the string is determined by scanning for the null
terminator.

pvaraddr
Pointer to the program variable to which the data is copied. If vartype is
NOBIND, pvaraddr is assumed to point to an array of pointers—to the
address of the actual data fetched by dbcursorfetch. This array’s length must
equal the value of nrows in dbcursoropen. If the cursor was opened with
nrows > 1, pvaraddr is assumed to point to an array of nrows elements.
Calling dbcursorbind with pvaraddr set to NULL breaks the existing
binding.

typeinfo
A pointer to a DBTYPEINFO structure containing information about the
precision and scale of decimal or numeric values. If vartype is not
DECIMALBIND or NUMERICBIND, typeinfo is ignored.

To bind to DBNUMERIC or DBDECIMAL variables, an application
initializes a DBTYPEINFO structure with values for precision and scale,
then calls dbcursorbind with vartype as DECIMALBIND or
NUMERICBIND.

If typeinfo is NULL and vartype is DECIMALBIND or NUMERICBIND:

• If the result column is of type numeric or decimal, dbcursorbind picks up
precision and scale values from the result column.

• If the result column is not numeric or decimal, dbcursorbind uses a
default precision of 18 and a default scale of 0.

A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo {

CHAPTER 2 Routines

DB-Library/C Reference Manual 119

 DBINTprecision;
 DBINTscale;
 } DBTYPEINFO;

Legal values for precision are from 1 to 77. Legal values for scale are from
0 to 77. scale must be less than or equal to precision.

Return value SUCCEED or FAIL.

Usage • If dbcursorbind is called more than once for any column, only the last call
is effective.

• This function works almost the same as dbbind without cursors.

• See Appendix A, “Cursors”.

See also dbcursor, dbcursorclose, dbcursorcolinfo, dbcursorfetch, dbcursorinfo,
dbcursoropen

dbcursorclose
Description Close the cursor associated with the given handle and release all the data

belonging to it.

Syntax void dbcursorclose(hc)

DBCURSOR *hc;

Parameters hc
Cursor handle created by dbcursoropen.

Return value None.

Usage • Closing a DBPROCESS connection with dbcursorclose automatically
closes all the cursors associated with it. After issuing dbcursorclose, the
cursor handle should not be used.

• See Appendix A, “Cursors”.

See also dbcursor, dbcursorbind, dbcursorcolinfo, dbcursorfetch, dbcursorinfo,
dbcursoropen

dbcursorcolinfo

120 Open Client

dbcursorcolinfo
Description Return column information for the specified column number in the open

cursor.

Syntax RETCODE dbcursorcolinfo(hcursor, column, colname,
 coltype, collen, usertype)

DBCURSOR *hcursor
DBINT column;
DBCHAR *colname;
DBINT *coltype;
DBINT *collen;
DBINT *usertype;

Parameters hcursor
Cursor handle created by dbcursoropen.

column
Column number for which information is to be returned.

colname
Location where the name of the column is returned. The user should allocate
space large enough to accommodate the column name.

coltype
Location where the column’s datatype is returned.

collen
Location where the column’s maximum length is returned.

usertype
Location where the column’s user-defined datatype is returned.

Return value SUCCEED or FAIL.

Usage • Any of the parameters

 colname, coltype, collen, or usertype can be set to NULL, in which case
the information for that variable is not returned.

• See Appendix A, “Cursors”

See also dbcursor, dbcursorbind, dbcursorclose, dbcursorfetch, dbcursorinfo,
dbcursoropen

CHAPTER 2 Routines

DB-Library/C Reference Manual 121

dbcursorfetch
Description Fetch a block of rows into the program variables declared by the user in

dbcursorbind.

Syntax RETCODE dbcursorfetch(hc, fetchtype, rownum)

DBCURSOR *hc;
DBINT fetchtype;
DBINT rownum;

Parameters hc
Cursor handle created by dbcursoropen.

fetchtype
Type of fetch chosen. The scroll option in dbcursoropen determines which
of these values are legal. Table 2-10 lists the various fetch types.

dbcursorfetch

122 Open Client

Table 2-10: Values for fetchtype (dbcursorfetch)

rownum
The specified row for the buffer to start filling. Use this parameter only with
a fetchtype of FETCH_RANDOM or -FETCH_RELATIVE.

Return value SUCCEED or FAIL.

Symbolic value Meaning Comment

FETCH_FIRST Fetch the first
block of rows.

Although available for all cursor types,
this option is especially useful for
returning to the beginning of a keyset
when you have selected a forward-only
scrolling cursor.

FETCH_NEXT Fetch the next
block of rows.

If the result set exceeds the specified
keyset size and if FETCH_RANDOM
and/or FETCH_RELATIVE have been
issued, a FETCH_NEXT can span a
keyset boundary. In this case, the fetch
that spans a keyset boundary returns a
partial buffer, and the next fetch shifts
down the keyset and returns the next full
set of rows.

FETCH_PREV Fetch the
previous block
of rows.

This option is unavailable with forward-
only scrolling cursors. If rownum falls
within the keyset, the range of rows must
stay within the keyset because only the
rows within the keyset are returned. This
option does not change the keyset to the
previous rownum rows in the result set.

FETCH_RANDOM Fetch a block of
rows, starting
from the
specified row
number within
the keyset.

This option is valid only within the
keyset. The buffer is only partially filled
when the range spans the keyset
boundary.

FETCH_RELATIVE Fetch a block of
rows, relative to
the number of
rows indicated in
the last fetch.

This option jumps rownum rows from the
first row of the last fetch and starts
fetching from there. The rows must
remain within the keyset. The buffer is
only partially filled when the range spans
the keyset boundary.

FETCH_LAST Fetch the last
block of rows.

This value is available only with totally
keyset-driven cursors.

CHAPTER 2 Routines

DB-Library/C Reference Manual 123

If the status array contains a status row for every row fetched, SUCCEED is
returned. FAIL is returned if at least one of the following is true.

• FETCH_RANDOM and FETCH_RELATIVE require a keyset driven
cursor.

• Forward-only scrolling can use only FETCH_FIRST and FETCH_NEXT.

• The server or a connection fails or takes a timeout.

• The client is out of memory.

• The FETCH_LAST option requires a fully keyset-driven cursor.

Usage • Specify the size of the fetch buffer in dbcursoropen. dbcursorfetch fills the
array passed as dbcursoropen’s pstatus parameter with status codes for the
fetched rows. See the reference page for dbcursoropen for these codes.

• Program variables must first be registered, using dbcursorbind. Then the
data can be transferred into the DB-Library buffers. The bound variables
must, therefore, be arrays large enough to hold the specified number of
rows. The status array contains status code for every row and contains
flags for missing rows.

• When the range of rows specified by FETCH_NEXT,
FETCH_RANDOM, or FETCH_RELATIVE spans a keyset boundary,
only the rows remaining in the keyset are returned. In this case, the buffer
is only partially filled, and the FETCH_ENDOFKEYSET flag is set as the
status of the last row. The following FETCH_NEXT shifts the keyset
down.

• See Appendix A, “Cursors”

See also dbcursor, dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorinfo,
dbcursoropen

dbcursorinfo
Description Return the number of columns and the number of rows in the keyset if the

keyset hit the end of the result set.

Syntax RETCODE dbcursorinfo(hcursor, ncols, nrows);

DBCURSOR *hcursor;
DBINT *ncols
DBINT *nrows;

dbcursoropen

124 Open Client

Parameters hcursor
Cursor handle created by dbcursoropen.

ncols
Location where the number of columns in the cursor is returned.

nrows
Location where the number of rows in the keyset is returned.

Return value SUCCEED or FAIL.

Usage • For fully keyset-driven cursors, the nrows parameter contains the number
of rows in the keyset. For mixed or dynamic cursors, nrows is always set
to -1, unless the keyset is the last one in the result set. In that case, the
number of rows in the keyset is returned. This helps the programmer find
out when the keyset has hit the end of the result set.

• See Appendix A, “Cursors”

See also dbcursor, dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorfetch,
dbcursoropen

dbcursoropen
Description Open a cursor and specify the scroll option, concurrency option, and the size

of the fetch buffer (the number of rows retrieved with a single fetch).

Syntax DBCURSOR *dbcursoropen(dbproc, stmt, scrollopt,
 concuropt, nrows, pstatus)

DBPROCESS *dbproc;
BYTE *stmt;
SHORT scrollopt;
SHORT concuropt;
USHORT nrows;
DBINT *pstatus

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

stmt
The select statement that defines a cursor.

CHAPTER 2 Routines

DB-Library/C Reference Manual 125

scrollopt
Indicator of the desired scrolling technique.

Keyset driven fixes membership in the result set and order at cursor open
time.

Dynamic determines membership in the result set and order at fetch time.

Table 2-11 lists the possible values for scrollopt.

Table 2-11: Values for scrollopt (dbcursoropen)

concuropt
Definition of concurrency control. Table 2-12 lists the possible values for
concuropt:

Symbolic value Meaning

CUR_FORWARD Forward scrolling only.

CUR_KEYSET Keyset driven. A copy of the keyset for the result table is kept
locally. Number of rows in result table must be less than or
equal to 1000.

CUR_DYNAMIC Fully dynamic.

int n Keyset-driven cursor within (n*nrows) blocks, but fully
dynamic outside the keyset.

dbcursoropen

126 Open Client

Table 2-12: Values for concuropt (dbcursoropen)

nrows
Number of rows in the fetch buffer (the width of the cursor). For mixed
cursors the keyset capacity in rows is determined by this number multiplied
by the value of the scrollopt parameter.

pstatus
Pointer to the array of row status indicators. The status of every row copied
into the fetch buffer is returned to this array. The array must be large enough
to hold one DBINT integer for every row in the buffer to be fetched. During
the dbcursorfetch call, as the rows are filled into the bound variable, the
corresponding status is filled with status information. dbcursorfetch fills in
the status by setting bits in the status value. The application can use the
bitmask values shown in Table 2-13 to inspect the status value:

Symbolic value Meaning Explanation

CUR_READONLY Read-only cursor. The data cannot be modified.

CUR_LOCKCC Intent to update locking. All data, if inside a transaction
block, is locked out as it is
fetched through
dbcursorfetch.

CUR_OPTCC Optimistic concurrency
control, based on timestamp
values.

In a given row, modifications
to the data succeed only if the
row has not been updated
since the last fetch. Changes
are detected through
timestamps or by comparing
all non-text, non-image values
in a selected table row.

CUR_OPTCCVAL Optimistic concurrency
based on values.

Same as CUR_OPTCC except
changes are detected by
comparing the values in all
selected columns.

CHAPTER 2 Routines

DB-Library/C Reference Manual 127

Table 2-13: Bitmask values for pstatus (dbcursoropen)

Return value If dbcursoropen succeeds, a handle to the cursor is returned. The cursor handle
is required in calls to subsequent cursor functions.

If dbcursoropen fails, NULL is returned. Several errors, such as the following,
can cause the cursor open to fail:

• Not enough memory in the system. Reduce the number of rows in the
keyset, use dynamic scrolling, or reduce the number of rows to be fetched
at a time.

• The CUR_KEYSET option is used for the scrollopt parameter, and there
are more than 1000 rows in the result set. Use dynamic scrolling if the
select statement can return more than 1000 rows.

• A unique row identifier could not be found.

Usage • This function prepares internal DB-Library data structures based on the
contents of the select statement and the values of scrollopt, concuropt, and
nrows. dbcursoropen queries the server for information on unique
qualifiers (row keys) for the rows in the cursor result set. If the cursor is
keyset-driven, dbcursoropen queries the server and fetches row keys to
build a keyset for the cursor’s rows.

• The cursor definition cannot contain stored procedures or multiple
Transact-SQL statements.

• For dbcursor to succeed, every table in the select statement must have a
unique index. The Transact-SQL statements for browse, select into,
compute, union, or compute by are not allowed in the cursor statement.
Only fully keyset-driven cursors can have order, having, or group by
phrases.

• When the select statement given as stmt refers to temporary tables, the
current database must be tempdb. This restriction applies even if the
temporary table was created in another database.

Symbolic value Meaning

FTC_SUCCEED The row was successfully copied. If this flag is not set,
the row was not fetched.

FTC_MISSING The row is missing.

FTC_ENDOFKEYSET The end of the keyset. The remaining rows in the bind
arrays are not used.

FTC_ENDOFRESULTS The end of the result set. The remaining rows are not
used.

dbdata

128 Open Client

• Multiple cursors (as many as the system’s memory allows) can be opened
within the same dbproc connection. There should be no commands
waiting to be executed or results pending in the DBPROCESS connection
when cursor functions are called.

• See Appendix A, “Cursors”

See also dbcursor, dbcursorbind, dbcursorclose, dbcursorcolinfo, dbcursorfetch,
dbcursorinfo, dbcursoropen

dbdata
Description Return a pointer to the data in a regular result column.

Syntax BYTE *dbdata(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value A BYTE pointer to the data for the particular column of interest. Be sure to cast
this pointer into the proper type. A NULL BYTE pointer is returned if there is
no such column or if the data has a null value. To make sure that the data is
really a null value, you should always check for a return of 0 from dbdatlen.

Usage • This routine returns a pointer to the data in a regular (that is, non-compute)
result column. The data is not null-terminated. You can use dbdatlen to get
the length of the data.

• Here is a small program fragment that uses dbdata:

DBPROCESS *dbproc;
 DBINT row_number = 0;
 DBINT object_id;

/* Put the command into the command buffer */
 dbcmd(dbproc, "select id from sysobjects");
 /*

CHAPTER 2 Routines

DB-Library/C Reference Manual 129

 ** Send the command to Adaptive Server Enterprise
and begin
 ** execution
 */
 dbsqlexec(dbproc);
 /* Process the command results */
 dbresults(dbproc);
 /* Examine the data in each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 row_number++;
 object_id = *((DBINT *)dbdata(dbproc, 1));
 printf("row %ld, object id is %ld.\n",
 row_number, object_id);
 }

• Do not add a null terminator to string data until you have copied it from
the DBPROCESS with a routine such as strncpy. For example:

char objname[40];
 ...
 strncpy(objname, (char *)dbdata(dbproc,2),
 (int)dbdatlen(dbproc,2));
 objname[dbdatlen(dbproc,2)] = ’\0’;

• The function dbbind will automatically bind result data to your program
variables. It does a copy of the data, but is often easier to use than dbdata.
Furthermore, it includes a convenient type-conversion capability. By
means of this capability, the application can, among other things, easily
add a null terminator to a result string or convert money and datetime data
to printable strings.

See also dbbind, dbcollen, dbcolname, dbcoltype, dbdatlen, dbnumcols

dbdate4cmp
Description Compare two DBDATETIME4 values.

Syntax int dbdate4cmp(dbproc, d1, d2)

DBPROCESS *dbproc;
DBDATETIME4 *d1;
DBDATETIME4 *d2;

dbdate4zero

130 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL.

d1
A pointer to a DBDATETIME4 value.

d2
A pointer to a DBDATETIME4 value.

Return value If d1 = d2, dbdate4cmp returns 0.

If d1 < d2, dbdate4cmp returns -1.

If d1 > d2, dbdate4cmp returns 1.

Usage • dbdate4cmp compares two DBDATETIME4 values.

• The range of legal DBDATETIME4 values is from January 1, 1900 to June
6, 2079. DBDATETIME4 values have a precision of one minute.

See also dbdatecmp, dbmnycmp, dbmny4cmp

dbdate4zero
Description Initialize a DBDATETIME4 variable to Jan 1, 1900 12:00AM.

Syntax RETCODE dbdate4zero(dbproc, dateptr)

DBPROCESS *dbproc;
DBDATETIME4 *dateptr;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL.

dateptr
A pointer to the DBDATETIME4 variable to initialize.

Return value SUCCEED or FAIL.

CHAPTER 2 Routines

DB-Library/C Reference Manual 131

dbdate4zero returns FAIL if dateptr is NULL.

Usage • dbdate4zero initializes a DBDATETIME4 variable to Jan 1, 1900
12:00AM.

• The range of legal DBDATETIME4 values is from January 1, 1900 to June
6, 2079. DBDATETIME4 values have a precision of one minute.

See also dbdatezero

dbdatechar
Description Convert an integer component of a DBDATETIME value into character

format.

Syntax RETCODE dbdatechar(dbproc, charbuf, datepart, value)

DBPROCESS *dbproc;
char *charbuf;
int datepart;
int value;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

charbuf
A pointer to the character buffer that will contain the null-terminated
character representation of value.

datepart
A symbolic constant describing value’s type. Table 2-14 lists the date parts,
the date part symbols recognized by DB-Library, and the expected values.
Note that the names of the months and the days in this table are those for
English.

dbdatecmp

132 Open Client

Table 2-14: Date parts and their character representations (dbdatechar)

value
The numeric value to be converted.

Return value SUCCEED or FAIL.

Usage • dbdatechar converts integer datetime components to character format. For
example, dbdatechar associates the month component “3” with its
associated character string: “March” if English is used, “mars” if French
is used, and so on.

• The language of the associated character string is determined by the
dbproc.

• dbdatechar is often useful in conjunction with dbdatecrack.

See also dbconvert, dbdata, dbdatename, dbdatecrack

dbdatecmp
Description Compare two DBDATETIME values.

Syntax int dbdatecmp(dbproc, d1, d2)

DBPROCESS *dbproc;
DBDATETIME *d1;
DBDATETIME *d2;

Date part Symbol Character representation of value

year DBDATE_YY 1753 – 9999

quarter DBDATE_QQ 1 – 4

month DBDATE_MM January – December

day of year DBDATE_DY 1 – 366

day DBDATE_DD 1 – 31

week DBDATE_WK 1 – 54 (for leap years)

weekday DBDATE_DW Monday – Sunday

hour DBDATE_HH 0 – 23

minute DBDATE_MI 0 – 59

second DBDATE_SS 0 – 59

millisecond DBDATE_MS 0 – 999

CHAPTER 2 Routines

DB-Library/C Reference Manual 133

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL.

d1
A pointer to a DBDATETIME value.

d2
A pointer to a DBDATETIME value.

Return value If d1 = d2, dbdatecmp returns 0.

If d1 < d2, dbdatecmp returns -1.

If d1 > d2, dbdatecmp returns 1.

Usage • dbdatecmp compares two DBDATETIME values.

• The range of legal DBDATETIME values is from January 1, 1753 to
December 31, 9999. DBDATETIME values have a precision of 1/300th of
a second (3.33 milliseconds).

See also dbdate4cmp, dbmnycmp, dbmny4cmp

dbdatecrack
Description Convert a machine-readable DBDATETIME value into user-accessible format.

Syntax RETCODE dbdatecrack(dbproc, dateinfo, datetime)

DBPROCESS *dbproc;
DBDATEREC *dateinfo;
DBDATETIME *datetime;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dateinfo
A pointer to a DBDATEREC structure to contain the parts of datetime.
DBDATEREC is defined as follows:

dbdatecrack

134 Open Client

typedef struct dbdaterec
 {
 long dateyear; /* 1900 to the future */
 long datemonth; /* 0 - 11 */
 long datedmonth; /* 1 - 31 */
 long datedyear; /* 1 - 366 */
 long datedweek; /* 0 - 6 */
 long datehour; /* 0 - 23 */
 long dateminute; /* 0 - 59 */
 long datesecond; /* 0 - 59 */
 long datemsecond; /* 0 - 997 */
 long datetzone; /* 0 - 127 */
 } DBDATEREC;

Month and day names depend on the national language of the
DBPROCESS. To retrieve these, use dbdatename or dbdayname plus
dbmonthname.

Note The dateinfo->datetzone field is not set by dbdatecrack.

datetime
A pointer to the DBDATETIME value of interest.

Return value SUCCEED or FAIL.

Usage • dbdatecrack converts a DBDATETIME value into its integer components
and places those components into a DBDATEREC structure.

• DBDATETIME structures store date and time values in an internal format.
For example, a time value is stored as the number of 300th’s of a second
since midnight, and a date value is stored as the number of days since
January 1, 1900. dbdatecrack converts the internal value to something
more usable by an application program.

• The integer date parts placed in the DBDATEREC structure may be
converted to character strings using dbdatechar.

• Calling dbdatecrack to convert an internal format datetime value is
equivalent to calling dbdatepart many times.

• The following code fragment illustrates the use of dbdatecrack:

dbcmd(dbproc, "select name, crdate from \
 master..sysdatabases");
 dbsqlexec(dbproc);
 dbresults(dbproc);
 while (dbnextrow(dbproc) != NO_MORE_ROWS)

CHAPTER 2 Routines

DB-Library/C Reference Manual 135

 {
 /*
 ** Print the database name and its date info
 */
 dbconvert(dbproc, dbcoltype(dbproc, 2),
 dbdata(dbproc, 2), dbdatlen(dbproc, 2),
 SYBCHAR, datestring, -1);
 printf("%s: %s\n", (char *)
 (dbdata(dbproc, 1)), datestring);
 /*
 ** Break up the creation date into its
 ** constituent parts.
 */
 dbdatecrack(dbproc, &dateinfo,
 (DBDATETIME *)(dbdata(dbproc, 2)));

 /* Print the parts of the creation date */
 printf("\tYear = &d.\n", dateinfo.dateyear);
 printf("\tMonth = &d.\n",dateinfo.datemonth);
 printf("\tDay of month = &d.\n",
 dateinfo.datedmonth);
 printf("\tDay of year = &d.\n",
 dateinfo.datedyear);
 printf("\tDay of week = &d.\n",
 dateinfo.datedweek);
 printf("\tHour = &d.\n", dateinfo.datehour);
 printf("\tMinute = &d.\n",
 dateinfo.dateminute);
 printf("\tSecond = &d.\n",
 dateinfo.datesecond);
 printf("\tMillisecond = &d.\n",
 dateinfo.datemsecond);
 }

See also dbconvert, dbdata, dbdatechar, dbdatename, dbdatepart

dbdatename
Description Convert the specified component of a DBDATETIME structure into its

corresponding character string.

Syntax int dbdatename(dbproc, charbuf, datepart, datetime)

DBPROCESS *dbproc;

dbdatename

136 Open Client

char *charbuf;
int datepart;
DBDATETIME *datetime;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

charbuf
A pointer to a character buffer that will contain the null-terminated character
representation of the datetime component of interest. If datetime is NULL,
charbuf will contain a zero-length string.

datepart
The date component of interest. Table 2-15 lists the date parts, the date part
symbols recognized by DB-Library and the expected values. Note that the
names of the months and the days in this table are those for English.

Table 2-15: Date parts and their character representations
(dbdatename)

datetime
A pointer to the DBDATETIME value of interest.

Return value The number of bytes placed into *charbuf.

In case of error, dbdatename returns -1.

Usage • dbdatename converts the specified component of a DBDATETIME
structure into a character string.

Date part Symbol Character representation of value

year DBDATE_YY 1753 – 9999

quarter DBDATE_QQ 1 – 4

month DBDATE_MM January – December

day of year DBDATE_DY 1 – 366

day DBDATE_DD 1 – 31

week DBDATE_WK 1 – 54 (for leap years)

weekday DBDATE_DW Monday – Sunday

hour DBDATE_HH 0 – 23

minute DBDATE_MI 0 – 59

second DBDATE_SS 0 – 59

millisecond DBDATE_MS 0 – 999

CHAPTER 2 Routines

DB-Library/C Reference Manual 137

• The names of the months and weekdays are in the language of the
specified DBPROCESS. If dbproc is NULL, these names will be in DB-
Library’s default language.

• This function is very similar to the Transact-SQL datename function.

• The following code fragment illustrates the use of dbdatename:

dbcmd(dbproc, "select name, crdate from \
 master..sysdatabases");
 dbsqlexec(dbproc);
 dbresults(dbproc);

while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 /*
 ** Print the database name and its date info
 */
 dbconvert(dbproc, dbcoltype(dbproc, 2),
 dbdata(dbproc, 2), dbdatlen(dbproc, 2),
 SYBCHAR, datestring, -1);
 printf("%s: %s\n", (char *) (dbdata
 (dbproc, 1)), datestring);

 /* Print the parts of the creation date */
 dbdatename(dbproc, datestring, DBDATE_YY,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tYear = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_QQ,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tQuarter = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_MM,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tMonth = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_DW,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tDay of week = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_DD,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tDay of month = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_DY,

 (DBDATETIME *) (dbdata(dbproc, 2)));

dbdateorder

138 Open Client

 printf("\tDay of year = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_HH,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tHour = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_MI,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tMinute = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_SS,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tSecond = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_MS,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tMillisecond = %s.\n", datestring);

 dbdatename(dbproc, datestring, DBDATE_WK,
 (DBDATETIME *) (dbdata(dbproc, 2)));
 printf("\tWeek = %s.\n", datestring);

See also dbconvert, dbdata, dbdatechar, dbdatecrack

dbdateorder
Description Return the date component order for a given language.

Syntax char *dbdateorder(dbproc, language)

DBPROCESS *dbproc;
char *language;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

language
The name of the language of interest.

CHAPTER 2 Routines

DB-Library/C Reference Manual 139

Return value A pointer to a null-terminated, 3-character string containing the characters
“m,” “d,” and “y,” representing the month, day, and year date components,
respectively. The order of the characters in the dbdateorder string corresponds
to their order in language’s default datetime format.

dbdateorder returns a NULL pointer on failure.

Usage • dbdateorder returns a character string that describes the order in which the
month, day, and year date components appear in the specified language. If
language is NULL, the current language of the specified DBPROCESS is
used. If both language and dbproc are NULL, DB-Library’s default
language is used.

 Warning! The date order string returned by dbdateorder is a pointer to
DB-Library’s internal data structures. Application programs should
neither modify this string, nor free it.

• The following code fragment illustrates the use of dbdateorder:

/* Retrieve the date order from Adaptive Server
Enterprise */
 printf("date-order: %s\n",
 (dbdateorder(DBPROCESS *)NULL, (char *)NULL));

See also dbconvert, dbdata, dbdatechar, dbdatecrack

dbdatepart
Description Return the specified part of a DBDATETIME value as a numeric value.

Syntax DBINT dbdatepart(dbproc, datepart, datetime)

DBPROCESS *dbproc;
int datepart;
DBDATETIME *datetime;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbdatezero

140 Open Client

datepart
The date component of interest. Table 2-16 lists the date parts, the date part
symbols recognized by DB-Library and the expected values. Note that the
names of the months and the days in this table are those for English.

Table 2-16: Date parts and their character representations (dbdatepart)

datetime
A pointer to the DBDATETIME value of interest.

Return value The value of the specified date part.

Usage • dbdatepart returns the specified part of a DBDATETIME value as a
numeric value.

• dbdatepart is similar to the Transact-SQL datepart function.

See also dbconvert, dbdata, dbdatechar, dbdatecrack, dbdatename

dbdatezero
Description Initialize a DBDATETIME value to Jan 1, 1900 12:00:00:000AM.

Syntax RETCODE dbdatezero(dbproc, dateptr)

DBPROCESS *dbproc;
DBDATETIME *dateptr;

Date part Symbol Character representation of value

year DBDATE_YY 1753 – 9999

quarter DBDATE_QQ 1 – 4

month DBDATE_MM January – December

day of year DBDATE_DY 1 – 366

day DBDATE_DD 1 – 31

week DBDATE_WK 1 – 54 (for leap years)

weekday DBDATE_DW Monday – Sunday

hour DBDATE_HH 0 – 23

minute DBDATE_MI 0 – 59

second DBDATE_SS 0 – 59

millisecond DBDATE_MS 0 – 999

CHAPTER 2 Routines

DB-Library/C Reference Manual 141

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL.

dateptr
A pointer to the DBDATETIME variable to initialize.

Return value SUCCEED or FAIL.

dbdatezero returns FAIL if dateptr is NULL.

Usage • dbdatezero initializes a DBDATETIME value to Jan 1, 1900
12:00:00:000AM.

• The range of legal DBDATETIME values is from January 1, 1753 to
December 31, 9999. DBDATETIME values have a precision of 1/300th of
a second (3.33 milliseconds).

See also dbdate4zero

dbdatlen
Description Return the length of the data in a regular result column.

Syntax DBINT dbdatlen(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column of interest. The first column is number 1.

Return value The length, in bytes, of the data that would be returned for the particular
column. If the data has a null value, dbdatlen returns 0. If the column number
is not in range, dbdatlen returns -1.

dbdayname

142 Open Client

Usage • This routine returns the length, in bytes, of data that would be returned by
a select against a regular (that is, non-compute) result column. In most
cases, this is the actual length of data for the column. For text and image
columns, however, the integer returned by dbdatlen can be less than the
actual length of data for the column. This is because the server global
variable @@textsize limits the amount of text or image data returned by a
select.

• Use the dbcollen routine to determine the maximum possible length for the
data. Use dbdata to get a pointer to the data itself.

• Here is a small program fragment that uses dbdatlen:

DBPROCESS *dbproc;
 DBINT row_number = 0;
 DBINT data_length;

* Put the command into the command buffer */
 dbcmd(dbproc, "select name from sysobjects");
 /*
 ** Send the command to Adaptive Server Enterprise
and begin
 ** execution
 */
 dbsqlexec(dbproc);

 /* Process the command results */
 dbresults(dbproc);

 /* Examine the data lengths of each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 row_number++;
 data_length = dbdatlen(dbproc, 1);
 printf("row %ld, data length is %ld.\n",
 row_number, data_length);
 }

See also dbcollen, dbcolname, dbcoltype, dbdata, dbnumcols

dbdayname
Description Determine the name of a specified weekday in a specified language.

CHAPTER 2 Routines

DB-Library/C Reference Manual 143

Syntax char *dbdayname(dbproc, language, daynum)

DBPROCESS *dbproc;
char *language;
int daynum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

language
The name of the desired language.

daynum
The number of the desired day. Day numbers range from 1 (Monday) to 7
(Sunday).

Return value The name of the specified day on success; a NULL pointer on error.

Usage • dbdayname returns the name of the specified day in the specified language.
If language is NULL, dbproc’s current language is used. If both language
and dbproc are NULL, then U.S. English is used.

• The following code fragment illustrates the use of dbdayname:

/*
 ** Retrieve the name of each day of the week in
 ** U.S. English.
 */
 for (daynum = 1; daynum <= 7; daynum++)
 printf("Day %d: %s\n", daynum,
 dbdayname((DBPROCESS *)NULL, (char *)NULL,
 daynum));

See also db12hour, dbdateorder, dbmonthname, DBSETLNATLANG

DBDEAD
Description Determine whether a particular DBPROCESS is dead.

Syntax DBBOOL DBDEAD(dbproc)

DBPROCESS *dbproc;

dberrhandle

144 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value “TRUE” or “FALSE.”

Usage • This macro indicates whether or not the specified DBPROCESS has been
marked dead. It is particularly useful in user-supplied error handlers.

• If a DBPROCESS is dead, then almost every DB-Library routine that
receives it as a parameter will immediately fail, calling the user-supplied
error handler.

Note If there is no user-supplied error handler, a dead DBPROCESS will
cause the affected DB-Library routines not to fail, but to abort.

• Note that DBDEAD does not communicate with the server, but only checks
the current status of a DBPROCESS. If a previously called DB-Library
routine has not marked a DBPROCESS as dead, DBDEAD reports the
DBPROCESS as healthy.

See also dberrhandle, Errors on page 389

dberrhandle
Description Install a user function to handle DB-Library errors.

Syntax int (*dberrhandle(handler))()

int (*handler)();

Parameters handler
A pointer to the user function that will be called whenever DB-Library
determines that an error has occurred. DB-Library calls this function with
six parameters shown in Table 2-17.

CHAPTER 2 Routines

DB-Library/C Reference Manual 145

Table 2-17: Error handler parameters

The error handler must return one of the four values listed in Table 2-18,
directing DB-Library to perform particular actions:

Table 2-18: Error handler returns

If the error handler returns any value besides these four, the program will
abort.

Error handlers on the Windows platform must be declared with
CS_PUBLIC, as shown in the example below. For portability, callback
handlers on other platforms should be declared CS_PUBLIC as well.

The following example shows a typical error handler routine:

#include <sybfront.h>

Parameter Meaning

dbproc The affected DBPROCESS. If there is no DBPROCESS associated
with this error, this parameter will be NULL.

severity The severity of the error (datatype int). Error severities are defined in
syberror.h.

dberr The identifying number of the error (datatype int). Error numbers are
defined in sybdb.h.

oserr The operating-system-specific error number that describes the cause
of the error (datatype int). If there is no relevant operating system
error, the value of this parameter will be DBNOERR.

dberrstr A printable description of dberr (datatype char *).

oserrstr A printable description of oserr (datatype char *).

Return Action

INT_EXIT Print an error message and abort the program. DB-Library will
also return an error indication to the operating system. (Note to
UNIX programmers: DB-Library will not leave a core file.

INT_CANCEL Return FAIL from the DB-Library routine that caused the error.
Returning INT_CANCEL on timeout errors will kill the
dbproc.

INT_TIMEOUT Cancel the operation that caused the error but leave the dbproc
in working condition. This return value is meaningful only for
timeout errors (SYBETIME). In any other case, this value will
be considered an error, and will be treated as an INT_EXIT.

INT_CONTINUE Continue to wait for one additional timeout period. At the end
of that period, call the error handler again. This return value is
meaningful only for timeout errors (SYBETIME). In any other
case, this value will be considered an error, and will be treated
as an INT_EXIT.

dberrhandle

146 Open Client

#include <sybdb.h>
#include <syberror.h>

int CS_PUBLIC err_handler(dbproc, severity, dberr,
oserr, dberrstr, oserrstr)
DBPROCESS *dbproc;
 int severity;
 int dberr;
 int oserr;
 char *dberrstr;
 char *oserrstr;
{
 if ((dbproc == NULL) || (DBDEAD(dbproc)))
 return(INT_EXIT);
 else
 {
 printf("DB-Library error:\n\t%s\n",
 dberrstr);
 if (oserr != DBNOERR)
 printf("Operating-system \
 error:\n\t%s\n", oserrstr);
 return(INT_CANCEL);
 }
 }

Return value A pointer to the previously installed error handler. This pointer is NULL if no
error handler was installed before.

Usage • dberrhandle installs an error-handler function that you supply. When a
DB-Library error occurs, DB-Library will call this error handler
immediately. You must install an error handler to handle DB-Library
errors properly.

• If an application does not call dberrhandle to install an error-handler
function, DB-Library ignores error messages. The messages are not
printed.

• The user-supplied error handler will completely determine the response of
DB-Library to any error that occurs. It must tell DB-Library whether to:

• Abort the program, or

• Return an error code and mark the DBPROCESS as “dead” (making
it unusable), or

• Cancel the operation that caused the error, or

• Keep trying (in the case of a timeout error).

CHAPTER 2 Routines

DB-Library/C Reference Manual 147

• If the user does not supply an error handler (or passes a NULL pointer to
dberrhandle), DB-Library will exhibit its default error-handling behavior:
It will abort the program if the error has made the affected DBPROCESS
unusable (the user can call DBDEAD to determine whether or not a
DBPROCESS has become unusable). If the error has not made the
DBPROCESS unusable, DB-Library will simply return an error code to its
caller.

• You can “de-install” an existing error handler by calling dberrhandle with
a NULL parameter. You can also, at any time, install a new error handler.
The new handler will automatically replace any existing handler.

• If the program refers to error severity values, its source file must include
the header file called syberror.h.

• See Errors on page 389 for a list of DB-Library errors.

• Another routine, dbmsghandle, installs a message handler that DB-Library
calls in response to the server error messages.

• If the application provokes messages from DB-Library and the server
simultaneously, DB-Library calls the server message handler before it
calls the DB-Library error handler.

• The DB-Library/C error value SYBESMSG is generated in response to a
server error message, but not in response to a server informational
message. This means that when a server error occurs, both the server
message handler and the DB-Library/C error handler are called, but when
the server generates an informational message, only the server message
handler is called.

If you have installed a server message handler, you may want to write your
DB-Library error handler so as to suppress the printing of any
SYBESMSG error, to avoid notifying the user about the same error twice.

Table 2-19 provides information on when DB-Library/C calls an
application’s message and error handlers:

Table 2-19: Common errors

Error or message Message handler called? Error handler called?

SQL syntax error. Yes. Yes (SYBESMSG).

(Code your handler to ignore the
message.)

SQL print statement. Yes. No.

SQL raiserror. Yes. No.

dbexit

148 Open Client

See also DBDEAD, dbmsghandle, Errors on page 389

dbexit
Description Close and deallocate all DBPROCESS structures, and clean up any structures

initialized by dbinit.

Syntax void dbexit()

Return value None.

Server dies. No. Yes (SYBESEOF).

(Code your handler to exit the
application.)

Timeout from the server.

Note The default timeout period is infinite.
The error handler will not receive timeout
notifications unless a timeout period is
specified with dbsettime.

No. Yes (SYBETIME).

(To wait for another timeout
period, code your handler to return
-INT_CONTINUE.)

Deadlock on query. Yes.

(Code your handler to test for
deadlock. See the
dbsetuserdata on page 336 for
an example.)

Yes (SYBESMSG).

(Code your handler to ignore the
message.)

Timeout on login. No. Yes (SYBEFCON, SYBECONN).

Login fails (dbopen). Yes. Yes (SYBEPWD).

(Code your handler to exit the
application.)

Use database message. Yes.

(Code your handler to ignore
the message.)

No.

Incorrect use of DB-Library/C calls, such as
not calling dbresults when required.

No. Yes (SYBERPND, ...)
 Yes (SYBERPND, .)

Fatal Server error (severity greater than 16). Yes.

(Code your handler to exit the
application.)

Yes (SYBESMSG).

Error or message Message handler called? Error handler called?

CHAPTER 2 Routines

DB-Library/C Reference Manual 149

Usage • dbexit calls dbclose repeatedly for all allocated DBPROCESS structures.
dbclose cleans up any activity associated with a single DBPROCESS
structure and deallocates the space.

• You can use dbclose directly to close just a single DBPROCESS structure.

• dbexit also cleans up any structures initialized by dbinit, releasing the
memory associated with those structures. It must be the last DB-Library
call in any application that calls dbinit.

• To ensure future compatibility and portability, Sybase strongly
recommends that all applications call dbinit and dbexit, no matter what their
environment.

For environments requiring dbinit, the application must not make any other
DB-Library call after calling dbexit.

See also dbclose, dbinit, dbopen

dbfcmd
Description Add text to the DBPROCESS command buffer using C runtime library sprintf-

type formatting.

Syntax RETCODE dbfcmd(dbproc, cmdstring, args...)

DBPROCESS *dbproc;
char *cmdstring;
??? args...;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

cmdstring
A format string of the form used by the sprintf routine.

There is an optional and variable number of arguments to dbfcmd. The
number and type of arguments required depends on the format specifiers
included in the cmdstring argument. The arguments are passed directly to
the C-library sprintf function. Neither dbfcmd nor the C compiler can type
check these arguments. As with using sprintf, the programmer must ensure
that each argument type matches the corresponding format specifier.

dbfcmd

150 Open Client

Return value SUCCEED or FAIL.

Usage • This routine adds text to the Transact-SQL command buffer in the
DBPROCESS structure. dbfcmd works just like the sprintf function in the
C language standard I/O library, using % conversion specifiers. If you do
not need any of the formatting capability of sprintf, you can use dbcmd
instead.

• Table 2-20 lists the conversions supported by dbfcmd:

Table 2-20: dbfcmd conversions

The datatype SYBDATETIME must be converted to a character string and
passed using %s. The datatype SYBMONEY may be converted to a
character string and passed using %s, or converted to float and passed
using %f.

Note Currently, only eight arguments may be handled in each call to
dbfcmd. To format commands that require more than eight arguments, call
dbfcmd repeatedly.

• dbfcmd manages the space allocation for the command buffer. It adds to
the existing command buffer—it does not delete or overwrite the current
contents except after the buffer has been sent to the server (see “Clearing
the command buffer” on page 151). A single command buffer may contain
multiple commands; in fact, this represents an efficient use of the
command buffer.

• The application may call dbfcmd repeatedly. The command strings in
sequential calls are just concatenated together. It is the program’s
responsibility to ensure that any necessary blanks appear between the end
of one string and the beginning of the next.

• Here is a small program fragment that uses dbfcmd to build up a multiline
SQL command:

char *column_name;
 DBPROCESS *dbproc;

Conversion Program variable type

%s char*, null-terminated

%d int, decimal representation

%f double

%g double

%e double

%% None, the “%” character is written into the command buffer

CHAPTER 2 Routines

DB-Library/C Reference Manual 151

 int low_id;
 char *object_type;
 char *tablename;
 dbfcmd(dbproc, "select %s from %s", column_name,
 tablename);
 dbfcmd(dbproc, " where id > %d", low_id);
 dbfcmd(dbproc, " and type=’%s’", object_type);

Note the required spaces at the start of the second and third command
strings.

• When passing character or string variables to dbfcmd, beware of variables
that contain quotes (single or double) or null characters (ASCII 0).

• Improperly placed quotes in the SQL command can cause SQL syntax
errors or, worse yet, unanticipated query results.

• NULL characters (ASCII 0) should never be inserted into the
command buffer. They can confuse DB-Library and the server,
causing SQL syntax errors or unanticipated query results.

• Since dbfcmd calls sprintf, you must remember that % (percentage sign)
has a special meaning as the beginning of a format command. If you want
to include % in the command string, you must precede it with another %.

• Be sure to guard against passing a null pointer as a string parameter to
dbfcmd. If a null value is a possibility, you should check for it before using
the variable in a dbfcmd call.

• The application can intermingle calls to dbcmd and dbfcmd.

• At any time, the application can access the contents of the command buffer
through calls to dbgetchar, dbstrlen, and dbstrcpy.

• Available memory is the only constraint on the size of the DBPROCESS
command buffer created by calls to dbcmd and dbfcmd.

Clearing the command buffer

After a call to dbsqlexec or dbsqlsend, the first call to either dbcmd or dbfcmd
automatically clears the command buffer before the new text is entered. If this
situation is undesirable, set the DBNOAUTOFREE option. When
DBNOAUTOFREE is set, the command buffer is cleared only by an explicit
call to dbfreebuf.

DBFIRSTROW

152 Open Client

Limitations

Currently, only eight args may be handled in each call to dbfcmd. To format
commands that require more than eight args, call dbfcmd repeatedly. On some
platforms, dbfcmd may allow more than eight args per call. For portable code,
do not pass more than eight arguments.

Because it makes text substitutions, dbfcmd uses a working buffer in addition
to the DBPROCESS command buffer. dbfcmd allocates this working buffer
dynamically. The size of the space it allocates is equal to the maximum of a
defined constant (1024) or the string length of cmdstring *2 . For example, if
the length of cmdstring is 600 bytes, dbfcmd allocates a working buffer 1200
bytes long. If the length of cmdstring is 34 bytes, dbfcmd allocates a working
buffer 1024 bytes long. To work around this limitation:

sprintf (buffer, “%s”, SQL commmand”);
dbcmd (dbproc, buffer)

If the args are very big in comparison to the size of cmdstring, the working
buffer may not be large enough to hold the string after substitutions are made.
In this situation, break cmdstring up and use multiple calls to dbfcmd.

Note that the working buffer is not the same as the DBPROCESS command
buffer. The working buffer is a temporary buffer used only by dbfcmd when
making text substitutions. The DBPROCESS command buffer holds the text
after substitutions have been made. There is no constraint, other than available
memory, on the size of the DBPROCESS command buffer.

See also dbcmd, dbfreebuf, dbgetchar, dbstrcpy, dbstrlen, Options on page 407

DBFIRSTROW
Description Return the number of the first row in the row buffer.

Syntax DBINT DBFIRSTROW(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

CHAPTER 2 Routines

DB-Library/C Reference Manual 153

Return value The number of the first row in the row buffer. Rows are counted from the first
row returned from the server, whose number is 1. This routine returns 0 if there
is an error.

Usage • This macro returns the number of the first row in the row buffer.

• If you are not buffering rows, DBFIRSTROW, DBCURROW, and
DBLASTROW always have the same value. If you have allowed
buffering by setting the DBBUFFER option, DBFIRSTROW returns the
number of the first row in the row buffer.

• Note that the first row returned from the server (whose value is 1) is not
necessarily the first row in the row buffer. The rows in the row buffer are
dependent on manipulation by the application program. See the dbclrbuf
reference page for details.

See also dbclrbuf, DBCURROW, dbgetrow, DBLASTROW, dbnextrow, dbsetopt,
Options on page 407

dbfree_xlate
Description Free a pair of character set translation tables.

Syntax RETCODE *dbfree_xlate(dbproc, xlt_tosrv, xlt_todisp)

DBPROCESS *dbproc;
DBXLATE *xlt_tosrv;
DBXLATE *xlt_todisp;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that
DB-Library uses to manage communications and data between the front end
and server.

xlt_tosrv
A pointer to a translation table used to translate display-specific character
strings to the server character strings. The translation table is allocated using
dbload_xlate.

xlt_todisp
A pointer to a translation table used to translate server character strings to
display-specific character strings. The translation table is allocated using
dbload_xlate.

dbfreebuf

154 Open Client

Return value SUCCEED or FAIL.

Usage • This routine frees a pair of character set translation tables allocated by
dbload_xlate.

• Character set translation tables translate characters between the server’s
standard character set and the display device’s character set.

• The following code fragment illustrates the use of dbfree_xlate

char destbuf[128];
int srcbytes_used;
DBXLATE *xlt_todisp; DBXLATE *xlt_tosrv;
dbload_xlate((DBPROCESS *)NULL, "iso_1",
"trans.xlt", &xlt_tosrv, &xlt_todisp);
printf("Original string: \n\t%s\n\n",
 TEST_STRING);
dbxlate((DBPROCESS *)NULL, TEST_STRING,
 strlen(TEST_STRING), destbuf, -1, xlt_todisp,
 &srcbytes_used);
printf("Translated to display character set: \
 \n\t%s\n\n", destbuf);
dbfree_xlate((DBPROCESS *)NULL, xlt_tosrv,
 xlt_todisp);

See also dbload_xlate, dbxlate

dbfreebuf
Description Clear the command buffer.

Syntax void dbfreebuf(dbproc)

 DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value None.

Usage • This routine clears a DBPROCESS command buffer by freeing any space
allocated to it. It then sets the command buffer to NULL. Commands are
added to the command buffer with the dbcmd or dbfcmd routine.

CHAPTER 2 Routines

DB-Library/C Reference Manual 155

• After a call to dbsqlexec or dbsqlsend, the first call to either dbcmd or
dbfcmd automatically calls dbfreebuf to clear the command buffer before
the new text is entered. If this situation is undesirable, set the
DBNOAUTOFREE option. When DBNOAUTOFREE is set, the
command buffer is cleared only by an explicit call to dbfreebuf.

• At any time, the application can access the contents of the command buffer
through calls to dbgetchar, dbstrlen, and dbstrcpy.

See also dbcmd, dbfcmd, dbgetchar, dbsqlexec, dbsqlsend, dbstrcpy, dbstrlen, Options
on page 407

dbfreequal
Description Free the memory allocated by dbqual.

Syntax void dbfreequal(qualptr)

char *qualptr;

Parameters qualptr
A pointer to the memory allocated by dbqual.

Return value None.

Usage • dbfreequal is one of the DB-Library browse mode routines. See Chapter 1,
“Introducing DB-Library” for a detailed discussion of browse mode.

• dbqual provides a where clause that the application can use to update a
single row in a browsable table. In doing so, it dynamically allocates a
buffer to contain the where clause. When the where clause is no longer
needed, the application can use dbfreequal to deallocate the buffer.

See also dbqual

dbfreesort
Description Free a sort order structure allocated by dbloadsort.

Syntax RETCODE dbfreesort(dbproc, sortorder)

DBPROCESS *dbproc;
DBSORTORDER *sortorder;

dbfreesort

156 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

sortorder
A pointer to a DBSORTORDER structure allocated through dbloadsort.

Return value SUCCEED or FAIL.

Usage • dbfreesort frees a sort order structure that was allocated using dbloadsort.
DB-Library routines such as dbstrcmp and dbstrsort use sort orders to
determine how character data must be sorted.

• When an application program does sorting or comparing, it automatically
sorts character data the same way the server does. If no sort order has been
loaded, routines such as dbstrcmp and dbstrsort sort characters by their
binary values.

 Warning! Application programs must not attempt to use operating-system
facilities to free the *sortorder structure directly, as it may have been
allocated using some mechanism other than malloc (on operating systems
where malloc is not supported), and it may consist of multiple parts, some
of which must be freed separately.

• The following code fragment illustrates the use of dbfreesort:

sortorder = dbloadsort(dbproc);

 retval = dbstrcmp(dbproc, "ABC", 3, "abc", 3,
 sortorder);
 printf("ABC dbstrcmp’ed with abc yields %d.\n",
 retval);

 retval = dbstrcmp(dbproc, "abc", 3, "ABC", 3,
 sortorder);
 printf("abc dbstrcmp’ed with ABC yields %d.\n",
 retval);

 dbfreesort(dbproc, sortorder);

See also dbloadsort, dbstrcmp, dbstrsort

CHAPTER 2 Routines

DB-Library/C Reference Manual 157

dbgetchar
Description Return a pointer to a character in the command buffer.

Syntax char *dbgetchar(dbproc, n)

DBPROCESS *dbproc;
int n;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

n
The position of the desired character in the command buffer. The first
character position is 0.

Return value dbgetchar returns a pointer to the nth character in the command buffer. If n is
not in range, dbgetchar returns NULL.

Usage • You can use dbgetchar to retrieve a pointer to a particular character in the
command buffer. dbgetchar returns a pointer to a character in the
command buffer whose position is indicated by n. The first character has
position 0.

• Internally, the command buffer is a linked list of non-null-terminated text
strings. dbgetchar, dbstrcpy, and dbstrlen together provide a way to locate
and copy parts of the command buffer.

• Since the command buffer is not just one large text string, but rather a
linked list of text strings, you must use dbgetchar to index through the
buffer. If you just get a pointer using dbgetchar and then increment it
yourself, it will probably fall off the end of a string and cause a
segmentation fault.

See also dbcmd, dbfcmd, dbfreebuf, dbstrcpy, dbstrlen

dbgetcharset
Description Get the name of the client character set from the DBPROCESS structure.

Syntax char *dbgetcharset(dbproc)

DBPROCESS *dbproc;

dbgetloginfo

158 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and server.

Return value A pointer to the null-terminated name of the client character set, or NULL in
case of error.

Usage • dbgetcharset returns the name of the client’s character set.

• DB-Library/C clients can use a different character set than the server or
servers to which they are connected. If a client and server are using
different character sets, and the server supports character translation for
the client’s character set, it will perform all conversions to and from its
own character set when communicating with the client.

• An application can inform the server what character set it is using through
DBSETLCHARSET.

• To determine if the server is performing character set translations, an
application can call dbcharsetconv.

• To get the name of the server character set, an application can call
dbservcharset.

See also dbcharsetconv, dblogin, dbopen, dbservcharset, DBSETLCHARSET

dbgetloginfo
Description Transfer Tabular Data Stream (TDS) login response information from a

DBPROCESS structure to a newly allocated DBLOGINFO structure.

Syntax RETCODE dbgetloginfo(dbproc, loginfo)

DBPROCESS *dbproc;
DBLOGINFO **loginfo;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

CHAPTER 2 Routines

DB-Library/C Reference Manual 159

loginfo
The address of a DBLOGINFO pointer variable. dbgetloginfo sets the
DBLOGINFO pointer to the address of a newly-allocated DBLOGINFO
structure.

Return value SUCCEED or FAIL.

Usage • dbgetloginfo transfers TDS login response information from a
DBPROCESS structure to a newly allocated DBLOGINFO structure.

• An application needs to call dbgetloginfo only if 1) it is an Open Server
gateway application, and 2) it is using TDS passthrough.

• TDS is an application protocol used for the transfer of requests and request
results between clients and servers.

• When a client connects directly to a server, the two programs negotiate the
TDS format they will use to send and receive data. When a gateway
application uses TDS passthrough, the application forwards TDS packets
between the client and a remote server without examining or processing
them. For this reason, the remote server and the client must agree on a TDS
format to use.

• dbgetloginfo is the second of four calls, two of them Server Library calls,
that allow a client and remote server to negotiate a TDS format. The calls,
which can be made only in a SRV_CONNECT event handler, are:

• srv_getloginfo - allocate a DBLOGINFO structure and fill it with TDS
information from a client SRV_PROC.

• dbsetloginfo - transfer the TDS information retrieved in step 1 from
the DBLOGINFO structure to a DB-Library/C LOGINREC structure,
and then free the DBLOGINFO structure. After the information is
transferred, the application can use this LOGINREC structure in the
dbopen call which establishes its connection with the remote server.

• dbgetloginfo - transfer the remote server’s response to the client’s
TDS information from a DBPROCESS structure into a newly-
allocated DBLOGINFO structure.

• srv_setloginfo - send the remote server’s response, retrieved in the
previous step, to the client, and then free the DBLOGINFO structure.

• This is an example of a SRV_CONNECT handler preparing a remote
connection for TDS passthrough:

RETCODE connect_handler(srvproc)
SRVPROC *srvproc;
 {

dbgetlusername

160 Open Client

 DBLOGINFO *loginfo;
 LOGINREC *loginrec;
 DBPROCESS *dbproc;
/*
 ** Get the TDS login information from the client
 ** SRV_PROC.
 */
 srv_getloginfo(srvproc, &loginfo);
/* Get a LOGINREC structure */
 loginrec = dblogin();
/*
 ** Initialize the LOGINREC with the login info
 ** from the SRV_PROC.
 */
 dbsetloginfo(loginrec, loginfo);
/* Connect to the remote server */
 dbproc = dbopen(loginrec, REMOTE_SERVER_NAME);
/*
 ** Get the TDS login response information from
 ** the remote connection.
 */
 dbgetloginfo(dbproc, &loginfo);
/*
 ** Return the login response information to the
 ** SRV_PROC.
 */
 srv_setloginfo(srvproc, loginfo);
/* Accept the connection and return */
 srv_senddone(srvproc, 0, 0, 0);
 return(SRV_CONTINUE);
 }

See also dbrecvpassthru, dbsendpassthru, dbsetloginfo

dbgetlusername
Description Return the user name from a LOGINREC structure.

Syntax int dbgetlusername(login, name_buffer, buffer_len)

LOGINREC *login;
BYTE *name_buffer;
int buffer_len;

CHAPTER 2 Routines

DB-Library/C Reference Manual 161

Parameters login
A pointer to a LOGINREC structure, which can be passed as an argument to
dbopen. You can get a LOGINREC structure by calling dblogin.

name_buffer
A pointer to a buffer. The user name will be copied from the LOGINREC
structure to this buffer.

buffer_len
The length, in bytes, of the destination buffer.

Return value The number of bytes copied into the destination buffer, not including the null-
terminator.

If the user name is more than buffer_len -1 bytes long, dbgetlusername copies
buffer_len -1 bytes into the destination buffer and returns DBTRUNCATED.

dbgetlusername returns FAIL if login is NULL, name_buffer is NULL, or
buffer_len is less than 0.

Usage • dbgetlusername copies the user name from LOGINREC structure into the
name_buffer buffer.

• To set the user name in a LOGINREC structure, use DBSETLUSER.

• dbgetlusername copies a maximum of buffer_len -1 bytes, and null-
terminates the user name string. Since the longest user name in a
LOGINREC structure is DBMAXNAME bytes, an application will never
need a destination buffer longer than DBMAXNAME +1 bytes.

• If the user name is in the LOGINREC is longer than buffer_len -1 bytes,
dbgetlusername truncates the name and returns DBTRUNCATED.

See also dblogin, DBSETLUSER

dbgetmaxprocs
Description Determine the current maximum number of simultaneously open

DBPROCESSes.

Syntax int dbgetmaxprocs()

Parameters None.

Return value An integer representing the current limit on the number of simultaneously open
DBPROCESSes.

dbgetnatlang

162 Open Client

Usage A DB-Library program has a maximum number of simultaneously open
DBPROCESSes. By default, this number is 25. The application program may
change this limit by calling dbsetmaxprocs.

See also dbopen, dbsetmaxprocs

dbgetnatlang
Description Get the national language from the DBPROCESS structure.

Syntax char* dbgetnatlang(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and server.

Return value A pointer to a character string representing the national language that the client
DBPROCESS is using.

Usage • dbgetnatlang returns a pointer to the name of the national language that a
client is using.

• DB-Library/C clients may use a different national language than the server
or servers to which they are connected. An application can inform the
server what national language it wishes to use through
DBSETLNATLANG.

See also dblogin, dbopen, DBSETLNATLANG

dbgetoff
Description Check for the existence of Transact-SQL constructs in the command buffer.

Syntax int dbgetoff(dbproc, offtype, startfrom)

DBPROCESS *dbproc;
DBUSMALLINT offtype;
int startfrom;

CHAPTER 2 Routines

DB-Library/C Reference Manual 163

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

offtype
The type of offset you want to find. The types, which are defined in the
header file sybdb.h, are:

OFF_SELECT
OFF_FROM
OFF_ORDER
OFF_COMPUTE
OFF_TABLE
OFF_PROCEDURE
OFF_STATEMENT
OFF_PARAM
OFF_EXEC

See Options on page 407 for details.

startfrom
The point in the buffer at which to start looking. The command buffer begins
at 0.

Return value The character offset into the command buffer for the specified offset. If the
offset is not found, -1 is returned.

Usage • If the DBOFFSET option has been set (see Options on page 407), this
routine can check for the location of certain Transact-SQL constructs in
the command buffer. As a simple example, assume the program does not
know the contents of the command buffer but needs to know where the
SQL keyword select appears:

int select_offset[10];
int last_offset;
int i;
/* Set the offset option */
 dbsetopt(dbproc, DBOFFSET, "select");

/*
 ** Assume the command buffer contains the
 ** following selects.
 */
 dbcmd(dbproc, "select x = 100 select y = 5");

/* Send the query to Adaptive Server Enterprise */

dbgetpacket

164 Open Client

 dbsqlexec(dbproc);

/* Get all the offsets to the select keyword */
 for (i = 0, last_offset = 0; last_offset != -1;
 i++)
 if ((last_offset = dbgetoff(dbproc,
 OFF_SELECT, last_offset) != -1)
 select_offset[i] = last_offset++;

In this example, select_offset[0] = 0 and select_offset[1] = 15.

• dbgetoff does not recognize select statements in a subquery. Thus, if the
command buffer contained:

select pub_name
 from publishers
 where pub_id not in
 (select pub_id
 from titles
 where type = "business")

the second “select” would not be recognized.

See also dbcmd, dbgetchar, dbsetopt, dbstrcpy, dbstrlen, Options on page 407

dbgetpacket
Description Return the TDS packet size currently in use.

Syntax int dbgetpacket(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

Return value The TDS packet size currently in use.

Usage • dbgetpacket returns the TDS packet size currently in use.

• TDS (Tabular Data Stream) is an application protocol used for the transfer
of requests and request results between clients and servers.

CHAPTER 2 Routines

DB-Library/C Reference Manual 165

• TDS data is sent in fixed-size chunks, called “packets”. TDS packets have
a default size of 512 bytes.

• An application may change the TDS packet size using DBSETLPACKET,
which sets the packet size field in the LOGINREC structure. When the
application logs in to the server or Open Server, the server sets the TDS
packet size for the created DBPROCESS connection to be equal to or less
than the value of this field. The packet size is set to a value less than the
value of the field if the server is experiencing space constraints.
Otherwise, the packet size will be equal to the value of the field.

• If an application sends or receives large amounts of text or image data, a
packet size larger than the default 512 bytes may improve efficiency, since
it results in fewer network reads and writes.

See also DBSETLPACKET

dbgetrow
Description Read the specified row in the row buffer.

Syntax STATUS dbgetrow(dbproc, row)

DBPROCESS *dbproc;
DBINT row;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

row
The number of the row to read. Rows are counted from the first row returned
from the server, whose number is 1. Note that the first row in the row buffer
is not necessarily the first row returned from the server.

Return value dbgetrow can return four different types of values:

• If the current row is a regular row, REG_ROW is returned.

• If the current row is a compute row, the computeid of the row is returned.
(See the dbaltbind reference page for information on the computeid.

dbgetrow

166 Open Client

• If the row is not in the row buffer, NO_MORE_ROWS is returned, and the
current row is left unchanged.

• If the routine was unsuccessful, FAIL is returned.

Usage • dbgetrow sets the current row in the row buffer to a specific row and reads
it. This routine works only if the DBBUFFER option is on, enabling row
buffering. When dbgetrow is called, any binding of row data to program
variables (as specified with dbbind or dbaltbind) takes effect.

• Row buffering provides a way to keep a specified number of server result
rows in program memory. Without row buffering, the result row generated
by each new dbnextrow call overwrites the contents of the previous result
row. Row buffering is therefore useful for programs that need to look at
result rows in a non-sequential manner. It does, however, carry a memory
and performance penalty because each row in the buffer must be allocated
and freed individually. Therefore, use it only if you need to. Specifically,
the application should only turn the DBBUFFER option on if it calls
dbgetrow or dbsetrow. Note that row buffering has nothing to do with
network buffering and is a completely independent issue.

• When row buffering is not allowed, the application processes each row as
it is read from the server, by calling dbnextrow repeatedly until it returns
NO_MORE_ROWS. When row buffering is enabled, the application can
use dbgetrow to jump to any row that has already been read from the server
with dbnextrow. Subsequent calls to dbnextrow cause the application to
read successive rows in the buffer. When dbnextrow reaches the last row in
the buffer, it reads rows from the server again, if there are any. Once the
buffer is full, dbnextrow does not read any more rows from the server until
some of the rows have been cleared from the buffer with dbclrbuf.

• The macros DBFIRSTROW, DBLASTROW, and DBCURROW are
useful in conjunction with dbgetrow calls. DBFIRSTROW, for instance,
gets the number of the first row in the buffer. Thus, the call:

dbgetrow(dbproc, DBFIRSTROW(dbproc))

sets the current row to the first row in the buffer.

• The routine dbsetrow sets a buffered row to “current” but does not read the
row.

• For an example of row buffering, see the sample program example4.c.

See also dbaltbind, dbbind, dbclrbuf, DBCURROW, DBFIRSTROW, DBLASTROW,
dbnextrow, dbsetrow, Options on page 407

CHAPTER 2 Routines

DB-Library/C Reference Manual 167

DBGETTIME
Description Return the number of seconds that DB-Library will wait for a server response

to a SQL command.

Syntax int DBGETTIME()

Return value The timeout value—the number of seconds that DB-Library waits for a server
response before timing out. A timeout value of 0 represents an infinite timeout
period.

Usage • This routine returns the length of time in seconds that DB-Library will
wait for a server response during calls to dbsqlexec, dbsqlok, dbresults, and
dbnextrow. The default timeout value is 0, which represents an infinite
timeout period.

• The program can call dbsettime to change the timeout value.

See also dbsettime

dbgetuserdata
Description Return a pointer to user-allocated data from a DBPROCESS structure.

Syntax BYTE *dbgetuserdata(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value A generic BYTE pointer to the user’s private data space. This pointer must
have been previously saved with the dbsetuserdata routine.

Usage • This routine returns, from a DBPROCESS structure, a pointer to user-
allocated data. The application must have previously saved this pointer
with the dbsetuserdata routine.

dbhasretstat

168 Open Client

• dbgetuserdata and dbsetuserdata allow the application to associate user
data with a particular DBPROCESS. This avoids the necessity of using
global variables for this purpose. One use for these routines is to handle
deadlock, as shown in the example on the dbsetuserdata reference page.
That example reruns the transaction when the application’s message
handler detects deadlock.

• This routine is particularly useful when the application has multiple
DBPROCESSes.

See also dbsetuserdata

dbhasretstat
Description Determine whether the current command or remote procedure call generated a

return status number.

Syntax DBBOOL dbhasretstat(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value “TRUE” or “FALSE”.

Usage • This routine determines whether the current Transact-SQL command or
remote procedure call generated a return status number. Status numbers
are returned by all stored procedures running on Adaptive Server
Enterprise. Since status numbers are a feature of stored procedures, only a
remote procedure call or an execute command can generate a status
number.

• The dbretstatus routine actually gets the status number. Stored procedures
that complete normally return a status number of 0. For a list of return
status numbers, see the Adaptive Server Enterprise Reference Manual.

CHAPTER 2 Routines

DB-Library/C Reference Manual 169

• When executing a stored procedure, the server returns the status number
immediately after returning all other results. Therefore, the application can
call dbhasretstat only after processing the stored procedure’s results by
calling dbresults, as well as dbnextrow if appropriate. (Note that a stored
procedure can generate several sets of results—one for each select it
contains.) Before the application can call dbhasretstat or dbretstatus, it
must call dbresults and dbnextrow as many times as necessary to process
all the results.

• The order in which the application processes the status number and any
return parameter values is unimportant.

• When a stored procedure has been executed as an RPC command using
dbrpcinit, dbrpcparam, and dbrpcsend, then the return status can be
retrieved after all other results have been processed. For an example of this
usage, see the sample program example8.c.

• When a stored procedure has been executed from a batch of Transact-SQL
commands (with dbsqlexec or dbsqlsend), then other commands might
execute after the stored procedure. This situation makes return-status
retrieval a little more complicated.

• If you are sure that the stored procedure command is the only
command in the batch, then you can retrieve the return status after the
dbresults loop, as shown in the sample program example8.c.

• If the batch can contain multiple commands, then the return status
should be retrieved inside the dbresults loop, after all rows have been
fetched with dbnextrow. The code below shows the program logic to
retrieve the return status value in this situation.

while ((result_code = dbresults(dbproc)
 != NO_MORE_RESULTS)
 {
 if (result_code == SUCCEED)
 {
 ... bind rows here ...
 while ((row_code = dbnextrow(dbproc))
 != NO_MORE_ROWS)
 {
 ... process rows here ...
 }
 /* Now check for a return status */
 if (dbhasretstat(dbproc) == TRUE)
 {
 printf(“(return status %d)\n”,
 dbretstatus(dbproc));

dbinit

170 Open Client

 }
 if (dbnumrets(dbproc) > 0)
 {
 ... get output parameters here ...
 }
 } /* if result_code */
 else
 {
 printf(“Query failed.\n”);
 }
 } /* while dbresults */

See also dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcinit, dbrpcparam,
dbrpcsend

dbinit
Description Initialize DB-Library.

Syntax RETCODE dbinit()

Return value SUCCEED or FAIL.

Usage • This routine initializes certain private DB-Library structures. For
environments that require it, the application must call dbinit before calling
any other DB-Library routine. Most DB-Library routines will cause the
application to exit if they are called before dbinit.

• To ensure future compatibility and portability, Sybase strongly
recommends that all applications call dbinit, no matter what their operating
environment.

See also dbexit

DBIORDESC
Description (UNIX only) Provide program access to the UNIX file descriptor used by a

DBPROCESS to read data coming from the server.

Syntax int DBIORDESC(dbproc)

DBPROCESS *dbproc;

CHAPTER 2 Routines

DB-Library/C Reference Manual 171

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value An integer file descriptor used by the specified DBPROCESS to read data
coming from the server.

Usage • This routine provides a way for an application to respond effectively to
multiple input streams. Depending on the nature of your application, the
time between a request for information from the server (usually made
using a call to dbsqlsend) and the server’s response (read by calling
dbsqlok, dbresults, or dbnextrow) may be significant. You may use this time
to service other parts of your application. The DBIORDESC routine
provides a way to obtain the I/O descriptor that a DBPROCESS uses to
read the data stream from the server. This information may then be used
with various operating system facilities (such as the UNIX select call) to
allow the application to respond effectively to multiple input streams.

• dbpoll checks if a server response has arrived for any of an application’s
server connections (represented by DBPROCESS pointers). dbpoll is
generally simpler to use than DBIORDESC. For this reason, and because
DBIORDESC is non-portable, it is generally preferable to use dbpoll.

• The file descriptor returned by DBIORDESC may only be used with
operating system facilities that do not read data from the incoming data
stream. If data is read from this stream by any means other than through a
DB-Library routine, communications between the front end and the server
will become hopelessly scrambled.

• An application can use the DB-Library DBRBUF routine, in addition to
the UNIX select function, to help determine whether any more data from
the server is available for reading.

• A companion routine, DBIOWDESC, provides access to the file
descriptor used to write data to the server.

See also dbcmd, DBIOWDESC, dbnextrow, dbpoll, DBRBUF, dbresults, dbsqlok,
dbsqlsend

DBIOWDESC

172 Open Client

DBIOWDESC
Description (UNIX only) Provide program access to the UNIX file descriptor used by a

DBPROCESS to write data to the server.

Syntax int DBIOWDESC(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value An integer file descriptor used by the specified DBPROCESS to write data to
the server.

Usage • This routine provides a way for an application to effectively utilize
multiple input and output streams. Depending on the nature of your
application, the time interval between the initiation of an attempt to write
information to the server (usually made using a call to dbsqlsend) and the
completion of that attempt may be significant. You may use this time to
service other parts of your application. The DBIOWDESC routine
provides a way to obtain the I/O descriptor that a DBPROCESS uses to
write the data stream to the server. This information may then be used with
various operating system facilities (such as the UNIX select function) to
allow the application to effectively utilize multiple input and output
streams.

• The file descriptor returned by this routine may only be used with
operating system facilities that do not write data to the outgoing data
stream. If data is written to this stream by any means other than through a
DB-Library routine, communications between the front-end and the server
will become hopelessly scrambled.

• A companion routine, DBIORDESC, provides access to the file descriptor
used to read data coming from the server. For some applications, another
routine, dbpoll may be preferable to DBIORDESC.

See also dbcmd, DBIORDESC, dbnextrow, dbpoll, dbresults, dbsqlok, dbsqlsend

CHAPTER 2 Routines

DB-Library/C Reference Manual 173

DBISAVAIL
Description Determine whether a DBPROCESS is available for general use.

Syntax DBBOOL DBISAVAIL(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value “TRUE” if the DBPROCESS is available for general use, otherwise “FALSE”.

Usage This routine indicates whether the specified DBPROCESS is available for
general use. When a DBPROCESS is first opened, it is marked as being
available, until some use is made of it. Many DB-Library routines will
automatically set the DBPROCESS to “not available,” but only dbsetavail will
reset it to “available.” This facility is useful when several parts of a program
are attempting to share a single DBPROCESS.

See also dbsetavail

dbisopt
Description Check the status of a server or DB-Library option.

Syntax DBBOOL dbisopt(dbproc, option, param)

DBPROCESS *dbproc;
int option;
char *param;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server. Unlike in the functions dbsetopt and dbclropt, dbproc cannot be
NULL here.

option
The option to be checked. See Options on page 407 for the list of options.

DBLASTROW

174 Open Client

param
Certain options take parameters. The DBOFFSET option, for example,
takes as a parameter the SQL construct for which offsets are to be returned.
Options lists those options that take parameters. If an option does not take a
parameter, param must be NULL.

If the option you are checking takes a parameter but there can be only one
instance of the option, dbisopt ignores the param argument. For example,
dbisopt ignores the value of param when checking the DBBUFFER option,
because row buffering can have only one setting at a time. On the other
hand, the DBOFFSET option can have several settings, each with a different
parameter. It may have been set twice—to look for offsets to select
statements and for offsets to order by clauses. In that case, dbisopt needs the
param argument to determine whether to check the select offset or the order
by offset.

Return value “TRUE” or “FALSE”.

Usage • This routine checks the status of the server and DB-Library options.
Although server options may be set and cleared directly through SQL, the
application should instead use dbsetopt and dbclropt to set and clear
options. This provides a uniform interface for setting both server and
DB-Library options. It also allows the application to use the dbisopt
function to check the status of an option.

• For a list of each option and its default status, see Options on page 407.

See also dbclropt, dbsetopt, Options on page 407

DBLASTROW
Description Return the number of the last row in the row buffer.

Syntax DBINT DBLASTROW(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

CHAPTER 2 Routines

DB-Library/C Reference Manual 175

Return value The number of the last row in the row buffer. This routine returns 0 if there is
an error.

Usage • This macro returns the number of the last row in the row buffer. Rows are
counted from the first row returned from the server, whose number is 1,
and not from the top of the row buffer.

• If you are not buffering rows, DBFIRSTROW, DBCURROW, and
DBLASTROW will always have the same value. If you have enabled
buffering by setting the DBBUFFER option, DBLASTROW will return
the number of the row that is the last row in the row buffer.

See also dbclrbuf, DBCURROW, DBFIRSTROW, dbgetrow, dbnextrow, dbsetopt,
Options on page 407

dbload_xlate
Description Load a pair of character set translation tables.

Syntax RETCODE dbload_xlate(dbproc, srv_charset, xlate_name,
 xlt_tosrv, xlt_todisp)

DBPROCESS *dbproc;
char *srv_charset;
char *xlt_name;
DBXLATE **xlt_tosrv;
DBXLATE **xlt_todisp;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

srv_charset
A pointer to the name of the server’s character set. dbload_xlate looks for a
directory of this name in the charsets directory under the main Sybase
installation directory. For example, if the server is using the iso_1 character
set, dbload_xlate looks for $SYBASE/charsets/iso_1.

xlt_name
A pointer to the name of the file containing the display-specific character
set. dbload_xlate looks for this file in the server character set directory.

dbloadsort

176 Open Client

xlt_tosrv
A pointer to a pointer to a character set translation table used to translate
display-specific character strings to the server character strings. The
translation table is allocated through dbload_xlate.

xlt_todisp
A pointer to a pointer to a character set translation table used to translate
server character strings to display-specific character strings. The translation
table is allocated using dbload_xlate.

Return value SUCCEED or FAIL.

Usage • dbload_xlate reads a display-specific localization file and allocates two
character set translation tables: one for translations from the server’s
character set to the display-specific character set, and another for
translations from the display-specific character set to the server’s
character set.

• The following code fragment illustrates the use of dbload_xlate:

char destbuf[128];
int srcbytes_used;
DBXLATE* xlt_todisp;
DBXLATE *xlt_tosrv;

dbload_xlate((DBPROCESS *)NULL, "iso_1",
 "trans.xlt", &xlt-tosrv, &xlt-todisp);
printf("Original string: \n\t%s\n\n",
 TEST_STRING);
dbxlate((DBPROCESS *)NULL, TEST_STRING,
 strlen(TEST_STRING), destbuf, -1, xlt_todisp,
 &srcbytes_used);
printf("Translated to display character set: \
 \n\t%s\n\n", destbuf);
dbfree_xlate((DBPROCESS *)NULL, xlt_tosrv,
 xlt_todisp);

See also dbfree_xlate, dbxlate

dbloadsort
Description Load a server sort order.

CHAPTER 2 Routines

DB-Library/C Reference Manual 177

Syntax DBSORTORDER *dbloadsort(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value A pointer to a DBSORTORDER structure on success, NULL on error.

Usage • dbloadsort provides information about the sort order of the server’s
character set. This information can be used by dbstrcmp or dbstrsort to
compare two character strings.

• dbloadsort allocates a DBSORTORDER structure to contain the server
character set sort order information. The structure is freed using dbfreesort.

• The following code fragment illustrates the use of dbloadsort:

sortorder = dbloadsort(dbproc);
retval = dbstrcmp(dbproc, "ABC", 3, "abc", 3,
 sortorder);
 printf("ABC dbstrcmp’ed with abc yields %d.\n",
 retval);
retval = dbstrcmp(dbproc, "abc", 3, "ABC", 3,
 sortorder);
 printf("abc dbstrcmp’ed with ABC yields %d.\n",
 retval);
dbfreesort(dbproc, sortorder);

See also dbfreesort, dbstrcmp, dbstrsort

dblogin
Description Allocates a login record for use in dbopen.

Syntax LOGINREC *dblogin()

Return value A pointer to a LOGINREC structure. dblogin returns NULL if the structure
could not be allocated.

Usage • This routine allocates a LOGINREC structure for use with dbopen.

dblogin

178 Open Client

• There are various routines available to supply components of the
LOGINREC. The program may supply the host name, user name, user
password, and application name—via DBSETLHOST, DBSETLUSER,
DBSETLPWD, and DBSETAPP, respectively. It is generally only necessary
for the program to supply the user password (and even this can be
eliminated if the password is a null value). The other variables in the
LOGINREC structure will be set to default values.

• Other components of the LOGINREC may also be changed:

• The national language name can be set in a LOGINREC structure
using DBSETLNATLANG. Call DBSETLNATLANG only if you do not
wish to use the server’s default national language.

• The TDS packet size can be set in a LOGINREC using
DBSETLPACKET. If not explicitly set, the TDS packet size defaults to
512 bytes. TDS is an application protocol used for the exchange of
information between clients and servers.

• The character set can be set in a LOGINREC using
DBSETLCHARSET. An application needs to call DBSETLCHARSET
only if it is not using ISO-8859-1 (known to the server as “iso_1”).

• When a connection attempt is made between a client and a server, there are
two ways in which the connection can fail (assuming that the system is
correctly configured):

• The machine that the server is supposed to be on is running correctly
and the network is running correctly.

In this case, if there is no server listening on the specified port, the
machine the server is supposed to be on will signal the client, using a
network error, that the connection cannot be formed. Regardless of
dbsetlogintime, the connection fails.

• The machine that the server is on is down.

In this case, the machine that the server is supposed to be on will not
respond. Because “no response” is not considered to be an error, the
network will not signal the client that an error has occurred. However,
if dbsetlogintime has been called to set a timeout period, a timeout
error will occur when the client fails to receive a response within the
set period.

• Here is a program fragment that uses dblogin:

DBPROCESS *dbproc;
LOGINREC *loginrec;

CHAPTER 2 Routines

DB-Library/C Reference Manual 179

loginrec = dblogin();
 DBSETLPWD(loginrec, "server_password");
 DBSETLAPP(loginrec, "my_program");
 dbproc = dbopen(loginrec, "my_server");

• Once the application has made all its dbopen calls, the LOGINREC
structure is no longer necessary. The program can then call dbloginfree to
free the LOGINREC structure.

See also dbloginfree, dbopen, dbrpwclr, dbrpwset, DBSETLAPP,
DBSETLCHARSET, DBSETLHOST, DBSETLNATLANG,
DBSETLPACKET, DBSETLPWD, DBSETLUSER

dbloginfree
Description Free a login record.

Syntax void dbloginfree(loginptr)

LOGINREC *loginptr;

Parameters loginptr
A pointer to a LOGINREC structure.

Return value None.

Usage dblogin provides a LOGINREC structure for use with dbopen. Once the
application has made all its dbopen calls, the LOGINREC structure is no longer
necessary. dbloginfree frees the memory associated with the specified
LOGINREC structure.

See also dblogin, dbopen

dbmny4add
Description Add two DBMONEY4 values.

Syntax RETCODE dbmny4add(dbproc, m1, m2, sum)

DBPROCESS *dbproc;
DBMONEY4 *m1;
DBMONEY4 *m2;
DBMONEY4 *sum;

dbmny4cmp

180 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to a DBMONEY4 value.

m2
A pointer to a DBMONEY4 value.

sum
A pointer to a DBMONEY4 variable to hold the result of the addition.

Return value SUCCEED or FAIL.

dbmny4add returns FAIL in case of overflow, or if m1, m2, or sum is NULL.

Usage • dbmny4add adds the m1 and m2 DBMONEY4 values and places the result
in *sum.

• In case of overflow, dbmny4add returns FAIL and sets *sum to $0.00.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmny4sub, dbmny4mul, dbmny4divide, dbmny4minus, dbmny4add,
dbmny4sub, dbmnymul, dbmnydivide, dbmnyminus

dbmny4cmp
Description Compare two DBMONEY4 values.

Syntax int dbmny4cmp(dbproc, m1, m2)

DBPROCESS *dbproc;
DBMONEY4 *m1;
DBMONEY4 *m2;

CHAPTER 2 Routines

DB-Library/C Reference Manual 181

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to a DBMONEY4 value.

m2
A pointer to a DBMONEY4 value.

Return value If m1 = m2, dbmny4cmp returns 0.

If m1 < m2, dbmny4cmp returns -1.

If m1 > m2, dbmny4cmp returns 1.

Usage • dbmny4cmp compares two DBMONEY4 values.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmnycmp

dbmny4copy
Description Copy a DBMONEY4 value.

Syntax RETCODE dbmny4copy(dbproc, src, dest)

DBPROCESS *dbproc;
DBMONEY4 *src;
DBMONEY4 *dest;

dbmny4divide

182 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

src
A pointer to the source DBMONEY4 value.

dest
A pointer to the destination DBMONEY4 variable.

Return value SUCCEED or FAIL.

dbmny4copy returns FAIL if either src or dest is NULL.

Usage • dbmny4copy copies the src DBMONEY4 value to the dest DBMONEY4
variable.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmnycopy, dbmnyminus, dbmny4minus

dbmny4divide
Description Divide one DBMONEY4 value by another.

Syntax RETCODE dbmny4divide(dbproc, m1, m2, quotient)

DBPROCESS *dbproc;
DBMONEY4 *m1;
DBMONEY4 *m2;
DBMONEY4 *quotient;

CHAPTER 2 Routines

DB-Library/C Reference Manual 183

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to the DBMONEY4 value serving as dividend.

m2
A pointer to the DBMONEY4 value serving as divisor.

quotient
A pointer to a DBMONEY4 variable to hold the result of the division.

Return value SUCCEED or FAIL.

dbmny4divide returns FAIL in case of overflow or division by zero, or if m1,
m2, or quotient is NULL.

Usage • dbmny4divide divides the m1 DBMONEY4 value by the m2 DBMONEY4
value and places the result in *quotient.

• In case of overflow or division by zero, dbmny4divide returns FAIL and
sets *quotient to $0.0000.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmny4add, dbmny4sub, dbmny4mul, dbmny4minus, dbmnyadd, dbmnysub,
dbmnymul, dbmnydivide, dbmnyminus

dbmny4minus
Description Negate a DBMONEY4 value.

Syntax RETCODE dbmny4minus(dbproc, src, dest)

DBPROCESS *dbproc;

dbmny4mul

184 Open Client

DBMONEY4 *src;
DBMONEY4 *dest;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

src
A pointer to a DBMONEY4 value.

dest
A pointer to a DBMONEY4 variable to hold the result of the negation.

Return value SUCCEED or FAIL.

dbmny4minus returns FAIL in case of overflow, or if src or dest is NULL.

Usage • dbmny4minus negates the src DBMONEY4 value and places the result into
*dest.

• In case of overflow, dbmny4minus returns FAIL. *dest is undefined in this
case. An attempt to negate the maximum negative DBMONEY4 value
will result in overflow.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmnyminus, dbmnycopy, dbmny4copy

dbmny4mul
Description Multiply two DBMONEY4 values.

Syntax RETCODE dbmny4mul(dbproc, m1, m2, product)

DBPROCESS *dbproc;
DBMONEY4 *m1;
DBMONEY4 *m2;
DBMONEY4 *product;

CHAPTER 2 Routines

DB-Library/C Reference Manual 185

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to a DBMONEY4 value.

m2
A pointer to a DBMONEY4 value.

product
A pointer to a DBMONEY4 variable to hold the result of the multiplication.

Return value SUCCEED or FAIL.

dbmny4mul returns FAIL in case of overflow, or if m1, m2, or product is NULL.

Usage • dbmny4mul multiplies the m1 DBMONEY4 value by the m2 DBMONEY4
value and places the result in *product.

• In case of overflow, dbmny4mul returns FAIL and sets *product to
$0.0000.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmny4add, dbmny4sub, dbmny4divide, dbmny4minus, dbmnyadd,
dbmnysub, dbmnymul, dbmnydivide, dbmnyminus

dbmny4sub
Description Subtract one DBMONEY4 value from another.

Syntax RETCODE dbmny4sub(dbproc, m1, m2, difference)

DBPROCESS *dbproc;
DBMONEY4 *m1;

dbmny4zero

186 Open Client

DBMONEY4 *m2;
DBMONEY4 *difference;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to the DBMONEY4 value to be subtracted from.

m2
A pointer to the DBMONEY4 value to subtract.

difference
A pointer to a DBMONEY4 variable to hold the result of the subtraction.

Return value SUCCEED or FAIL.

dbmny4sub returns FAIL in case of overflow, or if m1, m2, or difference is
NULL.

Usage • dbmny4sub subtracts the m2 DBMONEY4 value from the m1
DBMONEY4 value and places the result in *difference.

• In case of overflow, dbmny4sub returns FAIL and sets *difference to
$0.0000.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmny4sub, dbmny4mul, dbmny4divide, dbmny4minus, dbmny4add,
dbmnysub, dbmnymul, dbmnydivide, dbmnyminus

dbmny4zero
Description Initialize a DBMONEY4 variable to $0.0000.

CHAPTER 2 Routines

DB-Library/C Reference Manual 187

Syntax RETCODE dbmny4zero(dbproc, mny4ptr)

DBPROCESS *dbproc;
DBMONEY4 *mny4ptr;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mny4ptr
A pointer to the DBMONEY4 value to initialize.

Return value SUCCEED or FAIL.

dbmny4zero returns FAIL if mny4ptr is NULL.

Usage • dbmny4zero initializes a DBMONEY4 value to $0.0000.

• The range of legal DBMONEY4 values is from -$214,748.3648 to
$214,748.3647. DBMONEY4 values have a precision of one ten-
thousandth of a dollar.

See also dbmnyzero

dbmnyadd
Description Add two DBMONEY values.

Syntax RETCODE dbmnyadd(dbproc, m1, m2, sum)

DBPROCESS *dbproc;
DBMONEY *m1;
DBMONEY *m2;
DBMONEY *sum;

dbmnycmp

188 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to a DBMONEY value.

m2
A pointer to a DBMONEY value.

sum
A pointer to a DBMONEY variable to hold the result of the addition.

Return value SUCCEED or FAIL.

Usage • dbmnyadd adds the m1 and m2 DBMONEY values and places the result in
*sum.

• In case of overflow, dbmnyadd returns FAIL and sets *sum to $0.0000.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

• dbmnyadd returns FAIL in case of overflow, or if m1, m2, or sum is NULL.

See also dbmnysub, dbmnymul, dbmnydivide, dbmnyminus, dbmny4add, dbmny4sub,
dbmny4mul, dbmny4divide, dbmny4minus

dbmnycmp
Description Compare two DBMONEY values.

Syntax int dbmnycmp(dbproc, m1, m2)

DBPROCESS *dbproc;
DBMONEY *m1;
DBMONEY *m2;

CHAPTER 2 Routines

DB-Library/C Reference Manual 189

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to a DBMONEY value.

m2
A pointer to a DBMONEY value.

Return value If m1 = m2 dbmnycmp returns 0.

If m1 < m2 dbmnycmp returns -1.

If m1 > m2 dbmnycmp returns 1.

Usage • dbmnycmp compares two DBMONEY values.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmny4cmp

dbmnycopy
Description Copy a DBMONEY value.

Syntax RETCODE dbmnycopy(dbproc, src, dest)

DBPROCESS *dbproc;
DBMONEY *src;
DBMONEY *dest;

dbmnydec

190 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

src
A pointer to the source DBMONEY value.

dest
A pointer to the destination DBMONEY variable.

Return value SUCCEED or FAIL.

dbmnycopy returns FAIL if either src or dest is NULL.

Usage • dbmnycopy copies the src DBMONEY value to the dest DBMONEY
value.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnycopy, dbmnyminus, dbmny4minus

dbmnydec
Description Decrement a DBMONEY value by one ten-thousandth of a dollar.

Syntax RETCODE dbmnydec(dbproc, mnyptr)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

CHAPTER 2 Routines

DB-Library/C Reference Manual 191

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to decrement.

Return value SUCCEED or FAIL.

dbmnydec returns FAIL in case of overflow or if mnyptr is NULL.

Usage • dbmnydec decrements a DBMONEY value by one ten-thousandth of a
dollar.

• An attempt to decrement the maximum negative DBMONEY value will
result in overflow. In case of overflow, dbmnydec returns FAIL. In this
case, the contents of *mnyptr are undefined.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnyinc, dbmnymaxneg

dbmnydivide
Description Divide one DBMONEY value by another.

Syntax RETCODE dbmnydivide(dbproc, m1, m2, quotient)

DBPROCESS *dbproc;
DBMONEY *m1;
DBMONEY *m2;
DBMONEY *quotient;

dbmnydown

192 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to the DBMONEY value serving as dividend.

m2
A pointer to the DBMONEY value serving as divisor.

quotient
A pointer to a DBMONEY variable to hold the result of the division.

Return value SUCCEED or FAIL.

dbmnydivide returns FAIL in case of overflow or division by zero, or if m1, m2,
or quotient is NULL.

Usage • dbmnydivide divides the m1 DBMONEY value by the m2 DBMONEY
value and places the result in *quotient.

• In case of overflow or division by zero, dbmnydivide returns FAIL and sets
*quotient to $0.0000.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnyadd, dbmnysub, dbmnymul, dbmnyminus, dbmny4add, dbmny4sub,
dbmny4mul, dbmny4divide, dbmny4minus

dbmnydown
Description Divide a DBMONEY value by a positive integer.

Syntax RETCODE dbmnydown(dbproc, mnyptr, divisor, remainder)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

CHAPTER 2 Routines

DB-Library/C Reference Manual 193

int divisor;
int *remainder;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to divide. *mnyptr will also contain the
result of the division.

divisor
The integer by which *mnyptr will be divided. divisor must be positive, and
must be less than or equal to 65535.

remainder
A pointer to an integer variable to hold the remainder from the division, in
ten-thousandths of a dollar. If remainder is passed as NULL, no remainder
is returned.

Return value SUCCEED or FAIL.

dbmnydown returns FAIL if mnyptr is NULL, or if divisor is not between 1 and
65535.

Usage • dbmnydown divides a DBMONEY value by a short integer and places the
result back in the original DBMONEY variable.

• dbmnydown places the remainder of the division into *remainder.
*remainder is an integer representing the number of ten-thousandths of a
dollar left after the division.

• divisor must be greater than or equal to one and less than or equal to
65535.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnyscale, dbmnydivide, dbmny4divide

dbmnyinc

194 Open Client

dbmnyinc
Description Increment a DBMONEY value by one ten-thousandth of a dollar.

Syntax RETCODE dbmnyinc(dbproc, mnyptr)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to increment.

Return value SUCCEED or FAIL.

dbmnyinc returns FAIL in case of overflow or if mnyptr is NULL.

Usage • dbmnyinc increments a DBMONEY value by one ten-thousandth of a
dollar.

• An attempt to increment the maximum positive DBMONEY value will
result in overflow. In case of overflow dbmnyinc returns FAIL. *mnyptr is
undefined in this case.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnydec, dbmnymaxpos

dbmnyinit
Description Prepare a DBMONEY value for calls to dbmnyndigit.

Syntax RETCODE dbmnyinit(dbproc, mnyptr, trim, negative)

DBPROCESS *dbproc;

CHAPTER 2 Routines

DB-Library/C Reference Manual 195

DBMONEY *mnyptr;
int trim;
DBBOOL *negative;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to be initialized. dbmnyinit changes the
value of *mnyptr.

trim
The number of digits to trim from *mnyptr. dbmnyinit removes digits from
*mnyptr by dividing it by a power of 10. The value of trim determines what
power of 10 is used. trim cannot be less than 0.

negative
A pointer to a DBBOOL variable. If *mnyptr is negative, dbmnyinit makes it
positive and sets *negative to “true”.

Return value SUCCEED or FAIL.

dbmnyinit returns FAIL if mnyptr is NULL, negative is NULL, or trim is less
than 0.

Usage • dbmnyinit initializes a DBMONEY value for conversion to character. It
eliminates unwanted precision and converts negative values to positive.

• dbmnyinit eliminates digits from a DBMONEY value by dividing by a
power of 10. The integer trim determines what power of 10 is used.
dbmnyinit modifies *mnyptr, replacing the original value with the trimmed
value. If *mnyptr is negative, dbmnyinit makes it positive and sets
*negative to “true”.

• dbmnyinit and dbmnyndigit are useful for writing a custom DBMONEY-to-
DBCHAR conversion routine. Such a custom routine might be useful if
the accuracy provided by dbconvert’s DBMONEY-to-DBCHAR
conversion (hundredths of a dollar) is not adequate. Also, dbconvert does
not build a character string containing commas.

dbmnymaxneg

196 Open Client

• dbmnyndigit returns the rightmost digit of a DBMONEY value as a
DBCHAR. To get all the digits of a DBMONEY value, call dbmnyndigit
repeatedly. See the dbmnyndigit reference page for more details.

• dbmnyinit is almost always used in conjunction with dbmnyndigit. Used
alone, dbmnyinit can force negative DBMONEY values positive and
divide DBMONEY values by a power of 10, but the real purpose of
dbmnyinit is to prepare a DBMONEY value for calls to dbmnyndigit.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

• The dbmnyndigit reference page contains an example that demonstrates
the use of dbmnyinit.

See also dbconvert, dbmnyndigit

dbmnymaxneg
Description Return the maximum negative DBMONEY value supported.

Syntax RETCODE dbmnymaxneg(dbproc,dest)

DBPROCESS *dbproc;
DBMONEY *dest;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

dest
A pointer to a DBMONEY variable.

Return value SUCCEED or FAIL.

dbmnymaxneg returns FAIL if dest is NULL.

CHAPTER 2 Routines

DB-Library/C Reference Manual 197

Usage • dbmnymaxneg fills *dest with the maximum negative DBMONEY value
supported.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnymaxpos

dbmnymaxpos
Description Return the maximum positive DBMONEY value supported.

Syntax RETCODE dbmnymaxpos(dbproc, dest)

DBPROCESS *dbproc;
DBMONEY *dest;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

dest
A pointer to a DBMONEY variable.

Return value SUCCEED or FAIL.

dbmnymaxpos returns FAIL if dest is NULL.

Usage • dbmnymaxpos fills *dest with the maximum positive DBMONEY value
supported.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnymaxneg

dbmnyminus

198 Open Client

dbmnyminus
Description Negate a DBMONEY value.

Syntax RETCODE dbmnyminus(dbproc, src, dest)

DBPROCESS *dbproc;
DBMONEY *src;
DBMONEY *dest;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

src
A pointer to a DBMONEY value.

dest
A pointer to a DBMONEY variable to hold the result of the negation.

Return value SUCCEED or FAIL.

dbmnyminus returns FAIL in case of overflow, or if src or dest is NULL.

Usage • dbmnyminus negates the src DBMONEY value and places the result into
*dest.

• In case of overflow, dbmnyminus returns FAIL. *dest is undefined in this
case. An attempt to negate the maximum negative DBMONEY value will
result in overflow.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmny4minus, dbmnycopy, dbmny4copy

CHAPTER 2 Routines

DB-Library/C Reference Manual 199

dbmnymul
Description Multiply two DBMONEY values.

Syntax RETCODE dbmnymul(dbproc, m1, m2, product)

DBPROCESS *dbproc;
DBMONEY *m1;
DBMONEY *m2;
DBMONEY *product;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to a DBMONEY value.

m2
A pointer to a DBMONEY value.

product
A pointer to a DBMONEY variable to hold the result of the multiplication.

Return value SUCCEED or FAIL.

dbmnymul returns FAIL in case of overflow, or if m1, m2, or product is NULL.

Usage • dbmnymul multiplies the m1 DBMONEY value by the m2 DBMONEY
value and places the result in *product.

• In case of overflow, dbmnymul returns FAIL and sets *product to $0.0000.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnyadd, dbmnysub, dbmnydivide, dbmnyminus, dbmny4add, dbmny4sub,
dbmny4mul, dbmny4divide, dbmny4minus

dbmnyndigit

200 Open Client

dbmnyndigit
Description Return the rightmost digit of a DBMONEY value as a DBCHAR.

Syntax RETCODE dbmnyndigit(dbproc, mnyptr, value, zero)

DBPROCESS *dbproc;
DBMONEY *mnyptr;
DBCHAR *value;
DBBOOL *zero;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to a DBMONEY value. Each call to dbmnyndigit divides this value
by 10 and places the result back into *mnyptr.

value
A pointer to a DBCHAR variable to fill with the character representation of
the rightmost digit of the DBMONEY value.

zero
A pointer to a DBBOOL variable. Each call to dbmnyndigit divides *mnyptr
by 10 and puts the character representation of the remainder of the division
in *value. If the result of the division is $0.0000, dbmnyndigit sets *zero to
“true”. Otherwise, *zero is set to “false”. If zero is passed as NULL, this
information is not returned.

Return value SUCCEED or FAIL.

dbmnyndigit returns FAIL if mnyptr or value is NULL.

Usage • dbmnyndigit returns the rightmost digit of a DBMONEY value as a
DBCHAR.

• dbmnyndigit divides a DBMONEY value by 10. It places the character
representation of the remainder of the division in *value, and replaces
*mnyptr with the result of the division. If the result of the division is
$0.0000, dbmnyndigit sets *zero to “true”.

CHAPTER 2 Routines

DB-Library/C Reference Manual 201

• To get all the digits of a DBMONEY value, call dbmnydigit repeatedly,
until *zero is “true”.

• dbmnyinit and dbmnyndigit are useful for writing a custom DBMONEY-to-
DBCHAR conversion routine. Such a custom routine might be useful if
the accuracy provided by dbconvert’s DBMONEY-to-DBCHAR
conversion (hundredths of a dollar) is not adequate. Also dbconvert does
not build a character string containing commas.

• dbmnyinit initializes a DBMONEY value for conversion to character. It
eliminates unwanted precision and converts negative values to positive.
See the dbmnyinit reference page.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

• This code fragment demonstrates the use of dbmnyndigit and dbmnyinit:

/*
 ** This example demonstrates dbmnyinit() and
 ** dbmnyndigit(). It is a conversion routine which
 ** converts a DBMONEY value to a character string.
 ** The conversion provided by this routine is unlike
 ** the conversion provided by dbconvert() in that the
 ** resulting character string includes commas. This
 ** conversion provides precision of two digits after
 ** the decimal point.
 **
 ** For simplicity, the example assumes that all
 ** routines succeed and all parameters passed to it
 ** are valid.
 */

 #define PRECISION 2

 RETCODE new_mnytochar(mnyptr, buf_ptr)
 DBMONEY *mnyptr;
 char *buf_ptr;
 {
 DBMONEY local_mny;
 DBBOOL negative;
 int bytes_written;
 DBCHAR value;
 DBBOOL zero;
 int ret;

dbmnyndigit

202 Open Client

 char temp_buf[32];

 /*
 ** Since dbmnyinit() and dbmnyndigit() modify the
 ** DBMONEY value passed to it, and since we do
 ** not want to modify the DBMONEY value passed
 ** to us by the user we need to make a local copy.
 */
 ret = dbmnycopy((DBPROCESS *)NULL, mnyptr,
 &local_mny);
 /* The value of ’ret’ should be checked */

 /*
 ** Next we need to call dbmnyinit().
 **
 ** dbmnyinit() eliminates any unwanted precision
 ** from the DBMONEY value. DBMONEY values are
 ** stored with accuracy to four digits after the
 ** decimal point. For this conversion routine we
 ** only want accuracy to two digits after the
 ** decimal.
 **
 ** Passing a value of 2 for the second parameter
 ** eliminates those two digits of precision we do
 ** not care about.
 **
 ** dbmnyinit() also turns negative DBMONEY values
 ** into positive DBMONEY values. The value of
 ** negative is set to TRUE if dbmnyinit() turns a
 ** negative DBMONEY value into a positive DBMONEY
 ** value.
 **
 ** NOTE: dbmnyinit() eliminates unwanted by
 ** precision by dividing DBMONEY values by a
 ** power of ten. In this conversion routine it
 ** divides by 100. If we pass dbmnyinit() a
 ** DBMONEY value of $1534.1277 the resulting
 ** DBMONEY value is $15.3413.
 */
 negative = FALSE;
 ret = dbmnyinit((DBPROCESS *)NULL, &local_mny,
 4 - PRECISION, &negative);
 /* The value of ’ret’ should be checked */

 /*
 ** dbmnyndigit() extracts the rightmost digit out

CHAPTER 2 Routines

DB-Library/C Reference Manual 203

 ** of the DBMONEY value, converts it to a
 ** character, places the character into the
 ** variable “value”, and then divides the DBMONEY
 ** value by 10. dbmnyndigit() sets ’zero’ to TRUE
 ** if the result of the division is $0.0000.
 **
 ** By calling dbmnyndigit() until ’zero’ is set to
 ** TRUE we will be returned all the digits (from
 ** right to left) of the DBMONEY value.
 */
 zero = FALSE;
 bytes_written = 0;
 while(zero == FALSE)
 {
 ret = dbmnyndigit((DBPROCESS *)NULL,
 &local_mny, &value, &zero);
 /* The value of ’ret’ should be checked. */

 /*
 ** As we are getting the digits, we want to
 ** place the decimal point and commas in the
 ** proper positions ...
 */
 temp_buf[bytes_written++] = value;

 /*
 ** If zero == TRUE we got all the digits. We
 ** do not want to call
 ** check_comma_and_decimal() since we might
 ** put a comma before the leftmost digit.
 */
 if(zero == FALSE)
 {
 /*
 ** As we are getting the digits, we want
 ** to place the decimal point and commas
 ** in the proper positions ...
 */
 check_comma_and_decimal(temp_buf,
 &bytes_written);
 }
 }

 /*
 ** If we haven’t written PRECISION bytes into the
 ** buffer yet, pad with zeros, write the decimal

dbmnyndigit

204 Open Client

 ** point to the buffer, and write a zero after
 ** the decimal point.
 */
 pad_with_zeros(temp_buf, &bytes_written);

 /*
 ** We’ve written the money value into the buffer
 ** backwards. Now we have to write it the right
 ** way.
 */
 reverse_money(buf_ptr, temp_buf, bytes_written,
 negative);

 return(SUCCEED);

 }

 void check_comma_and_decimal(temp_buf,
 bytes_written)
 char *temp_buf;
 int *bytes_written;
 {

 static int comma = 0;
 static DBBOOL after_decimal = FALSE;

 if(after_decimal)
 {
 /*
 ** When comma is 3 it is time to write a
 ** comma. We do not care about commas until
 ** after we’ve written the decimal point.
 */
 comma++;
 }

 /*
 ** After we’ve written PRECISION bytes into the
 ** buffer, it’s time to write the decimal point.
 */
 if(*bytes_written == PRECISION)
 {
 temp_buf[(*bytes_written)++] = ’.’;
 after_decimal = TRUE;
 }

CHAPTER 2 Routines

DB-Library/C Reference Manual 205

 /*
 ** When (comma == 3) that means we’ve written three
 ** digits and it’s time to put a comma into the
 ** buffer.
 */
 if(comma == 3)
 {
 temp_buf[(*bytes_written)++] = ’,’;
 comma = 0; /* clear comma */
 }

 }

 void pad_with_zeros(temp_buf, bytes_written)
 char *temp_buf;
 int *bytes_written;
 {

 /* If we haven’t written PRECISION bytes into the
 ** buffer yet, pad with zeros, write the decimal
 ** point to the buffer, and write a zero after the
 ** decimal point.
 */
 while(*bytes_written < PRECISION)
 {
 temp_buf[(*bytes_written)++] = ’0’;
 }

 if(*bytes_written == PRECISION)
 {
 temp_buf[(*bytes_written)++] = ’.’;
 temp_buf[(*bytes_written)++] = ’0’;
 }

 }

 void reverse_money(char_buf, temp_buf,
 bytes_written, negative)
 char *char_buf;
 char *temp_buf;
 int bytes_written;
 DBBOOL negative;
 {

 int i;

dbmnyscale

206 Open Client

 /*
 ** We’ve written the money value into the buffer
 ** backwards. Now we have to write it the right
 ** way. First check to see if we need to write a
 ** negative sign, then write the dollar sign,
 ** finally write the money value.
 */
 i = 0;
 if(negative == TRUE)
 {
 char_buf[i++] = ’-’;
 }

 char_buf[i++] = ’$’;

 while(bytes_written--)
 {
 char_buf[i++] = temp_buf[bytes_written];
 }
 /* Append null-terminator: */
 char_buf[i] = ’\0’;

 }

See also dbconvert, dbmnyinit

dbmnyscale
Description Multiply a DBMONEY value by a positive integer and add a specified amount.

Syntax RETCODE dbmnyscale(dbproc, mnyptr, multiplier, addend)

DBPROCESS *dbproc;
DBMONEY *mnyptr;
int multiplier;
int addend;

CHAPTER 2 Routines

DB-Library/C Reference Manual 207

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to multiply. *mnyptr will also contain the
result of the dbmnyscale operation.

multiplier
The integer by which *mnyptr will be multiplied. multiplier must be
positive, and must be greater than or equal to 1, and less than or equal to
65535.

addend
An integer representing the number of ten-thousandths of a dollar to add to
*mnyptr after the multiplication.

Return value SUCCEED or FAIL.

dbmnyscale returns FAIL if mnyptr is NULL, if overflow occurs, or if
multiplier is not between 1 and 65535.

Usage • dbmnyscale multiplies a DBMONEY value by a short integer, adds
addend ten-thousandths of a dollar, and places the result back in the
original DBMONEY variable.

• multiplier must be greater than or equal to 1, and less than or equal to
65535.

• In case of overflow, dbmnyscale returns FAIL. *mnyptr is undefined in this
case.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnydown, dbmnymul, dbmny4mul

dbmnysub

208 Open Client

dbmnysub
Description Subtract one DBMONEY value from another.

Syntax RETCODE dbmnysub(dbproc, m1, m2, difference)

DBPROCESS *dbproc;
DBMONEY *m1;
DBMONEY *m2;
DBMONEY *difference;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

m1
A pointer to the DBMONEY value to be subtracted from.

m2
A pointer to the DBMONEY value to subtract.

difference
A pointer to a DBMONEY variable to hold the result of the subtraction.

Return value SUCCEED or FAIL.

dbmnysub returns FAIL in case of overflow, or if m1, m2, or difference is
NULL.

Usage • dbmnysub subtracts the m2 DBMONEY value from the m1 DBMONEY
value and places the result in *difference.

• In case of overflow, dbmnysub returns FAIL and sets difference to $0.0000.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmnyadd, dbmnymul, dbmnydivide, dbmnyminus, dbmny4add, dbmny4sub,
dbmny4mul, dbmny4divide, dbmny4minus

CHAPTER 2 Routines

DB-Library/C Reference Manual 209

dbmnyzero
Description Initialize a DBMONEY value to $0.0000.

Syntax RETCODE dbmnyzero(dbproc, mnyptr)

DBPROCESS *dbproc;
DBMONEY *mnyptr;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

This parameter may be NULL. The DBPROCESS is used as a parameter to
an application’s error handler. It also contains information on what language
to print error messages in. If a DBPROCESS is not supplied, the default
national language is used.

mnyptr
A pointer to the DBMONEY value to initialize.

Return value SUCCEED or FAIL.

dbmnyzero returns FAIL if mnyptr is NULL.

Usage • dbmnyzero initializes a DBMONEY value to $0.0000.

• The range of legal DBMONEY values is between +/-
$922,337,203,685,477.5808. DBMONEY values have a precision of one
ten-thousandth of a dollar.

See also dbmny4zero

dbmonthname
Description Determine the name of a specified month in a specified language.

Syntax char *dbmonthname(dbproc, language, monthnum,
 shortform)

DBPROCESS *dbproc;
char *language;
int monthnum;
DBBOOL shortform;

DBMORECMDS

210 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

language
The name of the desired language.

monthnum
The number of the desired month. Month numbers range from 1 (January)
to 12 (December).

shortform
A Boolean value indicating whether the long or short form of the month
name is desired. If shortform is “true”, dbmonthname returns the short form
of the month name; if shortform is “false”, dbmonthname returns the full
month name. For example, if the month name desired is the U.S. English
short form for January, “Jan” is returned.

Short forms of month names are defined in localization files on a per-
localization-file basis.

Return value The name of the specified month on success; a NULL pointer on error.

Usage • dbmonthname returns the name of the specified month in the specified
language. If no language is specified (language is NULL), dbproc’s
current language is used. If both language and dbproc are NULL, DB-
Library’s default language (if any) is used.

• The following code fragment illustrates the use of dbmonthname:

for (monthnum = 1; monthnum <= 12; monthnum++)
printf("Month %d: %s\n", monthnum,
dbmonthname((DBPROCESS *)NULL,
char *)NULL, monthnum, TRUE),
dbmonthname((DBPROCESS *)NULL,
(char *)NULL, monthnum, FALSE));

See also db12hour, dbdateorder, dbdayname, DBSETLNATLANG, dbsetopt

DBMORECMDS
Description Indicate whether there are more commands to be processed.

CHAPTER 2 Routines

DB-Library/C Reference Manual 211

Syntax RETCODE DBMORECMDS(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL, indicating whether there are more results from the
command batch.

Usage • The application can use this macro to determine whether there are more
results to process.

• DBMORECMDS can be called after dbnextrow returns
NO_MORE_ROWS. If you know that the current command is returning
no rows, you can call DBMORECMDS immediately after dbresults.

• Applications rarely need this routine, because they can simply call
dbresults until it returns NO_MORE_RESULTS.

See also DBCMDROW, dbresults, DBROWS, DBROWTYPE

dbmoretext
Description Send part of a text or image value to the server.

Syntax RETCODE dbmoretext(dbproc, size, text)

DBPROCESS *dbproc;
DBINT size;
BYTE *text;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

size
The size, in bytes, of this particular part of the text or image value being sent
to the server. It is an error to send more text or image bytes to the server than
were specified in the call to dbwritetext.

dbmsghandle

212 Open Client

text
A pointer to the text or image portion to be written.

Return value SUCCEED or FAIL.

Usage • This routine is used in conjunction with dbwritetext to send a large
SYBTEXT or SYBIMAGE value to the server in the form of a number of
smaller chunks. This is particularly useful with operating systems that are
unable to allocate extremely long data buffers.

• dbmoretext and dbwritetext are used in updates only, and serve to replace
the Transact-SQL update statement.

• dbsqlok and dbresults must be called before the first call to dbmoretext and
after the last call to dbmoretext.

• See the dbwritetext reference page.

• The DB-Library/C option DBTEXTSIZE affects the value of the server
@@textsize global variable, which restricts the size of text or image values
that the server returns. @@textsize has a default value of 32,768 bytes. An
application that retrieves text or image values larger than 32,768 bytes will
need to call dbsetopt to make @@textsize larger.

The DB-Library/C option DBTEXTLIMIT limits the size of text or image
values that DB-Library/C will read.

See also dbtxptr, dbtxtimestamp, dbwritetext

dbmsghandle
Description Install a user function to handle server messages.

Syntax int (*dbmsghandle(handler))()

int (*handler)();

Parameters handler
A pointer to the user function that will be called whenever DB-Library
receives an error or informational message from the server. DB-Library calls
this function with eight parameters listed in Table 2-21.

CHAPTER 2 Routines

DB-Library/C Reference Manual 213

Table 2-21: Message handler parameters

The message handler must return a value of 0 to DB-Library.

Message handlers on Windows must be declared with CS_PUBLIC, as
shown in the following example. For portability, callback handlers on other
platforms should be declared CS_PUBLIC as well.

The following example shows a typical message handler routine:

#include <sybfront.h>
#include <sybdb.h>

 int CS_PUBLIC msg_handler(dbproc, msgno, msgstate,
 severity, msgtext, srvname, procname, line)

Parameter Meaning

dbproc The affected DBPROCESS.

msgno The current message’s number (datatype DBINT). These numbers are
documented in the sysmessages table.

msgstate The current message’s error state number (datatype int). These
numbers provide Sybase Technical Support with information about
the context of the error.

severity The current message’s information class or error severity (datatype
int). These numbers are documented in the Adaptive Server
Enterprise documentation.

msgtext The null-terminated text of the current message (datatype char *).

srvname The null-terminated name of the server that generated the message
(datatype char *). A server’s name is stored in the srvname column of
its sysservers system table. It is used in server-to-server
communication; in particular, it is used when one server logs into
another server to perform a remote procedure call. If the server has no
name, srvname will be a length of 0.

procname The null-terminated name of the stored procedure that generated the
message (datatype char *). If the message was not generated by a
stored procedure, procname will be a length of 0.

line The number of the command batch or stored procedure line that
generated the message (datatype int). Line numbers start at 1. The line
number pertains to the nesting level at which the message was
generated. For instance, if a command batch executes stored
procedure A, which then calls stored procedure B, and a message is
generated at line 3 of B, then the value of line is 3.
 line will be 0 if there is no line number associated with the message.
Circumstances that could generate messages without line numbers
include a login error or a remote procedure call (performed using
dbrpcsend) to a stored procedure that does not exist.

dbmsghandle

214 Open Client

 DBPROCESS *dbproc;
 DBINT msgno;
 int msgstate;
 int severity;
 char *msgtext;
 char *srvname;
 char *procname;
 int line;

 {
 printf ("Msg %ld, Level %d, State %d\n",
 msgno, severity, msgstate);
 if (strlen(srvname) > 0)
 printf ("Server ’%s’, ", srvname);
 if (strlen(procname) > 0)
 printf ("Procedure ’%s’, ", procname);
 if (line > 0)
 printf ("Line %d", line);

 printf("\n\t%s\n", msgtext);

 return(0);
 }

Return value A pointer to the previously installed message handler or NULL if no message
handler was installed before.

Usage • dbmsghandle installs a message-handler function that you supply. When
DB-Library receives a server error or informational message, it will call
this message handler immediately. You must install a message handler to
handle server messages properly.

• If an application does not call dbmsghandle to install a message-handler
function, DB-Library ignores server messages. The messages are not
printed.

• If the command buffer contains just a single command and that command
provokes a server message, DB-Library will call the message handler
during dbsqlexec.If the command buffer contains multiple commands (and
the first command in the buffer is ok), a runtime error will not cause
dbsqlexec to fail. Instead, failure will occur with the dbresults call that
processes the command causing the runtime error.

• You can “de-install” an existing message handler by calling dbmsghandle
with a NULL parameter. You can also, at any time, install a new message
handler. The new handler will automatically replace any existing handler.

CHAPTER 2 Routines

DB-Library/C Reference Manual 215

• Refer to the sysmessages table for a list of server messages. In addition,
the Transact-SQL print and raiserror commands generate server messages
that dbmsghandle will catch.

• The routines dbsetuserdata and dbgetuserdata can be particularly useful
when you need to transfer information between the message handler and
the program code that triggered it. See the dbsetuserdata reference page
for an example of how to handle deadlock in this way.

• Another routine, dberrhandle, installs an error handler that DB-Library
calls in response to DB-Library errors.

• If the application provokes messages from DB-Library and the server
simultaneously, DB-Library calls the server message handler before it
calls the DB-Library error handler.

• The DB-Library/C error value SYBESMSG is generated in response to a
server error message, but not in response to a server informational
message. This means that when a server error occurs, both the server
message handler and the DB-Library/C error handler are called, but when
the server generates an informational message, only the server message
handler is called.

If you have installed a server message handler, you may want to write your
DB-Library error handler so as to suppress the printing of any
SYBESMSG error, to avoid notifying the user about the same error twice.

• Table 2-22 provides information on when DB-Library/C calls an
application’s message and error handlers.

dbname

216 Open Client

Table 2-22: When DB-Library calls message and error handlers

See also dberrhandle, dbgetuserdata, dbsetuserdata

dbname
Description Return the name of the current database.

Error or message
Message
handler called? Error handler called?

SQL syntax error Yes Yes (SYBESMSG).
 (Code the handler to
ignore the message.)

SQL print statement Yes No.

SQL raiserror Yes No.

Server dies No Yes (SYBESEOF).
(Code your handler to
exit the application.)

Timeout from the server No Yes (SYBETIME).
(To wait for another
timeout period, code your
handler to return -
INT_CONTINUE.)

Deadlock on query Yes No.
(Code your handler to test
for deadlock.)

Timeout on login No Yes (SYBEFCON).

Login fails (dbopen) Yes Yes (SYBEPWD).
(Code your handler to
exit the application.)

Use database message Yes
(Code the handler
to ignore the
message.)

No.

Incorrect use of DB-Library/C
calls, such as not calling dbresults
when required

No Yes (SYBERPND).

Fatal Server error (severity greater
than 16)

Yes Yes (SYBESMSG).

CHAPTER 2 Routines

DB-Library/C Reference Manual 217

Syntax char *dbname(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value A pointer to the null-terminated name of the current database.

Usage • dbname returns the name of the current database.

• If you need to keep track of when the database changes, use dbchange.

See also dbchange, dbuse

dbnextrow
Description Read the next result row into the row buffer and into any program variables that

are bound to column data.

Syntax STATUS dbnextrow(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value dbnextrow returns:

• REG_ROW if a regular row has been read. A regular row is any row that
matches the query’s where clause.

• A computeid if a compute row was read. A compute row is a row that is
generated by a compute clause. The computeid matches the number of the
compute row that was read; the first compute row is 1, the second is 2, and
so forth. A computeid cannot match any other of the return types for this
function.

dbnextrow

218 Open Client

• BUF_FULL is returned if buffering is turned on and reading the next row
would cause the buffer to be exceeded. In this case, no row will have been
read. To read any more rows, at least one row must first be pruned from
the top of the row buffer by calling dbclrbuf.

• NO_MORE_ROWS if the last row in the result set has been read. If the
query did not generate rows (for example, an update or insert, or a select
with no match), then the first call to dbnextrow will return
NO_MORE_ROWS. Also, dbnextrow returns this value if the query failed
or if there are no pending results.

• FAIL if an abnormal event, such as a network or out-of-memory error,
prevented the routine from completing successfully.

Usage • dbnextrow reads the next row of result data, starting with the first row
returned from the server. Ordinarily, the next result row is read directly
from the server. If the DBBUFFER option is turned on and rows have been
read out of order by calling dbgetrow, the next row is read instead from a
linked list of buffered rows. When dbnextrow is called, any binding of row
data to program variables (as specified with dbbind or dbaltbind) takes
effect.

• If program variables are bound to columns, then new values will be written
into the bound variables before dbnextrow returns.

• In regular rows, column values can be retrieved with dbdata or bound to
program variables with dbbind. In compute rows, column values can be
retrieved with dbadata or bound to program variables with dbaltbind.

• dbresults must return SUCCEED before an application can call dbnextrow.
To determine whether a particular command is one that returns rows and
needs results processing with dbnextrow, call DBROWS after dbresults.

• After calling dbresults, an application can either call dbcanquery or
dbcancel to cancel the current set of results, or call dbnextrow in a loop to
process the results row-by-row.

• If it chooses to process the results, an application can either:

• Process all result rows by calling dbnextrow in a loop until it returns
NO_MORE_ROWS. After NO_MORE_ROWS is returned, the
application can call dbresults again to set up the next result set (if any)
for processing.

• Process some result rows by calling dbnextrow, and then cancel the
remaining result rows by calling dbcancel (to cancel all results from
the command batch or RPC call) or dbcanquery (to cancel only the
results associated with the last dbresults call).

CHAPTER 2 Routines

DB-Library/C Reference Manual 219

An application must either cancel or process all result rows.

• The typical sequence of calls is:

DBINT xvariable;
 DBCHAR yvariable[10];

 /* Read the query into the command buffer */
 dbcmd(dbproc, "select x = 100, y = ’hello’");

 /* Send the query to Adaptive Server Enterprise */
 dbsqlexec(dbproc);

 /* Get ready to process the query results */
 dbresults(dbproc);

 /* Bind column data to program variables */
 dbbind(dbproc, 1, INTBIND, (DBINT) 0,
 (BYTE *) &xvariable);
 dbbind(dbproc, 2, STRINGBIND, (DBINT) 0,
 yvariable);

 /* Now process each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 C-code to print or process row data
 }

• The server can return two types of rows: regular rows containing data from
columns designated by a select statement’s select list, and compute rows
resulting from the compute clause. To facilitate the processing of result
rows from the server, dbnextrow returns different values according to the
type of row. See the “Returns” section in this reference page for details.

• To display server result data on the default output device, you can use
dbprrow instead of dbnextrow.

See also dbaltbind, dbbind, dbcanquery, dbclrbuf, dbgetrow, dbprrow, dbsetrow,
Options on page 407

dbnpcreate
Description Create a notification procedure.

dbnpcreate

220 Open Client

Syntax RETCODE dbnpcreate(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

Return value SUCCEED or FAIL.

Usage • dbnpcreate creates a notification procedure. A notification procedure is a
special type of Open Server registered procedure. A notification procedure
differs from a normal Open Server registered procedure in that it contains
no executable statements. Notification procedures are the only type of
Open Server registered procedure that a DB-Library/C application can
create.

• The notification procedure name and its parameters must have been
previously defined using dbnpdefine and dbregparam.

• To create a notification procedure, a DB-Library/C application must:

• Define the procedure using dbnpdefine

• Describe the procedure’s parameters, if any, using dbregparam

• Create the procedure using dbnpcreate

• All DB-Library/C routines that apply to registered procedures apply to
notification procedures as well. For example, dbregexec executes a
registered procedure, which may or may not be a notification procedure.
Likewise, dbreglist lists all registered procedures currently defined in
Open Server, some of which may be notification procedures.

• Like other registered procedures, notification procedures are useful for
inter-application communication and synchronization, because
applications can request to be advised when a notification procedure
executes.

• Notification procedures may be created only in Open Server. At this time,
Adaptive Server Enterprise does not support notification procedures.

• A DB-Library/C application requests to be notified of a registered
procedure’s execution using dbregwatch. The application may request to
be notified either synchronously or asynchronously.

• This is an example of creating a notification procedure:

CHAPTER 2 Routines

DB-Library/C Reference Manual 221

DBPROCESS *dbproc;
 DBINT status;

 /*
 ** Let’s create a notification procedure called
 ** “message” which has two parameters:
 ** msg varchar(255)
 ** user idint
 */

 /*
 ** Define the name of the notification procedure
 ** "message"
 */
 dbnpdefine (dbproc, "message", DBNULLTERM);

 /*
 ** The notification procedure has two parameters:
 ** msg varchar(255)
 ** user idint
 ** So, define these parameters. Note that
 ** neither of the parameters is defined with a
 ** default value.
 */
 dbregparam (dbproc, "msg", SYBVARCHAR,
 DBNODEFAULT, NULL);
 dbregparam (dbproc, "userid", SYBINT4,
 DBNODEFAULT, 4);

 /* Create the notification procedure: */
 status = dbnpcreate (dbproc);
 if (status == FAIL)
 {
 fprintf(stderr, "ERROR: Failed to create \
 message!\n");
 }
 else
 {
 fprintf(stdout, "Success in creating \
 message!\n");
 }

See also dbreginit, dbregparam, dbregwatch, dbregnowatch

dbnpdefine

222 Open Client

dbnpdefine
Description Define a notification procedure.

Syntax RETCODE dbnpdefine(dbproc, procedure_name, namelen)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the notification procedure being defined.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

Return value SUCCEED or FAIL.

Usage • dbnpdefine defines a notification procedure. Defining a notification
procedure is the first step in creating it.

• A notification procedure is a special type of Open Server registered
procedure. A notification procedure differs from a normal Open Server
registered procedure in that it contains no executable statements.
Notification procedures are the only type of Open Server registered
procedure that a DB-Library/C application can create.

• To create a notification procedure, a DB-Library/C application must:

• Define the procedure using dbnpdefine

• Describe the procedure’s parameters, if any, using dbregparam

• Create the procedure using dbnpcreate

• All DB-Library/C routines that apply to registered procedures apply to
notification procedures as well. For example, dbregexec executes a
registered procedure, which may or may not be a notification procedure.
Likewise, dbreglist lists all registered procedures currently defined in
Open Server, some of which may be notification procedures.

• This is an example of defining a notification procedure:

DBPROCESS *dbproc;

CHAPTER 2 Routines

DB-Library/C Reference Manual 223

 DBINT status;

 /*
 ** Let’s create a notification procedure called
 ** "message" which has two parameters:
 ** msg varchar(255)
 ** userid int
 */

 /*
 ** Define the name of the notification procedure
 ** "message"
 */
 dbnpdefine (dbproc, "message", DBNULLTERM);

 /* The notification procedure has two parameters:
 ** msg varchar(255)
 ** userid int
 ** So, define these parameters. Note that
 ** neither of the parameters is defined with a
 ** default value.
 */
 dbregparam (dbproc, "msg", SYBVARCHAR,
 DBNODEFAULT, NULL);
 dbregparam (dbproc, "userid", SYBINT4,
 DBNODEFAULT, 4);

/* Create the notification procedure: */
 status = dbnpcreate (dbproc);
 if (status == FAIL)
 {
 fprintf(stderr, "ERROR: Failed to create \
 message!\n");
 }
 else
 {
 fprintf(stdout, "Success in creating \
 message!\n");
 }

See also dbregparam, dbnpcreate, dbreglist

dbnullbind

224 Open Client

dbnullbind
Description Associate an indicator variable with a regular result row column.

Syntax RETCODE dbnullbind(dbproc, column, indicator)

DBPROCESS *dbproc;
int column;
DBINT *indicator;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the column that is to be associated with the indicator
variable.

indicator
A pointer to the indicator variable.

Return value SUCCEED or FAIL.

dbnullbind returns FAIL if column is invalid.

Usage • dbnullbind associates a regular result row column with an indicator
variable. The indicator variable indicates whether a particular regular
result row’s column has been converted and copied to a program variable
successfully or unsuccessfully, or whether it is null.

• The indicator variable is set when regular result rows are processed using
dbnextrow. The possible values are:

• -1 if the column is NULL.

• The full length of column’s data, in bytes, if column was bound to a
program variable using dbbind, the binding did not specify any data
conversions, and the bound data was truncated because the program
variable was too small to hold column’s data.

• 0 if column was bound and copied successfully to a program variable.

Note Detection of character string truncation is implemented only for
CHARBIND and VARYCHARBIND.

See also dbanullbind, dbbind, dbdata, dbdatlen, dbnextrow

CHAPTER 2 Routines

DB-Library/C Reference Manual 225

dbnumalts
Description Return the number of columns in a compute row.

Syntax int dbnumalts(dbproc, computeid)

DBPROCESS *dbproc;
int computeid;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

computeid
The ID that identifies the particular compute row of interest. A SQL select
statement may have multiple compute clauses, each of which returns a
separate compute row. The computeid corresponding to the first compute
clause in a select is 1. The computeid is returned by dbnextrow or dbgetrow.

Return value The number of columns for the particular computeid. dbnumalts returns -1 if
computeid is invalid.

Usage dbnumalts returns the number of columns in a compute row. The application
can call this routine after dbresults returns SUCCEED. For example, in the
following SQL statement the call dbnumalts(dbproc, 1) returns 3:

select dept, year, sales from employee
order by dept, year
compute avg(sales), min(sales),
max(sales) by dept

See also dbadata, dbadlen, dbaltlen, dbalttype, dbgetrow, dbnextrow, dbnumcols

dbnumcols
Description Determine the number of regular columns for the current set of results.

Syntax int dbnumcols(dbproc)

DBPROCESS *dbproc;

dbnumcols

226 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of columns in the current set of results. If there are no columns,
dbnumcols returns 0.

Usage • dbnumcols returns the number of regular (that is, non-compute) columns
in the current set of results.

• Here is a program fragment that illustrates the use of dbnumcols:

int column_count;
 DBPROCESS *dbproc;

 /* Put the commands into the command buffer */
 dbcmd(dbproc, "select name, id, type from \
 sysobjects");
 dbcmd(dbproc, " select name from sysobjects");

 /*
 ** Send the commands to Adaptive Server Enterprise
and start
 ** execution
 */
 dbsqlexec(dbproc);

 /* Process each command until there are no more */
 while (dbresults(dbproc) != NO_MORE_RESULTS)
 {
 column_count = dbnumcols(dbproc);
 printf("%d columns in this Adaptive Server
Enterprise \
 result.\n", column_count);
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 printf("row received.\n");
 }

See also dbcollen, dbcolname, dbnumalts

CHAPTER 2 Routines

DB-Library/C Reference Manual 227

dbnumcompute
Description Return the number of compute clauses in the current set of results.

Syntax int dbnumcompute(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of compute clauses in the current set of results.

Usage This routine returns the number of compute clauses in the current set of results.
The application can call it after dbresults returns SUCCEED. For example, in
the SQL statement, the call dbnumcompute(dbproc) will return 2 since there are
two compute clauses in the select statement:

select dept, name from employee
order by dept, name
compute count(name) by dept
compute count(name)

See also dbnumalts, dbresults

DBNUMORDERS
Description Return the number of columns specified in a Transact-SQL select statement’s

order by clause.

Syntax int DBNUMORDERS(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of order by columns. If there is no order by clause, this routine
returns 0. If there is an error, it returns -1.

dbnumrets

228 Open Client

Usage Once a select statement has been executed and dbresults has been called to
process it, the application can call DBNUMORDERS to find out how many
columns were specified in the statement’s order by clause.

See also dbordercol

dbnumrets
Description Determine the number of return parameter values generated by a stored

procedure.

Syntax int dbnumrets(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of return parameter values associated with the most recently-
executed stored procedure.

Usage • dbnumrets provides the number of return parameter values returned by the
most recent execute statement or remote procedure call on a stored
procedure. If the number returned by dbnumrets is less than or equal to 0,
then no return parameters are available.

• Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of a return parameter inside the
stored procedure are then available to the program that called the
procedure. This is analogous to the “pass by reference” facility available
in some programming languages.

• For a parameter to function as a return parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as a return parameter. In the case of a remote
procedure call, it is the dbrpcparam routine that specifies whether a
parameter is a return parameter.

CHAPTER 2 Routines

DB-Library/C Reference Manual 229

• When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbnumrets only after processing the stored procedure’s
results by calling dbresults, as well as dbnextrow if appropriate. (Note that
a stored procedure can generate several sets of results—one for each select
it contains. Before the application can call dbnumrets or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.

• If the stored procedure is invoked with a remote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure is invoked with an execute statement, the
return parameter values are available only if the command batch
containing the execute statement uses local variables, not constants, for the
return parameters. For more details on return parameters from stored
procedures, see the Adaptive Server Enterprise Reference Manual.

• Other routines are used to retrieve return parameter values:

• dbretdata returns a pointer to a parameter value.

• dbretlen returns the length of a parameter value.

• dbretname returns the name of a parameter value.

• dbrettype returns the datatype of a parameter value.

• dbconvert can be called to convert the value, if necessary.

For an example of how these routines can be used together with dbnumrets,
see the reference page for dbretdata.

See also dbnextrow, dbresults, dbretdata, dbretlen, dbretname, dbrettype, dbrpcinit,
dbrpcparam

dbopen
Description Create and initialize a DBPROCESS structure.

Syntax DBPROCESS *dbopen(login, server)

LOGINREC *login;
char *server;

dbopen

230 Open Client

Parameters login
A pointer to a LOGINREC structure. This pointer will be passed as an
argument to dbopen. You can get one by calling dblogin.

Once the application has made all its dbopen calls, the LOGINREC structure
is no longer necessary. The program can then call dbloginfree to free the
LOGINREC structure.

server
The server that you want to connect to. server is the alias given to the server
in the interfaces file. dbopen looks up server in the interfaces file to get
information for connecting to a server.

If server is NULL dbopen looks up the interfaces entry that corresponds to
the value of the DSQUERY environment variable or logical name. If
DSQUERY has not been explicitly set, it has a value of “SYBASE”. (For
information on designating an interfaces file, see the reference page for
dbsetifile. See the Open Client and Open Server Configuration Guide.

Note On non-UNIX platforms, client applications may use a method to find
server address information that is different than the UNIX interfaces file.
Consult your Open Client and Open Server Configuration Guide for detailed
information on how clients connect to servers.

Return value A DBPROCESS pointer if everything went well. Ordinarily, dbopen returns
NULL if a DBPROCESS structure could not be created or initialized, or if your
login to the server failed. When dbopen returns NULL, it generates a DB-
Library error number that indicates the error. The application can access this
error number through an error handler. However, if there is an unexpected
communications failure during the server login process and an error handler
has not been installed, the program will be aborted.

Usage • This routine allocates and initializes a DBPROCESS structure. This
structure is the basic data structure that DB-Library uses to communicate
with a server. It is the first argument in almost every DB-Library call.
Besides allocating the DBPROCESS structure, this routine sets up
communication with the network, logs into the server, and initializes any
default options.

• Here is a program fragment that uses dbopen:

DBPROCESS *dbproc;
 LOGINREC *loginrec;

 loginrec = dblogin();

CHAPTER 2 Routines

DB-Library/C Reference Manual 231

 DBSETLPWD(loginrec, "server_password");
 DBSETLAPP(loginrec, "my_program");
 dbproc = dbopen(loginrec, "my_server");

• Once the application has logged into a server, it can change databases by
calling the dbuse routine.

Multiple query entries in an interfaces file

• It is possible to set up an interfaces file so that if dbopen fails to establish
a connection with a server, it attempts to establish a connection with an
alternate server.

• An application can use the dbopen call to connect to the server MARS:

dbopen(loginrec, MARS);

An interfaces file containing an entry for MARS might look like this:

 MARS
 query tcp hp-ether violet 1025
 master tcp hp-ether violet 1025
 console tcp hp-ether violet 1026
 #
 VENUS
 query tcp hp-ether plum 1050
 master tcp hp-ether plum 1050
 console tcp hp-ether plum 1051
 #
 NEPTUNE
 query tcp hp-ether mauve 1060
 master tcp hp-ether mauve 1060
 console tcp hp-ether mauve 1061

• The application is directed to port number 1025 on the machine “violet”.
If MARS is not available, the dbopen call fails. If the interfaces file has
multiple query entries in it for MARS, however, and the first connection
attempt fails, dbopen will automatically attempt to connect to the next
server listed. Such an interfaces file might look like this:

 MARS
 query tcp hp-ether violet 1025
 query tcp hp-ether plum 1050
 query tcp hp-ether mauve 1060
 master tcp hp-ether violet 1025
 console tcp hp-ether violet 1026

dbopen

232 Open Client

 #
 VENUS
 query tcp hp-ether plum 1050
 master tcp hp-ether plum 1050
 console tcp hp-ether plum 1051
 #
 NEPTUNE
 query tcp hp-ether mauve 1060
 master tcp hp-ether mauve 1060
 console tcp hp-ether mauve 1061

• Note that the second query entry under MARS is identical to the query
entry under VENUS, and that the third query entry is identical to the query
entry under NEPTUNE. If this interfaces file is used and the application
fails to connect with MARS, it will automatically attempt to connect with
VENUS. If it fails to connect with VENUS, it will automatically attempt
to connect with NEPTUNE. There is no limit on the number of alternate
servers that may be listed under a server’s interfaces file entry, but each
alternate server must be listed in the same interfaces file. You can add two
numbers after the server’s name in the interfaces file:

 MARS retries seconds
 query tcp hp-ether violet 1025
 query tcp hp-ether plum 1050
 query tcp hp-ether mauve 1060
 master tcp hp-ether violet 1025
 console tcp hp-ether violet 1026

retries represents the number of additional times to loop through the list of
query entries if no connection is achieved during the first pass. seconds
represents the amount of time, in seconds, that dbopen will wait at the top
of the loop before going through the list again. These numbers are
optional. If they are not included, dbopen will try to connect to each query
entry only once. Looping through the list and pausing between loops is
useful in case any of the candidate servers is in the process of booting.
Multiple query lines can be particularly useful when alternate servers
contain mirrored copies of the primary server’s databases.

Errors

The dbopen call will return NULL if any of the following errors occur. These
errors can be trapped in the application’s error handler (installed with
dberrhandle.)

CHAPTER 2 Routines

DB-Library/C Reference Manual 233

If dbopen is called in the entry functions of a DLL, a deadlock can arise. dbopen
creates operating system threads and tries to synchronize them using system
utilities. This synchronization conflicts with the operating system’s
serialization process.

Note The use of SIGALARM in a DB-Library application can cause dbopen
to fail.

See also dbclose, dbexit, dbinit, dblogin, dbloginfree, dbsetifile, dbuse

dbordercol
Description Return the id of a column appearing in the most recently executed query’s order

by clause.

Syntax int dbordercol(dbproc, order)

DBPROCESS *dbproc;
int order;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

SYBEMEM Unable to allocate sufficient memory.

SYBEDBPS Maximum number of DBPROCESSes already allocated.

Note that an application can set or retrieve the maximum number
of DBPROCESS structures with dbsetmaxprocs and
dbgetmaxprocs.

SYBESOCK Unable to open socket.

SYBEINTF Server name not found in interfaces file.

SYBEUHST Unknown host machine name.

SYBECONN Unable to connect: Adaptive Server Enterprise is unavailable or
does not exist.

SYBEPWD Login incorrect.

SYBEOPIN Could not open interfaces file.

dbpoll

234 Open Client

order
The id that identifies the particular order by column of interest. The first
column named within the order by clause is number 1.

Return value The column id (based on the column’s position in the select list) for the column
in the specified place in the order by clause. If the order is invalid, dbordercol
returns -1.

Usage This routine returns the id of the column that appears in a specified location
within the order by clause of a SQL select command.

For example, in given the SQL statement, the call dbordercol(dbproc, 1) will
return 3 since the first column named in the order by clause refers to the third
column in the query’s select list:

select dept, name, salary from employee
order by salary, name

See also DBNUMORDERS

dbpoll
Description Verifies that a server response has arrived for a DBPROCESS.

Syntax RETCODE dbpoll(dbproc, milliseconds, ready_dbproc,
 return_reason)

DBPROCESS *dbproc;
long milliseconds;
DBPROCESS **ready_dbproc;
int *return_reason;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and server.

dbproc represents the DBPROCESS connection that dbpoll will check.

If dbproc is passed as NULL, dbpoll will check all open DBPROCESS
connections to see if a response has arrived for any of them.

CHAPTER 2 Routines

DB-Library/C Reference Manual 235

milliseconds
The maximum number of milliseconds that dbpoll should wait for a response
before returning.

If milliseconds is passed as 0, dbpoll returns immediately.

If milliseconds is passed as -1, dbpoll will not return until either a server
response arrives or a system interrupt occurs.

ready_dbproc
A pointer to a pointer to a DBPROCESS structure. dbpoll sets
*ready_dbproc to point to the DBPROCESS for which the server response
has arrived. If no response has arrived, dbpoll sets *ready_dbproc to NULL.

Note ready_dbproc is not a DBPROCESS pointer. It is a pointer to a
DBPROCESS pointer.

return_reason
A pointer to an integer representing the reason dbpoll has returned. The
integer will be one of the following symbolic values:

Note This list may expand in the future, as more kinds of server responses are
recognized by DB-Library/C. It is recommended that application programs be
coded to handle unexpected values in return_reason without error.

Return value SUCCEED or FAIL.

DBRESULT A response to a server command has arrived. The application
may call dbsqlok (assuming that dbsqlsend has been called)
to examine the server’s response.

DBNOTIFICATION A registered procedure notification has arrived. If a handler
for this registered procedure has been installed using
dbreghandle, dbpoll invokes this handler before it returns. If
a handler for the registered procedure has not been installed
and there is no default handler installed for this
DBPROCESS, DB-Library raises an error when it reads the
notification.

DBTIMEOUT The time indicated by the milliseconds parameter elapsed
before any server response arrived.

DBINTERRUPT An operating-system interrupt occurred before any server
response arrived and before the timeout period elapsed.

dbpoll

236 Open Client

dbpoll returns FAIL if any of the server connections it checks has died. If dbpoll
returns FAIL, ready_dbproc and return_reason are undefined.

Usage • dbpoll checks the TDS (Tabular Data Stream) buffer to see if it contains
any server response not yet read by an application.

• dbproc represents the DBPROCESS connection that dbpoll will check. If
dbproc is passed as NULL, dbpoll examines all open connections and
returns as soon as it finds one that has an unread server response.

• If there is an unread response, dbpoll sets *ready_dbproc and
return_reason to reflect which DBPROCESS connection the response is
for and what the response is.

• Note that ready_dbproc is not a pointer to a DBPROCESS structure. It is
a pointer to the address of a DBPROCESS. dbpoll sets *ready_dbproc to
point to the DBPROCESS for which the server response has arrived. If no
server response has arrived, dbpoll sets *ready_dbproc to NULL.

• dbpoll can be used for two purposes:

• To allow an application to implement non-blocking reads (calls to
dbsqlok) from the server

• To check if a registered procedure notification has arrived for a
DBPROCESS

Using dbpoll for non-blocking reads

• dbpoll can be used to check whether bytes are available for dbsqlok to read.

• Depending on the nature of an application, the time between the moment
when a command is sent to the server (made using dbsqlsend or
dbrpcsend) and the server’s response (initially read with dbsqlok) may be
significant.

CHAPTER 2 Routines

DB-Library/C Reference Manual 237

• During this time, the server is processing the command and building the
result data. An application may use this time to perform other duties.
When ready, the application can call dbpoll to check if a server response
arrived while it was busy elsewhere. For an example of this usage, see the
reference page for dbsqlok.

Note On occasion dbpoll may report that data is ready for dbsqlok to read
when only the first bytes of the server response are present. When this
occurs, dbsqlok waits for the rest of the response or until the timeout period
has elapsed, just like dbsqlexec. In practice, however, the entire response
is usually available at one time.

• dbpoll should not be used with dbresults or dbnextrow. dbpoll cannot
determine if calls to these routines will block. This is because dbpoll works
by checking whether or not bytes are available on a DBPROCESS
connection, and these two routines do not always read from the network.

• If all of the results from a command have been read, dbresults returns
NO_MORE_RESULTS. In this case, dbresults does not block even if
no bytes are available to be read.

• If all of the rows for a result set have been read, dbnextrow returns
NO_MORE_ROWS. In this case, dbnextrow does not block even if no
bytes are available to be read.

• For non-blocking reads, alternatives to dbpoll are DBRBUF and
DBIORDESC. These routines are specific to the UNIX-specific platform.
They are not portable, so their use should be avoided whenever possible.
They do, however, provide a way for application programs to integrate
handling of DB-Library/C sockets with other sockets being used by an
application.

• DBRBUF is a UNIX-specific routine. It checks an internal DB-Library
network buffer to see if a server response has already been read. dbpoll
checks one or all connections used by an application’s
DBPROCESSes, to see if a response is ready to be read.

• DBIORDESC, another UNIX-specific routine, is similar in function to
dbpoll. DBIORDESC provides the socket handle used for network
reads by the DBPROCESS. The socket handle can be used with the
UNIX select function.

Using dbpoll for registered procedure notifications

dbpoll

238 Open Client

• An application may have one or more DBPROCESS connections waiting
for registered procedure notifications. A DBPROCESS connection will
not be aware that a registered procedure notification has arrived unless it
reads results from the server. If a connection is not reading results, it can
use dbpoll to check if a registered procedure notification has arrived. If so,
dbpoll reads the registered procedure notification stream and calls the
handler for that registered procedure.

• Here is a code fragment that uses dbpoll to poll for a registered procedure
notification:

/*
 ** This code fragment illustrates the use of
 ** dbpoll() to processan event notification.
 **
 ** The code fragment will ask the Server to
 ** notify the Client when the event "shutdown"
 ** occurs. When the event notification is
 ** received from the Server, DB-Library will call
 ** the handler installed for that event. This
 ** event handler routine can then access the
 ** event’s parameters, and take any appropriate
 ** action.
 */

DBINT handlerfunc();
 DBINT ret;

/* First install the handler for this event */
 dbreghandle(dbproc, "shutdown", handlerfunc);

/*
 ** Now make the asynchronous notification
 ** request.
 */
 ret = dbregwatch(dbproc, "shutdown", DBNULLTERM,
 DBNOWAITONE);
 if (ret == FAIL)
 {
 fprintf(stderr, "ERROR: dbregwatch() \
 failed!!\n");
 }
 else if (ret == DBNOPROC)
 {
 fprintf(stderr, "ERROR: procedure shutdown \
 not defined!\n");

CHAPTER 2 Routines

DB-Library/C Reference Manual 239

 }

/*
 ** Since we are making use of the asynchronous
 ** event notification mechanism, the application
 ** can continue doing other work. All we have to
 ** do is call dbpoll() once in a while, to deal
 ** with the event notification when it arrives.
 */
 while (1)
 {
 /* Have dbpoll() block for one second */
 dbpoll(NULL, 1000, NULL, &ret);

 /*
 ** If we got the event, then get out of this
 ** loop.
 */
 if (ret == DBNOTIFICATION)
 {
 break;
 }
 /* Deal with our other tasks here */
 }

See also DBIORDESC, DBRBUF, dbresults, dbreghandle, dbsqlok

dbprhead
Description Print the column headings for rows returned from the server.

Syntax void dbprhead(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value None.

Usage • This routine displays, on the default output device and in a default format,
the column headings for a set of query results. The format is compatible
with the format used by dbprrow.

dbprrow

240 Open Client

• The application can call dbprhead once dbresults returns SUCCEED.

• You can specify the maximum number of characters to be placed on one
line through the DB-Library option DBPRLINELEN.

• This routine is useful for debugging.

• The routines dbsprhead, dbsprline, and dbspr1row provide an alternative to
dbprhead and dbprrow. These routines print the formatted row results into
a caller-supplied character buffer.

See also dbbind, dbnextrow, dbprrow, dbresults, dbspr1row, dbsprhead, dbsprline

dbprrow
Description Print all the rows returned from the server.

Syntax RETCODE dbprrow(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL.

Usage • This routine displays, on the default output device and in a default format,
the rows for a set of query results. This routine reads and prints all the
rows. It saves the trouble of calling routines such as dbbind and dbnextrow,
but it prints only in a single, predetermined format.

• The application can call dbprrow once dbresults returns SUCCEED.

• When using this routine, you do not need to call dbnextrow to loop through
the rows.

• You can specify the maximum number of characters to be placed on one
line through the DB-Library option DBPRLINELEN.

• dbprrow is useful primarily for debugging.

• If row buffering is turned on, dbprrow buffers rows in addition to printing
them out. If the buffer is full, the oldest rows are removed as necessary.

CHAPTER 2 Routines

DB-Library/C Reference Manual 241

• The routines dbsprhead, dbsprline, and dbspr1row provide an alternative to
dbprhead and dbprrow. These routines print the formatted row results into
a caller-supplied character buffer.

See also dbbind, dbnextrow, dbprhead, dbresults, dbspr1row, dbsprhead, dbsprline

dbprtype
Description Convert a token value to a readable string.

Syntax char *dbprtype(token)
int token;

Parameters token
The server token value (SYBCHAR, SYBFLT8, and so on) returned by
dbcoltype, dbalttype, dbrettype, or dbaltop.

Return value A pointer to a null-terminated string that is the readable translation of the token
value. The pointer points to space that is never overwritten, so it is safe to call
this routine more than once in the same statement. If the token value is
unknown, the routine returns a pointer to an empty string.

Usage • Certain routines—dbcoltype, dbalttype, dbrettype, and dbaltop—return
token values representing server datatypes or aggregate operators.
dbprtype provides a readable string version of a token value.

• For example, dbprtype will take a dbcoltype token value representing the
server binary datatype (SYBBINARY) and return the string “binary.”

• Table 2-23 provides a list of the token strings that dbprtype can return and
their token value equivalents.

dbqual

242 Open Client

Table 2-23: Token values and their string equivalents

See also dbaltop, dbalttype, dbcoltype, dbrettype, Types on page 412

dbqual
Description Return a pointer to a where clause suitable for use in updating the current row

in a browsable table.

Syntax char *dbqual(dbproc, tabnum, tabname)

DBPROCESS *dbproc;
int tabnum;
char *tabname;

Token string Token value Description

char SYBCHAR char datatype

text SYBTEXT text datatype

binary SYBBINARY binary datatype

image SYBIMAGE image datatype

tinyint SYBINT1 1-byte integer datatype

smallint SYBINT2 2-byte integer datatype

int SYBINT4 4-byte integer datatype

float SYBFLT8 8-byte float datatype

real SYBREAL 4-byte float datatype

numeric SYBNUMERIC numeric type

decimal SYBDECIMAL decimal type

bit SYBBIT bit datatype

money SYBMONEY money datatype

smallmoney SYBMONEY4 4-byte money datatype

datetime SYBDATETIME datetime datatype

smalldatetime SYBDATETIME4 4-byte datetime datatype

boundary SYBBOUNDARY boundary type

sensitivity SYBSENSITIVITY sensitivity type

sum SYBAOPSUM sum aggregate operator

avg SYBAOPAVG average aggregate operator

count SYBAOPCNT count aggregate operator

min SYBAOPMIN minimum aggregate operator

max SYBAOPMAX maximum aggregate operator

CHAPTER 2 Routines

DB-Library/C Reference Manual 243

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

tabnum
The number of the table of interest, as specified in the select statement’s from
clause. Table numbers start at 1. If tabnum is -1, the tabname parameter will
be used to identify the table.

tabname
A pointer to the null-terminated name of a table specified in the select
statement’s from clause. tabname is ignored unless tabnum is passed as -1.

Return value A pointer to a null-terminated where clause for the current row in the specified
table. This buffer is dynamically allocated, and it is the application’s
responsibility to free it using dbfreequal.

dbqual will return a NULL pointer if the specified table is not browsable. For a
table to be “browsable,” it must have a unique index and a timestamp column.

dbqual will also return a NULL pointer if the preceding select did not include
the for browse option.

Usage • dbqual is one of the DB-Library browse mode routines. See “Browse
mode” on page 26 for a detailed discussion of browse mode.

• dbqual provides a where clause that the application can use to update a
single row in a browsable table. Columns from this row must have
previously been retrieved into the application through a browse-mode
select query (that is, a select that ends with the key words for browse).

The where clause produced by dbqual begins with the keyword where and
contains references to the row’s unique index and timestamp column. The
application simply appends the where clause to an update or delete
statement; it does not need to examine it or manipulate it in any way.

The timestamp column indicates the time that the particular row was last
updated. An update on a browsable table fails if the timestamp column in
the dbqual-generated where clause is different from the timestamp column
in the table. Such a condition, which provokes Adaptive Server Enterprise
error message 532, indicates that another user updated the row between the
time this application selected it for browsing and the time it tried to update
it. The application itself must provide the logic for handling the update
failure. The following program fragment illustrates one approach:

 /* This code fragment illustrates a technique for

dbqual

244 Open Client

 ** handling the case where a browse-mode update fails
 ** because the row has already been updated
 ** by another user. In this example, we simply retrieve
 ** the entire row again, allow the user to examine and
 ** modify it, and try the update again.
 **
 ** Note that "q_dbproc" is the DBPROCESS used to query
 ** the database, and "u_dbproc" is the DBPROCESS used
 ** to update the database.
 */

 /* First, find out which employee record the user
 ** wants to update.
 */
 employee_id = which_employee();

 while (1)
 {
 /* Retrieve that employee record from the database.
 ** We’ll assume that "empid" is a unique index,
 ** so this query will return only one row.
 */
 dbfcmd (q_dbproc, "select * from employees where \
 empid = %d for browse", employee_id);
 dbsqlexec(q_dbproc);
 dbresults(q_dbproc);
 dbnextrow(q_dbproc);

 /* Now, let the user examine or edit the employee’s
 ** data, first placing the data into program
 ** variables.
 */
 extract_employee_data(q_dbproc, employee_struct);
 examine_and_edit(employee_struct, &edit_flag);

 if (edit_flag == FALSE)
 {
 /* The user didn’t edit this record,

 ** so we’re done.
 */
 break;
 }
 else
 {
 /* The user edited this record, so we’ll use
 ** the edited data to update the
 ** corresponding row in the database.

CHAPTER 2 Routines

DB-Library/C Reference Manual 245

 */
 qualptr = dbqual(q_dbproc, -1, "employees");
 dbcmd(u_dbproc, "update employees");
 dbfcmd (u_dbproc, " set address = ’%s’, \
 salary = %d %s",
 employee_struct->address,
 employee_struct->salary, qualptr);
 dbfreequal(qualptr);
 if ((dbsqlexec(u_dbproc) == FAIL) ||
 (dbresults(u_dbproc) == FAIL))
 {
 /* Our update failed. In a real program,
 ** it would be necessary to examine the
 ** messages returned from the Adaptive
Server Enterprise
 ** to determine why it failed. In this
 ** example, we’ll assume that the update
 ** failed because someone else has already
 ** updated this row, thereby changing
 ** the timestamp.
 **
 ** To cope with this situation, we’ll just
 ** repeat the loop, retrieving the changed
 ** row for our user to examine and edit.
 ** This will give our user the opportunity
 ** to decide whether to overwrite the
 ** change made by the other user.
 */
 continue;
 }
 else
 {
 /* The update succeeded, so we’re done. */
 break;
 }
 }
 }

• dbqual can only construct where clauses for browsable tables. You can use
dbtabbrowse to determine whether a table is browsable.

• dbqual is usually called after dbnextrow.

• For a complete example that uses dbqual to perform a browse mode
update, see the sample programs included with DB-Library.

See also dbcolbrowse, dbcolsource, dbfreequal, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewlen, dbtsnewval, dbtsput

DBRBUF

246 Open Client

DBRBUF
Description (UNIX only) Determine whether the DB-Library network buffer contains any

unread bytes.

Syntax DBBOOL DBRBUF(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value “TRUE” (bytes remain in buffer) or “FALSE” (no bytes in buffer).

Note that DBRBUF actually returns “TRUE” both when there are bytes
available in the read buffer, and when no more results are available to be
processed.

This is because the purpose of DBRBUF is to tell an application when it can read
and be assured that it will not hang. If DBRBUF did not return “TRUE” in the
case of no more results, then applications that loop while DBRBUF returns
“FALSE” could loop indefinitely, if all results had already been processed.

Usage • This routine lets the application know if the DB-Library network buffer
contains any bytes yet unread.

• DBRBUF is ordinarily used in conjunction with dbsqlok and
DBIORDESC.

• dbpoll, a DB-Library/C routine which checks if a server response has
arrived for any DBPROCESS, may replace DBRBUF. Since the UNIX-
specific routines DBRBUF and DBIORDESC are non-portable, their use
should be avoided whenever possible. They do, however, provide a way
for application programs to integrate handling of DB-Library/C sockets
with other sockets being used by an application.

• An application uses these routines to manage multiple input data streams.
To manage these streams efficiently, an application that uses dbsqlok
should check whether any bytes remain either in the network buffer or in
the network itself before calling dbresults.

• To test whether bytes remain in the network buffer, the application can call
DBRBUF. To test whether bytes remain in the network itself, the
application can either call the UNIX select and DBIORDESC, or call dbpoll.

See also DBIORDESC, dbpoll, dbsqlok, dbresults

CHAPTER 2 Routines

DB-Library/C Reference Manual 247

dbreadpage
Description Read a page of binary data from the server.

Syntax DBINT dbreadpage(dbproc, dbname, pageno, buf)

DBPROCESS *dbproc;
char *dbname;
DBINT pageno;
BYTE buf[];

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbname
The name of the database of interest.

pageno
The number of the database page to be read.

buf
A pointer to a buffer to hold the received page data. Adaptive Server
Enterprise pages are currently 2048 bytes long.

Return value The number of bytes read from the server. If the operation was unsuccessful,
dbreadpage returns -1.

Usage • dbreadpage reads a page of binary data from the server. This routine is
primarily useful for examining and repairing damaged database pages.
After calling dbreadpage, the DBPROCESS may contain some error or
informational messages from the server. These messages may be accessed
through a user-supplied message handler.

• dbreadpage alters the contents of the DBPROCESS command buffer.

 Warning! Use this routine only if you are absolutely sure you know what you
are doing!

See also dbmsghandle, dbwritepage

dbreadtext

248 Open Client

dbreadtext
Description Read part of a text or image value from the server.

Syntax STATUS dbreadtext(dbproc, buf, bufsize)

DBPROCESS *dbproc;
void *buf;
DBINT bufsize;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

buf
A pointer to a caller-allocated buffer that will contain the chunk of text or
image data.

bufsize
The size of the caller’s buffer, in bytes.

Return value The following table lists the return values for dbreadtext:

Usage • dbreadtext reads a large SYBTEXT or SYBIMAGE value from the server
in the form of a number of smaller chunks. This is particularly useful with
operating systems that are unable to allocate extremely long data buffers.

• To read successive chunks of the same SYBTEXT or SYBIMAGE value,
call dbreadtext until it returns 0 (end of row).

• Use dbreadtext in place of dbnextrow to read SYBTEXT and SYBIMAGE
values.

• dbreadtext can process the results of Transact-SQL queries if those queries
return only one column and that column contains either text or image data.
The Transact-SQL readtext command returns results of this type.

dbreadtext
returns To indicate

>0 The number of bytes placed into the caller’s buffer

0 The end of a row

-1 An error occurred, such as a network or out of memory error

NO_MORE_ROWS All rows read

CHAPTER 2 Routines

DB-Library/C Reference Manual 249

• The DB-Library/C option DBTEXTSIZE affects the value of the server
@@textsize global variable, which restricts the size of text or image values
that the server returns. @@textsize has a default value of 32,768 bytes. An
application that retrieves text or image values larger than 32,768 bytes will
need to call dbsetopt to make @@textsize larger.

The DB-Library/C option DBTEXTLIMIT limits the size of text or image
values that DB-Library/C will read. DB-Library/C will throw away any
text that exceeds the limit.

• This code fragment demonstrates the use of dbreadtext:

DBPROCESS *dbproc;
long bytes;
RETCODE ret;
char buf[BUFSIZE + 1];
/*
 ** Install message and error handlers...
 ** Log in to server...
 ** Send a "use database" command...
 */
/* Select a text column: */
 dbfcmd(dbproc, "select textcolumn from bigtable");
 dbsqlexec(dbproc);

/* Process the results: */
 while((ret = dbresults(dbproc)) !=
 NO_MORE_RESULTS)
 {
 if(ret == FAIL)
 {
 /* dbresults() failed */
 }
 while((bytes =
dbreadtext(dbproc,
 (void *)buf, BUFSIZE)) != NO_MORE_ROWS)
 {
 if(bytes == -1)
 {
 /* dbreadtext() failed */
 }
 else if(bytes == 0)
 {
 /* We’ve reached the end of a row*/
 printf("End of Row!\n\n");
 }
 else

dbrecftos

250 Open Client

 {
 /*
 ** ’bytes’ bytes have been placed
 ** into our buffer.
 ** Print them:
 */
 buf[bytes] = ’\0’;
 printf("%s\n", buf);
 }
 }
 }

See also dbmoretext, dbnextrow, dbwritetext

dbrecftos
Description Record all SQL commands sent from the application to the server.

Syntax void dbrecftos(filename)

char *filename;

Parameters filename
A pointer to a null-terminated character string to be used as the basis for
naming SQL session files.

Return value None.

Usage • dbrecftos causes all SQL commands sent from the front-end application
program to the server to be recorded in a human-readable file. This SQL
session information is useful for debugging purposes.

• DB-Library creates one SQL session file for each call to dbopen that
occurs after dbrecftos is called. Files are named filename.n, where filename
is the name specified in the call to dbrecftos and n is an integer, starting
with 0.

For example, if filename is “foo,” the first file created is named foo.0, the
next foo.1, and so forth.

See also dbopen

CHAPTER 2 Routines

DB-Library/C Reference Manual 251

dbrecvpassthru
Description Receive a TDS packet from a server.

Syntax RETCODE dbrecvpassthru(dbproc, recv_bufp)

DBPROCESS *dbproc;
DBVOIDPTR *recv_bufp;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

recv_bufp
A pointer to a variable that dbrecvpassthru fills with the address of a buffer
containing the TDS packet most recently received by this DBPROCESS
connection. The application is not responsible for allocating this buffer.

Return value DB_PASSTHRU_MORE, DB_PASSTHRU_EOM, or FAIL.

Usage • dbrecvpassthru receives a TDS (Tabular Data Stream) packet from a
server.

• TDS is an application protocol used for the transfer of requests and request
results between clients and servers. Under ordinary circumstances, a DB-
Library/C application does not have to deal directly with TDS, because
DB-Library/C manages the data stream.

• dbrecvpassthru and dbsendpassthru are useful in gateway applications.
When an application serves as the intermediary between two servers, it can
use these routines to pass the TDS stream from one server to the other,
eliminating the process of interpreting the information and re-encoding it.

• dbrecvpassthru reads a packet of bytes from the server connection
identified by dbproc and sets *recv_bufp to point to the buffer containing
the bytes.

• A packet has a default size of 512 bytes. An application can change its
packet size using DBSETLPACKET. See the dbgetpacket and
DBSETLPACKET reference pages.

• dbrecvpassthru returns DB_PASSTHRU_EOM if the TDS packet has
been marked by the server as EOM (End Of Message). If the TDS packet
is not the last in the stream, dbrecvpassthru returns
DB_PASSTHRU_MORE.

dbrecvpassthru

252 Open Client

• A DBPROCESS connection which is used for a dbrecvpassthru operation
cannot be used for any other DB-Library/C function until
DB_PASSTHRU_EOM has been received.

• This is a code fragment using dbrecvpassthru:

/*
** The following code fragment illustrates the
** use of dbrecvpassthru() in an Open Server
** gateway application. It will continually get
** packets from a remote server, and pass them
** through to the client.
**
** The routine srv_sendpassthru() is the Open
* Server counterpart required to complete
 ** this passthru operation.
*/
DBPROCESS *dbproc;
SRV_PROC *srvproc;
int ret;
BYTE *packet;

while(1)
 {
 /* Get a TDS packet from the remote server */
 ret = dbrecvpassthru(dbproc, &packet);

 if(ret == FAIL)
 {
 fprintf(stderr, "ERROR - dbrecvpassthru\
 failed in handle_results.\n");
 exit();
 }
 /* Now send the packet to the client */
 if(srv_sendpassthru(srvproc, packet,
 (int *)NULL) == FAIL)
 {
 fprintf(stderr, "ERROR - srv_sendpassthru \
 failed in handle_results.\n");
 exit();
 }
 /*
 ** We’ve sent the packet, so let’s see if
 ** there’s any more.
 */
 if(ret == DB_PASSTHRU_MORE)
 continue;
 else

CHAPTER 2 Routines

DB-Library/C Reference Manual 253

 break;
 }

See also dbsendpassthru

dbregdrop
Description Drop a registered procedure.

Syntax RETCODE dbregdrop(dbproc, procedure_name, namelen)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the registered procedure that the DBPROCESS
connection wishes to drop.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

Return value SUCCEED, DBNOPROC, or FAIL.

Usage • dbregdrop drops a registered procedure from Open Server. Because a
notification procedure is simply a special type of registered procedure, a
notification procedure may also be dropped using dbregdrop.

• A DBPROCESS connection can drop any registered procedure defined in
Open Server, including procedures created by other DBPROCESS
connections and procedures created by other applications. Any
mechanism to protect registered procedures must be embodied in the
server application.

• If the procedure referenced by procedure_name is not defined in Open
Server, dbregdrop returns DBNOPROC. An application can use dbreglist
to obtain a list of registered procedures currently defined in Open Server.

• This is a code fragment that uses dbregdrop:

dbregexec

254 Open Client

/*
** The following code fragment illustrates
 ** dropping a registered procedure.
 */
DBPROCESS *dbproc;
RETCODE ret;
char *procname;

procname = "some_event";
ret = dbregdrop(dbproc, procname, DBNULLTERM);
 if (ret == FAIL)
 {
 fprintf(stderr, "ERROR: dbregdrop() \
 failed!!\n");
 }
 else if (ret == DBNOPROC)
 {
 fprintf(stderr, "ERROR: procedure %s was not\
 registered!\n", procname);
 }

See also dbnpcreate, dbreglist

dbregexec
Description Execute a registered procedure.

Syntax RETCODE dbregexec(dbproc, options)

DBPROCESS *dbproc;
DBUSMALLINT options;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

CHAPTER 2 Routines

DB-Library/C Reference Manual 255

options
A 2-byte bitmask, either DBNOTIFYALL or DBNOTIFYNEXT.

If options is DBNOTIFYALL, Open Server will notify all DBPROCESSes
watching for the execution of this registered procedure.

If options is DBNOTIFYNEXT, Open Server will notify only the
DBPROCESS that has been watching the longest.

Return value SUCCEED or FAIL.

Usage • dbregexec completes the process of executing a registered procedure.
Because a notification procedure is simply a special type of registered
procedure, a notification procedure may also be executed using dbregexec.

• The procedure name and its parameters must have been previously defined
using dbreginit and dbregparam.

• To execute a registered procedure, a DB-Library/C application must:

• Initiate the call using dbreginit.

• Describe the procedure’s parameters, if any, using dbregparam.

• Execute the procedure using dbregexec.

• An application cannot execute a registered procedure that is not defined in
Open Server. dbreglist returns a list of registered procedures that are
currently defined.

• Registered procedures are useful for inter-application communication and
synchronization, because applications can request to be advised when a
registered procedure executes.

• Registered procedures may be created only in Open Server. At this time,
Adaptive Server Enterprise does not support registered procedures. An
application can use dbnpcreate, dbregparam, and dbnpcreate to create a
registered procedure.

• A DB-Library/C application requests to be notified of a registered
procedure’s execution using dbregwatch. The application may request to
be notified either synchronously or asynchronously.

• This is an example of executing a registered procedure:

DBPROCESS *dbproc;
DBINT newprice = 55;
DBINT status;
/*
 ** Initiate execution of the registered procedure
 ** "price_change"

dbreghandle

256 Open Client

 */
 dbreginit (dbproc, "price_change", DBNULLTERM);

/*
 ** The registered procedure has two parameters:
 ** name varchar(255)
 ** newprice int
 ** So pass these parameters to the registered
 ** procedure.
 */
dbregparam (dbproc, "name", SYBVARCHAR, NULL,
 "sybase");
 dbregparam (dbproc, "newprice", SYBINT4, 4,
 &newprice);
/* Execute the registered procedure: */
 status = dbregexec (dbproc, DBNOTIFYALL);
 if (status == FAIL)
 {
 fprintf(stderr, "ERROR: Failed to execute \
 price_change!\n");
 }

else if (status == DBNOPROC)
 {
 fprintf(stderr, "ERROR: Price_change does \
 not exist!\n");
 }
 else
 {
 fprintf(stdout, "Success in executing \
 price_change!\n");
 }

See also dbreginit, dbregparam, dbregwatch, dbregnowatch

dbreghandle
Description Install a handler routine for a registered procedure notification.

Syntax RETCODE dbreghandle(dbproc, procedure_name, namelen,
 handler)

DBPROCESS *dbproc;
DBCHAR *procedure_name;

CHAPTER 2 Routines

DB-Library/C Reference Manual 257

DBSMALLINT namelen;
INTFUNCPTR handler;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the registered procedure for which the handler is
being installed.

If procedure_name is passed as NULL, the handler is installed as a default
handler. The default handler will be called for all registered procedure
notifications read by this DBPROCESS connection for which no other
handler has been installed.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

handler
A pointer to the function to be called by DB-Library/C when the registered
procedure notification is read.

If handler is passed as NULL, any handler previously installed for the
registered procedure is uninstalled.

Return value SUCCEED or FAIL.

Usage • dbreghandle installs a user-supplied handler routine to be called by DB-
Library/C when a DBPROCESS connection reads an asynchronous
notification that a registered procedure has been executed.

Because a notification procedure is simply a special type of registered
procedure, a handler for a notification procedure may also be installed
using dbreghandle.

• An application receives an asynchronous notification only if it has
previously called dbregwatch with options passed as DBNOWAITONE or
DBNOWAITALL. This call tells Open Server that the application is
interested in the execution of the registered procedure, that it will receive
the notification asynchronously, and that it will read the notification
through a particular DBPROCESS connection.

• If no handler is installed for a notification, DB-Library/C will raise an
error when the DBPROCESS connection reads the notification.

dbreghandle

258 Open Client

• Either procedure_name or handler may be NULL:

• If both procedure_name and handler are supplied, dbreghandle
installs the handler specified by handler for the registered procedure
specified by procedure_name.

• If procedure_name is NULL and handler is NULL, dbreghandle
uninstalls all handlers for this DBPROCESS connection.

• If procedure_name is NULL but handler is supplied, dbreghandle
installs the handler specified by handler as a “default” handler for this
DBPROCESS connection. This default handler will be called
whenever the DBPROCESS connection reads a registered procedure
notification for which no other handler has been installed.

• If procedure_name is supplied but handler is NULL, dbreghandle
uninstalls any handler previously installed for this registered
procedure. If a default handler has been installed for this
DBPROCESS connection, it remains in effect and will be called if a
procedure_name notification is read.

• The same handler may be used by several DBPROCESS connections, but
it must be installed for each one by a separate call to dbreghandle. Because
of the possibility of a single notification handler being called when
different DBPROCESSes read notifications, all handlers should be written
to be re-entrant.

• A single DBPROCESS connection may be watching for several registered
procedures to execute. This connection may have different handlers
installed to process the various notifications it may read. Each handler
must be installed by a separate call to dbreghandle.

• A DBPROCESS connection may be idle, sending commands, reading
results, or idle with results pending when a registered procedure
notification arrives.

• If the DBPROCESS connection is idle, it is necessary for the
application to call dbpoll to allow the connection to read the
notification. If a handler for the notification has been installed, it will
be called before dbpoll returns.

• If the DBPROCESS connection is sending commands, the
notification is read and the notification handler called during
dbsqlexec or dbsqlok. After the notification handler returns, flow of
control continues normally.

CHAPTER 2 Routines

DB-Library/C Reference Manual 259

• If the DBPROCESS connection is reading results, the notification is
read and the notification handler called either in dbresults or
dbnextrow. After the notification handler returns, flow of control
continues normally.

• If the DBPROCESS connection is idle with results pending, the
notification is not read until all results in the stream up to the
notification have been read and processed by the connection.

• Because a notification may be read while a DBPROCESS connection is in
any of several different states, the actions that a notification handler may
take are restricted. A notification handler may not use an existing
DBPROCESS to send a query to the server, process the results of a query,
or call dbcancel or dbcanquery. A notification handler may, however, open
a new DBPROCESS and use this new DBPROCESS to send queries and
process results within the handler.

• A notification handler can read the arguments passed to the registered
procedure upon execution. To do this, the handler can use the DB-
Library/C routines dbnumrets, dbrettype, dbretlen, dbretname, and
dbretdata.

• All notification handlers are called by DB-Library/C with the following
parameters:

• dbproc, a pointer to the DBPROCESS connection that has been
watching for the notification

• procedure_name, a pointer to the name of the registered procedure
that has been executed

• reserved1, a DBUSMALLINT parameter reserved for future use

• reserved2, a DBUSMALLINT parameter reserved for future use

• A notification handler must return INT_CONTINUE to indicate normal
completion, or INT_EXIT to instruct DB-Library/C to abort the
application and return control to the operating system.

• Notification handlers on the Windows platform must be declared with
CS_PUBLIC, as shown in the example below. For portability, callback
handlers on other platforms should be declared CS_PUBLIC as well.

• This is an example of a notification handler:

DBINT CS_PUBLIC my_procedure_handler(dbproc,
 procedure_name, reserved1, reserved2)
/* The client connection */
 DBPROCESS *dbproc;

dbreginit

260 Open Client

 /* A null-terminated string */
 DBCHAR *procedure_name;
 /* Reserved for future use */
 DBUSMALLINT reserved1;
 /* Reserved for future use */
 DBUSMALLINT reserved2;

{
 int i, type;
 DBINT len;
 char *name;
 BYTE *data;
 int params;

 /*
 ** Find out how many parameters this
 ** procedure received.
 */
 params = dbnumrets(dbproc);

 i = 0; /* Initialize counter */

 /* Now process each parameter in turn */
 while(i++ < params)
 {
 /* Get the parameter’s datatype */
 type = dbrettype(dbproc, i);

 /* Get the parameter’s length */
 len = dbretlen(dbproc, i);

 /* Get the parameter’s name */
 name = dbretname(dbproc, i);

 /* Get a pointer to the parameter */
 data = dbretdata(dbproc, i);

 /* Process the parameter here */
 }
 return(INT_CONTINUE);
 }

See also dbregwatch, dbregnowatch, dbregparam, dbregexec

dbreginit
Description Initiate execution of a registered procedure.

CHAPTER 2 Routines

DB-Library/C Reference Manual 261

Syntax RETCODE dbreginit(dbproc, procedure_name, namelen)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and server.

procedure_name
A pointer to the name of the registered procedure being executed.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

Return value SUCCEED or FAIL.

Usage • dbreginit initiates the execution of a registered procedure. Because a
notification procedure is simply a special type of registered procedure,
execution of a notification procedure may also be initiated using dbreginit.

• To execute a registered procedure, a DB-Library/C application must:

• Initiate the call using dbreginit

• Pass the procedure’s parameters, if any, using dbregparam

• Execute the procedure using dbregexec

• This is an example of executing a registered procedure:

DBPROCESS *dbproc;
DBINT newprice = 55;
DBINT status;

/*
 ** Initiate execution of the registered procedure
 ** "price_change".
 */
 dbreginit (dbproc, "price_change", DBNULLTERM);

/*
 ** The registered procedure has two parameters:
 ** name varchar(255)
 ** newprice int
 ** So pass these parameters to the registered
 ** procedure.

dbreglist

262 Open Client

 */

dbregparam (dbproc, "name", SYBVARCHAR, NULL,
 "sybase");
 dbregparam (dbproc, "newprice", SYBINT4, 4, 4,
 &newprice);

/* Execute the registered procedure: */
 status = dbregexec (dbproc, DBNOTIFYALL);
 if (status == FAIL)
 {
 fprintf(stderr, "ERROR: Failed to execute \
 price_change!\n");
 }
 else if (status == DBNOPROC)
 {
 fprintf(stderr, "ERROR: Price_change does \
 not exist!\n");
 }
 else
 {
 fprintf(stdout, "Success in executing \
 price_change!\n");
 }

See also dbregparam, dbregexec, dbregwatch, dbreglist, dbregwatchlist

dbreglist
Description Return a list of registered procedures currently defined in Open Server.

Syntax RETCODE dbreglist(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

Return value SUCCEED or FAIL.

CHAPTER 2 Routines

DB-Library/C Reference Manual 263

Usage • dbreglist returns a list of registered procedures currently defined in Open
Server. Because a notification procedure is simply a special type of
registered procedure, notification procedures will be included in the list of
registered procedures.

• The list of registered procedures is returned as rows that an application
must explicitly process after calling dbreglist. Each row represents the
name of a single registered procedure defined in Open Server. A row
contains a single column of type SYBVARCHAR.

• The following code fragment illustrates how dbreglist might be used in an
application:

DBPROCESS *dbproc;
DBCHAR *procedurename;
DBINT ret;

/* request the list of procedures */
 if((ret = dbreglist(dbproc)) == FAIL)
 {
 /* Handle failure here */
 }
 dbresults(dbproc);
 while(dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 procedurename = (DBCHAR *)dbdata(dbproc, 1);
 procedurename[dbdatlen(dbproc, 1)] = ’\0’;

 fprintf(stdout, "The procedure ’%s’ is \
 defined.\n", procedurename);
 }
 /* All done */

See also dbregwatchlist, dbregwatch

dbregnowatch
Description Cancel a request to be notified when a registered procedure executes.

Syntax RETCODE dbregnowatch(dbproc, procedure_name,
 namelen)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;

dbregnowatch

264 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of the registered procedure that the DBPROCESS
connection is no longer interested in.

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

Return value SUCCEED, DBNOPROC, or FAIL.

Usage • dbregnowatch cancels a DBPROCESS connection’s request to be notified
when a registered procedure executes. Because a notification procedure is
simply a special type of registered procedure, dbregnowatch also cancels a
DBPROCESS connection’s request to be notified when a notification
procedure executes.

• It is meaningful to call dbregnowatch only if the DBPROCESS connection
has previously requested an asynchronous notification using dbregwatch.

• If the procedure referenced by procedure_name is not defined in Open
Server, dbregnowatch returns DBNOPROC. An application can obtain a
list of procedures currently registered in Open Server using dbreglist.

• An application can obtain a list of registered procedures it is watching for
through dbregwatchlist.

• This is an example of canceling a request to be notified:

DBPROCESS *dbproc;
DBINT ret;

/*
 ** Inform the server that we no longer wish to
 ** be notified when "price_change" executes:
 */
 ret = dbregnowatch (dbproc, "price_change",
 DBNULLTERM);
 if (ret == DBNOPROC)
 {
 /* The registered procedure must not exist */
 fprintf(stderr, "ERROR: price_change \
 doesn’t exist!\n");
 }

CHAPTER 2 Routines

DB-Library/C Reference Manual 265

See also dbregwatch, dbregwatchlist, dbreghandle, dbregexec

dbregparam
Description Define or describe a registered procedure parameter.

Syntax RETCODE dbregparam(dbproc,param_name, type, datalen,
 data)

DBPROCESS *dbproc;
char *param_name;
int type;
DBINT datalen;
BYTE *data;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

param_name
A pointer to the parameter name.

When creating a registered procedure, param_name is required.

When executing a registered procedure, param_name may be NULL. In this
case, the registered procedure will expect to receive its parameters in the
order in which they were originally defined.

type
A symbolic value indicating the datatype of the parameter. Legal data types
are: SYBINT1, SYBINT2, SYBINT4, SYBREAL, SYBFLT8, SYBCHAR,
SYBBINARY, SYBVARCHAR, SYBDATETIME4, SYBDATETIME,
SYBMONEY4, and SYBMONEY.

Note that SYBTEXT and SYBIMAGE are not legal datatypes for
parameters.

dbregparam

266 Open Client

datalen
The length of the parameter.

When creating a registered procedure:

• datalen can be used to indicate that no default value is being supplied
for this parameter. To indicate no default, pass datalen as
DBNODEFAULT.

• datalen can be used to indicate that the default value for a parameter is
NULL. This is different from having no default. To indicate a NULL
default, pass datalen as 0.

When executing a registered procedure:

• datalen may be 0. In this case, data is ignored and NULL is passed to
the registered procedure for this parameter.

data
A pointer to the parameter.

When creating a registered procedure, data can be used to provide a default
value for the parameter. Pass data as pointing to the default value. If no
default value is desired, pass datalen as DBNODEFAULT.

When executing a registered procedure, data may be passed as NULL.

Return value SUCCEED or FAIL.

Usage • dbregparam defines a registered procedure parameter. Because a
notification procedure is simply a special type of registered procedure,
dbregparam also defines a notification procedure parameter.

• dbregparam is called to define registered procedure parameters when a
registered procedure is created and to describe the parameters when a
registered procedure is executed.

Note DB-Library/C applications can create only a special type of
registered procedure, known as a notification procedure. A notification
procedure differs from a normal Open Server registered procedure in that
it contains no executable statements. See the dbnpdefine and dbnpcreate
reference pages.

• Either dbnpdefine, which initiates the process of creating a notification
procedure, or dbreginit, which initiates the process of executing a
registered procedure, must be called before an application calls
dbregparam.

CHAPTER 2 Routines

DB-Library/C Reference Manual 267

• When creating a registered procedure:

• To indicate that no default value is being supplied, pass datalen as
DBNODEFAULT. data is ignored in this case.

• To supply a default value of NULL, pass datalen as 0. data is ignored
in this case.

• To supply a default value that is not NULL pass datalen as the length
of the value (or -1 if it is a fixed-length type), and data as pointing to
the value.

• When executing a registered procedure:

• To pass NULL as the value of the parameter, pass datalen as 0. In this
case, data is ignored.

• To pass a value for this parameter, pass datalen as the length of the
value (or -1 if it is a fixed-length type), and data as pointing to the
value.

• To create a notification procedure, a DB-Library/C application must:

• Define the procedure using dbnpdefine

• Describe the procedure’s parameters, if any, using dbregparam

• Create the procedure using dbnpcreate

• This is an example of creating a notification procedure:

DBPROCESS *dbproc;
DBINT status;
/*
 ** Let’s create a notification procedure called
 ** "message" which has two parameters:
 ** msg varchar(255)
 ** userid int
 */
/*

 ** Define the name of the notification procedure
 ** "message"
 */
 dbnpdefine (dbproc, "message", DBNULLTERM);
/* The notification procedure has two parameters:
 ** msg varchar(255)
 ** userid int
 ** So, define these parameters. Note that both
 ** of these parameters are defined with a default

dbregparam

268 Open Client

 ** value of NULL. Passing datalen as 0
 ** accomplishes this.
 */

dbregparam (dbproc, "msg", SYBVARCHAR, 0, NULL);
dbregparam (dbproc, "userid", SYBINT4, 0, NULL);

/* Create the notification procedure: */
 status = dbnpcreate (dbproc);
 if (status == FAIL)
 {
 fprintf(stderr, "ERROR: Failed to create \
 message!\n");
 }
 else
 {
 fprintf(stdout, "Success in creating \
 message!\n");
 }

• To execute a registered procedure, a DB-Library/C application must:

• Initiate the call using dbreginit

• Pass the procedure’s parameters, if any, using dbregparam

• Execute the procedure through dbregexec

• This is an example of executing a registered procedure:

DBPROCESS *dbproc;
DBINT newprice = 55;
DBINT status;

/*
 ** Initiate execution of the registered procedure
 ** "price_change".
 */
 dbreginit (dbproc, "price_change", DBNULLTERM);

/*
 ** The registered procedure has two parameters:
 ** name varchar(255)
 ** newprice int
 ** So pass these parameters to the registered
 ** procedure.
 */
 dbregparam (dbproc, "name", SYBVARCHAR, 6,
 "sybase");
 dbregparam (dbproc, "newprice", SYBINT4, -1,

CHAPTER 2 Routines

DB-Library/C Reference Manual 269

 &newprice);

/* Execute the registered procedure: */
 status = dbregexec (dbproc, DBNOTIFYALL);
 if (status == FAIL)
 {
 fprintf(stderr, "ERROR: Failed to execute \
 price_change!\n");
 }
 else if (status == DBNOPROC)
 {
 fprintf(stderr, "ERROR: Price_change does \
 not exist!\n");
 }
 else
 {
 fprintf(stdout, "Success in executing \
 price_change!\n");
 }

See also dbreginit, dbregexec, dbnpdefine, dbnpcreate, dbregwatch

dbregwatch
Description Request to be notified when a registered procedure executes.

Syntax RETCODE dbregwatch(dbproc, procedure_name,namelen,
 options)

DBPROCESS *dbproc;
DBCHAR *procedure_name;
DBSMALLINT namelen;
DBUSMALLINT options;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

procedure_name
A pointer to the name of a registered procedure. The registered procedure
must be defined in Open Server.

dbregwatch

270 Open Client

namelen
The length of procedure_name, in bytes. If procedure_name is null-
terminated, pass namelen as DBNULLTERM.

options
A two-byte bitmask: DBWAIT, DBNOWAITONE, or DBNOWAITALL.

If options is passed as DBWAIT, dbregwatch will not return until the
DBPROCESS connection reads a synchronous notification that the
registered procedure has executed.

If options is passed as DBNOWAITONE, dbregwatch returns -immediately.
The DBPROCESS connection will receive an asynchronous notification
when the registered procedure executes. The connection will receive only a
single notification, even if the registered procedure executes multiple times.

If options is passed as DBNOWAITALL, dbregwatch returns immediately.
The DBPROCESS connection will receive an asynchronous notification
when the registered procedure executes. The connection will continue to
receive notifications, one for each execution of the registered procedure,
until it informs Open Server that it no longer wishes to receive them.

Return value SUCCEED, DBNOPROC, or FAIL.

dbregwatch returns FAIL if no handler is installed for the registered procedure.

Usage • dbregwatch informs Open Server that a DBPROCESS connection should
be notified when a particular registered procedure executes. Because a
notification procedure is simply a special type of registered procedure,
dbregwatch also informs Open Server that a DBPROCESS connection
should be notified when a particular notification procedure executes.

• The connection can request to be notified synchronously or
asynchronously:

• To request synchronous notification, an application passes options as
DBWAIT in its call to dbregwatch. In this case, dbregwatch will not
return until the DBPROCESS connection reads the notification that
the registered procedure has executed.

Open Server will send only a single notification as the result of a
synchronous notification request. If the registered procedure executes
a second time, after the synchronous request has been satisfied, the
client will not receive a second notification, unless another
notification request is made.

CHAPTER 2 Routines

DB-Library/C Reference Manual 271

• To request asynchronous notification, an application passes options as
DBNOWAITONE or DBNOWAITALL in its call to dbregwatch. In
this case, dbregwatch returns immediately. A return code of
SUCCEED indicates that Open Server has accepted the request.

If options is DBNOWAITONE, Open Server will send only a single
notification, even if the registered procedure executes multiple times.

If options is DBNOWAITALL, Open Server will continue to send a
notification every time the registered procedure executes, until it is
informed, using dbregnowatch, that the client no longer wishes to
receive them.

• A DBPROCESS connection may be idle, sending commands, reading
results, or idle with results pending when an asynchronous registered
procedure notification arrives.

• If the DBPROCESS connection is idle, it is necessary for the
application to call dbpoll to allow the connection to read the
notification. If a handler for the notification has been installed, it will
be called before dbpoll returns.

• If the DBPROCESS connection is sending commands, the
notification is read and the notification handler called during
dbsqlexec or dbsqlok. After the notification handler returns, flow of
control continues normally.

• If the DBPROCESS connection is reading results, the notification is
read and the notification handler called either in dbresults or
dbnextrow. After the notification handler returns, flow of control
continues normally.

• If the DBPROCESS connection is idle with results pending, the
notification is not read until all results in the stream up to the
notification have been read and processed by the connection.

• An application must install a handler to process the registered procedure
notification before calling dbregwatch. If no handler is installed,
dbregwatch returns FAIL. An application can install a notification handler
using dbreghandle.

If the handler is uninstalled after the application calls dbregwatch but
before the registered procedure notification is received, DB-Library/C
raises an error when the notification is received.

dbregwatch

272 Open Client

• If the procedure referenced by procedure_name is not defined in Open
Server, dbregwatch returns DBNOPROC. An application can obtain a list
of procedures currently registered in Open Server using dbreglist.

• An application can obtain a list of registered procedures it is watching for
using dbregwatchlist.

• This is an example of making a synchronous notification request:

DBPROCESS *dbproc;
DBINT handlerfunc;
DBINT ret;

/*
 ** The registered procedure is defined in Open
 ** Server as:
 ** shutdown msg_param varchar(255)
 */

/*
 ** First install the handler for this registered
 ** procedure:
 */
 dbreghandle(dbproc, "shutdown", DBNULLTERM,
 handlerfunc);

/* Make the notification request and wait: */
 ret = dbregwatch(dbproc, "shutdown", DBNULLTERM,
 DBWAIT);

if (ret == FAIL)
 {
 fprintf (stderr, "ERROR: dbregwatch() \
 failed!\n");
 }
 else if (ret == DBNOPROC)
 {
 fprintf (stderr, "ERROR: procedure shutdown \
 not defined.\n");
 }
 else
 {
 /*
 ** The registered procedure notification has
 ** been returned, and our registered
 ** procedure handler has already been called.
 */
 }

CHAPTER 2 Routines

DB-Library/C Reference Manual 273

• This is an example of making an asynchronous notification request:

DBPROCESS *dbproc;
DBINT handlerfunc;
DBINT ret;

/*
 ** The registered procedure is defined in Open
 ** Server as:
 ** shutdown msg_param varchar(255)
 */

/*
 ** First install the handler for this registered
 ** procedure:
 */
 dbreghandle(dbproc, "shutdown", DBNULLTERM,
 handlerfunc);

/* Make the asynchronous notification request: */
 ret = dbregwatch(dbproc, "shutdown", DBNULLTERM,
 DBNOWAITALL);

if (ret == FAIL)
 {
 fprintf (stderr, "ERROR: dbregwatch() \
 failed!\n");
 }
 else if (ret == DBNOPROC)
 {
 fprintf (stderr, "ERROR: procedure shutdown \
 not defined.\n");
 }

/*
 ** Since we are making use of the asychronous
 ** registered procedure notification mechanism,
 ** the application can continue doing other work
 ** while waiting for the notification. All we
 ** have to do is call dbpoll() once in a while to
 ** read the registered procedure notification
 ** when it arrives.
 */

while (1)
 {
 /* Have dbpoll() block for one second */
 dbpoll (NULL, 1000, NULL, &ret);

 /*

dbregwatchlist

274 Open Client

 ** If we got the notification, then exit
 ** the loop
 */
 if (ret == DBNOTIFICATION)
 break;
 /* Handle other program tasks here */
 }

See also dbpoll, dbregexec, dbregparam, dbreglist, dbregwatchlist, dbregnowatch

dbregwatchlist
Description Return a list of registered procedures that a DBPROCESS is watching for.

Syntax RETCODE dbregwatchlist(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL.

Usage • dbregwatchlist returns a list of registered procedures that a DBPROCESS
connection is watching for. Because a notification procedure is simply a
special type of registered procedure, the list returned by dbregwatchlist will
include notification procedures.

• The list of registered procedures is returned as rows that an application
must explicitly process after calling dbregwatchlist. Each row represents
the name of a single registered procedure for which the DBPROCESS has
requested notification. A row contains a single column of type
SYBVARCHAR.

• The following code fragment illustrates how dbregwatchlist might be used
in an application:

DBPROCESS *dbproc;
DBCHAR *procedurename;
DBINT ret;

/* Request the list of procedures */
 if((ret = dbregwatchlist(dbproc)) == FAIL)

CHAPTER 2 Routines

DB-Library/C Reference Manual 275

 {
 /* Handle failure here */
 }
 dbresults(dbproc);
 while(dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 procedurename = (DBCHAR *)dbdata(dbproc, 1);
 procedurename[dbdatlen(dbproc, 1)] = ’\0’;

 fprintf(stdout, "we’re waiting for \
 procedure ’%s’.\n", procedurename);
 }
 /* All done */

See also dbregwatch, dbresults, dbnextrow

dbresults
Description Set up the results of the next query.

Syntax RETCODE dbresults(dbproc)

 DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED, FAIL or NO_MORE_RESULTS.

dbresults returns NO_MORE_RESULTS if all commands in the buffer have
already been processed. The most common reason for failing is a runtime error,
such as a database permission violation.

The number of commands in the command buffer determines whether
dbsqlexec or dbresults traps a runtime error. If the buffer contains only a single
command, a runtime error will cause dbsqlexec to fail. If the command buffer
contains multiple commands, a runtime error will not cause dbsqlexec to fail.
Instead, the dbresults call that processes the command causing the runtime
error fails.

dbresults

276 Open Client

The situation is a bit more complicated for runtime errors and stored
procedures. A runtime error on an execute command may cause dbresults to
fail, in accordance with the rule given in the previous paragraph. A runtime
error on a statement inside a stored procedure will not cause dbresults to fail,
however. For example, if the stored procedure contains an insert statement and
the user does not have insert permission on the database table, the insert
statement fails, but dbresults will still return SUCCEED. To check for runtime
errors inside stored procedures, use the dbretstatus routine to look at the
procedure’s return status, and trap relevant server messages inside your
message handler.

Usage • This routine sets up the next command in the command batch for
processing. The application program calls it after dbsqlexec or dbsqlok
returns SUCCEED. The first call to dbresults will always return either
SUCCEED or NO_MORE_RESULTS if the call to dbsqlexec or dbsqlok
has returned SUCCEED. Once dbresults returns SUCCEED, the
application typically processes any result rows with dbnextrow.

• If a command batch contains only a single command, and that command
does not return rows, for example a “use database” command, a DB-
Library/C application does not have to call dbresults to process the results
of the command. However, if the command batch contains more than one
command, a DB-Library/C application must call dbresults once for every
command in the batch, whether or not the command returns rows.

dbresults must also be called at least once for any stored procedure
executed in a command batch, whether or not the stored procedure returns
rows. If the stored procedure contains more than one Transact-SQL select,
then dbresults must be called once for each select.

To ensure that dbresults is called the correct number of times, Sybase
strongly recommends that dbresults always be called in a loop that
terminates when dbresults returns NO_MORE_RESULTS.

Note All Transact-SQL commands are considered commands by
dbresults. For a list of Transact-SQL commands, see the Adaptive Server
Enterprise Reference Manual.

• To cancel the remaining results from the command batch (and eliminate
the need to continue calling dbresults until it returns
NO_MORE_RESULTS), call dbcancel.

• To determine whether a particular command is one that returns rows and
needs results processing with dbnextrow, call DBROWS after the dbresults
call.

CHAPTER 2 Routines

DB-Library/C Reference Manual 277

• The typical sequence of calls for using dbresults with dbsqlexec is:

DBINT xvariable;
DBCHAR yvariable[10];
RETCODE return_code;

/* Read the query into the command buffer */
 dbcmd(dbproc, "select x = 100, y = ’hello’");

/* Send the query to Adaptive Server Enterprise */
 dbsqlexec(dbproc);

/*
 ** Get ready to process the results of the query.
 ** Note that dbresults is called in a loop even
 ** though only a single set of results is expected.
 ** This is simply because it is good programming
 ** practice to always code dbresults calls in loop.
 */

while ((return_code
 =dbresults(dbproc)!=NO_MORE_RESULTS)
 {
 if ((return_code == SUCCEED)
 & & (DBROWS(dbproc) == SUCCEED))
 {
 /* Bind column data to program variables */
 dbbind(dbproc, 1, INTBIND, (DBINT) 0,
 (BYTE *) &xvariable);
 dbbind(dbproc, 2, STRINGBIND, (DBINT) 0,
 yvariable);

 /* Now process each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 C-code to print or process row data
 }
 }
 }

The sample program example1.c shows how to use dbresults to process a
multiquery command batch.

• To manage multiple input data streams efficiently, an application can
confirm that unread bytes are available, either in the DB-Library network
buffer or in the network itself. The application can either:

• (For UNIX only) call DBRBUF to test whether bytes remain in the
network buffer, and call DBIORDESC and the UNIX select to test
whether bytes remain in the network itself, or

dbretdata

278 Open Client

• (For all systems) call dbpoll.

• Another use for dbresults is to process the results of a remote procedure
call made with dbrpcsend. See the dbrpcsend reference page for details.

See also dbbind, dbcancel, dbnextrow, dbpoll, DBRBUF, dbretstatus, DBROWS,
dbrpcsend, dbsqlexec, dbsqlok

dbretdata
Description Return a pointer to a return parameter value generated by a stored procedure.

Syntax BYTE *dbretdata(dbproc, retnum)

DBPROCESS *dbproc;
int retnum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

retnum
The number of the return parameter value of interest. The first return value
is 1. Values are returned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. (Note that
this is not necessarily the same order as specified in the remote procedure
call.) When specifying retnum, non-return parameters do not count. For
example, if the second parameter in a stored procedure is the only return
parameter, its retnum is 1, not 2.

Return value A pointer to the specified return value. If retnum is out of range, dbretdata
returns NULL. To determine whether the data really has a null value (and
retnum is not merely out of range), check for a return of 0 from dbretlen.

Usage • dbretdata returns a pointer to a return parameter value generated by a
stored procedure. It is useful in conjunction with remote procedure calls
and execute statements on stored procedures.

CHAPTER 2 Routines

DB-Library/C Reference Manual 279

• Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of a return parameter inside the
stored procedure are then available to the program that called the
procedure. This is analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as a return parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as a return parameter. In the case of a remote
procedure call, it is the dbrpcparam routine that specifies whether a
parameter is a return parameter.

• When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbretdata only after processing the stored procedure’s
results by calling dbresults, as well as dbnextrow if appropriate. (Note that
a stored procedure can generate several sets of results—one for each select
it contains. Before the application can call dbretdata or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.)

• If a stored procedure is invoked with a remote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure is invoked with an execute statement, the
return parameter values are available only if the command batch
containing the execute statement uses local variables, not constants, for the
return parameters.

• The routine dbnumrets indicates how many return parameter values are
available. If dbnumrets returns less than or equal to 0, no return parameter
values are available.

• When a stored procedure is invoked with an RPC command (using
dbrpcinit, dbrpcparam, and dbrpcsend), then the return parameter values
can be retrieved after all other results have been processed. For an example
of this usage, see the sample program example8.c.

• When a stored procedure has been executed from a batch of Transact-SQL
commands (with dbsqlexec or dbsqlsend), then other commands might
execute after the stored procedure. This situation makes retrieval of return
parameter values a little more complicated.

dbretdata

280 Open Client

• If you are sure that the stored procedure command is the only
command in the batch, then you can retrieve the return parameter
values after the dbresults loop, as shown in the sample program
example8.c.

• If the batch can contain multiple commands, then the return parameter
values should be retrieved inside the dbresults loop, after all rows
have been fetched with dbnextrow. The code below shows where the
return parameters should be retrieved in this situation.

while ((result_code = dbresults(dbproc)
 != NO_MORE_RESULTS)
 {
 if (result_code == SUCCEED)
 {
 ... bind rows here ...
 while ((row_code = dbnextrow(dbproc))
 != NO_MORE_ROWS)
 {
 ... process rows here ...
 }
 /* Now check for a return status */
 if (dbhasretstat(dbproc) == TRUE
 {
 printf(“(return status %d)\n”,
 dbretstatus(dbproc));
 }
 /* Now check for return parameter values */
 if (dbnumrets(dbproc) > 0)
 {
 ... retrieve output parameters here ...
 }
 } /* if result_code */
 else
 {
 printf(“Query failed.\n”);
 }
 } /* while dbresults */

• The routines below are used to retrieve return parameter values:

• dbnumrets returns the total number of return parameter values.

• dbretlen returns the length of a parameter value.

• dbretname returns the name of a parameter value.

• dbrettype returns the datatype of a parameter value.

CHAPTER 2 Routines

DB-Library/C Reference Manual 281

• dbconvert converts the value to another datatype, if necessary.

The code fragment below shows how these routines are used together:

char dataval[512];
char *dataname;
DBINT datalen;
int i, numrets;
numrets = dbnumrets(dbproc);

 for (i = 1; i <= numrets; i++)
 {
 dataname = dbretname(dbproc, i);
 datalen = dbretlen(dbproc, i);
 if (datalen == 0)
 {
 /* The parameter's value is NULL */
 strcpy(dataval, "NULL");
 }
 else
 {
 /*
 ** Convert to char. dbconvert appends a null
 ** terminator because we pass the last
 ** parameter, destlen, as -1.
 */
 result = dbconvert(dbproc,
 dbrettype(dbproc, i),
 dbretdata(dbproc, i), datalen,
 SYBCHAR, (BYTE *)dataval, -1);
 } /* else */
 /* Now print out the converted value */
 if (dataname == NULL || *dataname == '\0')
 printf("\t%s\n", dataval);
 else
 printf("\t%s: %s\n", dataname, dataval);
 }

See also dbnextrow, dbnumrets, dbresults, dbretlen, dbretname, dbrettype, dbrpcinit,
dbrpcparam

dbretlen

282 Open Client

dbretlen
Description Determine the length of a return parameter value generated by a stored

procedure.

Syntax DBINT dbretlen(dbproc, retnum)

DBPROCESS *dbproc;
int retnum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

retnum
The number of the return parameter value of interest. The first return value
is 1. Values are returned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. (Note that
this is not necessarily the same order as specified in the remote procedure
call.) When specifying retnum, non-return parameters do not count. For
example, if the second parameter in a stored procedure is the only return
parameter, its retnum is 1, not 2.

Return value The length of the specified return parameter value. If retnum is out of range,
dbretlen returns -1. If the return value is null, dbretlen returns 0.

Usage • dbretlen returns the length of a particular return parameter value generated
by a stored procedure. It is useful in conjunction with remote procedure
calls and execute statements on stored procedures.

• Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of a return parameter inside the
stored procedure are then available to the program that called the
procedure. This is analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as a return parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as a return parameter. In the case of a remote
procedure call, it is the dbrpcparam routine that specifies whether a
parameter is a return parameter.

CHAPTER 2 Routines

DB-Library/C Reference Manual 283

• When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbretlen only after processing the stored procedure’s
results by calling dbresults, as well as dbnextrow if appropriate. (Note that
a stored procedure can generate several sets of results—one for each select
it contains. Before the application can call dbretlen or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.)

• If the stored procedure is invoked with a remote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure is invoked with an execute statement, the
return parameter values are available only if the command batch
containing the execute statement uses local variables, not constants, for the
return parameters.

• Other routines return additional information about return parameter
values:

• dbnumrets returns the total number of return parameter values.

• dbretdata returns a pointer to a parameter value.

• dbretname returns the name of a parameter value.

• dbrettype returns the datatype of a parameter value.

• dbconvert converts the value to another datatype, if necessary.

• For an example of this routine, see the dbretdata reference page.

See also dbnextrow, dbnumrets, dbresults, dbretdata, dbretname, dbrettype, dbrpcinit,
dbrpcparam

dbretname
Description Determine the name of the stored procedure parameter associated with a

particular return parameter value.

Syntax char *dbretname(dbproc, retnum)

DBPROCESS *dbproc;
int retnum;

dbretname

284 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

retnum
The number of the return parameter value of interest. The first return value
is 1. Values are returned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. (Note that
this is not necessarily the same order as specified in the remote procedure
call.) When specifying retnum, non-return parameters do not count. For
example, if the second parameter in a stored procedure is the only return
parameter, its retnum is 1, not 2.

Return value A pointer to the null-terminated parameter name for the specified return value.
If retnum is out of range, dbretname returns NULL.

Usage • dbretname returns a pointer to the null-terminated parameter name
associated with a return parameter value from a stored procedure. It is
useful in conjunction with remote procedure calls and execute statements
on stored procedures.

• Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of a return parameter inside the
stored procedure are then available to the program that called the
procedure. This is analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as a return parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as a return parameter. In the case of a remote
procedure call, it is the dbrpcparam routine that specifies whether a
parameter is a return parameter.

• When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbretname only after processing the stored procedure’s
results by calling dbresults, as well as dbnextrow if appropriate. (Note that
a stored procedure can generate several sets of results—one for each select
it contains. Before the application can call dbretname or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.)

CHAPTER 2 Routines

DB-Library/C Reference Manual 285

• If the stored procedure is invoked with a remote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure is invoked with an execute statement, the
return parameter values are available only if the command batch
containing the execute statement uses local variables, not constants, for the
return parameters.

• Other routines return additional information about return parameter
values:

• dbnumrets returns the total number of return parameter values.

• dbretdata returns a pointer to a parameter value.

• dbretlen returns the length of a parameter value.

• dbrettype returns the datatype of a parameter value.

• dbconvert converts the value to another datatype, if necessary.

• For an example of this routine, see the dbretdata reference page.

See also dbnextrow, dbnumrets, dbresults, dbretdata, dbretlen, dbrettype, dbrpcinit,
dbrpcparam

dbretstatus
Description Determine the stored procedure status number returned by the current

command or remote procedure call.

Syntax DBINT dbretstatus(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The return status number for the current command.

dbretstatus

286 Open Client

Usage • dbretstatus fetches a stored procedure’s status number. All stored
procedures that are run on Adaptive Server Enterprise return a status
number. Stored procedures that complete normally return a status number
of 0. For a list of return status numbers, see the Adaptive Server Enterprise
Reference Manual.

• The dbhasretstat routine determines whether the current Transact-SQL
command or remote procedure call actually generated a return status
number. Since status numbers are a feature of stored procedures, only a
remote procedure call or a Transact-SQL command that executes a stored
procedure can generate a status number.

• When executing a stored procedure, the server returns the status number
immediately after returning all other results. Therefore, the application can
call dbretstatus only after processing the stored procedure’s results by
calling dbresults, as well as dbnextrow if appropriate. (Note that a stored
procedure can generate several sets of results—one for each select it
contains. Before the application can call dbretstatus or dbhasretstat, it must
call dbresults and dbnextrow as many times as necessary to process all the
results.)

• The order in which the application processes the status number and any
return parameter values is unimportant.

• When a stored procedure has been executed from a batch of Transact-SQL
commands (with dbsqlexec or dbsqlsend), then other commands might
execute after the stored procedure. This situation makes return-status
retrieval a little more complicated.

• If you are sure that the stored procedure command is the only
command in the batch, then you can retrieve the return status after the
dbresults loop, as shown in the sample program example8.c.

• If the batch can contain multiple commands, then the return status
should be retrieved inside the dbresults loop, after all rows have been
fetched with dbnextrow. For an example of how return statuses are
retrieved in this situation, see the dbhasretstat reference page.

• For an example of this routine, see the dbhasretstat reference page.

See also dbhasretstat, dbnextrow, dbresults, dbretdata, dbrpcinit, dbrpcparam,
dbrpcsend

CHAPTER 2 Routines

DB-Library/C Reference Manual 287

dbrettype
Description Determine the datatype of a return parameter value generated by a stored

procedure.

Syntax int dbrettype(dbproc, retnum)

DBPROCESS *dbproc;
int retnum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

retnum
The number of the return parameter value of interest. The first return value
is 1. Values are returned in the same order as the parameters were originally
specified in the stored procedure’s create procedure statement. (Note that
this is not necessarily the same order as specified in the remote procedure
call.) When specifying retnum, non-return parameters do not count. For
example, if the second parameter in a stored procedure is the only return
parameter, its retnum is 1, not 2.

Return value A token value for the datatype of the specified return value.

In a few cases, the token value returned by this routine may not correspond
exactly with the column’s server datatype:

• SYBVARCHAR is returned as SYBCHAR.

• SYBVARBINARY is returned as SYBBINARY.

• SYBDATETIMN is returned as SYBDATETIME.

• SYBMONEYN is returned as SYBMONEY.

• SYBFLTN is returned as SYBFLT8.

• SYBINTN is returned as SYBINT1, SYBINT2, or SYBINT4, depending
on the actual type of the SYBINTN.

If retnum is out of range, -1 is returned.

Usage • dbrettype returns the datatype of a return parameter value generated by a
stored procedure. It is useful in conjunction with remote procedure calls
and execute statements on stored procedures.

dbrettype

288 Open Client

• Transact-SQL stored procedures can return values for specified “return
parameters.” Changes made to the value of a return parameter inside the
stored procedure are then available to the program that called the
procedure. This is analogous to the “pass by reference” facility available
in some programming languages.

For a parameter to function as a return parameter, it must be declared as
such within the stored procedure. The execute statement or remote
procedure call that calls the stored procedure must also indicate that the
parameter should function as a return parameter. In the case of a remote
procedure call, it is the dbrpcparam routine that specifies whether a
parameter is a return parameter.

• When executing a stored procedure, the server returns any parameter
values immediately after returning all other results. Therefore, the
application can call dbrettype only after processing the stored procedure’s
results by calling dbresults, as well as dbnextrow if appropriate. (Note that
a stored procedure can generate several sets of results—one for each select
it contains. Before the application can call dbrettype or any other routines
that process return parameters, it must call dbresults and dbnextrow as
many times as necessary to process all the results.)

• If the stored procedure is invoked with a remote procedure call, the return
parameter values are automatically available to the application. If, on the
other hand, the stored procedure is invoked with an execute statement, the
return parameter values are available only if the command batch
containing the execute statement uses local variables, not constants, for the
return parameters.

• dbrettype actually returns an integer token value for the datatype
(SYBCHAR, SYBFLT8, and so on). To convert the token value into a
readable token string, use dbprtype. See the dbprtype reference page for a
list of all token values and their equivalent token strings.

• For a list of server datatypes, see Types on page 412.

• The routines return additional information about return parameter values:

• dbnumrets returns the total number of return parameter values.

• dbretdata returns a pointer to a parameter value.

• dbretlen returns the length of a parameter value.

• dbretname returns the name of a parameter value.

• dbconvert converts the value to another datatype, if necessary.

CHAPTER 2 Routines

DB-Library/C Reference Manual 289

• For an example of this routine, see the dbretdata reference page.

See also dbnextrow, dbnumrets, dbprtype, dbresults, dbretdata, dbretlen, dbretname,
dbrpcinit, dbrpcparam

DBROWS
Description Indicate whether the current command actually returned rows.

Syntax RETCODE DBROWS(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL, indicating whether the current command returned rows.

Usage • This macro determines whether the command currently being processed
by dbresults returned any rows. The application can call it after dbresults
returns SUCCEED.

• The application must not call DBROWS after dbnextrow. The macro may
return the wrong result at that time.

• The application can use DBROWS to determine whether it needs to call
dbnextrow to process result rows. If DBROWS returns FAIL, the
application can skip the dbnextrow calls.

• The DBCMDROW macro determines whether the current command is one
that can return rows (that is, a Transact-SQL select statement or an execute
on a stored procedure containing a select).

See also DBCMDROW, dbnextrow, dbresults, DBROWTYPE

DBROWTYPE
Description Return the type of the current row.

dbrpcinit

290 Open Client

Syntax STATUS DBROWTYPE(dbproc)

 DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value Three different types of values can be returned:

• If the current row is a regular row, REG_ROW is returned.

• If the current row is a compute row, the computeid of the row is returned.
(See the dbaltbind reference page for information on the computeid.)

• If no rows have been read, or if the routine failed for any reason,
NO_MORE_ROWS is returned.

Usage • This macro tells you the type (regular or compute) of the current row.
Usually you already know this, since dbnextrow also returns the row type.

See also dbnextrow

dbrpcinit
Description Initialize a remote procedure call.

Syntax RETCODE dbrpcinit(dbproc, rpcname, options)

DBPROCESS *dbproc;
char *rpcname;
DBSMALLINT options;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

rpcname
A pointer to the name of the stored procedure to be invoked.

CHAPTER 2 Routines

DB-Library/C Reference Manual 291

options
A 2-byte bitmask of RPC options. So far, the only option available is
DBRPCRECOMPILE, which causes the stored procedure to be recompiled
before it is executed.

Return value SUCCEED or FAIL.

Usage • An application can call a stored procedure in two ways: by executing a
command buffer containing a Transact-SQL execute statement or by
making a remote procedure call (RPC).

• Remote procedure calls have a few advantages over execute statements:

• An RPC passes the stored procedure’s parameters in their native
datatypes, in contrast to the execute statement, which passes
parameters as ASCII characters. Therefore, the RPC method is faster
and usually more compact than the execute statement, because it does
not require either the application program or the server to convert
between native datatypes and their ASCII equivalents.

• It is simpler and faster to accommodate stored procedure return
parameters with an RPC, instead of an execute statement. With an
RPC, the return parameters are automatically available to the
application. (Note, however, that a return parameter must be specified
as such when it is originally added to the RPC through the dbrpcparam
routine.) If, on the other hand, a stored procedure is called with an
execute statement, the return parameter values are available only if
the command batch containing the execute statement uses local
variables, not constants, as the return parameters. This involves
additional parsing each time the command batch is executed.

• To make a remote procedure call, first call dbrpcinit to specify the stored
procedure that is to be invoked. Then call dbrpcparam once for each of the
stored procedure’s parameters. Finally, call dbrpcsend to signify the end of
the parameter list. This causes the server to begin executing the specified
procedure. You can then call dbsqlok, dbresults, and dbnextrow to process
the stored procedure’s results. (Note that you will need to call dbresults
multiple times if the stored procedure contains more than one select
statement.) After all of the stored procedure’s results have been processed,
you can call the routines that process return parameters and status
numbers, such as dbretdata and dbretstatus.

• If the procedure being executed resides on a server other than the one to
which the application is directly connected, commands executed within
the procedure cannot be rolled back.

dbrpcparam

292 Open Client

• For an example of a remote procedure call, see the sample program
example8.c.

See also dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcparam, dbrpcsend, dbsqlok

dbrpcparam
Description Add a parameter to a remote procedure call.

Syntax RETCODE dbrpcparam(dbproc, paramname, status, type,
 maxlen, datalen, value)

DBPROCESS *dbproc;
char *paramname;
BYTE status;
int type;
DBINT maxlen;
DBINT datalen;
BYTE *value;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

paramname
A pointer to the name of the parameter to be invoked. This name must begin
with the “@” character, which prefixes all stored procedure parameter
names. As in the Transact-SQL execute statement, the name is optional. If it
is not used, it should be specified as NULL. In that case, the order of the
dbrpcparam calls determines the parameter to which each refers.

status
A 1-byte bitmask of RPC-parameter options. So far, the only option
available is DBRPCRETURN, which signifies that the application program
would like this parameter used as a return parameter.

CHAPTER 2 Routines

DB-Library/C Reference Manual 293

type
A symbolic constant indicating the datatype of the parameter (for example,
SYBINT1, SYBCHAR, and so on). Parameter values should be sent to the
server in a datatype that matches the Adaptive Server Enterprise datatype
with which the corresponding stored procedure parameter was defined—see
Types on page 412 for a list of type constants and the corresponding
Adaptive Server Enterprise datatypes.

maxlen
For return parameters, this is the maximum desired byte length for the RPC
parameter value returned from the stored procedure. maxlen is relevant only
for values whose datatypes are not fixed in length—that is, char, text, binary,
and image values. If this parameter does not apply (that is, if the type is a
fixed length datatype such as SYBINT2) or if you do not care about
restricting the lengths of return parameters, set maxlen to -1. maxlen should
also be set to -1 for parameters not designated as return parameters.

datalen
The length, in bytes, of the RPC parameter to pass to the stored procedure.
This length should not count any null terminator.

If type is SYBCHAR, SYBVARCHAR, SYBBINARY, SYBVARBINARY,
SYBBOUNDARY, or SYBSENSITIVITY, datalen must be specified.
Passing datalen as -1 for any of these datatypes results in the DBPROCESS
referenced by dbproc being marked as “dead,” or unusable.

If type is a fixed length datatype, for example, SYBINT2, pass datalen as -1.

If the value of the RPC parameter is NULL, pass datalen as 0, even if type
is a fixed-length datatype.

value
A pointer to the RPC parameter itself. If datalen is 0, this pointer will be
ignored and treated as NULL. Note that DB-Library does not copy *value
into its internal buffer space until the application calls dbrpcsend. An
application must not write over *value until after it has called dbrpcsend.

The value of type indicates the datatype of *value. See Types on page 412.
For types that have no C equivalent, such as SYBDATETIME,
SYBMONEY, SYBNUMERIC, or SYBDECIMAL, use dbconvert_ps to
initialize *value.

Note An application must not write over *value until after it has called
dbrpcsend to send the remote procedure call to the server. This is a functional
change from previous versions of DB-Library.

dbrpcsend

294 Open Client

Return value SUCCEED or FAIL.

Usage • An application can call a stored procedure in two ways: by executing a
command buffer containing a Transact-SQL execute statement or by
making a remote procedure call (RPC). See the reference page for
dbrpcinit for a discussion of the differences between these techniques.

• To make a remote procedure call, first call dbrpcinit to specify the stored
procedure that is to be invoked. Then call dbrpcparam once for each of the
stored procedure’s parameters. Finally, call dbrpcsend to signify the end of
the parameter list. This causes the server to begin executing the specified
procedure. You can then call dbsqlok, dbresults, and dbnextrow to process
the stored procedure’s results. (Note that you will need to call dbresults
multiple times if the stored procedure contains more than one select
statement.) After all of the stored procedure’s results have been processed,
you can call the routines that process return parameters and status
numbers, such as dbretdata and dbretstatus.

• If type is SYBCHAR, SYBVARCHAR, SYBBINARY,
SYBVARBINARY, SYBBOUNDARY, and SYBSENSITIVITY, datalen
must be specified. Passing datalen as -1 for any of these datatypes results
in the DBPROCESS referenced by dbproc being marked as “dead,” or
unusable.

• If type is SYBNUMERIC or SYBDECIMAL, use dbconvert_ps to
initialize the DBNUMERIC or DBDECIMAL value in *value and specify
its precision and scale.

• If the procedure being executed resides on a server other than the one to
which the application is directly connected, commands executed within
the procedure cannot be rolled back.

• For an example of a remote procedure call, see the sample program
example8.c.

See also dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcinit, dbrpcsend, dbsqlok

dbrpcsend
Description Signal the end of a remote procedure call.

Syntax RETCODE dbrpcsend(dbproc)

DBPROCESS *dbproc;

CHAPTER 2 Routines

DB-Library/C Reference Manual 295

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

Return value SUCCEED or FAIL.

Usage • An application can call a stored procedure in two ways: by executing a
command buffer containing a Transact-SQL execute statement or by
making a remote procedure call (RPC). See the reference page for
dbrpcinit for a discussion of the differences between these techniques.

• To make a remote procedure call, first call dbrpcinit to specify the stored
procedure that is to be invoked. Then call dbrpcparam once for each of the
stored procedure’s parameters. Finally, call dbrpcsend to signify the end of
the parameter list. This causes the server to begin executing the specified
procedure. You can then call dbsqlok, dbresults, and dbnextrow to process
the stored procedure’s results. (Note that you will need to call dbresults
multiple times if the stored procedure contains more than one select
statement.) After all of the stored procedure’s results have been processed
you can call the routines that process return parameters and status
numbers, such as dbretdata and dbretstatus.

• If the procedure being executed resides on a server other than the one to
which the application is directly connected, commands executed within
the procedure cannot be rolled back.

• For an example of a remote procedure call, see the sample program
example8.c.

See also dbnextrow, dbresults, dbretdata, dbretstatus, dbrpcinit, dbrpcparam, dbsqlok

dbrpwclr
Description Clear all remote passwords from the LOGINREC structure.

Syntax void dbrpwclr(loginrec)

LOGINREC *loginrec;

Parameters loginrec
A pointer to a LOGINREC structure. This pointer will serve as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

dbrpwset

296 Open Client

Return value None.

Usage • A Transact-SQL command batch or stored procedure running on one
server may call a stored procedure located on another server. To
accomplish this server-to-server communication, the first server,
connected to the application through dbopen, actually logs into the second,
remote server.

dbrpwset allows the application to specify the password to be used when
the first server attempts to call the stored procedure on the remote server.
Multiple passwords may be specified, one for each server that the first
server might need to log in to.

• A single LOGINREC can be used repeatedly, in successive dbopen calls
to different servers. dbrpwclr allows the application to remove any remote
password information currently in the LOGINREC, so that successive
calls to dbopen can contain different remote password information
(specified with dbrpwset).

See also dblogin, dbopen, dbrpwset, DBSETLAPP, DBSETLHOST, DBSETLPWD,
DBSETLUSER

dbrpwset
Description Add a remote password to the LOGINREC structure.

Syntax RETCODE dbrpwset(loginrec, srvname, password, pwlen)

LOGINREC *loginrec;
char *srvname;
char *password;
int pwlen;

Parameters loginrec
A pointer to a LOGINREC structure. This pointer will serve as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

srvname
The name of a server. A server’s name is stored in the srvname column of
its sysservers system table. When the first server calls a stored procedure
located on the server designated by srvname, it will use the specified
password to log in. If srvname is NULL, the specified password will be
considered a “universal” password, to be used with any server that does not
have a password explicitly specified for it.

CHAPTER 2 Routines

DB-Library/C Reference Manual 297

password
The password that the first server will use to log in to the specified server.

pwlen
The length of the password in bytes.

Return value SUCCEED or FAIL.

This routine may fail if the addition of the specified password would overflow
the LOGINREC’s remote password buffer. (The remote password buffer is 255
bytes long. Each password’s entry in the buffer consists of the password itself,
the associated server name, and 2 extra bytes.)

Usage • A Transact-SQL command batch or stored procedure running on one
server may call a stored procedure located on another server. To
accomplish this server-to-server communication, the first server,
connected to the application through dbopen, actually logs into the second,
remote server and performs a remote procedure call.

dbrpwset allows the application to specify the password to be used when
the first server attempts to call the stored procedure on the remote server.
Multiple passwords may be specified, one for each server that the first
server might need to log in to.

• If the application has not specified a remote password for a particular
server the password defaults to the one set with DBSETLPWD (or a null
value, if DBSETLPWD has not been called). This behavior may be fine if
the application’s user has the same password on multiple servers.

• dbrpwclr clears all remote passwords from the LOGINREC.

See also dblogin, dbopen, dbrpwclr, DBSETLAPP, DBSETLHOST, DBSETLPWD,
DBSETLUSER

dbsafestr
Description Double the quotes in a character string.

Syntax RETCODE dbsafestr(dbproc, src, srclen, dest, destlen,
 quotetype)

DBPROCESS *dbproc;
char *src;
DBINT srclen;
char *dest;

dbsafestr

298 Open Client

DBINT destlen;
int quotetype;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

src
A pointer to the original string.

srclen
The length of src, in bytes. If srclen is -1, src is assumed to be null-
terminated.

dest
A pointer to a programmer-supplied buffer to contain the resulting string.
dest must be large enough for the resulting string plus a null terminator.

destlen
The length of the programmer-supplied buffer to contain the resulting string.
If destlen is -1, dest is assumed to be large enough to hold the resulting
string.

quotetype
The type of quotes to double. Table 2-24 lists the possible values for
quotetype.

Table 2-24: Values for quotetype

Return value SUCCEED or FAIL.

dbsafestr fails if the resulting string is too large for dest, or if an invalid
quotetype is specified.

Usage • dbsafestr doubles the single and/or double quotes found in a character
string. This is useful when specifying literal quotes within a character
string.

See also dbcmd, dbfcmd

Value of
quotetype dbsafestr

DBSINGLE Doubles all single quotes (’) in src

DBDOUBLE Doubles all double quotes (") in src

DBBOTH Doubles all single and double quotes in src

CHAPTER 2 Routines

DB-Library/C Reference Manual 299

dbsechandle
Description Install user functions to handle secure logins.

Syntax RETCODE *dbsechandle(type, handler)

DBINT type;
INTFUNCPTR (*handler)();

Parameters type
An integer variable with one of the symbolic values shown in Table 2-25.

Table 2-25: Values for type (dbsechandle)

handler
A pointer to the user function that DB-Library will call whenever the
corresponding type of secure login needs to be handled.

If handler is NULL and type is DBENCRYPT, DB-Library will use its
default encryption handler.

If handler is NULL and type is DBLABELS, dbsechandle uninstalls any
current label handler.

Return value SUCCEED or FAIL.

Usage • dbsechandle installs user functions to handle secure logins.

• An application can use dbsechandle to install functions to handle two
types of secure logins:

• Encrypted password secure logins

In this type of secure login, the server provides the client with a key.
The client uses the key to encrypt a password, which it then returns to
the server.

• Security label secure logins

In this type of secure login, the server asks the client for identifying
security labels, which the client then provides.

Encrypted password secure logins

• If type is DBENCRYPT, dbsechandle installs the function that DB-Library
will call when encrypting user passwords.

Value of type dbsechandle

DBENCRYPT Installs a function to handle password encryption

DBLABELS Installs a function to handle login security labels

dbsechandle

300 Open Client

• DB-Library will perform password encryption only if DBSETLENCRYPT
has been called prior to calling dbopen.

• DB-Library will call its default encryption handler if a user function has
not been installed.

• Typically, a user function does not need to be installed for password
encryption. This is because DB-Library’s default encryption handler
allows an application to perform password encryption when connecting to
an Adaptive Server Enterprise.

• A user-defined encryption handler should be installed by applications that
are gateways. The encryption handler will be responsible for taking the
encryption key returned by the remote server, passing it back to the client,
reading the encrypted password from the client, and returning the
encrypted password to DB-Library so that DB-Library can pass it on to the
remote server.

• An encryption handler should be declared as shown in the example below.
Encryption handlers on the Windows platform must be declared with
CS_PUBLIC. For portability, callback handlers on other platforms should
be declared CS_PUBLIC as well. Here is a sample declaration:

RETCODE CS_PUBLIC encryption_handler(dbproc, pwd,
 pwdlen, enc_key, keylen, outbuf, buflen, outlen)
 DBPROCESS *dbproc;
 BYTE *pwd;
 DBINT pwdlen;
 BYTE *enc_key;
 DBINT keylen;
 BYTE *outbuf;
 DBINT buflen;
 DBINT *outlen;

where:

• dbproc is the DBPROCESS.

• pwd is the user password to be encrypted.

• pwdlen is the length of the user’s password.

• enc_key is the key to be used during encryption.

• keylen is the length of the encryption key.

• outbuf is a buffer in which the callback can place the encrypted
password. This buffer will be allocated and freed by DB-Library.

• buflen is the length of the output buffer.

CHAPTER 2 Routines

DB-Library/C Reference Manual 301

• outlen is a pointer to a DBINT. The encryption handler should set
*outlen to the length of the encrypted password.

• An encryption handler should return SUCCEED to indicate that the
password was encrypted successfully. If the encryption handler returns a
value other than SUCCEED, DB-Library will abort the connection
attempt.

Security label secure logins

• If type is DBLABELS, dbsechandle installs a function that DB-Library
will call to get login security labels.

• DB-Library will send login security labels only if DBSETLABELLED has
been called prior to calling dbopen.

• There are two ways for an application to define security labels:

• The application can call dbsetsecurity one time for each label it wants
to define. Most applications will use this method.

• The application can call dbsechandle to install a user-supplied
function to generate security labels. Typically, only gateway
applications will use this method.

If an application uses both methods, the labels defined through
dbsetsecurity and the labels generated by the user-supplied function are
sent to the server at the same time.

• DB-Library calls an application’s label handler during the connection
process, in response to a server request for login security labels. Each time
it is called, the label handler returns a single label. DB-Library sends these
labels, together with any labels previously defined using dbsetsecurity, to
the server.

• DB-Library does not have a default label handler.

• A user-defined label handler should be installed by applications that are
gateways. The label handler will be responsible for reading the client’s
login security labels and passing them on to DB-Library so that DB-
Library can pass them on to the remote server.

• A label handler should be declared as shown in the example below. Label
handlers on the Windows platform must be declared with CS_PUBLIC.
For portability, callback handlers on other platforms should be declared
CS_PUBLIC as well. Here is a sample declaration:

RETCODE CS_PUBLIC label_handler(dbproc, namebuf,
nbuflen, valuebuf, vbuflen, namelen, valuelen)

dbsechandle

302 Open Client

 DBPROCESS *dbproc;
 DBCHAR *namebuf;
 DBINT nbuflen;
 DBCHAR *valuebuf;
 DBINT vbuflen;
 DBINT *namelen;
 DBINT *valuelen;

where:

• dbproc is the DBPROCESS.

• namebuf is a buffer in which the handler can place the name of the
login security label. This buffer is allocated and freed by DB-Library.

• nbuflen is the length of the namebuf buffer.

• valuebuf is a buffer in which the handler can place the value of the
login security label. This buffer is allocated and freed by DB-Library.

• vbuflen is the length of the valuebuf buffer.

• namelen is a pointer to a DBINT. The label handler should set
*namelen to the length of the label name placed in namebuf.

• valuelen is a pointer to a DBINT. The label handler should set
*valuelen to the length of the label value placed in valuebuf.

• Table 2-26 lists the return values that are legal for a security label handler.
A security label handler must return one of these values.

Table 2-26: Return values for security label handlers

See also DBSETLENCRYPT, dbopen.

Label handler
 return value Indicates

DBMORELABEL The label handler has set the name and value of a login security
label.

DB-Library should call the label handler again to get an
additional label.

DBENDLABEL The label handler has set the name and value of a login security
label.

DB-Library should not call the label handler again.

DBERRLABEL A label handler error has occurred. DB-Library should abort
the connection attempt.

CHAPTER 2 Routines

DB-Library/C Reference Manual 303

dbsendpassthru
Description Send a TDS packet to a server.

Syntax RETCODE dbsendpassthru(dbproc, send_bufp)

 DBPROCESS *dbproc;
 DBVOIDPTR send_bufp;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

send_bufp
A pointer to a buffer containing the TDS packet to be sent to the server. A
packet has a default size of 512 bytes. This size may be changed using
DBSETLPACKET.

Return value DB_PASSTHRU_MORE, DB_PASSTHRU_EOM, or FAIL.

Usage • dbsendpassthru sends a TDS (Tabular Data Stream) packet to a server.

• TDS is an application protocol used for the transfer of requests and request
results between clients and servers. Under ordinary circumstances, a DB-
Library/C application does not have to deal directly with TDS, because
DB-Library/C manages the data stream.

• dbrecvpassthru and dbsendpassthru are useful in gateway applications.
When an application serves as the intermediary between two servers, it can
use these routines to pass the TDS stream from one server to the other,
eliminating the process of interpreting the information and re-encoding it.

• dbsendpassthru sends a packet of bytes from the buffer to which send_bufp
points. Most commonly, send_bufp will be *recv_bufp as returned by
dbrecvpassthru. send_bufp may also be the address of a user-allocated
buffer containing the packet to be sent.

• A packet has a default size of 512 bytes. An application can change its
packet size using DBSETLPACKET. See the dbgetpacket and
DBSETLPACKET reference pages.

• dbsendpassthru returns DB_PASSTHRU_EOM if the TDS packet in the
buffer is marked as EOM (End Of Message). If the TDS packet is not the
last in the stream, dbsendpassthru returns DB_PASSTHRU_MORE.

dbsendpassthru

304 Open Client

• A DBPROCESS connection that is used for a dbsendpassthru operation
cannot be used for any other DB-Library/C function until
DB_PASSTHRU_EOM is received.

• This is a code fragment using dbsendpassthru:

/*
** The following code fragment illustrates the
** use of dbsendpassthru() in an Open Server
** gateway application. It will continually get
** packets from a client, and pass them through
** to the remote server.
**
** The routine srv_recvpassthru() is the Open
** Server counterpart required to complete this
** passthru operation.
*/

DBPROCESS *dbproc;
SRV_PROC *srvproc;
int ret;
BYTE *packet;
while(1)
 {
 ret = srv_recvpassthru(srvproc, &packet,
 (int *)NULL);

 if(ret == SRV_S_PASSTHRU_FAIL)
 {
 fprintf(stderr, "ERROR - \
 srv_recvpassthru failed in \
 lang_execute.\n");
 exit();
 }
 /*
 ** Now send the packet to the remote server
 */
 if(dbsendpassthru(dbproc, packet) == FAIL)
 {
 fprintf(stderr, "ERROR - dbsendpassthru\
 failed in lang_execute.\n");
 exit();
 }
 /*
 ** We’ve sent the packet, so let’s see if
 ** there’s any more.
 */
 if(ret == SRV_S_PASSTHRU_MORE)

CHAPTER 2 Routines

DB-Library/C Reference Manual 305

 continue;
 else
 break;
 }

See also dbrecvpassthru

dbservcharset
Description Get the name of the server character set.

Syntax char *dbservcharset(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library/C uses to manage communications and data between the front end
and the server.

Return value A pointer to the null-terminated name of the server’s character set, or NULL in
case of error.

Usage • dbservcharset returns the name of the server’s character set.

• DB-Library/C clients can use a different character set than the server or
servers to which they are connected. If a client and server are using
different character sets, and the server supports character translation for
the client’s character set, it will perform all conversions to and from its
own character set when communicating with the client.

• An application can inform the server what character set it is using
DBSETLCHARSET.

• To determine if the server is performing character set translations, an
application can call dbcharsetconv.

• To get the name of the client character set, an application can call
dbgetcharset.

See also dbcharsetconv, dbgetcharset, DBSETLCHARSET

dbsetavail

306 Open Client

dbsetavail
Description Marks a DBPROCESS as being available for general use.

Syntax void dbsetavail(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value None.

Usage This routine marks the DBPROCESS as being available for general use. Any
subsequent calls to DBISAVAIL will return “TRUE”, until some use is made of
the DBPROCESS. Many DB-Library routines automatically set the
DBPROCESS to “not available.” This is useful when many different parts of a
program are attempting to share a single DBPROCESS.

See also DBISAVAIL

dbsetbusy
Description Call a user-supplied function when DB-Library is reading from the server.

Syntax void dbsetbusy(dbproc, busyfunc)

DBPROCESS *dbproc;
int *(*busyfunc)())();

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

busyfunc
The user-supplied function that DB-Library will call whenever it accesses
the server. DB-Library calls busyfunc() with a single parameter—a pointer
to the DBPROCESS from the dbsetbusy call.

busyfunc() returns a pointer to a function that returns an integer.

CHAPTER 2 Routines

DB-Library/C Reference Manual 307

Return value None.

Usage • This routine associates a user-supplied function with the specified dbproc.
The user-supplied function will be automatically called whenever DB-
Library is reading or waiting to read output from the server. For example,
an application may want to print a message whenever the server is
accessed. dbsetbusy will cause the user-supplied function busyfunc() to be
called in this case.

• Similarly, dbsetidle may also be used to associate a user-supplied function,
idlefunc(), with a dbproc. idlefunc() will be automatically called whenever
DB-Library has finished reading output from the server.

• The server sends result data to the application in packets of 512 bytes. (The
final packet in a set of results may be less than 512 bytes.) DB-Library
calls busyfunc() at the beginning of each packet and idlefunc() at the end
of each packet. If the output from the server spans multiple packets,
busyfunc() and idlefunc() will be called multiple times.

• Here is an example of defining and installing busyfunc() and idlefunc():

Note The application functions busyfunc() and idlefunc() are callback
event handlers and must be declared as CS_PUBLIC for the Windows
platform. For portability, callback handlers on other platforms should be
declared CS_PUBLIC as well.

 /*
 ** busyfunc returns a pointer to a function that
 ** returns an integer.
 */
 int (*busyfunc())();
 void idlefunc();

 int counterfunc();
 ...

 main()
 {
 DBPROCESS *dbproc;
 ...

 dbproc = dbopen(login, NULL);

 /*
 ** Now that we have a DBPROCESS, install the
 ** busy-function and the idle-function.
 */
 dbsetbusy(dbproc, busyfunc);

dbsetbusy

308 Open Client

 dbsetidle(dbproc, idlefunc);

 dbcmd(dbproc, "select * from sysdatabases");
dbcmd(dbproc, " select * from sysobjects");

 dbsqlexec(dbproc);

 /*
 ** DB-Library calls busyfunc() for the first time
 ** during dbsqlexec(). Depending on the size of the
 ** results, it may call busyfunc() again during
 ** processing of the results.
 */

 while (dbresults(dbproc) != NO_MORE_RESULTS)
 dbprrow(dbproc);

 /*
 ** DB-Library calls idlefunc() each time a packet
 ** of results has been received. Depending on the
 ** size of the results, it may call idlefunc()
 ** multiple times during processing of the results.
 */
 ...
 }

 int CS_PUBLIC (*busyfunc(dbproc))()
 DBPROCESS dbproc;
 {
 printf("Waiting for data...\n");

 return(counterfunc);
 }

 void CS_PUBLIC idlefunc(procptr, dbproc)

 /*
 ** idlefunc’s first parameter is a pointer to a
 ** routine that returns an integer. This is the same
 ** pointer that busyfunc returns.
 */
 int (*procptr)();

 DBPROCESS *dbproc;
 {
 int count;

 printf("Data is ready.\n");
 count = (*procptr)();

 printf ("Counterfunc has been called %d %s.\n",
 count, (count == 1 ? "time" : "times"));

CHAPTER 2 Routines

DB-Library/C Reference Manual 309

 }

 int counterfunc()
 {
 static int counter = 0;

 return(++counter);
 }

See also dbsetidle

dbsetconnect
Description Specify server connection information to use instead of directory services.

Syntax RETCODE dbsetconnect(service_type, net_type, net_name, machine_name,
port)

char *service_type;
char *net_type;
char *net_name;
char *machine_name;
char *port;

Parameters service_type
The type of connection. Default values are:

• “master” specifies a master line, which is used by server applications to
listen for client queries.

• “query” specifies a query line, which is used by client applications to
find servers.

net_type
The name of the network protocol. Valid values are:

• “tcp” for TCP/IP – all UNIX platforms

• “decnet” for DECnet

net_name
Descriptor of the network. Open Client and Open Server do not currently
use net_name; it is a placeholder should Sybase need to define this
information in the future. For TCP/IP networks, the net_name is set to
“ether.”

dbsetdefcharset

310 Open Client

machine_name
The network name of the node, or machine, that the server is running on. The
maximum number of characters for machine_name depends on the protocol
specified in the entry:

• For TCP/IP, the maximum is 32.

• For DECnet, the maximum is 6.

Use the /bin/hostname command on UNIX platforms to determine the
network name of the machine you are logged in to.

port
Port used by the server to receive queries. The TCP/IP and DECnet
protocols specify this element differently:

• TCP/IP: Registered port numbers range from 1024 to 49151. Sybase
recommends to use a port number from this range.

• DECnet: Valid object numbers range from 128 to 253. Object names are
also valid.

Use the netstat command to check which port numbers are in use.

Return value SUCCEED or FAIL.

Usage • This routine lets the application specify connection information such as
service type, network protocol type, network name of the server, server
name, and port number required to connect to the server. This connection
information is used for every subsequent call to dbopen.

• If dbsetconnect is used, DSQUERY and normal directory services lookup
for a server entry is bypassed.

• If dbsetconnect has not been called, the connection information is found
using directory services. The default directory service is the interfaces file
for UNIX and the sql.ini file for Windows. Other directory services may
be specified using the configuration file, libtcl.cfg.

• See the Open Client and Open Server Configuration Guide.

See also dbopen

dbsetdefcharset
Description Set the default character set for an application.

CHAPTER 2 Routines

DB-Library/C Reference Manual 311

Syntax RETCODE dbsetdefcharset(charset)

char *charset;

Parameters charset
The name of the character set to use. charset must be a null-terminated
character string.

Return value SUCCEED or FAIL.

Usage • dbsetdefcharset sets an application’s default character set.

• DB-Library uses a default character set when no DBPROCESS structure
is available or when localization information for a DBPROCESS
structure’s character set cannot be found.

• If an application does not call dbsetdefcharset, its default character set is
the character set of the first DBPROCESS connection opened, or iso_1 if
no DBPROCESS is open.

• If an application plans to call both dbsetdefcharset and dbsetdeflang, it
must call dbsetdefcharset first.

See also dbsetdeflang, dbsetdefcharset, dblogin, dbopen

dbsetdeflang
Description Set the default language name for an application.

Syntax RETCODE dbsetdeflang(language)

char *language;

Parameters language
The name of the national language to use. language must be a null-
terminated character string.

Return value SUCCEED or FAIL.

Usage • dbsetdeflang sets an application’s default national language.

• DB-Library uses a default language when no DBPROCESS structure is
available or when localization information for a DBPROCESS structure’s
language cannot be found.

dbsetidle

312 Open Client

• If an application does not call dbsetdeflang, its default language is the
language of the first DBPROCESS connection opened, or us_english if no
DBPROCESS is open.

See also DBSETLNATLANG

dbsetidle
Description Call a user-supplied function when DB-Library is finished reading from the

server.

Syntax void dbsetidle(dbproc, idlefunc)

DBPROCESS *dbproc;
void (*idlefunc)();

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

idlefunc
The user-supplied function that will be called by DB-Library whenever the
server has finished sending data to the host. DB-Library calls idlefunc() with
two parameters—the return value from busyfunc() (a pointer to a function
that returns an integer) and a pointer to the DBPROCESS from the dbsetidle
call.

 idlefunc() returns void.

Return value None.

Usage • This routine associates a user-supplied function with the specified dbproc.
The user-supplied function will be automatically called when DB-Library
is finished reading or waiting to read a packet of output from the server.
For example, an application may want to print a message whenever the
server has finished sending data to the host. dbsetidle will cause the user-
supplied function idlefunc() to be called in this case.

• Similarly, dbsetbusy may also be used to associate a user-supplied
function, busyfunc(), with a dbproc. busyfunc() will be automatically
called whenever DB-Library is reading or waiting to read a packet of
output from the server.

CHAPTER 2 Routines

DB-Library/C Reference Manual 313

• The server sends result data to the application in packets of 512 bytes. (The
final packet in a set of results may be less than 512 bytes.) DB-Library
calls busyfunc() at the beginning of each packet and idlefunc() at the end
of each packet. If the output from the server spans multiple packets,
busyfunc() and idlefunc() will be called multiple times.

• See the dbsetbusy reference page for an example of defining and installing
busyfunc() and idlefunc().

See also dbsetbusy

dbsetifile
Description Specify the name and location of the Sybase interfaces file.

Syntax void dbsetifile(filename)

char *filename;

Parameters filename
The name of the interfaces file that gets searched during every subsequent
call to dbopen. If this parameter is NULL, DB-Library will revert to the
default file name.

Return value None.

Usage • This routine lets the application specify the name and location of the
interfaces file that will be searched during every subsequent call to
dbopen. The interfaces file contains the name and network address of
every server available on the network.

• If dbsetifile has not been called, a call to dbopen initiates the following
default behavior: DB-Library attempts to use a file named interfaces in the
directory named by the SYBASE environment variable or logical name. If
SYBASE has not been set, DB-Library attempts to use a file called
interfaces in the home directory of the user named “sybase.”

• See the Open Client and Open Server Configuration Guide.

Note On non-UNIX platforms, client applications may use a method to find
server address information that is different from the UNIX interfaces file. See
the Open Client and Open Server Configuration Guide for detailed information
on how clients connect to servers.

dbsetinterrupt

314 Open Client

See also dbopen

dbsetinterrupt
Description Calls user-supplied functions to handle interrupts while waiting on a read from

the server.

Syntax void dbsetinterrupt(dbproc, chkintr, hndlintr)

DBPROCESS *dbproc;
int (*chkintr)();
int (*hndlintr)();

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

chkintr
A pointer to the user function that DB-Library calls to check whether an
interrupt is pending. DB-Library calls it periodically while waiting on a read
from the server. DB-Library calls chkintr() with a single parameter—a
pointer to the DBPROCESS from the dbsetinterrupt call.

chkintr() must return “TRUE” or “FALSE”.

hndlintr
A pointer to the user function that DB-Library calls if an interrupt is
returned. DB-Library calls hndlintr() with a single parameter—a pointer to
the DBPROCESS from the dbsetinterrupt call.

Table 2-27 lists the legal return values of hndlintr:

Table 2-27: Return values for the hndlintr() function

Return value None.

Return value To indicate

INT_EXIT Abort the program. (Note to UNIX programmers: DB-Library
will not leave a core file.

INT_CANCEL Abort the current command batch. Results are not flushed from
the DBPROCESS connection.

INT_CONTINUE Continue to wait for the server response.

CHAPTER 2 Routines

DB-Library/C Reference Manual 315

Usage • DB-Library does non-blocking reads from the server. While waiting for a
read from the server, it calls the chkintr() function to see if an interrupt is
pending. If chkintr() returns “TRUE” and a handler has been installed as
the hndlintr() for dbsetinterrupt, hndlintr() is called. dbsetinterrupt is
provided so that the programmer can substitute alternative interrupt
handling for the time that the host program is waiting on reads from the
server.

• Depending on the return value from hndlintr(), DB-Library performs one
the following actions:

• Sends an attention to the server, causing the server to discontinue
processing (INT_CANCEL). For details, see “Canceling from the
interrupt handler” on page 315.

• Continues reading from the server (INT_CONTINUE).

• Exits the program (INT_EXIT).

Canceling from the interrupt handler

• If hndlintr() returns INT_CANCEL, DB-Library sends an attention token
to the server. This causes the server to discontinue command processing.
The server may send additional results that have already been computed.
When control returns to the mainline code, the mainline code should do
one of the following:

• Flush the results using dbcancel

• Process the results normally

• You cannot call dbcancel in your interrupt handler, because this will cause
output from the server to DB-Library to become out of sync. The steps
below describe a correct method to cancel from the interrupt handler.

• Associate an int_canceled flag with the DBPROCESS structure. Use
dbsetuserdata to install a pointer to the flag in the DBPROCESS, and
dbgetuserdata to get the address of the flag.

• Code hndlintr() to set the int_canceled flag to indicate whether or not
it is returning INT_CANCEL.

• In the mainline code, check the flag before each call to dbresults or
dbnextrow. When the int_canceled flag indicates that hndlintr() has
aborted the server command, the mainline code should call dbcancel
and clear the flag.

dbsetinterrupt

316 Open Client

Example

• Here are example chkintr() and hndlintr() routines:

Note The applications chkintr() and hndlintr() routines are callback
functions and must be declared as CS_PUBLIC for the Windows platform.
For portability, callback handlers on other platforms should be declared
CS_PUBLIC as well.

int CS_PUBLIC chkintr(dbproc)
DBPROCESS *dbproc;
 {
 /*
 ** This routine assumes that the application
 ** sets the global variable
 ** "OS_interrupt_happened" upon catching
 ** an interrupt using some operating system
 ** facility.
 */
 if (OS_interrupt_happened)
 {
 /*
 ** Clear the interrupt flag, for
 ** future use.
 */
 OS_interrupt_happened = FALSE;
 return(TRUE);
 }
 else
 return(FALSE);
 }

int CS_PUBLIC hndlintr(dbproc)
 DBPROCESS *dbproc;
 {
 char response[10];
 DBBOOL *int_canceled;
 /*
 ** We assume that a DBBOOL flag has been
 ** attached to dbproc with dbsetuserdata.
 */
 int_canceled = (DBBOOL *) dbgetuserdata(dbproc);

CHAPTER 2 Routines

DB-Library/C Reference Manual 317

 if (int_canceled == (DBBOOL *)NULL)
 {
 printf(“Fatal Error: no int_cancel flag \
 in the DBPROCESS\n”);
 return(INT_EXIT);
 }
 *int_canceled = FALSE;
 printf("\nAn interrupt has occurred. Do you \
 want to:\n\n");
 printf("\t1) Abort the program\n");
 printf("\t2) Cancel the current query\n");
 printf("\t3) Continue processing the current\
 query’s results\n\n");
 printf("Press 1, 2, or 3, followed by the \
 return key: ");
 gets(response);
 switch(response[0])
 {
 case ’1’:
 return(INT_EXIT);
 break;
 case ’2’:
 *int_canceled = TRUE;
 return(INT_CANCEL);
 break;
 case ’3’:
 return(INT_CONTINUE);
 break;
 default:
 printf("Response not understood. \
 Aborting program.\n");
 return(INT_EXIT);
 break;
 }
 }

See also dbcancel, dbgetuserdata, dbsetuserdata, dbsetbusy, dbsetidle

DBSETLAPP
Description Set the application name in the LOGINREC structure.

Syntax RETCODE DBSETLAPP(loginrec, application)

DBSETLCHARSET

318 Open Client

LOGINREC *loginrec;
char *application;

Parameters loginrec
A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

application
The application name that will be sent to the server. It must be a null-
terminated character string. The maximum length of the string, not including
the null terminator, is 30 characters.

Return value SUCCEED or FAIL.

Usage • This macro sets the application field in the LOGINREC structure. For it to
have any effect, it must be called before dbopen.

• It is not necessary to call this routine. By default, the application name will
be a null value.

• The server uses the application name in its sysprocesses table to help
identify your process. If you set the application name, you will see it if you
query the sysprocesses table in the master database.

See also dblogin, dbopen, DBSETLHOST, DBSETLPWD, DBSETLUSER

DBSETLCHARSET
Description Set the character set in the LOGINREC structure.

Syntax RETCODE DBSETLCHARSET(loginrec, char_set)

LOGINREC *loginrec;
DBCHAR *char_set;

Parameters loginrec
A pointer to a LOGINREC structure to be passed as an argument to dbopen.
LOGINREC structures are obtained using dblogin.

CHAPTER 2 Routines

DB-Library/C Reference Manual 319

char_set
The name of the character set the client will use. char_set must be a null-
terminated string. Default values for char_set include “iso_1” for
ISO-8859-1 (most platforms), “cp850” for Code Page 850 (IBM RS/6000),
and “roman8” for the Roman8 character set (HP platforms).

To indicate that no character set conversion is desired, pass char_set as
NULL.

Return value SUCCEED or FAIL.

Usage • DBSETLCHARSET sets the client character set in a LOGINREC structure.

• DB-Library/C clients may use a different character set than the server or
servers to which they are connected. DBSETLCHARSET is used to inform
the server what character set a client is using.

• Because the LOGINREC is passed as a parameter in the dbopen call that
establishes the client’s connection with a server, DBSETLCHARSET must
be called before dbopen to have any effect.

• The server will perform all conversions to and from its own character set
when communicating with a client using a different character set.

• If no conversion is desired, call DBSETLCHARSET with char_set as
NULL.

See also dbgetcharset, dblogin, dbopen

DBSETLENCRYPT
Description Specify whether or not network password encryption is to be used when

logging into Adaptive Server Enterprise.

Syntax RETCODE DBSETLENCRYPT(loginrec, enable)

LOGINREC *loginrec;
DBBOOL enable;

Parameters loginrec
A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

enable
A boolean value (“true” or “false”) specifying whether or not the server
should request an encrypted password at login time.

DBSETLHOST

320 Open Client

Return value SUCCEED or FAIL.

Usage • DBSETLENCRYPT specifies whether or not network password encryption
is to be used when logging into Adaptive Server Enterprise. If an
application does not call DBSETLENCRYPT, password encryption is not
used.

• Network password encryption provides a protected mechanism for
authenticating a user’s identity.

• If an application specifies that network password encryption is to be used,
then when the application attempts to open a connection:

• No password is sent with the initial connection request. At this time,
the client indicates to the server that encryption is desired.

• The server replies to the connection request with an encryption key.

• DB-Library uses the key to encrypt the user’s password and remote
passwords, if any, and sends the encrypted passwords back to the
server.

• The server uses the key to decrypt the encrypted passwords and either
accepts or rejects the login attempt.

• If password encryption is not specified, then when an application attempts
to open a connection:

• A password is included with the connection request.

• The server either accepts or rejects the login attempt.

See also dbsechandle

DBSETLHOST
Description Set the host name in the LOGINREC structure.

Syntax RETCODE DBSETLHOST(loginrec, hostname)

LOGINREC *loginrec;
char *hostname;

Parameters loginrec
A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

CHAPTER 2 Routines

DB-Library/C Reference Manual 321

hostname
The host name that will be sent to the server. It must be a null-terminated
character string. The maximum length of the string, not including the null
terminator, is 30 characters.

Return value SUCCEED or FAIL.

Usage • This macro sets the host name in the LOGINREC structure. For it to have
any effect, it must be called before dbopen.

• The host name will show up in the sysprocesses table in the master
database.

• It is not necessary to call this routine. If it is not called, DB-Library will
set the default value for the host name. This default value will generally be
a version of the host machine’s name provided by the operating system.

See also dblogin, dbopen, DBSETLAPP, DBSETLPWD, DBSETLUSER

DBSETLMUTUALAUTH
Description Enables or disables mutual authentication of the connection’s security

mechanism.

Syntax RETCODE DBSETLMUTUALAUTH(loginrec, enable)

LOGINREC *loginrec;
DBBOOL *enable;

Parameters loginrec
A pointer to a LOGINREC structure, which is passed as an argument to
dbopen. You can allocate a LOGINREC structure by calling dblogin.

enable
A boolean value (“true” or “false”) specifying whether or not the server
should enable mutual authentication.

Return value SUCCEED or FAIL.

Usage • For DBSETLMUTUALAUTH to take effect, it must be called before
dbopen() and DBSETLNETWORKAUTH must be enabled.

• If DBSETLMUTUALAUTH is not called, mutual authentication is
disabled by default.

See also dblogin, DBSETLNETWORKAUTH, DBSETLSERVERPRINCIPAL

DBSETLNATLANG

322 Open Client

DBSETLNATLANG
Description Set the national language name in the LOGINREC structure.

Syntax RETCODE DBSETLNATLANG(loginrec, language)

LOGINREC *loginrec;
char *language;

Parameters loginrec
A pointer to a LOGINREC structure to be passed as an argument to dbopen.
LOGINREC structures are obtained using dblogin.

language
The name of the national language to use. language must be a null-
terminated character string.

Return value SUCCEED or FAIL.

Usage • This macro sets the user language in the LOGINREC structure. If you
wish to set a particular user language, call DBSETLNATLANG before
dbopen.

• Call DBSETLNATLANG only if you do not wish to use the server’s default
national language.

See also dblogin, dbopen, dbsetdeflang

DBSETLNETWORKAUTH
Description Enables or disables network-based authentication.

Syntax RETCODE DBSETLNETWORKAUTH(loginrec, enable)

LOGINREC *loginrec;
DBBOOL *enable;

Parameters loginrec
A pointer to a LOGINREC structure, is passed as an argument to dbopen.
You can allocate a LOGINREC structure by calling dblogin.

enable
A boolean value (“true” or “false”) specifying whether or not the server
should enable network authentication.

Return value SUCCEED or FAIL.

CHAPTER 2 Routines

DB-Library/C Reference Manual 323

Usage If DBSETLNETWORKAUTH is not called, network authentication is
disabled by default.

See also dblogin, DBSETLMUTUALAUTH, DBSETLSERVERPRINCIPAL

dbsetloginfo
Description Transfer TDS login information from a DBLOGINFO structure to a

LOGINREC structure.

Syntax RETCODE dbsetloginfo(loginrec, loginfo)

LOGINREC *login;
DBLOGINFO *loginfo;

Parameters login
A pointer to a LOGINREC structure. This pointer will be passed as an
argument to dbopen. You can allocate a LOGINREC structure by calling
dblogin.

loginfo
A pointer to a DBLOGINFO structure that contains login parameter
information.

Return value SUCCEED or FAIL.

Usage • dbsetloginfo transfers TDS login information from a DBLOGINFO
structure to a LOGINREC structure. After the information is transferred,
dbsetloginfo frees the DBLOGINFO structure.

• An application needs to call dbsetloginfo only if (1) it is an Open Server
gateway application and (2) it is using TDS passthrough.

• TDS (Tabular Data Stream) is an application protocol used for the transfer
of requests and request results between clients and servers.

• When a client connects directly to a server, the two programs negotiate the
TDS format they will use to send and receive data. When a gateway
application uses TDS passthrough, the application forwards TDS packets
between the client and a remote server without examining or processing
them. For this reason, the remote server and the client must agree on a TDS
format to use.

dbsetloginfo

324 Open Client

• dbsetloginfo is the second of four calls, two of them Server Library calls,
that allow a client and remote server to negotiate a TDS format. The calls,
which can only be made in a SRV_CONNECT event handler, are
described here:

• srv_getloginfo allocates a DBLOGINFO structure and fills it with TDS
information from a client SRV_PROC.

• dbsetloginfo transfers the TDS information retrieved by srv_getloginfo
from the DBLOGINFO structure to a DB-Library/C LOGINREC
structure, and then frees the DBLOGINFO structure. After the
information is transferred, the application can use this LOGINREC
structure in the dbopen call that establishes its connection with the
remote server.

• dbgetloginfo transfers the remote server’s response to the client’s TDS
information from a DBPROCESS structure into a newly-allocated
DBLOGINFO structure.

• srv_setloginfo sends the remote server’s response, retrieved by
dbgetloginfo, to the client, and then frees the DBLOGINFO structure.

• This is an example of a SRV_CONNECT handler preparing a remote
connection for TDS passthrough:

RETCODE connect_handler(srvproc)
SRVPROC *srvproc;
 {
 SYBLOGINFO *loginfo;
 LOGINREC *loginrec;
 DBPROCESS *dbproc;

 /*
 ** Get the TDS login information from the
 ** client SRV_PROC.
 */
 srv_getloginfo(srvproc, &loginfo);

 /* Get a LOGINREC structure */
 loginrec = dblogin();

 /*
 ** Initialize the LOGINREC with the logininfo
 ** from the SRV_PROC.
 */
 dbsetloginfo(loginrec, loginfo);

 /* Connect to the remote server */
 dbproc = dbopen(loginrec, REMOTE_SERVER_NAME)

CHAPTER 2 Routines

DB-Library/C Reference Manual 325

 /*
 ** Get the TDS login response informationfrom
 ** the remote connection.
 */
 dbgetloginfo(dbproc, &loginfo);

 /*
 ** Return the login response information to
 ** the SRV_PROC.
 */
 srv_setloginfo(srvproc, loginfo);

 /* Accept the connection and return */
 srv_senddone(srvproc, 0, 0, 0);
 return(SRV_CONTINUE);
 }

See also dbgetloginfo, dbrecvpassthru, dbsendpassthru

dbsetlogintime
Description Set the number of seconds that DB-Library waits for a server response to a

request for a DBPROCESS connection.

Syntax RETCODE dbsetlogintime(seconds)

int seconds;

Parameters seconds
The timeout value—the number of seconds that DB-Library waits for a
login response before timing out. A timeout value of 0 represents an infinite
timeout period.

Return value SUCCEED or FAIL.

Usage • This routine sets the length of time in seconds that DB-Library will wait
for a login response after calling dbopen. The default timeout value is 60
seconds.

• When a connection attempt is made between a client and a server, there are
two ways in which the connection can fail (assuming that the system is
correctly configured):

• The machine that the server is supposed to be on is running correctly
and the network is running correctly.

DBSETLPACKET

326 Open Client

In this case, if there is no server listening on the specified port, the
machine the server is supposed to be on will signal the client, through
a network error, that the connection cannot be formed. Regardless of
dbsetlogintime, the connection fails.

• The machine that the server is on is down.

In this case, the machine that the server is supposed to be on will not
respond. Because “no response” is not considered to be an error, the
network will not signal the client that an error has occurred. However,
if dbsetlogintime has been called to set a timeout period, a timeout
error will occur when the client fails to receive a response within the
set period.

See also dberrhandle, dbsettime

DBSETLPACKET
Description Set the TDS packet size in an application’s LOGINREC structure.

Syntax RETCODE DBSETLPACKET(login, packet_size)

LOGINREC *login;
short packet_size;

Parameters login
A pointer to the LOGINREC structure to be passed as an argument to
dbopen when logging in to the server. An application can obtain a
LOGINREC structure using dblogin.

packet_size
The packet size being requested, in bytes. The server will set the actual
packet size to a value less than or equal to this requested size.

Return value SUCCEED or FAIL.

Usage • DBSETLPACKET sets the packet size field in an application’s LOGINREC
structure. When the application logs into the server, the server sets the
TDS packet size for that DBPROCESS connection to be equal to or less
than the value of this field. The packet size is set to a value less than the
value of the packet size field if the server is experiencing space
constraints. Otherwise, the packet size will be equal to the value of the
field.

CHAPTER 2 Routines

DB-Library/C Reference Manual 327

• If an application sends or receives large amounts of text or image data, a
packet size larger than the default 512 bytes may improve efficiency, since
it results in fewer network reads and writes.

• To determine the packet size that the server has set, an application can call
dbgetpacket.

• TDS (Tabular Data Stream) is an application protocol used for the transfer
of requests and request results between clients and servers.

• TDS data is sent in fixed-size chunks, called packets. TDS packets have a
default size of 512 bytes. The only way an application can change the TDS
packet size is through DBSETLPACKET. If DBSETLPACKET is not called,
all DBPROCESS connections in an application will use the default size.

• Different DBPROCESS connections in an application may use different
packet sizes. To set different packet sizes for DBPROCESS connections,
an application can either:

• Change the packet size in a single LOGINREC between the dbopen
calls that create the DBPROCESS connections, or

• Set different packet sizes in multiple LOGINREC structures, and use
these different LOGINREC structures when creating the
DBPROCESS connections.

• Because the actual packet size for a DBPROCESS connection is set when
the DBPROCESS is created, calls to DBSETLPACKET will have no effect
on the packet sizes of DBPROCESSes already allocated using dbopen.

See also dblogin, dbopen, dbgetpacket

DBSETLPWD
Description Set the user server password in the LOGINREC structure.

Syntax RETCODE DBSETLPWD(loginrec, password)

LOGINREC *loginrec;
char *password;

Parameters loginrec
A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

DBSETLSERVERPRINCIPAL

328 Open Client

password
The password that will be sent to the server. It must be a null-terminated
character string. The maximum length of the string, not including the null
terminator, is 30 characters.

Return value SUCCEED or FAIL.

Usage • This macro sets the user server password in the LOGINREC structure. For
it to have any effect, it must be called before dbopen.

• By default, the password field of the LOGINREC has a null value.
Therefore, you do not need to call this routine if the password is a null
value.

• DB-Library does not automatically blank out the password in loginrec
after a call to dbopen. Therefore, if you want to minimize the risk of having
a readable password in your DB-Library program, you should set
password to something else after you call dblogin.

See also dblogin, dbopen, DBSETLAPP, DBSETLHOST, DBSETLUSER

DBSETLSERVERPRINCIPAL
Description Sets the server’s principal name in the LOGINREC structure, if required.

Syntax DBSETLSERVERPRINCIPAL(loginrec, name)

LOGINREC *loginrec;
char *name;

Parameters loginrec
A pointer to a LOGINREC structure, which is passed as an argument to
dbopen. You can allocate a LOGINREC structure by calling dblogin.

name
The server’s principal name. The maximum length of the string, not
including the null terminator, is 255 characters.

Return value SUCCEED or FAIL.

Usage • For DBSETLSERVERPRINCIPAL to take effect, it must be called before
dbopen() and DBSETLNETWORKAUTH must be enabled.

• If DBSETLSERVERPRINCIPAL is not called, the server name is set as
the principal name.

See also dblogin, DBSETLMUTUALAUTH, DBSETLNETWORKAUTH

CHAPTER 2 Routines

DB-Library/C Reference Manual 329

DBSETLUSER
Description Set the user name in the LOGINREC structure.

Syntax RETCODE DBSETLUSER(loginrec, username)

LOGINREC *loginrec;
char *username;

Parameters loginrec
A pointer to a LOGINREC structure, which will be passed as an argument
to dbopen. You can allocate a LOGINREC structure by calling dblogin.

username
The user name that will be sent to the server. It must be a null-terminated
character string. The maximum length of the string, not including the null
terminator, is 30 characters. The server will use username to determine who
is attempting the connection. The server usernames are defined in the
syslogins table in the master database.

Return value SUCCEED or FAIL.

Usage • This macro sets the user name in the LOGINREC structure. For it to have
any effect, it must be called before dbopen.

• In most environments, this macro is optional. If it is not called, DB-
Library will generally set the default value for the user name.

Note On UNIX: the user name defaults to the UNIX login name.

On MPE/XL: The user name defaults to the value of the system environment
variable HPUSER.

See also dblogin, dbopen, DBSETLHOST, DBSETLPWD, DBSETLAPP

dbsetmaxprocs
Description Set the maximum number of simultaneously open DBPROCESS structures.

Syntax RETCODE dbsetmaxprocs(maxprocs)

int maxprocs;

dbsetnull

330 Open Client

Parameters maxprocs
The new limit on simultaneously open DBPROCESS structures for this
particular program.

Return value SUCCEED or FAIL.

Usage • A DB-Library program has a maximum number of simultaneously open
DBPROCESS structures. By default, this number is 25. The program may
change this limit by calling dbsetmaxprocs.

• The program may find out what the current limit is by calling
dbgetmaxprocs.

See also dbgetmaxprocs, dbopen

dbsetnull
Description Define substitution values to be used when binding null values.

Syntax RETCODE dbsetnull(dbproc, bindtype, bindlen, bindval)

DBPROCESS *dbproc;
int bindtype;
int bindlen;
BYTE *bindval;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

bindtype
A symbolic value specifying the type of variable binding to which the
substitute value will apply. (See the reference page for dbbind.)

bindlen
The length in bytes of the substitute value you are supplying. DB-Library
ignores it in all cases except CHARBIND and BINARYBIND. All the other
types are either fixed length or have a special terminator or embedded byte-
count that provides the length of the data.

CHAPTER 2 Routines

DB-Library/C Reference Manual 331

bindval
A generic BYTE pointer to the value you want to use as a null substitution
value. dbsetnull makes a copy of the value, so you can free this pointer
anytime after this call.

Return value SUCCEED or FAIL.

dbsetnull returns FAIL if you give it an unknown bindtype. It will also fail if the
specified DBPROCESS is dead.

Usage • The dbbind and dbaltbind routines bind result column values to program
variables. After the application calls them, calls to dbnextrow and dbgetrow
automatically copy result values into the variables to which they are
bound. If the server returns a null value for one of the result columns, DB-
Library automatically places a substitute value into the result variable.

• Each DBPROCESS has a list of substitute values for each of the binding
types. Table 2-28 lists the default substitution values:

dbsetopt

332 Open Client

Table 2-28: Default null substitution values

• dbsetnull lets you provide your own null substitution values. When you
call dbsetnull to change a particular null substitution value, the new value
will remain in force for the specified DBPROCESS until you change it
with another call to dbsetnull.

• The dbconvert routine also uses the current null substitution values when
it needs to set a destination variable to null.

• The dbnullbind routine allows you to associate an indicator variable with a
bound column. DB-Library will set the indicator value to indicate null data
values or conversion errors.

See also dbaltbind, dbbind, dbconvert, dbnullbind, Types on page 412

dbsetopt
Description Set a server or DB-Library option.

Binding type Null substitution value

TINYBIND 0

SMALLBIND 0

INTBIND 0

CHARBIND Empty string (padded with blanks)

STRINGBIND Empty string (padded with blanks, null-terminated)

NTBSTRINGBIND Empty string (null-terminated)

VARYCHARBIND Empty string

BINARYBIND Empty array (padded with zeros)

VARYBINBIND Empty array

DATETIMEBIND 8 bytes of zeros

SMALLDATETIMEBIND 8 bytes of zeros

MONEYBIND $0.00

SMALLMONEYBIND $0.00

FLT8BIND 0.0

REALBIND 0.0

DECIMALBIND 0.0 (with default scale and precision)

NUMERICBIND 0.0 (with default scale and precision)

BOUNDARYBIND Empty string (null-terminated)

SENSITIVITYBIND Empty string (null-terminated)

CHAPTER 2 Routines

DB-Library/C Reference Manual 333

Syntax RETCODE dbsetopt(dbproc, option, char_param,
 int_param)

DBPROCESS *dbproc;
int option;
char *char_param;
int int_param;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server. If dbproc is NULL, the option will be set for all active DBPROCESS
structures.

option
The option that is to be turned on. See Options on page 407 for the list of
options.

char_param
Certain options take parameters. For example, the DBOFFSET option takes
as its parameter the construct for which offsets are to be returned:

dbsetopt(dbproc, DBOFFSET, "compute", -1)

The DBBUFFER option takes as its parameter the number of rows to be
buffered:

dbsetopt(dbproc, DBBUFFER, "500", -1)

char_param must always be a character string enclosed in quotes, even in
the case of a numeric value, as in the DBBUFFER example. If an invalid
parameter is specified for one of the server options, this will be discovered
the next time a command buffer is sent to the server. The dbsqlexec or
dbsqlsend call fails, and DB-Library will invoke the user-installed message
handler. If an invalid parameter is specified for one of the DB-Library
options (DBBUFFER or DBTEXTLIMIT), the dbsetopt call itself fails.

If the option takes no parameters, char_param must be NULL.

int_param
Some options require an additional parameter, int_param, which is the
length of the character string passed as char_param. Currently, only
DBPRCOLSEP, DBPRLINESEP, and DBPRPAD require this parameter.

If int_param is not required, pass it as -1.

Return value SUCCEED or FAIL.

dbsetrow

334 Open Client

dbsetopt fails if char_param is invalid for one of the DB-Library options.
However, an invalid char_param for a server option will not cause dbsetopt to
fail, because such a parameter does not get validated until the command buffer
is sent to the server.

Usage • This routine sets server and DB-Library options. Although server options
may be set and cleared directly through SQL, the application should
instead use dbsetopt and dbclropt to set and clear options. This provides a
uniform interface for setting both server and DB-Library options. It also
allows the application to use the dbisopt function to check the status of an
option.

• dbsetopt does not immediately set the option. The option is set the next
time a command buffer is sent to the server (by invoking dbsqlexec or
dbsqlsend).

• For a list of each option and its default status, see Options on page 407.

See also dbclropt, dbisopt, Options on page 407

dbsetrow
Description Set a buffered row to “current.”

Syntax STATUS dbsetrow(dbproc, row)

DBPROCESS *dbproc;
DBINT row;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

row
An integer representing the row number of the row to make current. Row
number 1 is the first row returned from the server. This is not necessarily the
first row in the row buffer.

Return value MORE_ROWS, NO_MORE_ROWS, or FAIL.

dbsetrow returns:

• MORE_ROWS if it found row in the row buffer, or

CHAPTER 2 Routines

DB-Library/C Reference Manual 335

• NO_MORE_ROWS if it did not find row in the row buffer or if row
buffering is not enabled, or

• FAIL if the dbproc DBPROCESS is dead or not enabled.

Usage • dbsetrow sets a buffered row to “current.” After dbsetrow is called, the
application’s next call to dbnextrow will read this row.

• dbgetrow, another DB-Library/C routine, also sets a specific row in the
row buffer to “current.” However, unlike dbsetrow, dbgetrow reads the
row. Any binding of row data to program variables (as specified with
dbbind and dbaltbind) takes effect.

• dbsetrow has no effect unless the DB-Library/C option DBBUFFER is on.

• Row buffering provides a way to keep a specified number of server result
rows in program memory. Without row buffering, the result row generated
by each new dbnextrow call overwrites the contents of the previous result
row. Row buffering is therefore useful for programs that need to look at
result rows in a non-sequential manner. It does, however, carry a memory
and performance penalty because each row in the buffer must be allocated
and freed individually. Therefore, use it only if you need to. Specifically,
the application should only turn the DBBUFFER option on if it calls
dbgetrow or dbsetrow. Note that row buffering has nothing to do with
network buffering and is a completely independent issue.

• When row buffering is not enabled, the application processes each row as
it reads it from the server by calling dbnextrow repeatedly until it returns
NO_MORE_ROWS. When row buffering is enabled, the application can
use dbsetrow to jump to any row that has already been read from the server
with dbnextrow. Subsequent calls to dbnextrow will cause the application
to read successive rows in the buffer, starting with the row specified by the
row parameter. When dbnextrow reaches the last row in the buffer, it reads
rows from the server again, if there are any. Once the buffer is full,
dbnextrow does not read any more rows from the server until some of the
rows have been cleared from the buffer with dbclrbuf.

• The macro DBFIRSTROW, which returns the number of the first row in the
row buffer, is useful in conjunction with dbsetrow. Thus, the call:

dbsetrow(dbproc, DBFIRSTROW(dbproc))

sets the current row so that the next call to dbnextrow will read the first row
in the buffer.

See also dbclrbuf, DBCURROW, DBFIRSTROW, dbgetrow, DBLASTROW,
dbnextrow, Options on page 407

dbsettime

336 Open Client

dbsettime
Description Set the number of seconds that DB-Library will wait for a server response to a

SQL command.

Syntax RETCODE dbsettime(seconds)

int seconds;

Parameters seconds
The timeout value—the number of seconds that DB-Library waits for a
server response before timing out. A timeout value of 0 represents an infinite
timeout period.

Return value SUCCEED or FAIL.

Usage • This routine sets the length of time in seconds that DB-Library will wait
for a server response during calls to dbsqlexec, dbsqlok, dbresults, and
dbnextrow. The default timeout value is 0, which represents an infinite
timeout period.

• dbsettime can be called at any time during the application—before or after
a call to dbopen. It takes effect immediately upon being called.

• To set a timeout value for calls to dbopen, use dbsetlogintime.

• Note that, after sending a query to the server, dbsqlexec waits until a
response is received or until the timeout period has elapsed. To minimize
the time spent in DB-Library waiting for a response from the server, an
application can instead call dbsqlsend, followed by dbsqlok.

• The program can call DBGETTIME to learn the current timeout value.

• A timeout generates the DB-Library error “SYBETIME.”

See also dberrhandle, DBGETTIME, dbsetlogintime, dbsqlexec, dbsqlok, dbsqlsend

dbsetuserdata
Description Use a DBPROCESS structure to save a pointer to user-allocated data.

Syntax void dbsetuserdata(dbproc, ptr)

DBPROCESS *dbproc;
BYTE *ptr;

CHAPTER 2 Routines

DB-Library/C Reference Manual 337

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

ptr
A generic BYTE pointer to the user’s private data space.

Return value None.

Usage • This routine saves, in a DBPROCESS structure, a pointer to user-allocated
data. The application can access the data later with the dbgetuserdata
routine.

• dbsetuserdata allows the application to associate user data with a
particular DBPROCESS. This avoids the necessity of using global
variables for this purpose. One use for this routine is to handle deadlock,
as shown in the example below. This routine is particularly useful when
the application has multiple DBPROCESS structures.

• The application must allocate the data that ptr points to. DB-Library never
manipulates this data; it merely saves the pointer to it for later use by the
application.

• Here is an example of using this routine to handle deadlock, a situation
which occurs occasionally in high-volume applications. See the Adaptive
Server Enterprise System Administration Guide. This program fragment
sends updates to the server. It reruns the transaction when its message
handler detects deadlock.

 ...
 /*
 ** Deadlock detection:
 ** In the DBPROCESS structure, we save a pointer to
 ** a DBBOOL variable. The message handler sets the
 ** variable when deadlock occurs. The result
 ** processing logic checks the variable and resends
 ** the transaction in case of deadlock.
 */

 /*
 ** Allocate the space for the DBBOOL variable
 ** and save it in the DBPROCESS structure.
 */
 dbsetuserdata(dbproc, malloc(sizeof(DBBOOL)));

 /* Initialize the variable to FALSE */

dbsetuserdata

338 Open Client

 *((DBBOOL *) dbgetuserdata(dbproc)) = FALSE;
 ...
 /* Run queries and check for deadlock */
 deadlock:
 /*
 ** Did we get here using deadlock?
 ** If so, the server has already aborted the
 ** transaction. We’ll just start it again. In a
 ** real application, the deadlock handling may need
 ** to be somewhat more sophisticated. For
 ** instance, you may want to keep a counter and
 ** retry the transaction just a fixed number
 ** of times.
 */
 if (*((DBBOOL *) dbgetuserdata(dbproc)) == TRUE)
 {
 /* Reset the variable to FALSE */
 *((DBBOOL *) dbgetuserdata(dbproc)) = FALSE;
 }
 /* Start the transaction */
 dbcmd(dbproc, "begin transaction ");
 /* Run the first update command */
 dbcmd(dbproc, "update");
 dbsqlexec(dbproc);
 while (dbresults(dbproc) != NO_MORE_RESULTS)
 {
 /* application code */
 }
 /* Did we deadlock? */
 if (*((DBBOOL *) dbgetuserdata(dbproc)) == TRUE)
 goto deadlock;
 /* Run the second update command. */
 dbcmd(dbproc, "update");
 dbsqlexec(dbproc);
 while (dbresults(dbproc) != NO_MORE_RESULTS)
 {
 /* application code */
 }
 /* Did we deadlock? */
 if (*((DBBOOL *) dbgetuserdata(dbproc)) == TRUE)
 goto deadlock;
 /* No deadlock -- Commit the transaction */
 dbcmd(dbproc, "commit transaction");
 dbsqlexec(dbproc);
 dbresults(dbproc);
 ...

CHAPTER 2 Routines

DB-Library/C Reference Manual 339

 /*
 ** SERVERMSGS
 ** This is the server message handler. Assume that
 ** the dbmsghandle() routine installed it earlier in
 ** the program.
 */
 servermsgs(dbproc, msgno, msgstate, severity, msgtext,
 srvname, procname, line)
 DBPROCESS *dbproc;
 DBINT msgno;
 int msgstate;
 int severity;
 char *msgtext;
 char *srvname;
 char *procname;
 DBUSMALLINT line;
 {
 /* Is this a deadlock message? */
 if (msgno == 1205)
 {
 /* Set the deadlock indicator */
 *((DBBOOL *) dbgetuserdata(dbproc)) = TRUE;
 return (0);
 }
 /* Normal message handling code here */
 }

See also dbgetuserdata

dbsetversion
Description Specify a DB-Library version level.

Syntax RETCODE dbsetversion(version)

DBINT version;

Parameters version
The version of DB-Library behavior that the application expects. Table 2-29
lists the symbolic values that are legal for version:

dbspid

340 Open Client

Table 2-29: Values for version (dbsetversion)

Return value SUCCEED or FAIL.

Usage • dbsetversion sets the version of DB-Library behavior that an application
expects. DB-Library will provide the behavior requested, regardless of the
actual version of DB-Library in use.

• An application is not required to call dbsetversion. However, if
dbsetversion is not called, DB-Library provides version 4.6-level behavior.

• If an application calls dbsetversion, it must do so before calling any other
DB-Library routine, with the exception of dbinit.

• If you call dbsetversion more than once, an error occurs.

Note

• You can set the DB-Library version level at runtime using the
SYBOCS_DBVERSION environment variable. When set, this variable
changes the application code to use the DB-Library value stored in this
variable as the version level.

• If this environment variable is not defined, DB-Library provides 4.6-level
behavior or uses the version level requested by an explicit dbsetversion
call. If the environment variable is defined and dbsetversion is also called,
the dbsetversion overrides the environment variable.

See also dbinit

dbspid
Description Get the server process ID for the specified DBPROCESS.

Syntax int dbspid(dbproc)

DBPROCESS *dbproc;

Value of version Indicates Features supported

DBVERSION_46 4.6 behavior RPCs, registered procedures, remote
procedure calls, text and image datatypes.

This is the default version of DB-Library.

DBVERSION_100 10.0 behavior numeric and decimal datatypes.

CHAPTER 2 Routines

DB-Library/C Reference Manual 341

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value dbproc’s server process ID.

Usage • dbspid yields the server process ID of the specified DBPROCESS. The
process ID appears in the server’s sysprocesses table.

• You can use the server process ID to make queries against the
sysprocesses table.

See also dbopen

dbspr1row
Description Place one row of server query results into a buffer.

Syntax RETCODE dbspr1row(dbproc, buffer, buf_len)

DBPROCESS *dbproc;
char *buffer;
DBINT buf_len;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

buffer
A pointer to a character buffer to contain the dbspr1row results.

buf_len
The length of buffer, including its null terminator.

Return value SUCCEED or FAIL.

Note If an error occurs, the contents of *buffer are undefined.

Usage • dbspr1row fills a programmer-supplied buffer with a null-terminated
character string containing one server query results row.

dbspr1row

342 Open Client

• dbspr1row is useful when displaying data for debugging and writing
applications that scroll data displays.

• dbspr1row gives programmers greater control over data display than
dbprrow. dbprrow always writes its output to the display device, while
dbspr1row writes its output to a buffer, which the programmer may then
display at whatever time or location is desired.

• To pad results data to its maximum converted length, specify a pad
character through the DB-Library option DBPRPAD. The pad character
will be appended to each column’s data. The maximum converted column
length is equal to the longest possible string that could be the column’s
displayable data, or the length of the column’s name, whichever is greater.
See Options on page 407 for more details on the DBPRPAD option.

• You can specify the column separator string using the DB-Library option
DBPRCOLSEP. The column separator will be added to the end of each
converted column’s data except the last. The default separator is an ASCII
0x20 (space). See Options on page 407 for more details on the
DBPRCOLSEP option.

• You can specify the maximum number of characters to be placed on one
line using the DB-Library option DBPRLINELEN.

• You can specify the line separator string using the DB-Library option
DBPRLINESEP. The default line separator is a new line (ASCII 0x0a or
0x0d, depending on the host system). See Options on page 407 for more
details on the DBPRLINELEN and DBPRLINESEP options.

• The length of the buffer required by dbspr1row can be determined by
calling dbspr1rowlen.

• The format of results rows returned by dbspr1row is determined by the
SQL query. dbspr1row makes no attempt to format the data beyond
converting it to printable characters, padding the columns as necessary,
and adding the column and line separators.

• To make the best use of dbspr1row, application programs should call it
once for every successful call to dbnextrow.

• The following code fragment illustrates the use of dbspr1row:
 char mybuffer[2000];

 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 dbspr1row(dbproc, mybuffer,sizeof(mybuffer));
 fprintf(stdout, "\n%s", mybuffer);
 }

CHAPTER 2 Routines

DB-Library/C Reference Manual 343

• The following code fragment shows the use of the DBPRPAD and
DBPRCOLSEP options:

 char mybuffer[2000];

 /*
 ** Specify the pad and column separator
 ** characters */

 /* Pad = 0x2A */
 dbsetopt(dbproc, DBPRPAD, "*", DBPADON);
 /* Col. sep. = 0x2C20 */
 dbsetopt(dbproc, DBPRCOLSEP, ", ", 2);

 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 dbspr1row(dbproc, mybuffer,
 sizeof(mybuffer));
 fprintf(stdout, "\n%s", mybuffer);
 }

 /* Turn padding off */
 dbsetopt(dbproc, DBPRPAD, SS, DBPADOFF);
 /* Revert to default */
 dbsetopt(dbproc, DBPRCOLSEP, RS, -1);

See also dbclropt, dbisopt, dbprhead, dbprrow, dbspr1rowlen, dbsprhead, dbsprline,
Options on page 407

dbspr1rowlen
Description Determine how large a buffer to allocate to hold the results returned by

dbsprhead, dbsprline, and dbspr1row.

Syntax DBINT dbspr1rowlen(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbsprhead

344 Open Client

Return value The size of the buffer, in bytes, required by dbsprhead, dbsprline, and dbspr1row
on success; a negative integer on error.

Usage • dbspr1rowlen determines the size of the buffer (in bytes) required by
dbsprhead, dbsprline, and dbspr1row, including the null terminator.

• dbspr1rowlen is useful when printing data for debugging and when
scrolling data displays.

• To make the best use of dbspr1rowlen, application programs should call it
once for every successful call to dbresults.

• The following code fragment illustrates the use of dbspr1rowlen:

dbcmd(dbproc, "select * from sysdatabases");
dbcmd(dbproc, " order by name");
dbcmd(dbproc, " compute max(crdate) by name");

dbsqlexec(dbproc);
dbresults(dbproc);
printf("Maximum row length will be %ld \
 characters.\n", dbspr1rowlen(dbproc));

See also dbprhead, dbprrow, dbspr1row, dbsprhead, dbsprline, Options on page 407

dbsprhead
Description Place the server query results header into a buffer.

Syntax RETCODE dbsprhead(dbproc, buffer, buf_len)

DBPROCESS *dbproc;
char *buffer;
DBINT buf_len;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

buffer
A pointer to a character buffer to contain the query results header.

buf_len
The length of buffer, including its null terminator.

CHAPTER 2 Routines

DB-Library/C Reference Manual 345

Return value SUCCEED or FAIL.

Note If an error occurs, the contents of *buffer are undefined.

Usage • dbsprhead fills a programmer-supplied buffer with a null-terminated
character string containing the header for the current set of query results.
The header consists of the column names. The sequence of the column
names matches that of the output of dbspr1row.

• dbsprhead is useful when printing data for debugging, and when scrolling
data displays.

• To pad each column name to its maximum converted length, specify a pad
character using the DB-Library option DBPRPAD. The pad character will
be appended to each column’s name. The maximum converted column
length is equal to the longest possible string that could be the column’s
displayable data, or the length of the column’s name, whichever is greater.
See Options on page 407 for more details on the DBPRPAD option.

• You can specify the column separator string using the DB-Library option
DBPRCOLSEP. The column separator will be added to the end of each
column name except the last. The default separator is an ASCII 0x20
(space). See Options on page 407 for more details on the DBPRCOLSEP
option.

• You can specify the maximum number of characters to be placed on one
line using the DB-Library option DBPRLINELEN.

You can specify the line separator string using the DB-Library option
DBPRLINESEP. The default line separator is a newline (ASCII 0x0a or
0x0d, depending on the host system). See Options on page 407 for more
details on the DBPRLINELEN and DBPRLINESEP options.

• The length of the buffer required by dbsprhead can be determined by
calling dbspr1rowlen.

• To make the best use of dbsprhead, application programs should call it
once for every successful call to dbresults.

• The following code fragment illustrates the use of dbsprhead:

dbcmd(dbproc, "select * from sysdatabases");
dbcmd(dbproc, " order by name");
dbcmd(dbproc, " compute max(crdate) by name");

dbsqlexec(dbproc);
dbresults(dbproc);

dbsprline

346 Open Client

dbsprhead(dbproc, buffer, sizeof(buffer));
printf("%s\n", buffer);

See also dbprhead, dbprrow, dbsetopt, dbspr1row, dbspr1rowlen, dbsprline, Options
on page 407

dbsprline
Description Get a formatted string that contains underlining for the column names

produced by dbsprhead.

Syntax RETCODE dbsprline(dbproc, buffer, buf_len, linechar)

DBPROCESS *dbproc;
char *buffer;
DBINT buf_len;
DBCHAR linechar;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

buffer
A pointer to a character buffer to contain the dbsprline results.

buf_len
The length of buffer, including its null terminator.

linechar
The character with which to “underline” column names produced by
dbsprhead.

Return value SUCCEED or FAIL.

Note If an error occurs, the contents of *buffer are undefined.

Usage • dbsprline is used to “underline” the column names produced by dbsprhead.
dbsprline fills a programmer-supplied buffer with a null-terminated
character string containing one group of the character specified by
linechar for each column in the current set of query results. The format of
this line matches the format of the output of dbsprhead.

CHAPTER 2 Routines

DB-Library/C Reference Manual 347

• You can determine the length of the buffer required by dbsprline using
dbspr1rowlen.

• To make the best use of dbsprhead, application programs should call it
once for every successful call to dbresults.

• dbsprline is useful when printing data for debugging, and when scrolling
data displays.

• The following code fragment illustrates the use of dbsprline:

dbcmd(dbproc, "select * from sysdatabases");
dbcmd(dbproc, " order by name");
dbcmd(dbproc, " compute max(crdate) by name");

dbsqlexec(dbproc);
dbresults(dbproc);

/*
 ** Display the column headings, underline them
 ** with "*"
 */
 dbsprhead(dbproc, buffer, sizeof(buffer));
 printf("%s\n", buffer);

dbsprline(dbproc, buffer, sizeof(buffer), ’*’);
printf("%s\n", buffer);

/* Process returned rows as usual */

See also dbprhead, dbprrow, dbspr1row, dbspr1rowlen, dbsprhead, Options on page
407

dbsqlexec
Description Send a command batch to the server.

Syntax RETCODE dbsqlexec(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbsqlexec

348 Open Client

Return value SUCCEED or FAIL.

The most common reason for failing is a SQL syntax error. dbsqlexec will also
fail if there are semantic errors, such as incorrect column or table names.
Failure occurs if any of the commands in the batch contains a semantic or
syntax error. dbsqlexec also fails if previous results had not been processed, or
if the command buffer was empty.

In addition, a runtime error, such as a database protection violation, can cause
dbsqlexec to fail. A runtime error will cause dbsqlexec to fail:

• If the command causing the error is the only command in the command
buffer

• If the command causing the error is the first command in a multiple-
command buffer

If the command buffer contains multiple commands (and the first command in
the buffer is ok), a runtime error will not cause dbsqlexec to fail. Instead, failure
will occur with the dbresults call that processes the command causing the
runtime error.

The situation is a bit more complicated for runtime errors and stored
procedures. A runtime error on an execute command may cause dbsqlexec to
fail, in accordance with the rule given in the previous paragraphs. A runtime
error on a statement inside a stored procedure will not cause dbsqlexec to fail,
however. For example, if the stored procedure contains an insert statement and
the user does not have insert permission on the database table, the insert
statement fails, but dbsqlexec will still return SUCCEED. To check for runtime
errors inside stored procedures, use the dbretstatus routine to look at the
procedure’s return status, and trap relevant server messages inside your
message handler.

Usage • This routine sends SQL commands, stored in the command buffer of the
DBPROCESS, to the server. Commands may be added to the
DBPROCESS structure by calling dbcmd or dbfcmd.

• Once dbsqlexec returns SUCCEED, the application must call dbresults to
process the results.

• The typical sequence of calls is:

DBINT xvariable;
DBCHAR yvariable[10];

/* Read the query into the command buffer */
 dbcmd(dbproc, "select x = 100, y = ’hello’");

/* Send the query to Adaptive Server Enterprise */

CHAPTER 2 Routines

DB-Library/C Reference Manual 349

 dbsqlexec(dbproc);

/* Get ready to process the query results */
 dbresults(dbproc);

/* Bind column data to program variables */
 dbbind(dbproc, 1, INTBIND, (DBINT) 0,
 (BYTE *) &xvariable);
 dbbind(dbproc, 2, STRINGBIND, (DBINT) 0,
 yvariable);

/* Now process each row */
 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 C-code to print or process row data
 }

• dbsqlexec is equivalent to dbsqlsend followed by dbsqlok. However, after
sending a query to the server, dbsqlexec waits until a response is received
or until the timeout period has elapsed. By substituting dbsqlsend and
dbsqlok for dbsqlexec, you can sometimes provide a way for the
application to respond more effectively to multiple input and output
streams. See the reference pages for dbsqlsend and dbsqlok.

• Multiple commands may exist in the command buffer when an application
calls dbsqlexec. These commands are sent to the server as a unit and are
considered to be a single command batch.

See also dbcmd, dbfcmd, dbnextrow, dbresults, dbretstatus, dbsettime, dbsqlok,
dbsqlsend

dbsqlok
Description Wait for results from the server and verify the correctness of the instructions

the server is responding to.

Syntax RETCODE dbsqlok(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbsqlok

350 Open Client

Return value SUCCEED or FAIL.

The most common reason for failing is a SQL syntax error. dbsqlok will also
fail if there are semantic errors, such as incorrect column or table names.
Failure occurs if any of the commands in the batch contains a semantic or
syntax error.

In addition, a runtime error, such as a database protection violation, will cause
dbsqlok to fail if the command buffer contains only a single command. If the
command buffer contains multiple commands, a runtime error will not cause
dbsqlok to fail. Instead, failure will occur with the dbresults call that processes
the command causing the runtime error.

The situation is a bit more complicated for runtime errors and stored
procedures. A runtime error on an execute command may cause dbsqlok to fail,
in accordance with the rule given in the previous paragraph. A runtime error on
a statement inside a stored procedure will not cause dbsqlok to fail, however.
For example, if the stored procedure contains an insert statement and the user
does not have insert permission on the database table, the insert statement fails,
but dbsqlok will still return SUCCEED. To check for runtime errors inside
stored procedures, use the dbretstatus routine to look at the procedure’s return
status and trap relevant server messages inside your message handler.

Usage • dbsqlok reports the success or failure of a server command and initiates
results processing for successful commands.

• A successful dbsqlok call must always be followed by a call to dbresults to
process the results.

• dbsqlok is useful in the following situations:

• After a dbsqlsend call

dbsqlok must be called after a batch of Transact-SQL commands is
sent to the server with dbsqlsend.

• After a dbrpcsend call

dbsqlok must be called after an RPC command is sent with dbrpcinit,
dbrpcparam, and dbrpcsend.

• After calls to dbwritetext or dbmoretext

dbsqlok must be called after a text update command is sent to the
server by a call to dbwritetext or dbmoretext.

Using dbsqlok with dbsqlsend

CHAPTER 2 Routines

DB-Library/C Reference Manual 351

• dbsqlok initiates results processing after a call to dbsqlsend.

• dbsqlok and dbsqlsend provide an alternative to dbsqlexec. dbsqlexec
sends a command batch and waits for initial results from the server. The
application is blocked from doing anything else until results arrive. When
dbsqlsend and dbsqlok are used with dbpoll, the application has a non-
blocking alternative. The typical control sequence is as follows:

• A call to dbsqlsend sends the command to the server.

• The program calls dbpoll in a loop to check for the arrival of server
results. Non-related work can be performed during each loop
iteration. The loop terminates when dbpoll indicates results have
arrived.

• A call to dbsqlok reports success or failure and initiates results
processing if successful.

Note On occasion, dbpoll may report that data is ready for dbsqlok to read
when only the first bytes of the server response are present. When this
occurs, dbsqlok waits for the rest of the response or until the timeout period
has elapsed, just like dbsqlexec. In practice, however, the entire response
is usually available at one time.

• The example below illustrates the use of dbsqlok and dbpoll. The example
calls an application function, busy_wait, to execute a dbpoll loop. Here is
the mainline code that calls busy_wait:

 /*
 ** This is a query that will take some time.
 */
 dbcmd(dbproc, "waitfor delay '00:00:05' select its = 'over'");

 /*
 ** Send the query with dbsqlsend. dbsqlsend does not
 ** wait for a server response.
 */
 retcode = dbsqlsend(dbproc);
 if (retcode != SUCCEED)
 {
 fprintf(stdout, "dbsqlsend failed. Exiting.\n");
 dbexit();
 exit(ERREXIT);
 }

 /*

dbsqlok

352 Open Client

 ** If we call dbsqlok() now, it might block. But, we can use
 ** a dbpoll() loop to get some other work done while
 ** we are waiting for the results.
 */
 busy_wait(dbproc);

 /*
 ** Now there should be some results waiting to be read, so
 ** call dbsqlok().
 */
 retcode = dbsqlok(dbproc);
 if (retcode != SUCCEED)
 {
 fprintf(stdout, "Query failed.\n");
 }
 else
 {
 ... dbresults() loop goes here ...
 }

busy_wait executes a dbpoll loop. During each iteration of the loop, a call
to dbpoll determines whether results have arrived. If results have arrived,
busy_wait returns. Otherwise, the function wait_work is called. wait_work
performs a piece of non-related work, then returns. The functions
wait_work_init and wait_work_cleanup perform initialization and cleanup
for wait_work. Here is the code for these functions:

void busy_wait(dbproc)
 DBPROCESS *dbproc;
 {
 RETCODE retcode;
 DBPROCESS *ready_dbproc;
 int poll_ret_reason;

 wait_work_init();
 while(1)
 {
 retcode = dbpoll(dbproc, 0, &ready_dbproc, &poll_ret_reason);
 if (retcode != SUCCEED)
 {
 fprintf(stdout, "dbpoll() failed! Exiting.\n");
 dbexit();
 exit(ERREXIT);
 }
 if (poll_ret_reason == DBRESULT)
 {
 /*

CHAPTER 2 Routines

DB-Library/C Reference Manual 353

 ** Query results have arrived. Now we break out of
 ** the loop and return. Our caller can then call dbsqlok().
 */
 break; /* while */
 }
 else
 {
 /*
 ** Here's where we can do some non-related work while we
 ** are waiting.
 */
 wait_work();
 }
 } /* while */
 wait_work_cleanup();
 } /* busy_wait */

 /* These globals are used by the wait functions. */
 static int wait_pos;
 static char wait_char;
 void wait_work()
 {

 /*
 ** "work", as defined here, consists of drawing a 'w' or 'W' to
 ** the terminal. We output one character each time we are called.
 ** When we reach the 65th character position, we switch from
 ** 'w' to 'W' (or vice-versa) and start over.
 */
 fputc(wait_char, stdout);
 ++wait_pos;
 if (wait_pos >= 65)
 {
 /*
 ** Go back to the beginning of the line, then switch from
 ** 'W' to 'w' or vice versa.
 */
 fputc('\r', stdout);
 wait_pos = 0;
 wait_char = (wait_char == 'w' ? 'W' : 'w');
 }
 }
 void wait_work_init()
 {
 wait_pos = 0;
 wait_char = 'w';

dbsqlsend

354 Open Client

 }
 void wait_work_cleanup()
 {
 fputc('\n', stdout);
 }

Using dbsqlok with dbrpcsend

• dbsqlok initiates results processing after an RPC command. RPC
commands are constructed and sent with dbrpcinit, dbrpcparam, and
dbrpcsend. After dbrpcsend, the program must call dbsqlok.

• dbpoll can be called in a loop to poll for a server response between
dbrpcsend and dbsqlok.

• See the reference pages for dbrpcinit, dbrpcparam, and dbrpcsend. The
sample program example8.c demonstrates an RPC command.

Using dbsqlok with dbwritetext and dbmoretext

• dbsqlok initiates results processing after a text update command. For text
updates, chunks of text can be sent to the server with dbwritetext and
dbmoretext. After both of these calls, dbsqlok must be called.

• See the reference pages for dbwritetext and dbmoretext. dbwritetext has an
example.

See also dbcmd, dbfcmd, DBIORDESC, DBIOWDESC, dbmoretext, dbnextrow,
dbpoll, DBRBUF, dbresults, dbretstatus, dbrpcsend, dbsettime, dbsqlexec,
dbsqlsend, dbwritetext

dbsqlsend
Description Send a command batch to the server and do not wait for a response.

Syntax RETCODE dbsqlsend(dbproc)

DBPROCESS *dbproc;

CHAPTER 2 Routines

DB-Library/C Reference Manual 355

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value SUCCEED or FAIL.

dbsqlsend may fail if previous results had not been processed, or if the
command buffer was empty.

Usage • This routine sends SQL commands, stored in the command buffer, to the
server. The application can add commands to the command buffer by
calling dbcmd or dbfcmd.

• Once dbsqlsend returns SUCCEED, the application must call dbsqlok to
verify the accuracy of the command batch. The application can then call
dbresults to process the results.

• dbsqlexec is equivalent to dbsqlsend followed by dbsqlok.

• The use of dbsqlsend with dbsqlok is of particular value in UNIX
applications. After sending a query to the server, dbsqlexec waits until a
response is received or until the timeout period has elapsed. By
substituting dbsqlsend, dbpoll and dbsqlok for dbsqlexec, you can
sometimes provide a way for an application to respond more effectively to
multiple input and output streams. See the dbsqlok reference page.

See also dbcmd, dbfcmd, DBIORDESC, DBIOWDESC, dbnextrow, dbpoll, dbresults,
dbsettime, dbsqlexec, dbsqlok

dbstrbuild
Description Build a printable string from text containing placeholders for variables.

Syntax int dbstrbuild(dbproc, charbuf, bufsize,
 text [, formats [, arg] ...])

DBPROCESS *dbproc;
char *charbuf;
int bufsize;
char *text;
char *formats;
??? args...;

dbstrbuild

356 Open Client

Parameters dbproc
A pointer to the DBPROCESS that provides the connection for a particular
front-end/server process. It contains all the information that DB-Library
uses to manage communications and data between the front end and the
server. dbstrbuild uses it only as a parameter to the programmer-installed
error handler (if one exists) when an error occurs.

charbuf
A pointer to the destination buffer that will contain the message built by
dbstrbuild.

bufsize
The size of the destination buffer, in bytes. This size must include a single
byte for the results string’s null terminator.

text
A pointer to a null-terminated character string that contains message text
and placeholders for variables. Placeholders consist of a percent sign, an
integer, and an exclamation point. The integer indicates which argument to
substitute for a particular placeholder. Arguments and format strings are
numbered from left to right. Argument 1 is substituted for placeholder
“%1!”, and so on.

formats
A pointer to a null-terminated string containing one sprintf-style format
specifier for each place holder in the text string.

args
The values that will be converted according to the contents of the formats
string. There must be one argument for each format in the formats string.
The first value will correspond to the “%1!” parameter, the second the
“%2!”, and so forth. The results are undefined if there are insufficient
arguments for the format. If the format is exhausted while arguments
remain, the excess arguments are simply ignored.

Return value On success, the length of the resulting message string, not including the null
terminator; on failure, a negative integer.

Usage • Parameters in error messages can occur in different orders in different
languages. dbstrbuild allows construction of error messages in a manner
similar to the C standard-library sprintf routine. Use of dbstrbuild ensures
easy translation of error messages from one language to another.

• dbstrbuild builds a printable string from an error text that contains
placeholders for variables, a format string containing information about
the types and appearances of those variables, and a variable number of
arguments that provide actual values for those variables.

CHAPTER 2 Routines

DB-Library/C Reference Manual 357

• Placeholders for variables consist of a percent sign, an integer, and an
exclamation point. The integer indicates which argument to substitute for
a particular placeholder. Arguments and format strings are numbered from
left to right. Argument 1 is substituted for placeholder “%1!”, and so on.

For example, consider an error message that complains about a misused
keyword in a stored procedure. The message requires three arguments: the
misused keyword, the line in which the keyword occurs, and the name of
the stored procedure in which the misuse occurs. In the English
localization file, the message text might appear as:

The keyword ’%1!’ is misused in line %2! of stored
procedure ’%3!’ .

In the localization file, the same message might appear as:

In line ’%2!’ of stored procedure ’%3!’, the keyword
’%1!’ misused is.

The dbstrbuild line for either of the above messages would be:

dbstrbuild(dbproc, charbuf, BUFSIZE, <get the
message somehow>, "%s %d %s", keyword,
linenum, sp_name)

keyword is substituted for placeholder “%1!”, linenum is substituted for
placeholder “%2!”, and sp_name is substituted for placeholder “%3!”.

• The following code fragment illustrates the use of dbstrbuild to build
messages. For simplicity, the text of the message is hard-coded. In
practice, dbstrbuild message texts come from a localization file.

char charbuf[BUFSIZE];
int linenum = 15;
char *filename = "myfile";
char *dirname = "mydir";

dbstrbuild (dbproc, charbuf, BUFSIZE,
"Unable to read line %1! of file %2! in \
directory %3!.", "%d %s %s", linenum,
filename, dirname);
printf(charbuf);

• dbstrbuild format specifiers may be separated by any other characters, or
they may be adjacent to each other. This allows pre-existing English-
language message strings to be used as dbstrbuild format parameters. The
first format specifier describes the “%1!” parameter, the second the “%2!”
parameter, and so forth.

See also dbconvert, dbdatename, dbdatepart

dbstrcmp

358 Open Client

dbstrcmp
Description Compares two character strings using a specified sort order.

Syntax int dbstrcmp(dbproc, str1, len1, str2, len2,
 sortorder)

DBPROCESS *dbproc;
char *str1;
int len1;
char *str2;
int len2;
DBSORTORDER *sortorder;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

str1
A pointer to the first character string to compare. str1 may be NULL.

len1
The length, in bytes, of str1. If len1 is -1, str1 is assumed to be null-
terminated.

str2
A pointer to the second character string to compare. str2 may be NULL.

len2
The length, in bytes, of str2. If len2 is -1, str2 is assumed to be null-
terminated.

sortorder
A pointer to a DBSORTORDER structure allocated using dbloadsort. If
sortorder is NULL, dbstrcmp compares str1 and str2 using their binary
values, just as strcmp does.

Return value • 1 if str1 is lexicographically greater than str2.

• 0 if str1 is lexicographically equal to str2.

• -1 if str1 is lexicographically less than str2.

Usage • dbstrcmp compares str1 and str2 and returns an integer greater than, equal
to, or less than 0, according to whether str1 is lexicographically greater
than, equal to, or less than str2.

CHAPTER 2 Routines

DB-Library/C Reference Manual 359

• dbstrcmp uses a sort order that was retrieved from the server using
dbloadsort. This allows DB-Library application programs to compare
strings using the same sort order as the server.

• Note that some languages contain strings that are lexicographically equal
according to some specified sort order, but contain different characters.
Even though they are “equal,” there is a standard order that should be used
when placing them into an ordered list. When given two strings like this to
compare, dbstrcmp returns 0 (indicating the two strings are equal), but
dbstrsort returns some non-zero value indicating that one of these strings
should appear before the other in a sorted list.

Below is an example of this behavior. The two English-language character
strings are used with a case-insensitive sort order that specifies that
uppercase letters should appear before lowercase:

/* This call returns 0: */
 dbstrcmp(dbproc, "ABC", 3, "abc", 3, mysort);

 /* This call returns a negative value: */
 dbstrsort(dbproc, "ABC", 3, "abc", 3, mysort);

See also dbfreesort, dbloadsort, dbstrsort

dbstrcpy
Description Copy all or a portion of the command buffer.

Syntax RETCODE dbstrcpy(dbproc, start, numbytes, dest)

DBPROCESS *dbproc;
int start;
int numbytes;
char *dest;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

start
Character position in the command buffer to start copying from. The first
character has position 0. If start is greater than the length of the command
buffer, dbstrcpy inserts a null terminator at dest[0].

dbstrcpy

360 Open Client

numbytes
The number of characters to copy. If numbytes is -1, dbstrcpy will copy the
entire command buffer, whether or not dest points to adequate space. It is
legal to copy 0 bytes, in which case dbstrcpy inserts a null terminator at
dest[0]. If there are not numbytes available to copy, dbstrcpy copies the
number of bytes available and returns SUCCEED.

dest
A pointer to the destination buffer to copy the source string into. Before
calling dbstrcpy, the caller must verify that the destination buffer is large
enough to hold the copied characters. The function dbstrlen returns the size
of the entire command buffer.

Return value SUCCEED or FAIL.

dbstrcpy returns FAIL if start is negative.

Usage • dbstrcpy copies a portion of the command buffer to a string buffer supplied
by the application. The copy is null-terminated.

• Internally, the command buffer is a linked list of non-null-terminated text
strings. dbgetchar, dbstrcpy, and dbstrlen together provide a way to locate
and copy parts of the command buffer.

• dbstrcpy assumes that the destination is large enough to receive the source
string. If not, a segmentation fault is likely.

• When numbytes is passed as -1, dbstrcpy copies the entire command
buffer. Do not pass numbytes as -1 unless you are certain that dest points
to adequate space for this string. The function dbstrlen returns the length
of the current command string.

• The following fragment shows how to print the entire command buffer to
a file:

FILE *outfile;
DBPROCESS *dbproc;
char *prbuf; /* buffer for collecting the command buffer
 ** contents as a null-terminated string
 */
 RETCODE return_code;

/*
 ** Allocate sufficient space. dbstrlen() returns the number of
 ** characters currently in the command buffer. We need one
 ** more byte because dbstrcpy will append a null terminator.
 ** NOTE that memory allocation and disposal may be done
 ** differently on your platform.
 **/

CHAPTER 2 Routines

DB-Library/C Reference Manual 361

 prbuf = (char *) malloc(dbstrlen(dbproc) + 1);
 if (prbuf == NULL)
 {
 fprintf(stderr, "Out of memory.");
 dbexit();
 exit(ERREXIT); /* ERREXIT is defined in the DB-lib headers */
 }
 /* Copy the command buffer into the allocated space: */
 return_code = dbstrcpy(dbproc, 0, -1, prbuf);
 assert(return_code == SUCCEED);

 /* Print the contents: */
 fprintf(outfile, "%s", prbuf);

 /* Free the buffer: */
 free(prbuf);

See also dbcmd, dbfcmd, dbfreebuf, dbgetchar, dbstrlen

dbstrlen
Description Return the length, in characters, of the command buffer.

Syntax int dbstrlen(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The length, in characters, of the command buffer.

Usage • dbstrlen returns the length, in characters, of the SQL command text in the
command buffer.

• Internally, the command buffer is a linked list of non-null-terminated text
strings. dbgetchar, dbstrcpy, and dbstrlen together provide a way to locate
and copy parts of the command buffer.

• Before you copy the command buffer with dbstrcpy, use dbstrlen to make
sure that the destination buffer is large enough.

• The count returned by dbstrlen does not include space for a null terminator.

dbstrsort

362 Open Client

See also dbcmd, dbfcmd, dbfreebuf, dbgetchar, dbstrcpy

dbstrsort
Description Determine which of two character strings should appear first in a sorted list.

Syntax int dbstrsort(dbproc, str1, len1, str2, len2,
 sortorder)

DBPROCESS *dbproc;
char *str1;
int len1;
char *str2;
int len2;
DBSORTORDER *sortorder;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

str1
A pointer to the first character string to compare. str1 may be NULL.

len1
The length, in bytes, of str1. If len1 is -1, str1 is assumed to be null-
terminated.

str2
A pointer to the second character string to compare. str2 may be NULL.

len2
The length, in bytes, of str2. If len2 is -1, str2 is assumed to be null-
terminated.

sortorder
A pointer to a DBSORTORDER structure allocated using dbloadsort. If
sortorder is NULL, dbstrsort compares str1 and str2 using their binary
values, just as strcmp does.

Return value • 1 if str1 should appear after str2.

• 0 if str1 is identical to str2.

• -1 if str1 should appear before str2.

CHAPTER 2 Routines

DB-Library/C Reference Manual 363

Usage • dbstrsort compares str1 and str2 and returns an integer greater than, equal
to, or less than 0, according to whether str1 should appear after, at the same
place (the strings are identical), or before str2 in a sorted list.

• dbstrsort uses a sort order that was retrieved from the server using
dbloadsort. This allows DB-Library application programs to compare
strings using the same sort order as the server.

• Note that some languages contain strings that are lexicographically equal
according to some specified sort order, but contain different characters.
Even though they are “equal,” there is a standard order that should be used
when placing them into an ordered list. When given two strings like this to
compare, dbstrcmp returns 0 (indicating the two strings are equal), but
dbstrsort returns some non-zero value indicating that one of these strings
should appear before the other in a sorted list.

Below is an example of this behavior. The two English-language character
strings are used with a case-insensitive sort order that specifies that
uppercase characters should appear before lowercase:

/* This call returns 0: */
 dbstrcmp(dbproc, "ABC", 3, "abc", 3, mysort);

 /* This call returns a negative value: */
 dbstrsort(dbproc, "ABC", 3, "abc", 3, mysort);

• dbstrsort can only be used to examine two character strings that have
already been identified as equal using dbstrcmp. If dbstrcmp has not
identified these strings as being equal to each other, dbstrsort’s behavior is
undefined.

See also dbfreesort, dbloadsort, dbstrcmp

dbtabbrowse
Description Determine whether the specified table is updatable through the DB-Library

browse-mode facilities.

Syntax DBBOOL dbtabbrowse(dbproc, tabnum)

DBPROCESS *dbproc;
int tabnum;

dbtabcount

364 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

tabnum
The number of the table of interest, as specified in the select statement’s from
clause. Table numbers start at 1.

Return value “TRUE” or “FALSE”.

Usage • dbtabbrowse is one of the DB-Library browse-mode routines. See
“Browse mode” on page 26 for a detailed discussion of browse mode.

• dbtabbrowse provides a way to identify browsable tables. It is useful when
examining ad hoc queries prior to performing browse mode updates based
on them. If the query has been hard-coded into the program, this routine is
obviously unnecessary.

• For a table to be considered “browsable,” it must have a unique index and
a timestamp column.

• The application can call dbtabbrowse anytime after dbresults.

• The sample program example7.c contains a call to dbtabbrowse.

See also dbcolbrowse, dbcolsource, dbqual, dbtabcount, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

dbtabcount
Description Return the number of tables involved in the current select query.

Syntax int dbtabcount(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The number of tables, including server work tables, involved in the current set
of row results.

CHAPTER 2 Routines

DB-Library/C Reference Manual 365

dbtabcount will return -1 in case of error.

Usage • dbtabcount is one of the DB-Library browse-mode routines. It is usable
only with results from a browse-mode select (that is, a select containing
the key words for browse). See “Browse mode” on page 26 for a detailed
discussion of browse mode.

• A select query can generate a set of result rows whose columns are derived
from several database tables. To perform browse-mode updates of
columns in a query’s select list, the application must know how many
tables were involved in the query, because each table requires a separate
update statement. dbtabcount can provide this information for ad hoc
queries. If the query has been hard-coded into the program, this routine is
obviously unnecessary.

• The count returned by this routine includes any server “work tables” used
in processing the query. The server sometimes creates temporary, internal
work tables to process a query. It deletes these work tables by the time it
finishes processing the statement. Work tables are not updatable and are
not available to the application. Therefore, before using a table number,
the application must make sure that it does not belong to a work table.
dbtabname can be used to determine whether a particular table number
refers to a work table.

• The application can call dbtabcount anytime after dbresults.

• The sample program example7.c contains a call to dbtabcount.

See also dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabname, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

dbtabname
Description Return the name of a table based on its number.

Syntax char *dbtabname(dbproc, tabnum)

DBPROCESS *dbproc;
int tabnum;

dbtabsource

366 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

tabnum
The number of the table of interest. Table numbers start with 1. Use
dbtabcount to find out the total number of tables involved in a particular
query.

Return value A pointer to the null-terminated name of the specified table. This pointer will
be NULL if the table number is out of range or if the specified table is a server
work table. See the dbtabcount reference page for a description of work tables.

Usage • dbtabname is one of the DB-Library browse-mode routines. It is usable
only with results from a browse-mode select (that is, a select containing
the key words for browse). See “Browse mode” on page 26 for a detailed
discussion of browse mode.

• A select query can generate a set of result rows whose columns are derived
from several database tables. dbtabname provides a way for an application
to determine the name of each table involved in an ad hoc query. If the
query has been hard-coded into the program, this routine obviously is
unnecessary.

• The application can call dbtabname anytime after dbresults.

• The sample program example7.c contains a call to dbtabname.

See also dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabsource,
dbtsnewlen, dbtsnewval, dbtsput

dbtabsource
Description Return the name and number of the table from which a particular result column

was derived.

Syntax char *dbtabsource(dbproc, colnum, tabnum)

DBPROCESS *dbproc;
int colnum;
int *tabnum;

CHAPTER 2 Routines

DB-Library/C Reference Manual 367

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

colnum
The number of the result column of interest. Column numbers start at 1.

tabnum
A pointer to an integer, which will be filled in with the table’s number. Many
DB-Library routines that deal with browse mode accept either a table name
or a table number. If dbtabsource returns NULL (see the “Returns” section
below), *tabnum will be set to -1.

Return value A pointer to the name of the table from which this result column was derived.
A NULL return value can mean a few different things:

• The DBPROCESS is dead or not enabled. This is an error that will cause
an application’s error handler to be invoked.

• The column number is out of range.

• The column is the result of an expression, such as max(colname).

Usage • dbtabsource is one of the DB-Library browse-mode routines. It is usable
only with results from a browse-mode select (that is, a select containing
the key words for browse). See “Browse mode” on page 26 for a detailed
discussion of browse mode.

• dbtabsource allows an application to determine which tables provided the
columns in the current set of result rows. This information is valuable
when using dbqual to construct where clauses for update and delete
statements based on ad hoc queries. If the query has been hard-coded into
the program, this routine obviously is unnecessary.

• The application can call dbtabsource anytime after dbresults.

• The sample program example7.c contains a call to dbtabsource.

See also dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtsnewlen, dbtsnewval

DBTDS

368 Open Client

DBTDS
Description Determine which version of TDS (the Tabular Data Stream protocol) is being

used.

Syntax int DBTDS(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The version of TDS used by dbproc to communicate with the server. Currently,
the possible versions are:

• DBTDS_2_0

• DBTDS_3_4

• DBTDS_4_0

• DBTDS_4_2

• DBTDS_4_6

• DBTDS_4_9_5

• DBTDS_5_0

DBTDS returns a negative integer on error.

Usage • DBTDS returns the version of TDS (Tabular Data Stream protocol) being
used by dbproc to communicate with the server.

See also dbversion

dbtextsize
Description Returns the number of bytes of text or image data that remain to be read for the

current row.

Syntax DBINT dbtextsize(dbproc)

DBPROCESS *dbproc;

CHAPTER 2 Routines

DB-Library/C Reference Manual 369

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The following table lists the return values for dbtextsize:

Usage • dbtextsize assumes that there is only one column and that this column is of
datatype text or image.

• dbtextsize is useful when an application does not know how large a text or
image value is.

• dbtextsize does not work with RPC text data.

See also dbreadtext

dbtsnewlen
Description Return the length of the new value of the timestamp column after a browse-

mode update.

Syntax int dbtsnewlen(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value The length (in bytes) of the updated row’s new timestamp value. If no
timestamp was returned to the application (possibly because the update was
unsuccessful, or because the update statement did not contain the tsequal built-
in function), dbtsnewlen will return -1.

dbtextsize returns To indicate

>= 0 The number of bytes that remain to be read. Zero
indicates NO_MORE_ROWS.

-1 An error has occurred.

-2 dbtextsize has been called for RPC data.

dbtsnewval

370 Open Client

Usage • dbtsnewlen is one of the DB-Library browse-mode routines. See “Browse
mode” on page 26 for a detailed discussion of browse mode.

• dbtsnewlen provides information about the timestamp column. The where
clause returned by dbqual contains a call to the tsequal built-in function.
When such a where clause is used in an update statement, the tsequal
function places a new value in the updated row’s timestamp column and
returns the new timestamp value to the application (if the update is
successful). The dbtsnewlen function allows the application to save the
length of the new timestamp value, possibly for use with dbtsput.

See also dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewval, dbtsput

dbtsnewval
Description Return the new value of the timestamp column after a browse-mode update.

Syntax DBBINARY *dbtsnewval(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value A pointer to the updated row’s new timestamp value. If no timestamp was
returned to the application (possibly because the update was unsuccessful, or
because the update statement did not contain the tsequal built-in function), the
pointer will be NULL.

Usage • dbtsnewval is one of the DB-Library browse-mode routines. See “Browse
mode” on page 26 for a detailed discussion of browse mode.

• dbtsnewval provides information about the timestamp column. The where
clause returned by dbqual contains a call to the tsequal built-in function.
When such a where clause is used in an update statement, the tsequal
function places a new value in the updated row’s timestamp column and
returns the new timestamp value to the application (if the update is
successful). This routine allows the application to save the new timestamp
value, possibly for use with dbtsput.

CHAPTER 2 Routines

DB-Library/C Reference Manual 371

See also dbtabbrowse, dbtabsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewlen, dbtsput

dbtsput
Description Put the new value of the timestamp column into the given table’s current row

in the DBPROCESS.

Syntax RETCODE dbtsput(dbproc, newts, newtslen, tabnum,
 tabname)

DBPROCESS *dbproc;
DBBINARY *newts;
int newtslen;
int tabnum;
char *tabname;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

This must be the DBPROCESS used to perform the original select query.

newts
A pointer to the new timestamp value. It is returned by dbtsnewval.

newtslen
The length of the new timestamp value. It is returned by dbtsnewlen.

tabnum
The number of the updated table. Table numbers start at 1. tabnum must
refer to a browsable table. Use dbtabbrowse to determine whether a table is
browsable.

If this value is -1, the tabname parameter will be used to identify the table.

tabname
A pointer to a null-terminated table name. tabname must refer to a
browsable table. If this pointer is NULL, the tabnum parameter will be used
to identify the table.

Return value SUCCEED or FAIL.

The following situations will cause this routine to return FAIL:

dbtxptr

372 Open Client

• The application tries to update the timestamp of a non-existent row.

• The application tries to update the timestamp using NULL as the
timestamp value (newts).

• The specified table is non-browsable.

Usage • dbtsput is one of the DB-Library browse-mode routines. See “Browse
mode” on page 26 for a detailed discussion of browse mode.

• dbtsput manipulates the timestamp column. The where clause returned by
dbqual contains a call to the tsequal built-in function. When such a where
clause is used in an update statement, the tsequal function places a new
value in the updated row’s timestamp column and returns the new
timestamp value to the application (if the update is successful). If the same
row is updated a second time, the update statement’s where clause must
use the latest timestamp value.

This routine updates the timestamp in the DBPROCESS for the row
currently being browsed. Then, if the application needs to update the row
a second time, it can call dbqual to formulate a new where clause that uses
the new timestamp.

See also dbcolbrowse, dbcolsource, dbqual, dbtabbrowse, dbtabcount, dbtabname,
dbtabsource, dbtsnewlen, dbtsnewval

dbtxptr
Description Return the value of the text pointer for a column in the current row.

Syntax DBBINARY *dbtxptr(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the select list column of interest. Column numbers start at 1.

CHAPTER 2 Routines

DB-Library/C Reference Manual 373

Return value A DBBINARY pointer to the text pointer for the column of interest. This
pointer may be NULL.

Usage • Every database column row of type SYBTEXT or SYBIMAGE has an
associated text pointer, which uniquely identifies the text or image value.
This text pointer is used by the dbwritetext function to update text and
image values.

• It is important that all the rows of the specified text or image column have
valid text pointers. A text or image column row will have a valid text
pointer if it contains data. However, if the text or image column row
contains a null value, its text pointer will be valid only if the null value was
explicitly entered with the update statement.

Assume a table textnull with columns key and x, where x is a text column
that permits nulls. The following statement assigns valid text pointers to
the text column’s rows:

update textnull
 set x = null

On the other hand, the insert of a null value into a text column does not
provide a valid text pointer. This is true for an insert of an explicit null or
an insert of an implicit null, such as the following:

insert textnull (key)
 values (2)

When dealing with a null text or image value, be sure to use update to get
a valid text pointer.

• An application must select a row containing a text or image value before
calling dbtxptr to return the associated text pointer. The select causes a
copy of the text pointer to be placed in the application’s DBPROCESS.
The application can then retrieve this text pointer from the DBPROCESS
using dbtxptr.

If no select is performed prior to the call to dbtxptr, the call will result in a
DB-Library error message.

• For an example that uses dbtxptr, see the dbwritetext reference page.

See also dbtxtimestamp, dbwritetext

dbtxtimestamp

374 Open Client

dbtxtimestamp
Description Return the value of the text timestamp for a column in the current row.

Syntax DBBINARY *dbtxtimestamp(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

column
The number of the select list column of interest. Column numbers start at 1.

Return value A DBBINARY pointer to the text timestamp for the column of interest. This
pointer may be NULL.

Usage • Every database column of type SYBTEXT or SYBIMAGE has an
associated text timestamp, which marks the time of the column’s last
modification. The text timestamp is useful in conjunction with the
dbwritetext function, to ensure that two competing application users do not
inadvertently wipe out each other’s modifications to the same value in the
database. It is returned to the DBPROCESS when a Transact-SQL select
is performed on a SYBTEXT or SYBIMAGE column.

• The length of a non-NULL text timestamp is always DBTXTSLEN
(currently defined as 8 bytes).

• An application must select a row containing a text or image value before
calling dbtxtimestamp to return the associated text timestamp. The select
causes a copy of the text timestamp to be placed in the application’s
DBPROCESS. The application can then retrieve this text timestamp from
the DBPROCESS using dbtxtimestamp.

If no select is performed prior to the call to dbtxtimestamp, the call will
result in a DB-Library error message.

• For an example that uses dbtxtimestamp, see the dbwritetext reference
page.

See also dbtxptr, dbwritetext

CHAPTER 2 Routines

DB-Library/C Reference Manual 375

dbtxtsnewval
Description Return the new value of a text timestamp after a call to dbwritetext.

Syntax DBBINARY *dbtxtsnewval(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

Return value A pointer to the new text timestamp value for the SYBTEXT or SYBIMAGE
value modified by a dbwritetext operation. This pointer may be NULL.

Usage • Every database column of type SYBTEXT or SYBIMAGE has an
associated text timestamp, which is updated whenever the column’s value
is changed. The text timestamp is useful in conjunction with the dbwritetext
function to ensure that two competing application users do not
inadvertently wipe out each other’s modifications to the same value in the
database. It is returned to the DBPROCESS when a Transact-SQL select
is performed on a SYBTEXT or SYBIMAGE column and may be
examined by calling dbtxtimestamp.

• After each successful dbwritetext operation (which may include a number
of calls to dbmoretext), the server will send the updated text timestamp
value back to DB-Library. dbtxtsnewval provides a way for the application
to get this new timestamp value.

• The application can use dbtxtsnewval in two ways. First, the return from
dbtxtsnewval can be used as the timestamp parameter of a dbwritetext call.
Second, dbtxtsnewval and dbtxtsput can be used together to put the new
timestamp value into the DBPROCESS row buffer, for future access using
dbtxtimestamp. This is particularly useful when the application is buffering
result rows and does not need the new timestamp immediately.

See also dbmoretext, dbtxtimestamp, dbtxtsput, dbwritetext

dbtxtsput
Description Put the new value of a text timestamp into the specified column of the current

row in the DBPROCESS.

dbuse

376 Open Client

Syntax RETCODE dbtxtsput(dbproc, newtxts, colnum)

DBPROCESS *dbproc;
DBBINARY *newtxts;
int colnum;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

newtxts
A pointer to the new text timestamp value. It is returned by dbtxtsnewval.

colnum
The number of the select list column of interest. Column numbers start at 1.

Return value SUCCEED or FAIL.

Usage • Every database column of type SYBTEXT or SYBIMAGE has an
associated text timestamp, which is updated whenever the column’s value
is changed. The text timestamp is useful in conjunction with the dbwritetext
function, to ensure that two competing application users do not
inadvertently wipe out each other’s modifications to the same value in the
database. It is returned to the DBPROCESS when a Transact-SQL select
is performed on a SYBTEXT or SYBIMAGE column and may be
examined by calling dbtxtimestamp.

• After each successful dbwritetext operation (which may include a number
of calls to dbmoretext), the server will send the updated text timestamp
value back to DB-Library. dbtxtsnewval allows the application to get this
new timestamp value. The application can then use dbtxtsput to put the
new timestamp value into the DBPROCESS row buffer, for future access
using dbtxtimestamp. This is particularly useful when the application is
buffering result rows and does not need the new timestamp immediately.

See also dbmoretext, dbtxtimestamp, dbtxtsnewval, dbwritetext

dbuse
Description Use a particular database.

Syntax RETCODE dbuse(dbproc, dbname)

CHAPTER 2 Routines

DB-Library/C Reference Manual 377

DBPROCESS *dbproc;
char *dbname;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbname
The name of the database to use.

Return value SUCCEED or FAIL.

Usage • This routine issues a Transact-SQL use command for the specified
database for a particular DBPROCESS. It sets up the command and calls
dbsqlexec and dbresults.

• If the use command fails because the requested database has not yet
completed a recovery process, dbuse will continue to send use commands
at one second intervals until it either succeeds or encounters some other
error.

• The routine uses the dbproc provided by the caller. It also uses the
command buffer of that dbproc. dbuse overwrites any existing commands
in the buffer and clears the buffer when it is finished.

See also dbchange, dbname

dbvarylen
Description Determine whether the specified regular result column’s data can vary in

length.

Syntax DBBOOL dbvarylen(dbproc, column)

DBPROCESS *dbproc;
int column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbversion

378 Open Client

column
The number of the regular result column of interest. The first column is
number 1.

Return value “TRUE” or “FALSE”, indicating whether or not the column’s data can vary in
length. dbvarylen also returns “FALSE” if the column number is out of range.

Usage • This routine indicates whether a particular regular (that is, non-compute)
result column’s data can vary in length. It will return “TRUE” if the result
column is derived from a database column of type varchar, varbinary, text,
image, boundary, or sensitivity. It will also return “TRUE” if the source
database column is defined as NULL, meaning that it may contain a null
value.

• This routine is useful with programs that handle ad hoc queries, if the
program needs to be alerted to the possibility of null or variable length
data.

• You can use dbcoltype to determine a column’s datatype. See Types on
page 412 for a list of datatypes.

See also dbcollen, dbcolname, dbcoltype, dbdata, dbdatlen, dbnumcols, dbprtype

dbversion
Description Determine which version of DB-Library is in use.

Syntax char *dbversion()

Parameters None.

Return value A pointer to a character string containing the version of DB-Library in use.

Usage dbversion returns a pointer to a character string that contains the version
number for the DB-Library that is currently in use.

See also DBTDS

CHAPTER 2 Routines

DB-Library/C Reference Manual 379

dbwillconvert
Description Determine whether a specific datatype conversion is available within DB-

Library.

Syntax DBBOOL dbwillconvert(srctype, desttype)

int srctype;
int desttype;

Parameters srctype
The datatype of the data that is to be converted. This parameter can be any
of the server datatypes, as listed in Table 2-30.

desttype
The datatype that the source data is to be converted into. This parameter can
be any of the server datatypes, as listed in Table 2-30.

Return value “TRUE” if the datatype conversion is supported, “FALSE” if the conversion is
not supported.

Usage • This routine allows the program to determine whether dbconvert is capable
of performing a specific datatype conversion. When dbconvert is asked to
perform a conversion that it does not support, it calls a user-supplied error
handler (if any), sets a global error number, and returns FAIL.

• dbconvert can convert data stored in any of the server datatypes (although,
of course, not all conversions are legal). Table 2-30 lists the Server and
DB-Library datatypes.

dbwillconvert

380 Open Client

Table 2-30: Server and DB-Library datatypes

• Table 2-8 on page 111 lists the datatype conversions that dbconvert and
dbconvert_ps support. The source datatypes are listed down the leftmost
column and the destination datatypes are listed along the top row of the
table. (For brevity, the prefix “SYB” has been eliminated from each
datatype.) If dbwillconvert returns “TRUE” (T), the conversion is
supported; if it returns “FALSE” (F), the conversion is not supported.

• See the reference pages for dbconvert or dbconvert_ps.

See also dbaltbind, dbbind, dbconvert, dbconvert_ps, Types on page 412

Server type Program variable type

SYBCHAR DBCHAR

SYBTEXT DBCHAR

SYBBINARY DBBINARY

SYBIMAGE DBBINARY

SYBINT1 DBTINYINT

SYBINT2 DBSMALLINT

SYBINT4 DBINT

SYBFLT8 DBFLT8

SYBREAL DBREAL

SYBNUMERIC DBNUMERIC

SYBDECIMAL DBDECIMAL

SYBBIT DBBIT

SYBMONEY DBMONEY

SYBMONEY4 DBMONEY4

SYBDATETIME DBDATETIME

SYBDATETIME4 DBDATETIME4

SYBBOUNDARY DBCHAR

SYBSENSITIVITY DBCHAR

CHAPTER 2 Routines

DB-Library/C Reference Manual 381

dbwritepage
Description Write a page of binary data to the server.

 Warning! Use this routine only if you are absolutely sure you know what you
are doing!

Syntax RETCODE dbwritepage(dbproc, dbname, pageno, size, buf)

DBPROCESS *dbproc;
char *dbname;
DBINT pageno;
DBINT size;
BYTE buf[];

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

dbname
The name of the database of interest.

pageno
The number of the database page to be written.

size
The number of bytes to be written to the server. Currently, Adaptive Server
Enterprise database pages are 2048 bytes long.

buf
A pointer to a buffer that holds the data to be written.

Return value SUCCEED or FAIL.

Usage dbwritepage writes a page of binary data to the server. This routine is useful
primarily for examining and repairing damaged database pages. After calling
dbwritepage, the DBPROCESS may contain some error or informational
messages from the server. These messages may be accessed through a user-
supplied message handler.

See also dbmsghandle, dbreadpage

dbwritetext

382 Open Client

dbwritetext
Description Send a text or image value to the server.

Syntax RETCODE dbwritetext(dbproc, objname, textptr,
 textptrlen, timestamp, log,
 size, text)

DBPROCESS *dbproc;
char *objname;
DBBINARY *textptr;
DBTINYINT textptrlen;
DBBINARY *timestamp;
DBBOOL log;
DBINT size;
BYTE *text;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
server.

objname
The database table and column name that is separated by a period.

textptr
A pointer to the text pointer of the text or image value to be modified. This
can be obtained by calling dbtxptr. The text pointer must be a valid one, as
described on the dbtxptr reference page.

textptrlen
This parameter is included for future compatibility. For now, its value must
be the defined constant DBTXPLEN.

timestamp
A pointer to the text timestamp of the text or image value to be modified.
This can be obtained using dbtxtimestamp or dbtxtsnewval. This value
changes whenever the text or image value itself is changed. This parameter
is optional and may be passed as NULL.

log
A boolean value specifying whether this dbwritetext operation should be
recorded in the transaction log.

size
The total size, in bytes, of the text or image value to be written. Since
dbwritetext uses this parameter as its only guide to determining how many
bytes to send, size must not exceed the actual size of the value.

CHAPTER 2 Routines

DB-Library/C Reference Manual 383

text
The address of a buffer containing the text or image value to be written. If
this pointer is NULL, the application must subsequently call dbmoretext one
or more times, until all size bytes of data have been sent to the server.

Return value SUCCEED or FAIL.

A common cause for failure is an invalid timestamp parameter. This occurs if,
between the time the application retrieves the text column and the time the
application calls dbwritetext to update it, a second application intervenes with
its own update.

Usage • dbwritetext updates SYBTEXT and SYBIMAGE values. It allows the
application to send long values to the server without having to copy them
into a Transact-SQL update statement. In addition, dbwritetext gives
applications access to the text timestamp mechanism, which can be used
to ensure that two competing application users do not inadvertently wipe
out each other’s modifications to the same value in the database.

• The timestamp parameter is optional.

If the timestamp parameter is supplied, dbwritetext succeeds only if the
value of the timestamp parameter matches the text column’s timestamp in
the database. If a match occurs, dbwritetext updates the text column and at
the same time updates the column’s timestamp with the current time. This
has the effect of governing updates by competing applications—an
application’s dbwritetext call fails if a second application updated the text
column between the time the first application retrieved the column and the
time it made its dbwritetext call.

If the timestamp parameter is not supplied, dbwritetext updates the text
column regardless of the value of the column’s timestamp.

• The value to use as the timestamp parameter is placed in an application’s
DBPROCESS when the application performs a select on a text or image
value. It can be retrieved from the DBPROCESS using dbtxtimestamp.

In addition, after each successful dbwritetext operation, which may include
a number of calls to dbmoretext, Adaptive Server Enterprise sends a new
text timestamp value back to DB-Library. dbtxtsnewval provides a way for
an application to retrieve this new value.

dbwritetext

384 Open Client

• dbwritetext is similar in function to the Transact-SQL writetext command.
It is usually more efficient to call dbwritetext than to send a writetext
command through the command buffer. In addition, dbwritetext can handle
columns up to 2GB in length, while writetext data is limited to
approximately 120K. See the Adaptive Server Enterprise Reference
Manual.

• dbwritetext can be invoked with or without logging, according to the value
of the log parameter.

While logging aids media recovery, logging text data quickly increases the
size of the transaction log. If you are logging dbwritetext operations, make
sure that the transaction log resides on a separate database device. For
details, see the Adaptive Server Enterprise System Administration Guide,
the create database reference page, and the sp_logdevice reference page in
the Adaptive Server Enterprise Reference Manual for details.

To use dbwritetext with logging turned off, the database option select
into/bulkcopy must be set to “true”. The following SQL command will do
this:

sp_dboption ’mydb’, ’select into/bulkcopy’, ’true’

See the Adaptive Server Enterprise Reference Manual for further details
on sp_dboption.

• The application can send a text or image value to the server all at once or
a chunk at a time. dbwritetext by itself handles sending an entire text or
image value. The use of dbwritetext with dbmoretext allows the application
to send a large text or image value to the server in the form of a number of
smaller chunks. This is particularly useful with operating systems unable
to allocate extremely long data buffers.

• Sending an entire text or image value requires a non-NULL text parameter.
Then, dbwritetext will execute the data transfer from start to finish,
including any necessary calls to dbsqlok and dbresults. Here is a code
fragment that illustrates this use of dbwritetext:

LOGINREC *login;
DBPROCESS *q_dbproc;
DBPROCESS *u_dbproc;
DBCHAR abstract_var[512];

 /* Initialize DB-Library. */
 if (dbinit() == FAIL)
 exit(ERREXIT);
 /*

CHAPTER 2 Routines

DB-Library/C Reference Manual 385

 ** Open separate DBPROCESSes for querying and updating.
 ** This is not strictly necessary in this example,
 ** which retrieves only one row. However, this
 ** approach becomes essential when performing updates
 ** on multiple rows of retrieved data.
 */
 login = dblogin();
 q_dbproc = dbopen(login, NULL);
 u_dbproc = dbopen(login, NULL);

 /* The database column "abstract" is a text column.
 ** Retrieve the value of one of its rows.
 */
 dbcmd(q_dbproc, "select abstract from articles where \
 article_id = 10");
 dbsqlexec(q_dbproc);
 dbresults(q_dbproc);
 dbbind(q_dbproc, 1, STRINGBIND, (DBINT) 0,
 abstract_var);

 /*
 ** For simplicity, we’ll assume that just one row is
 ** returned.
 */
 dbnextrow(q_dbproc);

 /* Here we can change the value of "abstract_var" */
 /* For instance ... */
 strcpy(abstract_var, "A brand new value.");

 /* Update the text column */
 dbwritetext (u_dbproc, "articles.abstract",
 dbtxptr(q_dbproc, 1), DBTXPLEN,
 dbtxtimestamp(q_dbproc, 1), TRUE,
 (DBINT)strlen(abstract_var), abstract_var);
 /* We’re all done */
 dbexit();

• To send chunks of text or image, rather than the whole value at once, set
the text parameter to NULL. Then, dbwritetext will return control to the
application immediately after notifying the server that a text transfer is
about to begin. The actual text will be sent to the server with dbmoretext,
which can be called multiple times, once for each chunk. Here is a code
fragment that illustrates the use of dbwritetext with dbmoretext:

LOGINREC *login;
DBPROCESS *q_dbproc;

dbwritetext

386 Open Client

DBPROCESS *u_dbproc;
DBCHAR part1[512];
static DBCHAR part2[512] = " This adds another \
 sentence to the text.";

if (dbinit() == FAIL)
 exit(ERREXIT);

login = dblogin();
 q_dbproc = dbopen(login, NULL);
 u_dbproc = dbopen(login, NULL);

dbcmd(q_dbproc, "select abstract from articles where \
 article_id = 10");
 dbsqlexec(q_dbproc);
 dbresults(q_dbproc);
 dbbind(q_dbproc, 1, STRINGBIND, (DBINT) 0, part1);

/*
 ** For simplicity, we’ll assume that just one row is
 ** returned.
 */
 dbnextrow(q_dbproc);

/*
 ** Here we can change the value of part of the text
 ** column. In this example, we will merely add a
 ** sentence to the end of the existing text.
 */

/* Update the text column */
 dbwritetext (u_dbproc, "articles.abstract",
 dbtxptr(q_dbproc, 1), DBTXPLEN,
 dbtxtimestamp(q_dbproc, 1), TRUE,
 (DBINT)(strlen(part1) + strlen(part2)), NULL);

dbsqlok(u_dbproc);
dbresults(u_dbproc);

/* Send the update value in chunks */
dbmoretext(u_dbproc, (DBINT)strlen(part1), part1);
dbmoretext(u_dbproc, (DBINT)strlen(part2), part2);

dbsqlok(u_dbproc);
dbresults(u_dbproc);
dbexit();

Note the required calls to dbsqlok and dbresults between the call to
dbwritetext and the first call to dbmoretext, and after the final call to
dbmoretext.

CHAPTER 2 Routines

DB-Library/C Reference Manual 387

• When dbwritetext is used with dbmoretext, it locks the specified database
text column. The lock is not released until the final dbmoretext has sent its
data. This ensures that a second application does not read or update the text
column in the midst of the first application’s update.

• You cannot use dbwritetext on text or image columns in views.

• The DB-Library/C option DBTEXTSIZE affects the value of the server
@@textsize global variable, which restricts the size of text or image values
that Adaptive Server Enterprise returns. @@textsize has a default value of
32,768 bytes. An application that retrieves text or image values larger than
32,768 bytes will need to call dbsetopt to make @@textsize larger.

• The DB-Library/C option DBTEXTLIMIT limits the size of text or image
values that DB-Library/C will read.

See also dbmoretext, dbtxptr, dbtxtimestamp, dbwritetext, dbtxtsput

dbxlate
Description Translate a character string from one character set to another.

Syntax int dbxlate(dbproc, src, srclen, dest, destlen, xlt,
 srcbytes_used, srcend, status)

DBPROCESS dbproc;
char *src;
int srclen;
char *dest;
int destlen;
DBXLATE *xlt;
int *srcbytes_used;
DBBOOL srcend;
int *status;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/server process. It contains all the information that DB-
Library uses to manage communications and data between the front end and
the server.

src
A pointer to the string to be translated.

dbxlate

388 Open Client

srclen
The length, in bytes, of src. If srclen is -1, src is assumed to be null-
terminated.

dest
A pointer to the buffer to contain the translated string, including a null
terminator.

destlen
The size, in bytes, of the buffer to contain the translated string. If destlen is
-1, dest is assumed to be large enough to hold the translated string and its
null terminator.

xlt
A pointer to a translation structure used to translate character strings from
one character set to another. The translation structure is allocated using
dbload_xlate.

srcbytes_used
The number of bytes actually translated. If the fully translated string would
overflow dest, dbxlate translates only as much of src as will fit. If destlen is
-1, srcbytes_used is srclen.

srcend
A boolean value indicating whether or not more data is arriving. If srcend is
“true”, no more data is arriving. If srcend is “false”, src is part of a larger
string of data to be translated, and it is not the end of the string.

status
A pointer to a code indicating the status of the translated character string.
Table 2-31 lists the possible values for status.

Table 2-31: Values for status

Return value The number of bytes actually placed in dest on success; a negative integer on
error.

Usage • dbxlate translates a character string from one character set to another. It is
useful when the server character set differs from the display device’s
character set.

• The following code fragment illustrates the use of dbxlate:

Value of status To indicate

DBXLATE_XOF The translated string overflowed dest.

DBXLATE_XOK The translation succeeded.

DBXLATE_XPAT The last bytes of src are the beginning of a pattern for which
there is a translation. These bytes were not translated.

CHAPTER 2 Routines

DB-Library/C Reference Manual 389

char destbuf[128];
int srcbytes_used;
DBXLATE *xlt_todisp;
DBXLATE *xlt_tosrv;

dbload_xlate((DBPROCESS *)NULL, "iso_1",
 "trans.xlt", &xlt_tosrv, &xlt_todisp);
printf("Original string: \n\t%s\n\n",
 TEST_STRING);
dbxlate((DBPROCESS *)NULL, TEST_STRING,
 strlen(TEST_STRING), destbuf, -1, xlt_todisp,
 &srcbytes_used);
printf("Translated to display character set: \
 \n\t%s\n\n", destbuf);
dbfree_xlate((DBPROCESS *)NULL, xlt_tosrv,
 xlt_todisp);

See also dbload_xlate, dbfree_xlate

Errors
Description The complete collection of DB-Library errors and error severities.

Syntax #include <sybfront.h>

#include <sybdb.h>

#include <syberror.h>

Usage • This is the complete list of possible DB-Library errors and error severities.

• The error values are listed alphabetically in Table 2-32 on page 391. The
second column of this table gives the error severity for each error as a
symbolic value. The third column contains the text associated with the
error.

• Table 2-33 on page 406 provides a list of all possible error severities, with
their numerical equivalents and an explanation of the type of error.

• When an error or informational event occurs, these numbers are passed to
the application’s current error handler (if any). An application calls
dberrhandle to install an error handler.

• Error values are defined in the header file sybdb.h. Error severity values
are defined in the header file syberror.h. Your program needs to include
syberror.h only if it refers to the symbolic error severities.

Errors

390 Open Client

Errors

Table 2-32 lists all the DB-Library errors.

CHAPTER 2 Routines

DB-Library/C Reference Manual 391

Table 2-32: Errors

Error name Error severity Error text

SYBEAAMT EXPROGRAM User attempted a dbaltbind with
mismatched column and variable
types.

SYBEABMT EXPROGRAM User attempted a dbbind with
mismatched column and variable
types.

SYBEABNC EXPROGRAM Attempt to bind to a non-existent
column.

SYBEABNP EXPROGRAM Attempt to bind using NULL
pointers.

SYBEABNV EXPROGRAM Attempt to bind to a NULL
program variable.

SYBEACNV EXCONVERSION Attempt to do data-conversion with
NULL destination variable.

SYBEADST EXCONSISTENCY International Release: Error in
attempting to determine the size of
a pair of translation tables.

SYBEAICF EXCONSISTENCY International Release: Error in
attempting to install custom
format.

SYBEALTT EXCONSISTENCY International Release: Error in
attempting to load a pair of
translation tables.

SYBEAOLF EXRESOURCE International Release: Error in
attempting to open a localization
file.

SYBEAPCT EXCONSISTENCY International Release: Error in
attempting to perform a character
set translation.

SYBEAPUT EXPROGRAM Attempt to print unknown token.

SYBEARDI EXRESOURCE International Release: Error in
attempting to read datetime
information from a localization
file.

SYBEARDL EXRESOURCE International Release: Error in
attempting to read the dblib.loc
localization file.

SYBEASEC EXPROGRAM Attempt to send an empty
command buffer to the server.

Errors

392 Open Client

SYBEASNL EXPROGRAM Attempt to set fields in a null
LOGINREC.

SYBEASTL EXPROGRAM Synchronous I/O attempted at AST
level.

SYBEASUL EXPROGRAM Attempt to set unknown
LOGINREC field.

SYBEAUTN EXPROGRAM Attempt to update the timestamp of
a table that has no timestamp
column.

SYBEBADPK EXINFO Packet size of %1 not supported-
size of %2 used instead!

SYBEBBCI EXINFO Batch successfully bulk copied to
the server.

SYBEBBL EXPROGRAM Bad bindlen parameter passed to
dbsetnull.

SYBEBCBC EXPROGRAM bcp_columns must be called before
bcp_colfmt and bcp_colfmt_ps.

SYBEBCBNPR EXPROGRAM bcp_bind: if varaddr is NULL,
prefixlen must be 0 and no
terminator should be specified.

SYBEBCBNTYP EXPROGRAM bcp_bind: if varaddr is NULL and
varlen greater than 0, the table
column type must be SYBTEXT or
SYBIMAGE and the program
variable type must be SYBTEXT,
SYBCHAR, SYBIMAGE or
SYBBINARY.

SYBEBCBPREF EXPROGRAM Illegal prefix length. Legal values
are 0, 1, 2 or 4.

SYBEBCFO EXUSER bcp host files must contain at least
one column.

SYBEBCHLEN EXPROGRAM host_collen should be greater than
or equal to -1.

SYBEBCIS EXCONSISTENCY Attempt to bulk copy an illegally-
sized column value to the server.

SYBEBCIT EXPROGRAM It is illegal to use BCP terminators
with program variables other than
SYBCHAR, SYBBINARY,
SYBTEXT, or SYBIMAGE.

SYBEBCITBLEN EXPROGRAM bcp_init: tblname parameter is too
long.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 393

SYBEBCITBNM EXPROGRAM bcp_init: tblname parameter cannot
be NULL.

SYBEBCMTXT EXPROGRAM bcp_moretext may be used only
when there is at least one text or
image column in the Server table.

SYBEBCNL EXNONFATAL Negative length-prefix found in
BCP datafile.

SYBEBCNN EXUSER Attempt to bulk copy a NULL
value into a Server column which
does not accept null values.

SYBEBCNT EXUSER Attempt to use Bulk Copy with a
non-existent Server table.

SYBEBCOR EXCONSISTENCY Attempt to bulk copy an oversized
row to the server.

SYBEBCPB EXPROGRAM bcp_bind, bcp_moretext and
bcp_sendrow may not be used after
bcp_init has been passed a non-
NULL input file name.

SYBEBCPCTYP EXPROGRAM bcp_colfmt: If table_colnum is 0,
host_type cannot be 0.

SYBEBCPI EXPROGRAM bcp_init must be called before any
other bcp routines.

SYBEBCPN EXPROGRAM bcp_bind, bcp_collen, bcp_colptr,
bcp_moretext and bcp_sendrow
may be used only after bcp_init has
been called with the copy direction
set to DB_IN.

SYBEBCPREC EXNONFATAL Column %1!: Illegal precision
value encountered.

SYBEBCPREF EXPROGRAM Illegal prefix length. Legal values
are -1, 0, 1, 2 or 4.

SYBEBCRE EXNONFATAL I/O error while reading bcp
datafile.

SYBEBCRO EXINFO The BCP hostfile ‘%1!’ contains
only %2! rows. It was impossible
to read the requested %3! rows.

SYBEBCSA EXUSER The BCP hostfile ‘%1!’ contains
only %2! rows. Skipping all of
these rows is not allowed.

SYBEBCSET EXCONSISTENCY Unknown character set
encountered.

Error name Error severity Error text

Errors

394 Open Client

SYBEBCSI EXPROGRAM Host-file columns may be skipped
only when copying into the Server.

SYBEBCSNDROW EXPROGRAM bcp_sendrow may not be called
unless all text data for the previous
row has been sent using
bcp_moretext.

SYBEBCSNTYP EXPROGRAM column number %1!: If varaddr is
NULL and varlen greater than 0,
the table column type must be
SYBTEXT or SYBIMAGE and the
program variable type must be
SYBTEXT, SYBCHAR,
SYBIMAGE or SYBBINARY.

SYBEBCUC EXRESOURCE bcp: Unable to close host datafile.

SYBEBCUO EXRESOURCE bcp: Unable to open host datafile.

SYBEBCVH EXPROGRAM bcp_exec may be called only after
bcp_init has been passed a valid
host file.

SYBEBCVLEN EXPROGRAM varlen should be greater than or
equal to -1.

SYBEBCWE EXNONFATAL I/O error while writing bcp
datafile.

SYBEBDIO EXPROGRAM Bad bulk copy direction. Must be
either IN or OUT.

SYBEBEOF EXNONFATAL Unexpected EOF encountered in
bcp datafile.

SYBEBIHC EXPROGRAM Incorrect host-column number
found in bcp format file.

SYBEBIVI EXPROGRAM bcp_columns, bcp_colfmt and
bcp_colfmt_ps may be used only
after bcp_init has been passed a
valid input file.

SYBEBNCR EXPROGRAM Attempt to bind user variable to a
non-existent compute row.

SYBEBNUM EXPROGRAM Bad numbytes parameter passed to
dbstrcpy.

SYBEBPKS EXPROGRAM In DBSETLPACKET, the packet
size parameter must be between 0
and 999999.

SYBEBPREC EXPROGRAM Illegal precision specified.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 395

SYBEBPROBADDEF EXCONSISTENCY bcp protocol error: Illegal default
column ID received.

SYBEBPROCOL EXCONSISTENCY bcp protocol error: Returned
column count differs from the
actual number of columns
received.

SYBEBPRODEF EXCONSISTENCY bcp protocol error: Expected
default information and got none.

SYBEBPRODEFID EXCONSISTENCY bcp protocol error: Default column
ID and actual column ID are not
same.

SYBEBPRODEFTYP EXCONSISTENCY bcp protocol error: Default value
datatype differs from column
datatype.

SYBEBPROEXTDEF EXCONSISTENCY bcp protocol error: More than one
row of default information
received.

SYBEBPROEXTRES EXCONSISTENCY bcp protocol error: Unexpected set
of results received.

SYBEBPRONODEF EXCONSISTENCY bcp protocol error: Default value
received for column that does not
have default.

SYBEBPRONUMDEF EXCONSISTENCY bcp protocol error: Expected
number of defaults differs from the
actual number of defaults received.

SYBEBRFF EXRESOURCE I/O error while reading bcp format
file.

SYBEBSCALE EXPROGRAM Illegal scale specified.

SYBEBTMT EXPROGRAM Attempt to send too much text data
using the bcp_moretext call.

SYBEBTOK EXCOMM Bad token from the server:
Datastream processing out of sync.

SYBEBTYP EXPROGRAM Unknown bind type passed to DB-
Library function.

SYBEBTYPSRV EXPROGRAM Datatype is not supported by the
server.

SYBEBUCE EXRESOURCE bcp: Unable to close error file.

SYBEBUCF EXPROGRAM bcp: Unable to close format file.

SYBEBUDF EXPROGRAM bcp: Unrecognized datatype found
in format file.

SYBEBUFF EXPROGRAM bcp: Unable to create format file.

Error name Error severity Error text

Errors

396 Open Client

SYBEBUFL EXCONSISTENCY DB-Library internal error-send
buffer length corrupted.

SYBEBUOE EXRESOURCE bcp: Unable to open error file.

SYBEBUOF EXPROGRAM bcp: Unable to open format file.

SYBEBWEF EXNONFATAL I/O error while writing bcp error
file.

SYBEBWFF EXRESOURCE I/O error while writing bcp format
file.

SYBECAP EXCOMM DB-Library capabilities not
accepted by the Server.

SYBECAPTYP EXCOMM Unexpected capability type in
CAPABILITY datastream.

SYBECDNS EXCONSISTENCY Datastream indicates that a
compute column is derived from a
non-existent select list member.

SYBECDOMAIN EXCONVERSION Source field value is not within the
domain of legal values.

SYBECINTERNAL EXCONVERSION Internal Conversion error.

SYBECLOS EXCOMM Error in closing network
connection.

SYBECLPR EXCONVERSION Data conversion resulted in loss of
precision.

SYBECNOR EXPROGRAM Column number out of range.

SYBECNOV EXCONVERSION Attempt to set variable to NULL
resulted in overflow.

SYBECOFL EXCONVERSION Data conversion resulted in
overflow.

SYBECONN EXCOMM Unable to connect: Adaptive
Server Enterprise is unavailable or
does not exist.

SYBECRNC EXPROGRAM The current row is not a result of
compute clause %1!, so it is illegal
to attempt to extract that data from
this row.

SYBECRSAGR EXPROGRAM Aggregate functions are not
allowed in a cursor statement.

SYBECRSBROL EXPROGRAM Backward scrolling cannot be used
in a forward scrolling cursor.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 397

SYBECRSBSKEY EXPROGRAM Keyset cannot be scrolled
backward in mixed cursors with a
previous fetch type.

SYBECRSBUFR EXPROGRAM Row buffering should not be turned
on when using cursor APIs.

SYBECRSDIS EXPROGRAM Cursor statement contains one of
the disallowed phrases compute,
union, for browse, or select into.

SYBECRSFLAST EXPROGRAM Fetch type LAST requires fully
keyset driven cursors.

SYBECRSFRAND EXPROGRAM Fetch types RANDOM and
RELATIVE can only be used
within the keyset of keyset driven
cursors.

SYBECRSFROWN EXPROGRAM Row number to be fetched is
outside valid range.

SYBECRSFTYPE EXRESOURCE Unknown fetch type.

SYBECRSINV EXPROGRAM Invalid cursor statement.

SYBECRSINVALID EXRESOURCE The cursor handle is invalid.

SYBECRSMROWS EXRESOURCE Multiple rows are returned, only
one is expected while retrieving
dbname.

SYBECRSNOBIND EXPROGRAM Cursor bind must be called prior to
dbcursor invocation.

SYBECRSNOCOUNT EXPROGRAM The DBNOCOUNT option should
not be turned on when doing
updates or deletes with dbcursor.

SYBECRSNOFREE EXPROGRAM The DBNOAUTOFREE option
should not be turned on when using
cursor APIs.

SYBECRSNOIND EXPROGRAM One of the tables involved in the
cursor statement does not have a
unique index.

SYBECRSNOKEYS EXRESOURCE The entire keyset must be defined
for KEYSET type cursors.

SYBECRSNOLEN EXRESOURCE No unique index found.

SYBECRSNOPTCC EXRESOURCE No OPTCC was found.

SYBECRSNORDER EXRESOURCE The order of clauses must be from,
where, and order by.

SYBECRSNORES EXPROGRAM Cursor statement generated no
results.

Error name Error severity Error text

Errors

398 Open Client

SYBECRSNROWS EXRESOURCE No rows returned, at least one is
expected.

SYBECRSNOTABLE EXRESOURCE Table name is NULL.

SYBECRSNOUPD EXPROGRAM Update or delete operation did not
affect any rows.

SYBECRSNOWHERE EXPROGRAM A where clause is not allowed in a
cursor update or insert.

SYBECRSNUNIQUE EXRESOURCE No unique keys associated with
this view.

SYBECRSORD EXPROGRAM Only fully keyset driven cursors
can have order by, group by, or
having phrases.

SYBECRSRO EXPROGRAM Data locking or modifications
cannot be made in a read-only
cursor.

SYBECRSSET EXPROGRAM A set clause is required for a cursor
update or insert.

SYBECRSTAB EXPROGRAM Table name must be determined in
operations involving data locking
or modifications.

SYBECRSVAR EXRESOURCE There is no valid address
associated with this bind.

SYBECRSVIEW EXPROGRAM A view cannot be joined with
another table or a view in a cursor
statement.

SYBECRSVIIND EXPROGRAM The view used in the cursor
statement does not include all the
unique index columns of the
underlying tables.

SYBECRSUPDNB EXPROGRAM Update or insert operations cannot
use bind variables when binding
type is NOBIND.

SYBECRSUPDTAB EXPROGRAM Update or insert operations using
bind variables require single table
cursors.

SYBECSYN EXCONVERSION Attempt to convert data stopped by
syntax error in source field.

SYBECUFL EXCONVERSION Data conversion resulted in
underflow.

SYBEDBPS EXRESOURCE Maximum number of
DBPROCESSes already allocated.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 399

SYBEDDNE EXINFO DBPROCESS is dead or not
enabled.

SYBEDIVZ EXUSER Attempt to divide by $0.00 in
function %1!.

SYBEDNTI EXPROGRAM Attempt to use dbtxtsput to put a
new text timestamp into a column
whose datatype is neither
SYBTEXT nor SYBIMAGE.

SYBEDPOR EXPROGRAM Out-of-range datepart constant.

SYBEDVOR EXPROGRAM Day values must be between 1 and
7.

SYBEECAN EXINFO Attempted to cancel unrequested
event notification.

SYBEEINI EXINFO Must call dbreginit before
dbregexec.

SYBEETD EXPROGRAM Failure to send the expected
amount of text or image data using
dbmoretext.

SYBEEUNR EXCOMM Unsolicited event notification
received.

SYBEEVOP EXINFO Called dbregwatch with a bad
options parameter.

SYBEEVST EXINFO Must initiate a transaction before
calling dbregparam.

SYBEFCON EXCOMM Adaptive Server Enterprise
connection failed.

SYBEFRES EXFATAL Challenge-Response function
failed.

SYBEFSHD EXRESOURCE Error in attempting to find the
Sybase home directory.

SYBEFUNC EXPROGRAM Functionality not supported at the
specified version level.

SYBEICN EXPROGRAM Invalid computeid or compute
column number.

SYBEIDCL EXCONSISTENCY Illegal datetime column length
returned by Adaptive Server
Enterprise. Legal datetime lengths
are 4 and 8 bytes.

SYBEIDECCL EXCONSISTENCY Invalid decimal column length
returned by the server.

Error name Error severity Error text

Errors

400 Open Client

SYBEIFCL EXCONSISTENCY Illegal floating-point column
length returned by Adaptive Server
Enterprise. Legal floating-point
lengths are 4 and 8 bytes.

SYBEIFNB EXPROGRAM Illegal field number passed to
bcp_control.

SYBEIICL EXCONSISTENCY Illegal integer column length
returned by Adaptive Server
Enterprise. Legal integer lengths
are 1, 2, and 4 bytes.

SYBEIMCL EXCONSISTENCY Illegal money column length
returned by Adaptive Server
Enterprise. Legal money lengths
are 4 and 8 bytes.

SYBEINLN EXUSER Interface file: unexpected end-of-
line.

SYBEINTF EXUSER Server name not found in interface
file.

SYBEINUMCL EXCONSISTENCY Invalid numeric column length
returned by the server.

SYBEIPV EXINFO %1! is an illegal value for the %2!
parameter of %3!.

SYBEISOI EXCONSISTENCY International Release: Invalid sort-
order information found.

SYBEISRVPREC EXCONSISTENCY Illegal precision value returned by
the server.

SYBEISRVSCL EXCONSISTENCY Illegal scale value returned by the
server.

SYBEITIM EXPROGRAM Illegal timeout value specified.

SYBEIVERS EXPROGRAM Illegal version level specified.

SYBEKBCI EXINFO 1000 rows sent to the server.

SYBEKBCO EXINFO 1000 rows successfully bulk
copied to host file.

SYBEMEM EXRESOURCE Unable to allocate sufficient
memory.

SYBEMOV EXUSER Money arithmetic resulted in
overflow in function %1!.

SYBEMPLL EXUSER Attempt to set maximum number
of DBPROCESSes lower than 1.

SYBEMVOR EXPROGRAM Month values must be between 1
and 12.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 401

SYBENBUF EXINFO Called dbsendpassthru with a
NULL buf parameter.

SYBENBVP EXPROGRAM Cannot pass dbsetnull a NULL
bindval pointer.

SYBENDC EXPROGRAM Cannot have negative component
in date in numeric form.

SYBENDTP EXPROGRAM Called dbdatecrack with NULL
datetime parameter.

SYBENEG EXCOMM Negotiated login attempt failed.

SYBENHAN EXINFO Called dbrecvpassthru with a
NULL handle parameter.

SYBENMOB EXPROGRAM No such member of order by
clause.

SYBENOEV EXINFO DBPOLL can not be called when
registered procedure notifications
have been disabled.

SYBENPRM EXPROGRAM NULL parameter not allowed for
this dboption.

SYBENSIP EXPROGRAM Negative starting index passed to
dbstrcpy.

SYBENTLL EXUSER Name too long for LOGINREC
field.

SYBENTTN EXPROGRAM Attempt to use dbtxtsput to put a
new text timestamp into a non-
existent data row.

SYBENULL EXINFO NULL DBPROCESS pointer
passed to DB-Library.

SYBENULP EXPROGRAM Called %s with a NULL %s
parameter.

SYBENXID EXNONFATAL The Server did not grant us a
distributed-transaction ID.

SYBEONCE EXPROGRAM Function can be called only once.

SYBEOOB EXCOMM Error in sending out-of-band data
to the server.

SYBEOPIN EXNONFATAL Could not open interface file.

SYBEOPNA EXNONFATAL Option is not available with current
server.

Error name Error severity Error text

Errors

402 Open Client

SYBEOREN EXINFO International Release: Warning: an
out-of-range error-number was
encountered in dblib.loc. The
maximum permissible error-
number is defined as
DBERRCOUNT in sybdb.h.

SYBEORPF EXUSER Attempt to set remote password
would overflow the login record’s
remote password field.

SYBEPOLL EXINFO There is already an active dbpoll.

SYBEPRTF EXINFO dbtracestring may only be called
from a printfunc.

SYBEPWD EXUSER Login incorrect.

SYBERDCN EXCONVERSION Requested data conversion does
not exist.

SYBERDNR EXPROGRAM Attempt to retrieve data from a
non-existent row.

SYBEREAD EXCOMM Read from the server failed.

SYBERESP EXPROGRAM Response function address passed
to dbresponse must be non-NULL.

SYBERPCS EXINFO Must call dbrpcinit before
dbrpcparam or dbrpcsend.

SYBERPIL EXPROGRAM It is illegal to pass -1 to dbrpcparam
for the datalen of parameters which
are of type SYBCHAR,
SYBVARCHAR, SYBBINARY,
or SYBVARBINARY.

SYBERPNA EXNONFATAL The RPC facility is available only
when using a server whose version
number is 4.0 or later.

SYBERPND EXPROGRAM Attempt to initiate a new Adaptive
Server Enterprise operation with
results pending.

SYBERPNULL EXPROGRAM value parameter for dbrpcparam
can be NULL, only if the datalen
parameter is 0.

SYBERPTXTIM EXPROGRAM RPC parameters cannot be of type
text or image.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 403

SYBERPUL EXPROGRAM When passing a SYBINTN,
SYBDATETIMN,
SYBMONEYN, or SYBFLTN
parameter using dbrpcparam, it is
necessary to specify the
parameter’s maximum or actual
length so that DB-Library can
recognize it as a SYINT1,
SYBINT2, SYBINT4,
SYBMONEY, SYBMONEY4,
and so on.

SYBERTCC EXPROGRAM dbreadtext may not be used to
receive the results of a query that
contains a COMPUTE clause.

SYBERTSC EXPROGRAM dbreadtext may be used only to
receive the results of a query that
contains a single result column.

SYBERXID EXNONFATAL The Server did not recognize our
distributed-transaction ID.

SYBESECURE EXPROGRAM Secure Adaptive Server Enterprise
function not supported in this
version.

SYBESEFA EXPROGRAM DBSETNOTIFS cannot be called
if connections are present.

SYBESEOF EXCOMM Unexpected EOF from the server.

SYBESFOV EXPROGRAM International Release: dbsafestr
overflowed its destination buffer.

SYBESMSG EXSERVER General Adaptive Server
Enterprise error: Check messages
from the server.

SYBESOCK EXCOMM Unable to open socket.

SYBESPID EXPROGRAM Called dbspid with a NULL
dbproc.

SYBESYNC EXCOMM Read attempted while out of
synchronization with Adaptive
Server Enterprise.

SYBETEXS EXINFO Called dbmoretext with a bad size
parameter.

SYBETIME EXTIME Adaptive Server Enterprise
connection timed out.

SYBETMCF EXPROGRAM Attempt to install too many custom
formats using dbfmtinstall.

Error name Error severity Error text

Errors

404 Open Client

SYBETMTD EXPROGRAM Attempt to send too much TEXT
data using the dbmoretext call.

SYBETPAR EXPROGRAM No SYBTEXT or SYBIMAGE
parameters were defined.

SYBETPTN EXUSER Syntax error: Only two periods are
permitted in table names.

SYBETRAC EXINFO Attempted to turn off a trace flag
that was not on.

SYBETRAN EXINFO DBPROCESS is being used for
another transaction.

SYBETRAS EXINFO DB-Library internal error: Trace
structure not found.

SYBETRSN EXINFO Bad numbytes parameter passed to
dbtracestring.

SYBETSIT EXINFO Attempt to call dbtsput with an
invalid timestamp.

SYBETTS EXUSER The table which bulk copy is
attempting to copy to a host file is
shorter than the number of rows
which bulk copy was instructed to
skip.

SYBETYPE EXINFO Invalid argument type given to
Hyper/DB-Library.

SYBEUCPT EXUSER Unrecognized custom-format
parameter-type encountered in
dbstrbuild.

SYBEUCRR EXCONSISTENCY Internal software error: Unknown
connection result reported by
dbpasswd.

SYBEUDTY EXCONSISTENCY Unknown datatype encountered.

SYBEUFDS EXUSER Unrecognized format encountered
in dbstrbuild.

SYBEUFDT EXCONSISTENCY Unknown fixed-length datatype
encountered.

SYBEUHST EXUSER Unknown host machine name.

SYBEUMSG EXCOMM Unknown message-id in MSG
datastream.

SYBEUNAM EXFATAL Unable to get current user name
from operating system.

SYBEUNOP EXNONFATAL Unknown option passed to
dbsetopt.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 405

SYBEUNT EXUSER Unknown network type found in
interface file.

SYBEURCI EXRESOURCE International Release: Unable to
read copyright information from
the DB-Library localization file.

SYBEUREI EXRESOURCE International Release: Unable to
read error information from the
DB-Library localization file.

SYBEUREM EXRESOURCE International Release: Unable to
read error mnemonic from the DB-
Library localization file.

SYBEURES EXRESOURCE International Release: Unable to
read error string from the DB-
Library localization file.

SYBEURMI EXRESOURCE International Release: Unable to
read money-format information
from the DB-Library localization
file.

SYBEUSCT EXCOMM Unable to set communications
timer.

SYBEUTDS EXCOMM Unrecognized TDS version
received from the server.

SYBEUVBF EXPROGRAM Attempt to read an unknown
version of bcp format file.

SYBEUVDT EXCONSISTENCY Unknown variable-length datatype
encountered.

SYBEVDPT EXUSER For bulk copy, all variable-length
data must have either a length-
prefix or a terminator specified.

SYBEWAID EXCONSISTENCY DB-Library internal error:
ALTFMT following ALTNAME
has wrong id.

SYBEWRIT EXCOMM Write to the server failed.

SYBEXOCI EXNONFATAL International Release: A character-
set translation overflowed its
destination buffer while using bcp
to copy data from a host-file to the
server.

SYBEXTDN EXPROGRAM Warning: The xlt_todisp parameter
to dbfree_xlate was NULL. The
space associated with the xlt_tosrv
parameter has been freed.

Error name Error severity Error text

Errors

406 Open Client

Error severities

Table 2-33 lists the meanings for each symbolic error severity value.

Table 2-33: Error severities

See also DBDEAD, dberrhandle

SYBEXTN EXPROGRAM The xlt_tosrv and xlt_todisp
parameters to dbfree_xlate were
NULL.

SYBEXTSN EXPROGRAM Warning: The xlt_tosrv parameter
to dbfree_xlate was NULL. The
space associated with the
xlt_todisp parameter has been
freed.

SYBEZTXT EXINFO Attempt to send zero length text or
image to dataserver using
dbwritetext.

UNUSED EXINFO This error number is unused.

Error severity
Numerical
equivalent Explanation

EXINFO 1 Informational, non-error.

EXUSER 2 User error.

EXNONFATAL 3 Non-fatal error.

EXCONVERSION 4 Error in DB-Library data conversion.

EXSERVER 5 The Server has returned an error flag.

EXTIME 6 We have exceeded our timeout period while
waiting for a response from the Server—the
DBPROCESS is still alive.

EXPROGRAM 7 Coding error in user program.

EXRESOURCE 8 Running out of resources—the DBPROCESS
may be dead.

EXCOMM 9 Failure in communication with Server—the
DBPROCESS is dead.

EXFATAL 10 Fatal error—the DBPROCESS is dead.

EXCONSISTENCY 11 Internal software error—notify Sybase
Technical Support.

Error name Error severity Error text

CHAPTER 2 Routines

DB-Library/C Reference Manual 407

Options
Description The complete list of DB-Library options.

Syntax #include <sybfront.h>

#include <sybdb.h>

Usage • dbsetopt and dbclropt use the following constants, defined in sybdb.h, for
setting and clearing options. All options are off by default. These options
are available:

• DBARITHABORT – If this option is set, the server will abort a query
when an arithmetic exception occurs during its execution.

• DBARITHIGNORE – If this option is set, the server will substitute null
values for selected or updated values when an arithmetic exception occurs
during query execution. The Adaptive Server Enterprise will not return a
warning message. If neither DBARITHABORT nor DBARITHIGNORE
is set, Adaptive Server Enterprise will substitute null values and print a
warning message after the query has been executed.

• DBAUTH – This option sets system administration authorization levels.
Possible levels are: “sa”, “sso”, “oper”, and “dbcc_edit”. For information
on these levels, see the Adaptive Server Enterprise Reference Manual.

• DBBUFFER – This option allows the application to buffer result rows, so
that it can access them non-sequentially using the dbgetrow function. This
option is handled locally by DB-Library and is not a server option. When
the option is set, you supply a parameter that is the number of rows you
want buffered. If you use 0 as the number of rows to buffer, the buffer will
be set to a default size (currently 1000 rows).

When an application calls dbclropt to clear the DBBUFFER option, DB-
Library frees the memory associated with the row buffer.

• DBCHAINXACTS – This option is used to select chained or unchained
transaction behavior.

Chained behavior means that each SQL statement that modifies or
retrieves data implicitly begins a multi-statement transaction. Any delete,
insert, open, fetch, select, or update statement implicitly begins a
transaction. An explicit commit or rollback statement is required to end the
transaction. Chained mode provides compatibility with ANSI SQL.

Options

408 Open Client

Unchained behavior means that each SQL statement that modifies or
retrieves data is implicitly a distinct transaction. Explicit begin transaction
and commit or rollback statements are required to define a multi-statement
transaction.

This option is off (indicating unchained behavior) by default. Applications
that operate in chained mode should turn on the option right after a
connection has been opened, since this option affects the behavior of all
queries.

• DBDATEFIRST – Sets the first weekday to a number from 1 to 7. The
us_english default is 1 (Sunday).

• DBDATEFORMAT – Sets the order of the date parts month/day/year for
entering datetime or smalldatetime data. Valid arguments are “mdy,”
“dmy,” “ymd,” “ydm,” “myd,” or “dym”. The us_english default is “mdy.”

Row buffering provides a way to keep a specified number of server result
rows in program memory. Without row buffering, the result row generated
by each new dbnextrow call overwrites the contents of the previous result
row. Therefore, row buffering is useful for programs that need to look at
result rows in a non-sequential manner. However, it does carry a memory
and performance penalty because each row in the buffer must be allocated
and freed individually. Therefore, use it only if you need to. Specifically,
the application should only turn the DBBUFFER option on if it calls
dbgetrow or dbsetrow. Note that row buffering has nothing to do with
network buffering and is a completely independent issue. (See the
dbgetrow, dbnextrow, and dbclrbuf reference pages.)

• DBFIPSFLAG – Setting this option causes the server to flag non-standard
SQL commands. This option is off by default.

• DBISOLATION – This option is used to specify the transaction isolation
level. Possible levels are 1 and 3. The default level is 1. Setting the level
to 3 causes all pages of tables specified in a select query inside a
transaction to be locked for the duration of the transaction.

• DBNATLANG – This is a DB-Library Internationalization option.
Associate the specified DBPROCESS (or all open DBPROCESSes, if a
DBPROCESS is not specified) with a national language. If the national
language is not set for a particular DBPROCESS, U.S. English is used by
default.

CHAPTER 2 Routines

DB-Library/C Reference Manual 409

In programs that allow application users to make ad hoc queries, the user
may override DBNATLANG with the Transact-SQL set language
command.

Note All DBPROCESSes opened using a particular LOGINREC will also
use that LOGINREC’s associated national language. Use the
DBSETLNATLANG macro to associate a national language with a
LOGINREC.

• DBNOAUTOFREE – This option causes the command buffer to be
cleared only by an explicit call to dbfreebuf. When DBNOAUTOFREE is
not set, after a call to dbsqlexec or dbsqlsend the first call to either dbcmd
or dbfcmd automatically clears the command buffer before the new text is
entered.

• DBNOCOUNT – This option causes the server to stop sending back
information about the number of rows affected by each SQL statement.
The application can otherwise obtain this information by calling
DBCOUNT.

• DBNOEXEC – If this option is set, the server will process the query
through the compile step but the query will not be executed. This can be
used in conjunction with DBSHOWPLAN.

• DBOFFSET – This option indicates that the server should return offsets
for certain constructs in the query. DBOFFSET takes a parameter that
specifies the particular construct. The valid parameters for this option are
“select,” “from,” “table,” “order,” “compute,” “statement,” “procedure,
“execute,” or “param.” (Note that “param” refers to parameters of stored
procedures.) Calls to routines such as dbsetopt can specify these option
parameters in either lowercase or uppercase. Offsets are returned only if
the batch contains no syntax errors.

• DBPARSEONLY – If this option is set, the server only checks the syntax
of the query and returns error messages to the host. Offsets are returned if
the DBOFFSET option is set and there are no errors.

• DBPRCOLSEP – Specify the column separator character(s). Query results
rows formatted using dbprhead, dbprrow, dbsprhead, dbsprline, and
dbspr1row will have columns separated by the specified string. The default
separator is an ASCII 0x20 (space). The third parameter, a string, is not
necessarily null-terminated. The length of the string used is given as the
fourth parameter in the call to dbsetopt. To revert to using the default
separator, specify a length of -1. In this case, the third parameter is
ignored.

Options

410 Open Client

• DBPRLINELEN – Specify the maximum number of characters to be
placed on one line. This value is used by dbprhead, dbprrow, dbsprhead,
dbsprline, and dbspr1row. The default line length is 80 characters.

• DBPRLINESEP – Specify the row separator character to be used by
dbprhead, dbprrow, dbsprhead, dbsprline, and dbspr1row. The default
separator is a newline (ASCII 0x0D or 0x0A, depending on the host
system). The third parameter, a string, is not necessarily null-terminated.
The length of the string is given as the fourth parameter in the call to
dbsetopt. To revert to the default terminator, specify a length of -1; in this
case, the third parameter is ignored.

• DBPRPAD – Specify the pad character used when printing results using
dbprhead, dbprrow, dbsprhead, dbsprline, and dbspr1row. To activate
padding, specify DBPADON as the fourth parameter in the dbsetopt call.
The pad character may be specified as the third parameter in the dbsetopt
call. If the character is not specified, the ASCII character 0x20 (space) is
used. To turn off padding, call dbsetopt with DBPADOFF as the fourth
parameter; the third parameter is ignored when turning padding off.

• DBROWCOUNT – If this option is set to a value greater than 0, the server
limits the number of regular rows returned for select statements and the
number of table rows affected by update or delete statements. This option
does not limit the number of compute rows returned by a select statement.

DBROWCOUNT works somewhat differently from most options. It is
always set on, never off. Setting DBROWCOUNT to 0 sets it back to the
default – that is, to return all the rows generated by a select statement.
Therefore, the way to turn DBROWCOUNT off is to set it on with a count
of 0.

• DBSHOWPLAN – If this option is set, the server generates a description
of the processing plan after compilation and continue executing the query.

• DBSTAT – This option determines when performance statistics (CPU
time, elapsed time, I/O, and so on) will be returned to the host after each
query. DBSTAT takes one of two parameters: “io”, for statistics about
Adaptive Server Enterprise internal I/O; and “time”, for information about
Adaptive Server Enterprise’s parsing, compilation, and execution times.
These statistics are received by DB-Library in the form of informational
messages, and application programs can access them through the user-
supplied message handler.

• DBSTORPROCID – If this option is set, the server will send the stored
procedure ID to the host before sending rows generated by the stored
procedure.

CHAPTER 2 Routines

DB-Library/C Reference Manual 411

• DBTEXTLIMIT – This option causes DB-Library to limit the size of
returned text or image values. When setting this option, you supply a
parameter that is the length, in bytes, of the longest text or image value that
your program can handle. DB-Library will read but ignore any part of a
text or image value that goes over this limit. DB-Library’s default behavior
is to read and return all the data sent by the server. To restore this default
behavior, set DBTEXTLIMIT to a value less than 1. In the case of huge
text values, it may take some time for the entire text value to be returned
over the network. To keep the server from sending this extra text in the first
place, use the DBTEXTSIZE option instead.

• DBTEXTSIZE – This option changes the value of the server global
variable @@textsize, which limits the size of text or image values that the
server returns. When setting this option, you supply a parameter that is the
length, in bytes, of the longest text or image value that the server should
return. @@textsize has a default value of 32,768 bytes. Note that, in
programs that allow application users to make ad hoc queries, the user may
override this option with the Transact-SQL set textsize command. To set a
text limit that the user cannot override, use the DBTEXTLIMIT option
instead.

• DBBUFFER, DBNOAUTOFREE, and DBTEXTLIMIT are DB-Library
options. That is, they affect DB-Library but are not sent to the server. The
other options are Adaptive Server Enterprise options – they are sent to the
server. Adaptive Server Enterprise options can also be set through
Transact-SQL commands.

• As mentioned in the preceding descriptions, certain options take
parameters as shown in Table 2-34.

Types

412 Open Client

Table 2-34: Parameter values for options

dbsetopt requires that an option parameter be specified when setting any
option on the preceding list. dbclropt and dbisopt require that the parameter
be specified only for DBOFFSET and DBSTAT. This is because
DBOFFSET and DBSTAT are the only options that can have multiple
settings at a time, and thus they require further definition before being
cleared or checked.

Note that parameters specified in calls to dbsetopt, dbclropt, and dbisopt are
always passed as character strings and must be quoted, even if they are
numeric values. See the dbsetopt reference page.

See also dbclropt, dbisopt, dbsetopt

Types
Description Datatypes and symbolic constants for datatypes used by DB-Library.

Syntax #include <sybfront.h>

#include <sybdb.h>

Usage • Table 2-35 lists the symbolic constants for server datatypes. dbconvert and
dbwillconvert use these constants. In addition, the routines dbcoltype,
dbalttype, and dbrettype will return one of these types.

Option Possible parameter values

DBTEXTSIZE “0” to “2,147,483,647”

DBOFFSET “select”, “from”, “table”, “order”, “compute”, “statement”,
“procedure”, “execute”, or “param”

DBSTAT “io” or “time”

DBROWCOUNT “0” to “2,147,483,647”

DBBUFFER “0” to either “32,767” or “2,147,483,647”, depending on
whether your int datatype is 2 or 4 bytes long

DBTEXTLIMIT “0” to “2,147,483,647”

CHAPTER 2 Routines

DB-Library/C Reference Manual 413

Table 2-35: Symbolic constants for server datatypes

See the Adaptive Server Enterprise Transact-SQL Users Guide.

• Here is a list of C datatypes used by DB-Library functions. These types are
useful for defining program variables, particularly variables used with
dbbind, dbaltbind, dbconvert, and dbdatecrack.

/* char, text, boundary, and sensitivity types */
 typedef char DBCHAR;

/* binary and image type */
 typedef unsigned char DBBINARY;

/* 1-byte integer */
 typedef unsigned char DBTINYINT;

 /* 2-byte integer */
 typedef short DBSMALLINT;

Symbolic constant Represents

SYBDATETIME datetime type.

SYBDATETIME4 4-byte datetime type.

SYBMONEY4 4-byte money type.

SYBMONEY money type.

SYBFLT8 8-byte float type.

SYBDECIMAL decimal type.

SYBNUMERIC numeric type.

SYBREAL 4-byte float type.

SYBINT4 4-byte integer.

SYBINT2 2-byte integer.

SYBINT1 1-byte integer.

SYBIMAGE image type.

SYBTEXT text type.

SYBCHAR char type.

SYBBIT bit type.

SYBBINARY binary type.

SYBBOUNDARY Security sensitivity_boundary type.

Note Use DBCHAR as the type for program variables.

SYBSENSITIVITY Security sensitivity type.

Note Use DBCHAR as the type for program variables.

Types

414 Open Client

 / unsigned 2-byte integer */
 typedef unsigned short DBUSMALLINT;

 /* 4-byte integer */
 typedef long DBINT;

 /* 4-byte float type */
 typedef float DBREAL;

 typedef struct dbnumeric
 {
 char precision;
 char scale;
 unsigned char val[MAXNUMLEN];
 } DBNUMERIC;

 typedef DBNUMERIC DBDECIMAL;

 /* 8-byte float type */
 typedef double DBFLT8;

 /* bit type */
 typedef unsigned char DBBIT;

 /* SUCCEED or FAIL */
 typedef int RETCODE;

/* datetime type */
 typedef struct datetime
 {
 /* number of days since 1/1/1900 */
 long dtdays;
 /* 300ths of a second since midnight */
 unsigned long dttime;
 } DBDATETIME;

 /* 4-byte datetime type */
 typedef struct datetime4
 {
 /* number of days since 1/1/1900 */
 unsigned short numdays;
 /* number of minutes since midnight */
 unsigned short nummins;
 } DBDATETIME4;

 typedef struct dbdaterec

CHAPTER 2 Routines

DB-Library/C Reference Manual 415

 {
 /* 1900 to the future */
 long dateyear;
 /* 0 - 11 */
 long datemonth;
 /* 1 - 31 */
 long datedmonth;
 /* 1 - 366 */
 long datedyear;
 /* 0 - 6 (day names depend on language */
 long datedweek;
 /* 0 - 23 */
 long datehour;
 /* 0 - 59 */
 long dateminute;
 /* 0 - 59 */
 long datesecond;
 /* 0 - 997 */
 long datemsecond;
 /* 0 - 127 -- NOTE: Currently unused.*/
 long datetzone;
 } DBDATEREC;

 /* money type */
 typedef struct money
 {
 long mnyhigh;
 unsigned long mnylow;
 } DBMONEY;

 /* 4-byte money type */
 typedef signed long DBMONEY4;

 /* Pascal-type string */
 typedef struct dbvarychar
 {
 /* character count */
 DBSMALLINT len;
 /* non-terminated string */
 DBCHAR str[DBMAXCHAR];
 } DBVARYCHAR;

 /* Pascal-type binary array */
 typedef struct dbvarybin
 {
 /* byte count */

Types

416 Open Client

 DBSMALLINT len;
 /* non-terminated array */
 BYTE array[DBMAXCHAR];
 } DBVARYBIN;

 /* Used by DB-Library for indicator variables */
 typedef DBSMALLINT DBINDICATOR;

Note The SYBBOUNDARY and SYBSENSITIVITY symbolic constants
correspond to the program variable type DBCHAR.

See also dbaltbind, dbalttype, dbbind, dbcoltype, dbconvert, dbprtype, dbrettype,
dbwillconvert, Options

DB-Library/C Reference Manual 417

C H A P T E R 3 Bulk Copy Routines

This chapter describes the DB-Library bulk copy routines.

Introduction to bulk copy
Bulk copy is a tool for high-speed transfer of data between a database table
and program variables or a host file. It provides an alternative to SQL
insert and select commands.

The DB-Library/C bulk copy special library is a collection of routines that
provide bulk copy functionality to a DB-Library/C application. A DB-
Library/C application may find bulk copy useful if it needs to exchange
data with a non-database application, load data into a new database, or
move data from one database to another.

Transferring data into the database
Data can be copied into a database from program variables or from a flat
file on the client’s host machine.

When you are copying data into a database table, the chief advantage of
bulk copy over the alternative SQL insert command is speed. Also, SQL
insert requires that the data be in character string format, while bulk copy
can transfer native datatypes.

Topic Page
Introduction to bulk copy 417

List of bulk copy routines 420

Introduction to bulk copy

418 Open Client

When copying data into a non-indexed table, the “high speed” version of bulk
copy is used, which means that no data logging is performed during the
transfer. If the system fails before the transfer is complete, no new data will
remain in the database. Because high-speed transfer affects the recoverability
of the database, it is only enabled if the Adaptive Server Enterprise option
select into/bulkcopy has been turned on. If the option is not enabled, and a user
tries to copy data into a table that has no indexes, Adaptive Server Enterprise
generates an error message.

After the bulk copy is complete, the System Administrator should dump the
database to ensure its future recoverability.

When you copy data into an indexed table, a slower version of bcp is
automatically used, and row inserts are logged.

To copy data into a database, a DB-Library/C application must perform the
following introductory steps:

• Call dblogin to acquire a LOGINREC structure for later use with dbopen.

• Call BCP_SETL to set up the LOGINREC for bulk copy operations into the
database.

• Call dbopen to establish a connection with Adaptive Server Enterprise.

• Call bcp_init to initialize the bulk copy operation and inform Adaptive
Server Enterprise whether the copy will be performed from program
variables or from a host file. To copy data into the database, the bcp_init
direction parameter must be passed as DB_IN.

At this point, an application copying data from program variables will need to
perform different steps than an application copying data from a host file.

To copy data from program variables, a DB-Library/C application must
perform the following steps in addition to the introductory ones listed
previously:

• Call bcp_bind once for each program variable that is to be bound to a
database column.

• Transfer a batch of data in a loop:

• Assign program variables the data values to transfer.

• Call bcp_sendrow to send the row of data.

• After a batch of rows has been sent, call bcp_batch to save the rows in
Adaptive Server Enterprise.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 419

• After all the data has been sent, call bcp_done to end the bulk copy
operation.

To copy data from a host file, a DB-Library/C application needs to perform the
following steps in addition to the introductory ones listed previously:

• Call bcp_control to set the batch size and change control parameter default
settings.

• Call bcp_columns to set the total number of columns found in the host file.

• Call bcp_colfmt once for each column in the host file. If the host file
matches the database table exactly, an application does not have to call
bcp_colfmt.

• Call bcp_exec to start the copy in.

Transferring data out of the database to a flat file
Data can be copied out from a database only into an operating system (host)
file. Bulk copy does not allow the transfer of data from a database into program
variables.

When transferring data out to a host file from a database table, the chief
advantage of bulk copy over SQL select is that it allows very specific output
file formats to be specified. Bulk copy is not significantly faster than SQL
select.

To copy data out from a database, a DB-Library/C application must perform
the following steps:

1 Call dblogin to acquire a LOGINREC structure for later use with dbopen.

2 Call dbopen to establish a connection with Adaptive Server Enterprise.

3 Call bcp_init to initialize the bulk copy operation. To copy data out from
the database, direction must be passed as DB_OUT.

4 Call bcp_control to set the batch size and change control parameter default
settings.

5 Call bcp_columns to set the total number of columns found in the host file.

6 Call bcp_colfmt once for each column in the host file. If the host file
matches the database table exactly, an application does not have to call
bcp_colfmt.

7 Call bcp_exec to start the copy out.

List of bulk copy routines

420 Open Client

List of bulk copy routines

Routine Description

bcp_batch Save any preceding rows in Adaptive Server Enterprise.

bcp_bind Bind data from a program variable to a Adaptive Server
Enterprise table.

bcp_colfmt Specify the format of a host file for bulk copy purposes.

bcp_colfmt_ps Specify the format of a host file for bulk copy purposes,
with precision and scale support for numeric and decimal
columns.

bcp_collen Set the program variable data length for the current bulk
copy into the database.

bcp_colptr Set the program variable data address for the current bulk
copy into the database.

bcp_columns Set the total number of columns found in the host file.

bcp_control Change various control parameter default settings.

bcp_done End a bulk copy from program variables into Adaptive
Server Enterprise.

bcp_exec Execute a bulk copy of data between a database table and
a host file.

bcp_getl Determine if the LOGINREC has been set for bulk copy
operations.

bcp_init Initialize bulk copy.

bcp_moretext Send part of a text or image value to Adaptive Server
Enterprise.

bcp_options Set bulk copy options.

bcp_readfmt Read a datafile format definition from a host file.

bcp_sendrow Send a row of data from program variables to Adaptive
Server Enterprise.

BCP_SETL Set the LOGINREC for bulk copy operations into the
database.

bcp_setxlate Specify the character set translations to use when
retrieving data from or inserting data into a Adaptive
Server Enterprise.

bcp_writefmt Write a datafile format definition to a host file.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 421

bcp_batch
Description Save any preceding rows in Adaptive Server Enterprise.

Syntax DBINT bcp_batch(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

Return value The number of rows saved since the last call to bcp_batch, or -1 in case of error.

Usage • When an application uses bcp_bind and bcp_sendrow to bulk-copy rows
from program variables to Adaptive Server Enterprise tables, the rows are
permanently saved in Adaptive Server Enterprise only when the program
calls bcp_batch or bcp_done.

• You may call bcp_batch once every n rows or when there is a lull between
periods of incoming data (as in a telemetry application). Of course, you
may choose some other criteria, or may decide not to call bcp_batch at all.
If bcp_batch is not called, the rows are permanently saved in Adaptive
Server Enterprise when bcp_done is called.

• By default, Adaptive Server Enterprise copies all the rows specified in one
batch. Adaptive Server Enterprise considers each batch to be a separate
bcp operation. Each batch is copied in a single insert transaction, and if any
row in the batch is rejected, the entire insert is rolled back. bcp then
continues to the next batch. You can use bcp_batch to break large input
files into smaller units of recoverability. For example, if 300,000 rows are
bulk copied and bcp_batch is called every 100,000 rows, if there is a fatal
error after row 200,000, the first two batches—200,000 rows—will have
been successfully copied into Adaptive Server Enterprise.

• bcp_batch actually sends two commands to the server. The first command
tells the server to permanently save the rows. The second tells the server
to begin a new transaction. It is possible that the command to save the rows
completes successfully but the command to start a new transaction does
not. In this case, bcp_batch’s error return of -1 does not indicate that the
rows have not been successfully saved. To find out whether this has
happened, an application can refer to the messages generated by Adaptive
Server Enterprise or DB-Library/C.

See also bcp_bind, bcp_done, bcp_sendrow

bcp_bind

422 Open Client

bcp_bind
Description Bind data from a program variable to an Adaptive Server Enterprise table.

Syntax RETCODE bcp_bind (dbproc, varaddr, prefixlen, varlen,
 terminator, termlen, type,
 table_column)

DBPROCESS *dbproc;
BYTE *varaddr;
int prefixlen;
DBINT varlen;
BYTE *terminator;
int termlen;
int type;
int table_column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

varaddr
The address of the program variable from which the data will be copied. If
type is SYBTEXT or SYBIMAGE, varaddr can be NULL. A NULL
varaddr indicates that text and image values will be sent to Adaptive Server
Enterprise in chunks by bcp_moretext, rather than all at once by
bcp_sendrow.

prefixlen
The length, in bytes, of any length prefix this column may have. For
example, strings in some non-C programming languages are made up of a
one-byte length prefix, followed by the string data itself. If the data does not
have a length prefix, set prefixlen to 0.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 423

varlen
The length of the data in the program variable, not including the length of
any length prefix and/or terminator. Setting varlen to 0 signifies that the data
is null. Setting varlen to -1 indicates that the system should ignore this
parameter.

For fixed-length datatypes, such as integer, the datatype itself indicates to
the system the length of the data. Therefore, for fixed-length datatypes,
varlen must always be -1, except when the data is null, in which case varlen
must be 0.

For char, text, binary, and image datatypes, varlen can be -1, 0, or some
positive value. If varlen is -1, the system will use either a length prefix or a
terminator sequence to determine the length. (If both are supplied, the
system will use the one that results in the shortest amount of data being
copied.) If varlen is -1 and neither a prefix length nor a terminator sequence
is specified, the system will return an error message. If varlen is 0, the
system assumes the data is null. If varlen is some positive value, the system
uses varlen as the data length. However, if, in addition to a positive varlen,
a prefix length and/or terminator sequence is provided, the system
determines the data length by using the method that results in the shortest
amount of data being copied.

terminator
A pointer to the byte pattern, if any, that marks the end of this program
variable. For example, C strings usually have a 1-byte terminator whose
value is 0. If there is no terminator for the variable, set terminator to NULL.

If you want to designate the C null terminator as the program variable
terminator, the simplest way is to use an empty string ("") as terminator and
set termlen to 1, since the null terminator constitutes a single byte. For
instance, the second bcp_bind call in the “Example” section below uses two
tabs as the program variable terminator. It could be rewritten to use a C null
terminator instead, as follows:

bcp_bind (dbproc, co_name, 0, -1, "", 1, 0, 2)

termlen
The length of this program variable’s terminator, if any. If there is no
terminator for the variable, set termlen to 0.

bcp_bind

424 Open Client

type
The datatype of your program variable, expressed as an Adaptive Server
Enterprise datatype. The data in the program variable will be automatically
converted to the type of the database column. If this parameter is 0, no
conversion will be performed. See the dbconvert reference page for a list of
supported conversions. That reference page also contains a list of Adaptive
Server Enterprise datatypes.

table_column
The column in the database table to which the data will be copied. Column
numbers start at 1.

Return value SUCCEED or FAIL.

Examples • The following program fragment illustrates bcp_bind:

LOGINREC *login;
DBPROCESS *dbproc;
char co_name[MAXNAME];
DBINT co_id;
DBINT rows_sent;
DBBOOL more_data;
char *terminator = "\t\t";

 /* Initialize DB-Library. */
 if (dbinit() == FAIL)
 exit(ERREXIT);

 /* Install error-handler and message-handler. */
 dberrhandle(err_handler);
 dbmsghandle(msg_handler);

 /* Open a DBPROCESS. */
 login = dblogin();
 BCP_SETL(login, TRUE);
 dbproc = dbopen(login, NULL);

 /* Initialize bcp. */
 if (bcp_init(dbproc, "comdb..accounts_info",
 NULL, NULL, DB_IN) == FAIL)
 exit(ERREXIT);

 /* Bind program variables to table columns. */
 if (bcp_bind(dbproc, &co_id, 0, -1,
 (BYTE *)NULL, 0, 0, 1) == FAIL)
 {
 fprintf(stderr, "bcp_bind, column 1, failed.\n");

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 425

 exit(ERREXIT);
 }

 if (bcp_bind
 (dbproc, co_name, 0, -1, (BYTE *)terminator,
 strlen(terminator), 0, 2)
 == FAIL)
 {
 fprintf(stderr, "bcp_bind, column 2, failed.\n");
 exit(ERREXIT);
 }

 while (TRUE)
 {
 /* Process/retrieve program data. */
 more_data = getdata(&co_id, co_name);

 if (more_data == FALSE)
 break;

 /* Send the data. */
 if (bcp_sendrow(dbproc) == FAIL)
 exit(ERREXIT);
 }

 /* Terminate the bulk copy operation. */
 if ((rows_sent = bcp_done(dbproc)) == -1)
 printf("Bulk-copy unsuccessful.\n");
 else
 printf("%ld rows copied.\n", rows_sent);

Usage • There may be times when you want to copy data directly from a program
variable into a table in Adaptive Server Enterprise, without having to first
place the data in a host file or use the SQL insert command. The bcp_bind
function is a fast and efficient way to do this.

• You must call bcp_init before calling this or any other bulk copy functions.

• There must be a separate bcp_bind call for every column in the Adaptive
Server Enterprise table into which you want to copy. After the necessary
bcp_bind calls have been made, you then call bcp_sendrow to send a row
of data from your program variables to Adaptive Server Enterprise. The
table to be copied into is set by calling bcp_init.

• You can override the program variable data length (varlen) for a particular
column on the current copy in by calling bcp_collen.

bcp_colfmt

426 Open Client

• Whenever you want Adaptive Server Enterprise to checkpoint the rows
already received, call bcp_batch. For example, you may want to call
bcp_batch once for every 1000 rows inserted, or at any other interval.

• When there are no more rows to be inserted, call bcp_done. Failure to do
so will result in an error.

• When using bcp_bind, the host file name parameter used in the call to
bcp_init, hfile, must be set to NULL, and the direction parameter, direction,
must be set to DB_IN.

• Prefix lengths should not be used with fixed-length datatypes, such as
integer or float. For fixed-length datatypes, since bulk copy can figure out
the length of the data from the datatype, pass prefixlen as 0 and varlen as
-1, except when the data is NULL, in which case varlen must be 0.

• Control parameter settings, specified with bcp_control, have no effect on
bcp_bind row transfers.

• It is an error to call bcp_columns when using bcp_bind.

See also bcp_batch, bcp_colfmt, bcp_collen, bcp_colptr, bcp_columns, bcp_control,
bcp_done, bcp_exec, bcp_init, bcp_moretext, bcp_sendrow

bcp_colfmt
Description Specify the format of a host file for bulk copy purposes.

Syntax RETCODE bcp_colfmt (dbproc, host_colnum, host_type,
 host_prefixlen, host_collen,
 host_term, host_termlen,
 table_colnum)

DBPROCESS *dbproc;
int host_colnum;
int host_type;
int host_prefixlen;
DBINT host_collen;
BYTE *host_term;
int host_termlen;
int table_colnum;

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 427

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

host_colnum
The column in the host file whose format is being specified. The first
column is number 1.

host_type
The datatype of this column in the host file, expressed as an Adaptive Server
Enterprise datatype. If it is different from the datatype of the corresponding
column in the database table (table_colnum), the conversion will be
performed automatically. See the dbconvert reference page for a table of
allowable data conversions. That reference page also contains a list of
Adaptive Server Enterprise datatypes.

If you want to specify the same datatype as in the corresponding column of
the database table (table_colnum), this parameter should be set to 0.

Note bcp_colfmt does not offer precision and scale support for numeric and
decimal types. When setting the format of a numeric or decimal host column,
bcp_colfmt uses a default precision and scale of 18 and 0, respectively. To
specify a different precision and scale, an application can call bcp_colfmt_ps.

host_prefixlen
The length of the length prefix for this column in the host file. Legal prefix
lengths are 1, 2, and 4 bytes. To avoid using a length prefix, this parameter
should be set to 0. To let bcp decide whether to use a length prefix, this
parameter should be set to -1. In such a case, bcp will use a length prefix (of
whatever length is necessary) if the database column length is variable.

If more than one means of specifying a host file column length is used (such
as a length prefix and a maximum column length, or a length prefix and a
terminator sequence), bcp will look at all of them and use the one that results
in the smallest amount of data being copied.

One valuable use for length prefixes is to simplify the specifying of null data
values in a host file. For instance, assume you have a 1-byte length prefix
for a 4-byte integer column. Ordinarily, the length prefix will contain a value
of 4, to indicate that a 4-byte value follows. However, if the value of the
column is NULL, the length prefix can be set to 0 to indicate that 0 bytes
follow for the column.

bcp_colfmt

428 Open Client

host_collen
The maximum length of this column’s data in the host file, not including the
length of any length prefix and/or terminator. Setting host_collen to 0
signifies that the data is NULL. Setting host_collen to -1 indicates that the
system should ignore this parameter (that is, there is no default maximum
length).

For fixed-length datatypes, such as integer, the length of the data is constant,
except for the special case of null values. Therefore, for fixed-length
datatypes, host_collen must always be -1, except when the data is null, in
which case host_collen must be 0.

For char, text, binary, and image datatypes, host_collen can be -1, 0, or some
positive value. If host_collen is -1, the system will use either a length prefix
or a terminator sequence to determine the length of the data. (If both are
supplied, the system will use the one that results in the shortest amount of
data being copied.) If host_collen is -1 and neither a prefix length nor a
terminator sequence is specified, the system will return an error message. If
host_collen is 0, the system assumes the data is NULL. If host_collen is
some positive value, the system uses host_collen as the maximum data
length. However, if, in addition to a positive host_collen, a prefix length
and/or terminator sequence is provided, the system determines the data
length by using the method that results in the shortest amount of data being
copied.

host_term
The terminator sequence to be used for this column. This parameter is
mainly useful for char, text, binary, and image datatypes, because all other
datatypes are of fixed length. To avoid using a terminator, set this parameter
to NULL. To set the terminator to the NULL character, set host_term to “\0”.
To make the tab character the terminator, set host_term to “\t”. To make the
newline character the terminator, set host_term to “\n”.

If more than one means of specifying a host file column length is used (such
as a terminator and a length prefix, or a terminator and a maximum column
length), bcp will look at all of them and use the one that results in the
smallest amount of data being copied.

host_termlen
The length, in bytes, of the terminator sequence to be used for this column.
To avoid using a terminator, set this value to -1.

table_colnum
The corresponding column in the database table. If this value is 0, this
column will not be copied. The first column is column 1.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 429

Return value SUCCEED or FAIL.

Usage • bcp_colfmt allows you to specify the host file format for bulk copies. For
bulk copy purposes, a format contains the following parts:

• A mapping from host file columns to database columns

• The datatype of each host file column

• The length of the optional length prefix of each column

• The maximum length of the host file column’s data

• The optional terminating byte sequence for each column

• The length of this optional terminating byte sequence

• Each call to bcp_colfmt specifies the format for one host file column. For
example, if you have a table with five columns and want to change the
default settings for three of those columns, you should first call
bcp_columns(dbproc, 5), and then call bcp_colfmt five times, with three of
those calls setting your custom format. The remaining two calls should
have their host_type set to 0, and their host_prefixlen, host_collen, and
host_termlen parameters set to -1. The result of this would be to copy all
five columns—three with your customized format and two with the default
format.

• bcp_columns must be called before any calls to bcp_colfmt.

• You must call bcp_colfmt for every column in the host file, regardless of
whether some of those columns use the default format or are skipped.

• To skip a column, set the table_column parameter to 0.

See also bcp_batch, bcp_bind, bcp_colfmt_ps, bcp_collen, bcp_colptr, bcp_columns,
bcp_control, bcp_done, bcp_exec, bcp_init, bcp_sendrow

bcp_colfmt_ps
Description Specify the format of a host file for bulk copy purposes, with precision and

scale support for numeric and decimal columns.

Syntax RETCODE bcp_colfmt_ps (dbproc, host_colnum, host_type,
 host_prefixlen, host_collen,
 host_term, host_termlen,
 table_colnum, typeinfo)

bcp_colfmt_ps

430 Open Client

DBPROCESS *dbproc;
int host_colnum;
int host_type;
int host_prefixlen;
DBINT host_collen;
BYTE *host_term;
int host_termlen;
int table_colnum;
DBTYPEINFO *typeinfo;

Note bcp_colfmt_ps’s parameters are identical to bcp_colfmt’s, except that
bcp_colfmt_ps has the additional parameter typeinfo, which contains
information about precision and scale for numeric or decimal columns.

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

host_colnum
The column in the host file whose format is being specified. The first
column is number 1.

host_type
The datatype of this column in the host file, expressed as an Adaptive Server
Enterprise datatype. If it is different from the datatype of the corresponding
column in the database table (table_colnum), the conversion will be
performed automatically. See the dbconvert reference page for a table of
allowable data conversions. That reference page also contains a list of
Adaptive Server Enterprise datatypes.

If you want to specify the same datatype as in the corresponding column of
the database table (table_colnum), this parameter should be set to 0.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 431

host_prefixlen
The length of the length prefix for this column in the host file. Legal prefix
lengths are 1, 2, and 4 bytes. To avoid using a length prefix, this parameter
should be set to 0. To let bcp decide whether to use a length prefix, this
parameter should be set to -1. In such a case, bcp will use a length prefix (of
whatever length is necessary) if the database column length is variable.

If more than one means of specifying a host file column length is used (such
as a length prefix and a maximum column length, or a length prefix and a
terminator sequence), bcp will look at all of them and use the one that results
in the shortest amount of data being copied.

One valuable use for length prefixes is to simplify the specifying of null data
values in a host file. For instance, assume you have a 1-byte length prefix
for a 4-byte integer column. Ordinarily, the length prefix will contain a value
of 4, to indicate that a 4-byte value follows. However, if the value of the
column is null, the length prefix can be set to 0, to indicate that 0 bytes
follow for the column.

host_collen
The maximum length of this column’s data in the host file, not including the
length of any length prefix and/or terminator. Setting host_collen to 0
signifies that the data is NULL. Setting host_collen to -1 indicates that the
system should ignore this parameter (that is, there is no default maximum
length).

For fixed-length datatypes, such as integer, the length of the data is constant,
except for the special case of null values. Therefore, for fixed-length
datatypes, host_collen must always be -1, except when the data is NULL, in
which case host_collen must be 0.

For char, text, binary, and image datatypes, host_collen can be -1, 0, or some
positive value. If host_collen is -1, the system will use either a length prefix
or a terminator sequence to determine the length of the data. (If both are
supplied, the system will use the one that results in the smallest amount of
data being copied.) If host_collen is -1 and neither a prefix length nor a
terminator sequence is specified, the system will return an error message. If
host_collen is 0, the system assumes the data is NULL. If host_collen is
some positive value, the system uses host_collen as the maximum data
length. However, if, in addition to a positive host_collen, a prefix length
and/or terminator sequence is provided, the system determines the data
length by using the method that results in the smallest amount of data being
copied.

bcp_colfmt_ps

432 Open Client

host_term
The terminator sequence to be used for this column. This parameter is
mainly useful for char, text, binary, and image datatypes, because all other
types are of fixed length. To avoid using a terminator, set this parameter to
NULL. To set the terminator to the null character, set host_term to “\0”. To
make the tab character the terminator, set host_term to “\t”. To make the
newline character the terminator, set host_term to “\n”.

If more than one means of specifying a host file column length is used (such
as a terminator and a length prefix, or a terminator and a maximum column
length), bcp will look at all of them and use the one that results in the
smallest amount of data being copied.

host_termlen
The length, in bytes, of the terminator sequence to be used for this column.
To avoid using a terminator, set this value to -1.

table_colnum
The corresponding column in the database table. If this value is 0, this
column will not be copied. The first column is column 1.

typeinfo
A pointer to a DBTYPEINFO structure containing information about the
precision and scale of decimal or numeric host file columns. An application
sets a DBTYPEINFO structure with values for precision and scale before
calling bcp_colfmt_ps to specify the host file format of decimal or numeric
columns.

If typeinfo is NULL, bcp_colfmt_ps is the equivalent of bcp_colfmt. That is:

• If the server column is of type numeric or decimal, bcp_colfmt_ps picks
up precision and scale values from the column.

• If the server column is not numeric or decimal, bcp_colfmt_ps uses a
default precision of 18 and a default scale of 0.

If host_type is not 0, SYBDECIMAL or SYBNUMERIC, typeinfo is
ignored.

If host_type is 0 and the corresponding server column is not numeric or
decimal, typeinfo is ignored.

A DBTYPEINFO structure is defined as follows:

typedef struct typeinfo {
 DBINT precision;
 DBINT scale;

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 433

 } DBTYPEINFO;

Legal values for precision are from 1 to 77. Legal values for scale are from
0 to 77. scale must be less than or equal to precision.

Return value SUCCEED or FAIL.

Usage • bcp_colfmt_ps is the equivalent of bcp_colfmt, except that bcp_colfmt_ps
provides precision and scale support for numeric and decimal datatypes,
which bcp_colfmt does not. Calling bcp_colfmt is equivalent to calling
bcp_colfmt_ps with typeinfo as NULL.

• bcp_colfmt_ps allows you to specify the host file format for bulk copies.
For bulk copy purposes, a format contains the following parts:

• A mapping from host file columns to database columns

• The datatype of each host file column

• The length of the optional length prefix of each column

• The maximum length of the host file column’s data

• The optional terminating byte sequence for each column

• The length of this optional terminating byte sequence

• Each call to bcp_colfmt_ps specifies the format for one host file column.
For example, if you have a table with five columns, and want to change the
default settings for three of those columns, you should first call
bcp_columns(dbproc, 5), and then call bcp_colfmt_ps five times, with three
of those calls setting your custom format. The remaining two calls should
have their host_type set to 0, and their host_prefixlen, host_collen, and
host_termlen parameters set to -1. The result of this would be to copy all
five columns—three with your customized format and two with the default
format.

• bcp_columns must be called before any calls to bcp_colfmt_ps.

• You must call bcp_colfmt_ps for every column in the host file, regardless
of whether some of those columns use the default format or are skipped.

• To skip a column, set the table_column parameter to 0.

See also bcp_batch, bcp_bind, bcp_colfmt, bcp_collen, bcp_colptr, bcp_columns,
bcp_control, bcp_done, bcp_exec, bcp_init, bcp_sendrow

bcp_collen

434 Open Client

bcp_collen
Description Set the program variable data length for the current bulk copy into the database.

Syntax RETCODE bcp_collen(dbproc, varlen, table_column)

DBPROCESS *dbproc;
DBINT varlen;
int table_column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

varlen
The length of the program variable, which does not include the length of the
length prefix or terminator. Setting varlen to 0 signifies that the data is
NULL. Setting it to -1 signifies that the data is variable-length and that the
length will be determined by the length prefix or terminator. If both a length
prefix and a terminator exist, bcp will use the one that results in the smallest
amount of data being copied.

table_column
The column in the Adaptive Server Enterprise table to which the data will
be copied. Column numbers start at 1.

Return value SUCCEED or FAIL.

Usage • The bcp_collen function allows you to change the program variable data
length for a particular column while running a copy in through calls to
bcp_bind.

• Initially, the program variable data length is determined when bcp_bind is
called. If the program variable data length changes between calls to
bcp_sendrow, and no length prefix or terminator is being used, you may
call bcp_collen to reset the length. The next call to bcp_sendrow will use
the length you just set.

• There must be a separate bcp_collen call for every column in the table
whose data length you want to modify.

See also bcp_bind, bcp_colptr, bcp_sendrow

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 435

bcp_colptr
Description Set the program variable data address for the current bulk copy into the

database.

Syntax RETCODE bcp_colptr(dbproc, colptr, table_column)

DBPROCESS *dbproc;
BYTE *colptr;
int table_column;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

colptr
The address of the program variable.

table_column
The column in the Adaptive Server Enterprise table to which the data will
be copied. Column numbers start at 1.

Return value SUCCEED or FAIL.

Usage • The bcp_colptr function allows you to change the program variable data
address for a particular column while running a copy in through calls to
bcp_bind.

• Initially, the program variable data address is determined when bcp_bind
is called. If the program variable data address changes between calls to
bcp_sendrow, you may call bcp_colptr to reset the address of the data. The
next call to bcp_sendrow will use the data at the address you just set.

• There must be a separate bcp_colptr call for every column in the table
whose data address you want to modify.

See also bcp_bind, bcp_collen, bcp_sendrow

bcp_columns
Description Set the total number of columns found in the host file.

Syntax RETCODE bcp_columns(dbproc, host_colcount)

bcp_control

436 Open Client

DBPROCESS *dbproc;
int host_colcount;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

host_colcount
The total number of columns in the host file. Even if you are preparing to
bulk copy data from the host file to an Adaptive Server Enterprise table and
do not intend to copy all columns in the host file, you must still set
host_colcount to the total number of host file columns.

Return value SUCCEED or FAIL.

Usage • This function sets the total number of columns found in a host file for use
with bulk copy. This routine may be called only after bcp_init has been
called with a valid file name.

• You should call this routine only if you intend to use a host file format that
differs from the default. The default host file format is described on the
bcp_init reference page.

• After calling bcp_columns, you must call bcp_colfmt host_colcount times,
because you are defining a completely custom file format.

See also bcp_colfmt, bcp_init

bcp_control
Description Change various control parameter default settings.

Syntax RETCODE bcp_control(dbproc, field, value)

DBPROCESS *dbproc;
int field;
DBINT value;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 437

field
A control-parameter identifier consisting of one of the following symbolic
values:

value
The value to change the corresponding control parameter to.

Return value SUCCEED or FAIL.

Usage • This function sets various control parameters for bulk copy operations,
including the number of errors allowed before aborting a bulk copy, the
numbers of the first and last rows to copy, and the batch size.

• These control parameters are only meaningful when the application copies
between a host file and an Adaptive Server Enterprise table. Control
parameter settings have no effect on bcp_bind row transfers.

• By default, Adaptive Server Enterprise copies all the rows specified in one
batch. Adaptive Server Enterprise considers each batch to be a separate
bcp operation. Each batch is copied in a single insert transaction, and if any
row in the batch is rejected, the entire insert is rolled back. bcp then
continues to the next batch. You can use bcp_batch to break large input
files into smaller units of recoverability. For example, if 300,000 rows are
bulk copied in with a batch size of 100,000 rows, and there is a fatal error
after row 200,000, the first two batches—200,000 rows—will have been
successfully copied into Adaptive Server Enterprise. If batching had not
been used, no rows would have been copied into Adaptive Server
Enterprise.

• The following program fragment illustrates bcp_control:

LOGINREC *login;
DBPROCESS *dbproc;
DBINT rowsread;

Field Description

BCPMAXERRS The number of errors allowed before giving up. The default is 10.

BCPFIRST The first row to copy. The default is 1. A value of less than 1 resets
this field to its default value of 1.

BCPLAST The last row to copy. The default is to copy all rows. A value of
less than 1 resets this field to its default value.

BCPBATCH The number of rows per batch. The default is 0, which means that
the entire bulk copy will be done in one batch. This field is only
meaningful when copying from a host file into Adaptive Server
Enterprise.

bcp_control

438 Open Client

 /* Initialize DB-Library. */
 if (dbinit() == FAIL)
 exit(ERREXIT);

 /* Install error-handler and message-handler. */
 dberrhandle(err_handler);
 dbmsghandle(msg_handler);

 /* Open a DBPROCESS. */
 login = dblogin();
 BCP_SETL(login, TRUE);
 dbproc = dbopen(login, NULL);

 /* Initialize bcp. */
 if (bcp_init(dbproc, "comdb..address", "address.add",
 "addr.error", DB_IN) == FAIL)
 exit(ERREXIT);

 /* Set the number of rows per batch. */
 if (bcp_control(dbproc, BCPBATCH, 1000) == FAIL)
 {
 printf("bcp_control failed to set batching behavior.\n");
 exit(ERREXIT);
 }

 /* Set host column count. */
 if (bcp_columns(dbproc, 1) == FAIL)
 {
 printf("bcp_columns failed.\n");
 exit(ERREXIT);
 }

 /* Set the host-file format. */
 if (bcp_colfmt(dbproc, 1, 0, 0, -1, (BYTE *)("\n"), 1, 1) == FAIL)
 {
 printf("bcp_colformat failed.\n");
 exit(ERREXIT);
 }

 /* Now, execute the bulk copy. */
 if (bcp_exec(dbproc, &rowsread) == FAIL)
 {
 printf("Incomplete bulk copy. Only %ld row%c copied.\n",
 rowsread, (rowsread == 1) ? ’ ’: ’s’);

 exit(ERREXIT);

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 439

 }

See also bcp_batch, bcp_bind, bcp_colfmt, bcp_collen, bcp_colptr, bcp_columns,
bcp_done, bcp_exec, bcp_init

bcp_done
Description End a bulk copy from program variables into Adaptive Server Enterprise.

Syntax DBINT bcp_done(dbproc)

DBPROCESS*dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

Return value The number of rows permanently saved since the last call to bcp_batch, or -1
in case of error.

Usage bcp_done ends a bulk copy performed with bcp_bind and bcp_sendrow. It
should be called after the last call to bcp_sendrow or bcp_moretext. Failure to
call bcp_done after you have completed copying in all your data will result in
unpredictable errors.

See also bcp_batch, bcp_bind, bcp_moretext, bcp_sendrow

bcp_exec
Description Execute a bulk copy of data between a database table and a host file.

Syntax RETCODE bcp_exec(dbproc, rows_copied)

DBPROCESS *dbproc;
DBINT *rows_copied;

bcp_exec

440 Open Client

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

rows_copied
A pointer to a DBINT. bcp_exec will fill this DBINT with the number of
rows successfully copied. If set to NULL, this parameter will not be filled in
by bcp_exec.

Return value SUCCEED or FAIL.

bcp_exec returns SUCCEED if all rows are copied. If a partial or complete
failure occurs, bcp_exec returns FAIL. Check the rows_copied parameter for
the number of rows successfully copied.

Usage • This routine copies data from a host file to a database table or vice-versa,
depending on the value of the direction parameter in bcp_init.

• Before calling this function you must call bcp_init with a valid host file
name. Failure to do so will result in an error.

• The following program fragment illustrates bcp_exec:

LOGINREC *login;
DBPROCESS *dbproc;
DBINT rowsread;

/* Initialize DB-Library. */
if (dbinit() == FAIL)
 exit(ERREXIT);

/* Install error-handler and message-handler. */
dberrhandle(err_handler);
dbmsghandle(msg_handler);

/* Open a DBPROCESS. */
login = dblogin();
BCP_SETL(login, TRUE);
dbproc = dbopen(login, NULL);

/* Initialize bcp. */
if (bcp_init(dbproc, "pubs2..authors", "authors.save",
 (BYTE *)NULL, DB_OUT) == FAIL)
 exit(ERREXIT);

/* Now, execute the bulk copy. */

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 441

if (bcp_exec(dbproc, &rowsread) == FAIL)
 printf("Incomplete bulk copy. Only %ld row%c copied.\n",
 rowsread, (rowsread == 1) ? ’ ’: ’s’);

See also bcp_batch, bcp_bind, bcp_colfmt, bcp_collen, bcp_colptr, bcp_columns,
bcp_control, bcp_done, bcp_init, bcp_sendrow

bcp_getl
Description Determine if the LOGINREC has been set for bulk copy operations.

Syntax DBBOOL bcp_getl(loginrec)

LOGINREC *loginrec;

Parameters loginrec
A pointer to a LOGINREC structure that will be passed as an argument to
dbopen. You can get a LOGINREC structure by calling dblogin.

Return value “TRUE” or “FALSE.”

Usage • bcp_getl returns “TRUE” if *loginrec is enabled for bulk copy operations,
and “FALSE” if it is not.

• A DBPROCESS connection cannot be used for bulk copy in operations
unless the LOGINREC used to open the connection has been set to allow
bulk copy. The macro BCP_SETL sets a LOGINREC to allow bulk copy.
By default, DBPROCESSes are not enabled for bulk copy operations.

• Applications that allow users to make ad hoc queries may want to avoid
calling BCP_SETL (or call it with a value of “false” for the enable
parameter) to prevent users from initiating a bulk copy sequence through
SQL commands. Once a bulk copy sequence has begun, it cannot be
stopped by an ordinary SQL command.

• If LOGINREC is NULL, bcp_getl returns “FALSE.”

See also bcp_init, BCP_SETL, dblogin, dbopen

bcp_init
Description Initialize bulk copy.

bcp_init

442 Open Client

Syntax RETCODE bcp_init(dbproc, tblname, hfile, errfile,
 direction)

DBPROCESS *dbproc;
char *tblname;
char *hfile;
char *errfile;
int direction;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

tblname
The name of the database table to be copied in or out. This name may also
include the database name or the owner name. For example,
pubs2.gracie.titles, pubs2.titles, gracie.titles, and titles are all legal table
names.

hfile
The name of the host file to be copied in or out. If no host file is involved
(the situation when data is being copied directly from variables), hfile should
be NULL.

errfile
The name of the error file to be used. This error file will be filled with
progress messages, error messages, and copies of any rows that, for any
reason, could not be copied from a host file to an Adaptive Server Enterprise
table.

If errfile is NULL, no error file is used.

If hfile is NULL, errfile is ignored. This is because an error file is not
necessary when bulk-copying from program variables.

direction
The direction of the copy. It must be one of two values—DB_IN or
DB_OUT. DB_IN indicates a copy from the host into the database table,
while DB_OUT indicates a copy from the database table into the host file.

It is illegal to request a bulk copy from the database table (DB_OUT)
without supplying a host file name.

Return value SUCCEED or FAIL.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 443

Usage • bcp_init performs the necessary initialization for a bulk copy of data
between the front-end and an Adaptive Server Enterprise. It sets the
default host file data formats and examines the structure of the database
table.

• bcp_init must be called before any other bulk copy functions. Failure to do
so will result in an error.

• If a host file is being used (see the description of hfile in the “Parameters”
section above), the default data formats are as follows:

• The order, type, length, and number of the columns in the host file are
assumed to be identical to the order, type, and number of the columns
in the database table.

• If a given database column’s data is fixed-length, then the host file’s
data column will also be fixed-length. If a given database column’s
data is variable-length or may contain null values, the host file’s data
column will be prefixed by a 4-byte length value for SYBTEXT and
SYBIMAGE data types, and a 1-byte length value for all other types.

• There are no terminators of any kind between host file columns.

Any of these defaults can be overridden by calling bcp_columns and
bcp_colfmt.

• Using the bulk copy routines to copy data to a database table requires the
following:

• The DBPROCESS structure must be usable for bulk copy purposes.
This is accomplished by calling BCP_SETL:

login = dblogin();
BCP_SETL(login, TRUE);

• If the table has no indexes, the database option select into/bulkcopy
must be set to “true.” The following SQL command will do this:

sp_dboption ’mydb’, ’select into/bulkcopy’,
’true’

See the Adaptive Server Enterprise Reference Manual for further details
on sp_dboption.

• If no host file is being used, it is necessary to call bcp_bind to specify the
format and location in memory of each column’s data value.

bcp_moretext

444 Open Client

• If no host file is being used, errfile is ignored. An error file is not necessary
when bulk-copying from program variables because bcp_sendrow returns
FAIL if an error occurs. In this case, the application can examine the bulk
copy program variables to determine which row values caused the error.

See also bcp_batch, bcp_bind, bcp_colfmt, bcp_collen, bcp_colptr, bcp_columns,
bcp_control, bcp_done, bcp_exec, bcp_sendrow

bcp_moretext
Description Send part of a text or image value to Adaptive Server Enterprise.

Syntax RETCODE bcp_moretext(dbproc, size, text)

DBPROCESS *dbproc;
DBINT size;
BYTE *text;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

size
The size of this particular part of the text or image value being sent to
Adaptive Server Enterprise. It is an error to send more text or image bytes to
Adaptive Server Enterprise than were specified in the call to bcp_bind or
bcp_collen.

text
A pointer to the text or image portion to be written.

Return value SUCCEED or FAIL.

Usage • This routine is used in conjunction with bcp_bind and bcp_sendrow to send
a large SYBTEXT or SYBIMAGE value to Adaptive Server Enterprise in
the form of a number of smaller chunks. This is particularly useful with
operating systems unable to allocate extremely long data buffers.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 445

• If bcp_bind is called with a type parameter of SYBTEXT or SYBIMAGE
and a non-NULL varaddr parameter, bcp_sendrow will send the entire text
or image data value, just as it does for all other datatypes. If, however,
bcp_bind has a NULL varaddr parameter, bcp_sendrow will return control
to the application immediately after all non-text or image columns are sent
to Adaptive Server Enterprise. The application can then call bcp_moretext
repeatedly to send the text and image columns to Adaptive Server
Enterprise, a chunk at a time.

• Here is an example that illustrates how to use bcp_moretext with bcp_bind
and bcp_sendrow:

LOGINREC *login;
DBPROCESS *dbproc;

DBINT id = 5;
char *part1 = "This text value isn’t very long,";
char *part2 = " but it’s broken up into three parts";
char *part3 = " anyhow.";

 /* Initialize DB-Library. */
 if (dbinit() == FAIL)
 exit(ERREXIT);

 /* Install error handler and message handler. */
 dberrhandle(err_handler);
 dbmsghandle(msg_handler);

 /* Open a DBPROCESS */
 login = dblogin();
 BCP_SETL(login, TRUE);
 dbproc = dbopen(login, NULL);

 /* Initialize bcp. */
 if (bcp_init(dbproc, "comdb..articles", (BYTE *)NULL,
 (BYTE *)NULL, DB_IN) == FAIL)
 exit(ERREXIT);

 /* Bind program variables to table columns. */
 if (bcp_bind(dbproc, (BYTE *)&id, 0, (DBINT)-1,
 (BYTE *)NULL, 0, SYBINT4, 1) == FAIL)
 {
 fprintf(stderr, "bcp_bind, column 1, failed.\n");
 exit(ERREXIT);
 }

bcp_moretext

446 Open Client

 if (bcp_bind
 (dbproc, (BYTE *)NULL, 0,
 (DBINT) (strlen(part1) + strlen(part2) + strlen(part3)),
 (BYTE *)NULL, 0, SYBTEXT, 2)
 == FAIL)
 {
 fprintf(stderr, "bcp_bind, column 2, failed.\n");
 exit(ERREXIT);
 }

 /*
 ** Now send this row, with the text value broken into
 ** three chunks.
 */
 if (bcp_sendrow(dbproc) == FAIL)
 exit(ERREXIT);
 if (bcp_moretext(dbproc, (DBINT)strlen(part1), part1) == FAIL)
 exit(ERREXIT);
 if (bcp_moretext(dbproc, (DBINT)strlen(part2), part2) == FAIL)
 exit(ERREXIT);
 if (bcp_moretext(dbproc, (DBINT)strlen(part3), part3) == FAIL)
 exit(ERREXIT);

 /* We’re all done. */
 bcp_done(dbproc);
 dbclose(dbproc);

• If you use bcp_moretext to send one text or image column in the row, you
must also use it to send all other text and image columns in the row.

• If the row contains more than one text or image column, bcp_moretext will
first send its data to the lowest-numbered (that is, leftmost) text or image
column, followed by the next lowest-numbered column, and so on.

• An application will normally call bcp_sendrow and bcp_moretext within
loops, to send a number of rows of data. Here is an outline of how to do
this for a table containing two text columns:

while (there are still rows to send)
 {
 bcp_sendrow(...);

 for (all the data in the first text column)
 bcp_moretext(...);

 for (all the data in the second text column)
 bcp_moretext(...);

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 447

 }

See also bcp_bind, bcp_sendrow, dbmoretext, dbwritetext

bcp_options
Description Set bulk copy options.

Syntax RETCODE bcp_options (dbproc, option, value, valuelen)

DBPROCESS *dbproc;
BYTE *value;
int valuelen;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

value
A generic BYTE pointer to the value of the specified option. As the
following table describes, what value should point to depends on option:

Table 3-1: Values for value (bcp_options)

valuelen
The length of the data to which value points. If value points to a fixed-length
item (for example a DBBOOL, DBINT, and so on), pass valuelen as -1.

Return value SUCCEED or FAIL.

Usage • bcp_options sets bulk copy options.

• Currently the only bulk copy option available is BCPLABELED.

See also bcp_init, bcp_control

If option Is *value should be

BCPLABELED A DBBOOL value. Set *value to “true” to allow a bulk
copy with sensitivity labels. Set *value to “false” for a
normal bulk copy operation.

bcp_readfmt

448 Open Client

bcp_readfmt
Description Read a datafile format definition from a host file.

Syntax RETCODE bcp_readfmt(dbproc, filename)

DBPROCESS *dbproc;
char *filename;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

filename
The full directory specification of the file containing the format definitions.

Return value SUCCEED or FAIL.

Usage • bcp_readfmt reads a datafile format definition from a host file, then makes
the appropriate calls to bcp_columns and bcp_colfmt. This automates the
bulk copy of multiple files that share a common data format.

• bcp, the bulk copy utility, copies a database table to or from a host file in
a user-specified format. User-specified formats may be saved through bcp
in datafile format definition files, which can later be used to automate the
bulk copy of files that share a common format. See the Open Client and
Open Server Programmers Supplement.

• Application programs can call bcp_writefmt to create files with datafile
format definitions.

• The following code fragment illustrates the use of bcp_readfmt:

bcp_init(dbproc, "mytable", "bcpdata", "bcperrs", DB_IN);
bcp_readfmt(dbproc, "my_fmtfile");
bcp_exec(dbproc, &rows_copied);

See also bcp_colfmt, bcp_columns, bcp_writefmt

bcp_sendrow
Description Send a row of data from program variables to Adaptive Server Enterprise.

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 449

Syntax RETCODE bcp_sendrow(dbproc)

DBPROCESS *dbproc;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

Return value SUCCEED or FAIL.

Usage • bcp_sendrow builds a row from program variables and sends it to Adaptive
Server Enterprise.

• Before calling bcp_sendrow, you must make calls to bcp_bind to specify
the program variables to be used.

• If bcp_bind is called with a type parameter of SYBTEXT or SYBIMAGE
and a non-null varaddr parameter, bcp_sendrow will send the entire text or
image data value, just as it does for all other datatypes. If, however,
bcp_bind has a null varaddr parameter, bcp_sendrow will return control to
the application immediately after all non-text or image columns are sent to
Adaptive Server Enterprise. The application can then call bcp_moretext
repeatedly to send the text and image columns to Adaptive Server
Enterprise, a chunk at a time. For an example, see the bcp_moretext
reference page.

• After the last call to bcp_sendrow, you must call bcp_done to ensure proper
internal cleanup.

• When bcp_sendrow is used to bulk copy rows from program variables into
Adaptive Server Enterprise tables, rows are permanently saved in
Adaptive Server Enterprise only when the user calls bcp_batch or
bcp_done.

The user may choose to call bcp_batch once every n rows, or when there
is a lull between periods of incoming data (as in a telemetry application).
Of course, the user may choose some other criteria or may decide not to
call bcp_batch at all. If bcp_batch is never called, the rows are permanently
saved in Adaptive Server Enterprise when bcp_done is called.

See also bcp_batch, bcp_bind, bcp_colfmt, bcp_collen, bcp_colptr, bcp_columns,
bcp_control, bcp_done, bcp_exec, bcp_init, bcp_moretext

BCP_SETL

450 Open Client

BCP_SETL
Description Set the LOGINREC for bulk copy operations into the database.

Syntax RETCODE BCP_SETL(loginrec, enable)

LOGINREC *loginrec;
DBBOOL enable;

Parameters loginrec
This is a pointer to a LOGINREC structure, which will be passed as an
argument to dbopen. You can get a LOGINREC structure by calling dblogin.

enable
This is a Boolean value (“true” or “false”) that specifies whether or not to
enable bulk copy operations for the resulting DBPROCESS. By default,
DBPROCESSes are not enabled for bulk copy operations.

Return value SUCCEED or FAIL.

Usage • This macro sets a field in the LOGINREC structure that tells Adaptive
Server Enterprise that the DBPROCESS connection may be used for bulk
copy operations. To have any effect, it must be called before dbopen, the
routine that actually allocates the DBPROCESS structure.

• Applications that allow users to make ad hoc queries may want to avoid
calling BCP_SETL (or call it with a value of “false” for the enable
parameter) to prevent users from initiating a bulk copy sequence through
SQL commands. Once a bulk copy sequence has begun, it cannot be
stopped through an ordinary SQL command.

• BCP_SETL applies to “copy in” operations only.

See also bcp_init, bcp_getl, dblogin, dbopen, DBSETLAPP, DBSETLHOST,
DBSETLPWD, DBSETLUSER

bcp_setxlate
Description Specify the character set translations to use when retrieving data from or

inserting data into an Adaptive Server Enterprise.

Syntax RETCODE bcp_setxlate(dbproc, xlt_tosrv, xlt_todisp)

DBPROCESS *dbproc;
DBXLATE *xlt_tosrv;
DBXLATE *xlt_todisp;

CHAPTER 3 Bulk Copy Routines

DB-Library/C Reference Manual 451

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

xlt_tosrv
A pointer to a translation structure. The translation structure is allocated
using dbload_xlate. xlt_tosrv indicates the character set translation to use
when moving data from the application program to the Adaptive Server
Enterprise (the copy in, or DB_IN, direction).

xlt_todisp
A pointer to a translation structure. The translation structure is allocated
using dbload_xlate. xlt_todisp indicates the character set translation to use
when moving data from Adaptive Server Enterprise to the application
program (the copy out, or DB_OUT, direction).

Return value SUCCEED or FAIL.

Usage • bcp_setxlate specifies the character set translations to use when
transferring character data between the Adaptive Server Enterprise and a
front-end application program using bcp.

• The specified character set translations need not be the same as those being
used to display or input data on the user’s terminal. The translations may
be used to read or write a data file in a completely different character set
that is not intended for immediate display.

• The following code fragment illustrates the use of bcp_setxlate:

bcp_init(dbproc, "mytable", "bcpdata", "bcperrs", DB_OUT);
bcp_setxlate(dbproc, xlt_tosrv, xlt_todisp);
bcp_columns(dbproc, 3);
bcp_colfmt(dbproc, 1, SYBCHAR, 0, -1, "\t", 1, 1);
bcp_colfmt(dbproc, 2, SYBCHAR, 0, -1, "\t", 1, 2);
bcp_colfmt(dbproc, 3, SYBCHAR, 0, -1, "\n", 1, 3);
bcp_exec(dbproc);

See also dbfree_xlate, dbload_xlate, dbxlate

bcp_writefmt
Description Write a datafile format definition to a host file.

bcp_writefmt

452 Open Client

Syntax RETCODE bcp_writefmt(dbproc, filename)

DBPROCESS *dbproc;
char *filename;

Parameters dbproc
A pointer to the DBPROCESS structure that provides the connection for a
particular front-end/Adaptive Server Enterprise process. It contains all the
information that DB-Library uses to manage communications and data
between the front end and Adaptive Server Enterprise.

filename
The full directory specification of the file that contains the format
definitions.

Return value SUCCEED or FAIL.

Usage • bcp_writefmt writes a datafile format definition to a host file. The format
reflects previous calls to bcp_columns and bcp_colfmt.

• bcp, the bulk copy utility, copies a database table to or from a host file in
a user-specified format. User-specified formats may be saved through bcp
in “datafile format definition files,” which can later be used to automate
the bulk copy of files that share a common format. See the Open Client and
Open Server Programmers Supplement.

• Format definition files are read using bcp_readfmt.

• The following code fragment illustrates the use of bcp_writefmt:

bcp_init(dbproc, "mytable", "bcpdata", "bcperrs", DB_OUT);

bcp_columns(dbproc, 3);
bcp_colfmt(dbproc, 1, SYBCHAR, 0, -1, "\t", 1, 1);
bcp_colfmt(dbproc, 2, SYBCHAR, 0, -1, "\t", 1, 2);
bcp_colfmt(dbproc, 3, SYBCHAR, 0, -1, "\n", 1, 3);

bcp_writefmt(dbproc, "my_fmtfile");
bcp_exec(dbproc, &rows_copied);

See also bcp_colfmt, bcp_columns, bcp_readfmt

DB-Library/C Reference Manual 453

C H A P T E R 4 Two-Phase Commit Service

Adaptive Server Enterprise provides a two-phase commit service that
allows a client application to coordinate transactions that are distributed
on two or more Adaptive Server Enterprises.

This chapter describes the two-phase commit process and the DB-Library
routines that are involved.

Programming distributed transactions
The two-phase commit service allows an application to coordinate
updates among two or more Adaptive Server Enterprises. This initial
implementation of distributed transactions treats separate transactions
(which may be on separate Adaptive Server Enterprises) as if they were a
single transaction. The commit service uses one Adaptive Server
Enterprise, the “commit server,” as a central record-keeper that helps the
application determine whether to commit, or whether to roll back
transactions in case of failure. Thus, the two-phase commit guarantees that
either all or none of the databases on the participating servers are updated.

A distributed transaction is performed by submitting Transact-SQL
statements to the Adaptive Server Enterprises through DB-Library
routines. An application program opens a session with each server, issues
the update commands, and then prepares to commit the transaction.
Through DB-Library, the application issues the following to each
participating server:

Topic Page
Programming distributed transactions 453

The commit service and the application program 454

The probe process 456

Two-phase commit routines 456

Specifying the commit server 457

Two-phase commit sample program 458

Program notes 464

The commit service and the application program

454 Open Client

• A begin transaction with identifying information on the application, the
transaction, and the commit server

• The Transact-SQL update statements

• A prepare transaction statement that indicates that the updates have been
performed and that the server is prepared to commit

After the updates have been performed on all the servers participating in the
distributed transaction, the two-phase commit begins. In the first phase, all
servers agree that they are ready to commit. In the second phase, the
application informs the commit service that the transaction is complete (that is,
the commit will take place), and a commit transaction is then issued to all of the
servers, causing them to commit.

If an error occurs between phase one and phase two, all servers coordinate with
the commit service to determine whether the transaction should be committed
or aborted.

Note If certain types of errors occur during a two-phase transaction, Adaptive
Server Enterprise may need to mark a two-phase process as “infected.”
Marking the process as infected rather than killing it aids in later error recovery.
To ensure that Adaptive Server Enterprise is able to mark processes as infected,
boot Adaptive Server Enterprise with the flag -T3620 passed on the command
line.

The commit service and the application program
The role of the commit service is to be a single place of record that helps the
application decide whether the transaction should be committed or aborted.

If the Adaptive Server Enterprises are all prepared to commit, the application
notifies the commit service to mark the transaction as committed. Once this
happens, the transaction is committed despite any failures that might
subsequently happen.

If any Adaptive Server Enterprise or the application program fails before the
prepare transaction statement, the Adaptive Server Enterprise will rollback the
transaction.

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 455

If any Adaptive Server Enterprise or the application program fails after the
prepare but before the commit, the Adaptive Server Enterprise will
communicate with the server functioning as the commit service and ask it
whether to rollback or commit.

If the Adaptive Server Enterprise cannot communicate with the server
functioning as the commit service, it will mark the user task process as infected
in Adaptive Server Enterprise. At this point, the System Administrator can
either kill the infected process immediately, or wait until communication to the
commit service is restored to kill the infected process.

• If the System Administrator kills the infected process immediately, two-
phase commit protocol is violated and the integrity of the two-phase
transaction is not guaranteed. Servers participating in the transaction may
be in inconsistent states.

• If the System Administrator kills the infected process after communication
with the commit service has been restored, the Adaptive Server Enterprise
will communicate with the commit service to determine whether or not to
commit the transaction locally. The integrity of the two-phase transaction
is guaranteed.

To decide whether or not to kill the infected process immediately, the System
Administrator must consider the estimated downtime of the commit service,
the number and importance of locks held by the infected process, and the
complexity of the transaction in progress.

The role of the application program is to deliver the Transact-SQL statements
to the Adaptive Server Enterprises in the proper order, using the proper DB-
Library routines. The role of the commit service is to provide a single place
where the commit/rollback status is maintained. The Adaptive Server
Enterprises communicate with the commit service only if a failure happens
during the two-phase commit.

The commit service needs its own DBPROCESS, separate from the
DBPROCESSes used for the distributed transaction, to perform its record-
keeping. Note, however, that the server handling the commit service can also
be one of the servers participating in the transaction, as long as the commit
service has its own DBPROCESS. In fact, all the servers involved in the
transaction can be one and the same.

The probe process

456 Open Client

The probe process
If any server must recover the transaction, it initiates a process, probe, that
determines the last known status of the transaction. After it returns the status of
that transaction to the commit service, the probe process dies. The probe
process makes use of stat_xact, the same status-checking routine that the
commit service uses to check the progress of a distributed transaction.

Two-phase commit routines
The following routines make up the two-phase commit service:

Two additional routines are used for ongoing status reports:

Routine Description

abort_xact Tells the commit service to abort the transaction.

build_xact_string Builds a name string for use by each participating
Adaptive Server Enterprise for its begin transaction and
prepare transaction statements. This string encodes the
application’s transaction name, the commit service name,
and the commid.

close_commit Closes the connection with the commit service.

commit_xact Tells the commit service to commit the transaction.

open_commit Opens a connection with the commit service. The routine
is given the login ID of the user initiating the session and
the name of the commit service. It returns a pointer to a
DBPROCESS structure used in subsequent commit
service calls.

remove_xact Decrements the count of servers still participating in the
transaction.

start_xact Records the start of a distributed transaction and stores
initial information about the transaction (DBPROCESS
id, application name, transaction name, and number of
sites participating) in a lookup table on the commit server.
It returns the commid identifying number for the
transaction.

Routine Description

scan_xact Returns the status of a single transaction or all distributed
transactions.

stat_xact Returns the completion status of a distributed transaction.

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 457

During the course of a session, the diagnostic routines scan_xact and stat_xact
are used to check that the commit service carried out the request.

The scan_xact routine uses the commit service lookup table, spt_committab,
which holds the following values:

• Transaction ID

• Time the transaction started

• Last time the row was updated

• Number of servers initially involved in the transaction

• Number of servers that have not yet completed

• Status: “a” (abort), “c” (commit), “b” (begin)

• Application name

• Transaction name

The two-phase commit routines call internal stored procedures (for example,
sp_start_xact) that are created in each server’s master database. The
installmaster script creates the commit service lookup table and stored
procedures in each server’s master database, for use whenever that server
becomes a commit server.

Specifying the commit server
The commit server must have an entry in the interfaces file on each machine
participating in the distributed transaction. On the machine on which the
commit server is actually running, the commit server entry must specify the
usual ports described in the Open Client and Open Server Configuration
Guide, including a query port. For example:

SERVICE
 master tcp sun-ether rose 2001
 query tcp sun-ether rose 2001

On any additional machines containing other servers participating in the
distributed transaction, the commit server entry need to specify only the query
port:

SERVICE
 query tcp sun-ether rose 2001

Two-phase commit sample program

458 Open Client

 SITEA
 master tcp sun-ether gaia 2011
 query tcp sun-ether gaia 2011

The name of the commit server (in these examples, “SERVICE”) is used as a
parameter in calls to the open_commit and build_xact_string routines. The
commit server name must be the same on all machines participating in the
transaction. The name cannot contain a period (.) or a colon (:).

Two-phase commit sample program
An sample program illustrating the two-phase commit service is included with
DB-Library’s sample programs. This same example is duplicated below, but
with comments added to document how recovery occurs for the different types
of failure that may occur at various points in the transaction.

/*
 ** twophase.c
 **
 ** Demo of Two-Phase Commit Service
 **
 ** This example uses the two-phase commit service
 ** to perform a simultaneous update on two servers.
 ** In this example, one of the servers participating
 ** in the distributed transaction also functions as
 ** the commit service.
 **
 ** In this particular example, the same update is
 ** performed on both servers. You can, however, use
 ** the commit server to perform completely different
 ** updates on each server.
 **
 */

 #include <stdio.h>
 #include <sybfront.h>
 #include <sybdb.h>
 #include "sybdbex.h"

 int err_handler();
 int msg_handler();

 char cmdbuf[256];

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 459

 char xact_string[128];

 main()
 {

 DBPROCESS *dbproc_server1;
 DBPROCESS *dbproc_server2;
 DBPROCESS *dbproc_commit;
 LOGINREC *login;
 int commid;

 RETCODE ret_server1;
 RETCODE ret_server2;

 /* Initialize DB-Library. */
 if (dbinit() == FAIL)
 exit(ERREXIT);

 dberrhandle(err_handler);
 dbmsghandle(msg_handler);

 printf("Demo of Two Phase Commit\n");

 /* Open connections with the servers and the
 ** commit service. */
 login = dblogin();
 DBSETLPWD(login, "server_password");
 DBSETLAPP(login, "twophase");

 dbproc_server1 = dbopen (login, "SERVICE");
 dbproc_server2 = dbopen (login, "PRACTICE");
 dbproc_commit = open_commit (login, "SERVICE");

 if (dbproc_server1 == NULL ||
 dbproc_server2 == NULL ||
 dbproc_commit == NULL)
 {
 printf (" Connections failed!\n");
 exit (ERREXIT);
 }

 /* Use the "pubs2" database. */
 sprintf(cmdbuf, "use pubs2");
 dbcmd(dbproc_server1, cmdbuf);
 dbsqlexec(dbproc_server1);

Two-phase commit sample program

460 Open Client

 dbcmd(dbproc_server2, cmdbuf);
 dbsqlexec(dbproc_server2);

 /*
 ** Start the distributed transaction on the
 ** commit service.
 */
 commid = start_xact(dbproc_commit, "demo", "test", 2);

Note The application is now in the begin phase of the two-phase commit
transaction.

 /* Build the transaction name. */
 build_xact_string ("test", "SERVICE", commid, xact_string);

 /* Build the first command buffer. */
 sprintf(cmdbuf, "begin transaction %s", xact_string);

 /* Begin the transactions on the different servers. */
 dbcmd(dbproc_server1, cmdbuf);
 dbsqlexec(dbproc_server1);
 dbcmd(dbproc_server2, cmdbuf);
 dbsqlexec(dbproc_server2);

 /* Do various updates. */
 sprintf(cmdbuf, " update titles set price = $1.50 where");
 strcat(cmdbuf, " title_id = ’BU1032’");
 dbcmd(dbproc_server1, cmdbuf);
 ret_server1 = dbsqlexec(dbproc_server1);
 dbcmd(dbproc_server2, cmdbuf);
 ret_server2 = dbsqlexec(dbproc_server2);

Note See “Program note 1” on page 464.

 if (ret_server1 == FAIL || ret_server2 == FAIL)
 {
 /* Some part of the transaction failed. */
 printf(" Transaction aborted -- dbsqlexec failed\n");
 abortall(dbproc_server1, dbproc_server2,
 dbproc_commit, commid);
 }

 /* Find out if all servers can commit the transaction. */
 sprintf(cmdbuf, "prepare transaction");

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 461

 dbcmd(dbproc_server1, cmdbuf);
 dbcmd(dbproc_server2, cmdbuf);
 ret_server1 = dbsqlexec(dbproc_server1);

Note See “Program note 2” on page 464.

 ret_server2 = dbsqlexec(dbproc_server2);

Note See “Program note 3” on page 465.

if (ret_server1 == FAIL || ret_server2 == FAIL)
 {
 /* One or both of the servers failed to prepare. */
 printf(" Transaction aborted -- prepare failed\n");
 abortall(dbproc_server1, dbproc_server2,
 dbproc_commit, commid);
 }

Note See “Program note 4” on page 465.

 /* Commit the transaction. */
 if (commit_xact(dbproc_commit, commid) == FAIL)
 {
 /* The commit server failed to record the commit. */
 printf(" Transaction aborted -- commit_xact failed\n");
 abortall(dbproc_server1, dbproc_server2,
 dbproc_commit, commid);
 exit(ERREXIT);
 }

Note See “Program note 5” on page 466.

 /* The transaction has successfully committed.
 ** Inform the servers.
 */
 sprintf(cmdbuf, "commit transaction");
 dbcmd(dbproc_server1, cmdbuf);
 if (dbsqlexec(dbproc_server1) != FAIL)
 remove_xact(dbproc_commit, commid, 1);

Note See “Program note 6” on page 466.

Two-phase commit sample program

462 Open Client

 dbcmd(dbproc_server2, cmdbuf);
 if (dbsqlexec(dbproc_server2) != FAIL)
 remove_xact(dbproc_commit, commid, 1);

Note See “Program note 7” on page 467.

 /* Close the connection to the commit server. */
 close_commit(dbproc_commit);

Note See “Program note 8” on page 467.

 printf("We made it!\n");
 dbexit();
 exit(STDEXIT);
 }

 /* Function to abort the distributed transaction. */

 abortall(dbproc_server1, dbproc_server2, dbproc_commit, commid)
 DBPROCESS *dbproc_server1;
 DBPROCESS *dbproc_server2;
 DBPROCESS *dbproc_commit;
 int commid;
 {
 /* Some part of the transaction failed. */

 /* Inform the commit server of the failure. */
 abort_xact(dbproc_commit, commid);

 /* Roll back the transactions on the different servers. */
 sprintf(cmdbuf, "rollback transaction");
 dbcmd(dbproc_server1, cmdbuf);
 if (dbsqlexec(dbproc_server1) != FAIL)
 remove_xact(dbproc_commit, commid, 1);
 dbcmd(dbproc_server2, cmdbuf);
 if (dbsqlexec(dbproc_server2) != FAIL)
 remove_xact(dbproc_commit, commid, 1);

 dbexit();
 exit(ERREXIT);
 }

 /* Message and error handling functions. */

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 463

 int msg_handler(dbproc, msgno, msgstate, severity, msgtext,
 servername, procname, line)

 DBPROCESS *dbproc;
 DBINT msgno;
 int msgstate;
 int severity;
 char *msgtext;
 char *servername;
 char *procname;
 DBUSMALLINT line;

 {
 /* Msg 5701 is just a use database message, so skip it. */
 if (msgno == 5701)
 return (0);

 /* Print any severity 0 message as is, without extra stuff. */
 if (severity == 0)
 {
 (void) fprintf (ERR_CH, "%s\n",msgtext);
 return (0);
 }

 (void) fprintf (ERR_CH, "Msg %ld, Level %d, State %d\n",
 msgno, severity, msgstate);

 if (strlen(servername) > 0)
 (void) fprintf (ERR_CH, "Server ’%s’, ", servername);
 if (strlen(procname) > 0)
 (void) fprintf (ERR_CH, "Procedure ’%s’, ", procname);
 if (line > 0)
 (void) fprintf (ERR_CH, "Line %d", line);

 (void) fprintf (ERR_CH, "\n\t%s\n", msgtext);

 if (severity >= 16)
 {
 (void) fprintf (ERR_CH, "Program Terminated! Fatal\
 Adaptive Server Enterprise error.\n");
 exit(ERREXIT);
 }

 return (0);
 }

Program notes

464 Open Client

 int err_handler(dbproc, severity, dberr, oserr, dberrstr, oserrstr)
 DBPROCESS *dbproc;
 int severity;
 int dberr;
 int oserr;
 char *dberrstr;
 char *oserrstr;
 {
 if ((dbproc == NULL) || (DBDEAD(dbproc)))
 return (INT_EXIT);
 else
 {
 (void) fprintf (ERR_CH, "DB-Library error: \
 \n\t %s\n", dberrstr);
 if (oserr != DBNOERR)
 (void) fprintf (ERR_CH, "Operating system error:\
 \n\t%s\n", oserrstr);
 }

 return (INT_CANCEL);
 }

Program notes
This section contains the notes referenced in the sample code.

Program note 1
If any type of failure occurs at this point, it is the application’s responsibility to
roll back the transactions using abort_xact.

Program note 2
The application has entered the prepare stage of the two-phase commit
transaction. As far as the commit server is aware, however, the application is
still in the begin phase.

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 465

Program note 3
If any type of failure occurs at this point, it is the application’s responsibility to
roll back the transactions using abort_xact.

Program note 4
At this point, the following failures are possible:

• The application’s link to the commit server, or the commit server itself,
may go down.

In this case, the following call to commit_xact fails, and the application
must roll back the transactions using abort_xact.

• The application’s link to a participating server may go down.

In this case, the following call to commit_xact will succeed, but the
application’s commit transaction command to the participating server will
not. However, the server will be aware that its connection with the
application has died. It will communicate with the commit server, using
probe, to determine whether to commit the transaction locally.

• A participating server may go down.

In this case, the following call to commit_xact will succeed, but the
application’s commit transaction to the participating server will not. When
the participating server comes back up, it will use probe to determine
whether to commit the transaction locally.

• Both the application’s link to the commit server and the application’s link
to the participating server may go down.

In this case, the following call to commit_xact fails. The application must
roll back the transactions with abort_xact, but will not be able to
communicate with the participating server. The participating server will
use probe to communicate with the commit server. It will learn that the
transaction has not been committed in the commit service, and will roll
back the transaction locally.

• Both the application’s link to the participating server and the participating
server’s link to the commit server may go down.

Program notes

466 Open Client

In this case, the following call to commit_xact will succeed, but the
application will not be able to communicate this to the participating server.
When its connection to the application dies, the participating server will
attempt to communicate with the commit server using probe to determine
whether or not to commit the transaction locally. Because its link to the
commit server is down, however, it will not be able to.

Because it cannot resolve the transaction, the participating server marks
the user task process as infected.

If the System Administrator kills the infected process while the commit
server is still down, two-phase commit protocol is violated and the
integrity of the transaction is not guaranteed.

If the System Administrator waits until commit server is back up to kill the
infected process, probe executes automatically when the System
Administrator attempts to kill the process. probe communicates with the
commit server and determines whether the participating server should
commit the transaction locally. The integrity of the transaction is
guaranteed.

Program note 5
The application has entered the committed phase of the two-phase commit
transaction. This means that any probe process querying the commit server will
be told to commit the transaction locally. After this point, the application does
not need to concern itself with aborting the transaction.

Program note 6
If the above dbsqlexec to Server1 fails because the application’s link to the
server has gone down, Server1 will use probe to communicate with the commit
server. probe will find that the transaction is committed in the commit server
and will tell Server1 to commit locally.

If probe cannot communicate with the commit server, Server1 will infect the
user task process in Adaptive Server Enterprise. If the System Administrator
kills the infected process before communication with the commit server is
reestablished, the transaction will be rolled back, thus violating two-phase
protocol and leaving the database in an inconsistent state. If possible, the
System Administrator should always wait until communication with the
commit server is reestablished before killing the infected process.

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 467

If the dbsqlexec to Server1 fails because Server1 has gone down, the local
transaction will remain in a suspended state until Server1 is restored. As part
of the recovery process, Server1 will use probe to communicate with the
commit server. probe will find that the transaction is committed in the commit
server and will tell Server1 to commit locally.

If probe cannot communicate with the commit server, Server1 will mark the
database as suspect. After communication with the commit sever is
reestablished, the suspect database should be re-recovered.

Program note 7
If the above dbsqlexec to Server2 fails because the application’s link to the
server has gone down, Server2 will use probe to communicate with the commit
server. probe will find that the transaction is committed in the commit server
and will tell Server2 to commit locally.

If probe cannot communicate with the commit server, Server2 will infect the
user task process in Adaptive Server Enterprise. If the System Administrator
kills the infected process before communication with the commit server is
reestablished, the transaction will be rolled back, thus violating two-phase
protocol and leaving the database in an inconsistent state. If possible, the
System Administrator should always wait until communication with the
commit server is reestablished before killing the infected process.

If the dbsqlexec to Server2 fails because Server2 has gone down, the local
transaction will remain in a suspended state until Server2 is restored. As part
of the recovery process, Server2 will use probe to communicate with the
commit server. probe will find that the transaction is committed in the commit
server and will tell Server2 to commit locally.

If probe cannot communicate with the commit server, Server2 will mark the
database as suspect. After communication with the commit sever is
reestablished, the suspect database should be re-recovered.

Program note 8
close_commit marks the transaction as complete in the spt_committab table on
the commit server. If close_commit fails, the transaction is not marked as
complete. No actual harm is done by this, but the System Administrator may
choose to manually update spt_committab in this case.

abort_xact

468 Open Client

abort_xact
Description Mark a distributed transaction as being aborted.

Syntax RETCODE abort_xact(connect, commid)

DBPROCESS *connect;
DBINT commid;

Parameters connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid used to identify the transaction to the commit service.

Return value SUCCEED or FAIL.

Usage This routine informs the commit service that the status of a distributed
transaction should be changed from “begin” to “abort.”

See also commit_xact, remove_xact, scan_xact, start_xact, stat_xact

build_xact_string
Description Build a name for a distributed transaction.

Syntax void build_xact_string(xact_name, service_name,
 commid, result)

char *xact_name;
char *service_name;
DBINT commid;
char * result;

Parameters xact_name
The application or user name for the transaction. This name gets encoded in
the name string but is not used by the commit service or Adaptive Server
Enterprise. It serves to identify the transaction for debugging purposes.

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 469

service_name
The name that will be used by Adaptive Server Enterprise to contact the
commit service, should it be necessary to recover the transaction. If
service_name is NULL, the name DSCOMMIT is used.

service_name must correspond to name of the interfaces file entry for the
commit service. If service_name is NULL, the interfaces file must contain
an entry for DSCOMMIT.

commid
The number used by the commit service to identify the transaction. commid
is the number returned by the call to start_xact.

result
Address of buffer where the string should be built. The space must be
allocated by the caller.

Return value None.

Usage • This routine builds a name string for use in the SQL begin transaction and
prepare transaction of an Adaptive Server Enterprise transaction. If
Adaptive Server Enterprise has to recover the transaction, it uses
information encoded in the name to determine which commit service to
contact and which transaction in that service to inquire about. The
application should issue a SQL begin transaction using the string built by
build_xact_string.

• The string built by build_xact_string must be large enough to hold the
ASCII representation of commid, xact_name, service_name, two
additional characters, and a null terminator.

See also commit_xact, start_xact

close_commit
Description End a connection with the commit service.

Syntax void close_commit(connect)

DBPROCESS *connect;

Parameters connect
A pointer to the DBPROCESS structure that was originally returned by
open_commit.

commit_xact

470 Open Client

Return value None.

Usage This routine calls dbclose to end a connection with the commit service. A call
to close_commit should be made when the application is through with the
commit service, to free resources.

See also dbclose

commit_xact
Description Mark a distributed transaction as being committed.

Syntax RETCODE commit_xact(connect, commid)

DBPROCESS *connect;
DBINT commid;

Parameters connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid used to identify the transaction to the commit service.

Return value SUCCEED or FAIL.

If commit_xact fails, you must roll back the transaction.

Usage This routine informs the commit service that the status of a distributed
transaction should be changed from “begin” to “commit.”

See also abort_xact, remove_xact, scan_xact, start_xact, stat_xact

open_commit
Description Establish a connection with the commit service.

Syntax DBPROCESS *open_commit(login, servername)

LOGINREC *login;
char *servername;

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 471

Parameters login
This is a LOGINREC containing information about the user initiating the
session, such as login name, password, and options desired. The
LOGINREC must have been obtained from a prior call to the DB-Library
routine dblogin. The caller may wish to initialize fields in the LOGINREC.
See the reference page for dblogin for more details.

servername
The name of the commit service; for example, DSCOMMIT_SALESNET.
If servername is NULL, the name DSCOMMIT is used. The name cannot
contain a period (.) or a colon (:).

Return value A pointer to a DBPROCESS structure to be used in subsequent commit service
calls, or NULL if the open failed.

Usage • This routine calls dbopen to establish a connection with the commit
service. A call to open_commit must precede any calls to other commit
service routines, such as start_xact, commit_xact, abort_xact, remove_xact,
and scan_xact. A session with the commit service is closed by calling
close_commit.

• This routine returns a DBPROCESS structure, which is used to
communicate with the commit service. The DBPROCESS must be
dedicated to its role with the commit service and should not be used
otherwise in the distributed transaction.

See also dblogin, dbopen

remove_xact
Description Decrement the count of sites still active in the distributed transaction.

Syntax RETCODE remove_xact(connect, commid, n)

DBPROCESS *connect;
DBINT commid;
int n;

Parameters connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid used to identify the transaction to the commit service.

scan_xact

472 Open Client

n
The number of sites to remove from the transaction.

Return value SUCCEED or FAIL.

Usage • The commit service keeps a count of the number of sites participating in a
distributed transaction. This routine informs the commit service that one
or more sites has done a local commit or abort on the transaction and is
hence no longer participating. The commit service removes the sites from
the transaction by decrementing the count of sites.

• The transaction record is deleted entirely if the count drops to 0.

See also abort_xact, commit_xact, scan_xact, start_xact, stat_xact

scan_xact
Description Print commit service record for distributed transactions.

Syntax RETCODE scan_xact(connect, commid)

DBPROCESS *connect;
DBINT commid;

Parameters connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid used to identify the transaction to the commit service. If
commid is -1, all commit service records are displayed.

Return value SUCCEED or FAIL.

Usage This routine displays the commit service record for a specific distributed
transaction, or for all distributed transactions known to the commit service.

See also abort_xact, commit_xact, remove_xact, start_xact, stat_xact

start_xact
Description Start a distributed transaction using the commit service.

CHAPTER 4 Two-Phase Commit Service

DB-Library/C Reference Manual 473

Syntax DBINT start_xact(connect, application_name, xact_name,
 site_count)

DBPROCESS *connect;
char *application_name;
char *xact_name;
int site_count;

Parameters connect
A pointer to the DBPROCESS used to communicate with the commit
service.

application_name
The name of the application. The application developer can choose any
name for the application. It will appear in the table maintained by the
commit service but is not used by the commit service or the Adaptive Server
Enterprise recovery system.

xact_name
The name of the transaction. This name will appear in the table maintained
by the commit service and must be supplied as part of the transaction name
string built by build_xact_string. The name cannot contain a period (.) or a
colon (:).

site_count
The number of sites participating in the transaction.

Return value An integer called the commid. This number is used to identify the transaction
in subsequent calls to the commit service. In case of error, this routine will
return 0.

Usage This routine records the start of a distributed transaction with the commit
service. A record is placed in the commit service containing the commid, which
is a number that caller subsequently uses to identify the transaction to the
commit service.

See also abort_xact, build_xact_string, commit_xact, remove_xact, scan_xact,
stat_xact

stat_xact
Description Return the current status of a distributed transaction.

Syntax int stat_xact(connect, commid)

stat_xact

474 Open Client

DBPROCESS *connect;
DBINT commid;

Parameters connect
A pointer to the DBPROCESS used to communicate with the commit
service.

commid
The commid is used to identify the transaction to the commit service. If
commid is -1, all commit service records are displayed.

Return value A character code: “a” (abort), “b” (begin), “c” (commit), “u” (unknown), or -1
(request failed).

Usage This routine returns the transaction status for the specified distributed
transaction.

See also abort_xact, commit_xact, remove_xact, scan_xact, start_xact

DB-Library/C Reference Manual 475

A P P E N D I X A Cursors

This appendix introduces the DB-Library cursor.

Cursor overview
Because relational databases are oriented toward sets, no concept of next
row exists, meaning that you cannot operate on an individual row in a set.
Cursor functionality solves this problem by letting a result set be
processed one row at a time, similar to the way you read and update a file
on a disk. A DB-Library cursor indicates the current position in a result
set, just as the cursor on your screen indicates the current position in a
block of text.

DB-Library cursors are client-side cursors. This means that they do not
correspond to an Adaptive Server Enterprise cursor, but emulate a cursor
that appears to the user to be in the server. The DB-Library cursor
transparently does keyset management, row positioning, and concurrency
control entirely on the client side.

DB-Library cursor capability
The DB-Library cursor routines offer the following capabilities, with
certain limitations:

• Forward and backward scrolling (depending on how the keyset is
defined during dbcursoropen)

Topic Page
Cursor overview 475

Sensitivity to change 477

DB-Library cursor functions 480

Holding locks 480

Stored procedures used by DB-Library cursors 481

Cursor overview

476 Open Client

• Direct access by position in the result set

• Positioned updates (even if the result set was defined with order by)

• Sensitivity adjustments to changes made by other users

• Concurrency control through several options

Differences between DB-Library cursors and browse mode
Cursors let the user scroll through and update a result set with fewer restrictions
than browse mode. Although cursors require a unique index, they do not
require a timestamp nor a second connection to a database for updates. Also,
they do not create a copy of the entire result set. The following table
summarizes these differences:

Table A-1: Cursors and browse mode

Differences between DB-Library and Client-Library cursors
A DB-Library cursor does not correspond to an actual Adaptive Server
Enterprise cursor. Instead, at the time the cursor is declared with dbcursoropen,
DB-Library fetches keysets from Adaptive Server Enterprise “under the
covers.” It then builds qualifiers based on the keys for the current row and
sends them to Adaptive Server Enterprise. The server parses the query and
returns a result set. When dbcursorfetch is called to retrieve more data, the DB-
Library cursor may have to do additional selects. In addition, Adaptive Server
Enterprise may have to parse the query each time dbcursorfetch is called.

A Client-Library cursor corresponds to an actual cursor in Adaptive Server
Enterprise. It is sometimes referred to, therefore, as a native cursor. A new TDS
protocol allows Client-Library to interact with the server to manage the cursor.

A Client-Library cursor is faster than a DB-Library cursor because it does not
have to send SQL commands to the server, which causes multiple re-parsing of
the query. But because the result set remains on the server side, it cannot offer
the same options for concurrency control as a DB-Library cursor.

Item Cursors Browse mode

Row timestamps Not required Required

Multiple connections for updates Unnecessary Necessary

Table usage Use original tables Uses a copy of tables

APPENDIX A Cursors

DB-Library/C Reference Manual 477

The following table summarizes these and additional differences between the
two cursors:

Table A-2: Differences between DB-Library cursors and Client-Library
cursors

Sensitivity to change
Three broad categories identify cursors according to their sensitivity to change:

• Static – values, order, and membership in the result set do not change while
the cursor is open.

• Keyset-driven – values can change, but order and membership in the result
set remain fixed at open time (the moment the cursor is opened).

• Dynamic – values, order, and membership in the result set can all change.

DB-Library cursor Client-Library cursor

Cursor row position is defined by the
client.

Cursor row position is defined by the
server.

Can define optimistic concurrency control
(allows dirty reads).

Cannot define optimistic concurrency
control (does not allow dirty reads).

Can fetch backward (if CUR_KEYSET or
CUR_DYNAMIC is specified for
scrollopt during dbcursoropen).

Can only fetch forward.

More memory may be required if you
query very large row sizes, unless you
specify a smaller number of rows in the
fetch buffer during dbcursoropen.

More memory is not required, regardless
of how large the row sizes are.

You cannot access an Open Server
application unless the application installs
the required DB-Library stored
procedures.

You can access a version 10.0 (or later)
Open Server application that is coded to
support cursors.

Slower performance. Faster performance.

Sensitivity to change

478 Open Client

Static cursor
In a static cursor, neither the cursor owner nor any other user can change the
result set while the cursor is open. Values, membership, and order remain fixed
until the cursor is closed. You can either take a snapshot of the result set (which
begins to diverge from the snapshot as updates are made), or you can lock the
entire result set to prevent updates.

It is not necessary for cursor routines to support static cursors directly. You can
achieve static behavior through one of the following methods:

• Take a snapshot copy of the result set (with select...into), and then call
dbcursoropen against the snapshot (temporary table).

• Lock the result set by calling dbcursoropen with the holdlock keyword in a
select statement. However, this method significantly reduces concurrency.

Keyset-driven cursor
In a keyset-driven cursor, the order and the membership of rows in the result
set are fixed at open time, but changes to values may be made by the cursor
owner. Committed changes made by other users are visible. If a change affects
a row’s order, or results in a row no longer qualifying for membership, the row
does not disappear or move unless the cursor is closed and reopened. If the
cursor remains open, deleted rows, when accessed, return a special error code
that says they are missing. Updating the key also causes the rows to be
“missing.”

Inserted data does not appear, but changes to existing data do appear when the
buffer is refreshed. With or without order by, the user can access rows by either
relative or absolute position.

To access a row by relative position, move the cursor relative to its current
position. For example, if the cursor is on row three and you want to access row
eight, tell the cursor to jump five rows relative to its current position. The
cursor jumps five rows to row eight.

To access a row by absolute position, tell the cursor the number of the row you
want to access. For example, if the cursor is on row three and you want to
access row eight, tell the cursor to jump to row eight.

APPENDIX A Cursors

DB-Library/C Reference Manual 479

Dynamic cursor
In a dynamic cursor, uncommitted changes made by the cursor owner and
committed changes made by anyone become visible the next time the user
scrolls. Changes include inserts and deletes as well as changes in order and
membership. (Deleted rows do not leave holes.) The user can access rows by
relative (but not absolute) position in the result set. Dynamic cursors cannot use
an order by clause.

Concurrency control
Cursors control—through several options—concurrent access, which occurs
when more than one user accesses and updates the same data at the same time.
During concurrent access, data can become unreliable without some kind of
control. To activate the particular concurrency control desired, specify one of
the following options when you open a cursor:

Table A-3: Concurrency control options

To detect collisions between updates issued by the cursor owner and those
issued by other users, cursors save and compare timestamps or column values.
Therefore, if you specify either of the optimistic concurrency control options
(CUR_OPTCC or CUR_OPTCCVAL) your updates can fail because of
collisions with other updates. You may want to design the application to refresh
the buffer and then retry updates that fail.

The two optimistic concurrency control options differ in the way they detect
collisions:

Option Result

CUR_READONLY Updates are not permitted.

CUR_LOCKCC The set of rows currently in the client buffer is locked when
they are fetched inside a user-initiated transaction. No other
user can update or read these rows. Updates issued by the
cursor owner are guaranteed to succeed.

 No locks are held unless the application first issues begin
transaction. Locks are held until the application issues a
commit transaction. Locks are not automatically released
when the next fetch is executed.

CUR_OPTCC and
CUR_OPTCCVAL-

Rows currently in the buffer are not locked, and other users
can update or read them freely.

DB-Library cursor functions

480 Open Client

Table A-4: Detecting concurrency collisions

DB-Library cursor functions
The following list summarizes the DB-Library cursor routines:

For details about an individual routine, see its reference page.

Holding locks
To retain the flexibility of the Adaptive Server Enterprise transaction model,
cursors do not automatically issue begin transaction or commit transaction. The
duration of locks acquired during cursor operations is entirely under the control
of the application. In other words, an application that uses CUR_LOCKCC on
either the dbcursoropen or dbcursor routine must also issue begin transaction for
the locking to have any effect.

Option Method of Detection

CUR_OPTCC Optimistic concurrency control based on timestamp values.
Compares timestamps if available; otherwise, saves and
compares the value of all non-text, non-image columns in the
table with their previous values.

CUR_OPTCCVAL Optimistic concurrency control based on values. Compares
selected values whether or not a timestamp is available.

Routine Description

dbcursoropen Declares and opens the cursor, specifies the size of the
fetch buffer and defines the keyset, and sets the
concurrency control option.

dbcursorinfo Returns the number of columns and the number of rows in
the open cursor.

dbcursorcolinfo Returns column information for the specified column
number in the open cursor.

dbcursorbind Associates program variables with columns.

dbcursorfetch Scrolls the fetch buffer.

dbcursor Updates, deletes, inserts, and refreshes the rows in the
fetch buffer.

dbcursorclose Closes the cursor.

APPENDIX A Cursors

DB-Library/C Reference Manual 481

To hold the lock on the currently buffered rows when CUR_LOCKCC is used
on dbcursoropen, the application must issue commit transaction and begin
transaction before each dbcursorfetch that scrolls the local buffer (except for the
very first dbcursorfetch, which should be preceded only by begin transaction).

To use the short-duration locking feature, issue begin transaction before locking
the row to be updated with the CUR_LOCKCC option of dbcursor. If each
update is independent, issue commit transaction after each update. If multiple
updates to the same screen of data depend on each other, issue commit
transaction when the screen is scrolled.

For repeatable-read consistency, specify holdlock in the select statement in
dbcursoropen, and issue begin transaction before the first dbcursorfetch. Locks
are obtained as the data is fetched and are retained until the application issues
commit transaction or rollback transaction.

Although you can close and reopen a repeatable-read cursor, you can get the
same effect with FETCH_FIRST.

Other combinations are possible as well. The important thing to remember is
that locks are not held unless begin transaction is in effect. Locks acquired
while begin transaction is in effect are held until a commit transaction or rollback
transaction is issued.

Stored procedures used by DB-Library cursors
DB-Library’s cursor routines call the Adaptive Server Enterprise’s catalog
stored procedures to find out table formats and identify key columns.

See the Adaptive Server Enterprise Reference Manual.

Stored procedures used by DB-Library cursors

482 Open Client

DB-Library/C Reference Manual 483

A P P E N D I X B DB-Library Error Messages

20001
Symbolic constant SYBESYNC

Message text Read attempted while out of synchronization with the
server.

Possible Cause

Action/solution Contact Sybase Technical Support

Additional information Obsolete

Versions None

20002
Symbolic constant SYBEFCON

Message text Server connection failed.

Possible Cause Internal I/O error

Action/solution Contact Sybase Technical Support.

Additional information

Versions Earlier than 15.7 ESD #3.

20003
Symbolic constant SYBETIME

Message text Server connection timed out.

Possible Cause Network I/O operation timed out.

20004

484 Open Client

Action/solution Contact Sybase Technical Support.

Additional information An application can increase the amount of time to wait for a server response
using dbsettime().

Versions All

20004
Symbolic constant SYBEREAD

Message text Read from the server failed.

Possible cause Internal I/O error

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20005
Symbolic constant SYBEUFL

Message text DB-LIBRARY internal error - send buffer length
corrupted.

Possible Cause Internal memory error

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20006
Symbolic constant SYBEWRIT

Message text Write to the server failed.

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 485

Possible Cause Connection is no longer usable. Server may have stopped responding.

Action/solution Close and reestablish connection.

Additional information

Versions All

20008
Symbolic constant SYBESOCK

Message text Unable to open socket.

Possible Cause Internal I/O error

Action/solution Contact Sybase Technical Support.

Additional information

Versions Earlier than 15.7 ESD #3.

20009
Symbolic constant SYBECONN

Message text Unable to connect socket -- server is unavailable or
does not exist.

Possible Cause Internal I/O error

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20010
Symbolic constant SYBEMEM

20011

486 Open Client

Message text Unable to allocate sufficient memory.

Possible Cause Cannot get heap memory.

Action/solution Look at system configuration for heap memory.

Additional information

Versions All

20011
Symbolic constant SYBEDBPS

Message text Maximum number of DBPROCESSes already allocated.

Possible Cause The configured maximum number of DBPROCESSes have been exceeded.

Action/solution Use dbsetmaxprocs() to increase the limit.

Additional information The default value is 25.

Versions All

20012
Symbolic constant SYBEINTF

Message text Server name not found in interfaces file.

Possible Cause DSQUERY is set incorrectly.

Action/solution Make sure the server name is included in the interfaces file.

Additional information

Versions All

20013
Symbolic constant SYBEUHST

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 487

Message text Unknown host machine name.

Possible Cause Unknown machine name in the interfaces file.

Action/solution Correct interfaces file.

Additional information

Versions All

20014
Symbolic constant SYBEPWD

Message text Login incorrect.

Possible Cause Incorrect username/ password.

Action/solution Correct username/ password.

Additional information

Versions All

20015
Symbolic constant SYBEOPIN

Message text Could not open interfaces file.

Possible Cause Cannot open interfaces file.

Action/solution Check existence/permissions of the interfaces file.

Additional information

Versions All

20016
Symbolic constant SYBEINLN

20017

488 Open Client

Message text interfaces file: unexpected end-of-line.

Possible Cause Unexpected end-of-line (EOL) in the interfaces file.

Action/solution Ensure that the format of interfaces file is correct.

Additional information

Versions All

20017
Symbolic constant SYBESEOF

Message text Unexpected EOF from the server.

Possible Cause Server has been shut down.

Action/solution Verify server status.

Additional information

Versions Earlier than 15.7 ESD #3.

20018
Symbolic constant SYBESMSG

Message text General server error: Check messages from the server.

Possible Cause An error occurred on the server.

Action/solution Correct application coding.

Additional information

Versions All

20019
Symbolic constant SYBERPND

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 489

Message Text Attempt to initiate a new server operation with results
pending.

Possible Cause dbsqlexec() has been called before all previous results have been processed.

Action/solution Process all results with dbresults() before issuing new queries.

Additional information

Versions All

20020
Symbolic constant SYBEDBPS

Message text Bad token from server: Data-stream processing out of
sync.

Possible Cause Internal client/server communication problem.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20021
Symbolic constant SYBEITIM

Message text Illegal timeout value specified.

Possible Cause The value passed to dbsettime() or dbsetlogintime() is invalid.

Action/solution Make sure the seconds parameter is a positive integer value.

Additional information

Versions All

20022

490 Open Client

20022
Symbolic constant SYBEOOB

Message text Error in sending out-of-band data to the server.

Possible Cause Out-of-band data sent by the network failed.

Action/solution Close and then reopen DBPROCESS.

Additional information Out-of-band data might have been sent as a result of calling dbcancel().

Versions All

20023
Symbolic constant SYBEBTYP

Message text Unknown bind type passed to DB-LIBRARY function.

Possible Cause dbbind() (or other bind function) has passed an unknown value for vartype.

Action/solution Check function documentation for valid bind types and correct application
coding.

Additional information

Versions All

20024
Symbolic constant SYBEBNCR

Message text Attempt to bind user variable to a non-existent compute
row.

Possible Cause The result set does not contain a compute row.

Action/solution Make sure the query returns compute rows if it calls dbaltbind().

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 491

20025
Symbolic constant SYBEIICL

Message text Illegal integer column length returned by the server.

Possible Cause An illegal integer length (other than 1, 2, or 4) was received.

Action/solution Unlikely to occur; if from an Open Server, check Open Server coding.

Additional information

Versions All

20026
Symbolic constant SYBECNOR

Message text Column number out of range.

Possible Cause The column number specified to dbdata() is not part of the result set.

Action/solution Correct code to reference an available column.

Additional information

Versions All

20027
Symbolic constant SYBENPRM

Message text NULL parameter not allowed for this dboption.

Possible Cause A NULL parameter has been specified to dbsetopt().

Action/solution Correct code to specify valid parameter.

Additional information

Versions All

20028

492 Open Client

20028
Symbolic constant SYBEUVDT

Message text Unknown variable-length datatype encountered.

Possible Cause An unknown variable-length datatype has been received from the server.

Action/solution Unlikely to happen; if the server is an Open Server, verify coding of Open
Server.

Additional information

Versions All

20029
Symbolic constant SYBEUFDT

Message text Unknown fixed-length datatype encountered.

Possible Cause An unknown fixed-length datetype has been received from the server.

Action/solution Unlikely to happen; if server is an open server, verify coding of the open server.

Additional information

Versions All

20030
Symbolic constant SYBEWAID

Message text DB-LIBRARY internal error: ALTFMT following ALTNAME has
wrong id.

Possible Cause Server has sent the wrong ID for a compute row.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 493

20031
Symbolic constant SYBECDNS

Message text Datastream indicates that a compute column is derived
from a non-existent select-list member.

Possible Cause Compute column is derived from a nonexistent select-list member.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20033
Symbolic constant SYBEABMT

Message text User attempted a dbbind() with mismatched column and
variable types.

Possible Cause dbbind() (or other bind function) has been called with incompatible column and
vartype values.

Action/solution Correct application coding.

Additional information

Versions All

20034
Symbolic constant SYBEABNP

Message text Attempt to bind using NULL pointers.

Possible Cause Bad varaddr argument to dbbind().

Action/solution Correct application coding.

Additional information

Versions All

20035

494 Open Client

20035
Symbolic constant SYBEAAMT

Message text User attempted a dbbind() with mismatched column and
variable types.

Possible Cause Program datetype does not match column datetype.

Action/solution Correct application coding.

Additional information

Versions All

20036
Symbolic constant SYBENXID

Message text The server did not grant us a distributed-transaction
ID.

Possible Cause A problem arose during initialization of the commit service.

Action/solution Verify that the interfaces file has correct entries.

Additional information

Versions All

20037
Symbolic constant SYBERXID

Message text The server did not recognize our distributed-
transaction ID.

Possible Cause Programming error.

Action/solution Validate commid parameter specified to stat_xact().

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 495

20038
Symbolic constant SYBEICN

Message text Invalid computeid or compute column number.

Possible Cause Invalid computeid or compute column number passed to a dbalt*() routine.

Action/solution Correct application coding.

Additional information

Versions All

20039
Symbolic constant SYBENMOB

Message text No such member of 'order by' clause.

Possible Cause Invalid column ID passed to dbordercol().

Action/solution Correct application coding.

Additional information

Versions All

20040
Symbolic constant SYBEAPUT

Message text Attempt to print unknown token.

Possible Cause Unknown type parameter passed to dbprtype().

Action/solution Correct application coding.

Additional information

Versions All

20041

496 Open Client

20041
Symbolic constant SYBEASNL

Message text Attempt to set fields in a null loginrec.

Possible Cause LOGINREC pointer is NULL.

Action/solution Call dblogin() to allocate login record.

Additional information dblogin() may return a NULL pointer if memory cannot be allocated.

Versions All

20042
Symbolic constant SYBENTLL

Message text Name too long for loginrec field.

Possible Cause name parameter to DBSETL* routine is longer than DBMAXNAME.

Action/solution Use a shorter name.

Additional information

Versions All

20043
loginrec==>loginrec

Symbolic constant SYBEASUL

Message text Attempt to set unknown loginrec field.

Possible Cause Internal function dbsetlname attempted to set a nonexistent loingrec field.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 497

20044
Symbolic constant SYBERDNR

Message text Attempt to retrieve data from a non-existent row.

Possible Cause dbdata() has been called when there is no data available.

Action/solution Correct application coding

Additional information

Versions All

20045
Symbolic constant SYBENSI

Message text Negative starting index passed to dbstrcpy().

Possible Cause start parameter to dbstrcpy() is less than zero.

Action/solution Correct value.

Additional information

Versions All

20046
Symbolic constant SYBEABNV

Message text Attempt to bind to a NULL program variable.

Possible Cause destvar parameter to dbbind is NULL.

Action/solution Provide a pointer to memory for the program variable.

Additional information

Versions All

20047

498 Open Client

20047
Symbolic constant SYBEDDNE

Message text DBPROCESS is dead or not enabled.

Possible Cause An error occurred on the DBPROCESS, making it unusable.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20048
Symbolic constant SYBECUFL

Message text Data-conversion resulted in underflow.

Possible Cause dbconvert() resulted in underflow.

Action/solution Correct application coding.

Additional information The conversion resulted in a loss of precision. If this is unacceptable, rework
the application so that the destination variable can fully represent the source
value.

Versions All

20049
Symbolic constant SYBECOFL

Message text Data-conversion resulted in overflow.

Possible Cause dbconvert() resulted in overflow.

Action/solution Correct application coding.

Additional information The destination buffer is not large enough to accommodate the converted
value.

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 499

20050
Symbolic constant SYBECSYN

Message text Attempt to convert data stopped by syntax error in
source field.

Possible Cause There has been a conversion error.

Action/solution Verify that the arguments to dbconvert() are correct. Consult the function
documentation to ensure that the source type can be converted to the
destination type.

Additional information

Versions All

20051
Symbolic constant SYBECLPR

Message text Data-conversion resulted in loss of precision.

Possible Cause dbconvert() call resulted in precision loss.

Action/solution Correct application coding.

Additional information

Versions All

20052
Symbolic constant SYBECNOV

Message text Attempt to set variable to NULL resulted in overflow.

Possible Cause dbconvert() src parameter should not be NULL.

Action/solution Correct application coding.

Additional information

Versions All

20053

500 Open Client

20053
Symbolic constant SYBERDCN

Message text Requested data-conversion does not exist.

Possible Cause dbconvert() is unable to convert from srctype to desttype.

Action/solution Check the datatype conversion table for valid type pairs.

Additional information

Versions All

20054
Symbolic constant SYBESFOV

Message text dbsafestr() overflowed its destination buffer.

Possible Cause Destination buffer is not large enough.

Action/solution Correct application coding.

Additional information

Versions All

20055
Symbolic constant SYBEUNT

Message text

Unknown network type found in interfaces file.

Possible Cause Interfaces file has an erroneous server entry.

Action/solution Correct interfaces file.

Additional information

Versions Earlier than 15.7 ESD #3.

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 501

20056
Symbolic constant SYBECLOS

Message text Error in closing network connection.

Possible Cause There was an error closing the network endpoint.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20060
Symbolic constant SYBECSYN

Message text Unknown datatype encountered.

Possible Cause A DB-Library routine has been called to pass an unknown datatype.

Action/solution Correct application coding.

Additional information

Versions All

20061
Symbolic constant SYBETSIT

Message text Attempt to call dbtsput() with an invalid timestamp.

Possible Cause Adaptive Server column has no timestamp.

Action/solution Correct application coding.

Additional information

Versions All

20062

502 Open Client

20062
Symbolic constant SYBECSYN

Message text Attempt to update the timestamp of a table which has no
timestamp column.

Possible Cause dbtsput() has been called on a row that cannot be browsed.

Action/solution Correct application coding.

Additional information

Versions All

20063
Symbolic constant SYBEBDIO

Message text Bad bulk-copy direction. Must be either IN or OUT.

Possible Cause bcp_init() called with invalid direction parameter.

Action/solution Correct application coding.

Additional information

Versions All

20064
Symbolic constant SYBEBCNT

Message text Attempt to use Bulk Copy with a non-existent server
table.

Possible Cause table parameter to bcp_init() is invalid for server.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 503

20065
Symbolic constant SYBEIFNB

Message text Illegal field number passed to bcp_control().

Possible Cause field parameter to bcp_control() is incorrect.

Action/solution Correct application coding.

Additional information

Versions All

20066
Symbolic constant SYBETTS

Message text The table which bulk-copy is attempting to copy to a
host-file is shorter than the number of rows which bulk-
copy was instructed to skip.

Possible Cause dbcontrol() was called with a BCPFIRST value greater than the number of rows
in the table.

Action/solution Correct application coding.

Additional information

Versions All

20067
Symbolic constant SYBEKBCO

Message text 1000 rows successfully bulk-copied to host-file.

Possible Cause 1000 rows copied.

Action/solution No action required.

Additional information This is an informational message informing the user of the progress in copying
rows to the host file.

Versions All

20068

504 Open Client

20068
Symbolic constant SYBEBBCI

Message text Batch successfully bulk-copied to the server.

Possible Cause A batch has been successfully copied.

Action/solution No action required.

Additional information This is an informational message informing the user of the progress in copying.

Versions All

20069
Symbolic constant SYBEKBCI

Message text Bcp:1000 rows sent to the server.

Possible Cause Rows have been sent to the server.

Action/solution No action required.

Additional information This is an informational message informing the user of the progress in copying.

Versions All

20070
Symbolic constant SYBEBCRE

Message text I/O error while reading bcp data-file.

Possible Cause System I/O routing failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 505

20071
Symbolic constant SYBETPTN

Message text Syntax error:only two periods are permitted in table
names.

Possible Cause Table reference syntax is incorrect.

Action/solution Correct query.

Additional information

Versions All

20072
Symbolic constant SYBEBCWE

Message text I/O error while writing bcp data-file.

Possible Cause System I/O routing failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20073
Symbolic constant SYBEBCNN

Message text Attempt to bulk-copy a NULL value into server column
<colname>, which does not accept NULL values.

Possible Cause Incorrect insert/update query.

Action/solution Correct query.

Additional information

Versions All

20074

506 Open Client

20074
Symbolic constant SYBEBCOR

Message text Attempt to bulk-copy an oversized row to the server.

Possible Cause Data to be copied is too large for the server column.

Action/solution Reconcile bcp file/server schema.

Additional information

Versions All

20075
Symbolic constant SYBEBCIS

Message text Attempt to bulk-copy an illegally-sized column value to
the server.

Possible Cause Data to be copied is too large for the server column.

Action/solution Reconcile bcp file/server schema.

Additional information

Versions All

20076
Symbolic constant SYBEBCPI

Message text bcp_init() must be called before any other bcp routines.

Possible Cause bcp_init() not called.

Action/solution Call bcp_init().

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 507

20077
Symbolic constant SYBEBCOR

Message text bcp_bind(), bcp_collen() and bcp_colptr() may be used
only after bcp_init() has been called with the copy
direction set to DB_IN.

Possible Cause Above functions called before bcp_init().

Action/solution Correct application coding.

Additional information

Versions All

20078
Symbolic constant SYBEBCPB

Message text bcp_bind() may NOT be used after bcp_init() has been
passed a non-NULL input file name.

Possible Cause Attempting to copy from a program variable when an input file has been
specified.

Action/solution Correct application coding.

Additional information

Versions All

20079
Symbolic constant SYBEVDPT

Message text For bulk copy, all variable-length data must have either
a length-prefix or a terminator specified.

Possible Cause Missing length-prefix or terminator.

Action/solution Correct parameters to bcp_colfmt().

Additional information

20080

508 Open Client

Versions All

20080
Symbolic constant SYBEBIVI

Message text bcp_columns() and bcp_colfmt() may be used only after
bcp_init() has been passed a valid input file.

Possible Cause bcp_init() has been called with an invalid hfile parameter.

Action/solution Correct application coding.

Additional information

Versions All

20081
Symbolic constant SYBEBCBC

Message text bcp_columns() must be called before bcp_colfmt().

Possible Cause bcp_colfmt() has been called before calling bcp_columns().

Action/solution Correct application coding.

Additional information

Versions All

20082
Symbolic constant SYBEBCFO

Message text Bcp host-files must contain at least one column.

Possible Cause bcp_columns() has been called with an invalid host_colcount parameter.

Action/solution Correct application coding.

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 509

Additional information

Versions All

20083
Symbolic constant SYBEBCVH

Message text bcp_exec() may be called only after bcp_init() has been
passed a valid host file.

Possible Cause bcp_init() has been called with an invalid hfile parameter.

Action/solution Correct application coding.

Additional information

Versions All

20084
Symbolic constant SYBEBCUO

Message text Bcp: Unable to open host data-file.

Possible Cause bcp_init() has been called with an invalid hfile parameter.

Action/solution Correct application coding.

Additional information

Versions All

20085
Symbolic constant SYBEBCUC

Message text Bcp: Unable to close host data-file.

Possible Cause System close routine failed.

20086

510 Open Client

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20086
Symbolic constant SYBEBUOE

Message text Bcp: Unable to open error-file.

Possible Cause bcp_init() has been called with an invalid errfile parameter.

Action/solution Correct application coding.

Additional information

Versions All

20087
open==>close

Symbolic constant SYBEBUCE

Message text Bcp: Unable to open error-file.

Possible Cause System close routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20088
Symbolic constant SYBEBWEF

Message text I/O error while writing bcp error-file.

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 511

Possible Cause System I/O routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20091
Symbolic constant SYBEASEC

Message text Attempt to send an empty command buffer to the server.

Possible Cause dbcmd() has not been called or has been called with an empty string.

Action/solution Correct application coding.

Additional information

Versions All

20092
Symbolic constant SYBETMTD

Message text Attempt to send too much TEXT data via the dbmoretext()
call.

Possible Cause dbwritetext() specifies the total text length to be set. This error indicates that the
cumulative total sent by dbmoretext() calls exceed the value specified in the
dbwritetext() call.

Action/solution Correct application coding.

Additional information

Versions All

20093

512 Open Client

20093
Symbolic constant SYBENTTN

Message text Attempt to use dbtxtsput() to put a new text-timestamp
into a non-existent data row.

Possible Cause dbtxtsput() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20094
Symbolic constant SYBEDNTI

Message text Attempt to use dbtxtsput() to put a new text-timestamp
into a column whose datatype is neither SYBTEXT nor
SYBIMAGE.

Possible Cause dbtxtsput() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20095
Symbolic constant SYBEBTMT

Message text Attempt to send too much TEXT data via the
bcp_moretext() call.

Possible Cause The size of the text sent by bcp_moretext() calls exceeds the column size.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 513

20096
Symbolic constant SYBEORPF

Message text Attempt to set remote password would overflow the login-
record's remote-password field.

Possible Cause Remote password is too long.

Action/solution Correct application coding.

Additional information The remote password buffer is 255 bytes long. Each password’s entry in the
buffer consists of the password itself, the associated server name, and 2 extra
bytes.

Versions All

20097
Symbolic constant SYBEUVBF

Message text Attempt to read an unknown version of BCP format-file.

Possible Cause Format file has been corrupted.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20098
Symbolic constant SYBEBUOF

Message text Bcp: Unable to open format-file.

Possible Cause Incorrect filename parameter passed to bcp_readfmt().

Action/solution Correct application coding.

Additional information

Versions All

20099

514 Open Client

20099
Symbolic constant SYBEBUCF

Message text Bcp: Unable to close format-file.

Possible Cause System close routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20100
Symbolic constant SYBEBRFF

Message text I/O error while reading bcp format-file.

Possible Cause System I/O routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20101
Symbolic constant SYBEBWFF

Message text I/O error while writing bcp format-file.

Possible Cause System I/O routine failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 515

20102
Symbolic constant SYBEBUDF

Message text Bcp: Unrecognized datatype found in format-file.

Possible Cause Corrupted input file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20103
Symbolic constant SYBEBIHC

Message text Incorrect host-column number found in bcp format-file.

Possible Cause Corrupted input file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20104
Symbolic constant SYBEBEOF

Message text Unexpected EOF encountered in BCP data-file.

Possible Cause Corrupted input file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20105

516 Open Client

20105
Symbolic constant SYBEBCNL

Message text Negative length-prefix found in BCP data-file.

Possible Cause Corrupted input file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20106
Symbolic constant SYBEBCSI

Message text Host-file columns may be skipped only when copying Into
the server.

Possible Cause Programming error.

Action/solution Correct application coding.

Additional information

Versions All

20107
Symbolic constant SYBEBCIT

Message text It's illegal to use BCP terminators with program
variables other than SYBCHAR, SYBBINARY, SYBTEXT, or
SYBIMAGE.

Possible Cause bcp_bind() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 517

20108
Symbolic constant SYBEBCSA

Message text The BCP hostfile <filename> contains only <n> rows.
Skipping all of these rows is not allowed.

Possible Cause bcp_control() has set BCPFIRST to a value greater than the number of rows in
the input file.

Action/solution Correct application coding.

Additional information

Versions All

20109
Symbolic constant SYBENULL

Message text NULL DBPROCESS pointer passed to DB-Library.

Possible Cause A DB-Library routine passed a NULL DBPROCESS pointer.

Action/solution Correct application coding.

Additional information

Versions All

20110
Symbolic constant SYBEUNAM

Message text Unable to get current username from operating system.

Possible Cause getpwuid() system call failed.

Action/solution Contact your system administrator.

Additional information

Versions All

20111

518 Open Client

20111
Symbolic constant SYBEBCRO

Message text The BCP hostfile <filename> contains only <n> rows. It
was impossible to read the requested <m> rows.

Possible Cause bcp_control() has set BCPLAST to a value greater than the number of rows in
the input file.

Action/solution Correct application coding.

Additional information

Versions All

20112
Symbolic constant SYBEMPLL

Message text Attempt to set maximum number of DBPROCESSes lower than
1.

Possible Cause dbsetmaxprocs() called with a value less than 1.

Action/solution Correct application coding.

Additional information

Versions All

20113
Symbolic constant SYBERPIL

Message text It is illegal to pass -1 to dbrpcparam() for the datalen
of parameters which are of type SYBCHAR, SYBVARCHAR,
SYBBINARY, or SYBVARBINARY.

Possible Cause Incorrect data length supplied for variable length datetype.

Action/solution Correct application coding.

Additional information

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 519

Versions All

20114
Symbolic constant SYBERPUL

Message text When passing a SYBINTN, SYBDATETIMN, SYBMONEYN, or
SYBFLTN parameter via rpcparam(), it's necessary to
specify the parameter's maximum or actual length, so
that DB-Library can recognize it as a SYBINT1, SYBINT2,
SYBINT4, SYBMONEY, SYBMONEY4, etc.

Possible Cause dbrpcparam() called with incorrect datlen value.

Action/solution Correct application coding.

Additional information

Versions All

20115
Symbolic constant SYBEUNOP

Message text Unknown option passed to dbsetopt().

Possible Cause dbsetopt() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20116
Symbolic constant SYBECRNC

Message text The current row is not a result of compute clause
<computeid>, so it is illegal to attempt to extract that

20117

520 Open Client

data from this row.

Possible Cause dbadata() has been called on a row that is not the result of an alter row clause.

Action/solution Correct application coding.

Additional information

Versions All

20117
Symbolic constant SYBERTCC

Message text dbreadtext() may not be used to receive the results of
a query which contains a COMPUTE clause.

Possible Cause dbreadtext() has been called to retrieve text from the result of an alter row
clause.

Action/solution Correct application coding.

Additional information

Versions All

20118
Symbolic constant SYBERTSC

Message text dbreadtext() may only be used to receive the results of
a query which contains a single result column.

Possible Cause dbreadtext() has been called on a result set containing more than one column.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 521

20119
Symbolic constant SYBEUCRR

Message text Internal software error: Unknown connection result
reported by dbpasswd().

Possible Cause There is a problem connecting to the server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20120
Symbolic constant SYBERPNA

Message text The RPC facility is available only when using a server
whose version number is 4.0 or greater.

Possible Cause This version of Adaptive Server does not support RPCs.

Action/solution Upgrade Adaptive Server.

Additional information

Versions All

20121
Symbolic constant SYBEOPNA

Message text The text/image facility is available only when using a
server whose version number is 4.0 or greater.

Possible Cause This version of Adaptive Server does not support text/image.

Action/solution Upgrade Adaptive Server.

Additional information

Versions All

20122

522 Open Client

20122
Symbolic constant SYBEFGTL

Message text Bcp: Row number of the first row to be copied cannot be
greater than the row number for the last row to be
copied.

Possible Cause bcp_control() has been called with inconsistent BCPFIRST and BCPLAST.

Action/solution Correct application coding.

Additional information

Versions All

20123
Symbolic constant SYBECWLL

Message text Attempt to set column width less than 1.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20124
Symbolic constant SYBEUFDS

Message text Unrecognized format encountered in dbstrbuild().

Possible Cause A format specifier that does not match any custom-installed via obsolete
function dbfmtinstall() specified in the format string.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 523

20125
Symbolic constant SYBEUCPT

Message text Unrecognized custom-format parameter-type encountered
in dbstrbuild().

Possible Cause dbstrbuild() called with invalid parameter type in format string.

Action/solution Correct application coding.

Additional information

Versions All

20126
Symbolic constant SYBETMCF

Message text Attempt to install too many custom formats via (obsolete
function) dbfmtinstall().

Possible Cause dbfmtinstall() called with more than MAXFMTS (20) formats.

Action/solution Correct application coding.

Additional information

Versions All

20127
Symbolic constant SYBEAICF

Message text Error in attempting to install custom format.

Possible Cause dbfmtinstall() generic failure.

Action/solution Examine application code.

Additional information

Versions All

20128

524 Open Client

20128
Symbolic constant SYBEADST

Message text Error in attempting to determine the size of a pair of
translation tables.

Possible Cause dbload_xlate() called with invalid srv_charset.

Action/solution Correct application coding.

Additional information Make sure specified character set exists in $SYBASE/charsets.

Versions All

20129
Symbolic constant SYBEALTT

Message text Error in attempting to load a pair of translation
tables.

Possible Cause Internal error loading translation tables.

Action/solution Contact tech support.

Additional information

Versions All

20130
Symbolic constant SYBEAPCT

Message text Error in attempting to perform a character-set
translation.

Possible Cause dbxlate() has failed.

Action/solution Check parameters to dbxlate().

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 525

20131
Symbolic constant SYBEXOCI

Message text A character-set translation overflowed its destination
buffer while using bcp to copy data from a host-file to
the server.

Possible Cause Internal conversion error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20132
Symbolic constant SYBEFSHD

Message text Error in attempting to find the Sybase home directory.

Possible Cause $SYBASE environment variable is incorrect.

Action/solution Correct setting.

Additional information

Versions All

20133
Symbolic constant

Message text Error in attempting to open a localization file.

Possible Cause Unable to open a localization file.

Action/solution Make sure $SYBASE is correct.

Additional information

Versions All

20134

526 Open Client

20134
Symbolic constant SYBEARDI

Message text Error in attempting to read datetime information from a
localization file.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20135
Symbolic constant SYBEURCI

Message text Unable to read copyright information\from the dblib
localization file.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20136
Symbolic constant SYBEARDL

Message text Error in attempting to read the dblib.loc localization
file.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 527

20137
Symbolic constant SYBEURMI

Message text Unable to read money-format information from the dblib
localization file.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20138
Symbolic constant SYBEUREM

Message text Unable to read error mnemonic from the dblib
localization file.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20139
Symbolic constant SYBEURES

Message text Unable to read error string from the dblib localization
file.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20140

528 Open Client

20140
Symbolic constant SYBEUREI

Message text Unable to read error information from the dblib
localization file.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20141
Symbolic constant SYBEOREN

Message text Warning: an out-of-range error-number was encountered
in dblib.loc. The maximum permissible error-number is
defined as DBERRCOUNT in sybdb.h.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20142
Symbolic constant SYBEISOI

Message text Invalid sort-order information found.

Possible Cause Corrupt locales file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 529

20143
Symbolic constant SYBEIDCL

Message text Illegal datetime column length returned by the server.
Legal datetime lengths are 4 and 8 bytes.

Possible Cause Internal Adaptive Server error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20144
Symbolic constant SYBEIMCL

Message text Illegal money column length returned by the server.
Legal money lengths are 4 and 8 bytes.

Possible Cause Internal Adaptive Server error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20145
Symbolic constant SYBEIFCL

Message text Illegal floating-point column length returned by the
server. Legal floating-point lengths are 4 and 8 bytes.

Possible Cause Internal Adaptive Server error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20146

530 Open Client

20146
Symbolic constant SYBEUTDS

Message text Unrecognized TDS version received from the server.

Possible Cause Internal error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20147
Symbolic constant SYBEBUCF

Message text Bcp: Unable to create format-file.

Possible Cause Insufficient access rights.

Action/solution Check access rights.

Additional information This error is raised for both create and close failures.

Versions All

20148
Symbolic constant SYBEACNV

Message text Attempt to do data-conversion with NULL destination
variable.

Possible Cause Null pointer passed to dbconvert() or dbdatechar().

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 531

20149
Symbolic constant SYBEDPOR

Message text Out-of-range datepart constant.

Possible Cause Invalid datepart passed to dbdatechar().

Action/solution Correct application coding.

Additional information

Versions All

20150
Symbolic constant SYBENDC

Message text Cannot have negative component in the date in numeric
form.

Possible Cause Invalid value passed to dbdatechar().

Action/solution Correct application coding.

Additional information

Versions All

20151
Symbolic constant SYBEMVOR

Message text Month values must be between 1 and 12.

Possible Cause Invalid month value passed to dbdatechar().

Action/solution Correct application coding.

Additional information

Versions All

20152

532 Open Client

20152
Symbolic constant SYBEDVOR

Message text Day values must be between 1 and 7.

Possible Cause Invalid day value passed to dbdatechar().

Action/solution Correct application coding.

Additional information

Versions All

20153
Symbolic constant SYBENBVP

Message text Cannot pass dbsetnull()a NULL bindval pointer.

Possible Cause Null pointer passed as bindval.

Action/solution Correct application coding.

Additional information When a null value is encountered, bindval is the value to use instead. NULL is
inappropriate here.

Versions All

20154
Symbolic constant SYBESPID

Message text Called dbspid() with a NULL dbproc.

Possible Cause Incorrect coding.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 533

20155
Symbolic constant SYBENDTP

Message text Called dbdatecrack() with NULL datetime parameter.

Possible Cause Incorrect coding.

Action/solution Correct application coding.

Additional information

Versions All

20156
Symbolic constant SYBEXTN

Message text The xlt_tosrv and xlt_todisp parameters to
dbfree_xlate() were NULL.

Possible Cause Invalid null parameters passed.

Action/solution Correct application coding.

Additional information

Versions All

20157
Symbolic constant SYBEXTDN

Message text Warning: the xlt_todisp parameter to dbfree_xlate() was
NULL. The space associated with the xlt_tosrv parameter
has been freed.

Possible Cause Null xlt_todisp parameter passed to dbfree_xlate().

Action/solution Do not free xlt_tosrv.

Additional information

Versions All

20158

534 Open Client

20158
Symbolic constant SYBEXTSN

Message text Warning: the xlt_tosrv parameter to dbfree_xlate() was
NULL. The space associated with the xlt_todisp parameter
has been freed.

Possible Cause Null xlt_tosrv parameter passed to dbfree_xlate().

Action/solution Do not free xlt_todisp.

Additional information

Versions All

20159
Symbolic constant SYBENUM

Message text Incorrect number of arguments given to DB-Library.

Possible Cause Wrong number of arguments passed to a DB-Library routine.

Action/solution Correct application coding.

Additional information

Versions All

20160
Symbolic constant SYBETYPE

Message text Invalid argument type given to Hyper/DB-Library.

Possible Cause dbregparam() called with an invalid type.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 535

20161
Symbolic constant SYBEGENOS

Message text General operating system error.

Possible Cause Creating an internal condition variable failed.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20162
Symbolic constant SYBEPAGE

Message text Wrong resource type or length given for dbpage??()
operation.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete.

Versions None

20163
Symbolic constant SYBEOPTNO

Message text Option not allowed.

Possible Cause Internal failure to set security option.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20164

536 Open Client

20164
Symbolic constant SYBEETD

Message text Failure to send the expected amount of TEXT or IMAGE
data via dbmoretext().

Possible Cause Application attempted to read results from server before completely sending
text data.

Action/solution Correct application coding.

Additional information

Versions All

20165
Symbolic constant SYBERTYPE

Message text Invalid resource type given to Hyper/DB-Library.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20166
Symbolic constant SYBERFILE

Message text Cannot open resource file.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 537

20167
Symbolic constant SYBEFMODE

Message text Read/Write/Append mode denied on file.

Possible Cause dbstrbuild() called with invalid parameter type in format string.

Action/solution Correct application coding.

Additional information Obsolete

Versions None

20168
Symbolic constant SYBESLCT

Message text Could not select or copy field specified.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20169
Symbolic constant SYBEZTXT

Message text Attempt to send zero length TEXT or IMAGE to dataserver
via dbwritetext().

Possible Cause Invalid arguments in dbwritetext() call.

Action/solution Correct application coding.

Additional information

Versions All

20170

538 Open Client

20170
Message type Error

Symbolic constant SYBENTST

Message text VMS: The file being opened must be a stream_lf.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20171
Symbolic constant SYBEOSSL

Message text Login incorrect: operating system login security level
is not within the range of the secure server.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20172
Symbolic constant SYBEESSL

Message text Login incorrect: login security level as entered does
not agree with your operating system level.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 539

20173
Symbolic constant SYBENLNL

Message text Program not linked with specified network library.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20174
Symbolic constant SYBENHAN

Message text Called dbrecvpassthru() with a NULL handle parameter.

Possible Cause dbrecvpassthru() called with invalid parameter.

Action/solution Correct application coding.

Additional information

Versions All

20175
Symbolic constant SYBENBUF

Message text Called dbsendpassthru() with a NULL buf parameter.

Possible Cause dbsendpassthru() called with invalid parameter.

Action/solution Correct application coding.

Additional information

Versions All

20176

540 Open Client

20176
Symbolic constant SYBENULP

Message text Called <routine> with a NULL <paramname> parameter.

Possible Cause A DB-Library routine has been called with an invalid NULL parameter.

Action/solution Correct application coding.

Additional information

Versions All

20177
Symbolic constant SYBENOTI

Message text An event handler must be installed before a notification
request can be made.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20178
Symbolic constant SYBEEVOP

Message text Called dbregwatch() with a bad options parameter.

Possible Cause Incorrect options value passed to dbregwatch().

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 541

20179
Symbolic constant SYBENEHA

Message text Called dbreghandle() with a NULL handler parameter.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20180
Symbolic constant SYBETRAN

Message text DBPROCESS is being used for another transaction.

Possible Cause Processing of the previous command on this DBPROCESS is not completed.

Action/solution Correct application coding.

Additional information

Versions All

20181
Symbolic constant SYBEEVST

Message text Must initiate a transaction before calling
dbregparam().

Possible Cause dbreginit() or dbregparam() has not been called before the invocation of
dbregparam().

Action/solution Correct application coding.

Additional information

Versions All

20182

542 Open Client

20182
Symbolic constant SYBEEINI

Message text Must call dbreginit() before dbregexec().

Possible Cause dbreginit() has not been called before the invocation of dbregexec().

Action/solution Correct application coding.

Additional information

Versions All

20183
Symbolic constant SYBEECRT

Message text Must call dbnpdefine() before dbnpcreate().

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete

Versions None

20184
Symbolic constant SYBEECAN

Message text Attempted to cancel unrequested event notification.

Possible Cause dbregnowatch() has been called with no prior dbregwatch().

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 543

20185
Symbolic constant SYBEEUNR

Message text Unsolicited event notification received.

Possible Cause dbreghandle() has been called to uninstall an event handler, but the notification
request has not been cancelled by calling dbregnowatch(). When the event is
raised, there is no handler installed.

Action/solution Correct application coding.

Additional information

Versions All

20186
Symbolic constant SYBERPCS

Message text Must call dbrpcinit() before dbrpcparam() or
dbrpcsend().

Possible Cause dbrpcinit() has not been called prior to this call to dbrpcparam() or dbrpcsend().

Action/solution Correct application coding.

Additional information

Versions All

20187
Symbolic constant SYBETPAR

Message text No SYBTEXT or SYBIMAGE parameters were defined.

Possible Cause dbwritetext() or dbmoretext() called during an RPC with no text/image
parameters defined.

Action/solution Correct application coding.

Additional information

Versions All

20188

544 Open Client

20188
Symbolic constant SYBETEXS

Message text Called dbmoretext() with a bad size parameter.

Possible Cause dbmoretext() or dbreadtext() called with a negative bufsize parameter.

Action/solution Correct application coding.

Additional information

Versions All

20189
Symbolic constant SYBETRAC

Message text Attempted to turn off a trace flag that was not on.

Possible Cause dbtraceoff() called with an invalid flag parameter.

Action/solution Correct application coding.

Additional information

Versions All

20190
Symbolic constant SYBETRAS

Message text DB-Library internal error - trace structure not found.

Possible Cause There is no trace record in the DBPROCESS structure.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 545

20191
Symbolic constant SYBEPRTF

Message text dbtracestring() may only be called from a printfunc().

Possible Cause dbtracestring() called directly instead of from printfunc() set with dbtraceon().

Action/solution Correct application coding.

Additional information

Versions All

20192
Symbolic constant SYBETRSN

Message text Bad numbytes parameter passed to dbtracestring().

Possible Cause The num parameter passed to dbtracestring() is negative.

Action/solution Correct application coding.

Additional information

Versions All

20193
Symbolic constant SYBEBPKS

Message text In DBSETLPACKET(), the packet size parameter must be
between 256 and 9999.

Possible Cause Invalid size passed to DBSETLPACKET().

Action/solution Correct application coding.

Additional information

Versions All

20194

546 Open Client

20194
Symbolic constant SYBEIPV

Message text <value> is an illegal value for the <paramname>
parameter of <routine>.

Possible Cause Parameter value is outside the domain of the parameter.

Action/solution Correct application coding.

Additional information

Versions All

20195
Symbolic constant SYBEMOV

Message text Money arithmetic resulted in overflow in function
<routine>.

Possible Cause Invalid parameter passed to a dbmny*() function.

Action/solution Correct application coding.

Additional information

Versions All

20196
Symbolic constant SYBEDIVZ

Message text Attempt to divide by $0.00 in function <routine>.

Possible Cause Invalid value passed to dbmydiv() or dbmny4div().

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 547

20197
Symbolic constant SYBEASTL

Message text Synchronous I/O attempted at AST level.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete VMS-specific error message

Versions None

20198
Symbolic constant SYBESEFA

Message text DB_SETEVENT_VMS cannot be called if connections are
present.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete VMS-specific error message

Versions None

20199
Symbolic constant SYBEPOLL

Message text There is already an active dbpoll().

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete VMS-specific error message

Versions None

20200

548 Open Client

20200
Symbolic constant SYBENOEV

Message text DBPOLL cannot be called when registered procedure
notifications have been disabled.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Obsolete VMS-specific error message

Versions None

20201
Symbolic constant SYBEBADPK

Message text Packet size of <requested size> not supported -- size
of <other size> used instead.

Possible Cause DB-Library is cannot accommodate requested packet size.

Action/solution Correct application coding.

Additional information

Versions All

20202
Symbolic constant SYBESECURE

Message text Secure server function not supported in this version.

Possible Cause Obsolete routine DBSETLHIER() has been called.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 549

20203
Symbolic constant SYBECAP

Message text DB-Library capabilities not accepted by the server.

Possible Cause Invalid TDS received from server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20204
Symbolic constant SYBEFUNC

Message text Functionality not supported at the specified version
level.

Possible Cause A DB-Library routine that is not supported in this version has been called.

Action/solution Correct application coding.

Additional information

Versions All

20205
Symbolic constant SYBERESP

Message text Response function address passed to dbresponse() must
be non-NULL.

Possible Cause The response_func parameter passed to undocumented function dbresponse()
is NULL.

Action/solution Correct application coding.

Additional information

Versions All

20206

550 Open Client

20206
Symbolic constant SYBEIVERS

Message text Illegal version level specified.

Possible Cause Invalid version parameter passed to dbsetversion().

Action/solution Correct application coding.

Additional information

Versions All

20207
Symbolic constant SYBEONCE

Message text Function can be called only once.

Possible Cause dbsetversion() has been called more than once.

Action/solution Correct application coding.

Additional information

Versions All

20208
Symbolic constant SYBERPNULL

Message text value parameter for dbprcparam() can be NULL, only if
the datalen parameter is 0.

Possible Cause Parameters to dbrpcparam() are not in agreement.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 551

20209
Symbolic constant SYBERPTXTIM

Message text RPC parameters cannot be of type Text/Image.

Possible Cause The type parameter passed to dbrpcparam() cannot be be SYBTEXT or
SYBIMAGE.

Action/solution Correct application coding.

Additional information

Versions All

20210
Symbolic constant SYBENEG

Message text Negotiated login attempt failed.

Possible Cause Failure to perform a secure login to the server.

Action/solution Check security credentials and security settings provided by the application.

Additional information

Versions All

20211
Symbolic constant SYBELBLEN

Message text Security labels should be less than 256 characters long.

Possible Cause Label values passed to undocumented routine dbsetsecurity() exceed
DB_MAX_LABELLEN.

Action/solution Correct application coding.

Additional information

Versions All

20212

552 Open Client

20212
Symbolic constant SYBEUMSG

Message text Unknown message-id in MSG datastream.

Possible Cause Internal TDS error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20213
Symbolic constant SYBECAPTYP

Message text Unexpected capability type in CAPABILITY datastream.

Possible Cause Internal TDS error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20214
Symbolic constant SYBEBNUM

Message text Bad numbytes parameter passed to dbstrcpy().

Possible Cause An invalid value for the numbytes parameter has been passed to the dbstrcpy()
routine.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 553

20215
Symbolic constant SYBEBBL

Message text Bad bindlen parameter passed to dbsetnull().

Possible Cause A negative value has been passed in bindlen parameter of the DB-Library
routine dbsetnull().

Action/solution Correct application coding.

Additional information

Versions All

20216
Symbolic constant SYBEBPREC

Message text Illegal precision specified.

Possible Cause The precision specified in the DBTYPEINFO structure for a numeric or
decimal column is invalid.

Action/solution Correct application coding.

Additional information

Versions All

20217
Symbolic constant SYBEBSCALE

Message text Illegal scale specified.

Possible Cause The scale specified in the DBTYPEINFO structure for a numeric or decimal
column is invalid.

Action/solution Correct application coding.

Additional information

Versions All

20218

554 Open Client

20218
Symbolic constant SYBECDOMAIN

Message text Source field value is not within the domain of legal
values.

Possible Cause The source value for a conversion using the dbconvert() DB-Library routine is
invalid.

Action/solution Correct application coding.

Additional information

Versions All

20219
Symbolic constant SYBECINTERNAL

Message text Internal Conversion error.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20220
Symbolic constant SYBEBTYPSRV

Message text Datatype is not supported by the server.

Possible Cause Server does not recognize this datatype for this version of TDS.

Action/solution Upgrade server.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 555

20221
Symbolic constant SYBEBCSET

Message text Unknown character-set encountered.

Possible Cause Server specified an unrecognized character set.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20222
Symbolic constant SYBEFENC

Message text Password Encryption failed.

Possible Cause Either the encryption handler installed by dbsechandle() or the default
encryption handler failed.

Action/solution Correct application coding or Contact Sybase Technical Support.

Additional information

Versions All

20223
Symbolic constant SYBEFRES

Message text Challenge-Response function failed.

Possible Cause Either the login response handler installed by undocumented function
dbresponse() or the default login response handler failed.

Action/solution Correct application coding or Contact Sybase Technical Support.

Additional information

Versions All

20224

556 Open Client

20224
Symbolic constant SYBEISRVPREC

Message text Illegal precision returned by the server.

Possible Cause The precision value of a decimal or numeric column falls outside the domain
of legal precision values.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20225
Symbolic constant SYBEISRVSCL

Message text Illegal scale returned by the server.

Possible Cause The scale value of a decimal or numeric column falls outside the domain of
legal scale values.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20226
Symbolic constant SYBEINUMCL

Message text Invalid numeric column length returned by the server.

Possible Cause Illegal value sent by the server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 557

20227
Symbolic constant SYBEIDECCL

Message text Invalid decimal column length returned by the server.

Possible Cause Illegal value sent by the server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20228
Symbolic constant SYBEBCMTXT

Message text bcp_moretext() may be used only when there is at least
one text or image column in the server table.

Possible Cause bcp_moretext() has been called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20229
Symbolic constant SYBEBCPREC

Message text Column <column>: Illegal precision value encountered.

Possible Cause Invalid precision value found in the host file.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20230

558 Open Client

20230
Symbolic constant SYBEBCBNPR

Message text bcp_bind(): if varaddr is NULL, prefixlen must be 0 and
no terminator should be specified.

Possible Cause bcp_bind() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20231
Symbolic constant SYBEBCBNTYP

Message text bcp_bind(): if varaddr is NULL and varlen greater than
0, the table column type must be SYBTEXT or SYBIMAGE and
the program variable type must be SYBTEXT, SYBCHAR,
SYBIMAGE or SYBBINARY.

Possible Cause bcp_bind() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20232
Symbolic constant SYBEBCSNTYP

Message text column number <colnum>: if varaddr is NULL and varlen
greater than 0, the table column type must be SYBTEXT
or SYBIMAGE and the program variable type must be
SYBTEXT, SYBCHAR, SYBIMAGE or SYBBINARY.

Possible Cause bcp_bind() called incorrectly.

Action/solution Correct application coding.

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 559

Additional information

Versions All

20233
Symbolic constant SYBEBCPCTYP

Message text bcp_colfmt(): If table_colnum is 0, host_type cannot be
0.

Possible Cause bcp_colfmt() called incorrectly. A table_colnum value of 0 means the column
will not be copied.

Action/solution Correct application coding.

Additional information

Versions All

20234
Symbolic constant SYBEBCVLEN

Message text varlen should be greater than or equal to -1.

Possible Cause bcp_bind() or bcp_collen() has been called with a varlen value of less than -1.

Action/solution Correct application coding.

Additional information

Versions All

20235
Symbolic constant SYBEBCHLEN

Message text host_collen should be greater than or equal to -1.

Possible Cause Invalid value for host_collen passed to bcp_colfmt_ps().

20236

560 Open Client

Action/solution Correct application coding.

Additional information

Versions All

20236
Symbolic constant SYBEBCBPREF

Message text Illegal prefix length. Legal values are 0, 1, 2 or 4.

Possible Cause Invalid value for prefixlen passed to bcp_bind().

Action/solution Correct application coding.

Additional information

Versions All

20237
Symbolic constant SYBEBCBPREF

Message text Illegal prefix length. Legal values are 1, 0, 1, 2 or 4.

Possible Cause Invalid value for host_prefixlen passed to bcp_colfmt_ps().

Action/solution Correct application coding.

Additional information

Versions All

20238
Symbolic constant SYBEBCITBNM

Message text bcp_init(): tblname parameter cannot be NULL.

Possible Cause bcp_init() called incorrectly.

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 561

Action/solution Correct application coding.

Additional information

Versions All

20239
Symbolic constant SYBEBCITBLEN

Message text bcp_init(): tblname parameter is too long.

Possible Cause bcp_init() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20240
Symbolic constant SYBEBCSNDROW

Message text bcp_sendrow() may NOT be called unless all text data for
the previous row has been sent using bcp_moretext().

Possible Cause Not all text/image data has been sent.

Action/solution Correct application coding.

Additional information

Versions All

20241
Symbolic constant SYBEBPROCOL

Message text bcp protocol error: returned column count differs from
the actual number of columns received.

20242

562 Open Client

Possible Cause Internal column mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20242
Symbolic constant SYBEBPRODEF

Message text bcp protocol error: expected default information and got
none.

Possible Cause Internal column mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20243
Symbolic constant SYBEBPRONUMDEF

Message text bcp protocol error: expected number of defaults differs
from the actual number of defaults received.

Possible Cause Internal column default mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20244
Symbolic constant SYBEBPRODEFID

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 563

Message text bcp protocol error: default column id and actual column
id are not same.

Possible Cause Internal column default mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20245
Symbolic constant SYBEBPRONODEF

Message text bcp protocol error: default value received for column
that does not have default.

Possible Cause Internal column default mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20246
Symbolic constant SYBEBPRODEFTYP

Message text bcp protocol error: default value datatype differs from
column datatype.

Possible Cause Internal column default mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20247

564 Open Client

20247
Symbolic constant SYBEBPROEXTDEF

Message text bcp protocol error: more than one row of default
information received.

Possible Cause Internal column default mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20248
Symbolic constant SYBEBPROEXTRES

Message text bcp protocol error: unexpected set of results received.

Possible Cause Extra results sent from server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20249
Symbolic constant SYBEBPROBADDEF

Message text bcp protocol error: illegal default column id received.

Possible Cause Internal column default mismatch.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 565

20250
Symbolic constant SYBEBPROBADTYP

Message text bcp protocol error: unknown column datatype.

Possible Cause Unknown datetype from server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20251
Symbolic constant SYBEBPROBADLEN

Message text bcp protocol error: illegal datatype length received.

Possible Cause Illegal length received from the server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20252
Symbolic constant SYBEBPROBADPREC

Message text bcp protocol error: illegal precision value received.

Possible Cause Illegal precision received from server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20253

566 Open Client

20253
Symbolic constant SYBEBPROBADSCL

Message text bcp protocol error: illegal scale value received.

Possible Cause Illegal scale received from the server.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20254
Symbolic constant SYBEBADTYPE

Message text Illegal value for type parameter given to <routine>.

Possible Cause Invalid type passed to dbsechandle().

Action/solution Correct application coding.

Additional information

Versions All

20255
Symbolic constant SYBECRSNORES

Message text Cursor statement generated no results.

Possible Cause Cursor statement returned no results.

Action/solution No action necessary.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 567

20256
Message type Error

Symbolic constant SYBECRSNOIND

Message text One of the tables involved in the cursor statement does
not have a unique index.

Possible Cause Inappropriate schema.

Action/solution Correct database schema.

Additional information

Versions All

20257
Symbolic constant SYBECRSVIEW

Message text A view cannot be joined with another table or a view in
a cursor statement.

Possible Cause Cursor statement performs a join involving a view.

Action/solution Correct application coding.

Additional information

Versions All

20258
Symbolic constant SYBECRSVIIND

Message text The view used in the cursor statement does not include
all the unique index columns of the underlying tables.

Possible Cause Incorrect cursor statement.

Action/solution Correct application coding.

Additional information

20259

568 Open Client

Versions All

20259
Symbolic constant SYBECRSORD

Message text Only fully keyset driven cursors can have 'order by',
'group by', or 'having' phrases.

Possible Cause Incorrect cursor statement.

Action/solution Correct application coding.

Additional information

Versions All

20260
Symbolic constant SYBECRSBUFR

Message text Row buffering should not be turned on when using cursor
APIs.

Possible Cause Row buffering has been turned on with dbsetopt(…DBBUFFER…).

Action/solution Correct application coding.

Additional information Row buffering is incompatible with cursors.

Versions All

20261
Symbolic constant SYBECRSNOFREE

Message text The DBNOAUTOFREE option should not be turned on when
using cursor APIs.

Possible Cause dbsetopt has been turned on with dbsetopt(…DBNOAUTOFREE…).

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 569

Action/solution Correct application coding.

Additional information

Versions All

20262
Symbolic constant SYBECRSDIS

Message text Cursor statement contains one of the disallowed phrases
'compute', 'union', 'for browse', or 'select into'.

Possible Cause Invalid cursor statement.

Action/solution Correct application coding.

Additional information

Versions All

20263
Symbolic constant SYBECRSAGR

Message text Aggregate functions are not allowed in a cursor
statement.

Possible Cause Invalid cursor statement.

Action/solution Correct application coding.

Additional information

Versions All

20264
Symbolic constant SYBECRSFRAND

Message text Fetch types RANDOM and RELATIVE can only be used within

20265

570 Open Client

the keyset of keyset driven cursors.

Possible Cause dbcursorfetch() called incorrectly.

Action/solution Correct application coding.

Additional information

Versions All

20265
Symbolic constant SYBECRSFLAST

Message text Fetch type LAST requires fully keyset driven cursors.

Possible Cause dbcursoropen() called with scrollopt other than CUR_KEYSET.

Action/solution Correct application coding.

Additional information

Versions All

20266
Symbolic constant SYBECRSBROL

Message text Backward scrolling cannot be used in a forward scrolling
cursor.

Possible Cause Attempt to FETCH_PREV on a cursor opened with scrollopt
CUR_FORWARD.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 571

20267
Symbolic constant SYBECRSFROWN

Message text Row number to be fetched is outside the valid range.

Possible Cause Attempt to fetch a row before firstrow or after lastrow.

Action/solution Correct application coding.

Additional information

Versions All

20268
Symbolic constant SYBECRSBSKEY

Message text Keyset cannot be scrolled backward in mixed cursors with
a previous fetch type.

Possible Cause Attempt to fetch a row before firstrow in a keyset-driven cursor.

Action/solution Correct application coding.

Additional information

Versions All

20269
Symbolic constant SYBECRSRO

Message text Data locking or modifications cannot be made in a
READONLY cursor.

Possible Cause dbcursor() called with optype other than CRS_REFRESH on a read-only
cursor.

Action/solution Correct application coding.

Additional information

Versions All

20270

572 Open Client

20270
Symbolic constant SYBECRSNOCOUNT

Message text The DBNOCOUNT option should not be turned on when doing
updates or deletes with dbcursor().

Possible Cause DBNOCOUNT option has been previously set with dbsetopt(). This is
incompatible with cursor update/delete operations.

Action/solution Correct application coding.

Additional information

Versions All

20271
Symbolic constant SYBECRSTAB

Message text Table name must be determined in operations involving
data locking or modifications.

Possible Cause dbcursor() is called with an invalid table value.

Action/solution Correct application coding.

Additional information

Versions All

20272
Symbolic constant SYBECRSUPDNB

Message text Update or insert operations cannot use bind variables
when binding type is NOBIND.

Possible Cause dbcursorfetch() has previously been called with vartype NOBIND.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 573

20273
Symbolic constant SYBECRSNOWHERE

Message text A WHERE clause is not allowed in a cursor update or
insert.

Possible Cause dbcursor() called with inappropriate values argument.

Action/solution Correct application coding.

Additional information

Versions All

20274
Symbolic constant SYBECRSSET

Message text A SET clause is required for a cursor update or insert.

Possible Cause dbcursor() argument values must contain a SET clause.

Action/solution Correct application coding.

Additional information

Versions All

20275
Symbolic constant SYBECRSUPDTAB

Message text Update or insert operations using bind variables require
single table cursors.

Possible Cause dbcursoropenI() stmt argument affects multiple tables.

Action/solution Correct application coding.

Additional information

Versions All

20276

574 Open Client

20276
Symbolic constant SYBECRSNOUPD

Message text Update or delete operation did not affect any rows.

Possible Cause dbcursor() with CRS_UPDATE or CRS_DELETE optype argument affected 0
rows.

Action/solution Correct application coding.

Additional information

Versions All

20277
Symbolic constant SYBECRSINV

Message text Invalid cursor statement.

Possible Cause dbcursoropen() stmt does not contain a select clause.

Action/solution Correct application coding.

Additional information

Versions All

20278
Symbolic constant SYBECRSNOKEYS

Message text The entire keyset must be defined for KEYSET type
cursors.

Possible Cause Tables involved in a KEYSET cursor must have keys.

Action/solution Correct application coding or database schema.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 575

20279
Symbolic constant SYBECRSNOBIND

Message text Cursor bind must be called prior to dbcursor invocation.

Possible Cause dbcursor() called with NULL values argument.

Action/solution Correct application coding

Additional information

Versions All

20280
Symbolic constant SYBECRSFTYPE

Message text Unknown fetch type.

Possible Cause dbcursorfetch() has been called with an unknown value for fetchtype.

Action/solution Correct application coding.

Additional information

Versions All

20282
Symbolic constant SYBECRSMROWS

Message text Multiple rows are returned, only one is expected while
retrieving dbname.

Possible Cause Internal cursor initialization error.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20283

576 Open Client

20283
Symbolic constant SYBECRSNROWS

Message text No rows returned, at least one is expected.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Unexpected internal error.

Versions All

20284
Symbolic constant SYBECRSNOLEN

Message text No unique index found.

Possible Cause No unique index exists for the table.

Action/solution Correct database schema.

Additional information

Versions All

20285
Symbolic constant SYBECRSNOPTCC

Message text No OPTCC was found.

Possible Cause Could not find columns with CUR_OPTCC set.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 577

20286
Symbolic constant SYBECRSNORDER

Message text The order of clauses must be ‘from’, ‘where’, and ‘order
by’.

Possible Cause Clauses in stmt passed to dbcursoropen() are out of order.

Action/solution Correct application coding.

Additional information

Versions All

20287
Symbolic constant SYBECRSNOTABLE

Message text Table name is NULL.

Possible Cause table passed to dbcursor() is invalid.

Action/solution Correct application coding.

Additional information

Versions All

20288
Symbolic constant SYBECRSNUNIQUE

Message text No unique keys associated with this view.

Possible Cause No keys associated with tables underlying this view.

Action/solution Correct database schema.

Additional information

Versions All

20289

578 Open Client

20289
Symbolic constant SYBECRSVAR

Message text There is no valid address associated with this bind.

Possible Cause dbcursorbind() called with vartype NOBIND and invalid pvaraddr.

Action/solution Correct application coding.

Additional information

Versions All

20290
Symbolic constant SYBENOVALUE

Message text Security labels require both a name and a value.

Possible Cause Security label handler has set either a namelen or valuelen to a value <= 0.

Action/solution Correct application coding.

Additional information

Versions All

20291
Symbolic constant SYBEVOIDRET

Message text Return parameter cannot be of the type SYBVOID.

Possible Cause dbrpcparam() attempted to define a return parameter as SYBVOID.

Action/solution Correct application coding.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 579

20292
Symbolic constant SYBECLOSEIN

Message text Unable to close interfaces file.

Possible Cause Internal close failure.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20293
Symbolic constant SYBEBOOL

Message text Value of a boolean parameter should be either TRUE or
FALSE.

Possible Cause bcp_options() has been called with option BCPLABELED and *value is not set
to either TRUE or FALSE.

Action/solution Correct application coding.

Additional information

Versions All

20294
Symbolic constant SYBEBCPOPT

Message text The <option> option cannot be called while a bulk copy
operation is in progress.

Possible Cause bcp_options() with option BCPLABELED has been called when a bulk-copy
operation is progress.

Action/solution Correct application coding.

Additional information

Versions All

20295

580 Open Client

20295
Symbolic constant SYBEERRLABEL

Message text An illegal value was returned from the security label
handler.

Possible Cause Security label handler returned a value other than DMORELABEL,
DBENDLABLE, or DBERRLABEL.

Action/solution Correct application coding.

Additional information

Versions All

20296
Symbolic constant SYBEATTNACK

Message text Timed out waiting for server to ackowledge attention.

Possible Cause The server has not responded to a dbcancel() request.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20297
Symbolic constant SYBEBBFL

Message text Batch failed in bulk-copy to the server.

Possible Cause Server reported an error in bulk-copy.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

APPENDIX B DB-Library Error Messages

DB-Library/C Reference Manual 581

20298
Symbolic constant SYBEDCL

Message text A directory control layer (DCL) error occurred.

Possible Cause Error reading directory service.

Action/solution Contact Sybase Technical Support.

Additional information

Versions All

20299
Symbolic constant SYBECS

Message text A CS Context error occurred.

Possible Cause Obsolete

Action/solution Contact Sybase Technical Support.

Additional information

Versions None.

20300
Symbolic constant SYBEVERENV

Message text An invalid value was used for SYBOCS_DBVERSION.

Possible Cause dbsetversion() has been called with an invalid version.

Action/solution Correct application coding.

Additional information

Versions All

20301

582 Open Client

20301
Symbolic constant SYBCOPNOV

Message text dbcursoropen(): The multiplication of scrollopt and
nrows results in overflow.

Possible Cause

Action/solution Contact Sybase Technical Support.

Additional information Internal cursor error.

Versions 15.7 and later

20302
Symbolic constant SYBEINTOVFL

Message text DB-LIBRARY internal error: The arithmetic operation
results in integer overflow.

Possible Cause A buffer is not large enough for character set translation.

Action/solution Contact Sybase Technical Support.

Additional information

Versions 15.7 and later

DB-Library/C Reference Manual 583

A
abort_xact 468
Adaptive Server

updating among multiple 453
aggregate operators

returning for a compute column 67
application names

setting in LOGINREC 317
applications

DB-Library/C 6, 7, 12
gateway 251, 303

arithmetic exceptions 407

B
batches

command. See Command batches 84
bcp

BCPLABELED option 447
binding data 422
changing allowable number of errors 437
changing default data formats 436
changing first row to copy 437
changing last row to copy 437
changing number of rows to copy 437
changing program variable data address 435
changing program variable data length 434
character set translations for 450
copying multiple files 448, 451
default data formats 443
enabling 450
ending bulk copy from program variables 439
executing 439
host file format 426, 429
initializing 441
overriding default data formats 426, 429, 435
reading format definitions 448
saving preceding rows in Adaptive Server 421

and Secure Adaptive Server 447
sending data from program variables 448
sending text/image values 444
setting LOGINREC for 450
setting number of columns in host file 435
setting options for 447
specifying host file format 426, 429
writing format definitions to a file 451

bcp_batch 421
bcp_bind 422, 426
bcp_colfmt 426, 429
bcp_colfmt_ps 429, 433
bcp_collen 434
bcp_colptr 435
bcp_columns 435, 436

and bcp_bind 424
bcp_control 436, 439
bcp_done 439

and bcp_bind 426
bcp_exec 439, 441
bcp_getl 441
bcp_init 441, 444
bcp_moretext 444, 447
bcp_options 447
bcp_readfmt 448
bcp_sendrow 448, 449
BCP_SETL 450
bcp_setxlate 450, 451
bcp_writefmt 451, 452
binary data

reading page of 247
writing page of to the server 381

bind result column to program variable 72, 77
browse mode 26, 28

and DBPROCESS 27
determining number of tables involved 365
determining whether regular column source is

updatable 93
identifying browsable tables 363

buffers

Index

Index

584 Open Client

command. See Command buffers 6
determining size for results 343
placing query results header in 344
row. See Row buffers 6

build_xact_string 468, 469
bulk copy 417, 419
bylist 84

returning 83

C
chained transactions 407
character set

returning client 157
returning server 305
setting 318
setting default 310
translation 87

character set translations
freeing tables 153
loading tables 175
specifying for bcp 450
for strings 387
tables 154

character strings
and quotation marks 297
translating from one character set to another 387

characters
getting from command buffer 157

Client/server
architecture 1, 2

Client-Library
definition 4

clients
types of 2

close_commit 469, 470
columns

compute. See Compute columns 49
regular. See Regular columns 72
returning ID of in order by clause 233
returning number in order by clause 227

command batches 15
canceling current 84
determining whether more results to process 210
sending to the server 347, 354

setting results for next command 275
and switching databases 86
verifying correctness of 349

command buffers 6, 15
adding text to 91, 149
checking for Transact-SQL constructs 162
clearing 154
copying portions of 359
getting characters 157
and message handling 214
returning character length of 361
setting no clear option 92

commands
canceling entire batch 85
determining whether it can return rows 92
determining whether it returned rows 289
determining whether more to process 210
getting stored procedures status number 285
processing 15, 16
returning number of current 113
returning number of rows affected by 112
setting up results for next 275

commit_xact 470
comparing

datetime values 129
compute clauses

returning number in results 227
compute columns

associating with indicator variables 70
binding to program variables 54, 59
getting data 49
order returned 50
returning data length of 52
returning maximum data length of 66
returning number in row 225
returning select-list id 65
returning server datatype for 68
returning type of row aggregate 67
returning user-defined datatypes for 69
summing or averaging 50

compute rows 16
determining 217
getting data for a column 50
reading next 217
returning bylist for 83
returning number of columns 225

Index

DB-Library/C Reference Manual 585

creating a notification procedure 219, 222
creating a registered procedure 219, 222
CS-Library

definition 4
cursor

binding 117
closing 119
fetching against 121
opening 124
retrieving column information for 120
retrieving information about 123
updating 115

D
data

getting user-allocated 167
reading binary 247
reading server (UNIX) 170
saving user-allocated 336
writing binary 381
writing to the server (UNIX) 172

databases
determining whether changed 86
multi-user updates 26
reading pages 247
returning name of current 216
updating 26, 28
updating on multiple servers 453
using specified 376

datatypes
Adaptive Server 11
binding compute columns to 54, 59
binding regular columns to 72, 77
compute columns 68
conversions supported 104, 110
conversions supported by dbaltbind 55
conversions supported by dbaltbind_ps 61
conversions supported by dbbind 73
conversions supported by dbbind_ps 78
converting 102, 106
converting to same 105, 112
DB-Library 412, 416
DB-Library/C 11
determining supported conversions 379

getting precision and scale for regular column 99
returning for compute columns 68, 69
returning for regular column 98
server 103, 109
server, list of 412
user-defined, for compute columns 69
user-defined, for regular columns 100

date formats
input 408

DATEFIRST option 407
DATEFORMAT option of set command 408
dates

converting parts to character strings 135
converting to character format 131
converting values into usable format 133
determining month name in specified language

209
parts of 131
returning name of day in specified language 142
returning order for specified language 138
returning parts as numeric values 139
symbols recognized by DB-Library 131

datetime routines 34, 35
datetime values

comparing 129
days

returning name of in specified language 142
db12hour 48, 49
dbadata 49, 52

as alternate to dbaltbind 58, 65
dbadlen 52, 54
dbaltbind 54, 59

as alternate to dbadata 51
dbaltbind_ps 59, 65
dbaltcolid 65, 66
dbaltlen 66, 67
dbaltop 67, 68
dbalttype 68, 69
dbaltutype 69, 70
dbanullbind 70, 71
DBARITHABORT option 407
DBARITHIGNORE option 407
DBAUTH option 407
dbbind 72, 77

as alternate to dbdata 129
dbbind_ps 77, 82

Index

586 Open Client

DBBUFFER option 407
and DBFIRSTROW 153
and dbgetrow 166
and DBLASTROW 175
and reading result rows 218

dbbufsize 82, 83
dbbylist 83, 84
dbcancel 84, 85
dbcanquery 85, 86
DBCHAINXACTS option 407
dbchange 86, 87
dbcharsetconv 87
dbclose 88
dbclrbuf 88, 89
dbclropt 89, 91
dbcmd 91, 92
DBCMDROW 92, 93
dbcolbrowse 93, 94
dbcollen 94, 95
dbcolname 95, 96

and returning bylist 83
dbcolsource 97, 98
dbcoltype 98, 99
dbcoltypeinfo 99, 100
dbcolutype 100, 102
dbconvert 102, 106
dbconvert_ps 106, 112
DBCOUNT 112, 113
DBCURCMD 113, 114
DBCURROW 114, 115
dbcursor 115, 116
dbcursorbind 116, 119
dbcursorclose 119
dbcursorcolinfo 119, 120
dbcursorfetch 120, 123
dbcursorinfo 123, 124
dbcursoropen 124, 128
dbdata 128, 129

as alternate to dbbind 76, 82
dbdate4cmp 129, 130
dbdate4zero 130, 131
dbdatechar 131, 132
dbdatecmp 132, 133
dbdatecrack 133, 135
dbdatename 135, 138
dbdateorder 138, 139

dbdatepart 139, 140
DBDATEREC structure 133
DBDATETIME structure 134

converting date parts to character strings 135
converting integer component to character format

131
converting values into usable format 133
returning parts as numeric values 139

dbdatezero 140, 141
dbdatlen 141, 142
dbdayname 142, 143
DBDEAD 143, 144
dberrhandle 144, 148
dbexit 148, 149
dbfcmd 149, 152
DBFIRSTROW 152, 153

and dbgetrow 166
dbfree_xlate 153, 154
dbfreebuf 154, 155
dbfreequal 155
dbfreesort 155, 156
dbgetchar 157
dbgetcharset 157, 158
dbgetloginfo 158, 160
dbgetlusername 160, 161
dbgetmaxprocs 161, 162
dbgetnatlang 162
dbgetoff 162, 164
dbgetpacket 164, 165
dbgetrow 165, 166
DBGETTIME 167
dbgetuserdata 167, 168
dbhasretstat 168, 170
dbinit 170

and dbexit 149
DBIORDESC (UNIX) 170, 171
DBIOWDESC (UNIX) 172
DBISAVAIL 173
dbisopt 173, 174
DBLASTROW 174, 175
DB-Library 4

determining version in use 378
initializing 170

dbload_xlate 175, 176
and freeing translation tables 154

dbloadsort 176, 177

Index

DB-Library/C Reference Manual 587

dblogin 177, 179
dbloginfree 179
dbmny4add 179, 180
dbmny4cmp 180, 181
dbmny4copy 181, 182
dbmny4divide 182, 183
dbmny4minus 183, 184
dbmny4mul 184, 185
dbmny4sub 185, 186
dbmny4zero 186, 187
dbmnyadd 187, 188
dbmnycmp 188, 189
dbmnycopy 189, 190
dbmnydec 190, 191
dbmnydivide 191, 192
dbmnydown 192, 193
dbmnyinc 194
dbmnyinit 194, 196
dbmnymaxneg 196, 197
dbmnymaxpos 197
dbmnyminus 198
dbmnymul 199
dbmnyndigit 200, 206
dbmnyscale 206, 207
dbmnysub 208
dbmnyzero 209
dbmonthname 209, 210
DBMORECMDS 210, 211
dbmoretext 211, 212
dbmsghandle 212, 216

and dberrhandle 147
dbname 216, 217
DBNATLANG option 408
dbnextrow 217, 219

and DBROWS 289
and DBROWTYPE 289

DBNOAUTOFREE option
and dbfcmd 151
and dbfreebuf 154

DBNOCOUNT option
and DBCOUNT 113

dbnpcreate 219, 221
dbnpdefine 222, 223
dbnullbind 224
dbnumalts 225
dbnumcols 225, 226

dbnumcompute 227
DBNUMORDERS 227, 228
dbnumrets 228, 229
DBOFFSET option

and dbgetoff 163
dbopen 229, 233

getting a LOGINREC 177
setting login response time 325

dbordercol 233, 234
DBPARSEONLY option 409
dbpoll 234, 239
DBPRCOLSEP option

and dbspr1row 342
dbprhead 239, 240
DBPRLINELEN option 410
DBPRLINESEP option 410
DBPROCESS structure 6

allocating 229
closing a 88
closing all 148
de-allocating a 88
de-allocating all 148
determining current limit available 161
determining whether available 173
determining whether dead 143
getting client character set from 157
getting national language from 162
getting server process ID 340
getting user-allocated data 167
initializing 229
marking available 306
multiple 6
saving user-allocated data 336
setting maximum number available 329
sharing single 173
and two-phase commit service 455

DBPRPAD option 410
and dbspr1row 342

dbprrow 240, 241
dbprtype 241, 242
dbqual 242, 245

freeing allocated memory 155
DBRBUF (UNIX) 246
dbreadpage 247
dbreadtext 248, 250
dbrecftos 250

Index

588 Open Client

dbrecvpassthru 251, 253
dbregdrop 253, 254
dbregexec 254, 256
dbreghandle 256, 260
dbreginit 260, 262
dbreglist 262, 263
dbregnowatch 263, 265
dbregparam 265, 269
dbregwatch 269, 274
dbregwatchlist 274, 275
dbresults 275, 278
dbretdata 278, 281
dbretlen 282, 283
dbretname 283, 285
dbretstatus 285, 286
dbrettype 287, 289
DBROWCOUNT option 410
DBROWS 289
DBROWTYPE 289, 290
dbrpcinit 290, 292
dbrpcparam 292, 294

and return parameter values 228
dbrpcsend 294, 295
dbrpwclr 295, 296
dbrpwset 296, 297
dbsafestr 297, 298
dbsechandle 299, 302
dbsendpassthru 303, 305
dbservcharset 305
dbsetavail 306
dbsetbusy 306, 309
dbsetconnect 309
dbsetdefcharset 310, 311
dbsetdeflang 311, 312
dbsetidle 312, 313
dbsetifile 313, 314
dbsetinterrupt 314, 317

and canceling result rows 86
DBSETLAPP 317, 318
DBSETLCHARSET 318, 319
DBSETLENCRYPT 319, 320
DBSETLHOST 320, 321
DBSETLMUTUALAUTH 321
DBSETLNATLANG 322
DBSETLNETWOKRAUTH 322
dbsetloginfo 323, 325

dbsetlogintime 325, 326
DBSETLPACKET 326, 327
DBSETLPWD 327, 328
DBSETLSERVERPRINCIPAL 328
DBSETLUSER 329
dbsetmaxprocs 329, 330
dbsetnull 330, 332
dbsetopt 332, 334
dbsetrow 334, 335
dbsettime 336
dbsetuserdata 336, 339
dbsetversion 339, 340
DBSHOWPLAN option 410
dbspid 340, 341
dbspr1row 341, 343

and dbspr1rowlen 344
dbspr1rowlen 343, 344
dbsprhead 344, 346

and dbspr1rowlen 344
and dbsprline 346

dbsprline 346, 347
and dbspr1rowlen 344

dbsqlexec 347, 349
dbsqlok 349, 354
dbsqlsend 354, 355
DBSTAT option 410
DBSTORPROCID option 410
dbstrbuild 355, 357
dbstrcmp 358, 359

and dbstrsort 363
dbstrcpy 359, 361
dbstrlen 361, 362
dbstrsort 362, 363
dbtabbrowse 363, 364
dbtabcount 364, 365
dbtabname 365, 366

and dbtabcount 365
dbtabsource 366, 367
DBTDS 368
dbtextsize 368, 369
DBTEXTSIZE option 411
dbtsnewlen 369, 370
dbtsnewval 370, 371
dbtsput 371, 372
dbtxptr 372, 373
dbtxtimestamp 374

Index

DB-Library/C Reference Manual 589

dbtxtsnewval 375
dbtxtsput 375, 376
dbuse 376, 377
dbvarylen 377, 378
dbversion 378
dbwillconvert 379, 380
dbwritepage 381
dbwritetext 382, 387
dbxlate 387, 389
deadlock

handling 168, 337
debugging

and dbprhead 239
and dbprrow 240
and dbspr1row 341
and dbspr1rowlen 344
and dbsprhead 345
and dbsprline 347
recording SQL text sent to the server 250
for two-phase commit service 468

decimal datatype
getting precision and scale for regular column 99

default character set
setting for an application 310

default language
setting for an application 311

defining a notification procedure 222
defining a registered procedure 222
distributed transactions. See Two-phase commit

service 453
dropping a registered procedure 253

E
embedded SQL

comparing Client-Library to 5
encrypted passwords 319
encryption handler

installing 299
error handling 22

and converting datatypes 103, 108
and DBDEAD 144
installing a user-function 144, 148
list of errors 389
translating messages from one language to another

355
uninstalling handler 147

error severity values 9
errors 389, 406

DB-Library 389
executing a registered procedure 254, 260
exit values 9

F
file descriptors (UNIX)

access to 170, 172
files

header 9
functions

user-supplied to handle interrupts 314
user-supplied, indicating DB-Library is finished

reading from the server 312
user-supplied, indicating server access 306

G
gateway applications 33, 251, 303
getting

the client character set 157
the national language 162
the server character set 305

H
handler

error 22
message 22
notification 256

header files 9
host names

setting in LOGINREC 320

I
image values

bulk copying parts 444

Index

590 Open Client

bytes left of 368
limiting size of 411
reading parts of 248
and text pointers 373
and text timestamps 374
updating 211, 382

include files 9
input streams

and checking for unread bytes in network buffer (UNIX)
246

responding to multiple (UNIX) 171
utilizing multiple (UNIX) 172, 355

interfaces file
and dbopen 230
specifying name and location 313

interrupt handling 314

L
languages

getting name from DBPROCESS 162
setting default 311
setting name in LOGINREC 322
setting national 408

line length
specifying for rows 410

listing registered procedures 262
listing requested registered procedure notifications 274
logging into the server 229
login record. See LOGINREC structure 6
LOGINREC structure 6

adding remote passwords 296
allocating 177
clearing all remote passwords 295
freeing 179
packet size field 164, 326
setting application name in 317
setting client character set in 318
setting for bcp 450
setting host name in 320
setting password in 327
setting user language name in 322
setting username in 329

logins, secure 299

M
message handling 22

and dberrhandle 147
and dbreadpage 247
and deadlock 337
installing a user function 212, 216
uninstalling handler 214

MIT Kerberos 36
money routines 34, 35
months

determining name in specified language 209
multiple input streams 234

N
network buffers

determining whether unread bytes (UNIX) 246
polling 234

network connections
closing 88
specifying interfaces file 313

notification handler 256
notification procedure

creating 219, 222
defining 222

notification request
canceling 263
listing 274

notifications
listing registered procedures 274
registered procedure 256

null values
binding 330
default 331
defining 330

numeric datatype
getting precision and scale for regular column 99

O
offsets

types of 163
open_commit 470, 471
options 407, 412

Index

DB-Library/C Reference Manual 591

checking status of 173
clearing 89
DB-Library 407
parameter values of 411
setting 332

order by clauses
returning column ID in 233
returning number of columns in 227

output streams
utilizing multiple (UNIX) 172, 355

P
packet size

TDS 164, 326
padding

specifying characters to use 410
parameters

registered procedure 265
passthrough operation 251, 303
passwords

remote, adding 296
remote, clearing 295
setting server 327

polling the network buffer 234
process ID

getting 340
processing plan

generating description of 410
programming

DB-Library/C 6, 12

Q
queries

aborting during arithmetic exceptions 407
ignoring arithmetic exceptions 407

quotation marks
and character strings 297

R
registered procedure 31, 33

canceling notification request 263
creating 219, 222
defining 222
dropping 253
example 32
executing 254, 260
handler routine 256
listing currently defined 262
listing requested notifications 274
notifications 234, 254, 256
parameters 265
requesting notifications 269
routines 33
uses of 31

regular columns
associating indicator variables with 224
binding to program variables 72, 77
determining number of in results 225
determining whether data length can vary 377
determining whether source column is updatable

with browse mode 93
getting data 128
getting precision and scale with dbcoltypeinfo 99
returning data length of 141
returning datatypes for 98
returning maximum data length of 94
returning name of 95
returning name of source column 97
returning user-defined datatypes for 100

regular rows 16
determining 217
limiting number to return 410
reading next 217

remote procedure calls 30, 291
adding parameters to 292
adding passwords for 296
advantages of 291
clearing passwords 295
determining number of return parameter values

228
determining whether status number was generated

168
getting datatype of return parameter value 287
getting length of return parameter value 282
getting name of return parameter value 283
getting return parameter values 278

Index

592 Open Client

getting status number 285
initializing 290
processing 30, 278
signaling end of 294

remove_xact 471, 472
requesting a registered procedure notification 269
result columns

compute. See Compute columns 49
regular. See Regular columns 72
returning name and number of source table 366

result rows 16
buffering 407
canceling 85
compute 16
dropping from buffer 88
placing header in buffer 344
printing 240
printing column headings of 239
processing 16, 22
putting one in buffer 341
reading next 217
regular 16

results
setting up for next query 275

return parameter values 228
determining number of 228
getting 278
getting datatype of 287
getting length of 282
getting parameter name 283

returning TDS packet size 164
returning the client character set 157
returning the national language 162
returning the server character set 305
routines 12, 36

browse mode 27
command processing 15
error handling 22
image handling 28
information retrieval 24
initialization 13
message handling 22
process control 30
registered procedure 33
remote procedure call 30
results processing 16

TDS 33
text handling 28
two-phase commit service 36

row aggregates
returning for a compute column 67

row buffers 166, 335
clearing 88
reading specified rows 165
returning number of first row 152
returning number of last row 174

rows
buffering 407
compute 16
determining type 217
determining whether returned 289
determining whether returned by command 92
dropping from buffer 88
limiting number to return 410
printing 240
printing column headings of 239
reading next 217
reading specified in buffer 165
regular 17
result. See Result rows 16
returning number affected by a command 112
returning number of current 114
returning number of first in buffer 152
returning number of last in buffer 174
returning type of 289
specifying line length 410
specifying separator characters 410
updating current in browsable table 242

S
sample programs

DB-Library/C 7
scan_xact 472
secure Adaptive Server

and bcp 447
routines for 35

secure logins
installing user function for 299

security label handler
installing 301

Index

DB-Library/C Reference Manual 593

separator characters
specifying for rows 410

server 85, 167
communicating with 6
converting token values 241
datatypes 103, 109
logging into 229
reading data from (UNIX) 170
recording SQL text sent to 250
sending text/image values to 211
setting response time 325
setting user passwords 327
types 2
writing data to (UNIX) 172

servers
multiple 6

setting TDS packet size 326
setting the client character set 318
sort orders 156

comparing two character strings 358
determining order of two character strings 362
freeing 155
loading 176

sprintf function 149
SQL text

recording 250
start_xact 472, 473
stat_xact 473, 474
statistics

performance, determining when returned 410
status numbers

for current command 285
determining whether generated 168

stored procedures
calling remotely 30
determining number of return parameter values

228
return parameter values, getting 278
return parameter values, getting datatype of 287
return parameter values, getting length of 282
return parameter values, getting parameter name of

283
returning status number 285
sending ids of 410
and status numbers 168

sybdb.h header file 9, 145, 163

and DB-Library options 407
and error handling 389

syberror.h header file 9, 147
and error severities 389

SYBESMSG
and error handling 147

sybfront.h header file 9
and interrupt handling 315

syntax
checking 409

T
tables

determining names of 365
identifying browsable 363
returning name and number associated with result

columns 366
returning name of 365
returning number involved in a select query 364
server work 365

Tabular Data Stream
protocol 368
routines 33, 164, 251, 303, 326

TDS
determining packet size 164
passthrough operation 251, 303
routines 33
setting packet size 326

TDS buffer
polling 234

TDS packet
receiving 251
sending 303

text and image data 164, 326
text pointers 373

returning value of 372
text timestamps 374

putting new value into DBPROCESS 375
returning value of 374
returning value of after update 375

text values
bulk copying parts 444
bytes left of 368
limiting size of 411

Index

594 Open Client

reading parts of 248
and text pointers 373
and text timestamps 374
updating 211, 382

text/image data
updating 212

time
amount DB-Library waits for a server response 167
determining when to return status 410
determining whether 12 or 24-hour 48
setting length DB-Library waits for server response

336
setting server login response 325

timestamp columns 26
putting new value in DBPROCESS 371
returning length of after update 369
returning value of after update 370
and updating rows 243

token values
converting to readable strings 241

transactions
distributed. See Two-phase commit service 453

Transact-SQL commands
and DBPROCESS 6

translation tables
freeing 153
loading 175

two-phase commit service 453, 467
building names for recovery purposes 468
closing connections 469
and DBPROCESS 455
debugging 468
decrementing site count 471
diagnostic routines 472, 473
and interfaces file 457
marking transactions as aborted 468
marking transactions as committed 470
opening connections 470
printing record of distributed transactions 472
returning status of a distributed transaction 473
routines for 36
starting a distributed transaction 472

typedefs
DB-Library/C 11
DB-Library/C, list of 413

U
updating databases 26, 28

on multiple servers 453
multi-user situations 26
and text/image data 212

user names
setting 329

user-defined datatypes
returning for a compute column 69
returning for regular columns 100

user-supplied data
retrieving for a DBPROCESS 167
saving in a DBPROCESS 336

user-supplied functions
calling to handle interrupts 314
indicating DB-Library is finished reading from the

server 312
indicating server access 306

V
versions

DB-Library, determining which 378

W
where clauses

for use in updating a browsable table 242

	DB-Library™/C Reference Manual
	About This Book
	CHAPTER 1 Introducing DB-Library
	Client/server architecture
	Types of clients
	Types of servers

	The Open Client and Open Server products
	Open Client
	Open Server
	Open Client libraries
	What is in DB-Library/C?
	Comparing the library approach to Embedded SQL

	Data structures for communicating with servers
	DB-Library/C programming
	DB-Library/C datatypes

	DB-Library/C routines
	Initialization
	Initializing DB-Library/C
	Setting up the LOGINREC
	Establishing a server connection

	Command processing
	Building the command batch
	Accessing the command batch
	Executing the command batch
	Setting and clearing command options

	Results processing
	Setting up the results
	Getting result data
	Reading result rows
	Canceling results
	Handling stored procedure results
	Setting results timeouts

	Message and error handling
	Information retrieval
	Regular result column information
	Compute result column information
	Row buffer information
	Command state information

	Browse mode
	Text and image handling
	Datatype conversion
	Process control flow
	Remote procedure call processing
	Registered procedure call processing
	Gateway passthrough routines
	Datetime and money
	Cleanup
	Secure support
	Miscellaneous routines
	Two-phase commit service special library

	MIT Kerberos on DB-Library
	Sample programs

	CHAPTER 2 Routines
	db12hour
	dbadata
	dbadlen
	dbaltbind
	dbaltbind_ps
	dbaltcolid
	dbaltlen
	dbaltop
	dbalttype
	dbaltutype
	dbanullbind
	dbbind
	dbbind_ps
	dbbufsize
	dbbylist
	dbcancel
	dbcanquery
	dbchange
	dbcharsetconv
	dbclose
	dbclrbuf
	dbclropt
	dbcmd
	DBCMDROW
	dbcolbrowse
	dbcollen
	dbcolname
	dbcolsource
	dbcoltype
	dbcoltypeinfo
	dbcolutype
	dbconvert
	dbconvert_ps
	DBCOUNT
	DBCURCMD
	DBCURROW
	dbcursor
	dbcursorbind
	dbcursorclose
	dbcursorcolinfo
	dbcursorfetch
	dbcursorinfo
	dbcursoropen
	dbdata
	dbdate4cmp
	dbdate4zero
	dbdatechar
	dbdatecmp
	dbdatecrack
	dbdatename
	dbdateorder
	dbdatepart
	dbdatezero
	dbdatlen
	dbdayname
	DBDEAD
	dberrhandle
	dbexit
	dbfcmd
	DBFIRSTROW
	dbfree_xlate
	dbfreebuf
	dbfreequal
	dbfreesort
	dbgetchar
	dbgetcharset
	dbgetloginfo
	dbgetlusername
	dbgetmaxprocs
	dbgetnatlang
	dbgetoff
	dbgetpacket
	dbgetrow
	DBGETTIME
	dbgetuserdata
	dbhasretstat
	dbinit
	DBIORDESC
	DBIOWDESC
	DBISAVAIL
	dbisopt
	DBLASTROW
	dbload_xlate
	dbloadsort
	dblogin
	dbloginfree
	dbmny4add
	dbmny4cmp
	dbmny4copy
	dbmny4divide
	dbmny4minus
	dbmny4mul
	dbmny4sub
	dbmny4zero
	dbmnyadd
	dbmnycmp
	dbmnycopy
	dbmnydec
	dbmnydivide
	dbmnydown
	dbmnyinc
	dbmnyinit
	dbmnymaxneg
	dbmnymaxpos
	dbmnyminus
	dbmnymul
	dbmnyndigit
	dbmnyscale
	dbmnysub
	dbmnyzero
	dbmonthname
	DBMORECMDS
	dbmoretext
	dbmsghandle
	dbname
	dbnextrow
	dbnpcreate
	dbnpdefine
	dbnullbind
	dbnumalts
	dbnumcols
	dbnumcompute
	DBNUMORDERS
	dbnumrets
	dbopen
	dbordercol
	dbpoll
	dbprhead
	dbprrow
	dbprtype
	dbqual
	DBRBUF
	dbreadpage
	dbreadtext
	dbrecftos
	dbrecvpassthru
	dbregdrop
	dbregexec
	dbreghandle
	dbreginit
	dbreglist
	dbregnowatch
	dbregparam
	dbregwatch
	dbregwatchlist
	dbresults
	dbretdata
	dbretlen
	dbretname
	dbretstatus
	dbrettype
	DBROWS
	DBROWTYPE
	dbrpcinit
	dbrpcparam
	dbrpcsend
	dbrpwclr
	dbrpwset
	dbsafestr
	dbsechandle
	dbsendpassthru
	dbservcharset
	dbsetavail
	dbsetbusy
	dbsetconnect
	dbsetdefcharset
	dbsetdeflang
	dbsetidle
	dbsetifile
	dbsetinterrupt
	DBSETLAPP
	DBSETLCHARSET
	DBSETLENCRYPT
	DBSETLHOST
	DBSETLMUTUALAUTH
	DBSETLNATLANG
	DBSETLNETWORKAUTH
	dbsetloginfo
	dbsetlogintime
	DBSETLPACKET
	DBSETLPWD
	DBSETLSERVERPRINCIPAL
	DBSETLUSER
	dbsetmaxprocs
	dbsetnull
	dbsetopt
	dbsetrow
	dbsettime
	dbsetuserdata
	dbsetversion
	dbspid
	dbspr1row
	dbspr1rowlen
	dbsprhead
	dbsprline
	dbsqlexec
	dbsqlok
	dbsqlsend
	dbstrbuild
	dbstrcmp
	dbstrcpy
	dbstrlen
	dbstrsort
	dbtabbrowse
	dbtabcount
	dbtabname
	dbtabsource
	DBTDS
	dbtextsize
	dbtsnewlen
	dbtsnewval
	dbtsput
	dbtxptr
	dbtxtimestamp
	dbtxtsnewval
	dbtxtsput
	dbuse
	dbvarylen
	dbversion
	dbwillconvert
	dbwritepage
	dbwritetext
	dbxlate
	Errors
	Options
	Types

	CHAPTER 3 Bulk Copy Routines
	Introduction to bulk copy
	Transferring data into the database
	Transferring data out of the database to a flat file

	List of bulk copy routines
	bcp_batch
	bcp_bind
	bcp_colfmt
	bcp_colfmt_ps
	bcp_collen
	bcp_colptr
	bcp_columns
	bcp_control
	bcp_done
	bcp_exec
	bcp_getl
	bcp_init
	bcp_moretext
	bcp_options
	bcp_readfmt
	bcp_sendrow
	BCP_SETL
	bcp_setxlate
	bcp_writefmt

	CHAPTER 4 Two-Phase Commit Service
	Programming distributed transactions
	The commit service and the application program
	The probe process
	Two-phase commit routines
	Specifying the commit server
	Two-phase commit sample program
	Program notes
	Program note 1
	Program note 2
	Program note 3
	Program note 4
	Program note 5
	Program note 6
	Program note 7
	Program note 8

	abort_xact
	build_xact_string
	close_commit
	commit_xact
	open_commit
	remove_xact
	scan_xact
	start_xact
	stat_xact

	APPENDIX A Cursors
	Cursor overview
	DB-Library cursor capability
	Differences between DB-Library cursors and browse mode
	Differences between DB-Library and Client-Library cursors

	Sensitivity to change
	Static cursor
	Keyset-driven cursor
	Dynamic cursor
	Concurrency control

	DB-Library cursor functions
	Holding locks
	Stored procedures used by DB-Library cursors

	APPENDIX B DB-Library Error Messages
	20001
	20002
	20003
	20004
	20005
	20006
	20008
	20009
	20010
	20011
	20012
	20013
	20014
	20015
	20016
	20017
	20018
	20019
	20020
	20021
	20022
	20023
	20024
	20025
	20026
	20027
	20028
	20029
	20030
	20031
	20033
	20034
	20035
	20036
	20037
	20038
	20039
	20040
	20041
	20042
	20043
	20044
	20045
	20046
	20047
	20048
	20049
	20050
	20051
	20052
	20053
	20054
	20055
	20056
	20060
	20061
	20062
	20063
	20064
	20065
	20066
	20067
	20068
	20069
	20070
	20071
	20072
	20073
	20074
	20075
	20076
	20077
	20078
	20079
	20080
	20081
	20082
	20083
	20084
	20085
	20086
	20087
	20088
	20091
	20092
	20093
	20094
	20095
	20096
	20097
	20098
	20099
	20100
	20101
	20102
	20103
	20104
	20105
	20106
	20107
	20108
	20109
	20110
	20111
	20112
	20113
	20114
	20115
	20116
	20117
	20118
	20119
	20120
	20121
	20122
	20123
	20124
	20125
	20126
	20127
	20128
	20129
	20130
	20131
	20132
	20133
	20134
	20135
	20136
	20137
	20138
	20139
	20140
	20141
	20142
	20143
	20144
	20145
	20146
	20147
	20148
	20149
	20150
	20151
	20152
	20153
	20154
	20155
	20156
	20157
	20158
	20159
	20160
	20161
	20162
	20163
	20164
	20165
	20166
	20167
	20168
	20169
	20170
	20171
	20172
	20173
	20174
	20175
	20176
	20177
	20178
	20179
	20180
	20181
	20182
	20183
	20184
	20185
	20186
	20187
	20188
	20189
	20190
	20191
	20192
	20193
	20194
	20195
	20196
	20197
	20198
	20199
	20200
	20201
	20202
	20203
	20204
	20205
	20206
	20207
	20208
	20209
	20210
	20211
	20212
	20213
	20214
	20215
	20216
	20217
	20218
	20219
	20220
	20221
	20222
	20223
	20224
	20225
	20226
	20227
	20228
	20229
	20230
	20231
	20232
	20233
	20234
	20235
	20236
	20237
	20238
	20239
	20240
	20241
	20242
	20243
	20244
	20245
	20246
	20247
	20248
	20249
	20250
	20251
	20252
	20253
	20254
	20255
	20256
	20257
	20258
	20259
	20260
	20261
	20262
	20263
	20264
	20265
	20266
	20267
	20268
	20269
	20270
	20271
	20272
	20273
	20274
	20275
	20276
	20277
	20278
	20279
	20280
	20282
	20283
	20284
	20285
	20286
	20287
	20288
	20289
	20290
	20291
	20292
	20293
	20294
	20295
	20296
	20297
	20298
	20299
	20300
	20301
	20302

	Index

