
SMS Application Development

SAP Mobile Platform 3.0 SP02

DOCUMENT ID: DCxxxxx-01-0300-01
LAST REVISED: February 2014
Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

SMS Application Development ...1
Developing SMS Applications ...1
Setting Up the Development Environment1

Configuring the HTTP Port2
Developing Applications ..2

Messaging Server ..3
Application States ..4
Application Composer ..7
Developing Interactive Applications13
Developing Event Applications17
Activation ...21
Testing Applications ...24
Importing Applications ...27
Exporting Applications ...28
Sample Applications ..29

Developing Custom Application States33
Application Life Cycle ..34
Developing and Deploying Custom States36
Custom State Samples ..79
State SDK Core Components85

States Catalog ..86
Add Subscriber State ...86
Application Call State ...89
Application Call Return State92
Compare Typed Variables State94
Compare Variables State96
Copy Variables State ...98
Counter State ...100
Get Subscriber State ...101
Goto Application State104
Process Subscriber State106

SMS Application Development iii

Send SMS State ..109
Send USSD Input State111
Send USSD Menu State112
Send USSD Text State118
Set Variable State ..120
Start Application State122
Update Subscriber State123

SMS Application API Reference126
brand package ...126

Index ..265

Contents

iv SAP Mobile Platform

SMS Application Development

You can create SMS applications using predefined application states and custom states that
you develop.

Developing SMS Applications
Develop an SMS application to manage consumer services by sending and receiving SMS
messages.

1. Setting Up the Development Environment

To build SMS applications, you must first set up your development environment, which
includes installing the SAP® Mobile Platform SDK, with the SMS Toolkit.

2. Developing Applications

Application states are basic building blocks that you can link sequentially to model
application task flows. Applications are executed by the processing engine at runtime.

3. Developing Custom Application States

Custom state development using the State SDK is a Java development task you can
perform with or without a development IDE, such as Eclipse or NetBeans. After you
develop and deploy custom states, you can use them to develop applications.

4. Activating Applications

You must activate applications before you can test or run them. If you modify an active
application and save changes, you must reactivate the application before changes are
applied to the active version.

5. Testing Applications

Test applications using the built-in application simulator.

Setting Up the Development Environment
To build SMS applications, you must first set up your development environment, which
includes installing the SAP® Mobile Platform SDK, with the SMS Toolkit.

The SMS Toolkit installed with SAP Mobile Platform SDK includes an SMS Builder server
and the SMS Builder Web UI which you can use to develop SMS Applications.

1. Start the SMS Builder server. The start-up scripts (run.sh and run.bat) expect the
location of the java application to be in the PATH. If you plan to run a start-up script in
production, modify the script to reflect your system architecture. You need not have root
privilege to execute a start-up script.

SMS Application Development

SMS Application Development 1

a) Change to the SMSBUILDER_HOME directory.

b) Run the command or commands for your platform:

Platform Command

Windows bin\run.bat

AIX or Linux chmod 755 bin/run.sh
bin/run.sh start

2. Launch the SMS Builder Web UI.

a) If SMS Builder is running on the same machine as SAP Mobile Platform, configure the
HTTP port.

b) Open a browser and navigate to either:

• http://localhost:<HTTP_port>/brand, where HTTP_port is the
HTTP port number, or

• http://server:<HTTP_port>/brand, where server is the name of the
machine on which the SMS Builder server is running.

c) Log in.

The default login credentials are:
• User Name – admin
• Password – Brand!23
If you created a new admin password, use it to log in.

Configuring the HTTP Port
The default HTTP port number is 8080, which is the same port that SAP Mobile Platform uses
for its OData proxy. If SMS Builder is running on the same machine as SAP Mobile Platform,
set the HTTP port number to a value that is not being used by SAP Mobile Platform.

1. Verify which port numbers SAP Mobile Platform is using, by checking the SMP_HOME
\Server\config_master\org.eclipse.gemini.web.tomcat
\default-server.xml file.

2. In the SMS Builder installation, edit the SMSBUILDER_HOME\conf
\org.ops4j.pax.web.properties file, and set the HTTP port to a value that
SAP Mobile Platform is not using.

Developing Applications
Application states are basic building blocks that you can link sequentially to model
application task flows. Applications are executed by the processing engine at runtime.

Two application types, interactive and event, differ by both how they are invoked and how they
perform. Interactive applications provide rich, user-interactive mobile services, and are

SMS Application Development

2 SAP Mobile Platform

typically invoked when mobile customers send a keyword to a preassigned short or long code.
Event applications work non-interactively, such as batch processes that send campaign
messages, and are typically invoked by events, such as scheduled times or triggers.

You can create applications:

• From scratch
• Using provided application templates
• By importing application files from another computer

You can visually compose a mobile-messaging application, test it using a built-in simulator,
and deploy it, ready to be used by mobile consumers.

Messaging Server
The core of SMS Builder is the messaging server.

The server components include:

• Processing engine – manages application life cycles, and provides the runtime
environment.

• Event engine – invokes applications based on scheduled events.
• Session manager – tracks active sessions and terminates expired sessions.
• Channel manager – manages incoming and outgoing communication channels.

SMS Application Development

SMS Application Development 3

Application States
States are basic building blocks that you can link sequentially to model application-process
flows.

Application states are either:

• Standalone – implemented natively.
• Service – proxy to a Web service or aggregated Web services that are exposed through the

service-oriented architecture (SOA) layer.

You can meet customer requirements by developing custom states using the State SDK. You
can add custom states dynamically using the plug-in mechanism that is enabled by the OSGi
services registry.

Create applications using the Application Composer Web tool. Application types include:

SMS Application Development

4 SAP Mobile Platform

• Interactive – provide a user-interactive mobile service; typically invoked when mobile
consumers send a keyword to a preassigned short code.

• Event – designed for batch processing; invoked by events, such as scheduled times, system
triggers, or external triggers.

Most states can be used in either application type. However, there are a few states that are
available only to a specific application type. For example, you can use the Process Subscriber
state only in event applications, because it relies on the callback mechanism provided by the
processing engine. You can use Application Call and Application Call Return states only in
interactive applications, because these states do not support the callback mechanism. The
Application Composer prevents you from adding invalid states to an application.

Base States
Base states provide standalone functionality, without dependency on or interaction with
external services. You commonly use base states to construct process flows.

Base states perform functions such as calling applications, comparing and copying variables,
incrementing counters, sending SMS messages, and setting session variable values.

See also
• Application Call State on page 89
• Application Call Return State on page 92
• Compare Typed Variables State on page 94
• Compare Variables State on page 96
• Copy Variables State on page 98
• Counter State on page 100
• Goto Application State on page 104
• Send SMS State on page 109
• Set Variable State on page 120
• Start Application State on page 122

Subscriber States
Applications that contain subscriber states have access to subscriber storage, which stores
attributes that are useful in push campaigns.

Subscriber storage is nondurable storage for staging, or in-transit storage, pending batch
transfer to the system of record. The database schema is designed to be generic, and is not fully
optimized for large scale or more domain-specific purposes.

See also
• Add Subscriber State on page 86
• Get Subscriber State on page 101
• Process Subscriber State on page 106
• Update Subscriber State on page 123

SMS Application Development

SMS Application Development 5

USSD States
SMS Builder delivers Unstructured Supplementary Service Data (USSD) states via Java
Messaging Service (JMS) to external USSD channels.

USSD states prompt subscribers for input, and send text notifications and menu-based
requests.

Note: By default, USSD states are disabled. USSD is a custom protocol that mobile operators
can implement. To develop USSD applications, contact SAP® Professional Services.

See also
• Send USSD Input State on page 111

• Send USSD Menu State on page 112

• Send USSD Text State on page 118

Custom States
You can develop Java custom application states to extend the functionality of SMS Builder,
and to meet client-specific requirements.

Custom states are typically developed by:

• SAP® personnel to implement client-specific requirements.
• Third parties for plug-in applications to meet client requirements.

To integrate new custom states, develop Java components using the provided APIs, and
customize the product by installing custom-state bundles.

Input and Output Parameters
Application states can have input and output parameters. Input parameters allow states to
receive input from consumers, other states, and applications. Output parameters allow states
to save values in session variables that can be used by other states or applications.

Input parameters contain the information a state requires to perform its task. Input parameters
can be constant values, or values copied from a variable in the current user session.

Output parameters allow states to return values. All output parameters are available as
variables.

See also
• Custom State Variables on page 46

• Defining Input Variables on page 48

• Defining Output Variables on page 50

• Accessing Input Variables on page 51

• List Variables on page 52

SMS Application Development

6 SAP Mobile Platform

State Machine
A state machine defines an application process flow at runtime. During development, you can
compose an application task flow visually using the Application Composer. When you
activate the application, the process flow is converted to a state machine.

States are elements of a state-machine system. An application usually has many states, and can
include different types of states. Each state has a previous state and a following state, unless it
is the initial state or the final state. There can be only one initial state, but, depending on user
interaction, there can be many final states.

An initial state is the first state in an application, and only handles state transitions to follow-up
states, based on transition rules. The initial-state is Start Application, which is created
automatically when you create an application, and cannot be deleted. By default, the name of
the initial state is the same as the name of the application.

Application Composer
To visually develop applications, use the Application Composer.

The Application Composer state layout view lets you visualize the processing steps of the
application task flow. You can create states and draw transitions between them. The
Application Composer enables application developers to:

• Visualize states in the application using an automatic layout
• Drag and drop states to rearrange the layout
• Highlight the context, dependencies, and transitions of states
• Zoom in and out to see a complete or partial application layout
• Set the grid line type

The Layout Canvas shows the application flow, from left to right, on a grid line background.
The flow consists of states (shown in boxes) and transitions that connect two states (depicted

SMS Application Development

SMS Application Development 7

as lines with arrows). State boxes include the name of the state instance, the type, and a
watermark pattern that define the state type. In complex applications, transition lines may
overlap.

When you highlight a state, all of its transition lines and states they connect to are highlighted.
To highlight a state, move the cursor over the state icon and left-click. The dependent states
and transition lines display in different colors:

• The selected state displays a dark gray border; for example, the Validate FI Code Format
state in the screen above. When you select a state, the text at the bottom of the state icon
changes to Delete.

• States that transition to the highlighted state display a blue border and a blue transition
line.

• States to which the highlighted state transitions display an orange border and an orange
transition line.

• States that transition both to and from the highlighted state have borders that are half blue
and half orange (dual mode); for example, the Invalid FI Code Format state in the screen
above.

State Transitions
Some state transitions are determined by matching regular expressions with text supplied by
consumers. Other states have specific transitions that define follow-up states, which state
developers define in the code.

The OK and Fail transitions do not use pattern matching; such transitions are based on states'
code, and validation provided by, or events in, back-end systems. Some states do not require
OK or Fail transitions. If a state does require one of these transitions, and you do not specify a
follow-up state, the application terminates.

For dynamic transitions, a state's code has the option to return an expression, which provides
the input to the pattern-matching mechanism. Dynamic transitions also provide a way to
transition to success or failure outcomes, and may replace the OK and Fail transitions.
Dynamic transitions can communicate information back to applications about certain
validation problems.

This example includes an OK transition, a Fail transition, and a dynamic transition that uses
the expression MIN|MAX.

SMS Application Development

8 SAP Mobile Platform

See also
• Controlling State Transitions with Regular Expressions on page 9

Controlling State Transitions with Regular Expressions
You can control state transitions by defining regular expressions. When expressions match
user-input strings, the state transitions to the follow-up state.

Some states expect user input to control the transition to follow-up states. Input can be
provided either by consumers in response to the Send SMS state, or as dynamic output from
either a SMS Builder state, or a third-party custom state. Dynamic values allow external
systems to communicate specific context information back to the application.

A regular expression can contain any combination of characters. You can test regular
expressions during application development using a built-in tool. Sample regular expressions
are:

Regular Expression Matches

.* Any value in the Expression field.

(.*) Any value in the Expression field; assigns the expression to a session var-
iable.

In more complex cases, you can break a regular expression into multiple regular-expression
groups and assign them to separate session variables.

For a complete description of regular expressions, see: http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html.

SMS Application Development

SMS Application Development 9

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

In the state editor, Target identifies the state that follows the current state if its Expression
value matches the input. If the input matches more than one Expression value, a list of matches
is created. The first entry in the list is the first matching pattern, continuing with other states in
the order in which they appear in the state editor. For example, if the input is 0, the follow-up
state is Goto Application Main Menu, even though 0 also matches the second expression. If
the input is anything other than 0, it matches the second expression, and the value is assigned
to the session variable AGENT_CODE, because the value of Expression is surrounded by
parentheses. To move an expression up or down in the Follow-up States list, use the arrows on
the left side of the editor.

Testing Regular Expressions
As you develop applications in the Application Composer, you can test regular expressions to
determine whether they match alphanumeric strings.

1. In the Application Composer, select a state.

2. Click the ? icon to the right of the Assign To field for a follow-up state.

The expression tester opens and populates Expression and Assign To fields with follow-up
state values from the state editor.

3. Enter the value to test in the Text to Test field, and click Test.

The result is either:

• Match – value in Expression field matches the value in Text to Test field.

• No Match – expression value does not match Text to Test value.

SMS Application Development

10 SAP Mobile Platform

State Editor
In the state editor, you can edit state properties, define follow-up states, test regular
expressions for follow-up transitions, and detach the current state from follow-up states.

The state editor window opens automatically when you select a state in the Application
Composer. Depending on the state type, the state editor displays various options, context-
sensitive links, and entry fields.

State editor fields and controls are:

1. Entry Nodes – identify links to other states that transitions to this state. If you click an entry
node, a state editor opens for the corresponding state. If you hover over an entry node, you
see the state name with which it is associated.

2. State Type Watermark and Icon – icon associated with the state type. The watermark
allows you to quickly recognize state types in the editor and in the layout view.

3. Pop-up Drag Area – you can move the state editor anywhere within the Application
Composer by clicking the header and dragging.

4. Encryption – encrypts incoming and outgoing messages, which are saved in message logs.
5. Editor Closer – closes the state editor. If you have pending changes that have not been

saved, you are prompted to either save or discard these changes.
6. State Type Notes – to view or edit notes that describe a state's function, input and output

variables, and follow-up state transitions, click the down arrow.

SMS Application Development

SMS Application Development 11

7. State Collapser – shrink or enlarge the state editor.
8. Inputs Section – input variable names and values. Click the down arrow to close this

section.
9. Variables Paging for Inputs Section – if a state contains more than five input variables, you

can page through the others by selecting the relevant page set. To display all input
variables, click All.

10. Outputs Section – output variable names and values. Click the down arrow to close this
section.

11. Variables Paging for Outputs Section – if a state contains more than five output variables,
you can page through the others by selecting the relevant page set. To display all output
variables, click All.

12. Follow-up Section – configure, change, and test follow-up states. To collapse this section,
click the down arrow.

13. Follow-up Paging – three follow-up states appear on each page. To see more follow-up
states, select the relevant page set.

14. Exit Nodes – identify links to other states that this state transitions to. If you select an exit
node, a state editor opens for the next state. If you hover over an exit node, you see the state
name with which it is associated.

15. Follow-up Selector – select the follow-up state. All states, except the Goto Application
state, allow you to add a follow-up state.

16. State Actions – Add Follow-up State and Save.

Adding States to Applications
You can add new states in the Application Composer. When you create a new application, a
Start Application state is created automatically, as the initial application state.

1. In the Application Composer, select an existing state.

2. In the state editor, expand the list of follow-up states, and select a state.

3. Click Add Follow-up.
The new state appears in the Application Composer. A transition line connects the current
state to the new state.

A new state is automatically assigned the name New State Type State. Change the name,
because state names must be unique.

Editing State Properties
You can edit state properties and state transitions in the Application Composer.

1. In the Application Composer, select the state you want to edit.

2. In the state editor, configure state properties.

These changes are immediately saved to the database:
• Adding a new follow-up state

SMS Application Development

12 SAP Mobile Platform

• Adding a transition to an existing state
• Removing a transition from an existing state
• Moving a transition up or down in the list of follow-up states

3. For other changes, click Save.

Removing States
In the Application Composer, you can remove states from an application. Removing a state
permanently deletes the state and transition lines that are connected to it from the application.

1. In the Application Composer, select the state to remove.

2. Click Delete.

If you remove a state that has follow-up states, these states may be orphaned.

Removing State Transitions
Removing a state transition permanently deletes the transition, but does not remove any
follow-up states to which it is connected.

1. In the Application Composer, select the state with the follow-up transition you want to
delete.

2. In the state editor, to the right of the Target State field, click the asterisk-arrowhead icon:

Next
To reattach orphaned states, add a new transition using the follow-up selector.

Developing Interactive Applications
Interactive applications provide rich, user-interactive mobile services, and are typically
invoked when mobile customers send a keyword to a preassigned short or long code.

1. In the Dashboard screen, at the bottom of the My Applications module, select Create
Interactive Application.

2. On the Application Details tab, enter:

• Name – the main identifier for an application. SAP recommends that you do not use
duplicate names within a workspace.

• Category – (optional) select the application category from the list. You can use
categories to group applications together for managing and reporting.

• Active From – the date and time the application becomes active, based on the server
date and time.

• Active To – the date and time the application ceases to be active, based on the server
date and time.

• Timeout (secs) – an interactive application establishes conversations with mobile
subscribers. When a conversation starts, a unique session is established for the

SMS Application Development

SMS Application Development 13

conversation. The session terminates (or times out) when there is no conversation for
more than the number of seconds you enter here. The default value is 450 seconds (7
minutes and 30 seconds).

• Session Limit Response – the message that is sent to mobile subscribers when the
application cannot start or carry on a conversation for various reasons; the most
common reason being too many conversations are already taking place, exceeding the
system capacity. In this case, the default message is sent to mobile subscribers. For
example, the message may say “Service busy, try again in few minutes.”

3. Click Save.

4. (Optional) To save the application to the local file system, click Export.
The application is exported to an application XML file. You can transfer the XML file to
other SMS Builder workspaces or instances. You can also use the file to back up the
application, or store it in the source control management system.

Note: The Export button is disabled until you save an application the first time.

5. Add a keyword to the application.

6. Design the application task flow.

7. Activate the application.

8. Test the application.

See also
• Activating Applications on page 22
• Testing Interactive Applications on page 24

Adding Keywords to Applications
A keyword identifies an application within a workspace. Create at least one keyword for each
interactive application.

1. Select the Keywords tab, and enter values for these fields.

• Add New Keyword – enter plain text or regular expressions. SAP recommends that a
keyword be unique for each application in the same workspace.

• Active From – the date and time the keyword becomes active, based on the server date
and time.

• Active To – the date and time the keyword ceases to be active, based on the server date
and time.

2. To save the keyword, click the diskette icon.

After you save a keyword, another Add New Keyword field appears, allowing you to add
another keyword.

See also
• Searching for a Keyword on page 15
• Short Codes, Long Codes, and Keywords on page 16

SMS Application Development

14 SAP Mobile Platform

Searching for a Keyword
Keywords should be unique within a workspace. The keyword-search tool enables application
developers to see if a keyword is assigned to any applications.

If you use a regular expression to define a keyword, the keyword search tool cannot detect
duplicates.

1. In the Interactive Applications window, select the Keywords tab.

2. Enter the keyword for which to search, and click Search.

If any applications in the workspace already use the keyword, this information appears on the
screen:

• Used by – the application name.
• Approved – indicates whether the application is active. False means that either the

application is inactive, or the application has never been activated, so the status is draft.

See also
• Adding Keywords to Applications on page 14

• Short Codes, Long Codes, and Keywords on page 16

Designing Application Task Flows
The key to effective application development is defining the task flows involved in modeling
business processes. In the Application Composer, you can graphically design an application
task flow.

The first time you open the Application Composer, you see the Start Application state. If you
select the state, the state editor opens, which allows you to add follow-up states.

You can rearrange a layout by dragging and dropping state icons. To get a better view of state
transitions, you may want to rearrange the layout, particularly when transition lines overlap.
You can drag and drop state icons into fixed-grid positions on the canvas. The canvas does not
allow free-form positions. Transition lines are automatically positioned, and you cannot move
them.

• To move a state, select it, and drag it to an alternate grid position.
While moving, the state icon appears transparent, and the target grid positions are
highlighted when the mouse enters the grid area.

• To delete a state, select the state, and click Delete.

When you delete a state, all transitions to and from other states are deleted. However,
corresponding states and all of their downstream flows are not deleted. States that are not
connected to other states become orphans, but they are still accessible from the follow-up
state list, and you can connect them to other states.

• To save a rearranged layout to the database, click Save Layout.

SMS Application Development

SMS Application Development 15

• To revert the application layout to the last one saved in the database, click Revert
Layout.

• To change the grid lines, expand the Gridlines list, and select All, Partial, or None.
• To zoom in or out, expand the Zoom list, and select the magnification you want to see,

relative to the initial display.

If you zoom out from the default 100% view, you must reset the zoom level back to 100%
before you can make any layout changes.

See also
• Developing Event Applications on page 17
• Activating Applications on page 22
• Creating Events on page 19
• Assigning Events to Applications on page 20
• Activating Events on page 23
• Testing Event Applications on page 26

Short Codes, Long Codes, and Keywords
A short code or long code plus a keyword identifies an interactive application within a
workspace.

Each workspace has a unique short or long code. For incoming messages, the processing
engine compares the destination MSISDN with the short or long code list to find a matching
workspace. Once a matching workspace is identified, the processing engine compares the
message content with keywords assigned to applications in the workspace. A workspace can
contain many applications, which should all have unique keywords. At runtime, the
processing engine stops when it finds the first matching keyword, and calls the corresponding
application.

A short code is a special telephone number, significantly shorter than a full telephone number
that can be used to address SMS and MMS messages from some mobile phones or fixed
phones, and is limited to national borders. A long code is a longer number and is available
internationally.

SMS Builder uses short codes and long codes differently from how they are used in the
mobile-operator world. Short codes are often associated with mobile services, such as
interactive applications, and they are assigned by the mobile operator to the owner of the
service.

For example, company XYZ wants to provide a mobile service for paying street-parking fines
in the financial district of San Francisco. XYZ applies for an assigned short code from a
mobile operator. Typically, the short code (9999) is advertised on billboards in the financial
district area: “To pay parking fines with your mobile phone, text “SFpay to 9999.” When a
mobile subscriber texts SFpay to 9999, the message first reaches the mobile operator. The
operator, in turn, routes it to SMS Builder. When SMS Builder receives the message, the
processing engine maps the destination MSISDN (9999) to a workspace. Once the workspace

SMS Application Development

16 SAP Mobile Platform

is identified, the engine looks at the keyword SFpay and maps it to the corresponding
interactive application in that workspace. The first matching application is chosen.

A keyword can be a simple string like “coupon,” or a regular expression. Optionally, you can
associate a date range with a keyword, which controls the length of time a keyword remains
active. A keyword's date range takes precedence over an application's date range: if an
application's date range expires, but the keyword date range is still active, the application
remains active until the keyword dates expire. When keyword dates are empty, the application
defines the date range.

Best practices:

• Verify that an interactive application acting as an entry point has at least one assigned
keyword.

• Use the keyword-search tool to verify that a keyword is assigned to only one application in
the workspace.

• If you define a regular expression as a keyword, verify that the regular expression does not
overlap with keywords that are already in use by other applications. The keyword-search
tool does not work for regular expressions.

See also
• Adding Keywords to Applications on page 14

• Searching for a Keyword on page 15

Developing Event Applications
Event applications work non-interactively, such as batch processes that send campaign
messages, and are typically invoked by events, such as scheduled times, system triggers, or
external triggers. An event application can send outbound messages but has no user-
interactive capability.

After you create and activate an event application, you can assign an event to it. When the
event is active, it invokes the event application. You can assign an event to only one event
application.

1. On the Dashboard screen, at the bottom of the My Applications module, select Create
Event Application.

2. On the Application Details tab, enter:

• Name – the main identifier for an application. SAP recommends that you do not use
duplicate names within a workspace.

• Category – (optional) select the application category from the list. You can use
categories to group applications together for managing and reporting.

• Active From – the date and time the application becomes active, based on the server
date and time.

SMS Application Development

SMS Application Development 17

• Active To – the date and time the application ceases to be active, based on the server
date and time.

3. To save the application, expand Advanced Settings, and click Save.

4. Select the Application Composer tab, and define the application states and the task flow.

5. Activate the application.

6. Create an event and assign it to the application.

7. Activate the event.

8. Test the application.

9. (Optional) To export the application, expand Advanced Settings, and click Export.

Note: The Export button is disabled until you save an application the first time.

The application is exported to an XML file, and saved to the local file system. You can
transfer the XML file to other SMS Builder workspaces or instances. You can also use the
file to back up the application, or store the XML in the source control management system.

See also
• Designing Application Task Flows on page 15

• Activating Applications on page 22

• Creating Events on page 19

• Assigning Events to Applications on page 20

• Activating Events on page 23

• Testing Event Applications on page 26

Events
A SMS Builder event invokes an event application. Event applications are designed for batch
processing, and are triggered by events, such as scheduled times.

You assign an event to an event application, so that when the event occurs, the application is
invoked. For example, you can create a promotional event that is scheduled between
November 1 and November 30. Within this event runtime, you can define event windows that
specify when to invoke the event application. You can define event windows by setting start
and stop dates and times. You can also define recurring windows, for example, to occur daily,
by setting start and stop times.

The event model is a container for storing configuration details and relationships, including
active runtime, event windows (manual or recurring), the event application to trigger when an
event window is current, and all related interactive applications.

If you assign an event to an interactive application, no one can delete the application.

SMS Application Development

18 SAP Mobile Platform

Creating Events
Create an event to invoke an event application.

1. In the Dashboard screen, at the bottom of the My Events module, select Create New
Event.

2. On the Event Details tab, enter:

• Name – the main identifier for an event. Duplicate names within a workspace are
allowed, but not recommended.

• Category – (optional) select a category from the list. You can use categories to filter
events.

• Runtime From – the date and time the event becomes active, based on the server date
and time.

• Runtime To – the date and time the event ceases to be active, based on the server date
and time.

• Description – (optional) a description of the event's purpose.

3. Click Save.

Next

1. Set up event windows.
2. Assign the event to an active event application.
3. Activate the event.

See also
• Developing Event Applications on page 17

• Designing Application Task Flows on page 15

• Activating Applications on page 22

• Assigning Events to Applications on page 20

• Activating Events on page 23

• Testing Event Applications on page 26

Creating One-Time Event Windows
Event windows define event start and stop times, and events invoke event applications. At the
event-window start time, the event starts its corresponding event application; the event
application stops either when it has finished processing its data, or at the event-window stop
time, whichever comes first.

1. On the Events screen, select the Event Windows tab.

2. Click Add New Window, and enter:

• Start date and time – time and date at which to start the event application.

SMS Application Development

SMS Application Development 19

• Stop date and time – time and date at which to stop the event application.
• Limit – maximum number of loopbacks to process. When used with a throttle, specify

as a multiple of throttle. For example, if throttle = 60 messages per minute, specify a
limit of 60, 120, or 180.

• Throttle – maximum processing rate: number of messages per minute.
• Resume – select to resume from the last processed item; leave unselected to restart

from the beginning of the list. This is useful for states that process lists, such as the
Process Subscriber state.

3. Save your settings.

4. (Optional) Create another event window, if necessary.

Creating Recurring Event Windows
Create recurring event windows to start event applications at the same time every day, week, or
month.

1. On the Events screen, select the Event Windows tab.

2. Click Add New Window.

3. Select Switch to Recurring Mode, and select:

• Recurring Start Date – the date at which to start the event application.
• Recurring Interval – the frequency at which to start the application: Daily, Weekly, or

Monthly.

4. Click Add New Window, and enter:

• Start time – time at which to start the event application.
• Stop time – time at which to stop the event application.
• Limit – maximum number of loopbacks to process. When used with a throttle, specify

as a multiple of throttle. For example, if throttle = 60 messages per minute, specify a
limit of 60, 120, or 180.

• Throttle – maximum processing rate: number of messages per minute.
• Resume – select to resume from the last processed item; leave unselected to restart

from the beginning of the list.

5. Save your settings.

6. (Optional) Define additional recurring event windows, if required.

Assigning Events to Applications
Assign an event to an event application. The event invokes the event application.

Prerequisites
Activate the event application.

SMS Application Development

20 SAP Mobile Platform

Task

1. In the main Web UI window, select Events.

2. Select the event, then select either the Event Applications tab or the Interactive
Applications tab.

Note: You can assign an event to only one event application. If an assignment already
exists, you can remove it. If you assign an event to an interactive application, it prevents it
from being inadvertently deleted. You can assign an event to an unlimited number of
interactive applications.

3. Click Assign Applications.

4. To narrow the list of applications that appear, do one of the following, and click Search:

• Select Event Applications or Interactive Applications.
• Enter the application name.
• Expand the Advanced list, and select a category.

5. Select the application to assign to the event.

6. To save the assignment, select:

• Add to Event – remains on the current screen.
• Add and Return to Event – returns to the Events screen, and displays the Event

Applications tab.

See also
• Developing Event Applications on page 17

• Designing Application Task Flows on page 15

• Activating Applications on page 22

• Creating Events on page 19

• Activating Events on page 23

• Testing Event Applications on page 26

Activation
Before you can test and run applications and events, you must activate them.

The processing engine executes applications and events when they are in active mode. If you
edit the active version of an application or an event in the Web UI, changes are saved to an
in-review version. Changing an in-review version does not impact the active version, until you
reactivate the application or event.

Initially, the mode of activated applications and events is on-deck, and changes to active when
the active from-date and time are the same as the current-date and time. Artifacts in active
mode are rolled back to on-deck mode, if the active from-date and time are moved into the
future.

SMS Application Development

SMS Application Development 21

To run some newly created artifacts—default menus, applications, and events—you must
activate them. If you make any changes to one of these artifacts, you must reactivate them.

Once artifacts are activated, changes are committed and cannot be rolled back. If applications
or events contain mistakes, deactivate them.

Application Mode Transitions
After you create an application, it transitions through a series of modes. A running application
is in active mode.

Initial Mode Event/Condition New Mode

None Create an application Draft

Draft • Activate the application

• Start date is earlier than current date

Active

Draft • Activate the application

• Start date is later than current date

On-deck

On-deck Start date is earlier than current date Active

On-deck Modify the application On-deck

On-deck • Modify the application

• Start date is earlier than current date

Active in-review

Active Modify the application Active in-review

Active End date is earlier than current date Ended

Active In-Review End date is earlier than current date Ended

Activating Applications
You must activate applications before you can test or run them. If you modify an active
application and save changes, you must reactivate the application before changes are applied
to the active version.

Applications that are currently running are in active mode. If you activate an application, but
its active start time is in the future, the application mode is on-deck, and cannot be tested.

1. On the Web UI navigation bar, select Assets.

2. On the Assets screen, select Activate Applications.

3. Click Load Applications for Activation.

Applications that are in-review appear.

SMS Application Development

22 SAP Mobile Platform

4. Choose either:

• To activate a single application, select Actions > Activate.
• To activate all in-review applications, select Activate All.

See also
• Developing Event Applications on page 17

• Designing Application Task Flows on page 15

• Creating Events on page 19

• Assigning Events to Applications on page 20

• Activating Events on page 23

• Testing Event Applications on page 26

• Developing Interactive Applications on page 13

• Testing Interactive Applications on page 24

Activating Events
Activate an event to invoke an event application.

Prerequisites
Assign the event to an active event application.

Task

1. In the Web UI navigation bar, select Events.

2. For the event you want to activate, select Actions > Activate.

See also
• Developing Event Applications on page 17

• Designing Application Task Flows on page 15

• Activating Applications on page 22

• Creating Events on page 19

• Assigning Events to Applications on page 20

• Testing Event Applications on page 26

Deactivating Applications
If necessary, you can deactivate or delete an application.

• To deactivate the application until a specified future date, change the active from-date to a
future date, and reactivate.

• (Interactive applications only) To prevent an application from being invoked, remove the
keywords, and reactivate.

SMS Application Development

SMS Application Development 23

• To delete an application:

a) Export the application.
b) Delete the application.

Deactivating Events
If necessary, you can deactivate an event. If the event has a current event window, change the
window start date to a future date, before deactivating the event.

1. In the Web UI navigation bar, select Events.

2. Select the event you want to deactivate.

3. On the Event Details tab, change the active from-date to a future date.

4. (If necessary) Reset the event window start date and time.

5. Save your changes and reactivate the event.

The event remains inactive until the specified future date.

Testing Applications
Test applications using the built-in application simulator.

To access the Simulation page, expand the Actions list on the right side of the navigation bar,
and select Simulate Application. You can test interactive applications and event applications.
Select the tab that corresponds to the application type you want to test.

You can also test applications using either a Short Message Peer-to-Peer (SMPP) test harness
or a Java Message Service (JMS) test harness; these methods are typically used by custom-
state developers and advanced system administrators.

Testing Interactive Applications
Test an interactive application in the current workspace by simulating incoming and outgoing
messages.

Prerequisites
Activate the application.

Task

1. On the Interactive Application tab of the Simulation page, enter:

• Customer MSISDN – numeric value. SMS Builder uses the MSISDN to either create a
new session or find the existing session. If the application being tested has states that
interface with a back-end system, enter an MSISDN that identifies a customer in that
system.

• Workspace Short | Long Code – select from the list.
• Message Encoding – accept the default, or select Unicode.

SMS Application Development

24 SAP Mobile Platform

• Message Text – a valid keyword for the application.

2. Click Send to SMS Builder.

3. To see responses, click Reload Message Log.

If the application calls an external Web service, responses may take longer than the page-
refresh time.

See also
• Developing Interactive Applications on page 13

• Activating Applications on page 22

Sample Interactive Message Log
An interactive-application message log shows a sequence of consumer interactions with SMS
Builder.

For each message, the logs displays:

• Send Date – the date and time the message was sent.
• ACK and ACK Date – whether an acknowledgment is requested from the short message

service center (SMSC) or the SMS gateway, and the date and time the acknowledgment
was received.

• Direction – message direction, IN or OUT; IN messages come from customers; OUT
messages are SMS Builder responses.

• Sender – sender's identification number. For IN messages, the number is the customer's
MSISDN; for OUT messages, it is the workspace short or long code.

SMS Application Development

SMS Application Development 25

• Application – name of the application that processed the message. A SMS Builder
application can call other applications, which are identified in the log.

• Receiver – receiver's identification number. For IN messages, the number is the workspace
short or long code; for OUT messages, it is the customer's MSISDN.

Testing Event Applications
To test event applications, invoke the triggering event. Event applications are linked to events
that occur at times defined by their event windows.

1. On the Simulation page, select the Event Application tab:

• Event Name – select from the list.
• Resume From Last – accept the default value, false. If set to true, and if the previous test

did not exhaust the subscriber list, the application resumes from the last subscriber.
• Throttle – enter the maximum processing rate: number of messages per minute.
• Limit – enter the maximum number of loopbacks to process. When used with a throttle,

specify as a multiple of throttle. For example, if throttle = 60 messages per minute,
specify a limit of 60, 120, or 180.

• Event Threads – specify the number of threads to use to run the simulation. Change this
value to test performance with different numbers of threads.

• End Date – specify to keep the application from overrunning.

2. Click Simulate Event.

3. To see messages, click Reload Message Log.

Depending on the number of subscribers, you may need to reload the log multiple times to
see all the messages.

See also
• Developing Event Applications on page 17

• Designing Application Task Flows on page 15

• Activating Applications on page 22

• Creating Events on page 19

• Assigning Events to Applications on page 20

• Activating Events on page 23

SMS Application Development

26 SAP Mobile Platform

Sample Event Message Log
The Utility Notification event application generates messages that appear in the message log.

See also
• Utility Notification Event Application on page 32

Importing Applications
You can import application XML files that were previously exported from SMS Builder, and
you can create applications from Quick-Start template files that are installed with SMS
Builder.

See also
• Exporting Applications on page 28

Importing Application XML Files
Import an application by uploading the XML file that contains the application configuration.
XML configuration files are created when you export applications from SMS Builder.

If you import a single application that links to other applications, create the linked-to
applications before you import. If you import a single application that contains circular
references, which are common in menu-based systems, you must manually relink applications
before you can run them.

To import a group of dependent applications, first export them as a group, so all the dependent
applications are in one export file. When you import a group of applications from a single
export file, all interdependent links and references are maintained.

SMS Application Development

SMS Application Development 27

1. In the Web UI, select Assets, then select Create Asset.

2. Under Upload Applications From Existing Files, click Browse, and select the application
file.

3. Enter a name for the application.

• If the file contains a single application, the application name is replaced.
• If the file contains more than one application, the new application name is prepended to

all applications. For example, if the file contains two applications, Test1 and Test2, and
you enter NewName as the new application name, the uploaded applications are named
 NewName-Test1 and NewName-Test2.

4. Click Upload.

5. To edit application details, select View Application Details.

Creating Applications from Templates
SMS Builder includes a set of application templates that you can upload and run.

1. In the Web UI navigation bar, select Assets.

2. Select Create Asset.

3. Choose a template from the list, and click Create.
The template is installed, and names of the template applications appear.

4. Select Application Details.

After you create an application, you can run it or modify its details.

See also
• Developing Quick-Start Templates on page 76

Exporting Applications
You can export applications to make backup copies, or to move applications to other SMS
Builder installations. If you export an application, it is saved in an XML file.

See also
• Importing Applications on page 27

Exporting a Single Application
Exporting a single application creates an XML file that contains the application configuration.

1. In the Web UI, navigate to the Application Details tab for the application you want to
export.

2. Click Export.
The application is exported to a file called appFlow.xml in the Downloads directory.

If the application you export contains references to other applications through either the Goto
Application state or the Application Call state, details of the called applications are included in

SMS Application Development

28 SAP Mobile Platform

appFlow.xml; however, interapplication links may not be reestablished when you import
the file. To maintain links and dependencies between applications, export them as a group.

Exporting a Group of Applications
Exporting a group of applications maintains links and dependencies between applications.

1. In the Web UI, navigate to the Assets page.

2. Select the check box to the left of each application you want to export.

3. Click Group Export Applications.
A file called groupedFlow.xml, which contains all the exported application
configurations is created in the Downloads directory.

Sample Applications
SAP Mobile Platform offers a customizable way to more efficiently manage financial
services. It allows customers to redeem vouchers on any phone, remit money domestically,
pay bills automatically, and manage their accounts remotely.

Cash-Out Interactive Application
Use SMS to interact with the Cash-Out application. SMS Builder manages a unique user
session that maintains the context of the conversation between the user and the application.

The Cash-Out application comprises multiple interactive applications. The applications are
linked by either Goto Application states, in which control is passed to referenced applications,
or Application Call states, in which case control moves temporarily to the referenced
application, before returning to the application that called it.

A complete mobile service is created from multiple interactive applications that are validated
with a customer's MSISDN. Although there is no internal customer list, back-end systems can
validate customers. The Cash-Out application assumes a valid customer session exists.

Once an application has validated a customer, it is typical to offer a series of SMS menus, from
which customers can select. By default, the Cash-Out application contains one menu option
that is related to the mobile financial services that are offered to customers.

The Cash-Out application:

1. Requests the account from which to withdraw cash.
2. Requests the code of the customer support agent with whom to perform the transaction.
3. Requests the transaction amount.
4. Validates and preauthorizes the transaction by verifying sufficient funds in the account,

amount limits, and the agent's SVA.
5. Requests an account PIN, or transaction confirmation.
6. Sends money to the agent.
7. If a transaction fails, requests a solution to validation problems.

SMS Application Development

SMS Application Development 29

Cash-Out Application State Editor
In the Cash-Out application, the Get Wallet Menu state sends a menu to customers via SMS.

Mobiliser Counter Interactive Application
The Mobiliser Counter sample application increments a session variable, displays the value,
then either increments the value again, or exits.

You can develop the Mobiliser Counter application in the Application Composer.

SMS Application Development

30 SAP Mobile Platform

The session variable INDEX is used as the counter variable. This variable is dynamically
substituted into the text sent to mobile consumers.

If consumers respond with the keyword "again," the application loops back to the Mobiliser
Counter state. Any other input causes the application to exit.

SMS Application Development

SMS Application Development 31

Utility Notification Event Application
Event applications are designed for task flow or batch processing, and are typically invoked by
events, such as scheduled times, system triggers, or external triggers.

For example, event applications can provide end-to-end solutions for utility companies. A
common use case includes:

• Self-registration – register telephone numbers using SMS; for customers who did not
provide their number when signing up with the company.

• Self-services – such as looking up usage history and status of move-in activation, reporting
issues, and finding offices.

• Notifications – set up notifications for overdue payments, high usage, service-outage
alerts, summer-savings awareness, and so on.

• Engagement – enables customers who receive notifications to reply. For example, if
customers respond to overdue-payment notifications, they automatically receive 1–2 days
extension; they can also authorize automatic payments.

In this example, the company's customer relationship management (CRM) system generates a
list of subscribers who have opted to receive outage notifications. The list contains customer
telephone numbers (MSISDNs) and cities for which an outage-notification service is
provided. This list is uploaded to subscriber storage. When a service outage is planned for the
city of Dublin, the Process Subscriber state retrieves subscribers from the list. For each
subscriber:

1. Get Subscriber Details retrieves subscriber attributes (city).
2. Check City=Dublin filters out customers who are not in Dublin.
3. Send SMS Outage Message sends a message to Dublin customers.

SMS Application Development

32 SAP Mobile Platform

Invoke the application, by assigning it to an active event, and creating an event window. Event
windows can be one-time or recurring. This application has a one-time event window.

An alternative to manually uploading subscribers to the database is to use an event application
to fetch subscribers from the system of record, and use batch processing to upload and store
them in the database.

See also
• Sample Event Message Log on page 27

Developing Custom Application States
Custom state development using the State SDK is a Java development task you can perform
with or without a development IDE, such as Eclipse or NetBeans. After you develop and
deploy custom states, you can use them to develop applications.

Before proceeding with custom state development, verify that:

• The development environment meets system requirements—see http://service.sap.com/
pam.

• SMS Builder is installed on the development machine. SMS Builder is required to access
State SDK bundles for custom state development, and to deploy and test custom states
through the development process.

Third-party software mechanisms that custom states can use include:

SMS Application Development

SMS Application Development 33

http://service.sap.com/pam
http://service.sap.com/pam

• Spring Framework – for application context and dependency injection.
• Spring Dynamic Modules (Spring DM) – for abstracting OSGi mechanisms.
• OSGi Services – for software-service publication and consumption.
• OSGi Configuration Admin – for container-based configuration of services and

components.

Application Life Cycle
Applications run in the processing-engine runtime container and are managed by the
processing engine. Once deployed to the runtime container, applications can be invoked by
either incoming messages or events. Events can be generated by the system, a scheduled time,
or a call from an external Web service.

Starting or Restarting an Application
For a newly started application, a new session is created, and the Application Start state is
executed. Sessions are based on a consumer's MSISDN, which is typically the mobile
telephone number from which the message is sent. The Application Start state is created
automatically for new applications, and cannot be removed. This state performs initialization
prior to executing the application. The Application Start state is typically followed by at least
one state. For example, if an interactive application is invoked by an incoming message, the
Application Start state processes the incoming message, and routes it to the appropriate
follow-up state, based on the message value. The Application Start state can also filter
messages, and save incoming message values in session attributes.

If you restart an application, the existing session is reactivated, and all session attributes are
available to the application. The application continues from the last active state.

Executing the Current Application State
The processing engine executes the current application state, calling either
processMessage or processState; these methods contain state-specific logic.

The processing engine calls:

• processMessage to reactivate a state, when an external event occurs for which the
state is waiting.

• processState when another state activates the current state through a follow-up
transition.

Processing an Incoming Message
If a state is reactivated by a call to its processMessage method, the state processes the
incoming message.

For example, State 1 —> Send SMS state —> State 3. When the flow reaches the Send SMS
state, a message is sent out and the flow waits for a response. When the response arrives, the
processing engine calls the Send SMS state's processMessage method to reactivate the
state. The state processes the message, finds the follow-up transition that matches the
incoming message, and returns the follow-up transition state. For example, if the follow-up

SMS Application Development

34 SAP Mobile Platform

state is State 3, the processing engine sets the current state to State 3, and begins executing
it.

Processing State Logic
When a state is activated by a follow-up transition, the processing engine calls the
processState method, which contains the core logic of the state. If the state needs to call
an external Web service, you implement the call in the processState method.

States do not return objects from the processState method. Instead, they set flags using
the helper object SmappStateProcessingAction, which is an input parameter to the
method. For example, if the state-logic processing is successful, the state calls
continueProcessing(followUpState), passing the name of the follow-up state as
followUpState.

The processing engine sets the current state to the value of followUpState, and executes the
current state.

To determine the follow-up state, you can call either of two methods provided by the utility
class StateUtils, which is included in the State SDK:

• determineFollowingSmappStateFromPattern
• determineFollowingSmappStateFromTransitionType
In addition to calling continueProcessing, states can call:

• terminateProcessing – if a severe error occurs and the application must be
terminated.

• waitForMessage – if the state sends a message and must wait for the response.

Terminating Conditions
The processing engine continues through the application flow until it meets one of these
terminating conditions:

• No follow-up transition
• Call to terminateProcessing
• Call to waitForMessage
The first two conditions terminate the application. A call to waitForMessage pauses the
application until a response is received, and the session hibernates. When the response
message arrives, the life cycle restarts.

For event applications, if the processing engine encounters no follow-up transition, it checks
the preconfigured terminating criteria to determine whether to stop, or keep the session alive
and generate a callback to repeat from the Application Start state.

SMS Application Development

SMS Application Development 35

Developing and Deploying Custom States
Develop and deploy custom states to extend the functionality of SMS Builder, and to meet
client-specific requirements.

1. Develop a custom state by extending either:
• SmappStatePlugin class – for most states.
• AbstractDynamicMenu class – for menu states.

2. (Classes that extend SmappStatePlugin only) Implement the state logic.

3. Add custom state information.

4. Define custom state variables.

5. Set up Apache Maven.

6. Build and deploy a custom state bundle.

Extending the SmappStatePlugin Class
You can simplify custom-state development by extending the SmappStatePlugin class.

If you develop a custom state by extending the SmappStatePlugin class, you must:

• Implement the state logic.
• Provide the state information: ID, name, revision number, and usage notes.
• Specify the input attributes.
• Specify the output attributes.
• Customize the state follow-up transitions, if they are different from the default transitions.

See also
• Sample Custom State on page 81
• Sample GetMyWeather State on page 79
• Implementing State Logic on page 42

StatePlugin Interface
You can use the StatePlugin interface to develop application states.

The SmappStatePlugin class is a base abstract class that implements the
StatePlugin interface. Most custom states should extend SmappStatePlugin, which
provides basic implementations that are common to most custom states, as well as helper
methods that are commonly used in state implementations.

Two important methods in the StatePlugin interface are processMessage and
processState, which are integral parts of application life cycles. Some of the methods in
the StatePlugin interface customize the state editor, for example,
supportsOkTransition and getStateNotes.

If a custom state extends the SmappStatePlugin class, implementing the class is
simplified significantly. Instead of implementing both processMessage and

SMS Application Development

36 SAP Mobile Platform

processState methods, you can focus on adding business logic to the
processStateLogic method. This is sufficient in most custom-state implementations.

Note: Do not extend the abstract class Plugin. Instead, extend SmappStatePlugin.

SMS Application Development

SMS Application Development 37

SMS Application Development

38 SAP Mobile Platform

PluginInterface Interface
If you develop a custom state by extending the SmappStatePlugin class, it implements
the PluginInterface interface.

Plug-in components must have at least one class that implements the PluginInterface.
Components that implement PluginInterface are automatically loaded into the
messaging server and started. During start-up, the server calls the startup method of the
implementing class, which allows the class to perform any necessary setup.

PluginInterface methods are:

• getInstanceName():String
• setInstanceName(String):void
• getRevisedString():String
• shutdown():void
• startup(HashMap<String,String>):void
The shutdown method is called when the server is shutting down, giving the implementation
a chance to perform housecleaning, such as persisting cache data.

getInstanceName, setInstanceName, and getRevisedString are
placeholders only. The component must implement the appropriate functionality.

StatePlugin and ChannelPlugin implementations extend PluginInterface and
define their specific interfaces. You can use StatePlugin APIs to develop custom states.
The ChannelPlugin interface is reserved for SAP internal development only.

SMS Application Development

SMS Application Development 39

Extending the AbstractDynamicMenu Class
Many SMS and Unstructured Supplementary Service Data (USSD) applications rely on
menus to receive consumer responses. Menus reduce the potential for response errors,
because they are numbered lists.

The AbstractDynamicMenu class simplifies the development of custom-menu states that
extend the class, because they inherit:

• A list of menu items
• Menus and indexes that are generated automatically and recalculated on each page
• Methods to send menus as SMS messages
• These variables:

• Show Exit Menu – an input variable that specifies whether to allow recipients to exit the
menu.

• Variable Name of the Selected Key – an output variable representing the menu
selection, which is stored as a key-value pair object. Key is the unique key of the menu
item, which may be used later in the application.

• Variable Name of the Selected Value – an output variable that represents the value of
the selected key.

SMS Application Development

40 SAP Mobile Platform

Custom states that extend the AbstractDynamicMenu class must implement these
methods:

• constructMenuList() – gets the menu list.

• init() – initializes the state.

• getStateAttributeList() – gets the list of attributes.

• saveSessionVariables() – explicitly saves session variables.

Message recipients can select from lists, and reply using index numbers. If a menu has more
than four items, it includes a pagination option, which displays the next four items in the list.
On the last page, selecting the pagination option returns to the first page. Selecting the exit
option abandons a list without a response; the application task flow determines the follow-up
transition. To force recipients to choose an item from the list, you can disable the exit option.

In a typical custom-state implementation that extends the SmappStatePlugin class, you
implement state logic in the processStateLogic method. However, when you extend the
AbstractDynamicMenu class, both processStateLogic and
processMessageLogic methods are implemented by the abstract class. These methods
contain the menu processing logic, and are declared as final, so they cannot be overridden.

See also
• Sample Custom-Menu State on page 83

AbstractDynamicMenu Life Cycle
The life cycle of the AbstractDynamicMenu class is based on the life cycle of the
SmappStatePlugin class; however, there are slight differences in menu functionality.

If you extend the AbstractDynamicMenu class, it implements the
processMessageLogic method and the processStateLogic method.

1. The processStateLogic method calls the init method.

2. processStateLogic calls both the constructMenuList and
saveSessionVariables methods.

3. The SmappStatePlugin::getStateAttributes method calls
getStateAttributeList, which aggregates the attributes returned by the method
with attributes defined in the AbstractDynamicMenu class, such as the input exit-
menu item and the output key-value pair.

4. An AbstractDynamicMenu state is initially activated as a follow-up transition from a
previous state, so the processing engine calls its processStateLogic method. The
init and constructMenuList methods are called sequentially to initialize and
construct the menu. Eventually, the menu is sent as an SMS message, and the processing
engine waits for the response. The consumer selects a menu item.

5. If constructMenuList returns only a single item, the state immediately calls
saveSessionVariables, and proceeds with the default dynamic follow-up

SMS Application Development

SMS Application Development 41

transition. You can customize the state's default behavior by overriding the
continueWhenSingleEntry method.

6. When a response arrives, the processing engine calls the state's
processMessageLogic method, which calls constructMenuList to assemble
the menu and interpret the selected menu item. If the selection is a valid menu item,
saveSessionVariables is called. The state prepares the selected-item details for
output, and proceeds with the follow-up transition, as returned by the
saveSessionVariables method. If null is returned, the default OK follow-up
transition is used.

Implementing State Logic
If you extend the SmappStatePlugin class, implement state logic in the
processStateLogic method. If you extend the AbstractDynamicMenu class, the
abstract class implements the state logic.

At runtime, the processing engine calls a state's processState method, which in turn calls
processStateLogic. The processState method is implemented by the
SmappStatePlugin abstract class.

The processStateLogic method signature is:

protected SmappState processStateLogic(
 SmappStateProcessingContext context,
 SmappStateProcessingAction action)
 throws MwizProcessingException, DBException;

The processStateLogic input parameters are:

• SmappStateProcessingContext – provides access to resources, such as data-
access objects for session variables.

• SmappStateProcessingAction – signals to the processing engine that there is to
be additional processing.

See also
• Extending the SmappStatePlugin Class on page 36

SmappStateProcessingContext
The processing engine SmappStateProcessingContext object provides access to
resources, such as session variables and the subscribers data store.

You can use the SmappStateProcessingContext object to share resources between
the processing engine and the state; however, in most state implementations, this is
unnecessary.

Note: Do not alter SmappStateProcessingContext.

You can use these SmappStateProcessingContext methods:

SMS Application Development

42 SAP Mobile Platform

• getStateDao – inserts, updates, or deletes session variables.
• getSubscriberDao – accesses the subscribers data store. Also used by some built-in

states.
• isAckMessageRequested – queries whether an acknowledgment is requested.
• setAckMessageRequest – specifies whether an acknowledgment is requested.
• isCurrentStateEncrypted – queries whether state data is encrypted.

The following resources are available for read-only access, and include no API support. Do
not access these resources directly, or make any changes. If you have special requirements,
consult with SAP support services.

• client
• session
• clientMsisdn
• currentState
• customer
• langDefault
• matchingPattern
• mr
• msg
• newSession
Do not use the following methods or resources; doing so may result in errors or unexpected
application behavior:

• getlangRequest
• updateSession
• cacheMgr
• outgoingQueue

SmappStateProcessingAction
The SmappStateProcessingAction class controls state and application processing.
Use it to signal the processing engine that further processing is intended.

The processing engine recognizes three signaling actions: continue, wait, and terminate,
which you can send by calling:

• continueProcessing (SmappState) – continues execution to the specified
follow-up state. Causes an infinite loop if the follow-up state is the same as the calling
state. Termination must be handled within the state.

• waitForMessage() – pauses execution and waits for a response, then continues
execution to the specified follow-up state.

• terminateProcessing () – terminates the application.

States that extend the SmappStatePlugin class, implementing logic inside the
processStateLogic method need not explicitly call continueProcessing or

SMS Application Development

SMS Application Development 43

terminateProcessing. The same functionality is accomplished by returning the
follow-up state from the processStateLogic method. For example, instead of calling
continueProcessing, return the follow-up state using one of the helper methods:

• continueOk()
• continueFail()
• continueDyn()
To terminate processing, states should call continueFail, and let the state-editor
configuration determine what to do. If the state is not configured to forward continueFail
calls to a follow-up state, the application automatically terminates.

Note: If a state calls waitForMessage before it returns null from the
processStateLogic method, the application does not terminate, because the state is
waiting for a response. For this reason, SAP recommends that you do not let states return
null.

To enable states to send messages and wait for replies before they continue processing, call
waitForMessage.

To display a message control in the state editor, call supportsSendSmsMessage.

Custom State Information
State information includes an ID, a name, a revision number, and usage notes. The name and
usage notes are metadata that the state editor shows in the Application Composer.

For a custom state, you can explain its purpose and functionality as state notes, which appear
in the state editor.

@Override
public String getStateNotes() {
 StringBuilder sb = new StringBuilder();
 sb.append("A sample state. When executed, it checks for ");
 sb.append("an entered Postal/ZIP Code, and returns the ");
 sb.append("weather report for that area.\n\n);
 sb.append("Use the following follow up states:\n ");
 sb.append("- OK: Weather report for the area was found\n ");
 sb.append("- FAIL: Unexpected error\n ");
 sb.append("- Dyn -1: Area code entered was not valid\n ");
 sb.append("- Dyn -2: No weather report for the area\n ");
 return sb.toString();
}

SMS Application Development

44 SAP Mobile Platform

The revision number is a prerequisite for any plug-in component, as specified in the
PluginInterface class. It identifies a version, and sets the plug-in number.
getRevisionString() can return any String value.

@Override
public String getRevisionString() {
 return "1.0.0";
}

The state ID is a unique identifier for the state. Each state must have a unique ID stored in the
database for each installation in which the state is used. This unique value allows the state to be
resolved to the same type across installations.
private static long STATE_ID = 600000L;

@Override
public long getStateId() {
 return STATE_ID;
}

For custom states, assign unique ID values between 600,000 and 999,999. Values between 0
and 599,999 are reserved.

SMS Application Development

SMS Application Development 45

Custom State Variables
You can define input and output variables for custom states. Variables are used as both
metadata in the state editor, and as runtime objects for storing session variables.

In the GetMyWeather sample custom state, one input variable (Zip or Postal Code) and one
output variable (Your Weather Synopsis) are defined in the code, and appear in the state editor
view.

// Define input variable

private static final TextBoxAttribute inPostCode =
 new TextBoxAttribute("POSTCODE", "Zip or Postal Code", false);

// Define output variable

private static final OutputAttribute outWeather =
 new OutputAttribute("WEATHER", "Your Weather Synopsis");

private static Attribute[] stateAttr;

static {
 stateAttr = new Attribute[] {inPostCode, outWeather};
}

@Override
protected Attribute[] getStateAttributes() {
 return stateAttr.clone();
}

getStateAttributes is an abstract helper method that the SmappStatePlugin
class implements. It aggregates both input and output variables. The base class derives the

SMS Application Development

46 SAP Mobile Platform

required getInputAttributes and getOutputAttributes methods from
getStateAttributes, based on the attribute-type class. The state editor uses the
attribute array that the getStateAttributes method returns to render input and output
variables. The saveOutputAttributes method saves output attributes from the
attribute array.

All variables (input and output) have input controls that appear on the state editor. The
public String getText() method returns the text from input controls.

See also
• Sample GetMyWeather State on page 79
• Input and Output Parameters on page 6
• Defining Input Variables on page 48
• Defining Output Variables on page 50
• Accessing Input Variables on page 51
• List Variables on page 52

Variables for Troubleshooting
When you develop custom states, include error output variables that can help you troubleshoot
problems in the production environment.

To facilitate debugging, include output variables in the state code for an error message, a
unique error ID, and a service code. If the state calls an external Web service, for example, the
Web service can return a code in the service-code output variable.

// Define output variables

private static final OutputAttribute outErrMsg =
 new OutputAttribute("ERR_MSG", "Error Message");
private static final OutputAttribute outErrUUID =
 new OutputAttribute("ERR_UUID", "Error Unique ID");

private static final OutputAttribute outSvcCode =
 new OutputAttribute("SVC_CODE", "Service Code");

// some code omitted here…

@Override
protected SmappState processStateLogic(…)
{
 // Logic implementation

 try {
 // Reset the error output variable
 outErrMsg.setHoldValue("");
 outErrUUID.setHoldValue("");
 saveOutputAttributes();
 return continueOk();
 }

SMS Application Development

SMS Application Development 47

 catch (Exception ex) {
 String uuid = UUID.randomUUID().toString();
 log.error(ex.getMessage()+ " [UUID={}]", uuid);
 outErrMsg.setHoldValue(message);
 outErrUUID.setHoldValue(uuid);
 saveOutputAttributes();
 return continueFail();
 }
}

UUID is a unique user ID that you can use to report errors. For example, if an error occurs, an
SMS message can be sent to the consumer, who is identified by the UUID. Consumers can call
customer support to report issues, using their UUID. UUIDs are logged so they can be
correlated with reported issues.

Defining Input Variables
States use input variables to get input values, either from a session variable or as a constant.
You can configure the behavior in the state editor. The InputAttribute class manages
input variables.

In addition to the basic properties, input variables have an isOptional property. If set to true,
the input variable is optional; false indicates it is mandatory.

The input variable constructor is:
InputAttribute (String id, String description, boolean isOptional)

Two types of input variables exist, text box input controls and selection input controls.

Text Box Input Controls
Text boxes manage either a single constant value or a value that is accessed from a session
variable.

You can create the input variable in the example above using this constructor:
TextBoxAttribute(" POSTCODE " , " Zip or Postal Code " , false);

By default, the variable ID is automatically assigned to the TextBoxAttribute control. In
this case, the ID is POSTCODE. The description, Zip or Postal Code, appears to the
right. The red dot indicates that the input variable is mandatory.

Note: If input is mandatory and a session variable name is specified, a runtime error is thrown
if the session variable does not exist. The processing engine terminates the application, unless
the state implementation handles RequiredParameterMissingException, with
either continueFail or continueDyn follow-up transitions.

SMS Application Development

48 SAP Mobile Platform

The state of the check box tells the processing engine how to process an input variable:

• Selected – retrieve the value from the named session variable.
• Not selected – use the constant value.

If you use a state twice in the same application, and if the state saves a value in a session
variable, change the session-variable name in the second instance, so it does not overwrite the
value.

To find the session-variable name, hover the mouse over the description text; pop-up text
includes the variable description and the variable name.

Selection Input Controls
Selection input controls manage constant values that are selected from a list of options. Lists
are populated in the state code.

Unique IDs are automatically assigned as the session-variable name; you cannot change them,
and they do not appear in the state editor. To find the session-variable name, hover the mouse
over the description text; pop-up text includes the variable description and the variable name.

To use a state twice in the same application, and save the value of the session variable, you can
call the Copy Variables state to copy the session variable to another variable.

The check box performs the same function as it does for text box controls. The red dot
indicates that an input selection is mandatory.

See also
• Input and Output Parameters on page 6

• Custom State Variables on page 46

• Defining Output Variables on page 50

• Accessing Input Variables on page 51

• List Variables on page 52

SMS Application Development

SMS Application Development 49

Defining Output Variables
States return results as output variables, which are always session variables. Only states can
set output variables, and only at runtime. Output-variable check boxes are always selected and
cannot be modified.

To create an output variable, use the OutputAttribute constructor:

OutputAttribute("WEATHER", "Your Weather Synopsis")

By default, output session-variable names are not set, so text boxes are empty. You can set
values by calling either of these two methods:

• setValue – creates a session variable (if none exists), and saves the value immediately
in the database, or,

• setHoldValue – temporarily holds the value in the cache, until you explicitly call the
SmappStatePlugin::saveOutputAttributes method.

The saveOutputAttributes method saves multiple session variables with a single
database connection. If the state has only a few output variables, call the setValue method.
If there are many output variables, call setHoldValue; this may impact the efficiency of
the state at runtime.

To set output variables, call one of the methods in the OutputAttribute class:

• public void setValue (String val)
• public void setValue (Long val)
• public void setValue (Integer val)
• public void setValue (Boolean val)
• public void setHoldValue (String val)
• public void setHoldValue (Long val)
• public void setHoldValue (Integer val)
• public void setHoldValue (Boolean val)

See also
• Input and Output Parameters on page 6
• Custom State Variables on page 46
• Defining Input Variables on page 48
• Accessing Input Variables on page 51

SMS Application Development

50 SAP Mobile Platform

• List Variables on page 52

Accessing Input Variables
You can access input variables that are in a custom state using either the getInputValue
method or the getInputValueWithWarning method.

The signatures of the methods you can call to access input variables are:
public InputValue getInputValue()
 throws DBException;
public InputValue getInputValueWithWarning()
 throws DBException, RequiredParameterMissingException;

To retrieve optional input variables, call getInputValue. A null value is returned if either
an input variable is not provided, or if the session variable that the input variable is assigned to
does not exist.
InputValue iv = optionalVar.getInputValue();

if (iv != null) {
 retrieve the value
}

To retrieve mandatory input variables, call getInputValueWithWarning. The
exception RequiredParameterMissingException is raised if either an input
variable is not provided, or if the session variable that the input variable is assigned to does not
exist. You can retrieve all mandatory input variables in the same try/catch block.

try {
 Long id = mandatoryIdVar.getInputValueWithWarning().getLong();
 Integer count =
mandatoryCountVar.getInputValueWithWarning().getInt();
}
catch (RequiredParameterMissingException rex) {
 log.error(rex.getMessage());
 return continueFail();
}

Note: The RequiredParameterMissingException::getMessage method
indicates the mandatory variable that is missing.

Both methods that access input variables return the InputValue class. InputValue
methods return values that you enter in the state editor when you configure an input attribute;
return values can be either constants or session-variable names:

• InputValue.getString();
• InputValue.getString(int size);
• InputValue.getLong();
• InputValue.getInt();
• InputValue.getBoolean();
• InputValue.getDouble();

SMS Application Development

SMS Application Development 51

• InputValue.getMsisdn();

See also
• Input and Output Parameters on page 6
• Custom State Variables on page 46
• Defining Input Variables on page 48
• Defining Output Variables on page 50
• List Variables on page 52

List Variables
List variables do not appear in the state editor. You can use list variables to save lists of the
BeanConverterInterface type to session variables.

As an example, the AbstractDynamicMenu class uses a list variable to persist an SMS
menu. The BeanConverterInterface specifies that a bean must provide string
serialization and deserialization logic. Each BeanConverterInterface item is saved as
a session variable with a unique name.

package com.sybase365.mobiliser.brand.plugins.smapp.beans;
public interface BeanConverterInterface<T> {
 T convert(String value);
 String convert(T object);
}

Note: Strings returned by the convert(T object) method must be less than 1000
characters.

The SessionVariableAttribute class has two methods: getList and setList.
The getList method retrieves a list from the database. When setList is called, the list is
saved to a session variable, which requires a database connection.

Note: Lists are saved outside of transactions. Therefore, if an exception occurs, the method
throws a DBException, and a partial list may be saved. It is up to the state implementation
that uses this attribute to retry.

Most state implementations do not need list variables. They are needed only if a state can
transition into an internal waiting condition by calling waitForMessage. For example, list
variables are most commonly used when sending SMS messages. Calling
waitForMessage causes the application to hibernate until the response arrives. The list
variable is saved to a session variable, so it is available when the application is reactivated.

See also
• Input and Output Parameters on page 6
• Custom State Variables on page 46
• Defining Input Variables on page 48
• Defining Output Variables on page 50

SMS Application Development

52 SAP Mobile Platform

• Accessing Input Variables on page 51

State Attributes Class Hierarchy
All state variables that are derived from the Attribute class are identified by an ID and a
description, which are defined in the constructor Attribute(String ID, String
Description). ID is a unique identifier of the attribute; for InputAttribute, ID
defaults to the session variable name. The value of the Description variable appears in the
Application Composer.

The diagram below illustrates the attribute class hierarchy.

These methods are reserved for use by the processing engine:

• public void setContext(SmappStateProcessingContext context)
• protected SmappStateProcessingContext getContext()
SmappStateProcessingContext is the running context of the application, set by the
processing engine using the setContext method. The

SMS Application Development

SMS Application Development 53

SmappStateProcessingContext object provides access to the data source that stores
session variables.

Setting Up Apache Maven
Apache Maven is a software project management tool that is based on a project object model
(POM). You can use Maven to manage a project's build, reporting, and documentation from a
central piece of information.

Install and configure Apache Maven, and deploy the State SDK bundles, so you can build
custom-state bundles and deploy them to the server.

Installing Apache Maven
You can download Apache Maven from the Apache Maven Project Web site. Apache Maven
version 3.0.4 has been tested and certified with SMS Builder.

1. Navigate to http://maven.apache.org/download.cgi, and download Apache Maven.

2. To verify that your Apache Maven installation is successful, on the command line, run:

mvn -version

The output looks similar to:
Apache Maven 3.0.4 (r1232337; 2012-01-17 00:44:56-0800)
Maven home: C:\ZPrograms\apache-maven-3.0.4 Java version: 1.6.0_35,
vendor: Sun Microsystems Inc.
Java home: C:\Program Files\Java\jdk1.6.0_35\jre
Default locale: en_US, platform encoding: Cp1252
OS name: "windows 7", version: "6.1", arch: "amd64", family: "windows"

Next
Configure Apache Maven.

Configuring Apache Maven
You can customize where Maven looks for dependencies by editing the Maven configuration
file.

Prerequisites
Install Apache Maven.

Task

By default, Maven looks for dependencies in its central repository; however, in some cases, it
may need additional repositories. For example, some companies have their own internal
Maven repositories, and you, as a developer, must find these dependencies. The central Maven
repository is open to the public, and its libraries are either open source or available for public
use. SMS Builder SDK libraries are not hosted in the central Maven repository, nor in any
publicly accessible Maven repository.

SMS Application Development

54 SAP Mobile Platform

http://maven.apache.org/download.cgi

1. Navigate to your Apache Maven installation directory, and open the conf
\setting.xml file.

2. Enter these lines:
<settings>

 <profiles>
 <profile>
 <id>brand_state_development</id>
 <repositories>
 <repository>
 <id>EclipseLink</id>
 <name>Eclipse Link</name>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo</url>
 </repository>
 </repositories>
 </profile>
 </profiles>

 <activeProfiles>
 <activeProfile>brand_state_development</activeProfile>
 </activeProfiles>

</settings>

3. To add a Maven dependency location, between the <repositories></
repositories> elements, add a <repository></repository> element pair.

4. For the new repository, define:

• id – repository ID.

• name – name of the repository.

• url – Internet location of the repository.

Maven creates a default-user local cache repository in ${user.home}
\.m2\repository, where user.home depends on the operating system. For example, on a
Windows 7 machine, the user.home location is C:\Users\userName. During the build
process, this is the first location Maven searches for dependency libraries. Initially, the local
repository is empty. During the first build, Maven does not find libraries in the local repository,
so it looks in the Maven central repository, which is, by default, http://search.maven.org/
#browse. Maven downloads any dependency libraries to the local repository, then uses them in
the build. Subsequent builds are faster, because dependency libraries have been downloaded
to the local repository.

Next
Deploy State SDK bundles to Maven repositories.

SMS Application Development

SMS Application Development 55

http://search.maven.org/#browse
http://search.maven.org/#browse

Deploying State SDK Bundles to a Maven Repository
You can deploy State SDK bundles to the local Maven repository (also known as the .m2).
Deploy bundles to local repositories on each development machine.

Prerequisites
Install and configure Apache Maven.

Task

The State SDK consists of five bundles:

• mobiliser-brandplugin-api-1.3.1.jar
• mobiliser-brandstate-sdk-1.3.1.jar
• mobiliser-brandplugin-security-1.3.1.jar
• mobiliser-brandplugin-core-1.3.1.jar
• mobiliser-brandplugin-jpa-1.3.1.jar
Deploy these bundles to the Maven repository so they are accessible as dependencies to state-
development projects. Bundles are in the SMSBUILDER_HOME\bundle\application
directory. To deploy the bundles, run a script for each bundle, or copy all five scripts to a single
script file, and run it once.

Note: Scripts are for Windows only; to run on Linux, modify the -Dfile path.

1. Change to the SMSBUILDER_HOME directory.

2. Run:
mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
plugin-api-1.3.1.jar
-DgroupId=com.sybase365.mobiliser.brand.plugins -DartifactId=mobiliser-
brand-plugin-api
-Dversion=1.3.1 -Dpackaging=jar

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
state-sdk-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.plugins -DartifactId=mobiliser-
brand-state-sdk
 -Dversion=1.3.1 -Dpackaging=jar

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
security-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.security -
DartifactId=mobiliser-brand-security
 -Dversion=1.3.1 -Dpackaging=jar

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
core-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.core -DartifactId=mobiliser-
brand-core -Dversion=1.3.1
 -Dpackaging=jar

SMS Application Development

56 SAP Mobile Platform

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
jpa-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.database -
DartifactId=mobiliser-brand-jpa
 -Dversion=1.3.1 -Dpackaging=jar

Custom State Bundles
Package custom states as OSGi bundles, so you can deploy them.

An OSGi bundle is a JAR file with extra manifest headers that can be deployed in the OSGi
container. A custom-state bundle can contain one or more custom states, and it must be
packaged as an OSGi bundle before you can deploy it to SMS Builder.

Building Custom State Bundles
After you develop custom states, and set up Apache Maven, build OSGi bundles that you can
deploy to SMS Builder.

1. Creating Maven Projects

The main artifacts of a Maven project are the project object model (POM) file, and folders
that contain source-code files.

2. Customizing Maven POM Files

Customize a Maven project object model (POM) file to create and build custom-state
OSGi bundles to deploy to SMS Builder.

3. Creating Maven Project Artifacts

After you create a Maven project, create project artifacts to use in a custom-state bundle.

4. Building Maven Projects

You can build Maven projects on the command line, or you can use Maven build and unit
test projects in an IDE.

5. Declaring States as Spring Beans

Developing a custom-state bundle requires that you declare each state as a Spring
Framework bean in the beans-context.xml file. A state is any Java class that either directly
or indirectly extends the SmappStatePlugin abstract class.

6. Configuring Bean Properties

The bean properties file, properties-context.xml, declares all properties that must be
retrieved from the OSGi configuration administration service during runtime; properties
are stored in the service so they can be configured dynamically at runtime.

7. Registering States as OSGi Services

To enable SMS Builder to discover states at runtime, register them as OSGi services, by
declaring them in the services-context.xml file.

SMS Application Development

SMS Application Development 57

Creating Maven Projects
The main artifacts of a Maven project are the project object model (POM) file, and folders that
contain source-code files.

You can create a new Maven project on the command line, or in any IDE that supports Maven.
To create a Maven project on the command line:

mvn archetype:create -DgroupId=com.sap.example -DartifactId=customState

where:
• groupId – names the package.
• artifactId – names the project and the project folder.

As the project is created, you see progress messages. For example:
[INFO] Scanning for projects...
Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/
plugins/
maven-clean-plugin/2.4.1/maven-clean-plugin-2.4.1.pom
Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/
plugins/
maven-clean-plugin/2.4.1/maven-clean-plugin-2.4.1.pom (5 KB at 6.8 KB/
sec)
[...]
[INFO]
[INFO]--

[INFO] Building Maven Stub Project (No POM) 1
[INFO]--

[INFO]
[INFO] --- maven-archetype-plugin:2.2:create (default-cli) @ standalone-
pom ---
[...]
[INFO]--

[INFO] BUILD SUCCESS
[INFO]--

[INFO] Total time: 41.155s
[INFO] Finished at: Mon Oct 22 17:00:49 PDT 2012
[INFO] Final Memory: 8M/245M

See also
• Customizing Maven POM Files on page 60

• Creating Maven Project Artifacts on page 64

• Sample Maven POM File on page 61

• Maven Project Structure on page 59

SMS Application Development

58 SAP Mobile Platform

Maven Project Structure
When you create a Maven project, the directory structure that is created includes the project
object model (POM) file.

In this sample project, the groupId is set to com.sap.example. This directory structure is
created automatically for a new project:

Two Java files, App.java and AppTest.java, are created in the example folders, under
main and test, respectively. The POM file, which contains the initial project configuration,
is created in the customState folder. You can use this POM file as a starting point for
custom-state development.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.sap.example</groupId>
 <artifactId>customState</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>customState</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

SMS Application Development

SMS Application Development 59

 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

You can open or import a newly created Maven project into your IDE. Eclipse and NetBeans
both support Maven. The image below shows the sample project structure in Eclipse.

Once you are familiar with the structure and the content of POM files, you can create them
manually. You can also create a new project in any IDE that supports Maven.

See also
• Sample Maven POM File on page 61

• Creating Maven Projects on page 58

• Creating Maven Project Artifacts on page 64

Customizing Maven POM Files
Customize a Maven project object model (POM) file to create and build custom-state OSGi
bundles to deploy to SMS Builder.
Edit the Maven pom.xml file for your project to define:

• groupId – package name.

SMS Application Development

60 SAP Mobile Platform

• artifactId – name of the project.

• version – version number of the project.

• packaging – bundle.

• name – name of the state.

For example:
<groupId>com.sap.example</groupId>
<artifactId>customState</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>bundle</packaging>
<name>Custom State</name>

See also
• Creating Maven Projects on page 58
• Creating Maven Project Artifacts on page 64

Sample Maven POM File
A Maven project object model (POM) file contains all the required information for Maven to
create and build OSGi bundles that you can deploy to SMS Builder.

This POM file (pom.xml) illustrates the basic configuration for a custom-state bundle. The
state implementation does not need libraries other than those provided by the SDK. The SDK
libraries are shown as dependencies. The contents of the original POM are shown in bold:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.sap.example</groupId>
<artifactId>customState</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>bundle</packaging>
<name>Custom State</name>
<url>http://www.sap.com</url>

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <bundle.namespace>${project.groupId}</bundle.namespace>
 <bundle.symbolicName>${bundle.namespace}.${project.artifactId}</
bundle.symbolicName>
 <brand.version>1.3.1</brand.version>
</properties>

<build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>

SMS Application Development

SMS Application Development 61

 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>

 <!-- Create an OSGi Bundle Manifest -->
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.7</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <manifestLocation>META-INF</manifestLocation>
 <Bundle-Category>object</Bundle-Category>
 <Bundle-SymbolicName>${bundle.symbolicName}</Bundle-SymbolicName>

 <Bundle-Version>${project.version}</Bundle-Version>
 <Embed-Dependency></Embed-Dependency>

 <!--
 Note: When you develop additional classes within this object
 bundle, include the package names of the classes in either the
 Export-Package, or the Private-Package, otherwise it will not
 be included in the bundle.
 -->

 <Export-Package>
 </Export-Package>

 <Private-Package>
 com.sap.example
 </Private-Package>

 <DynamicImport-Package>
 </DynamicImport-Package>

 <!--
 Note: If you use other only referenced from spring context then
 include them in the Import-Package instruction here. The *
 instruction ensures that any directly imported packages in
 supporting classes are included automatically, but the Spring
 context referenced ones need explicit reference.
 -->
 <Import-Package>
 *
 </Import-Package>

 <!--
 Each module can override these defaults in an
 optional osgi.bnd file
 -->
 <_include>-osgi.bnd</_include>

 <!--

SMS Application Development

62 SAP Mobile Platform

 Enable viewing of the properties file content from telnet console
 -->
 <ARF-Bundle-Template>/META-INF/config</ARF-Bundle-Template>

 </instructions>
 <obrRepository>NONE</obrRepository>
 </configuration>
 </plugin>
 </plugins>
</build>

<dependencies>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.plugins</groupId>
 <artifactId>mobiliser-brand-plugin-api</artifactId>
 <version>${brand.version}</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.plugins</groupId>
 <artifactId>mobiliser-brand-state-sdk</artifactId>
 <version>${brand.version}</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.security</groupId>
 <artifactId>mobiliser-brand-security</artifactId>
 <version>1.3.1</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.core</groupId>
 <artifactId>mobiliser-brand-core</artifactId>
 <version>${brand.version}</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.database</groupId>
 <artifactId>mobiliser-brand-jpa</artifactId>
 <version>${brand.version}</version>
 </dependency>

 <!-- Logging -->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.6.6</version>
 </dependency>

 <!-- Optional for Unit Test -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
</dependencies>

 <!--

SMS Application Development

SMS Application Development 63

 Required Javax Persistence dependencies not available
 from Maven central repository
 -->
 <profiles>
 <profile>
 <activation>
 <jdk>[1.5, 1.7)</jdk>
 </activation>
 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.0.4.v201112161009</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>EclipseLink</id>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo</url>
 </repository>
 </repositories>
 </profile>
 </profiles>
</project>

See also
• Maven Project Structure on page 59

• Creating Maven Projects on page 58

• Creating Maven Project Artifacts on page 64

Creating Maven Project Artifacts
After you create a Maven project, create project artifacts to use in a custom-state bundle.

Prerequisites
Create a Maven project.

Task

1. In the example subdirectory under main, delete the App.java file.

2. In the example subdirectory, under test, delete the AppTest.java file.

3. In the main directory, create a subdirectory called resources.

The resources directory stores configuration files that SMS Builder needs when it
loads state bundles.

4. In the resources directory, create these subdirectories:

• META-INF – contents are packaged in the state bundle.

SMS Application Development

64 SAP Mobile Platform

• META-INF\spring – stores a configuration file that the Spring Framework uses.

• META-INF\sample\conf – stores sample configuration property files; if you
copy these files to SMSBUILDER_HOME\conf\cfgload, SMS Builder can load
them dynamically.

Configuration files are specific to a bundle. They identify what states and configurations to
load, and how to link them together.

5. In the test directory, create these subdirectories:

• java
• resources

See also
• Customizing Maven POM Files on page 60
• Creating Maven Projects on page 58
• Sample Maven POM File on page 61
• Maven Project Structure on page 59

Building Maven Projects
You can build Maven projects on the command line, or you can use Maven build and unit test
projects in an IDE.

For information about building projects using Maven in the Eclipse IDE, see http://
maven.apache.org/eclipse-plugin.html.

On the command line, run:
mvn clean install

As the project builds, you see progress messages:
[INFO] Scanning for projects...
Downloading: http://repo.maven.apache.org/maven2/org/apache/felix/maven-
bundle-plugin/
2.3.7/maven-bundle-plugin-2.3.7.pom
Downloaded: http://repo.maven.apache.org/maven2/org/apache/felix/maven-
bundle-plugin/
2.3.7/maven-bundle-plugin-2.3.7.pom
(4 KB at 15.0 KB/sec)
[…]
 [INFO] Installing C:\ZMobiliser\customStateExample\customState\target
\customState-1.0-SNAPSHOT.jar
to C:\Users\I824993\.\m2\repository\com\sap\example\customState\1.0-
SNAPSHOT\customState-1.0-SNAPSHOT.jar
[INFO] Installing C:\ZMobiliser\customStateExample\customState\pom.xml
to
C:\Users\I824993\.m2\repository\com\sap\example\customState\1.0-SNAPSHOT
\customState-1.0-SNAPSHOT.pom
[INFO]
[INFO] --- maven-bundle-plugin:2.3.7:install (default-install) @
customState ---
[INFO] Local OBR update disabled (enable with -DobrRepository)

SMS Application Development

SMS Application Development 65

http://maven.apache.org/eclipse-plugin.html
http://maven.apache.org/eclipse-plugin.html

[INFO]
--

[INFO] BUILD SUCCESS
[INFO]
--

[INFO] Total time: 36.332s
[INFO] Finished at: Mon Oct 29 10:48:50 PDT 2012
[INFO] Final Memory: 11M/242M
[INFO]
--

The bundle JAR file is saved in the \className\target directory; its name is derived from
the Maven project artifactId and version. For this example, the filename is
customState-1.0-SNAPSHOT.jar.

Declaring States as Spring Beans
Developing a custom-state bundle requires that you declare each state as a Spring Framework
bean in the beans-context.xml file. A state is any Java class that either directly or
indirectly extends the SmappStatePlugin abstract class.

You can configure Spring beans by setting properties, or by creating other beans that support
state operations.

1. Edit the beans-context.xml file to add a <bean> element for each state. Define:

• id – name of the state.
• class – name of the Java class that implements the state.
For example:

 <bean id="SampleState" class="com.sap.example.SampleState">
 <property name="country" value="${sample.country}"/>
 </bean>
...

2. (Optional) Declare state properties, and assign either constant values or references to the
values that are defined in the properties-context.xml file.

The value of the country property is a reference to the sample.country property defined in
properties-context.xml.

Configuring Bean Properties
The bean properties file, properties-context.xml, declares all properties that must
be retrieved from the OSGi configuration administration service during runtime; properties
are stored in the service so they can be configured dynamically at runtime.

You can reconfigure states at runtime, without reloading state bundles or restarting the server.
However, state developers must implement dynamic reconfiguration, by defining state
properties in the code.

Edit the properties-context.xml file to configure bean properties:

SMS Application Development

66 SAP Mobile Platform

a) Set osgix:cm-properties id to the name of the OSGi configuration
administration service property that is identified by the value of persistent-id.

SMS Builder initializes the property, and loads the property file identified by the value of
persistent-id.

b) For each property, enter a <prop key> element and default value.

Properties are initialized with values from the OSGi configuration administration service.
If a property does not exist in the service, the default value is used.

c) Set the value of ctx:property-placeholder properties-ref to the value of
osgix:cm-properties id.

The value identifies a list of properties that are available for the Spring Framework to use
during state initialization.

For example:
<osgix:cm-properties id="sampleState-cfg" persistent-
id="service.sampleState">
 <prop key="sample.country">US</prop>
</osgix:cm-properties>

<ctx:property-placeholder properties-ref="sampleState-cfg"/>

Note: SAP recommends that you store a copy of the properties-context.xml file in
the META-INF\sample\conf directory.

Registering States as OSGi Services
To enable SMS Builder to discover states at runtime, register them as OSGi services, by
declaring them in the services-context.xml file.

Registered states are discoverable by the StatePlugin interface:

com.sybase365.mobiliser.brand.plugins.api.smapp.StatePlugin

Edit services-context.xml, and set OSGi service properties:

• id – name of the service.

• ref – name of the state.

• interface – name of the class that implements the StatePlugin interface.

For example:

<osgi:service id="SampleStateService" ref="SampleState"

interface="com.sybase365.mobiliser.brand.plugins.api.smapp.StatePlugin"/
>

SMS Application Development

SMS Application Development 67

Deploying State Bundles
To deploy custom-state bundles, make the files available to SMS Builder at runtime, and
configure the states to start automatically.

1. Copy the bundle .jar files to SMSBUILDER_HOME\bundle\application.

This directory contains all the bundles that are deployed to the runtime environment.

Note: System bundles are installed in SMSBUILDER_HOME\bundle.

2. Edit the SMSBUILDER_HOME\conf\config.properties file to add the new
custom-state file to the list of bundles that are started automatically.

felix.auto.start.15 = ${aims.app.dir}\customState-1.0-SNAPSHOT.jar

All state bundles are listed in the config.properties file. SMS Builder reinitializes
its bundle cache each time it starts.

3. Restart the server.

To verify that no errors occurred, check these log files:
• brand.log
• felix.log
• spring.log
• persist.log
If there are errors, check the Spring configuration and the \import\private
\dynamic package specifications.

Next
To verify that bundles resolve and start, use either Telnet or the AIMS System Web console
(both require access to localhost).

Verifying Deployment Using Telnet
Use Telnet to verify that custom-state bundles resolve and start. The Telnet interface listens
only on the localhost port, which ensures runtime environment security.

1. On the command line, run:
telnet localhost 5365

2. At the Telnet prompt, run:
felix:lb

You see output similar to the following; the state of the bundle, in this case
customState, is Active:

START LEVEL 20
ID|State | Level|Name
 0|Active | 0|System Bundle (4.0.3)
 1|Active | 14|activemq-core (5.5.1)
 2|Active | 14|activemq-pool (5.5.1)

SMS Application Development

68 SAP Mobile Platform

 3|Active | 14|activemq-ra (5.5.1)
 4|Active | 14|activemq-spring (5.5.1)
 5|Active | 14|ARF :: System :: arf-sys (0.3.4)
 6|Active | 14|ARF :: System :: arf-util-commands (0.3.2)
 7|Active | 14|ARF :: System :: cm-bridge (0.3.4)
 8|Active | 14|Java Activation API (1.1.1)
 9|Active | 14|Java Messaging System API (1.1.0)
10|Active | 14|CGLIB Code Generation Library (2.2.0)
11|Active | 14|AOP Alliance API (1.0.0)
12|Active | 14|Commons Pool (1.5.6)
 ...
108|Active | 1|ARF :: System :: cm-loader (0.3.4)
109|Resolved | 1|AIMS :: Object :: SMS Builder Felix JRE System
Package Support (1.3.1)
110|Installed | 10|AIMS :: Object :: SMS Builder Quartz OSGi Support
(1.3.1)
111|Active | 17|Restlet API (2.0.13.0)
112|Active | 17|Restlet Extension - Servlet (2.0.13.0)
113|Active | 17|Restlet Extension - Spring Framework (2.0.13.0)

114|Active | 17|Restlet Extension - JSON (2.0.13.0)
115|Active | 17|AIMS :: Service :: SMS Builder Core REST Services
(1.3.1)
116|Active | 16|AIMS :: Object :: Web Core (0.1.9)
117|Active | 16|AIMS :: Object :: Web API and Model (0.1.9)
118|Active | 16|AIMS :: Process :: SMS Builder Webadmin UI
(1.3.1)
119|Active | 15|customState (1.0.0.SNAPSHOT)

Verifying Deployment Using the AIMS Web Console
In a development environment, you can use the AIMS System Web console to verify that
custom-state bundles resolve and start. To ensure runtime environment security, the console
restricts access, based on a list of allowable IP addresses. By default, only localhost is
accessible.

Prerequisites
Enable the AIMS System Web console.

Task

1. (Optional) To add IP addresses that the console can access:

a) Edit the
org.apache.felix.webconsole.internal.servlet.OsgiManager
.properties file.

b) Add IP addresses to the allowed.ip.list, as a comma-separated list.

2. In a Web browser, connect to http://localhost:8080/system/console.

If you added other IP addresses, you can connect using one of them.

3. In the AIMS System Web console, enter these credentials:

SMS Application Development

SMS Application Development 69

• User name – sybase365
• Password – fr4nt1c
The Bundles tab lists all installed bundles. The Status of the customState bundle is
Active.

4. To view details about a bundle, click the bundle name.

The console displays metadata, created by the Maven Bundle Plug-in (from the bundle's
manifest file), package wiring, and services information.

Enabling the AIMS System Web Console
During development, you can use the AIMS System Web console to inspect deployed bundles,
registered configurations, and the OSGi container. By default, the Web console is disabled.

1. Edit the SMSBUILDER_HOME\conf\config.properties file, and uncomment
these lines:
Uncomment to aid in debugging container issues.
#felix.auto.start.6 = \
#${aims.app.dir}/aims-felix-webconsole-1.0.2.jar \
#${aims.app.dir}/event-webconsole-1.0.3-SNAPSHOT.jar

2. Copy the
org.apache.felix.webconsole.internal.servlet.OsgiManager.p
roperties file to the conf/cfgbackup folder.

Next
See http://felix.apache.org/site/apache-felix-web-console.html.

Configuring State Bundles
You can configure state bundles in the service.bundle.properties file, where bundle
is the name of the state bundle.

Prerequisites
Deploy the state bundle.

SMS Application Development

70 SAP Mobile Platform

http://felix.apache.org/site/apache-felix-web-console.html

Task

1. Edit the service.bundle.properties file.

2. Copy the file to the SMSBUILDER_HOME\conf\cfgload directory.
When the SMS Builder server restarts, the files in the \conf\cfgload directory are
moved to \conf\cfgbackup, and all properties are reconfigured.

Next
Verify the new configuration using either Telnet or the AIMS Web System console.

Verifying Bundle Configuration Using Telnet
You can use Telnet to verify that state bundle configuration changes are in effect.

1. On the command line, run:
telnet localhost 5365

2. At the Telnet prompt, run:
aims:cmlist

You see:
Configuration list:
org.apache.felix.webconsole.internal.servlet.OsgiManager
 file:bundle/application/aims-felix-webconsole-1.0.2.jar
service.event.quartz
 file:bundle/application/event-scheduler-quartz-1.0.3.jar
org.ops4j.pax.logging
 file:bin/pax-logging-service-1.6.9.jar
service.webui.security
 file:bundle/application/web-core-0.1.9.jar
service.sampleState
 file:bundle/application/customState-1.0-SNAPSHOT.jar
service.brand_webapp
 file:bundle/application/mobiliser-brand-webadmin-ui-1.3.1.war
service.mobiliserCustomer.states.plugin null
service.mobiliserCustomer.client.plugin null
service.dsprovider
 file:bundle/application/dbcp-osgi-service-1.3.1.jar
service.coreprocessing
 file:bundle/application/mobiliser-brand-processing-1.3.1.jar
org.ops4j.pax.web
 file:bundle/application/pax-web-jetty-bundle-1.1.4.jar
service.event.core
 file:bundle/application/event-core-1.0.3.jar

In the output above, the service process ID (PID) for the customState-1.0-
SNAPSHOT.jar is service.sampleState.

3. To see the customState-1.0-SNAPSHOT.jar configuration, run:

aims:cmget service.sampleState

You see:

SMS Application Development

SMS Application Development 71

Configuration for service (pid) "service.sampleState"
(bundle location = file:bundle/application/customState-1.0-
SNAPSHOT.jar)

key value
------ ------
service.pid service.sampleState
sample.country US
arf.filename service.sampleState.properties

If you set the <ARF-Bundle-Template> property in the Maven POM file, you can view the
sample properties file that is packaged in the state bundle. Sample property files generally
contain documentation for each property.

4. To find all state bundles that have sample property templates, run:
aims:template

You see:
Bundles with configuration templates:
ID: 39 Bundle:com.sybase365.mobiliser.thirdparty.smppapi
ID: 49 Bundle:com.sybase365.mobiliser.brand.processing.mobiliser-brand-
processing
ID: 51 Bundle:com.sybase365.mobiliser.brand.database.mobiliser-brand-
jpa
ID: 52 Bundle:com.sybase365.mobiliser.brand.database.mobiliser-brand-
jpa-eclipselink
ID: 56 Bundle:com.sybase365.mobiliser.framework.event-store-db-
provider
ID: 57 Bundle:com.sybase365.mobiliser.framework.event-store-jpa
ID: 58 Bundle:com.sybase365.mobiliser.framework.event-store-
eclipselink
ID: 60 Bundle:com.sybase365.mobiliser.brand.osgi.dbcp-osgi-service
ID: 117 Bundle:com.sybase365.mobiliser.brand.service.mobiliser-brand-
rest-core
ID: 118 Bundle:com.sybase365.aims.webui.web-core
ID: 120 Bundle:com.sybase365.mobiliser.brand.webadmin.mobiliser-brand-
webadmin-ui
ID: 121 Bundle:com.sap.example.customState

5. To see more information about the com.sap.example.customState bundle, run:

aims:template 121

Verifying Bundle Configuration Using the AIMS Web Console
You can use the AIMS System Web console to verify that state bundle configuration changes
are in effect.

Prerequisites
Enable the AIMS System Web console.

SMS Application Development

72 SAP Mobile Platform

Task

1. In a Web browser, connect to http://localhost:8080/system/console.

2. In the AIMS System Web console, enter these credentials:

• User name – sybase365
• Password – fr4nt1c

3. Select the Configuration Status tab, then select the Configuration tab.

You see all state-bundle configurations.

Custom State Bundle Samples
Many custom-state implementations are based on a service-oriented architecture, in which the
custom states consume existing Web services, either SOAP or Representational State Transfer
(REST)ful types. States can either get results from one Web service, or they can aggregate
results from multiple Web service calls.

Consuming SOAP Web Service Sample
A custom state can consume an external SOAP Web service.

The Web service provider in this sample is the United States Consumer Product Safety
Commission. The WSDL file (CPSCUpcSvc.wsdl) is embedded with the bundle.
Alternately, you can retrieve the WSDL file in real time using the <wsdlUrls>
configuration. The JAX-WS Maven plug-in reads the WSDL file and generates all the
required artifacts for Web service development, deployment, and invocation.

pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<build>
[…]
 <!-- Create an OSGi Bundle Manifest -->
 <plugins>
 <plugin>
 […]
 <configuration>
 […]
 <Private-Package>
 com.sap.example
 ,org.tempuri
 </Private-Package>
 […]
 </configuration>
 </plugin>
 </plugins>
</build>

<profiles>

SMS Application Development

SMS Application Development 73

<!-- Required Javax Persistence dependency -->
 <profile>
 <activation>
 <jdk>[1.5, 1.7)</jdk>
 </activation>
 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.0.4.v201112161009</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>EclipseLink</id>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo</url>

 </repository>
 </repositories>
 </profile>

<!-- Required SOAP Web Service JAX-WS only on JDK 6 -->
 <profile>
 <id>jdk6</id>
 <activation>
 <jdk>1.6</jdk>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.jvnet.jax-ws-commons</groupId>
 <artifactId>jaxws-maven-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>import-wsdld</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>wsimport</goal>
 </goals>
 <configuration>
 <wsdlFiles>
 <wsdlFile>CPSCUpcSvc.wsdl</wsdlFile>
 </wsdlFiles>
 <extension>true</extension>
 <xdebug>true</xdebug>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>

SMS Application Development

74 SAP Mobile Platform

<!-- Required SOAP Web Service JAX-WS only on JDK 7 -->
 <profile>
 <id>jdk7</id>
 <activation>
 <jdk>1.7</jdk>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.jvnet.jax-ws-commons</groupId>
 <artifactId>jaxws-maven-plugin</artifactId>
 <version>2.2</version>
 <executions>
 <execution>
 <id>import-wsdld</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>wsimport</goal>
 </goals>
 <configuration>
 <wsdlFiles>
 <wsdlFile>CPSCUpcSvc.wsdl</wsdlFile>
 </wsdlFiles>
 <extension>true</extension>
 <xdebug>true</xdebug>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

SampleSOAPState.java
package com.sap.example;
[…]
import org.tempuri.CPSCUpcSvc;
import org.tempuri.GetRecallByWordResponse.GetRecallByWordResult;

public class SampleSOAPState extends SmappStatePlugin {

 @Override
 protected SmappState processStateLogic(SmappStateProcessingContext
context,
 SmappStateProcessingAction action)

 throws MwizProcessingException, DBException {
 CPSCUpcSvc recallService = null;
 String serviceUrl = "http://www.cpsc.gov/cgibin/CPSCUpcWS/
CPSCUpcSvc.asmx?WSDL";
 try {
 recallService = new CPSCUpcSvc(new URL(serviceUrl),

SMS Application Development

SMS Application Development 75

 new QName("http://tempuri.org/", "CPSCUpcSvc"));
 } catch (MalformedURLException mfue) {
 […]
 }
 if (null == recallService) {
 return continueFail();
 }
 String keyword = "booster";
 GetRecallByWordResult recallServiceResult =

recallService.getCPSCUpcSvcSoap12().getRecallByWord(keyword, "", "");

 if (null == recallServiceResult) {
 return continueDyn(1);
 }
 return continueOk();
 }
}

Consuming RESTful Services
Custom states that consume external RESTful Web services can use the Restlet API.

These Restlet bundles are included with SMS Builder, so you need not copy them when you
install bundles. For information about using the Restlet API, see www.restlet.org.

org.restlet-2.10.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet</artifactId>
<version>2.0.13</version>

org.restlet.ext.servlet-2.0.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.servlet</artifactId>
<version>2.0.13</version>

org.restlet.ext.spring-2.0.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.spring</artifactId>
<version>2.0.13</version>

org.restlet.ext.json-2.0.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.json</artifactId>
<version>2.0.13</version>

Developing Quick-Start Templates
You can develop custom states to enhance application capabilities, such as integration with
existing enterprise systems or cloud services. To demonstrate functionality, include sample

SMS Application Development

76 SAP Mobile Platform

http://www.restlet.org

applications in state bundles, which appear in the Web UI as quick-start templates that you can
import.

Prerequisites

1. Develop custom states and deploy them to SMS Builder.
2. Develop one or more sample applications that use the custom states.
3. Export applications to an XML file. An XML file can contain multiple applications.

Note: Each XML file creates one quick-start template. Each custom-state bundle can contain
multiple quick-start templates.

Task

Quick-start templates provide commonly used applications that you can customize to meet
specific customer needs. You can also create a quick-start template that includes a group of
applications to meet a specific functionality, for example, a mobile wallet.

1. Copy application XML files to META-INF/sample/template.

2. For each XML file, create a dynamic template plug-in.

3. Redeploy the custom-states bundle to SMS Builder.

The Quick-Start Templates component appears on the Web UI Dashboard.

See also
• Creating Applications from Templates on page 28

Creating Dynamic Template Plug-Ins
To create a dynamic template that you can plug in to a custom-state bundle, configure the State
SDK SmappTemplateProvider class as a Spring bean.

This example configures the SmappTemplateProvider class for the GetDate.xml
file, which contains an application that demonstrates how to use the custom state Get Date. To
configure the SmappTemplateProvider class, edit both the beans-context.xml
and the services-context.xml files.

beans-context.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

<!--

SMS Application Development

SMS Application Development 77

 Beans Configuration

-->
 <bean id="SampleState" class="com.sap.example.SampleState">
 <property name="country" value="${sample.country}"/>
 </bean>

 <!-- Template -->
 <bean id="SampleApplication" class=

"com.sybase365.mobiliser.brand.template.SmappTemplateProvider">
 <property name="name" value="Sample Get Date Application" />
 <property name="description" value="Type: Training.
 A sample application to demonstrate the Get Date
state." />
 <property name="resource" value="classpath:META-INF/template/
GetDate.xml" />
 </bean>
</beans>

services-context.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=http://www.springframework.org/schema/beans
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.eclipse.org/gemini/blueprint/schema/
blueprint"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd

 http://www.eclipse.org/gemini/blueprint/schema/blueprint
 http://www.eclipse.org/gemini/blueprint/schema/blueprint/gemini-
blueprint-1.0.xsd">

 <!--

 Register state as OSGi Service

 -->
 <osgi:service id="SampleStateService"
 ref="SampleState"
 interface=

"com.sybase365.mobiliser.brand.plugins.api.smapp.StatePlugin"/>

 <!--
 Template Service
 -->
 <osgi:service id="SampleApplicationService"
 ref="SampleApplication"
 interface=

"com.sybase365.mobiliser.brand.plugins.api.smapp.SmappTemplate"
 context-class-loader="service-provider"/>
</beans>

SMS Application Development

78 SAP Mobile Platform

Custom State Samples
Custom state samples illustrate how to implement a service state, a standalone state, and a
menu state.

Sample GetMyWeather State
The GetMyWeather sample illustrates a typical custom-state implementation. This type of
state is called a service state, because its function is to call a specific Web service (in this case a
weather service), and store the results for the application to use. This type of state is commonly
integrated with enterprise systems.

public class GetMyWeather extends SmappStatePlugin {
 private static final Logger LOG =
 LoggerFactory.getLogger(GetMyWeather.class);

 // Define Input attributes

 private static final TextBoxAttribute inPostCode =
 new TextBoxAttribute("POSTCODE", "Zip or Postal Code", false);

 // Define Output attributes

 private static final OutputAttribute outWeather =
 new OutputAttribute("WEATHER", "Your Weather Synopsis");

 private static Attribute[] stateAttr;

 static {
 stateAttr = new Attribute[] {inPostCode, outWeather};
 }
 private static long STATE_ID = 600000L;

 @Override
 public long getStateId() {
 return STATE_ID;
 }

 @Override
 public String getStateName() {
 return "Example - Get My Weather";
 }

 @Override
 public String getRevisionString() {
 return "1.0.0";
 }

 @Override
 public String getStateNotes() {
 StringBuilder sb = new StringBuilder();

SMS Application Development

SMS Application Development 79

 sb.append("A sample state. When executed, it checks for a ");
 sb.append("Postal/ZIP Code, and returns the weather report for ");
 sb.append(" that area.\n\n Use the following follow up states:\n ");
 sb.append("- OK: Weather report for the area was found\n ");
 sb.append("- FAIL: Unexpected error\n ");
 sb.append("- Dyn -1: Area code entered was not valid\n ");
 sb.append("- Dyn -2: No weather report for the area\n ");
 return sb.toString();
 }

 @Override
 public boolean supportsFailTransition() {
 return true;
 }

 @Override
 protected Attribute[] getStateAttributes() {
 return stateAttr.clone();
 }

 @Override
 protected SmappState processStateLogic(
 SmappStateProcessingContext context,
 SmappStateProcessingAction action)
 throws MwizProcessingException, DBException {

 WeatherResult result = null;

 try {
 // Call the weather Web service
 // Details are Web service specific and therefore
 // are encapsulated in the callWeatherService method

 result = callWeatherService();

 if (result == null)
 return continueFail();

 if (result.status == -1)
 return continueDyn(-1);

 if (result.status == -2)
 return continueDyn(-2);

 // Output attribute

 outWeather.setValue(result.text);
 return continueOk();
 }
 catch (DBException dbex) {
 // Database exception can occur while saving session attributes
 LOG.error("error");
 return continueFail();
 }

SMS Application Development

80 SAP Mobile Platform

 }
}

See also
• Custom State Variables on page 46
• Sample Custom State on page 81
• Extending the SmappStatePlugin Class on page 36

Sample Custom State
A simple custom state, named SampleState, formats the current date.

You can modify the date format in the properties-context.xml file. The formatted
date is stored in an output variable.

SampleState.java
package com.sap.example;
import java.text.Format;
import java.text.SimpleDateFormat;
import java.util.Date;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.sybase365.mobiliser.brand.dao.DBException;
import com.sybase365.mobiliser.brand.jpa.SmappState;
import
com.sybase365.mobiliser.brand.plugins.api.smapp.SmappStateProcessingActi
on;
import
com.sybase365.mobiliser.brand.plugins.api.smapp.SmappStateProcessingCont
ext;
import
com.sybase365.mobiliser.brand.plugins.smapp.controls.Attribute;
import
com.sybase365.mobiliser.brand.plugins.smapp.controls.OutputAttribute;
import
com.sybase365.mobiliser.brand.plugins.smapp.state.SmappStatePlugin;
import
com.sybase365.mobiliser.brand.processing.exceptions.MwizProcessingExcept
ion;

public class SampleState extends SmappStatePlugin {
 private static final Logger LOG =
 LoggerFactory.getLogger(SampleState.class);
 protected static final OutputAttribute outDate =
 new OutputAttribute("DATE", "Current Date");
 private static Attribute[] stateAttr;
 private String country = "";

 public void setCountry(String value) {
 LOG.debug("Country = " + value);
 this.country = value;
 }

SMS Application Development

SMS Application Development 81

 static {
 stateAttr = new Attribute[] {outDate};
 }

 private static long STATE_ID = 600000L;

 @Override
 public String getStateNotes() {
 return "A sample state. When executed, it returns the current \n"

 + " date in the format of the configured country.\n\n"
 + "Use the following follow up states:\n"
 + "- OK: date and time in the output variable.\n"
 + "- FAIL: If an error occurs during processing.\n";
 }

 @Override
 public boolean supportsFailTransition() {
 return true;
 }

 @Override
 protected Attribute[] getStateAttributes() {
 return stateAttr.clone();
 }

 public String getRevisionString() {
 return "1.0.0";
 }

 public long getStateId() {
 return STATE_ID;
 }

 public String getStateName() {
 return "Example - Get Date";
 }

 @Override
 protected SmappState processStateLogic(
 SmappStateProcessingContext context,
 SmappStateProcessingAction action)
 throws MwizProcessingException, DBException {

 Format formatter = new SimpleDateFormat("MM dd yyyy");

 if (!country.equalsIgnoreCase("US"))
 formatter = new SimpleDateFormat("dd MM yyyy");

 outDate.setValue(formatter.format(new Date()));
 return continueOk();
 }
}

SMS Application Development

82 SAP Mobile Platform

See also
• Sample GetMyWeather State on page 79

• Extending the SmappStatePlugin Class on page 36

Sample Custom-Menu State
The contents of SendSampleMenu.java and SampleBean.java illustrate how to
create a custom-menu state.

SendSampleMenu.java
Some details from this sample have been omitted, because they are similar to those in
nonmenu custom-state implementations.

// Package name and imports have been omitted for clarity

public class SendSampleMenu extends AbstractStateMenuImpl {

 // Other omissions include input and output variable declarations,
 // getRevisionString, getStateId, getStateName, and getStateNotes

 @Override
 protected int getMaxMenuItems () {
 return 4;
 }

 // Similar implementation as getStateAttributes

 @Override
 protected Attribute[] getStateAttributeList() {

 // Assume stateAttr has been defined
 return stateAttr.clone();
 }

 @Override
 protected SmappState init(SmappStateProcessingAction action)
 throws DBException {
 try {
 // Get the menu list from the source: database or service
 // Convert it to the SampleBean list
 // See SampleBean class below

 List<SampleBean> sampleList = getSampleMenuList();

 // Store the list in the session variable
 setMenuListToSession(sampleList);
 }
 catch (DBException dbex) {
 return continueFail();
 }
 catch (Exception ex) {
 return continueFail();
 }
 return null;

SMS Application Development

SMS Application Development 83

 }

 @Override
 protected List<KeyValuePair<String, String>> constructMenuList()
 throws DBException {
 List<KeyValuePair<String, String>> menuList =
 new ArrayList<KeyValuePair<String, String>>();

 for (SampleBean sb : getMenuListFromSession(new SampleBean()))
{
 keyValuePair = new KeyValuePair<String, String>();
 keyValuePair.setKey(sb.getId());
 keyValuePair.setValue(sb.getStatus());
 menuList.add(keyValuePair);
 }
 return menuList;
 }

 @Override
 protected SmappState saveSessionVariables(String key, String value)
 throws DBException {
 int selectedKey = Integer.parseInt(key);

 }

SampleBean.java
// Package name and imports have been omitted for clarity

public class SampleBean implements BeanConverterInterface<SampleBean> {

 protected String id;
 protected String status;

 public static SampleBean parse (String id, String status) {
 SampleBean sb = new SampleBean();
 sb.id = id;
 sb.status = status;
 }

 @Override
 public String convert(SampleBean sb) {
 StringBuilder sb = new StringBuilder();
 sb.append(sb.getId());
 sb.append("|");
 sb.append(sb.getStatus());
 return sb.toString();
 }

 @Override
 public SampleBean convert(String value) {
 String[] values = value.split("\\|");
 Return SampleBean.parse(values[0], values[1]);
 }

 public String getId() {

SMS Application Development

84 SAP Mobile Platform

 return id;
 }

 public String getStatus() {
 return status;
 }
}

See also
• Extending the AbstractDynamicMenu Class on page 40

State SDK Core Components
You can use State SDK core components when developing custom states. Each component is
an OSGi bundle. These components are deployed with SMS Builder, so you need not redeploy
them with custom-state components.

Plug-in APIs
The Plug-in APIs include APIs for states, state attributes, and data access objects.

Apache Maven:
<groupId>com.sybase365.mobiliser.brand.plugins</groupId>
<artifactId> mobiliser-brand-plugin-api</artifactId>
<name>AIMS :: Object :: SMS Builder Plug-in - API</name>

File name: mobiliser-brand-plugin-api-1.3.1.jar

State SDK
The State SDK contains state implementation base classes, state input and output controls, and
helper classes.

Apache Maven:
<groupId>com.sybase365.mobiliser.brand.plugins</groupId>
<artifactId> mobiliser-brand-state-sdk</artifactId>
<name>AIMS :: Object :: SMS Builder Plug-in - State SDK</name>

File name: mobiliser-brand-state-sdk-1.3.1.jar

Security
The Security APIs support encryption functionality that states use.

Apache Maven:
<groupId>com com.sybase365.mobiliser.brand.security</groupId>
<artifactId> mobiliser-brand-security</artifactId>
<name>AIMS :: Object :: SMS Builder Security</name>

File name: mobiliser-brand-security-1.3.1.jar

Core Objects
Apache Maven:

SMS Application Development

SMS Application Development 85

<groupId>com.sybase365.mobiliser.brand.core</groupId>
<artifactId> mobiliser-brand-core</artifactId>
<name>AIMS :: Object :: SMS Builder Core Objects</name>

File name: mobiliser-brand-core-1.3.1.jar

Persistence APIs and Models
Apache Maven:

<groupId>com.sybase365.mobiliser.brand.database</groupId>
<artifactId> mobiliser-brand-jpa</artifactId>
<name>AIMS :: Object :: SMS Builder Persistence</name>

File name: mobiliser-brand-jpa-1.3.1.jar

States Catalog
For each predefined application state, a catalog entry explains its purpose and how to use it.
Use predefined states to build interactive and event applications.

Each state definition includes:

• Input variables – constant values, or values copied from a variable in the current user
session.

• Output variables – allow states to return values.
• Follow-up state OK – the condition that constitutes success.
• Follow-up state OK – the condition that constitutes failure, and possible reasons for the

failure.
• Follow-up state dynamic – dynamic conditions that transition to follow-up states.
• State editor – example of the state configuration.
• Notes – additional information about the state.
• Usage – Application Composer screen shot that contains the state.

Add Subscriber State
Adds a subscriber and attributes to the selected subscriber list. You can retrieve a subscriber's
MSISDN from a session variable, and set as many as 20 attributes.

Input Variables

• Subscriber Set – select a subscriber set from a list.
• Subscriber MSISDN – unique key for retrieving a subscriber's attributes.
• Attribute 1, Attribute 2, ... Attribute 20 – subscriber attributes.

Output Variables
SUBSCRIBER_COUNT – total number of subscribers in the subscriber set, after adding the
current one.

SMS Application Development

86 SAP Mobile Platform

Follow-up State – OK
Subscriber was added successfully.

Follow-up State – Fail
Error while adding the subscriber, possibly because:

• MSISDN already exists
• Unrecoverable system error, such as a database-connection failure

Follow-up State – Dynamic
Not applicable.

State Editor
In this example, the New Add Subscriber state adds a subscriber to the testList subscriber
set.

SMS Application Development

SMS Application Development 87

Usage
A common use for the Add Subscriber state is to store subscribers who opt to receive messages
or coupons. For example, in the More Info application, a message is sent to subscribers, and
the message contains a reply keyword for interested subscribers. When a subscriber replies
with the keyword, the application retrieves the subscriber's information from the list used in
the campaign (Get Subscriber Information state), adds the subscriber to the Opt-In list (Add
Subscriber state), and sends a discount coupon to the subscriber.

SMS Application Development

88 SAP Mobile Platform

See also
• Get Subscriber State on page 101

• Process Subscriber State on page 106

• Update Subscriber State on page 123

Application Call State
Calls another application as a subroutine. The called application has access to session
variables, and returns control to the current (calling) application.

Input Variables
Application – select an application in the list. All applications in the list are active in the
current workspace.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Uses the return value from the Application Call Return state to select which transition to
follow.

State Editor
The return value from the called application determines the follow-up state. In the example
below:

• SUCCESS calls Get Agent Information.
• FAILURE calls Invalid Agent Code Format.

SMS Application Development

SMS Application Development 89

Notes
Interactive applications only.

Usage
In this example, customers enter a 6-digit code that identifies an agent, and the code is
validated. Because this is a common task, you may want to write the validation procedure as a
separate application that returns a status code. Using multiple follow-up states, you can link
the return value to the appropriate follow-up state.

SMS Application Development

90 SAP Mobile Platform

SMS Application Development

SMS Application Development 91

See also
• Application Call Return State on page 92

• Goto Application State on page 104

Application Call Return State
The final state of applications that are called by other applications. This state returns a value to
the calling application.

Input Variables
Return Value – value returned to the calling application.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

SMS Application Development

92 SAP Mobile Platform

Follow-up State – Dynamic
Not applicable.

State Editor
This state returns the constant value SUCCESS to the calling application.

Notes
Interactive applications only.

Usage
This application attempts to validate an agent code, and returns three possible values to the
calling application.

See also
• Application Call State on page 89

SMS Application Development

SMS Application Development 93

Compare Typed Variables State
Compares two variables of the same type: text, integer, double, or date.

Input Variables

• Variable Type – type to compare: text, integer, double, or date.
• Text Case Sensitive – whether text comparison is case-sensitive, yes or no; the default is

no.
• Left Variable – name of the variable on left side of operator. If the corresponding check box

is selected, the application assumes Left Variable is the name of a session variable;
otherwise, the application assumes Left Variable is a constant.

• Operator – comparison operator; variable type determines valid operators:

Variable Type Valid Operators

text =, !=, =REGEX

If =REGEX is selected, enter the regular expression as the Right Vari-

able.

integer, double, or date =, !=, <=. <, >=, >

• Right Variable – name of variable on right side of operator (or regular expression). If the
corresponding check box is selected, the application assumes Right Variable is the name of
a session variable, otherwise, a constant.

Note: If you enter the name of a session variable that does not exist, the state fails.

Output Variables
None.

Follow-up State – OK
Left Variable equals Right Variable.

Follow-up State – Fail

• The values of Left Variable and Right Variable are not equal, or
• Either Left Variable or Right Variable is the name of a session variable that does not exist.

Follow-up State – Dynamic
Not applicable.

State Editor
In this example, a case-sensitive text comparison is performed for the session variables TEMP
and VAR2. If equal, the follow-up state is Send Variable Values - Equal; if unequal, or either
session variable does not exist, the follow-up state is Send Variable Values - Not Equal.

SMS Application Development

94 SAP Mobile Platform

Usage
A common use of the Compare Typed Variables state is in an application that prompts for a
PIN, and limits the number of incorrect entries.

See also
• Compare Variables State on page 96

SMS Application Development

SMS Application Development 95

Compare Variables State
Compares the values of two variables, for string equality.

Input Variables
For both input variables, if the corresponding check box is selected, the application assumes
the value is the name of a session variable; otherwise, the value is treated as a constant.

• Variable 1 – name of a session variable, or a constant value.
• Variable 2 – name of a session variable, or a constant value.

Output Variables
None.

Follow-up State – OK
The values of Variable 1 and Variable 2 are equal.

Follow-up State – Fail

• The values of Variable 1 and Variable 2 are not equal, or
• Either Variable 1 or Variable 2 is the name of a session variable that does not exist.

Follow-up State – Dynamic
Not applicable.

State Editor
In this example, if the values of TEMP and VAR2 are equal, the application proceeds to the
Send Variable Values - Equal state; if unequal, or either session variable does not exist,
proceeds to the Send Variable Values - Not Equal state.

SMS Application Development

96 SAP Mobile Platform

Notes
This state compares only for string equality. For comparing other types, use the Compare
Typed Variables state.

Usage
The sample application below compares the session variable ACCOUNT to a constant value. If
the two values are unequal, the Validate Account Using Copy Variable state is called to copy
the ACCOUNT session variable to a dummy session variable. If copying fails, the ACCOUNT
session variable does not exist.

SMS Application Development

SMS Application Development 97

See also
• Compare Typed Variables State on page 94

Copy Variables State
Copies a constant or the value of a source variable to a session variable.

Input Variables
Source – the source from which to copy. If source is the name of a session variable, select the
check box. Otherwise, the application assumes the value of source is a constant.

Note: If you specify a session variable that does not exist, the state fails.

Output Variables
Destination – name of the destination session variable. If the session variable does not already
exist, it is created.

Follow-up State – OK
Successfully copied the source to the destination variable.

SMS Application Development

98 SAP Mobile Platform

Follow-up State – Fail
Failed to copy the source to the destination variable, usually because the source variable does
not exist.

Follow-up State – Dynamic
Not applicable.

State Editor
This example copies the value of the session variable CUST_BALANCE into the session
variable PRE_REMIT_BALANCE.

Notes
Session variables are also set in these circumstances:

• If you specify a value surrounded by parentheses in the Expression field for a follow-up
state, and specify the session variable name in the Assign To field.

• If a state returns values, they are copied to session variables, so they are accessible by
follow-up states.

Usage
In the sample application below, the customer balance is retrieved twice, before and after
calling the transaction. The customer balance is stored in a session variable called Balance. To

SMS Application Development

SMS Application Development 99

prevent overwriting the pretransaction balance with the posttransaction balance, the
application copies the pre-transaction balance into another session variable before calling Get
New Balance. If Copy Customer Balance fails, Get Customer Balance is called again.

See also
• Set Variable State on page 120

Counter State
Creates a variable that is incremented by one each time the state is called.

Input Variables
Variable Name – name of the session variable to increment. You must select the corresponding
check box, or the state fails.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Fails if variable check box is not selected.

Follow-up State – Dynamic
Determined by the integer N, the updated counter.

State Editor
In this example, the Counter state increments the INDEX session variable.

SMS Application Development

100 SAP Mobile Platform

Notes
The Counter state increments session variables only.

Usage
You can use the Counter state as an index in a loop; commonly used to allow customers a
limited number of retry attempts.

Get Subscriber State
Gets subscriber information from a selected subscriber list. The subscriber's MSISDN is
retrieved from the session variable MSISDN. Up to 20 subscriber attributes can be retrieved
and assigned to session variables.

Input Variables

• Subscriber Set – select a subscriber set from a list.
• Subscriber MSISDN – unique key for retrieving a subscriber's attributes.

Output Variables
Attribute 1, Attribute 2, ... Attribute 20 – up to 20 subscriber attributes can be assigned to these
session variables.

Follow-up State – OK
Subscriber attributes successfully retrieved.

SMS Application Development

SMS Application Development 101

Follow-up State – Fail
Error while retrieving attributes, possibly because:

• MSISDN does not exist.
• Unrecoverable system error, such as database-connection failure.

Follow-up State – Dynamic
Not applicable.

State Editor
This Get Subscriber state retrieves the attributes for the subscriber identified by MSISDN,
from the testList subscriber set, and saves attribute values in the output variables.

SMS Application Development

102 SAP Mobile Platform

Usage
The Get Subscriber state is typically used with the Process Subscriber state.

SMS Application Development

SMS Application Development 103

See also
• Add Subscriber State on page 86

• Process Subscriber State on page 106

• Update Subscriber State on page 123

Goto Application State
The final state of an application that transfers control to another application. Session variables
are available to the next application.

Input Variables
Application – select an application from the list. All applications in the list are active in the
current workspace.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Not applicable.

State Editor
This Goto Application state calls the Pay Parking application.

SMS Application Development

104 SAP Mobile Platform

Notes
The called (Goto) application must be in the same workspace as the calling application.

In event applications, the Goto Application state cannot follow the Process Subscriber state,
because the Goto Application state discontinues the loopback mechanism provided by the
engine.

Usage
In this example, the Send SMS state sends a menu to customers, whose selections determine
the next (Goto) application.

SMS Application Development

SMS Application Development 105

See also
• Application Call State on page 89

Process Subscriber State
In event applications, the Process Subscriber state typically retrieves a subscriber from a
subscriber set, passes the subscriber information to the Send SMS state, then either returns to
get the next subscriber, or ends the application.

Input Variables
Subscriber Set – select a subscriber set from the list.

Output Variables
None.

Follow-up State – OK
A subscriber is available to process.

Follow-up State – Fail
The event-window processing terminates, because of database connection errors, or other
unexpected errors.

Follow-up State – Dynamic

• END – the end date for the event window has been reached.
• FINISH – processing terminates because the event window ends.
• COMPLETE – no unprocessed subscribers remain in the list.

Note: If the state does not handle END, FINISH, and COMPLETE dynamic transitions, the
follow-up state is the same as OK.

State Editor
This sample state processes subscribers in the testList subscriber set. When it successfully
retrieves a subscriber from the set, it calls Send Event Message.

SMS Application Development

106 SAP Mobile Platform

Notes
Event applications only.

Usage
This example shows how a simple static-message push campaign gets a subscriber from a set,
and sends a message.

SMS Application Development

SMS Application Development 107

See also
• Add Subscriber State on page 86

• Get Subscriber State on page 101

• Update Subscriber State on page 123

SMS Application Development

108 SAP Mobile Platform

Send SMS State
Sends short message service (SMS) messages to mobile subscribers. If there is at least one
follow-up state, the application waits for a subscriber response; otherwise, the application
terminates.

Input Variables
Message – text to send via SMS. If the text is more than 160 characters, the text is divided and
sent in multiple messages.

To embed the value of a session variable into the text, enter the name of the variable,
surrounded by curly braces. For example, if you enter {INDEX}, it is replaced by the value of
the session variable INDEX. If no such variable exists, {INDEX} is sent as a literal.

In event applications, the Request SMPP Acknowledgement flag appears in the
message, requesting acknowledgement from the short message peer-to-peer (SMPP) gateway.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Continue the application when a response is received. To determine the follow-up state,
compare the response to the values of Expression for follow-up states.

State Editor
This example specifies one follow-up state, the Mobiliser Change Credential state. The value
of Expression matches any response, and assigns the response to the NEW_CRED session
variable, which can be used later in the task flow.

SMS Application Development

SMS Application Development 109

Notes
If session variables are embedded in a message, it may be impossible to determine the number
of characters in the message prior to runtime.

At runtime, the Send SMS state temporarily suspends the application flow and waits for a
response. By default, the wait (also known as session timeout) lasts 7.5 minutes (450 seconds).
Once a session times out, responses are ignored. Depending on the setup, subscribers may
receive a guidance message or a menu. You can alter the length of the session timeout for each
application, on the Application Details screen.

Usage
In the scenario illustrated below, the Send SMS state sends a message asking for the
subscriber's PIN.

SMS Application Development

110 SAP Mobile Platform

Send USSD Input State
Sends a prompt for input to subscribers using Unstructured Supplementary Service Data
(USSD).

Note: By default, USSD states are disabled. USSD is a custom protocol that mobile operators
can implement. To develop USSD applications, contact SAP® Professional Services.

Input Variables
All input variables are optional.

• Input Validation String – value that can validate expected response values.
• Input Validation Handler URL – URL to validate expected response values.
• Mask the Response – select Yes or No to mask input on the telephone.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
If an internal problem occurs formatting the state text.

Follow-up State – Dynamic
Continue the application when a response is received. To determine the follow-up state,
compare the response to the values of Expression for follow-up states.

State Editor
This example specifies two follow-up states; if the input value is 0, the Send Response state is
called; if the input value is anything else, the Send USSD Input state is called again.

SMS Application Development

SMS Application Development 111

See also
• Send USSD Menu State on page 112

• Send USSD Text State on page 118

Send USSD Menu State
Sends a menu to subscribers via Unstructured Supplementary Service Data (USSD), and
expects menu-option responses. This is an abstract state type, which you can extend to develop
dynamic menus.

Note: By default, USSD states are disabled. USSD is a custom protocol that mobile operators
can implement. To develop USSD applications, contact SAP® Professional Services.

Input Variables
Show Exit Menu Item – enter:

• 1 for yes; this is the default.

• 0 for no.

SMS Application Development

112 SAP Mobile Platform

Output Variables

• Variable for selected key – name of the session variable in which to store the selected
option key.

• Variable for selected value – name of the session variable in which to store the selected
option value.

Follow-up State – OK
Typically used when the menu is created successfully, and the user sends a valid response.

Follow-up State – Fail
Used only if there is an internal error processing the dynamic menu.

Follow-up State – Dynamic
To process dynamic transitions, they must be implemented in the state’s code.

State Editor
In this example, if users send a valid response, another application is called to process the
response. If an error occurs, control is passed to an application that terminates processing. The
selected option key is stored in the session variable VAR_KEY, and the selected option value is
stored in the session variable VAR_VALUE.

SMS Application Development

SMS Application Development 113

Notes
This state enables you to create a dynamic menu, and present the menu to subscribers as a
series of options with relevant responses. The menu items are:

SMS Application Development

114 SAP Mobile Platform

• Header text – enter in the Message input field, as the message header.
• Options – provided programmatically in instances of this state type, by a state developer.
• Paging Options – this state type automatically adds Next and Previous options to a menu

list if there are more options than fit on a single page.
• End Option – an option that you can add to end or exit the menu.

Usage
To implement a dynamic menu, create a subclass that extends this abstract class:

com.sybase365.mobiliser.brand.plugins.ussd.impl.AbstractDynamicUssdMenu

This abstract superclass creates and structures messages. Subclasses must override and
implement abstract methods to provide the required functionality.

/* The state attribute list is already set */
protected abstract Attribute[] getStateAttributeList();

/*
* Initialize the dynamic list, possibly based on subscriber information

*/
protected abstract SmappState init(SmappStateProcessingAction action)

 throws MwizProcessingException, DBException, JAXBException,
IOException,
 ServiceException, RequiredParameterMissingException;

/*
* Return the list of options in a format [[key,text],...]
*/
protected abstract List<KeyValuePair<String, String>> getMenuList()

 throws NumberFormatException, DBException,
RequiredParameterMissingException;

/*
* Allow the branching of processes based on selected key.
* If you want to use the configured dynamic follow-up
* transitions, override this method and return continueDyn(key);
* otherwise, override this method and return null to follow the
* OK transition when the user selects an option.
*/
protected abstract SmappState
saveSessionVariables(SmappStateProcessingContext context,
 String key, String value)
 throws MwizProcessingException, DBException,
RequiredParameterMissingException;
...

See also
• Send USSD Input State on page 111

• Send USSD Text State on page 118

SMS Application Development

SMS Application Development 115

Sample USSD Menu Code
The code for a sample implementation of the Send USSD Menu state produces a menu with
four options: Option 1, Option 2, Option 3, and Option 4.

The SmappStateSendUssdMenu class implements the sample USSD menu. The fully
qualified class name is:

com.sybase365.mobiliser.brand.plugins.ussd.impl.SmappStateSendUssdMenu

SmappStateSendUssdMenu is a subclass of the AbstractDynamicUssdMenu
abstract class.

package com.sybase365.mobiliser.brand.plugins.ussd.impl;

import com.sybase365.mobiliser.brand.dao.DBException;
import com.sybase365.mobiliser.brand.jpa.SmappState;
import
com.sybase365.mobiliser.brand.plugins.api.smapp.SmappStateProcessingActi
on;
import
com.sybase365.mobiliser.brand.plugins.smapp.controls.Attribute;
import com.sybase365.mobiliser.brand.plugins.useful.KeyValuePair;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
* Loads all available languages and puts them into a menu
*
*/
public class SmappStateSendUssdMenu extends AbstractDynamicUssdMenu
{
 protected static final Logger LOG =
 LoggerFactory.getLogger(SmappStateSendUssdMenu.class);

 private static final String[] OPTIONS =
 { "Option 1", "Option 2", "Option 3", "Option 4" };

 private List<String> listOfOptions = Arrays.asList(OPTIONS);

 private static Attribute[] stateAttr;

 static {
 stateAttr = new Attribute[]{};
 }

 @Override
 protected Attribute[] getStateAttributeList() {
 return stateAttr.clone();
 }

 @Override

SMS Application Development

116 SAP Mobile Platform

 public long getStateId() {
 return 485002;
 }

 @Override
 public String getStateName() {
 return "Send USSD Menu";
 }

 @Override
 public String getStateNotes() {
 return "This state generates a sample USSD Menu.\n" +
 "Use these follow-up states:\n" +
 "- OK: If user selected a menu item.\n" +
 "- FAIL: If an error occurs.";
 }

 @Override
 public boolean supportsOkTransition() {
 return true;
 }

 @Override
 public String getRevisionString() {
 return "$Revision:28128 $";
 }

 @Override
 protected SmappState init(SmappStateProcessingAction action)
 throws DBException {

 if (listOfOptions == null) {
 return continueFail();
 }

 return null;
 }

 @Override
 protected int getMaxMenuItems() {
 return this.listOfOptions.size();
 }

 @Override
 protected List<KeyValuePair<String, String>> constructMenuList()
 throws DBException {

 List<KeyValuePair<String, String>> list =
 new ArrayList<KeyValuePair<String, String>>();

 int optionNumber = 1;

 for (String option : listOfOptions) {
 KeyValuePair<String, String> keyVal = new KeyValuePair<String,
String>();
 keyVal.setKey(Integer.toString(optionNumber));

SMS Application Development

SMS Application Development 117

 keyVal.setValue(option);
 list.add(keyVal);
 optionNumber++;
 }

 return list;
 }

 @Override
 protected SmappState saveSessionVariables(SmappStateProcessingContext
context,
 String key, String value)
 throws MwizProcessingException, DBException,
RequiredParameterMissingException {
 return null;
 }
}

Send USSD Text State
Sends a text notification to subscribers via Unstructured Supplementary Service Data
(USSD). When subscribers send confirmations, the channel manager passes the messages to
the processing engine.

Note: By default, USSD states are disabled. USSD is a custom protocol that mobile operators
can implement. To develop USSD applications, contact SAP® Professional Services.

Input Variables
USSD Session Handling – select how USSD sessions are managed by the channel manager.

Note: This option is relevant only when the channel manager is configured to manage USSD
session information.

The session handling options are:

• None – used when no other option is selected; no specific handling is performed.
• Default – session handling is based on the follow-up state transitions.
• Continue – overrides the default behavior; the channel manager instructs the USSD

Gateway with which it is interfacing to continue the USSD session for this user, regardless
of whether there are follow-up transitions.

• End – overrides the default behavior; the channel manager instructs the USSD Gateway
with which it is interfacing to terminate the USSD session for this user, regardless of
whether there are follow-up transitions.

Output Variables
None.

Follow-up State – OK
Not applicable.

SMS Application Development

118 SAP Mobile Platform

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
To determine the follow-up state, compare responses to values of Expression for follow-up
states.

State Editor
In this example, you specify the text to send to subscribers in the Message field. Notes describe
the state functionality and how to use it.

Notes
To tell the channel manager to end the USSD session, the state appends [$[End]$] to the
message text. The channel manager strips off this text before sending the message to the USSD
Gateway.

SMS Application Development

SMS Application Development 119

See also
• Send USSD Input State on page 111

• Send USSD Menu State on page 112

Set Variable State
Sets a session variable with a specified string value. If you specify a numeric value, it is saved
as a string.

Input Variables

• Variable – name of the session variable to set.
• Value – value to save in the session variable. To set Variable with the value of another

session variable, specify the session variable name as {sessionVariable} where
sessionVariable contains the value to copy.

Output Variables
None.

Follow-up State – OK
The name of the follow-up state after successful processing.

This process always succeeds and moves to the next state.

Note: This state performs no error checking. Even if the input variables are empty, it proceeds
to the follow-up state. SAP recommends that you use the Copy Variables state to set session
variables, because it performs input validations, and uses the Fail follow-up state for error
handling and debugging.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Not applicable.

State Editor
This example sets the session variable CREDIT to 1000. The variable can be accessed by any
state in the application.

SMS Application Development

120 SAP Mobile Platform

Notes
Session variables are also set in these circumstances:

• If you specify a value surrounded by parentheses in the Expression field for a follow-up
state, and specify the session variable name in the Assign To field.

• If a state returns values, they are copied to session variables, so they are accessible by
follow-up states.

Note: Setting session variables overwrites any values that are already set for them. For
example, if a state returns a value in the session variable X, and the follow-up state also sets
variable X, the return value is lost. To avoid this issue, use the Copy Variables state, instead of
Set Variable.

Usage
This example sets the session variable ALERT_MESSAGE with a message sent by the Send
SMS state.

SMS Application Development

SMS Application Development 121

See also
• Copy Variables State on page 98

Start Application State
The Start Application state is the initial state in applications. It is created automatically, and
cannot be deleted.

Input Variables
None.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Keywords sent by subscribers initiate applications. An application can have multiple
keywords. Dynamic transitions enable custom flows, and are based on incoming keywords.

State Editor
A Start Application state with a single follow-up state, Send SMS: Welcome and Menu.

SMS Application Development

122 SAP Mobile Platform

Notes
At least one follow-up state is required.

Usage
In this example, the Start Application state processes multiple keywords using different task
flows.

Update Subscriber State
Updates subscriber attributes in the selected subscriber set. Gets the subscriber's MSISDN
from a session variable, and updates as many as 20 attributes.

Input Variables

• Subscriber Set – select a subscriber set from a list.
• Subscriber MSISDN – unique key for retrieving a subscriber's attributes.

SMS Application Development

SMS Application Development 123

• Attribute 1, Attribute 2, ... Attribute 20 – subscriber attributes.

Output Variables
None.

Follow-up State – OK
Subscriber updated successfully.

Follow-up State – Fail
Error while updating the subscriber, possibly because:

• MSISDN already exists.
• Unrecoverable system error, such as database-connection failure.

Follow-up State – Dynamic
Not applicable.

State Editor
In this example, the Update Subscriber state updates attributes for subscribers in the testList
subscriber set.

SMS Application Development

124 SAP Mobile Platform

Notes
None.

Usage
One possible use for the Update Subscriber state is a voting application, in which a voter is
added to the Voting Results list, and subsequently, the Update Subscriber state can insert
information in other fields.

See also
• Add Subscriber State on page 86

• Get Subscriber State on page 101

• Process Subscriber State on page 106

SMS Application Development

SMS Application Development 125

SMS Application API Reference
Use the SMS application APIs to develop custom application states.

brand package

Members
All public members of the brand package.

• plugins package –
• template package –

plugins package

Members
All public members of the plugins package.

• api package –
• base package –
• exceptions package –
• smapp package –
• useful package –

api package

Members
All public members of the api package.

• smapp package –
• PluginInterface interface – Plugin interfaces.

smapp package

Members
All public members of the smapp package.

• controls package –
• dao package –
• SmappStateEditorContext interface – The context passes from the state editor to the

StatePlugin providing all the necessary information, such as, the current Client or also
know as workspace.

SMS Application Development

126 SAP Mobile Platform

• SmappStateProcessingAction class – This class is used by the state or StatePlugin to
communicate to the "Processing Engine" on the requested follow-up transition.

• SmappStateProcessingContext class – The processing engine creates this state
processing context or SmappStateProcessingContext before delegating the task to the
state.

• SmappTemplate interface – Interface for the Application Flow template provider.
• SmsTextI18n class –
• StatePlugin interface – This is the main interfaces of the state development.

controls package

Members
All public members of the controls package.

• IAttribute interface – Interface for the state attribute.

IAttribute interface
Interface for the state attribute.

Syntax
public interface IAttribute

Derived classes

• com.sybase365.mobiliser.brand.plugins.smapp.controls.Attribute on page 175

Remarks
Implemented by
com.sybase365.mobiliser.brand.plugins.smapp.controls.Attribute from
the following bundle.

 groupId=com.sybase365.mobiliser.brand.plugins
 artifactId=mobiliser-brand-state-sdk

2012, Sybase Inc.

getDescription() method
Detailed description of the attribute.

Syntax
String getDescription ()

Returns
the description of the attribute

SMS Application Development

SMS Application Development 127

Usage

Used in the UI State Editor.

the description of the attribute

getId() method
Attribute Id.

Syntax
String getId ()

Returns
attribute id

Usage

Used as a default session variable name.

attribute id

getText() method
The text that was entered in the input field on the state editor.

Syntax
String getText ()

Returns
input text

Usage

input text

setContext(SmappStateProcessingContext) method
Sets the processing engine context.

Syntax
void setContext (SmappStateProcessingContext context)

Parameters

• context – state processing context

SMS Application Development

128 SAP Mobile Platform

Usage

SmappStateProcessingContext

is used by the attribute to access or store the attribute value as a session variable in the
datasource so that it is durable across session.

WARNING

: please refrain from setting or resetting the

SmappStateProcessingContext

. This method is reserved to be used by the processing engine only.

setDescription(String) method
Detailed description of the attribute.

Syntax
void setDescription (String description)

Parameters

• description – the description of the attribute

Usage

Used in the UI State Editor.

setId(String) method
Attribute Id.

Syntax
void setId (String id)

Parameters

• id – attribute id

Usage

Used as a default session variable name.

dao package

Members
All public members of the dao package.

SMS Application Development

SMS Application Development 129

• StateDaoImpl class –
• SubscriberDaoImpl class –

StateDaoImpl class

Syntax
public class StateDaoImpl

StateDaoImpl(final SmappStateDao, final MwizMessageContext) constructor

Syntax
StateDaoImpl (final SmappStateDao inDao , final
MwizMessageContext msgContext)

bulkSaveSessionAttributes(Map< String, String >) method
Bulk saving of SessionAttributes for the current state in the current session.

Syntax
void bulkSaveSessionAttributes (Map< String, String >
attributesMap) throws DBException

Parameters

• attributesMap – Key-Value pair. The key should be obtained using the
com.sybase365.mobiliser.brand.plugins.api.smapp.controls.IAttribute#getText()
method, and the value from the
com.sybase365.mobiliser.brand.plugins.smapp.controls.IAttribute#getHoldValue(). For
example,attributesMap.put(outAttrib.getText(), outAttrib.getHoldValue());

Exceptions

• DBException – Exception while accessing or saving the session variable from database

Usage

This method is designed to be used in state implementations that produces multiple

com.sybase365.mobiliser.brand.plugins.api.smapp.controls.IAttribute

s, and it minimizes the database roundtrip.

deleteSessionAttribute(String) method

Syntax
void deleteSessionAttribute (String key) throws DBException

SMS Application Development

130 SAP Mobile Platform

getLanguage(Long) method
Get language.

Syntax
Language getLanguage (Long languageId) throws DBException

Parameters

• languageId –

Exceptions

• DBException –

Usage

No longer supported.

getOrCreateCustomerForMsisdn(String, Client) method

Syntax
Customer getOrCreateCustomerForMsisdn (String msisdn , Client c)
throws DBException

getSessionAttributeForKey(String) method
Get the value of session attribute (SessionAttribute) in the current state based on the specified
key from the current session.

Syntax
SessionAttribute getSessionAttributeForKey (String attribKey)
throws DBException

Parameters

• attribKey – session attribute key

Returns
the session attribute value

Exceptions

• DBException – Exception while accessing the session variable from database

SMS Application Development

SMS Application Development 131

Usage

the session attribute value

getSessionAttributes() method
Get the session attributes for the current state in the current session.

Syntax
List< SessionAttribute > getSessionAttributes () throws
DBException

Returns
list of session attributes for the current session

Exceptions

• DBException – Exception while accessing the session variable from database

Usage

list of session attributes for the current session

getSessionAttributesMap() method
Get session attributes for the current state in the current session.

Syntax
HashMap< String, String > getSessionAttributesMap () throws
DBException, CryptoException

Returns
HashMap of session attributes

Exceptions

• DBException – Exception while accessing the session variable from database
• CryptoException – Encryption exception while decrypting the session attribute

Usage

HashMap of session attributes

SMS Application Development

132 SAP Mobile Platform

saveSessionAttribute(String, String) method
Save the input parameters to the session attribute (SessionAttribute) of the current session.

Syntax
void saveSessionAttribute (String attribKey , String attribValue) throws
DBException, CryptoException

Parameters

• attribKey – session attribute key
• attribValue – session attribute value

Exceptions

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption.

Usage

For encryption support, see

saveSessionAttribute(String, String, boolean)

.

saveSessionAttribute(String, String, boolean) method
Save the input parameters to the session attribute (SessionAttribute) to the current session.

Syntax
void saveSessionAttribute (String attribKey , String attribValue ,
boolean encrypt) throws DBException, CryptoException

Parameters

• attribKey – session attribute key
• attribValue – session attribute value
• encrypt – True/False whether encryption is needed or not, respectively.

Exceptions

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption.

SMS Application Development

SMS Application Development 133

Usage

Encrypt the value prior to saving, if needed (encrypt = true).

Also see

saveSessionAttribute(String, String)

method, if encryption is not needed.

saveSessionAttributes(Map< String, String >) method
Save the session attributes in the Map of the current state in the current session to database.

Syntax
void saveSessionAttributes (Map< String, String > attrs) throws
DBException, CryptoException

Parameters

• attrs – session attributes in Map

Exceptions

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption.

saveSmappTransitionLogEntry(SmappTransitionLog) method
Insert into Transition log or database table: M_SMAPP_TRANSITION_LOG.

Syntax
void saveSmappTransitionLogEntry (SmappTransitionLog
transitionLog) throws DBException

Parameters

• transitionLog –

Exceptions

• DBException –

SubscriberDaoImpl class

Syntax
public class SubscriberDaoImpl

SMS Application Development

134 SAP Mobile Platform

SubscriberDaoImpl(final SubscriberMasterDao, final Client) constructor

Syntax
SubscriberDaoImpl (final SubscriberMasterDao subsDao , final
Client currentClient)

addSubscriberToListReturnCount(Long, SubscriberMaster) method

Syntax
long addSubscriberToListReturnCount (Long subscriberListId ,
SubscriberMaster newSubscriber) throws DBException

getSubscriber(Long, String) method

Syntax
SubscriberMaster getSubscriber (Long subscriberListId , String
subscriberMsisdn) throws DBException

getSubscriberLists() method

Syntax
List< SubscriberMasterList > getSubscriberLists () throws
DBException

saveSubscriber(SubscriberMaster) method

Syntax
SubscriberMaster saveSubscriber (SubscriberMaster subscriber) throws
DBException

SmappStateEditorContext interface
The context passes from the state editor to the StatePlugin providing all the necessary
information, such as, the current Client or also know as workspace.

Syntax
public interface SmappStateEditorContext

getClient() method
Client is referred as workspace in the UI.

Syntax
Client getClient ()

SMS Application Development

SMS Application Development 135

Returns
The current Client (or workspace) hosting the application that this state is used

Usage

Workspaces are completely isolated and therefore each workspace has unique properties
(such as: shortcode), and assets (such as: subscribers, applications, events, etc).,]

The current Client (or workspace) hosting the application that this state is used

SmappStateProcessingAction class
This class is used by the state or StatePlugin to communicate to the "Processing Engine</
b>" on the requested follow-up transition.

Syntax
public class SmappStateProcessingAction

Remarks
The processing engine treats the requested follow-up transition as a suggestion, and executes
it when appropriate.

Currently, the processing engine supports three actions: continue, wait, and terminate.

This SmappStateProcessingAction is passed by the processing engine to the state as an input
parameter to the StatePlugin#processState(SmappStateProcessingContext,
SmappStateProcessingAction) method, that is custom implemented by each state. At the end
of this method, the implementation need to use the provided SmappStateProcessingAction to
call one of the provided methods. Otherwise, the processing engine will automatically
terminate the application flow.

SmappStateProcessingAction(SmappState) constructor

Syntax
SmappStateProcessingAction (SmappState currentState)

continueProcessing(SmappState) method
Normal processing action, or continue the application flow to the specified follow-up state
(i.e., provided by the input parameter).

Syntax
void continueProcessing (SmappState continueState)

Parameters

• continueState – the follow-up state to continue to

SMS Application Development

136 SAP Mobile Platform

getContinueState() method

Syntax
SmappState getContinueState ()

isContinueProcessing() method
Current suggested action is to continue processing.

Syntax
boolean isContinueProcessing ()

Returns
True/False for is continuing or not, respectively

Usage

True/False for is continuing or not, respectively

isTerminateProcessing() method
Current suggested action is to terminate the processing.

Syntax
boolean isTerminateProcessing ()

Returns
True/False for is terminating or not, respectively

Usage

True/False for is terminating or not, respectively

isWaitProcessing() method
Current suggested action is to wait processing.

Syntax
boolean isWaitProcessing ()

Returns
True/False for is waiting or not, respectively

Usage

This is basically telling the processing engine not to continue

SMS Application Development

SMS Application Development 137

nor

terminate.

True/False for is waiting or not, respectively

terminateProcessing() method
Suggesting to the processing engine to terminate the application flow when it's appropriate.

Syntax
void terminateProcessing ()

Usage

NOTE:

state implementation should use this action wisely. It is recommended to handle failure with

continueProcessing(SmappState)

with the

continueFail

follow-up transition.

waitForMessage() method
Processing should be temporarily paused to wait for additional incoming trigger.

Syntax
void waitForMessage ()

Usage

For example, this is used by the Send SMS state after sending the sms message out. The state is
waiting for a reply from the consumer that will be used in determining the follow-up state.

continueProcessing variable

Syntax
boolean continueProcessing

continueState variable

Syntax
SmappState continueState

SMS Application Development

138 SAP Mobile Platform

terminateProcessing variable

Syntax
boolean terminateProcessing

SmappStateProcessingContext class
The processing engine creates this state processing context or SmappStateProcessingContext
before delegating the task to the state.

Syntax
public class SmappStateProcessingContext

Remarks
The context contains all the necessary resources and information, such as: session, data
access, processing engine context, etc. for processing the state.

SmappStateProcessingContext(final SmappState, final MwizMessageContext, final
boolean, final OutgoingQueue, final Language, final Language, final
SmappStateDao, final SubscriberMasterDao, final CacheManagerDao) constructor

Syntax
SmappStateProcessingContext (final SmappState currentState , final
MwizMessageContext msgContext , final boolean newSession , final
OutgoingQueue outgoingQueue , final Language langDefault , final
Language langRequest , final SmappStateDao dao , final
SubscriberMasterDao subDao , final CacheManagerDao cacheMgr) throws
CryptoException

getLangRequest() method

Syntax
Language getLangRequest ()

getSession() method
Get the current session.

Syntax
Session getSession ()

Returns
current session

SMS Application Development

SMS Application Development 139

Usage

The processing engine creates a

Session

based on the unique MSISDN (or phone number) before starting the target application. The
session will be persisted to database when the application reaches a state that wait for a trigger
before continuing. For example, the "Send SMS" state sends SMS message out and wait for
reply message before continuing. The processing engine will persist the session to the
database prior to transition into the wait mode.

The session only lasts for a definite amount of time. By default, it is set to 450 secs. The session
will be used by the "session expiration" daemon to terminate expired sessions.

current session

getStateDao() method
Get the data access object for the state.

Syntax
StateDaoImpl getStateDao ()

Returns
data access object of StateDaoImpl type

Usage

data access object of StateDaoImpl type

getSubscriberDao() method

Syntax
SubscriberDaoImpl getSubscriberDao ()

isAckMessageRequested() method
When sending SMS message using SMPP, an acknowledgement from the gateway or SMSC
can be requested.

Syntax
boolean isAckMessageRequested ()

Returns
True or false for whether SMPP acknowledgement is requested or not, respectively

SMS Application Development

140 SAP Mobile Platform

Usage

This flag indicates whether acknowledgement is requested or not, or true or false, respectively.

True or false for whether SMPP acknowledgement is requested or not, respectively

isCurrentStateEncrypted() method
Bulk saving of SessionAttributes for the current state in the current session.

Syntax
boolean isCurrentStateEncrypted ()

Parameters

• attributesMap – Key-Value pair. The key should be obtained using the
OutputAttribute#getText() method, and the value from the
OutputAttribute#getHoldValue(). For example,attributesMap.put(outAttrib.getText(),
outAttrib.getHoldValue());

• attribKey – session attribute key
• attribKey – session attribute key
• attribValue – session attribute value
• attribKey – session attribute key
• attribValue – session attribute value
• encrypt – True/False whether encryption is needed or not, respectively.
• attrs – session attributes in Map
• languageId –
• transitionLog –

Returns
list of session attributes for the current sessionthe session attribute valueHashMap of session
attributesTrue or false for encrypted or not, respectively.

Exceptions

• DBException – Exception while accessing or saving the session variable from database
Get the session attributes for the current state in the current session.

• DBException – Exception while accessing the session variable from database Get the
value of session attribute (SessionAttribute) in the current state based on the specified key
from the current session.

• DBException – Exception while accessing the session variable from database Get session
attributes for the current state in the current session.

• DBException – Exception while accessing the session variable from database

SMS Application Development

SMS Application Development 141

• CryptoException – Encryption exception while decrypting the session attribute Save the
input parameters to the session attribute (SessionAttribute) of the current session.

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption. Save the input parameters to the

session attribute (SessionAttribute) to the current session. Encrypt the value prior to
saving, if needed (encrypt = true).

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption. Save the session attributes in the Map

of the current state in the current session to database.
• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption. Get language. No longer supported.
• DBException – Insert into Transition log or database table:

M_SMAPP_TRANSITION_LOG
• DBException – Indicate whether the current state is encrypted. This flag can be set in the

state editor.

Usage

This method is designed to be used in state implementation that produces multiple
{ OutputAttribute}s, and it minimize the database roundtrip.

list of session attributes for the current session

the session attribute value

HashMap of session attributes

For encryption support, see

saveSessionAttribute(String, String, boolean)

.

Also see

saveSessionAttribute(String, String)

method, if encryption is not needed.

When set to true, a state to never show the messages it sends out or inputs it receives back in
clear text in the message logs. This is a security feature to allow passwords and PINs to be
restricted.

True or false for encrypted or not, respectively.

SMS Application Development

142 SAP Mobile Platform

setAckMessageRequest(boolean) method
Set the SMPP acknowledgement request flag for the current state in the current session.

Syntax
void setAckMessageRequest (boolean ackMessage)

Parameters

• ackMessage – True or false for whether SMPP acknowledgement is requested or not,
respectively

setLangRequest(Language) method

Syntax
void setLangRequest (Language langRequest)

updateSession() method

Syntax
void updateSession () throws DBException

cacheMgr variable

Syntax
CacheManagerDao cacheMgr

client variable

Syntax
Client client

clientMsisdn variable

Syntax
ClientMsisdn clientMsisdn

currentState variable

Syntax
SmappState currentState

SMS Application Development

SMS Application Development 143

customer variable

Syntax
Customer customer

langDefault variable

Syntax
Language langDefault

matchingPattern variable

Syntax
Pattern matchingPattern

mr variable

Syntax
MessageReceiver mr

msg variable

Syntax
MwizMessage msg

newSession variable

Syntax
boolean newSession

outgoingQueue variable

Syntax
OutgoingQueue outgoingQueue

SmappTemplate interface
Interface for the Application Flow template provider.

Syntax
public interface SmappTemplate

SMS Application Development

144 SAP Mobile Platform

Derived classes

• com.sybase365.mobiliser.brand.template.SmappTemplateProvider on page 260

Remarks
Application flow(s) are exported into a XML file that can be re-imported back into the
processing engine using the web UI.

The XML file (also called template) can also be packaged into an OSGi bundle and deployed
as a plugin bundle. The template will appear in Brand Mobiliser "Dashboard - Quick Start
Templates" enabling direct import into the processing engine.

Also see com.sybase365.mobiliser.brand.template.SmappTemplateProvider which is an
implementation of this interface. The implementation may be used via Spring injection, as
listed below:

• Insert the following into the Spring configuration file (beans-context.xml), to instantiate
the provider. <bean id="NewSystem"
class="com.sybase365.mobiliser.brand.template.SmappTemplateProvider"> <property
name="name" value="New Mobile Service System"> <property name="description"
value="A system of applications for Mobile system."> <property name="resource"
value="classpath:META-INF/template/new_system.xml"> </bean>

• Register the provider with the OSGi service to make it discover-able by the web
application <osgi:service id="NewSystemService" ref="NewSystem"
interface="com.sybase365.mobiliser.brand.plugins.api.smapp.SmappTemplate" />

getDescription() method
Get detailed description of the system.

Syntax
String getDescription ()

Returns
Detailed description.

Usage

This is used by the UI.

Detailed description.

SMS Application Development

SMS Application Development 145

getInputStream() method
Call by the Brand Web UI to get access to the XML containing the application flows.

Syntax
InputStream getInputStream ()

Returns
Inputstream containing application flows in XML format.

Usage

This is used to load the template into the system.

Inputstream containing application flows in XML format.

getName() method
Get the name of the system.

Syntax
String getName ()

Returns
System name.

Usage

This is used by the UI.

System name.

getResource() method
Get the location of the XML file containing the application flow relative to the bundle
classpath.

Syntax
String getResource ()

Returns
Location of the XML file containing the application flows.

Usage

Location of the XML file containing the application flows.

SMS Application Development

146 SAP Mobile Platform

getVersion() method
Get the version of the system.

Syntax
String getVersion ()

Returns
System version.

Usage

Information only.

System version.

setDescription(String) method
Set the detailed description of the system.

Syntax
void setDescription (String value)

Parameters

• value –

Usage

Call by Spring during injection.

setName(String) method
Set the name of the system.

Syntax
void setName (String value)

Parameters

• value –

Usage

Call by Spring during injection.

SMS Application Development

SMS Application Development 147

setResource(String) method
Set the location of the XML file containing the application flow relative to the bundle
classpath.

Syntax
void setResource (String value)

Parameters

• value – Location of the XML file containing the application flows.

Usage

For example:

classpath:META-INF/template/money_mobiliser.xml

setVersion(String) method
Set the version of the system.

Syntax
void setVersion (String value)

Parameters

• value –

Usage

Can be call by Spring during injection.

SmsTextI18n class

Syntax
public class SmsTextI18n

SmsTextI18n(String, Language) constructor

Syntax
SmsTextI18n (String text , Language language)

SMS Application Development

148 SAP Mobile Platform

getLanguage() method

Syntax
Language getLanguage ()

getText() method

Syntax
String getText ()

language variable

Syntax
Language language

text variable

Syntax
String text

StatePlugin interface
This is the main interfaces of the state development.

Syntax
public interface StatePlugin

Derived classes

• com.sybase365.mobiliser.brand.plugins.smapp.state.SmappStatePlugin on page 230

Remarks
States need to implement this interface so that: it can be displayed on the Application
Composer and State Editor, and invoked by the "Processing Engine" at application runtime.
As such it should be regarded as the 'external' API. Any classes that extend this interface will
be referred to as State for the purpose of this API documentations. Some methods are used
only by the state editor or the processing engine, others may be used by both, as stated in each
methods description.

INTRODUCTION

An Application defines the process flow in the form of interconnected states. An application
usually has more than one states, and can include more than one types of state. Therefore,
states are the building blocks for composing an application. This StatePlugin is the interface
that needs to be implemented by the states.

SMS Application Development

SMS Application Development 149

LIFE CYCLE

At runtime, the processing engine will step through the application flow based on the matched
transition logic (called follow-up transition) and execute the corresponding state. The
processing engine will execute the application and state based on the following life cycle.

1. Application can be invoked by many different external activation mechanisms, such as:
incoming SMS message, scheduled event, or web service invocation. The first state in any
applications is the "Application Start" state, that is automatically created by default and
cannot be removed. So immediately after invoking the application, the first state, the
"Application Start" state will be executed.

2. When executing a state, the processing engine will call one of the following processing
methods: the processMessage(SmappStateProcessingContext) and the
processState(SmappStateProcessingContext, SmappStateProcessingAction), based on
the activation mechanism, described in details below (see ACTIVATION).The method(s)
need to be implemented by each state to encapsulate the business logic that the state
represents.

3. The state can be invoked by two methods: external activation or follow-up transition. The
<u>external</u> occurs when the state processing has been temporarily paused (or
hibernated) waiting for an external event, and the state is re-activated by the arrival of the
external event. In this case, the processMessage() will be called.If the state is
invoked by the follow-up transition, in this case from another state, the second method or
processState() will be called.

4. The first method (i.e., processMessage()) returns the follow-up transition object
(SmappState) that will become the current state for the subsequent method (i.e.,
processState()).For example, let's say the application flow looks like the following:
state1 ->Send SMS state -> state2 ->state3 When the flow reaches the Send SMS state, a
message will be sent out and the flow will be paused waiting for a response. The current
state remains as the Send SMS state. On arrival of the response message, first the
processMessage() method will be called. This method will find the follow-up
transition that match the incoming message, and return the corresponding state. Let's say
it's "state2". Next, the processing engine will make "state2" as the current state and then
call the processState() method of "state2".

5. The processState() method does not return the follow-up transition object (or
SmappState), but instead setting the input parameter (SmappStateProcessingAction), by
calling the appropriate method, to communicate to the processing engine the intended
follow-up transition.

6. Using the above application flow example, the processState() method of "state2"
specify "state3" as the follow-up transition state. So the processing engine will continue
the process by calling the processState() method of "state3".

7. This process of stepping through the flow will continue until one of the following
conditions:

SMS Application Development

150 SAP Mobile Platform

• reaching a state that set the processing engine to the waitForMessage status, such as
after sending SMS out. The process will re-start on arrival of the message, and it will
invoke the processMessage() method. The process then repeat from step 4 again.

• the state has no follow-up transition, so the processing engine will terminate

STATE ACTIVATION

The state can be activated by two methods: external or follow-up. In most cases, the state is
activated by the follow-up method. The <u>follow-up activation</u> occurs as a result of a
follow-up transition from the previous connected state. In addition, the follow-up activation
can also occur when the state performs the loop-back mechanism from the one of the
processing methods: processMessage(SmappStateProcessingContext) or
processState(SmappStateProcessingContext, SmappStateProcessingAction) methods, by
conditionally returning the current state (or context.currentState). NOTE: please
use the loop-back mechanism with caution because it could easily resulting in an infinite loop
in the state processing. The follow-up activation calls the
processState(SmappStateProcessingContext, SmappStateProcessingAction) method, and the
state implements the required business logic in this method.

The <u>external activation</u> occurs when the state processing has been temporarily
paused (or hibernated) waiting for an external event, and the state is re-activated by the arrival
of the external event by invoking the the
processMessageLogic(SmappStateProcessingContext) method. The external activation
mechanism is used by states that support the Send SMS, such as: the base "Send SMS" state
and the states that extend the
com.sybase365.mobiliser.brand.plugins.smapp.state.AbstractDynamicMenu. For example,
the "Send SMS" state sends an SMS message to the mobile device, and then goes into
hibernation. When a reply message arrives, this will re-activate state using the external
activation method that calls the processMessage(SmappStateProcessingContext) method. In
addition, any state that implements the calls to the SmappStateProcessingAction -
waitForMessage() in the processing methods will also need to ensure that external
activation will happen and it can handle the external activation in the
processMessage(SmappStateProcessingContext) method. Otherwise, the application will
never continue and it will be terminated when the session timeout.

The processMessage(SmappStateProcessingContext) and
processState(SmappStateProcessingContext, SmappStateProcessingAction) methods are
referred to as the processing methods.

RETURNING FLOW BACK TO PROCESING ENGINE

There are two mechanisms to return the process back to the processing engine:

• Follow-up transition - the state returns the SmappState from the
(processMessage(SmappStateProcessingContext) method, that tells the processing
engine which follow-up transition to follow and hence the corresponding follow-up state.

• Follow-up action - by setting the SmappStateProcessingAction object provided
by processing engine as an input parameter to the processing methods. The

SMS Application Development

SMS Application Development 151

SmappStateProcessingAction provides methods for setting the needed actions.
For example, calling action.waitForMessage() tells the processing engine to
wait for external activation before proceeding.The
processState(SmappStateProcessingContext, SmappStateProcessingAction) does not
return SmappState object. So it needs to use the input parameter
SmappStateProcessingAction to tell the processing engine which follow-up
transition to follow.When the follow-up action is used, the processing methods should
return null.

getInputAttributes() method
Return the input attributes specified by this state.

Syntax
List< IAttribute > getInputAttributes ()

Returns
List of input variables

Usage

This method is called by the State Editor to get the input attribute list that is used to render the
Input Variables on the state editor.

This method could be called by the state implementation logic to gather all the input variable
values.

Used by: state editor and processing engine

List of input variables

getOutputAttributes() method
Return the output attributes specified by this state.

Syntax
List< IAttribute > getOutputAttributes ()

Returns
List of output variables

Usage

This method is called by the State Editor to get the output attribute list that is used to render the
Output Variables on the state editor.

This method could be called by the state implementation logic to bind all the output variable
values, and save to the session variable.

SMS Application Development

152 SAP Mobile Platform

List of output variables

getStateId() method
The state unique ID.

Syntax
long getStateId ()

Returns
the state unique ID of type long.

Usage

Used by: state editor and processing engine

Refer to 'State Developers Guide' for ranges of values allowed.

the state unique ID of type long.

getStateName() method
The state name is used for display on the state editor.

Syntax
String getStateName ()

Returns
the state name

Usage

Used by: state editor

the state name

getStateNotes() method
The detailed description about the state, and documentations on how to use the state including
the follow-up transitions.

Syntax
String getStateNotes ()

Returns
detailed description and documentation of the state

SMS Application Development

SMS Application Development 153

Usage

Using wicket MultiLineLabel automatic filtering, any newlines '

' will be rendered as

and any double new lines '

' will render as a separate paragraph.

NOTE: Use newline mechanism only for layout of text - do not embed HTML into the text
strings

Used by: state editor

detailed description and documentation of the state

isSelectable() method
To indicate whether the state can be used as the follow-up state.

Syntax
boolean isSelectable ()

Returns
True/false to indicate that it can be used as the follow-up state or not, respectively

Usage

This is used by the state editor to filter out the follow-up drop down list. Currently, it is only
used by the Application state, that is the first state automatically added, and cannot be deleted
in any application.

As is now, it's not a very useful method. State should always implement it with a return of
true.

Used by: state editor

True/false to indicate that it can be used as the follow-up state or not, respectively

loadStateAttributes(SmappStateEditorContext) method
This method is called by the state editor only.

Syntax
void loadStateAttributes (SmappStateEditorContext editorContext)

Parameters

• editorContext – The context passes from the state editor to the StatePlugin providing all
the necessary information, such as, the current Client or also know as workspace.

SMS Application Development

154 SAP Mobile Platform

Usage

This is a call back method allowing the state to perform any initialization need prior to being
rendered in the state editor. For example, if the state uses a drop down input attribute. The drop
down entries can be loaded from the data source in this method.

The context

SmappStateEditorContext

provides information that can be used to further filter the initialization.

Used by: state editor

processMessage(SmappStateProcessingContext) method
This method is called by the processing engine when the state is activated from external
source, for example, incoming SMS message.

Syntax
SmappState processMessage (SmappStateProcessingContext context)
throws MwizProcessingException, DBException, CryptoException

Parameters

• context – the state processing context containing all the necessary object needed while
processing the state.

Returns
the follow-up transition

Exceptions

• MwizProcessingException – any exceptions that warrant terminating the application
• DBException – any database exceptions that warrant terminating the application
• CryptoException – any encryption exceptions that warrant terminating the application

Usage

See this API documentation listed above.

Typically, this method should be implemented when the

supportsSendSmsMessage()

is set to true, to handle the reply SMS message.

Helper methods that will return the

SmappState

SMS Application Development

SMS Application Development 155

are as follow:

• continueOk()
• continueFail()
• continueFail(String)
• continueDyn(String)
• continueDyn(Integer)
• continueDyn(Long)

Used by: processing engine

the follow-up transition

processState(SmappStateProcessingContext, SmappStateProcessingAction)
method
This method is always called by the processing engine when the state is activated by the
follow-up transition.

Syntax
void processState (SmappStateProcessingContext context ,
SmappStateProcessingAction action) throws MwizProcessingException,
DBException, CryptoException

Parameters

• context – the state processing context containing all the necessary object needed while
processing the state.

• action – mechanism to communicate suggested follow-up action to the processing engine

Exceptions

• MwizProcessingException – any exceptions that warrant terminating the application
• DBException – any database exceptions that warrant terminating the application
• CryptoException – any encryption exceptions that warrant terminating the application

Usage

Used by: processing engine

supportEncryption() method
Indicate whether this state support encryption.

Syntax
boolean supportEncryption ()

SMS Application Development

156 SAP Mobile Platform

Returns
True/False for support encryption or not, respectively.

Usage

This will be used in the State Editor to enable/disable the encryption checkbox.

The state notes should described what is supported. For example, support encryption of
session variables before storing in database, or support encryption of before logging in file or
database.

True/False for support encryption or not, respectively.

supportsDynTransition() method
Indicates if the state supports dynamic (Dyn) transition.

Syntax
boolean supportsDynTransition ()

Returns
True/False - support Dyn transition, or not, respectively

Usage

When set to true the state editor will display the dynamic dropdown UI control listing all the
possible states to chose from.

The state may opt to support both OK and dynamic follow-up transitions, with the dynamic
follow-up transitions for handling error conditions.

When returning true, the processing method(s) should have at least one condition that returns

continueDyn()
.

Used by: state editor

True/False - support Dyn transition, or not, respectively

supportsFailTransition() method
Indicate if the state uses the Fail follow-up transition type.

Syntax
boolean supportsFailTransition ()

Returns
True/False - support fail transition, or not, respectively

SMS Application Development

SMS Application Development 157

Usage

When set to true the state editor will display the Fail dropdown UI control listing all the
possible states to chose from.

When returning true, the processing method(s) should have at least one condition that returns

continueFail()
.

Typically, states with database or external web service calls should support the

continueFail()
to handle all the errors from these calls.

Used by: state editor

True/False - support fail transition, or not, respectively

supportsGoToApplication() method
Indicate if the state supports transfer flow to another application.

Syntax
boolean supportsGoToApplication ()

Returns
True/False - support Goto application, or not, respectively

Usage

When set to true the state editor will display a dropdown UI control containing a list of
applications in the workspace that can be "goto".

This is not a very useful method. It's mainly used the base state Goto Application to flag the
state editor to display the control. This is not needed by other states because the same
mechanism can be accomplished with the base Goto Application state.

Used by: state editor

True/False - support Goto application, or not, respectively

supportsOkTransition() method
Indicate if the state uses the OK follow-up transition type.

Syntax
boolean supportsOkTransition ()

SMS Application Development

158 SAP Mobile Platform

Returns
True/False - support OK transition, or not, respectively

Usage

When set to true the state editor will display the OK dropdown UI control listing all the
possible states to chose from.

When returning true, the processing method(s) should have at least one condition that returns

continueOk()
.

It's possible that the state opts to not supporting the OK follow-up transition, but instead
handle everything using the dynamic follow-up transition. See

supportsDynTransition()

.

Used by: state editor

True/False - support OK transition, or not, respectively

supportsSendSmsMessage() method
Indicate if the state may send SMS message to the current consumer.

Syntax
boolean supportsSendSmsMessage ()

Returns
True/False - support send SMS, or not, respectively

Usage

When set to true the state editor will display a textbox UI control for entering the SMS
message.

The SMS textbox will support all the functionalities supported in the base Send SMS state,
like: the session variable token replacement, truncate message longer than 160 characters and
send it as another message, etc.

When set to true, the state should provide implementation for the

processMessage(SmappStateProcessingContext)

method to handle activation from the reply message of this SMS.

Used by: state editor

True/False - support send SMS, or not, respectively

SMS Application Development

SMS Application Development 159

PluginInterface interface
Plugin interfaces.

Syntax
public interface PluginInterface

Derived classes

• com.sybase365.mobiliser.brand.plugins.api.smapp.StatePlugin on page 149
• com.sybase365.mobiliser.brand.plugins.base.Plugin on page 162

Remarks
To be implemented by class that needs to be plugged in the platform.

getInstanceName() method

Syntax
String getInstanceName ()

Returns
The identifier for this instance of this plugin.

Usage

The identifier for this instance of this plugin.

getRevisionString() method

Syntax
String getRevisionString ()

Returns
Version of the plugin.

Usage

Version of the plugin.

SMS Application Development

160 SAP Mobile Platform

setInstanceName(String) method
A plugin may be instantiated multiple times with different set of attributes, the instanceName
may be set externally to uniquely identify a particular instance.

Syntax
void setInstanceName (String instanceName)

Parameters

• instanceName – The name to identify this instance of the plugin.

shutdown() method
Stop this plugin instance.

Syntax
void shutdown ()

startup(HashMap< String, String >) method
Initiate the startup process for this plugin instance.

Syntax
void startup (HashMap< String, String > attributes) throws
MwizStartupException

Parameters

• attributes – List of configuration attributes for the plugin

Exceptions

• MwizStartupException – If there is an issue with startup.

Usage

This method is called once per startup or during reload of the plugin.

base package

Members
All public members of the base package.

• Plugin class – This is the abstract super class of the PluginInterface.

SMS Application Development

SMS Application Development 161

Plugin class
This is the abstract super class of the PluginInterface.

Syntax
public class Plugin

Derived classes

• com.sybase365.mobiliser.brand.plugins.smapp.state.SmappStatePlugin on page 230

Remarks
Currently, there are two types of plugin supported:

• State - adding new states that can be used to compose application flow
• Infrastructure Channel - Input/Output message to/from the application

State plugin need to implement additional interfaces StatePlugin.

getInstanceName() method
Get the instance name.

Syntax
String getInstanceName ()

Returns
instance name

Usage

instance name

setInstanceName(String) method
Set the instance name.

Syntax
void setInstanceName (String instanceName)

Parameters

• instanceName – name to assign to this instance of the plugin.

SMS Application Development

162 SAP Mobile Platform

instanceName variable
Instance name.

Syntax
String instanceName

exceptions package

Members
All public members of the exceptions package.

• InputValueFormatException class – InputValueFormatException can be used as a
convenient way to catch all the input value format issue in the state development, as shown
below.

InputValueFormatException class
InputValueFormatException can be used as a convenient way to catch all the input value
format issue in the state development, as shown below.

Syntax
public class InputValueFormatException

Remarks
 try {
 InputValue iValue;

 iValue = inCustomerName.getInputValue();
 if (iValue!=null) {
 String name = iValue.getString().trim();
 if (!validFullName(name)) {
 throw new InputValueFormatException("Invalid: " +
 inCustomerName.getDescription());
 }
 customer.setDisplayName(name);
 }

 //
 // Check the second attribute, etc..
 //

 } catch (InputValueFormatException fex) {

 //
 // Catch all in one location
 //
 log.error(fex.getMessage(), fex);
 return continueDyn(-9);
 }

SMS Application Development

SMS Application Development 163

InputValueFormatException(String) constructor

Syntax
InputValueFormatException (String message)

InputValueFormatException(String, Throwable) constructor

Syntax
InputValueFormatException (String message , Throwable th)

InputValueFormatException(Throwable) constructor

Syntax
InputValueFormatException (Throwable th)

smapp package

Members
All public members of the smapp package.

• beans package –
• controls package –
• state package –

beans package

Members
All public members of the beans package.

• BeanConverterInterface< T > interface – Bean that needs to be persisted to the session
variable using the SessionVariableAttribute needs to implement this interface.

• GenericBean class – For beans to be persisted to session variable, it needs to implement
the BeanConverterInterface.

BeanConverterInterface< T > interface
Bean that needs to be persisted to the session variable using the SessionVariableAttribute
needs to implement this interface.

Syntax
public interface BeanConverterInterface< T >

SMS Application Development

164 SAP Mobile Platform

Remarks
The bean will be serialized into String before saving to the session variable. Conversely, on
retrieval the string be de-serialized back to the bean.

convert(String) method
Called when de-serializing the string retrieved from the session variable back into the bean.

Syntax
T convert (String value)

Parameters

• value – String from the session variable

Returns
bean of type T after the de-serialization

Usage

bean of type T after the de-serialization

convert(T) method
Used to serialized the bean of type T into string so that it can be saved into the session variable.

Syntax
String convert (T object)

Parameters

• object – bean of type T that needs to be serialized

Returns
serialized string

Usage

serialized string

GenericBean class
For beans to be persisted to session variable, it needs to implement the
BeanConverterInterface.

Syntax
public class GenericBean

SMS Application Development

SMS Application Development 165

Remarks
So typically, like in the dynamic SMS menu that extends the AbstractDynamicMenu, a helper
bean that implements the BeanConverterInterface is created. The bean (i.e., domain bean) is
transformed to the helper bean and then serialize.

When domain bean is simple, containing fields of String type only, this helper GenericBean
can be used instead of creating a custom bean. This bean contains a unique ID field, and 10
(0..9) properties.

Simple example of how to store list of GenericBean into session variable:
 List beanList = new ArrayList<GenericBean>();
 for (DomainObject dObj: domainObjList) {
 // Convert domain object to HashMap
 HashMap<String, String> objMap =
convertDomainObjToMap(dObj);
 beanList.add(GenericBean.parse(objMap));
 }

 // Store the list into session variable
SessionVariableAttribute
 SessionVariableAttribute session = new
SessionVariableAttribute("SESSION_LIST", "");
 session.setList(beanList);

To retrieve the list from session variable and convert back to GenericBean:
 List beanList = new ArrayList<GenericBean>();

 // Session variable defined earlier
 beanList = session.getList(new GenericBean());

compareTo(GenericBean) method
Sortable by the unique Id, or GB_ID.

Syntax
int compareTo (GenericBean o)

convert(String) method
Called to transform the session variable value back into this bean.

Syntax
GenericBean convert (String value)

convert(GenericBean) method
Called to transform the bean into string for persistence to session variable.

Syntax
String convert (GenericBean bean)

SMS Application Development

166 SAP Mobile Platform

equals(Object) method

Syntax
boolean equals (Object obj)

getAttrib0() method

Syntax
String getAttrib0 ()

Returns
Property 1

Usage

Property 1

getAttrib1() method

Syntax
String getAttrib1 ()

Returns
Property 2

Usage

Property 2

getAttrib2() method

Syntax
String getAttrib2 ()

Returns
Property 3

Usage

Property 3

SMS Application Development

SMS Application Development 167

getAttrib3() method

Syntax
String getAttrib3 ()

Returns
Property 4

Usage

Property 4

getAttrib4() method

Syntax
String getAttrib4 ()

Returns
Property 5

Usage

Property 5

getAttrib5() method

Syntax
String getAttrib5 ()

Returns
Property 6

Usage

Property 6

getAttrib6() method

Syntax
String getAttrib6 ()

Returns
Property 7

SMS Application Development

168 SAP Mobile Platform

Usage

Property 7

getAttrib7() method

Syntax
String getAttrib7 ()

Returns
Property 8

Usage

Property 8

getAttrib8() method

Syntax
String getAttrib8 ()

Returns
Property 9

Usage

Property 9

getAttrib9() method

Syntax
String getAttrib9 ()

Returns
Property 10

Usage

Property 10

getId() method

Syntax
String getId ()

SMS Application Development

SMS Application Development 169

Returns
Unique Id

Usage

Unique Id

hashCode() method

Syntax
int hashCode ()

parse(HashMap< String, String >) method
Domain bean needs to be converted to HashMap, and use this method to transform into this
GenericBean.

Syntax
GenericBean parse (HashMap< String, String > obj)

Parameters

• obj – list of values to be converted to GenericBean.

Returns
Transformed bean from the map contents.

Usage

Use the provided keys for the

HashMap

entries.

Helper method to transform into this bean.

NOTE

: the combined length of the values string should NOT exceed 1000 chars, because the session
storage is limited to 1000 chars

Transformed bean from the map contents.

setAttrib0(String) method

Syntax
void setAttrib0 (String attrib0)

SMS Application Development

170 SAP Mobile Platform

Parameters

• attrib0 – Property 1

setAttrib1(String) method

Syntax
void setAttrib1 (String attrib1)

Parameters

• attrib1 – Property 2

setAttrib2(String) method

Syntax
void setAttrib2 (String attrib2)

Parameters

• attrib2 – Property 3

setAttrib3(String) method

Syntax
void setAttrib3 (String attrib3)

Parameters

• attrib3 – Property 4

setAttrib4(String) method

Syntax
void setAttrib4 (String attrib4)

Parameters

• attrib4 – Property 5

setAttrib5(String) method

Syntax
void setAttrib5 (String attrib5)

SMS Application Development

SMS Application Development 171

Parameters

• attrib5 – Property 6

setAttrib6(String) method

Syntax
void setAttrib6 (String attrib6)

Parameters

• attrib6 – Property 7

setAttrib7(String) method

Syntax
void setAttrib7 (String attrib7)

Parameters

• attrib7 – Property 8

setAttrib8(String) method

Syntax
void setAttrib8 (String attrib8)

Parameters

• attrib8 – Property 9

setAttrib9(String) method

Syntax
void setAttrib9 (String attrib9)

Parameters

• attrib9 – Property 10

setId(String) method

Syntax
void setId (String id)

SMS Application Development

172 SAP Mobile Platform

Parameters
• id – Unique Id

GB_ATTRIB0 variable
Key for field 1 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB0

GB_ATTRIB1 variable
Key for field 2 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB1

GB_ATTRIB2 variable
Key for field 3 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB2

GB_ATTRIB3 variable
Key for field 4 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB3

GB_ATTRIB4 variable
Key for field 5 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB4

GB_ATTRIB5 variable
Key for field 6 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB5

GB_ATTRIB6 variable
Key for field 7 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB6

SMS Application Development

SMS Application Development 173

GB_ATTRIB7 variable
Key for field 8 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB7

GB_ATTRIB8 variable
Key for field 9 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB8

GB_ATTRIB9 variable
Key for field 10 Used for the HashMap input parameter for the parse(HashMap) method.

Syntax
final String GB_ATTRIB9

GB_ID variable
Key for the Unique ID Used for the HashMap input parameter for the parse(HashMap)
method.

Syntax
final String GB_ID

controls package

Members
All public members of the controls package.

• Attribute class – Attribute is the super abstract class that is extended by both the
InputAttribute and OutputAttribute.

• InputAttribute class – InputAttribute is used by the state to gather input value that will be
used in the state processing, or to be included with the external web service call.

• OutputAttribute class – OutputAttribute is used by the state to store output resulting
from processing the state.

• SelectionBoxAttribute class – Input attribute of selection dropdown type.
• SessionVariableAttribute class – This is a special type of Attribute that does not have the

UI component on the State Editor.
• TextBoxAttribute class – Input attribute of textbox type.

SMS Application Development

174 SAP Mobile Platform

Attribute class
Attribute is the super abstract class that is extended by both the InputAttribute and
OutputAttribute.

Syntax
public class Attribute

Derived classes

• com.sybase365.mobiliser.brand.plugins.smapp.controls.InputAttribute on page 178
• com.sybase365.mobiliser.brand.plugins.smapp.controls.OutputAttribute on page 190
• com.sybase365.mobiliser.brand.plugins.smapp.controls.SessionVariableAttribute on

page 199

Remarks
This class encapsulates the basic fields of an attribute, and provide the get/set methods.
Attribute(s) are used in the state implementation to represent input and output attributes.

In addition, Attribute holds the state processing context that is used, for example, to access or
store the attribute value as a session variable in the datasource so that it is durable across
session. The state processing context is assigned to the attribute by the processing engine
during initialization of the state using the setContext(SmappStateProcessingContext)
method. Hence, this method is reserved to be used only by the processing engine.

NOTE: Attributes that are used in the same states must have unique ids.

Attribute(String, String) constructor
Default value (if provided)

Syntax
Attribute (String id , String description)

Parameters

• id – unique Id for the attribute
• description – description that will be displayed on the state editor

Usage

Constructor

Attribute

s within the same state needs to have a unique id

SMS Application Development

SMS Application Development 175

getContext() method
Sets the processing engine context.

Syntax
SmappStateProcessingContext getContext ()

Returns
state processing context

Usage

SmappStateProcessingContext

is used in getting the datasource to retrieve or persist the attribute as a session variable so that it
is durable across session.

state processing context

getDescription() method
Detailed description of the attribute.

Syntax
String getDescription ()

Returns
the description of the attribute

Usage

Used in the UI State Editor.

the description of the attribute

getId() method
Attribute Id.

Syntax
String getId ()

Returns
attribute id

Usage

Used as a default session variable name.

SMS Application Development

176 SAP Mobile Platform

attribute id

getText() method
The text that was entered in the input field on the state editor.

Syntax
String getText ()

Returns
input text

Usage

input text

setContext(SmappStateProcessingContext) method
Sets the processing engine context.

Syntax
void setContext (SmappStateProcessingContext context)

Parameters

• context – state processing context

Usage

SmappStateProcessingContext

is used by the attribute to access or store the attribute value as a session variable in the
datasource so that it is durable across session.

WARNING

: please refrain from setting or resetting the

SmappStateProcessingContext

. This method is reserved to be used by the processing engine only.

setDescription(String) method
Detailed description of the attribute.

Syntax
void setDescription (String description)

SMS Application Development

SMS Application Development 177

Parameters

• description – the description of the attribute

Usage

Used in the UI State Editor.

setId(String) method
Attribute Id.

Syntax
void setId (String id)

Parameters

• id – attribute id

Usage

Used as a default session variable name.

description variable
Description that will be displayed on the state editor for user consumption.

Syntax
String description

id variable
Unique Id of the attribute.

Syntax
String id

Remarks
Used as a default session variable name.

InputAttribute class
InputAttribute is used by the state to gather input value that will be used in the state processing,
or to be included with the external web service call.

Syntax
public class InputAttribute

SMS Application Development

178 SAP Mobile Platform

Derived classes

• com.sybase365.mobiliser.brand.plugins.smapp.controls.SelectionBoxAttribute on page
195

• com.sybase365.mobiliser.brand.plugins.smapp.controls.TextBoxAttribute on page 201

Remarks
On the State Editor, InputAttribute is referred to as "Input Variable" and is represented with
three UI components:

• A checkbox
• An "input field" (textbox or dropdown box)
• An mandatory attribute indicator
• A description of the input attribute
• Mouse-hover showing the description, and the default session variable name

The checkbox indicates whether the value entered in the "input field" should be treated as
"<i>session variable name</i>" when checked, or "<i>static value</i>" when not checked.
When checked, the session variable name will be used in retrieving the value from the session
variable.

In either cases, the value will always be persisted for durability across session.

Also, see OutputAttribute.

InputValue class
Helper class to return the input value and provide helper methods to convert the value into
needed types.

Syntax
public class InputValue

Remarks
Internally, InputValue has two fields: name and value. If not provided, the name will be set to
an empty string. The name and value will be set in the exception message when occurs.

InputValue(String) constructor
Constructor.

Syntax
InputValue (String value)

SMS Application Development

SMS Application Development 179

Parameters

• value – input value

InputValue(String, String) constructor
Constructor.

Syntax
InputValue (String varName , String value)

Parameters

• varName – input variable name; to be set on the exception message
• value – input variable

getBoolean() method
The Boolean value of this input.

Syntax
Boolean getBoolean ()

Returns
Boolean value

Usage

Null or empty value will return false.

In valid string will return false.

Boolean value

getDouble() method
The Double value of this input.

Syntax
Double getDouble ()

Returns
Double value

Exceptions

• NumberFormatException – the value cannot be converted to Double

SMS Application Development

180 SAP Mobile Platform

Usage

Double value

getInt() method
The Integer value of this input.

Syntax
Integer getInt ()

Returns
Integer value

Exceptions

• NumberFormatException – the value cannot be converted to Integer

Usage

Integer value

getLong() method
The Long value of this input.

Syntax
Long getLong ()

Returns
Long value

Exceptions

• NumberFormatException – the value cannot be converted to Long

Usage

Long value

getMsisdn(String) method
Get the MSISDN in international format based on the specified country code.

Syntax
String getMsisdn (String countryCode)

SMS Application Development

SMS Application Development 181

Parameters

• countryCode – country code

Returns
MSISDN in International format string

Usage

Null will return empty string.

MSISDN in International format string

getString() method
The String value of this input.

Syntax
String getString ()

Returns
input value

Usage

input value

getString(int) method
Get the string value that is truncated to the specify size.

Syntax
String getString (int size)

Parameters

• size – truncate to the specify size

Returns
format string

Usage

format string

SMS Application Development

182 SAP Mobile Platform

toString() method
Returns a string representation of this instance.

Syntax
String toString ()

InputAttribute(String, String, boolean) constructor
Constructor.

Syntax
InputAttribute (String id , String description , boolean optional)

Parameters

• id – unique id of this state. NOTE: id needs to be unique within the same state
• description – detailed description of input attribute, to be displayed on the State Editor
• optional – True/False for whether the field is optional or not, respectively

getInputType() method
Input type can be changed from the State Editor by checking/unchecking the input attribute
checkbox, to set to InputType#SESSION or InputType#ATTRIBUTE, respectively.

Syntax
InputType getInputType ()

Returns
InputType of this input attribute

Usage

By default, it is set to

InputType#SESSION

.

This method is used by the State Editor to check/uncheck the input attribute checkbox.

InputType of this input attribute

SMS Application Development

SMS Application Development 183

getInputValue() method
More efficient way to check and obtain the value of the input attribute using a single database
call.

Syntax
abstract InputValue getInputValue () throws DBException

Returns
NULL - the variable has not been populated InputValue - populated value

Exceptions

• DBException – Exception when accessing the session variable from database
• RequiredParameterMissingException – This is a required input field but the value has

not been populated

Usage

The return InputValue can be used to retrieve the actual input value.

In the past, this has been accomplished using a combined call to

isSet()

and

getValue()

methods which is less efficient because each method make a separate database call.
This method is designed to be used with an optional (not mandatory)
input attribute. For example,

 InputValue iv = optionalInputVariable.getInputValue();
 if (iv!=null) {
 retrieve the value
 }
 For mandatory input attribute, access the value directly using the
getInputValueWithWarning(), and handle the
RequiredParameterMissingException appropriately.

NULL - the variable has not been populated InputValue - populated value

SMS Application Development

184 SAP Mobile Platform

getInputValueWithWarning() method
Similar to getInputValue() but this method throws RequiredParameterMissingException
when the input attribute is not optional (or mandatory) but the value is null (or not populated).

Syntax
InputValue getInputValueWithWarning () throws DBException,
RequiredParameterMissingException

Returns
value in InputValue type

Exceptions

• DBException – Exception when accessing the session variable from database
• RequiredParameterMissingException – This is a required input field but the value has

not been populated

Usage

This method is useful for processing multiple required input attributes as shown below:
 try {
 // Attribute 1
 attrib1.getInputValueWithWarning();

 // Attribute 2
 attrib2.getInputValueWithWarning();

 catch (RequiredParameterMissingException rex) {
 handle the missing mandatory attributes
 }

value in InputValue type

getRawValue() method
Helper class used internally by the getInputValue(), getInputValueWithWarning(), and
getValue().

Syntax
String getRawValue () throws DBException,
RequiredParameterMissingException

Returns
The unmodified value of the attribute.

SMS Application Development

SMS Application Development 185

Exceptions

• DBException – Exception when accessing the session variable from database
• RequiredParameterMissingException – This is a required input field but the value has

not been populated

Usage

The unmodified value of the attribute.

getRawValueLog() method
Helper class called internally by getRawValue().

Syntax
String getRawValueLog () throws DBException,
RequiredParameterMissingException

Returns
value in string type

Exceptions

• DBException – Exception when accessing the session variable from database
• RequiredParameterMissingException – This is a required input field but the value has

not been populated

Usage

Overriden by the

SelectionBoxAttribute

.

value in string type

getValue() method
Get the InputValue with no warning.

Syntax
InputValue getValue () throws DBException

Returns
input value

SMS Application Development

186 SAP Mobile Platform

Exceptions

• DBException – Exception when accessing the session variable from database

Usage

When the input value is required but not populated, an InputValue with empty string is quietly
returned.

NOTE:

the recommended methods for retrieving input attribute value are:

getInputValue()

or

getInputValueWithWarning()

.

input value

isCheckboxEnabled() method
Whether the UI checkbox component is enabled or not.

Syntax
boolean isCheckboxEnabled ()

Returns
True/Flase for the checkbox is checked or not, respectively.

Usage

Whe enabled, user can check or uncheck.

In some cases, the state implementation may want the checkbox to be "not changeable" from
the State Editor. In this case, the checkbox can be disabled using then

setCheckboxEnabled(boolean)

.

The checkbox indicates whether the value entered in the "input field" should be treated as
"<i>session variable name</i>" when checked, or "<i>static value</i>" when not checked.

This method is used by the UI State Editor to enable/disable the UI checkbox component.

True/Flase for the checkbox is checked or not, respectively.

SMS Application Development

SMS Application Development 187

isOptional() method
Whether the input attribute is optional.

Syntax
boolean isOptional ()

Returns
the optional True if optional; False is required input attribute.

Usage

the optional True if optional; False is required input attribute.

isSet() method
Return True/False when the InputAttribute contains value or not, respectively.

Syntax
abstract boolean isSet () throws DBException

Returns
True/False when the InputAttribute contains value or not, respectively.

Exceptions

• DBException – Exception when accessing the session variable from database

Usage

NOTE

: use this method only for finding out whether the

InputAttribute

contains value, but the value itself is not needed. Otherwise, use the more efficient methods:

getInputValue()

or

getInputValueWithWarning()

that will return null if the input attribute is not not set.

True/False when the InputAttribute contains value or not, respectively.

SMS Application Development

188 SAP Mobile Platform

setCheckboxEnabled(boolean) method
Enable or disable the checkbox.

Syntax
void setCheckboxEnabled (boolean checkboxEnabled)

Parameters

• checkboxEnabled – True/Flase for the checkbox is checked or not, respectively.

Usage

This method can be used by state implementation to set whether the checkbox can be checked/
unchecked.

In some cases, the state implementation may want the checkbox to be "not changeable" from
the State Editor. In this case, the checkbox can be set to disabled so that it is not changable.

The checkbox indicates whether the value entered in the "input field" should be treated as
"<i>session variable name</i>" when checked, or "<i>static value</i>" when not checked.

setInputType(InputType) method
Input type can be changed from the State Editor by checking/unchecking the input attribute
checkbox, to set it to InputType#SESSION or InputType#ATTRIBUTE, respectively.

Syntax
void setInputType (InputType inputType)

Parameters

• inputType – InputType of this input attribute

Usage

This method is used by the UI State Editor when the checkbox is changed.

By default, it is set to

InputType#SESSION

.

However,

SelectionBoxAttribute

overwrite the default to

InputType#ATTRIBUTE

SMS Application Development

SMS Application Development 189

.

setOptional(boolean) method
Set the input attribute optional status.

Syntax
void setOptional (boolean optional)

Parameters

• optional – True if optional; False is required input attribute.

Usage

NOTE:

Typically, the optional status is set in the constructor.

InputType() enumeration
Indicate how to treat the value provided in the input field, either as a "static value" or as a
"session variable name" to retrieve the actual value from session variable using the specified
name.

Enum Constant Summary

• ATTRIBUTE – Indicate that the input value is a static value, hence it can be used as is.
• SESSION – Indicate that the input value is a session variable name, hence the input value

needs to be retrieved from the session variable of the specified name.

encrypted variable
Indicator of whether this attribute is encrypted or not.

Syntax
boolean encrypted

Remarks
NOTE: currently it's just a place holder for future implementation. Setting it to true does NOT
encrypt the attribute value yet.

OutputAttribute class
OutputAttribute is used by the state to store output resulting from processing the state.

Syntax
public class OutputAttribute

SMS Application Development

190 SAP Mobile Platform

Remarks
This could be the results from external web service call, status code, error message, error code,
etc. The value set to the output attribute will be automatically saved to the session variable so
that it can be used even when the state is out of scope, or no longer in the processing mode.

On the State Editor, the OutputAttribute is referred to as "Output Variable" and is represented
with the following UI components:

• A checkbox. Checked and not editable.
• Textbox field for specifying the session variable name to store the output value. By default,

it is set to this output attribute ID.
• A description of the output attribute
• Mouse-hover showing the description, and the default session variable name

The output attribute has only one type, the InputType#SESSION type.

There are two mechanisms to set value on the output attribute: "<i>set and persist</i>", and
"<i>set and hold</i>". The "set and persist" using one of the setValue() methods will set the
value and immediately persist it to the session variable. This is good if there are only a few
output attributes to set, because each calls will result in an independent call to the datasource.
If there are many output attributes to set, the later mechanism (set
and hold) is more efficient because the value is temporarily held in
the output attribute until an explicit bulk save is called by the
state implementation as shown on the following.

 outAttrib1.setHoldValue("value1");
 outAttrib2.setHoldValue("value2");
 outAttrib3.setHoldValue("value3");

 // The following helper method belongs to the SmappStatePlugin
 // This method will also call the resetHoldValue() method
 // of each output attributes, after a successful save.
 saveOutputAttributes();

OutputAttribute(String, String) constructor
Constructor.

Syntax
OutputAttribute (String id , String description)

Parameters

• id – unique Id for the attribute
• description – description that will be displayed on the state editor

SMS Application Development

SMS Application Development 191

getHoldValue() method
The holdValue pending to bulk save.

Syntax
String getHoldValue ()

Returns
Null - when there is no held value; Otherwise, the temporary held value

Usage

After a successful save using the

SmappStatePlugin

saveOutputAttributes()
, the value will be automativcally set to

null
.

Null - when there is no held value; Otherwise, the temporary held value

resetHoldValue() method
Reset the holdValue to null.

Syntax
void resetHoldValue ()

setHoldValue(String) method
Set the holdValue to the given string.

Syntax
void setHoldValue (String value)

Parameters

• value – string value to set the holdValue

setHoldValue(Long) method
Set the holdValue to the string value of the given Long value.

Syntax
void setHoldValue (Long value)

SMS Application Development

192 SAP Mobile Platform

Parameters

• value – Long value to set the holdValue

setHoldValue(Integer) method
Set the holdValue to the string value of the given Integer value.

Syntax
void setHoldValue (Integer value)

Parameters

• value – Integer value to set the holdValue

setHoldValue(Boolean) method
Set the holdValue to the string value of the given Boolean value.

Syntax
void setHoldValue (Boolean value)

Parameters

• value – Boolean value to set the holdValue

setValue(String) method
Set the value to this output attribute, and also persist the value to the session variable using the
name specified in the output textbox field.

Syntax
void setValue (String value) throws DBException

Parameters

• value – string value to be set on the output attribute

Exceptions

• DBException – Exception when setting the session variable to datasource

Usage

By default, the output textbox is set to the ID of this output attribute.

SMS Application Development

SMS Application Development 193

setValue(Long) method
Set the string value of given Long to this output attribute, and also persist the value to the
session variable using the name specified in the output textbox field.

Syntax
void setValue (Long value) throws DBException

Parameters

• value – Long value to be set on the output attribute

Exceptions

• DBException – Exception when setting the session variable to datasource

Usage

By default, the output textbox is set to the ID of this output attribute.

setValue(Integer) method
Set the string value of given Integer to this output attribute, and also persist the value to the
session variable using the name specified in the output textbox field.

Syntax
void setValue (Integer value) throws DBException

Parameters

• value – Integer value to be set on the output attribute

Exceptions

• DBException – Exception when setting the session variable to datasource

Usage

By default, the output textbox is set to the ID of this output attribute.

setValue(Boolean) method
Set the string value of given Boolean to this output attribute, and also persist the value to the
session variable using the name specified in the output textbox field.

Syntax
void setValue (Boolean value) throws DBException

SMS Application Development

194 SAP Mobile Platform

Parameters

• value – Boolean value to be set on the output attribute

Exceptions

• DBException – Exception when setting the session variable to datasource

Usage

By default, the output textbox is set to the ID of this output attribute.

SelectionBoxAttribute class
Input attribute of selection dropdown type.

Syntax
public class SelectionBoxAttribute

Remarks
The State Editor will display this input attribute using a selection dropdown component with
preset list. User can select a value from the dropdown list but not entering a new one.

By default, the SelectionBoxAttribute has a InputAttribute.InputType#ATTRIBUTE type, so
the input attribute checkbox will be unchecked, and it means the value is static and will be used
as is. The choice made by the user on the State Editor will be treated as a static value, and used
as is. The dropdown is populated with a "Key-Value" list, and the selected value is the "Key".
The "Value" is the displayed text shown on the UI.

This SelectionBoxAttribute can also be set to InputAttribute.InputType#SESSION type, to
retrieve the value from the session variable. The name of the session variable will be the ID of
this selectionbox attribute, and it cannot be changed. On the state editor, the ID will be shown
on mouse-hover over the input attribute description. When set to the
InputAttribute.InputType#SESSION type, the selection should be left null.

SelectionBoxAttribute(String, String, boolean) constructor
Constructor.

Syntax
SelectionBoxAttribute (String id , String description , boolean
optional)

Parameters

• id – unique id of this state. NOTE: id needs to be unique within the same state
• description – detailed description of input attribute, to be displayed on the state editor

SMS Application Development

SMS Application Development 195

• optional – True/False for whether the field is optional or not, respectively

getInputValue() method
More efficient way to check and obtain the value of the input attribute using a single database
call.

Syntax
InputValue getInputValue () throws DBException

Returns
NULL - the variable has not been populated InputValue - populated value

Exceptions

• DBException – Exception when accessing the session variable from database
• RequiredParameterMissingException – This is a required input field but the value has

not been populated

Usage

The return InputValue can be used to retrieve the actual input value.

In the past, this has been accomplished using a combined call to

isSet()

and

getValue()

methods which is less efficient because each method make a separate database call.
This method is designed to be used with an optional (not mandatory)
input attribute. For example,

 InputValue iv = optionalInputVariable.getInputValue();
 if (iv!=null) {
 retrieve the value
 }
 For mandatory input attribute, access the value directly using the
getInputValueWithWarning(), and handle the
RequiredParameterMissingException appropriately.

NULL - the variable has not been populated InputValue - populated value

getItems() method
List of items that will be used for the dropdown list.

Syntax
List< KeyValuePair< String, String > > getItems ()

SMS Application Development

196 SAP Mobile Platform

Returns
List of KeyValuePair items for the dropdown list.

Usage

List of KeyValuePair items for the dropdown list.

getItemValue(String) method
Helper method to find the value of the specified key from the dropdown list.

Syntax
String getItemValue (String key)

Parameters

• key – Key

Returns
Value of the specified key

Usage

Value of the specified key

getRawValueLog() method
Helper class called internally by getRawValue().

Syntax
String getRawValueLog () throws DBException,
RequiredParameterMissingException

Returns
value in string type

Exceptions

• DBException – Exception when accessing the session variable from database
• RequiredParameterMissingException – This is a required input field but the value has

not been populated

Usage

Overriden by the

SelectionBoxAttribute

SMS Application Development

SMS Application Development 197

.

value in string type

isSet() method
Return True/False when the InputAttribute contains value or not, respectively.

Syntax
boolean isSet () throws DBException

Returns
True/False when the InputAttribute contains value or not, respectively.

Exceptions

• DBException – Exception when accessing the session variable from database

Usage

NOTE

: use this method only for finding out whether the

InputAttribute

contains value, but the value itself is not needed. Otherwise, use the more efficient methods:

getInputValue()

or

getInputValueWithWarning()

that will return null if the input attribute is not not set.

True/False when the InputAttribute contains value or not, respectively.

setItems(List< KeyValuePair< String, String >>) method
Set the list of items to be used in populating the dropdown list.

Syntax
void setItems (List< KeyValuePair< String, String >> list)

Parameters

• list – List of KeyValuePair items for the dropdown list.

Usage
In the state implementations, this method can be called from the
StatePlugin#getInputAttributes() method to set the list, as shown on

SMS Application Development

198 SAP Mobile Platform

the following.

 List<KeyValuePair<String, String>> list = new
ArrayList<KeyValuePair<String, String>>();
 list.add(new KeyValuePair<String, String>("key1", "value1"));
 list.add(new KeyValuePair<String, String>("key2", "value2"));
 list.add(new KeyValuePair<String, String>("key3", "value3"));
 if (list.size()>0) inInputAttr.setItems(credTypes);

list

List of KeyValuePair items for the dropdown list.

SessionVariableAttribute class
This is a special type of Attribute that does not have the UI component on the State Editor.

Syntax
public class SessionVariableAttribute

Remarks
SessionVariableAttribute is used to hold and persist List of BeanConverterInterface type.
Each item in the list is stored in one session variable using the
following naming convention for the session variable name.

 this_sessionVariableAttribute_ID + "_" + state_ID + "[" + index
+ "]"

where: index is the list index.
In addition, one session variable with the following name is used to
store the total number of item in the list.

 this_sessionVariableAttribute_ID + "_" + state_ID + "_count"

SessionVariableAttribute is used in the AbstractDynamicMenu to store the list in the input
parameter of the setMenuListToSession(List<T>) method. This list is used to
generate SMS menu message.

SessionVariableAttribute(String, String) constructor

Syntax
SessionVariableAttribute (String id , String description)

SMS Application Development

SMS Application Development 199

getList(BeanConverterInterface< T >) method
Get the complete List of BeanConverterInterface type from the session variable.

Syntax
public< T > List< T > getList (BeanConverterInterface< T >
beanType) throws DBException

Parameters

• beanType – bean that implement the BeanConverterInterface

Returns
List containing the BeanConverterInterface type

Exceptions

• DBException – Exception when retrieving the session variable from datasource

Usage

List containing the BeanConverterInterface type

setList(List< T >) method
Set the List that needs to be stored in this SessionVariableAttribute.

Syntax
public< T extends BeanConverterInterface< T > > void setList
(List< T > list) throws DBException

Parameters

• list – List to be stored

Exceptions

• DBException – Exception when setting the session variable to datasource

Usage

NOTE

: each item in the list is saved independently and not atomic. Therefore, if DBException occurs
while saving in the middle of the list, the rest of list items will be abandoned resulting in a
partial save.

SMS Application Development

200 SAP Mobile Platform

TextBoxAttribute class
Input attribute of textbox type.

Syntax
public class TextBoxAttribute

Remarks
The State Editor will display this input field using a textbox component, allowing user to enter
value.

By default, this TextBoxAttribute is of InputAttribute.InputType#SESSION (so the checkbox
will be checked), and the input field will be populated with the string ID of this input attribute.
So during state processing, the input attribute value will be retrieved from the session variable
of the input attribute ID.

Change the value of the input field, to retrieve the input attribute value from a different session
variable name.

The textbox attribute type can be changed to InputAttribute.InputType#ATTRIBUTE so that
the value in the input field is used as a static value.

TextBoxAttribute(String, String, boolean) constructor
Constructor.

Syntax
TextBoxAttribute (String id , String description , boolean optional)

Parameters

• id – unique id of this state. NOTE: id needs to be unique within the same state
• description – detailed description of input attribute, to be displayed on the state editor
• optional – True/False for whether the field is optional or not, respectively

getInputValue() method
More efficient way to check and obtain the value of the input attribute using a single database
call.

Syntax
InputValue getInputValue () throws DBException

Returns
NULL - the variable has not been populated InputValue - populated value

SMS Application Development

SMS Application Development 201

Exceptions

• DBException – Exception when accessing the session variable from database
• RequiredParameterMissingException – This is a required input field but the value has

not been populated

Usage

The return InputValue can be used to retrieve the actual input value.

In the past, this has been accomplished using a combined call to

isSet()

and

getValue()

methods which is less efficient because each method make a separate database call.
This method is designed to be used with an optional (not mandatory)
input attribute. For example,

 InputValue iv = optionalInputVariable.getInputValue();
 if (iv!=null) {
 retrieve the value
 }
 For mandatory input attribute, access the value directly using the
getInputValueWithWarning(), and handle the
RequiredParameterMissingException appropriately.

NULL - the variable has not been populated InputValue - populated value

isSet() method
Return True/False when the InputAttribute contains value or not, respectively.

Syntax
boolean isSet () throws DBException

Returns
True/False when the InputAttribute contains value or not, respectively.

Exceptions

• DBException – Exception when accessing the session variable from database

Usage

NOTE

: use this method only for finding out whether the

SMS Application Development

202 SAP Mobile Platform

InputAttribute

contains value, but the value itself is not needed. Otherwise, use the more efficient methods:

getInputValue()

or

getInputValueWithWarning()

that will return null if the input attribute is not not set.

True/False when the InputAttribute contains value or not, respectively.

state package

Members
All public members of the state package.

• AbstractDynamicMenu class – Abstract implementation of the dynamic menu state.
• Page class – Page class represents a one page of menu items based on the specified

maximum number of items per page.
• RequiredParameterMissingException class – This exception is thrown during runtime

in the processing engine when the
com.sybase365.mobiliser.brand.plugins.smapp.controls.InputAttribute is designated as
'not optional' or "mandatory" but no value was provided.

• SmappStatePlugin class – This class represents the main class to be inherited by state
that needs to be displayed on the Application Composer and State Editor, and to be invoked
by the "Processing Engine" at runtime of an application.

• StateUtils class –

AbstractDynamicMenu class
Abstract implementation of the dynamic menu state.

Syntax
public class AbstractDynamicMenu

Remarks
Typically extended by the states that needs to return a list of items. The list is sent to the mobile
handset as Send SMS, and in the form of a menu, as shown on the following example.
 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

SMS Application Development

SMS Application Development 203

The menu item can be selected by sending reply with the menu item number. Example, 1, 2, 3,
or 4, to select the item; 9 will be shown when they are more items and selecting 9 will show
them, 0 is for exiting from the menu and proceed to the alternative flow. Typically, when the
menu item is selected, a more detailed information of the selected item will be sent as SMS.

If there are more items then those displayed, the paging menu item will be displayed. For the
above example, it is "9: More". When 9 is sent back as the reply, the menu will refreshed
showing the next page of the menu, and so on. The menu index is always starting from 1. When
the menu reaches the end, and the 9 is sent back as a reply again, the menu will rotate back to
the first page.

The state can be configured to show the exit menu item. In the above case, it's the "0:
Exit". When 0 is sent back as a reply, nothing is selected so the state will continue the
transition that is associated with the dynamic "EXIT" value. In some application flows, when a
selection is required, the exit menu item can be suppressed by setting "No" to the "Show Exit
menu" drop down box in the state editor.

Three Attribute are automatically registered by this class, including:

• SelectionBoxAttribute - to specify whether to Show Exit menu item
• OutputAttribute - to specify the variable name to store the selected menu KEY
• OutputAttribute - to specify the variable name to store the selected menu VALUE

The life cycle of AbstractDynamicMenu is based on the life cycle of the SmappStatePlugin
and StatePlugin with the following customizations to meet the menu functionalities.

AbstractDynamicMenu is just an abstract implementation of a state that can Send SMS
in the form menu. The subclass provides implementation of getting the list for the menu. The
processMessageLogic(SmappStateProcessingContext) and
processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction) methods
have been final because they have the implementation for the menu functionalities. The
subclass need to implement the following abstract methods instead:
init(SmappStateProcessingAction), constructMenuList(), getStateAttributeList(), and
saveSessionVariables(String, String).

• init(SmappStateProcessingAction) method will be called by the
processStateLogic(SmappStateProcessingContext,
SmappStateProcessingAction).Please refer to the method description for details.

• constructMenuList() and saveSessionVariables(String, String) methods will be called by
both the processMessageLogic(SmappStateProcessingContext) and
processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction)
methods.Please refer to the method description for details.

• getStateAttributeList() is called from the getStateAttributes() that will aggregate the
attributes returned by the getStateAttributeList() with some attributes defined in this
abstract class for the menu, such as the input attribute for specifying whether to show the
exit menu item, the output attributes for the key and value of the selected menu item.

SMS Application Development

204 SAP Mobile Platform

• The AbstractDynamicMenu state will initially be activated by the follow-up
transition from a previous state, so the processing engine will call the
processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction)
method. The init and constructMenuList method will be called sequentially to
initialize and construct the menu. Eventually the menu will be sent out as SMS message,
and the processing engine will be set to action.waitForMessage() waiting for the
reply message. In this case, the user selects a menu item.

• In the special case when the constructMenuList returns a single item only, the state
will immediately call the saveSessionVariables(String, String) method proceed with the
the default continueDyn(1) follow-up transition. The state can customized the
default behavior by overriding the continueWhenSingleEntry(SmappState) method.

• When the reply message arrives, the processing engine will trigger the
AbstractDynamicMenu state using the external activation, hence calling the
processMessageLogic(SmappStateProcessingContext) method.The
constructMenuList method will be called again to assemble the menu that will be
used to interpret the user selected menu index. If the selection is one of the valid menu
item, saveSessionVariables(String, String) method will be called allowing the state to
prepare all the select item details for output, and proceed with the follow-up transition as
returned by the saveSessionVariables method. If null is null, the default OK
follow-up transition will be used.

Pagination class
Helper class that transforms list of menu items into the list of Page classes.

Syntax
private class Pagination

Remarks
Each page contains the maximum number of menu items as returned by the
getMaxMenuItems() method.

Pagination(List< KeyValuePair< String, String >>, String, boolean) constructor

Syntax
Pagination (List< KeyValuePair< String, String >> list , String
pageHeader , boolean showExitMenu)

Parameters

• list – The list of items
• pageHeader – The header of each page
• showExitMenu – whether to show the Exit menu item

SMS Application Development

SMS Application Development 205

getPages() method

Syntax
List< Page > getPages ()

hasNext() method

Syntax
boolean hasNext ()

availableChars variable

Syntax
int availableChars

list variable

Syntax
List< KeyValuePair< String, String > > list

pageHeader variable

Syntax
String pageHeader

pages variable

Syntax
List< Page > pages

showExitMenu variable

Syntax
boolean showExitMenu

constructMenuList() method
Return a list of menu item that will be used to construct the SMS menu message.

Syntax
abstract List< KeyValuePair< String, String > >
constructMenuList () throws DBException

SMS Application Development

206 SAP Mobile Platform

Returns
a list of KeyValuePair menu item

Exceptions

• DBException – Exception when accessing or saving the session variable from database

Usage

The menu item type is

KeyValuePair

. This method allows the extending class to provide a list of menu items to be used by the

processMessageLogic(SmappStateProcessingContext)
and

processStateLogic(SmappStateProcessingAction)
.

a list of KeyValuePair menu item

continueWhenSingleEntry(SmappState) method
When the menu contains a single item, the state will automatically proceed to the
continueDyn(1) transition by default.

Syntax
SmappState continueWhenSingleEntry (SmappState continueState) throws
DBException

Parameters

• continueState – the transition returns by the saveSessionVariables() method

Returns
the followUp transition when the menu contains a single item

Exceptions

• DBException – Exception when accessing or saving the session variable from database

Usage

This method allows the subclass to override the default behavior when there is a need to
automatically proceed with different

SMS Application Development

SMS Application Development 207

continueDyn()
based on the selected menu item. For example, if the menu presents the wallet entries of
various types: SVA, CreditCard, BankAccount, etc. Let's say there is one wallet entry of SVA
type. In such case, the implementation can override this method to proceed with, for example,

continueDyn('SVA')
instead of the default

continueDyn(1)
.

This method is called immediately after

saveSessionVariables(String, String)
. The input

SmappState
parameter is that returned by the

saveSessionVariables(String, String)
. If the

saveSessionVariables(String, String)

already returns the correct

SmappState
, or

continueDyn('SVA')
for the above example, then this method implementation can just return the input parameter
(i.e., return continueState;).

the followUp transition when the menu contains a single item

createPage(boolean) method
Provide subclasses the option to extend or override the default Page functionality.

Syntax
Page createPage (boolean showExitMenu)

Parameters

• showExitMenu – Whether to show the exit menu on the page.

SMS Application Development

208 SAP Mobile Platform

Returns
A new Page.

Usage

A new Page.

getLineBreak() method
Line break characters are used in the SMS menu message.

Syntax
String getLineBreak ()

Returns
the current line break characters

Usage

This method returns the line break characters to be used in the SMS menu message. By default,
it is set to "\n" characters. Some operators support different characters.

Subclass may override it with other supported characters, or use settings obtained from the
configuration file.

the current line break characters

getMaxMenuItems() method
Maximum number of menu items to display or send as SMS menu message including the
pagination "9: More" and "0: Exit" items.

Syntax
int getMaxMenuItems ()

Returns
maximum number of menu items

Usage

By default, it is set to 8.

Subclass may override with setting according to the size of each menu item.

maximum number of menu items

SMS Application Development

SMS Application Development 209

getMenuListFromSession(BeanConverterInterface< T >) method
Get the menu list.

Syntax
final< T > List< T > getMenuListFromSession
(BeanConverterInterface< T > menuBean) throws DBException

Parameters

• menuBean – object type holding the menu information

Returns
menu list of menuBean type

Exceptions

• DBException – Exception when accessing or saving the session variable from database

Usage

This method is typically called from the

constructMenuList()

and

saveSessionVariables(String, String)

methods.

menu list of menuBean type

getMessageOptions(Page) method
Provide subclasses the option to set some default message options based on the current page
before sending the message.

Syntax
MwizMessageOptions getMessageOptions (Page page)

Returns
Default message options if any.

Usage

Default message options if any.

SMS Application Development

210 SAP Mobile Platform

getPaginationExit() method
String showing: Menu index and description, for exit from the menu.

Syntax
String getPaginationExit ()

Returns
pagination exit characters

Usage

By default, it is set to "<code>\n0: Exit</code>".

Subclass may override with the preferred text or language specific content, or override it with
settings obtained from the configuration file. NOTE: the menu index for exit is

FIXED to 0

, and cannot be changed.

Note the state editor will display an input dropdown attribute called "Show Exit menu". This is
used for selecting whether to include the exit menu in the SMS menu message. This is used in
cases where the exit menu is not be allowed, forcing the user to select a menu item.

pagination exit characters

getPaginationNext() method
String showing: Menu index and description, for paging the menu, or pagination to the next
page.

Syntax
String getPaginationNext ()

Returns
pagination next characters

Usage

By default, it is set to "<code>\n9: More</code>" because the default pagination index is 9, as
returned by the

getPaginationNextIndex()

method.

Implementation state may override it to the preferred language specific content, or override it
with settings obtained from the configuration file.

SMS Application Development

SMS Application Development 211

NOTE

:

• Please ensure that the pagination index string returned by this method is in-synch with the
number returned by the getPaginationNextIndex() method.

• The pagination index can be treated separately from the maximum number of menu item.
In other words, the maximum number of menu item can be set to 4, for example, and the
pagination index is kept as default (i.e., 9).

pagination next characters

getPaginationNextIndex() method
Index recognized by the algorithm for pagination to the next page.

Syntax
int getPaginationNextIndex ()

Returns
pagination index number

Usage
By default, this is set to 9. The default maximum number of menu
items is set to 8 (including pagination and possible exit index). So,
there is a gap of 7 and 8. By default, the full menu will be displayed
as follow.

 1: Item1
 2: Item2
 3: Item3
 4: Item4
 5: Item5
 6: Item6
 9: More
 0: Exit

Implementation state may override this to a different number, if needed.

NOTE

:

• The pagination index number returned by this method is in synch with the pagination index
string returned by the getPaginationNext() method.

• The pagination index can be treated separately from the maximum number of menu items.
In other words, the maximum number of menu item can be set to 4, for example, and the
pagination index is kept as default (i.e., 9). However, if the maximum number of menu
items (getMaxMenuItems()) is increased to greater than 10, then the pagination index
number and text needs to be adjusted to a larger number accordingly.

SMS Application Development

212 SAP Mobile Platform

pagination index number

getStateAttributeList() method
Return an array of Attribute specified in the subclass.

Syntax
abstract Attribute[] getStateAttributeList ()

Returns
an array of Attribute specified by the subclass

Usage

This method will be used in constructing the array returned by the

getStateAttributes()
method. The array returns the aggregated attributes of this abstract class and the subclass.

an array of Attribute specified by the subclass

getStateAttributes() method
Returns the complete set of Attribute as specificed by this class and the subclass.

Syntax
final Attribute[] getStateAttributes ()

Returns
an array of Attribute including those registered by the subclass

Usage

Intentionally made final so that it can not be override.

The subclass should use the

getStateAttributeList()

to return all the

Attribute
s it specified, so that it can be aggregated by this method.

an array of Attribute including those registered by the subclass

SMS Application Development

SMS Application Development 213

getStateNotes() method
Notes on the default behaviour of the dynamic menu.

Syntax
String getStateNotes ()

Usage

The text is as follow:
Use the following follow up states:
OK: If user selected a menu itemFAIL: Unexpected error occurredDyn
EXIT: User selected to exit the menuDyn 1: Menu contains only 1
items, so it's auto selectedDyn 0: Menu contains 0 items, so skipped

This notes can be appended to the subclass notes. For example,
the subclass override the method and embedded the default notes

 public String getStateNotes() {
 StringBuilder sb = new StringBuilder();
 sb.append("State details.\n\n");
 sb.append(super.getStateNotes());
 sb.append("- Dyn -9: Missing required input, or invalid
format.\n");
 return sb.toString();
 }

init(SmappStateProcessingAction) method
Allow the subclass to perform all the necessary initialization including constructing the menu
list.

Syntax
abstract SmappState init (SmappStateProcessingAction action) throws
DBException

Parameters

• action – Processing action object, is used as a mechanism to communicate to the
processing engine the desired processing action

Returns
follow-up transition, if necessary. In the normal circumstances, null will be returned.
Otherwise, the processing will be interrupted by this follow-up transition.

SMS Application Development

214 SAP Mobile Platform

Exceptions

• DBException – Exception when accessing or saving the session variable from database

Usage

Typically initialization includes: getting the menu list from the datasource, such as web
service.

follow-up transition, if necessary. In the normal circumstances, null will be returned.
Otherwise, the processing will be interrupted by this follow-up transition.

processMessageLogic(SmappStateProcessingContext) method
Process incoming message.

Syntax
final SmappState processMessageLogic
(SmappStateProcessingContext context) throws
MwizProcessingException, DBException

Parameters

• context – processing engine context; should be used to obtain context information but
should NOT be modified.

Returns
follow-up transition

Exceptions

• MwizProcessingException – processing engine exception
• DBException – Exception when accessing or saving the session variable from database

Usage

The

AbstractDynamicMenu

support "Send SMS" feature, meaning it can send message and wait for the response, a very
similar behavior to the base "Send SMS" state. This

processMessageLogic(SmappStateProcessingContext)

method will be called during processing of the incoming message. This method processes the
incoming message, most likely, containing the selected menu item. The message can be either
a selection or a menu control (such as: more or exit).

SMS Application Development

SMS Application Development 215

If the incoming message contains a valid selection of menu item index, the

saveSessionVariables(String, String)

method will be called followed by

continueOk()

.

If the incoming message conatins a valid menu control index, the processing is forwarded to

processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction)

method.

Intentionally made final so that it cannot be override.

follow-up transition

processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction)
method
Contains the actual processing logic for constructing the menu list.

Syntax
final SmappState processStateLogic
(SmappStateProcessingContext context ,
SmappStateProcessingAction action) throws MwizProcessingException,
DBException

Parameters

• context – processing engine context; should be used to obtain context information but
should NOT be modified.

Returns
follow-up transition

Exceptions

• MwizProcessingException – processing engine exception
• DBException – Exception when accessing or saving the session variable from database

Usage

The following methods will be called:

• init(SmappStateProcessingAction) - for initialization and getting the menu items from the
source

SMS Application Development

216 SAP Mobile Platform

• constructMenuList() - for getting the formatted menu list in key-value pair form

If the

constructMenuList()

returns a list containing a single item only, the

saveSessionVariables(String, String)

will be called and the method will return with the follow-up transition (

SmappState
) from the

continueWhenSingleEntry(SmappState)

. Otherwise, the constructed SMS menu message will be sent out.

Intentionally made final so that it cannot be override.

follow-up transition

saveSessionVariables(String, String) method
This method is called after a selection is made from the menu, allowing the subclass to prepare
the OutputAttributes (if needed) before transition to the follow-up state.

Syntax
abstract SmappState saveSessionVariables (String key , String
value) throws DBException

Parameters

• key – Selected menu item key
• value – Selected menu item value

Returns
null - correspond to everything is OK, proceed as normal SmappState - other than OK,
and it needs to be handle accordingly.

Exceptions

• DBException – Exception when accessing or saving the session variable from database

Usage

When the returned value is

null

SMS Application Development

SMS Application Development 217

, it will be treated as

continueOk()

. Otherwise, it will be used as the follow-up transition.

In addition, this method is also called in the special cases when the menu contains a single item
only. Instead of displaying the menu, the state will immediately transition to the

single-item

follow-up state. This single-item follow-up state is whatever

SmappState
returned by the

continueWhenSingleEntry(SmappState)

method. By default, it is

continueDyn(1)
. See

continueWhenSingleEntry(SmappState)

for details. The

SmappState
returned by this method will be submitted to the

continueWhenSingleEntry(SmappState)

method.

It's possible to make additional service called within this method to gather additional
information based on the selected item. For example, if the menu presents the transaction list,
a call to get transaction details based on the selected transaction item can be done.

null - correspond to everything is OK, proceed as normal SmappState - other than OK,
and it needs to be handle accordingly.

setMenuListToSession(List< T >) method
Set a new menu list and save it into the session attribute.

Syntax
final< T extends BeanConverterInterface< T > > void
setMenuListToSession (List< T > list) throws DBException

SMS Application Development

218 SAP Mobile Platform

Parameters

• list – menu list to be persisted to session attribute

Exceptions

• DBException – Exception when accessing or saving the session variable from database

Usage

Menu list is retrieved from the datasource in the

init(SmappStateProcessingAction)

method that is implemented by the subclass. The menu list needs to be persisted into session
attribute so that it can exist over multiple SMS sessions without reloading it from the source
(database or service). To persist the menu list using this method, the object in the list has to
implement

BeanConverterInterface

and

Comparable

.

This method is typically called from the

init(SmappStateProcessingAction)

method.

supportsFailTransition() method
Support fail transition.

Syntax
final boolean supportsFailTransition ()

Returns
true, or the transition fail supported

Usage

This is always true to force subclass in handling fail condition.

true, or the transition fail supported

SMS Application Development

SMS Application Development 219

supportsOkTransition() method
Support OK transition.

Syntax
boolean supportsOkTransition ()

Returns
whether transition OK is supported or not

Usage

If true, the OK transition drop down list will be displayed in the state editor. The drop down list
contains all the valid follow-up states. By default, this method returns

true
Subclass has the option to turn it off by override this method. Let's say, for example, the menu
displays the wallet entries list consisting of various types of payment instruments (PI). When a
menu item is selected, it will be convenient to know the selected PI type as well so that the
follow-up state can process it accordingly. For example, if the selected PI is SVA then the
transition will be wired to the get SVA details follow-up state.

The above example can be accomplished by overide this method to false, so that OK transition
is not displayed on the state editor. In the subclass implementation, the OK transition is
supported using the

continueDyn()
instead. For example, if the PI is SVA, the state will return

continueDyn("SVA")
, etc.

<u>NOTE</u>: if subclass override this method, most likely, it should also override the

continueWhenSingleEntry(SmappState)

method.

whether transition OK is supported or not

supportsSendSmsMessage() method
Support Send SMS message textbox toggle.

Syntax
boolean supportsSendSmsMessage ()

SMS Application Development

220 SAP Mobile Platform

Usage

If true, the textbox will be displayed on the state editor. The content of the textbox will be used
as the header in the SMS menu message. For example, if the content of the textbox is
"Transactions:" then the menu will be shown as follow.
 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

Subclass has the option to turn it off by override this method.

inShowExitMenu variable
Selection for whether to show the exit menu item.

Syntax
final SelectionBoxAttribute inShowExitMenu

Remarks
Default Id = "SHOW_EXIT"Default description = "Show Exit menu"Default entries are: [0,
No], [1,Yes]

The subclass may modify the key and description as needed.

outKey variable
Selected key.

Syntax
final OutputAttribute outKey

Remarks
When a menu item is selected, the selected key will be stored in this session OutputAttribute.

Default Id = "SELECTED_KEY"Default description = "Variable name of the selected key"

The subclass may modify the key and description as needed.

outValue variable
Selected value.

Syntax
final OutputAttribute outValue

SMS Application Development

SMS Application Development 221

Remarks
When a menu item is selected, the selected value will be stored in this session OutputAttribute.

Default Id = "SELECTED_VALUE"Default description = "Variable name of the selected
value"

The subclass may modify the key and description as needed.

Page class
Page class represents a one page of menu items based on the specified maximum number of
items per page.

Syntax
public class Page

Remarks
Used in the AbstractDynamicMenu implementation of Send SMS menu states.

Page(boolean) constructor
Constructor.

Syntax
Page (boolean showExitMenu)

Parameters

• showExitMenu – True/False on whether the menu will display the Exit item

getHeader() method
Get the header text to be included with the menu items.

Syntax
String getHeader ()

Returns
menu page header

Usage
For example, the header text "Transactions:" will appear in the
following menu:

 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch

SMS Application Development

222 SAP Mobile Platform

 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

menu page header

getItems() method
Get the List of KeyValuePair items to be used in generating the menu items.

Syntax
List< KeyValuePair< String, String > > getItems ()

Returns
List of KeyValuePair items for generating menu

Usage

List of KeyValuePair items for generating menu

getLineBreak() method
Line break characters to be used in the menu.

Syntax
String getLineBreak ()

Returns
the line break string

Usage

Some operator support different types of line break characters, so this specified line break
characters will be used in the menu.

the line break string

getPaginationExit() method
Get the Exit menu item.

Syntax
String getPaginationExit ()

Returns
the exit menu item string

SMS Application Development

SMS Application Development 223

Usage

the exit menu item string

getPaginationNext() method
Get the pagination NEXT menu item.

Syntax
String getPaginationNext ()

Returns
pagination next menu item string

Usage

pagination next menu item string

isExit() method
True/false for whether to show the Exit menu item or not, respectively.

Syntax
boolean isExit ()

Returns
True/false for showing the Exit menu item or not, respectively.

Usage

True/false for showing the Exit menu item or not, respectively.

isNext() method
True/false for whether to show the pagination Next menu item or not, respectively.

Syntax
boolean isNext ()

Returns
True/false for whether to show the pagination Next menu item or not, respectively.

Usage

True/false for whether to show the pagination Next menu item or not, respectively.

SMS Application Development

224 SAP Mobile Platform

previewMenu() method
String representation of the menu page, but without the pagination menu item.

Syntax
String previewMenu ()

Returns
string representation of menu page without the pagination item

Usage

By default, the pagination menu item is "9: More". The exit item will be included if specified.

string representation of menu page without the pagination item

setExit(boolean) method
Set True/false for whether to show the Exit menu item or not, respectively.

Syntax
void setExit (boolean exit)

Parameters

• exit – True/false for showing the Exit menu item or not, respectively.

setHeader(String) method
Set the header text to be included with the menu items.

Syntax
void setHeader (String header)

Parameters

• header – menu page header

Usage
For example, the header text "Transactions:" will appear in the
following menu:

 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks

SMS Application Development

SMS Application Development 225

 9: More
 0: Exit

setItems(List< KeyValuePair< String, String >>) method
Set the List of KeyValuePair items to be used in generating the menu items.

Syntax
void setItems (List< KeyValuePair< String, String >> items)

Parameters

• items – List of KeyValuePair items for generating menu

setLineBreak(String) method
Line break characters to be used in the menu.

Syntax
void setLineBreak (String lineBreak)

Parameters

• lineBreak – line break string

Usage

Some operator support different types of line break characters, so this specified line break
characters will be used in the menu.

setNext(boolean) method
Set True/false for whether to show the pagination Next menu item or not, respectively.

Syntax
void setNext (boolean next)

Parameters

• next – True/false for showing the pagination Next item or not, respectively

setPaginationExit(String) method
Set the Exit menu item.

Syntax
void setPaginationExit (String paginationExit)

SMS Application Development

226 SAP Mobile Platform

Parameters

• paginationExit – the exit menu item string

Usage
For example, the following menu has the "0: Exit" as the exit menu
item.

 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

setPaginationNext(String) method
Set the pagination NEXT menu item.

Syntax
void setPaginationNext (String paginationNext)

Parameters

• paginationNext – the pagination next menu item string

Usage
For example, the following menu has the "9: More" as the pagination
next menu item.

 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

toString() method
Complete string representation of the menu page.

Syntax
String toString ()

Returns
string representation of complete menu page without the pagination item

SMS Application Development

SMS Application Development 227

Usage

The exit item will be included if specified.

string representation of complete menu page without the pagination item

exit variable
True/false for whether to show the Exit menu item or not, respectively.

Syntax
boolean exit

header variable
Header text to be included with the menu items.

Syntax
String header

Remarks
For example, the header text "Transactions:" will appear in the
following menu:

 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

items variable
List of KeyValuePair items to be used in generating the menu items.

Syntax
List< KeyValuePair< String, String > > items

lineBreak variable
Line break characters to be used in the menu.

Syntax
String lineBreak

Remarks
Some operator support different types of line break characters, so this specified line break
characters will be used in the menu.

SMS Application Development

228 SAP Mobile Platform

next variable
True/false for whether to show the pagination menu item or not, respectively.

Syntax
boolean next

paginationExit variable
The Exit menu item.

Syntax
String paginationExit

Remarks
For example, the following menu has the "0: Exit" as the exit menu
item.

 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

paginationNext variable
The pagination NEXT menu item.

Syntax
String paginationNext

Remarks
For example, the following menu has the "9: More" as the pagination
next menu item.

 Transactions:
 1. 26 Jan 2012 09:16 - USD 10.00 Pay cab
 2. 26 Jan 2012 10:10 - USD 3.45 Starbucks
 3. 26 Jan 2012 12:25 - USD 20.00 Lunch
 4. 26 Jan 2012 13:30 - USD 3.00 Starbucks
 9: More
 0: Exit

SMS Application Development

SMS Application Development 229

RequiredParameterMissingException class
This exception is thrown during runtime in the processing engine when the
com.sybase365.mobiliser.brand.plugins.smapp.controls.InputAttribute is designated as 'not
optional' or "mandatory" but no value was provided.

Syntax
public class RequiredParameterMissingException

Remarks
This could also happen, for example, when the input was expected from a session variable but
the session variable was not created in the upstream flow.

RequiredParameterMissingException(String) constructor

Syntax
RequiredParameterMissingException (String message)

SmappStatePlugin class
This class represents the main class to be inherited by state that needs to be displayed on the
Application Composer and State Editor, and to be invoked by the "Processing Engine" at
runtime of an application.

Syntax
public class SmappStatePlugin

Derived classes

• com.sybase365.mobiliser.brand.plugins.smapp.state.AbstractDynamicMenu on page
203

Remarks
As such it should be regarded as the 'external' API. Any class that extends this class will be
called State for the purpose of the API documentation.

There are a significant number of infrastructure functionalities performed by this base class
that simplify the state development, including extra methods to allow processing of input and
output attribute values and session variables.

Please refer to StatePlugin for more detailed description of the processing engine life cycle.

SMS Application Development

230 SAP Mobile Platform

continueDyn(String) method
Helper method in state development.

Syntax
SmappState continueDyn (String value) throws DBException

Parameters

• value – the value to log.

Returns
SmappState of the FAIL follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application

Usage

This method will attempt to find the dynamic follow-up transition that matched the input

String

parameter and return the corresponding follow-up state.

If not found, it will return the follow-up state from the

continueFail()

.

When error occurs, the return will be null.

SmappState of the FAIL follow-up transition

continueDyn(Integer) method
Helper method in state development.

Syntax
SmappState continueDyn (Integer value) throws DBException

Parameters

• value – the value to log.

Returns
SmappState of the FAIL follow-up transition

SMS Application Development

SMS Application Development 231

Exceptions

• DBException – any database exceptions that warrant terminating the application

Usage

This method will attempt to find the dynamic follow-up transition that matched the input

Integer

parameter and return the corresponding follow-up state.

If not found, it will return the follow-up state from the

continueFail()

.

When error occurs, the return will be null.

SmappState of the FAIL follow-up transition

continueDyn(Long) method
Helper method in state development.

Syntax
SmappState continueDyn (Long value) throws DBException

Parameters

• value – the value to log.

Returns
SmappState of the FAIL follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application

Usage

This method will attempt to find the dynamic follow-up transition that matched the input

Long

parameter and return the corresponding follow-up state.

If not found, it will return the follow-up state from the

continueFail()

.

SMS Application Development

232 SAP Mobile Platform

When error occurs, the return will be null.

SmappState of the FAIL follow-up transition

continueFail() method
Helper method in state development.

Syntax
SmappState continueFail () throws DBException

Returns
SmappState of the FAIL follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application

Usage

This method will attempt to find the follow-up transition of FAIL type and return the
corresponding follow-up state.

If not found, it will set the processing engine to terminate, or

SmappStateProcessingAction

.terminateProcessing();

SmappState of the FAIL follow-up transition

continueFail(String) method
Helper method in state development.

Syntax
SmappState continueFail (String logMsg) throws DBException

Parameters

• logMsg – the message to be logged

Returns
SmappState of the FAIL follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application

SMS Application Development

SMS Application Development 233

Usage

This method will attempt to find the follow-up transition of FAIL type and return the
corresponding follow-up state.

If not found, it will set the processing engine to terminate, or

SmappStateProcessingAction

.terminateProcessing();

SmappState of the FAIL follow-up transition

continueOk() method
Helper method in state development.

Syntax
SmappState continueOk () throws DBException

Returns
SmappState of the OK follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application

Usage

This method will attempt to find the follow-up transition of OK type and return the
corresponding follow-up state.

If not found, it will set the processing engine to terminate, or

SmappStateProcessingAction

.terminateProcessing();

SmappState of the OK follow-up transition

determineFollowingSmappStateFromPattern(SmappStateProcessingContext)
method
Determine the follow-up transition that match the message in the state processing context.

Syntax
SmappState determineFollowingSmappStateFromPattern
(SmappStateProcessingContext context) throws DBException,
CryptoException

SMS Application Development

234 SAP Mobile Platform

Parameters

• context – the state processing context containing all the necessary object needed while
processing the state.

Returns
the follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application
• CryptoException – any encryption exceptions that warrant terminating the application

Usage

the follow-up transition

determineFollowingSmappStateFromPattern(SmappStateProcessingContext,
MwizMessage) method
Determine the follow-up transition that match the message from the input parameter.

Syntax
SmappState determineFollowingSmappStateFromPattern
(SmappStateProcessingContext context , MwizMessage msg) throws
DBException, CryptoException

Parameters

• context – the state processing context containing all the necessary object needed while
processing the state.

• msg – message to be used in matching the follow-up transition

Returns
the follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application
• CryptoException – any encryption exceptions that warrant terminating the application

Usage

the follow-up transition

SMS Application Development

SMS Application Development 235

determineFollowingSmappStateFromTransitionType(EnumSmappTransitionType,
SmappState, SmappStateProcessingContext) method
Determine the follow-up transition that match the type provided in the input parameter.

Syntax
SmappState determineFollowingSmappStateFromTransitionType
(EnumSmappTransitionType tt , SmappState state ,
SmappStateProcessingContext context) throws DBException

Parameters

• tt – EnumSmappTransitionType type
• state – current state
• context – the state processing context containing all the necessary object needed while

processing the state. the follow-up transition

Exceptions

• DBException – any database exceptions that warrant terminating the application

getCurrentCustomer() method
Current customer Customer of this session.

Syntax
Customer getCurrentCustomer ()

Returns
current customer or Customer

Usage

current customer or Customer

getInputAttributes() method
Return the input attributes specified by the state.

Syntax
List< IAttribute > getInputAttributes ()

Returns
input attribute list

SMS Application Development

236 SAP Mobile Platform

Usage

This method is called by the State Editor to get the input attribute list that is used to render the
Input Variables on the state editor.

This method could be called by the state implementation logic to gather all the input variable
values.

input attribute list

getOutputAttributes() method
Return the output attributes specified by the state.

Syntax
List< IAttribute > getOutputAttributes ()

Returns
output attribute list

Usage

This method is called by the State Editor to get the output attribute list that is used to render the
Output Variables on the state editor.

This method could be called by the state implementation logic to bind all the output variable
values, and save to the session variable.

output attribute list

getSessionAttributeForKey(String) method
Get the value of session attribute (SessionAttribute) based on the specified key.

Syntax
SessionAttribute getSessionAttributeForKey (String attribKey)
throws DBException

Parameters

• attribKey – session attribute key

Returns
the session attribute value

Exceptions

• DBException – Exception when accessing the session variable from database

SMS Application Development

SMS Application Development 237

Usage

the session attribute value

getSessionAttributes() method
Get session attributes for the current state in the current session.

Syntax
List< SessionAttribute > getSessionAttributes () throws
DBException

Returns
List of SessionAttributes

Exceptions

• DBException – Exception when accessing the session variable from database

Usage

List of SessionAttributes

getSessionId() method
Session ID that the application is running.

Syntax
Long getSessionId ()

getSmsText18nReplaced() method
Process the SMS message by replacing all the session variables with the actual session
variable value.

Syntax
SmsTextI18n getSmsText18nReplaced () throws DBException,
CryptoException

Returns
processed SMS message in SmsTextI18n

Exceptions

• DBException – Exception when accessing or saving the session variable from database
• CryptoException – Encryption exception

SMS Application Development

238 SAP Mobile Platform

Usage

processed SMS message in SmsTextI18n

getStateAttributes() method
Returns all the attributes (input and output) specified in the state.

Syntax
abstract Attribute[] getStateAttributes ()

Returns
Input and output attributes specified by the state

Usage
For example, the state implementation can be done as follow:

 // Input Attribute
 private static final TextBoxAttribute inPIId = new
TextBoxAttribute("PI_ID", "Payment Instrument Id", false);
 private static final TextBoxAttribute inOutputDateFormat = new
TextBoxAttribute("OUTPUT_DATE_FORMAT", "Override default output date
format", true);

 // Output Attributes
 private static final OutputAttribute outAcctNumber = new
OutputAttribute("PI_BANKACCT_ACCTNUMBER", "Account number");
 private static final OutputAttribute outHolderName = new
OutputAttribute("PI_BANKACCT_HOLDERNAME", "Account holder name");

 private static Attribute[] stateAttr = new Attribute[] { inPIId,
inOutputDateFormat, outAcctNumber, outHolderName};

 protected Attribute[] getStateAttributes() {
 return stateAttr;
 }

Input and output attributes specified by the state

SMS Application Development

SMS Application Development 239

getStateNotes() method
The detailed description about the state, and documentations on how to use the state including
the follow-up transitions.

Syntax
String getStateNotes ()

Returns
null by default

Usage

Using wicket MultiLineLabel automatic filtering, any newlines '

' will be rendered as

and any double new lines '

' will render as a separate paragraph.

NOTE: Use newline mechanism only for layout of text - do not embed HTML into the text
strings

Used by: state editor

null by default

handleFatal(SmappStateProcessingContext, SmappStateProcessingAction)
method
Helper method in state development.

Syntax
void handleFatal (SmappStateProcessingContext context ,
SmappStateProcessingAction action) throws MwizProcessingException,
DBException

Parameters

• context – the state processing context containing all the necessary object needed while
processing the state.

• action – SmappStateProcessingAction is used to communicate back to the processing
engine how to proceed.

Exceptions

• MwizProcessingException – any exceptions that warrant terminating the application

SMS Application Development

240 SAP Mobile Platform

• DBException – any database exceptions that warrant terminating the application

Usage

This method will attempt to find the follow-up transition of FAIL type and set the
corresponding follow-up state to the

SmappStateProcessingAction

.

If not found, it will set the processing engine to terminate, or

SmappStateProcessingAction

.terminateProcessing();

isCurrentStateEncrypted() method
Indicate whether the current state is encrypted.

Syntax
boolean isCurrentStateEncrypted ()

Returns
True or false for encrypted or not, respectively.

Usage

This flag can be set in the state editor.

When set to true, a state to never show the messages it sends out or inputs it receives back in
clear text in the message logs. This is a security feature to allow passwords and PINs to be
restricted.

True or false for encrypted or not, respectively.

isSelectable() method
To indicate whether the state can be used as the follow-up state.

Syntax
boolean isSelectable ()

Returns
True - state appears in the State Editor follow-up dropdown list

SMS Application Development

SMS Application Development 241

Usage

This is used by the state editor to filter out the follow-up drop down list. Currently, it is only
used by the Application state, that is the first state automatically added, and cannot be deleted
in any application.

As is now, it's not a very useful method. State should always implement it with a return of
true.

Used by: state editor

True - state appears in the State Editor follow-up dropdown list

loadStateAttributes(SmappStateEditorContext) method
Default implementation is empty.

Syntax
void loadStateAttributes (SmappStateEditorContext editorContext)

Parameters

• editorContext – SmappStateEditorContext is the state editor context containing the
datasource

Usage

Plugin implementations should override this method to perform any dynamic loading of state
attributes for display in the state editor. This method is called by the state editor only, and not
used by the processing engine.

processMessage(SmappStateProcessingContext) method
This method is called by the processing engine when the state is activated from external
source, for example, incoming SMS message.

Syntax
SmappState processMessage (SmappStateProcessingContext context)
throws MwizProcessingException, DBException, CryptoException

Usage

See this API documentations for the processing engine life cycles.

Typically, this method should be implemented when the

supportsSendSmsMessage()

is set to true, to handle the reply SMS message.

SMS Application Development

242 SAP Mobile Platform

The reference implementation provided in this method is described as follow. This reference
implementation is provided for to help simplifying a typical state development. This
implementation is sufficient for most cases.

• Retrieve the input and output attributes value from the datasource, and bind the value to the
input and output attributes. Note: these attributes are persisted to the datasource as a
session variable.

• Delegate the call to the subclass method for processing the state logic,
processMessageLogic(SmappStateProcessingContext).

• The delegate method, processMessageLogic(SmappStateProcessingContext) returns the
follow-up transition as SmappState object.

• If the follow-up transition (SmappState) returned by the processMessageLogic()
is not null, proceed to return the same object to the processing engine. Otherwise, if the
returned follow-up transition is null, then try to find the matched dynamic follow-up
transition, and return that to the processing engine. NOTE: if a null follow-up transition is
returned to the processing engine, the engine will terminate the flow.

Used by: processing enginecontextthe state processing context containing all the
necessary object needed while processing the state.the follow-up
transitionMwizProcessingExceptionany exceptions that warrant terminating the
applicationDBExceptionany database exceptions that warrant terminating the
applicationCryptoExceptionany encryption exceptions that warrant terminating the
application

processMessageLogic(SmappStateProcessingContext) method
Delegate method call by the processMessage(SmappStateProcessingContext).

Syntax
SmappState processMessageLogic (SmappStateProcessingContext
context) throws MwizProcessingException, DBException

Parameters

• context – the state processing context containing all the necessary object needed while
processing the state.

Returns
null follow-up transition hat will result in application termination

Exceptions

• MwizProcessingException – any exceptions that warrant terminating the application
• DBException – any database exceptions that warrant terminating the application

SMS Application Development

SMS Application Development 243

Usage

See

processMessage(SmappStateProcessingContext)

for details.

This default implementation returns null, so it will

null follow-up transition hat will result in application termination

processState(SmappStateProcessingContext, SmappStateProcessingAction)
method
This method is always called by the processing engine when the state is activated by the
follow-up transition.

Syntax
void processState (SmappStateProcessingContext context ,
SmappStateProcessingAction action) throws MwizProcessingException,
DBException

Usage

The reference implementation provided in this method is described as follow. This reference
implementation is provided for to help simplifying a typical state development. This
implementation is sufficient for most cases.

• Retrieve the input and output attributes value from the datasource, and bind the value to the
input and output attributes. Note: these attributes are persisted to the datasource as a
session variable.

• Delegate the call to the subclass method for processing the state logic,
processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction).

• The delegate method, processStateLogic(SmappStateProcessingContext,
SmappStateProcessingAction) returns the follow-up transition as SmappState object.

• If the follow-up transition (SmappState) returned by the processStateLogic() is
not null, communicate the follow-up transition to the processing engine using the
SmappStateProcessingAction object, as follow.
action.continueProcessing(followUpTransition); Otherwise, if the returned follow-up
transition is null, then the processing engine will terminate the application. NOTE: if a
SmappStateProcessingAction object is not set the engine will terminate the flow.

Used by: processing enginecontextthe state processing context containing all the
necessary object needed while processing the state.actionmechanism to communicate
suggested follow-up action to the processing engineMwizProcessingExceptionany
exceptions that warrant terminating the applicationDBExceptionany database exceptions

SMS Application Development

244 SAP Mobile Platform

that warrant terminating the applicationCryptoExceptionany encryption exceptions that
warrant terminating the application

processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction)
method
Delegate method call by the processState(SmappStateProcessingContext,
SmappStateProcessingAction).

Syntax
abstract SmappState processStateLogic
(SmappStateProcessingContext context ,
SmappStateProcessingAction action) throws MwizProcessingException,
DBException

Parameters

• action – SmappStateProcessingAction is used to communicate back to the processing
engine how to proceed.

Exceptions

• MwizProcessingException – Any exceptions that warrant terminating the application
• DBException – Severe database exceptions that warrant terminating the application

Usage

See

processState(SmappStateProcessingContext, SmappStateProcessingAction)

for details.

Helper methods are used to provide the follow-up transition, as follows:

• continueOk()
• continueFail()
• continueFail(String)
• continueDyn(String)
• continueDyn(Integer)
• continueDyn(Long)

If the SmappStateProcessingAction is used to communicate back to the
processing engine on how to proceed, the return SmappState should be
set to null. Otherwise, the returned SmappState (i.e.,
followUpTransition) will be used by in the
processState(SmappStateProcessingContext,
SmappStateProcessingAction) using the following:
 action.continueProcessing(followUpTransition);

SMS Application Development

SMS Application Development 245

saveOutputAttributes() method
Saving attributes that has holdValue (see OutputAttribute#getHoldValue()) in bulk for better
performance.

Syntax
void saveOutputAttributes () throws DBException

Exceptions

• DBException – Exception while accessing or saving the session variable from database

saveSessionAttribute(String, String) method
Save the input parameters to the session attribute (SessionAttribute).

Syntax
void saveSessionAttribute (String attribKey , String attribValue) throws
DBException, CryptoException

Parameters

• attribKey – session attribute key
• attribValue – session attribute value

Exceptions

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption; The session variable can be encrypted

prior to saving, but not supported by this method.

Usage

For encryption support, see

saveSessionAttribute(String, String)

saveSessionAttribute(String, String, boolean) method
Save the input parameters to the session attribute (SessionAttribute).

Syntax
void saveSessionAttribute (String attribKey , String attribValue ,
boolean encrypt) throws DBException, CryptoException

SMS Application Development

246 SAP Mobile Platform

Parameters

• attribKey – session attribute key
• attribValue – session attribute value
• encrypt – True/False whether encryption is needed or not, respectively.

Exceptions

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption.

Usage

Encrypt the value prior to saving, if needed (encrypt = true).

Also see

saveSessionAttribute(String, String)

method, if encryption is not needed.

saveSessionAttributes(Map< String, String >) method
Save the session attributes in the Map of the current state in the current session to database.

Syntax
void saveSessionAttributes (Map< String, String > attrs) throws
DBException, CryptoException

Parameters

• attrs – session attributes in Map

Exceptions

• DBException – Exception while saving the session variable from database
• CryptoException – Exception during encryption.

sendSmappSms(MwizMessage, Language) method
Send SMS from the current session.

Syntax
void sendSmappSms (MwizMessage smstext , Language selLang)

Parameters

• smstext – SMS message to send out

SMS Application Development

SMS Application Development 247

• selLang – No longer supported; Legacy backward compatibility only

sendSmappSms(MwizMessage, Language, MwizMessageOptions) method
Send SMS from the current session.

Syntax
void sendSmappSms (MwizMessage smstext , Language selLang ,
MwizMessageOptions msgOptions)

Parameters

• smstext – SMS message to send out
• selLang – No longer supported; Legacy backward compatibility only
• msgOptions – Optionally allow caller to set default message options.

setAckMessage(boolean) method
Set the SMPP acknowledgement request flag for the current session.

Syntax
void setAckMessage (boolean ackMessage)

Parameters

• ackMessage – True or false for whether SMPP acknowledgement is requested or not,
respectively

shutdown() method
No default implementation.

Syntax
void shutdown ()

startup(HashMap< String, String >) method
No default implementation.

Syntax
void startup (HashMap< String, String > attributes) throws
MwizStartupException

SMS Application Development

248 SAP Mobile Platform

supportEncryption() method
Indicate whether this state support encryption.

Syntax
boolean supportEncryption ()

Returns
False not support encryption by default

Usage

This will be used in the State Editor to enable/disable the encryption checkbox.

The state notes should described what is supported. For example, support encryption of
session variables before storing in database, or support encryption of before logging in file or
database.

False not support encryption by default

supportsDynTransition() method
Indicates if the state supports dynamic (Dyn) transition.

Syntax
boolean supportsDynTransition ()

Returns
True - support Dyn transition by default

Usage

When set to true the state editor will display the dynamic dropdown UI control listing all the
possible states to chose from.

The state may opt to support both OK and dynamic follow-up transitions, with the dynamic
follow-up transitions for handling special case or error conditions.

By default is true, so the processing method(s) should have at least one condition that returns

continueDyn()
.

Used by: state editor

True - support Dyn transition by default

SMS Application Development

SMS Application Development 249

supportsFailTransition() method
Indicate if the state uses the Fail follow-up transition type.

Syntax
boolean supportsFailTransition ()

Returns
False - does not support fail transition by default

Usage

When set to true the state editor will display the Fail dropdown UI control listing all the
possible states to chose from.

When returning true, the processing method(s) should have at least one condition that returns

continueFail()
.

The recommended best practice is for states with database or external web service calls to
handle errors from these calls using the

continueFail()
follow-up transition.

Used by: state editor

False - does not support fail transition by default

supportsGoToApplication() method
Indicate if the state supports transfer flow to another application.

Syntax
boolean supportsGoToApplication ()

Returns
False - does not support Goto application by default

Usage

When set to true the state editor will display a dropdown UI control containing a list of
applications in the workspace that can be "goto".

This is not a very useful method. It's mainly used the base state Goto Application to flag the
state editor to display the control. This is not needed by other states because the same
mechanism can be accomplished with the base Goto Application state.

SMS Application Development

250 SAP Mobile Platform

Used by: state editor

False - does not support Goto application by default

supportsOkTransition() method
Indicate if the state uses the OK follow-up transition type.

Syntax
boolean supportsOkTransition ()

Returns
True - support OK transition by default

Usage

When set to true the state editor will display the OK dropdown UI control listing all the
possible states to chose from.

By default is true, so the processing method(s) should have at least one condition that returns

continueOk()
.

Used by: state editor

True - support OK transition by default

supportsSendSmsMessage() method
Indicate if the state may send SMS message to the current consumer.

Syntax
boolean supportsSendSmsMessage ()

Returns
False - does not support send SMS by default

Usage

When set to true the state editor will display a textbox UI control for entering the SMS
message.

The SMS textbox will support all the functionalities supported in the base Send SMS state,
like: the session variable token replacement, truncate message longer than 160 characters and
send it as another message, etc.

Set to false by default. When set to true, the state should provide implementation for the

processMessage(SmappStateProcessingContext)

SMS Application Development

SMS Application Development 251

method to handle activation from the reply message of this SMS.

Used by: state editor

False - does not support send SMS by default

StateUtils class

Syntax
public class StateUtils

determineFollowingSmappStateFromPattern(SmappStateProcessingContext)
method

Syntax
SmappState determineFollowingSmappStateFromPattern
(SmappStateProcessingContext context) throws DBException,
CryptoException

determineFollowingSmappStateFromPattern(SmappStateProcessingContext,
MwizMessage) method
Determine if one of the outgoing transition patterns matches this message.

Syntax
SmappState determineFollowingSmappStateFromPattern
(SmappStateProcessingContext context , MwizMessage msg) throws
DBException, CryptoException

Usage

Match-variables are set implicitly by this method.

Use normal regex for pattern. The group operator capures parts of the regex to put into a
variable.

Sample: msg="ab1234cd"

var="" regex="ab(.*)cd" .. no variable will be set

var="userid" regex="ab(.*)cd" .. variable userid is set to "1234"

var="userid" regex="ab.*cd" .. variable userid is not modified - missing group expression

var="userid,poscode" regex="ab(.*)([cd]+)" .. variable userid is set to "1234", variable
poscode to "cd"

var="userid,psocode" regex="ab(.*)cd(.*)" .. variable userid is set to "1234", variable
poscode to "" - empty group match

SMS Application Development

252 SAP Mobile Platform

determineFollowingSmappStateFromPaymentResult(SmappState, boolean,
SmappStateProcessingContext) method

Syntax
SmappState determineFollowingSmappStateFromPaymentResult
(SmappState state , boolean paymentSuccess ,
SmappStateProcessingContext context) throws DBException

determineFollowingSmappStateFromTransitionType(EnumSmappTransitionType,
SmappState, SmappStateProcessingContext) method

Syntax
SmappState determineFollowingSmappStateFromTransitionType
(EnumSmappTransitionType tt , SmappState state ,
SmappStateProcessingContext context) throws DBException

getSmsText18nReplaced(SmappStateProcessingContext) method
Process the SMS message by replacing all the session variables with the actual session
variable value.

Syntax
SmsTextI18n getSmsText18nReplaced (SmappStateProcessingContext
context) throws DBException, CryptoException

Parameters

• context – state processing context

Returns
processed SMS message in SmsTextI18n

Exceptions

• DBException – Exception when accessing or saving the session variable from database

Usage

processed SMS message in SmsTextI18n

SMS Application Development

SMS Application Development 253

replaceTextLabelsForSessionAttributes(String, SmappStateProcessingContext)
method

Syntax
String replaceTextLabelsForSessionAttributes (String msgOut ,
SmappStateProcessingContext context) throws DBException,
CryptoException

sendSmappSms(SmappStateProcessingContext, MwizMessage, Language,
MwizMessageOptions) method

Syntax
void sendSmappSms (SmappStateProcessingContext processingContext ,
MwizMessage smstext , Language selLang , MwizMessageOptions
msgOptions)

useful package

Members
All public members of the useful package.

• KeyValuePair< K, V > class – A simple key-value pair helper class.
• PhoneNumber class – The PhoneNumber is mainly used to transform a phone number or

MSISDN between national and international notation.

KeyValuePair< K, V > class
A simple key-value pair helper class.

Syntax
public class KeyValuePair< K, V >

Remarks
Commonly used in creating a selection java.util.List for the
SelectionBoxAttribute. For example,

private static final SelectionBoxAttribute inIncludeInActive =
 new SelectionBoxAttribute("ACTIVE_ID","Include In-Active
[Default: false]", true);

static
{
 inIncludeInActive.getItems().add(new KeyValuePair<String,
String>("true", "True"));
 inIncludeInActive.getItems().add(new KeyValuePair<String,

SMS Application Development

254 SAP Mobile Platform

String>("false", "False"));
}

getKey() method
Retrieves the key.

Syntax
K getKey ()

Returns
The key.

Usage

The key.

getValue() method
Retrieves the value.

Syntax
V getValue ()

Returns
The value.

Usage

The value.

KeyValuePair() method

Syntax
KeyValuePair ()

Usage

Creates an empty key-value pair. Both entries are set to

null
.

KeyValuePair(K, V) method

Syntax
KeyValuePair (K key , V value)

SMS Application Development

SMS Application Development 255

Parameters

• key – the key of the pair
• value – the value of the pair

Usage

Creates a key-value pair with the specified key and value.

setKey(K) method
Overwrites the actual key with the specified one.

Syntax
void setKey (K key)

Parameters

• key – The new key.

setValue(V) method
Overwrites the actual value with the specified one.

Syntax
void setValue (V value)

Parameters

• value – The new value.

toString() method

Syntax
String toString ()

Returns
a String representing this instance

Usage

Returns a string representation of this instance.

a String representing this instance

SMS Application Development

256 SAP Mobile Platform

PhoneNumber class
The PhoneNumber is mainly used to transform a phone number or MSISDN between national
and international notation.

Syntax
public class PhoneNumber

PhoneNumber(String, String) constructor

Syntax
PhoneNumber (String msisdn , String countryCode)

Parameters

• msisdn – the phone number (not necessarily a mobile phone number); e.g.
+491791234567

• countryCode – the country code; e.g. 49

Usage

Creates a new instance of

PhoneNumber

.

All non numeric chars will be removed.

If country is "1" or United States, Tries to parse the specified MSISDN and falls back to use the
specified country code if no internationalised format is recognized.

PhoneNumber(String) constructor
Creates a new instance of PhoneNumber using the DEFAULT_COUNTRY_CODE.

Syntax
PhoneNumber (String msisdn)

Parameters

• msisdn – the phone number (not necessarily a mobile phone number)

Usage

Tries to parse the specified MSISDN and falls back to use the

DEFAULT_COUNTRY_CODE

SMS Application Development

SMS Application Development 257

if no internationalised format is recognized.

equals(Object) method

Syntax
boolean equals (Object o)

Parameters

• o – the Object to compare with

Returns
true if o is a PhoneNumber representing the same MSISDN

Usage

Indicates if another object is

equal to

this one.

true if o is a PhoneNumber representing the same MSISDN

getInternationalFormat() method

Syntax
String getInternationalFormat ()

Returns
the MSISDN in international format

Usage

Returns the phone number in international form (e.g. +491701234567).

the MSISDN in international format

getNationalFormat() method

Syntax
String getNationalFormat ()

Returns
the MSISDN in national format

SMS Application Development

258 SAP Mobile Platform

Usage

Returns the phone number in the national form.

An example is 01701234567 for the phone number +491701234567

the MSISDN in national format

getNumericInternationalFormat() method

Syntax
String getNumericInternationalFormat ()

Returns
the MSISDN in numeric international format

Usage

Returns the phone number in numeric international form (e.g. 00491701234567 for
+491701234567).

the MSISDN in numeric international format

getShortInternationalFormat() method

Syntax
String getShortInternationalFormat ()

Returns
the MSISDN in truncated international format

Usage

Returns the phone number in a truncated international form (e.g. 491701234567 for
+491701234567).

the MSISDN in truncated international format

hashCode() method

Syntax
int hashCode ()

Returns
a hash value for this instance

SMS Application Development

SMS Application Development 259

Usage

Returns a hash value.

a hash value for this instance

toString() method

Syntax
String toString ()

Returns
getInternationalFormat()

Usage

Returns a string representation of this instance.

getInternationalFormat()

DEFAULT_COUNTRY_CODE variable
A default country code, set to 49.

Syntax
final String DEFAULT_COUNTRY_CODE

template package

Members
All public members of the template package.

• SmappTemplateProvider class – Reference implementation of SmappTemplate.

SmappTemplateProvider class
Reference implementation of SmappTemplate.

Syntax
public class SmappTemplateProvider

Remarks
See detailed descriptions in the SmappTemplate.

NOTE: this is not an API and should be used as is.

The application flow XML file needs to be packaged inside the bundle when using this
provider.

SMS Application Development

260 SAP Mobile Platform

getDescription() method
Get detailed description of the system.

Syntax
String getDescription ()

Returns
Detailed description.

Usage

This is used by the UI.

Detailed description.

getInputStream() method
Call by the Brand Web UI to get access to the XML containing the application flows.

Syntax
InputStream getInputStream ()

Returns
Inputstream containing application flows in XML format.

Usage

This is used to load the template into the system.

Inputstream containing application flows in XML format.

getName() method
Get the name of the system.

Syntax
String getName ()

Returns
System name.

Usage

This is used by the UI.

System name.

SMS Application Development

SMS Application Development 261

getResource() method
Get the location of the XML file containing the application flow relative to the bundle
classpath.

Syntax
String getResource ()

Returns
Location of the XML file containing the application flows.

Usage

Location of the XML file containing the application flows.

getVersion() method
Get the version of the system.

Syntax
String getVersion ()

Returns
System version.

Usage

Information only.

System version.

setDescription(String) method
Set the detailed description of the system.

Syntax
void setDescription (String value)

Parameters

• value –

Usage

Call by Spring during injection.

SMS Application Development

262 SAP Mobile Platform

setName(String) method
Set the name of the system.

Syntax
void setName (String value)

Parameters

• value –

Usage

Call by Spring during injection.

setResource(String) method
Set the location of the XML file containing the application flow relative to the bundle
classpath.

Syntax
void setResource (String value)

Parameters

• value – Location of the XML file containing the application flows.

Usage

For example:

classpath:META-INF/template/money_mobiliser.xml

setVersion(String) method
Set the version of the system.

Syntax
void setVersion (String value)

Parameters

• value –

Usage

Can be call by Spring during injection.

SMS Application Development

SMS Application Development 263

LOG variable

Syntax
final Logger LOG

SMS Application Development

264 SAP Mobile Platform

Index
A
AbstractDynamicMenu class 40

life cycle 41
AbstractDynamicMenu class [Mobiliser Brand API

Reference API] description 203
AbstractDynamicMenu class [Mobiliser Brand API

Reference API] inShowExitMenu
variable 221

AbstractDynamicMenu class [Mobiliser Brand API
Reference API] outKey variable 221

AbstractDynamicMenu class [Mobiliser Brand API
Reference API] outValue variable 221

AbstractDynamicUssdMenu class 116
AbstractStateMenuImpl class, extending 83
accessing input variables 51
activating

applications 22
events 23

activation 21
Add Subscriber state 86
adding

states to applications 12
AIMS System Web console

enabling 70
Apache Maven

configuring 54
creating a project 58
customizing POM files 60
installing 54
project artifacts, creating 64
project structure 59
projects, building 65
sample POM file 61
setting up 54

API reference 126
Application Call Return state 92
Application Call state 89
Application Composer 7
application states 4

adding 12
base 5
configuring in Application Composer 7
custom, developing 33
custom, developing and deploying 36
developing with PluginInterface 39

developing with StatePlugin interface 36
dynamic menu 40
editing 11
editing properties 12
extending SmappStatePlugin 36
implementing state logic 42
removing 13
Send SMS 109
Send USSD Input 111
Send USSD Menu 112
Send USSD Text 118
transitions, removing 13
troubleshooting, variables for 47

applications
activating 22
adding keywords to 14
assigning events to 20
Cash-Out interactive sample 29
deactivating 23
deleting 23
designing task flows 15
event, developing 17
event, testing 26
exporting 28
exporting a group 29
importing 27
importing XML files 27
interactive, developing 13
interactive, testing 24
life cycle 34
mode transitions 22
samples 29
SMS, developing 2
testing 24
uploading templates 28

applications, samples
Utility Notification event 32

assigning events to applications 20
Attribute class [Mobiliser Brand API Reference

API] description 175
Attribute class [Mobiliser Brand API Reference

API] description variable 178
Attribute class [Mobiliser Brand API Reference

API] id variable 178
Attribute class hierarchy 53

Index

SMS Application Development 265

availableChars variablePagination class [Mobiliser
Brand API Reference API] 206

B

base states 5
Application Call 89
Application Call Return 92
Compare Typed Variables 94
Compare Variables 96
Copy Variables 98
Counter 100
Goto Application 104
Send SMS 109
Set Variable 120
Start Application 122

bean properties
configuring 66

BeanConverterInterface 52
BeanConverterInterface< T > interface [Mobiliser

Brand API Reference API] description
164

beans-context.xml 66
building

custom-state bundles 57
Maven projects 65

bundles
custom states 57
verify deployment using Telnet 68
verify deployment using Web console 69
verifying configuration using Web console 72

C

cacheMgr variableSmappStateProcessingContext
class [Mobiliser Brand API Reference
API] 143

Cash-Out interactive application 29
state editor 30

channel manager 3
ChannelPlugin interface 39
class hierarchy, Attribute 53
classes

AbstractDynamicMenu 40, 52
AbstractDynamicUssdMenu 116
AbstractStateMenuImpl 83
InputAttribute 48
OutputAttribute 46, 50
SampleSOAPState 73

SampleState 81
SendSampleMenu 83
SessionVariableAttribute 52
SmappStatePlugin 36, 42, 81
SmappStateProcessingAction 43
SmappStateSendUssdMenu 116
SmappTemplateProvider 77
StateUtils 34
TextBoxAttribute 46, 48

client variableSmappStateProcessingContext class
[Mobiliser Brand API Reference API]
143

clientMsisdn
variableSmappStateProcessingContext
class [Mobiliser Brand API Reference
API] 143

code samples
USSD menu 116

Compare Typed Variables state 94
Compare Variables state 96
components

custom states 57
State SDK 85

configuring
Apache Maven 54
bean properties 66
custom-state bundles 70
HTTP port 2
Spring beans 66

constructMenuList method 40, 41
consuming RESTful Web services 76
consuming SOAP Web services 73
continueProcessing method 43
continueProcessing

variableSmappStateProcessingAction
class [Mobiliser Brand API Reference
API] 138

continueState
variableSmappStateProcessingAction
class [Mobiliser Brand API Reference
API] 138

continueWhenSingleEntry method 41
controlling state transitions 9
Copy Variables state 98
Counter state 100
creating

Apache Maven project 58
applications from templates 28
custom-state bundles 57

Index

266 SAP Mobile Platform

event applications 17
events 19
interactive applications 13
Maven project artifacts 64

creating applications
Application Composer 7

currentState variableSmappStateProcessingContext
class [Mobiliser Brand API Reference
API] 143

custom application states, developing 33
custom state information 44
custom states 6

developing and deploying 36
dynamic menu 40
GetMyWeather 79
implementing logic 42
variables 46

custom-menu state, sample 83
custom-state bundles 57

adding quick-start templates to 76
building 57
configuring 70
deploying 68
verifying configuration using Telnet 71

customer variableSmappStateProcessingContext
class [Mobiliser Brand API Reference
API] 144

customizing
Maven POM files 60

D
deactivating

applications 23
events 24

DEFAULT_COUNTRY_CODE
variablePhoneNumber class [Mobiliser
Brand API Reference API] 260

defining
follow-up states 11
input variables 48
output variables 50
state variables 46

deploying
custom-state bundles 68
State SDK bundles to Maven repository 56
verifying with Telnet 68

description variableAttribute class [Mobiliser Brand
API Reference API] 178

detaching
follow-up states 11

developing
custom application states 33
custom states with PluginInterface 39
custom states, troubleshooting variables 47
event applications 17
interactive applications 13
SMS applications 2
states by extending SmappStatePlugin 36
states with StatePlugin interface 36

developing and deploying custom states 36
dynamic menu state 40
dynamic template plug-ins

creating 77

E

editing
state properties 12
states 11

enabling
AIMS System Web console 70

encrypted variableInputAttribute class [Mobiliser
Brand API Reference API] 190

event applications
developing 17
sample message log 27
testing 26
Utility Notification sample 32

event engine 3
event windows

one time 19
recurring 20

events 18
activating 23
assigning to applications 20
creating 19
deactivating 24

exit variablePage class [Mobiliser Brand API
Reference API] 228

exporting
applications 28
group of applications 29
single application 28

extending SmappStatePlugin class 36

Index

SMS Application Development 267

G
GB_ATTRIB0 variableGenericBean class

[Mobiliser Brand API Reference API]
173

GB_ATTRIB1 variableGenericBean class
[Mobiliser Brand API Reference API]
173

GB_ATTRIB2 variableGenericBean class
[Mobiliser Brand API Reference API]
173

GB_ATTRIB3 variableGenericBean class
[Mobiliser Brand API Reference API]
173

GB_ATTRIB4 variableGenericBean class
[Mobiliser Brand API Reference API]
173

GB_ATTRIB5 variableGenericBean class
[Mobiliser Brand API Reference API]
173

GB_ATTRIB6 variableGenericBean class
[Mobiliser Brand API Reference API]
173

GB_ATTRIB7 variableGenericBean class
[Mobiliser Brand API Reference API]
174

GB_ATTRIB8 variableGenericBean class
[Mobiliser Brand API Reference API]
174

GB_ATTRIB9 variableGenericBean class
[Mobiliser Brand API Reference API]
174

GB_ID variableGenericBean class [Mobiliser
Brand API Reference API] 174

GenericBean class [Mobiliser Brand API Reference
API] description 165

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB0 variable 173

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB1 variable 173

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB2 variable 173

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB3 variable 173

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB4 variable 173

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB5 variable 173

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB6 variable 173

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB7 variable 174

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB8 variable 174

GenericBean class [Mobiliser Brand API Reference
API] GB_ATTRIB9 variable 174

GenericBean class [Mobiliser Brand API Reference
API] GB_ID variable 174

Get Subscriber state 101
getInputValue method 51
getInputValueWithWarning method 51
getList method 52
GetMyWeather sample state 79
getStateAttributeList method 40, 41
getStateAttributes method 41
getStateDao method 42
getSubscriberDao method 42
Goto Application state 104

H

header variablePage class [Mobiliser Brand API
Reference API] 228

HTTP port
configuring 2

I

IAttribute interface [Mobiliser Brand API
Reference API] description 127

id variableAttribute class [Mobiliser Brand API
Reference API] 178

implementing state logic 42
SmappStateProcessingAction 43
SmappStateProcessingContext 42

importing
application XML files 27
applications 27

init method 40
initial states 7
input parameters 6
input variables

accessing 51
defining 48

InputAttribute class 48
InputAttribute class [Mobiliser Brand API

Reference API] description 178
InputAttribute class [Mobiliser Brand API

Reference API] encrypted variable 190

Index

268 SAP Mobile Platform

InputAttribute class [Mobiliser Brand API
Reference API] InputType() enumeration
190

InputType() enumerationInputAttribute class
[Mobiliser Brand API Reference API]
190

InputValue class [Mobiliser Brand API Reference
API] description 179

InputValueFormatException class [Mobiliser Brand
API Reference API] description 163

inShowExitMenu variableAbstractDynamicMenu
class [Mobiliser Brand API Reference
API] 221

installing
Apache Maven 54

instanceName variablePlugin class [Mobiliser
Brand API Reference API] 163

interactive applications
Cash-Out sample 29
developing 13
initial state 122
Mobiliser Counter sample 30
sample message log 25
testing 24

interfaces
BeanConverterInterface 52
ChannelPlugin interface 39
PluginInterface 39
StatePlugin 36
StatePlugin interface 39

isAckMessageRequested method 42
isCurrentStateEncrypted method 42
items variablePage class [Mobiliser Brand API

Reference API] 228

K
KeyValuePair< K, V > class [Mobiliser Brand API

Reference API] description 254
keywords 16

adding to applications 14
searching for 15

L
langDefault variableSmappStateProcessingContext

class [Mobiliser Brand API Reference
API] 144

language variableSmsTextI18n class [Mobiliser
Brand API Reference API] 149

life cycle, application 34
lineBreak variablePage class [Mobiliser Brand API

Reference API] 228
list variablePagination class [Mobiliser Brand API

Reference API] 206
list variables 52
LOG variableSmappTemplateProvider class

[Mobiliser Brand API Reference API]
264

long codes 16

M
matchingPattern

variableSmappStateProcessingContext
class [Mobiliser Brand API Reference
API] 144

Maven
configuring 54
customizing POM files 60
project artifacts, creating 64
projects, building 65
sample POM file 61

Maven projects
structure 59

Maven repository
deploying State SDK bundles to 56

messaging server 3
methods

constructMenuList 40, 41
continueProcessing 43
continueWhenSingleEntry 41
getInputValue 51
getInputValueWithWarning 51
getList 52
getStateAttributeList 40, 41
getStateAttributes 41
getStateDao 42
getSubscriberDao 42
init 40
isAckMessageRequested 42
isCurrentStateEncrypted 42
processMessage 34, 36
processMessageLogic 41
processState 34, 36, 42
processStateLogic 36, 41–43
saveOutputAttributes 50
saveSessionVariables 40, 41
setHoldValue 50
setList 52

Index

SMS Application Development 269

setValue 50
supportsSendSmsMessage 43
terminateProcessing 34, 43
waitForMessage 34, 43, 52

Mobiliser Brand API Reference API
AbstractDynamicMenu class 203

Mobiliser Brand API Reference API api package
126

Mobiliser Brand API Reference API Attribute class
175

Mobiliser Brand API Reference API base package
161

Mobiliser Brand API Reference API
BeanConverterInterface< T > interface
164

Mobiliser Brand API Reference API beans package
164

Mobiliser Brand API Reference API brand package
126

Mobiliser Brand API Reference API controls
package 127, 174

Mobiliser Brand API Reference API dao package
129

Mobiliser Brand API Reference API exceptions
package 163

Mobiliser Brand API Reference API GenericBean
class 165

Mobiliser Brand API Reference API IAttribute
interface 127

Mobiliser Brand API Reference API InputAttribute
class 178

Mobiliser Brand API Reference API InputValue
class 179

Mobiliser Brand API Reference API
InputValueFormatException class 163

Mobiliser Brand API Reference API KeyValuePair<
K, V > class 254

Mobiliser Brand API Reference API
OutputAttribute class 190

Mobiliser Brand API Reference API Page class
222

Mobiliser Brand API Reference API Pagination
class 205

Mobiliser Brand API Reference API PhoneNumber
class 257

Mobiliser Brand API Reference API Plugin class
162

Mobiliser Brand API Reference API
PluginInterface interface 160

Mobiliser Brand API Reference API plugins
package 126

Mobiliser Brand API Reference API
RequiredParameterMissingException
class 230

Mobiliser Brand API Reference API
SelectionBoxAttribute class 195

Mobiliser Brand API Reference API
SessionVariableAttribute class 199

Mobiliser Brand API Reference API smapp package
126, 164

Mobiliser Brand API Reference API
SmappStateEditorContext interface 135

Mobiliser Brand API Reference API
SmappStatePlugin class 230

Mobiliser Brand API Reference API
SmappStateProcessingAction class 136

Mobiliser Brand API Reference API
SmappStateProcessingContext class 139

Mobiliser Brand API Reference API
SmappTemplate interface 144

Mobiliser Brand API Reference API
SmappTemplateProvider class 260

Mobiliser Brand API Reference API SmsTextI18n
class 148

Mobiliser Brand API Reference API state package
203

Mobiliser Brand API Reference API StateDaoImpl
class 130

Mobiliser Brand API Reference API StatePlugin
interface 149

Mobiliser Brand API Reference API StateUtils class
252

Mobiliser Brand API Reference API
SubscriberDaoImpl class 134

Mobiliser Brand API Reference API template
package 260

Mobiliser Brand API Reference API
TextBoxAttribute class 201

Mobiliser Brand API Reference API useful package
254

Mobiliser Counter sample application
testing 30

mode transitions 22
mr variableSmappStateProcessingContext class

[Mobiliser Brand API Reference API]
144

Index

270 SAP Mobile Platform

msg variableSmappStateProcessingContext class
[Mobiliser Brand API Reference API]
144

N

newSession variableSmappStateProcessingContext
class [Mobiliser Brand API Reference
API] 144

next variablePage class [Mobiliser Brand API
Reference API] 229

O

OSGi services
registering states as 67

outgoingQueue
variableSmappStateProcessingContext
class [Mobiliser Brand API Reference
API] 144

outKey variableAbstractDynamicMenu class
[Mobiliser Brand API Reference API]
221

output parameters 6
output variables 50
OutputAttribute class 50
OutputAttribute class [Mobiliser Brand API

Reference API] description 190
OutputAttribute class, example 46
outValue variableAbstractDynamicMenu class

[Mobiliser Brand API Reference API]
221

P

Page class [Mobiliser Brand API Reference API]
description 222

Page class [Mobiliser Brand API Reference API]
exit variable 228

Page class [Mobiliser Brand API Reference API]
header variable 228

Page class [Mobiliser Brand API Reference API]
items variable 228

Page class [Mobiliser Brand API Reference API]
lineBreak variable 228

Page class [Mobiliser Brand API Reference API]
next variable 229

Page class [Mobiliser Brand API Reference API]
paginationExit variable 229

Page class [Mobiliser Brand API Reference API]
paginationNext variable 229

pageHeader variablePagination class [Mobiliser
Brand API Reference API] 206

pages variablePagination class [Mobiliser Brand
API Reference API] 206

Pagination class [Mobiliser Brand API Reference
API] availableChars variable 206

Pagination class [Mobiliser Brand API Reference
API] description 205

Pagination class [Mobiliser Brand API Reference
API] list variable 206

Pagination class [Mobiliser Brand API Reference
API] pageHeader variable 206

Pagination class [Mobiliser Brand API Reference
API] pages variable 206

Pagination class [Mobiliser Brand API Reference
API] showExitMenu variable 206

paginationExit variablePage class [Mobiliser Brand
API Reference API] 229

paginationNext variablePage class [Mobiliser
Brand API Reference API] 229

parameters 6
PhoneNumber class [Mobiliser Brand API

Reference API]
DEFAULT_COUNTRY_CODE variable
260

PhoneNumber class [Mobiliser Brand API
Reference API] description 257

Plugin class [Mobiliser Brand API Reference API]
description 162

Plugin class [Mobiliser Brand API Reference API]
instanceName variable 163

PluginInterface 39
PluginInterface interface [Mobiliser Brand API

Reference API] description 160
POM file, sample 61
ports

HTTP, configuring 2
Process Subscriber state 106
processMessage method 34, 36
processMessageLogic method 41
processState method 34, 36, 42
processStateLogic method 36, 41–43
properties-context.xml 66

Q
quick-start templates 28

adding to custom-state bundles 76

Index

SMS Application Development 271

R

registering states
as OSGi services 67

regular expressions
controlling state transitions 9
testing 10

removing
state transitions 13
states from applications 13

repositories, Maven 54
RequiredParameterMissingException class

[Mobiliser Brand API Reference API]
description 230

S

sample applications 29
Cash-Out interactive 29
event message log 27
interactive message log 25
Mobiliser Counter 30
Utility Notification event 32

samples
custom-menu state 83
date formatter 81
GetMyWeather state 79
Maven POM file 61
SOAP Web service 73
USSD menu code 116

SampleSOAPState class 73
SampleState.java 81
saveOutputAttributes method 50
saveSessionVariables method 40, 41
searching for keywords 15
SelectionBoxAttribute class [Mobiliser Brand API

Reference API] description 195
Send SMS state 109
Send USSD Input state 111
Send USSD Menu state 112
Send USSD Text state 118
SendSampleMenu class, sample 83
servers

SMS, starting 1
service states 4
services-context.xml 67
session manager 3
SessionVariableAttribute class 52

SessionVariableAttribute class [Mobiliser Brand
API Reference API] description 199

Set Variable state 120
setHoldValue method 50
setList method 52
settings.xml file 54
setValue method 50
short codes 16
showExitMenu variablePagination class [Mobiliser

Brand API Reference API] 206
SmappStateEditorContext interface [Mobiliser

Brand API Reference API] description
135

SmappStatePlugin abstract class 42
SmappStatePlugin class 36

extending 79
SmappStatePlugin class [Mobiliser Brand API

Reference API] description 230
SmappStateProcessingAction 43
SmappStateProcessingAction class 43
SmappStateProcessingAction class [Mobiliser

Brand API Reference API]
continueProcessing variable 138

SmappStateProcessingAction class [Mobiliser
Brand API Reference API] continueState
variable 138

SmappStateProcessingAction class [Mobiliser
Brand API Reference API] description
136

SmappStateProcessingAction class [Mobiliser
Brand API Reference API]
terminateProcessing variable 139

SmappStateProcessingContext 42
SmappStateProcessingContext class [Mobiliser

Brand API Reference API] cacheMgr
variable 143

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] client variable
143

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] clientMsisdn
variable 143

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] currentState
variable 143

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] customer
variable 144

Index

272 SAP Mobile Platform

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] description
139

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] langDefault
variable 144

SmappStateProcessingContext class [Mobiliser
Brand API Reference API]
matchingPattern variable 144

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] mr variable
144

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] msg variable
144

SmappStateProcessingContext class [Mobiliser
Brand API Reference API] newSession
variable 144

SmappStateProcessingContext class [Mobiliser
Brand API Reference API]
outgoingQueue variable 144

SmappStateSendUssdMenu class 116
SmappTemplate interface [Mobiliser Brand API

Reference API] description 144
SmappTemplateProvider class

configuring as a Spring bean 77
SmappTemplateProvider class [Mobiliser Brand

API Reference API] description 260
SmappTemplateProvider class [Mobiliser Brand

API Reference API] LOG variable 264
SMS application development 1
SMS applications

developing 2
SMS server

starting 1
SmsTextI18n class [Mobiliser Brand API Reference

API] description 148
SmsTextI18n class [Mobiliser Brand API Reference

API] language variable 149
SmsTextI18n class [Mobiliser Brand API Reference

API] text variable 149
SOAP Web service sample 73
Spring beans

configuring 66
SmappTemplateProvider class 77

standalone states 4
Start Application state 7, 122
starting

SMS server 1

state attributes
class heirarchy 53

state bundle samples 73
RESTful Web service 76
SOAP Web service 73

state editor 11
state machine 7
State SDK bundles

deploying to Maven repository 56
State SDK core components 85
state transitions 8

controlling with regular expressions 9
removing 13

state variables
defining 46

StateDaoImpl class [Mobiliser Brand API
Reference API] description 130

StatePlugin interface 36, 39
StatePlugin interface [Mobiliser Brand API

Reference API] description 149
states

Add Subscriber 86
adding to applications 12
Application Call 89
Application Call Return 92
base 5
Compare Typed Variables 94
Compare Variables 96
Copy Variables 98
Counter 100
custom 6
defining 44
Get Subscriber 101
Goto Application 104
Process Subscriber 106
properties, editing 12
removing from an application 13
Send SMS 109
Send USSD Input 111
Send USSD Menu 112
Send USSD Text 118
Set Variable 120
Start Application 122
subscriber 5
Update Subscriber 123
USSD 6

states, SMS
application 4
service 4

Index

SMS Application Development 273

standalone 4
USSD 4

StateUtils class 34
StateUtils class [Mobiliser Brand API Reference

API] description 252
subscriber states 5

Add Subscriber 86
Get Subscriber 101
Process Subscriber 106
Update Subscriber 123

SubscriberDaoImpl class [Mobiliser Brand API
Reference API] description 134

supportsSendSmsMessage method 43

T
task flows

applications, designing 15
templates, quick start 28
terminateProcessing method 34, 43
terminateProcessing

variableSmappStateProcessingAction
class [Mobiliser Brand API Reference
API] 139

testing
applications 24
event applications 26
interactive applications 24
regular expressions 10

text variableSmsTextI18n class [Mobiliser Brand
API Reference API] 149

TextBoxAttribute class [Mobiliser Brand API
Reference API] description 201

TextBoxAttribute class, sample 46, 48
transitions

application modes 22

transitions between application states 8

U

Update Subscriber state 123
uploading application templates 28
USSD menu

sample code 116
USSD states 4, 6

Send USSD Input 111
Send USSD Menu 112
Send USSD Text 118

Utility Notification event application 32

V

variables
input, accessing 51
input, defining 48
list 52
output, defining 50

variables for troubleshooting 47
verifying

bundle configuration using Telnet 71
bundle configuration using Web console 72
deployment using Telnet 68
deployment using Web console 69

W

waitForMessage method 34, 43, 52
windows, event

one time 19
recurring 20

Index

274 SAP Mobile Platform

	SMS Application Development
	Contents
	SMS Application Development
	Developing SMS Applications
	Setting Up the Development Environment
	Configuring the HTTP Port

	Developing Applications
	Messaging Server
	Application States
	Base States
	Subscriber States
	USSD States
	Custom States
	Input and Output Parameters
	State Machine

	Application Composer
	State Transitions
	Controlling State Transitions with Regular Expressions
	Testing Regular Expressions
	State Editor
	Adding States to Applications
	Editing State Properties
	Removing States
	Removing State Transitions

	Developing Interactive Applications
	Adding Keywords to Applications
	Searching for a Keyword
	Designing Application Task Flows
	Short Codes, Long Codes, and Keywords

	Developing Event Applications
	Events
	Creating Events
	Creating One-Time Event Windows
	Creating Recurring Event Windows
	Assigning Events to Applications

	Activation
	Application Mode Transitions
	Activating Applications
	Activating Events
	Deactivating Applications
	Deactivating Events

	Testing Applications
	Testing Interactive Applications
	Sample Interactive Message Log

	Testing Event Applications
	Sample Event Message Log

	Importing Applications
	Importing Application XML Files
	Creating Applications from Templates

	Exporting Applications
	Exporting a Single Application
	Exporting a Group of Applications

	Sample Applications
	Cash-Out Interactive Application
	Cash-Out Application State Editor

	Mobiliser Counter Interactive Application
	Utility Notification Event Application

	Developing Custom Application States
	Application Life Cycle
	Developing and Deploying Custom States
	Extending the SmappStatePlugin Class
	StatePlugin Interface
	PluginInterface Interface

	Extending the AbstractDynamicMenu Class
	AbstractDynamicMenu Life Cycle

	Implementing State Logic
	SmappStateProcessingContext
	SmappStateProcessingAction

	Custom State Information
	Custom State Variables
	Variables for Troubleshooting
	Defining Input Variables
	Defining Output Variables
	Accessing Input Variables
	List Variables
	State Attributes Class Hierarchy

	Setting Up Apache Maven
	Installing Apache Maven
	Configuring Apache Maven
	Deploying State SDK Bundles to a Maven Repository

	Custom State Bundles
	Building Custom State Bundles
	Creating Maven Projects
	Maven Project Structure

	Customizing Maven POM Files
	Sample Maven POM File

	Creating Maven Project Artifacts
	Building Maven Projects
	Declaring States as Spring Beans
	Configuring Bean Properties
	Registering States as OSGi Services
	Deploying State Bundles
	Verifying Deployment Using Telnet
	Verifying Deployment Using the AIMS Web Console
	Enabling the AIMS System Web Console

	Configuring State Bundles
	Verifying Bundle Configuration Using Telnet
	Verifying Bundle Configuration Using the AIMS Web Console

	Custom State Bundle Samples
	Consuming SOAP Web Service Sample
	Consuming RESTful Services

	Developing Quick-Start Templates
	Creating Dynamic Template Plug-Ins

	Custom State Samples
	Sample GetMyWeather State
	Sample Custom State
	Sample Custom-Menu State

	State SDK Core Components

	States Catalog
	Add Subscriber State
	Application Call State
	Application Call Return State
	Compare Typed Variables State
	Compare Variables State
	Copy Variables State
	Counter State
	Get Subscriber State
	Goto Application State
	Process Subscriber State
	Send SMS State
	Send USSD Input State
	Send USSD Menu State
	Sample USSD Menu Code

	Send USSD Text State
	Set Variable State
	Start Application State
	Update Subscriber State

	SMS Application API Reference
	brand package
	plugins package
	api package
	smapp package
	controls package
	IAttribute interface
	getDescription() method
	getId() method
	getText() method
	setContext(SmappStateProcessingContext) method
	setDescription(String) method
	setId(String) method

	dao package
	StateDaoImpl class
	StateDaoImpl(final SmappStateDao, final MwizMessageContext) constructor
	bulkSaveSessionAttributes(Map< String, String >) method
	deleteSessionAttribute(String) method
	getLanguage(Long) method
	getOrCreateCustomerForMsisdn(String, Client) method
	getSessionAttributeForKey(String) method
	getSessionAttributes() method
	getSessionAttributesMap() method
	saveSessionAttribute(String, String) method
	saveSessionAttribute(String, String, boolean) method
	saveSessionAttributes(Map< String, String >) method
	saveSmappTransitionLogEntry(SmappTransitionLog) method

	SubscriberDaoImpl class
	SubscriberDaoImpl(final SubscriberMasterDao, final Client) constructor
	addSubscriberToListReturnCount(Long, SubscriberMaster) method
	getSubscriber(Long, String) method
	getSubscriberLists() method
	saveSubscriber(SubscriberMaster) method

	SmappStateEditorContext interface
	getClient() method

	SmappStateProcessingAction class
	SmappStateProcessingAction(SmappState) constructor
	continueProcessing(SmappState) method
	getContinueState() method
	isContinueProcessing() method
	isTerminateProcessing() method
	isWaitProcessing() method
	terminateProcessing() method
	waitForMessage() method
	continueProcessing variable
	continueState variable
	terminateProcessing variable

	SmappStateProcessingContext class
	SmappStateProcessingContext(final SmappState, final MwizMessageContext, final boolean, final OutgoingQueue, final Language, final Language, final SmappStateDao, final SubscriberMasterDao, final CacheManagerDao) constructor
	getLangRequest() method
	getSession() method
	getStateDao() method
	getSubscriberDao() method
	isAckMessageRequested() method
	isCurrentStateEncrypted() method
	setAckMessageRequest(boolean) method
	setLangRequest(Language) method
	updateSession() method
	cacheMgr variable
	client variable
	clientMsisdn variable
	currentState variable
	customer variable
	langDefault variable
	matchingPattern variable
	mr variable
	msg variable
	newSession variable
	outgoingQueue variable

	SmappTemplate interface
	getDescription() method
	getInputStream() method
	getName() method
	getResource() method
	getVersion() method
	setDescription(String) method
	setName(String) method
	setResource(String) method
	setVersion(String) method

	SmsTextI18n class
	SmsTextI18n(String, Language) constructor
	getLanguage() method
	getText() method
	language variable
	text variable

	StatePlugin interface
	getInputAttributes() method
	getOutputAttributes() method
	getStateId() method
	getStateName() method
	getStateNotes() method
	isSelectable() method
	loadStateAttributes(SmappStateEditorContext) method
	processMessage(SmappStateProcessingContext) method
	processState(SmappStateProcessingContext, SmappStateProcessingAction) method
	supportEncryption() method
	supportsDynTransition() method
	supportsFailTransition() method
	supportsGoToApplication() method
	supportsOkTransition() method
	supportsSendSmsMessage() method

	PluginInterface interface
	getInstanceName() method
	getRevisionString() method
	setInstanceName(String) method
	shutdown() method
	startup(HashMap< String, String >) method

	base package
	Plugin class
	getInstanceName() method
	setInstanceName(String) method
	instanceName variable

	exceptions package
	InputValueFormatException class
	InputValueFormatException(String) constructor
	InputValueFormatException(String, Throwable) constructor
	InputValueFormatException(Throwable) constructor

	smapp package
	beans package
	BeanConverterInterface< T > interface
	convert(String) method
	convert(T) method

	GenericBean class
	compareTo(GenericBean) method
	convert(String) method
	convert(GenericBean) method
	equals(Object) method
	getAttrib0() method
	getAttrib1() method
	getAttrib2() method
	getAttrib3() method
	getAttrib4() method
	getAttrib5() method
	getAttrib6() method
	getAttrib7() method
	getAttrib8() method
	getAttrib9() method
	getId() method
	hashCode() method
	parse(HashMap< String, String >) method
	setAttrib0(String) method
	setAttrib1(String) method
	setAttrib2(String) method
	setAttrib3(String) method
	setAttrib4(String) method
	setAttrib5(String) method
	setAttrib6(String) method
	setAttrib7(String) method
	setAttrib8(String) method
	setAttrib9(String) method
	setId(String) method
	GB_ATTRIB0 variable
	GB_ATTRIB1 variable
	GB_ATTRIB2 variable
	GB_ATTRIB3 variable
	GB_ATTRIB4 variable
	GB_ATTRIB5 variable
	GB_ATTRIB6 variable
	GB_ATTRIB7 variable
	GB_ATTRIB8 variable
	GB_ATTRIB9 variable
	GB_ID variable

	controls package
	Attribute class
	Attribute(String, String) constructor
	getContext() method
	getDescription() method
	getId() method
	getText() method
	setContext(SmappStateProcessingContext) method
	setDescription(String) method
	setId(String) method
	description variable
	id variable

	InputAttribute class
	InputValue class
	InputValue(String) constructor
	InputValue(String, String) constructor
	getBoolean() method
	getDouble() method
	getInt() method
	getLong() method
	getMsisdn(String) method
	getString() method
	getString(int) method
	toString() method

	InputAttribute(String, String, boolean) constructor
	getInputType() method
	getInputValue() method
	getInputValueWithWarning() method
	getRawValue() method
	getRawValueLog() method
	getValue() method
	isCheckboxEnabled() method
	isOptional() method
	isSet() method
	setCheckboxEnabled(boolean) method
	setInputType(InputType) method
	setOptional(boolean) method
	InputType() enumeration
	encrypted variable

	OutputAttribute class
	OutputAttribute(String, String) constructor
	getHoldValue() method
	resetHoldValue() method
	setHoldValue(String) method
	setHoldValue(Long) method
	setHoldValue(Integer) method
	setHoldValue(Boolean) method
	setValue(String) method
	setValue(Long) method
	setValue(Integer) method
	setValue(Boolean) method

	SelectionBoxAttribute class
	SelectionBoxAttribute(String, String, boolean) constructor
	getInputValue() method
	getItems() method
	getItemValue(String) method
	getRawValueLog() method
	isSet() method
	setItems(List< KeyValuePair< String, String >>) method

	SessionVariableAttribute class
	SessionVariableAttribute(String, String) constructor
	getList(BeanConverterInterface< T >) method
	setList(List< T >) method

	TextBoxAttribute class
	TextBoxAttribute(String, String, boolean) constructor
	getInputValue() method
	isSet() method

	state package
	AbstractDynamicMenu class
	Pagination class
	Pagination(List< KeyValuePair< String, String >>, String, boolean) constructor
	getPages() method
	hasNext() method
	availableChars variable
	list variable
	pageHeader variable
	pages variable
	showExitMenu variable

	constructMenuList() method
	continueWhenSingleEntry(SmappState) method
	createPage(boolean) method
	getLineBreak() method
	getMaxMenuItems() method
	getMenuListFromSession(BeanConverterInterface< T >) method
	getMessageOptions(Page) method
	getPaginationExit() method
	getPaginationNext() method
	getPaginationNextIndex() method
	getStateAttributeList() method
	getStateAttributes() method
	getStateNotes() method
	init(SmappStateProcessingAction) method
	processMessageLogic(SmappStateProcessingContext) method
	processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction) method
	saveSessionVariables(String, String) method
	setMenuListToSession(List< T >) method
	supportsFailTransition() method
	supportsOkTransition() method
	supportsSendSmsMessage() method
	inShowExitMenu variable
	outKey variable
	outValue variable

	Page class
	Page(boolean) constructor
	getHeader() method
	getItems() method
	getLineBreak() method
	getPaginationExit() method
	getPaginationNext() method
	isExit() method
	isNext() method
	previewMenu() method
	setExit(boolean) method
	setHeader(String) method
	setItems(List< KeyValuePair< String, String >>) method
	setLineBreak(String) method
	setNext(boolean) method
	setPaginationExit(String) method
	setPaginationNext(String) method
	toString() method
	exit variable
	header variable
	items variable
	lineBreak variable
	next variable
	paginationExit variable
	paginationNext variable

	RequiredParameterMissingException class
	RequiredParameterMissingException(String) constructor

	SmappStatePlugin class
	continueDyn(String) method
	continueDyn(Integer) method
	continueDyn(Long) method
	continueFail() method
	continueFail(String) method
	continueOk() method
	determineFollowingSmappStateFromPattern(SmappStateProcessingContext) method
	determineFollowingSmappStateFromPattern(SmappStateProcessingContext, MwizMessage) method
	determineFollowingSmappStateFromTransitionType(EnumSmappTransitionType, SmappState, SmappStateProcessingContext) method
	getCurrentCustomer() method
	getInputAttributes() method
	getOutputAttributes() method
	getSessionAttributeForKey(String) method
	getSessionAttributes() method
	getSessionId() method
	getSmsText18nReplaced() method
	getStateAttributes() method
	getStateNotes() method
	handleFatal(SmappStateProcessingContext, SmappStateProcessingAction) method
	isCurrentStateEncrypted() method
	isSelectable() method
	loadStateAttributes(SmappStateEditorContext) method
	processMessage(SmappStateProcessingContext) method
	processMessageLogic(SmappStateProcessingContext) method
	processState(SmappStateProcessingContext, SmappStateProcessingAction) method
	processStateLogic(SmappStateProcessingContext, SmappStateProcessingAction) method
	saveOutputAttributes() method
	saveSessionAttribute(String, String) method
	saveSessionAttribute(String, String, boolean) method
	saveSessionAttributes(Map< String, String >) method
	sendSmappSms(MwizMessage, Language) method
	sendSmappSms(MwizMessage, Language, MwizMessageOptions) method
	setAckMessage(boolean) method
	shutdown() method
	startup(HashMap< String, String >) method
	supportEncryption() method
	supportsDynTransition() method
	supportsFailTransition() method
	supportsGoToApplication() method
	supportsOkTransition() method
	supportsSendSmsMessage() method

	StateUtils class
	determineFollowingSmappStateFromPattern(SmappStateProcessingContext) method
	determineFollowingSmappStateFromPattern(SmappStateProcessingContext, MwizMessage) method
	determineFollowingSmappStateFromPaymentResult(SmappState, boolean, SmappStateProcessingContext) method
	determineFollowingSmappStateFromTransitionType(EnumSmappTransitionType, SmappState, SmappStateProcessingContext) method
	getSmsText18nReplaced(SmappStateProcessingContext) method
	replaceTextLabelsForSessionAttributes(String, SmappStateProcessingContext) method
	sendSmappSms(SmappStateProcessingContext, MwizMessage, Language, MwizMessageOptions) method

	useful package
	KeyValuePair< K, V > class
	getKey() method
	getValue() method
	KeyValuePair() method
	KeyValuePair(K, V) method
	setKey(K) method
	setValue(V) method
	toString() method

	PhoneNumber class
	PhoneNumber(String, String) constructor
	PhoneNumber(String) constructor
	equals(Object) method
	getInternationalFormat() method
	getNationalFormat() method
	getNumericInternationalFormat() method
	getShortInternationalFormat() method
	hashCode() method
	toString() method
	DEFAULT_COUNTRY_CODE variable

	template package
	SmappTemplateProvider class
	getDescription() method
	getInputStream() method
	getName() method
	getResource() method
	getVersion() method
	setDescription(String) method
	setName(String) method
	setResource(String) method
	setVersion(String) method
	LOG variable

	Index

