SYBASE

Administration Guide: Volume 2

Replication Server®

15.5

DOCUMENT ID: DC32518-01-1550-01
LAST REVISED: March 2010

Copyright © 2010 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PN oo 1 0L A I g =T o o PRSP xi
CHAPTER 1 Verifying and Monitoring Replication Serverccccccccvveveeeennn. 1
Checking replication system log files for errors............ccccvvvvveeeeiinnns 2
Verifying a replication SYSteM...........ccocciviiiiieee e 2
Monitoring Replication SEIVETcooiiiiiiiiieeiiiiieiice e 4
Verifying SErVer StatUSceeeieiiiiiiiiiiiee e esiireeeee e 4
Visual monitoring of Statusc.evvevieeeiiiiiiiie e 6
Displaying replication system thread statusocccvvveeeeenn. 6
Setting and using threshold [eVelsccoociiiii s 8
Monitoring partition PerceNtagescccccvvvvivciviieeiieen e 9
CHAPTER 2 Customizing Database OperationsS.......cccccccevvvvvcviviiiiiieiieeeeeeen, 11
OVEIVIBW ...ttt ettt et e ettt ettt e e e et e e e e ente e e e enbae e e e anneeans 11
Working with functions, function strings, and classes................... 12
FUNCHIONS ... 13
Summary of system funCtionsccccceeeeeei i, 16
FUNCLON StHNGS ...vvvviiiee et 19
System functions with multiple function strings..............c........ 21
FUNCLION-SrNG ClASSESccovviiiiiiiiiee e 21
System-provided ClasSEsccvvvvieiieiiiiiiiiiee e 22
Function-string iNheritanCeoccvvvvveeie i, 23
Restrictions in mixed-version SysStemsccccccvveeeviinvienenn. 25
Managing function-string ClasSes.........ccccvvviiiieiiiiiiiie e, 26
Creating a function-string Classccovcvvvviiiiei i 27
Assigning a function-string class to a database 31
Dropping a function-string class.........cccccccevvvciiieenie e, 32
Managing function StriNGSccvvvvieeee e 32
Function strings and function-string classesccccccvvveee.. 33
Function-string input and output templatescccccceeeevvnneen. 33
Using output templates........cccuviveeeeeeiiiiiiiieee e 34
Using iNput teMPIAteS......ccooiiiiiiiiee e 36
Using function-string variablescccccccviniiii i, 38

Administration Guide iii

Contents

CHAPTER 3

Creating fuNCtion StriNgS..........uvvvveiiiiiiiiiieee e 40
Altering fuNCLioN StHNGSoooviiiiiiice e 42
Dropping function StHNGS......cccoovviiiiiiiiiieiiiee e 43
Restoring default function strings.......c.cccocccvivvvieee s, 45
Creating empty function strings with the output template........ 46
Defining multiple commands in a function string..................... 46
Command batching for non-ASE servers..........cccccceeeviecvvnneen. a7
Using declare statements in language output templates......... 49
Displaying function-related informationc.cccccvvvviieeiiinciinnnnn, 50
Obtaining information using the admin command................... 50
Obtaining information using stored procedures....................... 51
Using the default system variable ..., 51
Extending default function Stringsocccvvvveviieiiiiiiienneenn, 52
Using replicate minimal COluMNS.........cccoovviiiiiiiiieeniiiiieee, 53
Using function strings with text, unitext, image, and rawobject
JAtAtYPES ... 53
Using output writetext for rs_writetext function strings............. 54
Using output none for rs_writetext function strings 55
Managing Warm Standby Applicationscccevecvvvveeeeenneeen. 57
Overview of warm standby application............c.ccccecvvviiieeeiiicinnnnn, 58
How a warm standby WOrksccccceeeeeeiiiiiiiiiec e, 58
Database connections in a warm standby application 59

Primary and replicate databases and warm standby applications
60

Warm standby requirements and restrictions.............cccccooeeee 61
Function strings for maintaining standby databases................ 63
What information is replicated for ASE warm standby application? 63
Comparing replication methods...........cccvvveeeiiiniiiiiieee s 64
Using sp_reptostandby to enable replicationc......... 65
Using sp_setreptable to enable replicationcccvvveeen... 72
Using sp_setrepproc to copy user stored procedures............. 72
Replicating tables with the same name but different owners .. 73
Replicating text, unitext, image, and rawobject data................ 74

Configuring warm standby database for SQL statement replication
75

Replicating encrypted COlUMNSccceviiiiiiiiiiiieeeeeiieeeee, 76
Replicating quoted identifiersceeeveeeiviiiiiiiieee e, 76
When warm standby involves a replicate database 76
Changing replication for the current isgl session..................... 76
Setting up ASE warm standby databases............cccccceiieiiiiiiiinenn, 77
Before you begincoocvvieiiei e 78
Task one: Creating the logical connectionccccccvveeeiinns 79
Task two: Adding the active database...............ccccvvvvevveeiiiinns 80

Replication Server

Contents

Task three: Enabling replication for objects in the

active databaseccccviiiiii 80
Task four: Adding the standby database..............cccccevveeiiins 82
Replicating the master database in a warm standby environment for
ASE e 91
Switching the active and standby ASE databases...............cc.uue... 94
Determining if a switch is necessaryccccvveevieeiiiiiiinnenn. 94
Before switching active and standby databases 94
Internal SWItChiNg StEPSevvviiiiiiiiiiiiiee e 96
After switching active and standby databases 96
Making the SWItCh ..o 97
Monitoring a warm standby application.............ccccvvveeeeeeiiiiiinennn. 101
Replication Server 10g file........ccceeeiiiiiiiiie e, 101
Commands for monitoring warm standby applications.......... 103
Setting up clients to work with the active data server 104
Two interfaces fileS........ccvviiiiiii e 105
Symbolic data server name for client applications 105
Map client data server to currently active data server........... 105
Altering warm standby database connections...............cccvveeeeennn. 106
Altering logical CONNECLIONScvvviiiieeiiiiiieiee e, 106
Altering physical ConNNectionsccccceevvviiiiiiiiee e, 109
Dropping logical database connections............cccccccoeecuvvneeen. 111
Warm standby applications using replicationcccccvveeeeenn. 112
Warm standby application for a primary database................. 112
Warm standby application for a replicate database 115
Using replication definitions and subscriptionscc..c.ccccvvvee.. 119
Creating replication definitions for warm standby databases 119
Using subscriptions with warm standby application 124
Missing columns when you create the standby database...... 129
Loss detection and rECOVETYccccvvvierireee e 129
CHAPTER 4 Performance TUNINGe e 131
Replication Server internal processing........ccccvvvvvivveeieeesiiniiiennen 131
Threads, modules, and daemons..........ccccovvveeeeineeeniiieeenes 132
Processing in the primary Replication Servercc........ 132
Processing in the replicate Replication Server...................... 138
Configuration parameters that affect performance...................... 139
Replication Server parameters that affect performance......... 139
Connection parameters that affect performance................... 150
Route parameters that affect performance.................cccuveee. 156
Suggestions for using tuning parameters........ccccccovcvvveeeeeeeeiinns 156
Setting the amount of time SQM Writer waitsc.....cc... 157
Caching system tables ... 157
Caching stable qUeUE...........ccvviiiiiii e 158

Administration Guide \%

Contents

Vi

Setting wake up iNtervalscccveeeeiiiiiiiiiie e 160
Sizing the SQT Cache........occvviiiiiii s 160
Controlling the number of outstanding bytes............cc....oo... 161
Controlling the number of network operations....................... 161
Controlling the number of commands the RepAgent executor can
PIOCESS ...ttt 162
Specifying the number of stable queue segments allocated. 163
Selecting disk partitions for stable queues................cccuuveee. 163
Making SMP more effectiveccccccvveeeiiicciiiicee e, 163
Specifying the number of transactions in a group 164
Setting tranSaction SIiZec..uvvvviiieiiiiiiiiie e 166
Enabling non-blocking commitcccccooviiiiiiiiiiiiniiieenn. 166
Using parallel DSIthreadscccccovviiiiieiniieiiieeeee e 166
Benefits and riskSoooiiviiiii 167
Parallel DSI parameterscccccovvvvviiieeee e 168
Components of parallel DSIcccovviiiiiiieeeeeccciicee e 172
Processing transactions with parallel DSI threads 173
Selecting isolation [eVelscccoccciiiiiiiee e, 174
Transaction serialization methods...........cccoocviiiiiiiiiiees 176
Partitioning rules: reducing contention and
increasing paralleliSmccccoecviiiiee e 180
Resolving conflicting updates..........cccccvvviiiiiiieineiiniiieeenn. 185
Configuring parallel DSI for optimal performance 191
Parallel DSI and the rs_origin_commit_time system variable 196
Support for DSI bulk COPY-iNooooiiiiiiiiii e 196
Setting up bUlK COPY-iN.....oocviiiiiiiiii e 197
Changes to subscription materialization.............ccccccceeeniinns 198
New counters for bulk COPY-iN........ccccceeeeiiiiiiiieee e, 198
LIMITALIONS ...eeiiiiiiee e 199
SQL statement replication..........ccuvvveeieeii i 200
OVEIVIBW ..eeiniieie et ettt ettt bbe e sbae e e s enbaeaeaas 201
Performance issues with log-based replication..................... 202
Enabling SQL statement replication..........ccccccveeviiiciineenennnn. 206
Setting SQL statement replication threshold......................... 210

Configuring replication definitions for SQL statement replication.
214

Row count validation for SQL statement replication.............. 217
Scope of SQL statement replication.........ccccccvvcvvvveeeieennininns 219
Issues resolved by SQL statement replication 222
Exceptions to using SQL statement replication..................... 223
Replication Server System Database (RSSD) modifications 225
Product and mixed-version requirements...............cccvvvereennn. 226
Do 1Y g o[-V L= PR 226
Dynamic SQL for enhanced Replication Server performance 227

Replication Server

Contents

Setting up the configuration parameters to use dynamic SQL 228

Table-level dynamic SQL CONtrolccccvvvveveeeeiiiiciiiienneann, 228
Using replicate minimal columns with Dynamic SQL 229
LIMItatioNSoooiiiiiiiiiee e 230
Replication Server — Advanced Services Optionoccvveeen. 230
High Volume Adaptive Replication to Adaptive Server 231
Enhanced DSI effiCienCyYccovviiiiiiiiiiiiiiiiiiiceee e 242
Enhanced RepAgent Executor thread efficiency................... 243
Enhanced distributor thread read efficiencycccuvveee. 244
Enhanced memory allocationcccvvveeeeeeiiiiiiieeee e 245
Increasing queue block Sizecccvvvveeieiiiiicii e, 245
Using multiprocessor platforms........ccccccvvcvviieeiiee i 251
Enabling multiprocessor SUPPOIt.........cevveeeiiiiiiniereeeeeessieene, 252
Monitoring thread Status...........cccceeeviiiiiiiee e 252
Monitoring Performancecccceeevviiiiieeee e 253
Allocating qUEUE SEGMENTSuviiiiiiiiiiiiiiie e 253
Choosing disk allocations............cccceevviiiiiiiienie e 254
Preallocating SEgMENtSceviviiiiiiiiiiiiiee e 256
Dropping hints and partitionS...........occcvvvveriee i 256
Using the heartbeat feature in RMS.........cccccccoiiiniiiiiiiiin e 257
CHAPTER 5 Using Counters to Monitor Performance...........cccccccvvvvveeeeeennn. 259
INTFOTUCTION ...t 259
Modules and counters: an OVEIVIEW.............ocueeeeriireeeeiieeeesnieeenss 260
COUNTEIS ...ttt e e e ee e e s aanes 261
SAMPIING 1o e e 262
Collecting statistics for a specific time period..........cc...cccoues 262
Collecting statistics for an indefinite time period 266
Viewing statiStiCS ON SCrEENccciiiiiiiiiie e 267
Viewing throughput rates..........cccvvvvvieiiiiiiiiiiicee e 268
Viewing statistics about messages and memory use............ 268
Viewing the number of transactions in the stable queues..... 269
Viewing statistics saved in the RSSDcccccvviee i, 269
Using the rs_dump_stats procedurecccveeeveeeriniivnneenn. 270
Viewing information about the counters..........ccccccceeiiiiiiiineeneennn, 271
RESEttiNG COUNLEIS ...ttt 272
Generating performance reportSccccveevvieceviiieeeee e iiiiieeeee e 272
CHAPTER 6 Handling Errors and EXCEPLiONScvvvvveeeeeeeiiiiviiiieieeeeee e 275
General error handlingcooiicciiiiiee e 275
Error 10Q fill€S ...uvvii i 276
Replication Server error 10g......ccccceeevvvieeeeeeeiiciiieee e 276
RepAgent error [0g MESSAGES.......ccuvvvevieeeiiiiiiiiireiee e e s eeiieneeas 279

Administration Guide Vii

Contents

Data server error handling ... 280
Default €rror CIASSESc.ccvvviiiiiiiee e 281
Native error codes for non-ASE databases.............cccccoeveen. 281
Creating an error ClasScccvvveeiieeeiicciieee e 282
AtEring error ClaSSES........uuuieiiiiiiiiiiiie e 283
Initializing @ NEW error Classcccvveeeeeeeiicciiiieec e 283
Dropping an error ClassSoccvviveiieeeiiiciiieee e 284
Changing the primary Replication Server for an error class.. 284
Displaying error class informationccccccveeeiiiciiineneeenn, 285
Assigning actions to data Server errors........ccccceevvvvvveeeeeeeenn 285
Displaying assigned actions for error numbers 287

Exceptions handlingcooviiiiiiiiiiiiiieeiee e 288
Handling failed transactionscccccceeiviiiiiieene e, 288
Accessing the exceptions 10gcevviiiiiiiiiiee i, 290
Deleting transactions from the exceptions 10g...........cccccee.... 292

DSI duplicate deteCtionccuvveeieeeiiiiiiiiiee e 293

Duplicate detection for system transactions............cccccceeeveivvnenen. 294

CHAPTER 7 Replication System RECOVEIYcccovvvvviviiiiiiieiee e 295

HOw to USe recovery ProCEAUIESccoviicvrieeeieeesiiiiieeeeeeeeseeennns 296

Configuring the replication system to support Sybase Failover ... 297
OVEIVIBW ..eiiiiieeeieeee ettt ettt ebe e sbae e e s snreeaeanas 297
Enabling Failover support in Replication Server 298

Configuring the replication system to prevent data loss............... 300
Save interval for rECOVEIY......cuviiieiieiiiiiiiiee e 301
Backing up the RSSDS........cooviiiiiiiiiieiiie e 303
Creating coordinated dumpscccoevvviiiiiiieeneenniiiiieee e 304

Recovering from partition loss or failure...........ccoccvvveeiieiiiiniinnnn. 305
Procedure for recovering from partition loss or failure 306
Message recovery from off-line database logs...................... 307
Message recovery from the online database log................... 309

Recovering from truncated primary database logs 309
Truncated message recovery from the database log............ 310

Recovering from primary database failuresccccccccooveinneen. 312
Loading from coordinated dumpsS..........ccccuvvveeeeeeeiiiiiiieeeeeenn, 313
Loading a primary database from dumps.............ccoccvvvveeennn. 314

Recovering from RSSD failureccccooiiiiiiieiiiiiiiiiee e 315
Recovering an RSSD from dumpsccccvvveeveeiiiiiiiieenneennn 316
Basic RSSD recovery proCedUre........cceeuviivrieeeeeeeeniiiieeeeenns 317
Subscription comparison procedure.........cccceevvvvvvieeeieeeninnnns 320
Subscription re-creation procedurecccccovvvviiiiieiieeniinnns 327
Deintegration/reintegration procedure.........ccccccceevvevcvvvneneennn. 330

ReCOVEry SUPPOIt taSKS......ccocuiiiiiiieeeicciiiiiec e e e 331
Rebuilding stable QUEUEScccuvvvviieee i 331

viii Replication Server

Contents

Resynchronizing replicate databasescccoecvvveviieeiiicivnnnnn. 344
Product SUPPOIceveei it e e 344
Configuring database resynchronizationccccccveeeeiinns 344
Database resynchronization scenarioccccccveeviinivnnnnn. 347

APPENDIX A AsSynchronous ProCedUres ...t 349

OVEIVIEW ...ttt 349
Logging replicated stored procedures..........cccvvvvveeeniinivnnnn. 350
Logging replicated stored restrictionS...........cccvvevveeeniiivvneenn. 350
Mixed-mode tranSactionscccceeerirereiniiee e 351

Applied Stored ProCeAUIEScuiiiiiiiiiiiiiiee et 351

Request stored proCedUreS...........uuuvieeeiiiiiiiiieee e iriiieee e e e 352

Asynchronous stored procedure prerequisites...........cccccvvveerennn.. 353

Steps for implementing an applied stored procedure................... 354
Warning CONitioNS..........ueviieeiiiiiiiiieee e e e srreeeea e 356

Steps for implementing a request stored procedure 358

Specifying stored procedures and tables for replication 360

Managing user-defined functionscccccvevveeiiiiiiiiiieee s 361
Creating a user-defined functionccccccceiiiiiiiiii s 361
Adding parameters to a user-defined function 362
Dropping a user-defined functionccoccvveeiiienniiniinnnn. 363
Mapping to a different stored procedure name 364

Specifying a nonunigue name for a user-defined function 365

APPENDIX B High Availability on Sun Cluster 2.2ooocccvviivieeieeeee e 367
11 To (Ui (o] o RO PR PRI 367

TEIMINOIOGY oiiiiiiitiiee ettt e e s rrrreaa e 368

TeChNOlOgY OVEIVIEWuvviiiieeeiiiciiieee e et earee e e e 369

Configuring Replication Server for high availability 370

Configuring Sun Cluster for HA ..o, 370

Installing Replication Server for HA..........cccooceveeiiiicivieeneeen, 371

Installing Replication Server as a data service...................... 372

Administering Replication Server as a data service..................... 375

Data service Start/SNUdOWNceooriiiieriiiieeriee e 375

0T J TP P PP PP PP PP PPPPPPPPPPPPPPPRY 375

APPENDIX C Pre-15.1 Request Function Replicationcccccceieiiinnninnns 377
Prerequisites and restriCtionS.........ccccvvviiiiiiineeenniiiieeee e 377

Using the pre-15.1 request function replication.................cccvveee. 380

Commands for managing function replication definition........ 381

Implementing a pre-15.1 request function..............ccccvveeeee... 382

Marking stored procedures for replication................c.cccuveeee. 385

Administration Guide iX

Contents

Subscribing to replicated functions..........ccccccvvvviiiiieieenninnns 386

Modifying or dropping replicated functions............ccccccceeviiivinneen. 386

Before modifying a function replication definition................... 386

Modifying a function replication definition...............ccccccvevee.n. 386

Dropping a function replication definitionccccceeeeenn. 387

Creating or modifying a function string for a replicated function ..

387

Model variations and Strategiesccoeeeeriiieeiiiiee e 388

Request fUNCHONS.........cooiiiiiii e 389

APPENDIX D Implementing a Reference Replication Environment............... 397
INEFOTUCTION ...t 397

Platform SUPPOIt........ooiiiiiiee e 398

Components for reference implementationcc.cccooeue 398

Before you Degin ... 399

Building the reference environmentcccccceeeeviiiiiiieeee s 399

Configuring the reference environment...........cccccoviviiiiieiieenninnns 404

Running performance testS........ccccceviiiciiiieiiie e 404

Running performance tests on the reference environment... 404

Obtaining tests results from the reference environment........ 405

Cleaning up the reference environment.........ccccccevvvvvviieereeeniinnns 407

Cleaning up the reference environment for the next test 407

Shutting down the reference implementation servers............ 408

Objects created for the reference environment...........cccccceeeviins 408

(1o 177 U SO SSUR S 415
[0 Lo = PRSP 433

X Replication Server

About This Book

Audience

How to use this book

Administration Guide

Sybase® Replication Server® maintains replicated data at multiple sites
on a network. Organizations with geographically distant sites can use
Replication Server to create distributed database applications with better
performance and data avail ability than a centralized database system can
provide.

This book, Replication Server Administration Guide, provides an
overview of how Replication Server works, and describes Replication
Server administrative tasks.

The Replication Server Administration Guide is for replication system
administrators, who manage the routine operation of their Replication
Servers. Any user who has been granted the sa permission can be a
replication system administrator, although each Replication Server
usualy hasjust one.

This book contains the following chapters:

e Chapter 1, “Verifying and Monitoring Replication Server” describes
checking error logs, verifying that the components of areplication
system are running, and monitoring the status of system components
and processes.

» Chapter 2, “ Customizing Database Operations’ describeshow to use
functions, function strings, and function-string classes to customize
data replication with Adaptive Server® Enterprise and data servers
from other vendors.

e Chapter 3, “Managing Warm Standby Applications’ describes how
to create and manage warm standby applications.

e Chapter 4, “Performance Tuning” describes how to manage
resources effectively and optimize the performance of individual
Replication Servers.

e Chapter 5, “Using Counters to Monitor Performance” describes
Replication Server counters and how to use them.

Xi

Xii

Chapter 6, “Handling Errors and Exceptions’ discusses error conditions
and failed transactions and how to customize data server responses to
errors.

Chapter 7, “ Replication System Recovery” describes replication system
failure conditions and provides procedures for recovering from them,
including database resynchronization.

Appendix A, “Asynchronous Procedures’ describes a method for
replicating stored procedures associated with table replication definitions.

Appendix B, “High Availability on Sun Cluster 2.2,” provides
background and proceduresfor configuring Sybase Replication Server for
high availability (HA) on Sun Cluster 2.2.

Appendix C, “Pre-15.1 Request Function Replication” provides
information about request function replications with versions earlier than
15.1.

Appendix D, “Implementing a Reference Replication Environment,”
describes the functions and processes to quickly build areference
replication environment.

Volume 1 of the System Administration Guide contains these chapters:

Chapter 1, “Introduction” introduces you to Replication Server,
describing theroleit playsin a distributed database system and its
concepts and components.

Chapter 2, “ Replication Server Technical Overview” providesatechnical
overview of the replication system, giving you the background necessary
to maintain and troubl eshoot the system.

Chapter 3, “Managing Replication Server with Sybase Central” describes
using Sybase Central’s Replication Manager plug-in, which isagraphical
tool for managing Replication Server.

Chapter 4, “Managing a Replication System™” describes basic operations
such as starting, stopping, and configuring Replication Server.

Chapter 5, “Managing RepAgent and Supporting Adaptive Server,”
describes Replication Server support for Adaptive Server features, and
how to set up, configure, and manage RepAgent.

Chapter 6, “Managing Routes’ describes how to create and manage routes
between source and destination Replication Servers.

Replication Server

About This Book

Chapter 7, “Managing Database Connections’ describes how to prepare
databases for replication and how to create and manage connections
between databases and Replication Servers.

Chapter 8, “Managing Replication Server Security” describes how to
create and modify login names, passwords, and permissionsand how to set
up network-based security.

Chapter 9, “Managing Replicated Tables” describes how to set up and
manage replicated tables.

Chapter 10, “Managing Replicated Functions’ describes how to copy the
execution of user stored procedures to remote sitesin areplication system
using replication definitions.

Chapter 11, “Managing Subscriptions’ describes how to create and
manage subscriptions, which allow Replication Server to replicate data
between databases.

Chapter 12, “Managing Replicated Objects Using Multisite Availability,”
describes how to create and manage database replication definitions and
database subscriptions.

Chapter 13, “Scheduling Replication Tasks,” describes how to schedule
replication tasks and how to delay replication by afixed period of time.

Related documents The Sybase Replication Server documentation set consists of the following:

Administration Guide

Therelease bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase Product
Manuals at http://www.sybase.com/support/manuals/.

Installation Guide for your platform — describes installation and upgrade
procedures for all Replication Server and related products.

Configuration Guide for your platform — describes configuration
procedures for Replication Server and related products.

Getting Sarted with Replication Server — provides step-by-step
instructions for installing and setting up a simple replication system.

New Features Guide — describes the new featuresin Replication Server.

Xiii

Other sources of
information

Xiv

Administration Guide (this book) — contains an introduction to replication
systems. Thismanual includesinformation and guidelinesfor creating and
managing a replication system, setting up security, recovering from
system failures, and improving performance.

ASE-to-ASE Replication Quick Sart Guide — provides information for
Adaptive Server userswho want to set up a Replication Server to replicate
data from one Adaptive Server database to ancther.

Design Guide — contains informati on about designing areplication system
and integrating heterogeneous data servers into a replication system.

Heterogeneous Replication Guide and the Replication Server Options
documentation set — describes how to use Replication Server to replicate
data between databases supplied by different vendors.

Reference Manual — contains the syntax and detailed descriptions of
Replication Server commandsin the Replication Command Language
(RCL); Replication Server system functions; Sybase Adaptive Server
commands, system procedures, and stored procedures used with
Replication Server; Replication Server executable programs; and
Replication Server system tables.

System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Troubleshooting Guide — contains information to aid in diagnosing and
correcting problems in the replication system.

Replication Manager plug-in help, which contains information about
using Sybase Central ™ to manage Replication Server.

Use the Sybase Getting Started CD and the Sybase Product Manuals Web site
to learn more about your product:

The Getting Started CD isincluded with your software and contains
release bulletins, installation guides in PDF format, and other documents
or updated information. To read or print documents on the Getting Started
CD, you need Adobe Acrobat Reader, which you can download at no
charge from the Adobe Web site using alink provided on the CD.

You can also access the documents available on the Getting Started CD
from the Sybase Product Manuals Web site.

Replication Server

About This Book

e The Sybase Product Manuals Web site, which can be accessed using a
standard Web browser, includesthe Replication Server documentsthat are
not included in the Getting Started CD. In addition to product manuals,
you will find links to EBFSMaintenance, Technical Documents, Case
Management, Solved Cases, newsgroups, and the Sybase Developer
Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybﬁse Vse{)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

[JFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 Inthe Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click aPartner Certification Report title to display the report.

[JFinding the latest information on component certifications
1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Administration Guide XV

Sybase EBFs and
software
maintenance

[IFinding the latest information on EBFs and software maintenance
1 Point your Web browser to the Sybase Support Page at

http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions This section describes the style and syntax conventions, RCL command
formatting conventions, and icons used in this book.

Style conventions Syntax statementsthat display the syntax and optionsfor
acommand are printed as follows:

alter user user
set password new_passwd
[verify password old_passwd]

See “ Syntax conventions’ on page xvii for more information.

Examples that show the use of Replication Server commands are printed as
follows:

alter user louise
set password somNIfic
verify password Ennul

Command names, command option names, program names, program flags,
keywords, functions, and stored procedures are printed as follows:

Use alter user to change the password for alogin name.

XVi Replication Server

About This Book

Obligatory choices

Optional choices

Administration Guide

Variables, parameters, and user-supplied words areinitalicsin syntax and in
paragraph text, as follows:

The set password new_passwd clause specifies a new password.

Names of database objects such as databases, tables, columns, and datatypes,
areinitalicsin paragraph text, asfollows:

The base_price column in the Items table is a money datatype.

Names of replication objects, such as function-string classes, error classes,
replication definitions, and subscriptions, arein italics.

Syntax conventions Syntax formatting conventions are summarized in the
following table. Examples combining these elements follow.

Table 1: Syntax formatting conventions

Key Definition
{1} Curly braces mean you must choose at least one of the enclosed
options. Do not include braces in the command.

[Brackets mean you may choose or omit enclosed options. Do not
include brackets in the command.

| Vertical bars mean you may choose no more than one option
(enclosed in braces or brackets).

: Commas mean you may choose as many options as you heed
(enclosed in braces or brackets). Separate your choices with
commeas, to be typed as part of the command.

Commas may also be required in other syntax contexts.
() Parentheses are to be typed as part of the command.

An élipsis (three dots) means you may repeat the last unit as
many times as you need. Do not include ellipses in the command.

e Curly braces and vertical bars — choose only one option.
{red | yellow | blue}

e Curly braces and commas — choose one or more options. If you choose
more than one, separate your choices with commas.

{cash, check, credit}
e Oneitem in square brackets — choose it or omit it.
[anchovies]

e Square brackets and vertical bars— choose none or only one.

XVii

Repeating elements

RCL command
formatting

Command format and
command batches

Case sensitivity

XViil

[beans | rice | sweet potatoes]

Square brackets and commas — choose none, one, or more options. If you
choose more than one, separate your choices with commas.

[extra cheese, avocados, sour_ cream]

An dlipsis(...) means that you may repeat the last unit as many times as
necessary. For thealter replication definition command, for example, you can list
one or more columns and their datatypes for the add clause or the add
searchable columns clause:

alter replication definition replication_definition
{add column datatype [, column datatype]... |
add searchable columns column [, column]... |
replicate {minimal | all} columns}

RCL commands are similar to Transact-SQL® commands. The following
sections present the formatting rules.

You can break aline anywhere except in the middle of a keyword or an
identifier. You can continue a character string on the next line by typing a
backdash (\) at the end of theline.

Extraspacesareignored, except after abackslash. Do not enter any spaces
after abackdash.

You can enter more than one command in a batch unless otherwise
instructed.

RCL commands are not transactional. Each command is executed
independently and is not affected by the completion status of other
commands in the batch. However, syntax errorsin acommand prevent
Replication Server from executing subsequent commands in a batch.

Keywords in RCL commands are not case sensitive. You can enter them
in any combination of uppercase or lowercase |etters.

Case sensitivity in identifiers and character data depends on the sort order
that isin effect.

e |If you useacase-sensitive sort order such as“binary,” you must enter
identifiers and character datain the correct combination of uppercase
and lowercase |etters.

» |If youuseasort order that isnot case sensitive, such as“nocase,” you
can enter identifiers and character datain any combination of
uppercase or lowercase | etters.

Replication Server

About This Book

Identifiers

Parameters in function
strings

Icons

Administration Guide

Identifiers are names you give to servers, databases, variables, parameters,
database objects, and replication objects. Database object names include
namesfor tables, columns, and views. Replication object namesinclude names
for replication definitions, subscriptions, functions, and publications.

e ldentifiers can be 1 — 255 bytes long (equivalent to 1 — 255 single-byte
characters) and must begin with aletter, the @ sign, or the__ character. See
“Support for longer identifiers” on page 138 of the Replication Server
Administration Guide Volume 1, for alist of identifiers that have been
extended to 255 bytes.

* Replication Server function parameters are the only identifiers that can
begin with the @ character. Function parameter names can include 255
characters after the @ character.

e Afterthefirst character, identifiers can include letters, digits, and the #, $,
or _ characters. Spaces are not allowed.

Parametersin function strings have the same rules as identifiers, except that:

e They areenclosed in question marks(?). Thisallows Replication Server to
locate them in the function string. Use two consecutive question marks
(??) to represent aliteral question mark in afunction string.

e Theexclamation point (!) introduces a parameter modifier that indicates
the source of the datato be substituted for a parameter at runtime. Refer to
the Replication Server Reference Manual for alist of modifiers.

Data support Replication Server supports all Adaptive Server datatypes.

User-defined datatypes are not supported. The double precision, nchar, and
nvarchar datatypes are indirectly supported; they are mapped to other
datatypes.

For more information about the supported datatypes, including how to format
them, see “ Datatypes,” in Chapter 2, “Topics’ of the Replication Server
Reference Manual.

Illustrationsin this book useiconsto represent the components of areplication
system.

Description

This icon represents Replication Server, the Sybase server
@ program maintainsreplicated dataon alocal-areanetwork (LAN)

and processes data transactions received from other Replication
Servers on wide-area network (WAN).

XiX

Accessibility
features

XX

Description
E Thisicon represents Adaptive Server, the Sybase dataserver. Data

) servers manage databases containing primary or replicated data.

Replication Server also works with heterogeneous data servers,
S0, unless otherwise noted, thisicon can represent any data server
in areplication system.

Thisicon represents Replication Agent™, areplication system
process or module that transfers transaction log information for
primary database to a Replication Server. The Replication Agent
for Adaptive Server is RepAgent. Sybase provides Replication
Agent productsfor Adaptive Server® Anywhere, DB2, Microsoft
SQL Server, and Oracle data servers.

Except for RepAgent, which is an Adaptive Server thread, all
Replication Agents are separate processes. In general, thisicon
only appears when representing a Replication Agent that isa
separate process.

Thisicon represents client application. A client applicationisa
user process or application connected to adata server. It may bea
front-end application program executed by a user or a program

that executes as an extension of the system.

Thisicon represents the Sybase Central Replication Manager
@ (RM) plug-in, amanagement utility that lets areplication system

administrator devel op, manage, and monitor a Sybase Replication
== Server environment.

This document is available in an HTML version that is specialized for
accessihility. You can navigate the HTML with an adaptive technol ogy such as
ascreen reader, or view it with a screen enlarger.

Replication Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally al so meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

Replication Server

About This Book

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manualsor online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Administration Guide XXi

XXii Replication Server

CHAPTER 1

Administration Guide

Verifying and Monitoring
Replication Server

This chapter describes checking error logs, verifying that the components
of areplication system are running, and monitoring the status of system
components and processes.

Topic Page
Checking replication system log files for errors 2
Verifying areplication system 2
Monitoring Replication Server 4
Setting and using threshold levels 8

The replication system includes data servers and Replication Servers. It
may also include Replication Agents for heterogeneous data servers. The
Replication Agent for Adaptive Server is RepAgent, an Adaptive Server
thread.

Note If you areusing a Replication Agent for aheterogeneous data server,
refer to Replication Agent documentation for your data server for
information about troubleshooting your Replication Agent.

In afully operational replication system, all data servers, Replication
Servers, Replication Agents, and their internal threads and other
components are running. This chapter tells you how to perform basic
troubleshooting tasks on the replication system, including:

1 Checking error logs for status and error messages.

2 Logging into system servers and checking that all threads are
functioning, routes and connections are in place, and the interfaces
fileinformation is correct.

This chapter also describes how you can monitor Replication Server and
its threads and check partition threshold levels.

Refer to the Replication Server Troubleshooting Guide for detailed
information about monitoring and troubleshooting Replication Server.

Checking replication system log files for errors

Checking replication system log files for errors

The Replication Server records status and error messages, including internal
errors, in the Replication Server error log file. Use the admin log_name
command to display the path to the current log file. The default name for the
log fileisrepserver.log. You can change the default name by executing
repserver with the -E option and specifying the new log file name.

Refer to Chapter 3 “Replication Server Commands” of the Replication Server
Reference Manual, for more information about these commands.

Internal errors are those where the only action available to Replication Server
isto dump the stack and exit. For diagnostic purposes, Replication Server
prints atrace of its execution stack in the log and leaves arecord of its state
when the error occurred.

M essages continue to accumulate in the error log files until you remove them.
For this reason, you may choose to truncate the log files when the Replication
Server is shut down. You can aso close the Replication Server log file and
begin a new log file by using the admin set_log_name command.

The Replication Server log file contains messages generated during the
execution of asynchronous commands, such as create subscription and create
route, which continue processing after the commands complete. While you are
executing asynchronous commands, pay special attentionto thelogfilesfor the
Replication Servers affected by the procedure.

If alog fileisunavailable, important error information iswritten to the standard
error output file, which you can display on aterminal or redirect to afile.

Verifying a replication system

You need to verify that the entire replication system is working when you are
about to create replication definitions or subscriptions or when you are
performing diagnostics on your system. If you encounter errors, verifying your
system allows you to rule out the possibility that threads or components are not
running or that routes and connections are not properly set up.

To make sure that Replication Server threads are running, you can execute
admin who_is_down, which displays only those threads that are not running.
Alternatively, execute admin who to display information about all threads.

2 Replication Server

CHAPTER 1 Verifying and Monitoring Replication Server

Administration Guide

If no threads are down, you can confirm that the replication system isworking
by checking the following:

1

Verify that replication system servers and Replication Agents are running
and available.

At the primary site, log in to these servers:

Data server with the primary database and its Replication Agent

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

Replication Server managing the primary database
RSSD (and its Replication Agent) for the primary Replication Server

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

At replicate sites, log in to these servers:

Data servers with replicate databases and, if request functions are
executed at these databases, their Replication Agents

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

Replication Servers managing replicate databases

RSSDs (and their Replication Agents) for replicate Replication
Servers

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

Use the admin show_connections command at Replication Server to verify
that these routes and connections are in place:

Routes from the primary Replication Server to each replicate
Replication Server

Database connection between the primary Replication Server and the
primary database

Route from areplicate Replication Server to the primary Replication
Server, if the replicate Replication Server manages a replicate
database in which request functions are executed

Database connections between each replicate Replication Server and
its replicate database

Monitoring Replication Server

3 Verify the accuracy of entriesin the interfacesfile.

When creating subscriptions, be sure an entry for the primary data server
existsinthe interfacesfile for the replicate Replication Server. (If you are
using atomic or non-atomic materialization, the replicate Replication
Server retrievesinitial rows through adirect connection to the primary
data server.)

4 Usethe admin who command to verify that these Replication Server
threads are running:

e DataServer Interface (DSI)

* Replication Server Interface (RSI)

e Distributor (DIST)

e Stable Queue Manager (SQM)

e Stable Queue Transaction interface (SQT)
* RepAgent User

For detailed information about monitoring Replication Server threads,
refer to “ Displaying replication system thread status’ on page 6.

Monitoring Replication Server

While the replication system isin operation, you may need to monitor its
components and processes. This section describes how to:

» Monitor replication system servers
» Monitor DSI, RSI, and other thread status

» Use system information commands to obtain information about various
aspects of the Replication Server.

Verifying server status
You can verify the status of your servers with these methods:

» Useisgltologin to each server. If the login succeeds, you know that the
server isrunning.

4 Replication Server

CHAPTER 1 Verifying and Monitoring Replication Server

Administration Guide

e Createascript that logsin to and displays the status of each Adaptive

Server and its RepAgent thread, other Replication Agent (if any), and
Replication Server. Make sure all serversin the script are included in the
interfacesfile.

If alogin fails, it may be caused by one of the following problems:

Problem: You typed anincorrect name, or theinterfacesfile you are using does
not have an entry for the server.

DB-LIBRARY error:
Server name not found in interface file.

Problem: The server is running, but you specified an incorrect login name or
password.

DB-LIBRARY error:
Login incorrect.

Problem: The server is not running.

Operating-system error:
Invalid argument

DB-LIBRARY error:
Unable to connect: Server is unavailable
or does not exist.

Problem: The interfaces file cannot be found.

Operating-system error:

No such file or directory
DB-LIBRARY error:

Could not open interface file.

Problem: Theinterfacesfileexists, but you do not have permission to accessit.

Operating-system error:
Permission denied

DB-LIBRARY error:
Could not open interface file

If you can not log in but do not receive an error message, you can assume that
the server has stopped processing. Call Sybase Technical Support if you need
assistance in determining the problem.

Monitoring Replication Server

Visual monitoring of status

Replication Manager graphically displaysan environment or object status. The
status of an environment is the state of its components. An object’s status
includes its current state and a list of reasons for the state. The state of each
object is displayed on the object icon, in the parent object Detailslist, and on
the Properties dialog box for that object. You can monitor the status of servers,
connections, routes, and queues.

Use the Replication Manager GUI to monitor the status in Replication
Monitoring Services (RMS). The Replication Manager connectsto the servers
in the environment through RMS.

Refer to Chapter 3, “Managing Replication Server with Sybase Central” inthe
Replication Server Administration Guide Volume 1 for more information.

Displaying replication system thread status

You can monitor general information on current Replication Server threads.
Table 1-1 describes threads that apply to database connections and routes and
the admin who command you use to monitor them.

Table 1-1: Monitoring Replication Server threads

Replication Server thread Command
Distributor (DIST) —uses SQT and SQM to read transactionsfrom theinbound admin who, dist
queue.

Data Server Interface (DSI) — submits transactions to data server. admin who, dsi

REP AGENT USER - verifies that transactions from the data server arevalid admin who

and writes them to the inbound queue.

Note Usesp_who or
sp_help_rep_agent to display
status of RepAgent thread at
Adaptive Server.

Replication Server Interface (RSl) —logsin to each destination Replication admin who, rsi
Server and transfers commands from the stable queue to the destination server.

Stable Queue Manager (SQM) — manages Replication Server stable queues. admin who, sqm

Stable Queue Transaction interface (SQT) —reads transactionsin aqueueand admin who, sqt
passes them to the SQT reader.

Replication Server

CHAPTER 1 Verifying and Monitoring Replication Server

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for details on the admin who command. Refer to the
Replication Server Troubleshooting Guideto interpret the command output for
troubleshooting purposes.

Using system information commands

In addition to admin who, Replication Server offers other admin commands to
assist you in monitoring Replication Server.

These commands are listed in Table 1-2. Refer to Chapter 3, “Replication
Server Commands,” in the Replication Server Reference Manual for details on
each command.

Table 1-2: Overview of system information commands

Command

Description

admin disk_space

Displays utilization of disk partitions accessed by the Replication Server.

admin echo

Determinesif the local Replication Server is running.

admin get_generation

Retrieves the generation number for a primary database, used in recovery
operations.

admin health

Displays the overall status of the Replication Server.

admin log_name

Displays the path to the current log file.

admin logical_status

Displays the status of logical database connections, used in warm standby
applications.

admin pid

Displays the process I D of the Replication Server.

admin quiesce_check

Determines if the queuesin the Replication Server have been quiesced.

admin quiesce_force_rsi

Determines whether a Replication Server is quiescent. Also forces Replication
Server to deliver outbound messages.

admin rssd_name

Displays the names of the data server and database for the RSSD.

admin security_property

Displays security features of network-based security systems supported by
Replication Server.

admin security_setting

Displays network-based security settings of a particular target server.

admin set_log_name

Closes the existing Replication Server log file and opens a new log file.

admin show_connections

Displays information about al connections and routes to and from Replication
Server.

admin show_function_classes Displays the names of existing function-string classes and their parent classes

and indicates the number of levels of inheritance.

admin show_route_versions

Displays the version number of routes that originate at Replication Server and
routes that terminate at Replication Server.

admin show_site_version

Displays the site version of Replication Server.

admin sgm_readers

Administration Guide

Displays information about threads that are reading the inbound queue.

Setting and using threshold levels

Command

Description

admin stats

Displays information and statistics about Replication Server counters. Replaces
admin statistics.

admin statistics, md

Displays statistics about message delivery and counters.

admin statistics, mem

Displays statistics about memory utilization.

admin statistics, reset

Resets the message delivery statistics.

admin version

Displays which version of the Replication Server you are running, representing
the software version.

admin who

Displays information about al threads in the Replication Server.

admin who, dsi

Displays information about DS threads that connect to a data server.

admin who, rsi

Displays information about RSI threads that connect to other Replication
Servers.

admin who, sqm

Displays information about all queues managed by the SQM.

admin who, sqt

Displays information about al queues managed by the SQT.

admin who_is_down

Displays the same information as admin who, but only about threads that are
down.

admin who_is_up

Displays the same information as admin who, but only about threads that are
running.

Setting and using threshold levels

Stable queue partitions fill up when a Replication Server is receiving more
messages than it is sending. For example, if anetwork is down between a
primary site and areplicate site, the Replication Server at the primary site
queues up the undeliverable messages. When the network returns to service,
the messages can be delivered, and then deleted from the primary Replication
Server partitions.

If apartition becomes completely full, senders cannot deliver their messagesto
the Replication Server, and messages begin to back up in the partitions at
previous sites and in the transaction logs for primary databases.

Warning! If the situation is not corrected, RepAgent is unable to update the
secondary truncation point in the database log, and the transaction log fills.
Clients are then unable to execute transactions at the primary database.

Replication Server

CHAPTER 1 Verifying and Monitoring Replication Server

You can configure Replication Server to warn when partitions become too fulll
by setting three rowsin the rs_config system table: sqm_warning_thr1,
sgm_warning_thr2, and sqm_warning_thr_ind. These parameters are described
in Chapter 3, “Replication Server Commands’ in the Replication Server
Reference Manual.

Monitoring partition percentages

Administration Guide

Replication Server operates on 1M B partition segments. Whenever it allocates
or deall ocates a partition segment, it cal culates these statistics:

* Percentage of total partition segmentsin use
* Percentage of total partition segmentsin use by the affected stable queue

If the percentage of partition segments in use rises above the percentage
specified by sqm_warning_thrl or sgm_warning_thr2, a message like the
following iswritten to the log file:

WARNING: Stable Storage Use is Above threshold percent

If you see this message often, you may need to add partitionsto the Replication
Server or correct arecurring failure that causes the queuesto fill.

When the first percentage drops below the percentage specified by
sgm_warning_thrl or sgqm_warning_thr2, amessage likethefollowingiswritten
to thelog file to note that the condition that caused the original warning no
longer exists:

WARNING CANCEL: Stable Storage Use is Below threshold
percent

The percentage of total partition segmentsin use by the affected stable queue
triggers the foll owing warning message when the percentage of the total space
used by a single stable queue exceeds the percentage specified by
sgm_warning_thr_ind:

WARNING: Stable Storage Use by gqueue name is Above
threshold percent

Thiswarning alerts you to problems that cause a particular stable queue to fill
until it is using a disproportionate share of the total partition space. For
example, if arouteis suspended for alength of time, its stable queue may fill
until it occupies enough partition space to trigger awarning.

Setting and using threshold levels

When the percentage of the total partition space used by a stable queue drops
below the sqm_warning_thr_ind percentage, Replication Server writes acancel
message like the following to the log file:

WARNING CANCEL: Stable Storage Use by gqueue name is
Below threshold percent.

10 Replication Server

CHAPTER 2

Overview

Administration Guide

Customizing Database
Operations

This chapter explains how you can create and alter functions, function
strings, and function-string classesto allow replication definitionstowork
with database servers other than Adaptive Server.

Topic Page
Overview 11
Working with functions, function strings, and classes 12
Function-string classes 21
Managing function-string classes 26
Managing function strings 32
Displaying function-related information 50
Using the default system variable 51
Using function strings with text, unitext, image, and rawobject 53
datatypes

Replication Server translates commands from the primary database into
Replication Server functions that represent data server operations such as
insert, delete, select, begin transaction, and so on. It distributes these
functionsto remote Replication Serversin the system, where they execute
those operations in remote databases.

The primary Replication Server distributes functions in the same format
regardless of the type of data server that actually updates the replicated
data. Functionsare not database-specific. They includeall the dataneeded
to perform the operation, but they do not specify the syntax needed to
complete the operation at the destination data server.

11

Working with functions, function strings, and classes

The remote Replication Server converts functionsto commands specific to the
destination data serverswhere they are executed. A function string containsthe
database-specific instructions for executing a function. The replicate
Replication Server managing a database uses an appropriate function string to
map the function to a set of instructions for the data server. For example, the
function string for the rs_insert function provides the actual language to be
applied in areplicate database.

This separation between functions and data server commands|etsyou maintain
replicated data among heterogeneous data servers. Replication Server allows
you to customi ze function strings, specifying how Replication Server functions
map to SQL commands. You can create function strings if you require
customized data server operations. You customize replicated data applications
by changing the way operations are performed at the destination database.

Function strings are grouped into function-string classes, so you can group
mappings of functions to commands according to data server. Replication
Server providesfunction-string classesfor Adaptive Server Enterprise, Oracle,
Microsoft SQL Server, IBM DB2 UDB, and other databases. You can create
new derived function-string classes in which you customize certain function
strings and inherit all others from these or other classes. You can aso create
entirely new classes in which you create all new function strings.

You may also need to create function strings for replicated functions, which
allow you to execute stored procedures on remote databases. You must create
afunction string for any replicated function for which Replication Server does
not automatically generate afunction string in the function-string class used by
the destination database.

Working with functions, function strings, and classes

12

You can work with functions and function strings to customize database
operationsin any of these ways:

» Createanew function-string class for use with a specific type of database,
and customize some or all of the function strings. See “Managing
function-string classes’” on page 26 for detailed information.

» For atomic materialization, use a function from a function-string class
associated with the primary database connection, not a function from the
function-string class associated with the replicate database connection.

Replication Server

CHAPTER 2 Customizing Database Operations

Functions

Administration Guide

e Alter function strings for the system-provided function-string class,
rs_sqlserver_function_class. See“Managing function strings’ on page 32
for detailed information.

e Createafunction-string class that inherits, either directly or indirectly,
function strings from the system-provided function-string class
rs_default_function_class.

» Usethesystem-provided function-string classesfor non-ASE dataservers:
rs_iq_function_class, rs_db2_function_class, rs_mss_function_class, or
rs_oracle_function_class. See“ Translating datatypesusing HDS” on page
350 in the Replication Server Administration Guide Volume 1 for detailed
information on datatype trand ations using the heterogeneous datatype
support (HDS) feature.

This section provides an overview of functions, function strings, and function-
string classes. The following sections include a summary of the system
functions, procedures, and guidelines for managing function strings and
function-string classes. They aso summarize commands for displaying
information about the function strings and classes in the replication system.

You can work with functions, function strings, and classes using Sybase
Central or RCL commands. This chapter describes procedures and RCL
commands that you enter at the command line using isql.

Refer to Chapter 4, “ Replication Server System Functions,” in the Replication
Server Reference Manual for more information about the system functions.

Replication Server uses two major types of functions:
e System functions
e User-defined functions

You can create custom function strings for either type of function, depending
on your needs.

See“Managing function strings’ on page 32 for more information about when
to customize function strings.

13

Working with functions, function strings, and classes

System functions

System functions represent data server operations whose function strings are
supplied by Replication Server or are available when you install a new
database on the replication system. Unless your application requiresit, you do
not need to customize function strings for system functions. The system-
provided class generates them for you.

System functions include:

* Functionsthat represent data-manipulation operations such asinsert,
update, delete, select, and select with holdlock.

These system functions have replication-definition scope. See “Function
scope” on page 15 for details.

» Functionsthat represent transaction-control directives. These functions
include operations such as begin transaction and commit transaction.

These system functions have function-string-class scope. See “Function
scope” on page 15 for details.

See “Summary of system functions’ on page 16 for more information about
each type of system function.

User-defined functions

14

User-defined functions allow you to use Replication Server to distribute
replicated stored procedures between sitesin the replication system. You must
create function strings for user-defined functions unless you use a function-
string class that directly or indirectly inherits function strings from
rs_default_function_class. User-defined functions include:

» Functionsthat are used in replicating stored procedures associated with
function replication definitions. Replication Server automatically creates
auser-defined function of thistypewhen you create afunction-replication
definition.

Refer to Chapter 10, “Managing Replicated Functions” in the Replication
Server Administration Guide Volume 1 for details about function-
replication definitions and replicated stored procedures.

» Functionsthat are used in replicating stored procedures associated with
table-replication definitions. You create and maintain user-defined
functions of this type yourself.

For details about replicated stored procedures that use table-replication
definitions, see Appendix A, “Asynchronous Procedures.”

Replication Server

CHAPTER 2 Customizing Database Operations

Function scope

Function-string-class
scope

Replication-definition
scope

Administration Guide

User-defined functions have replication-definition scope. See “Function
scope” on page 15 for details.

Any function string that you create for a user-defined function should be
created at the primary Replication Server, where the replication definition was
created. If you are using function replication definitions, see also
“Implementing an applied function” on page 367 or “Implementing a request
function” on page 371 in the Replication Server Administration Guide Volume
1

The scope of afunction defines the object to which the function applies: either
to areplication definition or to a function-string class. Knowing a function’s

scope isimportant for determining where to customize afunction string: at the
primary or replicate Replication Server. Functions can have one of two scopes:

* Function-string-class scope
* Replication-definition scope

A function with function-string-class scope is defined once for the class.
Functions with function-string-class scope include system functions that
represent transaction-control directives (such as rs_begin, rs_commit, or
rs_marker) and do not perform data manipulation. Function strings for user-
defined functions do not have class scope.

Function strings for functions with function-string-class scope must be
customized at the primary Replication Server for the function-string class. See
Table 2-1 on page 16 for alist of these functions. See “Primary site for a
function-string class’ on page 29 for information on assigning a primary site.

A function with replication-definition scope is defined once for a specific
table-replication definition or function-replication definition—although the
function may have multiple function strings.

Functions with replication-definition scope include:

e System functions that perform data-manipulation operations (such as
rs_insert, rs_delete, rs_update, rs_select, rs_select_with_lock, and special
functions used in replicating text, unitext, and image data).

See Table 2-2 for alist of these functions.

» User-defined functions for table- or function-replication definitions.

15

Working with functions, function strings, and classes

System functions with replication-definition scope must be customized at
the Replication Server where the replication definition was created. User-
defined functions with replication-definition scope must be customized at
the Replication Server where the replication definition was created.

Summary of system functions

The following tables provide a summary of the available system functions.
Refer to Chapter 4, “ Replication Server System Functions,” in the Replication
Server Reference Manual for complete documentation of all of the system
functions.

System functions with function-string-class scope

Table 2-1 lists the system functions with function-string-class scope.
Replication Server provides default generated function stringsfor each system-
provided class when you install the replication system.

Some functions are required for every Replication Server application, while
other functions only apply in particular cases, such as warm standby
applications, parallel DSI threads, or coordinated dumps.

If you use afunction-string class other than the default
(rs_sqlserver_function_class), and you are not using function-string
inheritance, you must create afunction-string for each system function you use
that has function-string class scope.

Customize function strings for system functions with class scope at the
Replication Server that isthe primary site for the function-string class. See
“Changing the primary site for a function-string class’ on page 30 for more
information about assigning or changing the primary Replication Server for a
function-string class.

Table 2-1: System functions with function-string-class scope

Function name

Description

rs_batch_start

Specify the SQL statementsrequired in addition to thers_begin statementsto
mark the beginning of a batch of commands.

rs_batch_end

Specify the SQL statementsrequired to mark the end of abatch of commands.
This function string is used with rs_batch_start.

rs_begin

Begin atransaction.

rs_check_repl

Check if atableis marked for replication.

rs_commit

16

Commit atransaction.

Replication Server

CHAPTER 2 Customizing Database Operations

Function name

Description

rs_dumpdb

Initiate a coordinated database dump.

rs_dumptran

Initiate a coordinated transaction dump.

rs_get_charset

Return the character set used by a data server.

rs_get_lastcommit

Retrieve rows from the rs_lastcommit system table.

rs_get_sortorder

Return the sort order used by a data server.

rs_get_thread_seq

Return the current sequence number for the specified entry in the rs_threads
system table. Thisfunction is executed only when you are using parallel DSI.

rs_get_thread_seq_noholdlock

Return the current sequence number for the specified entry in the rs_threads
system table, using the noholdlock option. Thisthread is used when
dsi_isolation level is 3.

rs_initialize_threads

Set the sequence of each entry in the rs_threads system tableto 0. This
function is executed only when you are using parallel DSI.

rs_marker

Help coordinate subscription materialization. The function passesiits first
parameter to Replication Server as an independent command.

rs_non_blocking_commit

Coordinates Replication Server non-blocking commit with the corresponding
function in the replicate data server.

Maps to the set delayed_commit on function string in Adaptive Server 15.0
and later, and with the alter session set commit_write = nowait; function string
in Oracle 10g v2. For al other non-Sybase databases,
rs_non_blocking_commit maps to null.

Executes every time DSI connects to the replicate data server and if the
dsi_non_blocking_commit valueisfrom 1 to 60. If the value of
dsi_non_blocking_commit is zero, rs_non_blocking_commit does not execute.

rs_non_blocking_commit_flush

Ensures that database transactions are flushed to disk when
dsi_non_blocking_commit is enabled.

Maps to the corresponding function string in Adaptive Server 15.0 and later,
and Oracle 10g v2 and later. For all other non-Sybase databases,
rs_non_blocking_commit_flush maps to null.

rs_non_blocking_commit_flush executes at intervals equal to any number of
minutes from 1 to 60 that you specify with dsi_non_blocking_commit.
rs_non_blocking_commit_flush does not execute if the value of
dsi_non_blocking_commit is zero.

rs_raw_object_serialization

Replicate Java columns as serialized data.

rs_repl_off Set replication off in Adaptive Server for a standby database connection.
rs_repl_on Set replication on in Adaptive Server for a standby database connection.
rs_rollback Roll back atransaction.

rs_set_ciphertext

Turn on set ciphertext on, which enables replication of encrypted columnsfor
rs_default_function_class and rs_sqlserver_function_class. For all other
classes, thisfunctionis set to null.

rs_set_isolation_level

Administration Guide

Passes the isolation level for transaction to replicate data server.

17

Working with functions, function strings, and classes

Function name

Description

rs_set_dml_on_computed

Is applied at the replicate database DSI when a connection is established. It
issues the command set dml_on_computed “on” after the use database
Statement

rs_set_proxy

Assume the permissions, login name, and server user ID of the user.

rs_set_quoted_identifiers

Sets the DSI connection to the data server to allow quoted identifiersto be
sent through the connection.

Pre-requisites: dsi_quoted_identifier must be set to “on” and
rs_set_quoted_identifier must contain the necessary commands to enable the
use of quoted identifiers for the data server. For Adaptive Server and
Microsoft SQL Server the command is: set quoted_identifiers on.

rs_thread_check_lock

Determines whether or not the DSI executor thread is holding alock that
blocks a replicate database process.

rs_triggers_reset

Set triggers off in Adaptive Server for a standby database connection.

rs_trunc_reset

Reset the secondary truncation point in warm standby databases. This
function is executed only when you create awarm standby database or when
you switch to a standby database.

rs_trunc_set

Set the secondary truncation point in warm standby databases. This function
is executed only when you create awarm standby database or when you
switch to a standby database.

rs_update_threads

Update the sequence number for the specified entry in the rs_threads table.
This function is executed only when you are using parallel DSI.

rs_usedb

Change the database context.

System functions with replication-definition scope

Table 2-2 lists the system functions with replication-definition scope.
Replication Server provides default function strings for each system-provided
class when you create a replication definition.

Some functions are required for every Replication Server application, while
other functions only apply in particular cases, such as replication of text,
unitext, and image datatypes, parallel DSI threads, or performing subscription
materialization or dematerialization.

Customize function strings for a system functions with replication-definition
scope at the Replication Server where the replication definition was created.

Table 2-2: System functions with replication definition scope

Function name

Description

rs_datarow_for_writetext

18

Provide an image of the data row associated with atext, unitext, or image column
updated with a Transact-SQL writetext command or with
CT-Library or DB-Library™ functions.

Replication Server

CHAPTER 2 Customizing Database Operations

Function name

Description

rs_delete

Deletearow in atable.

rs_get_textptr

Retrieve the text pointer for atext, unitext, image, or rawobject column.

rs_insert

Insert arow into atable.

rs_select

Retrieve rows from atable for subscription materialization or dematerialization.

rs_select_with_lock

Retrieve subscription materialization or dematerialization rows using a holdlock.

rs_textptr_init

Allocate atext pointer for atext, unitext, image, or rawobject column.

rs_truncate

Truncate atable.

rs_update

Update arow in atable.

rs_writetext

Alter text, unitext, image, or rawobject data.

Function strings

Administration Guide

Function strings contain instructions for executing afunction in a database.
These instructions may differ according to database. For example, anon-
Sybase database may require different instructions and have different function
strings than an Adaptive Server database.

Functions strings comein two formats. language and RPC. A language-format
function string contains a command, such asa SQL statement, that the data
server parses. An RPC-format function string contains aremote procedure call
that executes a registered procedure in an Open Server™ gateway application
or in an Adaptive Server database. Both function-string formats can contain
variablesthat get replaced with data values. What format afunction string uses
is determined by the type of data server and how you want Replication Server
tointeract with it. See “Using output templates’ on page 34 for more
information.

Function strings are grouped into function-string classes. Each database
connection must be assigned a function-string class according to the type of
replicate database. Replication Server provides function string classes that
generate default function strings for al actively supported data servers..

When you set up areplication system or add databases to the system, you
should anticipate your function-string requirements and decide how you will
use function-string classes and whether you need to customize function strings.
See “Function-string classes’ on page 21 for more information.

See “Managing function strings’ on page 32 for more information about
customizing function strings.

19

Working with functions, function strings, and classes

Input and output templates

Every function string uses an output template to instruct the destination
database in executing the function for a specific data server.

Function strings for the rs_select and rs_select_with_lock functions use both
input templates and output templates, which together perform subscription
materialization and dematerialization.

You customize function strings by altering their input and output templates.
You customize function strings for functions other than rs_select and
rs_select_with_lock by altering only the output template. How you alter a
function string depends on the function string’s format-language or RPC.

See “Function-string input and output templates” on page 33 for more
information about input and output templates.

Applications for customized function strings
You can customize function strings to:
» Perform operationsin any native database language (i ncluding those other

than Transact-SQL) by altering function-string output templatesto format
the commands sent to a data server.

» Materialize and dematerialize multiple subscriptions for the same
replication definition with a single function string.

» Perform the following tasks by altering output templates for existing
system function strings:

» Record auditing information.
e Execute remote procedure calls (RPCs).
* Replicate datainto multiple replicate tables in the same database.

» Replicate datainto areplicate table with a different name, column
names, or column order than the primary table.

If the replicate Replication Server is of version 11.5 or later, you can
perform the same tasks more easily by creating a customized
replication definition that specifiesthe relevant information about the
replicate table. See “Creating multiple replication definitions per
table” on page 298 in the Replication Server Administration Guide
Volume 1 for more information.

20 Replication Server

CHAPTER 2 Customizing Database Operations

System functions with multiple function strings

For the class-scope system functions, each function maps to a function string
within the class. Each replication-definition-scopers_insert, rs_delete, and
rs_update system function maps to a function string within the class for each
replication definition.

You can create multiple function-string instances for the same replication
definition for other system functions with replication-definition scope—
rs_select, rs_select_with_lock, rs_datarow_for_writetext, rs_get_textptr,
rs_textptr_init, and rs_writetext. In such cases, you must give each instance of a
function string a different name. System functions that can take multiple
function strings include:

e rs_select and rs_select_with_lock functions— used in subscription
materialization and dematerialization when multiple subscriptions exist
for the same replication definition. You can give each instance of the
function string any namethat is unique for the replication definition. Each
instance of the function string corresponds to awhere clause used in
creating subscriptions for the replication definition.

* rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init, and rs_writetext
function each instance of the function string. You must name each instance
of afunction string for the text, unitext, or image column specified in the
replication definition.

Function-string classes

Administration Guide

Each function string belongs to a function-string class, which groups function
strings intended to be used with databases of a similar type or with similar
reguirements. Replication Server assigns each database connection a function-
string class according to the data server of the destination database.

Replication Server applies functions to the database using the function strings
from its assigned function-string class. Function-string classes contain
function strings for system functions and for any user-defined functions.

You can use afunction-string class on multiple databasesif the function strings
can execute on all of the data servers. For example, a system with severa
databases managed by Adaptive Server can users_sqlserver_function_class for
all the databases.

21

Function-string classes

You can even use a single function-string class with non-ASE data servers,
provided you use ECDA to access the various data servers.

System-provided classes

Several function-string classes are provided with Replication Server. Theseare
called system-provided classes.

* rs_sqlserver_function_class — default Adaptive Server function strings are
provided for this class. The default function stringsin
rs_sqlserver_function_class are identical to thosein
rs_default_function_class. rs_sglserver_function_class is assigned by
default to Adaptive Server databases you add to the replication system
using rs_init.

You can customize function strings for this class. However, this class
cannot participatein function-string classinheritance. In most cases, using
derived classes that specify rs_default_function_class as a parent classis
preferable to using rs_sqlserver_function_class directly.

» rs_default_function_class — default Adaptive Server function strings are
provided for this class. The default function stringsin
rs_sqlserver_function_class are identical to thosein
rs_default_function_class.

You cannot customize function strings for this class. However, this class
can participate in function-string class inheritance. In most cases, using
derived classes that specify rs_default_function_class as a parent classis
preferable to using rs_default_function_class directly.

Note The system-provided function-string classes
rs_default_function_class and rs_sqlserver_function_class contain default
function strings for all system functions except rs_dumpdb and
rs_dumptran. If you need to use function strings for these functions you
must create them yourself in aderived classor in
rs_sqlserver_function_class.

* rs_db2_function_class —DB2-specific function stringsare provided for this
class. See “Creating class-level trandations,” in Chapter 9, “Managing
Replicated Tables” in the Replication Server Administration Guide
\olume 1 for more information about using this class.

22 Replication Server

CHAPTER 2 Customizing Database Operations

If you require DB2 function strings, using derived classes that specify
rs_db2_function_class as a parent classis preferable, in most cases, to
using this class directly.

e rs_ig_function_class — Sybase | Q function strings are provided for this
class. See “Creating class-level translations,” in Chapter 9, “Managing
Replicated Tables’ in the Replication Server Administration Guide
Volume 1 for more information about using this class.

e rs_msss_function_class — Microsoft SQL Server function strings are
provided for this class. See “Creating class-level trandations,” in Chapter
9, “Managing Replicated Tables” inthe Replication Server Administration
Guide Volume 1 for more information about using this class.

e rs_oracle_function_class — Oracle function strings are provided for this
class. See “Creating class-level translations,” in Chapter 9, “Managing
Replicated Tables’ in the Replication Server Administration Guide
Volume 1 for more information about using this class.

See “Guidelines for creating function strings’ on page 40.

Table 2-1 on page 16 illustrates function-string inheritance relationships for
these and other classes.

Function-string inheritance

Administration Guide

The ability to share function-string definitions among classes by creating
relationships between classes is called function-string inheritance.

Using function-string inheritance in general, and inheriting from system-
provided classesin particular, provides both administrative and upgrade
benefits to replication system administrators. Using classes that inherit from
system-provided classes, you alter only the function strings you want to
customize and inherit all others.

If you use classes that do not inherit from system-provided classes, you must
createall function strings yourself, and add new function stringswhenever you
create a new table or function replication definition.

A class that inherits function strings from a parent classis called aderived

class. A class from which a derived class inherits function stringsis called the
parent class of the derived class. Generally, you create aderived classin order
to customize certain function strings and inherit all othersfrom the parent class.

23

Function-string classes

24

A class that does not inherit function strings from any parent classis called a
base class. The system-provided classesrs_default_function_class and
rs_db2_function_class, and any additional classesyou create that do not inherit
function strings from a parent class, are base classes. The system-provided
classesrs_ig_function_class, rs_msss_function_class, and
rs_oracle_function_class are derived from rs_default_function_class.

A parent class can have multiplederived classes, while aderived class can have
only one parent class. A derived class can also serve asthe parent classfor one
or more derived classes. A set of derived classes of any number of levels
stemming from the same base classis called a classtree.

The system-provided classes rs_default_function_class and
rs_db2_function_class can serveasparent classesfor derived classes. However,
they cannot become derived classes of other parent classes.

The system-provided classrs_sglserver_function_class cannot serve as a parent
class or become a derived class.

A base class that you have created can be modified to become aderived class,
or it can be designated as the parent class for a derived class. A derived class
can be modified to inherit function strings from a different parent class, or it
can be detached from a parent class and become a base class.

For every base class that you create, you must provide function strings for the
functions that Replication Server invokes in each database to which the class
isassigned. If you assign afunction-string class to a database when some of the
function stringsfor system functionsare missing, the DSI reportsan error when
Replication Server triesto apply the function string, and suspendsthe database
connection.

Circular function-string inheritance relationships are disallowed. That is, a
parent class cannot be modified to inherit function strings from one of its own
derived classes or from a derived class of one of these derived classes.

Function-string class relationships are illustrated in Figure 2-1.

Replication Server

CHAPTER 2 Customizing Database Operations

Figure 2-1: Function-string class relationships

Cannot alter function strings
g Can alter function strings

——- -
Can specify as parent class for Can specify as parent clazs
Adaptive Server or other database
rs_default_function_class Derived class for Adaptive Server !/ other

Cannot alter function strings
g Can alter function strings

———f- -
Can specify as parent class Can specify as parent class
for DB2
rs_db2_function_class Derived class for DB2
Cannot alter function strings D System-provided class
I:l User-created class
Can specify as parent class
for DB2 —= Inheritance by derived clas

rs_sqlserver_function_class

Must create/can alter function strings Can alter function strings
9 E—

Can specify as parent class Can specify as parent class

User-created base class Derived class

Restrictions in mixed-version systems

In amixed-version system, only Replication Servers of version 11.5 or later
can work with classes that participate in function-string inheritance.

Administration Guide 25

Managing function-string classes

Any class whose primary site is Replication Server version 11.0.x cannot
participate in function-string inheritance. If you want to alter such aclassto
become a derived class or useit as a parent class, you must move that classto
aprimary sitethat is Replication Server version 11.5 or later. Then you can
alter the classrelationships as desired and assign the class or itsderived classes
to connections managed by Replication Server version 11.5 or |ater.

A baseclassthat you created in Replication Server version 11.5 or later and that
does not participate in function-string inheritance can be assigned to
connections managed by any Replication Server inthe replication system. If it
is not assigned to any databases managed by Replication Server version 11.5
or later, then you can use the move primary command to assign it to a primary
site managed by Replication Server version 11.0.X.

Refer to the release bulletin for moreinformation about compatibility between
Replication Servers.

Note For compatibility with Replication Servers of version 11.0.x, you may
need to continue to customize function strings in rs_sglserver_function_class.
However, for databases managed by Replication Serversversion 11.5 or later,
using function-string inheritance and customizing function strings only in
derived classes is encouraged.

Managing function-string classes

26

When you create or customize a function string, you specify which classit
belongs to. If you want to create and use customized function strings, you can:

» Create aderived function-string class that inherits function strings from
rs_default_function_class, rs_db2_function_class,0r another parent class.
Then, in the derived class, create only the function strings that you are
interested in overriding.

Note You cannot alter, add to, del ete, or change any of the function-string
classes for non-Sybase data servers.

» Create anew function-string class and create function strings for all
functions.

Replication Server

CHAPTER 2 Customizing Database Operations

e Customizefunction stringsinrs_sglserver_function_class. See“Managing
function strings” on page 32 for information on this option.

Before you create customized function strings, you should decide in advance
which of these approaches to take and set up your classes accordingly.
Generally, it is preferable to customize function strings in derived classes
rather than to customize function strings in the class
rs_sqlserver_function_class. You must be using Replication Server version 11.5
or later in order to create and depl oy aderived function-string classthat inherits
function strings from other classes.

Creating a function-string class

Administration Guide

If function stringsin an existing class do not serve your needs for particul ar
database connections, and customizing function stringsin an existing classis
not feasible, you can create a new class in which to create the function strings
you need. You can either:

* Create aderived class, one that inherits function strings from an existing
parent class.

» Createabase class, onethat does not inherit function strings from another
class.

To create a derived or base function-string class and begin using it for a
database connection using RCL commands, follow these steps:

1 Createthe function-string class with the create function string class
command, using the syntax appropriate for your task. See:

e “Creating aderived class’ on page 28, or
e “Creating abase class’ on page 29.

The name of the new class must conform to the rules for identifiers
provided in“Identifiers’ in Chapter 2, “ Topics,” in the Replication Server
Reference Manual.

2 Createfunction strings for the new class with the create function string
command, described in “ Creating function strings’ on page 40.

« If you are creating a derived class, you need create only the function
strings that you want to override and inherit all others from the
specified parent class.

27

Managing function-string classes

» Theclassrs_default_function_class does not contain default function
strings for the rs_dumpdb and rs_dumptran functions. If you require
them in aderived class that inherits from rs_default_function_class,
you must create them. See“ System-provided classes’ on page 22 for
more information.

» If you are creating a base class, you must create all the necessary
function strings for the class.

3 If you are preparing a new function-string class for an existing database
connection, you must suspend the connection before you can use the new
class. See “ Suspending database connections” on page 191 in the
Replication Server Administration Guide Volume 1 for details.

4 Create or alter the database connection to use the new class. See
“Assigning afunction-string class to a database” on page 31.

5 If you altered an existing database connection to usethe new class, resume
the connection. See “ Suspending database connections’ on page 191 in
the Replication Server Administration Guide Volume 1 for details.

Creating a derived class

28

To create a derived function-string class that inherits function strings from a
parent class, enter acommand like this at the primary site of the parent:

create function string class
sglserver derived_class
set parent to rs_default function class

In this example, the new class sglserver_derived_class inherits function strings
from the system-provided classrs_default_function_class. You can then create
function strings that override some of the inherited function strings.

You can specify as the parent class any existing class whose primary site runs
Replication Server version 11.5 or later. However, you cannot specify asa
parent class the system-provided classrs_sqlserver_function_class. You also
cannot specify a parent class that would result in circular inheritance. See
“Function-string inheritance” on page 23 for details.

If the parent classisrs_default_function_class or afunction-string class for a
non-Sybase data server, you can enter this command at any Replication Server
with routes to the other Replication Servers where the new class will be used.
This siteisthe primary site for the derived class and any new classes derived
fromit.

Replication Server

CHAPTER 2 Customizing Database Operations

If the parent classis auser-created class, enter thiscommand inthe Replication
Server that isthe primary site for the parent class. This siteisthe primary site
for all classes derived from the parent class.

Creating a base class

To create a base function-string class, one which does not inherit function
strings from a parent class, enter acommand like this:

create function string class base_class

Inthisexample, the new classbhase_class doesnot inherit function stringsfrom
aparent class.

Enter this command at any Replication Server that has routes to the other
Replication Servers where the new class will be used. This site then becomes
the primary site for the class and for any derived classes for which this class
serves as the parent class.

A base class can be used as aparent class for aderived class or can be modified
to become a derived class.

For every base class that you create, you must provide function strings for the
functions that Replication Server invokes in each database to which the class
is assigned.

If you create abase class and then alter it so it becomes a derived class before
actually using it with database connections, you do not have to create all the
function strings.

Primary site for a function-string class

Administration Guide

Although most function strings are executed in replicate databases, you
execute the create function string class command in a Replication Server,
usualy aprimary Replication Server, that has routes to all sites where the
function-string classis to be used. This command designates that Replication
Server as the primary site for the class. Function-string classes are replicated
viaroutes, along with other replication system data.

You canonly create or alter function stringsthat have class scope at the primary
site for aclass. Function strings with replication-definition scope must be
created or altered at the primary site for the replication definition.

29

Managing function-string classes

By default, the classrs_sglserver_function_class does not have a primary site.
To alter class-scope function strings for this class, you must first designate a
Replication Server as a primary site for the class. To specify a site for this
function-string class, execute thefollowing command at the Replication Server
that isto be the primary site;

create function string class
rs_sqglserver function class

After you have executed this command, you can use the move primary
command to make further changesto the primary site for the function-string
class.

Changing the primary site for a function-string class

30

Use the move primary command or Sybase Central to change the primary
Replication Server for afunction-string class. For example, you may need to
changethe primary site from one Replication Server to another so that function
strings can be distributed through a new routing configuration. The new
primary site must include routes to all Replication Servers where the function-
string class will be used.

If you move abase class, all classes derived from that class move with it.

You cannot move the primary site for a derived class unlessits parent classis
adefault function-string class.

Execute move primary at the Replication Server that you want to designate as
the new primary site for the function-string class.

For example, the following command changes the primary site for the
sglserver2_function_class function-string class to the SYDNEY_RS
Replication Server, where the command is entered:

move primary of function string class
sglserver2 function class
to SYDNEY RS

If theclassrs_sqlserver_function_class hasnot yet been assigned aprimary site,
you cannot use the move primary command to assign one. You must use the
create function string class command to first designate a primary site for that
class. See “Changing the primary site for a function-string class’ on page 30
for details.

Replication Server

CHAPTER 2 Customizing Database Operations

Assigning a function-string class to a database

Example for creating
new connection

Administration Guide

You can assign afunction-string class to a database connection in Sybase
Central or with the create connection or alter connection commands, executed
in the Replication Server that manages the database. When you add a database
connection using the rs_init program, the classrs_sglserver_function_class is
assigned to the database by default.

You must suspend the connection to the database before you alter the function-
string class that is assigned to the database. The set function string class clause
of create connection and alter connection specifies the name of the function-
string class to use with the database.

Before you can assign a function-string class to a database connection:

e Thefunction-string class you specify must already exist and be available
to the Replication Server. See “ Creating a function-string class’ on page
27 for more information.

e All necessary function strings must be created in the class. See “ Creating
function strings” on page 40 for details.

Note When you create a connection using a connection profile, the function
string class is assigned by the connection profile.

See “ Creating database connections” on page 187 and “ Altering database
connections’ on page 190 in the Replication Server Administration Guide
Volume 1 for more information about using the create connection and alter
connection commands, and connection profiles. Also refer to reference pages
for these commands in the Replication Server Reference Manual.

Refer to the Replication Server installation and configuration guides for your
platform for more information about rs_init.

The following command creates a connection to the pubs2 database managed
by the TOKY O_DS data server:

create connection to TOKYO DS.pubs2

set error class tokyo error class

set function string class tokyo func class
set username pubs2 maint

set password pubs2 maint pw

This command assigns the tokyo_func_class function-string classto the
database connection.

31

Managing function strings

Example for altering The following command alters an existing database connection to specify a
an existing connection jifferent function-string class:

alter connection to TOKYO_ DS.pubs2
set function string class tokyo func class2

Dropping a function-string class

If you are surethat you will not need it again, you may want to drop afunction-
string class that you created from the replication system. You can drop any
function-string class except the three system-provided classes and any user-
created class that currently serves as a parent class. Before you can drop a
function-string class, you must drop all database connections that use the
function-string class, or you can alter the connections to use a different class.

Dropping afunction-string class deletes all function strings defined for the
class and removes all references to the class from the RSSD.

Todrop afunction-string classfrom theisgl command line, usethedrop function
string class command. For example, the following command drops the
tokyo_func_class function-string class and all of its function strings:

drop function string class tokyo func class

Enter this command in the Replication Server that isthe primary site for the
class.

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for more information about drop function string class
command.

Managing function strings

Each destination Replication Server uses function strings to convert the
functions to commands that are appropriate for the destination data server
(such as Adaptive Server) before it submits these commands. Refer to Chapter
2, “Replication Server Technical Overview” in the Replication Server
Administration Guide Volume 1 for more information about DSI threads, the
components that perform this conversion at the replicate Replication Server.

32 Replication Server

CHAPTER 2 Customizing Database Operations

The following sections describe elements of function strings and the
commands for managing them. Refer to the Replication Server Reference
Manual for complete command syntax and permissions.

Function strings and function-string classes

If you do not require customized function strings, you can use one of the
system-provided function-string classes to provide default function strings. 1
you require customized strings, you must use the system-provided class—
rs_sqlserver_function_class—in which you can customize function strings or
create aderived or base function-string class. See “Function-string classes’ on
page 21 for details.

If the connection for the database in which the function will be executed
usesasystem-provided function-string classor aderived classthat inherits
directly or indirectly from rs_default_function_class or a function-string
classfor anon-Sybase data server, default function stringsare provided for
every system function and user-defined function.

If the connection uses a user-created base function-string class (which
does not inherit function strings) or aderived classthat inherits from such
aclass, you must create function strings for every system function and
user-defined function. Create them in the base classif you want themto be
availablein all its derived classes.

Function-string input and output templates

To customize function strings, you alter their input and/or output templates.
Depending on the function, function stringsmay include both aninput template
and an output template, an output template, or neither template:

Administration Guide

For thers_select and rs_select_with_lock functions, used in subscription
materialization, Replication Server uses input templates to locate the
function string that corresponds to a subscription’s where clause.

For all functions Replication Server uses output templates to map
functions to the language commands or to apply RPC invocations at the
destination data server.

33

Managing function strings

Requirements for using input and output templates

Using output tem

When you alter templates to customize function strings, you should keep in
mind the following requirements:

» Function-string input and output templates are limited to 64K bytes. The
result of substituting runtime values for embedded variables in function-
string input or output templates must not exceed 64K.

» Function-string input and output templates are delimited with single
quotation marks (*).

» Function-string variables are enclosed within apair of question marks (?).

* A variable name and its modifier are separated with an exclamation point
OF

Language output templates involve additional related requirements. See
“Using output templates’ on page 34 for details.

plates

You can alter output templates to customize function strings. Replication
Server uses output templates to determine the format of the command sent to a
data server. Most output templates use one of three formats: language, RPC or
none, corresponding to the format of the function string itself. See “ Function
strings’ on page 19 for information on function-string formats. An output
template for an rs_writetext function string can use the RPC format or one of
the additional formatswritetext or none, but not alanguage output template. See
“Using function stringswith text, unitext, image, and rawobject datatypes’ on
page 53 for details.

Language output templates

34

Language output templates contain text that the data server interprets as
commands. Replication Server substitutesvaluesfor variablesembeddedinthe
output template and passes the resulting language command(s) to the data
server to process.

See “Creating function strings’” on page 40 for exampl e output templates. See
“Using function-string variables’ on page 38 for details on embedded
variables.

Within alanguage output template, Replication Server interprets certain
charactersin specia ways.

Replication Server

CHAPTER 2 Customizing Database Operations

« Two single quote characters () are interpreted as one single quote
e Two question marks (??) are interpreted as one single question mark
e Two semicolons (;;) are interpreted as one single semicolon

Other than the embedded variable substitutions and these special
interpretations, Replication Server does not attempt to interpret the contents of
language output templ ates.

See “Function-string variable formatting” on page 39 for information about
how Replication Server formats function-string variables when it maps
function strings to data server commands.

RPC output templates

Unlikelanguage output templates, Replication Server interpretsthe contents of
RPC output templates. They are written in the format of the Transact-SQL
execute command. Replication Server parses the output template to construct
aremote procedure call to send to the Adaptive Server, Open Server gateway,
or Open Server application.

RPC output templates work well with gateways or Open Servers with no
language parser. RPCs are usually more compact than language requests and,
sincethey do not require parsing by the data server, may also be more efficient.
Therefore, you might choose to use an RPC even when a data server supports
language reguests.

none output templates

You can increase function string efficiency when you create or ater function
strings by using the none parameter to identify class-level and table-level
function strings that do not have output commands. Replication Server does
not execute these function strings on replicate databases.

Output templates for rs_writetext function strings

Administration Guide

Replication Server supports three output formats for creating an rs_writetext
function string: RPC, none, and writetext. Thewritetext output template can only
be used in rs_writetext function strings.

See “Using function strings with text, unitext, image, and rawobject
datatypes’ on page 53 for more information about writetext.

35

Managing function strings

Using input templates

36

Input templates are used only for non-bulk materialization and for
dematerialization with purge—those situations where Replication Server must
select data to add or delete from selected tables. rs_select and
rs_select_with_lock are the only function strings that can contain input
templates. Replication Server determines which function string to use with a
subscription during materialization or dematerialization by:

e Matching the subscription’s replication definition
e Matching theinput template with the where clause used in the subscription

rs_select and rs_select_with_lock also contain output templates to specify the
actual select statements or other operations that perform the desired
meaterialization or dematerialization.

For the system-provided classes, Replication Server generates default function
strings for the rs_select and rs_select_with_lock functions when you create a
replication definition. Generally, you only need to customize these function
strings if multiple subscriptions exist for your replication definition.

Function strings for the rs_select and rs_select_with_lock functions are most
often used for materialization. If you plan multiple subscriptions to the same
replication definition, create the function strings before you create the
subscriptions. See “ Subscription materialization methods’ on page 381 inthe
Replication Server Administration Guide Volume 1 for moreinformation about
subscription materialization.

Function strings for rs_select and rs_select_with_lock may also be used for
subscription dematerialization, which uses the where clause of the command
used to create the subscription. The function strings for these functions must
exist before you drop the subscriptions. See “Using the drop subscription
command” on page 409 in the Replication Server Administration Guide
\olume 1 for more information about dematerialization.

An input template can contain user-defined variables whose val ues come from
constants in the where clause of a subscription. No other types of function-
string variables are allowed in input templates. An output template in the same
function string can reference these user-defined variables.

If you need to customize an output template to select materialization data, you
can omit the input template from an rs_select or rs_select_with_lock function
string. Doing so creates a default function string that can match any select
statement when no other function string’s input template matches the select
command.

Replication Server

CHAPTER 2 Customizing Database Operations

Aswith other functions with replication-definition scope, you create function
strings for the rs_select and rs_select_with_lock functions in the primary
Replication Server where the replication definition was created.

Class in which to create function strings

Example for rs_select
function string

Administration Guide

When you create rs_select and rs_select_with_lock function strings for
materialization, you create them in the function-string classthat is assigned to
the connection to the primary database from which you are selecting
materialization data. If you are using bulk materialization, you do not need to
create rs_select and rs_select_with_lock function strings for materialization.

When you create rs_select and rs_select_with_lock function strings for
dematerialization, you create them in the function-string class that is assigned
to the connection to the replicate database for which you are selecting data to
be dematerialized. If you drop a subscription using drop subscription with the
without purge option, you do not needrs_select andrs_select_with_lock function
strings for dematerialization.

Inthefollowing example, asite subscribesto aspecified publisher’sbook titles
through thereplication definitiontitles_rep. Theremust beanrs_select function
string with an input template that compares the publisher column in the pubs2
database’s titles table to a user-defined value that identifies the publisher.

The create function string command creates a function string with an input
template that compares the publisher column pub_id to the user-defined
variable ?pub_id!user?. For details on function-string variables, see “Using
function-string variables’ on page 38.

The input template matches any subscription with awhere clause of the form
where pub_id = constant. As aresult, the output template, when it is used,
includes the constant value. The output template selects materialization data
from two different tables.

create function string titles _rep.rs_select;pub_id
for sglserver2 function class

scan 'select * from titles where pub_id =
?pub_id!user?'

output language
'select * from titles where pub id =
?pub_id!user?
union
select * from titles.pending where pub id =
?pub_id!user?'

37

Managing function strings

See* Creating function strings” on page 40 for details. Refer to the Replication
Server Reference Manual for complete syntax.

Using function-string variables

Variables embedded in function-string input or output templates are symbolic
markers for various runtime values.

A variable can represent a column name, the name of a system-defined
variable, the name of a parameter in a user-defined function, or a user-defined
variable defined in an input template. The variable must refer to a value with
the same datatype as anything to which it is assigned.

Function-string variables are enclosed inside of apair of question marks (?), as
shown:

?variable!modifier?

The modifier portion of avariable identifies the type of datathe variable
represents. The modifier is separated from the variable name with an
exclamation (!).

Thers_truncate function string accepts position-based function string variable
in the format:

?n!param?

Where nis anumber from 1 to 255, representing the position of function
parameter in the LTL. The first parameter for rs_truncate inthe LTL is
represented infunction string as »1 1 param?. For position based function string
variable, the only acceptable modifier is param.

A sample function string for rs_truncate with the position-based variable is as
follows:

truncate table publishers partition ?1!param?
Replication Server recognizes the modifiers listed in Table 2-3:

Table 2-3: Function-string variable modifiers

Modifier

Description

new, new_raw

A reference to the new value of acolumn in arow that Replication Server isinserting or
updating.

old, old_raw

A reference to the old values of acolumn in arow that Replication Server isinserting or
updating.

user, user_raw

38

A referenceto avariable that is defined in the input template of an rs_select or
rs_select_with_lock function string.

Replication Server

CHAPTER 2 Customizing Database Operations

Modifier

Description

Sys, Sys_raw

A reference to a system-defined variable.

param, param_raw

A reference to a stored-procedure parameter.

text_status

A reference to the text_status value for text, unitext, or image data. Possible values are:

» (0x000 - Text field contains NULL value, and the text pointer has not been initialized.
e 0x0002 — Text pointer isinitiaized.

* 0x0004 — Real text datawill follow.

» (0x0008 — No text datawill follow because the text datais not replicated.

e 0x0010 — Thetext datais not replicated but it contains NULL values.

Note Function strings for user-defined functions may not use the new or old
modifiers.

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for alist of system-defined variables that you can usein
function-string input or output templ ates.

See “Using the default system variable” on page 51 for information on
applications for that system variable.

Function-string variable formatting

Administration Guide

When Replication Server maps function-string output templates to data server
commands, it formats the variables using the Adaptive Server format.

For most variabl es (except those special caseswith modifiersendingin _raw),
Replication Server formats data as follows:

« Addsan extrasingle-quote character to single-quote characters appearing
in character and date/time values.

e Addssingle-quote characters around character and date/time values, if
they are missing.

e Addsthe appropriate monetary symbol (for example, the dollar sign) to
values of money datatypes.

e Addsthe“0x” prefix to values of binary datatypes.

39

Managing function strings

e Addsacombination of abacksash (\) and newline character between
existing instances of abackslash and newline character in character
values. Adaptive Server treats a backslash followed by anewlineas a
continuation character and, therefore, del etes the added pair of characters,
leaving the original characters intact.

Replication Server does not alter datatypesin these waysfor modifiersthat end
in_raw.

Creating function strings

To add afunction string to a function-string class, use the create function string
command. Enter function-string commands at the primary site of the function
string:

» For function strings with replication-definition scope, the primary siteis
the Replication Server where the replication definition was created.

» For function strings with class scope, the primary site is the Replication
Server that isthe primary site for the class. The primary site for aderived
classisthe sameasfor its parent class, unlessthe parent classisone of the
system-provided classes. See“ Primary sitefor afunction-string class’ on
page 29 for more information.

If you are using a derived function-string class whose parent classis not
provided by the system, you may choose to customize function stringsin the
parent class rather than in the derived class that is actually assigned to a
particular database connection. Doing so would make the customized function
strings available for any additional derived classes of that parent class.

Guidelines for creating function strings

40

Thefollowing guidelinesfor creating function strings pertain to function-string
classes:

» If you need to customize function strings, you can do so in any class other
than the system-provided classes rs_default_function_class and
rs_db2_function_class.

For rs_db2_function_class, rs_iq_function_class, rs_msss_function_class,
and rs_oracle_function_class, you:

e Cannot use function-string class scope system functions, such as
rs_begin to create customized class-level function strings

Replication Server

CHAPTER 2 Customizing Database Operations

e Can use replication definition scope system functions such as
rs_insert to create customized table-level function strings

You must assign a function-string class a primary site before you can
create function strings for the class. The system-provided class
rs_sqlserver_function_class has no primary site until you assign one using
the create function string class command.

If the function-string classis a new base class, you must create function
stringsfor all the necessary system functions before you can use the class.

The following guidelines pertain to function strings themselves:

Administration Guide

You can specify an optional namefor the function string. For thers_select,
rs_select_with_lock, rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init,
and rs_writetext functions, Replication Server uses the function-string
name to uniquely identify the function strings. Function string names are
unique when you qualify them fully.

If the input template is omitted for an rs_select or rs_select_with_lock
function string, Replication Server matches any subscriptions that do not
have matching function strings.

If you are customizing function strings for functions with replication-
definition scope, you must create the function strings before you create the
subscriptions.

You can put several commands in a language output template, separating
them with semicolons. See “ Defining multiple commandsin afunction
string” on page 46 for details.

You can batch commands for non-A SE servers. See “ Command batching
for non-ASE servers’ on page 47.

Make sure that the database connection batch parameter has been set to
allow command batching. See “ Configuration parameters affecting
individual connections’ on page 193 in the Replication Server
Administration Guide Volume 1.

You can use Adaptive Server syntax to specify a null value for a constant
in afunction string.

You can increase function string efficiency when you create or alter
function strings by using the none parameter to identify class-level and
table-level function stringsthat do not have output commands. Replication
Server does not execute these function strings on replicate databases.

41

Managing function strings

Example for rs_begin
function string

Example for rs_insert
function string

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for the complete syntax for the create function string
command.

The following example creates a function string for the rs_begin function that
begins a transaction in the database by executing a stored procedure named
begin_xact.

create function string rs begin
for gateway func_ class
output rpc 'execute begin xact'

The following example creates a function string for ars_insert function that
references the publishers_rep replication definition, which executes an RPC at
the replicate database as aresult of an insert in the primary table. The stored
procedure insert_publisher is defined only at the replicate database.

create function string publishers rep.rs insert
for rs_sqglserver function class
output rpc
'execute insert publisher
@pub_id = ?pub_ id!new?,

@pub_name = ?pub_ name!new?,
@city = ?city!new?,
@state = ?statelnew?’

Altering function strings

42

The alter function string command replaces an existing function string. alter
function string acts essentially the same as create function string except that it
executes the drop function string command first. The function string is dropped
and re-created in a single transaction to prevent any errors from occurring as a
result of missing function strings.

You can alter afunction string using either the alter function string command or
the create function string command. To alter a function string using the create
function string command, you must include the optional clause with overwrite
after the name of the function-string class. This command drops and re-creates
an existing function string, the same as the alter function string command.

To alter afunction string using the alter function string command, you must first
create a function string.

Replication Server

CHAPTER 2 Customizing Database Operations

In aderived class, first use the create function string command to override the
function string that is inherited from the parent class. You cannot alter a
function string in a derived class unless the function string has been explicitly
created for the derived class.

You alter function strings at the Replication Server that is the primary site for
the existing function string:

« For functions of replication-definition scope, ater the function string at
the primary Replication Server where the replication definition was
defined.

« For functionsof class scope, ater thefunction string at the primary sitefor
the function-string class. The primary site for a derived class is the same
asfor itsparent class, unlessthe parent classis one of the system-provided
classes. See“Primary sitefor afunction-string class’ on page 29 for more
information.

For system functions that alow multiple function-string mappings, such as
rs_select and rs_select_with_lock, providethe complete function string namein
the alter function string Syntax. Replication Server uses the name to determine
which function string to alter.

See “Creating function strings’ on page 40 for example function strings.

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for the complete syntax for the alter function string
command.

Dropping function strings

Administration Guide

To discard a customized function string in a derived class and restore the
function string from the parent class, drop the function string. Use the drop
function string command to remove one or more function stringsin a function-
string class.

Warning! If you want to drop and re-create afunction string, use alter function
string to replace an existing function string with anew one. Dropping and then
re-creating afunction string by other methods can lead to a state where the
function string is temporarily missing.

If atransaction that uses this function string occurs between the time the
function string is dropped and the time it is re-created, Replication Server
detects the function string as missing and fails the transaction.

43

Managing function strings

Examples

Dropping all function
strings for a function

44

When you drop the function string from a derived class, you restore the
function string from the parent class.

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for more information on drop function string command.

You can also drop customized function strings from the system-provided class
rs_sqlserver_function_class.

To restore adefault function string for a function string with replication-
definition scope that you have dropped, use the alter function string command
to omit the output clause. See“ Restoring default function strings’ on page 45
for details.

The following command drops the rs_insert function string for the
publishers_rep replication definition in the class sqlserver2_func_class:

drop function string
publishers rep.rs insert
for sglserver2 func class

The following command drops the pub_id instance of a function string for the
rs_select function for the publishers_rep replication definition in the class
derived_class. Drop function strings for the rs_select_with_lock function in a
similar way.

drop function string

publishers rep.rs_select;pub_id
for derived_class

The following command drops the rs_begin function string from the
gateway_func_class function-string class:

drop function string rs begin
for gateway func_class

In cases where there are multiple function strings for a specified function, you
can drop al function strings for that function simultaneously.

The following command drops all function strings for the rs_select_with_lock
function that references the publishers_rep replication definition in the class
sqlserver2_func_class:

drop function string
publishers rep.rs_select with lock;all
for sglserver2 func_class

System functions that can have multiple function string mappings include the
rs_select, rs_select_with_lock, rs_get_textptr, rs_textptr_init, Or rs_writetext
functions.

Replication Server

CHAPTER 2 Customizing Database Operations

Examples of using the
all keyword as
shorthand

When dropping function strings for any system function for which you
provided alengthy name, you can use the all keyword as shorthand for the
name of the function string instance. For example, the following command
gives along name for a function string:

create function string
publishers rep.rs insert;my insert function string
for sqglserver2 func_class

In this case, the following command drops the function string without you
having to enter the fully qualified name;

drop function string
publishers rep.rs insert;all
for sglserver2 func class

Restoring default function strings

Example for alter
function string

Administration Guide

To restore the Adaptive Server default function string for a system function
with replication definition scope, omit the output clause in the create function
string or alter function string command. You cannot omit an output template
from a system function with function-string-class scope, athough you can
specify an empty template.

Refer to Chapter 3, “Replication Server Commands” of the Replication Server
Reference Manual, for more information on these commands.

In all classes, even derived classes, executing the create function string or alter
function string command without the output clause restores the same function
string that is provided by default for the system-provided classes
rs_sglserver_function_class and rs_default_function_class.

The default function-string definition this method yields may or may not be
appropriate for the databases to which you have assigned the class. This
method may be most helpful when you are using a customized
rs_sqlserver_function_class or when you are using other user-created base
classes for Adaptive Server databases.

In aderived class, if you want to discard a customized function string and
restore the function string from the parent class, drop the function string. See
“Dropping function strings’ on page 43 for details.

Thefollowing command replaces a customized rs_insert function string for the
publishers_rep replication definition with the default function string:

45

Managing function strings

Example for create
function string in a
derived class

alter function string publishers rep.rs insert
for rs_sqglserver function class

See* Altering function strings’ on page 42 for detailson using the alter function
string command.

You can use this method in a derived function-string classto override an
inherited function string with the Adaptive Server default function string. The
following command replaces an inherited rs_insert function string for the
publishers_rep replication definition with the default function string:

create function string publishers rep.rs insert
for derived_class

See “Creating function strings” on page 40 for details on using the create
function string command.

Creating empty function strings with the output template

You can create an empty function string—one that performs no action—by
including the output language clause with an empty function string specified
with two single quotes.

For example, the following command defines no action for the rs_insert
function string for the publishers_rep replication definition:

alter function string publishers rep.rs insert
for derived class
output none

See* Altering function strings’ on page 42 for detailson using the alter function
string command.

Defining multiple commands in a function string

46

Language output templates can contain many commands. Adaptive Server
permits multiple commandsin abatch. Although most other data serversdo not
offer thisfeature, Replication Server allowsyou to batch commandsin function
strings for any data server by separating commands with a semicolon (;).

Use two consecutive semicolons (;;) to represent a semicolon that is not to be
interpreted as a command separator.

Replication Server

CHAPTER 2 Customizing Database Operations

If the data server supports command batches, Replication Server replaces the
semicolons with the DSI command separator character (dsi_cmd_separator
configuration parameter), as necessary, and submits the commandsin asingle
batch.

If the data server does not support command batches, Replication Server
submits each command in the function string separately.

For example, the output template in the following function string containstwo
commands:

create function string rs_ commit

for sglserver2 function class

output language

'execute rs_update lastcommit
@origin = ?rs_originl!sys?,
@origin gid = ?rs_origin gid!sys?,
@secondary gid = ?rs_secondary gid!sys?;
commit transaction'

Support for batches is enabled or disabled in Replication Server with the alter
connection command.

Set batch to “on” to allow command batching for a database, or set it to “ off”
to send individual commands to the data server.

To set batching “on” for this example, enter:

alter connection to SYDNEY_DS.pubs2
set batch to 'on’

To set batching “off,” enter:

alter connection to SYDNEY_DS.pubs2
set batch to 'off'

Command batching for non-ASE servers

Administration Guide

Replication Server provides the ability to batch commands for non-ASE
database servers. By batching commands, you may be able to achieve
improved performance of Replication Server. Support for command batching
reguires the following:

e Using the two function strings, rs_batch_start and rs_batch_end.

« Usingthe DSl connection parametersto control the processing of the two
function strings.

47

Managing function strings

Using function strings

Support for command batching to non-A SE serversisachieved through the use
of two function strings, rs_batch_startandrs_batch_end. Thesefunction strings
store the SQL trandation needed for marking the beginning and end of
command batches. Use of these function strings is not necessary for ASE or
any other data server where thefunction stringsrs_begin and rs_commit already
support the needed functionality

Using connection settings

Order of processing

48

A DSl connection parameter, use_batch_markers, is used to control the
processing of the two function strings, rs_batch_start and rs_batch_end.
use_batch_markers can be set with the alter connection and configure connection
commands. If use_batch_markers isset to on the function stringsrs_batch_start
and rs_batch_end are executed. The default is off.

Note This parameter isonly to be set to on for replicate data servers that
require additional SQL to be sent at the beginning and end of a batch of
commands that are not contained in the rs_begin function string.

When a connection is configured to use the batch marker function strings,
statements are sent to the data server in the following order:

1 Thers_begin command is sent to the replicate data server first, either
separately or grouped with the batch of commands, based on the
configuration parameter batch_begin asit is with current functionality.

2 Thers_batch_start command is processed and sent only when
use_batch_markers is configured to true.

Thers_batch_start marker is grouped with the commands being sent as a
batch. Validrs_begin andrs_batch_start function stringsallows processing
of both single and batched transactions to the data servers.

3 A batch of commandsis sent to the replicate data server.

The size of the batch varies, and sending of the batch follows the existing
rules for terminating the grouping and flushing of the commandsto the
replicate data server. These commands contain a command separator
between each individual command.

Replication Server

CHAPTER 2 Customizing Database Operations

DSI Configuration

4 Thers_batch_end command is the last command in the batch of
commands. Thers_batch_end marker is sent only when the configuration
parameter use_batch_markers is set to true.

Thers_batch_start, a batch of commands, and rs_batch_end may be
repeated if more than one batch is required when commands have been
flushed by limits such as dsi_cmd_batch_size.

5 After thefinal rs_batch_end command has been sent, the rs_commit
command is sent to the replicate data server. The rs_commit is processed
according to the present rules.

There arethree DSI configuration parameters that need to considered for each
connection that will be batching commands:

* batch
* batch_begin
* use_batch_markers

See the Replication Server Heterogeneous Replication Guide to determine
whether command batching isallowed for your non-ASE replicate data server.
See the Replication Server Administration Guide Volume 1 and Replication
Server Reference Manual to use the commands described in this section.

Using declare statements in language output templates

Administration Guide

To include declare statements, used to define local variables, in the language
output templates, make sure that the batch configuration parameter is set to
“off” for the Replication Server connected to the database. When batch is set
to“on”, the default for Adaptive Server, Replication Server can send multiple
invocations of a function string to the data server as a single command batch,
thereby putting multiple declarations of the same variablein that batch, which
is unacceptable to Adaptive Server.

49

Displaying function-related information

Performance is slower when batch mode is off because Replication Server
must wait for aresponse to each command before the next oneis sent. If your
performance regquirements are low, you can use declare statementsin your
function stringsif you set batch to “off.” Alternatively, if you want to use batch
mode for improved performance, create function-string language output
templatesthat execute stored procedures, which can include declare statements
and other commands.

Refer to “ Setting and changing parameters affecting physical connections’ on
page 192 in the Replication Server Administration Guide Volume 1 for more
information about batch.

Displaying function-related information

You can abtain information about existing function strings and classesin your
replication system in two ways:

» Using Replication Server admin command
» Using Adaptive Server stored procedures

Refer to Chapter 3, “ Replication Server Commands’ of the Replication Server
Reference Manual, for more information on admin command.

Obtaining information using the admin command

You can display the names of the function-string classes used in your
Replication Server system using one of Replication Server’sadmin commands.

Use admin show_function_classes to display the names of existing function-
string classes and their parent classes. It also indicates the inheritance level of
the class. Level 0 is abase class such asrs_default_function_class or
rs_db2_function_class, level 1isaderived classthat inherits from a base class,
and so on.

For example:
admin show function_ classes
Class ParentClass Level
sgl derived class rs_default function class 1
rs_db2 derived class rs_db2 function class 1

50

Replication Server

CHAPTER 2 Customizing Database Operations

rs_db2 function class 0

For more information about this command, refer to Chapter 3, “Replication
Server Commands,” in the Replication Server Reference Manual.

Obtaining information using stored procedures

You can obtain information about existing functions, function strings, and
function-string classesin your system using stored proceduresin aReplication
Server RSSD.

Refer to Chapter 6, “RSSD Stored Procedures,” in the Replication Server
Reference Manual for more information about these stored procedures.

rs_helpfunc rs_helpfunc displays information about system functions and user-defined
functions for a Replication Server or for a particular table or function
replication definition. The syntax is:

rs_helpfunc [replication_definition [, function_name]]

rs_helpfstring rs_helpfstring displays the parameters and function-string text for functions
associated with areplication definition. The syntax is:

rs_helpfstring replication_definition
[, function_name]

rs_helpclass rs_helpclass lists all function-string classes and error classes and their primary
Replication Servers. The syntax is:

rs_helpclass [class_name]

rs_helpclassfstring rs_helpclassfstring displays the function-string information for class-scope
functions. The syntax is:

rs_helpclassfstring class_name [, function_name]

Using the default system variable
Thers_default_fs system variable allows you to perform the following tasks:

« Extend function strings with replication-definition scope to include
additional commands (such as those for auditing or tracking)

Administration Guide 51

Using the default system variable

e Customizers_update and rs_delete function strings and still be ableto use
the replicate minimal columns option in your replication definitions

Note Function strings containing the rs_default_fs system variable may only
be applied on Adaptive Servers or data servers that accept Adaptive Server
syntax. Otherwise, errors will occur.

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for a complete list of function string system variables.

Extending default function strings

52

You can use thers default_fs system variable with all function strings that
have replication-definition scope (table or function) as away to extend the
default function-string behavior.

Usingthers default_fs system variable reduces the amount of typing required
when you want to keep the functionality of the default function string intact and
include additional commands. For example, you can add commands to extend
the capabilities of the default function string for auditing or tracking purposes.

Commandsthat you add to the output language templ ate may either precede or
follow thers_default_fs system variable. They may or may not affect how the
row isreplicated into the replicate table.

The following example shows how you might usethe rs_default_fs system
variable in the create function string command (or the alter function string
command) to verify that an update has occurred:

create function string replication definition.rs_update
for function string class
output language '?rs default fs!sys?;

if (e@rowcount = 0)
begin
raiserror 99999 "No rows updated!"
end'

In this example, the rs_default_fs system variable, embedded in the language
output template, maintains the functionality of the default rs_update function
string while the output template then checksto see if any rows have been
updated. If they have not been updated, an error is raised.

Replication Server

CHAPTER 2 Customizing Database Operations

In this example, the commands that follow the system variable do not affect
how the row isto be replicated at the replicate site. You can use the
rs_default_fs system variable with similar additional commands for
verification or auditing purposes.

Using replicate minimal columns

If you have specified the replicate minimal columns clause for a replication
definition, you normally cannot create non-default function strings for the
rs_update, rs_delete, rs_get_textptr, rs_textptr_init, Or rs_datarow_for_writetext
system functions.

You can create non-default function strings for the rs_update and rs_delete
functions by embedding the rs_default_fs system variable in the output
language template of the create function string or alter function string commands
and still use the minimal columns option.

You cannot use any variables, including thers_default_fs system variable, that
access non-key column valuesin rs_update or rs_delete function strings for
replication definitions that use the minimal columns option. When you create
such afunction string, you may not know ahead of time which columnswill be
modified at the primary table. You may, however, include variablesthat access
key column values.

See “create replication definition” in Chapter 3, “ Replication Server
Commands,” inthe Replication Server Reference Manual for moreinformation
about the replicate minimal columns clause.

Using function strings with text, unitext, image, and
rawobject datatypes

Administration Guide

In an environment that supports text, unitext, image, and rawobject datatypes,
you can customize function stringsfor thers_writetext function using the output
template formats writetext or none. The methods discussed in this section can
only be used with rs_writetext function string.

Refer to Chapter 4, “Replication Server System Functions’ of the Replication
Server Reference Manual, for more information on rs_writext function string.

53

Using function strings with text, unitext, image, and rawobject datatypes

For Replication Server version 11.5 or later, you can use multiple replication
definitions instead of function strings. Refer to Chapter 9, “Managing
Replicated Tables’ in the Replication Server Administration Volume 1 for
information about multiple replication definitions.

Using output writetext for rs_writetext function strings

The writetext output template option for rs_writetext function string instructs
Replication Server to usethe Client-Library™ function ct_send_data to update
atext, unitext, image, or rawobject column value. It specifieslogging behavior
for text, unitext, image, and rawobject columns in the replicate database.

54 Replication Server

CHAPTER 2 Customizing Database Operations

writetext output templates support the following options:

e use primary log — logs the data in the replicate database, if the logging
option was specified in the primary database.

e with log —logs the data in the replicate database transaction log.

e no log — does not log the data in the replicate database transaction log.

Using output none for rs_writetext function strings

The none output template option for rs_writetext function strings instructs
Replication Server not to replicate atext, unitext, or image column value. This
option provides necessary flexibility for using text, unitext, and image columns
within a heterogeneous environment.

Heterogeneous replication and text, unitext, image, and rawobject data

Example

Administration Guide

To replicate text, unitext, image, and rawobject datafrom anon-A SE data server
into an Adaptive Server database, you must include the text, unitext, image, and
rawobject datain the replication definition so that a subscription can be created
for the Adaptive Server database. However, you might not want to replicate the
text, unitext, image, and rawobject datainto other replicate data servers, whether
they are other foreign data servers or other Adaptive Servers.

With the none output template option, you can customize rs_writetext function
stringsto map operationsto asmaller table at areplicate site and to instruct the
rs_writetext function string not to perform any text, unitext, image, or rawobject
operation against the replicate site.

Thereis oners_writetext function string for each text, unitext, image, and
rawobject column in the replication definition. If you do not want to replicate a
certain text, unitext, image, or rawobject column, customize the rs_writetext
function string for that column. Specify the column name in the create or alter
function string command, as shown in the example below. You may also need
to customize the rs_insert function string.

Assumethat areplication definition does not allow null valuesin atext, unitext,
image, or rawobject column and that you do not require certain text, unitext,
image, Or rawobject columns at the replicate site.

55

Using function strings with text, unitext, image, and rawobject datatypes

56

If inserts occur in those columns at the primary site, you must customize the
rs_writetext function strings for the text, unitext, image, or rawobject columns
that are not needed at the replicate site. You must also customize the rs_insert
function string for the replication definition.

For example, assume that you have primary table foo:

foo (int a, b text not null, ¢ image not null)
In foo, you perform the following insert:

insert foo values (1, "111111", 0x11111111)

By default, Replication Server translatesrs_insert into the following form for
application by the DSI thread into the replicate table foo:

insert foo (a, b, ¢) wvalues (1, "", "m)
The DS thread calls:
* ct_send_data to insert text datainto column b
* ct_send_data to insert image datainto column c

Because null values are not allowed for thetext column b and theimage column
c, the DSI thread shuts down if the replicate table does not contain either
column b or column c.

If the replicate table only contains columns a and b, you need to customize the
rs_writetext function for column ¢ to use output none, as follows:

alter function string foo_repdef.rs_writetext;c
for rs_sqlserver_function_class
output none

You must specify the column name (c in this example) as shown to alter the
rs_writetext function string for that column.

If the replicate table only contains columnsa and b, you also need to customize
the rs_insert function string for the replication definition so that it will not
attempt to insert into column ¢, asfollows:

alter function string foo_repdef.rs_insert
for rs_sqlserver_function_class
output language
‘insert foo (a, b) values (?alnew?, ™)'
You do not have to customize rs_insert if the replication definition specifies
that null values are allowed for column c. By default, rs_insert does not affect
any text, unitext, or image columns where null values are allowed.

Replication Server

CHAPTER 3

Administration Guide

Managing Warm Standby
Applications

This chapter primarily describes how to set up, configure, and monitor a
warm standby application between two Adaptive Server databases—the
primary or active database and a single standby database. Changesto the
primary database are copied directly to the warm standby database. To
change or qualify the data sent, you must add table and function
replication definitions.

Topic Page
Overview of warm standby application 58
What information is replicated for ASE warm standby application? | 63
Setting up ASE warm standby databases 77

Replicating the master database in awarm standby environment for | 91
ASE

Switching the active and standby ASE databases 94

Monitoring awarm standby application 101
Setting up clients to work with the active data server 104
Altering warm standby database connections 106
Warm standby applications using replication 112
Using replication definitions and subscriptions 119
L oss detection and recovery 129

Replication Server supports setting up and managing warm standby
applications for Adaptive Server and Oracle databases. See Chapter 14,
“Managing Heterogeneous Warm Standby Applications’ in the
Replication Server Heterogeneous Guide for detailed information on how
to set up and configure awarm standby application between two Oracle
databases. This chapter al so describes concepts and tasks that are common
to Adaptive Server and Oracle databases for managing warm standby.

57

Overview of warm standby application

You can also use multisite availability (MSA) to set up awarm standby
application between Adaptive Server databases. MSA enables replication to
multiple standby and replicate databases. You can choose whether to replicate
the entire database or replicate (or not replicate) specified tables, transactions,
functions, system stored procedures, and data definition language (DDL). See
Chapter 12, “Managing Replicated Objects Using Multisite Availability,” in
the Replication Server Administration Guide Volume 1 for information about
setting up awarm standby application using MSA.

Overview of warm standby application

A warm standby application isapair of databases, one of which is abackup
copy of the other. Client applications update the active database; Replication
Server maintains the standby database as a copy of the active database.

If the active databasefails, or if you need to perform maintenance on the active
database or on the data server, a switch to the standby database allows client
applications to resume work with little interruption.

To keep the standby database consistent with the active database, Replication
Server reproduces transaction information retrieved from the active database’s
transaction log. Although replication definitions facilitate replication into the
standby database, they are not required. Subscriptions are not needed to
replicate datainto the standby database.

For information on how to set up and configure a warm standby application
between two Oracle databases, see Chapter 12 “Managing Heterogeneous
Warm Standby Applications’ in the Replication Server Heterogeneous Guide.

How a warm standby works

Figure 3-1 illustrates the normal operation of an example warm standby
application.

58 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Figure 3-1: Warm standby application

Replication Server
Active Standby
Database Database

1
| to other Replication Servers

or destination databases

In this warm standby application:
e Client applications execute transactions in the active database.

e The RepAgent for the active database retrieves transactions from the
transaction log and forwards them to Replication Server.

* Replication Server executes the transactions in the standby database.

* Replication Server may also copy transactions to destination databases
and remote Replication Servers.

See Figure 3-4 on page 95 for more details about the components and
processes in awarm standby application.

Database connections in a warm standby application

In awarm standby application, the active database and the standby database
appear in the replication system as a connection from the Replication Server to
asingle logical database. The replication system administrator creates this
logical connection to establish one symbolic name for both the active and
standby databases.

Thus, awarm standby application invol vesthree database connectionsfrom the
Replication Server:

e A physical connection for the active database

Administration Guide 59

Overview of warm standby application

e A physica connection for the standby database
e Alogica connection for the active and standby databases

Replication Server mapsthelogical connection to the currently active database
and copies transactions from the active to the standby database.

See “ Setting up ASE warm standby databases’ on page 77 for details on
creating the logical and physical database connections. See Chapter 7,
“Managing Database Connections’ in the Replication Server Administration
Guide Volume 1 for more information about physical database connections.

Primary and replicate databases and warm standby applications
In many Replication Server applications:

* A primary database is the source of data that is copied to other databases
through the use of replication definitions and subscriptions.

* A replicate database receives data from the primary database.

Replication Server treatsalogical databaselike any other database. Depending
on your application, the logical database in awarm standby application may
function as a database that does not participate in replication and exists solely
as awarm standby backup, or the logical database may also function as a:

* Primary database, or a
* Replicate database

See “Warm standby applications using replication” on page 112 for more
information about warm standby applications for primary or replicate
databases.

Comparison of database relationships

In most of this book, databases are defined as “ primary” or “replicate.” In
discussing warm standby applications, however, databases are also defined as
“active’ or “standby.” Table 3-1 explains the difference.

Table 3-1: Active and standby vs. primary and destination databases

Active and standby databases Primary and replicate databases
The active and standby databases must be Primary and destination databases may be managed by the
managed by the same Replication Server. same or different Replication Servers.

60 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Active and standby databases

Primary and replicate databases

The active and standby databases must be
Adaptive Server databases.

Except where they participate in warm standby applications,
primary and destination databases need not be Adaptive Server
databases.

The active database has one standby database.

Informationisaways copied fromtheactivetothe
standby database.

A primary database can have one or more destination
databases.

Some databases contain both primary and copied data.

The use of replication definitionsis optional.
Subscriptions are not used.

Replication definitions and subscriptions are required for
replication from a primary to a destination database.

The connection to the standby database uses the
function-string class rs_default_function_class.

You cannot customize function strings for this
class.

The connection to areplicate database can use a function-
string class in which you can customize function strings. For
example, it may use aderived classthat inherits function
strings from rs_default_function_class.

You can switch the roles of the active and standby
databases.

You cannot switch theroles of primary and replicate databases.

Client applications generally connect to the active
database. (However, you can perform read-only
operations at the standby database.)

No mechanismis provided for switching client
applications when you switch the Replication
Server to the standby database.

Client applicationscan connect to either primary or destination
database. Only primary data can be directly modified.

Generaly, client applications do not need to switch between
primary and destination databases.

The RepAgent for the active database submits all
transactions on replicated tables, including
maintenance user transactions, to the Replication
Server, which reproduces them in the standby
database.

In awarm standby application for adestination
database, transactionsin the active database are
normally executed by the maintenance user.

In most applications, RepAgent does not submit maintenance
user transactionsto the Replication Server to be reproduced in
destination databases.

The maintenance user does not generally execute transactions
in primary databases.

Warm standby requirements and restrictions
The following restrictions apply to all Replication Server warm standby

applications:

e You must use a Sybase Adaptive Server that supports warm standby
applications. Refer to your release bulletin for more information.

« OneReplication Server manages both the active and standby databases.
Both the active and standby databases must be Adaptive Server databases.

Administration Guide

61

Overview of warm standby application

62

You cannot create a standby database for the RSSD. You can only create a
standby database for the master database if the Adaptive Server supports
master database replication, such as Adaptive Server 15.0 ESD #2 and
later.

Replication Server does not switch client applications to the standby
database. See “ Setting up clients to work with the active data server” on
page 104 for more information.

You should run Adaptive Server for the active and standby databases on
different machines. Putting the active and standby databases on the same
data server or hardware resources undermines the benefits of the warm
standby feature.

Although Adaptive Server allowstablesthat contain duplicate rows, tables
in the active and standby databases should have unique values for the
primary key columnsin each row.

The commands and proceduresfor abstract plansarereplicated, except for
the following:

e Theand set @plan_id clause of create plan is not replicated. For
example, this command is not replicated as shown.

create plan "select avg(price)
from titles" " (t_scan titles)
into dev plans and set @plan id

Rather, it isreplicated as:

create plan "select avg(price)
from titles" " (t_scan titles)
into dev_plans

e Theabstract plan procedures that take aplan ID as an argument
(sp_drop_gplan, sp_copy_gplan, sp_set_gplan) are not replicated.

* Theset plan command is not replicated.

Failover support is not asubstitute for warm standby. Whilewarm standby
keeps a copy of adatabase, Failover support accesses the same database
fromadifferent machine. Failover support worksthe samefor connections
from Replication Server to warm standby databases.

For more detailed information about how Sybase Failover worksin
Adaptive Server, refer to Using Sybase Failover in a High Availability
System in the Adaptive Server Enterprise documentation set.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

For more detailed information about how Failover support worksin
Replication Server, see “ Configuring the replication system to support
Sybase Failover” in Chapter 7, “Replication System Recovery”.

You cannot use the dump and enable marker on the active database and
then use cross-platform dump and load to rebuild the standby database.
TheReplication Agent must send the dump marker to the standby database
you are rebuilding. During the cross-platform dump and load, the active
database must be in single user mode when you obtain the dump from the
active database. See “ Cross-platform dump and load” on page 83 for
instructions.

Function strings for maintaining standby databases

Replication Server uses the system-provided function-string class
rs_default_function_class for the standby DSI, which is the connection to the
standby database. Replication Server generates default function stringsfor this
class. You cannot customize the function stringsin the class
rs_default_function_class.

What information is replicated for ASE warm standby

application?

Administration Guide

Replication Server supports different methods for enabling replication to the
standby database. The level and type of information that Replication Server
copies to the standby database depends on the method you choose.

You must choose one of these two methods:

Use the sp_reptostandby system procedure to mark the entire database for
replication to the standby database. sp_reptostandby enables replication of
data manipulation language (DML) commands and a set of supported data
definition language (DDL) commands and system procedures.

* DML commands, such asinsert, update, delete, and truncate table,
change the datain user tables.

e DDL commands and system procedures change the schema or
structure of the database.

63

What information is replicated for ASE warm standby application?

sp_reptostandby allowsreplication of DDL commandsand proceduresthat
make changes to system tables stored in the database. You can use DDL
commands to create, alter, and drop database objects such as tables and
views. Supported DDL system procedures affect information about
database objects. They are executed at the standby database by the original
user.

If you choose not to use sp_reptostandby, you can mark individual user
tables for replication with sp_setreptable. This procedure enables
replication of DML operations for the marked tables.

Optionally, you can also tell Replication Server which user stored procedures
to replicate to the standby database:

You can copy the execution of user stored procedures to the standby
database by marking the stored procedures with the sp_setrepproc system
procedure. Normally, only stored procedures associated with function
replication definitions are replicated to standby databases.

Referto“Using sp_setrepproc to copy user stored procedures’ on page 72
for more information.

For detailed information on what information is replicated for Oracle warm
standby application, see Chapter 14, “Managing Warm Standby Applications
for Oracle” in the Replication Server Heterogeneous Guide.

Comparing replication methods

Table 3-2 compares sp_reptostandby and sp_setreptable, detailing how each
copiesinformation to the standby database. Many of these issues are discussed
in detail later in the chapter.

Table 3-2: Comparison of table replication methods

sp_reptostandby

sp_setreptable

Copies all user tablesto the standby database. Lets you choose which user tables are copied to the

standby database.

Allows replication of DML commands and supported Allows replication of DML commands executed on
DDL commands and system procedures. Supported marked tables.

DDL operations are listed in “ Supported DDL

commands and system procedures’ on page 66. Note Supported DDL operations can bereplicated for an

64

isql sessions. Refer to “Forcing replication of DDL
commandsto the standby database” on page 77 for more
information.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

sp_reptostandby

sp_setreptable

Does not copy DML and DDL operations to replicate
databases.

If the warm standby application also copies datato a
replicate database, you must mark tablesto be copied to
the replicate database with sp_setreptable.

Copies DML operations to standby and replicate
databases.

Copies execution of the truncate table command to the
standby database. No subscription is needed.

Note You can enable or disable replication of truncate
table to standby databases with the alter logical
connection command. See “Replicating truncate table
to standby databases’ on page 109 for more
information.

If you use Adaptive Server databases, copies execution of
truncate table to standby databases. No subscription is
needed.

Replication Server uses table name and table owner
information to identify atable at the standby database.

If you include the owner_on keywords when you mark a
table for replication to the warm standby, Replication
Server uses table name and table owner information to
identify atable at the standby database.

If you include the owner_off keywords when you mark a
table for replication to the warm standby, Replication
Server uses the table name and “dbo” to identify atable
at the standby database.

By default, text, unitext, image, and rawobject columns
are copied to the standby database only if changed.

If you mark the database tables with sp_reptostandby
and sp_setreptable, text, unitext, image, and rawobject
data may be treated in a different way. Refer to
“Replicating text, unitext, image, and rawobject data”
on page 74 for more information.

By default, text, unitext, and image columns are always
copied to the standby database.

If you set the replication status with sp_setrepcol, text,
unitext, image, and rawobject columns are treated as
marked: always_replicate, replicate_if_changed, or
do_not_replicate.

The easiest method to use when the active and standby
databases are identical. Replication definitions are not
required, but can be used to optimize performance.

Replication definitions are not required, but can be used
to optimize performance.

Using sp_reptostandby to enable replication

Usesp_reptostandby to copy DML and supported DDL commands for all user
tables to the standby database.

Administration Guide

65

What information is replicated for ASE warm standby application?

Restrictions and requirements when using sp_reptostandby

Consider the following issues when you set up your warm standby application
and enable replication with sp_reptostandby.

» Both the active and standby databases must be managed by Adaptive
Servers and must support RepAgent. Both databases must have the same
disk allocations, segment names, and roles. Refer to the Adaptive Server
Enterprise System Administration Guide for details.

» The active database name must exist in the standby server. Otherwise,
replication of commands or procedures containing the name of that
database will fail.

* Replication Server does not support replication of DDL commands
containing local variables. You must explicitly define site-specific
information for these commands.

» Logininformation is not replicated to the standby database. Refer to
“Making the server user’s | Ds match” on page 88 for information about
adding login information to the destination Replication Server.

* Some commands not copied to the standby database include:
* selectinto
* update statistics

» Database or configuration options such as sp_dboption and
sp_configure

Thefollowing section liststhe DDL commands, Transact-SQL commands and
Adaptive Server system procedures, that Replication Server reproduces at the
standby database when you enabl e replication with sp_reptostandby. An
asterisk marks those commands and stored procedures whose replication is
supported for Adaptive Server 12.5 and later.

Supported DDL commands and system procedures

66

* alter encryption key

e alter table

e alter key

* create default

* create encryption key

e create function

Replication Server

CHAPTER 3

Managing Warm Standby Applications

Administration Guide

create index
create key
create plan*
create procedure
create rule
create schema*
create table
create trigger
create view

drop default
drop encryption key
drop function
drop index

drop procedure
drop rule

drop table

drop trigger

drop view

grant

installjava*
remove java*
revoke
sp_addalias
sp_addgroup
sp_addmessage
sp_add_gpgroup*
sp_adduser

sp_addtype

67

What information is replicated for ASE warm standby application?

* sp_bindefault

* sp_bindmsg

* sp_bindrule

* sp_cachestrategy

* sp_changegroup

* sp_chgattribute

* sp_commonkey

* sp_config_rep_agentsp_dropalias
e sp_drop_all_gplans*
* sp_dropgroup

* sp_dropkey

* sp_dropmessage

* sp_drop_gpgroup*

* sp_droptype

* sp_dropuser

* sp_encryption

* sp_export_gpgroup*

e sp_foreignkey

* sp_import_gpgroup*

* sp_primarykeysp_procxmode
* sp_recompile

* sp_rename

* sp_rename_gpgroup*
* sp_setrepcol

* sp_setrepdefmode

* sp_setrepproc

* sp_setreptable

* sp_unbindefault

68 Replication Server

CHAPTER 3 Managing Warm Standby Applications

* sp_unbindmsg
* sp_unbindrule

The set of DDL commands and system procedures that are supported for
replication in the master database is different than the set supported from
replication in a user database.

In the master database, the supported DDL commands and system procedures
are

* alterrole

* create role

e drop role

¢ grantrole

* revoke role

* sp_addlogin

e sp_defaultdb

* sp_defaultlanguage
e sp_displaylevel
* sp_droplogin

¢ sp_locklogin

* sp_modifylogin
* sp_password

* sp_passwordpolicy

Note sp_passwordpolicy isreplicated for all options except allow password
downgrade

* sp_role

Replication Server does not support the replication of DDL commands after
set proxy is executed on the primary Adaptive Server. If set proxy is executed
on the primary Adaptive Server, Replication Server returns error 5517:

A REQUEST transaction to database '...' failed because
the transaction owner's password is missing. This
prevents the preservation of transaction ownership.

Administration Guide 69

What information is replicated for ASE warm standby application?

If aDDL command or system procedure contains password information, the
password information is sent through the replication environment using the
ciphertext password value stored in the source Adaptive Server system tables.

To enablereplication of DML and DDL commands, execute sp_reptostandby
in the Adaptive Server that manages the active database. The syntax is:

sp_reptostandby dbname, [[, 'L1' | 'ALL' | 'NONE'] [, use_index]]

where dbname is the name of the active database and the keywords L1, all, and
none Set the level of replication support.

L1 represents the level of replication supported by Adaptive Server version
125.

Use the all keyword to make sure that schema replication support is aways at
the highest level available. For example, to set the schemareplication support
level tothat of thelatest Adaptive Server version, loginto Adaptive Server and
execute this command at the isgl prompt:

sp_reptostandby dbname, 'all'

Then, if the database is upgraded to alater Adaptive Server version with a
higher level of replication support, all new features of that version are enabled
automatically. Refer to Chapter 5, “ Adaptive Server Commands and System
Procedures,” inthe Replication Server Reference Manual for moreinformation
about sp_reptostandby command.

Replicating alter table: limitations

70

When Adaptive Server performs an alter table ... add column_name default ...
statement, the server creates a constraint for the default value using the objid.
After Replication Server replicatesthis statement, the standby Adaptive Server
creates the same constraint but with a different objid.

If the constraint is later dropped at the primary using alter table ... drop
constraint ... , the statement cannot be performed at the warm standby because
the objid is not the same.

To drop the constraint at both the primary and standby databases, use either of
these two methods:

e Execute this statement at the primary:

alter table table name

replace column name default null

Replication Server

CHAPTER 3 Managing Warm Standby Applications

e Executethis statement at the primary:

alter table table name

drop constraint constraint name

This statement causes the DSI to shut down. Execute the same command
at the standby database with its corresponding objid, and then resume the
connection to the DSI, skipping a transaction.

Replicating the master database: limitations

Disabling replication

Administration Guide

The user tables and user stored procedures are not replicated if the database
used is the master database.

If the master database is replicated, the following system procedures must be
executed in the master database:

sp_addlogin
sp_defaultdb
sp_defaultlanguage
sp_displaylevel
sp_droplogin
sp_locklogin
sp_modifylogin

Both the source and target Adaptive Servers must support the master database
replication feature if the database used is the master database.

If the database isthe master database, both the source A SE server and the target
ASE server must be the same hardware architecture type (32-bit versions and
64-hit versions are compatible) and the same operating system (different
versions are also compatible).

Toturn off dataand schemareplication, log in to Adaptive Server and enter this
command at the isql prompt:

sp_reptostandby dbname, 'none’

When replication is turned off, Adaptive Server locks all user tablesin
exclusive mode and saves information about each of them. This process may
take some timeif there are alarge number of user tablesin the database.

71

What information is replicated for ASE warm standby application?

Use this procedure only if you are disabling the warm standby application.

Note If youwant to turn off replication for the current isql session only, usethe
set replication command. See “ Changing replication for the current isql
session” on page 76 for more information. Also, if the database is marked for
replication to use indexes on text, unitext, image, and rawobject columns, the
above command also drops indexes for replication on tables not explicitly
marked for replication.

Using sp_setreptable to enable replication

Use sp_setreptable to mark individual tables for replication to replicate or
replicate and standby databases. Replication Server copies DML operationson
those tables to the standby and replicate databases.

Use sp_setreptable to mark tables for replication to the standby database if:
* You use Adaptive Server databases, or
* You choose not to use sp_reptostandby.

Using sp_setreptable maintains data, but not schema, consistency between the
active and standby databases. sp_setreptable normally does not copy supported
DDL commands and procedures to the standby database. You can, however,
use the set replication command to force replication of DDL commandsfor the
current isql session. Refer to “ Changing replication for the current isql
session” on page 76 for more information about set replication.

If the database is the master database, user tables are not replicated.

Using sp_setrepproc to copy user stored procedures

72

To copy the execution of auser stored procedure to the standby database, mark
the stored procedure for replication with sp_setrepproc. Procedures marked
with sp_setrepproc are also reproduced at replicate databases if subscriptions
have been created for them.

There are two possible scenarios for stored procedure execution in warm
standby applications:

Replication Server

CHAPTER 3 Managing Warm Standby Applications

e If you have marked the stored procedure for replication with
sp_setrepproc, Replication Server copies execution of the procedureto the
standby database. It does not copy the effects of the stored procedureto the
standby database.

e If you have not marked the stored procedure for replication, Replication
copies DML changes effected by the procedure to the standby database, if
the affected tables have been marked for replication.

See Chapter 10, “Managing Replicated Functions’ in the Replication Server
Administration Guide Volume 1 for more information about the sp_setrepproc
system procedure.

If the database is the master database, user procedures are not replicated.

Replicating tables with the same name but different owners

Adaptive Server and Replication Server allow you to replicate tables with the
same name but different owners.

When you mark a database for replication with sp_reptostandby, updates are
copied automatically to the table of the same name and owner in the standby
database.

When you mark atable for replication using sp_setreptable, you can choose
whether the table owner nameis used to select the correct table in the standby
database.

« If you set owner_on, Replication Server sends the table name and table
owner name to the standby database.

« If you set owner_off, Replication Server sendsthe table nameand “dbo” as
the owner name to the standby database.

Note If you are copying information to a replicate database and have used
sp_setreptable to set owner_off, Replication Server sends the table nameto the
replicate database. It does not send owner information.

Administration Guide 73

What information is replicated for ASE warm standby application?

Refer to “Enabling replication with owner_on status’ on page 303 in the
Replication Server Administration Guide Volume 1 for syntax and other
information about using sp_setreptable to set owner status.

Note If you mark atable with a non-unique name for replication and then
create areplication definition for it, you must include owner information in the
replication definition. Otherwise, Replication Server will be unableto find the
correct tablein the replicate or standby database.

Replicating text, unitext, image, and rawobject data

If a database is marked with sp_reptostandby, the replication statusis
automatically replicate_if _changed, and Adaptive Server logsonly text, unitext,
image, and rawobject columns that have been changed. This ensures that the
standby database staysin sync with the active database. You cannot changethe
replication status of such atable using sp_setrepcol.

If atableis marked for replication with sp_setreptable, the default replication
statusisalways_replicate, and Adaptive Server logsall text, unitext, image, and
rawobject column data. You can change the replication status of text, unitext,
image, and rawobject columns in tables marked with sp_setreptable. Use
sp_setrepcol to change the replication statusto replicate_if_changed or
do_not_replicate. A column or combination of columns must uniquely identify
each row.

If you usereplication definitions, the primary key must be aset of columnsthat
uniquely identify each row in the table. You have to make sure that the
replication statusisthe same at the Adaptive Server and the Replication Server.

Using the use_index option in a replicate database

74

Theuse_index option is used to speed up the process of setting the text, unitext,
image, or rawobject columns for replication. It is specially useful for large
tables containing one or more text, unitext, image, or rawobject columns. You
can set use_index option at a database level, table level, or column level. For
example, atable can be marked without using indexes, but you can explicitly
mark only one column to use an index for replication.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

When you use the use_index option with sp_reptostandby, the database is
marked to use indexes on text, unitext, image, or rawobject columns, and
internal indexes are created on tables that are not explicitly marked for
replication.

For a database marked for replication to use indexes, if a new table with off-
row columns s created, the indexes for replication are created as well.
Similarly, when an alter table...add column command is executed in a database
marked to useindexes, an internal index is created in the new off-row column.
With the alter table...drop column command, if the column being dropped is
marked to use an index, the internal index for replication is dropped as well.

The replication index status at different object levelsisin this order: column,
table, and database. If the databaseis marked to useindexesfor replication, but
you marked atable without using indexes, the table status overrides the
database status.

Note The replication performance on off-row (text, unitext, image, or
rawobject) columns does not change. Only the process of marking a database,
table or column for replication is affected.

You can use the use_index option if the table has alarge number of rows or if
the database has one or more tables with a considerable number of rows and
several off-row columns.

Configuring warm standby database for SQL statement replication

Administration Guide

By default, warm standby applications do not replicate the DML commands

that support SQL statement replication. To use SQL statement replication, you

can:

* Createtable replication definitions using replicate SQLDML and send
standby clauses.

e SetthewS_SQLDML_REPLICATION parameter to on. The default valueis
UDIS. However, WS_SQLDML_REPLICATION has alower precedence
than the table replication definition for SQL replication. If your table
replication definition contains send standby clause for atable, the clause
determines whether or not to replicate the DML statements, regardless of
the WS_SQLDML_REPLICATION parameter setting.

75

What information is replicated for ASE warm standby application?

Replicating encrypted columns

For considerations when working with encrypted columns, see “ Replicating
encrypted columns’ in Chapter 9 “Managing Replicated Tables’ in the
Replication Server Administration Guide Volume 1.

Replicating quoted identifiers

When replicating to awarm standby database and to replication definition
subscribers, and the primary table name is marked as quoted but the replicate
table name is not, or vice-versa, Replication Server sends both the primary
table name and the replicate table name as quoted.

When warm standby involves a replicate database

You can copy information from an active database to a standby database and
also copy information from the active database to a replicate database.
Replication Server must copy the text, unitext, image, and rawobject columns

of the table to the standby and replicate databases with the same replication
status.

Do not change the replication status for the table if you want to copy all text,
unitext, image, and rawobject columnsto the standby and replicate databases.

By default, al text, unitext, image, and rawobject columnsare copied to standby
and replicate databases.

If you want to copy only text, unitext, image, and rawobject columns that have
changed, use sp_setrepcol to set the replication status to replicate_if_changed.

Changing replication for the current isql session

You can use set replication to control replication of DML and/or DDL
commands and procedures for an isgl session.

Execute set replication at the Adaptive Server that managesthe active database.
The syntax is:

set replication [on | force_ddl | default | off]

The default setting is“on.” Default behavior depends on whether or not the
database has been marked for replication with sp_reptostandby. Table 3-3
describes the default behavior of set replication.

76 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Table 3-3: Default behavior of set replication

If the database has been marked for If the database has not been marked for
replication with sp_reptostandby replication with sp_reptostandby

Replication Server copies DML and supported DDL Replication Server copies DML commands to standby and
commands to the standby database for all user tables. replicate databases for tables marked with sp_setreptable.

Some examples of set replication follow. See Chapter 5, “ Adaptive Server
Commands and System Procedures” in the Replication Server Reference
Manual for more information about set replication command.

Forcing replication of DDL commands to the standby database

To force replication of all supported DDL commands and system procedures
for an isgl session, enter:

set replication force ddl

This command enables replication of DDL commands and system procedures
for tables marked with sp_setreptable.

To turn off force_ddl and return set replication to default status, enter:
set replication default

Turning off all replication to the standby database
To turn off al replication to the standby database for an isql session, enter:

set replication off

Setting up ASE warm standby databases

Setting up databases for awarm standby application involves three high-level
tasks. Each of these tasks may include additional tasks.

1 Createasinglelogical connection that will be used by both the active and
standby databases.

2 Use Sybase Central or rs_init to add the active database to the replication
system. You do not need to add the active database if you have designated
as the active database a database that was previously added to the
replication system.

Administration Guide 77

Setting up ASE warm standby databases

3 Usesp_reptostandby or sp_setreptable to enable replication for tablesin
the active database.

4 Use Sybase Central or rs_init to add the standby database to the replication
system, then initialize the standby database.

Before you begin
Before setting up the databases, note that:

» TheReplication Server that manages the active and standby databases
must be installed and running. A single Replication Server manages both
the active and the standby database.

» The Adaptive Serversthat contain the active and standby databases must
be installed and running. Ideally, these databases should be managed by
data servers running on different machines.

» Before you can add a database to the replication system as an active or
standby database, it must already exist in the Adaptive Server.

See “Warm standby requirements and restrictions’ on page 61 for additional
information.

Client application issues

Depending on your client applications and your method of initializing the
standby database, you may be suspending transaction processing in the active
database until you have initialized the standby database.

If you do not suspend transaction processing, ensure that Replication Server
has sufficient stable queue space to hold the transactionsthat execute whileyou
are loading datainto the standby database.

Before you set up the warm standby databases, you should have decided on and
implemented a mechanism for switching client applications to the new active
database. See“ Setting up clients to work with the active data server” on page
104 for more information.

78 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Task one: Creating the logical connection

This section explains how to create the logical connection for the warm
standby application. See “ Database connections in awarm standby
application” on page 59 for more information about logical connections.

This section also explains how to reconfigure RepAgent for the active
database, which you must do if the active database was already part of the
replication system.

Naming the logical connection

When you create the logical connection, use the combination of logical data
server name and logical database name, in the form data_server.database.

There are two methods for naming the logical connection:

« If the active database has not yet been added to the replication system —
useadifferent namefor thelogical connection thanfor the active database.
Using unique names for the logical and physical connections makes
switching the active database more straightforward.

« If the active database has previously been added to the replication system
—usethedata server and database names of the active database for the
logical connection name. Thelogical connection inherits any existing
replication definitions and subscriptions that reference this physical
database.

When you create a replication definition or subscription for awarm standby
application, specify the logical connection instead of a physical connection.
Specifying the logical connection allows Replication Server to reference the
currently active database.

See “Warm standby applications using replication” on page 112 for more
information. Also see “Using replication definitions and subscriptions’ on
page 119.

Procedure for creating the logical connection
Follow these steps to create the logical connection:

1 Using alogin name with sa permission, log in to the Replication Server
that will manage the warm standby databases.

2 Executethe create logical connection command:

create logical connection to data server.database

Administration Guide 79

Setting up ASE warm standby databases

The data server name can be any valid Adaptive Server name, and the
database name can be any valid database name.

Reconfiguring and restarting RepAgent

If you designate as the active database a database that was previously added to
the replication system, the RepAgent thread for the active database shuts down
when you create the logical connection.

1 Reconfigure RepAgent with sp_config_rep_agent, setting the
send_warm_standby_xacts configuration parameter.

2 Restart RepAgent.

For information about how to configure and start RepAgent, refer to “ Setting
up RepAgent” on page 116 in the Replication Server Administration Guide
\Volume 1. Refer to the Replication Server Reference Manual for more
information about the sp_config_rep_agent system procedure.

Task two: Adding the active database

To add a database to the replication system as the active database for awarm
standby application, rs_init, as described in the Replication Server installation
and configuration guides for your platform. Perform the steps described for
adding a database to the replication system.

Task three: Enabling replication for objects in the

active database

80

You can enable replication for tables in the active database in either of two
ways:

e Usesp_reptostandby to mark the database for replication, enabling
replication of data and supported schema changes.

» Usesp_setreptable to mark individual tables for replication of data
changes.

Refer to “What information isreplicated for ASE warm standby application?’
on page 63 for more information about these commands.

1 Logintothe Adaptive Server asthe System Administrator or asthe
Database Owner, and:

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Administration Guide

use active database

2 Mark database tables for replication, using one of these methods:

3

e Mark all user tables by executing the sp_reptostandby system
procedure:

sp_reptostandby dbname, ['L1' | 'all']

where dbname is the name of the active database, L1 setsthe
replication level to that of Adaptive Server version 11.5, and all sets
the replication level to the current version of Adaptive Server. This
method replicates both DML and DDL commands and procedures.

* Mark all user tables by executing sp_reptostandby with the use_index
option:

sp_reptostandby dbname, [[, 'L1l' | 'ALL'] [,
use_index]]

where dbname isthe name of the active database. With theuse_index
option, the database is marked to use indexes on text, unitext, image,
or rawobject columns, and internal indexes are created on those tables
not explicitly marked for replication.

e Markindividual user tables by executing the sp_setreptable system
procedure for each table that you want to replicate into the standby
database:

sp_setreptable table name, 'true'

where table_name is the name of the table. This method replicates
DML commands.

If you are using the replicated functions feature described in Chapter 10,
“Managing Replicated Functions,” in the Replication Server
Administration Guide Volume 1, execute the following system procedure
for every stored procedure whose executions you want to replicateinto the
standby database:

sp_setrepproc proc name, 'function'

If you are using replicated stored procedures associated with table
replication definitions, as described in Appendix A, “Asynchronous
Procedures,” execute the following system procedure for every such
stored procedure whose executions you want to replicate into the standby
database:

sp_setrepproc proc name, 'table'

81

Setting up ASE warm standby databases

Enabling replication for objects added later

Later on, you may add new tables and user stored proceduresthat you want to
replicate to the standby database.

» If you marked the database for replication with sp_reptostandby, new
tables are automatically marked for replication.

» If you marked database tables for replication to the standby database with
sp_setreplicate, you must mark each new table that you want to replicate
with sp_setreplicate.

* You must mark each new user stored procedure that you want to replicate
with sp_setrepproc.

Task four: Adding the standby database

Use rs_init to add the standby database and its RepAgent to the replication
system, then you initialize it with data from the active database.

This section explains how to add the standby database to thereplication system
and prepare it for operation.

This section a so describes enabling replication for objects in the standby
database and granting permissions to the maintenance user in the standby
database. Whether or not you need to perform these steps depends on your
method for initializing the standby database.

Before you add the standby database:
1 Create the standby database, if it does not already exist.
2 Determine how to initialize the standby database.

3 Add the standby database maintenance user—if you are using dump and
load to initialize the standby database.

4 Online the new database using the online database clause before
replicating.

Creating the standby database

If it does not already exist, you must create the standby database in the
appropriate Adaptive Server, according to your needs.

Refer to the Adaptive Server Enterprise System Administration Guide for
details on creating databases.

82 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Determining how to initialize the standby database

Cross-platform dump
and load

Administration Guide

You initialize the standby database with data from the active database. To do
this, use these Adaptive Server commands and utilities:

e dump and load, or
. bcp, or

e quiesce database ... to manifest_fileto generatethe manifest fileand mount
to copy the data into the standby database.

See the Adaptive Server Enterprise Reference Manual: Commands.

Replication Server writes an “enable replication” marker into the active
database transaction log when you add the standby database using Sybase
Central or rs_init. Adaptive Server writes a dump marker into the active
database transaction log when you perform a dump operation—either a dump
database or a dump transaction.

If you do not suspend transaction processing during initialization:

¢ Choosethe*dump marker” option in Sybase Central or rs_init, and use the
dump and load commands.

If you suspend transaction processing during initialization:

* Do not choose the “dump marker” option in Sybase Central or rs_init, and
use the dump and load commands, or

e Usebcp, or
e Usequiesce database ... to manifest_file and mount.

The target database cannot be materialized with dump or load if the database
used is the master database. You may use other methodol ogies such as bcp
where the data can be manipulated to resolve inconsistencies.

If you use cross-platform dump and load to initialize a standby database with a
RepAgent:

1 Onthe active database:
a Stop the RepAgent with sp_stop_rep_agent database.

b Remove the secondary truncation point with
dbcc settrunc(‘ltm’, ‘ignore’).

Cc Set the database in single-user mode in Adaptive Server:
sp_dboption database name, ‘single user’, true

d Checkpoint the database:

83

Setting up ASE warm standby databases

checkpoint
e Dump the database transaction log by executing in Adaptive Server:

dump tran database name with truncate only
go

f Obtain adump of the database. See “ Dumping and loading databases
acrossplatforms,” in Chapter 11 “ Devel oping aBackup and Recovery
Plan” inthe Adaptive Server Enter prise System Administration Guide
\olume 2.

2 Onthe standby database:

a Load the dump you obtained from the standby database. See
“Dumping and loading databases across platforms,” in Chapter 11
“Developing a Backup and Recovery Plan” in the Adaptive Server
Enterprise System Administration Guide Volume 2.

Sybase recommends running sp_post_xpload even if the endian types
of the platforms are not different.

b Dumpthetransactionlogto deletethelog recordsthat sp_post_xpload
creates:

dump tran database name with truncate only
go

¢ Execute the Adaptive Server sp_indsuspect System procedure to
check user tables for indexes marked as suspect.

d Rebuild suspect indexes if required. If thereisachangein
characterset or sort order, you must execute sp_indsuspect and rebuild
indexes again until sp_indsuspect does not show any tables with
suspect indexes.

e Executedbcc settrunc (Itm', 'valid’) to restore the secondary truncation
point in the database |og followed by rs_zeroltm to reset the database
locater valueto zero. Executing these commands allows RepAgent to
start at the secondary truncation point.

f Start RepAgent with sp_start_rep_agent database.

Table 3-4 summarizes each of theinitialization methods and the role of these
markers.

84 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Table 3-4: Issues in initializing the standby database

Use dump and
load with “dump

Use dump and
load without

Issue marker” “dump marker” | Use bcp Use mount
Workingwithclient | Useif youcannot | Useif you can suspend transaction Useif you can suspend
applications. suspendtransaction | processing for client applications. transaction processing for

processing for client applications.

client applications.
When does Replication Server | Replication Server startsreplicatinginto Replication Server starts
Replication Server | startsreplicating the standby database from the enable replicating into the
begin replicating into the standby replication marker. standby database from the
into the standby database from the enable replication marker.
database? first dump marker

after the enable

replication marker.
Cresating Add the login name for the standby Whenyou add the Add the login name for
maintenance user database maintenance user in both the standby database, the standby database
login names and active Adaptive Server and the standby Sybase Central or maintenance user in both
making sure all Adaptive Server, and ensure that the rs_init adds the the active and standby

user |Ds match.

server user’s |Ds match.

(You create login namesin the active
Adaptive Server because using dump and
load to initialize the standby database
with data from the active database
overrides any previous contents of the
standby database with the contents of the
active database.)

maintenance user
login name and
user in the standby
Adaptive Server
and the standby
database.

Adaptive Servers. Ensure
that the server user’'s IDs
match. (You create login
namesin the active
Adaptive Server because
using mount to initialize
the standby database with
data from the active
database overrides any
previous contents of the
standby database with the
contents of the active
database.)

Initializing standby
database.

Use dump and load to transfer data from
the active database to the standby
database.

You can use database dumps and/or
transaction dumps.

Use bep to copy
each replicated
table from the
active database to
the standby
database.

Use quiesce database ...
to manifest_fileand mount
database to transfer data
from the active database
to the standby database.

Active database
connection state.

Administration Guide

The connection to
the active database
does not change.

Replication Server suspends the
connection to the active database.

Replication Server
suspends the connection
to the active database.

85

Setting up ASE warm standby databases

Use dump and Use dump and
load with “dump | load without

Issue marker” “dump marker” | Use bcp Use mount

Resuming Resumeconnection | Resume connections to the active and Resume connections to

connections. to the standby standby databases; resume transaction the active and standby
database. processing in the active database. database; resume

transaction processing in
the active database.

If you do not suspend
transaction processing

86

If you do not suspend transaction processing for the active database while
initializing the standby database, choose the “ dump marker” option when you
add the standby database. Then initialize the standby database by using the
dump and load commands.

Replication Server starts replicating into the standby database from the first
dump marker after the enable replication marker in the transaction log of the
active database.

In Figure 3-2, transaction T1, executed after you added the standby database,
appears after the enabl e replication marker in thelog. T1isincluded in dumps,
so it is present in the standby database after you have loaded the dumps.
Replication Server does not need to replicate it into the standby database.

Figure 3-2: Using dump and load with dump marker

Log \ Included in dumps,

grows and loaded in the
Enable marker / standby database
T

Dump marker

Applied to the
Standby database

Active database
Transaction log

Transactions can be executed in the active database between the time the
enable replication marker iswritten and thetime the datain the active database
is dumped.

You canload thelast full database dump and any subsegquent transaction dumps
into the standby database until both markers have been received and the
standby database is ready for operation. Then, optionally, you can use afinal
transaction dump of the active database to bring the standby database up to
date. Any transactions not included in dumps will be replicated.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

If you suspend
transaction processing

Administration Guide

Replication Server does not replicate transactions from the active to the
standby database until it has received both the enable replication marker and
the first subsequent dump marker. After receiving both markers, Replication
Server starts executing transactions in the standby database.

See Table 3-4 for more information about this method.

If you suspend transaction processing for the active database whileinitializing
the standby database, do not choose the “dump marker” option when you add
the standby database. You caninitialize the standby database by using thedump
and load commands, by using bcp, or by using mount.

Replication Server starts replicating into the standby database from the enable
replication marker in thetransaction log of the active database. No transactions
occur after the enable replication marker, because client applications are
suspended.

Figure 3-3: Using dump and load without dump marker, or using bcp

Included in dumps,
Log " and loaded in the
grows standby database
Enable marker

Applied o the
standby database

Active database
transaction log

As shown in Figure 3-3, no transactions are executed in the active database
between the time the enable replication marker iswritten and the time the data
in the active database is dumped using the dump command, or copied using bcp
Or mount.

You can load the last full database dump or the last set of replicated tables
copied with bep into the standby database until the standby database receives
the enabl e replication marker.

After receiving thismarker, Replication Server starts executing transactionsin
the standby database.

87

Setting up ASE warm standby databases

Adding the standby database maintenance user

Making the server
user’s IDs match

Adding the
maintenance user

88

If you plan to initialize the standby database using the dump and load
commands, with or without the “dump marker” option, you must create the
maintenance user login name for the standby database in both the standby and
the active data servers. Do this before you add the standby database.

Both Sybase Central and rs_init automatically add the active database
maintenance user in the active data server when you add the active database.

Within each data server, the server user’s ID (suid) for each login name must
be the same in the syslogins table in the master database and the sysusers table
in each user database. Thismust betrue for the active and standby databasesin
awarm standby application. The server user’s|1D and rol e settings must also be
the same in the syslogins and sysloginroles tables in the master database.

Use one of these three methods to make the server user’s |Ds match:

» Addall login names, including maintenance user names, to both Adaptive
Serversin the same order. Adaptive Server assigns server user’'s IDs
sequentialy, so the server user’s IDsfor al login names will match.

» Afterloading the dumpinto the standby, reconcilethe sysusers tablein the
standby database with the syslogins table in the master database of the
standby Adaptive Server.

* Maintain amaster Adaptive Server with all of your login names and copy
the syslogins table from the master database for the master Adaptive
Server to al newly created Adaptive Servers.

To add the maintenance user login name for the standby database to both the
standby and the active data servers:

1 Inthestandby data server, execute the sp_addlogin system procedure to
create the maintenance user login name.

Refer to the Adaptive Server Enterprise System Administration Guide for
more information about using sp_addlogin.

2 Intheactive data server, execute sp_addlogin to create the same
maintenance user login name that you created in the standby data server.

When you set up the standby database using the dump and load commands,
the sysusers tableisloaded into the standby database along with the other
data from the active database.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Adding the standby database to the replication system
To add the standby database to the replication system:

Administration Guide

1

Suspend transaction processing in the active database, if appropriate for
your client applications and your method of initializing the standby
database.

You must use dump and load with the* dump marker” method if you do not
suspend transaction processing.

Use Sybase Central or rs_init to add the standby database to thereplication
system. Perform the steps described for adding a database to the
replication system.

To monitor the status of the logical connection at any time, enter:

admin logical status, logical ds, logical db

The Operation in Progress and State of Operation in Progress output
columns indicate the standby creation status.

If you areinitializing the standby database using dump and load, use the
dump command to dump the contents of the active database, and load the
standby database. For example:

dump database active database to dump device
load database standby database from dump device

If you have aready loaded a previous database dump and subsequent
transaction dumps, you can just dump the transaction log and load it into
the standby database. For example:

dump transaction active database to dump device
load transaction standby database from dump device

After completing load operations, bring the standby database online:
online database standby database

Refer to the Adaptive Server Enterprise Reference Manual for help with
using the dump and load commands and the online database command.

Initialize the standby database. Use bcp or quiesce ... to manifest_file and
mount.

« Toinitialize the standby database using bcp, copy each of the
replicated tables in the active database to the standby database.

You must copy the rs_lastcommit table, which was created when you
added the active database to the replication system.

89

Setting up ASE warm standby databases

Using a blocking
command for standby
creation

8

Refer to the Adaptive Server utility programs manual for help with
using the bcp program.

e Toinitializethe standby database using quiesce ... to manifest_fileand
mount, quiesce the database and create the manifest file. Make a copy
of both the database and log devices. Mount the devices on the
standby database.

If you initialized the standby database by using dump and load without the
“dump marker” method, or by using bcp, or by using quiesce database ...
to manifest_file and mount, Replication Server suspended the connection
to the active database. Resume the connection by executing the following
command in the Replication Server:

resume connection to active ds.active db

Regardless of your method for initializing the standby database, you must
resume the connection to the standby database by executing the following
command:

resume connection to standby ds.standby db

10 Resume transaction processing in the active database, if it was suspended.

In Replication Server, the wait for create standby command is a blocking
command. It tells Replication Server not to accept commands until the standby
database is ready for operation. You can use this command in a script that
creates a standby database. The syntax is:

wait for create standby for logical ds.logical db

Enabling replication for objects in the standby database

To be ready to switch to the standby database, replication must be enabled for
the tables and stored procedures in the standby database that you want to
replicate into the new standby database after the switch.

90

If you initialized the standby database using the dump and load or mount
commands, the tables and stored procedures in the standby database will
have the same replication settings as the active database.

If you initialized the standby database using bcp, enable replication for
these objects by using sp_setreptable or sp_reptostandby, and
sp_setrepproc. To dothis, adapt the procedure under “ Task three: Enabling
replication for objects in the active database” on page 80 to enable
replication for objects in the standby database.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Enabling replication

for objects added later

Later on, you may add new tables and user stored procedures that you want to
replicate to the new standby database.

If you marked the standby database for replication with sp_reptostandby,
any new tables are automatically marked for replication.

If you marked individual databasetablesfor replication to the new standby
databasewith sp_setreplicate, you must mark each new table that you want
to replicate with sp_setreplicate.

You must mark each new user stored procedure that you want to replicate
with sp_setrepproc.

Granting permissions to the maintenance user

After adding the standby database, you must grant the necessary permissions
to the maintenance user.

To grant permissions:

1

Log in to the Adaptive Server as the System Administrator or asthe
Database Owner, and enter:

use standby database

Grant replication_role to the maintenance user. replication_role ensures that
the maintenance user can execute truncate table at the standby database.

sp_role “grant”, replication role, maintenance user
Execute this command for each table:

grant all on table name to maintenance user

Replicating the master database in a warm standby
environment for ASE

You can replicate Adaptive Server logins from one master database to another.
The master database replication islimited to DDL, and the system commands
used to managelogins and roles. M aster database replication does not replicate
data from system tables, nor replicate data or procedures from any other user

tables in the master database.

Administration Guide

91

Replicating the master database in a warm standby environment for ASE

Both the source Adaptive Server and the target Adaptive Server must be the
same hardware architecture type (32-bit versions and 64-bit versions are
compatible), and the same operating system (different versions are also
compatible).

Do not initialize the active and standby databases with aload from another
master database. To synchronize the syslogins, suids and roles at each master,
use bep to refresh the appropriate tables or manually synchronize the IDs and
roles prior to setting up your replication.

For alist of supported DDL and system procedures that apply to the master
database, see“ Restrictions and requirementswhen using sp_reptostandby” on
page 66 and “ Supported DDL commands and system procedures’ on page 66.

Replication Server versions 12.0 and | ater support master database replication
in awarm standby environment, and in an MSA environment in Replication
Server 12.6 and later. The primary or active Adaptive Server must be version
15.0 ESD #2 or later.

See“ Replicating the master databasein an MSA environment” in Replication
Server Administration Guide Volume 1 for information about master database
replication in an MSA environment.

[ISetting up master database replication in a warm standby environment

1 Set upthe active master database and the standby master database in the
Replication Server as warm standby pair. Do not “initialize the standby
with dump and load” nor “ use the dump marker to start replicating to
standby”. To synchronize the syslogins and suids at each master, use bcp
or manually synchronize the IDs.

See “ Setting up ASE warm standby databases’ for more information on
setting up awarm standby environment.

2 Mark the master database on both the active and the standby database to
send system procedures:

sp_reptostandby master, ‘all’
3 Stop the RepAgent on the active master database:
sp_stop rep agent master

4 Configure the Replication Agents on both the active and the standby
databases to send warm standby transactions:

sp_config rep agent master, ‘send warm standby
xacts’, ‘true’

5 Restart the RepAgent on the active master database:

92 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Administration Guide

sp_start rep agent master

Resume the DSI connections to both the active and the standby master
databases on the Replication Server:

resume connection to active ds.master

go
resume connection to standby ds.master

go
Verify the status of warm standby:

admin logical status

93

Switching the active and standby ASE databases

Switching the

active and standby ASE databases

This section contains information about switching to the standby database
when the active database fails or when you want to perform maintenance on the
active database.

Determining if a switch is necessary

Before switching

94

Determining when it is necessary to switch from the active to the standby
database depends on the requirements of your applications.

In general, you should not switch when the active data server experiences a
transient failure. A transient failureisafailure from which the Adaptive Server
recovers upon restarting with no need for additional recovery steps. You
probably should switch if the active database will be unavailable for along
period of time.

Determining when to switch depends on issues such as how much recovery the
active database requires, to what degree the active and standby databasesarein
sync, and how much downtime your users or applications can tolerate.

You may also want to switch the roles of the active and standby databasesto
perform planned maintenance on the active database or its data server.

active and standby databases

Figure 3-4 illustrates awarm standby application for a database that does not
participate in the replication system other than through the activities of the
warm standby application itself. Figure 3-4 represents the warm standby
application in normal operation, before you switch the active and standby
databases.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Active

Database

Administration Guide

Figure 3-4: Warm standby application example—before switching
Clients
[

Replication Server

Standby Standby
D3l Database

Inbound Queus)

Figure 3-4 addsinternal detail to Figure 3-1, to show that:

* Replication Server writes transactions received from the active database
into an inbound message queue.

See “Distributed concurrency control” on page 50 in the Replication
Server Administration Guide Volume 1 for more information about
inbound and outbound queues.

e Thisinbound queueis read by the DSI thread for the standby database,
which executes the transactions in the standby database.

M essages received from the active database cannot be truncated from the
inbound queue until the standby DSI thread has read them and applied
them to the standby database.

In this example, transactions are simply replicated from the active database
into the standby database. The logical database itself does not:

« Contain primary datathat is replicated to replicate databases or remote
Replication Servers, or

* Receivereplicated transactions from another Replication Server

See “Warm standby applications using replication” on page 112 for
information about warm standby applications for a primary or replicate
database.

95

Switching the active and standby ASE databases

Internal switching steps
When you switch active and standby databases, hereiswhat Replication Server

does:

1 Issueslog suspend against the active and standby RepAgent connections.

2 Readsall messages left in the inbound queue and applies them to the
standby database and, for subscription data or replicated stored
procedures, to outbound queues.

All committed transactionsin theinbound queue must be processed before
the switch can complete.

3 Suspendsthe standby DSI.

4 Enablesthe secondary truncation point in the new active database.

5 Placesamarker in the transaction log of the new active database.
Replication Server uses this marker to determine which transactionsto
apply to the new standby database and to any replicate databases.

6 Updatesdatain the RSSD pertaining to the warm standby databases.

7 Resumes the connection for the new active database, and resumes log

transfer for the new active database so that new messages can be received.

After switching active and standby databases

After you have switched the roles of the active and standby databases, the
replication system will have changed, as shown in Figure 3-5:

96

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Figure 3-5: Warm standby application example—after switching

Standby
Database

Clients

Replication Server

P Standby Active
- Dsl Database

F 3

(Inbound Queue

The previous standby database is the new active database. Client
applications will have switched to the new active database.

The previous active database, in this example, becomes the new standby
database. Messages for the previous active database are queued for
application to the new active database.

Note RepAgent for the previous active database has shut down. RepAgent for
the new active database has started.

Making the switch

Administration Guide

[ISwitching from the active to the standby database

1

g b~ W N

Disconnect client applications from the active database if they are still
using it

In Replication Server, switch the active and standby databases
Restart client applications with the new active database

Start RepAgent for the new active database

Determine whether to drop the old active database or use it asthe new
standby database

The following sections contain the procedures for these tasks.

97

Switching the active and standby ASE databases

Disconnect client applications from the active database

Before you switch to the standby database, you must stop clients from
executing transactions in the active database. If the database failed, of course,
clients cannot execute transactions. However, you may need to take steps to
prevent them from updating that database after it is back online.

See “ Setting up clients to work with the active data server” on page 104 for
more information about client application issues.

Procedure for switching the active and standby databases

98

Before switching, you must implement a method for switching clients, as
described in “ Setting up clients to work with the active data server” on page
104.

Follow these steps to switch the active and standby databases for a logical
connection:

1 AttheAdaptive Server of the active database, ensure that the RepAgent is
shut down. Otherwise, use sp_stop_rep_agent to shut down the RepAgent.

2 Atthe Replication Server, enter:

switch active for logical ds.logical db
to data_server.database

data_server.database is the new active database.

See “Internal switching steps’ on page 96 for information on what
Replication Server does when you switch.

3 Tomonitor the progress of a switch, you can use the admin logical_status
command:

admin logical status, logical ds, logical db

The Operation in Progress and State of Operation in Progress output
columns indicate the switch status.

4 When the active database switch is complete, you must restart RepAgent
for the new active database:

sp_start rep agent dbname

Note If Replication Server stopsin the middle of switching, the switch
resumes after you restart Replication Server.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Using a blocking command for switch active

Monitoring the switch

Aborting a switch

Administration Guide

In Replication Server, the wait for switch command is a blocking command. It
tells Replication Server to wait until the standby database is ready for
operation. You can use this command in a script that switches the active
database. The syntax is:

wait for switch for logical ds.logical_ db

You can use admin logical_status to check for replication system problems that
prevent the switch from proceeding. Such problems may include afull
transaction log for the standby database or a suspended standby DSI. If you
cannot resolve the problems, you can abort the switch using the abort switch
command.

The Operation in Progress and State of Operation in Progress output columns
indicate the switch status.

For example, suppose the admin logical_status command persistently returns
one of the following messages in its State of Operation in Progress output
column:

Standby has some transactions that have not been applied
or

Inbound Queue has not been completely read by
Distributor

These messages may indicate a problem that you cannot resolve, in which case
you may choose to abort the switch. You can use admin who commands to
obtain more information about the state of the switching operation.

See “ Commands for monitoring warm standby applications’ on page 103 for
more information.

Unless Replication Server has proceeded too far in switching the active and
standby databases, you can abort the process by using the abort switch
command:

abort switch for logical ds.logical db

If the abort switch command cancel s the switch active command successfully,
you may have to restart the RepAgent for the active database.

99

Switching the active and standby ASE databases

You cannot cancel the switch active command after it reaches acertain point. If
thisisthe case, you must wait for the switch active command to complete, then
useit again to return to the original active database.

Restart client applications

When the admin logical_status command indicates that there is no operationin
progress, or when the wait for switch command returns an isql prompt, you can
restart client applications in the new active database.

Client applications must wait until Replication Server switch to the new active
database is compl ete before they begin executing transactionsin the new active
database. You should provide an orderly method for moving clients from the
old active database to the new active database. See “ Setting up clientsto work
with the active data server” on page 104 for more information.

Resolving paper-trail transactions

If the old active database failed, determine if any transactions were not
transmitted to the new active database. Such transactionsare called paper-trail
transactionsif thereis an external record of their execution.

When you switch from an active to a standby database, all committed
transactionsin theinbound queue are applied to the new active database before
the switch is complete. However, it is possible that some transactions that
committed at the active database before the failure were not received by
Replication Server and, therefore, were not applied to the standby database.

When you switch the active and standby databases, you can re-execute the
paper-trail transactions in the new active database. If there are dependencies,
you may need to re-execute the paper-trail transactions before you allow new
transactionsto execute. Be sureto execute the paper-trail transactionsusing the
original client’s login name, not the maintenance user login name.

If you bring the old active database online as the new standby database, you
must first reverse the paper-trail transactions so they will not be duplicated in
the standby database.

Manage the old active database

100

After you have switched to the new active database, you must decide what to
do with the old active database. You can:

» Bring the database online as the new standby database and resume the
connection so that Replication Server can apply new transactions, or

Replication Server

CHAPTER 3 Managing Warm Standby Applications

« Drop the database connection using the drop connection command, and
add it again later as the new standby database. If you drop the database,
any queued messages for the database are deleted. Refer to Chapter 3,
“Replication Server Commands,” in the Replication Server Reference
Manual for more information about drop connection command.

Bringing the old active database online as the new standby

If the old active database is undamaged, you can bring it back online asthe new
standby database by entering:

resume connection to data server.database

where data_server.database is the physical database name of the old active
database.

You may need to resolve paper-trail transactionsin the database in order to
avoid duplicate transactions. Depending on your applications, you may need to
do thisbefore you bring the old active database back online as the new standby
database.

Because paper-trail transactions must be re-executed in the new active
database, you must prepare the new standby database so that it can receive the
transactions again when they are delivered through the replication system.

To resolve the conflicts, you can:
< Undo or reverse the duplicate transactionsin the new standby database, or

e Ignorethe duplicate transactions and deal with them later.

Monitoring a warm standby application

This section describes methods you can use to monitor a warm standby
application between two Adaptive Server databases or Oracle databases.

Replication Server log file

You can read the Replication Server log file for messages pertaining to warm
standby operations. This section discusses|og messagesyou will seewhen you
add the standby database.

Administration Guide 101

Monitoring a warm standby application

Standby connection

created

These are examples of the messages that Replication Server writes while
creating the physical connection for a standby database:

I. 95/11/01 17:47:50. Create starting : SYDNEY DS.pubs2
I. 95/11/01 17:47:58. Placing marker in TOKYO DS.pubs2 log
I. 95/11/01 17:47:59. Create completed : SYDNEY DS.pubs2

Standby connection

In these examples, SYDNEY _DS isthe standby data server and TOKYO_DS
isthe active data server.

When you create the physical connection for the standby database, Replication
Server writesan “ enablereplication” marker in the active database transaction
log. The standby DSI ignores all transactions until it has received this marker.
If, however, you chose the “ dump marker” option, the standby DSI continues
to ignore messages until it encounters the next dump marker in the log.

When the appropriate marker arrives at the standby database from the active
database Replication Agent, the standby DSl writes a message in the
Replication Server log file and then begins executing subsequent transactions
in the standby database.

In the example messages above, Replication Server has created the connection
for the standby database, SYDNEY _DS.pubs2, and suspended its DSI thread.
At this point, the Database Administrator dumps the contents of the active
database, TOKY O_DS.pubs2, and loads it into the standby database.

resumed after initialization

After the Database Administrator has loaded the dump into the standby
database and resumed the connection to the standby database, the standby DSI
begins processing messages from the active database. Replication Server
writesin itslog messages similar to this:

I. 95/11/01 18:50:34. The DSI thread for database 'SYDNEY DS.pubs2' is started.

I. 95/11/01 18:50:41. Setting LTM truncation to 'ignore' for SYDNEY DS.pubs2 log

I. 95/11/01 18:50:43. DSI for SYDNEY DS.pubs2 received and processed Enable
Replication Marker. Waiting for Dump Marker

I. 95/11/01 18:50:43. DSI for SYDNEY DS.pubs2 received and processed Dump
Marker. DSI is now applying commands to the Standby

102

When you see the final message in the log file, the warm standby database
creation process has completed.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Commands for monitoring warm standby applications

Use the admin commands to monitor the status of awarm standby application.
Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for more information about these commands.

admin logical_status

admin who, dsi

admin who, sgm

Administration Guide

The admin logical_status command tells you:

« How the addition of a standby database or the switching between active
and standby databases is progressing.

* Whether the active or standby database connection is suspended.

e Whether the standby DSI isignoring messages. The standby DSI ignores
messages while it waits for a marker to arrive in the transaction stream
from the active database.

The admin who, dsi command provides another method to check the status of
the standby DSI. The IgnoringStatus output column contains either:

e “Applying” —if the DSl is applying messages to the standby database, or

e “Ignoring” —if the DSI iswaiting for a marker.

The admin who, sqm command provides information about the state of stable
gueues. In awarm standby application, the inbound queue is read by the
Distributor thread, if you have not disabled it, and by the standby DS thread.
Replication Server cannot del ete messages from the inbound queue until both
threads have read and delivered them.

If Replication Server isnot del eting messages from the inbound queue, you can
use the admin who, sgm command to investigate the problem. The command
tells you how many threads are reading the queue and the minimum deletion
point in the queue.

103

Setting up clients to work with the active data server

admin sgm_readers

The admin sgm_readers command monitors the read and delete points of the
individual threadsthat are reading the inbound queue. If the inbound queueis
not being deleted, admin sqgm_readers will help you find the thread that is not
reading the queue.

Theadmin sqm_readers command takestwo parameters: the queue number and
the queue type for the logical connection.

You can find the queue number and queue type in the Info column of the admin
who, sgm command output: the queue number isthe 3-digit number to the left
of the colon, while the queue type is the digit to the right of the colon.

Queue type 1 is an inbound queue. Queue type 0 is an outbound queue. The
inbound queue for alogical connection can be read by more than one thread.
For example, to find out about the threads reading inbound queue number 102,
execute admin sgm_readers as follows:;

admin sgm readers, 102, 1

Setting up clients to work with the active data server

104

When you switch the active and standby databases in Replication Server using
the switch active command, Replication Server does not switch client
applicationsto the new active data server and database automatically. You must
devise a method to switch client applications. This section describes three
sample methods for setting up client applications to connect to the currently
active data server. You can create:

 Twointerfacesfiles

* Aninterfacesfile entry with a symbolic data server name for client
applications

* A mechanism that automatically maps the client application data server
connections to the currently active data server

You must implement your method before you set up the warm standby
databases.

Regardless of your method for switching applications, do not modify the
interfaces file entries used by Replication Server.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Two interfaces files

With this method, you set up two interfacesfiles, onefor the client applications
and one for Replication Server. When you switch the clients, you can modify
their interfaces file entry to use the host name and port number of the data
server with the new active database.

Symbolic data server name for client applications

With this method, you create an interfaces file entry with a symbolic data
server name for client applications.

The interfaces file might contain entries like these:

Table 3-5: Symbolic data server name in interfaces file

Data server name Host name Port number
Client applications CLIENT_DS machine_1 2800
Active database TOKYO_DS X machine 1 2800
Standby database TOKYO DS Y machine 2 2802

You could create an interfaces entry for adata server named CLIENT_DS.
Client applications would always connect to CLIENT_DS. The CLIENT_DS
entry would use the same host name and port number as the data server with
the active database.

Replication Server connects to the same host name and port number as the
client applications but uses a different data server name. In this example,
Replication Server would switch between the TOKYO_DS X and
TOKYO DS Y dataservers.

After switching the active database, you would change the CLIENT_DS
interfaces entry to the host name and port number of the data server with the
new active database—in this example, machine_2 and port number 2802.

Map client data server to currently active data server

With this method, you create a mechanism, such as an intermediate Open
Server application, that automatically maps the client application data server
connections to the currently active data server.

Administration Guide 105

Altering warm standby database connections

Refer to Open Server documentation, such as the Open Server Server-
Library/C Reference Manual, for more information about how to create such
an Open Server application.

Altering warm standby database connections

This section describes options for reconfiguring or modifying the logical
database connection and the physical database connections. Under ordinary
circumstances, if you set up awarm standby application through the usual
procedure, the default settings will work correctly.

Altering logical connections
Use the alter logical connection command to modify parameters that:
» Affectlogical connections
» Enable or disable the Distributor thread
» Enable or disable the replication of truncate table to the standby database

Changing parameters affecting logical connections

To update parameters that affect logical connections, log in to the source
Replication Server and, at the isql prompt, enter:
alter logical connection

to logical_ds.logical_db
set logical_database_param to 'value'

wherelogical_dsisthe data server namefor thelogical connection, logical_db
is the database name for the logical connection, logical _database paramisa
logical database parameter, and value is a character string setting for the
parameter.

106 Replication Server

CHAPTER 3 Managing Warm Standby Applications

New settings take effect immediately.

Warning! You should reset the logical connection parameters
materialization_save_interval and save_interval only when thereisaseriouslack
of stable queue space. Resetting them (from strict to a given number of
minutes) may lead to message loss at the standby database.

Table 3-6 displays the configuration parameters that affect logical database
connections.

Table 3-6: Configuration parameters affecting logical connections

logical_database_param

value

deferred_name_resolution

Enable deferred name resolution in Replication Server to support deferred name
resolution in Adaptive Server.

You must ensure that deferred name resol ution is supported in the replicate
Adaptive Server before you enable deferred name resol ution support in
Replication Server.

Default: off

Note This parameter isonly applicable to Adaptive Server.

materialization_save_interval

Materialization queue save interval. This parameter is only used for standby
databases in awarm standby application.

Default: “strict” for standby databases

replicate_minimal_columns

Specifies whether Replication Server should send all replication definition
columns for all transactions or only those needed to perform update or delete
operations at the standby database. Values are “on” and “off.”

Replication Server uses this value in standby situations only when areplication
definition does not contain a“ send standby” parameter, or if thereisnoreplication
definition at all.

Otherwise, Replication Server uses the value of the “replicate minimal columns”
or “replicate al columns’ parameter in the replication definition.

Default: on

When you set dsi_compile_enable to‘on’, Replication Server ignoreswhat you set
for replicate_minimal_columns.

save_interval

The number of minutesthat the Replication Server saves messages after they have
been successfully passed to the destination data server. See “ Save interval for
recovery” on page 301 for details.

Default: 0 minutes

Administration Guide

107

Altering warm standby database connections

logical_database_param

value

send_standby_repdef_cols

Specifies which columns Replication Server should send to the standby database
for alogical connection. Overrides “ send standby” options in the replication
definition that tell Replication Server which table columns to send to the standby
database. Values are:

¢ on—send only the table columns that appear in the matching replication
definition. Ignore the “send standby” option in the replication definition.

« off —send dl table columnsto the standby. Ignore the “ send standby” optionin
the replication definition.

¢ check_repdef —send al table columnsto the standby based on “ send standby”
option.
Default: check_repdef

Disabling the Distributor thread

108

If you do not replicate data from the active database into databases other than
the standby database, Replication Server does not need a Distributor thread for
the logical connection. You can disable the Distributor thread to save
Replication Server resources.

To disable the Distributor thread, you must first drop any subscriptionsfor the
datain thelogical database. Then execute alter logical connection at the
Replication Server:

alter logical connection
to logical ds.logical db
set distribution off

If you decide later to replicate data out of the active database, you can use this
command to reenable the Distributor thread.

Warning! If you disable the Distributor thread and then drop the standby
database from the replication system, no Replication Server threadswill beleft
to read the inbound queue from the active database. The inbound queue will
continue to fill until you either add another standby database, set distribution
to“on” for the logical connection, or drop the active database from the
replication system.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Replicating truncate table to standby databases

Altering physical

Administration Guide

Replication Server copies execution of truncate table to warm standby
databases. The active and standby databases must be Adaptive Server version
11.5 or later to support this feature.

To enable or disable replication of truncate table, log in to the source
Replication Server and enter:

alter logical connection
to logical ds.logical db
set send truncate table to {on | off}

If your warm standby application was created before you upgraded or installed
Replication Server version 11.5 or later, Replication Server does not copy
truncate table to the standby database unless you enable this feature with alter
logical connection. To preserve compatibility with existing warm standby
applications, the default setting is “ off.”

If your warm standby application was created after you upgraded or installed
Replication Server version 11.5 or later, Replication Server automatically
copies truncate table to the standby database unless you disable this feature
with alter logical connection. The default setting is“on.”

connections

Use the alter connection command at the source Replication Server to modify
parameters that affect physical connections for warm standby applications:

alter connection to data server.database
set database param to 'value'

where data_server is the destination data server, database is the database the
data server manages, database paramis a parameter that affects the
connection and value is a setting for database param.

You must suspend the connection before altering it; then, after executing alter
connection, you resume the connection for new parameter settingsto take
effect. See " Altering database connections’ on page 190 in the Replication
Server Administration Guide Volume 1 for more information.

109

Altering warm standby database connections

Configuring triggers in the standby database

By default, the standby DSI thread executes a set triggers off Adaptive Server
command when it logsin to astandby database. This prevents Adaptive Server
from firing triggers for the replicated transactions, thereby preventing
duplicate updates in the standby database.

You can alter the default behavior by using the alter connection command to
configure a connection to fire or not fire triggers. To do this, set the
dsi_keep_triggers configuration parameter to “on” or “off.” The default
dsi_keep_triggers setting for all connections except standby databasesis “on.”

Configuring replication in the standby database

The dsi_replication configuration parameter specifies whether or not
transactions applied by the DSI are marked in the transaction log as being
replicated. It must be set to “on” for the active replicate database. By defaullt,
itissetto“off” for the standby database and set to “on” for all other databases.

When dsi_replication is set to “off,” the DSI executes set replication off in the
database, preventing Adaptive Server from adding replication information to
log records for transactions that the DSI executes. Since these transactions are
executed by the maintenance user and, therefore, are not replicated further
(except if there is a standby database), setting this parameter to “off” where
appropriate writes less information into the transaction log.

Use admin who, dsi to see how this parameter is set for a connection.

Changing configuration parameters in the standby database

When you create the standby database, thefollowing configuration parameters,
if they are set for the active database, are copied from the active database to the
standby database:

110 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Table 3-7: Configuration parameters copied to standby database

batch batch_begin command_retry
db_packet_size dsi_cmd_separator dsi_charset_convert
dsi_cmd_batch_size dsi_keep_triggers dsi_fadeout_time
dsi_isolation_level dsi_max_text_to_log dsi_large_xact_size
dsi_max_cmds_to_log dsi_replication dsi_num_large_xact_threads
dsi_num_threads dsi_xact_group_size dsi_serialization_method
dsi_sqt_max_cache_size dsi_xact_in_group dump_load

parallel_dsi use_batch_markers

You can change the setting of any of these configuration parameters. See
Chapter 7, “Managing Database Connections’ in the Replication Server
Administration Guide Volume 1 for more information.

Dropping logical database connections

If you are dismantling awarm standby application, you may need to remove a
logical database from the replication system. To do this, drop the standby
database, then execute the drop logical connection command. Before you
execute the command, you must drop the standby database. See “ Dropping
database connections’ on page 213 in the Replication Server Administration
Guide Volume 1 for information about dropping physical database connections.

The syntax for drop logical connection is:
drop logical connection to data_server.database

data_server and database represent the logical data server and logical
database.

For example, to drop the connection to the pubs2 logical databasein the LDS
logical data server, enter:

drop logical connection to LDS.pubs2

Dropping a logical database from the ID Server

Administration Guide

When awarm standby application exists in the replication system, logical
databases, along with physical databases, data servers, and Replication
Servers, are listed in the rs_idnames system table in the RSSD for the ID
Server. Occasionally, it may be necessary to remove the entry for alogical
database from this system table.

111

Warm standby applications using replication

For example, if adrop logical connection command fails, you may haveto force
the ID Server to delete from the rs_idnames system table the row that
correspondsto thelogical database. Logical database connectionsshow an“L”
in the Itype column.

The sysadmin dropldb command logsin to the ID Server and del etes the entry
for the specified logical database. The syntax is:

sysadmin dropldb, data_server, database

data_server and database refer to the logical data server and the logical
database names.

You must have sa permission to execute any sysadmin command.

Warm standby applications using replication

This section describes warm standby applications that involve replication,
where the logical database serves as aprimary or replicate database in the
replication system.

Also see “Using replication definitions and subscriptions’ on page 119.

Warm standby application for a primary database

112

Figure 3-6 illustrates awarm standby application for a primary database. In
this example, one Replication Server manages three databases:

e Theactive database for alogical primary database,
e The standby database for alogical primary database, and

e A replicate database that has subscriptions for the datain the logical
primary database.

In this example, a single Replication Server manages both the primary and
replicate databases. |n other instances, different Replication Servers may
manage the primary and replicate databases.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

From client
applications to
inbound queue

From inbound queue
to replicate database

Administration Guide

Figure 3-6: Warm standby application for a primary database

Clients

Active
Dala Server

Active
Database

Replication Server

(M

) Standby
Data Server

"

Standby
Database

Replicate
Database

Replicate
Data Server

If Replication Server does not manage
The replicate database, transaclions
are copied to the replicale Replication
Server for execution in the replicate
database.

The numbersin Figure 3-6 indicate the flow of transactions from client
applications through the replication system in awarm standby application for

aprimary database.

In Figure 3-6, numbers 1 through 3 trace transactions from clients to an

inbound queue in the Replication Server:

« Clients execute transactions in the active primary data server.

e Theactive primary data server updates the active primary database.

e The Replication Agent for the active primary database reads transactions
for replicated datain the database log. It forwards the transactions to the
Replication Server, which writes them into an inbound queue.

All transactions for replicated data, including those executed by the
maintenance user, are sent to the Replication Server for application in the

standby database.

In Figure 3-6, numbers 4 through 8 trace transactions from the inbound queue

to the replicate database:

113

Warm standby applications using replication

From inbound queue
to standby database

114

e The Distributor thread reads transactions from the inbound queue.

» The Distributor thread processes transactions against subscriptions and
writes replicated transactions into an outbound queue.

Transactions executed by the maintenance user, which are always
replicated into the standby database (because you set the
send_warm_standby_xacts parameter when you configure RepAgent with
sp_config_rep_agent), are not replicated to replicate databases unless you
also set the send_maint_xacts_to_replicate parameter for RepAgent.

Note For Oracle, transactions executed by the maintenance user, are
always replicated to the replicate database because the filter_maint_userid
configuration parameter isinvalid for Replication Agent for Oracle
irrespective of whether the parameter is set to “true” or “false’.

» A DSl thread reads transactions from the outbound queue.
» TheDSI thread executes the transactions in the replicate data server.
» Thereplicate data server updates the replicate database.

If the transactions are to be replicated to a database managed by adifferent
Replication Server, they are written into an RSI outbound queue managed
by an RSl thread instead of a DSl thread. The RSI thread deliversthe
transactions to the other Replication Server.

In Figure 3-6, numbers 9 through 11 trace transactions from the inbound queue
to the standby database for the logical primary database:

» The standby DSI thread reads transactions from the inbound queue.
» The standby DSI thread executes transactions in the standby data server.
» The standby data server updates the standby database.

Theinbound queue isread by the standby DSI and the Distributor. The two
threads do their work concurrently. M essages cannot be truncated from the
inbound gueue until both threads have read them and delivered them to their
destination. The messages remain in the queue until the DS| has applied them
to the standby database and, if there are subscriptions or replicated stored
procedure executions, the Distributor has written them to the outbound queue.

Depending on your replication system, the transactions may be replicated into
the standby database before the replicate database. However, Replication
Server guarantees that the standby primary database and replicate databases
will be kept in sync with the active primary database.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Warm standby application for a replicate database

Administration Guide

Figure 3-7 illustrates a warm standby application for areplicate database. In
this example, asingle Replication Server manages three databases:

e A primary database,
e Theactive database for alogical replicate database, and
e The standby database for alogical replicate database.

The logical replicate database has subscriptions for the datain the primary
database. Therefore, updates from the primary database are replicated to both
the active and the standby databases.

In this example, a single Replication Server manages both the primary and
replicate databases. In other instances, different Replication Servers may
manage the primary and replicate databases.

115

Warm standby applications using replication

From client

Figure 3-7: Warm standby application for areplicate database

) If Replication Server doas not manage the primary
Clients S database, replicated data is received from the primary
Replication Server and written directly into the
+ 1 outhound gueue, bypassing steps 1-5,
Primary)
Data Server Replication Server
2
Primary
3 4
|
Data Server
5
12
Outbound Queue
Standby
. B Database
Active 4
Data Server é) -?\ DS
8
Standby | 11
Active DSl
Database 10
\L Inbound Queus

applications to primary
and active databases

116

The numbersin Figure 3-7 indicate the flow of transactions from client
applications through the replication system in awarm standby application for
areplicate database.

In Figure 3-7, numbers 1 through 8 trace transactions from clients to the
primary database, and, via normal replication, to the active replicate database:

Clients execute transactions in the primary data server.
The primary data server updates the primary database.

Replication Agent for the primary database reads transactions for
replicated datain the transaction log and forwards them to the Replication
Server, which writes them into an inbound queue.

The Distributor thread reads transactions from the inbound queue.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

From active database
to standby database

The Distributor processes transactions against subscriptions and writes
replicated transactions into an outbound queue.

If the Replication Server managing the warm standby application for the
replicate database does not also manage the primary database, replicated
datais received from the primary Replication Server and written directly
to the outbound queue. Steps 1 through 5 are bypassed.

A DSl thread reads transactions from the outbound queue.

The DSl thread executesthetransactionsin the replicate dataserver, which
isthe active data server for the warm standby application.

The active data server updates the active database.

If the transactions originate in a primary database managed by a different
Replication Server, the Distributor thread in the primary Replication
Server writes them into an RSI outbound queue. Then they are replicated
toaDSI outbound queue in the replicate Replication Server in order to be
applied in the active database for the logical replicate database.

InFigure 3-7, numbers 9 through 12 trace transactionsfrom the active database
for the logical replicate database to its standby database:

Replication Agent for the active database reads the transactions in the
active database |og and forwards them to the Replication Server, which
writes them into an inbound queue.

All transactions for replicated data, including those executed by the
maintenance user, are sent to the Replication Server for application in the
standby database.

The standby DS thread reads transactions from the inbound queue.
The standby DSI thread executes transactions in the standby data server.
The standby data server updates the standby database.

Configuring logical connection save intervals

Administration Guide

This section describes some options for reconfiguring the save intervals for a

logical replicate database. A saveinterval for a connection specifies how long
messages will be retained in a stable queue before they can be deleted. If you
set up awarm standby application through the usual procedure, the default
settings will work correctly.

117

Warm standby applications using replication

The DSI queue save
interval

The materialization
gueue save interval

118

You can use the configure logical connection command to configure the DSI
gueue save interval and the materialization queue save interval for the logical
connection.

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for the syntax of configure logical connection command.

Warning! The DSI queue save interval and the materialization queue save
interval settings for alogical connection should be reset only under serious
conditions stemming from alack of stable queue space. Resetting these save
intervals (from strict to a given number of minutes) may lead to message loss
at the standby database. Replication Server cannot detect thistype of loss; you
have to verify the integrity of the standby database yourself.

By default, the DSI queue saveinterval for thelogical connection isset to 'strict'
when you create a standby database. This causes Replication Server to retain
DSl queue messages until they are delivered to the standby database. If you
must change the DSI queue save interval for the logical connection, use the
configure logical connection command.

For example, to force areplicate Replication Server to save messages destined
for itslogical replicate data server LDS for one hour (sixty minutes), enter the
following command:

configure logical connection to LDS.logical pubs2
set save interval to '60'

To reset this save interval back to 'strict', enter:

configure logical connection to LDS.logical pubs2
set save_interval to 'strict'

The materialization queue save interval for the logical connection is set to
'strict' by default when you create a subscription. This causes Replication
Server to retain materialization queue messages until they are delivered to the
standby database. If you must change the materialization queue save interval
for the logical connection, use the configure logical connection command.

For example, to force areplicate Replication Server to save messages in the
materialization queue for itslogical replicate data server LDS for one hour
(sixty minutes), enter the following command:

configure logical connection to LDS.logical pubs2
set materialization save interval to '60'

To reset this save interval back to 'strict', enter:

Replication Server

CHAPTER 3 Managing Warm Standby Applications

configure logical connection to LDS.logical pubs2
set materialization save interval to 'strict'

Using replication definitions and subscriptions

This section contains information about using warm standby databases with
replication definitions and subscriptions. See “Warm standby applications
using replication” on page 112 for more information about warm standby
applications for a primary or replicate database.

Creating replication definitions for warm standby databases

Replication Server does not require replication definitions to maintain a
standby database, although using replication definitions can improve
performance when replicating into a standby database. You can create a
replication definition for each table in the logical database. You can also use
function replication definitions when replicating into a standby database.

Replication definitions can change how Replication Server replicates datainto
a standby database, allowing you to optimize your warm standby application
or enable a non-default behavior that your application requires.

You can use replication definitions in awarm standby applicationin the
following scenarios:

e Toimprovethe performance of the replication system, as described under
“Using replication definitions to optimize performance” on page 122.

« Innormal replication into or out of the logical database, as described in
“Warm standby applications using replication” on page 112.

alter table support for warm standby

Adaptive Server Enterprise version 12.0 and later allows usersto alter existing
tables—add non-nullable columns, drop columns, and modify column
datatypes.

Administration Guide 119

Using replication definitions and subscriptions

No replication definition

For Oracle warm standby applications, you need replication definitions to
enable replication of user defined datatypes. Replication Agent for Oracle
automatically creates replication definition at the time of initialization. In such
ascenario, you need to manually create new replication definition or alter
existing replication definition to explicitly specify in the replication definition
which user defined datatype is being replicated to the standby database.

This section describes how Replication Server supportstable changesresulting
from the alter table command when the table has no subscriptions.

Note To support table changes that result from alter table when subscriptions
exist for that table, you need to ater the table’s replication definition. See
“Modifying replication definitions’ on page 324 in the Replication Server
Administration Guide Volume 1 for instructions.

In previous rel eases, when a replication definition was defined for atable,
Replication Server always used the column datatype defined in the warm
standby replication definition. Beginning with Replication Server version 12.0,
and depending on the situation, Replication Server may or may not useatable’'s
replication definition.

When you use alter table against a table without replication definitions,
Replication Server sends warm standby databases the same information it
receivesfrom the primary server. All options of alter table are supported. When
you execute alter table at the primary, the command is replicated to the warm
standby, and replication to the standby continues—no action isrequired in the
Replication Server.

See the Adaptive Server Enterprise Reference Manual, Volume 2: Commands
for alter table syntax and information.

alter table add column with default

120

When you issuethealter table command in the active database to add acolumn
with a default value, Adaptive Server creates a constraint with an auto-
generated name. When the command isreplicated to the standby database, the
standby database al so creates the same constraint with another, different auto-
generated name. When you drop the constraint in the active database, the
standby database does not recognize the constraint name and generates a data
server interface (DS) error.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

To avoid this, drop the constraint in the active database first. The data server
interface (DSI) shuts down automatically. Then drop the constraint created in
the standby database and issue the resume dsi skip transaction command.

An alternative workaround is to execute:

alter table table name
replace column name
default null

This automatically drops the constraints created on both active and standby
Sites.

Warm standby with no send standby clause

When there is no send standby clause associated with any replication
definition, Replication Server sendswhatever datait receivesfrom the primary
table without referring to the replication definitions.

Replication Server usesthe original column names and datatypes to send data
received from the Replication Agent. Thereplication definition is used only to
find the primary key. The primary keys are the union of primary keysin all
replication definitions for the table.

If schema changes do not involve dropping all primary key columnsin all
replication definitions of thetable, the scenario isthe sameasdiscussedin “No
replication definition” on page 120. All optionsof alter table are supported, and
no action is required in the Replication Server.

You can alter the replication definition at any point to drop all primary keysin
the replication definitions, and add the new primary key columns to the
replication definitions before you ater the primary table.

Drop the old primary keys only after all of the old data rows are out of the
replication system. Otherwise, the Data Server Interface (DSI) shuts down. If
this occurs, see for recovery instructions.

Warm standby with send standby all columns clause

Administration Guide

When send standby all columns is associated with a replication definition,
Replication Server sends whatever data it receives from the Replication Agent
using the original column names and datatypes. The replication definition is
used only to find the primary key.

121

Using replication definitions and subscriptions

If schema changes do not involve dropping al primary key columnsin the
replication definition with the send standby all columns clause, the scenariois
the same as “No replication definition” on page 120. All options of alter table
are supported, and no action isrequired in the Replication Server.

You can alter the replication definition at any time to drop all primary keysin
the replication definition with the send standby all columns clause, and add the
new primary key columns to the replication definition before you alter the
primary table.

Warm standby with send standby replication definition columns clause

When there is asend standby replication definition columns clausein the
replication definition, the standby will continue to use the replicate table name
and column names as well asthe datatype defined in the table's corresponding
replication definition.

If you want the replication definition datatype to be used in the standby, always
create areplication definition with asend standby replication definition columns
clause.

Using replication definitions to optimize performance

Creating a replication
definition for
replicating into a
standby database

122

When you specify that you want to use a replication definition for replicating
into a standby database:

» Replication Server optimizes updates and deletes by using the primary key
defined in the replication definition to generate the where clause.

* You can specify whether Replication Server uses the replication
definition’s replicate minimal columns setting for replicating into the
standby database. This setting indicates whether updates replace the
values for al columns or only the columns with changed values.

* You can specify whether Replication Server replicates all of atable’s
columns or all of astored procedure’s parameters to the standby database
or only those columns or parameters listed in the table or function
replication definition.

To create areplication definition just for replicating into the standby database,
use the send standby clause in the create replication definition command. The
replication definition’s primary key and replicate minimal columns setting will
be used in replicating into the standby database.

Replication Server

CHAPTER 3 Managing Warm Standby Applications

Specifying a primary
key

Updating minimal
columns

Specifying columns to
replicate into the
standby database

Administration Guide

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for detailed information about using create replication
definition command.

Replication Server generates awhere clause to specify target rows for updates
and deletes.

e If areplication definition for atable is marked with the send standby
clause, the generated where clause contains only the columns listed in the
primary key clause of the create replication definition command.

e Iftherearereplication definitionsfor atable but none are marked with the
send standby clause, the generated where clause contains the columns
listed in the union of the primary key clauses of al of the replication
definitions.

e If thereisnoreplication definition for atable, the generated where clause
includes all columnsin the table except text, unitext, image, rawobject,
rawobject in row, timestamp, and sensitivity columns.

If you createareplication definition for replicating into astandby database, you
can take advantage of another replication system performance optimization,
the minimal columns setting.

When you use the replicate minimal columns clause, replicated update and
delete transactionsinclude only the required columns. Vaues for unchanged
columns can be omitted from update commands. Omitting the unnecessary
columns reduces the size of messages delivered through the replication system
and requires Adaptive Server to do less work.

If you are not using replication definitionsfor replicating into the standby, you
can till attain this performance benefit.

Minimal column replication occurs automatically if you have no replication
definitions for atable or if you have replication definitions for atable but do
not use one for replicating into the standby database.

If you createareplication definition for replicating into astandby database, you
can specify which set of columnsto replicate:

e Specify send standby or send standby all columns to replicate all the
columns in the table into the standby database.

e Specify send standby replication definition columns to replicate only the
replication definition’s columns into the standby database.

123

Using replication definitions and subscriptions

Specifying parameters
to replicate into the
standby database

Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for more information about using the send standby clause
with the create replication definition command.

If you create a function replication definition, you can specify which set of
parameters to replicate;

e Specify send standby all parameters (or omit the all parameters clause) to
replicate all the parameters for the stored procedure into the standby
database.

» Specify send standby replication definition parameters to replicate only the
replication definition’s parameters into the standby database.

If areplicated stored procedure has no function replication definition, when the
stored procedureis executed, Replication Server replicatesall of its parameters
from the active database into the standby database. You can create only one
function replication definition per replicated stored procedure.

See Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about using the send standby clause
with the create applied/request function replication definition command.

Using replication definitions to copy redundant updates

Without a replication definition, Replication Server does not replicate
redundant updates to the warm standby. That is, if an update merely changes
the current value to the same value, and thus the before and after images are
identical, Replication Server does not replicate the update.

However, if you want to replicate redundant updates, create areplication
definition for the column that includes the send standby replication definition
parameters option.

If you create areplication definition for atable, Replication Server always
sends redundant updates, even when the replication definition is created with
the replicate minimal columns option.

Using subscriptions with warm standby application

124

Although subscriptions are not used in replicating from the active to the
standby database, you can:

e Create subscriptions for the datain alogical primary database, or

Replication Server

CHAPTER 3 Managing Warm Standby Applications

e Create subscriptionsin order to replicate data from other databasesinto a
logical replicate database.

The create subscription and define subscription commands use the logical
database and data server names instead of the physical names.

See “Warm standby applications using replication” on page 112 for more
information about warm standby applications for a primary or replicate
database. Also see Chapter 11, “Managing Subscriptions” in the Replication
Server Administration Guide Volume 1 for more information about
subscriptions and subscription materialization.

Restrictions on using subscriptions

Replication Server supports all forms of subscription materialization and
dematerialization in warm standby applications. Theserestrictionsapply to the
creation of subscriptions that replicate data from or into warm standby
databases:

* Whenthereisalogical connection for a database, you cannot create a
subscription for the physical active or standby database. You must create
the subscription for the logical database in order to replicate subscription
datainto or from both the active and standby databases.

* You cannot create subscriptions while adding the standby database to the
replication system. You must wait until the standby database has been
properly initialized.

* You cannot add the standby database to the replication system while any
subscriptions are being created.

e You cannot create new subscriptions while the switch active command is
executing.

Subscription materialization for logical primary database

Administration Guide

This section describes subscription materialization issuesfor alogical primary
database. It also describes what happens if you execute the switch active
command for alogical primary database during subscription materialization.

During subscription materialization, datais selected from the active primary
database into a materialization queue.

125

Using replication definitions and subscriptions

When you execute the switch active command, the primary Replication Server
replicates RSSD information to notify replicate sites that the active database
has been changed. When areplicate Replication Server with amaterializing
subscription receivesthisinformation, the materialization queueis dropped. A
new queue is built by reselecting the subscription data from the new active
primary database.

Note The Replication Agent for the RSSD of the primary Replication Server
must be running for replicate Replication Servers to detect that the active
database has been changed.

Subscription materialization for logical replicate database

This section describes subscription materialization issuesfor alogical replicate
database. It also describes what happens if you execute the switch active
command for alogical replicate database during subscription materialization.

The following sections discuss each subscription materialization method.

Atomic materialization When you use atomic materialization, Replication Server setsthe saveinterval
for the materialization queue to 'strict'. Transactions are not deleted from the
materialization queue until the data has been applied to the active database and
replicated into the standby database.

Replication Server executes amarker in the active replicate database when the
materialization queue has been applied. The marker marks the start of
transactions that execute after the materialization queueis applied.

When the marker is executed at the active replicate database, Replication
Server writes an informational message likethisinitslog:

I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
publishers sub for replication definition publishers rep at active replicate
for <LDS.pubs2>

When the marker arrives at the standby replicate database, Replication Server
writes an informational message likethisinitslog:

I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
publishers sub for replication definition publishers rep at standby
replicate for <LDS.pubs2>

Materialization is now complete and Replication Server drops the
materialization queue. The subscriptionisconsidered VALID at boththeactive
and the standby replicate database.

126 Replication Server

CHAPTER 3 Managing Warm Standby Applications

Nonatomic
materialization

Bulk materialization

Administration Guide

If you execute the switch active command while the materialization queue is
being processed, Replication Server reapplies the materialization queue to the
new active database. If you used the incrementally option to create the
subscription, only the batches of materialization rows that were not aready
replicated into the new active database are reexecuted.

When you use nonatomic materialization, the saveinterval isset to 0, allowing
Replication Server to del ete rows from the materialization queue after they are
applied to the active database.

If asubscription is materializing when you execute the switch active command,
Replication Server finishes processing the materialization queue, but marksthe
subscription “suspect.” Use the check subscription command to find the
subscription status in the active and replicate databases. You must drop and re-
create suspect subscriptions.

Note Nonatomic materialization is not supported in heterogenous warm
standby applications. See Appendix B “Materialization Issues’ in the
Replication Server Heterogeneous Guide for materialization methodsin
Oracle.

If you use bulk materialization to create a subscription that replicates datainto
awarm standby application, you must ensure that the subscription datais
loaded into the active and standby replicate databases.

If you load the data with a method that logs the inserted rows, such as logged
bcp, Replication Server replicates the rows into the standby database. If you
load the data with a non-logged method, you must also load it into the standby
database because the active database |og contains no insert recordsto replicate
into the standby database.

During bulk materialization, you execute the activate subscription with
suspension command before you load the subscription data into the replicate
database. By default, activate subscription with suspension suspends the DS
threadsfor both the active database and the standby database. Suspending DS
threads allows you to load the data into both databases.

If you load the data using logged bcp or some other method that 1ogs the rows,
execute activate subscription with suspension at active replicate only S0 that
Replication Server only suspends the DS for the active database. This allows
the inserted rows to be replicated from the active database into the standby
database.

127

Using replication definitions and subscriptions

Checking subscriptions

For awarm standby application for alogical replicate database, you can usethe
check subscription command to check subscription status. The Replication
Server managing the warm standby application returns either one or two status
messages, depending on whether or not the statusis different for the active and
the standby database.

For example, while you are creating a subscription, the materialization status
may be VALID at the active database and ACTIVATING at the standby
database.

Dropping subscriptions

While executing
switch active

Suspect drop
subscription

For alogical replicate database, you can drop a subscription using the drop
subscription command with the with purge option. A drop subscription marker
follows the dematerialization data from the DSI queue to the active database,
and then travel s to the standby database. After the marker has been received at
both databases, subscription datais deleted from both databases.

You can execute the switch active command at the replicate Replication Server
while you drop a subscription using the drop subscription command with the
with purge option. Replication Server suspends DSI threads and temporarily
suspends dematerialization. After switch active completes, the DS| threads are
resumed and dematerialization restarts.

Dropping a subscription using the with purge option for alogical replicate
database may lead to a suspect drop subscription if;

e The subscription is materializing in the active database, and
* You switch the active and standby databases, then

* You drop the subscription while it is materializing in the new active
database.

Dematerialization restarts and proceeds normally for the new active database,
but the new standby (old active) database may retain some subscription data
that isnot purged. To resolve the discrepancy, you can reconcile the active and
the standby database using the rs_subcmp program, or you can drop and re-
create the standby database.

For example, you may see awarning message like thiswhen you try to execute
drop subscription:

W. 95/10/02 20:59:15. WARNING #28171 DSI (111l SYDNEY DS.pubs2) -

/sub _dsi.c(1231)

REPLICATE RS: Dropped subscription publishers sub for replication

128

Replication Server

CHAPTER 3 Managing Warm Standby Applications

definition publishers rep at standby replicate for <SYDNEY DS.pubs2> before
it completed materialization at the Active Replicate. Standby replicate may
have some subscription data rows left in the database

Missing columns when you create the standby database

When you create a standby database for an existing database that has
replication definitions, missing columns may result under the following
combination of circumstances:

e Iftheexisting database hasareplication definition that doesnot include all
columns in the table, and

e Aninsert or update transaction that has not been committed isin the
inbound queue, and

e You create a standby database for the existing database (now the active
database), after which

¢ The transaction commits.

Although, by default, a standby database is supposed to receive all columns, at
the time the transaction began, the standby database did not exist. Replication
Server would have discarded values for columns not in the replication
definition. If acolumn is not in the replication definition and the standby
database allows a null value for the column, the row can be inserted into or
updated in the standby database without the missing value. Otherwise, you
must reconcile the databases yourself.

Loss detection and recovery

Administration Guide

Creating a warm standby application introduces additional types of loss
detection messages into a replication system. See Chapter 7, “Replication
System Recovery” for general information on Replication Server recovery, and
for recovery procedures.

If you rebuild queues in a Replication Server that participatesin awarm
standby application, the Replication Server may detect |osses between any of
the following databases:

129

Loss detection and recovery

Table 3-8: Loss detection in warm standby applications

Loss detected from To

Logical replicate database Logical primary database
Logical primary database Physical replicate database
Physical primary database Logical replicate database
Physical active database Physical standby database
Logical primary database Replication Server

If you need to use the ignore loss command in database recovery operations
where awarm standby applicationisinvolved, usethe samelogical or physical
data server and database designations that appear in the loss detection
messages you received.

130 Replication Server

CHAPTER 4

Performance Tuning

To meet the needs and demands of your Replication Server system, you
must manage resources effectively and optimize the performance of
individual Replication Servers. You can affect the performance of a
Replication Server by changing thevalues of configuration parameters, by
using parallel DSI threads, or by choosing disk alocations. To manage
these resources successfully, you should understand something about
Replication Server internal processing.

Name Page
Replication Server internal processing 131
Configuration parameters that affect performance 139
Suggestions for using tuning parameters 156
Using parallel DSI threads 166
Support for DSI bulk copy-in 196
Dynamic SQL for enhanced Replication Server performance 227
SQL statement replication 200
Replication Server — Advanced Services Option 230
Using multiprocessor platforms 251
Allocating queue segments 253
Using the heartbeat featurein RMS 257

Replication Server internal processing

Administration Guide

During replication, data operations are carried out by several Replication
Server threads. On UNIX platforms, they are POSIX threads. On
Windows platforms, they are WIN32 threads. Replication Server also
stores data in queues and relies on the Replication Server System
Database (RSSD) for critical system information. This section describes
how these internal operations support various processes within the
primary and replicate Replication Servers.

131

Replication Server internal processing

Threads, modules, and daemons

Replication Server runs multiple threads concurrently. The total number of
threads depends on the number of databases that a Replication Server manages
and the number of Replication Serversto which it has direct routes. Each
thread performs a specific function such as managing a user session, receiving
messages from a RepAgent, receiving messages from another Replication
Server, or applying transactions to databases.

Some threads call specific portions (or “modules’) of Replication Server to
determine the destination of messages and transactions, and to determine what
operationsto replicate and how to replicate them.

Daemon threads, which run in the background and perform specified
operations at predefined times or in response to certain events, run during such
Replication Server activities as subscription materialization.

For details on Replication Server threads, modules, and daemonsinvolved in
processes specific to the primary Replication Server, see “Processing in the
primary Replication Server” on page 132.

When you troubleshoot the replication system, verify the status of Replication

Server threads, modules, and daemons. See Chapter 1, “Verifying and
Monitoring Replication Server” for details.

Processing in the primary Replication Server

This section describes how atransaction that originatesin aprimary dataserver
is sent to the primary Replication Server and subsequently distributed to a
replicate Replication Server asillustrated in Figure 4-1.

132 Replication Server

CHAPTER 4 Performance Tuning

Figure 4-1: Threads used for processing in the primary Replication
Server

Replicate 1
Data Server
Primary
Replicate 2
Data Se
e Data Server
Replicate 1
Replication Server
Replication
Server ?

InEound
Stable
Cruaua

Duthoumd
Stable
[[RETEY

Duthound
Slahla

Quaun

S,
¥
<>

Replication agent user thread

Administration Guide

The information in this section applies to all Replication Agents.

RepAgent logsin to Replication Server through an Open Client™ interface. It
scans the transaction log, convertslog recordsdirectly into LTL (Log Transfer
Language) commands, and sends them to Replication Server as soon as they
are logged—either in batches or one at atime. Replication Server then
distributes the transaction information to subscribing replicate databases.

Replication Server has one RepAgent user thread for each primary database
that it manages. Thus, Replication Server has one RepAgent user thread for
each RepAgent. The RepAgent user thread verifiesthat RepAgent submissions
arevalid and writes them into the inbound stable queue for the database.

133

Replication Server internal processing

Stable Queue Manager thread

There is one Stable Queue Manager (SQM) thread for each stable queue
accessed by the primary Replication Server, whether inbound or outbound.
Each RepAgent user thread works with a dedicated SQM thread that reclaims
stable queue space after atransaction isforwarded to adata server or to another
Replication Server.

Stable Queue Transaction thread

Commands stored in transaction log records and in the inbound queue are
ordered according to the sequence in which they were committed—although
they are not necessarily grouped by transaction. It is the task of the Stable
Queue Transaction (SQT) thread to reassembl e transactions and place the
transactionsin commit order. Transactions must be in commit order for final
application on the destination’sdata servers and for materialization processing.

The SQT thread reassembl es transactions as it reads commands from its stable
inbound queue and keeps alinked list of transactions. For the outbound queue,
the DSI/S thread schedul es transactions, and performs the SQT function of
assembling and ordering transactions.-When it reads acommit record, the SQT
makes that transaction available to the distributor (DIST) thread or to the DS
thread, depending on what process required the SQT ordering of the
transaction.

When it reads arollback record, the SQT thread tells the SQM thread to delete
affected records from all stable queues. Operated by the DSI/Sthread, the SQT
library notifies the DSI when a transaction exceeds the large transaction
threshold. See“Using parallel DS threads’ on page 166 for moreinformation
on transaction thresholds.

Distributor thread and related modules

134

For each primary database managed by a Replication Server, thereisa
distributor (DIST) thread, which in turn uses SQT to read from the inbound
gueue and SQM threads to write transactions to the outbound queue. Thus, for
example, if there are three primary databases, then there are three inbound
queues, three DIST threads, and three SQT threads.

Note If the only destination for transactionsis a standby database, disable the
DIST thread, which also disables the SQT thread. The SQM thread is present
and responsible for writing to the queue.

Replication Server

CHAPTER 4 Performance Tuning

In determining the destination of each transaction row, the DIST thread makes
calls to the following modules: Subscription Resolution Engine (SRE),
Transaction Delivery, and Message Delivery. All DIST threads share these
modules. These modules, and the role they play in the replication system, are
described in the following sections.

Subscription Resolution Engine

The Subscription Resolution Engine (SRE) matches transaction rows with
subscriptions. When it finds a match, it attaches a destination-database ID to
each row. It marks only rows required for subscriptions, thereby minimizing
network traffic. If no subscriptions match, the DIST thread discards the row
data.

For each row, the SRE determines whether subscription migration occurs.

* A row migratesinto a subscription when its column val ues change so that
the row matches the subscription and must be added to the replicate table.

« A row migrates out of a subscription when its column values change so
that it no longer matches the subscription and must be deleted from the
replicate table.

When the SRE detects subscription migration, it determineswhich operationto
replicate (insert, delete, or update) to maintain consistency between the
replicate and primary tables.

Transaction Delivery module

TheTransaction Delivery (TD) moduleiscalled by the DIST thread to package
transaction rows for distribution to data servers and other Replication Servers.

Message Delivery module

Administration Guide

The Message Delivery (MD) module is called by the DIST thread to optimize
routing of transactionsto data servers or other Replication Servers. The DIST
thread passes the transaction row and the destination 1D to the MD module.
Using this information and routing information in the RSSD, the module
determines where to send the transaction:

 Toadataserver viaaDSI thread, or
e ToaReplication Server viaan RS thread.

After determining how to send the transaction, the MD module places the
transaction into the appropriate outbound queue.

135

Replication Server internal processing

Distributor status recording

A distributor (DIST) thread reads transactions from the inbound queue and
writes replicated transactions into the outbound queue. A DIST thread is
created when the Replication Server connects to the primary database, and can
be suspended or resumed manually, or through a Replication Server
configuration. Resuming and suspending a DIST thread modifies the DIST
status of the thread.

Replication Server records the DIST status of a distributor thread in the
Replication Server rs_databases system tablein the RSSD. The record in
rs_databases allowsthe DIST thread to retain its status even after the
Replication Server is shut down.

See “rs_databases,” in Chapter 8 “Replication Server System Tables’ in the
Replication Server Reference Manual.

Data Server Interface threads

136

Replication Server starts DSI threads to submit transactions to areplicate
database to which it maintains a connection.

Each DSl thread is composed of a scheduler thread (DSI-S) and one or more
executor threads (DSI-E). Each DSI executor thread opens an Open Client
connection to a database.

To improve performance in sending transactions from a Replication Server to
areplicate database it manages, you can configure a database connection so
that transactions are applied using more than one DSI executor thread. See
“Using parallel DSI threads’ on page 166 for a description of this feature.

The DSI scheduler thread calls the SQT interface to:

e Callect small transactions into groups by commit order

» Digpatch transaction groups to the next available DSI executor thread
The DSI executor threads:

» Map functions using the function strings defined for the functions,
according to the function-string class assigned to the database connection

e Execute the transactions in the replicate database

e Take action on any errors returned by the data server; depending on the
assigned error actions, also record any failed transactionsin the exceptions

log

Replication Server

CHAPTER 4 Performance Tuning

The DSI thread may apply amixture of transactionsfrom all primary databases
supported by the Replication Server. The transactions are read from asingle
outbound stable queue for the replicate data server.

Replication Server Interface thread

RSl threads are asynchronous interfaces to send messages from one
Replication Server to another. One RSI thread exists for each destination
Replication Server to which the source database has a direct route.

The DIST thread in the primary Replication Server processes transactions,
causing those destined for other Replication Servers to be written to RSI
outbound queues. An RSI thread logs in to each replicate Replication Server
and transfers messages from the stable queue to the replicate Replication
Server.

When adirect route is created from one Replication Server to another, an RSI
thread in the source Replication Server logs in to the replicate Replication
Server. When an indirect route is created, Replication Server does not create a
new stable queue and RSI thread. Instead, messages for indirect routes are
handled by the RSI thread for the direct route. For details, see Chapter 6,
“Managing Routes,” in the Replication Server Administration Guide Volume 1.

Miscellaneous daemon threads

The Replication Server daemon threads shown in Table 4-1 perform
miscellaneous tasks in the replication system.

Table 4-1: Additional Replication Server daemon threads

Thread or daemon name Description

Alarm daemon (dAALARM) The alarm daemon keeps track of alarms set by other threads, such asthe

fade-out time for connections and the interval for the subscription retry
daemon.

Asynchronous I/O daemon (dA1O) The asynchronous 1/0 daemon manages asynchronous |/O to Replication

Server stable queues.

Connection manager daemon (dCM) The connection manager daemon manages connectionsto dataserversand

other Replication Servers.

Recovery daemon (dREC)

The recovery daemon takes care of various operationsin connection with
warm standby applications, routing, and recovery procedures.

Subscription retry daemon (dSUB) The subscription retry daemon wakes up after a configurable timeout

Administration Guide

period (sub_daemon_sleep_time configuration parameter in thers_config
system table) and attempts to resume processing for subscriptions that
may have failed.

137

Replication Server internal processing

Thread or daemon name Description

Version daemon (dVERSION) The version daemon activates briefly when the Replication Server is
started for thefirst time after an upgrade. It communicatesthe Replication
Server new version number to the ID Server.

RS user thread The RS user thread manages connections from replicate Replication
Servers during the process of creating or dropping subscriptions.

See “ Subscription materialization methods” on page 381 in the
Replication Server Administration Guide Volume 1 for the data flow
involved in creating and dropping subscriptions.

USER thread A USER thread is created when a user logs in to a Replication Server to
execute RCL commands.

Processing in the replicate Replication Server

This section describes the processes involved when areplicate Replication
Server receives incoming messages from a primary Replication Server.

“Processing in the primary Replication Server” on page 132 describes
processing for some of the threads—SQM, RSI, DSI—described in this
section. Refer to Figure 4-1 on page 133.

Figure 4-2: Transaction processing in the replicate Replication Server

A
Primary
Replication Server
Qulbeuind
Stabla
Queuea
Other Replicate Replicate
+ Replication Server Data Server
—_— Replicate @ é)
Replication Server r L
-)
Dutbound
Stable =5
Quawe
Cwitbound
Slable OEI-E
Qe
_ A

138 Replication Server

CHAPTER 4 Performance Tuning

RSl user thread

The RSI user thread isa client connection thread for incoming messages from
another Replication Server. It calls the Message Delivery (MD) module to
determine whether to send the message to:

e A dataserver using the DSI thread, described in “Data Server Interface
threads’ on page 136. The DSI thread is composed of a scheduler thread
(DSI-S) and one or more executor threads (DSI-E).

* Another Replication Server using the RS| thread, described in
“Replication Server Interface thread” on page 137.

The RSI user thread writes commands destined for other Replication Servers
or databasesinto outbound queues. See* Processing in the primary Replication
Server” on page 132 for details on how messages are processed after they are
stored in the outbound queues.

Configuration parameters that affect performance

Replication Server provides configuration parameters for improving
performance that affect the entire server, or are targeted for individual
CONNections or routes.

Replication Server parameters that affect performance

rs_init sets default configuration parameters after you install your Replication
Server. You can change the values of the configuration parameters shown in
Table 4-2 to improve Replication Server performance.

See “ Changing Replication Server parameters’ on page 96 in the Replication
Server Administration Guide Volume 1 for information on how to modify these
parameters using configure replication server.

Administration Guide 139

Configuration parameters that affect performance

Table 4-2: Replication Server parameters that affect performance

Configuration parameter

Description

block_size to ‘value’ with shutdown

Specifies the maximum queue block size. The queue block sizeisthe
number of bytesin a contiguous block of memory used by stable queue
structures.

Range of values allowed: 16KB, 32KB, 64KB, 128KB, or 256K B
Default: 16KB

Note When you execute the command to change the block size,
Replication Server automatically shuts down. You must include the “with
shutdown” clause after specifying the block size.

License: Separately licensed under the Advanced Services Option. .
See “Increasing queue block size” on page 245 for instructions.

db_packet_size

The maximum size of a network packet. During database communication,
the network packet value must be within the range accepted by the
database. You may change thisvalueif you have Adaptive Server that has
been reconfigured.

Maximum: 16,384 bytes

Default: 512-byte network packet for all Adaptive Server databases

deferred_queue_size

The maximum size of an Open Server deferred queue. If Open Server
limits are exceeded, increase the maximum size. The value must be greater
than 0.

Note If modified, you must restart the Replication Server for the change
to take effect.

Default: 2,048 on Linux and HPIA32
1024 on other platforms

disk_affinity

Specifies an allocation hint for assigning the next partition. Enter the
logical name of the partition to which the next segment should be allocated
when the current partition is full. Values are “ partition_name’ and “ off.”

Default: off

dist_direct_cache_read

140

Enablesthe distributor (DIST) thread to read SQL statementsfrom
the Stable Queue Thread (SQT) cache directly. This reduces
contention between the inbound and outbound queues, and |eads to
improved Replication Server performance.

Default: on

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

dsi_bulk_copy

Turns the bulk copy-in feature on or off for a connection. If dynamic_sql
and dsi_bulk_copy are both on, DSI applies bulk copy-in. Dynamic SQL is
used if bulk copy-inis not used. Sybase recommends that you turn
dsi_bulk_copy on to improve performance if you have large batches of
inserts.

Default: off.

dsi_bulk_threshold

The number of consecutive insert commands in a transaction that, when
reached, triggers Replication Server to use bulk copy-in. When Stable
Queue Transaction (SQT) encounters alarge batch of insert commands, it
retains in memory the number of insert commands specified to decide
whether to apply bulk copy-in. Because these commands are held in
memory, Sybase suggests that you do not configure this value much higher
than the configuration value for dsi_large_xact_size.

Replication Server uses dsi_bulk_threshold for Real-time loading (RTL)
replication to Sybase |Q and High volume adaptive replication (HVAR) to
Adaptive Server. If the number of commandsfor aninsert, delete, or update
operation on one table isless than the number you specify after
compilation, RTL and HVAR use language instead of bulk interface.
Minimum: 1

Default: 20

dsi_cmd_batch_size

The maximum number of bytes that Replication Server placesinto a
command batch.

Default: 8192 bytes

dsi_cmd_prefetch

Allows DSl to pre-build the next batch of commands while waiting for the
response from data server, and therefore improves DSI efficiency. If you
also tune your data server to enhance performance, it islikely that you will
gain an additional performance increase when you use this feature.
Default: on

When you set dsi_compile_enable to ‘on’, Replication Server ignores what
you set for dsi_cmd_prefetch.

License: Separately licensed under the Advanced Services Option. See
“Replication Server — Advanced Services Option” on page 230.

dsi_max_xacts_in_group

Administration Guide

Specifiesthe maximum number of transactionsin agroup. Larger numbers
may improve data latency at the replicate database. Range of values: 1 —
1000.

Default: 20

141

Configuration parameters that affect performance

Configuration parameter

Description

dsi_non_blocking_commit

Specifies the number of minutes to extend the period of time Replication
Server saves messages after acommit. Range of values: 0— 60 minutes.

Default: 0 — means that non-blocking commit is disabled.

Enable this parameter to improve replication performance when the
delayed commit featureisavailablein Adaptive Server 15.0 and | ater or the
equivalent feature is available in Oracle 10g v2.

dsi_xact_group_size

The maximum number of bytes, including stable queue overhead, to place
into one grouped transaction. A grouped transaction isaset of transactions
that the DSI applies as asingle transaction. A value of —1 means no
grouping.

Sybase recommends that you set dsi_xact_group_size to the maximum
value and use dsi_max_xacts_in_group to control the number of
transactionsin agroup.

Maximum: 2,147,483,647
Default: 65,536 bytes

dynamic_sql

Turns dynamic SQL feature on or off. Other dynamic SQL related
configuration parameterswill only take effect if this parameter is set to on.

Default; off

dynamic_sql_cache_size

Givesthe Replication Server ahint on how many database objectsmay use
the dynamic SQL statement for a connection.

Default: 100
Minimum: 1
Maximum: 65,536

dynamic_sql_cache_management

142

Manages the dynamic SQL cache for a DSI executor thread.

Values:

mru - keeps the most recently used statements and deall ocates the rest to
allocate new dynamic statements when dynamic_sgl_cache_size is
reached.

fixed (default) - Replication Server stops allocating the new dynamic
statements once dynamic_sgl_cache_size is reached.

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

exec_cmds_per_timeslice

Specifies the number of LTL commands an LTI or RepAgent executor
thread can process before yielding the CPU. By increasing thisvalue, you
allow the RepAgent executor thread to control CPU resources for longer
periods of time, which may improve throughput from RepAgent to
Replication Server.

Set this parameter at the connection level using alter connection.

See “ Controlling the number of commands the RepAgent executor can
process’ on page 162.

Default: 2,147,483,647

Minimum: 1

Maximum: 2,147,483,647

exec_nrm_request_limit

Specifies the amount of memory available for messages from a primary
database waiting to be normalized.

Set nrm_thread to ‘on’ with configure replication server before you use
exec_nrm_request_limit.

Default: 1,048,576 bytes (1M B)
Minimum: 16,384 bytes (16K B)
Maximum: 2,147,483,647 bytes (2GB)

License: Separately licensed under the Advanced Services Option. See
“Replication Server — Advanced Services Option” on page 230.

exec_sqm_write_request_limit

Specifies the amount of memory available for messages waiting to be
written to an inbound queue.

Default: IMB

Minimum: 16KB
Maximum: 2GB

init_sgm_write_delay

Administration Guide

Theinitial amount of time an SQM Writer should wait for more messages
before writing a partialy full block of messages to the queue. The SQM
Writer dwaystriesto write full blocksto the queue. If it has partially filled
ablock, and cannot fill it, SQM Writer waits the amount of time specified
by init_sgm_write_delay before rechecking whether messages are waiting
to be added to the block. If no messages exist, SQM Writer doubles the
init_sgm_write_delay time. The SQM Writer continues to double the delay
time until it reaches the value of init_sgm_write_max_delay. At this point,
SQM Writer writes the partially full block.

See “ Setting the amount of time SQM Writer waits” on page 157.
Default: 100 milliseconds

143

Configuration parameters that affect performance

Configuration parameter

Description

init_sqm_write_max_delay

The maximum amount of time an SQM Writer thread should wait for more
messages beforewriting apartially full block of messagesto the queue. See
the description of init_sgm_write_delay for more information. See al'so

“ Setting the amount of time SQM Writer waits’ on page 157.

Default: 1,000 milliseconds

mem_reduce_malloc

Enable to allocate memory in larger chunks, which reduces the number of
memory allocations and leads to improved Replication Server
performance.

Default: off

License: Separately licensed under the Advanced Services Option. See
“Replication Server — Advanced Services Option” on page 230.

md_sgm_write_request_limit

144

Specifies the amount of memory available to the Distributor for messages
waiting to be written to the outbound queue.

Note In Replication Server 12.1, md_sgm_write_request_limit replaces
md_source_memory_pool. md_source_memory_pool is retained for
compatibility with older Replication Servers.

Default: IMB
Minimum: 16K
Maximum: 2GB

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

memory_limit

The maximum total memory the Replication Server can use, in megabytes.

Valuesfor severa other configuration parametersare directly related to the
amount of memory available from the memory pool indicated by
memory_limit. These include exec_nrm_request_limit,
exec_sqgm_write_request_limit, md_sgm_write_request_limit,
queue_dump_buffer_size, sqt_max_cache_size, sre_reserve, and
sts_cachesize.

Default: 2,047

For 32-bit Replication Server:

e Minimum-0

¢ Maximum — 2,047

For 64-bit Replication Server:

¢ Minimum-0

¢ Maximum —2,147,483,647

If additional memory allocation exceeds the value for memory_limit that
you specify, Replication Server enlarges memory_limit by ten percent each
time memory_limit is exceeded. However, the value of memory_limit is
restored to the value you set after Replication Server restarts.

If the value you set is larger than 2,047, downgrading resets the value to
2,047 to protect against overflow.

nrm_thread

Enables the NRM thread which Replication Server can use to normalize
and pack Log Transfer Language (LTL) commandsin parallel with parsing
by the RepAgent Executor thread. Parallel processing by the NRM thread
reduces the response time of the RepAgent executor thread. The NRM
thread is athread split from RepAgent executor thread.

Use the configure replication server command to set nrm_thread to on
before you use exec_nrm_request_limit.

Default: on

License: Separately licensed under the Advanced Services Option. See
“Replication Server — Advanced Services Option” on page 230.

rec_daemon_sleep_time

Administration Guide

Specifies the deep time for the recovery daemon, which handles “ strict”
save interval messages in warm standby applications and certain other
operations. See “ Setting wake up intervals’ on page 160.

Default: 2 minutes

145

Configuration parameters that affect performance

Configuration parameter

Description

smp_enable

Enables symmetric multiprocessing (SMP). Specifieswhether Replication
Server threads should be scheduled internally by Replication Server or
externally by the operation system. When Replication Server threads are
scheduled internally, Replication Server is restricted to one machine
processor, regardless of how many may be available. Values are “on” and
“off.”

See “Making SMP more effective” on page 163.
Default: on
Upgrading or downgrading does not change the value you set.

sqm_cache_enable

Indicates whether to enable SQM caching and large 1/0 in a stable device.
Default: on

sqm_cache_size

Indicates the number of pagesin cache where size of apageis specified by
sgqm_page_size.

Default: 16

sgm_page_size

Indicates the number of blocks in a page.

Sets server-wide stable queue page size in blocks per page. Enclose page
sizesin single quotes or double quotes. For example, setting page sizeto 4
instructs Replication Server to write to the stable queue in 64K chunks.
Configuring the page size also setsthe /O size of Replication Server. The
rangeis1to 64.

Default: 4

sgm_recover_segs

Specifies the number of stable queue segments Replication Server
allocates before updating the RSSD with recovery QID information.

See “ Specifying the number of stable queue segments allocated” on page
163. Sybase recommendsthat you increase the value of sqm_recover_segs
to improve performance.

Default: 1
Minimum: 1
Maximum: 2,147,483,648

sqm_seg_prealloc

Enables or disables the segments preallocation settings.
Default: on

sgm_write_flush

146

Specifies whether or not writes to memory buffers are flushed to the disk
before the write operation completes. Values are “on,” “off,” and “dio”.

See also “ Stable devices: considerations.”
Default: on

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter Description

sqt_init_read_delay The length of time an SQT thread sleeps while waiting for an SQM read
before checking to seeif it has been given new instructionsin its command
queue. With each expiration, if the command queueis empty, SQT doubles
its sleep time up to the value set for sqt_max_read_delay.

Default: 1 milliseconds (ms)
Minimum; 0 ms
Maximum: 86,400,000 ms (24 hours)

sqt_max_cache_size Maximum SQT cache memory, in bytes. See“ Sizing the SQT cache” on
page 160.

For 32-bit Replication Server:

¢ Default — 1,048,576

¢ Minimum-0

e Maximum — 2,147,483,647

For 64-bit Replication Server:

e Default —20,971,520

¢ Minimum-0

e Maximum — 2,251,799,813,685,247

If the value you set islarger than 2,147,483,647 bytes, downgrading resets
the value to 2,147,483,647 bytes to protect against overflow.

sqt_max_read_delay The maximum length of time an SQT thread sleeps while waiting for an
SQM read before checking to seeif it has been given new instructionsin
its command queue.
Default: 1 ms
Minimum: 0 ms
Maximum: 86,400,000 ms (24 hours)

sts_cachesize The total number of rows that are cached for each cached RSSD system
table. Increasing thisnumber to the number of activereplication definitions
prevents Replication Server from executing expensive table lookups.

Monitor whether the STS cacheistoo small by reviewing counter 11008 —
STSCacheExceed or examining the Replication Server log for warnings
that rows have been removed from the STS cache. See “ Caching system
tables’ on page 157.

Default: 100

Administration Guide 147

Configuration parameters that affect performance

Configuration parameter Description

sts_full_cache_system table name Specifies an RSSD system table that isto be fully cached. Fully cached

tables do not require access to the RSSD for simple select statements.

Default: rs_columns, rs_functions, rs_objects, and rs_repobjs are fully
cached. Sybase recommends that you cache these tables to improve
performance.

See" Caching system tables’ on page 157 for alist of RSSD tablesthat can
be fully cached.

sub_daemon_sleep_time

Number of seconds the subscription daemon sleeps before waking up to
recover subscriptions. The rangeis 1 to 31,536,000.

See'" Setting wake up intervals’ on page 160.
Default: 120 seconds

sub_sgm_write_request_limit Specifies the memory available to the subscription materialization

or dematerialization thread for messages waiting to be written to
the outbound queue.

Default: IMB
Minimum:; 16K
Maximum: 2GB

Stable devices: considerations

148

Like any application, Replication Server is subject to standard 1/0O and I/O
device best practices. You should consider the impact of contention for disk
Read/Write heads and 1/0 channel s when planning how your stable devices
will be used to support your stable queues. To the extent that you can dedicate
one or moredevicesto each queue, I/O will belessof aperformanceissue. This
includes guarding the devices from use by other processes such as primary or
replicate databases or RSSDs. You can use the database connection parameter
disk_affinity to establish affinities between queues and specific partitions that
are supported by dedicated devices.

For stable queuesinitialized on UNIX operating system files, the
sgm_write_flush configuration parameter controls whether or not writes to
memory buffers are flushed to the disk before the write operation compl etes.

When sgm_write_flush is on, Replication Server opens stable queues using the
O_DSYNCflag. Thisflag ensuresthat writes are flushed from memory buffers
to the disk before write operations complete. Because the datais stored on
physical media, Replication Server can always recover the datain the event of
asystem failure. Thisisthe default setting.

Replication Server

CHAPTER 4 Performance Tuning

When sqm_write_flush is off, writes may be buffered in the UNIX file system.
If subsequent writes fail, automatic recovery is not guaranteed. Testing has
shown that when comparing the write rates of the various options for partition
types and 1/O flushing that writing to a buffered file system with
sgm_write_flush on is up to five times slower than writes to raw partitions.

Further, testing has shown that writes to raw partitions are up to seven times
slower than writes to buffered file systems with sqm_write_flush off. Turning
sgm_write_flush off when using UNIX Buffered file systems for stable devices
provides peak |/O performancebut with anincreased risk of dataloss. Provided
you keep primary database transaction log backups, that risk can be reduced or
eliminated.

For file system partitions, direct 1/0 reducesthe I/O latency as compared to the
synchronous I/0O, DSY NC. Configure direct 1/0O using:

configure replication server set sgm write flush to
"diO"

This command enables direct 1/0 and is effective only when the stable queue
ison the file system. The direct I/0 method allows the Replication Server to
read or writedirectly to the disk without the buffering of thefile system. Adjust
the stable queue cache properly. A proper cache size ensures that most read
transactions are completed within the cache.

Note Direct I/O is supported only on Solarisand Linux platforms for
Replication Server 15.1 and | ater.

This command is static, which means you must restart the server for it to take
effect.

Note The sqm_write_flush setting isignored for stable queuesinitialized on
raw partitions or Windows files. In these cases, write operations always take
place directly to media.

To improve /O performance, Replication Server 15.1 and later supports
caching for stable device. See* Caching stable queue” for detailed information.

Administration Guide 149

Configuration parameters

that affect performance

Connection parameters that affect performance

Configuration parameter

Table 4-3 describes the database connection parameters that can affect
performance. See Chapter 7, “Managing Database Connections,” in the
Replication Server Administration Guide Volume 1 for a complete list of
connection parameters.

Table 4-3: Connection parameters that affect performance

Description

batch

The default, “on,” alows command batches to areplicate database.
Default: on

db_packet_size

The maximum size of a network packet. During database communication, the
network packet value must be within the range accepted by the database.

Maximum: 16384 bytes
Default: 512-byte network packet for all Adaptive Server databases

disk_affinity

Specifiesan alocation hint for assigning the next partition. Enter thelogical name
of the partition to which the next segment should be allocated when the current
partition is full. Values are “partition_name” and “ off.”

Default: off

dist_sqgt_max_cache_size

The maximum Stable Queue Transaction (SQT) cache size for the inbound queue
in bytes. The default, 0, means the current setting of the sqt_max_cache_size
parameter is used as the maximum cache size for the connection.

Default: 0

For 32-bit Replication Server:

¢ Minimum-0

¢ Maximum — 2,147,483,647

For 64-bit Replication Server:

¢ Minimum-0

¢ Maximum - 2,251,799,813,685,247

dsi_cmd_batch_size

The maximum number of bytes that Replication Server placesinto acommand
batch.

Default: 8192 bytes

dsi_cmd_prefetch

150

AllowsDSI to pre-build the next batch of commandswhilewaiting for the
response from data server, and therefore improves DSI efficiency. If you
alsotuneyour dataserver to enhanceperformance, itislikely that youwill
gain an additional performance increase when you use this feature.
Default: on

When you set dsi_compile_enable to‘on’, Replication Server ignoreswhat you set
for dsi_cmd_prefetch.

License: Separately licensed under the Advanced Services Option. See
“Replication Server — Advanced Services Option” on page 230.

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

dsi_commit_check_locks_intrvl

The number of milliseconds (ms) the DSI executor thread waits between
executions of the rs_dsi_check_thread_lock function string. Used with parallel
DSl. See“Using parallel DSI threads’ on page 166.

Default: 1000 ms (1 second)
Minimum: 0
Maximum: 86,400,000 ms (24 hours)

dsi_commit_check_locks_max

The maximum number of times the DS| executor thread executes the
rs_dsi_check_thread_lock function string before rolling back and retrying a
transaction. Used with parallel DS|. See“Using parallel DSI threads’ on page
166.

Default: 400
Minimum: 1
Maximum: 1,000,000

dsi_commit_control

Specifieswhether commit control processing is handled internally by Replication
Server using internal tables (on) or externally using the rs_threads system table
(off). Used with parallel DSI. See “Using parallel DSI threads’ on page 166.

Default: on

dsi_isolation_level

Specifiestheisolation level for transactions. ANSI standard and Adaptive Server
supported values are:

« 0-ensuresthat data written by one transaction represents the actual data.

* 1-—preventsdirty reads and ensures that data written by one transaction
represents the actual data.

« 2-—prevents nonrepeatable reads and dirty reads, and ensuresthat data written
by one transaction represents the actual data.

« 3 - prevents phantom rows, nonrepeatabl e reads, and dirty reads, and ensures
that data written by one transaction represents the actual data.

Through the use of custom function strings, Replication Server can support any
isolation level thereplicate data server may use. Supportisnot limitedtothe ANSI
standard only.

Default: the current transaction isolation level for the target data server

dsi_large_xact_size

Administration Guide

The number of commands allowed in a transaction before the transaction is
considered to be large.

Default: 100
Minimum: 4
Maximum: 2,147,483,647

151

Configuration parameters that affect performance

Configuration parameter

Description

dsi_max_cmds_in_batch

Defines maximum number of source commands for which output commands can
be batched.

Range: 1 —1000
Default: 100

dsi_max_xacts_in_group

Specifies the maximum number of transactions in a group. Larger numbers may
reduce commit processing at the replicate database, and thereby improve
throughput. Range of vaues: 1 — 1000.

See “ Specifying the number of transactionsin a group” on page 164.
Default: 20

dsi_num_large_xact_threads

The number of parallel DSI threads to be reserved for use with large transactions.
The maximum value is one less than the value of dsi_num_threads.

Default: 0

dsi_num_threads

The number of parallel DSI threads to be used. The maximum valueis 255.
Default: 1

dsi_partitioning_rule

152

Specifiesthe partitioning rules (one or more) the DSI usesto partition transactions
among available parallel DSI threads. Values are origin, origin_sessid, none, time,
user, and name. See also “ Partitioning rules: reducing contention and increasing
parallelism” on page 180.

Default: none

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

dsi_serialization_method

Administration Guide

Specifies the method used to determine when atransaction can start, while still
maintaining consistency. In all cases, commit order is preserved.

These methods are ordered from most to least amount of parallelism. Greater

parallelism can lead to more contention between parallel transactions asthey are

applied to the replicate database. To reduce contention, use the dsi_partition_rule

option.

* no_wait — specifies that atransaction can start as soon as it is ready—without
regard to the state of other transactions.

Note You can only set dsi_serialization_method to no_wait if
dsi_commit_control is set to “on”.

« wait_for_start — specifies that a transaction can start as soon as the transaction
scheduled to commit immediately before it has started.

« wait_for_commit (default) — specifies that a transaction cannot start until the
transaction scheduled to commit immediately preceding it is ready to commit.

* wait_after_commit — specifies that a transaction cannot start until the
transaction scheduled to commit immediately preceding it has committed
completely.

These options are retained only for backward compatihbility with older versions of
Replication Server:

* none —Ssame as wait_for_start.

¢ single_transaction_per_origin—sameaswait_for_start withdsi_partitioning_rule
Set to origin.

Note Theisolation_level_3 valueisno longer supported as a serialization method
but it is the same as setting dsi_serialization_method to wait_for_start and
dsi_isolation_level to 3.

Default: wait_for_commit

153

Configuration parameters that affect performance

Configuration parameter

Description

dsi_sqt_max_cache_size

Maximum SQT (Stable Queue Transaction) interface cache size for the outbound
gueuein bytes.

The default, 0, meansthe current setting of the sqt_max_cache_size parameter is
used as the maximum cache size for the connection.

Default: 0

For 32-hit Replication Server:

¢ Minimum-0

¢ Maximum — 2,147,483,647

For 64-bit Replication Server:

e Minimum-0

¢ Maximum - 2,251,799,813,685,247

dsi_xact_group_size

The maximum number of bytes, including stable queue overhead, to place into
one grouped transaction. A grouped transaction isaset of transactionsthat the DSI
applies as a single transaction. —1 means no grouping.

Sybase recommends that you set dsi_xact_group_size to the maximum value and
use dsi_max_xacts_in_group to control the number of transactions in a group.

Default: 65,536 bytes
Maximum: 2,147,483,647

exec_cmds_per_timeslice

154

Specifiesthe number of LTL commands an LTI or RepAgent executor thread can
process before yielding the CPU. By increasing this value, you allow the
RepAgent executor thread to control CPU resources for longer periods of time,
which may improve throughput from RepAgent to Replication Server.

Set this parameter at the connection level using alter connection.

See “Controlling the number of commands the RepAgent executor can process’
on page 162.

Default: 2,147,483,647
Minimum: 1
Maximum: 2,147,483,647

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

exec_nrm_request_limit

Specifies the amount of memory available for messages from a primary database
waiting to be normalized.

Set nrm_thread to ‘on’ with configure replication server before you use
exec_nrm_request_limit.

Minimum: 16,384 bytes
Maximum: 2,147,483,647 bytes
Default for:

« 32-bit — 1,048,576 bytes (IMB)
« 64-bit — 8,388,608 bytes (SMB)

After you change the configuration for exec_nrm_request_limit, suspend and
resume the Replication Agent.

License: Separately licensed under the Advanced Services Option. See
“Replication Server — Advanced Services Option” on page 230.

exec_sqgm_write_request_limit

Specifies the amount of memory available for messages waiting to be written to
an inbound queue.

Default: IMB

Minimum: 16KB
Maximum: 2GB

md_sgm_write_request_limit

Specifiesthe amount of memory availableto the Distributor for messageswaiting
to be written to the outbound queue.

Note In Replication Server 12.1, md_sgm_write_request_limit replaces
md_source_memory_pool. md_source_memory_pool isretained for compatibility
with older Replication Servers.

Default: IMB
Minimum:; 16K
Maximum: 2GB

parallel_dsi

Administration Guide

A shorthand method for configuring parallel DSI to default values. A value of
“on” setsdsi_num_threads to 5, dsi_num_large_xact_threads to 2,
dsi_serialization_method to wait_for_commit, and dsi_sqt_max_cache_size to 1
million bytes. A value of “off” setsthe parallel DSI values to their defaults. You
can set this parameter to “on” and then set individua parallel DSI configuration
parameters to fine-tune your configuration.

Default: off

155

Suggestions for using tun

ing parameters

Configuration parameter

Description

use_batch_markers

If use_batch_markers is set to on, the function strings rs_batch_start and
rs_batch_end will be executed.

Note This parameter will only need to be set to on for replicate data servers that
require additional SQL translation to be sent at the beginning and end of a batch
of commands that are not contained in thers_begin and rs_commit function
strings.

Default: off

Route parameters that affect performance

Configuration parameter

Table 4-4 describestheroute configuration parametersthat affect performance.
See Chapter 6, “Managing Routes,” in the Replication Server Administration
Guide Volume 1 for a complete list of route parameters.
Table 4-4: Route parameters that affect performance
Description

rsi_batch_size

The number of bytes sent to another Replication Server before a truncation point
is requested.

Default: 256K
Minimum: 1K
Maximum: 128MB

rsi_packet_size

Packet size, in bytes, for communications with other Replication Servers. The
rangeis 1024 to 16384.

Default: 2048 bytes

rsi_sync_interval

The number of seconds between RSI synchronization inquiry messages. The
Replication Server uses these messages to synchronize the RSI outbound queue
with destination Replication Servers. The value must be greater than 0.

Default: 60 seconds

Suggestions for using tuning parameters

156

This section provides basic recommendations for improving Replication
Server performance. Whether or not changing these configuration values
improves your system performance depends on your system configuration and
how Replication Server isused at your site.

Replication Server

CHAPTER 4 Performance Tuning

Setting the amount of time SQM Writer waits

Replication Server configuration parameters: init_sgm_write_delay and
init_sgm_write_max_delay

In alow-volume system, set init_sgm_write_delay and
init_sqm_write_max_delay to alow value so that the SQM Writer need not wait
long before writing a partialy full block. In a high-volume system, set these
parameters higher because the SQM Writer rarely waitsto fill ablock.

Monitor how often the SQM Writer waits by reviewing counter 6038 —
WritesTimerPop.

Determine the number of full or partially full blocks that have been written by
reviewing these counters:

¢ 6002 — BlocksWriten
¢ 6041 — BlocksFullWrite

If counter 62006 — SleepsWiriteQ isrelatively high compared to counter 62002
— BlocksRead, SQM Readers must too often wait for the next block of
messages to deliver downstream—which causes latency. Decrease the values
of init_sgm_write_delay and init_sqm_write_max_delay so that SQM Writer does
not wait to long before writing a partially full block.

Ideally, theratio of counter 62004 — BlocksReadCached to counter 62002 —
BlocksRead should be high, and counter 62006 — SleepsWiiteQ should be
relatively low. Such numbers would indicate that the SQM Writer isworking
approximately asfast asthe SQM Reader, handing off blocks from the former
to the latter without reading from disk. However, these are Replication Server—
wide parameters, adjusting them to make one queue more efficient may
decrease the efficiency of another.

Caching system tables

Administration Guide

Replication Server configuration parameters: sts_cache_size and
sts_full_cache_table name.

You can fully cache certain system tables so that simple select statements on
thosetablesdo not require accessto the RSSD. By default, rs_repobjs, rs_users
rs_objects, rs_columns, and rs_functions are fully cached. Depending on the
number of replication definitions and subscriptions used, fully caching these
tables may significantly reduce RSSD access requirements. However, if the
number of unique rowsin rs_objects is approximately equal to the value for
sts_cachesize, these tables may already be fully cached.

157

Suggestions for using tuning parameters

Table 4-5 lists those tables that can be fully cached.

Table 4-5: System tables that can be cached

Tables

rs_classes rs_dbsubsets rs_version rs_datatype
rs_databases rs_columns rs_config rs_routes
rs_objects rs_diskaffinity rs_functions rs_users
rs_sites rs_queues rs_repdbs rs_dbreps
rs_repobjs rs_systext rs_publications

If you have alot of replication definitions in the replication system, and you
have many replication definition change requests, each change may cause a
refresh of the whole cache.

Replication definition change process

To improve performance, Sybase recommends that before you start the
replication definition change process, disable sts_full_cache for rs_objects,
rs_columns, and rs_functions, and then enable sts_full_cache for these tables
after the replication definition change process. To disable sts_full_cache where
system table name is the name of the table:

configure replication server

set sts_ full cache system table name to ‘off
See " Replication definition change request process,” in Chapter 9, “Managing
Replicated Tables” in the Replication Server Administration Guide Volume 1.

Caching stable queue

158

Replication Server uses a simple caching mechanism to optimize 1/O. This
mechanism reduces write latency and improves reader speed, since data can
usually be read quickly from the cache.

A cache is made up of multiple pages and each page is made up of multiple
adjoining blocks. A cacheis allocated for each queue at start-up time.
Changing the page size changes the size of 1/0 in the stable queue devices.
When apageis full, the entire page is written in one single write operation.

In stable queue caching, the page pointer movesforward and rotates back at the
end of the cache. SQM flushes the current page if the writer hasfilled the
message queue and is blocked when waiting for messages. Only blocks with
data are written to a disk when flushing a page that is not full.

Replication Server

CHAPTER 4 Performance Tuning

Configuring stable
gqueue cache
parameters

Administration Guide

Set the server-wide caching default value using:

configure replication server set sgm cache enable to
"on|off"

Enable or disable the caching for a queue and override the server-level setting
using:

alter queue g number, g type, set sgm cache enable to
"on|of£"

When sqgm_cache_enable parameter is disabled, SOM module returns back to
the earlier mechanism, which maintains a fixed 16K ; one-block buffer.

Set the server-wide page size default value using:

configure replication server set sgm page size to
"num_of blocks"

Set the page size for a specified queue using:

alter queue g number, g type, set sgm page size to
"num of blocks"

num_of blocks specifies the number of 16K blocksin a page. Configuring the
page size also setsthe 1/0O size of Replication Server. For example, if you set
the page size to 4, thisinstructs the Replication Server to write to stable queue
in 64K chunks.

Set the server-wide cache size default value using:

configure replication server set sgm cache size to
"num_pages"

Set the cache size for a specified queue using:

alter queue g number, g type, set sgm cache size to
"num_pages"

num_pages specifies the number pagesin the cache.

All SQM configuration commands are static, thus you must restart the server
for these commands to take effect.

See the Replication Server Reference Manual for detailed information about
these configuration parameters.

159

Suggestions for using tuning parameters

Setting wake up intervals

Replication Server configuration parameters; rec_daemon_sleep_time and
sub_daemon_sleep_time

By default, the recovery and subscription daemons wake up every two minutes
to check the RSSD for messages. In atypical production environment, the
subscription daemon is used rarely. As a consequence, you may be able to set
the subscription daemon wake-up interval to the maximum value: 31,536,000
seconds. Similarly, you can evaluate whether you want to set the recovery
daemon to alonger wake-up interval.

Sizing the SQT cache

160

Replication Server configuration parameter: sqt_max_cache_size
Database connection configuration parameter: dsi_sqt_max_cache_size

Monitor SQT cache usage by reviewing counter 24005 — CacheMemUsed.
Instead, monitor counter 24009 — TransRemoved. If TransRemoved remains
zero, indicating that transactions are not being flushed from the cache to make
room for others, you may not need to adjust sqt_max_cache_size.

Warning! Setting the sqt_max_cache_size too high can cause the server to
shutdown and can affect the overall resources of the Replication Server if the
server memory_limit is not set high enough to accommodate the SQT cache
sizing.

sqt_max_cache_size appliesto all SQT caches supporting DIST clients, and
provides a default value for SQT caches that support DSI clients. The DISTs
can push through transactions rapidly; their SQT caches do not need to be as
large as SQT caches for DSIs. Thus, it is advisable to set SQT cache sizes for
DSlsindividually using the connection configuration parameter
dsi_sqt_max_cache_size, and using sqt_max_cache_size for DIST SQT caches
only.

Note Inversionsof Replication Server earlier than 15.5, setting
sqt_max_cache_size too high can slow down replication. This advice does not
apply to Replication Server 15.5 and later.

Replication Server

CHAPTER 4 Performance Tuning

Controlling the number of outstanding bytes

Database connection configuration parameters: exec_nrm_request_limit,
exec_sqm_write_request_limit, and md_sgm_write_request_limit.

exec_nrm_request_limit iSs a separately licensed option. See “ Enhanced
RepAgent Executor thread efficiency” on page 243.

Database configuration parameter: exec_sqm_write_request_limit

exec_sqm_write_request_limit controls the amount of memory available for
messages waiting to be written to an inbound queue.

Database configuration parameter: md_sqgm_write_request_limit

md_sgm_write_request_limit controls the number of outstanding bytesa DIST
thread can hold before it must wait for some of those bytes to be written to the
outbound queue.

Using counters to monitor performance

Monitor the number of times and duration of time RepAgent Executor sleeps
and waits for normalization to complete, by reviewing this counter:

e 58038 - RAWatNRMTime

Monitor the number of times and duration of time the thread which is sleeping,
which can be either RepAgent Executor or NRM, waits before writing
messages into an inbound gqueue by reviewing this counter:

e 58019 — RAWriteWaitsTime
If RAWriteWaitsTime is consistently large, review the StableDevice 1/0.
See Chapter 5, “Using Counters to Monitor Performance.”

Controlling the number of network operations
Database connection configuration parameter: dsi_cmd_batch_size

Administration Guide 161

Suggestions for using tuning parameters

57037 — SendTime

dsi_cmd_batch_size controls the size of aDSI command batch. That is, it
controlsthe size of the buffer aDSI usesto send commandsto areplicate data
server. When the DSI configuration batch is set on, the DSI places as many
commands as will fit into a single command batch before sending it to the
replicate. In some cases, increasing the value of dsi_cmd_batch_size improves
throughput by providing the replicate database with more work per command
batch.

You can monitor the average size of a batch by referring to counter 57076 —
DSIEBatchSize. You can monitor the average amount of time taken to process
abatch (the time from when the batch is created until it is flushed and the
results processed) by referring to counter 57070 — DSIEBatchTime.

The following counters may also be useful in monitoring the effectiveness of
batching and batch size:

| 57079 — DSIEOCmdCount | 57063 — DSIEResultTime

57070 — DSIEBatchTime

| 57092 — DSIEBFMaxBytes | 57076 — DSIEBatchSize

Controlling the number of commands the RepAgent executor can

process

162

Database connection configuration parameter: exec_cmds_per_timeslice

By default, thevalue of theexec_cmds_per_timeslice parameter is2,147,483,647
which indicates that the RepAgent executor thread can process no more than
five commands before it must yield the CPU to other threads. Depending on
your environment, increasing or decreasing these values may improve
performance.

If the in-bound queue is slow to be processed, try increasing these values to
give the RepAgent executor thread and the DIST thread more time to perform
their work. If, however, the out-bound queue is slow to be processed, try
decreasing these parameter values so that the DSI has more time to work.

If CPU resources are limited with respect to the number of connections
Replication Server supports, increasing the value of exec_cmds_per_timeslice
may result in decreased overall performance. In this case, giving the RepAgent
Executor more control of CPU resources may reduce resources to other
Replication Server threads.

Monitor the number of times and duration of time the RepAgent executor
thread yields CPU with this counter:

+ 58016 — RAYieldTime

Replication Server

CHAPTER 4 Performance Tuning

Specifying the number of stable queue segments allocated
Replication Server configuration parameter: sqm_recover_segs

sgm_recover_segs specifies the number of stable queue segments Replication
Server allocates before updating the RSSD with recovery QID information.

If sqm_recover_segs is set low, more RSSD updates are performed, possibly
slowing performance. If sqm_recover_segs is set high, fewer RSSD updates
are performed, possibly improving performance at the expense of longer
recovery times.

Monitor how often an SQM Writer makes updates to the rs_ogids table by
reviewing counter 6036 — UpdsRsoqid. Typically, increasing the value of
sgm_recover_segs improves performance by reducing the amount of time and
system resources necessary to all ocate segments. However, queue startup and
restart takelonger asthe SQM Writer must scan more of the queueto determine
the last message successfully written for each origin. Each segment requires
1MB of queue space; determine the value of sqm_recover_segs by calculating
the number of megabytes the SQM Writer can afford to scan at startup or
restart. For example, if the SQM Writer can scan 50MB of queue without
slowing Replication Server startup or restart, set sqm_recover_segs to 50.

Selecting disk partitions for stable queues

Database connection configuration parameter: disk_affinity

The Replication Server partition affinity feature (see “ Allocating queue
segments’ on page 253) allows you to choose the disk partition to which
Replication Server allocates segments for stable queues. Sybase suggests that
to improve overall throughput, you associate faster devices with stable queues
that process more slowly.

Making SMP more effective

Replication Server configuration parameter: smp_enable

Administration Guide 163

Suggestions for using tuning parameters

To determine the number of processors required to make effective use of SMP,
establish a base of two processors plus one more for every four queues.
Processor speed may determine whether these numbers are correct to meet
your performance needs. If you have outbound queues supporting parallel DSI,
and thereare more than 12 DSI Executor threads, you may want to increase the
processor/thread ratio for outbound queues—one processor for every three or
even two outbound queues.

Replication Server always usesafinite number of threads based on the number
of supported connections and routes. Even if al threads are to be kept always
busy, making more and more processors available to Replication Server will
eventually cause “ CPU saturation”—beyond which more processors will not
increase performance. At that point, any performance issuesyou experience as
aresult of CPU resources may best be addressed by introducing CPUs running
at faster speeds.

In some cases, there is evidence that making too many processors available to
Replication Server can actually decrease performance. In such cases, the issue
seems to be the amount of time taken to force thread context switches among
the available processors. Use your operating system (OS) monitoring utilities
to monitor the operating system management of the Replication Server process
and its threads. These utilities will help you determine if areduction in CPUs
made available to Replication Server reduces the number of such context
switches.

Specifying the number of transactions in a group

You can use different configuration parameters to control the number of
transactions in a group.

Database configuration parameter: dsi_max_xacts_in_group

164

dsi_max_xacts_in_group specifies the maximum number of transactionsin a
group. Larger numbers may reduce commit processing at the replicate
database, and thereby improve throughput.

Monitor the average number of transactions placed in agroup per DSI-E thread
by reviewing counter 57001 — UnGroupedTransSched.

Monitor the average number of transactions per group for the total DS
connection by reviewing these counters:

e 5000 - DSIReadTranGroups

Replication Server

CHAPTER 4 Performance Tuning

e 5002 — DSIReadTransUngrouped

Use dsi_max_xacts_in_group to control group size. Set dsi_xact_group_size to
the maximum value of 2,147,483,647 and do not change it. Contention among
paralléel transactions may be reduced by reducing the value of
dsi_max_cacts_in_group to 1, which indicates no grouping.

Monitor why groups are being closed by reviewing these counters:
e 5042 — GroupsClosedBytes

e 5043 — GroupsClosedNoneQrig

e 5044 — GroupsClosedMixedUser

e 5045 — GroupsClosedMixedMode
e 5049 — GroupsClosedTranPartRule
e 5051 — UserRuleMatchGroup

e 5053 - TimeRuleMatchGroup

e 5055 - NameRuleMatchGroup

e 5063 — GroupsClosedTrans

e 5068 — GroupsClosedLarge

e 5069 — GroupsClosedWSBSpec

e 5070 - GroupsClosedResume

e 5071 - GroupsClosedSpecial

e 5072 - OriginRuleMatchGroup

e 5074 — OSessIDRuleMatchGroup

e 5076 —IgOrigRuleMarchGroup

Database configuration parameters: dsi_xact_group_size and
dsi_max_xacts_in_group

Administration Guide

Use these configuration parameters together to increase the number of
transactions that can be grouped as a single transaction for application to the
replicate database. If the average number of commands per transaction issmall
(five or fewer), you can use dsi_xact_group_size and dsi_max_xact_in_group to
improve transaction application time.

Sybase recommends that you set dsi_xact_group_size to the maximum value,
and use dsi_max_xact_in_group to control transaction group size.

165

Using parallel DSI threads

Setting transaction size

For single DSI connections, set the value of dsi_large_xact_size to the
maximum value of 2,147,483,647. Even when parallel DSI is not configured,
the DSI/S reads the statement limit set by dsi_large_xact_size and performs
severa tasks related to parallel DSI.

Enabling non-blocking commit

Replication Server configuration parameter: dsi_non_blocking_commit

The non-blocking commit feature improves replication performance when the
delayed commit feature is available in Adaptive Server 15.0 and later or the
equivalent delayed commit feature is available in Oracle 10g v2.

Use dsi_non_blocking_commit to enable non-blocking commit by specifying
the number of minutesto extend the period of time Replication Server saves
messages after a commit. Range of values: 0— 60 minutes.

Default: 0 — non-blocking commit is disabled.

Using parallel DSI threads

166

You can configure a database connection so that transactions are applied to a
replicate dataserver using parallel DSI threadsrather than asingle DSI thread.
Applying transactions in parallel increases the speed of replication, yet
maintains the serial commit order of the transactions that occurred at the
primary site.

When parallel DSI threads are active, Replication Server normally starts
processing a transaction before the preceding transaction has committed and
after the DSI has seen the commit record for the next transaction. The commit
isdelayed until it isdetermined that all preceding transactionshave committed.
Replication Server can maintain the order in which transactions are committed
and detect conflicting updates in transactions that are executing in parallel
simultaneously, using either of these methods:

» Internaly, using Replication Server internal tables and function strings, or

» Externaly, using thers_threads system table in the replicate database.

Replication Server

CHAPTER 4 Performance Tuning

Replication Server can achieve additional parallelism in the way it processes
transactions containing alarge number of operationswith parallel DSI threads.
Large transactions begin processing before the DSI has seen the commit
record. While this means a large transaction can be processed sooner, it also
means that in awarm standby situation, Replication Server might start
processing atransaction that is ultimately rolled back. However, with
subscription replication, the rollback transaction would be caught by the DIST
thread.

Replication Server provides other options for maximizing parallelism and
minimizing contentions between transactions. For example;

e Transaction serialization methods allow you to choose the degree of
parallelism your system can handle without inducing conflicts.

e Transaction partitioning rules provide additional tuning to affect how
transactions are grouped and distributed to avoid contention in the
replicate database.

Benefits and risks

Administration Guide

For most primary databases, many users and applications can create
transactions simultaneously. Funneling all of these transactionsto thereplicate
through a single connection can create a serious bottleneck. This bottleneck
can cause periods of unwanted latency between the primary and the replicate.

The benefit of enabling parallel DSI within Replication Server isto reducethis
potential bottleneck by processing multiple transactions across multiple
replicate databases at the same time.

Therisk in enabling parallel DSI isthe introduction of contention between the
multiple replicate connections and their transactions. The simultaneous
application of transactions against the replicate may introduce competition
between the transactions for replicate resources, creating a different kind of
bottleneck.

Asaresult, using parallel DSI threads successfully requires an in-depth
knowledge of your replication environment and iterative testing to determine
which of the parallel DSI tuning parameters are most beneficial. The objective
isto provide high throughput while controlling the amount of contention
introduced at the replicate.

167

Using parallel DSI threads

For example, consider abody of work that includes 1000 transactions that must
be replicated. It will take some time to send all 1000 transactions across a
single replicate connection. However, attempting to configure and use 1000
connections, one for each transaction, will likely result in contentions and
strained server resources. A successful configuration requires a balance
between the two scenarios; it depends on both the transaction profile and the
impact of issuing those transactions against the replicate using parallel DSI.

In asecond example, two serial transactionsissued at the primary each perform
asingle update operation to the same table row. If these two transactions are
attempted in parallel at the replicate by two connections, thefirst transaction to
access the table row is granted exclusive access. The second transaction must
wait until the first transaction has either committed or rolled back and thus
released the row. Although both transactions are ultimately applied, thereisno
benefit from the parallel DSI configuration. The transactions are processed
serialy inthe sameway they would have been processed without parallel DSI.
The contention has nullified any benefit from using parallel DSI.

Parallel DSI parameters

You can customizethe parallel DSI thread environment using the configuration
parameters shown in Table 4-6. Use these configuration parameters with alter
connection to tune parallel DSI threads for individual connections.

Table 4-6: Parallel DSI configuration parameters

Configuration parameter Description

dsi_commit_check_locks_intrvl The number of milliseconds (ms) the DSI executor thread waits between

executions of thers_dsi_check_thread_lock function string.
Default: 1000 ms (1 second)

Minimum: O

Maximum: 86,400,000 ms (24 hours)

dsi_commit_check_locks_log The number of times the DSI executor thread executes the

168

rs_dsi_check_thread_lock function string before logging a warning message.
Default: 200

Minimum: 1

Maximum: 1,000,000

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

dsi_commit_check_locks_max

The maximum number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before rolling back and retrying a
transaction.

Default: 400
Minimum: 1
Maximum: 1,000,000

dsi_commit_control

Specifies whether commit control processing is handled internally by
Replication Server using internal tables (on) or externally using the rs_threads
system table (off).

Default: on

dsi_ignore_underscore_names

When the dsi_partitioning_rule is set to “name,” specifies whether or not
Replication Server ignores transaction names that begin with an underscore.
Values are “on” and “off.”

Default: on

dsi_isolation_level

Specifies theisolation level for transactions. ANSI standard and Adaptive
Server supported values are:

» 0-—ensuresthat data written by one transaction represents the actual data.

e 1-—preventsdirty reads and ensures that data written by one transaction
represents the actual data.

« 2-—preventsnonrepeatablereadsand dirty reads, and ensuresthat datawritten
by one transaction represents the actual data.

e 3—preventsphantom rows, nhonrepeatable reads, and dirty reads, and ensures
that data written by one transaction represents the actual data.

Through the use of custom function strings, Replication Server can support any

isolation level the replicate data server may use. Support is not limited to the

ANSI standard only.

Default: the current transaction isolation level for the target data server

dsi_large_xact_size

The number of statements alowed in atransaction before it is considered to be
alarge transaction.

Default: 100
Minimum: 4
Maximum: 2,147,483,647 (in bytes)

dsi_max_xacts_in_group

Administration Guide

Specifies the maximum number of transactionsin a group. Larger numbers
may improve data latency at the replicate database.

Range of values: 1 —1000.

Default: 20

169

Using parallel DSI threads

Configuration parameter

Description

dsi_max_cmds_in_batch

Defines maximum number of source commandsfor which output commandscan
be batched.

Range: 1 — 1000
Default: 100

dsi_num_large_xact_threads

Thenumber of parallel DS threadsto be reserved for usewith large transactions.
The maximum value is one less than the value of dsi_num_threads.

Default: 0

dsi_num_threads

The number of parallel DSI threads to be used for a connection. A value of 1
disablesthe parallel DSI feature.

Default: 1
Minimum: 1
Maximum: 255

dsi_partitioning_rule

170

Specifies the partitioning rules (one or more) the DSI uses to partition
transactions among available parallel DSI threads. Values are origin,
origin_sessid, time, user, name, none, and ignore_origin. See* Partitioning rules:
reducing contention and increasing parallelism” on page 180 for detailed
information.

Default: none

Replication Server

CHAPTER 4 Performance Tuning

Configuration parameter

Description

dsi_serialization_method

Specifies the method used to determine when a transaction can start, while still
maintaining consistency. In all cases, commit order is preserved.

These option methods are ordered from most to least amount of paralelism.
Greater parallelism can lead to more contention between parallel transactions as
they are applied to the replicate database. To reduce contention, use the
dsi_partition_rule option.

* no_wait — specifies that atransaction can start as soon as it is ready, without
regard to the state of other transactions.

Note You canonly set dsi_serialization_method to no_wait if
dsi_commit_control isset to “on”.

» wait_for_start — specifiesthat atransaction can start as soon asthe transaction
scheduled to commit immediately before it has started.

» wait_for_commit (default) — specifies that a transaction cannot start until the
transaction scheduled to commit immediately precedingit isready to commit.

wait_after_commit — specifies that atransaction cannot start until the
transaction scheduled to commit immediately preceding it has committed
completely.

These options are retained only for backward compatibility with earlier versions
of Replication Server:

* none —Ssame aswait_for_start.

* single_transaction_per_origin — same as wait_for_start with
dsi_partitioning_rule set to origin.

* isolation_level_3 —sameas wait_for_start with dsi_isolation_level set to 3.

dsi_sqt_max_cache_size

Administration Guide

The maximum SQT cache size for the outbound queue in bytes. The defaullt, O,
means the current setting of the sqt_max_cache_size parameter is used as the
maximum cache size for the connection.

See“ Sizing the SQT cache” on page 160 for more information about setting the
SQT cachesize.

Default: 0

For 32-bit Replication Server:

e Minimum-0

e Maximum —2,147,483,647 (in bytes)

For 64-bit Replication Server:

e Minimum-0

e Maximum —2,251,799,813,685,247 (in bytes)

171

Using parallel DSI threads

Configuration parameter Description

parallel_dsi

A shorthand method for configuring parallel DSI threads. A value of “on” sets
dsi_num_threads to 5, dsi_num_large_xact_threads to 2,
dsi_serialization_method to wait_for_commit, and dsi_sqt_max_cache_size to 1
million bytes (on 32-bit platform) and 20 million bytes (64-bit platform). A
value of “off” setsthe parallel DSI values to their defaults. You can set this
parameter to “on” and then set individual parallel DSI configuration parameters
to fine-tune your configuration.

Default: off

To configure a connection for parallel DS, set the parallel_dsi parameter to on
and then set individual parallel DSI configuration parametersto fine-tune your
environment.

For example, to enable parallel DSI for the connection to the pubs2 database
on the SYDNEY _DS data server, enter:

alter connection to SYDNEY DS.pubs2
set parallel dsi to 'on'

Note You can also set individual parallel DSI configuration parameters using
the configure replication server command.

See “Configuring parallel DSI for optimal performance” on page 191 for
guidelines on configuring the parameters.

Components of parallel DSI

Replicate

Replication Server @

172

Figure 4-3 shows the components of parallel DSI.

Figure 4-3: Parallel DSI components
Fa R

Qutbound
Clueue @
Replicate
@ Data Server

Replication Server

CHAPTER 4 Performance Tuning

DSI scheduler thread

The DSl scheduler thread (shown as DSI-Sin Figure 4-3) collects small
transactions into groups by commit order. Once transactions are grouped, the
DSl scheduler dispatchesthe groupsto the next available DSI executor thread.
The DSI scheduler attemptsto dispatch groupsfor different originsin paralel,
because they can commit in parallel. If contention between transactions from
different originsistoo high, set the ignore_origin option for the
dsi_partitioning_rule parameter.

Transaction partitioning rules allow you to specify additiona criteriathe DS
scheduler can use to group transactions. See “ Partitioning rules: reducing
contention and increasing parallelism” on page 180.

DSl executor threads

The DSl executor threads (shown as DSI-E in Figure 4-3) map functionsto
function strings and execute the transactions on the replicate database. The DSI
executor threads also take action on any errorsthe replicate data server returns.

Processing transactions with parallel DSI threads

Small transactions

Administration Guide

You can define large and small transactions with the dsi_large_xact_size
database connection configuration parameter. dsi_large_xact_size specifiesthe
number of commands allowed in atransaction before the transaction is
considered to be large. Replication Server normally processes small and large
transactions differently.

Replication Server attempts to group similar transactions to process them as
one, larger transaction. In this way, Replication Server can issue one commit
for the group rather than committing each individual transaction. A group of
transactions is compl ete and sent to the next available DSI executor thread
when one of severa criteriais met. For example:

e The next transaction has been issued from a different origin.

* The number of transactionsin the group exceeds the value specified by
dsi_max_xacts_in_group.

* Thetota size, in bytes, of the transactionsin the group exceeds the value
specified by dsi_xact_group_size.

173

Using parallel DSI threads

Large transactions

e Thenext transaction is alarge transaction, which is always grouped by
itself.

e A transaction partitioning rule determines that the next transaction cannot
be grouped with the existing group.

Once agroup is complete, it can be sent to the next available DSI executor
thread. Only committed transactions can be added to a group. That is,
transactions are not added to the transaction group until their commit record is
read.

Large transactions are submitted to the next available DSI executor thread that
isreserved for alarge transaction. The DSI executor thread sends the
transaction to the replicate data server without waiting to see the commit
record. If the transaction was rolled back at the primary data server, the DSI
executor thread rolls it back at the replicate data server.

If Replication Server encounters alarge transaction, and a dedicated large
transaction thread is not available, the transaction is processed in the same way
asasmall transaction.

Selecting isolation levels

174

By selecting atransaction isolation level, you can control the degree to which
data can be accessed by other users during atransaction. The ANSI SQL
standard defines four levels of isolation for transactions. Each isolation level
specifies the kinds of actions that are not permitted while concurrent
transactions are processing. Higher levels include the restrictions imposed by
lower levels. For more information about isolation levels, see the Adaptive
Server Enterprise Transact-SQL Guide.

Note Replication Server supports not just the ANSI standard values, but all
values needed to replicate to any supported data servers.

» Level 0— prevents other transactions from changing data that has already
been modified by an uncommitted transaction. However, other
transactions can still read the uncommitted data, which resultsin dirty
reads.

Replication Server

CHAPTER 4 Performance Tuning

e Level 1—preventsdirty reads, which occur when onetransaction modifies
arow, and a second transaction reads that row before the first transaction
commits the change.

e Level 2—prevents nonrepeatabl e reads, which occur when onetransaction
reads arow and a second modifies that row. If the second transaction
commits its change, subsequent reads by the first transaction yield
different results than the original read.

e Level 3—ensuresthat dataread by onetransactionisvalid until the end of
the transaction. It prevents “ nonrepeatable reads’ and “phantom rows” by
applying an index page or table lock until the end of the transaction.

Select isolation level 3 if you are using triggers to enforce referential
integrity of dataacrossadatabase. | solation level 3 prevents phantom rows
from occurring in atable while atrigger is executing.

You can set the isolation level using create connection or configure connection
withthedsi_isolation_level option. For example, to changetheisolationlevel to
3 for the connection to the pubs2 database on the SYDNEY DS data server,
enter:

alter connection to SYDNEY DS.pubs2
set dsi isolation level to '3’

Replication Server setsthe isolation-level value to thers_set_isolation_level
function string using the rs_isolation_level system variable.
rs_set_isolation_level executes when Replication Server establishes the
connection with the replicate data server. If no value has been set, Replication
Server does not execute rs_dsi_isolation_level, and instead uses the isolation
level of the data server. The default isolation level for Adaptive Server is 1.

Setting isolation levels for non-Sybase replicate data servers

Administration Guide

Isolation levels may vary depending on the replicate data server. This has an
impact on configuring parallel DSI in Replication Server.

* Oracle—READ COMMITTED and SERIALIZABLE

* Microsoft SQL Server - READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ, SNAPSHOT, and
SERIALIZABLE

* |IBM DB2UDB - REPEATABLE READ, READ STABILITY, CURSOR
STABILITY, and UNCOMMITED READ

175

Using parallel DSI threads

Thers_set_isolation_level function string must be edited for non-Sybase
replicate data servers, and include thers _isolation_level system-defined
variable. See the Replication Server Reference Manual for more information
about rs_set_isolation_level.

If you are using a data server other than Adaptive Server, make sure you
includethers isolation_level variable when you modify the
rs_set_isolation_level function string for your data server.

To set an isolation level, create afunction string in the appropriate function-
string class. For example, in:

e Oracle—to set the SERIALIZABLE isolation level:

create function string rs set isolation level
for rs oracle function class

output language

‘set transaction isolation level serializable’

e Microsoft SQL Server —to set the SERIALIZABLE isolation level:

create function string rs_set_ isolation_ level
for rs_msss_function class

output language

‘set transaction isolation level serializable

* IBM DB2 UDB —to set the REPEATABLE READ isolation level:

create function string rs set isolation level
for rs_udb_function class

output language

‘set current isolation = RR’

Transaction serialization methods

176

Replication Server providesfour different serialization methodsfor specifying
the level of parallelization. The serialization method you choose depends on
the amount of contention you expect between parallel threads and your
replication environment. Each serialization method defines how much of a
transaction can start beforeit must wait for the previous transaction to commit.

Use the dsi_partitioning_rule parameter to reduce the probability of contention
without reducing the degree of parallelism assigned by the serialization
method. See “Partitioning rules: reducing contention and increasing
parallelism” on page 180.

The serialization methods are:

Replication Server

CHAPTER 4 Performance Tuning

* no_wait

* wait_for_start

* wait_for_commit

* wait_after_commit

Usethe alter connection command with the dsi_serialization_method parameter
to select the serialization method for adatabase connection. For example, enter
the following command to select the wait_for_commit serialization method for
the connection to the pubs2 database on the SYDNEY _DS data server:

alter connection to SYDNEY DS.pubs2
set dsi serialization method to 'wait for commit'

A transaction contains three parts:
e Thebeginning

« Thebody of thetransaction, consisting of operations such asinsert, update,
or delete

* Theend of the transaction, consisting or acommit or arollback

While providing commit consistency, the serialization method defineswhether
the beginning of the transaction waits for the previous transaction to become
ready to commit or if the beginning of the transaction can be processed earlier.

no_wait

This method instructs the DSI to initiate the next transaction without waiting
for the previous transaction to commit. It assumes that your primary
applications are designed to avoid conflicting updates, or that
dsi_partitioning_rule is used effectively to reduce or eliminate contention.
Adaptive Server does not hold update locks unless dsi_isolation_level has been
set to 3. The method assumes little contention between parallel transactions
and results in the nearly parallel execution shown in Figure 4-6.

Note You can only set dsi_serialization_method to no_wait if
dsi_commit_control is set to “on”.

Administration Guide 177

Using parallel DSI threads

Figure 4-4: Thread timing with the no_wait serialization method
Transaction A

[| Body [End]

Transaction B

| | Body | End |

Transaction C
| | Body | End |

Time

-

no_wait provides the better opportunity for increased performance, but also
provides the greater risk of creating contentions.

wait_for_start

wait_for_start specifies that a transaction can start as soon as the transaction
scheduled to commit immediately before it has started. See Figure 4-5.

Sybase recommends that you do not concurrently set dsi_serialization_method
to wait_for_start and dsi_commit_control to off.

Figure 4-5: Thread timing with wait_for_start serialization method

Transaction A

| | Body | End |

Transaction B

| | Body |End|

Time

178 Replication Server

CHAPTER 4 Performance Tuning

wait_for_commit

In this method, the next thread’s transaction group is not sent for processing
until the previous transaction has processed successfully and the commit is
being sent. Thisis the default setting. It assumes considerable contention
between parallel transactions and resultsin the staggered execution shown in
Figure 4-6.

Figure 4-6: Thread timing with wait_for_commit serialization method

Transaction A

[ey [E]

Transaction B

| [Bady IEnl:I|

Transaction C
[T e [ew]

Time

This method maintains transaction serialization by instructing the DSI to wait
until atransactionisready to commit before initiating the next transaction. The
next transaction can be submitted to the replicate data server while the first
transaction is committing, since the first transaction already holds the locks
that it requires.

wait_after_commit

wait_after_commit specifies that a transaction cannot start until the transaction
scheduled to commit immediately preceding it has committed completely. See
Figure 4-7.

Administration Guide 179

Using parallel DSI threads

Figure 4-7: Thread timing with wait_after_commit serialization method

Transaction &,

Body End

Transaction B

Body End

Transaction C

Body End

Time

Partitioning rules: reducing contention and
increasing parallelism

Another parallel DSI tuning parameter is dsi_partitioning_rule. Partitioning
rules set using dsi_partitioning_rule allow the parallel DSI feature to make
decisionsabout transaction groups and parallel execution based on transactions
having common names, users, overlapping begin/commit times, or a
combination of these. Partitioning rules allow the parallel DSI feature to more
closely mimic processing order at the primary, and are intended to be used in
reducing contention at the replicate.

Each of the parallel DSI parameters provides a method for fine-tuning the
feature based on conditions at your installation. dsi_num_threads controls the
number of DSI threads available for a connection. dsi_serialization_method
controls the amount of parallelism for the connection, but must balance
increased parallelism with the potential for contentions at the replicate.
dsi_partitioning_rule provides a method for reducing contentions without
reducing the overall capabilities of the parallel DSI feature.

Using transaction-partitioning rules

Replication Server allows you to partition transactions for each connection
according to one or more of these attributes:

e Origin

e Originand session ID

180 Replication Server

CHAPTER 4 Performance Tuning

Partitioning rule: origin

e None, in which no partitioning rule is applied
e Username

e Origin begin and commit times

* Transaction name

e Ignoreorigin

Note If partitioning rules are to be used to improve performance,
dsi_serialization_method must not bewait_for_commit. wait_for_commit removes
contention by reducing parallelism.

To select partition rules, use the alter connection command with the
dsi_partitioning_rule option. The syntax is:

alter connection to data_server.database
set dsi_partitioning_rule to ‘{ nonejrule[, rule]}

Valuesfor rule are user, time, origin, origin_sessid, name, and ignore_origin.

For example, to partition transactions according to user name and origin begin
and commit times, enter:

alter connection to TOKYO_DS.pubs2
set dsi partitioning rule to ‘user,time’

origin causes transactions from the same origin to be serialized when applied to
the replicate database.

Partitioning rule: origin and process ID

Partitioning rule: none

Administration Guide

origin_sessid causes transactionswith the same origin and the same process |1 D
to be serialized when applied to the replicate database. Sybase recommends
that when first trying partitioning rules start with a setting of

origin_sessid, time.

Note The process|D for Application Server isthe Session Process ID (SPID).

none is the default behavior, in which the DSI scheduler assigns each
transaction group or large transaction to the next available parallel DSI thread.

181

Using parallel DSI threads

Partitioning rule: user

If you choose to partition transactions according to user name, transactions
entered by the same primary database user ID are processed serialy. Only
transactions entered by different user IDs are processed in parallel.

Use of this partitioning rule avoids contentions, but may in some cases cause
unnecessary loss of parallelism. For example, consider a DBA who isrunning
multiple batch jobs. If the DBA submits each batch job using the same user ID,
Replication Server processes each one serialy.

The user name partitioning rule is most useful if each user connection at the
primary hasauniqueID. It islessuseful if multiple userslog on using the same
ID, such as“sa.” In such cases, orig_sessid may be a better option.

Partitioning rule: origin time begin and commit times

182

If the time partitioning ruleis used, the DSI scheduler looks at the origin begin
and commit times of transactions to determine which transactions could not
have been executed by the same process at the primary database. A transaction
whose origin begin time is earlier than the commit time of the preceding
transaction can be processed by a different DSI executor thread.

Suppose the origin begin and commit times partitioning rule has been sel ected,
and the transactions and processing times shown in Figure 4-8 are all from the
same primary database.

Figure 4-8: Transaction origin begin and commit times

A
B
e
L
Time | | | | | | | |

I | | | | | | | >
T1 T2 T3 T4 T5 TE T7 T8

Executor thread X Executor thread Y
A C
B
D

Replication Server

CHAPTER 4 Performance Tuning

Partitioning rule: name

Default transaction
names

Administration Guide

In this example, the DSI scheduler givestransaction A to DSI executor thread
X. The scheduler then compares the begin time of transaction B and the
commit time of transaction A. Astransaction A has committed before
transaction B begins, the scheduler gives transaction B to executor thread X.
That is, transactions A and B may be grouped together and may be processed
by the same DSI executor thread. Transaction C, however, begins before
transaction B commits. Therefore, the scheduler assumes that transactions B
and C were applied by different processes at the primary, and givestransaction
C to executor thread Y. Transactions B and C are not allowed in the same group
and may be processed by different DSI executor threads. Because transaction
D begins before transaction C commits, the scheduler can safely give
transaction D to executor thread X.

Note Use of the origin begin and commit times partitioning rule may lead to
contentionswhen | arge transactions are processed, asthey are scheduled before
the commits are seen.

The DSI scheduler can use transactions names to group transactions for serial
processing. When creating a transaction on Adaptive Server, you can use the
begin transaction command to assign a transaction name.

If the transaction name partitioning rule is applied, the DSI scheduler assigns
transactionswith the same nameto the same executor thread. Transactionswith
different transaction names are processed in parallel. Transactions with a null
or blank name are ignored by the name parameter. Their processing is
determined by other DSI parallel processing parameters or the availability of
other executor threads.

Note Thispartitioning ruleisavailableto non-Sybase dataserversonly if they
support transaction names.

By default, Adaptive Server aways assigns a name to each transaction. If a
name has not been assigned explicitly using begin transaction, Adaptive Server
assigns a name that begins with the underscore character and includes
additional characters that describe the transaction. For example, Adaptive
Server assigns asingle insert command the default name*“_ins.”

183

Using parallel DSI threads

Use the dsi_ignore_underscore_name option with alter connection to specify
whether or not Replication Server ignores these names when partitioning
transactions based on transaction name. By defaullt,
dsi_ignore_underscore_name is on, and Replication Server treats transactions
with names that begin with an underscore in the sameway it treats transactions
with null names.

Partitioning rule: ignore origin

All partitioning rules, except ignore_origin, allow transactions from different
originsto beappliedin parallel, regardless of other specified partitioning rules.
For example:

alter connection dataserver.db
set dsi_partitioning rule to "name"

In this case, transactions with different origins are applied in parallel, whether
or not they have the same name.

The name partitioning rule only affects transactions from the same origin.
Thus, transactions with the same origin and name are applied serialy, and
transactions with the same origin and different names are applied in parallel.

ignore_origin overrides the default handling of transactions from different
origins, and allows them to be partitioned as if they all came from the same
origin.

If ignore_origin is listed first in the alter connection statement, Replication
Server partitions transactions with the same or different origins according to
the second or succeeding rulesin the statement. For example:

alter connection dataserver.db
set dsi partitioning rule to "ignore origin, name"

In this case, al transactions with the same name are applied serially and all
transactions with different names are applied in parallel. The origin of the
transaction isirrelevant.

If ignore_origin is listed in the second or a succeeding position in the alter
connection statement, Replication Server ignoresiit.

Using multiple transaction rules

184

You can set multiple transaction rules for a single connection. For example,
applying both origin session ID and origin begin and commit times best
approximates the processing environment at the primary database.

Replication Server

CHAPTER 4 Performance Tuning

When more than one transaction rule is specified, Replication Server applies
the rulesin the order in which they are entered in the alter connection set
dsi_partitioning_rule Syntax.

For example, if dsi_partitioning_rule is set to “time, user,” Replication Server
checks origin begin and commit times before checking user ID. If no conflict
existsfor origin begin and commit times, Replication Server checksuser ID. If
thereis aconflict involving begin and commit times, Replication Server
appliesthetime rule without checking the user ID. Thus, two transactions will
be assigned to different parallel DSI threadsif the origin begin time of the later
transaction is earlier than the commit time—even if both transactions have the
same user ID.

Grouping logic and transaction partitioning rules

Partitioning rules can affect grouping aswell as scheduling decisions. When no
partitioning ruleis applied, a group is complete when, for example, the
maximum size for agroup is reached or alarge transaction is encountered.

If apartitioning rule determines that two transactions occurred at overlapping
times (time rule), have different transaction names (name rule), or are from
different users (user rule), the two transactions are not allowed in the same
group. Otherwise, normal group-size decisions are applied, based on
transaction size, origin, and so forth. See “ Small transactions” on page 173.

Resolving conflicting updates

Administration Guide

Parallel DSI processing must duplicate the commit order of transactions at the
primary database, yet allow transaction updates to process simultaneously. It
must then resolve any transaction contentions that occur as aresult. Commit
order deadlock transaction contentions—or contention deadl ocks—can occur
when a transaction cannot commit because it must wait for an earlier
transaction to commit, and the earlier transaction cannot commit because
needed resources are locked by the later transaction.

For example, DSI threads A and B are processing transactions in parallel.
Thread A’s transaction must commit before thread B’stransaction. Thread B's
transaction locks resources needed by thread A. Thread B’ s transaction cannot
commit until thread A’ stransaction commits, and thread A’s transaction cannot
commit because needed resources are locked by thread B.

Replication Server provides two methods for resolving commit order
deadlocks:

185

Using parallel DSI threads

» Internaly, using Replication Server internal tables and afunction string, or

« Externaly, using thers_threads system table in the replicate database and
severa function strings.

Theinternal method is handled primarily within Replication Server, and uses
thers_dsi_check_thread_lock function string for commit order deadlock
detection. The external method requires both Replication Server and the
replicate database, and usesthers_threads system table for both commit order
validation and commit order deadlock detection.

Sybase recommends the internal method, which isthe default, for both Sybase
and non-Sybase data servers. This method requires less network /O than the
external method, and, if acommit order deadlock occurs, may require the
rollback of only a single transaction. The external method requires more
network /O and results in the rollback of several transactions. The external
method is included for compatibility with earlier versions of Replication
Server.

If Replication Server encounters commit order deadlock and
dsi_commit_control is on, Replication Server rolls back and retries one
transaction. If, however, Replication Server encounters commit order deadl ock
and dsi_commit_control is off, Replication Server rolls back and retries all
transactions serially.

To select a method, enter the alter connection command with the
dsi_commit_control option. For example, to choose the internal method for the
pubs2 database on the TOKY O_DS data server, enter:

alter connection to TOKYO_ DS.pubs2
set dsi commit control to ‘on’

Setting dsi_commit_control to “on” specifies the internal method; setting
dsi_commit_control to “ off” specifies the external method.

Resolving conflicts internally using the rs_dsi_check_thread_lock function

string

186

To preserve transactional integrity, Replication Server must maintain
transaction commit order and resolve commit order consistency deadlocks.
Figure 4-9 describes the logic Replication Server usesto resolve commit order
deadlocks using thers_dsi_check_thread_lock function string.

Replication Server

CHAPTER 4 Performance Tuning

Figure 4-9: Conflict resolution logic using the
rs_dsi_check_thread_lock function string

Primary dala server

Transaction path

————— Process Replication Server

'

Is transaction next
one to commit? [Wail [4—

O

<

Has
dsi_commit_check_locks_intrv
time elgpsed? @

Commit
G -

Is rs_dsi_check_thread lock = 07 ¢

Has
Roll back dsi_commit_check_locks_max

been reached?
Yes
\ vy

Administration Guide 187

Using parallel DSI threads

Maintaining commit
order

Resolving commit
consistency deadlocks

188

Note Theinternal method resolves commit order deadlocks that Replication
Server detects and resolves conflicting updates only within Replication Server.
If adeadlock is detected by the replicate database, the replicate chooses a
transaction to roll back. To guarantee commit order, Replication Server must
roll back all transactions currently executing against the replicate database.
Replication Server then reapplies the transactions serially.

Replication Server reads the commit information sent from the primary
database and uses this information to define and maintain the transaction
commit order at the replicate database.

If aDSI executor thread'stransaction processing iscompleteand it is expected
to be the “next” transaction to commit, it is allowed to do so. If athread's
transaction processing iscomplete and it is not the “ next” transaction expected
to commit, the thread must await its turn to commit.

If athread’ stransaction processing iscomplete and it is not the next transaction
expected to commit, the transaction could be holding resources required by a
transaction scheduled to commit earlier. See Figure 4-9 on page 187. After
waiting the amount of time specified in the dsi_commit_check_locks_intrvl
parameter, a DS| executor thread executes the
rs_dsi_commit_check_thread_lock function string to determine if the thread
holds alock on resources needed by the earlier transaction:

» If thethread is blocking another transaction (rs_dsi_check_thread_lock >
0), the current transaction rolls back, which resolves the commit order
deadlock and allows the earlier transaction to commit. Only the blocking
transaction rolls back; other transactions process normally.

» If thethread is not blocking another transaction, it checksto seeif it has
executed rs_dsi_check_thread_lock more times than is defined by the
dsi_commit_check_locks_max parameter.

» If thethread has not executed rs_dsi_check_thread_lock more times
than is defined in dsi_commit_check_locks_max, the transaction
commitsif itisnext, or it waits again the amount of time specified in
dsi_commit_check_locks_intrvl.

» If thethread has executed rs_dsi_check_thread_lock more times than
isdefined in dsi_commit_check_locks_max, the current transaction
rolls back.

Replication Server

CHAPTER 4 Performance Tuning

Function strings for internal commit control

Function

Replication Server usesthers_dsi_check_thread_lock function to check
whether the current DSI executor thread is blocking another replicate database
process. This function has function-string-class scope. It is called only if the
DSl executor thread is ready to commit but cannot because it is not next to
commit, and the amount of time specified for dsi_commit_check_locks_intrvl
has elapsed. If commit order contention occurs frequently, consider decreasing
the wait time specified by dsi_commit_check_locks_intrvl.

Table 4-7: System functions that support internal commit control
| Description

rs_dsi_check_thread_lock

Determineswhether or not the DSI executor thread isholding alock that blocks
areplicate database process. A return value greater than 0 indicates that the
thread is holding resources required by another database process, and that the
thread should roll back and retry the transaction.

Note Replication Server automatically creates function strings for the above
function in function-string classes in which Replication Server generates
default function strings. For other function-string classes, you must create
these function strings before you can use parallel DSI features with
dsi_commit_control set on.

Using rs_threads to resolve conflicts externally

Administration Guide

Thers_threads tableislocated in the replicate database. It contains arow for
each DS executor thread. To simulate row-level locking, it has two columns,
id and seq, and enough dummy columns so that only one row fits on a page.
Theid column isused as a unique clustered index.

At the beginning of atransaction, the DSI executor thread updatesitsrow in
thers_threads table with the next available sequence number. When it is ready
to commit the transaction, the thread sends a select statement to the replicate
data server to select, from thers_threads table, the sequence number of the
transaction that should have committed prior to the transaction.

Because the preceding transaction holds alock on thisrow in rs_threads, this
thread is blocked until the preceding transaction commits.

189

Using parallel DSI threads

If the sequence number that is returned is less than the expected value, the

thread determines whether it should roll back the transaction or retry the select
operation. Because the DSI formats many commandsinto asingle batch before
submitting it to the Adaptive Server, athread may be ready to commit before
the preceding transacti on has submitted any commandsto the Adaptive Server.
In this case, the select in thers_threads table may be submitted several times.

If the sequence number that is returned matches the expected value, the
transaction can commit.

Handling deadlocks

If atransaction is ready to commit, but cannot because it is not next in proper
commit order, and thistransaction isholding locks on resourcesthat are needed
by atransaction that must commit beforethis one, adatabase resource deadlock
occursat thereplicate database. The database resource deadlock consists of the
lock on rs_threads held by the next transaction in commit order, and the locks
held on resources needed by that transaction. The database resource deadl ock
is detected by the replicate database, which chooses a transaction to roll back.
Since Replication Server must guarantee commit order, when this rollback is
forced by the replicate database, Replication Server rolls back all transactions
executing against the replicate database and reapplies them serially in commit
order.

Function strings for commit control using rs_threads

Replication Server manipulates the rs_threads system table with the system
functions listed bel ow. These functions have function-string-class scope. They
are executed only when more than one DS thread is defined for a connection.

Table 4-8: System functions that modify the rs_threads system table

Function Description

rs_initialize_threads Setsthe sequence of each entry inthers_threads system tableto 0. Thisfunction
is executed during the initialization of aconnection.

rs_update_threads Updates the sequence number for the specified entry in the rs_threads system
table.

rs_get_thread_seq Returns the current sequence number for the specified entry in thers_threads
system table.

rs_get_thread_seq_noholdlock Returns the current sequence number for the specified entry in thers_threads
system table, using the noholdlock option. This thread is used when
dsi_isolation_level is 3.

190 Replication Server

CHAPTER 4 Performance Tuning

Note The function strings described in Table 4-8 are needed only when the
external, rs_threads method is used for commit control.

Configuring parallel DSI for optimal performance

Before you begin

Administration Guide

The following guidelines can help you configure parallel DSI to achieve
optimal performance. The objective isto tune parallel DSI processing to
provide the best replication performance, balancing parallel processing with
acceptable levels of contention. Contentions will always occur. The only way
to eliminate contentions is to turn off parallel DSI processing. At the same
time, setting all parallel DS parameters for maximum parallelism may cause
Replication Server to spend more time recovering from contentions than
actually applying transactions to the replicate. Optimal performanceis
achieved through a clear understanding of your operating environment so that
you can successfully balance parallel processing with acceptable contention
levels.

Before you begin tuning for performance:
1 Understand your transaction profile.

What kinds of transactions are being replicated? Do these transactions
affect the same rows and tables? Are these transactionsliable to conflict if
applied in paralle? Is the transaction profile constant, or does it change,
perhaps with the time of day or month. A clear understanding of your
transaction profile hel ps you select those parameters and settings that will
be most useful.

2 Tunethereplicate database to handle contentions.

Most primary databases have been tuned to minimize contentions through
the use of clustered indexes, partitioning, row-level locking, and so on.
Make sure that your replicate database has been tuned similarly.

3 Define a set of repeatable transactions that accurately reflect your

replication environment.

Tuning your parallel DSI environment is an iterative process. You will
need to set parameters, run atest, measure performance, compare against
previous measurements, and repeat until you have maximized your resullts.

191

Using parallel DSI threads

Reducing contention

192

Reset the dsi_serialization_method parameter.

Note You canonly set dsi_serialization_method to no_wait if
dsi_commit_control is set to “on”.

Set the dsi_serialization_method parameter to no_wait to enable maximum
parallelism. Then attempt to reduce contentions by testing other
parameters. Because the wait_for_commit (the default) setting supplies
minimal parallelism and therefore minimal benefit, only reset
dsi_serialization_method to wait_for_commit after all attempts to reduce
contention using the no_wait setting have failed to increase performance.

Set the dsi_num_threads parameter correctly.

Thedsi_num_threads parameter defines the total number of DSI executor
threads; the dsi_num_large_xact_threads parameter defines the total
number of DSI executor threads reserved for large transactions. Thus, the
total number of DSI executor threads (dsi_num_threads) equals the
number of DSI threads reserved for large transactions plus the number of
threads available for small transactions.

Tobegin, try setting dsi_num_threads to 5, and dsi_num_large_xact threads
to 2. After selecting adsi_serialization_method and adsi_partitioning_rule:

* Increasedsi_num_threads if contention does not increase, or
» Decreasedsi_num_threads if contention does not decrease.

Make sure that dsi_num_threads is greater than the default, and that the
value for dsi_num_threads is greater than that for
dsi_num_large_xact_threads.

Start tuning parallel DSI parameters to reduce contention when you have
completed the tasks described in “Before you begin” on page 191, and
performance tests indicate that contentions are affecting performance. For
example:

Thereplicate is blocking activity.

Replication Server isrolling back and reapplying alarge percentage of
transactions due to deadlock conditions. Refer to counter 5060 —
TrueCheckThrdL ock.

Replication Server

CHAPTER 4 Performance Tuning

Start by tuning the dsi_max_xacts_in_group parameter, which determines the
number of transactions grouped in a single begin/commit block. By reducing
the value of dsi_max_xacts_in_group, you cause the DSI executor threads to
commit more frequently. Thus, the DSI executor threads hold fewer replicate
resources for shorter periods of time and contentions should decrease.

Adjusting the dsi_num_threads parameter also affects contention. The larger
the number of DSI executor threads available, the more likely contentionswill
arise among the threads. Try decreasing the value of dsi_num_threads even to
3 with onereserved for large transactions. Finding the values that provide best
performance is iterative. Remember that some contention is acceptable if
overall performance improves.

Using partitioning rules

Partitioning rules can al so reduce contention, but require a clear understanding
of your transaction profile.

The transaction name rule

The user name rule

Administration Guide

Do transactions have transaction names? Is the contention caused by
transactions with the same name? Try setting the transaction name rule, which
forces transactions with the same name to be sent to the replicate one-by-one.

If transactions are not named, you could change the application so that names
are added. Then use the name rule to serialize only specified transactions.
Suppose a particular type of large transaction always causes problemsiif the
DSl executor threads attempt to process two or more in parallel. By giving the
problem transactions the same name, and applying the name rule, you can
ensure that the problem transactions are processed serially. Remember,
however, that the name ruleis applied to al transactions, and all transactions
with the same name will be processed serialy.

Setting the user name rule may help reduce contentions caused by transactions
processed in parallel from the same user ID. Like thetransaction namerule, the
user namerule, if set, isapplied to al transactions, and every transaction from
the same user 1D will be processed serially.

193

Using parallel DSI threads

The origin begin and commit times rule

The time rule forces serial execution of transactions with nonoverlapping
commit/begin times. That is, if the commit time of the first transaction comes
before the begin time of the next transaction, these two transactions must
execute serially.

Combining partition rules

You can combinerules. Thefirst ruleto be satisfied takes precedence. Thus, if,
for exampl e, the origin_sessid, time rule is specified, two transactions with the
same origin session |D will be forced to run serially, and the time ruleis not

applied.

Frequent conflicting updates

If your transactions conflict with each other frequently, set the parallel DSI
configuration parameters as follows:

dsi_serialization_method — set this parameter to wait_for_commit.

dsi_num_large_xact_threads — set this parameter to 2. If you are
configuring parallel DSI in awarm standby application, set the
dsi_num_larg_xact_threads parameter for the standby database to one
more than the number of simultaneous large transactions executed at the
active database.

dsi_num_threads — set this parameter to 3 plusthe value of the
dsi_num_large_xact_threads parameter. If your transactions are usually
small, such as one or two statements, set dsi_num_threads to 1 plus the
value of dsi_num_large_xact_threads.

Setting the parallel_dsi configuration parameter on provides a shorthand
method for configuring parallel DSI as described above. It also sets the
dsi_sqt_max_cache_size parameter to 1 million bytes.

Infrequent conflicting updates

If your transactions conflict with each other only occasionally, set the parallel
DSl configuration parameters as follows:

194

dsi_isolation_level —set this parameter to isolation level 3 if your replicate
dataserver is Adaptive Server. For non-Sybase dataservers, setto thelevel
that corresponds to ANSI standard level 3 through the use of the
rs_set_isolation_level custom function string.

Replication Server

CHAPTER 4 Performance Tuning

e Oracleand Microsoft SQL Server —SERIALIZABLE level equalsthe
ANSI SQL Isolation Level 3.

+ DB2-REPEATABLE READ level equalsthe ANSI SQL Isolation 3.

See “ Setting isolation levels for non-Sybase replicate data servers’ on
page 175.

e dsi_num_large_xact_threads — set this parameter to 2. If you are
configuring parallel DSI in awarm standby application, set the
dsi_num_larg_xact_threads parameter for the standby database to one
more than the number of simultaneous large transactions executed at the
active database.

e dsi_num_threads — set this parameter to 3 plus the value of the
dsi_num_large_xact_threads parameter.

Using isolation levels

Use DS isolation levelsto prevent loss of parts of transactions when parallel
DSl is enabled, and the replicate table is configured for row-level locking. In
these cases, the order of individual operations within transactions may not
match that seen at the primary, even if the transactions themselves are
committed in proper order.

For example, if the second transaction to commit updates arow inserted by the
first transaction to commit, the update may take place before the commit. In
this case, the transactions commit correctly, but the updateislost, even though
theinsert remains.

To avoid out-of-sequence DML operations, set dsi_isolation_level to 3. In the
example, if dsi_isolation_level is 3, the second transaction to commit acquires a
range lock on the as-yet nonexistent row it intends to update, which causes a
deadlock with the first transaction to commit. The data server declares a
database resource deadlock. Replication Server rollsback all open transactions
and serialy reapplies them, and the update is not lost.

Setting the size for large transactions

Administration Guide

Setting dsi_large_xact_size to alarge number, even the maximum
(2,147,483,647), to remove the overhead of handling large transactions may
give better performance than allowing large transactions to start before their
commit point isread.

195

Support for DSI bulk copy-in

Parallel DSI and the rs_origin_commit_time system variable

The value of thers_origin_commit_time system variable depends on whether
you are using the parallel DS feature.

» If youarenot using parallel DSI to processlarge transactions, the val ue of
rs origin_commit_time contains the time when the last transaction in the
transaction group committed at the primary site.

* If youareusing paralel DSI to process large transactions (before their
commit has been read from the DSI queue), when the DSI threads start
processing one of these transactions, the value of rs_origin_commit_time
isset to the value of rs_origin_begin time.

When the commit statement for the transaction is read, the value of

rs origin_commit_timeis set to the actual commit time. Therefore, when
the configuration parameter dsi_num_large_xact_threads is set to avalue
greater than zero, the value for rs_origin_commit_timeis not reliable for
any system function other than rs_commit.

Support for DSI bulk copy-in

196

In normal replication, when Replication Server replicates datato Adaptive
Server, Replication Server forms a SQL insert command, sends the command
to Adaptive Server, and waits for Adaptive Server to process the row and send
back the result of the operation. This process affects Replication Server
performance when large batches of data are being replicated, such asin end-of-
day batch processing or trade consolidation.

Replication Server version 15.2 introduces support for bulk copy-intoimprove
performance when replicating large batches of insert statements on the same
tablein Adaptive Server® Enterprise 12.0 and later. Replication Server
implementsbulk copy-inin DataServer Interface (DSI), the Replication Server
module responsible for sending transactions to replicate databases, using the
Open Client™ Open Server™ Bulk-Library.

Note Bulk copy-inissupported for Adaptive Server databasesonly. If you turn
on DSI bulk copy-in and the replicate database is not Adaptive Server, DSI
shuts down with an error.

Replication Server

CHAPTER 4 Performance Tuning

For informati on about the Open Client Open Server Bulk-Library, seethe Open
Client and Open Server Common Libraries Reference Manual.

Setting up bulk copy-in

Administration Guide

These database connection parameters control bulk operationsin DS|:

Parameter Description

dsi_bulk_copy Turns the bulk copy-in feature on or off for a connection. If
dynamic_sql and dsi_bulk_copy are both on, DSI appliesbulk
copy-in. Dynamic SQL isused if bulk copy-inis not used.

Default: off.

dsi_bulk_threshold The number of consecutive insert commands in atransaction
that, when reached, triggers Replication Server to use bulk
copy-in. When Stable Queue Transaction (SQT) encountersa
large batch of insert commands, it retains in memory the
number of insert commands specified to decide whether to
apply bulk copy-in. Because these commands are held in
memory, Sybase suggeststhat you do not configurethisvalue
much higher than the configuration value for
dsi_large_xact_size.

Minimum: 1
Default: 20

To set the values of dsi_bulk_copy and dsi_bulk_threshold, use:

e alter connection to change the bulk copy-in connection parameters at the
connection level:

alter connection to dataserver.database
set {dsi_bulk_copy | dsi_bulk_threshold} to value

e configure replication server to change the server defaults:

configure replication server
set {dsi_bulk_copy | dsi_bulk_threshold} to value

To check the values of dsi_bulk_copy and dsi_bulk_threshold, use admin config.

When dsi_bulk_copy ison, SQT counts the number of consecutive insert
statements on the same tabl e that atransaction contains. If this number reaches
the dsi_bulk_threshold, DSI:

1 Bulk copiesthedatato Adaptive Server until DSI reaches acommand that
is not insert or that belongs to a different replicate table.

197

Support for DSI bulk copy-in

2 Continues with the rest of the commands in the transaction.

Adaptive Server sends the result of bulk copy-in at the end of the bulk
operation, when it is successful, or at the point of failure.

Note The DSl implementation of bulk copy-in supports multistatement
transactions, allowing DSI to perform bulk copy-in even if atransaction
contains commands that are not part of the bulk copy.

Changes to subscription materialization

Bulk copy-in also improves the performance of subscription materialization.
When dsi_bulk_copy ison, Replication Server uses bulk copy-in to materialize
the subscriptionsif the number of insert commandsin each transaction exceeds
dsi_bulk_threshold.

Note Innormal replication, bulk operation is disabled for atable if
autocorrection is on. However, in materialization, bulk operation is applied
even when autocorrection is enabled, if dsi_bulk_threshold is reached and the
materialization is not a nonatomic subscription recovering from failure.

For more information about subscription materialization, see Replication
Server Administration Guide Volume 1.

New counters for bulk copy-in

198

New counters have been added for bulk copy-in:

Counter Description

DSINoBulkDatatype | The number of bulk operations skipped due to the data
containing datatype is incompatible with bulk copy-in.
DSINoBulkFstr The number of bulk operations skipped due to tables that
have customized function strings for rs_insert or
rs_writetext.

DSINoBulkAutoc The number of bulk operations skipped due to tables that
have autocorrection enabled.

DSIEBFBulkNext The number of batch flushes that is executed because the
next command is a bulk copy.

Replication Server

CHAPTER 4 Performance Tuning

Limitations

Administration Guide

Counter

Description

DSIEBulkSucceed

The number of times the Data Server Interface executor
(DSI/E) invoked blk_done(CS_BLK_ALL) at the target
database.

DSIEBulkCancel

The number of times DSI/E invoked
blk_done(CS_BLK_CANCEL) at the target database.

DSIEBulkRows

The number of rows that DSI/E sent to the replicate data
server using bulk copy-in.

BulkTime

The amount of time, in milliseconds, that DSI/E spent in
sending data to the replicate data server using bulk copy-in.

The Replication Server DSI does not use bulk copy-in when:;

Autocorrection is on and the datais not part of subscription
materialization.

rs_insert has a user-defined function string.

text column has a user-defined function string for rs_writetext with output

none O rpc.

The datarow contains opaque datatype or a user-defined datatype (UDD)
that has an rs_datatype.canonic_type value of 255.

The data row contains an image or a Java datatype.

The bulk copy-in feature is not supported under the conditions listed below. In
these instances, disable bulk copy-in.

Thereplicate database is not Adaptive Server. In thiscase, if the DSI bulk
copy-inisenabled, DSI terminates with an error message.

The data size changes between Replication Server and the replicate
Adaptive Server character sets, and the datarow containstext columns. In
this case, if the DSI bulk copy-in is enabled, DSI terminates with this

message:

Bulk-Lib routine 'blk textxfer' failed.
Open Client Client-Library error: Error: 16843015,
Severity 1 -- 'blk textxfer(): blk layer: user

error:

The given buffer of xxx bytes exceeds the

total length of the value to be transferred.'

199

SQL statement replication

The owner.tablename length is larger than 255 bytes and the replicate
database is earlier than version 15.0.3 Interim Release. If the DSI bulk
copy-in is enabled, Replication Server terminates with this message:

Bulk-Lib routine 'blk init' failed.

To specify not to use bulk copy-in when owner.tablename length is larger
than 255 bytes:

a Turntraceon:
trace "on", rsfeature, ase_cr543639
b Add thisto the Replication Server configuration file:

trace=rsfeature,ase_cr543639

Other limitations:

Unlike the insert command, bulk copy-in does not generate timestamps;
NULL values are inserted to the timestamp column if the timestamp
column is not included in the replication. Either disable bulk copy-in, or
set up your replication definition to include the timestamp column.

Text and image columnsare alwayslogged, even if you change the writetext
function string to no log.

Bulk copy does not invoke insert trigger in Adaptive Server.

The configuration parameter send_timestamp_to_standby has no effect on
bulk copy-in. timestamp datais always replicated to standby.

SQL statement replication

Replication Server supports SQL statement replication in Adaptive Server
which complements |og-based replication and addresses performance
degradation caused by batch jobs. Sybase recommends that you use SQL
statement replication when:

200

DML (data manipulation language) statements affect a large number of
rows on replicated tables.

Replication Server

CHAPTER 4 Performance Tuning

* You have difficulty altering the underlying application to enable stored
procedure replication

Note Log Transfer Manager does not support SQL statement replication and
SQL Statement replication to non-Adaptive Server databases is not supported.

Overview

In SQL statement replication, Replication Server receives the SQL statement
that modified the primary data, rather than the individual row changesfromthe
transaction log. Replication Server appliesthe SQL statement to the replicated
site. The Adaptive Server RepAgent sends both the SQL data manipulation
language (DML) and individual row changes. Depending on your
configuration, Replication Server chooses either individual row change log
replication or SQL statement replication.

SQL statement replication includes row count verification to ensure that the
number of rows changed in the primary and replicate databases match after
replication. If the number of rows do not match, you can specify how
Replication Server handles this error.

To enable and configure SQL statement replication:
e Configure the primary database to log SQLDML.
« Configure Replication Server to replicate SQLDML:

a Createreplications definitionswith SQLDML for table and multisite
availability (MSA) replication.

b InReplication Server, set WS_SQLDML_REPLICATION parameter on
for warm standby replication.

Administration Guide 201

SQL statement replication

Performance issues with log-based replication

202

Sybase replication technology islog-based. Modifications performed on
replicated tables are logged in the database transaction log. Adaptive Server
generates alog record for each modification to each affected row; asingle
DML statement may result in Adaptive Server generating multiple log records.
Depending on the type of DML statement, the Adaptive Server may log one
“before” image and one “after” image for every affected row. The Sybase
Replication Agent reads the log and forwards it to the Replication Server. The
Replication Server identifiesthe DML operation (insert, delete, update, insert,
select, or stored procedure execution) and generates the corresponding SQL
statement for every operation.

Log-based replication has these inherent issues:

* When asingle DML statement affects multiple rows, Replication Server
applies multiple DML statements on the replicate site, not just the single
original DML statement. For instance, if tablet is replicated:

1> delete tbl where c < 4
2> go
(3 rows affected)

The delete statement logs three recordsin the transaction log, one for each
of the rows deleted. These log records are used for database recovery and
replication. Replication Agent sends the information pertaining to the
threelog recordsto the Replication Server, which convertstheinformation
back into three delete statements:

delete t where c 1
delete t where c

delete t where c

3

e Adaptive Server cannot perform optimizations on the replicate site that
result in asymmetric loading of resources on the replicate database.

» Processing large numbers of statements affecting multiple rows increases
latency in the system.

e Adaptive Server only partialy logs information about select into;
therefore, the replication system cannot successfully replicate the DML
command.

There are two different approaches to address all of these issues:
e Stored procedure replication
e SQL statement replication

Replication Server

CHAPTER 4 Performance Tuning

Stored procedure replication

You may use stored procedure replication to encapsul ate complex DML
operations or those affecting alarge number of rows. Stored procedure
replication improves performance by replicating only the call to the stored
procedure and ignoring modifications to individual rows. Network traffic is
decreased and Replication Server needs less processing to apply the stored
procedure at the replicate site.

In warm standby configurations that replicate DDL, select into operations
cannot bereplicated asthey areminimally logged. Stored procedurereplication
cannot be used because of transaction management restrictions inherent to
replication processing and to the select into command.

Additionally, some third-party applications cannot be easily modified to
support replication of stored procedures. Consequently, even though stored
procedure replication improves Replication Server performance, it cannot be
used in all circumstances.

How Replication Server topologies affect SQL statement replication

Administration Guide

Liketraditional replication, SQL statement replication is|og-based; the
information needed to replicate SQL statements (executed in the primary
databases) is stored in the transaction log. The log reader, the Sybase
Replication Agent, or other applications read the transaction log to notify
Replication Server about modifications to a replicated table.

Replication Server supports awide range of topologies, including “basic
primary copy” models that may include several Replication Servers, warm
standby configurations, and Multi Site Availability (MSA) configurations. To
use SQL statement replication, you must take into account the underlying
Replication Server topology.

In simple MSA or warm standby configurations, source and destination data
areidentical, and aDML statement executed on the primary table affects the
same data set on the replicate table.

Note SQL statement replication applies only to DML statements.

Figure 4-10 shows a Replication Server topology with a single primary
database in New York. Tables are replicated to three other sites: London,
Tokyo, and San Francisco. All tables are fully replicated.

203

SQL statement replication

204

Figure 4-10: Basic Primary Copy model: identical data in replicate sites

New York
— London
@ San Francisco
Tokyo
N~
& London New York
@ > > — London
@ ! San Francisco
Tokyo
New York New York San Francisco~—_""
London New York
San Francisco @ Londoq
Tokyo San Francisco
Tokyo Tokyo

If aclient connected to New York executes:

delete tl1l where a >5

If this command is executed at Tokyo, London, and San Francisco, the same
data set is affected at all the replicated sites, as dataisidentical in all the sites.
In this case, al replicated sites can be configured to use SQL statement
replication.

Figure 4-11 represents a system wherein the replicated site Tokyo subscribes
only to a subset of data where the site is equal to “Tokyo”.

Replication Server

CHAPTER 4 Performance Tuning

Figure 4-11: Basic Primary Copy model: non-identical data in replicate
sites

New York
- London
San Francisco
Tokyo
y London — New York
N Y London
@ > San Francisco
Tokyo
New York New York San Francisco Tokyo
London =
San Francisco
Tokyo
Tokyo ~—

Consider the following statement executed at the New York site:
delete tl where as>5

Replication Servers can execute the same statement in London and San
Francisco, but not in Tokyo, as this site subscribes only to a subset of data. If
SQL statement replication isused in this case, some replicated databases, like
the Tokyo site, receive individua log record modifications from the primary
transaction log, based on traditional replication. Other replicated databases,
like the London site, receive the SQL statement.

Different sets of data on the primary and replicate tables may also be affected
when the primary and replicate databases have different object schema, or the
user executes a DML statement using a join with another table. In these
situations, different dataisaffected on the primary and replicate. Thetable used
for the join may not be marked for replication, or valuesin that table may be
partial or different from the primary database.

Administration Guide 205

SQL statement replication

You must activate SQL statement replication in the Adaptive Server that holds
primary data, and in the Replication Server. Once you enable SQL statement
replication on the primary Adaptive Server, Adaptive Server logs additional
information in the transaction log for each executed DML statement for which
SQL statement replication was activated. The Replication Agent or other log
readers deliver individual log record modifications and information for SQL
statement replication to the Replication Server.

Note The Sybase Replication Agent sends SQL statement replication
information for Replication Server 15.2 and later.

Adaptive Server disallows SQL statement replication in situations where the
statement may affect a different data set.when applied on the replicate site.

Enabling SQL statement replication

Database-level

sp_setrepdbmode

206

You can enable SQL statement replication at the database, table or session
level. Session settings override both table and database settings. Table settings
override database settings.

Several Adaptive Server stored procedures support SQL statement replication.

Use sp_setrepdomode and sp_reptostandby to enable SQL statement
replication at the database-level.

Use sp_setrepdbmode to enable SQL statement replication at the database-
level for a specific DML operation. The DML operations that apply to SQL
statement replication include:

* U —update

* D —delete

* | —insert select
* S -—selectinto

For example, to replicate delete statements as SQL statements and also enable
replication of select into, enter:

Replication Server

CHAPTER 4 Performance Tuning

sp_reptostandby

Table level

sp_setrepdefmode

Administration Guide

sp_setrepdbmode pdb, 'DS', 'on'

When an user executes adelete on atablein database pdb, Adaptive Server logs
additional information for SQL statement replication. The RepAgent sends
both individual log records, and the information needed by the Replication
Server, to build the SQL statement.

You can set SQL statement replication at the database level only when the
database has been marked for replication by setting sp_setreptostandby to ALL
or L1.

The threshold parameter defines the minimum number of rowsthat a DML
statement must affect, to activate SQL statement replication. The default
threshold is 50 rows, which means that Adaptive Server automatically uses
SQL statement replication if the DML statement affects at least 51 rows. See
“Setting SQL statement replication threshold” on page 210.

For example, to set thethreshold at the database-level to trigger SQL statement
replication when a data manipulation language (DML) statement affects more
than 100 rows:

sp_setrepdbmode pubs2, ‘threshold’, ‘100’
go

See Chapter 5, “ Adaptive Server Commands and System Procedures’ in the
Replication Server Reference Manual for details on the syntax and usage.

Use sp_reptostandby to display the SQL statement replication status at the
database level. For example:

sp_reptostandby pdb

go
The replication status for database 'pdb' is 'ALL'.
The replication mode for database 'pdb' is 'off'.

Use sp_setrepdefmode to configure SQL statement replication at the table-
level. Table-level settings override database-level settings.

sp_setrepdefmode includes options to:
« Enableor disable SQL statement replication for specific DML operations

207

SQL statement replication

208

e Configure the threshold that must be reached to activate SQL statement
replication

The DML operations that apply to SQL statement replication include:
e U —update

e D -—delete

* | —insert select

For example, to enable SQL statement replication for update, delete, and insert
select operations on tablet, use:

sp_setrepdefmode t, 'UDI', 'on'
go

When auser executesdeletes, updates or insert select DML statements on table
t, Adaptive Server logs additional information for SQL statement replication.
RepAgent reads the log and sends both individual log records and the
information needed by Replication Server to build the SQL statement.

The threshold parameter defines the minimum number of rowsthat a DML
statement must affect, to activate SQL statement replication. The default
threshold is 50 rows, which means that Adaptive Server automatically uses
SQL statement replication if the DML statement affects at least 51 rows. See
“Setting SQL statement replication threshold” on page 210.

For example, to set the threshold to 100, use:

sp_setreptable t, true

go

sp_setrepdefmode t, 'UD', 'on'

go

sp_setrepdefmode t, 'threshold',6 '100'
go

In this example, update and delete statements executed on tablet use SQL
statement replication if the statement affects at least 101 rows.

See Chapter 5, “Adaptive Server Commands and System Procedures’ in the
Replication Server Reference Manual for details on the syntax and usage.

Note You cannot configure aselect into operation at thetable level becausethe
target table does not yet exist.

Replication Server

CHAPTER 4 Performance Tuning

Session level

Administration Guide

Use session option set repmode to Set replication mode to SQL statement
replication. You can specify session-level settings either during login by using
alogin trigger, or at the beginning of a batch. Session settings override both
database-level and object-level settings.

Useset repmode on to enable SQL statement replication for the DML operation
specified, for the duration of the session. Useset repmode off to remove all SQL
statement replication settings at the session level.

For example, to replicate only select into and delete as SQL statements for the
duration of the session, use:

set repmode on 'DS'

The set options are active for the duration of the session. Options that you set
inside a stored procedure are reverted to the default values when the stored
procedure finishes.

Note When you set optionsinside alogin trigger, the option settings are
maintained after the trigger has finished executing.

Executing set repmode on enables SQL statement replication only if session-
level option set replication on is set. This example does not enable SQL
statement replication:

set replication off
go

set repmode on 'S'
go

This example enables SQL statement replication:

sp_reptostandby pdb, 'ALL'

go
set repmode on 'S'

go
The threshold parameter defines the minimum number of rowsthat a DML
statement must affect, to activate SQL statement replication. The default
threshold is 50 rows, which means that Adaptive Server automatically uses
SQL statement replication if the DML statement affects at least 51 rows. See
“Setting SQL statement replication threshold” on page 210.

This example shows how to define the threshold at the session-level as 1000
rows:

209

SQL statement replication

set repmode ‘threshold’, ‘1000’

go
See Chapter 5, “Adaptive Server Commands and System Procedures’ in the
Replication Server Reference Manual for details on the syntax and usage.

Setting SQL statement replication threshold

You can trigger SQL statement replication without having to set the threshold
on individual tables. You can set the threshold at the:

e Database-level —using Adaptive Server 15.0.3 ESD #1 and | ater.
» Session-level —using Adaptive Server 15.0.3 ESD #2 and later.
In Adaptive Server 15.0.3, you could only set the threshold at the table-level.

By default, SQL statement replication istriggered when the SQL statement
affectsmore than 50 rows. You can set different threshold values at the session,
database, and table-levels.

However, the threshold set at the session-level overrides the threshold at the
table-level and database-level, and the threshold set for any table overridesthe
threshold set at the database-level.

Setting thresholds and operations at database-level

210

Use the threshold parameter for the sp_setrepdbmode command to set
thresholds at the database-level.

These examples show how to set the threshold at the database and table levels,
and at the same time define operations at the different levels.

Example 1 Thisexample shows how to set a different threshold at the
database and table levels for the pubs2 database and tablel table:

1 Reset the threshold at the database-level to the default of 50 rows:

sp_setrepdbmode pubs2, ‘threshold’, ‘0’
go

2 Enable SQL statement replication of update, delete, insert, and select into
operations for pubs2:

sp_setrepdbmode pubs2, ‘udis’, ‘on’
go

Replication Server

CHAPTER 4 Performance Tuning

3 Trigger SQL statement replication for tablel in pubs2 only for the
operations you defined in step 2 when these operations affect more than
1,000 rows:

sp_setrepdefmode tablel, ‘threshold’, '1000’

go
Example 2 This example shows how to define the threshold at the database-
level for pubs2, and at the sametime define different operationsfor tables, such
astablel and table2 located in the pubs2 database:

1 Setthethreshold at the database-level totrigger SQL statement replication
when a data manipulation language (DML) statement affects more than
100 rows:

sp_setrepdbmode pubs2, ‘threshold’, ‘100’
go

2 Defineadifferent set of operationsfor two specific tables, where you want
the operations replicated using SQL statement replication. Update, del ete,
and insert operations are for table1 and delete operations are for table2:

sp_setrepdefmode tablel, ‘udi’, ‘on’
go

sp_setrepdefmode table2, ‘d’ ‘on’

go

In this example, when a delete operation executes against table2 or any DML
on table1 executes, the threshold of 100 rows that you defined at the database-
level triggers SQL statement replication when reached.

Setting thresholds and operations at session-level

Administration Guide

Use set repthreshold to set thresholds at the session-level.

The threshold that you define at the session level overrides the threshold you
set at the table or the database level. The threshold set at the table level
overrides the threshold set at the database level.

These examples show how to set the threshold at the session, database, and
table levels, and at the same time define operations at the different levels.

Example 1 This example shows how to define the threshold at the session-
level to 23, in the absence of any threshold setting at the database and table-
levels or to override the threshold settings at the table and database levels:

set repthreshold 23
go

211

SQL statement replication

212

Example 2 This example shows how to reset the threshold to the default of
50, at the session-level:

set repthreshold 0

go
Example 3 Thisexample shows how to set a different threshold at the
database and table level sfor the pubs2 database and table1 table, and then have
adifferent operation defined for this session only:

1 Reset the threshold at the database-level to the default 50 rows:

sp_setrepdbmod pubs2, ‘threshold’, ‘0’
go
2 Enable SQL statement replication of update, delete, insert, and select into
operations for pubs2:

sp_setrepdbmode pubs2, ‘udis’, ‘on’
go

3 Trigger SQL statement replication for tablel in pubs2 only when DML
operations affect more than 1,000 rows:

sp_setrepdefmode tablel, ‘threshold’, ‘1000’
go

4 Enable SQL statement replication only for update operations on any table
and only for this session. This overrides the database-level setting in step
2

set repmode on ‘u’

go
Example 4 You caninvoke set reptheshold within an Adaptive Server stored
procedure. This example shows how to create the set_rep_threshold_23 stored
procedure and invoke it within the my_proc stored procedure:

1 Createtheset_rep_threshold_23 stored procedure:

create procedure set rep threshold 23

as

set repthreshold 23

update my table set my col = 2 (statement 2)

go
2 Create the my_proc stored procedure;

create procedure my proc

as

update my table set my col =1 (statement 1)
exec set rep threshold 23

Replication Server

CHAPTER 4 Performance Tuning

Administration Guide

update my table set my col = 3 (statement 3)
go

3 Executemy proc to invoke set_repthreshold_23:

exec my_proc
go

Within the my_proc stored procedure, statement 1 executes first with a
threshold of 50. Statement 2 executes next with athreshold of 23. Statement 3
executes next with athreshold of 50, because the set repthreshold 23 command
in only valid while executing the set_rep_threshold_23 procedure..

Example 5 Thesession-level threshold is exportable. Therefore, you can set
the export_options setting to ‘on’ for a procedure, and set the SQL statement
replication threshold, so that procedures in the outer scope use the SQL
statement replication threshold set by the stored procedure:

1 Createtheset_repthreshold_23 stored procedure and set export_options on:

create procedure set_repthreshold 23

as

set repthreshold 23 (statement 4)
set export options on

update my table set my col = 2 (statement 2)

go
2 Createthe my_proc stored procedure:

create procedure my proc

as

update my table set my col =1 (statement 1)
exec set rep threshold 23

update my table set my col = 3 (statement 3)
go

3 Executemy proc to invoke set_repthreshold_23:

exec my_proc

go
Statement 1 executes first, with a threshold of 50. Statement 2 executes next
with athreshold of 23. Statement 3 executes next with athreshold of 23,
because the scope of the set repthreshold 23 command is the scope of the
Session.
Example 6 You can create alogin trigger to set the replication threshold
automatically for aspecific login ID.

1 Createthethreshold stored procedure with a threshold setting of 23 and
enable export:

213

SQL statement replication

create proc threshold
as

set repthreshold 23
set export options on

go
2 Instruct Adaptive Server to automatically run the theshold stored
procedure when user “Bob” logsin:
sp_modifylogin Bob, ‘login script’, threshold
go
When Bob logsinto Adaptive Server, the SQL statement replication threshold
for the session is set to 23.

Setting thresholds and configuring replication

You can have a database that is not configured for replication and set the
threshold for SQL statement replication at the database-level at the sametime.
For example:

sp_reptostandby pubs2, ‘none’

go
sp_setrepdbmode pubs2, ‘threshold’, ‘23’

go
However, in order to define operations at the database-level, you must have
replication configured at the database level aswell. For example, you cannot
execute:

sp_reptostandby pubs2, ‘none’

go

sp_setrepdbmode pubs2, ‘udis’, ‘on’
go

Configuring replication definitions for SQL statement replication

Database replication

214

You can change SQL statement replication options at the database and table
levelsfor replication definitions.

definition
To replicate SQL statementsin a MSA environment, you must include the

replicate SQLDML clause with the create database replication definition or alter
database replication definition commands.

Replication Server

CHAPTER 4 Performance Tuning

Examples

Administration Guide

This code segment displays the syntax for create or alter database replication
definitions:

[[not] replicate setname [in (table list)] 1]
where;

setname = DDL | tables | functions | transactions | system procedures | SQLDML
| ‘options’.

The ‘options’ parameter is a combination of:

e U-—update
e D-—deete
e | —insert select

e S-—sdectinto

The SQLDML parameter is also defined as a combination of U, D, 1, and, S
Statements.

This example shows how to use the ‘options’ parameter to replicate SQLDML
on tables tb1 and th2:

replicate 'UDIS' in (tbl,tb2)

Thisexample shows how to use the SQLDML parameter that producesthe same
result asthe ‘options’ parameter in the previous example:

replicate SQLDML in (tbl,tb2)

You can use multiple replicate clauses in a create database replication
definition. However, for an alter database replication definition, you can use
only one clause.

If you do not specify afilter in your replication definition, the default isthe not
replicate clause. Apply alter database replication definition to change the
SQLDML filters. You can either specify one or multiple SQLDML filtersina
replicate clause.

Thisexample shows how tofilter out the select into statement for all tables. The
second clause, not replicate 'U' in (T), filters out updates on table T:

create database replication definition dbrepdef
with primary at dsl.pdbl
not replicate ‘'S’
not replicate ‘U’ in (T)

215

SQL statement replication

This example enables update and delete statements on all tables using the
replicate 'UD' clause

create database replication definition dbrepdef UD
with primary at ds2.pdbl
replicate 'UD'

go

You can use multiple clauses to specify atable multiple timesin the same
definition. However, you can use each of U, D, I, and S only once per definition.

create database replication definition dbrepdef
with primary at ds2.pdbl
replicate tables in (tbl,tb2)
replicate 'U' in (tbl)
replicate 'I' in (tbl,tb2)
go
This example applies update and delete statements for tablestb1 and tb2:
alter database replication definition dbrepdef
with primary at dsl.pdbl
replicate 'UD' in (tbl, tb2)
go

Table replication definition

216

To support SQL statement replication, you must include the replicate SQLDML
clausefor acreate table replication definition. This code segment displaysthe
syntax for acreate table replication definition:

[replicate {SQLDML [‘off] | ‘options’}]

The ‘options’ parameter is a combination of these statements:

e U-—update
e D-—delete
e |—insert select

Note If your replication definition hasthe [replicate {minimal | all}
columns] clause, thenthe[replicate {minimal | all} columns]
clause must always precedethe [replicate {SQLDML [‘off’] |
‘options’}] clause.

Thisis asample create replication definition for atable:

Replication Server

CHAPTER 4 Performance Tuning

create replication definition repdefl
with primary at ds3.pdbl
with all tables named 'tbl'

(id col int,
str col char(40))

primary key (id col)
replicate all columns
replicate ‘UD’

go

A table replication definition with the send standby clause can specify a
replicate ‘I' statement. You can replicate an insert select statement as a SQL
replication statement only in warm standby or MSA environments. A table
replication definition without a send standby clause cannot replicate the insert
select statement.

Configuring warm standby database for SQL replication

By default, warm standby applications do not replicate the DML commands
that support SQL statement replication. To use SQL replication, you can:

* Createtable replication definitions using replicate SQLDML and send
standby clauses.

e SetthewS_SQLDML_REPLICATION parameter to on. The default valueis
UDIS. However, WS_SQLDML_REPLICATION has alower precedence
than the table replication definition for SQL replication. If your table
replication definition contains asend standby clause for atable, the clause
determines whether or not to replicate the DML statements, regardless of
the WS_SQLDML_REPLICATION parameter setting.

Row count validation for SQL statement replication

Syntax

Administration Guide

You can specify how Replication Server responds to SQLDML row count
errors that may occur during SQL statement replication. SQLDML row count
errors occur when the number of rows changed in the primary and replicate
databases do not match after SQL statement replication. The default error
action isto stop replication.

Use the assign action command at the primary site for the Replication Server
error class to specify other error actions for SQLDML row count errors:

217

SQL statement replication

assign action
{ignore | warn | retry_log | log | retry_stop | stop_replication}
for error_class
to server_errorl [, server_error2]...

Parameters error_classisthe error class name for which the action is being assigned. You
can specify Replication Server error classes such as the default
rs_repserver_error_class error class.

server_error isthe error number. You can specify error numbers for
Replication Server:

Table 4-9: Error actions for SQL statement replication

server_error | Error message Default error action | Description

5186 Row count mismatch for stop_replication Row count verification error
the command executed on for SQL statement replication
‘dataserver.database’ . if the affected number of rows
The command impacted X isdifferent from what is
rows but it should expected.

impact y rows.

5193 You cannot enable stop_replication Cannot enable autocorrection
autocorrection if SQL if SQL statement replicationis
Statement Replication enabled. Either enable SQL
is enabled. Either statement replication only or
enable SQL Statement disable SQL statement
Replication only or replication before you enable

disable SQL
StatementReplication
before you enable
autocorrection.

autocorrection

Examples To assign the warn error action if Replication Server encounters error number
5186, enter:

assign action warn for rs repserver error class to 5186

If thereisarow count error, thisis an example of the error message that
displays:

DSI_ SQLDML_ROW_COUNT_INVALID 5186

Row count mismatch for SQLDML command executed on
'mydataserver.mydatabase'.

The command impacted 1000 rows but it should impact 1500
rows.

See “Data server error handling” on page 280 for row count validation not
related to SQL statement replication.

218 Replication Server

CHAPTER 4 Performance Tuning

Scope of SQL statement replication

Batch processing

Stored procedures

Administration Guide

This section discusses how SQL statement replication appliesto DML
statements in batch processing, triggers, and stored procedures.

SQL statement replication isapplied to any DML statement that is executed in
abatch, provided that:

e The configuration allows SQL statement replication.

e The DML statement does not conform to any of the conditionsin
“Exceptions to using SQL statement replication” on page 223.

In the example below, while executing the batch statement with delete and
insert, only the first statement uses SQL statement replication. table2 uses
traditional replication because table2 is not configured to use SQL statement
replication:

create table tablel (¢ int, d char(5))

go
create table table2 (¢ int, d char(5))
go

insert tablel values (1, 'ABCDE')

go 100

sp_setreptable tablel, true

go

sp_setreptable table2, true

go

sp_setrepdefmode tablel, 'UDI', 'on'
go

delete tablel where c=1
insert table2 select * from tablel

go

The replication status of a stored procedure determinesif DML statements
within it are replicated as statements:

« |If astored procedure is not marked for replication, aDML statement
within it isreplicated as a statement, provided that:

» The configuration allows SQL statement replication.

219

SQL statement replication

Triggers

220

 The DML statement does not conform to any of the conditionsin
“Exceptions to using SQL statement replication” on page 223.

» |If astored procedure is marked for replication, only the call toiitis
replicated, not the individual statements that make up the stored
procedure.

Adaptive Server uses SQL statement replication for DML statements within
triggers provided that:

» The configuration allows SQL statement replication.

» The DML statement does not conform to any of the conditionsin
“Exceptions to using SQL statement replication” on page 223.

In the example below, when a delete statement is executed on tablel, it is
replicated using traditional replication. The delete executed on table2 viathe
trigger isreplicated using SQL statement replication asthe tableis configured
for SQL statement replication and the delete meets the conditions to be
replicated as a statement:

create table tablel (¢ int, d char(5))
go

create table table2 (¢ int, d char(5))
go

sp_setreptable tablel, true

go

sp_setreptable table2, true

go

insert tablel values (1, 'one')

go

insert table2 wvalues (2, 'two')

go 100

sp_setrepdefmode table2, 'udi', 'on'
go

create trigger del tablel on tablel
for delete

as

begin

delete table2

end

go

delete tablel where c=1

go

Replication Server

CHAPTER 4 Performance Tuning

Recompilation of stored procedures and triggers

Stored procedures and triggersare automatically recompiled if SQL replication
settings have change from “ off” to “on” between two successive executions of
the stored procedure or trigger.

SQL statement SQL statement Automatically
replication setting at | replication setting at | recompile stored
compile time run time procedure/trigger?
Off On Yes

On Off No

Cross-database transactions

A singletransaction may affect tables from different databases. M odifications
totableslocated in adifferent database arelogged in the databases that hold the
tables. The Sybase Replication Agent configured for the database sends the
Replication Server information stored in its transaction log.

In this example, db1 and db2 are replicated databases with configured Sybase
Replication Agents. Database db1 is configured to use SQL statement
replication:

use db2

go

begin tran

go

delete tl where ¢ between 1 and 10000000
delete dbl..tl where ¢ between 1 and 1000000
commit tran

go

The second delete (on database db1) uses SQL statement replication whereas
thefirst delete (on database db2) uses traditiona replication. The Sybase
Replication Agent running on db1 replicates the statement.

Replication Server does not guarantee the integrity of transactions across
different databases. For example, if the DSI for thefirst delete suspends while
the DSI for the second delete is active, the second delete replicates ahead of the
first delete.

Administration Guide 221

SQL statement replication

Issues resolved by SQL statement replication

This section includes two scenarios where data cannot be replicated using
traditional replication methods. In both cases, SQL statement replication
provides away to replicate data successfully.

Replicating select into in warm standby configurations

select into creates anew table based on the columns specified in the select list
and the rows chosen in the where clause. This operation is minimally logged
for recovery purposes, and cannot be replicated using traditional replication.

select into can be replicated in warm standby configurations by using SQL
statement replication. To configure SQL statement replication at the database
level, use:

sp_setrepdbmode pdb, 'S', 'on'
go

Oncetheoptionisactiveat databaselevel, al select into operationsin database
pdb will be replicated using SQL statement replication. See “ Exceptions to
using SQL statement replication” on page 223 to verify that the query can be
replicated using SQL statement replication. If only asubset of select into needs
to be replicated, use set repmode instead.

Replicating deferred updates on primary keys

222

Updates on tables that have a unique column index are not supported by
traditional replication, and the Replication Server reports errors. For example,
table t has a unique index on column c, with values: 1, 2, 3, 4 and 5. A single
update statement is applied to the table:

update t set c = c+1

Using traditional replication, this statement resultsin:

update t set ¢ = 2 where c =1
update t set ¢ = 3 where ¢ = 2
update t set ¢ = 4 where ¢ = 3
update t set ¢ = 5 where ¢ = 4
update t set ¢ = 6 where ¢ = 5

Thefirst update attempts to insert a value of c=2 into the table; however, this
value already existsin the table. Replication Server displays error 2601—an
attempt to insert a duplicate key.

Replication Server

CHAPTER 4 Performance Tuning

You can use SQL statement replication to address thisissue. If the table has a
unique index, and SQL statement replication is configured for update
statements, the Adaptive Server replicates the update using SQL statement
replication.

Exceptions to using SQL statement replication
SQL statement replication is not supported when:

Administration Guide

A replicate database has a different table schema than the primary
database.

Replication Server must perform data or schema transformation.
Subscriptions or articlesinclude where clauses.

Updates include one or more text or image columns.

Function strings rs_delete, rs_insert, and rs_update are customized.

A DML statement matches one or more conditions listed here. In these
cases, traditional replication is used:

e The statement refersto views, temporary tables, or tablesin other
databases.

insert tbl select * from #tmp info
where column = 'remove'

e Theuser executesthe statement with set rowcount option set to avalue
greater than zero.

set rowcount 1

update customers

set information = 'reviewed'
where information = 'pending'

e Thestatement usesthetop n clausein select or select into statements,
aJavafunction, or a SQL User-Defined Function(UDF):

delete top 5
from customers
where information = 'obsolete'

e The base table includes encrypted columns, and the statement
references one of those columnsin a set or where clause.

223

SQL statement replication

» The statement references system catal ogs or fake tables such as
‘deleted’ or ‘inserted’. In this example, the delete executed by the
trigger will not use SQL statement replication because it is using the
fake table deleted:

create trigger customers trg on customers for
delete as

delete customers_hist

from customers_hist, deleted

where deleted.custID = customers_hist.custID

go
delete customers where state = 'MA'

go

* The statement is an insert statement that generates a new identity or
timestamp value.

» The statement is an update statement that changes a timestamp or
identity value.

* The statement is an update statement that assigns avalueto alocal
variable. For example:

update t set @a = @a + 2, ¢ = @a where ¢c > 1
* The statement makes references to materialized computed columns.

* The statement isaselect into statement that affects areplicate table
with encrypted columns.

» The statement is an insert select or select into Using a union clause:

select cl, c2 from tbl2
union
select ccl, cc2 from tbl3

» Thestatement is an update, insert select, or select into on atable with
text/image columns,

e The statement is a query that uses built-ins:

If the built-in can be resolved to a constant value, the query is
replicated as a SQL statement. For example:

update tbl set value = convert (int, "15")

However, the following query will not be replicated using SQL
statement replication:

update tbl set value = convert (int, column5)

224 Replication Server

CHAPTER 4 Performance Tuning

In warm standby topologies, queries containing the following built-
ins can bereplicated using SQL statement replication evenif the built-

in cannot be resolved to a constant value:

abs cot Itrim sort

acos datalength patindex str

ascii degrees power strtobin
asin exp replicate stuff

atan floor reverse substring
an2 hextoint right tan
bintostr inttohex round to_unichar
celling len rtrim upper
char log sign

convert log10 soundex

cos lower space

SQL statement replication does not support autocorrection

SQL statement replication cannot perform autocorrection. If Data Server
Interface (DSI) encountersa DML command for SQL statement replication
and autocorrection is on, by default, DSI is suspended and stops replication.
Use the assign action command with error number 5193 to specify how

Replication Server handles this error.

Replication Server does not replicate SQLDML until the table level
subscription is validated.

Replication Server System Database (RSSD) modifications
These system tables in the RSSD support SQL statement replication:

Administration Guide

e rs_dbreps —status column includes 4 new sets of 2-bit sets, each of which
correspondsto aDML filter. Thefirst bit of aset indicatesif it isan empty
filter and the second bit indicatesif it is a negative statement set.

e rs_dbsubsets —type column includes four new types: U, L, I, and, S
corresponding to the DML UDIS filters. In this case, L is used for delete

instead of D.

e rs_objects — attributes column includes five new bits; onefor each U, D, |,
or S operation, and one to indicate if atable replication definition has

fewer columns than the number of incoming data rows.

225

SQL statement replication

A system function replication definition, rs_sgldml, also supports SQL
statement replication.

Product and mixed-version requirements

Downgrades

SQL statement replication requires Adaptive Server version 15.0.3 and later,
primary and replicate Replication Server version 15.2 and later, and route
version 15.2 and later.

If you wish to downgrade Adaptive Server to aversion earlier than 15.0.2 ESD
#3, or Replication Server to aversion earlier than 15.2, you must follow
standard documented procedure as stated bel ow.

Downgrading Adaptive Server

You can downgrade Adaptive Server to an earlier version while there still are
transaction records related to SQL statement replication in the log.

If you downgradeto aversion earlier than 15.0.2 ESD #3, Sybase recommends
that you use the standard documented procedure to downgrade an Adaptive
Server with replicated databases. This procedure includes draining the
transaction log. See the Adaptive Server Enterprise 15.0.3 Installation Guide.

Adaptive Server 15.0.3 provides the following downgrade support for Sybase
Replication Agents version 15.0.2 ESD #3 and later:

* Sybase Replication Agents continue to replicate data even if the log
contains information for SQL statement replication.

* When a Sybase Replication Agent reads a transaction containing SQL
statement replication, it sends atomic modificationsfor that statement and
ignores information related to SQL statement replication.

Downgrading Replication Server

226

You may downgrade a Replication Server to aversion earlier than 15.2. The
Sybase Replication Agent controls the amount and type of information sent to
Replication Server based on the Log Transfer Language (LTL) version
negotiated when the connection is established.

Replication Server

CHAPTER 4 Performance Tuning

For Replication Servers earlier than 15.2, Sybase Replication Agent does not
send information for SQL statement replication, and proceeds with standard
replication.

Dynamic SQL for enhanced Replication Server

performance

Administration Guide

Dynamic SQL in Replication Server enhances replication performance by
allowing Replication Server Data Server Interface (DSl) to prepare dynamic
SQL statements at the target user database and to execute them repeatedly.

Instead of sending SQL language commands to the target database, only the
literals are sent on each execution, thereby eliminating the overheads brought
by SQL statement syntax checks and optimized query plan builds. In addition,
DSl optimizes dynamic SQL statements by generating the language command
only when the dynamic SQL command fails, and generating the prepared
statement only once when the prepared statement is used for the first time.

If turned on, dynamic SQL will be used in a user database connection instead
of alanguage command if:

¢ The command isinsert, update, Or delete.
e Thereareno text, image, java or opaque columns in the command.

e Thereareno NULL valuesin the where clause for update or delete
command.

e There are no more than 255 parameters in the command:
e insert commands can have no more than 255 columns.

e update commands can have no more than 255 columnsin the set
clause and where clauses combined.

¢ delete commands can have no more than 255 columnsin the where
clause.

e The command does not use user-defined function strings.

The server-level configurations provide the default values for the connections
created or started in the future. For database-level configurations:

227

Dynamic SQL for enhanced Replication Server performance

dynamic_sgl — turns dynamic SQL on or off for areplicate connection.
Other dynamic SQL related configuration parameters take effect only if
this parameter is set to on.

dynamic_sql_cache_size —tellsthe Replication Server how many database
objects may use the dynamic SQL for a connection. This parameter is
provided to limit the resource demand on the data server.

dynamic_sgl_cache_management —manages the dynamic SQL cachefor a
connection. Once the dynamic SQL statements reaches
dynamic_sgl_cache_size for a connection, it either stops allocating new
dynamic SQL statementsif the valueisfixed, or it keepsthe most recently
used statements and deallocates the rest to allocate new statementsiif the
valueismru.

Setting up the configuration parameters to use dynamic SQL

Dynamic SQL is off by default at a server and connection level. Configure
dynamic SQL at a server or a connection level by issuing these commands:

configure replication server

set { dynamic sqgl |
dynamic_sql cache size |
dynamic_sql cache management }

to value

alter connection to server.db

set { dynamic sqgl |
dynamic_sql cache size |
dynamic_sql cache management }

to value

Table-level dynamic SQL control

228

create replication definition and alter replication definition allow you to control the
application of dynamic SQL on each table through replication definition.

Seethe Replication Server Reference Manual for information about create/alter
replication definition commands.

You can change the dynamic SQL execution at the table level for a specific
replicate database by using:

set dynamic_sql {on | off}

Replication Server

CHAPTER 4 Performance Tuning

for replication definition with replicate at
data server.database

At thereplication definition level, the default isto use dynamic SQL. You only
need to use these commands to change the dynamic SQL usage if you want to
exclude tables from dynamic SQL. To check for dynamic SQL usage, turn on
stats_sampling and run admin stats, dsi command and look for

DSIEDsql Prepared, DSIEDsglExecuted, and other dynamic SQL related
counters.

Use stored procedures rs_helprep, rs_helpsub, and rs_helppubsub to display
dynamic SQL setting for each replication definition.

See “rs_helprep”, “rs_helpsub”, and “rs_helppubsub,” in Chapter 6, “RSSD
Stored Procedures’ in the Replication Server Reference Manual for
information about using these stored procedures.

Using replicate minimal columns with Dynamic SQL

Administration Guide

Replication processing does not skip Dynamic SQL even if you enable the
replicate minimal columns clause and Replication Server uses replicate minimal
columns and Dynamic SQL effectively at the sametime.

In addition to warm standby environments, you can use the
replicate_minimal_columns parameter with physical connectionsin all
situations, so that DSI can use the parameter to determine whether to use
minimal columns when thereis no replication definition, or when the
replication definition does not contain the replicate minimal columns clause.

For example, to enable replicate_minimal_columns for the connection to the
pubs2 database in the SYDNEY _DS data server:

alter connection to SYDNEY DS.pubs2
set replicate minimal columns to ‘on’

You can use admin config to display replicate_minimal_columns configuration
information for physical connections.

Note When you set dsi_compile_enable to ‘on’, Replication Server ignores
what you set for replicate_minimal_columns.

229

Replication Server — Advanced Services Option

Limitations

Dynamic SQL has these limitations:

If atableisreplicated to astandby or MSA connection using an internal
replication definition, and dynamic SQL isenabled for the connection, any
new replication definition for the table should define the column order
consistent with the column order in the primary database. Otherwise, the
existing prepared statements may be invalidated, and may require the
standby or MSA connection to be restarted.

Replication Server converts user-defined datatypes to Open
Client/Server™ (OCS) datatype in a dynamic SQL command.

If datafalls outside Sybase ranges that cause dynamic SQL to fail, DS
logs an error message and resends dynamic SQL using the language
command. DSI shuts down only if the language command also fails.

If this condition happens frequently, disable dynamic SQL from the table
replication definition or use the set dynamic_sgl off command.

Use any of these commands to turn off dynamic_sql:

e alter connection... set dynamic_sql off — turns dynamic SQL off for all
commands in this connection.

e create/alter replication definition...without dynamic_sgl — turns dynamic
SQL off for al commands using this replication definition.

* set dynamic_sql off for replication definition with replicate at... —turns
dynamic SQL off for all commands using thisreplication definition at
this replicate connection.

Replication Server — Advanced Services Option

Replication Server includes the Replication Server — Advanced Services
Option which contains enhancements to performance that are all licensed
under the REP_HVAR_ASE license:

230

High Volume Adaptive Replication to Adaptive Server
Enhanced DS efficiency

Enhanced RepAgent Executor thread efficiency
Enhanced distributor thread read efficiency

Replication Server

CHAPTER 4 Performance Tuning

e Enhanced memory allocation
e Increasing queue block size

To activate any of the enhancements in the Advanced Services Option, you
must download the REP_HVAR_ASE license file from the Sybase Product
Download Center (SPDC) at https://sybase.subscribenet.com, to which you are
automatically enrolled in when you purchase a Sybase product. Log into
SPDC by using the information in your SPDC welcome e-mail. Contact your
Sybase representative for more information.

Note If you have purchased your Sybase software from a Sybase reseller, you
will receive a Web key rather than an e-mail message.

For information about licensing and Sybase Software Asset Management
(SySAM), see the Sybase Software Asset Management Users Guide.

High Volume Adaptive Replication to Adaptive Server

Administration Guide

Replication Server includes High Volume Adaptive Replication (HVAR) to
achieve better performance compared to the current continuous replication
mode when replicating into Sybase 1Q replicate database with identical
database schema.

In the continuous replication mode, Replication Server sends each logged
change to the replicate database according to the primary database |og-order.
HVAR achieves better performance with:

« Compilation—rearrangesreplicate data, by clustering it by each table, and
each insert, update, and delete operation, and then compiling the
operations into net-row operations.

* Bulk apply — applies the net result of the compilation operations in bulk
using the most efficient bulk interface for the net result. Replication Server
uses an in-memory net-change database to store the net row changes
which it applies to the replicate database.

HVAR tries to group as many compilable transactions as possible together,
compilesthe transactionsin the group into a net change, and then uses the bulk
interface in the replicate database to apply the net changes to the replicate
database.

231

Replication Server — Advanced Services Option

Instead of sending every logged operation, compilation removes the
intermediate insert, update, or update operationsin a group of operations and
sends only the final compiled state of a replicated transaction. Depending on
the transaction profile, this generally means a much smaller amount of datais
processed.

See “HVAR compilation and bulk apply,” for more information on HVAR
processing.

Database and platform support

HVAR supports replication into Adaptive Server 12.5 and later and you can
achieve optimal performance using 64-bit hardware platforms. See “ 64-hit
support,” in the Replication Server 15.5 New Features Guide.

HVAR compilation and bulk apply

232

During compilation, HVAR rearranges data that isto be replicated by
clustering the data together based on each table, and each insert, update, and
delete operation, and then compiling the operations into net row operations.

HVAR distinguishes different data rows by the primary key defined in a
replication definition. If there is no replication definition, all columns except
for text and image columns are regarded as primary keys.

For the combinations of operations found in normal replication environments,
given atable and row with identical primary keys, HVAR follows these
compilation rules for operations:

* Aninsert followed by adelete — resultsin no operation
e A delete followed by an insert — there is no reduction
e Anupdate followed by adelete —results in no operation

e Aninsert followed by an update — results in an insert where the two
operations are reduced to afinal single operation. The final single
operation contains the results of the first operation, overwritten by any
differences in the second operation.

* Anupdate followed by another update —resultsin an update where thetwo
operations are reduced to afinal single operation. The final single
operation contains the results of the first operation, overwritten by any
differences in the second operation.

Other combinations of operations result in invalid compilation states.

Replication Server

CHAPTER 4 Performance Tuning

Example 1 Thisisan example of log-order, row-by-row changes:

0. create table T (k int, c¢ int)
1. insert T values (1, 10)

2. update T set ¢ = 11 where k =1
3. delete T where k =1

4. insert T values (1, 12)

5. delete T where k =1

6. insert T values (1, 13)

With HVAR, theinsert in 1 and the update in 2 can be converted to insert T
values (1, 11). The converted insert and the delete in 3 cancel each other and
can beremoved. Theinsert in 4 and thedelete in 5 can be removed al together.
The final compiled HVAR operation is the last insert in 6:

insert T values (1, 13)
Example 2 In another example of log-order, row-by-row changes:

1
1
1

1. update T set ¢ = 14 where k
2. update T set ¢ = 15 where k
3. update T set c = 16 where k

With HVAR, the update in 1 and 2 can be reduced to the update in 2. The
updatesin 2 and 3 can be reduced to the single update in 3 which isthe net-row
changeof k=1

Replication Server uses aninsert, delete, and update tablein anin-memory net
change database to store the net row changes which it appliesto the replicate
database. Net row changes are sorted by replicate table and by type of
operations—insert, update, or delete—and are then ready for bulk interface.

HVAR loads insert operationsinto the replicate table directly. Since Adaptive
Server do not support bulk update and delete, HVAR |loads update and delete
operations into temporary work tables that HVAR creates inside the rep;ocate
database. HVAR then performs join-update or join-delete operations with the
replicate tables to achieve the final result. The work tables are created and
dropped dynamically.

Taking Example 2 where compilation resultsin update T set c = 16
where k = 1.

1 HVAR createsthe#rs_uT(k int, c int) work table.
2 HVAR performs an insert into the work table with this statement:

insert into #rs uT(k, c) location ‘idemo.db’ {select * from rs uT}

Administration Guide 233

Replication Server — Advanced Services Option

3 HVAR performsthe join-update:

update T set T.c=#rs uT.c from T,#rs uT where T.k=#rs uT.k

AsHVAR compilesand combinesalarger number of transactionsinto agroup,
bulk operation processing improves; therefore, replication throughput and
performance also improves. You can control the amount of data that HVAR
groupstogether for bulk apply by adjusting HVAR sizeswith the parametersin
“Configuring HVAR” on page 238.

Thereis no dataloss although HVAR does not apply row changesin the same
order in which the changes are logged because for:

» Different data rows, the order in which the row changes are applied does
not affect the result.

» The samerow, applying delete beforeinsert after compilation maintains
consistency.

See “HVAR processing and limitations” for limitations to HVAR processing.

HVAR processing and limitations

234

HVAR applies only the net row changes of atransaction while maintaining the
original commit order, and guarantees transactional consistency even asit
skips intermediate row changes.This change in replication behaviour due to
HVAR has several impacts:

» If you define triggers at the replicate database, they do not fire when the
HVAR compiler removes rows. Triggers require every logged SQL
statement to be applied. If you require table triggersto fire all the time,
disable HVAR compilation for that table.

e HVAR does not apply row changes in the same order in which the row
changes are logged. To apply changesto areplicated table in log order,
disable HVAR compilation for that table.

» If therearereferential constraints on replicate tables, you must specify the
referential constraintsin replication definitions. To avoid constraint errors,
HVAR loads tables according to replication definitions. See “ Tables with
referential constraints’ on page 239.

» Replication Server does not support customized function-strings or any
parallel DSI serialization methods, except for the default wait_for_commit
method, when you enable HVAR. HVAR treats customized function
strings as non-compilable commands.

Replication Server

CHAPTER 4 Performance Tuning

Administration Guide

HVAR does not compile some types of transactions called noncompilable
transactions and some types of tables called noncompilable tables.
Replication Server revertsto log-order row-by-row continuousreplication
when it encounters these operations:

« Noncompilable transactions — stored procedures, SQL statements,
datadefinitionlanguage (DDL) transactions, system transactions, and
Replication Server internal markers.

« Noncompilable transactions — a transaction that contains
noncompilable commands.

* Noncompilable tables — tables with HVAR disabled, with modified
function strings, with minimal column replication enabled, and with
referential constraint relationships with tables that HVAR cannot
compile.

When you enable by setting dsi_compile_enable to‘on’ and thereplication
definition for the table has the replicate minimal columns clause or has the
replicate_if_changed clause, Replication Server treats the table as non-
compilable.

HVAR automatically changes primary-key updatesto adel etefollowed by
an insert.

For tables without primary keys where there are no table replication
definitions, Replication Server converts updates to the table to primary-
key updates as Replication Server treats all columns, except text or image
columns, as primary keys.

HVAR replication attempts to group together as many transactions as
possible to maximize throughput. HVAR ignores parameters, such as
dsi_partition_rule that can stop transaction grouping.

If errors occur during HVAR processing, Replication Server retriesHVAR
with progressivliey smaller transaction groups until it identifies the
transaction that failed HVAR compilation, and then appliesthe transaction
using continuous replication.

To realize performance benefits of HVAR, keep the primary and replicate
databases synchronized to avoid the overhead of additional processing by
Replication Server when errors occur. You can set dsi_command_convert
to i2di,u2di to synchronize the data although this also incurs a processing
overhead. If the databasesare synchronized, reset dsi_command_convert to
none. See “Configuring HVAR” on page 238.

HVAR performs row count verification to ensure integrity in replication.

235

Replication Server — Advanced Services Option

Enabling HVAR

236

* When there are columns with identity datatype in a replication definition,
Replication Server executes on Adaptive Server, the command:

e setidentity_insert_table name on before identity column inserts and
set identity_insert_table_name off after identity column inserts

e setidentity_update_table name on before identity column updates
and set identity_update_table name off after identity column updates

HVAR is especially useful for creating online transaction processing (OLTP)
archiving and reporting systems where the replicate databases have the same
schemas as the primary databases.

Use dsi_compile_enable to enable HVAR for the connection. If you set
dsi_compile_enable to off, Replication Server uses continuous log-order, row-
by-row replication mode. For example, set to ‘off’ for an affected table if
replicating net row changes causes problems, such aswhenthereisatrigger on
the table which requires al the operations on that table to be replicated in log
order, and therefore compilation is not allowed

Note When you set dsi_compile_enable, Replication Server disables
dsi_cmd_prefetch and dsi_num_large_xact_threads.

You can also use:

* dsi_compile_max_cmds to specify the maximum size of agroup of
transactions.

* dsi_bulk_threshold to specify the number of net row change commands
after compilation has occured on atable for acommand type, that when
reached, triggers Replication Server to use bulk copy-in on that table for
the same command type.

* dsi_command_convert to specify how to convert a replicate command.

HVAR sets dsi_dataserver_make to “ASE" by default to specify Adaptive
Server as the replicate data server. HVAR automatically sets the Sybase
recommended values for dsi_compile_max_cmds, dsi_bulk_threshold, and
dsi_command_convert, asthe default values. See “alter connection,” in Chapter
3, “Replication Server Commands’ in the Replication Server Reference
Manual for full descriptions of the parameters.

Replication Server

CHAPTER 4 Performance Tuning

You can enable and configure HVAR at the server, database, or table-level. In
these examples, tb1 isthe table name and dbo is the table owner, in the pubs2
database of the replicate SYDNEY _DS data server:

e Server-level —affects all database connections to Replication Server

configure replication server
set dsi compile enable to ‘on’

« Database-level — affects the specified database

alter connection to SYDNEY DS.pubs2
set dsi_compile_enable to ‘on’

e Tablelevel —affectsonly the replicate tables you specify. If you specify a
parameter at both the table-level and database-level, the table-level
parameter takes precedence over the database-level parameter. If you do
not specify atable-level parameter by default, the setting for the parameter
applies at the database-level. To set a parameter for atable, use alter
connection and the for replicate table named clause:

for replicate table named
[table_owner.]table_name
[set table_param [to] ‘value’]

For example:

alter connection to SYDNEY DS.pubs2
for replicate table named dbo.tbl
set dsi compile enable to ‘on’

Using thefor replicate table name clause alters connection configuration at
the table level. The configuration changes apply to replicate datafrom all
the subscriptions and all the replication definitions of the tables you

specify.

Note You can only use the alter connection command for table-level
configuration as Replication Server does not support the“for” clause with
the create connection command.

After you execute dsi_compile_enable at the server, database, or table-level,
suspend and resume the connection.

suspend connection to SYDNEY DS.pubs2
go

Once the connection is suspended, you can resume it:

Administration Guide 237

Replication Server — Advanced Services Option

Configuring HVAR

238

resume connection to SYDNEY DS.pubs2
go

Once you alter the connection to the replicate database and set
dsi_compile_enable to on, Replication Server uses these parametersto
determine when to start and stop transaction grouping and compilation:

dsi_compile_max_cmds — specifies, in number of commands, the
maximum size of a group of transactions. When HVAR reaches the
maximum group size for the current group that it is compiling, HVAR
starts a new group.

If there is no more data to read, and even if the group does not reach the
maximum number of commands, HVAR compl etes grouping the current
set of transactions into the current group. The default is 100,000
commands.

dsi_bulk_threshold — specifies the number of net row change commands
after compilation has occurred on atable for acommand type, that when
reached, triggers Replication Server to use bulk copy-in on that table for
the same command type. The default is 20 net row change commands.

dsi_command_convert — specifies how to convert areplicate command. A
combination of these operations specifies the type of conversion:

 d-deete

o i—insert

e u-—update

e t-truncate

* none —no operation

Combinations of operations for dsi_command_convert include i2none,
u2none, d2none, i2di, t2none, and u2di. The operation before conversion
precedesthe “2” and the operations after conversion are after the “2”. For
example:

e d2none —do not replicate the delete command. With this option, you
do not need to customize the rs_delete function string if you do not
want to replicate delete operations.

Replication Server

CHAPTER 4 Performance Tuning

e i2di,u2di—convert both insert and update to del ete followed by insert,
which is equivalent to an autocorrection.

e t2none — do not replicate truncate table command.

The default for dsi_command_convert is none which meansthereis no
command conversion.

HVAR automatically sets the Sybase-recommended values for
dsi_compile_max_cmds, dsi_bulk_threshold, and dsi_command_convert, which
are the default values. However, you can specify your own values to tune
performance in your replication environment. For example, if you want to
adjust these values from the default values when you enable HVAR:

alter connection to SYDNEY DS.pubs2
set dsi compile enable to ‘on’

set dsi compile max commands to ‘50000’
set dsi_bulk threshold to ‘15’

set dsi_command convert to ‘i2di,u2di’

go

See “alter connection,” in Chapter 3, “Replication Server Commands” in the
Replication Server Reference Manual for full descriptions of these parameters.

System table support

Replication Server uses the rs_tbconfig table to store support table-level
configuration parameters, and theref_objowner and ref_objname columnsinthe
rs_columns table to support referential constraints.

See Chapter 8, “Replication Server System Tables” in the Replication Server
Reference Manual for full table descriptions.

Tables with referential constraints

Administration Guide

You can use areplication definition to specify tables that have referential
contraints, such as aforeign key and other check constraints, so that HVAR is
aware of these tables. See “HVAR processing and limitations’ on page 234.

Usually the referencing table contains referential constraints for a referenced
table within the same primary database. However, HVAR extends referential
constraints support to referenced tables from multiple primary databases. You
can specify the referencing table in replication definition for each primary
database. However, if multiple referential constraints conflict with each other,
Replication Server picks up one referential constraint at random.

239

Replication Server — Advanced Services Option

Creating and altering replication definitions

240

Use the create replication definition commands with the references clause to
specify the table with referential constraints.

create replication definition
(column_name [as replicate_column_name]

.[.rﬁap to published_datatype]] [quoted]
[references [table_owner.]table_name [(column_name)]] ...)

]

Usethealter replication definition command with thereferences clauseto add or
change a referencing table. Use the null option to drop a reference.

alter replication definition

ad.d..;:olumn_name [as replicate_column_name]

[map to published_datatype] [quoted]

[references [table_owner.]table_name [(column_name)]

| alter columns with column_name references
{[table_owner.]table_name [(column_name)] | NULL}

[, column_name references {[table_owner.]table_name [(column_name)]
| NULL}

For both alter replication definition and create replication definition with the
reference clause, Replication Server:

Treats the reference clause as a column property. Each column can
reference only one table.

Does not process the column name you provide in the column_name
parameter within the reference clause.

Does not allow referential constraints with cyclical references. For
example, the original referenced table cannot have areferential constraint
to the original referencing table.

During replication processing, HVAR loads:

Inserts to the referenced tables before the referencing table you specify in
the replication definition.

Deletes to the referenced tables after the table you specify in the
replication definition.

Replication Server

CHAPTER 4 Performance Tuning

In some cases, updates to both tables fail because of conflicts. To prevent
HVAR from retrying replication processing, and thus decreasing performance,
you can:

e Stopreplication updates by setting dsi_command_convert to“u2di,” which
converts updates to deletes and inserts.

e Turn off dsi_compile_enable to avoid compiling the affected tables.

HVAR cannot compile and thus marks out tables with customized function-
strings, and tables that have referential constraintsto an existing table that it
cannot compile. By marking out these tables, HVAR optimizes replication
processing by avoiding transaction retries due to referential constraint errors.

Displaying HVAR information

You can display information on table-level configuration parameters and table
references.

Displaying table level configuration parameters

Usethe Replication Server admin config command to display information about
table level configuration parameters.

For example, to display all configuration parameters after using
dsi_command_convert to set d2none on the tbl tablein the pubs2 database of
the SYDNEY _DS data server:

admin config, “table”, SYDNEY DS, pubs2

See “admin config,” in Chapter 3, “Replication Server Commands’ in the
Replication Server Reference Manual for syntax, parameters, and more
examples.

Displaying table references

Administration Guide

Usethers_helprep stored procedure which you can execute on the Replication
Server System Database (RSSD) to display information about table references
and HVAR information.

For example, to display information about the “authors’ replication definition
created using create replication definition, enter:

rs_helprep authors

See “rs_helprep,” in Chapter 6, “RSSD Stored Procedures” in the Replication
Server Reference Manual for syntax, parameters, and more examples.

241

Replication Server — Advanced Services Option

Displaying the net-change database

Replication Server has a net-change database that acts as an in-memory
repository for storing the net row changes of atransaction, that is, the compiled
transaction. There is one net-change database instance for each transaction.
Replication Server allows external processes, to access net-change database
instances. Each replicate table can have up to three tracking tables within a net-
change database. You can inspect the net-change database and the tableswithin
the database to monitor HVAR replication and troubleshoot problems.

Use the sysadmin cdb command to monitor a net-change database. See
“sysadmin cdb,” in Chapter 3, “Replication Server Commands’ in the
Replication Server Reference Manual.

Mixed version support and backward compatibility

HVAR cannot replicate referential constraints specified in replication
definitions if the outbound route version is earlier than 15.5.

HVAR works if the inbound route version is earlier than 15.5. However, no
referential constraint information is available to a Replication Server with
version 15.5 or later.

Contiunous replication is the default replication mode available to all
supported versions of Replication Server. HVAR isonly available with
Replication Server 15.5 and later.

Enhanced DSI efficiency

Enable dsi_cmd_prefetch to improve Data Server Interface (DSI) efficiency by
reducing data replication latency which decreases the length of time that
Replication Server waits for results from the replicate data server through the
ct_results routine, and subsequently reduces the length of time the data server
waits for Replication Server..

242

Enhancing DS efficiency reduces latency by:

Allowing Replication Server to prepare the next batch of commands for
the replicate data server before Replication Server processesresults of the
current batch from the replicate data server.

Improving concurrency between the DSI Executor (DSI/E) and DSI
Scheduler (DSI/S) threads.

Replication Server

CHAPTER 4 Performance Tuning

To alow DSl to pre-build the next batch of commands while waiting for the
response from data server, and therefore improve DS efficiency, set
dsi_cmd_prefetch to ‘on’ with alter connection or create connection.

If you also tune your data server to enhance performance, you may gain an
additional performance increase when you enable dsi_cmd_prefetch.

For example, to enable dsi_cmd_prefetch for the connection to the pubs2
database in the SYDNEY _DS data server:

alter connection to SYDNEY DS.pubs2
set dsi_cmd prefetch to ‘on’

Default: on.

dsi_cmd_prefetch isadynamic parameter.

Note When you set dsi_compile_enable to ‘on’, Replication Server ignores
what you set for dsi_cmd_prefetch.

Enhanced RepAgent Executor thread efficiency

You can improve performance in Replication Server by using the NRM thread
to normalize and pack Log Transfer Language (LTL) commandsin parallel
with parsing by the RepAgent Executor thread. When you instruct Replication
Server to enable the NRM thread, a thread splits from the RepAgent Executor
thread to become the NRM thread. Parallel processing by the NRM thread
reduces the response time of the RepAgent Executor thread.

After you enable the NRM thread, you can specify the memory available for
the message queue from the RepAgent Executor thread to the NRM thread.

Enabling NRM thread

Administration Guide

Set nrm_thread to ‘on’ with configure replication server to enable the NRM
thread:

configure replication server
set nrm_thread to ‘on'

Default: on

nrm_thread iS a server-level static parameter. You must restart Replication
Server after you change the parameter value.

243

Replication Server — Advanced Services Option

Specifying memory available to RepAgent Executor

After you set nrm_thread to ‘on’, use the exec_nrm_request_limit parameter
with configure replication server or alter connection to specify the total amount
of memory available to RepAgent Executor thread for the message queue the
NRM threads. If the total amount of memory used by commands on the
message queueis larger than than what you specify with
exec_nrm_request_limit, the RepAgent Executor thread sleeps,and waits for
memory to become available. Asthe NRM thread processes commands on the
message queue, it frees up the memory for the RepAgent Executor thread. For
example, to set exec_sgm_nrm_request_limt to 1GB for the connection to the
pubs2 database in the SYDNEY DS data server:

alter connection to SYDNEY DS.pubs2
set exec_nrm request_ limit to ‘1073741824’

For exec_nrm_request_limit:
* Default:
* 32-bit—1,048,576 bytes (1MB)
* 64-bit — 8,388,608 bytes (8MB)
e Maximum —2,147,483,647 bytes (2GB)
e Minimum — 16,384 bytes (16KB)

After you change the configuration for exec_nrm_request_limit, suspend and
resume the Replication Agent. To suspend and resume:

» RepAgent for Adaptive Server, execute in Replication Server;
sp_stop_rep_agent and then sp_start_rep_agent.

* Replication Agent for supported non-A SE databases; execute suspend and
then resume in Replication Agent.

Enhanced distributor thread read efficiency

244

Replication Server includes an enhancement to enable the distributor (DIST)
thread to read SQL statements from the Stable Queue Thread (SQT) cache
directly. This reduces contention between the inbound and outbound queues,
and leads to improved Replication Server performance. Use the
dist_direct_cache_read parameter with configure replication server to use this
enhancement:

configure replication server
set dist direct cache read to ‘on’

Replication Server

CHAPTER 4 Performance Tuning

By default, dist_direct_cache_read is set to ‘on’. If you disable the parameter,
the distributor thread requests SQL statements from SQT through the message
gueue. This leads to inbound and outbound gqueue contention.

dist_direct_cache_read is a server-level static parameter. You must restart
Replication Server after you enable or disable the parameter.

Enhanced memory allocation

You can allocate memory in larger chunksin Replication Server. Thisreduces
the number of memory allocations needed, and leads to improved Replication
Server performance. Use the mem_reduce_malloc parameter with configure
replication server to use this enhancement:

configure replication server
set mem reduce malloc to ‘on’

By default, mem_reduce_malloc is set to ‘off’.

mem_reduce_malloc is a dynamic parameter.

Increasing queue block size

Administration Guide

Replication Server allows you to increase the queue block size to improve
performance.

The queue block size isthe number of bytesin a contiguous block of memory
used by stable queue structures. With earlier versions of Replication Server, the
queue block sizeis fixed at 16KB. Setting alarger queue block size allows
Replication Server to process moretransactionsin asingle block and therefore
to improve Replication Server performance. However, performance
improvement is also dependent on the transaction profile and the environment.

The default queue block sizeis 16KB. You can set the queue block sizeto
16KB, 32KB, 64KB, 128K B, or 256KB.

Note Modifying the queue block size automatically shuts down Replication
Server, and you must restart Replication Server for the change to take effect.
See “Queue block size change procedure.”

245

Replication Server — Advanced Services Option

Queue block size change procedure

246

Modifying the queue block sizeis amajor change to the Replication Server
configuration and affectsall connectionsto the Replication Server. In the queue
block size change procedure, upstream refersto all replication system
componentsthat feed datato the Replication Server where you want to change
the queue block size and downstream refersto the componentsthat receive data
from the affected Replication Server.

1

Before you change the queue block size, you must stop data flowing into
the Replication Server you want to configure, to maintain data integrity:

a Suspend log transfer from all Replication Agents to the Replication
Server you want to configure.

b Suspend al upstream log transfer from Replication Agents.
¢ Quiesce all upstream Replication Servers.

d Suspend all incoming routes to the Replication Server you want to
configure.

e Quiescethe Replication Server you want to configure.

Set the queue block size on the Replication Server you want to configure
after stopping data flow. Executing the command to configure the queue
block size shuts down Replication Server. The queue block size change
takes effect after you restart Replication Server.

Note You must use configure replication server with the set block_size to
‘value’ with shutdown parameter to set the queue block size. Otherwise, the
gueues can be corrupted. See “ Examples’ on page 248.

After changing the queue block size, resume data flow:
a Restart all the Replication Servers you shut down.
b Resumelog transfer from Replication Agents.

¢ Resume all incoming routes.

Check for dataloss at all downstream Replication Server RSSDs and data
servers. Usually, there is dataloss from the RSSD of the Replication
Server you configured. Ignore the data loss from areplicate RSSD that
receives data from the RSSD of the configured Replication Server.

Follow the procedures to fix dataloss at data servers.

Replication Server

CHAPTER 4 Performance Tuning

If thereisdataloss at a RSSD, you see in the log of the affected
Replication Server a message such as:

E. 2010/02/12 14:12:58. ERROR #6067 SQM(102:0 primaryDS.rssd) -
/sqmogid.c (1071
Loss detected for replicateDS.rssd from primaryDS.RSSD

Restrictions

Recommendations

Administration Guide

Seethe“Examples’ on page 248 for the commandsto use in different types of
replication systems.

After you execute the command to change the queue block size, Replication
Server cannot process data that is flowing into Replication Server while the
change in queue block sizeis also being processed.

You cannot change the queue block size of a Replication Server while a
subscription is being materialized. If you change the queue block size, and if
materialization or dematerialization isin progress, or if the routes are being
created or destroyed, the process of changing the queue block size terminates
with an error message while Replication Server continues operating.

Once you start the procedure to change the queue block size, Replication
Server does not accept another command to change the queue block size until
the first change is completed.

Do not use any other procedures to change the queue block size in the RSSD
directly, asthese procedures may result in inconsistencies in the queue block
size configuration and cause Replication Server to shut down.

After the block size has been changed, the queues will be empty.

Sybase strongly recommends that you:

« Verify you have sufficient memory before you increase the queue block
size.

« Experiment with different queue block sizesto determine the optimum
value for your replication system.

247

Replication Server — Advanced Services Option

Examples

248

Use configure replication server with the set block_size to ‘block_size’ with
shutdown clause to set the queue block size.

Note You must include the “with shutdown” clause after specifying the block
size.

For convenience in the examples that follow, RSSD refers to both Adaptive
Server asthe Replication Server System Database (RSSD) and SQL Anywhere
as the Embedded Replication Server System Database (ERSSD).

Example 1 Thisexample sets the queue block size of the primary and
replicate Replication Serversto 64K B in asimplereplication system consisting
of aprimary database—pdb, a replicate database—rdb, the primary Replicate
Server—PRS with its RSSD—pRSSD, and the replicate Replication Server—
RRS with its RSSD—rRSSD:

pRSSD rRSSD

To configure PRS:

1 Suspend log transfer from all Replication Agents. At PRS, execute:
suspend log transfer from all

2 Quiesce PRS;
admin quiesce force rsi

3 Configurethe block size at PRS:

configure replication server
set block size to ‘64’ with shutdown

When you execute the command, the command:

a Veifiesthat thereis no subscription materialization in progress,
otherwise an error message is returned.

b Verifiesthat al log transfer is suspended, otherwise an error message
is returned.

¢ Veifiesthat all incoming routes are suspended, otherwise an error
message is returned.

d Verifiesthat the Replication Server is quiesced, otherwise an error
message is returned.

Replication Server

CHAPTER 4 Performance Tuning

Administration Guide

e Purgesqueues.

f Zeroesthevaluesinthers_locater RSSD system table to allow
Replication Agents to resend transactions that may have not been
applied to the replicate database when you started the queue block
size change procedure.

Sets the queue block size to 64KB.

h Shuts down Replication Server to clear any memory that may be
allocated in the old queue block size.

Seethetransaction log to verify if PRSisnot materializing, if log transfer
and routes are suspended, and if PRS is quiesced.

Restart PRS. See “ Starting Replication Server,” in Chapter 4, “Managing
a Replication System” in the Replication Server Administration Guide
\olume 1.

See the PRS transaction log to verify that the block sizeis changed.

Resume log transfer to allow Replication Agentsto connect to PRS. At
PRS execute:

resume log transfer to all

Check the RRS log file for information about datalosses. Ignore dataloss
occurring from pRSSD to rRSSD by executing the ignore loss command
on RRS.

ignore loss from PRS.pRSSD to RRS.rRSSD

See“Ignoring aloss’ on page 337.

To configure RRS:

1

Suspend log transfer from all Replication Agents. At PRS and RRS,
execute:

suspend log transfer from all
Quiesce PRS:
admin quiesce_ force rsi

At al Replication Servers that originate routes to the RRS, suspend the
routes:

suspend route to destination replication server

Quiesce RRS:

admin quiesce_ force rsi

249

Replication Server — Advanced Services Option

5 Configurethe block size at RRS:

configure replication server
set block size to ‘64’ with shutdown

6 Seethetransaction logto verify if RRSisnot materializing, if log transfer
and routes are suspended, and if RRS is quiesced.

7 Restart RRS. See” Starting Replication Server,” in Chapter 4, “Managing
aReplication System” in the Replication Server Administration Guide
Volume 1.

8 Seethe RRS transaction log to verify that the block size is changed.

9 Resume log transfer to allow Replication Agentsto connect to RRS, at
RRS execute:

resume log transfer to all

10 Resumelog transfer to allow Replication Agentsto connect to PRS, at
PRS execute:

resume log transfer to all
11 Resume the routes you suspended:
resume route to destination replication server

12 Check the PRSand RRSIog filesfor information about datalosses. Ignore
data loss occurring between pRSSD and rRSSD if rRSSD isreplicated to
PRSSD by executing the ignore loss command on PRS.

ignore loss from RRS.rRSSD to PRS.pRSSD

Example 2 Thisexample setsthe queue block size of the primary Replication
Server to 64K B in areplication system with an intermediate route consi sting of
aprimary database—pdb, areplicate database—rdb, the primary Replicate
Server—PRSwith its RSSD—pRSSD, the replicate Replication Server—RRS
withits RSSD—rRSSD, and an intermediate Replication Server—IRSwith its
RSSD—iRSSD:

pRSSD iRSSD rRSSD

1 Suspend log transfer from all Replication Agents. At PRS, execute:
suspend log transfer from all

2 Quiesce PRS:

admin quiesce_ force rsi

250 Replication Server

CHAPTER 4 Performance Tuning

3 Configure the block size at PRS:

configure replication server
set block size to ‘64’ with shutdown

4 Seethetransaction log to verify if PRSisnot materializing, if log transfer
and routes are suspended, and if PRS is quiesced.

5 Restart PRS. See” Starting Replication Server,” in Chapter 4, “Managing
a Replication System” in the Replication Server Administration Guide
\olume 1.

6 Seethe PRS transaction log to verify that the block sizeis changed.

7 Resumelog transfer to allow Replication Agents to connect to PRS. At
PRS execute:

resume log transfer to all

8 Check thelRSand RRSIog filesfor information about datalosses. Ignore
dataloss occurring from pRSSD to RRS and from pRSSD to iRSSD by
executing the ignore loss command twice on IRS:

ignore loss from PRS.pRSSD to RRS

go

ignore loss from PRS.pRSSD to IRS.iRSSD
go

Seethe Replication Server Reference Manual for the full syntax, examples, and
usage information for the commands in the examples.

Using multiprocessor platforms

You can run Replication Server on symmetric multiprocessor (SMP) or single-
processor platforms. Replication Server multithreaded architecture supports
both hardware configurations. On a single processor platform, Replication
Server threads run serially. On a multiprocessor platform, Replication Server
threads can run in parallel, thereby improving performance and efficiency.

Administration Guide 251

Using multiprocessor platforms

Replication Server isan Open Server application. Replication Server support
for multiple processorsis based on Open Server support for multiple
processors. Both servers use the POSI X thread library on UNIX platforms and
the WIN32 thread library on Windows platforms. For detailed information
about Open Server support for multiple processing machines, see the Open
Server Server-Library/C Reference Manual.

When Replication Server isin single-processor mode, a server-wide mutual
exclusion lock (mutex) enforces serial thread execution. Serial thread
execution safeguards global data, server code, and system routines, ensuring
that they remain thread-safe.

When Replication Server isin multiprocessor mode, the server-wide mutex is
disengaged and individual threads use a combination of thread management
techniques to ensure that global data, server code, and system routines remain
secure.

Enabling multiprocessor support

To specify whether Replication Server takes advantage of a multiprocessor
machine, use configure replication server with the smp_enable option. For
example:

configure replication server set smp enable to 'on'

Setting smp_enable “on” specifiesmultiprocessor support; settingsmp_enable
“off” specifies single-processor support. The default is“on.”

smp_enable is a static option. You must restart Replication Server after
changing the status of smp_enable.

Monitoring thread status

252

You can verify Replication Server thread status using these commands:
e admin who — provides information on all Replication Server threads

e adminwho_is_up or admin who_is_down — lists Replication Server threads
that are running, or not running.

» sp_help_rep_agent—providesinformation on the RepAgent thread and the
RepAgent User thread.

Replication Server

CHAPTER 4 Performance Tuning

See Chapter 1, “Verifying and Monitoring Replication Server” for more
information about monitoring thread status.

Monitoring performance

Replication Server provides monitors and counters for monitoring
performance. See Chapter 5, “Using Counters to Monitor Performance”.

Allocating queue segments

You can choose the disk partition to which Replication Server allocates
segments for stable queues. By choosing the stable queue placement, you can
enhance load balancing and read/write distribution.

Replication Server stores messages destined for other sites on partitions. It
allocates space in partitions to stable queues and operatesin IMB chunks
called segments. Each stable queue holds messages to be delivered to another
Replication Server or to adataserver. The queueshold datauntil itissent toits
destination.

rs_init assigns Replication Server initial partition. You may need additional
partitions, depending on the number of databases and remote Replication
Serversto which the Replication Server distributes messages.

A Replication Server can have any number of partitions of varying sizes. The
sum of the partition sizes is the Replication Server capacity for queued
transactions.

By default, Replication Server assigns queue segments to the first partition in
an ordered list of partitions. See Figure 4-12. When the first partition becomes
full, thefirst partition becomesthelast partition, and the next queue segment is
allocated to the new first partition. When the default method is used, therolling
allocation of segments is automatic and cannot be controlled by the user.

Administration Guide 253

Allocating queue segments

Figure 4-12: Default allocation mechanism

First Allocation

Partition 1 Partition 2 Partition3 | ————- Partition n

TAIIDcatiun

Partition 2 Partition3 | ————- Partition n Partition 1

Tﬁ.llnt:ﬂtinn

Choosing disk allocations

To choose the segment all ocation, use the alter connection or alter route
command with the set disk_affinity option. The syntax is:

Second Allocation

alter connection to dataserver.database
set disk_affinity to ['partition’ | 'off']

alter route to replication_server
set disk_affinity to ['partition’ | 'off']
partition is the logical name of the partition to which you want to allocate the
next segment for the connection or route.

Each alocation directiveiscaled a“hint” because Replication Server can
overridetheallocationif, for example, theallocated partitionisfull or hasbeen
dropped. If Replication Server overrides the hint, it allocates segments
according to the default mechanism described in Figure 4-12.

Replication Server checks for an allocation hint each time it allocates a new
segment for aqueue. Each hint isstored in thers_diskaffinity system table. Each
partition may have many hints, but each stable queue can have only one hint.

254 Replication Server

CHAPTER 4 Performance Tuning

Successfully using disk allocation to improve performance depends on the
architecture and other characteristics of your site. One way to improve overall
throughput is to associate faster devices with those stable queues that process
more slowly.

In addition, if new partitions are added after all connections are in place, the
new partitions are not used until the existing ones arefilled. You can force a
connection to use the new partition by adding allocation hints.

An example

You can alocate different disk partitionsto different stable queues. You could,
for example, make partitions of different sizes available to different database
connections. In this example, we add partitions of 10MB and 20MB to the
Replication Server and specify allocation hints for the TOKYO_DS and
SEATTLE_DS data servers. The procedureis:

1 MakethepartitionsP1 and P2 on the device named /dev/rdsOa available to
Replication Server, enter:

create partition Pl on '/dev/rdsOa' with size 20
create partition P2 on '/dev/rdsOa' with size 10

2 Suspend the connection to the TOKYO_DSand SEATTLE_DS data
servers, enter:

suspend connection to TOKYO DS
suspend connection to SEATTLE DS

3 Specify alocation hints for the connection to the TOKYO_DS and
SEATTLE DS dataservers, enter:

alter connection to TOKYO DS.dbl
set disk affinity to 'P1l'

alter connection to SEATTLE DS.db5
set disk _affinity to 'P2'

4 Resumethe connectionsto the TOKYO_DSand SEATTLE DS data
servers, enter:

resume connection to TOKYO DS
resume connection to SEATTLE DS

Administration Guide 255

Allocating queue segments

Preallocating segments

Replication Server 15.1 and later preallocates segments in the background to
reduce segment allocation latency. Segment allocation imposes significant
latency to writer threads especially when the RSSD is on a remote Adaptive
Server.

When awriter thread needs a new segment, it checks whether the preallocated
segment isavailable, if it is not, the thread requests to allocate the segment.
Once the writer thread gets the new segment, a preallocation request is made
so that the segment isallocated in the background. By thetime thewriter thread
needs a new segment, it is already available.

Enable or disable segment preallocation using:

configure replication server set sgm seg prealloc to
"on|off"

This command is static, which means you must restart the server for it to take
effect. It supports only the server-level configuration.

Dropping hints and partitions

You can remove an alocation hint using the alter connection or alter route
command with the set disk_affinity to 'off' parameter. For example:

alter connection to TOKYO DS.dbl

set disk affinity to 'P1l' to 'off'
This command del etes the allocation hint for P1 from the rs_diskaffinity table.
You can remove a partition from Replication Server using the drop partition
command. If the partition you are dropping has one or more alocation hintsin
the rs_diskaffinity table, Replication Server marks the allocation hints for

deletion, but does not delete them until all data stored on the partition has been
successfully delivered and the partition has been dropped.

256 Replication Server

CHAPTER 4 Performance Tuning

Using the heartbeat feature in RMS

Administration Guide

To view latency information, use the heartbeat feature in the command line
service, Replication Monitoring Services (RMS). The heartbeat feature uses
the stored procedure rs_ticket to generate latency information, which isthe
amount of time it takes a transaction to move from the primary to the replicate
database. At a specified interval, the RMS executesrs_ticket at a primary
database. The latency information that has been generated is stored in atable
in the replicate database.

RMS provides commands to set up the heartbeat process and to retrieve that
latency information from the replicate database. The heartbeat featureis
available only through RM S. See the Replication Server Reference Manual for
more information about the heartbeat commands.

257

Using the heartbeat feature in RMS

258 Replication Server

CHAPTER 5

Introduction

Administration Guide

Using Counters to Monitor
Performance

This chapter describes how to use Replication Server counters to monitor
performance. To monitor performance using the RepAgent counters, see
“Using counters to monitor RepAgent performance” on page 130 in the
Replication Server Administration Guide Volume 1.

Topic Page
Introduction 259
Modules and counters: an overview 260
Sampling 262
Viewing statistics on screen 267
Viewing statistics saved in the RSSD 269
Viewing information about the counters 271
Resetting counters 272
Generating performance reports 272

Replication Server has several hundred different countersthat can monitor
performance at various points and areas in the replication process. By
default, counters are not active until you choose to activate them—with
the exception of afew counters that are always active.

You can view current counter values and other performance information
at any time using these commands:

* admin stats — displays current values for specified counters.

e admin stats, backlog — displays the current backlog in the Replication
Server stable queues.

e admin stats, { tps | cps | bps } — displays throughput in terms of
transactions per second, commands per second, or bytes per second.

259

Modules and counters: an overview

e admin stats, { md | mem | mem_in_use } — displays message and memory
information

Counter values can al so be saved (or flushed) to the RSSD, where averages and
rates can be calculated and viewed using standard Transact-SQL statements or
the rs_dump_stats stored procedure.

Modules and counters: an overview

260

In Replication Server, amoduleisagroup of componentsthat work together to
perform specific services. For example, the Stable Queue Manager (SQM)
consists of logically related components that provide stable queue services.
Replication Server provides countersthat can track activity at each instance
(occurrence) of each module.

Some modules have exactly one instance in Replication Server. Instances of
those modules can be identified by the module name alone. Examples of this
type of module are:

» System Table Services (STS)
» Connection Manager (CM)

Other modules can have multiple instances in Replication Server. To uniquely
identify each instance of the module, you must include both the module name
and the instance ID. Examples include:

* Replication Server Interface (RSI)
» Distributor (DIST)
» Data Server Interface, scheduler thread (DSI/S)

Still other modules require three identifiers to differentiate them: the module
name, the instance ID, and an instance value. Examples include:

» Stable Queue Transaction thread (SQT)
o Stable Queue Manager (SQM)
» Data Server Interface, executor thread (DSIEXEC)

Table 5-1 lists the most commonly used modules. Counters for independent
modules can be addressed directly using Replication Server commands. To
access counters for dependent modules, use the name of their parent modules.

Replication Server

CHAPTER 5 Using Counters to Monitor Performance

Counters

Administration Guide

Table 5-1: Replication Server modules

Module name Acronym Independent/dependent
Connection Manager CM Independent
Distributor DIST Independent

Data Server Interface DS Independent

DSI Executor DSIEXEC Dependent of DSI
RepAgent thread REPAGENT Independent
Replication Server Interface | RS Independent

RSI User RSIUSER Independent
Replication Server Global SERV Independent

Stable Queue Manager SQM Independent

SQM Reader SQMR Dependent of SQM
SQM Transaction Manager | SQT Independent

System Table Services STS Independent

Thread Synchronization SYNC Independent

SYNC Element SYNCELE Dependent of SYNC

To view descriptive and statusinformation about Replication Server counters,
use the rs_helpcounter stored procedure. See “ Viewing information about the
counters’ on page 271.

Each counter hasadescriptive name and adisplay namethat you useto identify
the counter when you enter RCL commands and when you view displayed
information.

Different kinds of counters provide different types of information. Although
not all counters can be divided into discrete categories, when Replication
Server displays counter information it uses these categories:

* Observers — collect the number of occurrences of an event over atime
period. For example, observers might collect the number of times a
message is read from a queue. Replication Server reports the number of
occurrences and the number of occurrences per second.

e Monitors — collect measurements at a given time or times. For example,
monitors might collect the number of operations per transaction.
Replication Server reports the number of observations, the last value
collected, the maximum value, and the average value.

261

Sampling

Sampling

e Counters— collect avariety of measurements. Counters that measure
duration are in this group as are counters that collect total numbers of
bytes. For this category, Replication Server can report number of
observations, total value, last value, maximum value, an average, and rate
per second.

You have several optionsfor gathering data. You can choose whether to sample
data over along period of time, a short period of time (seconds), or asingle
occurrence.

You can collect counter statistics in either of two ways:

» By executing admin stats with the display option, which instructs
Replication Server to collect information for a specified time period and
then, at the end of that time period, to display the information collected on
the computer screen.

» By executing admin stats with the save option, whichinstructs Replication
Server to collect information for aspecified number of observationswithin
a specified time period, and save that information to the RSSD.

By default, information is not collected from the counters until you turn them
on. You can turn them on for a specific time period when you execute admin
stats. You can a so turn on sampling for an indefinite time period by setting the
stats_sampling configuration parameter on.

Turning on sample collection activates al counters. However, you can display
or save statistics only for those counters or modules that are of interest.

Statistics shown on the computer screen record the number of events and
computed values—such as averages and rates—for asingle observation period.
When statistics are sent to the RSSD, Replication Server saves raw values—
such as observations, totals, last value, and maximum value—for multiple
consecutive observation periods. You can then compute averages and rates
from these stored values.

Collecting statistics for a specific time period

262

The syntax for admin stats is:

Replication Server

CHAPTER 5 Using Counters to Monitor Performance

admin { stats | statistics } [, sysmon | "all"
| module_name [, inbound | outbound] [, display_name]]
[, server[, database] |instance_id]
[, display |, save [, obs_interval]]
[, sample_period]

admin stats |ets you specify:

The counters to be sampled
The length of the observation interval and the sample period

Whether to save statistics to the RSSD or display them on the computer
screen

Note admin stats also supports the cancel option. This stops the currently
running command.

By default, Replication Server does not report counters that show 0 (zero)
observationsfor the sample period. You can change that behavior by setting the
stats_show_zero_counter configuration on using configure replication server.
See the Replication Server Reference Manual for complete syntax and usage
information.

Specifying the counters to be sampled

You can specify all counters or as few as a single instance of a counter.

Administration Guide

sysmon —samples all counters marked by Sybase as most important to
performance and tuning. Thisisthe default value.

To view alist of the sysmon counters, enter:
rs_helpcounter sysmon
"all" —samples all counters.

module_name — samples all counters for a particular module. See
“Modules and counters: an overview” on page 260 for alist of modules.

module_name, display_name — samples all instances of a particular
counter. Use sp_helpcounter for alist of counters.

263

Sampling

* module_name, display_name, instance_id —samplesa particular instance of
acounter. To find the numeric ID for an instance, execute admin_who and
see the Info column.

Note If theinstance D isspecified and the moduleis either SQT or SQM,
you can specify whether you want information supplied by the inbound or
outbound queue for the counter instance.

For example, to collect statistics for the sysmon counters for one second and
send the information to the computer screen, enter:

admin stats, sysmon, display, 1

Specifying the sample period

You specify a sampling period in numbers of seconds. Replication Server
collects statisticsfor the named countersfor that number of seconds and reports
tothe screen or the RSSD. Thedefault valueis 0 (zero) seconds—which causes
all countersto report their current value.

For example, to callect statistics for all counters for one minute and display
them on the computer screen, enter:

admin stats, "all", display, 60

Specifying how statistics are to be reported

Statistics can be sent to the computer screen or to the RSSD.

Displaying statistics on the computer screen

264

To send statistics to the computer screen, include the display option. In this
case, Replication Server makes a single observation at the end of the specified
time period. The observed statistics are sent only to the computer screen.

For example, to report the number of blocks read from all queues and by all
readers over afive-minute interval, enter:

admin stats, sgm, blocksread, display, 300

When you execute admin stats with a nonzero time period using the display
option, Replication Server:

1 Resetsall countersto zero.

2 Turnson all counters.

Replication Server

CHAPTER 5 Using Counters to Monitor Performance

3 Putsyour session to sleep for the specified time period.
4 Turnsoff al counters.

5 Reportsthe requested data.

Saving statistics in the RSSD

Administration Guide

To save statistics in the RSSD, include the save option, which immediately
returns the session.

When you send statistics to the RSSD, you can specify the length for each
observation interval (obs_interval) during the specified sampling period.
obs _interval can be anumeric valuein seconds, or aquoted time format string
hh:mm[:sg].

For example, to start sampling and saving statistics to the RSSD for one hour
and thirty minutes at 20-second intervals, enter:

admin stats, "all", save, 20, "01:30:00"

To collect statistics for the outbound SQT for connection 108 for two minutes
at 30-second intervals, enter:

admin stats, sgt, outbound, 108, save, 30, 120

Replication Server determines the number of observation intervalsby dividing
the sampling period by the observation interval. The remainder in seconds, if
any, is added to the last observation interval.

Sampling period | Observation interval Number of observation

(sample_period) | (obs_interval) intervals

60 seconds 15 Four 15-second intervals

75 seconds 5 Not allowed — observation
interval must be => 15
seconds

60 seconds 30 Two 30-second intervals

130 seconds 20 Five 20-secondintervalsand a
final 30-second interval

10 seconds Not specified One 10-second interval

When you execute admin stats with a nonzero time period using the save
option, Replication Server starts a background thread to collect sampling data
and returnsyour session immediately. Once the session isreturned, you can use
admin stats, status command to check the sampling progress. The background
thread:

265

Sampling

1 Truncatesthers_statrun and rs_statdetail System tablesif the configuration
parameter stats_reset_rssd is set to on.

2 Resetsall counters.
Turnson al counters.

4 Writesthe requested counters to the RSSD at the end of each observation
period.

5 Turns off all counters.

Note To keep old sampling data, set the configuration parameter
stats_reset_rssd to off or make sure that you have dumped any needed
information from rs_statrun and rs_statdetail before executing admin stats with
the save option. See “Using the rs_dump_stats procedure” on page 270 for
information about dumping information from these tables.

Collecting statistics for an indefinite time period

266

To turn on sampling for an indefinite period, configure Replication Server
using the stats_sampling parameter. Enter:

configure replication server
set stats_sampling to "on"

Replication Server continues to collect data until you reconfigure Replication
Server to turn sampling off.

configure replication server
set stats sampling to "off"

Then, when you want to view data on the computer screen or send the collected
data to the RSSD, use admin stats.

Note Use admin stats with care when stats_sampling is on. If you execute
admin stats and specify a nonzero time period, Replication Server clears the
counters, executes the command, and turns stats_sampling off.

For example, to collect statistics for two consecutive 24-hour periods,
reporting results to the computer screen, you might follow this sequence:

Day 1, 8am

1 Clear exigting statistics, enter:

Replication Server

CHAPTER 5 Using Counters to Monitor Performance

admin statistics, reset
2 Turnon sampling:

configure replication server
set stats sampling to "on"

Day 2, 8am

1 Turn off sampling to ensure Replication Server does not collect statistics
as statistics are dumped to the screen.

configure replication server
set stats sampling to "off"

2 Dump statistics to the screen:
admin statistics, "all"
3 Clear al stetistics:
admin statistics, reset
4 Turnon sampling:

configure replication server
set stats sampling to "on"

Day 3, 8am

1 Turn off sampling to ensure Replication Server does not collect statistics
as statistics are dumped to the screen.

configure replication server
set stats sampling to "off™"

2 Dump statistics to the screen:
admin statistics, "all"
3 Clear dl statistics:

admin statistics, reset

Viewing statistics on screen

admin stats displays statistics on the computer screen from asingle samplerun.
You can display statistics for a single counter instance, a single counter, al
countersfor aparticular module, the generally most useful or sysmon counters,
or dl counters.

Administration Guide 267

Viewing statistics on screen

You choose whether to display statistics on the screen when you configure the
sample run using admin stats—see “ Collecting statistics for a specific time
period” on page 262.

Seethe Replication Server Reference Manual for exampl e output and complete
syntax and usage information.

Viewing throughput rates

Use admin stats with the tps, cps, or bps option to view the current throughput
in terms of transactions, commands, or bytes per second.

Transactions per Replication Server calculates the transaction rate based on the number of

second processed transactions and the number of elapsed seconds since the counters
werelast reset. The datais obtained from several modules, including the SQT,
DIST, and DSI modules.

To view throughput in transactions per second, enter:

admin stats, tps

Commands per The number of commands per second is calculated from the number of

second commands processed and the number of elapsed seconds since the last reset.
The datais obtained from the REPAGENT, RSIUSER, RSI, SQM, DIST, and
DSI modules.

To view throughput in commands per second, enter:
admin stats, cps

Bytes per second The number of bytes per second is calculated from the number of bytes
processed and the number of elapsed seconds since the last reset. The datais
obtained from the REPAGENT, RSIUSER, SQM, DS, and RSI modules.

To view throughput in bytes per second, enter:

admin stats, bps

Viewing statistics about messages and memory use

Use admin stats with the md option to view information about the number of
messages. Use admin stats with the mem, or mem_in_use optionsto view
information about memory use.

» Toview datistics for message delivery, which is associated with
Distributors and RSI users, enter:

268 Replication Server

CHAPTER 5 Using Counters to Monitor Performance

admin stats, md

« Toview current segment usage according to segment size, enter:
admin stats, mem

« Toview current memory usein bytes, enter:

admin stats, mem in use

Viewing the number of transactions in the stable queues

You can view the number of transactions in both the inbound and outbound
stable queues awaiting distribution. Replication Server reportsthedatain terms
of segments and blocks, where one segment is equal to IMB, and oneblock is
equal to 16K. The data is obtained from the SQM RBacklogSeg and the
SQMRBacklogBlock counters.

To view the stable queue backlog, enter:

admin stats, backlog

Viewing statistics saved in the RSSD
Statistics sent to the RSSD are stored in these system tables:
e rs_statcounters — contains descriptive information for each counter

e rs_statdetail — contains observed metrics for each sampling run for each
counter

e rs_statrun — describes each sampling run

See the Replication Server Reference Manual for detailed information about
these tables.

You can view statistics stored in these tables using:
¢ select and other Transact-SQL commands
* rs_dump_stats

e rs_helpcounter to display information from rs_statcounters

Administration Guide 269

Viewing statistics saved in the RSSD

Using the rs_dump_stats procedure

rs_dump_stats dumps the contents of the rs_statrun and rs_statdetail System
tablesto a CSV file that can be loaded into a spreadsheet for analysis. For
complete syntax and usage information for rs_dump_stats, see the Replication
Server Reference Manual.

Tousers_dump_stats, logintothe RSSD and execute the stored procedure. For
example:

1> rs_dump_ stats
2> go

Note Commentsto theright of the output are included to explain the example.
They are not part of the rs_dump_stats output.

Comment: Sample of rs dump stats output

Nov 5 2005 12:29:18:930AM *Start time stamp*

Nov 5 2005 12:46:51:350AM *End time stamp*

16 *No of observation intervals*

1 *No of min between
observations*

16384 *SQM bytes per block*

64 *SQOM blocks per segment*

CM *Module name*

13 *Instance ID*

-1 *Instance value*

dCM *Module name*

CM: Outbound database connection request *Counter external name*

CMOBDBReq *Counter display name*

13003 , . 13, -1 *Counter ID, instance ID,

instance value*

ENDOFDATA *EOD for counter¥*

CM: Outbound non-database connection requests *Counter external name*

CMOBNonDBReqg *Counter display name*

13004 , . 13, -1 *Counter ID, instance ID,

instance value*
Nov 5 2005 12:29:18:930AM, 103, 103, 1, 1 *Dump ts, obs, total,
last, max*

Nov 5 2005 12:30:28:746AM, 103, 103, 1, 1
Nov 5 2005 12:31:38:816AM, 107, 107, 1, 1
Nov 5 2005 12:32:49:416AM, 104, 104, 1, 1
Nov 5 2005 12:33:58:766AM, 114, 114, 1 1

270 Replication Server

CHAPTER 5 Using Counters to Monitor Performance

Nov 5 2005 12:46:51:350AM, 107, 107, 1,
ENDOFDATA

CM: Outbound 'free' matching connections found
CMOBFreeMtchFound

13005 o0 13, -1

Nov 5 2005 12:29:18:930AM, 103, 103,
Nov 5 2005 12:30:28:746AM, 103, 103,
Nov 5 2005 12:46:51:350AaM, 2, 2, 1,
ENDOFDATA

EOD for counter

Counter external name

Counter display name

*Counter ID, instance ID,
instance value*

obs,
max*

*Dump ts, total,

last,

EOD for counterx

Viewing information about the counters

You can view descriptive information about the counters stored in the
rs_statcounters table using the rs_helpcounter system procedure. See

“rs_helpcounter” in the Replication Server Reference Manual for detailed

syntax and usage information.

e Toview alist of modulesthat have counters and the syntax of the
rs_helpcounter procedure, enter:

rs_helpcounter

e Toview descriptiveinformation about all countersfor aspecified module,

enter:

rs_helpcounter module name[, short | long]

If you enter short, Replication Server prints the display name, module
name, and counter descriptions for each counter.

If you enter long, Replication Server printsevery columninrs_statcounters

for each counter.

If you do not enter a second parameter, Replication Server prints the

display name, the module name, and the external name of each counter.

e Tolistal countersthat match a keyword, enter:

rs_helpcounter keyword [, short |, long]

Administration Guide

271

Resetting counters

e Tolist counters with a specified status, the syntax is:

rs_helpcounter { sysmon | internal | must_sample
| no_reset | old | configure }

Resetting counters

You can reset al counters, except those that are never reset, to 0 (zero) by
issuing the admin stats, reset command:

admin stats, reset

If sampling has not been enabled using the stats_sampling parameter, counter
values are zero. Running admin stats with a nonzero sample period sets the
counters to zero, turns on sampling, turns off counter sampling after the
sampling run is completed, and resets the counters to zero. If the sampling
period is zero, current counter values are reported.

If sampling has been enabled, use admin stats with care. With sampling enabled
using the stats_sampling configuration, counter values are accumulating.
Issuing admin stats and specifying a sample period causes Replication Server
to clear all counters and disable sampling (stats_sampling off) after the
sampling run.

Generating performance reports

You must load this script into the RSSD after upgrading to Replication Server
15.1:

$SYBASE/$SYBASE _REP/scripts/rs install_statreport_v1510_[ase|asa] .sql

After loading the script, runrs_stat_populate and rs_stat_genreport stored
procedures to generate these performance reports:

* Replication Server performance overview — overview information about
your Replication Servers, such as DIST processing, DSI processing, and
so on.

» Replication Server performance analysis — performance analysis and
tuning suggestions based on critical Replication Server counters. The
detailed description is available in the script file.

272 Replication Server

CHAPTER 5 Using Counters to Monitor Performance

Administration Guide

e Active object identification result — lists the active table and procedure
names, owner names, execution times, and so on.

For more information about rs_stat_populate and rs_stat_genreport, see the
script file, which contains syntax, examples, and so on.

273

Generating performance reports

274 Replication Server

CHAPTER 6

Handling Errors and Exceptions

This chapter describes various error handing methods for Replication
Server.

Topic Page
General error handling 275
Error log files 276
Data server error handling 280
Exceptions handling 288
DSl duplicate detection 293
Duplicate detection for system transactions 294

Refer to the Replication Server Troubleshooting Guide for information
about resolving specific errors.

General error handling

Administration Guide

Replication Server passes messages to data servers and other Replication
Serverswhile they are accessible and queues messages when connections
are down. Using Sybase Central, you can monitor the status of the
replication system and troubleshoot problems as they arise.

Normally, short-term failures of networks and data servers do not require
special error handling or intervention. When the failure is corrected,
replication system components resume their work automatically.
Lengthier failures may require intervention if there is not enough disk
space to queue up messages or if it is necessary to reconfigure the
replication system to work around the failure.

Failures of some system components, such as Replication Server
partitions or primary databases, also require user intervention. Refer to
Chapter 7, “Replication System Recovery” for more information about
recovery procedures.

275

Error log files

A Replication Server response to errors depends on the kind of error, source of
the error, and how the Replication Server is configured. Replication Server
handles errors in these ways:

e Logserrorsinitserror log file.
» Respondsto data server errors based on configuration settings.

» |f transactions fail to commit in a database, writes the transactions to the
exceptions log for manual resolution.

» Detects duplicate transactions after system restart.

Error log files

This section describes error log filesin the replication system. You can access
log files to help you troubleshoot Replication Server and RepAgent. To view
skipped transactions that are written to system tables, you can access the
Adaptive Server for the Replication Server managing a specified database.
Refer to the Replication Server Troubleshooting Guide for details on
troubleshooting errors.

Replication Server allows user-definable error processing in response to data
server errors. For details, see “ Data server error handling” on page 280.

Replication Server error log

The Replication Server error log is atext file where Replication Server writes
informational and error messages.

By default, the Replication Server error log file name is repserver.log, and
resides in the directory where you started the Replication Server. You can
specify the name and location of the error log file by using the-E command line
flag when you start the Replication Server or in a Replication Server run file

Each log message begins with aletter to indicate the message type. Table 6-1
lists the possible message types.

Table 6-1: Message types in the Replication Server error log

Error
code Description

I An informational message.

276 Replication Server

CHAPTER 6 Handling Errors and Exceptions

Error
code

Description

A warning about a condition that has not yet caused an error, but may require attention. An
exampleisrunning out of aresource.

An error that does not prevent further processing, such as asite that is unavailable.

A Replication Server thread has died. An example isalost network connection.

Fatal. A serious error caused Replication Server to exit. An exampleis starting the
Replication Server with an incorrect configuration.

Internal error. These errors are caused by anomalies in the Replication Server software.
Report these errors to Sybase Technical Support.

Informational messages

For informational messages in the error log, the format is asfollows:
I. date: message

Theletter “1” at the beginning of amessage meansthat the messageis provided
for information. It does not mean that an error occurred. For example,
Replication Server outputs the following messages as it drops a subscription:

I. 95/11/01 05:41:54. REPLICATE RS: Dropping
subscription authors sub for replication definition
authors with replicate at <SYDNEY DS.pubs2>

I. 95/11/01 05:42:02. SQM starting: 104:-2147483527
authors.authors_sub

I. 95/11/01 05:42:12. SQM Stopping: 104:-2147483527
authors.authors_sub

I. 95/11/01 05:42:20. REPLICATE RS: Dropped
subscription authors sub for replication definition
authors with replicate at <SYDNEY DS.pubs2>

Error and warning messages

Administration Guide

For messages other than informational messages, the format is as follows:

severity, date. ERROR #error number
thread name(context) - source file(line) message

If the message is awarning, “ERROR” in the above format becomes
“WARNING”

The severity iseither W, E, H, F, or N, aslisted in Table 6-1. The date is the
date and time that the error occurred. The error_number is the Replication
Server error number.

277

Error log files

Thethread nameisthe name of the Replication Server thread that received the
error. See Chapter 2, “Replication Server Technical Overview” in the
Replication Server Administration Guide Volume 1 and Chapter 4,
“Performance Tuning” for details about Replication Server threads. The
context provides some information about the thread's context at the time the
error occurred.

The source file and line point to the program file and line number in the
Replication Server source code where the error was reported.

The message isthefull text of amessage from aReplication Server. Itisinthe
language specified in the RS |anguage configuration parameter. Some
messages also include a message from a data server, or one of the component
libraries that Replication Server uses.

Note Replication Server puts question marks (?) in messages where more
specific information is not available. For example, if an error occurs during
initialization, Replication Server may not yet have completed some internal
structures, so it prints question marks in place of information it has not yet
collected.

Thefollowing example shows the Replication Server error log entry for adata
server:

E. 95/11/01 05:30:52. ERROR #1028 DSI (SYDNEY DS.pubs2)
- dsigmint.c(3522)Message from server:

Message: 2812, State: 4, Severity: 16 --

'Stored procedure ‘upd authors’ not found.
H. 95/11/01 05:30:53. THREAD FATAL ERROR #5049
DSI (SYDNEY DS.pubs2) - dsigmint.c(3529)
The DSI thread for database ’'SYDNEY DS.pubs2’ is being
shutdown because of error action mapped from data server
error ‘2812’ . The error was caused by output command "1’
mapped from source command ‘2’ of the transaction.

The messages indicate that Adaptive Server returned error number 2812,
causing Replication Server to take the stop_replication action. See “ Assigning
actions to data server errors’ on page 285.

Finding the name of the Replication Server error log

278

Use the admin log_name command to find the name of the current Replication
Server error log file. Replication Server displaysthe path to thelog file, asthe
following UNIX example shows:

Replication Server

CHAPTER 6 Handling Errors and Exceptions

Log File Name

/work/sybase/SYDNEY RS/SYDNEY RS.log

Changing to a new Replication Server log file

To begin anew error log file, use the admin set_log_name command. This
command closes the current log file and opens a new one. Subsequent
messages are written in the new log file.

Following is an example of the admin set_log_name command for UNIX:

admin set log name,
' /work/sybase/SYDNEY RS/951101.log'

The previous log remains active if Replication Server failsto create and open
the new log file.

RepAgent error log messages

Administration Guide

All RepAgent error, trace, and information messages are logged in the
Adaptive Server error log file. Each message identifies the RepAgent that
logged the error inthe string “ RepAgent (dbid)”, which appearsinthefirst line
of themessage. dbidisthe databaseidentification number of the RepAgent that
logged the error.

Here is an example of an information message:

RepAgent (dbid) : Recovery of transaction log is
complete. Please load the next transaction log dump and
then start up the Rep Agent Thread with
sp_start rep agent, with 'recovery' specified.

The Adaptive Server error log is atext file. The messages are printed in the
language specified at Adaptive Server. RepAgent records errors and
informational messages that occur when transferring replicated objects from
the Adaptive Server transaction log and converting them into commands.
RepAgent errors are generally in the 9200 to 9299 range.

Adaptive Server performs actions based on the severity and recoverability of
an error. Some errors are for information only, others cause Adaptive Server to
retry the operation that caused the error until it succeeds, and still others
indicate an error too severe to continue and RepAgent shuts down. For more
information about the Adaptive Server error log file, refer to the Adaptive
Server Enterprise System Administration Guide.

279

Data server error handling

Sample error messages

This section describes some common RepAgent error messages and possible
solutions.

Inthisexample, the RepAgent login nameisnot present on the Replication
Server.

RepAgent (6) : Failed to connect to Replication
Server. Please check the Replication Server,
username, and password specified to
sp_config rep agent. RepSvr = repserver name, user =
RepAgent username

RepAgent (6) : This Rep Agent Thread is aborting due
to an unrecoverable communications or Replication
Server error.

You must either add RepAgent’s login name to Replication Server or
change RepAgent’s login name.

In this example, RepAgent cannot connect to Replication Server.

RepAgent (7) : The Rep Agent Thread will retry the
connection to the Replication Server every 60
second(s) . (RepSvr = repserver name.)

Check Replication Server status. If Replication Server isdown, resolvethe
problem and restart. Otherwise, wait for possible network problem to
resolve.

Data server error handling

Replication Server allows user-definable error processing for data server
errors. Thisis accomplished by assigning appropriate error class to specified
connection and customizing the assigned error class. The error actions should
match the errorsreturned by the data server. Table 6-2 liststhe RCL commands
and Adaptive Server system procedures that manage errors and error classes.

280

Table 6-2: RCL commands and system procedures for error processing

Command

Description

assign action

Specifies an error processing action for one or more data server or
Replication Server errors

alter error class

Changes an existing error class

create error class

Creates anew error class

Replication Server

CHAPTER 6 Handling Errors and Exceptions

Command Description

drop error class Drops an existing error class

alter connection Associates an error class with an existing database connection

create connection Associates an error class with a new database connection

rs_helpclass Adaptive Server stored procedure that displays the name of each existing

error class, function-string class, and their primary Replication Server, and
in the case of inherited classes, the parent class.

rs_helperror

Adaptive Server stored procedure that displays the Replication Server
error actions mapped to a given data server or Replication Server error
number

Default error classes

Replication Server providesrs_sqlserver_error_class asthe default Adaptive

Server error class, rs_repserver_error_class as the default Replication Server

error class, and default error classes for non-ASE databases listed in Table 6-
3. You cannot modify these default error classes.

Table 6-3: Non-ASE error classes

Database Class name

IBM DB2 rs_db2_error_class
IBM UDB rs_udb_error_class
Microsoft SQL Server | rs_msss_error_class
Oracle rs_oracle_error_class
Sybase IQ rs_iq_error_class

Native error codes for non-ASE databases

Administration Guide

When Replication Server establishes a connection to a non-ASE replicate
server, Replication Server verifiesif the option to return native error codes
from the non-A SE replicate server is enabled for the connection. If the option
isnot enabled, Replication Server logs awarning message that the connection
works but error action mapping may not be correct.

See “ReturnNativeError,” in the Replication Server Options documentation to
set the option in the Enterprise Connect™ Data Access (ECDA) Option for
ODBC for your replicate server.

281

Data server error handling

Creating an error class

Syntax

Example

282

You can define asingle error class to use with all databases managed by the
sametype of data server. For example, you can usethe default Adaptive Server
error class, rs_sqlserver_error_class, with any Adaptive Server database. There
is no need to create another error class unless a database has special error-
handling requirements.

An error classisaname used to group error action assignments. Use create
error class, the set template to option, and another error class as atemplate to
create your own error classes. create error class copies the error actions from
the template error class to the new error class.

Note When you create a connection using a connection profile, the error class
is assigned by the connection profile. The connection profile predefines the
error classfor aspecific dataserver. See“ Connection profiles’ on page 183in
Chapter 7, “Managing Database Connections’ in the Replication Server
Administration Guide \Volume 1.

create [replication server] error class error_class
[set template to template_error_class]

This example creates an error class named pubs2_error_class without a
template error class:

create error class pubs2 error class

Thisexample createsthe my_rs_err_class Replication Server error class based
onrs_repserver_error_class, which isthe default Replication Server error class:

create replication server error class my rs_err_class
set template to rs_repserver error class

This example creates the my_error_class error class for an Oracle database
based on rs_oracle_error_class as atemplate:

create error class my error class
set template to rs_oracle error class

Initially, rs_sqglserver_error_class and the other default non-ASE error classes,
do not have a primary site. Since you can only create server-wide error classes
at aprimary sitefor a class, you need to designate one of the Replication
Serversas aprimary site for an error class.

Replication Server

CHAPTER 6 Handling Errors and Exceptions

You must specify a primary site before you can modify a default error class.
You can designate a site as primary by executing the create error class
command for an error class at that site. For Adaptive Server for example,
execute create error classrs_sqlserver_error_class at the primary site. Verify
that all other Replication Servers have direct or indirect routes from the
primary site.

The default error action for all errorsreturned by a data server is
stop_replication. Thisisalso the most serious action: it suspends replication for
the database, asif you entered the suspend connection command. To assign less
severe actions to errors you want to handle differently, use the assign action
command. See“ Assigning actionsto data server errors’ on page 285 for more
information.

Altering error classes

Syntax

Example

Usethe alter error class command and another error class as atemplate to alter
error classes. alter error class copies error actions from the template error class
to the error class you want to alter and overwrites error actions which have the
same error code.

alter [replication server] error class error_class
set template to template_error_class

For example, to alter my_error_class for an Oracle database based on
rs_sqlserver_error_class as atemplate:

alter error class my_error class
set template to rs_sglserver error class

Initializing a new error class

Administration Guide

After you have created anew error class, you caninitializeit with error actions
from an error class such asthe system-providedrs_sglserver_error_class. To do
this, use the rs_init_erroractions stored procedure:

rs_init_erroractions new_error_class, template_class

For example, to create the error class pubs2_error_class, based on the template
error classrs_sqlserver_error_class, enter:

rs_init erroractions pubs2 error class,
rs_sglserver error_ class

Then usethe assign action command to change the actionsfor individual errors.

283

Data server error handling

Dropping an error class

The drop error class command drops an error class and all actions associated
with it. The error class must not be in use with an active database connection
when you drop it. The syntax for drop error class is:

drop [replication server] error class error_class
For example, to drop the pubs2_error_class error class, use this command:
drop error class pubs2_error class

You cannot drop the rs_sglserver_error_class or any of the default non-ASE
error classes listed in Table 6-3.

Changing the primary Replication Server for an error class

284

Use the move primary command to change the primary site for an error class.
Thisisnecessary when you are changing the primary site from one Replication
Server to another so that error actions can be distributed through new routes.
For example, you must use this command if you are dropping from the
replication system the Replication Server that isthe current primary sitefor an
error class.

Before you execute move primary, make sure that a route exists from:

e Thenew primary site to each Replication Server that will use the error
class

e Thecurrent primary to the new primary site
e Thenew primary to the current primary site

The syntax for the move primary command, for error classes, is:

move primary
of [replication server] error class class_name
to replication_server

Execute the move primary command at the Replication Server that you want to
designate as the new primary site for the error class.

e class_name—the name of the error class whose primary Replication
Server isto be changed.

» replication_server —specifiesthe new primary Replication Server for the
error class.

Replication Server

CHAPTER 6 Handling Errors and Exceptions

The following command changes the primary site for the pubs2_error_class
error classto the TOKY O_RS Replication Server where the command is
entered:

move primary of error class pubs2 error class
to TOKYO_RS

For the default error class, rs_sglserver_error_class, no Replication Server is
the primary site until you assign one as the primary site. You must specify a
primary site before you can use the assign action command to change default
error actions.

To specify aprimary site for the default error class, execute the following
command in that Replication Server:

create error class rs_sqglserver error_class

After you have executed this command, you can use the move primary
command to change the primary site for the error class.

Displaying error class information

The Adaptive Server rs_helpclass stored procedure displays the names of
existing error classes and function-string classesin the replication system and
their primary Replication Servers. For example:

rs_helpclass error_class
Error Class (es) PRS for class

rs_sglserver error_ class Not Yet Defined

Refer to Chapter 6, “RSSD Stored Procedures,” in the Replication Server
Reference Manual for more information about rs_helpclass command.

Assigning actions to data server errors

The assign action command specifies the action to take for errors that a data
server can return to Replication Server. The syntax for the assign action
command is:

assign action
{ignore | warn | retry_log | log | retry_stop | stop_replication}
for error_class
to server_errorl [, server_error2]...

Administration Guide 285

Data server error handling

For example, to instruct Replication Server to ignore Adaptive Server errors
5701 and 5703:

assign action ignore
for rs_sglserver error class
to 5701, 5703

For exampleto warn if Replication Server encountersrow count errors, which
isindicated by error number 5186:

assign action warn
for rs_repserver_error class to 5186

If thereisarow count error, this error message displays:

DSI_ SQLDML_ROW_COUNT_INVALID 5186

Row count mismatch for the SQL Statement Replication
command executed on 'mydataserver.mydatabase'. The
command impacted 10 rows but it should impact 15 rows."

See “Default error classes’ on page 281 for the default error class provided by
Replication Server. See “assign action,” in Chapter 3, “Replication Server
Commands’ in the Replication Server Reference Manual for error actionsyou
can assign.

You must create a default error class at a primary site before you can use the
assign action command to change default error actions. The data_server_error
parameter isthe data server error number.

You can assign error classes to specific connections on replication databases
using the create connection and alter connection commands.

Enter one of the six possible error actions at the Replication Server where the
error class was created. These actions are listed in Table 6-4, in order of
severity: ignore istheleast severe action and stop_replication isthe most severe.

When atransaction causes multiple errors, Replication Server choosesjust one
action—the most severe action assigned to any of the errorsthat occurred. To
return an error to the default error action, stop_replication, you must reassign it
explicitly.

Table 6-4: Replication Server actions for data server errors

Action Description
ignore Assume that the command succeeded and that there is no error or warning condition to process.
This action can be used for areturn status that indicates successful execution.
warn Log awarning message, but do not roll back the transaction or interrupt execution.
286 Replication Server

CHAPTER 6 Handling Errors and Exceptions

Action Description

retry_log Roll back the transaction and retry it. The number of retry attemptsis set with the configure
connection command. If the error continues after retrying, write the transaction into the
exceptions log, and continue, executing the next transaction.

log Roll back the current transaction and log it in the exceptions| og; then continue, executing the next
transaction.
retry_stop Roll back the transaction and retry it. The number of retry attemptsis set with the configure

connection command. If the error recurs after retrying, suspend replication for the database.

stop_replication Roll back the current transaction and suspend replication for the database. Thisis equivalent to
using the suspend connection command. This action is the default.

Since this action stops al replication activity for the database, it isimportant to identify the data
server errorsthat can be handled without shutting down the database connection, and assign them
to another action.

You can a so specify how Replication Server respondsto SQLDML row count
errors that may occur during SQL statement replication. In SQLDML row
count errors, the number of rows changed in the primary and replicate
databases do not match after SQL statement replication. The Replication
Server default error actionisto stop replication. The default Replication Server
error classisrs_repserver_error_class.

If thereisarow count error, thisis an example of the error message that
displays:

DSI_ SQLDML_ROW_COUNT_ INVALID 5186

Row count mismatch for the SQL Statement Replication
command executed on 'mydataserver.mydatabase'. The
command impacted 10 rows but it should impact 15 rows.

Displaying assigned actions for error numbers

Executethers_helperror stored procedure to display the action assigned for an
error number. The syntax for the rs_helperror stored procedure is:

rs_helperror server_error_number [, v]

where server_error_number parameter is the data server error number of the
error you want information for. The v parameter specifies“verbose” reporting.
When you supply this option, rs_helperror also displays the Adaptive Server
error message text, if available. Refer to Chapter 6, “RSSD Stored
Procedures,” in the Replication Server Reference Manual for more details on
using rs_helperror command.

Administration Guide 287

Exceptions handling

Exceptions handling

When a transaction submitted by Replication Server fails, Replication Server
records the transaction in the exceptionslog in the RSSD. The replication
system administrator at the site must resolve the transactions in the exceptions
log. See " Accessing the exceptionslog” on page 290.

Transactionscanfail dueto errorssuch asduplicate keys, column value checks,
and insufficient disk space. They may also be rejected for reasons such as
insufficient permissions, version control conflicts, and invalid object
references.

Because skipping a transaction causes inconsistency and can have an adverse
affect on the system, you should review on aregular basis any transactions that
have been recorded in the exceptionslog and resolve them. The best resolution
for atransaction may depend on the client application that originated it. For
example, if afailed transaction corresponds to areal-world event, such as a
cash withdrawal, the transaction must somehow be applied.

Refer to the Replication Server Troubleshooting Guide for more information
on the implications of skipping a transaction.

Handling failed transactions

This section outlinesthe recommended processfor handling failed transactions
that require manual intervention.

Suspend database connection

288

When a data server begins rejecting transactions because of atemporary
failure, such aslack of space in a database or log file, you can suspend the
database connection until the error is corrected.

If the database connection is not suspended, Replication Server writes the
transactions into the exceptions log for the database. Since these transactions
must then be resolved manually, you can save time by shutting down the
connection until the error condition is corrected.

While a database connection is suspended, Replication Server stores
transactions in a stable queue. When the connection is resumed, the stored
transactions are sent to the data server.

To stop the flow of transactions from a Replication Server to a database, use
the suspend connection command:

Replication Server

CHAPTER 6 Handling Errors and Exceptions

suspend connection to data server.database

The command requires sa permission and must be entered at the Replication
Server that manages the database.

Analyze and resolve the problem

You then need to determine why the transaction failed, make corrections or
adjustments, and resubmit the transaction. For example, if atransaction failed
because the maintenance user had insufficient permissions, grant the
maintenance user the needed permissions and retry the transaction.

If you are resolving transactions in the exceptions log:

1 Retrievealist of thetransactionsfrom the exceptionslog. See“Accessing
the exceptions log” on page 290.

2 Investigate the transactions to determine the cause of failure and the best
method for resolution.

3 Resolve the transactions according to your plan. For example, you might
correct a permissions problem and then resubmit a transaction.

4 Delete resolved transactions from the exceptions log. See “Deleting
transactions from the exceptions log” on page 292.

Resume the connection

Administration Guide

Restart the flow of transactions for a suspended database connection with the
resume connection command. The same command is used whether you
suspended the connection intentionally, using the suspend connection
command, or whether it was suspended by Replication Server as the result of
an error action. The syntax for resume connection is:

resume connection to data_server.database
[skip transaction]

The command requires sa permission and must be entered at the Replication
Server that manages the database.

Use the skip transaction clause to instruct Replication Server to ignore the first
transaction in the queue. You may need to do thisif atransaction continues to
fail each time you resume the connection.

289

Exceptions handling

Accessing the exceptions log

Replication Manager provides a graphical interface to view and manage the
transactions in the exceptions log.

Displaying transactions in the exceptions log

You can display asummary list of all transactions in the exceptions log using
the rs_helpexception stored procedure. The syntax for the rs_helpexception
stored procedure is:

rs_helpexception [transaction_id, [, v]]

If you supply avalid transaction_id and v for “verbose” reporting,
rs_helpexception displays a detailed description of atransaction. Use
rs_helpexception with no parameters to obtain transaction_id numbers for all
transactions in the exceptions log.

Querying the exceptions log system tables

290

You can join the rs_exceptshdr and rs_exceptscmd system tables on the
sys_trans_id column.

You canalsojointhers_exceptscmd and rs_systext system tablesto retrievethe
text of atransaction. Todothis, join thecmd_id columninrs_exceptscmd to the
parentid column in rs_systext.

Figure 6-1 illustrates the exceptions log system tables.

Replication Server

CHAPTER 6 Handling Errors and Exceptions

Figure 6-1: Exceptions log system tables

rs_exceptshdr

t - -
AL =M \ rs_exceptscmd
rs_lrans_id binar
— ! sys_trans_id s id rs_systex
apps_lrans_name varchar
—— - sro_cmd_line int prsid int
arig_siteid int - - - _
— oulput cmd index int parentid rs id
ang_site varchar
- cmd_typa char texttype char
arig_db varchar
— - cmd_id rs_id Sequance int
arig_fime datelima
- lextval varchar
arig_usar varchar
emar_sibeid int
arrar_site varchar
armor_db varchar
long_time daletime
ds_emor it
ds_emmsg varchar
arrar_src_ling int
errar_proc int
arr_output_line int
log_reason char
franz_status smallint
relry slahis smallint
app_usr varchar
app_pwd varchar

Thers_exceptshdr system table contains descriptive information about the
transactions in the exceptions log, including the following:

e User-assigned transaction name
e Siteand database where the transaction originated
e User at the origin site who submitted the transaction

* Information about the error that caused the transaction to be recorded in
the exceptions log

Administration Guide 291

Exceptions handling

Toretrieve alist of the excepted transactions for a given database, use, for
example, the following query:

select * from rs_exceptshdr
where error site = 'data server'
and error_db = 'database'

order by log time

To retrieve the source and output text for atransaction with a given system
transaction ID, use:

select t.texttype, t.sequence,

t.textval

from rs systext t, rs_exceptscmd e

where e.sys trans id = sys trans id
and t.parentid = e.cmd id

order by e.src_cmd line, e.output_cmd_ index,
t.sequence

Refer to Chapter 8, “Replication Server System Tables,” in the Replication
Server Reference Manual for alist of al of the columnsin these Replication
Server system tables.

Deleting transactions from the exceptions log

To delete a transaction from the exceptions log, use the rs_delexception stored
procedure.

rs_delexception [transaction_id]

With no parameters, rs_delexception displays asummary of transactionsin the
exceptions log. If you supply avalid transaction_id, rs_delexception deletes a
transaction. You can find the transaction _id for atransaction by using either
rs_helpexception or rs_delexception with no parameters.

See Chapter 3, “Managing Replication Server with Sybase Central” in the
Replication Server Administration Guide Volume 1 for information about
viewing queue data.

292 Replication Server

CHAPTER 6 Handling Errors and Exceptions

DSI duplicate detection

The DS records the last transaction committed or written into the exceptions
log so that it can detect duplicates after a system restart. Each transaction is
identified by aunique origin database | D and an origin queue I D that increases
for each transaction.

Thelast transaction committed from each origin databaseis recorded at adata
server by executing the function strings defined for the data server’s function-
string class. For the system-defined classes, thisis donein the function string
for acommit command, that is, the rs_commit function. Every function-string
class supportsthers_get_lastcommit function, which returns the origin_gid and
secondary_gid for each origin database. The secondary_gid isthe ID of the
queue used for subscription materialization or dematerialization.

The origin_gid and secondary_gid for the last transaction written into the
exceptions log from each origin is recorded into the rs_exceptslast system
table. However, transactions logged explicitly by the sysadmin log_first_tran
command are not recorded in this system table. These transactions are logged,
but they are not skipped.

When a DSl is started or restarted, it gets the origin_gid returned by the
rs_get_lastcommit function and the one stored in the rs_exceptslast system
table. It assumes that any transaction in the queue with an origin_gid less than
the larger of these two valuesis aduplicate and ignoresit.

If the origin_gid values stored in adata server or thers_exceptslast system table
are modified by mistake, non-duplicate transactions may be ignored or
duplicate transactions may be reapplied. If you suspect that this is happening
inyour system, check the values stored and compare them with the transactions
in the database's stable queue to determine the validity of the values. If the
values are wrong, you must modify them directly.

Refer to the Replication Server Troubleshooting Guide for details on how to
dump transactionsin a queue.

Administration Guide 293

Duplicate detection for system transactions

Duplicate detection for system transactions

294

truncate table and certain supported DDL commands are not logged, although
they can be replicated to standby and replicate databases. Refer to “ Supported
DDL commands and system procedures’ on page 66 for alist of DDL
commands supported for replication. Refer to the Adaptive Server Enterprise
Reference Manual for information about each DDL command.

Replication Server copies these commands as system transactions, in which
Replication Server “sandwiches’ the truncate table or similar command
between two complete transactions. Execution of the first transaction is
recorded in the replicate database in the secondary_gid column of the
rs_lastcommit table and in the origin_gid column of that table. If Replication
Server records the second transaction, the system transaction has completed,
and Replication Server clears the secondary_gid column.

If there is a system failure, and you see the following error message when the
system restarts:

5152 DSI_ SYSTRAN SHUTDOWN, "There is a system
transaction whose state is not known. DSI will be
shutdown."

a system command has not completed, and the connection shuts down. You
must verify whether the command within the system transaction has executed
at the replicate database.

» |If the command has executed, or if you choose to execute the command
yourself, you can skip the first transaction in the queue and continue with
the second transaction when you resume the connection. At the replicate
Replication Server, enter:

resume connection to data server.database
skip transaction

« If the command has not executed, you can fix the problem and then
execute the first command in the queue. At the replicate Replication
Server, enter:

resume connection to data server.database
execute transaction

You must include the skip transaction or execute transaction clause with resume
connection. Otherwise, Replication Server does not reset the secondary_gid
correctly, and the error message reappears.

Replication Server

CHAPTER 7

Administration Guide

Replication System Recovery

This chapter describes how to prevent or recover from certain kinds of
system failuresin areplication system.

Topic Page
How to use recovery procedures 296
Configuring the replication system to support Sybase Failover 297
Configuring the replication system to prevent dataloss 300
Recovering from partition loss or failure 305
Recovering from truncated primary database logs 309
Recovering from primary database failures 312
Recovering from RSSD failure 315
Recovery support tasks 331
Resynchronizing replicate databases 344

While Replication Server tolerates most failure conditions and recovers
from them automatically, some failures require user intervention. This
chapter identifies those failures and provides procedures for recovery.
These procedures are designed to maintain the integrity of thereplication
system by recovering lost and corrupted data and restoring that datato its
previous state.

You should design, install, and administer your replication system with
backup and recovery in mind. We assume that dumps are performed on a
regular basis and that appropriate tools and settings for handling recovery
arein place. See“ Creating coordinated dumps” on page 304 for detailson
performing dumps.

In this chapter, the current Replication Server refersto the one with a
database (for example, RSSD) that you are recovering. An upstream
Replication Server hasadirect or indirect route to the current Replication
Server. A downstream Replication Server is one to which the current
Replication Server has adirect or indirect route.

295

How to use recovery procedures

You can resynchronize the replicate databases in your replication environment
if for example, thereisreplication latency between primary and replicate
databases such that to recover adatabase using replication aloneisnot feasible.
See“Resynchronizing replicate databases’ on page 344 for different scenarios
and the corresponding procedures to follow for database resynchronization.

How to use recovery procedures

When using recovery procedures in this chapter, always write down or check
off recovery steps as you perform them. Such information can help Sybase
Technical Support determine where you are in the recovery procedure, if
necessary.

Table 7-1 lists failure conditions described in this chapter, and indicates where
to find information on corresponding failure symptoms and recovery
procedures.

Table 7-1: Overview of available recovery procedures

Failure condition

For symptoms and recovery procedures

Replication Server partition lossor failure “Recovering from partition loss or failure” on page 305

Truncated primary database logs “Recovering from truncated primary database logs’ on page 309

Primary database failure

“Recovering from primary database failures’ on page 312

RSSD failure

“Recovering from RSSD failure’ on page 315

Unsynchronized databases

296

“Resynchronizing replicate databases’ on page 344

Recovery procedures are only intended for the specific situations noted in this
chapter. Do not use recovery procedures for replication system problems such
as failure to replicate data.

Warning! Use recovery proceduresin this chapter only for the failure
condition specific to the procedure. Attempting to use recovery procedures on
conditions other than those specified can complicate your problem and require
more drastic recovery actions.

Refer to the Replication Server Troubleshooting Guide for help in diagnosing
and correcting problems.

Replication Server

CHAPTER 7 Replication System Recovery

Configuring the replication system to support Sybase

Failover

Overview

Administration Guide

This section describes how Replication Server version 12.0 and later supports
Sybase Failover availablein Adaptive Server Enterprise version 12.0 and later.

Sybase Failover allows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion Adaptive Server fails, that
server’s devices, databases, and connections can be taken over by the
companion Adaptive Server.

You can configure a high availability system either asymmetrically or
symmetrically.

An asymmetric configuration includes two Adaptive Serversthat are
physically located on different machines, but share the same system devices,
system/master databases, user databases, and user logins. Thesetwo serversare
connected so that if one of the serversis brought down, the other assumes its
workload. The companion Adaptive Server acts as a*“hot standby” and does
not perform any work until failover occurs.

A symmetric configuration also includes two Adaptive Servers running on
separate machines, but each Adaptive Server is fully functional with its own
system devices, system/master databases, user databases, and user logins. If
failover occurs, either Adaptive Server can act as acompanion for the other
Adaptive Server.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both servers.

In areplication system, where Replication Server makes many connections to
Adaptive Servers, you can enable or disable Failover support of the database
connections initiated by a Replication Server to Adaptive Servers. When you
enable Failover support, Replication Servers connected to an Adaptive Server
that fails are automatically switched to the companion machine, reestablishing
network connections.

See the Adaptive Server Enterprise documentation for more detailed
information about how Sybase Failover works in Adaptive Server. See
Appendix B, “High Availability on Sun Cluster 2.2" for information about
Failover support for Replication Server.

297

Configuring the replication system to support Sybase Failover

Enabling Failover support in Replication Server

You enable Failover support for each Replication Server in your system; once
for the RSSD connection, and oncefor all other database connections from the
specified Replication Server to Adaptive Servers.

You cannot enable Failover support for individual connections, except the
RSSD connection.

The default for Failover support in Replication Server is“off” for all
connections from a Replication Server to Adaptive Servers.

For continuing replication, you should enable Failover support for all
connections. However, in some cases you may want to disable connection
Failover when the companion server’s workload exceeds its capacity.

How Sybase Failover works with Replication Server

298

To configure Sybase Failover from Replication Server to Adaptive Server, the
Adaptive Server must be configured to allow connection failover.

When Adaptive Servers are in failover companion mode and the primary
companion fails, the secondary companion takes over the workload.
Incomplete transactions or operations that require updates to the RSSD fail.
Replication Server retries existing connections, but new connectionsarefailed
over.

For Data Server Interface (DSI) connections, the DS retriesfailed transactions
after abrief deep.

For RSSD connections, user commands that are executed during failover do
not succeed. Internal operations (such as updates to locator, disk segment, and
so on) should not fail. Replication of RSSD objects should be covered by the
Dsl.

Asynchronous commands (for example, subscription, routing, and standby
commands) may be rejected or encounter errors and require recovery if the
commands have been accepted but not completed. For example, a create
subscription command may have been accepted, but the subscription may till
be being created.

Note Failover support is not a substitute for warm standby. While warm
standby keeps a copy of a database, Failover support accesses the same
database from a different machine. Failover support works the same for
connections from Replication Server to warm standby databases.

Replication Server

CHAPTER 7 Replication System Recovery

Requirements

To enable Failover support, aReplication Server must connect to Adaptive
Serversthat are version 12.0 or later and configured for Failover.

Failover of Replication Server System Databases (RSSDs) and user
databasesis configured directly through the Adaptive Server.

Failover support responds only to failover of the Adaptive Servers; that is,
failover of Replication Serversis not supported.

Adaptive Server is responsible for the RepAgent thread failover and its
reconnection to Replication Server after failover/failback.

Each Replication Server configures its own connections.

Enabling Failover support for an RSSD connection

To enable Failover support for an RSSD connection, use either of thefollowing
methods:

Administration Guide

Use rs_init when you install a new Replication Server.

For instructions, refer to Chapter 2, “ Configuring Replication Server and
Adding New Databases,” in the Replication Server Configuration Guide
for your platform.

Edit the Replication Server configuration file after you have installed the
Replication Server.

a Useatext editor to open the Replication Server configuration file.
The default file name is the Replication Server name with a“.cfg”
extension.

The configuration file contains one line per entry.
b Findtheline“rssD_ha failover=no” and changeit to:
RSSD_ha failover=yes

¢ Todisable Failover support for an RSSD connection, change the
“RSSD_ha failover=yes” tO:

RSSD ha failover=no

These changes take affect immediately; that is, you do not have to
restart Replication Server to enable Failover support.

299

Configuring the replication system to prevent data loss

Enabling Failover support for non-RSSD database connections

You can enable Failover support for new database connections from the
Replication Server to Adaptive Servers using the procedure in this section.

For more information about Sybase Failover, refer to the Adaptive Server
Enterprise book Using Sybase Failover in a High Availability System.

[IEnabling Failover support using configure replication server

1 If necessary, start the Replication Server, as described in the section
“Starting Replication Server” in Chapter 4.

2 Loginto the Replication Server:
isgl -Uuser name -Ppassword -Sserver name

where user_name must have Administrator privileges. Specify the name
of the Replication Server using the -S flag.

When your login is accepted, isql displays a prompt:
1>
3 Enter thefollowing RCL command:

configure replication server
set ha_failover to 'on'

Configuring the replication system to prevent data loss

This section contains recommended measures for preventing datalossin the
event of anirrecoverable database error. If used properly, these measuresallow
you to restore replicated data using the system recovery procedures.

300 Replication Server

CHAPTER 7 Replication System Recovery

Save interval for recovery

Replication Servers are designed to store messages from their source and
forward them to their destinations. To increase the chances of recovering
online messages after rebuilding stable queues, you can set save intervals,
measured in minutes, for routes between Replication Servers. A save interval
isthe amount of time that a message is stored after it has been forwarded. You
can also set saveintervals for aphysical or logical database connection from a
Replication Server, allowing Replication Server to save messagesin aDS
outbound queue.

To find the current save interval for aroute or connection, use the admin who,
sqm command. The Save_Int:Seg column holds two values. The value
preceding the colon isthe save interval. The value after the colon is the first
saved segment in the stable queue.

Details on setting save intervalsfor routes and connections are described in the
following sections.

Routes between Replication Servers

Administration Guide

If the Replication Server has suspended routes, or if a network or data server
connection isdown, a backlog of messages may accumulate in the Replication
Server stable queues. The chance of recovering these messages decreaseswith
time. Source Replication Servers may already have del eted messages from
their stable queues and database logs may already have been truncated.

When you set the save_interval for each route between Replication Servers,
you allow each Replication Server to retain messages for a minimum period of
time after the next site in the route acknowledges that it has received the
messages. The availability of these messages increases the chance of
recovering online messages after queues are rebuilt.

For example, in Figure 7-1 on page 302, Replication Server TOKYO_RS
maintainsadirect routeto MANILA RS, and MANILA_RSmaintainsadirect
routeto SYDNEY _RS.

TOKY O_RS retains messages for a period of time after MANILA_RS has
received them. If MANILA_RS experiences apartition failure, it requires that
TOKY O_RSto resend the backlogged messages. MANILA_RScanasoretain
messagesto allow SYDNEY _RS to recover from failures.

When all of the messages stored on a stable queue segment are at least as old
asthesave interval setting, Replication Server del etesthe segment so it can be
reused.

301

Configuring the

replication system to prevent data loss

Setting the save

interval for routes

302

Figure 7-1: Save interval example

TOKYO_DS TOKYO_RS MANILA_RS SYDMNEY_RS SYDNEY_DS
Primary Replicate
Data Server Data Server

TOKYO_RS MANILA_RS SYDNEY_RS
RSSD RSSD RSSD

To set the save interval for aroute, execute the alter route command at the
source Replication Server. Using as an example the replication systemin
Figure 7-1, hereisthe command to set Replication Server TOKY O_RSto save
for one hour any messages destined for MANILA_RS:

alter route to MANILA RS
set save_interval to '60'

By default, the save interval is set to 0 (minutes). For systems with low
volume, this may be an acceptable setting for recovery, since Replication
Server does not delete messages immediately after receiving acknowledgment
from destination servers. Rather, messages are deleted periodically in large
chunks.

However, to accommodate the volume and activity of sites that receive
distributions from the Replication Server and to increase the chance of full
recovery from database or partition failures, you may want to change the
save interval setting.

In case of a partition failure on the stable queues, be sure your setting alows
adequate time to restore your system. Consider also the size of the partitions
that are allocated for backlogged messages. Partitions must be large enough to
hold the extra messages.

Refer to the Replication Server Design Guide capacity planning guidelines for
help in determining queue space requirements.

Replication Server

CHAPTER 7 Replication System Recovery

Connections between Replication Servers and data servers

When you set the save interval for aphysical or logical connection between a
Replication Server and a data server and database, you allow Replication
Server to save transactions in the DSI queue. You can restore the backlogged
transactions using the sysadmin restore_dsi_saved_segments command. Refer
to the Replication Server Reference Manual for more information.

You can use these saved transactions to resynchronize a database after it has
been loaded to a previous state from transaction dumps and database dumps.

For example, in Figure 7-1, if the replicate data server SYDNEY_DSthat is
connected to Replication Server SYDNEY _RS experiences afailure, it can
obtain the messages saved in the DSI queue at SYDNEY _RSto resynchronize
the replicate database after it has been restored.

You can also use the save_interval for setting up awarm standby of adatabase
that holds some replicate data or one that receives applied functions.

Setting the save interval for connections

To set the save interval for a database connection, execute the alter connection
command at the Replication Server. For example, here is the command to set
Replication Server SYDNEY _RS to save for one hour any messages destined
for its replicate data server SYDNEY _DS.

alter connection to SYDNEY DS.pubs2
set save_interval to '60'

By default, the save interval is set to 0 (minutes).

You can also configure the save intervals for the DSI queue and the
materialization queue for alogical connection. See “ Configuring logical
connection save intervals’ on page 117 for details.

Backing up the RSSDs

Administration Guide

If you cannot recover the most recent state of an RSSD, RSSD recovery can be
complex. The procedure you use depends on how much RSSD activity there
has been since the last dump. See Table 7-3 on page 316 for alist of possible
recovery procedures.

You should perform a dump of your RSSDs following any replication DDL,
such as changing routes or adding subscriptions.

303

Configuring the replication system to prevent data loss

Creating coordinated dumps

304

When you must recover a primary database by restoring backups, you must
also make sure that replicate datain the affected databases at other sitesis
consistent with the primary data. To provide for consistency after arestore on
multiple data servers, Replication Server provides a method for coordinating
database dumps and transaction dumps at all sitesin areplication system.

You initiate a database dump or transaction dump from the primary database.
RepAgent retrievesthe dump record from the log and submitsit to Replication
Server so that the dump request can be distributed to the replicate sites. The
method ensures that all of the data can be restored to a known point of
consistency.

You can only use a coordinated dump with databases that store either primary
data or replicated data but not both. You initiate a coordinated dump from
within a primary database.

The process for coordinating dumps works as follows:

* Ineach function-string class assigned to the databases involved, the
Replication System Administrator at each site creates function strings for
the rs_dumpdb and rs_dumptran system functions. The function strings
should call stored procedures that execute the dump database and dump
transaction or equivalent commands and update the rs_lastcommit system
table. Refer to the Replication Server Reference Manual for examples.

* Youmust beusing afunction-string class, such asaderived class, in which
you can create and modify function strings. See “Managing function-
string classes’ on page 26 for more information.

e Using the alter connection command, the replication system administrator
at each replicate site configures the Replication Serversto enable a
coordinated dump.

Whenadumpisstarted in aprimary database, the RepAgent transfersthe
dump database or dump transaction log record to the Replication Server.

* Replication Server distributes an rs_dumpdb or rs_dumptran function call
to sites that have subscriptions for the replicated tables in the database.

e Thers_dumpdb and rs_dumptran function strings at the replicate sites
execute the customized stored procedures at each replicate site.

Replication Server

CHAPTER 7 Replication System Recovery

Recovering from partition loss or failure

When a Replication Server detects afailed or missing partition, it shuts down
the stable queues that are using the partition and logs messages about the
failure. Restarting Replication Server does not correct the problem. You must
drop the damaged partition and rebuild the stable queues.

Complete recovery depends on the volume of messages cleared from the queue
and on how soon you apply the recovery procedure after the failure occurs. If
aReplication Server maintains minimal latency in the replication system, only
the most recent messages are lost when its queues are rebuilt.

If apartition failsin aprimary Replication Server, you can usually resend lost
messages from their source using an off-line databaselog. If partitionsfail ina
replicate Replication Server, you need to recover from the stable queue of the
upstream Replication Server.

In some cases, using an off-line log may be the only way you can recover your
messages. |f the Replication Server has suspended routes or connections, or if
anetwork or data server connection goes down, a backlog may have
accumulated in the Replication Server stable queues. Unless you have
specified a save interval setting that can cover the backlog, your chance of
recovering these messages decreases with time. Source Replication Servers
may have already deleted messages from their stable queues and may have
truncated the database logs.

Note For details on setting and displaying the save interval for recovery
purposes, see “ Recovering from partition loss or failure” on page 305.

Table 7-2 summarizes when to use and where to locate the appropriate
recovery procedure for partition loss or failure.

Table 7-2: Overview of symptoms and procedures

Symptom Use this procedure

Replication Server detects|ost, damaged, or failed stable “Procedure for recovering from partition loss or
queue. failure” on page 306.

Message |oss occurred because a backlog existedinthe “Message recovery from off-line database |ogs’
failed Replication Server and there were insufficient on page 307.

messages saved at the previous site.

In addition to message | oss, database |ogs have been Use “Truncated message recovery from the
truncated. Either the secondary truncation pointisinvalid database log” on page 310 to recover the

or the dbcc settrunc(ltm’, 'ignore’) command, was databaselog. Then use“Message recovery from
executed to truncate log records that have not been off-line database logs’ on page 307 to rebuild
transferred by RepAgent to the Replication Server. the stable queues and recover lost messages.

Administration Guide 305

Recovering from patrtition loss or failure

Procedure for recovering from partition loss or failure

306

To recover from Replication Server partition loss or failure, perform the
following steps:

1 Logintothe Replication Server and drop the failed partition:

drop partition logical name

Replication Server does not immediately drop a partition that was in use.
If the partition is undamaged, Replication Server dropsit only after all of
the messages it holds are delivered and del eted.

Refer to Chapter 3, “Replication Server Commands,” in the Replication
Server Reference Manual for more information about drop partition
command.

If thefailed partition was the only one available to the Replication Server,
add another oneto replaceit:

create partition logical name
on 'physical name' with size size
[starting at vstart]

Refer to the Replication Server Reference Manual for more information.
Since the partition is damaged, you must rebuild the stable queues:
rebuild queues

See “Rebuilding queues onling” on page 332 for a description of this
process.

When all stable queues on the partition are removed, Replication Server
dropsthefailed partition from the system and rebuilds the queues using the
remaining partitions.

After rebuilding the queues, check the Replication Server logs for loss
detection messages.

See “L oss detection after rebuilding stable queues’ on page 334 for
background and details.

If Replication Server detected message loss, you can:

» Perform “Message recovery from off-line database logs’ on page
307, or

Replication Server

CHAPTER 7 Replication System Recovery

* Reguest that Replication Server ignore the loss by executing the
ignore loss command for the database on the Replication Server where
the loss was detected.

Note If you specify that Replication Server ignore message losses and you
have rebuilt the queues of a Replication Server that is part aroute, you must re-
create subscriptions at the destination or use the rs_subcmp program with the -
r flag to reconcile primary and replicate data.

Message recovery from off-line database logs

Administration Guide

If the online log does not contain all the data needed to recover, you must load
an older version of the primary database into a separate database and start
RepAgent for the database. Although RepAgent is accessing a different
database, it submits messages asif they were from the database whose
messages you are recovering.

To recover messages from off-line logs after a partition failure:
1 Restart Replication Server in standalone mode, using the -M flag.
2 Logintothe Replication Server, and enter:

rebuild queues

See “Rebuilding queues online” on page 332 for a description of this
process.

3 Inspect the Replication Server logs at each site for “Checking L oss”
messages.
See " Determining which dumpsto load” on page 340 for background and
details on examining these messages.

4 Usethedate and timeinthe error log messagesto determine which dumps
to load.

5 Enable RepAgent for atemporary recovery database, using the
sp_config_rep_agent System procedure.

sp_config rep agent temp dbname, 'enable', \
'rs name', 'rs_user name', 'rs password'

See “ Setting Replication Server configuration parameters’ on page 92 in
the Replication Server Administration Guide Volume 1 for information
about configuring RepAgent.

307

Recovering from patrtition loss or failure

308

6

10

L oad the database dump and the first transaction log dump into a
temporary recovery database.

Start RepAgent in recovery mode for the temporary database:

sp_start_rep agent temp dbname, 'recovery', \
'connect dataserver', 'connect database', \
'rs name', 'rs_user name', 'rs password'

where “ connect_dataserver” and “ connect_database” specify the
original primary data server and database.

RepAgent transfers datain the transaction log of the temporary recovery
database to the original primary database. When RepAgent compl etes
scanning the transaction log, it shuts down.

Verify that RepAgent has replayed the transaction log of the temporary
database. Use either of these methods:

» Check the Adaptive Server log for amessage similar to the following:

Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp start rep agent,
with ‘recovery’ specified.

Then, perform the appropriate actions.

» From Adaptive Server, execute the sp_help_rep_agent system
procedure for recovery:

sp_help rep agent dbname, 'recovery'

This procedure displays RepAgent’s recovery status. If the recovery
statusis* not running” or “end of log,” then recovery iscomplete. You
can load the next transaction log dump. If the recovery statusis
“initial” or “scanning,” either the log has not been replayed, or the
replay is not complete.

If you have performed another recovery procedure since you performed
the last database dump, you may need to change the database generation
number after loading a transaction log dump. See “ Determining database
generation numbers’ on page 341.

If there are more transaction log dumpsto load, repeat the following three
steps for each dump:

a Loadthenext transaction log dump. (Be sureto load the dumpsin the
correct order.)

b Restart RepAgent in recovery mode.

Replication Server

CHAPTER 7 Replication System Recovery

1

12
13

¢ Watch the Adaptive Server log for the completion message or use
sp_help_rep_agent.

Check the Replication Server logs for loss detection messages.

No losses should be detected unless you failed to load the database to a
state old enough to retrieve all of the messages.

See “L oss detection after rebuilding stable queues’ on page 334 for
background and details.

Restart the Replication Server in normal mode.

Restart RepAgent for the original primary data server and database in
normal mode.

Message recovery from the online database log

To recover messages that are still in the online log at the primary database,
perform the following steps:

1
2

Stop all client activity.
Restart RepAgent for the primary database in recovery mode.

This process causes RepAgent to scan the log from the beginning so that
it retrieves all messages.

Recovering from truncated primary database logs

Administration Guide

This section describes how to recover from failures caused by truncating a

primary transaction log before Replication Server has received the messages.

This situation typically occursif RepAgent, a Replication Server (managing a

primary database), or a network between them is down for along time and
RepAgent or Replication Server isunable to read records from the transaction

log. The secondary truncation point cannot be moved, which prevents
Adaptive Server from truncating the log and causes the transaction log of the
primary databasetofill up. You can then remove the secondary truncation point
by executing sp_stop_rep_agent followed by dbcc settrunc (Itm, ignore).

309

Recovering from truncated primary database logs

When afailed component returns to service, messages are missing at the
Replication Server. Depending on the status of thelost messages, use one of the
following procedures:

e |If messagesare till in the online log at the primary database (whichis
unlikely), see “Message recovery from the online database log” on page
309.

» If messages have been truncated from the online database log, see
“Truncated message recovery from the database |log” on page 310.

Truncated message recovery from the database log

310

In this procedure, you must load a previous database dump and transaction log
dumps into a temporary recovery database. Then connect a RepAgent to that
database to transmit the truncated log to the Replication Server. After the
missing log records are recovered, you can restart the system using the regular
primary database.

Using atemporary recovery database permitstransaction recovery from clients
that continued to use the primary database after its log was truncated.

Note Use the temporary database exclusively for recovering messages. Any
modification to the database prevents you from loading the next transaction log
dump. Also limit the activity on the original primary database so that the
recovery can be completed before the transaction log on the original primary
database must be dumped and truncated again.

To replay off-line transaction logs, follow these steps:

1 Create atemporary database such that the sysusages tables are similar in
both the original and the temporary databases. To do this, you must usethe
same sequence of create database and alter database commands when
creating the temporary database as were used to create the original
database.

2 Shut down Replication Server.
Restart Replication Server in standalone mode, using the -M flag.

4 Logintothe Replication Server and execute the set log recovery command
for each primary database you are recovering.

See “ Setting log recovery for databases’ on page 338.

Replication Server

CHAPTER 7 Replication System Recovery

Administration Guide

Thiscommand putsthe Replication Server into loss detection modefor the
databases. Replication Server logs a message similar to the following:

Checking Loss for DS1.PDB from DS1.PDB
date=Nov-01-1995 10:35am
gid=0x01234567890123456789

Execute the allow connections command to allow Replication Server to
accept connections only from other Replication Servers and from
RepAgentsin recovery mode.

Note If you attempt to connect to this Replication Server by automatically
restarting RepAgent in normal mode with scripts, the Replication Server
rejectsthe connection. You must restart RepAgent in recovery modewhile
pointing to the correct off-line log. This step allows you to resend old
transaction logs before current transactions are processed.

L oad the database dump into the temporary primary database.

Load the first or next transaction log dump into the temporary primary
database.

Start the RepAgent for the temporary database in recovery mode:

sp_start rep agent temp dbname, 'recovery',
'connect dataserver', 'connect database',
'repserver name', 'repserver username',
'repserver password'

where connect_dataserver and connect_database specify the original
primary data server and database.

RepAgent transfers data in the transaction log of the temporary recovery
database to the original primary database. When RepAgent completes
scanning the current transaction log, it shuts down.

Verify that RepAgent has replayed the transaction log of the temporary
database.

a Check the Adaptive Server log for the following message:

Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp start rep agent,
with ‘recovery’ specified.

and perform the appropriate actions, or

b Execute admin who_is_down.

311

Recovering from primary database failures

10

1
12

13
14

15

If the RepAgent reports “down,” load the next transaction log.
Repeat steps 7 through 9 until all transaction logs have been processed.

You are now ready to resume normal replication from the primary
database.

Shut down Replication Server, which is still in standalone mode.
Execute the following commands:

rs_zeroltm data server, database
dbcc settrunc('ltm', 'valid')

Note You may need to executers_zeroltm to clear thelocator information.

Restart Replication Server in normal mode.

Restart RepAgent for both the primary database and RSSD using
Sp_start_rep_agent.

If you have performed another recovery procedure since you performed
the last database dump, you may need to change the database generation
number after loading a transaction log dump. See “ Determining database
generation numbers’ on page 341.

Recovering from primary database failures

Most database failures are recovered without losing any committed
transactions. No special Replication Server recovery procedureisneeded if the
database recovers on restart—Replication Server performs a handshake with
the database, ensuring that no transactions are lost or duplicated in the
replication system.

312

If aprimary database fails and you are unable to recover all committed
transactions, you must load the database to a previous state and follow a
recovery procedure designed to restore consistency at the replicate sites.

Here are two possible scenarios for recovering from primary databasefailures:

Recovering with coordinated dumps

If you have coordinated dumps of primary and replicate databases, you can
use them to load all databases in the replication system to a consi stent
state.

Replication Server

CHAPTER 7 Replication System Recovery

See “Loading from coordinated dumps’ on page 313 for details.
e Recovering with primary dumps only

If you do not have coordinated dumps, you can load the failed primary
database and then verify the consistency of thereplicate databaseswith the
restored primary database.

See “Loading a primary database from dumps’ on page 314 for details.

Loading from coordinated dumps

Administration Guide

Use this procedure only if you have coordinated dumps of both primary and
replicate databases. To load a primary database and all replicate databases to
the same state, follow this procedure:

1 Perform steps 1 through 10 from “Loading a primary database from
dumps’ on page 314.

2 Suspend connections to the replicate databases that must be restored.

3 For eachreplicate database, log in to its managing Replication Server and
execute the suspend connection command:

suspend connection to data server.database

4 Load the replicate databases from the coordinated dumps that correspond
to the restored primary database state.

5 For eachreplicate database, log in to its managing Replication Server and
execute a sysadmin set_dsi_generation command to set the generation
number for the database to the same generation number used in step 1:

sysadmin set_dsi generation, 101,
primary data server, primary database,
replicate data server, replicate database

The parameters primary_data_server and primary_database specify the
primary database for loading. The parametersreplicate data_server and
replicate_database specify the replicate database for loading.

Setting the generation numbers in this manner prevents Replication
Servers from applying to the replicate databases any old messages that
may be in the queues.

6 For each replicate database, |og in to its managing Replication Server and
execute the resume connection command to restart the DSI for the
database:

313

Recovering from primary database failures

resume connection to data server.database
7 Restart the primary Replication Server in normal mode.
8 Restart RepAgent for the primary database in normal mode.

Note If any subscriptions were materializing when the failure occurred, drop
them and re-create them.

Loading a primary database from dumps

314

Use this procedure if you are loading only a primary database in a replication
system. To load the database to a previous state and resolve any inconsistencies
with replicate databases, follow this procedure:

1 Logintotheprimary Replication Server and use the admin get_generation
command to get the database generation number for the primary database:

admin get_generation, data server, database
Write down the generation number so you have it for step 7.

2 Shut down the RepAgent for the primary database. To do this execute
sp_stop_rep_agent System procedure.

sp_stop_rep agent database
Suspend the DSI connection to the primary database (for exclusive use).
4 Load the database to the most recent or previous state.

Thisstep entail sloading the most recent database dump and all subsequent
transaction log dumps.

Refer to the Adaptive Server Enterprise System Administration Guide for
instructions.

5 Resumethe DSI connection.
6 Enter the following commands to dump the transaction log:

use database

go

dbcc settrunc('ltm', 'ignore')

go

dump tran database with truncate only
go

dbcc settrunc('ltm', 'valid')

Replication Server

CHAPTER 7 Replication System Recovery

go

7 Executethedbcc settrunc command in the restored primary database to set
the generation number to the next higher number. For example, if the
admin get_generation command in step 1 returned O, enter the following
commands:

use database
go
dbcc settrunc('ltm', 'gen_id', 1)
8 Runthefollowing command to clear the locator information:

rs_zeroltm data server, database

9 Start RepAgent for the primary database. To do this, execute thefollowing
command:

sp_start_rep agent database

10 Run thers_subcmp program for each subscription at the replicate sites.
Use the -r flag to reconcile the replicate data with the restored primary
data, or drop all the subscriptions and re-create them.

See Chapter 11, “Managing Subscriptions” in the Replication Server
Administration Guide Volume 1 for moreinformation onusing rs_subcmp.
Also refer to Chapter 7, “ Executable Programs,” in the Replication Server
Reference Manual for more information about rs_subcmp command.

Recovering from RSSD failure

If you cannot recover the most recent database state of the RSSD, recovering
from an RSSD failure is a complex process. In this case, you must load the
RSSD from old database dumps and transaction log dumps.

Note It isnot possible to migrate an RSSD database across platforms using
commandssuch as, cross-platform dump and load, or bep. To migrate, you must
rebuild the replication system on the new platform.

Administration Guide 315

Recovering from RSSD failure

The procedure for recovering an RSSD is similar to that for recovering a
primary database. However, it requires more steps, since the RSSD holds
information about thereplication systemitself. RSSD system tables are closely
associated with the state of the stable queues and of other RSSDs in the
replication system.

If aReplication Server RSSD has failed, you first need to determine the extent
of recovery required. To do this, perform one or more of the following actions:

* When the RSSD becomes available, log in to the Replication Server and
execute admin who_is_down. Some Replication Server threads may have
shut down during the RSSD period of inactivity.

e If an SQM thread for an inbound or outbound queue or an RSI
outbound queue is down, restart the Replication Server.

* |f aDSl thread is down, resume the connection to the associated
database.

» |f an RSl thread is down, resume the route to the destination database.

e Check all connecting RepAgents to seeif they are running with the
sp_help_rep_agent system procedure. (RepAgents may have shut downin
response to errors resulting from RSSD shutdown.) Restart them if
necessary.

» If you cannot recover the RSSD’s most recent database state, you must
load it from old database dumps and transaction log dumps. See
“Recovering an RSSD from dumps’ on page 316.

Recovering an RSSD from dumps

The procedure you use to recover an RSSD depends on how much RSSD
activity there has been since the last RSSD dump. There are four increasingly
severe levelsof RSSD failure, with corresponding recovery requirements. Use
Table 7-3 to locate the RSSD recovery procedure you need.

Table 7-3: Recovering from RSSD failures

Activity since last RSSD dump Use this procedure

No DDL activity “Basic RSSD recovery procedure” on page 317
DDL activity, but no new routes or subscriptions created “ Subscription comparison procedure” on page 320
DDL activity, but no new routes created “ Subscription re-creation procedure” on page 327
New routes created “Deintegration/reintegration procedure” on page 330

316 Replication Server

CHAPTER 7 Replication System Recovery

Basic RSSD recovery procedure

Administration Guide

Use the basic RSSD recovery procedure to restore the RSSD if you have
executed no DDL commands since the last RSSD dump. DDL commandsin
RCL include those for creating, altering, or deleting routes, replication
definitions, subscriptions, function strings, functions, function-string classes,
or error classes.

Certain steps in this procedure are al so referenced by other RSSD recovery
procedures in this chapter.

Warning! Do not execute any DDL commands until you have completed this
recovery procedure.

To perform basic RSSD recovery, follow these steps:
1 Shut down al RepAgentsthat connect to the current Replication Server.

2 Sinceits RSSD hasfailed, the current Replication Server is down. If for
some reason it is not down, log in to it and use the shutdown command to
shut it down.

Note Some messages may still bein the Replication Server stable queues.
Datain those queues may be lost when you rebuild these queuesin later

steps.

3 Restorethe RSSD by loading the most recent RSSD database dump and
all transaction dumps.

4 Restart the Replication Server in standalone mode, using the -M flag.

You must start the Replication Server in standalone mode, because the
stable queues are now inconsistent with the RSSD state. When the
Replication Server starts in standal one mode, reading of the stable queues
is not automatically activated.

5 Login to the Replication Server, and get the generation number for the
RSSD, using the admin get_generation command:

admin get generation, data server, rssd name

For example, the Replication Server may return a generation number of
100.

6 IntheReplication Server, rebuild the queues with the following command:

rebuild queues

317

Recovering from RSSD failure

318

10
11

See “Rebuilding queues onling” on page 332 for a description of this
process.

Start all RepAgents (except the RSSD RepAgent) that connect to the
current Replication Server in recovery mode:

sp_start rep agent dbname, recovery

Wait until each RepAgent logs a message in the Adaptive Server log that
it isfinished with the current log.

Check the loss messages in the Replication Server log, and in the logs of
all the Replication Serverswith direct routes fromthe current Replication
Server.

» If dl your routes were active at the time of failure, you probably will
not experience any real dataloss.

* However, loss detection may indicatereal loss. Real dataloss may be
detected if the database logs were truncated at the primary databases,
so that the rebuild process did not have enough information to
recover. If you have real dataloss, reload database logs from old
dumps. See “Recovering from truncated primary database logs’ on
page 309.

* See“Lossdetection after rebuilding stable queues’ on page 334 for
background and details on loss detection.

Shut down RepAgents for all primary databases managed by the current
Replication Server:

sp_stop_rep agent dbname
Shut down Replication Server.

Executethe dbcc settrunc command at the Adaptive Server for the restored
RSSD. Move up the secondary truncation point.

use rssd _name

go

dbcc settrunc('ltm', 'ignore')

go

dump tran rssd name with truncate only
go

begin tran commit tran

Replication Server

CHAPTER 7 Replication System Recovery

go 40

Note The begin tran commit tran go 40 command moves the Adaptive
Server log onto the next page.

After completing step 10 and before continuing with step 11, run the
following command to clear the locator information.

rs_zeroltm rssd_server, rssd name
go
12 Executethedbcc settrunc command at the Adaptive Server for therestored
RSSD to set the generation number to one higher than the number returned
by admin get_generation in step 5.

dbcc settrunc ('ltm', 'gen id', generation number)
go

dbcc settrunc('ltm', 'valid')

go

Make arecord of this generation number and of the current time, so that
you can return to this RSSD recovery procedure, if necessary. Or, you can
dump the database after setting the generation number.

13 Restart the Replication Server in norma mode.

If you performed this procedure as part of the subscription comparison or
subscription re-creation procedure, the upstream RSI outbound queue may
contain transactions, bound for the RSSD of the current Replication
Server, that have already been applied using rs_subcmp. If thisisthe case,
after starting the Replication Server, the error log may contain warnings
referring to duplicate inserts. You can safely ignore these warnings.

14 Restart RepAgentsfor the RSSD and for user databases in normal mode.

If you performed this procedure as part of the subscription comparison or
subscription re-creation RSSD recovery procedure, you should expect to
see messages regarding RSSD losses being detected in all Replication
Serversthat have routes from the current Replication Server.

Administration Guide 319

Recovering from RSSD failure

Subscription comparison procedure

320

Follow this RSSD recovery procedure if you have executed some DDL
commands since the last transaction dump but you have not created any new
subscriptions or routes. DDL commands in RCL include those for creating,
altering, or deleting routes, replication definitions, subscriptions, function
strings, functions, function-string classes, or error classes.

Warning! Do not execute any DDL commands until you have completed this
recovery procedure.

Following this procedure makes the failed RSSD consistent with upstream
RSSDs or consistent with the most recent database and transaction dumps (if
there is no upstream Replication Server). It then makes downstream RSSDs
consistent with the recovered RSSD.

If DDL commands have been executed at the current Replication Server since
the last transaction dump, you may have to re-execute them.

Warning! This procedure may fail if you are operating in a mixed-version
environment; that is, the Replication Serversin your replication system are not
all at the same version level.

To restore an RSSD with subscription comparison, follow these steps:

1 To preparethe failed RSSD for recovery, perform steps 1 through 4 of
“Basic RSSD recovery procedure” on page 317.

2 Toprepare al upstream RSSDs for recovery, execute the admin
quiesce_force_rsi command at each upstream Replication Server.

» Thisstep ensures that all committed transactions from the current
Replication Server have been applied before you execute the
rs_subcmp program.

e Execute this command sequentially, starting with the Replication
Server that isfurthest upstream from the current Replication Server.

» Make surethat RSSD changes have been applied, that is, that the
RSSD DSl outbound queues are empty.

e TheReplication Server that is directly upstream from the current
Replication Server cannot be quiesced.

Replication Server

CHAPTER 7 Replication System Recovery

Administration Guide

To prepare al downstream RSSDs for recovery, execute the admin
quiesce_force_rsi command at each downstream Replication Server.

e Thisstepensuresthat all committed transactions bound for the current
Replication Server have been applied before you execute the
rs_subcmp program.

« Executethiscommand sequentialy, starting with Replication Servers
that areimmediately downstream from the current Replication Server.

e Make sure that RSSD changes have been applied, that is, that the
RSSD DSI outbound queues are empty.

Reconcilethefailed RSSD with all upstream RSSDs, using thers_subcmp
program.

« First execute rs_subcmp without reconciliation to get an idea of what
operationsit will perform. When you are ready to reconcile, use the
-r flag to reconcil e the replicate data with the primary data.

e You must executers_subcmp asthe maintenance user. See Chapter 8,
“Managing Replication Server Security” in the Replication Server
Administration Guide Volume 1 for more information on the
mai ntenance user.

« Ineachinstance, specify the failed RSSD as the replicate database.

« Ineachinstance, specify the RSSD of each upstream Replication
Server as the primary database.

e Start with the furthest upstream Replication Server, and proceed
downstream for all other Replication Servers with routes (direct or
indirect) to the current Replication Server.

« Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions, rs_functions,
rs_funcstrings, rs_objects, rs_publications, rs_systext, and
rs_whereclauses.

e When you execute rs_subcmp on replicated RSSD tables, the where
and order by clauses of the select statement must include all rowsto
be replicated. See “Using rs_subcmp on replicated RSSD system
tables’ on page 323 for more information.

The failed RSSD should now be recovered.

Reconcile al downstream RSSDs with the RSSD for the current
Replication Server, which was recovered in the previous step, using the
rs_subcmp program.

321

Recovering from RSSD failure

322

First execute rs_subcmp without reconciliation to get an idea of what
operationsit will perform. When you are ready to reconcile, use the -
r flag to reconcile the replicate data with the primary data.

You must execute rs_subcmp as the maintenance user. See Chapter 8,
“Managing Replication Server Security” in the Replication Server
Administration Guide Volume 1 for more information on the

mai ntenance user.

In each instance, specify asthe primary database the recovered RSSD.

In each instance, specify asthe replicate database the RSSD of each
downstream Replication Server.

Start with the Replication Servers that are immediately downstream,
then proceed downstream for all other Replication Serverswith routes
(direct or indirect) from the current Replication Server.

Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions, rs_functions,
rs_funcstrings, rs_objects, rs_publications, rs_systext, and
rs_whereclauses.

When you execute rs_subcmp on replicated RSSD tables, the where
and order by clauses of the select statement must select all rowsto be
replicated. See“Usingrs_subcmp onreplicated RSSD system tables’
on page 323 for more information.

All downstream RSSDs should now be fully recovered.

If the recovering Replication Server isan ID Server, you must restore the
Replication Server and database IDs in its RSSD.

a

For every Replication Server, check the rs_databases and rs_sites
system tables for their IDs.

Insert the appropriate rows in the recovering RSSD rs_idnames
system table if they are missing.

Delete fromtherecovering RSSD rs_idnames system table any | Ds of
databases or Replication Serversthat are no longer part of the
replication system.

To ensure that the rs_ids system table is consistent, execute the
following stored procedure in the RSSD of the current Replication
Server:

rs mk rsids_ consistent

Replication Server

CHAPTER 7 Replication System Recovery

7

If the recovering Replication Server is not an ID Server, and a database
connection was created at the recovering Replication Server after the last
transaction dump, delete the row corresponding to that database
connection from the rs_idnames system tablein the ID Server’s RSSD.

Perform steps 5 through 13 of “Basic RSSD recovery procedure” on page
317.

To complete RSSD recovery, re-execute any DDL commands executed at
the current Replication Server since the last transaction dump.

Using rs_subcmp on replicated RSSD system tables

When executing rs_subcmp on replicated RSSD tables during RSSD recovery
procedures, formulate the where and order by clauses of the select statement to
select all rows that must be replicated for each system table.

Table 7-4 illustrates the general form of these select statements.

Note You may need to adjust these select statements in a mixed-version
environment.

Table 7-4: select statements for rs_subcmp procedure

RSSD table
name select statement
rs_articles select * from rs_articles, rs_objects where rs_objects.prsid in
sub_select and rs_articles.objid = rsobjects.objid order by articleid
rs_classes select * from rs_classes where prsid in sub select order
by classid
rs_columns select * from rs_columns where prsid in sub select and

rowtype = 1 order by objid, basecolnum, colname, colnum, version

rs_databases

select * from rs_databases where prsid in sub_select and
rowtype = 1 order by dbid, dbname, dsname, Idbid, Itype, ptype

rs_erroractions

select * from rs_erroractions where prsid in sub select order
by ds_errorid, errorclassid

rs_funcstrings

select * from rs_funcstrings where prsid in sub_select and
rowtype = 1 order by fstringid

rs_functions

select * from rs_functions where prsid in sub_select and
rowtype = 1 order by funcid, funcname, objid

rs_objects

Administration Guide

select * from rs_objects where prsid in sub select and
rowtype = 1 order by active_inbound, dbid, has_baserepdef,
objid, objname, objtype, phys_tablename, phys_objowner, version

323

Recovering from RSSD failure

RSSD table
name

select statement

rs_publications

select * from rs_publications where prsid in sub select
order by pubid

rs_systext

select * from rs_systext where prsid in sub select and texttype
in ('0', 's') order by parentid, texttype, sequence

rs_whereclauses

select * from rs_whereclauses,rs_articles, rs_objects where
rs_objects.prsid in sub_select and rs_articles.objid = rsobjects.objid
and rs_whereclauses.articleid = rs_artilces.articleid order by wclauseid

Classes and system

324

In the select statements in Table 7-4, sub_select represents the following sub-
selection statement, which selects all site IDs that are the source Replication
Serversfor the current Replication Server:

(select source_rsid from rs_routes
where
(through rsid = PRS site ID
or through rsid = RRS site ID)
and
dest rsid = RRS site ID)

where PRS site ID isthe site ID of the Replication Server managing the
primary RSSD, and RRS site ID isthe site ID of the Replication Server
managing the replicate RSSD for the rs_subcmp operation.

For thers_columns, rs_databases, rs_funcstrings, rs_functions, and rs_objects
system tables, if rowtype = 1, then the row isareplicated row. Only replicated
rows need be compared using rs_subcmp.

For each system table, the primary_keys are its unique indexes. See Chapter 8,
“Replication Server System Tables’ in the Replication Server Reference
Manual for more information on the tables.

tables

The system-provided function-string classes and error class do not initially
have adesignated primary site, that is, their site ID equals 0. The classes
rs_default_function_class and rs_db2_function_class cannot be modified, and
thus can never have a designated primary site. The classes
rs_sqlserver_function_class and rs_sqlserver_error_class may be assigned a
primary site and modified. The primary site of aderived function-string class
isthe same as its parent class.

Replication Server

CHAPTER 7 Replication System Recovery

If the recovering Replication Server was made the primary site for afunction-
string class or error class since the last transaction dump, the rs_subcmp
procedure described earlier in this section would find orphaned rows in
downstream RSSDs.

In that event, run rs_subcmp again on thers_classes, rs_erroractions,
rs_funcstrings, and rs_systext system tables. Set prsid = 0 in order to repopulate
these tableswith the necessary default settings. For example, use thefollowing
select statement for the rs_classes table:

select * from rs classes where prsid = 0
order by primary keys

Example

Suppose you have the following Replication Server sitesin your replication
system, wherean arrow (—) indicatesaroute. Site B isthefailed site, and there
are no indirect routes.

- A>B
« C>B
« C>D
e B>E
These Replication Servers have the following site IDs:
e A=1
 B=2
+ C=3
. D=4
« E=5

In this example, to bring the RSSDs to a consistent state, you would perform
the following tasks, in the order presented, on thers_classes, rs_columns,
rs_databases, rs_erroractions, rs_funcstrings, rs_functions, rs_objects, and
rs_systext system tables.

Reconciling with upstream RSSDs

1 Runrs_subcmp against the above tables, specifying site B asthe replicate
and site A asthe primary, with prsid = 1 inthewhere clauses. For example,
the select statement for rs_columns should ook like the following:

Administration Guide 325

Recovering from RSSD failure

select * from rs_columns where prsid in
(select source rsid from rs_routes
where
(through rsid = 1 or through rsid = 2)
and dest rsid = 2)
and rowtype = 1
order by objid, colname

2 Runrs_subcmp against the above tables, specifying site B asthe replicate
and site C asthe primary, with prsid = 3 in thewhere clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_ columns where prsid in
(select source_rsid from rs_routes
where
(through rsid = 3 or through rsid = 2)
and dest rsid = 2)
and rowtype = 1
order by objid, colname

Reconciling downstream RSSDs

1 Runrs_subcmp against the above tables, specifying site B as the primary
and site E asthereplicate, with prsid = 2 in thewhere clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
(select source rsid from rs_routes
where
(through rsid = 2 or through rsid = 5)
and dest rsid = 5)
and rowtype = 1
order by objid, colname

Refer to Chapter 7, “Executable Programs,” in the Replication Server
Reference Manual for more information on rs_subcmp. Refer to Chapter 8,
“Replication Server System Tables,” in the Replication Server Reference
Manual for more information on the RSSD system tables.

326 Replication Server

CHAPTER 7 Replication System Recovery

Subscription re-creation procedure

Administration Guide

Follow thisRSSD recovery procedureif you have created new subscriptions or
other DDL since the last transaction dump, and you have not created new
routes. DDL commandsin RCL includethosefor creating, altering, or deleting
routes, replication definitions, subscriptions, function strings, functions,
function-string classes, or error classes.

Warning! Do not execute any DDL commands until you have completed the
subscription re-creation recovery procedure.

Aswith the subscription-comparison RSSD recovery procedure, followingthis
procedure makesthefailed RSSD consistent with upstream RSSDs or with the
most recent database and transaction dumps (if there is no upstream
Replication Server). It then makes downstream RSSDs consistent with the
recovered RSSD.

Inthisprocedure, however, you also either del ete or re-create subscriptionsthat
arein limbo due to the loss of the RSSD.

If DDL commands have been executed at the current Replication Server since
the last transaction dump, you may have to reexecute them.

To restore an RSSD that requires that lost subscriptions be re-created, follow
these steps:

1 To prepare the failed RSSD for recovery, perform steps 1 through 4 of
“Basic RSSD recovery procedure” on page 317.

2 To prepare the RSSDs of all upstream and downstream Replication
Servers for recovery, perform step 2 through 3 of “ Subscription
comparison procedure” on page 320.

3 Shut down all upstream and downstream Replication Servers affected by
the previous step. Use the shutdown command.

4 Restart all upstream and downstream Replication Servers in standalone
mode, using the -M flag.

All RepAgents connecting to these Replication Servers shut down
automatically when you restart the Replication Servers in standalone
mode.

5 Toreconcilethefailed RSSD with all upstream RSSDs, perform step 4 of
“ Subscription comparison procedure” on page 320.

The failed RSSD should now be recovered.

327

Recovering from RSSD failure

328

10

1

To reconcile al downstream RSSDs with the RSSD for the current
Replication Server, perform step 5 of “ Subscription comparison
procedure” on page 320.

If the recovering Replication Server isan ID Server, to restore the IDs in
its RSSD, perform step 6 of “ Subscription comparison procedure” on
page 320.

If the recovering Replication Server isnot an ID Server and a database
connection was created at the recovering Replication Server after the last
transaction dump, perform step 7 of “ Subscription comparison procedure”
on page 320.

Query the rs_subscriptions system table of the current Replication Server
for the names of subscriptions and replication definitions or publications
and their associated databases.

e Alsoquery all Replication Serverswith subscriptionsto primary data
managed by the current Replication Server, or with primary datato
which the current Replication Server has subscriptions.

* You can query the rs_subscriptions system table by using the
rs_helpsub stored procedure.

For each user subscription inthers_subscriptions system tabl e, execute the
check subscription command using the information obtained in step 9.

e Execute this command at the current Replication Server and at all
Replication Servers with subscriptions to primary data managed by
the current Replication Server, or with primary datato which the
current Replication Server has subscriptions.

e Subscriptions with a status other than VALID must be deleted or re-
created, as described below.

For each Replication Server that has a non-VALID subscription with the
current Replication Server as the primary:

* Noteitssubid, and delete the appropriate row from the primary
rs_subscriptions system table.

e Usethesubid from rs_subscriptions to find corresponding rowsin the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

e If asubscription isin the primary table and not in the replicate table
(because it was dropped), del ete the subscription row from the
primary table.

Replication Server

CHAPTER 7 Replication System Recovery

Administration Guide

12

13

14

15

e |f asubscriptionisin the replicate table and not in the primary table,
delete the subscription row from the replicate table. After completing
the rest of this procedure, re-create the subscription, as described in
steps 17 through 19.

e If asubscription isin both the primary and replicate tables but is not
VALID at one of the sites, delete the rows from both tables. After
completing the rest of this procedure, re-create the subscription, as
described in steps 17 through 19.

For each primary Replication Server for which the current Replication
Server has anon-VALID user subscription:

* Noteits subid, and delete the appropriate row from the primary
rs_subscriptions System table.

e Usethesubid from rs_subscriptions to find corresponding rowsin the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

e If asubscription isin the primary table and not in the replicate table,
delete the subscription row from the primary table. After completing
the rest of this procedure, re-create the subscription, as described in
steps 17 through 19.

e If asubscriptionisin the replicate table and not in the primary table
(because it was dropped), del ete the subscription row from the
replicate table.

e |f asubscription isin both the primary and replicate tables, but not
VALID at one of the sites, delete the rows from both tables. After
completing the rest of this procedure, re-create the subscription, as
described in steps 17 through 19.

At boththe primary and replicate Replication Server, execute the sysadmin
drop_queue command for all existing materialization queues for
subscriptions deleted in steps 17 through 19.

Restart in normal mode all Replication Servers, and their RepAgents, that
had subscriptions to primary data managed by the current Replication
Server or with primary data to which the current Replication Server had
subscriptions.

Perform steps 5 through 13 of “Basic RSSD recovery procedure” on page
317.

329

Recovering from RSSD failure

16

17
18

19

Reexecute any DDL commands that executed at the current Replication
Server since the last transaction dump.

Enable autocorrection for each replication definition.

Re-create the missing subscriptions using either the bulk materialization
method or no materialization.

Use the define subscription, activate subscription, validate subscription, and
check subscription commands for bulk materialization.

For each re-created subscription, restore consistency between the primary
and replicate datain either of two ways:

e Drop asubscription using the drop subscription command and the with
purge option. Then re-create the subscription.

e Usethers_subcmp program with the -r flag to reconcile replicate and
primary subscription data.

Refer to Chapter 7, “Executable Programs,” in the Replication Server
Reference Manual for more information on the rs_subcmp program. Refer to
Chapter 8, “Replication Server System Tables,” in the Replication Server
Reference Manual for more information on the RSSD system tables.

Deintegration/reintegration procedure

If you created routes since the last time the RSSD was dumped, you are
required to perform the following tasks:

330

1

Remove the current Replication Server from the replication system.

See “Removing a Replication Server” on page 109 in the Replication
Server Administration Guide Volume 1 for details.

Reinstall the Replication Server.

Refer to the Replication Server installation and configuration guides for
your platform for complete information on re-installing Replication
Server.

Re-create Replication Server routes and subscriptions.

See Chapter 6, “Managing Routes’ and Chapter 11, “Managing
Subscriptions” in the Replication Server Administration Guide Volume 1
for details.

Replication Server

CHAPTER 7 Replication System Recovery

Recovery support tasks

This section describes standard recovery tasks that are required in performing
the recovery procedures described in this chapter. Use recovery tasks only for
the procedure to which they apply. These tasks support recovery by letting you
manipulate and identify critical datain the replication system.

Refer to this section for background in performing the recovery proceduresin
this chapter.

Table 7-5 lists the recovery support tasks.

Table 7-5: Overview of recovery support tasks

Recovery support task See

Rebuild stable queues “Rebuilding stable queues’ on page 331

Check for Replication Server |oss detection “L oss detection after rebuilding stable queues’ on page
messages after rebuilding stable queues 334

Put Replication Server in log recovery mode “Setting log recovery for databases’ on page 338
Check for Replication Server |oss detection “L oss detection after setting log recovery” on page 339
messages after setting log recovery for databases

Determine which dumps and logs to |oad “Determining which dumps to load” on page 340
Adjust database generation numbers “ Adjusting database generation numbers’ on page 341

Rebuilding stable queues

Therebuild queues command removes all existing queues and rebuildsthem. It
cannot rebuild individual stable queues.

You can rebuild queues online or off-line, depending on your situation.
Generally, you rebuild queues onlinefirst to detect if therearelost stable queue
messages. If there are lost messages, you can retrieve them by first putting the
Replication Server in standalone mode and recovering the datafrom an off-line
log.

Both methods for rebuilding queues are described in more detail in the
following sections. Refer to Chapter 3, “ Replication Server Commands,” inthe
Replication Server Reference Manual for more information about rebuild
queues command.

Administration Guide 331

Recovery support tasks

Rebuilding queues online

During the online rebuild process, the Replication Server isin norma mode.
All RepAgents and other Replication Servers are automatically disconnected
from the Replication Server. Connection attempts are rejected with the
following message:

Replication Server is Rebuilding

Replication Servers and RepAgentsretry connections periodically until rebuild
queues has completed. At thistime, the connections are successful.

When the queues are cleared, the rebuild is complete. The Replication Server
then attempts to retrieve the cleared messages from the following sources:

» Other Replication Serversthat have direct routesto the rebuilt Replication
Server. If you have set asave interval from other Replication Servers, you
have a greater likelihood of recovery.

» Database transaction logs for primary databases the Replication Server
manages.

If there are loss detection messages, you heed to check the status of these
messages. Depending on the failure condition, if these messages are no longer
available at their source, you may need to rebuild the queues using off-line
logs. Or, you can request that Replication Server ignore the lost messages. See
“Rebuilding queues from off-line database logs’ on page 332 and “Loss
detection after rebuilding stable queues’ on page 334.

Rebuilding queues from off-line database logs

332

Thistask isusedto recover datafrom off-line database |ogs. You use therebuild
queues command only after you have restarted the Replication Server in
standal one mode. For details on standalone mode, see “Using standal one
mode” on page 333. Executing rebuild queues in standalone mode puts
Replication Server in recovery mode.

In recovery mode, the Replication Server allows only RepAgentsin recovery
mode to connect. If a RepAgent that is not in recovery mode attempts to
connect, Replication Server rejects it with following error message:

Rep Agent not in recovery mode

If you use a script that automatically restarts RepAgent and connects it to the
Replication Server, you must start RepAgent using the for_recovery option.
RepAgents are not allowed to connect in normal mode.

Replication Server

CHAPTER 7 Replication System Recovery

Figure 7-2 illustratesthe progression from normal mode to standalone modeto
recovery mode using the rebuild queues command.

Figure 7-2: Entering recovery mode with the rebuild queues command

Normal
Mode

Restart -M

Standalone
Mode

Rebuild queues

Recovery Mode
Log recovery set
for all databases

Restart -M

Reject
RepAgent connect “Mot in Recovery”
attempt

Using standalone mode

To start Replication Server in standalone mode, use the -M flag. Standalone
mode is useful for looking at the state of Replication Server because the state
is static. Standalone mode allows you to review the contents of the stable
gueues because no messages are being written to or read from the queues.

Standal one mode differs from the Replication Server normal modein the
following ways:

* Noincoming connections are accepted. If any RepAgent or Replication
Server attemptsto connect to aReplication Server in standalone mode, the
message “ Replication Server isin Standalone Mode” is raised.

* No outgoing connections are started. A Replication Server in standalone
mode does not attempt to connect to other Replication Servers.

Administration Guide 333

Recovery support tasks

* No DSl threads are started, even if there are messagesin the DSI queues
that have not been applied.

* NoDistributor (DIST) threads are started. A DIST thread reads messages
from the inbound queues, performs subscription resolution, and writes
messages to the outbound queues.

Loss detection after rebuilding stable queues

To determine if any messages could not be recovered after the stable queues
were rebuilt, the Replication Server performs loss detection. By checking
Replication Server |oss-detection messages, you can determine what kind of
user intervention, if any, is necessary to restore all datato the system.

Replication Server detects two types of |osses after rebuilding stable queues:

* SQM loss, which refers to data lost between two Replication Servers,
detected at the next downstream site

» DSl loss, which refers to data lost between a Replication Server and a
replicate database that the Replication Server manages

Both kinds of loss detection are addressed in the following sections.

If all dataisavailable, no intervention is necessary and the replication system
canreturnto normal operations. For example, if you know that the saveinterval
for theroute or connectionisset for alonger length of timethan thefailure, you
can recover all messages with no intervention. However, if the saveinterval is
not set or is set too low, some messages may be lost.

Note A Replication Server that has detected aloss does not accept messages
from the source. Loss detection prevents the source from truncating its stable
gueues. For example, if Replication Server RS2 detects that replicate data

server DS2.RDB haslost datafrom primary dataserver DS1.PDB, Replication
Server RS1 cannot truncate its queues until you decide how to handle the loss.

Asaresult, RS1 may run out of stable storage. Before alossis detected (that
is, after the “Checking Loss’ message is reported), you can choose to ignore
losses for a source and destination pair.

334 Replication Server

CHAPTER 7 Replication System Recovery

SQM loss between two Replication Servers

Administration Guide

RS2
@ @
Primary ! Replicate
s Sy

Database

Every timeyou rebuild stable queues during arecovery procedure, Replication
Server requests backlogged messages from sites that send its distributions. If
the Replication Server manages primary databases, it instructstheir RepAgents
to send messages from the beginning of the online transaction logs. The

backl ogged messages repopul ate the emptied stable queues.

Replication Server enables|oss detection mode at those sitesyou arerebuilding
that have adirect route from the Replication Server. In Figure 7-3, Replication
Server RS3 detectslossesif you rebuild the queues of Replication Server RS2.
Similarly, RS2 detects losses if you rebuild the queues of Replication Server
RS1.

Figure 7-3: Replication system loss detection example

R

RS1

Database

RS1 RSSD RS2 RSSD RS3 RSSD

When you execute the rebuild queues command at RS2, RS3 performs loss
detection for all primary databases whose updates are routed to RS3 through
RS2. RS3 logs messages for each of these databases. If you rebuild queues at
RS3, no SQM loss detection is performed, because there are no routes
originating from RS3.

Replication Server detects loss by looking for duplicate messages. If RS3
receives amessage that it had received before the rebuild queues command,
then no messages were lost. If the first message RS3 receives after rebuild
queues has not been seen before, then either messages were lot, or no
messages were in the stable queue.

Even if there are no messages in the stable queue from a specific source, RS3
identifies them as lost because it has no duplicate messages to use for a
comparison. You can prevent this false loss detection by creating a heartbeat
with an interval that is less than the save interval. This guarantees that there
will always be at |east one message in the stable queue.

335

Recovery support tasks

SQM example When RS3 performs SQM loss detection for therebuilt RS2, it logsintoitslog
file messages similar to the following “ Checking Loss” message examples.
These messages mark the beginning of the |oss detection process. Subsequent
messages are logged with the results. Each message contains a source and
destination pair.

Thefirst example message indicates that RS3 is checking lossfor the RSSD at
RS3 from the RSSD at RS2:

Checking Loss for DS3.RS3 RSSD from DS2.RS2 RSSD
date=Nov-01-95 10:15 am
gqid=0x01234567890123456789

The second example message indicates that RS3 is checking loss for the
replicate database RDB at RS3, from the primary database PDB at RS1:

Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-95 11:00am
gid=0x01234567890123456789

The third example message indicates that RS3 is checking loss for the RSSD
at RS3 from the RSSD at RS1:

Checking Loss for DS3.RS3 RSSD from DS1.RS1 RSSD
date=Nov-01-95 10:00am
qid=0x01234567890123456789

RS3 reports whether it detects aloss. For example, the results of such loss-
detection tests might read as follows:

No Loss for DS3.RS3_RSSD from DS2.RS2_RSSD
Loss Detected for DS3.RDB from DS1.PDB
No Loss for DS3.RS3_RSSD from DS1.RS1_RSSD

DSl loss between a Replication Server and its databases

Some messagesin Replication Server queues are destined for databases, rather
than for other Replication Servers. The DSI performs loss detection in away
that is similar to stable queue loss detection.

If you rebuild queues at a Replication Server that has no originating routes, no
SQM lossdetectionis performed, but the Replication Server performsDSI loss
detection for its messages.

DSI example The DS at Replication Server RS2 generates the following message for the
RSSD at RS2:

DSI: detecting loss for database DS2.RS2_RSSD from
origin DS1.RS1 RSSD

336 Replication Server

CHAPTER 7 Replication System Recovery

date=Nov-01-95 10:58pm
gid=0x01234567890123456789

When retained messages begin arriving from previous sites, the DSI detects a
loss, depending on whether the first message from the origin has already been
seen by the DSI. If it detects no loss, a message similar to the following oneis
generated:

DSI: no loss for database DS2.RS2_RSSD from origin
DS1.RS1_RSSD

If the DSI does detect aloss, a message like the following one is generated:

DSI: loss detected for database DS2.RS2_RSSD from origin
DS1.RS1_RSSD

Handling losses

When Replication Server detects aloss, no further messages are accepted on
the connection to the SQM or the DSI.

For example, when RS3 detects an SQM message loss for the RDB database
from the PDB database, it rejects all subsequent messages from the PDB
database to the RDB database.

Recovering a loss To recover the loss, you need to choose one of the following options:

* Ignorethelossand continue, even though some messages may belost. You
can use the rs_subcmp program with the -r flag to reconcile primary and
replicate data.

Torunrs_subcmp, see” Subscription comparison procedure” on page 320.
See also Chapter 11, “Managing Subscriptions” in the Replication Server
Administration Guide Volume 1. Also, refer to Chapter 7, “ Executable
Programs,” in the Replication Server Reference Manual for more
information about rs_subcmp command.

* Ignoretheloss, then drop and re-create the subscriptions.

* Recover by replaying transactions from off-linelogs (primary Replication
Server loss only). In this case, you are not ignoring the loss.

Ignoring a loss You must execute an ignore loss command in the following situations:

« If you choose to recover the lost messages by re-creating subscriptions or
replaying logs.

Administration Guide 337

Recovery support tasks

e Foran SQM loss, at the Replication Server that reported that | oss, to force
the Replication Server to begin accepting messages again. For example, to
ignore aloss at Replication Server RS3 detected from DS1.PDB, enter the
following command at RS3:

ignore loss from DS1.PDB to DS3.RDB

» ForaD$l loss, at the database on the Replication Server where the loss
was detected. For example, to ignore aloss reported in DS2.RS2_RSSD
from origin DS1.RS1_RSSD, enter the following command at RS2:

ignore loss from DS1.RS1 RSSD to DS2.RS2 RSSD

» For both an SQM and a DSl loss that is detected by a Replication Server
at the destination of the route when you rebuild two Replication Serversin
succession.

In this case, you need to execute ignore loss twice, once for SQM losses
and once for DSI losses. Theignore loss command that you execute to
ignore DSI loss at the destination Replication Server isthe same command
you use to ignore SQM loss from the previous site.

Setting log recovery for databases

338

Setting log recovery manually is part of the procedure for recovering from
truncated primary database logs off-line or restoring primary and replicate
databases from dumps. While the procedure to rebuild queues off-line
automatically setslog recovery for all databases, setting log recovery manually
allows you to recover each database without reconstructing the stable queue.

The set log recovery command places Replication Server in log recovery mode
for adatabase. You execute this command after placing Replication Server in
standal one mode. To connect the RepAgents only to those databases that have
been set for log recovery mode, execute the allow connections command. This
puts the Replication Server in recovery mode.

Figure 7-4 illustratesthe progression from normal mode to standal one modeto
recovery mode using the set log recovery and allow connections commands.

For databases specified with the set log recovery command, Replication Server
only accepts connections from other Replication Servers and from RepAgents
that are in recovery mode. You then recover the transaction dumpsinto a
temporary recovery database.

Replication Server

CHAPTER 7 Replication System Recovery

Figure 7-4: Entering recovery mode with the allow connections
command

Restart -M

Standalone
Mode

sat log recovery
for DS1.DB1

allow connections

Restart
Recovery Mode

Log recovery set
for DS1.DE1

Restart -M

DS1.DB1 RepAgent
Connect attempt in

D51.DB1 RepAgent Reject normal mode

Connect attempt in
recovery mode

Accept
Accept

DS2.DB1
Connect attempt

Loss detection after setting log recovery

Administration Guide

While you are applying the temporary recovery database to the primary
database, Replication Server may detect SQM |oss between aprimary database
and the Replication Server that manages that primary database.

If dl dataisavailable, no intervention is necessary and the replication system
can return to normal operations. The Replication Server |ogs a message such
as.

No Loss Detected for DS1.PDB from DS1.PDB

If there were not enough messages, Replication Server logs aloss detection
message similar such as:

339

Recovery support tasks

Loss Detected for DS1.PDB from DS1.PDB

You must decide whether to ignore the losses by executing the ignore loss
command, or repeat the recovery procedure from the beginning. To ignore the
loss, enter the following command at the primary Replication Server:

ignore loss for DS1.PDB from DS1.PDB

If you received | oss detection messages, you failed to reload the database to a
state old enough to retrieve al of the messages. See “ Determining which
dumpsto load” on page 340.

Determining which dumps to load

340

When loading transaction log dumps, always examine the “ Checking L oss”
message that is displayed during loss detection. If there is more than one
message, choose the earliest date and time to determine which dumps to load.

For example, if the following message is generated by a Replication Server,
you would load the dumps taken just before November 1, 1995 at 10:58 p.m.:

Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-1995 10:58pm
gid=0x01234567890123456789

The date in the message is the date and time of the oldest open transactionin
the log when the last message received by the Replication Server was
generated by the origin queue. Locate the most recent transaction dump with a
timestamp before the date and time in the message. Then find the full database
dump taken before that transaction dump.

The origin queue ID, or qid, is formed by the RepAgent and identifiesalog
record in the transaction log. The date is embedded in the gid as atimestamp.
Replication Server converts the timestamp to a date for RepAgents for
Adaptive Server.

Replication agents for non-Sybase data servers may a so embed the timestamp
in the gid. Replication Server converts the timestamp for non-Sybase data
serversin bytes 20-27. The use of these bytes depends on the Replication
Agent.

Note If the dataserver isnot an Adaptive Server, the date in the message may
appear nonsensical. You may need to decode the qgid in bytes 2027 to identify
the dumps to load.

Replication Server

CHAPTER 7 Replication System Recovery

Adjusting database generation numbers

Each primary database in a replication system includes a database generation
number. This number is stored both in the database and in the RSSD of the
Replication Server that manages the database.

Any timeyou load a database for recovery, you may be required to change the
database generation number, asinstructed in the recovery procedure you are
using. This section explains this step.

Determining database generation numbers

Administration Guide

RepAgent for aprimary database places the database generation number in the
high-order 2 bytes of the gid that it constructs for each log record it passes to
the Replication Server.

The remainder of the gid is constructed from other information that givesthe
location of therecord in the log and al so ensuresthat the gid increasesfor each
record passed to Replication Server.

The requirement for increasing gid values allows Replication Server to detect
duplicate records. For example, when aRepAgent restarts, it may resend some
log recordsthat Replication Server hasalready processed. If Replication Server
receives arecord with alower gid than the last record it processed, it treats the
record as a duplicate and ignores it.

If you are restoring a primary database to an earlier state, increment the
database generation number so that the Replication Server does not ignore log
records submitted after the database is reloaded. This step applies only if you
are using the procedures described in “Loading a primary database from
dumps’ on page 314 or in “Loading from coordinated dumps’ on page 313.

If you are replaying log records, increment the database generation number
only if RepAgent previously sent the reloaded log records with the higher
generation number. Thissituation arisesonly if you haveto restore the database
and log to a previous state for the first failure and then later replay the log due
to a second failure.

Warning! Only change the database generation number as part of arecovery
procedure. Changing the number at any other time can result in duplicate or
missing data at replicate databases.

341

Recovery support tasks

Dumps and database generation numbers

When you rel oad a database dump, the database generation number isincluded
intherestored database. Since the database generation number isalso stored in
the RSSD of the Replication Server that manages the database, you may need
to update that number so that it matches the onein the restored database.

However, when you reload a transaction log, the database generation number
isnot included in the restored log. For example, assume the following
operations have occurred in a database:

Table 7-6: Dumps and database generation numbers

Operation Database generation number
database dump D1 100
transaction dump T1 100
dbcc settrunc('ltm’, 'gen_id', 101) 101
transaction dump T2 101
database dump D2 101

If you reload database dump D1, database generation number 100 is restored
with it. If you reload transaction dump T1, the generation number remains at
100. After transaction dump T2, the generation humber remains at 100,
because rel oading transaction dumps does not alter the database generation
number. Inthiscase, you need to change the database generation number to 101
using the dbcc settrunc command before having RepAgent scan transaction
dump T2.

However, if you load database dump D2 before resuming replication, you do
not have to ater the database generation number, since the number 101 is
restored.

Resetting database generation numbers

342

Each primary database in areplication system includes a database generation
number. This number is stored both in the database and in the RSSD of the
Replication Server that manages the database.

Any time you load a primary database for recovery, you must change the
database generation number, as instructed in the recovery procedure you are
using.

The maximum value for the database generation number is 65,535. Sybase
recommends that you avoid incrementing the number to high values unless
absolutely necessary.

Replication Server

CHAPTER 7 Replication System Recovery

Support for non-ASE
databases

Administration Guide

If you want to reset the database generation number, you must rebuild the
replication environment. Rebuilding the environment includes deleting the
connection to the primary database where you want to reset the database
generation number, recreating the connection, and then rebuilding the
replication configuration of the primary database.

In addition to Adaptive Server, you can reset database generation numbers for
all supported non-A SE databases acting as the primary database. See the
Replication Server Heterogeneous Replication Guide for supported primary
databases.

[IResetting primary database generation number

In this procedure, the primary database refers to the primary database where
you want to reset the database generation number.

1

At the replicate Replication Server, drop all subscriptions that reference
replication definitions and publications defined for the connection to the
primary database.

Drop all publications referenced by the subscriptions you dropped in step
1

Drop all articles referenced by the publications you dropped in step 2.

In the primary Replication Server, drop al replication definitions for the
primary database connection.

In the primary Replication Server, drop the connection to the primary
database, and all connections to replicate databases that subscribe to the
primary database.

Set the database generation number to 0 on the primary database:
e InAdaptive Server:
dbcc settrunc(‘ltm’, ‘gen id’, 0)

* InReplication Agent for IBM DB2 UDB on UNIX and Windows,
Microsoft SQL Server, and Oracle:

pdb gen id 0

In the primary Replication Server, create anew connection to the primary
database, and create connections to the replicate databases.

Recreate all the replication definitions, publications, articles, and
subscriptions you dropped. See “ Setting up areplication environment,” in
Chapter 3, “Managing Replication Server with Sybase Central” in the
Replication Server Administration Guide Volume 1.

343

Resynchronizing replicate databases

Resynchronizing replicate databases

Product support

Databaseresynchronization allowsyouto rematerialize your replicate database
and resume further replication without loss or risk inconsistency of data, and
without forcing a quiesce of your primary database.

Database resynchronizationisbased on obtaining adump of datafrom atrusted
source and applying the dump to the target database you want to resynchronize.

The procedure for configuring database resynchronization described in the
following sections apply to Adaptive Server databases. To resynchronize
Oracle databases, see Chapter 13, “Resynchronizing Oracle Replicate
Databases’ in the Replication Server Heterogeneous Replication Guide and the
Replication Agent documentation.

Configuring database resynchronization

344

Database resynchronization includes these steps described in detail in the
sections that follow:

» Instructing Replication Server to bein resync mode. Whilein resync
mode, Replication Server skips transactions and purges replication data
from replication queues in anticipation of the replicate database being
repopulated from a dump taken from the primary database or trusted
source.

e Sending aresync marker to Replication Server to indicate that a
resynchronization effort isin progress

e Obtaining adump from the primary database.

* When Replication Server detects adump marker that indicates the
completion of the primary database dump, Replication Server stops
skipping transactions and can determine which transactionsto apply to the
replicate database.

» Applying the dump to the replicate database.
* Resuming replication.

See “Database resynchronization scenario” on page 347 to use these steps.

Replication Server

CHAPTER 7 Replication System Recovery

Instructing Replication Server to skip transactions

Syntax

Use the skip to resync parameter with the resume connection command to
instruct Replication Server to skip transactionsin the DS| outbound queue for
the specified replicate database until Replication Server receives and
acknowledges a dump database marker sent by RepAgent. Replication Server
skipsprocessing of recordsin the outbound queue sincethe datain thereplicate
database is expected to be replaced with the dump contents. See “resume
connection,” in Chapter 3 “Replication Server Commands” in the Replication
Server Reference Manual.

Warning! If you execute resume connection with the skip to resync marker
option on the wrong connection, data on the replicate database becomes
unsynchronized.

resume connection to data_server.database
[skip [n] transaction | execute transaction | skip to resync marker]

Note When you set skip to resync marker, Replication Server does not log the
transactions that are skipped in the Replication Server log or in the database
exceptionslog. Replication Server logstransactionsthat are skipped when you
Set skip [n] transaction.

Obtaining a dump of the database

See“dump database” in the Adaptive Server documentation for instructionsto
obtain a database dump.

Sending the dump database marker to Replication Server

Administration Guide

RepAgent automatically generates and sends a dump database marker to
Replication Server when you obtain adump of the primary database. When the
DSl isin resync mode after you resume DSI using skip to resync marker, and
you issue an execute rs_marker ‘resync database’ command from Adaptive
Server, the dump database marker received after the resync database marker
suspends the DSI and removes any existing resynchronization state for that
DSl connection.

Multiplereplicate databases for the same primary database all receive the same
dump database marker. See“dump subcommand,” in Appendix B “Log Tranfer
Language” in the Replication Server Design Guide.

345

Resynchronizing replicate databases

You can manually resume DSI after you apply the dump to the replicate
database. DSI no longer rejects committed transactions and all transactionsthat
commit after the dump point, which isindicated by the dump database marker,
are replicated.

Monitoring DSI thread information

Use the admin who command to provide information on the DSI thread during
database resynchronization:

State Description

SkipUntil | The DSl thread is resuming after you execute skip to resync, and this

Resync state remains until the thread receives aresync database marker.

SkipUntil | The DSI thread has received aresync database marker, and this state

Dump remains until the DSI has processed a subsequent dump database
marker.

Applying the dump to a database to be resynchronized

346

You can load the primary database dump to the replicate database only after
you see these messages in the system log:

* When Replication Server receives either the resync database marker or the
resync database with purge marker:

DSI for data server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

* When Replication Server receives the resync database with init marker:

DSI for data server.database received and processed
Resync Database Marker. DSI is now suspended. Resume
after database has been reloaded.

* When Replication Server receives the dump database marker:

DSI for data server.database received and processed
Dump Marker. DSI is now suspended. Resume after
database has been reloaded.

See “load database” in the Adaptive Server documentation for instructions to
load the dump to the database you want to resynchronize.

Replication Server

CHAPTER 7 Replication System Recovery

Database resynchronization scenario

The following section describes a scenario containing the procedure you must
follow to resynchronize databases. After completing the procedure, the
primary and replicate databases are transactionally consistent.

To execute the procedure, you must:
e Beareplication system administrator
e Have an existing replication environment that is running successfully

e Have methods and processes available to copy data from the primary
database to the replicate

See the Replication Server Reference Manual for full command syntax.

Note You can only use this procedure for Adaptive Server.

[IResynchronizing a replicate database

Note In this procedure, you do not have to stop replication processing by
RepAgent.

1 Suspend the Replication Server DSI connection to the database:
suspend connection to dataserver.database

2 Instruct Replication Server to remove data from the replicate database
outbound queue and wait for aresync marker from the primary database:

resume connection to data server.database skip to
resync marker

3 Ensurethat there are no open transactions in system log, and then in the
primary database, generate the resync marker manually by executing
rs_marker With resync database:

execute rs marker ‘resync database’

4 Inthe Replication Server system log, verify that DSI has received and
accepted the resync marker by looking for this message:

DSI for data server.database received and processed
Resync Database Marker. Waiting for Dump Marker.

Administration Guide 347

Resynchronizing replicate databases

5 Obtain adump of the primary database contents. See the Adaptive Server
documentation for instructions. Adaptive Server generates adump
database marker automatically.

6 Apply the dump of the primary database to the replicate database. See the
Adaptive Server documentation for instructions.

7 SeetheReplication Server system log to verify that Replication Server has
processed the dump database marker by looking for this message:

DSI for data server.database received and processed
Dump Marker. DSI is now suspended. Resume after
database has been reloaded.

When Replication Server receives the dump marker, the DSI connection
automatically suspends.
8 After you apply the dump to the replicate database, resume DSI:

resume connection to data server.database

348 Replication Server

APPENDIX A

Overview

Administration Guide

Asynchronous Procedures

This appendix describes asynchronous stored procedures.

Topic Page
Overview 349
Applied stored procedures 351
Request stored procedures 352
Asynchronous stored procedure prerequisites 353
Steps for implementing an applied stored procedure 354
Steps for implementing a request stored procedure 358
Specifying stored procedures and tables for replication 360
Managing user-defined functions 361

Thisappendix describes the method for replicating stored procedures that
are associated with table replication definitions. This method is supported

for applications that requireit.

See Chapter 10, “Managing Replicated Functions” in the Replication
Server Administration Guide Volume 1 for information about replicated
stored proceduresthat are associated with function replication definitions.
The method described in that chapter is the recommended method for

replicating stored procedures.

Refer to Replication Server Design Guide for more information on
replication system design issues relating to replicated stored procedures.

Asynchronous procedure delivery allows you to execute SQL stored
procedures that are designated for replication at primary or replicate

databases. Because these stored procedures are marked for replication
using the sp_setreplicate or sp_setrepproc System procedures, they are

called replicated stored procedures.

349

Overview

To satisfy the requirements of distributed applications, Replication Server
provides two types of asynchronous stored procedure delivery: applied stored
procedures and request stored procedures. Each typeis described in this
appendix.

Logging replicated stored procedures

Adaptive Server uses the following method to determine in which database a
replicated stored procedure execution will be logged:

The procedure gets logged in the database in which the enclosing transaction
was started.

» If the user does not begin a transaction explicitly, Adaptive Server will
begin one in the user’s current database before the stored procedure
execution.

» If the user begins the transaction in one database, and then executes a
replicated stored procedure in another database, the execution will still be
logged in the database where the user began the transaction.

If the execution of atable-style replicated stored procedure (marked for
replication by using either sp_setreplicateproc_name, 'true’ or
sp_setrepprocproc_name, 'table’) islogged in one database and changes
replicated tables in another database, the table’s changes and the procedure
execution are logged in different databases. Therefore, the effects of the stored
procedure execution can be replicated twice. The first time the stored
procedure execution itself isreplicated. The second time table changes that
have been logged in the other database are replicated.

Logging replicated stored restrictions

Note that replicated Adaptive Server stored procedures may not contain
parameters with the text, unitext, or image datatypes. Refer to the Adaptive
Server Reference Manual for more information.

350 Replication Server

APPENDIX A Asynchronous Procedures

Mixed-mode transactions

If a single transaction that invokes one or more request stored proceduresisa
mixed-mode transaction that also executes applied stored procedures or
contains data modification language, Replication Server processes the request
stored procedures after all the other operations. All request operations are
processed together in a single separate transaction. This situation may arise
where a single Replication Server manages both primary and replicate data.

Applied stored procedures

Administration Guide

Replicated stored procedures that Replication Server delivers from a primary
database to areplicate database are called applied stored procedures.

You use applied stored procedure delivery to replicate transactions first
performed on primary data to replicate databases. Data changes are applied at
aprimary database and then distributed at alater time to replicate databases
that subscribe to replication definitions for the data. Replication Server
executes the replicated stored procedure in the replicate database as the
maintenance user, which is consistent with normal data replication.

You can use applied stored procedures to realize important performance
benefits. For example, if your organization has alarge amount of row changes,
you can create an applied stored procedure which changes many rows, rather
than replicating the rows individually. You can also use applied stored
procedures to replicate data set changes which are difficult to express using
normal subscriptions. Refer to the Replication Server Design Guide for more
information.

You set up applied stored procedures by making thefirst statement in the stored
procedure update atable. You must also make sure that the destination
databases have subscriptionsto the before and after images of that updated row.
The applied stored procedure must update only one row in areplicated table.
Replication Server uses the first row updated by the stored procedure to
determine where to send the user-defined function for the procedure.

If the rulesin setting up the applied stored procedure are not met, Replication
Server fails to distribute the stored procedure to replicate databases. See
“Warning conditions’ on page 356 for alist of actionsthat Replication Server
takesif it failsto deliver the applied stored procedure.

351

Request stored procedures

Request stored procedures

352

Replicated stored procedures that Replication Server delivers from areplicate
database to a primary database are called request stored procedures. You use a
request stored procedureto deliver atransaction from areplicate database back
to the primary database.

For example, aclient application at aremote location may need to make
changes to primary data. In this case, the application at the remote location
executes a request stored procedure locally to change the primary data.
Replication Server delivers this request stored procedure to the primary
database by executing, in thereplicate database, astored procedurethat hasthe
same name as the stored procedure in the primary database. The stored
procedurein the primary database updates the primary datathat the transaction
changes.

Replication Server executes the replicated stored procedure in the primary
database as the user who executed the stored procedurein the replicate
database. This ensures that only authorized users may change primary data.

In an application, Replication Server may replicate some or all of the data that
is changed in the primary database. The changes are propagated to replicate
databases managed by Replication Servers with subscriptions for the related
data, either as data rows (insert, delete, or update operation) or as stored
procedures. Using this mechanism, the effect of atransaction quickly arrivesat
both the primary and replicate databases.

Warning! Do not execute a request stored procedure in a primary database.
This canlead to looping behavior, in which replicate Replication Servers cause
the same procedure to execute in the primary database.

Using request stored procedures ensures that all updates are made at the
primary database, preserving the Replication Server basic primary copy data
model while keeping the replication system invulnerable to network failures
and excess traffic. Even when there is primary database failure, or network
failure from the replicate database to the primary database, Replication Server
remains fault tolerant. It queues any undelivered request stored procedure
invocations until the failed components come back online. When the
components are again in service, Replication Server completes delivery.

Replication Server

APPENDIX A Asynchronous Procedures

By using the Replication Server guaranteed request stored procedure delivery
feature, you can obtain all the benefits of having asingle, definitive copy of
your data that includes all the latest changes. At the same time, Replication
Server provides the avail ability and performance benefits of de-coupling
applications at replicate databases from the primary database.

Refer to the Replication Server Design Guide for more information on
replication system design issues relating to asynchronous procedure delivery.

Asynchronous stored procedure prerequisites

Administration Guide

Before implementing applied or request stored procedures on your system, be
sure you:

e Understand how you will use asynchronous procedure delivery to meet
your application needs. Refer to the Replication Server Design Guide for
more information.

e Setup aRepAgent for the stored procedure, even if the database contains
no primary data (such as when using request functions). Refer to the
Replication Server installation and configuration guidesfor your platform
for details.

» Createafunction string for user-defined functions for function-string
classes for which Replication Server does not generate default function
strings. You can use the alter function string command to replace a default
function string with one that performs the action your application requires.

See “Function strings and function-string classes’ on page 33 for more
information.

* Follow the step-by step instructions provided in this chapter for setting up
applied or request stored procedures.

Note For function-string classes for which default generated function strings
are provided, Replication Server creates adefault function string that executes
a stored procedure with the same name as the user-defined function. The
proceduresin this chapter assume that Replication Server processes applied or
reguest stored procedures for such classes. For al other classes, you must
create function strings for the user-defined function string.

353

Steps for implementing an applied stored procedure

Steps for implementing an applied stored procedure

354

To implement an applied stored procedure, perform the following steps:

1 Review the requirements described in “ Asynchronous stored procedure
prerequisites’ on page 353.

2 Set upreplicate databases that contain replicate tables. These tables may
or may not match the replication definition for the primary table.

3 Asnecessary, set up routes from the primary Replication Server to the
replicate Replication Servers that have subscriptions to replication
definitions for the primary table.

See Chapter 6, “Managing Routes’ in the Replication Server
Administration Guide Volume 1 for details on setting up routes.

4 Locate or create areplication definition on the primary Replication Server
that identifies the table to be modified.

See Chapter 9, “Managing Replicated Tables’ in the Replication Server
Administration Guide Volume 1 for information on creating replication
definitions.

5 Inthe primary database, use the sp_setreplicate System procedure or the
sp_setreptable system procedure to mark the table for replication. For
example, for atable named employee:

sp_setreplicate employee, 'true'
or

sp_setreptable employee, 'true'
For sp_setreptable, the single quotes are optional.

See* Specifying stored procedures and tablesfor replication” on page 360
for details on using sp_setreplicate. See“Using the sp_setreptable system
procedure” on page 302 in the Replication Server Administration Guide

Volume 1 for details on using sp_setreptable.

6 Createthe stored procedure on the primary database. Thefirst statement in
the stored procedure must contain an update command for the first row of
the primary table. For example:

create proc upd emp

@emp_id int, @salary float

as

update employee

set salary = salary * @salary

Replication Server

APPENDIX A Asynchronous Procedures

Administration Guide

where emp id = @emp_ id

Warning! If the first statement in the stored procedure contains an
operation other than update, Replication Server cannot distribute the
stored procedureto replicate databases. See* Warning conditions’ on page
356 for more information.

Never include dump transaction or dump database commandsin the stored
procedure. If the stored procedure contains commands with statement
level errors, the error may occur at the replicate DSI. Depending on the
error actions, the DSI may shut down.

In the primary database, use the sp_setreplicate system procedure or the
sp_setrepproc System procedure to mark the stored procedure for
replication. For example:

sp_setreplicate upd emp, 'true'
or
sp_setrepproc upd emp, 'table'

See" Specifying stored procedures and tablesfor replication” on page 360
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 374 in the Replication Server Administration Guide
Volume 1 for details on using sp_setrepproc.

At the replicate Replication Servers, create subscriptionsto areplication
definition for the table that the stored procedure at the primary database
updates.

See Chapter 11, “Managing Subscriptions” in the Replication Server
Administration Guide Volume 1 for details on creating subscriptions.

Warning! Be sure the replicate database subscribes to both the before
imageand after image of the updated row. If it does not, Replication Server
cannot distribute the stored procedure to the replicate database. See
“Warning conditions’ on page 356 for more information.

Create a stored procedure on the replicate database with the same name
and parameters asthe stored procedure on the primary database, but do not
mark the procedure as replicated. For example:

create proc upd emp

@emp id int, e@salary float
as

update employee

355

Steps for implementing an applied stored procedure

Warning conditions

Conditions and
actions

356

set salary = salary * @salary
where emp id = @emp id

10 Grant execute permission on the stored procedure to the mai ntenance user.

1

12

For example:
grant execute on upd emp to maint user

Create a user-defined function on the primary Replication Server that
associates the stored procedure to the name of areplication definition for
the table it updates. For example:

create function employee rep.upd emp
(eemp_id int, @salary float)

Only one user-defined function are shared by all replication definitionsfor
the same table. You can specify the name of any of these replication
definitions.

Verify that all Replication Server and database objects in steps 1 through
11 exist at the appropriate locations.

Refer to Chapter 6, “RSSD Stored Procedures,” in the Replication Server
Reference Manual for information about stored procedures used to query
the RSSD for system information.

If the first statement in the applied stored procedure is an operation other than
update, or the replicate database does not subscribe to the before image and
after image of the updated row, Replication Server failsto deliver the applied
stored procedure to the replicate database. Instead, Replication Server
performs other actions that you can interpret as warnings.

The actions Replication Server takesis based on:

Thefirst operation (other than update) contained in the applied stored
procedure at the primary database

Whether the row modification staysin the subscription for the replicate
database, and whether it matches the subscription’s before image or after

image

This section identifies the warning conditions that prevent Replication Server
from delivering an applied stored procedure at areplicate database.

Condition: The first row operation is an insert operation.

Replication Server

APPENDIX A Asynchronous Procedures

Administration Guide

Action: Replication Server distributes the insert operation instead of the
applied stored procedure.

Condition: The first row operation is a delete operation.

Action: Replication Server distributes the del ete operation instead of the
applied stored procedure.

Condition: Replicate Replication Servers have subscriptions that match the
before image, but not the after image, of the modified row.

Action: Replication Server distributes a delete operation (rs_delete system
function) to replicate databases with subscriptions to the before image but not
the after image of the row modification.

Example: Assumethereisatable T1 that has a column named C1 with avalue
of 1. A replicate database has a subscription to areplication definition for table
T1whereCc1=1.

If the associated stored procedure is executed with the parameters= 1 (before
image) and = 2 (after image), the replicate database does not subscribe to the
after image value of 2. Therefore, Replication Server distributes the delete
operation to the replicate database.

Condition: Replicate Replication Servers have subscriptions that match the
after image, but not the before image of the modified row.

Action: Replication Server distributes an insert operation (rs_insert system
function) to replicate databases with subscriptionsto the after image but not the
before image of the row modification.

Example: Assumethereisatable T1 that has a column named C1 with avalue
of 1. A replicate database has a subscription to areplication definition for table
T1whereC1=2.

If the associated stored procedure is executed with the parameters = 1 (before
image) and = 2 (after image), the replicate database does not subscribe to the
before image value of 1. Therefore, Replication Server distributes the insert
operation to the replicate database.

Condition: Replicate Replication Servers have subscriptionsthat match neither
the before image nor the after image of the row modification.

Action: Replication Server does not distribute any operation or stored
procedure to the replicate databases.

Example: Assumethereisatable T1 that has a column named C1 with avalue
of 1. A replicate database has a subscription to areplication definition for table
T1 whereC1> 2.

357

Steps for implementing a request stored procedure

If the associated stored procedure is executed with the parameters equal to 1
(before image) and equal to 2 (after image), the replicate Replication Server
does not subscribeto either the beforeimage value of 1 or the after image value
of 2. Therefore, Replication Server performs no distribution to the replicate
database.

Steps for implementing a request stored procedure

358

To implement arequest stored procedure, perform the following steps:

1 Review the requirements described in “ Asynchronous stored procedure
prerequisites’ on page 353.

2 Asnecessary, set up aroute from the replicate Replication Server to the
primary Replication Server where the data is updated, and from the
primary Replication Server to the replicate Replication Server that sends
the update.

See Chapter 6, “Managing Routes’ in the Replication Server
Administration Guide Volume 1 for details on setting up routes.

3 Create alogin name and password at the primary Replication Server for
the user at the replicate Replication Server.

See Chapter 8, “Managing Replication Server Security” in the
Replication Server Administration Guide Volume 1 for details.

4 Atthereplicate Replication Server, create the necessary permissions for
thisuser to execute the stored procedure at the primary Replication Server.

See Chapter 8, “Managing Replication Server Security” in the
Replication Server Administration Guide Volume 1 for details.

5 Attheprimary Replication Server, locate or create areplication definition
that identifies the table to be modified.

See Chapter 9, “Managing Replicated Tables’ in the Replication Server
Administration Guide Volume 1 for information on creating replication
definitions.

Thereplicate Replication Server may have subscriptionson thereplication
definition.

6 Createthe stored procedure, which does not perform any updates, on the
replicate database. For example:

Replication Server

APPENDIX A Asynchronous Procedures

Administration Guide

create proc upd emp

@emp id int, @salary float

as

print "Transaction accepted."

If you want the stored procedure to have the same name as those in
different replicate databases, see “ Specifying a nonunique name for a
user-defined function” on page 365 for details.

In the replicate database, use the sp_setreplicate system procedure or the
sp_setrepproc System procedure to mark the stored procedure for
replication. For example:

sp_setreplicate upd emp, 'true'
or
sp_setrepproc upd emp, 'table'

See" Specifying stored procedures and tablesfor replication” on page 360
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 374 in the Replication Server Administration Guide
Volume 1 for details on using sp_setrepproc.

Create a stored procedure on the primary database with the same name as
the stored procedure on the replicate database, but do not mark the
procedure as replicated. This stored procedure modifies a primary table.
For example:

create proc upd emp

@emp id int, e@salary float

as

update employee

set salary = salary * @salary
where emp id = @emp_id

Note The stored procedure names on the primary and replicate databases
can differ if you alter the function string for the function to execute a
stored procedure with adifferent name. See“Mapping to adifferent stored
procedure name” on page 364 for more information.

Grant permission on the stored procedure to the replicate Replication
Server users who will execute this stored procedure. For example:

grant all on upd emp to public

359

Specifying stored procedures and tables for replication

10 Create a user-defined function on the primary Replication Server that
associ ates the stored procedure to the name of areplication definition for
the table it updates. For example:

create function employee rep.upd emp
(eemp_id int, @salary float)

11 Verify that al Replication Server and database objects in steps 1 through
10 exist at the appropriate locations.

Refer to Chapter 6, “RSSD Stored Procedures,” in the Replication Server
Reference Manual for information about stored procedures used to query
the RSSD for system information.

Specifying stored procedures and tables for replication

360

You can use the sp_setreplicate System procedure in Adaptive Server to mark
database tables and stored procedures for replication.

You can also use the sp_setreptable system procedure to mark tables for
replication and the sp_setrepproc system procedure to mark stored procedures
for replication. These system procedures extend the capabilities of
sp_setreplicate and are intended to replace it.

See “Using the sp_setreptable system procedure” on page 302 and “Marking
stored procedures for replication” on page 374 in the Replication Server
Administration Guide Volume 1 for details.

The syntax for the sp_setreplicate system procedure is:
sp_setreplicate [object_name [, { true' | 'false’]]
object_name can be either atable name or a stored procedure name.

The “true” and “false” parameters change the replication status of a specified
object. (The single quotes are optional .)

e Usesp_setreplicate with no parametersto list al replicated objectsin the
database.

» Usesp_setreplicate with just the object name to check the replication
status of the object. Adaptive Server reports 'true' if replication is enabled
for the object, or 'false’ if it isnot.

Replication Server

APPENDIX A Asynchronous Procedures

« Usesp_setreplicate with the object name and either ‘true’ or 'false’ to enable
or disable replication for the object. You must be the Adaptive Server
System Administrator or the Database Owner to use sp_setreplicate to
change the replication status of an object.

Warning! A replicated stored procedure should only modify datain the
database in which it is executed. If it modifies datain another database,
Replication Server replicates the updated data and the stored procedure.

Managing user-defined functions

This section describes commands for managing user-defined functions. See
Chapter 8, “Managing Replication Server Security” in the Replication Server
Administration Guide Volume 1 for alist of permissionsthat are required to use
the commands. See Chapter 2, “ Customizing Database Operations” for details
on altering function strings for user-defined functions and displaying function-
related information.

Creating a user-defined function

Administration Guide

Use the create function command to register areplicated stored procedure with
Replication Server. When a stored procedure is executed, Replication Server
maps it to areplication definition. The replication definition contains a user-
defined function name that matches the name of the stored procedure.

Replication Server delivers the function to the Replication Server that is
primary for the replication definition. When the destination Replication Server
that owns the replication definition receives the function, it maps the stored
procedure parameters into the commands for the user-defined function.

The syntax for the create function command is:

create function replication_definition.function
([@parameter datatype [, @parameter datatype]...])

The replication_definition must be an existing replication definition.
Observe these guidelines when using this command:

« Execute this command at the Replication Server where the replication
definition was created.

361

Managing user-defined functions

e Do not use the names of system functions. See Chapter 2, “ Customizing
Database Operations” for the list of reserved system-function names.

* Includethe parentheses surrounding the listed parameters, even when you
are defining functions with no parameters.

e If you are not using a function-string class for which default generated
function strings are provided, after you have created a user-defined
function, use the create function string command to add a function string.
See Chapter 2, “ Customizing Database Operations’ for details.

The following example creates a user-defined function named Stock_receipt.
The function is associated with the Items_rd replication definition:

create function Items rd.Stock receipt
(@Location int, @Recpt num int,
@Item no char(15), @Qty recd int)

When a user executes the replicated stored procedure, Replication Server now
deliversit.

Adding parameters to a user-defined function

362

When you add a parameter to a replicated stored procedure, use the alter
function command to tell Replication Server about the new parameters. To add
the parameters:

1 Alter the stored procedure at the primary or replicate data server and
provide defaults for new parameters.

2 Asaprecaution, quiesce the system. Altering functions while updates are
in process can have unpredictable results.

See" Quiescing Replication Server” on page 107 in the Replication Server
Administration Guide Volume 1 for details on quiescing the system.

3 Alter the function using the alter function command.

4 If you are not using a function-string class for which default generated
function strings are provided, alter function strings to use the new
parameters. See Chapter 2, “ Customizing Database Operations” for
details.

The syntax for the alter function command is:

alter function replication_definition.function
add parameters @parameter datatype
[, @parameter datatype]...

Replication Server

APPENDIX A Asynchronous Procedures

Thereplication_definition is the name of the replication definition for the
function. A function can have up to 255 parameters.

The following example adds an int parameter named Volume to the New_issue
function for the Tokyo_quotes replication definition:

alter function Tokyo quotes.New issue
add parameters @Volume int

Dropping a user-defined function

Administration Guide

Usethedrop function command to drop a user-defined function. Thiscommand
drops a function name and any function strings that have been created for it.
You cannot drop system functions.

Before you drop the user-defined function, be sure to:

1 Dropthestored procedure at the primary database using the drop procedure
Adaptive Server command, or use the sp_setreplicate or sp_setrepproc
system procedure and specify 'false' to disable replication for the stored
procedure.

See" Specifying stored procedures and tablesfor replication” on page 360
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 374 in the Replication Server Administration Guide
Volume 1 for details on using sp_setrepproc.

2 Asaprecaution, quiesce the system before executing the drop function
command. Dropping functions while updates are in process can have
unpredictable results.

See “Quiescing areplication system” on page 108 in the Replication
Server Administration Guide Volume 1 for details on quiescing the system.

The syntax for the drop function command is:
drop function replication_definition.function

Execute the command on the Replication Server where the replication
definition was created.

Thefollowing command drops the Stock_receipt user-defined function created
in the previous section:

drop function Items_ rd.Stock receipt

363

Managing user-defined functions

Mapping to a different stored procedure name

When you create a user-defined function in a database that uses the afunction-
string class for which default generated function strings are provided,
Replication Server generates a default function string. The default generated
function string executes astored procedure with the same name and parameters
as the user-defined function.

For example, if you are using adefault function string, you can set up arequest
stored procedure to execute in the replicate database by creating a stored
procedure in the primary database with the same name and parameters as the
user-defined function.

If you want to map the user-defined function to a different stored procedure
name, use the alter function string command to configure Replication Server to
deliver the stored procedure by executing a stored procedure with a different
name. You can also do so in function-string classesthat allow you to customize
function strings.

Example This example illustrates how to map a user-defined function to a different
stored procedure name.

1 Assume the stored procedure upd_sales exists on the primary Adaptive
Server, and that it performs an update on the Adaptive Server sales table:

create proc upd sales

@stor id varchar(10),

@ord num varchar (10),

@date datetime

as

64 update sales set date = @date
where stor id = @stor_id

and ord num = @ord num

2 Toregister the upd_sales stored procedure with the Replication Server,
create the following function, whose name includes in its name the
sales_def replication definition on the sales table and the upd_sales
replicated stored procedure:

create function sales def.upd sales
(estor id varchar(10), @date datetime)

3 Onthereplicate Adaptive Server, aversion of the stored procedure
upd_sales that performs no work is created with the same name:

create proc upd sales

@stor_id varchar (10),
@ord num varchar (10),
@date datetime

364 Replication Server

APPENDIX A Asynchronous Procedures

as
print "Attempting to Update Sales Table"
print "Processing Update Asynchronously"

4 To execute the upd_sales stored procedure with the name real_update
instead of upd_sales:

* Thedefault generated function string is atered:

alter function string sales_def.upd sales
for rs_sqglserver function_class

output rpc

'execute real update

@stor_id = ?stor id!param?,

@date = ?date!param?'

e A stored procedurein the primary database is created with the name
real_update. It accepts two parameters.

Specifying a nonunique name for a user-defined function

Example

Administration Guide

The name of a user-defined function must be globally uniquein the replication
system so that Replication Server can locate the particular replication
definition for which the user-defined function is defined. If you create more
than one replication definition for the same primary table, there is only one
user-defined function for al of that table’s replication definitions.

If the user-defined function nameisnot unique, thefirst parameter of the stored
procedure must be @rs_repdef, and the name of the replication definition must
be passed in this parameter when the stored procedure is executed.

Do not definethe @rs_repdef parameter in the create function command for the
user-defined function. The Replication Agent extractsthereplication definition
name and sendsit with the LTL commands. This convention works with
RepAgent for Adaptive Server, but may not be supported by Replication
Agentsfor other data servers.

This example assumes that the user-defined function is not unique and the
replication definition name is passed to the @rs_repdef parameter when the
following stored procedure is executed:

create proc upd sales
@rs_repdef varchar(255),
@stor_id varchar(10),
@date datetime

as

365

Managing user-defined functions

print "Attempting to Update Sales Table"
print "Processing Update Asynchronously"

366 Replication Server

APPENDIX B

Introduction

Administration Guide

High Availability on Sun
Cluster 2.2

This appendix provides background and procedures for configuring
Sybase Replication Server for high availability (HA) on Sun Cluster 2.2.

Topic Page
Introduction 367
Terminology 368
Technology overview 369
Configuring Replication Server for high availability 370
Administering Replication Server as a data service 375

This appendix assumes that:

e You are familiar with Sybase Replication Server. This chapter does
not explain the steps necessary to install Sybase Replication Server.

¢ You are familiar with Sun Cluster HA. This document does not
explain the steps necessary to install Sun Cluster HA.

* You have atwo-node cluster hardware with Sun Cluster HA 2.2.
Documentation references:

e Sun Cluster 2.2 Software Planning and Installation Guide

e un Cluster 2.2 System Administration Guide

e Configuring Sybase Adaptive Server Enterprise 12.0 Server for High
Availability: Sun Cluster HA (see White Papers at
http://iwww.sybase.com/products/databaseservers/ase)

« Replication Server documentation (see Product Manuals at
http://iwww.sybase.com/support/manuals/)

367

Terminology

Terminology

368

These terms are used in this chapter:

Cluster — multiple systems, or nodes, that work together as a single entity
to provide applications, system resources, and data to users.

Cluster node—aphysical machinethat is part of a Sun Cluster. Also called
aphysical host.

Data service—an application that provides client service on anetwork and
implements read and write access to disk-based data. Replication Server
and Adaptive Server Enterprise are examples of data services.

Disk group —awell-defined group of multihost disks that move as a unit
between two serversin an HA configuration.

Fault monitor — a daemon that probes data services.

High availability (HA) — very low downtime. Computer systems that
provide HA usually provide 99.999% availability, or roughly five minutes
unscheduled downtime per year.

Logical host —agroup of resources including a disk group, logical host
name, and logical |P address. A logical host resides on (or is mastered by)
aphysical host (or node) in acluster machine. It can move as a unit
between physical hosts on a cluster.

Master — the node with exclusive read and write access to the disk group
that has the logical address mapped to its Ethernet address. The current
master of the logical host runsthe logical host’s data services.

Multihost disk —adisk configured for potential accessibility frommultiple
nodes.

Failover —the event triggered by anode or adata servicefailure, in which
logical hosts and the data services on the logical hosts move to another
node.

Failback — a planned event, where alogical host and its data services are
moved back to the original hosts.

Replication Server

APPENDIX B High Availability on Sun Cluster 2.2

Technology overview

Administration Guide

Sun Cluster HA is ahardware- and software-based high availability solution.
It provides high availability support on a cluster machine and automatic data
servicefailover injust afew seconds. It accomplishesthis by adding hardware
redundancy, software monitoring, and restart capabilities.

Sun Cluster provides cluster management tools for a System Administrator to
configure, maintain, and troubleshoot HA installations.

The Sun Cluster configuration tolerates these single-point failures:
* Server hardware failure

» Disk mediafailure

* Network interface failure

* Server OSfailure

When any of these failures occur, HA software fails over logical hosts onto
another node and restarts data services on the logical host in the new node.

Sybase Replication Server isimplemented asadataservice on alogical host on
the cluster machine. The HA fault monitor for Replication Server periodically
probes Replication Server. If Replication Server isdown or hung, the fault
monitor attempts to restart Replication Server locally. If Replication Server
fails again within a configurable period of time, the fault monitor fails over to
thelogical host so the Replication Server will be rebooted on the second node.

To Replication Server clients, it appears as though the original Replication
Server has experienced areboot. The fact that it has moved to another physical
machine is transparent to the users. Replication Server is affiliated with a
logical host, not the physical machine.

As adata service, the Replication Server includes a set of scripts registered
with Sun Cluster as callback methods. Sun Cluster calls these methods at
different stages of Failover:

« FM_STOP-to shut down the fault monitor for the data serviceto befailed
over.

e STOP_NET —to shut down the data service itself.
e START_NET —to start the data service on the new node.

e FM_START —to start the fault monitor on the new node for the data
service.

369

Configuring Replication Server for high availability

Each Replication Server isregistered as a data service using the hareg
command. If you have multiple Replication Serversrunning on the cluster, you
must register each of them. Each data service hasits own fault monitor asa
separate process.

Note For detailed information about the hareg command, see the appropriate
Sun Cluster documentation.

Configuring Replication Server for high availability

This section describes the tasks required to configure a Replication Server for
HA on Sun Cluster (assuming a two-node cluster machine).

» “Configuring Sun Cluster for HA” on page 370
» “Installing Replication Server for HA” on page 371
» “Installing Replication Server as a data service” on page 372

Configuring Sun Cluster for HA

370

The system should have following components:

» Two homogenous Sun Enterprise servers with similar configurationsin
terms of resources like CPU, memory, and so on. The servers should be
configured with cluster interconnect, which isused for maintaining cluster
availability, synchronization, and integrity.

» The system should be equipped with a set of multihost disks. The
multihost disk hol dsthe data (partitions) for ahighly available Replication
Server. A node can access dataon amultihost disk only whenitisacurrent
master of the logical host to which the disk belongs.

* The system should have Sun Cluster HA software installed, with
automatic failover capability. The multihost disks should have unique path
names across the system.

» Fordiskfailureprotection, disk mirroring (not provided by Sybase) should
be used.

Replication Server

APPENDIX B High Availability on Sun Cluster 2.2

Logical hosts should be configured. Replication Server runs on alogical
host.

Make sure the logical host for the Replication Server has enough disk
space in its multihosted disk groups for the partitions, and that any
potential master for the logical host has enough memory for the
Replication Server.

Installing Replication Server for HA

During Replication Server installation, you need to perform these tasksin
addition to the tasks described in the Replication Server installation guide:

Administration Guide

1

AsaSybase user, load Replication Server either on ashared disk or on the
local disk. If itison ashared disk, the rel ease cannot be accessed from both
machines concurrently. If it ison alocal disk, make sure the release paths
are the same for both machines. If they are not the same, use a symbolic
link, so they will be the same. For example, if thereleaseis on
/nodel/repserver on nodel, and /node2/repserver on node2, link them to
Irepserver on both nodes so the $SYBASE environment variableis the
same across the system.

Add entries for Replication Server, RSSD server, and primary/replicate
data serversto the interfaces file in the $SYBASE directory on both
machines. Use the logical host name for Replication Server in the
interfacesfile.

Note To use LDAP directory servicesinstead of interfaces files, supply
multiple entries in the DIRECTORY section of the Replication Server
configuration file. If the connection to the first entry fails, the directory
control layer (DCL) attempts to connection to the second entry and so on.
If a connection cannot be made to any entry in the DIRECTORY section,
Open Client/Server does not use the default interfacesfile to attempt a
connection.

Seethe configuration guidefor your platform for information about setting
up LDAP directory services.

Start the RSSD server.

Follow the installation guide for your platform to install Replication
Server on the node that is currently the master in the logical host. Make
sure that you:

371

Configuring Replication Server for high availability

a Setthe environment variables SYBASE, SYBASE REP, and
SYBASE_OCS:

setenv SYBASE /REPSERVER1210
setenv SYBASE REP REP-12 1
setenv SYBASE OCS 0CSs-12_0

/REPSERVER1210 is the release directory.

b Choosearundirectory for the Replication Server that will containthe
Replication Server run file, configuration file, and log file. The run
directory should exist on both nodes and have exactly the same paths
on both nodes (the path can be linked if necessary).

¢ Choose the multihosted disks for the Replication Server partitions.
d Initiate thers_init command, from the run directory:

cd RUN_DIRECTORY
SSYBASE/S$SYBASE REP/install/rs init

5 Make surethat Replication Server is started.

6 AsaSybase user, copy the run file and the configuration file to the other
node in the same path. Edit the run file on the second node to make sure it
contains the correct path of the configuration and |og files, especialy if
links are used.

Note Therun file name must be RUN_repserver_name, where
repserver_name isthe name of the Replication Server. You can define the
configuration and log file names.

Installing Replication Server as a data service

You also need to perform these specialized tasks to install Replication Server
as adata service:

1 Asroot, create the directory /opt/SUNWCcluster/ha/repserver _name on
both cluster nodes, where repserver_nameisthe name of your Replication
Server. Each Replication Server must have its own directory with the
server name in the path. Copy the following scripts from the Replication
Server installation directory $SYBASE/$SYBASE_REP/sample/ha to:

/opt/SUNWcluster/ha/repserver _name

372 Replication Server

APPENDIX B High Availability on Sun Cluster 2.2

Administration Guide

on both cluster nodes, where repserver_name is the name of your
Replication Server:

repserver start net
repserver stop net
repserver fm start
repserver_ fm stop
repserver_ fm

repserver shutdown
repserver notify admin

If the scripts already exist on the local machine as part of another
Replication Server data service, you can create the following asalink to
the script directory instead:

/opt/SUNWCluster/ha/repserver _name

Asroot, create the directory /var/opt/repserver on both nodesif it does not
exist.

Asroot, create afile/var/opt/repserver/repserver_name on both nodesfor
each Replication Server you want to install as adata service on Sun
Cluster, where repserver _nameis the name of your Replication Server.
Thisfile should contain only two linesin the following form with no blank
space, and should be readable only by root:

repserver:logicalHost:RunFile:releaseDir: SYBASE OCS
:SYBASE REP

probeCycle:probeTimeout : restartDelay: login/password
where:
e repserver —the Replication Server name.
« logicalHost —the logical host on which Replication Server runs.
¢ RunFile—the complete path of the runfile.
» releaseDir —the $SYBASE installation directory.

e SYBASE_OCS-the $SY BASE subdirectory where the connectivity
library islocated.

e SYBASE_REP —the $SYBASE subdirectory where the Replication
Server islocated.

e probeCycle —the number of seconds between the start of two probes
by the fault monitor.

373

Configuring Replication Server for high availability

374

e probeTimeout — time, in seconds, after which arunning Replication
Server probe is aborted by the fault monitor, and atimeout condition
IS set.

* restartDelay — minimum time, in seconds, between two Replication
Server restarts. If, in less than restartDelay seconds after a
Replication Server restart, the fault monitor again detects a condition
that requires arestart, it triggers a switch over to the other host
instead. This resolves situations where a database restart does not
solve the problem.

» login/password — the login/password the fault monitor uses to ping
Replication Server.

To change probeCycle, probeTimeout, restartDelay, or login/password for
the probe after Replication Server isinstalled as data service, send
SIGINT(2) to the monitor process (repserver_fm) to refresh its memory.

kill -2 monitor process id

4 Asroot, create afile /var/opt/repserver/repserver_name.mail on both

nodes, whererepserver_nameisthe name of your Replication Server. This
filelists the UNIX login names of the Replication Server administrators.
The login names should be all in one line, separated by one space.

If the fault monitor encounters any problemsthat need intervention, thisis
the list to which it sends mail.

5 Register the Replication Server as a data service on Sun Cluster:

hareg -r repserver name \

-b "/opt/SUNWcluster/ha/repserver name" \

-m START NET="/opt/SUNWcluster/ha/repserver name/
repserver start_net" \

-t START NET=60 \

-m STOP_NET="/opt/SUNWcluster/ha/repserver name/
repserver stop net" \

-t STOP_NET=60 \

-m FM_START="/opt/SUNWcluster/ha/repserver name/
repserver fm start" \

-t FM_START=60 \

-m
FM_STOP="/opt/SUNWcluster/ha/repserver name/repserv
er fm stop" \

-t FM_STOP=60 \

[-d sybasel] -h logical host

Replication Server

APPENDIX B High Availability on Sun Cluster 2.2

where -d sybaseisrequired if the RSSD is under HA on the same cluster,
and repserver_name is the name of your Replication Server and must be
in the path of the scripts.

6 Turnonthedataservice using hareg -y repserver name.

Administering Replication Server as a data service

This section describes how to start and shut down Replication Server asadata
service, and useful logs for monitoring and troubleshooting.

Data service start/shutdown

Logs

Administration Guide

Once a Replication Server isregistered as data service, use the following to
start Replication Server as a data service:

hareg -y repserver name

This starts Replication Server if it isnot already running, and also starts the
fault monitor for Replication Server.

To shut down Replication Server, use:
hareg -n repserver name

Thefault monitor restarts or fails over this Replication Server if itisshut down
or stopped (killed) any other way.

There are several logs you can use for debugging:

* Replication Server log —the Replication Server logs its messages here.
Use the log to find informational and error messages from Replication
Server. Thelog islocated in the Replication Server Run directory.

e Script log —the data service START and STOP scripts log messages here.
Use the log to find informational and error messages that result from
running the scripts. The log islocated in /var/opt/repserver/harep.log.

375

Administering Replication Server as a data service

e Consolelog—the operating system logs messages here. Usethislogto find
informational and error messages from the hardware. Thelogislocated in
/var/adm/messages.

e CCD log —the Cluster Configurations Database, which is part of the Sun
Cluster configuration, logs messages here. Use thislog to find
informational and error messages about the Sun Cluster configuration and
health. The log is located in /var/opt/SUNWCcluster/ccd/ccd.log.

376 Replication Server

APPENDIX C

Pre-15.1 Request Function

Replication

This appendix describes how you can replicate request functionsin
Replication Server versions earlier than 15.1. This request function
replication lets you deliver atransaction from a replicate database to the

primary database without subscriptions.

Topic Page
Prerequisites and restrictions 377
Using the pre-15.1 request function replication 380
Modifying or dropping replicated functions 386
Model variations and strategies 388

See Chapter 10, “Managing Replicated Functions” in the Replication
Server Administration Guide Volume 1 for more information about the

recommended method for replicating stored procedures.

See the Replication Server Design Guide for more information on

replication system design issues relating to replicated stored procedures.

Prerequisites and restrictions

Administration Guide

Before you implement a no-subscription request function:

« Readthisappendix to fully understand how to use the no-subscription
reguest function replication with versions earlier than 15.1 to meet

your application needs.

e Set up aRepAgent for the replicate database from which replicated
functions are delivered. See Chapter 4, “Managing a Replication
System” and the Replication Server Configuration Guide for details.

e Set up theroute from areplicate Replication Server to the primary

Replication Server. See Chapter 6, “Managing Routes’ in the
Replication Server Administration Guide Volume 1.

377

Prerequisites and restrictions

378

These restrictions apply:

Only the function replication definition created with create function
replication definition command can be used as the no-subscription request
function replication with versions earlier than 15.1.

If you create anew applied or request function replication definition with
create applied function replication definition Or create request function
replication definition command for a primary function, the no-subscription
request function replication for the same primary function will be
disabled.

The names of all replication definitions, including function replication
definitions, must be unique in the replication system. The function
replication definition, created for no-subscription request function must
have the same name as the primary function.

To replicate aversion of arequest stored procedure earlier than 15.1 with
anon-unique name, invoke it with a stored procedure that has a unique
name and is executed in the replicate database.

For example, the non-unique stored procedure upd_sales may invoke the
unique stored procedure upd_salesA or vice versa. Mark upd_salesA for
replication using the sp_setrepproc system procedure, and leave
upd_sales, the stored procedure that invokes it, unmarked.

Alternatively, you can declare the first parameter of the stored procedure
with a non-unique name as @rs_repdef and pass the unique name of the
replication definition in this parameter when you run the stored procedure.
Do not include the @rs_repdef parameter in the create function replication
definition command. This method works only with the RepAgent for
Adaptive Server.

Replication Server does not support nested transactions—those containing
begin or commit statements—within replicated stored procedures. If the
stored procedures with nested stored procedures are marked for
replication:

» The RepAgent forwards only the outer stored procedure call to the
Replication Server.

e The RepAgent shuts down.
e Anerror message appears in the Adaptive Server error log.

Replication Server

APPENDIX C Pre-15.1 Request Function Replication

Administration Guide

If the replicated stored procedure contains nested transaction commands,
the Replication Server replicates several transactions together, as one
group, using only the first begin transaction and the last commit
transaction of all the grouped transactions. For more information, see
dsi_max_xacts_in_group, in “ Connection parameters that affect
performance” on page 150.

If the replicated stored procedure contains commands like begin
transaction, commit transaction, or rollback transaction, errors may result
when you run the procedure. For example, arollback transaction command
may roll back to the start of the transaction group, rather than to the nested
begin transaction command that was the intended rollback point.

Replicated functions, like Adaptive Server stored procedures, cannot
contain parameters with text and image datatypes. See the Adaptive Server
Enterprise Reference Manual.

Adaptive Server logs areplicated stored procedure invocation in the
database in which the enclosing transaction was started:

e If you do not begin atransaction explicitly, Adaptive Server begins
onein the user’s current database before the stored procedureis
invoked.

e |f you do not begin the transaction in one database and then run a
replicated stored procedure in another database, the execution is still
logged in the database where the transaction began.

If asingle transaction invokes one or more request functions and executes
applied functions or contains data modification language, or a mixed-
mode transaction, Replication Server processes the request functions after
all the other operations have compl eted, together in aseparate transaction.
This can occur if asingle Replication Server manages both the primary
and replicate data.

Replication Server does not perform translations on parameter values for
reguest functions. However, during function-string mapping, the
delimiters defined for the parameter values of their declared datatype are
used to generate the SQL statements.

Do not put acommit statement inside areplicated function asthiscan cause
aduplicate key and make Replication Server recovery fail.

379

Using the pre-15.1 request function replication

Using the pre-15.1 request function replication

380

A replicated stored procedure is an Adaptive Server stored procedure that you
have marked for replication using either sp_setrepproc or sp_setreplicate. A
function replication definition describes a replicated stored procedure, its
parameters, and itslocation. When you create afunction replication definition,
Replication Server creates a function, which contains the information in the
function replication definition.

When areplicated stored procedure that has its own function replication
definitionisinvoked, itsfunction istransferred from the source to adestination
Replication Server. The function passes parameters to a corresponding stored
procedure that is invoked in the destination database. A function string

transl ates the function into a syntax that the subscribing database can interpret.

In versions earlier than 15.1, the no-subscription request function delivers a
replicated stored procedure from a replicate database to the primary database.
The function replication definition’s primary database is defined as primary
database, while the database from which the function is originally invoked is
defined as a replicate database.

For example, a client application at aremote location needs to make changes
to the primary data. The client application first executes a stored procedure,
which may or may not make changes at the replicate database, at the remote
site. When you run the stored procedure, the replicate Replication Server
passes a request function to the primary database, where a corresponding
stored procedure is invoked and updates the primary data. No subscription is
needed to deliver this request function.

In aprimary copy model, a single primary database contains the most recent
updates. A client application at a remote replicate site can update the primary
database using the request functions. Asupdates occur at the primary table, the
Replication Server captures the updates and sends them to the replicate data
servers.

If communi cation between the primary and replicate databasesfails, operations
executed in the primary database are stored in the Replication Server stable
gueues until they can be delivered to the replicate sites. Likewise, operations
executed remotely at the replicate database are held in stable queues until they
can be delivered to the primary database.

Replication Server

APPENDIX C Pre-15.1 Request Function Replication

To use ano-subscription request function with versionsearlier than 15.1, create
a stored procedure in the primary database and a corresponding stored
procedure in the replicate database. Then, at the primary Replication Server,
create afunction replication definition with the same name as the name of the
stored procedure created in the replicate database. You do not need to create
any subscriptions. When the stored procedure in the replicate database is
invoked, it invokes the stored procedure in the primary database.

Replication Server runs the stored procedure in the primary database with the
same user that invokes the stored procedure in the replicate database. This
guarantees that only authorized users can change the primary data.

In an application, Replication Server may replicate some or all of the datathat
changes in the primary database. The changes are distributed to the replicate
databases, which are managed by Replication Servers that have subscriptions
to table replication definitions, or as separate applied functions. Either way, a
transaction arrives at the primary databasefirst, and then arrives at thereplicate
databases.

When you use a ho-subscription request function with versions earlier than
15.1, al updates are made at the primary database. This preserves the
Replication Server primary copy data model and protects the replication
system from network failure and excess traffic.

Commands for managing function replication definition

Table C-1liststhe Replication Server commandsthat are used to work with the
no-subscription request function replication definitions with versions earlier
than 15.1.

Administration Guide 381

Using the pre-15.1 request function replication

Table C-1: Commands for managing function replication definitions

Command

Task

create function
replication definition

Creates a function replication definition that describes the
stored procedure and its parameters for replication. It also
describesthelocation of the primary data. See“Implementing
apre-15.1 request function” on page 382.

alter function
replication definition

Modifies a function replication definition. For example, it:

» Specifiesadifferent namefor the stored procedure invoked
at the destination database.

» Adds parameters or searchable parameters.

« Changeshow thereplication definitionisusedinreplicating
to a standby database. See “Modifying or dropping
replicated functions’ on page 386.

drop function
replication definition

Removes afunction replication definition from the replication
system. See “Modifying or dropping replicated functions’ on
page 386.

Implementing a pre-15.1 request function
To implement arequest function with versions earlier than 15.1:

1 Review therequirements described in “ Prerequisites and restrictions’ on

page 377.

2 Intheprimary Adaptive Server, create alogin name and password for the
user who executes the stored procedure at the replicate Adaptive Server.

See Chapter 8, “Managing Replication Server Security” inthe Replication
Server Administration Guide Volume 1 for details.

3 Intheprimary database, create astored procedure that updatesthe primary
data. For example:

create proc update pubs

@pub_id char(4), @pub name varchar (40)
as update publishers

set pub name = @pub name

382

Replication Server

APPENDIX C Pre-15.1 Request Function Replication

Administration Guide

where pub_ id = epub_ id

Warning! A stored procedure invoked in a primary database in request
function delivery isinvoked inside a user-defined transaction. See the
Adaptive Server Enterprise Transact-SQL User's Guide for information
about operationsthat are not allowed inside user-defined transactions (for
example, the dump transaction and dump database commands).

Do not mark this stored procedure as replicated. In request function
delivery with versions earlier than 15.1, only the stored procedure in the
replicate database is marked as replicated.

However, if the primary database is also part of a warm standby
application, then mark the stored procedure in the active and standby
primary databases as replicated if you want to replicate the stored
procedures to the standby database.

In the primary database, grant execute permission on the stored procedure
to the same user for whom you created alogin name and password in step
2. For example:

grant execute on update pubs to pubs user

In the replicate database, create a stored procedure with the same
parameters and datatypes as the stored procedure in the primary database.
The new stored procedure must either do nothing or display a message to
indicate a pending update. For example:

create proc update pubs request
@pub id char(4), @pub name varchar (40)
as print "Transaction accepted."

Note Use adifferent name for the stored procedure you create in the
replicate database from the one created in the primary database. You must
use adifferent name if the function will replicate back to the replicate
database as an applied function. When you create the function replication
definition in step 8, you must specify the name of the stored procedurein
the destination (primary) database.

Inthereplicate database, mark the stored procedure for replicated function
delivery using the sp_setrepproc system procedure. For example:

sp_setrepproc update pubs request, 'function'

See “Marking stored procedures for replication” on page 385 for details.

383

Using the pre-15.1 request function replication

10

384

Inthereplicate database, grant execute permission on the stored procedure
to the replicate Replication Server user who invokes it. For example:

grant execute on update pubs request to pubs user

In the primary Replication Server that manages the primary data, create a
function replication definition for the stored procedure in the replicate
database. For example:

create function replication definition
update pubs request

with primary at TOKYO DS.pubs2

deliver as 'update pubs'

(epub_id char(4), @pub name varchar(40))

The function replication definition must use the same name, parameters
and datatypes as the stored procedure in the replicate database. You have
the option to include only the parameters you want to replicate.

See Chapter 3, “Replication Server Commands,” in the Replication Server
Reference Manual for more information about create function replication
definition command.

In the preceding example, the optional deliver as clause specifies that the
stored procedure to run at the primary data server is named update_pubs,
not update_pubs_request.

When you create a function replication definition, Replication Server
automatically creates a corresponding user-defined function.

If you are not using a default function string or you want to customize the
function'sinvocation, you need to create a function string for the user-
defined function. See “ Creating or modifying a function string for a
replicated function” on page 387 for more information.

Verify that all the Replication Server and the database objectsin steps 1
through 9 exist at their appropriate |ocations. You must now be ableto run
the request function.

See Chapter 6, “RSSD Stored Procedures,” in the Replication Server
Reference Manual for information about stored procedures, such as
rs_helpfunc, that you can use to query the RSSD for information about the
replication system.

Replication Server

APPENDIX C Pre-15.1 Request Function Replication

Marking stored procedures for replication

The system procedure sp_setrepproc is used to mark stored procedures for
replication. The syntax is:

sp_setrepproc [proc_name [, {'function’ | 'table’' | 'false'}, [{log_current
|log_sproc}]]]

where;
proc_name — the name of a stored procedure in the current database.

'function’ — enables the replication for a stored procedure associated with a
function replication definition.

'table’ — enables replication for a stored procedure associated with atable
replication definition. For information on replicating stored procedures
associated with table replication definitions, see “ Asynchronous Procedures’
on page 349.

false’ - disables replication for the stored procedure.

'log_current' - logs the execution of the stored procedure you are replicating in
the current database, not in the database where the stored procedure resides.

'log_sproc' - logs the execution of the stored procedure you are replicating in
the database where the stored procedure resides, not in the current database.
'log_sproc' is the default parameter.

Use sp_setrepproc according to these guidelines:

e Tolist al replicated objectsin the database, enter sp_setrepproc with no
parameters.

e To determine the replication status of the stored procedure, enter
sp_setrepproc with the stored procedure name only.

e Enter sp_setrepproc with the stored procedure name and 'function’, 'table’,
or ‘false' to enable each type of replication or to disable replication for the
stored procedure. You must be the System Administrator or the Database
Owner to use sp_setrepproc to change the replication status of a stored
procedure.

« Tolog the execution of areplicated stored procedure in the database you
selected, enter sp_setrepproc with 'log_current', to log execution in the
current database, or 'log_sproc', to log execution in the database where the
stored procedure resides.

Administration Guide 385

Modifying or dropping replicated functions

* Mark the stored procedure in the replicate database as replicated and
specify ‘function' to indicate the type of replication definition associated
with the stored procedure.

For more information on sp_setrepproc, see the Replication Server
Reference Manual.

Subscribing to replicated functions

You do not need to create a subscription for arequest function. The destination
database is always the primary database; you create the function replication
definition in the primary Replication Server.

Modifying or dropping replicated functions
This section explains how to modify or drop replicated functions.

Before modifying a function replication definition

1 Change the stored procedure at the primary or replicate data server and
provide defaults for the new parameters, if necessary.

2 Asaprecaution, quiesce the system. Altering functions while updates are
in process can have unpredictable results.

See Chapter 4, “Managing a Replication System” in the Replication
Server Administration Guide Volume 1 for information on how to quiesce
the system.

Modifying a function replication definition

To add new parameters, add new searchabl e parameters, or change the name of
the destination stored procedure, use alter function replication definition to alter
the function replication definition.

The syntax for this command is:

alter function replication definition function rep def

386 Replication Server

APPENDIX C Pre-15.1 Request Function Replication

{deliver as proc name |

add eparameter datatypel, @parameter datatype]... |
add searchable parameters @parameter [, @parameter]...|
send standby {all | replication definition} parameters}

The optionsfor alter function replication definition are similar to those for create
function replication definition. See Chapter 3, “Replication Server Commands,”
in the Replication Server Reference Manual for more information about alter
function replication definition command.

See “Creating or modifying afunction string for areplicated function” on
page 387 for information about function strings for function replication
definitions.

Dropping a function replication definition

To change or remove parameters, or to rename afunction replication definition,
use the drop function replication definition command to drop it, then recreate it.

The syntax for this command is:
drop function replication definition function_rep_def

When you drop a function replication definition, the associated user-defined
function and function string are also dropped.

Creating or modifying a function string for a replicated function

Administration Guide

When you create or ater afunction replication definition, Replication Server
automatically creates or alters the corresponding user-defined function. You
must, however, create afunction string for the user-defined function if you are
not using a class that inherits function strings from rs_default_function_class,
either directly or indirectly.

See “User-defined functions’ on page 14 for more information.

Create afunction string for a user-defined function in the function-string class
assigned to the destination database for the replicated function. Use create
function string at the primary Replication Server to create afunction string for
a user-defined function.

See “Function strings and function-string classes” on page 33 for more
information.

387

Model variations and strategies

When you drop a function replication definition, Replication Server aways
drops the user-defined function and function strings.

You can customize function stringsin function-string classesthat allow it. Ina
typical application, the replicated user-defined function passes stored
procedure parameter values to the destination Replication Server, and the
function string runs the stored procedure with these values in the destination
database.

To change the default function string to perform some other action, such as
inserting data into an audit log, use the alter function string command at the
primary Replication Server for the replicated function. The function-string
classassigned to the destination database for the replicated function must allow
you to customize function strings.

See Chapter 2, “ Customizing Database Operations’ for information on
creating and altering function strings. See also Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual, for more
information about the create function string command.

Model variations and strategies

This section describes some model variations and other strategies you can use
to implement your replication system design with aversion of no-subscription
request function earlier than 15.1.

* A basic primary copy model that allows remote sites to make changes to
primary data without accessing the primary database directly.

» Pending tables—astrategy used with no-subscription request functionsin
versions earlier than 15.1 that allows users to see the results of updates to
primary data before the update has been returned to the replicate site.

388 Replication Server

APPENDIX C Pre-15.1 Request Function Replication

Request functions

You can use no-subscription request functions with versions earlier than 15.1
toinvoke stored procedures on primary data. Request functionsallow clientsat
remote replicate sitesto update the primary datawithout accessing the primary
databasedirectly. Replication Server invokes astored procedure on the primary
database, which carries out the requested transactions. This method preserves
the basic primary copy model while |etting you distribute transactions. You do
not have to fragment the primary data among replicate sites.

These two examplesillustrate:
e A system that uses request functions with versions earlier than 15.1.

e A system that uses request functions with versions earlier than 15.1,
applied functions, and alocal pending table.

Example 1: A basic example using prel5.1 no-subscription request functions

At the replicate site:

At the primary site:

Administration Guide

In this example, a client application at the replicate site (Sydney) executes the
stored procedure upd_publishers_pubs2_req, which makes no changes to the
replicate database but causes an associated stored procedure,
upd_publishers_pubs2, to execute and change data on the primary site (Tokyo).

upd_publishers_pubs2_req is an empty-body stored procedure. Perform these
tasksto create arequest function. No subscriptions are necessary at the primary
database; function executions at asite other than the primary for the replication
definition automatically flow to the primary site.

« Create an empty-body stored procedure at the replicate data server, and:

« Mark the procedure for the replicated function delivery using
Sp_setrepproc.

« Grant appropriate permissions to the procedure for the appropriate
user.

The empty-body procedure either does nothing or displays a message
indicating a pending update. It may have a different name than the associated
stored procedure in the primary database.

» Create astored procedure that updates primary data. Grant permissionsto
the appropriate user.

* Createafunction replication definition at the primary Replication Server
for the empty-body stored procedure in the replicate database. The
function replication definition and the empty-body stored procedure have
the same name.

389

Model variations and strategies

Oncethe primary datahas been updated viathe replication of the request stored
procedure, data can be delivered to replicate sites (including the requestor)
either via table replication or applied function replication.

Note It isnot necessary to create a subscription for arequest function.

Figure C-1: Request functions

procedure axecutes fo
change primary dafa.

Corresponding stored |

 Fancts repieaton
definifion here.

Communications
Metwork

i £ stored - i Cliant application at

. procedure doas nof =t b

i . ~ remole site execites
change data, but ifs . by-biody s

execunan 15 recoraEd i procadure,

Stored procedures

At the primary site: This script creates the user stored procedure upd_publisher_pubs?2 at the
primary site.

-- Execute this script at Sydney data server
-- Creates stored procedure upd publishers pub2

390 Replication Server

APPENDIX C Pre-15.1 Request Function Replication

At the replicate site:

create procedure upd publishers pubs2
(@pub_id char(4),

@pub_name varchar (40),

@city varchar(20),

@state char(2))

as
insert into publishers

values

(epub_id, @pub name, @city, @state)
go

/* end of script */

This script creates the empty-body stored procedure
upd_publishers_pubs2_req.

-- Execute this script at Sydney Replication Server
-- Creates stored procedure
upd publishers pubs2 reqg
create procedure upd publishers pubs2 req
(epub_id char (4),
@pub_name varchar (40),
@city varchar(20),
@state char(2))
as
begin
if (select 1) > 1
print "Submitting request."
end
go
/* end of script */

Function replication definition

Administration Guide

This script createsthefunction replication definition at the primary Replication
Server. It has the same name as the empty-body stored procedure. The deliver
as clause tells the primary data server to run upd_publisher_pubs?2 at the
primary site.

-- Execute this script at Tokyo Replication Server
-- Creates replication definition
create function replication definition
upd publishers pubs2 reg
with primary at TOKYO DS.pubs2
deliver as 'upd publisher pubs2'
(epub_id char(4),
@pub name varchar (40),
@city varchar (20),

391

Model variations and strategies

@state char(2))

go
/* end of script */

Example 2: An example using a local pending table

At the replicate site:

392

The pending table is a design enhancement of applied and request functions
that allows clients at a remote site to update primary data and see the updates
at the replicate site before they are returned from the primary site. Use this
model to implement local update applications.

In this strategy, a client application at aremote replicate site executes a user
stored procedure that updates data at the primary site using a request function.
Changes to the primary data are replicated to the remote replicate site viaan
applied function. A local pending table lets clients at the remote replicate site
to see updatesthat are pending at thereplicate site before the replication system
returns the updates.

When a client application executes the user stored procedure at the replicate
data server, it:

e Causes an associated stored procedure to execute and update data at the
primary site.

» Entersthose updatesin thelocal pending table.

When the update succeeds at the primary database, it is distributed to the

remote replicate sites, including the site where the transaction originated. At

thereplicate site, astored procedure updatesthe replicated table and del etesthe
corresponding updates from the pending table.

To use applied functions, request functions, and alocal pending table, you
must:

e Create apending table in the replicate database and grant appropriate
permissions.

e Create auser stored procedure in the replicate database that initiates the
request function and inserts data updates into the pending table.

e Mark the user stored procedure for replicated function delivery using
sp_setrepproc.

e Grant procedure permissions to the appropriate user.

e Create auser stored procedure in the replicate database that updates the
replicated table and deletes the corresponding update from the pending
table. Grant appropriate permissions to the maintenance user.

Replication Server

APPENDIX C Pre-15.1 Request Function Replication

At the primary site:

Administration Guide

e Create asubscription to the function replication definition.
e Create the stored procedure that modifies the primary data.
e Create the function replication definition for the applied function.
e Createthe function replication definition for the request function.

In this example, aclient application at the replicate site (Sydney) executes a
stored procedure upd_publishers_pubs2_req, which inserts values in the
publishers_pend table and causes an associated stored procedure,
upd_publishers_pubs2, to execute at the primary site (Tokyo). Execution of
upd_publishers_pubs2 at the primary site causes the stored procedure
upd_publishers_pubs to execute at the replicate site, which updates the
publishers table and deletes the corresponding information from the
publishers_pend table.

Figure C-2 illustrates the data flow when you use applied functions, request
functions, and alocal pending table. The gray arrows show the flow of the
reguest function delivery. The black arrows show the flow of the applied
function delivery.

393

Model variations and strategies

Figure C-2: Request functions and a local pending table

Primary
Site

Function replication
definifions for request and
appliad functions hera.

Communications
Metwork

Replicate
Site

Subscription for applied
funchion hare

Cillent application can
accass pending tabla fo sag
in-progress transactions.

Pending table
This script creates a pending table in the replicate database.

-- Execute this script at Sydney data server
-- Creates local pending table

create table publishers pend

(pub_id char(4) not null,

pub_name varchar(40) null,

city wvarchar(20) null,

statechar (2) null)

go

/* end of script */

394 Replication Server

APPENDIX C Pre-15.1 Request Function Replication

Stored procedures

Administration Guide

-- Execute this script at Sydney data server

-- Creates stored procedure

create procedure upd publishers pubs2 req

(epub_id char (4),

@pub_ name varchar (40),
@city varchar(20),

@state char(2))

as

insert into publishers pend
values

(epub_id, @pub name, @city, @state)

go
/* end of script */

-- Execute this script at Sydney data server
-- Creates stored procedure upd publishers pubs2
create procedure upd publishers pubs2

(epub_id char (4),
@pub_ name varchar (40),
@city varchar(20),
@state char(2))
as
update publishers
set
pub _name = @pub name,
city = ecity,
state = @state
where
pub id = e@pub id
delete from publishers pend
where
pub_id = e@pub id
go
/* end of script */

The script createsthe stored procedure upd_publisher_pubs? at the primary site.

Thefollowing script modifiesthe upd_publishers_pub2_req stored procedure at
thereplicate site. Theinsert into clause tells the replicate Replication Server to
insert values into the publishers_pend table.

This script creates the upd_publishers_pubs2 procedure for thereplicate site. It
updatesthe publishers table and del etes the corresponding information from the
publishers_pend table.

395

Model variations and strategies

Function replication definitions

The script “ Function replication definition” on page 391 creates the function
replication definition upd_publishers_pubs2_req—for therequest functionwith
versions earlier than 15.1 —at the primary site.

This script creates a function replication definition for the publishers table at
the primary Replication Server. The replication definition uses the same
parameters and datatypes as the stored procedure in the primary database.

-- Execute this script at Tokyo Replication Server
-- Creates replication definition

upd publishers pubs2

create function replication definition
upd publishers pubs2

with primary at TOKYO DS.pubs2
(epub_id char(4),

@pub_name varchar (40),

@city varchar(20),

@state char(2))

go

/* end of script */

Subscription

This script creates a subscription at the replicate Replication Server using the
no-materialization method for the replication definition defined at the primary
Replication Server.

-- Execute this script at Sydney Replication Server
-- Creates subscription using no-materialization
for upd publishers pubs2

create subscription upd publishers pubs2 sub
for upd publishers pubs2

with replicate at SYDNEY DS.pubs2

without materialization

go

/* end of script */

396 Replication Server

APPENDIX D

Introduction

Administration Guide

Implementing a Reference
Replication Environment

This appendix describes how you can quickly set up an Adaptive Server
to Adaptive Server or Oracleto Oracle reference replication environment
using the products available in your environment.

Topic Page
Introduction 397
Building the reference environment 399
Configuring the reference environment 404
Running performance tests 404
Cleaning up the reference environment 407
Objects created for the reference environment 408

Replication Server includes atoolset for quickly setting up areference
implementation of Adaptive Server to Adaptive Server or Oracleto Oracle
replication using the products available in your environment. You can
implement a replication environment as a reference to demonstrate
Replication Server features and functionalities.

Use the tool set to:
1 Build Replication Server and the primary and replicate databases.
2 Configure the database replication environment.

3 Perform simpletransactions on the primary database and replicatethe
changes by database level replication.

4 Collect statistics and monitors counters from the replication
processing in step 3.

5 Clean up the reference replication environment.

397

Introduction

Platform support

The reference implementation toolset consists of scriptsthat arein
$SYBASE/refimp.

Note The reference implementation builds a replication environment
containing a single Replication Server, primary database server, and replicate
database server. You cannot configure the reference environment topol ogy for
multiple replication system components.

You can implement areference environment on all platforms that Replication
Server supports except for Linux on IBM p-Series (Linux on Power) 64-hit.
However, to set up the reference environment on any Microsoft Windows
platform that Replication Server supports, you must use Cygwin to run the
reference implementation scripts. See the Cygwin Web site at
http://www.cygwin.com/.

Components for reference implementation

Adaptive Server

Oracle

398

You must have supported versions of the components of areplication
environment before you can implement a reference environment.

You can build areference implementation environment for Adaptive Server to
Adaptive Server replication with the versions of Replication Server and
Adaptive Server listed in Table D-1.

Table D-1: Supported product component versions for Adaptive Server

reference implementation

Replication Server | Adaptive Server

155 | 150.3,155

For example, you can build an Adaptive Server reference environment with
Replication Server 15.5 and Adaptive Server version 15.0.3 or 15.5.

You can also build a reference implementation environment for Oracle to
Oraclereplication with the versions of Replication Server, Oracle, Replication
Agent for Oracle, and ECDA Option for Oracle listed in Table D-2.

Replication Server

APPENDIX D Implementing a Reference Replication Environment

Table D-2: Supported product component versions for Oracle reference
implementation

Replication Agent | ECDA Option for
Replication Server | Oracle for Oracle Oracle

155 | 10.2 | 15.2 | 15.0 ESD #3

For example, you can build areferenceimplementation environment for Oracle
with Replication Server 15.5, Oracle 10.2, Replication Agent 15.2, and ECDA
Option for Oracle 15.0 ESD #3.

Before you begin

1 For Oracle, verify that you have execute permission in the Oracle release
directory. For example, verify if you can create an instance manually.

2 Verify that the environment variable settings in the SYBASE.sh filein the
Replication Server or Adaptive Server release directory is correct. If you
cannot verify this, remove or rename thefile.

3 Verify that you havethe UNIX grep, kill, awk, and ps commands available
in your bash shell.

4 Thereference implementation procedure uses the interfaces file in the
Replication Server release directory. If the file exists before you run the
reference implementation procedure, the procedure backs up the existing
file by incrementing the file name extension.

5 For Oracle, the reference implementation procedure renames the existing
tnsname.ora, listener.orafiles and creates new files for the Oracle
reference implementation.

Building the reference environment

Syntax

Parameter

Administration Guide

To automatically create a Replication Server, and the primary and replicate
data servers and databases, execute the buildenv script.

buildenv -f config_file

Use -f config_file to specify the name and location of the build configuration
file that contains the parameters you can specify in the file.

399

Building the reference environment

400

Sybase provides configuration file templates for Adaptive Server to Adaptive
Server and Oracle to Oracle replication on supported UNIX and Microsoft
Windows platforms, that you can use to create a configuration file for your
environment. The files arein $SYBASE/REP-15_5/REFIMP-01_0:

e ase unix_refimp.cfg — ASE-to-ASE on UNIX
e ase win_refimp.cfg — ASE-to-ASE on Windows
e ora_unix_refimp.cfg — Oracle-to-Oracle on UNIX
e ora win_refimp.cfg — Oracle-to-Oracle on Windows
For example, the ase_unix_refimp.cfg file:
HHHHHHAHH AR HH S H SRS H A S A SR R A A A A R A

--- Part 1. release directory of repserver/ase/oracle/refimp ----#
HHHHHHAHH AR H RS H AR H A S A SR A A A R A R A
#

--- PLATFORM('unix': UNIX/Linux platform, 'win': Windows) ---#

#

os_platform=unix

--- DATABASE ('ase': Adaptive Server Enterprise, 'ora': ORACLE) ---#
#

db type=ase

#

--- RS RELEASE DIRECTORY ---

#

rs release directory=/remote/repengd/users/xiel/repserver
#

--- RS RELEASE SUBDIRECTORY ---

#

rs_sub_directory=REP-15_2

#

--- ASE RELEASE DIRECTORY ---

#

ase _release=/remote/repeng4/users/xiel/ase

#

--- ASE/ORACLE RELEASE SUBDIRECTORY ---

#

ase subdir=ASE-15 0

#

--- REFERENCE IMPLEMENTATION RELEASE DIRECTORY ---
#

refimp release dir=/calm/repl/svr/refimp

#

#

#

Replication Server

APPENDIX D Implementing a Reference Replication Environment

--- REFERENCE IMPLEMENTATION WORK DIRECTORY ---
#

refimp work dir=/remote/repeng4/users/xiel/test
#

--- OCS RELEASE DIRECTORY ---

#

ocs_release directory=0CS-15 0

#

--- PDS DEVICE NAME WITH FULL PATH ---

#

pds_device file=/remote/repeng4/users/xiel/pds
#

--- RDS DEVICE NAME WITH FULL PATH ---

#

rds device file=/remote/repeng4/users/xiel/rds
#

--- rs_init RELEASE DIRECTORY ---

#

rsinit release=/remote/repeng4/users/xiel/repserver
#

#

--- interface FILE NAME ---

#

ini_filename=interfaces

#

--- HOST NAME ---

#

host name=newgarlic

FHEH R EEEE R R

--- Part 2. login information of replication server and data server ---#
HHAHHHAHH A HH A HHAFH A H A A SRR A A R A A A
#

--- RS NAME ---

#

rs_name=SAMPLE_RS

#

--- RS USER NAME ---

#

rs_username=sa

#

--- RS PASSWORD ---

#

rs_password=

#

#

#

Administration Guide 401

Building the reference environment

--- ERSSD NAME ---
#
rssd_name=SAMPLE RS ERSSD
#

--- ERSSD USER NAME ---
#

rssd_username=rssd

#

--- ERSSD PASSWORD ---
#
rssd_password=rssd_pwd
#

--- PDS NAME ---

#

primary ds=PDS

#

--- PDB NAME ---
#primary db=pdb

#

--- PDB USER NAME ---
#

pdb_username=sa

#

--- PDB PASSWORD ---
#

pdb password=

#

--- RDS NAME ---

#

replicate ds=RDS

#

--- RDB NAME ---

#

replicate db=rdb

#

--- RDB USER NAME ---
#

rdb_username=sa

#

--- RDB PASSWORD ---
#

rdb_password=

#

--- PORT FOR RS ---

#

rs_port=11754

402 Replication Server

APPENDIX D Implementing a Reference Replication Environment

#

--- PORT FOR RSSD ---

#

rssd_port=11755

#

--- PORT FOR PDS ---

#

pds_port=20000

#

--- PORT FOR RDS ---

#

rds port=20001

#

HHAHHHAHH AR HH A HHAF RS H A A SR A R A A R
--- Part 3. transaction profile configuration parameters ---
HHHHHHAHH S HH A H R R R R A R R
#

--- number of transactions to be executed ---

#

tran number=100

#

--- what kind of transction will be executed ---

1."Tran Profile 1(insert--48% delete--4% update 48%)"

2."Tran Profile 2 (insert--30% delete--5% update 65%)"

3."Tran Profile 3 (insert--61% delete--2% update 37%)"

4."Tran_ Profile LargeTran"

#

tran option=1

#

HHAHHHAHH S HH A H AR R R R A R A
--- Part 4. system settings ---

HHAHHHAHH AR HH S HHAFH S H A H A H ARG RS A R R A A A
#

--- WAIT TIME FOR CONNECTING SERVERS, SPECIFIED BY SECOND(S) ---

#

wait_time=10

If buildenv executes successfully, you see:

Environment setup successfully completed.

Administration Guide 403

Configuring the reference environment

Configuring the reference environment

Syntax

Parameter

After you build the reference replication environment, execute the refimp script
with the config parameter and a configuration file to create tables and stored
procedures on the reference primary and replicate databases, and create a
database replication definition and a subscription on the reference Replication
Server.

refimp config -f config_file

Use -f config_fileto specify the name and location of the configuration file that
contains the parameters you can specify in the file.

You must use the same configuration file information you specified for
buildenv.

If refimp config executes successfully, you see:

Task succeeded: configuring database replication
environment completed.

See “Objects created for the reference environment” on page 408 for the
tables, system procedures, and other objectsthat the reference implementation
creates.

Running performance tests

After you configure the reference environment, you can perform tests on the
environment.

Running performance tests on the reference environment

Syntax

Parameter

404

To automatically insert, update, and delete data on the primary data server
using database level replication, execute the refimp script with the run
parameter and the same configuration file you executed with the refimp config
command.

refimp run -f config_file

-f config_file — use the same configuration file that you use for refimp config.
If refimp run executes successfully, you see:

Task succeeded: insert data into primary database

Replication Server

APPENDIX D Implementing a Reference Replication Environment

completed.

Obtaining tests results from the reference environment

To collect statistics and performance information, execute the refimp script
with the analyze parameter and the same configuration file you executed with
the refimp config command.

Syntax refimp analyze -f config_file
Parameter -f config_file — use the same configuration file that you use for refimp config.
Output If refimp analyze executes successfully, you see:

Task succeeded: fetch performance data completed.

Obtain thers_ticket_history report and Monitors and counters report from
$refimp_work_dir/report whererefimp_work_dir isthe location you specify in
the configuration file.

rs_ticket_history report

Thers _ticket_history report describes the time that the ticket data took to pass
through each Replication Server module from the time stamp reported by the
ticket at each module. Thereport is generated by thers_ticket stored procedure.
See “rs_ticket,” in Chapter 6, “RSSD Stored Procedures’ in the Replication
Server Reference Manual.

You can calculate the total replication duration from the times reported by a
ticket at the primary and replicate databases. In the report, the columns are:

e cnt—theticket sequence number

« pdb_t—thetimethers_ticket stored procedure was executed at the primary
database

« rdb_t —thetimetheticket arrived at the replicate database.

« ticket —information about the ticket, including the time that it passed
through each module.

Administration Guide 405

Running performance tests

Sample
rs_ticket_history
report
cnt pdb t rdb t
1 Jan 19 2010 2:17AM Jan 19 2010 2:17AM
ticket

V=2;Hl=profilel;H2=start;PDB (pdb)=01/19/10 02:17:19.406;
EXEC(40)=01/19/10 02:17:19.423;B(40)=1332;
DIST(26)=01/19/10 02:17:19.669;

DSI(35)=01/19/10 02:17:19.916;
DSI_T=1;DSI_C=3;RRS=SAMPLE RS XIEL

cnt pdb t rdb t
2 Jan 19 2010 2:20AM Jan 19 2010 2:20AM
ticket

V=2;Hl=profilel;H2=end;PDB (pdb)=01/19/10 02:20:32.206;
EXEC(40)=01/19/10 02:20:32.211;B(40)=5044893;
DIST(26)=01/19/10 02:20:32.249;DSI(35)=01/19/10 02:20:32.524;
DSI T=5410;DSI_C=18297;RRS=SAMPLE RS XIEL

Monitors and counters report

The monitors and counters report describes the performance figures reported
by Replication Server countersthat monitor the commands you execute during
the reporting period. See Chapter 5, “Using Counters to Monitor
Performance.”

Sample monitors and Thisisalong report and only one counter is shown in this section.
counters report

Note Commentsto theright of the output are included to explain the example.
They are not part of the output.

Comment: refimp

406 Replication Server

APPENDIX D

Implementing a Reference Replication Environment

Jan 19 2010 02:17:39:606AM
Jan 19 2010 02:20:22:576AM
9

0

16384

64

AOBJ

10305

11

AOBJ dbo.district

AOBJ: Insert command

AOBJInsertCommand
65000, , 10305, 11
ENDOFDATA

AOBJ: Update command
AOBJUpdateCommand

Start time stamp

End time stamp

No of obs intervals

No of min between obs

SQOM bytes per block

SOM blocks per segment

Module name

Instance ID

Instance valuex

Module name

Counter external name

Counter display name

*Counter ID, instance ID,
instance value*

EOD for counterx

Counter external name
Counter display name

65000, , 10305, 11 *Counter ID, instance ID,
instance valuex*
*Dump ts, obs, total,

last, max*

Jan 19 2010 02:17:39:606AM, 50, 50, 1, 1

ENDOFDATA *EOD for counter*

Cleaning up the reference environment

You can clean up the reference environment and shut down the servers after
you obtain your test results.

Cleaning up the reference environment for the next test

To delete test data, and drop replication definitions, subscriptions, tables, and
stored procedures, execute the refimp script with the cleanup parameter and the
same configuration file you executed with the refimp config command.

Syntax refimp cleanup -f config_file
Parameter -f config_file — use the same configuration file that you use for refimp config.

If refimp cleanup executes successfully, you see:

Administration Guide 407

Obijects created for the reference environment

Task succeeded: clean up database replication
environment completed.

Shutting down the reference implementation servers

To shut down Replication Server and the data servers after you have cleaned
up the environment, execute the cleanenv script and the same configurationfile
you executed with the refimp config command.

Syntax cleanenv -f config_file
Parameter -f config_file — use the same configuration file that you use for refimp config.
If cleanenv executes successfully, you see;

Task succeeded: shut down all the servers.

Objects created for the reference environment

The reference implementation tool set creates these objectsin the reference
replication environment:

408 Replication Server

APPENDIX D Implementing a Reference Replication Environment

Administration Guide

Table D-3: Stored procedures created for reference implementation

Stored procedure

Location

sp_load_warehouse_data

Primary and replicate databases

sp_load_district_data

Primary and replicate databases

sp_load_customer_data

Primary and replicate databases

sp_load_history_data

Primary and replicate databases

sp_load_item_data

Primary and replicate databases

sp_load_stock_data

Primary and replicate databases

sp_load_order_orderline_data

Primary and replicate databases

sp_load_neworder_data

Primary and replicate databases

sp_load_data_multi_tran

Primary and replicate databases

sp_gen_neworder_data Primary database
sp_gen_payment_data Primary database
sp_gen_delivery_data Primary database
sp_gen_neworder_data_large_tran Primary database
sp_gen_payment_data_large_tran Primary database
sp_gen_delivery_data_large_tran Primary database
sp_generator_data_1 Primary database
sp_generator_data_2 Primary database
sp_generator_data_3 Primary database
sp_generator_data_4 Primary database

Table D-4: Replication definition and subscription created for reference

implementation
Stored procedure

Subscribing for

Replication definition: pdbrepdefforrdb

Subscription: rdbsubforpdb

Table D-5: Tables created for refere

pdbrepdefforrdb

nce implementation

Table Location

WAREHOUSE Primary and replicate databases
DISTRICT Primary and replicate databases
CUSTOMER Primary and replicate databases
HISTORY Primary and replicate databases
NEW_ORDER Primary and replicate databases
ORDER Primary and replicate databases
ORDER_LINE Primary and replicate databases
ITEM Primary and replicate databases
Stock Primary and replicate databases

409

Obijects created for the reference environment

The table schemafor the tables:
WAREHOUSE
Field name Field definition Comments
W_ID 2*\W unique IDs W is the warehouse number
W_NAME Variable text, size 10
W_STREET1 Variable text, size 20
W_STREET2 Variable text, size 20
W_CITY Variable text, size 20
W_STATE Fixed text, size 2
wW_ZIP Fixed text, size 9
W_TAX Numeric, 4 digits Salestax
W_YTD Numeric, 12 digits Year to date balance
Keys:
* Primary key: (W_ID)
DISTRICT
Field name Field definition Comments
D_ID 20 unique IDs 10 are popul ated per
warehouse
D W_ID 2*\W unique IDs
D_NAME Variable text, size 10
D_STREET1 Variable text, size 20
D_STREET2 Variable text, size 20
D_CITY Variable text, size 20
D_STATE Fixed text, size 2
D _ZIP Fixed text, size 9
D_TAX Numeric, 4 digits Sales tax
D_YTD Numeric, 12 digits Year to date balance
D _NEXT_O_ID 10, 000 unique IDs Unique IDs for next
available order number
Keys:

« Primay key (D_W_ID, D_ID)

e Foreign key (D_W_ID) references (W_ID)

CUSTOMER

410

Replication Server

Administration Guide

APPENDIX D Implementing a Reference Replication Environment

Field name Field definition Comments

C ID 96, 000 unique IDs 3, 000 are populated per
warehouse

CD 1D 20 unique IDs

C W_ID 2*W unique IDs

C FIRST Variable text, size 16

C _MIDDLE Fixed text, size 2

C LAST Variable text, size 16

C_STREET1 Variable text, size 20

C_STREET2 Variable text, size 20

C CITY Variable text, size 20

C_STATE Fixed text, size 2

C ZIP Fixed text, size 9

C_PHONE Fixed text, size 16

C_SINCE Date and time The date of registration

C _CREDIT Fixed text, size 2 Credit: "GC"=good credit,
"BC"=bad credit

C CREDIT_LIM Numeric, 12 digits

C_DISCOUNT Numeric, 4 digits

C BALANCE Signed numeric, 12 digits

C_YTD_PAYMENT Numeric, 12 digits

C_PAYMENT_CNT Numeric, 4 digits

C DELIVERY_CNT | Numeric, 4 digits

C DATA Variable text, size 500 For remarks

Keys:

e Primary key (C_ W_ID,C D_ID, C_ID)
e Foreignkey (C_ W_ID, C D _ID) references (D_W_ID, D_ID)

HISTORY
Field name Field definition Comments
H C ID 96, 000 unique IDs
H CDID 20 unique IDs
H_ C W_ID 2*\W unique IDs
H D ID 20 unique IDs
H W_ID 2*\W unique IDs
H_DATE Date and time
H_AMOUNT Numeric, 6 digits

411

Obijects created for the reference environment

412

Field name | Field definition | Comments
H_DATA | Variable text, size 24 |
Keys:

* Primary key: None

» Foreignkey (H_ C W_ID,H_C D_ID,H_C_ID) references (C_W_ID,

C D ID,C_ID)

» Foreignkey (H_W_ID, H_D_ID) references (D_W_ID, D_ID)
NEW_ORDER

Field name Field definition Comments

N_O ID 10, 000, 000 unique IDs

N_D ID 20 unique IDs

NO_W_ID 2*\W unique IDs
Keys:

« Primay key (NO_W_ID,NO_D_ID, NO_O_ID)

» Foreignkey (NO_W_ID, NO _D_ID, NO_O_ID) references (O_W_ID,

O_D_1D, O_ID)

ORDER
Field name Field definition Comments
O_ID 10, 000, 000 unique IDss
O D ID 20 unique IDs
O W_ID 2*W unique IDs
O ClID 96, 000 unique IDs
O_ENTRY_D Date and time
O_CARRIER_ID 10 unique I1Ds, or null
O_OL_CNT From5to 15
O_ALL_LOCAL Numeric, 1digit

Keys:

« Primay key (O_W_ID, 0_D_ID, O_ID)

e Foreignkey (O_W_ID, O D _ID,O_C ID) references(C_W_ID,

C D_ID,C_ID)
ORDER_LINE

Replication Server

Administration Guide

APPENDIX D Implementing a Reference Replication Environment
Field name Field definition Comments
OL_O_ID 10, 000, 000 unique IDs
OL_D ID 20 unique IDs
OL_W_ID 2*W unique IDs
OL_NUMBER 15 unique IDs
OL_I_ID 200,000 unique IDs

OL_SUPPLY_W._ID

2*\W unique IDs

OL_DELIVERY_D

Date and time, or null

OL_QUANTITY Numeric, 2 digits

OL_AMOUNT Numeric, 6 digits

OL_DIST_INFO Fixed text, size 24
Keys:

e Primary key (OL_W_ID,OL_D ID,OL_O_ID,OL_NUMBER)
* Foreignkey (OL_W _ID,OL_D_ID,OL_O ID) references (O_W_ID,

O D ID,D_ID)
* Foreignkey (OL_SUPPLY_W _ID, OL_|_ID) references (S_W_ID,
S |1 ID)
ITEM
Field name Field definition Comments
I_ID 200, 000 unique IDs
I_IM_ID 200, 000 unique IDs
I_NAME Variable text, size 50
|_PRICE Numeric, 5 digits
|_DATA Variable text, size 50
e Primary key: (I_ID)
STOCK
Field name Field definition Comments
S 1 ID 200, 000 unique IDs
SW_ID 2*W unique IDs
S QUANTITY Numeric, 4 digits
S DIST_01 Fixed text, size 24
S DIST_02 Fixed text, size 24
S DIST_03 Fixed text, size 24
S DIST_04 Fixed text, size 24

413

Obijects created for the reference environment

414

Field name Field definition Comments
S DIST_05 Fixed text, size 24

S DIST_06 Fixed text, size 24

S DIST_07 Fixed text, size 24

S DIST_08 Fixed text, size 24

S DIST_09 Fixed text, size 24

S DIST_10 Fixed text, size 24

S YTD Numeric, 8 digits

S ORDER_CNT Numeric, 4 digits

S REMOTE_CNT

Numeric, 4 digits

S DATA

Keys:

Variable text, size 50

* Primary key (S W_ID, S |_ID)
» Foreign key (S_ W_ID) references (W_ID)

» Foreign key (S_|I_ID) references (1_ID)

Replication Server

Glossary

active database

Adaptive Server

application programming
interface (API)

applied function

article

asynchronous procedure
delivery

asynchronous command

Administration Guide

In awarm standby application, a database that is replicated to a standby
database. See also warm standby application.

The Sybaseversion 11.5 and | ater relational database server. If you choose
the RSSD option when configuring Replication Server, Adaptive Server
maintains Replication Server system tables in the RSSD database.

A predefined interface through which users or programs communicate
with each other. Open Client and Open Server are examples of APIs that
communicate in a client/server architecture. RCL, the Replication
Command Language, is the Replication Server API.

A replicated function, associated with a function replication definition,
that Replication Server delivers from aprimary database to a subscribing
replicate database. The function passes parameter values to a stored
procedure that is executed at the replicate database. The stored procedure
executed at the replicate database by the maintenance user. See also
replicated function delivery, request function, and function replication
definition.

A replication definition extension for tables or stored procedures that can
be an element of a publication. Articles may or may not contain where
clauses, which specify a subset of rows that the replicate database
receives.

A method of replicating, from a source to a destination database, a stored
procedure that is associated with atable replication definition.

A command that a client submits where the client is not prevented from
proceeding with other operations before the compl etion statusis received.
Many Replication Server commands function as asynchronous commands
within the replication system.

415

Glossary

atomic
materialization

autocorrection

base class

bitmap subscription

bulk copy-in

416

A materialization method that copies subscription data from aprimary to a
replicate database through the network in a single atomic operation, using a
select operation with aholdlock. No changesto primary data are allowed until
data transfer is complete. Replicate data may be applied either asasingle
transaction or in increments of ten rows per transaction, which ensuresthat the
replicate database transaction log does not fill. Atomic materialization is the
default method for the create subscription command. See also nonatomic
materialization, bulk materialization and no materialization.

Autocorrection is a setting applied to replication definitions, using the set
autocorrection command, to prevent failures caused by missing or duplicate
rows in a copy of areplicated table. When autocorrection is enabled,
Replication Server converts each update or insert operation into a delete
followed by an insert. Autocorrection should only be enabled for replication
definitions whose subscriptions use nonatomic materialization.

A function-string classthat does not inherit function stringsfrom aparent class.
See also function-string class.

A type of subscription that replicates rows based on bitmap comparisons.
Create columns using the int datatype, and identify them as thers_address
datatype when you create a replication definition. When you create a
subscription, compare each rs_address column to a bitmask using a bitmap
comparison operator (&) in the where clause. Rows matching the
subscription’s bitmap are replicated.

A featurethat improves Replication Server performancewhenreplicating large
batches of insert statements on the same table in Adaptive Server® Enterprise
12.0 and later. Replication Server implements bulk copy-in in Data Server
Interface (DS), the Replication Server module responsible for sending
transactions to replicate databases, using the Open Client™ Open Server™
Bulk-Library.

Bulk copy-in aso improves the performance of subscription materialization.
When dsi_bulk_copy ison, Replication Server uses bulk copy-in to materialize
the subscriptionsif the number of insert commandsin each transaction exceeds
dsi_bulk_threshold.

Replication Server

Glossary

bulk materialization

centralized database
system

class

class tree

client

Client/Server
Interfaces (C/SI)

concurrency

connection

coordinated dump

database

database generation
number

Administration Guide

A materialization method whereby subscription datain areplicate databaseis
initialized outside of the replication system. For example, data may be
transferred from a primary database using media such as magnetic tape,
diskette, CD-ROM, or optical storage disk. Bulk materialization involves a
series of commands, starting with define subscription. You can use bulk
materialization for subscriptions to table replication definitions or function
replication definitions. See also atomic materialization, nonatomic
materialization, and no materialization.

A database system where data is managed by a single database management
system at a centralized location.

Seeerror class and function-string class.

A set of function-string classes, consisting of two or morelevelsof derived and
parent classes, that derive from the same base class. See also function-string
class.

A program connected to a server in a client/server architecture. It may be a
front-end application program executed by a user or a utility program that
executes as an extension of the system.

The Sybase interface standard for programs executing in a client/server
architecture.

The ability of multiple clients to share data or resources. Concurrency in a
database management system depends upon the system protecting clientsfrom
conflictsthat arise when datain use by one client is modified by another client.

A connection from a Replication Server to a database. See also Data Server
Interface (DSI) and logical connection.

A set of database dumps or transaction dumps that is synchronized across
multiple sites by distributing an rs_dumpdb or rs_dumptran function through
the replication system.

A set of related data tables and other objectsthat is organized and presented to
serve a specific purpose.

Stored in both the database and the RSSD of the Replication Server that
manages the database, the database generation number isthefirst part of the
origin queue ID (qgid) of each log record. The origin queue ID ensures that the
Replication Server does not process duplicate records. During recovery
operations, you may need to increment the database generation number so that
Replication Server does not ignore records submitted after the database is
reloaded.

417

Glossary

database replication
definition

database server

data definition
language (DDL)

data manipulation
language (DML)

data server

Data Server Interface
(DSI)

data source

decision support
application

declared datatype

418

A description of a set of database objects—tables, transactions, functions,
system stored procedures, and DDL—for which a subscription can be created.

You can also create tabl e replication definitions and function replication
definitions. See also table replication definition and function replication
definition.

A server program, such as Sybase Adaptive Server, that provides database
management services to clients.

The set of commands in a query language, such as Transact-SQL , that
describes data and their relationships in adatabase. DDL commands in
Transact-SQL include those using the create, drop, and alter keywords.

The set of commandsin aquery language, such as Transact-SQL, that operates
on data. DML commands in Transact-SQL include select, insert, update, and
delete.

A server whose client interface conforms to the Sybase Client/Server
Interfaces and provides the functionality necessary to maintain the physical
representation of areplicated table in a database. Data servers are usually
database servers, but they can also be any datarepository with theinterface and
functionality Replication Server requires.

Replication Server threads corresponding to a connection between a
Replication Server and a database. DSI threads submit transactions from the
DSl outbound queue to areplicate data server. They consist of a scheduler
thread and one or more executor threads. The scheduler thread groups the
transactions by commit order and dispatches them to the executor threads. The
executor threads map functionsto function strings and execute the transactions
in the replicate database. DSI threads use an Open Client connection to a
database. See also outbound queue and connection.

A specific combination of a database management system (DBMS) product
such as arelational or non-relational data server, a database residing in that
DBMS, and the communi cations method used to accessthat DBM S from other
parts of areplication system. See also database and data server.

A database client application characterized by ad hoc queries, reports, and
calculations and few data update transactions.

The datatype of the value delivered to the Replication Server from the
Replication Agent:

Replication Server

Glossary

default function
string

dematerialization

derived class

direct route

disk partition

distributed database
system

Distributor

dump marker

Embedded
Replication Server
System Database
(ERSSD)

Administration Guide

e |If the Replication Agent delivers abase Replication Server datatype, such
as datetime, to the Replication Server, the declared datatype is the base
datatype.

e Otherwise, the declared datatype must be the UDD for the original
datatype at the primary database.

Thefunction string that is provided by default for the system-provided classes
rs_sqlserver_function_class and rs_default_function_class and classes that
inherit function strings from these classes, either directly or indirectly. Seealso
function string.

The optional process, when a subscription is dropped, whereby specific rows
that are not used by other subscriptions are removed from the replicate
database.

A function-string class that inherits function strings from a parent class. See
also function-string class and parent class.

A route used to send messages directly from a source to a destination
Replication Server, with no intermediate Replication Servers. Seea soindirect
route and route.

See partition.

A database system where datais stored in multiple databases on anetwork. The
databases may be managed by data servers of the same type (for example,
Adaptive Server) or by heterogeneous data servers.

A Replication Server thread (DIST) that helps to determine the destination of
each transaction in the inbound queue.

A message written by Adaptive Server in a database transaction log when a
dump is performed. In awarm standby application, when you are initializing
the standby database with data from the active database, you can specify that
Replication Server use the dump marker to determine wherein the transaction
stream to begin applying transactions in the standby database. See also warm
standby application.

The SQL Anywhere (SA) database that stores Replication Server system
tables. You can choose whether to store Replication Server systemtableson the
ERSSD or the Adaptive Server RSSD. See also Replication Server System
Database (RSSD).

419

Glossary

error action

error class

exceptions log

Failover

fault tolerance

function

function replication
definition

420

A Replication Server response to adata server error. Possible Replication
Server error actions are ignore, warn, retry_log, log, retry_stop, and
stop_replication. Error actions are assigned to specific data server errors.

A name for a collection of data server error actions that are used with a
specified database.

A set of three Replication Server system tables that holds information about
transactions that failed on adata server. The transactions in the log must be
resolved by a user or by an intelligent application. You can use the
rs_helpexception stored procedure to query the exceptions log.

Sybase Failover allows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion fails, that server’s devices,
databases, and connections can be taken over by the secondary companion.

For more detailed information about how Sybase Failover worksin Adaptive
Server, refer to Using Sybase Failover in a High Availability System, whichis
part of the Adaptive Server Enterprise documentation set.

For instructions on how to enable Failover support for non-RSSD Replication
Server connections to Adaptive Server, see “ Configuring the replication
system to support Sybase Failover” in Chapter 7, “ Replication System
Recovery”.

The ability of a system to continue to operate correctly even though one or
more of its component parts is malfunctioning.

A Replication Server object that represents a data server operation such as
insert, delete, select, or begin transaction. Replication Server distributes such
operationsto other Replication Servers as functions. Each function consists of
afunction name and a set of data parameters. In order to execute the function
in a destination database, Replication Server uses function stringsto convert a
function to acommand or set of commands for atype of database. See also
user-defined function, and replicated function delivery.

A description of areplicated function used in replicated function delivery. The
function replication definition, maintained by Replication Server, includes
information about the parametersto be replicated and the location of the
primary version of the affected data. There aretwo typesof function replication
definition, applied and request. See also replicated function delivery.

Replication Server

Glossary

function scope

function string

function-string class

function-string
inheritance

function-string
variable

function
subscription

generation number

heterogeneous data
servers

high availability (HA)

hibernation mode

Administration Guide

Therange of afunction’s effect. Functions have replication definition scope or
function-string class scope. A function with replication definition scope is
defined for a specific replication definition, and cannot be applied to other
replication definitions. A function with function-string class scope is defined
once for afunction-string class and is available only within that class.

A string that Replication Server uses to map a database command to a data
server API. For thers_select and rs_select_with_lock functions only, the string
contains an input template, used to match function strings with the database
command. For all functions, the string also contains an output template, used
to format the database command for the destination data server.

A named collection of function strings used with a specified database
connection. Function-string classes include those provided with Replication
Server and those you have created. Function-string classes can share function
string definitions through function-string inheritance. The three system-
provided function-string classes are rs_sqlserver_function_class,
rs_default_function_class, and rs_db2_function_class. See also base class,
class tree, derived class, function-string inheritance, and parent class.

The ability to share function string definitions between classes, whereby a
derived class inherits function strings from a parent class. See also derived
class, function-string class, and parent class.

An identifier used in afunction string to represent avalue that isto be
substituted at run time. Variablesin function strings are enclosed in question
marks (?). They represent column values, function parameters, system-defined
variables, or user-defined variables.

A subscription to a function replication definition (used in both applied and
reguest function delivery).

See database generation number.

Multi-vendor data servers used together in a distributed database system.
Very low downtime. Computer systems that provide HA usually provide
99.999% availahility, or roughly five minutes unscheduled downtime per year.

A Replication Server state in which all DDL commands, except admin and
sysadmin commands, are rejected; all routes and connections are suspended;
most service threads, such as DSI and RS, are suspended; and RS| and
RepAgent users are logged off and not allowed to log on. Used during route
upgrades, and may be turned on for a Replication Server to debug problems.

421

Glossary

hot standby
application

ID Server

inbound queue

indirect route

interfaces file

latency

local-area network
(LAN)

locator value

logical connection

login name

Log Transfer
Language (LTL)

422

A database application in which the standby database can be placed into
service without interrupting client applications and without losing any
transactions. See also warm standby application.

One Replication Server in areplication systemisthe ID Server. In addition to
performing the usual Replication Server tasks, the D Server assignsunique ID
numbers to every Replication Server and database in the replication system,
and maintains version information for the replication system.

A stable queue used to spool messages from a Replication Agent to a
Replication Server.

A route used to send messages from a source to a destination Replication
Server, through one or more intermediate Replication Servers. See also direct
route and route.

A file containing entries that define network accessinformation for server
programsin a Sybase client/server architecture. Server programs may include
Adaptive Servers, gateways, Replication Servers, and Replication Agents. The
interfaces file entries enable clients and serversto connect to each other in a
network.

The measure of the time it takes to distribute to a replicate database a data
modification operation first applied in a primary database. The time includes
Replication Agent processing, Replication Server processing, and network
overhead.

A system of computers and devices, such as printers and terminals, connected
by cabling for the purpose of sharing data and devices.

The value stored in the rs_locater table of the Replication Server’s RSSD that
identifies the latest log transaction record received and acknowledged by the
Replication Server from each previous site during replication.

A database connection that Replication Server maps to the connections for the
active and standby databases in awarm standby application. See also
connection and warm standby application.

The name that a user or a system component such as Replication Server uses
tolog in to adata server, Replication Server, or Replication Agent.

A subset of the Replication Command Language (RCL). A Replication Agent
such as RepAgent uses LTL commands to submit to Replication Server the
information it retrieves from primary database transaction logs.

Replication Server

Glossary

maintenance user

materialization

materialization
queue

missing row

mixed-version
system

more columns

multi-site availability
(MSA)

name space

nonatomic
materialization

Administration Guide

A data server login name that Replication Server uses to maintain replicate
data. In most applications, maintenance user transactions are not replicated.

The process of copying data specified by a subscription from a primary
database to areplicate database, thereby initializing the replicate table.
Replicate data can be transferred over a network, or, for subscriptions
involving large amounts of data, loaded initially from media. See also atomic
materialization, bulk materialization, no materialization, and nonatomic
materialization.

A stable queue used to spool messages related to a subscription being
materialized or dematerialized.

A row missing from areplicated copy of atable but present in the primary
table.

A replication system containing Replication Servers of different software
versions that have different capabilities based on their different software
versions and site versions. Mixed-version support is available only if the
system version is 11.0.2 or greater.

For example, areplication system containing Replication Serversversion 11.5
or later and version 11.0.2 is a mixed-version system. A replication system
containing Replication Servers of releases earlier than release 11.0.2 isnot a
mixed-version system, because any newer Replication Serversarerestricted by
the system version from using certain new features. See also site version and
system version.

Columnsin areplication definition exceeding 250, but limited to 1024. More
columns are supported by Replication Server version 12.5 and | ater.

Methodology for replicating database objects—tabl es, functions, transactions,
system stored procedures, and DDL from the primary to the replicate database.
See also database replication definition.

The scope within which an object name must be unique.

A materialization method that copies subscription datafrom a primary to a
replicate database through the network in a single operation, without a
holdlock. Changesto the primary table are allowed during datatransfer, which
may cause temporary inconsi stencies between replicate and primary databases.
Datais applied in increments of ten rows per transaction, which ensures that
the replicate database transaction log does not fill. Nonatomic materialization
is an optional method for the create subscription command. See also
autocorrection, atomic materialization, no materialization, and bulk
materialization.

423

Glossary

network-based
security

no materialization

online transaction
processing (OLTP)
application

Origin Queue ID (qgid)

orphaned row

outbound queue

parallel DSI

parameter

parent class

partition

physical connection

primary data

primary database

424

Secure transmission of data across a network. Replication Server supports
third-party security mechanismsthat provide user authentication, unifiedlogin,
and secure message transmission between Replication Servers.

A materialization method that lets you create a subscription when the
subscription data already exists at the replicate site. Use the create subscription
command with the without materialization clause. You can use this method to
create subscriptions to table replication definitions and function replication
definitions. See also atomic materialization and bulk materialization.

A database client application characterized by frequent transactions involving
data modification (inserts, deletes, and updates).

Formed by the RepAgent, the gid uniquely identifies each log record passed to
the Replication Server. It includes the date and timestamp and the database
generation number. See also database generation number.

A row inareplicated copy of atablethat does not match an active subscription.

A stable queue used to spool messages. The DSI outbound queue spools
messages to areplicate database. The RSI outbound queue spools messages to
areplicate Replication Server.

Configuring a database connection so that transactions are applied to a
replicate data server using multiple DSI threads operating in parallel, rather
than asingle DS thread. See also connection and Data Server Interface (DSI).

Anidentifier representing avaluethat is provided when a procedure executes.
Parameter names are prefixed with an @ character in function strings. When a
procedure is called from a function string, Replication Server passes the

parameter values, unaltered, to the data server. See also searchable parameter.

A function-string classfrom which aderived classinheritsfunction strings. See
also function-string class and derived class.

A raw disk partition or operating system file that Replication Server uses for
stable queue storage. Only use operating system filesin atest environment.

See connection.

The definitive version of aset of datain areplication system. The primary data
is maintained on a data server that is known to all of the Replication Servers
with subscriptions for the data.

Any database that contains data that is replicated to another database viathe
replication system.

Replication Server

Glossary

primary fragment
primary key

primary site

principal user

projection

publication

publication
subscription

published datatype

query

quiescent

quoted identifiers

remote procedure
call (RPC)

Administration Guide

A horizontal segment of atable that holds the primary version of a set of rows.
A set of table columns that uniquely identifies each row.

A Replication Server whereafunction-string classor error classis defined. See
error class and function-string class.

The user who starts an application. When using network-based security,
Replication Server logs in to remote servers as the principal user.

A vertical dlice of atable, representing a subset of the table's columns.

A group of articles from the same primary database. A publication letsyou
collect replication definitions for related tables and/or stored procedures and
then subscribe to them asagroup. You collect replication definitions as articles
in a publication at the source Replication Server and subscribe to them with a
publication subscription at the destination Replication Server. See also article
and publication subscription.

A subscription to a publication. See also article and publication.

The datatype of the column after the column-level trandation (and before a
class-level trandlation, if any) at the replicate data server. The published
datatype must be either a Replication Server base datatype or a UDD for the
datatypein the target data server. If the published datatype is omitted from the
replication definition, it defaults to the declared datatype.

In a database management system, a query is arequest to retrieve data that
meets a given set of criteria. The SQL database language includes the select
command for queries.

A quiescent replication system isone in which all updates have been
propagated to their destinations. Some Replication Server commands or
procedures require that you first quiesce the replication system.

Object names that contain special characters such as spaces and non-
alphanumeric characters, start with a character other than an a phabet, or that
correspond to areserved word, need to be enclosed in double quote characters
to be parsed correctly.

A request to execute aprocedure that residesin aremote server. The server that
executes the procedure could be a Adaptive Server, a Replication Server, or a
server created using Open Server. The request can originate from any of these
servers or from aclient application. The RPC request format is a part of the
Sybase Client/Server Interfaces.

425

Glossary

RepAgent thread

replicate database

replicated function
delivery

replicated stored
procedure

replicated table

Replication Agent

Replication
Command Language
(RCL)

replication definition

Replication Server

426

The Replication Agent for Adaptive Server databases. RepAgent is an
Adaptive Server thread; it transfers transaction log information from the
primary database to a Replication Server for distribution to other databases.

Any database that contains data that isreplicated from another database viathe
replication system.

A method of replicating, from a source to a destination database, a stored
procedure that is associated with a function replication definition. See also
applied function, request function, and function replication definition.

An Adaptive Server stored procedure that is marked as replicated using the
sp_setrepproc or the sp_setreplicate System procedure. Replicated stored
procedures can be associated with function replication definitions or table
replication definitions. See also replicated function delivery and
asynchronous procedure delivery.

A table that is maintained by Replication Server, in part or in whole, in
databases at multiple locations. There is one primary version of the table,
which is marked as replicated using the sp_setreptable or the sp_setreplicate
system procedure; all other versions are replicated copies.

A program or module that transfers transaction log information representing
modifications made to primary datafrom a database server to a Replication
Server for distribution to other databases. RepAgent is the Replication Agent
for Adaptive Server databases.

The commands used to manage information in Replication Server.

Usually, adescription of atable for which subscriptions can be created. The
replication definition, maintained by Replication Server, includesinformation
about the columns to be replicated and the |ocation of the primary version of
the table.

You can al so create function replication definitions; sometimestheterm “table
replication definition” is used to distinguish between table and function
replication definitions. See also function replication definition.

The Sybase server program that maintainsreplicated data, typically onaLAN,
and processes data transactions received from other Replication Serverson the
same LAN or on aWAN.

Replication Server

Glossary

Replication Server
Interface (RSI)

Replication
Monitoring Services
(RMS)

replication system
administrator

Replication Server
System Database
(RSSD)

Replication Server
system Adaptive
Server

replication system

replication system
domain

request function

resync marker

route

Administration Guide

A thread that logs in to a destination Replication Server and transfers
commands from the RSI outbound stable queue to the destination Replication
Server. Thereis one RS thread for each destination Replication Server that is
arecipient of commands from a primary or intermediate Replication Server.
See also outbound queue and route.

A small Java application built using the Sybase Unified Agent Framework
(UAF) that monitors and troubleshoot a replication environment.

The system administrator that manages routine operations in the Replication
Server.

The Adaptive Server database containing a Replication Server system tables.
You can choose whether to store Replication Server system tables on the RSSD
or the SQL Anywhere (SA) ERSSD. See also Embedded Replication Server
System Database (ERSSD).

The Adaptive Server with the database containing a Replication Server’s
system tables (the RSSD).

A data processing system where datais replicated in multiple databases to
provide remote users with the benefits of local data access. Specificaly, a
replication system that is based upon Replication Server and includes other
components such as Replication Agents and data servers.

All replication system components that use the same ID Server.

A replicated function, associated with a function replication definition, that
Replication Server delivers from a primary database to areplicate database.
The function passes parameter values to a stored procedure that is executed at
the replicate database. The stored procedure is executed at the replicate site by
the same user asit is at the primary site.See also replicated function delivery,
request function, and function replication definition.

When you restart Replication Agent in resync mode, Replication Agent sends
the resync database marker to Replication Server to indicate that a
resynchronization effort isin progress. The resync marker isthe first message
Replication Agent sends before sending any SQL data definition language
(DDL) or data manipulation language (DML) transactions.

A one-way message stream from a source Replication Server to a destination
Replication Server. Routes carry data modification commands (including those
for RSSDs) and replicated functions or stored procedures between Replication
Servers. See also direct route and indirect route.

427

Glossary

route version

row migration

SQL Server

SQL statement
replication

schema

searchable column

searchable
parameter

secondary
truncation point

site

site version

software version

428

The lower of the site version numbers of the route’s source and destination
Replication Servers. Replication Server version 11.5 and later use the route
version number to determine which datato send to the replicate site. See al'so
site version.

The process whereby column value changesin rowsin aprimary version of a
tabl e cause corresponding rowsin areplicate version of the tableto beinserted
or deleted, based on comparison with values in a subscription’s where clause.

The Sybase relational database pre-11.5 server.

In SQL statement replication, the Replication Server receives the SQL
statement that modified the primary data, rather than the individual row
changesfromthetransaction log. Replication Server appliesthe SQL statement
to the replicated site. RepAgent sends both the SQL Data Manipulation
Language (DML) and individual row changes. Depending on your
configuration, Replication Server chooses either individual row change log
replication or SQL statement replication.

The structure of the database. DDL commands and system procedures change
system tables stored in the database. Supported DDL commands and system
procedures can be replicated to standby databases when you use Replication
Server version 11.5 or later and Adaptive Server version 11.5 or later.

A columnin areplicated table that can be specified in the where clause of a
subscription or article to restrict the rows replicated at a site.

A parameter in areplicated stored procedure that can be specified in the where
clause of a subscription to help determine whether or not the stored procedure
should be replicated. See also parameter.

Seetruncation point.

Aninstalation consisting of, at minimum, a Replication Server, data server,
and database, and possibly a Replication Agent, usually at a discrete
geographic location. The components at each site are connected over aWAN
to those at other sitesin areplication system. See also primary site.

The version number for anindividual Replication Server. Oncethe siteversion
has been set to a particular level, the Replication Server enables features
specific to that level, and downgrades are not allowed. See also software
version, route version, and system version.

The version number of the software release for an individual Replication
Server. See also site version and system version.

Replication Server

Glossary

Stable Queue
Manager (SQM)

Stable Queue
Transaction (SQT)
interface

stable queues

standalone mode

standby database

stored procedure

subscription

subscription
dematerialization

subscription
materialization

subscription
migration

Sybase Central

Administration Guide

A thread that manages the stable queues. There is one Stable Queue Manager
(SQM) thread for each stable queue accessed by the Replication Server,
whether inbound or outbound.

A thread that reassembles transaction commands in commit order. A Stable
Queue Transaction (SQT) interface thread reads from inbound stable queues,
puts transactions in commit order, then sends them to the Distributor (DIST)
thread or a DSl thread, depending on which thread required the SQT ordering
of the transaction.

Store-and-forward queues where Replication Server stores messages destined
for aroute or database connection. M essageswritten into astable queueremain
there until they can be delivered to the destination Replication Server or
database. Replication Server builds stable queues using its disk partitions. See
also inbound queue, outbound queue, and materialization queue.

A specia Replication Server mode used for initiating recovery operations.

In awarm standby application, a database that receives data modifications
from the active database and serves asabackup of that database. See alsowarm
standby application.

A collection of SQL statementsand optional control-of-flow statements stored
under a name in a Adaptive Server database. Stored procedures supplied with
Adaptive Server are called system procedures. Some stored procedures for
querying the RSSD are included with the Replication Server software.

A request for Replication Server to maintain areplicated copy of atable, or a
set of rowsfrom atable, in areplicate database at a specified location. You can
also subscribe to afunction replication definition, for replicating stored
procedures.

See dematerialization.
See materialization.
See row migration.

A graphical toal that provides a common interface for managing Sybase and
Powersoft products. Replication Server uses Replication Manager as a Sybase
Central plug-in. See also Replication Monitoring Services (RMS).

429

Glossary

symmetric
multiprocessing
(SMP)

synchronous
command

system function

system-provided
classes

system version

table replication
definition

table subscription

thread

transaction

Transact-SQL

430

On amultiprocessor platform, the ability of an application’s threadsto runin
parallel. Replication Server supports SMP, which can improve server
performance and efficiency.

A command that aclient considers complete only after the completion statusis
received.

A function that is predefined and part of the Replication Server product.
Different system functions coordinate replication activities, such asrs_begin,
or perform data manipulation operations, such asrs_insert, rs_delete, and
rs_update.

Replication Server provides the error classrs_sglserver_error_class and the
function-string classes rs_sqlserver_function_class, rs_default_function_class,
andrs_db2_function_class. Function strings are generated automatically for the
system-provided function-string classesand for any derived classesthat inherit
from these classes, directly or indirectly. See also error class and function-
string class.

The version number for areplication system that represents the version for
which new features are enabled, for Replication Servers of release 11.0.2 or
earlier, and below which no Replication Server can bedowngraded or installed.
For aReplication Server version 11.5, your use of certain new featuresrequires
asite version of 1150 and a system version of at least 1102. See also mixed-
version system, site version, and software version.

Seereplication definition.

A subscription to atable replication definition.

A process running within Replication Server. Built upon Sybase Open Server,
Replication Server has a multi-threaded architecture. Each thread performs a
certain function such as managing a user session, receiving messages from a
Replication Agent or another Replication Server, or applying messagesto a
database. See also Data Server Interface (DSI), Distributor, and Replication
Server Interface (RSI).

A mechanism for grouping statements so that they are treated as a unit: either
all statementsin the group are executed or no statementsin the group are
executed.

The relational database language used with Adaptive Server. It is based on
standard SQL (Structured Query Language), with Sybase extensions.

Replication Server

Glossary

truncation point

user-defined
function

variable
version

warm standby
application

wide-area network
(WAN)

wide columns

wide data

wide messages

Administration Guide

An Adaptive Server database that holds primary data has an active truncation
point, marking the transaction log location where Adaptive Server has
completed processing. Thisisthe primary truncation point.

The RepAgent for an Adaptive Server database maintains a secondary
truncation point, marking the transaction log location separating the portion of
the log successfully submitted to the Replication Server from the portion not
yet submitted. The secondary truncation point ensures that each operation
enters the replication system before its portion of the log is truncated.

A function that allows you to create custom applications that use Replication
Server to distribute replicated functions or asynchronous stored procedures
between sitesin areplication system. In replicated function delivery, a user-
defined function is automatically created by Replication Server when you
create a function replication definition.

See function-string variable.
Seemixed-version system, site version, software version, and system version.

An application that employs Replication Server to maintain astandby database
for a database known as the active database. If the active database fails,
Replication Server and client applications can switch to the standby database.

A system of local-area networks (LANS) connected together with data
communication lines.

Columnsin areplication definition containing char, varchar, binary, varbinary,
unichar, univarchar, or Javainrow data that are wider that 255 bytes. Wide
columns are supported by Replication Server version 12.5 and | ater.

Widedatarows, limited to the size of the data page on the data server. Adaptive
Server supports page sizes of 2K, 4K, 8K, and 16K. Wide datais supported by
Replication Server version 12.5 and later.

Messages larger that 16K that span blocks. Wide messages are supported by
Replication Server version 12.5 and | ater.

431

Glossary

432 Replication Server

Index

A

abort switch command 99
abstract plans, replication of 62
activate subscription command
with suspension at replicate only clause 127
with suspension clause 127
activedatabase 58
managing old active after switching 100
restarting clients 100
Adaptive Server
error handling 286
admin commands 98
described 7
admin config command 197
Advanced Services Option 230
aarm daemon (dAlarm) 137
alocating queue segments 253
allow connectionscommand 338
ater connection command
assigning databases to function-string classes 31
alter connection command 197
alter function command 362
ater function string command 42
mapping user-defined functions 364
replacing default function string 353
alter logical connection command 108
alter table command support for warm standby 119
applied stored procedures
prerequisites for implementing 353
settingup 354
assign action command 285
asynchronous I/O daemon (dAIO) 137
asynchronous stored procedures
adding parametersto 362
and non-unique user-defined function name 365
applied 351
executing 349
request stored procedures 352
user-defined functions 361

Administration Guide

atomic materialization
in warm standby applications 126

B

batch commands in function strings 46
batch configuration parameter 150
bep utility program 83, 127
block size 245
block sizeto'values' with shutdown in increasing queue
block size 248
block size, setting 140
block_sizeto'value with shutdown configuration
parameter 140
bulk copy-in support 196-198
commandsfor 197
connection parameters 197
connection parameters, checking valueof 197
connection parameters, setting valueof 197
Data Server Interface (DSI), implementation in
196, 197-198
multi-statement transactions, support for 198
subscription materiaization, changesto 198
bulk insert.See bulk copy-in support
bulk materialization
in warm standby applications 127

C

caching
stable queue 158
case, in RCL commands xviii
certifications
component xv
changing
function strings 16
check subscription command

after executing switch activecommand 127, 128

433

Index

cleanenv 408
client application
restarting after active switch 100
clusters
Sun 367
terminology 368
command batching
for non-ASE servers 47
commands
admin config 197
alter connection 197
configure replication server 197
for managing function replication definition
hareg 375
compilation and bulk apply in HVAR 232
configuration parameters
affecting performance 139
dsi_bulk_copy 141, 197, 198
dsi_bulk_threshold 141, 197
dynamic_sgl 227
dynamic_sqgl_cache management
dynamic_sgl_cache size 228
for paralel DSI 168
rs_config systemtable 139
stats reset_rssd 266
configure connection command, setting save interval
configure logical connection command 118
setting DS| queue saveinterval 118
setting materialization queue save interval 118
configure replication server command 197
configureroute, setting saveinterval 302
configuring
stable queue cache parameters 159
connection manager daemon (dCM) 137
connections
setting saveinterval 303
consistency
maintaining for replicate databases 304
coordinated dumps
creating 304
loading primary and replicate databases 313
recovering databases 312
counter names 261
counters 259-272
overview 260
resetting 272

381

228

434

303

viewing information about 271
create connection command 31
create error class 282
create function command 361
create function string classcommand 27, 29
create function string command 40
create logical connection command 79
creating

function strings 40

function-string classes 27

user-defined functions 361
cross-platform dump and load 315

D

daemons

aarm (dAlarm) 137
asynchronous 1/0 (dAIO) 137
connection manager (dCM) 137
described 132

miscellaneous 137

recovery (dREC) 137
subscription retry (dSUB) 137
version (AVERSION) 138
data server

error handling 280, 287

Data Server Interface 196, 197-198

data service
Replication Server as 375
gtart/shuntdown 375

database connections
configuring for parallel DSI 168
for warm standby applications 59
database generation numbers
adjusting during database recovery 341
and dumps 342
gd 341
database logs
determining for reload 340
recovering messages off-line 307
recovering messages online 309
reloading 342
truncated primary recovery 309
database regeneration numbers, resetting 342
database resynchronization, monitoring 346

Replication Server

database resynchronization, scenarios 347
databases
active 59
assigning function-string classes 31
customizing operations 11, 51
failures 312
logical 59
setting log recovery 338
standby 59
datatypes
text andimage 65
db_packet_size configuration parameter 140, 150
DB2 databases, function-string class 12
dbcc settrunc Transact-SQL command 309
deadlock detection, parallel dsi 189
debugging
high availability 375
declare statements, using in language output templates
49
default function strings, restoring 45
default partition allocation mechanism 254
deferred_name_resolution configuration parameter
107
deferred_queue_size configuration parameter 140
deleting
transactionsin the exceptionslog 292
derived function-string class, described 26
direct /0 149
disk partitions 253
disk_affinity configuration parameter 140, 150, 163
disk_direct_cache read configuration parameter 140
displaying
assigned actions for error numbers 287
error classinformation 285
function-related information 50
transactions in the exceptionslog 290
dist_direct_cache read in enhanced distributor thread
read efficiency 244
distributor thread (DIST) 144, 155
described 134
disabling 108
drop connection command 101
drop error class 284
drop function command 363
drop function string classcommand 32
drop function string command 43

Administration Guide

Index

drop logical connection command 111
dropping
function string class 32
function strings 43
logical database connections 111
logical databases fromthe ID Server 111
pre-15.1 request function 386
user-defined functions 363
DSl 196, 197-198
DSl efficiency 242
DSl threads
described 136
detecting duplicate transactions 293
detecting losses 336
executor 136, 173
handling losses 337
parallel 166
scheduler 136, 173
for standby database 95
suspending to load bulk materialization data 127
dsi_bulk_copy connection parameter 141, 197, 198
checking valueof 197
See also bulk copy-in support
setting value of 197
dsi_bulk_threshold connection parameter
checking valueof 197
See also bulk copy-in support
setting value of 197
dsi_bulk_thresholdinHVAR 238
dsi_cmd_batch_sizeconfiguration parameter 141, 150
dsi_cmd_batch _size parameter 161
dsi_cmd_prefetch configuration parameter 141, 150
dsi_command_convertinHVAR 238
dsi_command_prefetch in enhanced DS efficiency
242
dsi_commit_check_locks intrvl configuration
parameter 151, 168
dsi_commit_check locks log configuration parameter
168
dsi_commit_check locks max configuration parameter
151, 168
dsi_commit_control configuration parameter 151, 169
dsi_compile_enablein HVYAR 236
dsi_ignore_underscore_name configuration parameter
169
dsi_isolation_level configuration parameter

141,197

151, 169

435

Index

dsi_large xact_size configuration parameter 151, 169
dsi_max_cmdsin HVAR 238

dsi_max_cmds_in_batch 170

dsi_max_xacts in_group 169

dsi_max_xacts in_group configuration parameter 152
dsi_non_blocking_commit configuration parameter 142
dsi_num_large xact_thread configuration parameter 170

dsi_num_large xact_threads configuration parameter 152

dsi_num_threads configuration parameter 152, 170
dsi_partitioning_rule configuration parameter 152, 170
dsi_serialization_method configuration parameter 153,
171
dsi_sqt_max_cache _size configuration parameter 154
dsi_text_max_xacts in_group configuration parameter
141
dsi_xact_group_size configuration parameter 142, 154
dsitributor thread read thread efficiency 244
dump database command 89, 304
dump marker option for rs_init program 86, 102
dump transaction command 89, 304
dumps
creating 304
database generation numbers 342
determining for reload 340
initializing warm standby databases 83, 89
transaction timestamp 340
dynamic SQL 227
configuring parameters 228
limitations 230
replicate minimal columns, using with 229
table-level control 228
dynamic_sql configuration parameter 142
dynamic_sqgl_cache_management configuration parameter
142
dynamic_sqgl_cache size configuration parameter 142

E

empty function strings, creating 46
enablereplication marker 83

enhanced distributor thread read efficiency 244
enhanced DS efficiency 242

enhanced memory allocation 245

enhanced RepAgent Executor thread efficiency 243
enhancements

436

for Replication Server performance 196
SQL statement replication 200
error classes
changing primary Replication Server 284
creating 282
dropping 284
initializing 283
rs_sglserver_error_class 282
error handling
assigning actions 285
dataserver 280, 287
general 275
Replication Server 276
system transactions 294
error log files
beginning anew Replication Server log file 279
described 276
displaying current log filename 278
Replication Server 2, 276
€rror messages
format 277
Replication Server loginname 5
severity levels 277
system transactions 294
errors
log file for Replication Server 2
standard error output 2
examples
DSl lossdetection 336
SQM loss detection 336
warm standby application 94
exceptionslog
accessing 290
deleting transactions 292
displaying transactions 290
exceptionshandling 288
exec_cmds_per_timeslice configuration parameter
143, 154, 162
exec_nrm_request_limit configuration parameter 143,
155
exec_nrm_request_limit in enhanced RepAgent
Executor thread efficiency 244
exec_sgm_write_request_limit configuration parameter
143, 155
exec_sgm_write_request_limit parameter 162

Replication Server

F

failed transactions
handling 288, 292
processfor resolving 289
failover, support for in Replication Server 297
failure
dataserver 275
network 275
files
Replication Server errorlog 2
standard error output 2
finding current saveinterval 301
flushed values
viewing 269
formatting, RCL commands xviii
function replication definition
commands 381
function replication definitions
sending parametersto standby database 124
function scope, described 15
function string efficiency 35, 41
function strings
changing 16
creating 40
creatingempty 46
defining multiple commands 46
described 19
dropping 43
examples 42
generated for standby databases 63
input templates 33
managing 32,47
none 55
output templates 33
restoring default 45
restoring defaults with output template 45
updating 42
variables 38
writetext 54
functions
described 13
function-string classes
assigning to databases 31
changing primary Replication Server for 284
changing the primary Replication Server 30
creating 27

Administration Guide

Index

described 21

dropping 32

for DB2 databases 12
managing 26, 30
rs_default_function_class 63
function-string inheritance 26

G

generating
performance analysis 272
performance overview 272
performancereports 272

grant command 91

H

ha failover configuration parameter 299
hareg command 375
heartbeat featurein RMS, using 257
high availability 367-376
configuring Replication Server for 370
configuring Sun Cluster for 370
installing Replication Server for 371
scripts 369
technology overview 369
terminology 368
High Volume Adaptive Replication 231
hints 254
HVAR 231
backward compatibility 242
compilation and bulk apply 232
configuring 238
displaying 241
displaying net-change database 242
displaying table level configuration parameters
241
displaying table references 241
dsi_bulk_threshold 238
dsi_command_convert 238
dsi_compile_enable 236
ds_max_cmds 238
enabling 236
mixed-version suppport 242

437

Index

platform support 232
processing and limitations 234
referential constraints 239
system table support 239

icons

Adaptive Server xix

client application xix

Replication Agent xix

Replication Manager ~ Xix

Replication Server xix
ID Server

dropping alogical databasefrom 111
identifiers

format xix

function parameters ~ xix

length xix
ignore loss command

handling losses 337

ignoring SQM and DSl losses 338

ignoring SQM loss after setting log recovery 339

and warm standby applications 130
implementing

pre-15.1 request function 382
inbound queue

displaying reader threads 104

multiple reader threads 108
increasing block size 245
increasing queue block size 245
informational messages

format 277
init_sgm_write_delay configuration parameter 143

init_sgm_write_max_delay configuration parameter 144

input templates, example 37
installing Replication Server
asadataservice 372
forHA 371
interfacesfile
checking for accuracy 4
modifying for warm standby application 105
isolation levels 174

isolation levels, setting for non-Sybase data servers 175

isgl interactive SQL utility

438

verifying server status 4

L

language
function string output templates 34
largetransactions 173
load database command 89
load transaction command 89
loading
primary database from dumps 314
local pending table 392
log recovery
detecting losses 339
setting for databases 338
logical connection
configuring materialization queue saveinterval

118

configuring saveinterval 118

creating 79

send standby_repdef_cols configuration parameter
108

logical database connections
dropping 111
loss detection
after setting log recovery 339
checking messages 336
DSl loss 334, 336
handling losses 337
preventing false lossesin stable queue 335
rebuilding stable queues 334
SQM loss 334
with warm standby applications 129

M

maintenance user
for standby database 91
master database
DDL commands and system procedures 69
replication 91
replication limitations 71
and warm standby applications 62
materialization queue save interval

Replication Server

setting for logical connections 118
strict setting 118
materialization_save_interval configuration parameter
for logical connections 107
md_sgm_write_request_limit configuration parameter
144, 155
md_sgm_write request_limit parameter 162
mem_reduce_malloc configuration parameter 144
mem_reduce_malloc in enhanced memory allocation
245
memory allocation 245
memory_limit configuration parameter 145
Message Delivery module (MD) 135
messages
handling lossin stable queues 337
recovering from off-line database logs 307
recovering from online databaselogs 309
SQM loss detection 339
migrate RSSD 315
models and strategies
pre-15.1 request function 388

modifiers

in function string variables 38
modifying

pre-15.1 request function 386
modules

described 132

Message Delivery 135
overview 260
Transaction Delivery 135
monitoring

partition percentages 9
Replication Server 4
monitoring of status 6
monitoring status

replication objects 6
mount command 83
move primary command 30, 284
multiple replication definitions
and function strings 20
multiprocessor platforms 251
multiprocessors

enabling 252
monitoring 252
MySybase xv

Administration Guide

Index

N

net-change database in HVAR, displaying 242
new features

Replication Server 15.1 ESD #1 196198
non-ASE error class support

default non-ASE error classes 281

native error codes 281
nonatomic materialization

in warm standby applications 127
none

transaction serialization method 179
none function string output templates 35, 55
nrm_thread configuration parameter 145
nrm_thread in enhanced RepAgent Executor thread

efficiency 243

O

online database command 89
OQID commit stack 186
originqueue ID (gid) 340
determining database generation numbers 341
output templates
creating empty function strings 46
language 34
none 35,41,55
restoring default function strings 45
e 35
writetext 54

P

paralel DS
benefitsand risks 167
componentsfor 172
conflicting updates 194
deadlocks 190
described 166
function strings for
grouping logic 185
infrequent conflicting updates 194
isolation levelsfor 174
optimal performance 191
OQID commit stack 186

189, 190

439

Index

parametersfor 168

partitioning rules 180, 193

reducing contentions 192
resolving conflicts 185

setting isolation levels for non-Sybase replicate data

servers 175, 194

setting parametersfor 172
paralel_ds configuration parameter 155, 172
parameters

disk_affinity 163

dsi_cmd _batch size 161
exec_cmds_per_timedice 162
exec_sgm_write request_limit 162
parameters, stored procedure

adding to user-defined functions 362
parent function-string class 26
partition affinity

dlocation hint 254

alter connection command 254
alter route command 254

default allocation 253
rs_diskaffinity system table 254
partition failure

recovering 305, 309
partitioning rules 180, 193

none 181

origin begin and commit times 182
transaction name 183

user name 182
partitions 253

monitoring percentages 9
recovering from loss or failure 305, 309
space requirements 302
pending table

with request functions 392
personalized views

creating xv
pre-15.1 request function

implementation 382

model and variations 388
prerequisites

pre-15.1 request function replication 377
primary databases

loading from dumps 314
recovering from failure 312
recovering truncated logs 309

440

primary dumps

recovering primary databases 313
primary key

for tablesin awarm standby database 123
primary Replication Server

changing for an error class 284

changing function-string class to another Replication

Server 30
processingin 132, 138

Q

queries
for exceptions log system tables 291
queueblock size 245
queue block size, setting 140
queuelD 340
queue segments, alllocating 253
quiesce database ... to manifest_filecommand 83

R

RCL commands 361
abort switch command 99
admin log_namecommand 278
admin logical_statuscommand 98, 103
admin set_log_name 279
admin set_log_name command 2
admin who, sgm command 301
alow connectionscommand 338
alter connection command 31
alter function command 362
alter function string command 42
assign action command 285
configure connection command 47, 110, 304
create connection command 31
create error classcommand 282
create function string classcommand 29
create function string command 42
create logical connection command 79
drop connection command 101
drop error classcommand 284
drop function string classcommand 32
drop function string command 43

Replication Server

ignorelosscommand 337, 340
move primary command 30, 284
rebuild queuescommand 331
resume connection 90
resume connection command 90, 289
set log recovery command 338
suspend connection command 288
sysadmin dropldb command 112
sysadmin restore_dsi_saved_segments command
303
wait for create standby command 90
wait for switch command 99
RCL, formatting commands xviii
rebuild queuescommand 331
rec_daemon_sleep_time configuration parameter
145, 160
recording
distributor status 136
recovery
from primary database failures 312
of messages from off-line database logs 307
overview 315
partition loss or faillure 305, 309
from RSSD failure 315, 330
of RSSD fromdumps 316
setting save intervals 301
support tasks 331, 342
from truncated primary databaselogs 309, 312
using procedures 296
recovery daemon (dREC) 137
recovery mode
Replication Server 332, 338
referenceimplementation 397
beforeyou begin - 399
building the environment 399
cleanenv 408
cleaningup 407
configuration file 400
configuring 404
monitors and countersreport 406
objects created 408
obtaining test results 405
platform support 398
refimp andyze 405
refimp cleanup 407
refimp config 404

Administration Guide

Index

refimprun 404
required components 398
rs_ticket history report 405
running performancetests 404
shutting down servers 408
referential constraintsin HVAR 239
refimp andyze 405
refimp cleanup 407
refimp config 404
refimprun 404
regeneration numbers, resetting 342
REP_HVAR_ASElicense 230
RepAgent
error log messages 279
RepAgent Executor thread efficiency 243
RepAgent user thread 133
replicate databases
preventing dataloss 300
replicate minimal columns
and non-default function strings 53
andrs_default_fssystem variable 53
replicate minimal columns clause, using 53
replicate minimal columns, using with dynamic SQL
229
replicate Replication Server
processingin 138
replicate_minimal_columns configuration parameter
107
replicated stored procedures
enabling for replication 361
replicating
data, large batch of 196
replication
configuring in standby databases 110
master database 91
replication definitions
required for warm standby 119
sending columns to standby database 123
replication definitions, configuring for SQL statement
replication 214
Replication Server
checking for errors 2
errorlog 101, 276
handling lost messages 337
informational messages 277
internals 131, 139

441

Index

log recovery mode 338
monitoring 4
partitions 8,9
processing in primary 132, 138
processing in replicate 138
rebuilding stable queues 331
recovery mode 332, 338
standalone mode 307, 331
standard errors 2
verifying aworking system 2
verifying status 4
Replication Server error class
parameter 286
Replication Server programs
rs_subcmp 337
Replication Server System Database (RSSD)
recovering from failure 315
updating database generation numbers 342
replication system
error log files 276
preventing dataloss 300
Replication System Administrator
roleof Xi
request functions 396
with pending table 392
regquest stored procedures 352
prerequisites for implementing 353
settingup 358
resetting database generation numbers 342
restoring
dumps 304
primary and replicate databases 313
RSSD 317
restrictions
pre-15.1 request function replication 377
warm standby applications 61
resume connection command 90, 289
Resynchronizing databases 344
RMS heartbeat feature 257
routes
RSSD recovery 330
setting saveinterval 301
row count validation, in SQL statement replication 217
row count verification
example 286
RPC function string output templates 35

442

RS user thread 138
rs_batch_end system function 16
rs_batch_start system function 16
rs_begin system function 16
rs_check repl system function 16
rs_commit system function 16
rs_config system table

configuration parameters 139
rs_datarow_for_writetext system function 18
rs_db2_function_class, described 22
rs_default_function_class 63

described 22
rs_delete system function 19
rs_delexception stored procedure 292
rs_diskaffinity system table 254
rs_dumpdb system function 17, 304
rs_dumptran system function 17, 304
rs_get_charset system function 17
rs_get_lastcommit system function 17
rs_get_sortorder system function 17
rs_get_textptr system function 19
rs_get_thread seq system function 17, 190
rs_get_thread seq noholdlock system function 17,

190

rs_helpclass stored procedure 51
rs_helperror stored procedure 287
rs_helpexception stored procedure 290
rs_helpfstring stored procedure 51
rs_helpfunc stored procedure 51
rs_idnames system table

dropping logica databasefrom 112
rs_init program

adding a standby database 89

adding warm standby databases 80
rs_init_erroractions stored procedure 283
rs_initialize_threads system function 17, 190
rs_insert system function 19
rs_iq_function_class, described 23
rs_marker system function 17
rs_mk_rsids_consistent stored procedure 322
rs_mss _function_class, described 23
rs_non_blocking_commit system function 17
rs_non_blocking_commit_flush system function 17
rs_oracle function _class, described 23
rs_raw_object_serialization function 17
rs_repl_off system function 17

Replication Server

rs_repl_on system function 17
rs_rollback system function 17
rs_select system function 19

updating function strings 43
rs_select_with_lock system function 19

updating function strings 43
rs_set ciphertext system function 17
rs_set deml_on_computed system function 18
rs_set_isolation_level function string 175
rs_set_isolation_level system function 17
rs_set non_blocking_commit system function 18
rs_set proxy function 18
rs_sqlserver_error_classerror class 282
rs_sqlserver_function_class 30

described 22
rs_statcounters systemtable 271
rs_subcmp program 128, 337
rs_textptr_init system function 19
rs_thread check lock system function 18
rs_triggers reset system function 18
rs_trunc_reset system function 18
rs_trunc_set system function 18
rs_truncate function 19
rs_update system function 19
rs_update_threads system function 18, 190
rs_usedb system function 18
rs_writetext system function 19
RSI threads

described 137
RS user thread 139
rsi_batch_size configuration parameter 156
rsi_packet_size configuration parameter 156
rsi_sync_interval configuration parameter 156
RSSD failure

recovering 315, 330

S

sapermission Xi

saveinterva
described 301

setting for connections 303
setting for logical connections 117
setting for routes 302

strict setting 118, 126

Administration Guide

Index

save_interva configuration parameter 301
for logica connection 107
scope of SQL statement replication 219
scope, of functions 15
scripts
verifying server status 5
segments
preallocation 256
send standby clause
for columns 123
for parameters 124
send standby_repdef_cols configuration parameter for
logical connections 108
serialization methods
no_wait 177
none 177
wait_for_commit 179
wait_for_start 178
server user's D
for warm standby databases 88
servers
verifying operation 4
set function string class clause 31
set log recovery command 338
set replication Transact-SQL command 76, 110
set triggers off Transact-SQL command 110
setting isolation levels for non-Sybase replicate data
servers 175, 194
severity levels
data server errors 286
error messages 277
Replication Server 286
skip transaction clause 289
small transactions 173
smp_enable configuration parameter 146
sp_helpcounter command system procedure 271
sp_reptostandby system procedure 66, 90
sp_setreplicate system procedure
marking stored procedures for replication 361
Sp_setrepproc system procedure 72
marking stored procedures in awarm standby active
database 90
sp_setreptable system procedure
marking tablesin awarm standby active database
90
SQL statement replication

443

Index

autocorrection 225

configuring replication definitions 214

database replication definition 214

enabling 206

enhancement 200

issuesresolved by 222

product and mixed version requirements 226

replicate SQLDML clause 214

Replication Server topologies, effect of 203

restrictions 223

row count validation 217

RSSD modifications 225

scopeof 219

table replication definition 216

threshold setting 210

WS_SQLDML_REPLICATION parameter 217
sgm_cache_enable configuration parameter 146
sgm_cache_size configuration parameter 146
sgm_page_size configuration parameter 146
sgm_recover_segs configuration parameter 146
sgm_seg_prealloc configuration parameter 146
sgm_write_flush configuration parameter 146, 148
sqt_init_read delay configuration parameter 147
sgt_max_cache_size configuration parameter 147, 171
sgt_max_read_delay configuration parameter 147
stable queue

caching 158
Stable Queue Manager thread (SQM) 134

detecting loss during stable queue rebuild 335

handling losses 337

loss detection after log recovery 339
Stable Queue Transaction thread (SQT) 134
stable queues 148

detecting losses 334

DSl loss 334

handling partition failure 302

off-line rebuild from database logs 332

onlinerebuild 332

rebuilding 331
standal one mode

Replication Server 307, 331
standby database 58

adding 82

monitoring status of add 102

switchingto 94
stats reset_rssd configuration parameter 266

444

status
monitoring 6
verifying dataservers 4
verifying RepAgents 4
verifying Replication Servers 4
stored procedures
dropping 363
example for request functions 390
example used with pending table 395
marking for replication using sp_setreplicate 360
rs_delexception 292
rs_helpclass 51
rs_helperror 287
rs_helpexception 290
rs_helpfstring 51
rs_init_erroractions 283
rs_ mk_rsids consistent 322
sts_cachesize configuration parameter 147
sts full_cache configuration parameter 148
style conventions xvi
sub_daemon_sleep_time configuration parameter 148
sub_sgm_write_request_limit configuration parameter
148
subscribing
to datain warm standby databases 124
subscription materialization 148, 198
subscription migration
described 135
subscription resolution engine (SRE) 135
subscription retry daemon (dSUB) 137
subscriptions
comparing after restoring backups 320
re-creating after backups 327
restrictions in warm standby applications 125
Sun Cluster HA 367, 369
references 367
support
bulk copy-in. See bulk copy-in support
suspect subscriptions 127
suspend connection command 288, 289
switch active command
during atomic materidization 127
during subscription demateriaization 128
during subscription materiadization 125
sysadmin dropldb command 112
sysadmin restore_dsi_saved_segments command 303

Replication Server

system functions
rs dumpdb 304
rs_ dumptran 304
system functions, list of
with function-string class scope 16
with replication definition scope 18
system procedures
sp_helpcounter command 271
sp_setreplicate 361
Sp_setrepproc 90
sp_setreptable 90
system tables
rs_diskaffinity 254
rs_idnames 111
rs_statcounters 271
system transactions 294

T
testing
Replication Server components 2
Replication Server connections 3
threads
described 132
displaying for replication system 6
distributor (dist) 134
DSl executor 136, 173
DSl scheduler 136, 173
in primary Replication Server described 138
in primary replication server described 132
for paralel DSI 166
RSuser 138
RSl 137
RSl user 139
Stable Queue Manager (SQM) 133
Stable Queue Transaction (SQT) 134
USER 138
threads, miscellaneous 137
threshold levels
setting and using for partitions 8
threshold, setting in SQL statement replication 210
timestamp
gid 340
Transaction Delivery module (TD) 135
transaction names, default 183

Administration Guide

Index

transactions
exceptionshandling 288
large 174
loading log dumps 340
processing with parallel DS| threads 166
reasonsfor failure 288
serialization methods 176
small 173
timestamp 340
Transact-SQL commands
dump database 304
dump transaction 304
set replication off 110
set triggersoff 110
triggers
configuring in standby databases 110
truncate table command 294
RCL 65
truncated database logs, recovering 309

U

updating function strings 42
use_batch_markers configuration parameter 156
USERthread 138
user-defined functions
adding parameters 362
associating replicated stored procedureswith 361
described 14
dropping 363
managing 361
mapping to adifferent stored procedure 364
specifying anon-unique function name 365
using pre-15.1 request function 380

Vv

variables

function strings 38

modifiers 38

system-defined 38
version daemon (AVERSION) 138
visual monitoring of status 6

445

Index

W

wait for create standby command 90
wait for switch command 99
warm standby applications
comparing methods 64
database connections 59
databases 59
effects of switching to the standby database 96
forcing replication of DDL commands 77
logical connections 60
monitoring 101
physical connections 59
for aprimary database 112
for areplicate database 114
restrictions 61
setting up databases 77, 108
switching to the standby database 94
tableswith the same name 73
turning off replication 77
warm standby, alter table command support 119
write operations 148
writetext function string output templates 54
writing directly to media 148

X

xpd 315

446 Replication Server

	Administration Guide: Volume 2
	About This Book
	CHAPTER 1 Verifying and Monitoring Replication Server
	Checking replication system log files for errors
	Verifying a replication system
	Monitoring Replication Server
	Verifying server status
	Visual monitoring of status
	Displaying replication system thread status
	Using system information commands

	Setting and using threshold levels
	Monitoring partition percentages

	CHAPTER 2 Customizing Database Operations
	Overview
	Working with functions, function strings, and classes
	Functions
	System functions
	User-defined functions
	Function scope

	Summary of system functions
	System functions with function-string-class scope
	System functions with replication-definition scope

	Function strings
	Input and output templates
	Applications for customized function strings

	System functions with multiple function strings

	Function-string classes
	System-provided classes
	Function-string inheritance
	Restrictions in mixed-version systems

	Managing function-string classes
	Creating a function-string class
	Creating a derived class
	Creating a base class
	Primary site for a function-string class
	Changing the primary site for a function-string class

	Assigning a function-string class to a database
	Dropping a function-string class

	Managing function strings
	Function strings and function-string classes
	Function-string input and output templates
	Requirements for using input and output templates

	Using output templates
	Language output templates
	RPC output templates
	none output templates
	Output templates for rs_writetext function strings

	Using input templates
	Class in which to create function strings

	Using function-string variables
	Function-string variable formatting

	Creating function strings
	Guidelines for creating function strings

	Altering function strings
	Dropping function strings
	Restoring default function strings
	Creating empty function strings with the output template
	Defining multiple commands in a function string
	Command batching for non-ASE servers
	Using function strings
	Using connection settings
	Order of processing
	DSI Configuration

	Using declare statements in language output templates

	Displaying function-related information
	Obtaining information using the admin command
	Obtaining information using stored procedures

	Using the default system variable
	Extending default function strings
	Using replicate minimal columns

	Using function strings with text, unitext, image, and rawobject datatypes
	Using output writetext for rs_writetext function strings
	Using output none for rs_writetext function strings
	Heterogeneous replication and text, unitext, image, and rawobject data

	CHAPTER 3 Managing Warm Standby Applications
	Overview of warm standby application
	How a warm standby works
	Database connections in a warm standby application
	Primary and replicate databases and warm standby applications
	Comparison of database relationships

	Warm standby requirements and restrictions
	Function strings for maintaining standby databases

	What information is replicated for ASE warm standby application?
	Comparing replication methods
	Using sp_reptostandby to enable replication
	Restrictions and requirements when using sp_reptostandby
	Disabling replication

	Using sp_setreptable to enable replication
	Using sp_setrepproc to copy user stored procedures
	Replicating tables with the same name but different owners
	Replicating text, unitext, image, and rawobject data
	Using the use_index option in a replicate database

	Configuring warm standby database for SQL statement replication
	Replicating encrypted columns
	Replicating quoted identifiers
	When warm standby involves a replicate database
	Changing replication for the current isql session
	Forcing replication of DDL commands to the standby database
	Turning off all replication to the standby database

	Setting up ASE warm standby databases
	Before you begin
	Client application issues

	Task one: Creating the logical connection
	Naming the logical connection
	Procedure for creating the logical connection
	Reconfiguring and restarting RepAgent

	Task two: Adding the active database
	Task three: Enabling replication for objects in the active database
	Enabling replication for objects added later

	Task four: Adding the standby database
	Creating the standby database
	Determining how to initialize the standby database
	Adding the standby database maintenance user
	Adding the standby database to the replication system
	Enabling replication for objects in the standby database
	Granting permissions to the maintenance user

	Replicating the master database in a warm standby environment for ASE
	Switching the active and standby ASE databases
	Determining if a switch is necessary
	Before switching active and standby databases
	Internal switching steps
	After switching active and standby databases
	Making the switch
	Disconnect client applications from the active database
	Procedure for switching the active and standby databases
	Restart client applications
	Manage the old active database

	Monitoring a warm standby application
	Replication Server log file
	Standby connection created
	Standby connection resumed after initialization

	Commands for monitoring warm standby applications
	admin logical_status
	admin who, dsi
	admin who, sqm
	admin sqm_readers

	Setting up clients to work with the active data server
	Two interfaces files
	Symbolic data server name for client applications
	Map client data server to currently active data server

	Altering warm standby database connections
	Altering logical connections
	Changing parameters affecting logical connections
	Disabling the Distributor thread
	Replicating truncate table to standby databases

	Altering physical connections
	Configuring triggers in the standby database
	Configuring replication in the standby database
	Changing configuration parameters in the standby database

	Dropping logical database connections
	Dropping a logical database from the ID Server

	Warm standby applications using replication
	Warm standby application for a primary database
	Warm standby application for a replicate database
	Configuring logical connection save intervals

	Using replication definitions and subscriptions
	Creating replication definitions for warm standby databases
	alter table support for warm standby
	Using replication definitions to optimize performance
	Using replication definitions to copy redundant updates

	Using subscriptions with warm standby application
	Restrictions on using subscriptions
	Subscription materialization for logical primary database
	Subscription materialization for logical replicate database
	Checking subscriptions
	Dropping subscriptions

	Missing columns when you create the standby database

	Loss detection and recovery

	CHAPTER 4 Performance Tuning
	Replication Server internal processing
	Threads, modules, and daemons
	Processing in the primary Replication Server
	Replication agent user thread
	Stable Queue Manager thread
	Stable Queue Transaction thread
	Distributor thread and related modules
	Distributor status recording
	Data Server Interface threads
	Replication Server Interface thread
	Miscellaneous daemon threads

	Processing in the replicate Replication Server
	RSI user thread

	Configuration parameters that affect performance
	Replication Server parameters that affect performance
	Stable devices: considerations

	Connection parameters that affect performance
	Route parameters that affect performance

	Suggestions for using tuning parameters
	Setting the amount of time SQM Writer waits
	Caching system tables
	Replication definition change process

	Caching stable queue
	Setting wake up intervals
	Sizing the SQT cache
	Controlling the number of outstanding bytes
	Database configuration parameter: exec_sqm_write_request_limit
	Database configuration parameter: md_sqm_write_request_limit
	Using counters to monitor performance

	Controlling the number of network operations
	Controlling the number of commands the RepAgent executor can process
	Specifying the number of stable queue segments allocated
	Selecting disk partitions for stable queues
	Making SMP more effective
	Specifying the number of transactions in a group
	Database configuration parameter: dsi_max_xacts_in_group
	Database configuration parameters: dsi_xact_group_size and dsi_max_xacts_in_group

	Setting transaction size
	Enabling non-blocking commit

	Using parallel DSI threads
	Benefits and risks
	Parallel DSI parameters
	Components of parallel DSI
	DSI scheduler thread
	DSI executor threads

	Processing transactions with parallel DSI threads
	Small transactions
	Large transactions

	Selecting isolation levels
	Setting isolation levels for non-Sybase replicate data servers

	Transaction serialization methods
	no_wait
	wait_for_start
	wait_for_commit
	wait_after_commit

	Partitioning rules: reducing contention and increasing parallelism
	Using transaction-partitioning rules
	Using multiple transaction rules
	Grouping logic and transaction partitioning rules

	Resolving conflicting updates
	Resolving conflicts internally using the rs_dsi_check_thread_lock function string
	Using rs_threads to resolve conflicts externally

	Configuring parallel DSI for optimal performance
	Before you begin
	Reducing contention
	Using partitioning rules
	Frequent conflicting updates
	Infrequent conflicting updates
	Using isolation levels
	Setting the size for large transactions

	Parallel DSI and the rs_origin_commit_time system variable

	Support for DSI bulk copy-in
	Setting up bulk copy-in
	Changes to subscription materialization
	New counters for bulk copy-in
	Limitations

	SQL statement replication
	Overview
	Performance issues with log-based replication
	Stored procedure replication
	How Replication Server topologies affect SQL statement replication

	Enabling SQL statement replication
	Database-level
	Table level
	Session level

	Setting SQL statement replication threshold
	Setting thresholds and operations at database-level
	Setting thresholds and operations at session-level
	Setting thresholds and configuring replication

	Configuring replication definitions for SQL statement replication
	Database replication definition
	Table replication definition
	Configuring warm standby database for SQL replication

	Row count validation for SQL statement replication
	Scope of SQL statement replication
	Batch processing
	Stored procedures
	Triggers
	Recompilation of stored procedures and triggers
	Cross-database transactions

	Issues resolved by SQL statement replication
	Replicating select into in warm standby configurations
	Replicating deferred updates on primary keys

	Exceptions to using SQL statement replication
	SQL statement replication does not support autocorrection

	Replication Server System Database (RSSD) modifications
	Product and mixed-version requirements
	Downgrades
	Downgrading Adaptive Server
	Downgrading Replication Server

	Dynamic SQL for enhanced Replication Server performance
	Setting up the configuration parameters to use dynamic SQL
	Table-level dynamic SQL control
	Using replicate minimal columns with Dynamic SQL
	Limitations

	Replication Server - Advanced Services Option
	High Volume Adaptive Replication to Adaptive Server
	Database and platform support
	HVAR compilation and bulk apply
	HVAR processing and limitations
	Enabling HVAR
	Configuring HVAR
	System table support
	Tables with referential constraints
	Displaying HVAR information
	Displaying the net-change database
	Mixed version support and backward compatibility

	Enhanced DSI efficiency
	Enhanced RepAgent Executor thread efficiency
	Enabling NRM thread
	Specifying memory available to RepAgent Executor

	Enhanced distributor thread read efficiency
	Enhanced memory allocation
	Increasing queue block size
	Queue block size change procedure
	Restrictions
	Recommendations
	Examples

	Using multiprocessor platforms
	Enabling multiprocessor support
	Monitoring thread status
	Monitoring performance

	Allocating queue segments
	Choosing disk allocations
	An example

	Preallocating segments
	Dropping hints and partitions

	Using the heartbeat feature in RMS

	CHAPTER 5 Using Counters to Monitor Performance
	Introduction
	Modules and counters: an overview
	Counters

	Sampling
	Collecting statistics for a specific time period
	Specifying the counters to be sampled
	Specifying the sample period
	Specifying how statistics are to be reported

	Collecting statistics for an indefinite time period

	Viewing statistics on screen
	Viewing throughput rates
	Viewing statistics about messages and memory use
	Viewing the number of transactions in the stable queues

	Viewing statistics saved in the RSSD
	Using the rs_dump_stats procedure

	Viewing information about the counters
	Resetting counters
	Generating performance reports

	CHAPTER 6 Handling Errors and Exceptions
	General error handling
	Error log files
	Replication Server error log
	Informational messages
	Error and warning messages
	Finding the name of the Replication Server error log
	Changing to a new Replication Server log file

	RepAgent error log messages
	Sample error messages

	Data server error handling
	Default error classes
	Native error codes for non-ASE databases
	Creating an error class
	Altering error classes
	Initializing a new error class
	Dropping an error class
	Changing the primary Replication Server for an error class
	Displaying error class information
	Assigning actions to data server errors
	Displaying assigned actions for error numbers

	Exceptions handling
	Handling failed transactions
	Suspend database connection
	Analyze and resolve the problem
	Resume the connection

	Accessing the exceptions log
	Displaying transactions in the exceptions log
	Querying the exceptions log system tables

	Deleting transactions from the exceptions log

	DSI duplicate detection
	Duplicate detection for system transactions

	CHAPTER 7 Replication System Recovery
	How to use recovery procedures
	Configuring the replication system to support Sybase Failover
	Overview
	Enabling Failover support in Replication Server
	How Sybase Failover works with Replication Server
	Requirements
	Enabling Failover support for an RSSD connection
	Enabling Failover support for non-RSSD database connections

	Configuring the replication system to prevent data loss
	Save interval for recovery
	Routes between Replication Servers
	Connections between Replication Servers and data servers

	Backing up the RSSDs
	Creating coordinated dumps

	Recovering from partition loss or failure
	Procedure for recovering from partition loss or failure
	Message recovery from off-line database logs
	Message recovery from the online database log

	Recovering from truncated primary database logs
	Truncated message recovery from the database log

	Recovering from primary database failures
	Loading from coordinated dumps
	Loading a primary database from dumps

	Recovering from RSSD failure
	Recovering an RSSD from dumps
	Basic RSSD recovery procedure
	Subscription comparison procedure
	Using rs_subcmp on replicated RSSD system tables
	Classes and system tables

	Subscription re-creation procedure
	Deintegration/reintegration procedure

	Recovery support tasks
	Rebuilding stable queues
	Rebuilding queues online
	Rebuilding queues from off-line database logs
	Loss detection after rebuilding stable queues
	Setting log recovery for databases
	Loss detection after setting log recovery
	Determining which dumps to load
	Adjusting database generation numbers

	Resynchronizing replicate databases
	Product support
	Configuring database resynchronization
	Instructing Replication Server to skip transactions
	Obtaining a dump of the database
	Sending the dump database marker to Replication Server
	Monitoring DSI thread information
	Applying the dump to a database to be resynchronized

	Database resynchronization scenario

	APPENDIX A Asynchronous Procedures
	Overview
	Logging replicated stored procedures
	Logging replicated stored restrictions
	Mixed-mode transactions

	Applied stored procedures
	Request stored procedures
	Asynchronous stored procedure prerequisites
	Steps for implementing an applied stored procedure
	Warning conditions

	Steps for implementing a request stored procedure
	Specifying stored procedures and tables for replication
	Managing user-defined functions
	Creating a user-defined function
	Adding parameters to a user-defined function
	Dropping a user-defined function
	Mapping to a different stored procedure name
	Specifying a nonunique name for a user-defined function

	APPENDIX B High Availability on Sun Cluster 2.2
	Introduction
	Terminology
	Technology overview
	Configuring Replication Server for high availability
	Configuring Sun Cluster for HA
	Installing Replication Server for HA
	Installing Replication Server as a data service

	Administering Replication Server as a data service
	Data service start/shutdown
	Logs

	APPENDIX C Pre-15.1 Request Function Replication
	Prerequisites and restrictions
	Using the pre-15.1 request function replication
	Commands for managing function replication definition
	Implementing a pre-15.1 request function
	Marking stored procedures for replication
	Subscribing to replicated functions

	Modifying or dropping replicated functions
	Before modifying a function replication definition
	Modifying a function replication definition
	Dropping a function replication definition
	Creating or modifying a function string for a replicated function

	Model variations and strategies
	Request functions
	Example 1: A basic example using pre15.1 no-subscription request functions
	Example 2: An example using a local pending table

	APPENDIX D Implementing a Reference Replication Environment
	Introduction
	Platform support
	Components for reference implementation

	Before you begin
	Building the reference environment
	Configuring the reference environment
	Running performance tests
	Running performance tests on the reference environment
	Obtaining tests results from the reference environment
	rs_ticket_history report
	Monitors and counters report

	Cleaning up the reference environment
	Cleaning up the reference environment for the next test
	Shutting down the reference implementation servers

	Objects created for the reference environment

	Glossary
	Index

