
Migration

SAP Mobile Platform 3.0 SP02

DOCUMENT ID: DC-01-0302-01
LAST REVISED: February 2014
Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Migration ...1
Migrating Native OData Applications1

Migrating iOS Native OData Applications2
Migrating Android Native OData Applications6

Migrating MBO Applications ...7
MBO and OData Architectural Differences8
MBO and OData SDK Differences9
Comparing MBO Models to OData Entity Data

Models ...11
Migrating of Agentry Applications12

Preparing Agentry Applications With Java
System Connections12

Migrating Agentry Applications to SAP Mobile
Platform ...12

Index ..15

Migration iii

Contents

iv SAP Mobile Platform

Migration

You can migrate SAP® Mobile Platform 2.x Agentry applications, MBO applications, and
OData applications to SAP Mobile Platform 3.0.

Although there are compelling reasons to upgrade to SAP Mobile Platform, version 3.0, and
take advantage of the new features, migrating your applications may not always be the correct
solution. If you want to migrate, you can choose between three high-level strategies: redeploy,
redevelop, or redesign.

Redeploy
You can deploy a number of application types to SAP Mobile Platform Server version 3.0:
Agentry, Mobiliser, and SAP Mobile Platform version 2.3. Agentry and Mobiliser
applications are intrinsically supported in the main platform runtime.

No built-in upgrade support exists to migrate applications from version 2.x to version 3.0, so
you must set up parallel infrastructure for a production environment, with a scheduled
switchover. This may require you to redeploy application clients.

Redevelop
You may need to redevelop SAP Mobile Platform 2.x Mobile Business Object (MBO)
applications, both native offline-able applications, and hybrid Web container applications
using online MBOs. You may also need to redevelop applications that use HTTP and on-
device portal (ODP).

The general theme of this approach is to keep certain aspects of an application, such as the
existing client user interface and services, and replace the underlying communication and
mobile-enabling services with the new SAP Mobile Platform 3.0 SDKs and services.

Redesign
Sometimes when taking into consideration the cost-benefit analysis, with respect to applying
migration strategies, it may be more cost effective to start from the beginning. In such cases,
you need only consider migrating back-end services to be OData centric services, with Delta
Token capabilities to support message-based delta synchronization

Migrating Native OData Applications
You can migrate SAP Mobile Platform 2.x native OData applications to SAP Mobile Platform
3.0.

Note:

Migration

Migration 1

• The Messaging Channel is not supported for iOS and Android applications. The Android
and iOS applications work only on the REST SDK, included as part of the standard SAP
Mobile Platform SDK installer.

• Applications require re-registration using REST SDK when moving from SAP Mobile
Platform 2.x to 3.0.

OData SDK Type in 3.0 iOS Android

Messaging Channel Not supported Not supported

REST SDK Supported (standard SDK in-
staller)

Supported (standard SDK
installer)

Migrating iOS Native OData Applications
Migrate your iOS OData application from version 2.x to SAP Mobile Platform version 3.0.

Overview
This section covers migration of a REST based application from SAP Mobile Platform 2.3.x
to version 3.x. The following aspects of a REST based application are covered:

• Registration
• Request-Response (data fetch)
• Parsing

Registration
There is no change in code and no refactoring is required to migrate an application from 2.3.x
to 3.x. Existing applications based on 2.x will continue to work against the SAP Mobile
Platform 3.0 OData SDK post migration, without any code changes, with just a rebuild. The
deprecated class details in this section is applicable for new application development, where it
is requested or mandatorily required to use the new APIs. To use OData offline and other
features such as batch processing, the new classes are mandatory.

Request-Response
With 3.x, the old SDM API has been deprecated and a new Request API is introduced for
uniformity in API nomenclature. With this change, all SDM* classes and methods have been
replaced with class names removing the SDM tag. The following table lists the old and new
class names. The method names mostly remain the same, unless specified otherwise in this
section. The class names are listed first, followed by the header files to which the classes
belong.

Migration

2 SAP Mobile Platform

Table 1. List of Refactored Classes

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMHttpRequest (SDMHttpRequest.h) Request (Request.h)

SDMRequestBuilder (SDMRequestBuilder.h) RequestBuilder (RequestBuilder.h)

SDMDownloadCache (SDMDownloadCache.h) DownloadCache (DownloadCache.h)

SDMFormDataRequest (SDMFormDataRe-
quest.h)

FormDataRequest (FormDataRequest.h)

SDMNetworkQueue (SDMNetworkQueue.h) NetworkQueue (NetworkQueue.h)

<SDMRequesting>** (SDMRequesting.h) <Requesting> (Requesting.h)

<SDMCacheDelegate> (SDMCacheDelegate.h) <CacheDelegate> (CacheDelegate.h)

<SDMHttpRequestDelegate> (SDMHttpRe-
questDelegate.h)

<RequestDelegate> (RequestDelegate.h)

<SDMProgressDelegate> (SDMProgressDele-
gate.h)

<ProgressDelegate> (ProgressDelegate.h)

SDMConnectivityException (SDMConnectivi-
tyException.h)

ConnectivityException (ConnectivityExcep-
tion.h)

Note: ** corresponds to the protocol refactoring

Parser
All SDM* classes have been refactored with OData* classes. The following table lists the
refactored classes and protocols. All method names remain the same. In this section, all public
header files are listed first with their corresponding refactored names. If the class names in the
file are different and the file contains multiple class names, different legends have been
provided accordingly.

Table 2. List of Refactored Classes

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMFunctionImportResultParser.h ** ODataFunctionImportResultParser.h

SDMGenericParser.h ** ODataGenericParser.h

SDMOData.h * OData.h

SDMODataCollection.h ** ODataCollection.h

Migration

Migration 3

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMODataDataParser.h ** ODataDataParser.h

SDMODataEntitySchema.h ** ODataEntitySchema.h

SDMODataEntry.h ** ODataEntry.h

SDMODataError.h ** ODataError.h

SDMODataErrorXMLParser.h ** ODataErrorXMLParser.h

SDMODataFunctionImport.h # ODataFunctionImport.h

SDMODataFunctionImportParameter ODataFunctionImportParameter

SDMODataFunctionImport ODataFunctionImport

SDMODataIconInfo.h ** ODataIconInfo.h

SDMODataLink.h # ODataLink.h

SDMODataLink ODataLink

SDMODataRelatedLink ODataRelatedLink

SDMODataMediaResourceLink ODataMediaResourceLink

SDMODataActionLink ODataActionLink

SDMODataMetaDocumentParser.h ** ODataMetaDocumentParser.h

SDMODataProperty.h * ODataProperty.h

SDMODataPropertyInfo.h ** ODataPropertyInfo.h

SDMODataPropertyValueFactory.h ** ODataPropertyValueFactory.h

SDMODataPropertyValues.h # ODataPropertyValues.h

SDMODataPropertyValueObject ODataPropertyValueObject

SDMODataPropertyValueInt ODataPropertyValueInt

SDMODataPropertyValueString ODataPropertyValueString

SDMODataPropertyValueComplex ODataPropertyValueComplex

SDMODataPropertyValueDateTime ODataPropertyValueDateTime

SDMODataPropertyValueBoolean ODataPropertyValueBoolean

SDMODataPropertyValueGuid ODataPropertyValueGuid

Migration

4 SAP Mobile Platform

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMODataPropertyValueBinary ODataPropertyValueBinary

SDMODataPropertyValueSingle ODataPropertyValueSingle

SDMODataPropertyValueDouble ODataPropertyValueDouble

SDMODataPropertyValueDecimal ODataPropertyValueDecimal

SDMDuration ODataDuration

SDMODataPropertyValueTime ODataPropertyValueTime

SDMODataPropertyValueTimeOffset ODataPropertyValueTimeOffset

SDMODataSchema.h ** ODataSchema.h

SDMODataServiceDocument.h ** ODataServiceDocument.h

SDMODataServiceDocumentParser.h ** ODataServiceDocumentParser.h

SDMODataWorkspace.h ** ODataWorkspace.h

SDMODataXMLBuilder.h # ODataXMLBuilder.h

SDMODataEntryXML ODataEntryBody

SDMOpenSearchDescription.h # OpenSearchDescription.h

SDMOpenSearchDescriptionURLTemplate OpenSearchDescriptionURLTemplate

SDMOpenSearchDescription OpenSearchDescription

SDMOpenSearchDescriptionXMLParser.h ** OpenSearchDescriptionXMLParser.h

<SDMParserDelegate.h> ## <ODataParserDelegate.h>

SDMParserException.h ** ODataParserException.h

SDMPerformanceUtil.h ** PerformanceUtil.h

SDMSubscriptionXMLBuilder.h # ODataSubscriptionXMLBuilder.h

SDMSubscriptionInfo ODataSubscriptionInfo

SDMSubscriptionXML ODataSubscriptionXML

• * Indicates a header file and not class definition. Renaming the header file in the #import
statement is sufficient.

• ** Indicates that the class name is same as the name of the header file. For example :
SDMODataError.h file has a class definition whose name is SDMODataError.

Migration

Migration 5

• # Indicates that these header files have multiple class definitions in the header file and are
listed below the same, italicized.

• ## Indicates that this corresponds to protocol definition in iOS.

Note: SAP recommends you to update the APIs to the newly re-factored APIs listed. The
deprecated SDM APIs are supported for backward compatibility.

Migrating Android Native OData Applications
Migrate your Android OData application from version 2.x to SAP Mobile Platform version
3.0.

Overview
This section covers migration of a REST based application from SAP Mobile Platform 2.3.x
to version 3.x. The following aspects of a REST based application are covered:

• Registration
• Request-Response (data fetch)
• Parsing

Registration
There is no change in code and no refactoring is required to migrate an application from 2.3.x
to 3.x. Existing applications based on 2.x will continue to work against the SAP Mobile
Platform 3.0 OData SDK post migration, without any code changes, with just a rebuild. The
deprecated class details in this section is applicable for new application development, where it
is requested or mandatorily required to use the new APIs. To use OData offline and other
features such as batch processing, the new classes are mandatory.

Request-Response
With 3.x, the old SDM API has been deprecated and a new Request API is introduced for
uniformity in API nomenclature. With this change, all SDM* classes and methods have been
replaced with class names removing the SDM tag. The following table lists the old and new
class names. The method names mostly remain the same, unless specified otherwise in this
section.

Table 3. List of Refactored Classes

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMRequestManager RequestManager

SDMConnectivityParameters ConnectivityParameters

SDMPreferences Preferences

SDMLogger Logger

Migration

6 SAP Mobile Platform

Class name in 2.3.x version (old - dep-
recated)

Class name in 3.0 version (new - re-
factored)

SDMBaseRequest BaseRequest

SDMBundleRequest BundleRequest

SDMResponseImpl ResponseImpl

SDMHttpChannelListeners HttpChannelListeners

SDMConnectivityException ConnectivityException

SDMRequestStateElement RequestStateElement

SDMPreferencesException PreferencesException

ISDMNetListener INetListener

Parser
The following table lists the refactored classes and protocols.

Table 4. List of Refactored APIs

API in Version 2.x API in Version 3.x

buildSDMODataEntryXML buildODataEntryRequestBody

parseSDMODataServiceDocumentXML parseODataServiceDocument

parseSDMODataSchemaXML parseODataSchema

parseSDMODataEntriesXML parseODataEntries

parseSDMODataOpenSearchDescriptionXML parseODataOpenSearchDescription

parseSDMODataErrorXML parseODataError

parseFunctionImportResultXML parseFunctionImportResult

Note: SAP recommends you to update the APIs to the newly refactored APIs listed. The
deprecated SDM APIs are supported for backward compatibility.

Migrating MBO Applications
You can migrate SAP Mobile Platform 2.x Mobile Business Object (MBO) applications to
SAP Mobile Platform 3.0 by redeveloping the MBOs.

Migration

Migration 7

MBO and OData Architectural Differences
There are a considerable number of architectural differences between SAP Mobile Platform
versions 2.x and 3.x.

This table summarizes the differences between SAP Mobile Platform versions 2.x and 3.0
architectures.

Version 3.0 Version 2.x Notes

No caching database Cache database In a typical SAP Mobile Platform 2.x production en-
vironment, separate hardware runs the cache database,
which is used for differencing and replication-based
MBO synchronizations.

Settings are stored in
database

Settings are stored in
database and files

In version 2.x, some settings are stored in the cluster
database, but most settings are stored in files that must
be synchronized across the cluster.

Note: SAP Mobile Platform 3.0 does not provide clus-
ter support.

Runs in SAP Light
Java Server

Mix of x86 and Java
runtime

The version 2.x servers runs only on Windows-based
machines. Because SAP Mobile Platform 3.0 runs in
SAP Light Java Server, you can install it on a range of
Linux and Unix servers as well.

Service packages
are managed by OS-
Gi

Custom service and
package manage-
ment

This is also a great differentiator making it much easier
to manage the middleware services on an SAP Mobile
Platform 3.0 server. You can also install custom service
packages, allowing you to deploy services to mobile
platforms. These packages are referred to as features
within the platform, and administrators can manage
them.

HTTP/HTTPS Custom protocols One goal of SAP Mobile Platform3 is to standardize on
network protocols

Support for standard
reverse proxies

Some support for re-
verse proxies, but
SAP recommends
Relay Server

Integration services
are deferred to Net-
Weaver Gateway or
Gateway For Java

Integration is part of
MBO design

Migration

8 SAP Mobile Platform

MBO and OData SDK Differences
The functionality of SAP Mobile Platform 2.x MBO applications differs greatly from SAP
Mobile Platform 3.0 OData SDKs.

Note: SAP Mobile Platform 3.0 implements OData version 2, and includes delta token
support from version 4.

The OData SDK is primarily responsible for user on-boarding and processing OData requests.
Many features that applications require, for example, reading and updating data from back-
end systems, are features of the OData standard; SAP Mobile Platform 3.0 implements a
version of this standard. OData does not define how integration is done, but defines contracts
between clients and servers using Entity Data Models.

MBO primary functions are to define:

• Integration into back-end systems
• How data is cached and synchronized to devices
• Data models for applications

To compare features, we must compare the functional capability of MBOs with the functional
capability of SAP Mobile Platform 3.0 and the OData standard itself.

These are the functional mappings between SAP Mobile Platform 2.x MBOs and the SAP
Mobile Platform 3.0 OData SDK:

MBO OData Description

Defines integration N/A Note: OData defines the contract.

Integration is performed with other tools, such as
Netweaver Gateway or Gateway for Java.

Defines middleware
caching

N/A For performance reasons, SAP Mobile Platform
3.0 does not implement middleware caching.

Defines synchronization
with delta calculation us-
ing a cache

Uses the delta token
approach for delta
synchronizations.

Since SAP Mobile Platform 3.0 does not use a
middleware cache, enterprise services must im-
plement delta tracking.

Defines data models Defines entity data
models (EDM)

Defines relationships Defines associations

Migration

Migration 9

MBO OData Description

Defines client-side object
relational models via
code generation

N/A Although there are many tools available to gen-
erate client-side object relational models for
OData EDMs, no such tool is included with the
SAP Mobile Platform 3.0 SDK.

Defines a client-side rela-
tional database for offline
lookup

OData cache re-
quires in-memory
lookup.

The SAP Mobile Platform 3.0 SDK does not in-
clude any tools that provide a client-side relation-
al database for offline lookup.

You can store results from OData queries in a
cache, which must be loaded into memory to
search.

Offline Find By quer-

ies

N/A No direct mapping exists. The document cache
provided by the OData SDK does not allow you to
query the data using SQL. OData usually repre-
sents aggregated data and cannot be treated as
normalized data.

Offline custom queries N/A

Online Find By quer-

ies

HTTP GET, $fil-
ter

Multiple MBO sync with
sync groups

HTTP GET, $fil-
ter, $expand

Not a direct mapping; $expand can only re-

trieve associated entities.

Create HTTP POST

Multilevel inserts HTTP POST with
$batch

Update HTTP PUT, PATCH

Delete HTTP DELETE

Static libraries for user
onboarding

HTTP API for creat-
ing application con-
nections

Push notifications via dy-
namic circuit networks
and target-change notifi-
cations

N/A Push notifications must be handled manually

Migration

10 SAP Mobile Platform

MBO OData Description

On device relational da-
tabase

N/A No direct mapping exists. The OData SDK pro-
vides a document cache, but you cannot use this to
replace a normalized relational database.

Comparing MBO Models to OData Entity Data Models
Converting an MBO-based application to an OData application requires that you first develop
the OData entity data model (EDM). MBO models are similar to OData EDMs, both are
entity-relationship models.

In SAP Mobile Platform 2.x, you can use the Mobile Application Diagram to create MBOs
from different data sources, such as databases, Web services, and Business Application
Programming Interfaces.

In SAP Mobile Platform 3.0, the entity data model defines the service contract, which is
independent of how the service is implemented. A number of different techniques exist for
using SAP tools to implement services for contracts.

The following table illustrates the general mappings between structures in an MBO diagram
and structures in an OData EDM diagram. There is not always a direct mapping from MBO
model elements to OData model elements. In MBOs, create, read, update, and delete (CRUD)
operations are synchronized database transactions. Since an OData EDM is used as a contract
in an HTTP REST pattern, CRUD operations are performed using HTTP verbs, such as GET,
POST, PUT, DELETE and MERGE.

MBO Model OData Model Notes

MBO Collection Entity Collection

MBO Entity

Attributes Properties

CRUD operations N/A CRUD operations are not part of the OData model;
OData follows the HTTP REST pattern for CRUD.

Other operations Function imports

Relationship Association, navigation Associations are equivalent to MBO relationships, and
incorporate cardinality. To use OData associations,
you must define additional navigation entities.

Migration

Migration 11

Migrating of Agentry Applications

You can migrate your Agentry-based mobile application from either Agentry Mobile Platform
6.0.x or from SAP Mobile Platform 2.3 to SAP Mobile Platform 3.0. Be sure to complete the
prerequisites before attempting the migration process.

Preparing Agentry Applications With Java System Connections
When migrating an Agentry application to the SAP Mobile Platform Server 3.0, be sure to
account for changes within the architecture that directly affect how the Java synchronization
logic of the mobile application processes file references. Skip this information if your
application does not include a Java system connection.

In releases of SAP Mobile Platform prior to 3.0 and Agentry Mobile Platform versions 6.0.x
and earlier, the Java synchronization logic could reference file resources relative to the
location of the Agentry Server publish directory (where Agentry.ini is located). In product-
name 3.0, the current directory when processing the Java logic is no longer the publish
directory.

To prepare Agentry applications for migration to SAP Mobile Platform 3.0, you modify the
Java synchronization logic to change any references to configuration files or other resource
files within the logic. In each case where such a file is referenced, replace it with a call to the
method com.syclo.agentry.Server.findConfigurationFile within the
Agentry Java API class com.syclo.agentry.Server. This method takes either the file
name, or relative path and file name as its parameter, and returns the full path to the file. This
return value can then be used in the same manner in which the previous relative file path was
used to process a configuration file.

When making this change, first import all development resources, including the Java logic, as
well as the Agentry application project into the Agentry Editor plug-in provided in the SAP
Mobile Platform SDK. Update the AJ-API to the version provided with SAP Mobile Platform
SDK 3.0. This API is contained in the Agentry-v5.jar file provided with SAP Mobile
Platform SDK.

Continue with the migration steps to copy all the necessary resource files to the proper location
for SAP Mobile Platform.

Migrating Agentry Applications to SAP Mobile Platform
You can migrate SAP Mobile Platform 2.3 Agentry applications to SAP Mobile Platform 3.0.

Prerequisites

• Install SAP Mobile Platform SDK and SAP Mobile Platform Server.

Migration

12 SAP Mobile Platform

• Modify the file references within the Java Synchronization logic for any Agentry
applications that contain a Java system connection.

• Ensure you have access to the previous Agentry Editor version and Eclipse workspace in
which the Agentry application project exists.

• Install the Agentry Editor plug-in as provided in the SAP Mobile Platform SDK to Eclipse.

Task

1. In an Agentry perspective in the SAP Mobile Platform 2.3 Agentry Editor, export the
entire Agentry application project.
The resulting file name contains the extension .agx or .agxz.

2. In an Agentry perspective in the SAP Mobile Platform 3.0 Agentry Editor, right-click in
Project Explorer view and select Import.

3. Follow the wizard to complete the import process.

During the import process, you can associate the project with the development server.

Once the import process is complete, the new Agentry application project for the mobile
application exists in the Eclipse workspace and is listed in the Project Explorer view.

4. Make sure the Network Connect Type is WebSockets over HTTPS for all transmit
configurations.

5. (Optional) Migrate the associated Java back-end project to the Eclipse workspace.

6. Publish the application as a Production version.

a) Click the Publish button, then browse to the location where you want to publish (save)
the ZIP file.

b) (Optional) Right-click within Publish Folder Structure to add auxiliary project files,
which may include Java resource files, application-specific DLL files, JAR files for the
back end, and other back-end configuration files.

c) Click Next, then Finish.

7. In Management Cockpit, create an Agentry application definition in Management
Cockpit.

a) Under Quick Links, select Configure Application.
b) In Applications, click New, enter the information for the application definition.

Select Agentry for the type, then click Save.
c) In App Specific Settings, under Publish, browse to the Agentry application zip file,

then click Open.
d) In Back End, enter the back-end connection information for the back-end connection

type.

It may be helpful to have the previous Agentry.ini file as a reference when
entering the back-end information.

e) In Authentication, indicate the security profile or create a new one.
f) Set any other applicable configuration options.

Migration

Migration 13

g) Click Save.

Once you save the application definition, if you change any application-specific
configuration options preceded with an "i," stop and restart the SAP Mobile Platform
Server.

8. For Java System connections, add the
com.sap.mobile.platform.server.agentry.application directory to
the system path.

• On Windows, edit Server/bin/setenv.bat. At the end of the file, add set
PATH=%SMP_HOME%\configuration
\com.sap.mobile.platform.server.agentry.application;
%PATH%

• On UNIX, edit Server/bin/setenv.sh. At the end of the file, add
LD_LIBRARY_PATH=$SMP_HOME/configuration/
com.sap.mobile.platform.server.agentry.application:
$LD_LIBRARY_PATH export LD_LIBRARY_PATH

9. Perform full end-to-end testing.

When this is complete, upgrade the Agentry Client installations within the implementation
environment to migrate all mobile users to the new environment.

a) Have all users perform a final transmit to verify all information stored on the device has
been updated to the back end system.

b) All users should shut down their clients prior to upgrading them.
c) Install the Agentry Client provide with the SAP Mobile Platform for the client device

type.
d) Each user should start the new Agentry Client, login, and perform an initial transmit.

Next

At some point after the completion of fully migrating all mobile users to the new environment,
you can uninstall the previous version of the Agentry Client from the mobile devices, provided
there are two separate versions of the client. For platforms, the Agentry Client may be
upgraded in place, resulting in only one Agentry Client executable existing on the device at
any given time.

Migration

14 SAP Mobile Platform

Index
2.x, migrating to 3.x 6
3.x, migrating from 2.x 6

A
Android OData applications

migrating 6

C
comparing

MBO functionality with OData SDKs 9

D
deploying

applications to SAP Mobile Platform Server 1

E
Entity Data Models

creating 11

F
functionality

comparing MBOs to OData SDKs 9

I
iOS OData applications

migrating 2

M

mapping
MBO data models to EDMs 11

MBO functionality
comparing with OData SDKs 9

MBOs
migrating to OData 7

migrating
Android OData applications 6
iOS OData applications 2
MBO applications 7

migration 1

O

OData SDK functionality
comparing with MBOs 9

R

redesign, as a migration strategy 1
redeveloping

MBO applications for migration 1

Index

Migration 15

Index

16 SAP Mobile Platform

	Migration
	Contents
	Migration
	Migrating Native OData Applications
	Migrating iOS Native OData Applications
	Migrating Android Native OData Applications

	Migrating MBO Applications
	MBO and OData Architectural Differences
	MBO and OData SDK Differences
	Comparing MBO Models to OData Entity Data Models

	Migrating of Agentry Applications
	Preparing Agentry Applications With Java System Connections
	Migrating Agentry Applications to SAP Mobile Platform

	Index

