
Administration: In-Memory Row-Level
Versioning

SAP Sybase IQ 16.0 SP01

DOCUMENT ID: DC01840-01-1601-01
LAST REVISED: May 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

About In-Memory Row-Level Versioning1
In-Memory Row-Level Versioning Terminology1
In-Memory Row-Level Versioning Architecture2
In-Memory Row-Level Versioning Restrictions3
The Row-Level Versioning (RLV) Store4

The RLV Store Merge ..4
RLV Store Partitioning ..6
Table Fragments and Subfragments6

RLV Store Persistence and Durability6
RLV Store Backup/Restore7
The RLV Dbspace ..7
RLV Store Persistence Log8

Data and Transaction Management8
Data Modification Language (DML)9
Transaction Management11
Lock Management ...12
Version Management ...16

Query and the RLV Store ..17
Impact of Row-Level Versioning on Queries17
QP Output Details for RLV Tables18

Configure In-Memory Row-Level Versioning21
Configuration Prerequisites ..21
Configure RLV Memory ..22
Configure the RLV Dbspace ...22

Creating the RLV Dbspace23
Permitted ALTER DBSPACE Syntax for RLV

Store ..23
Dropping the RLV Dbspace26
Adding a File to the RLV Dbspace27
Dropping a File from the RLV Dbspace27

Configure RLV Storage on Tables28

Administration: In-Memory Row-Level Versioning iii

Creating a New Table with RLV Storage Settings
...28

Enabling or Disabling RLV Settings for an
Existing Table ..29

Configuring Default Storage for Tables29
Configure Snapshot Versioning30

Row-Level Snapshot Versioning30
Tutorial: Using Row-Level Versioning on a Table33

Merge RLV Store into IQ Main Store35
Automated Foreground Merge35
Setting Merge Trigger Thresholds36
Running a Manual Merge ...37
Viewing Merge History ..38
Logged Merge Phases in IQMSG File39
Post-Merge Table Fragments ..40
Tutorial: Using Row-Level Versioning on a Table41

Monitor Locks and Deadlocks ..43
Tutorial: Monitoring Write-Intent Locks43
Tutorial: Monitoring Row-Level Locks46
Tutorial: Monitoring Deadlocks49
Creating a Deadlock Reporting Event in Interactive

SQL ..52
Manage Blocking in the RLV Store55

Enabling Connection Blocking55
Disabling Connection Blocking56
Setting the Blocking Timeout Threshold56
Transaction Blocking Deadlocks57
Tutorial: Monitoring Blocking ...58

Manage Memory for the RLV Store61
Configuring RLV Store Memory Size61
Monitoring RLV Memory Usage62

Appendix: Troubleshoot the RLV Store65
RLV Store Out of Memory ...65
Cannot Convert to Multiplex ...66
Cannot Create RLV Dbspace in Multiplex66

Contents

iv SAP Sybase IQ

RLV Dbspace Already Exists ..66
Cannot Make RLV Dbspace Read-Only 67
Cannot Create Table in RLV Dbspace67
Cannot Enable Table for RLV Storage67
Cannot Use Foreign Keys in RLV Enabled Table68
Cannot Use Index Type in RLV Enabled Table 68
Merge Required Before Table Level Modification 68
Cannot Perform Merge of RLV Store69
RLV Store Merge Already in Progress70
Cannot Open the Requested Object for Write in the

Current Transaction ...70
Transaction Seems to Hang ..70
Failed RLV Recovery .. 70

Appendix: SQL Reference ..73
Database Options ...73

AGGREGATION_PREFERENCE Option 73
ALLOW_SNAPSHOT_VERSIONING Option 74
BASE_TABLES_IN_RLV_STORE Option75
BLOCKING Option ...76
BLOCKING_TIMEOUT Option 76
ENABLE_ASYNC_IO Option77
LOG_DEADLOCKS Option 77
RV_AUTO_MERGE_EVAL_INTERVAL Option ... 78
RV_MAX_ACTIVE_SUBFRAGMENT_COUNT

Option ..79
RV_MERGE_NODE_MEMSIZE Option 79
RV_MERGE_TABLE_MEMPERCENT Option80
RV_MERGE_TABLE_NUMROWS Option80
RV_RESERVED_DBSPACE_MB Option81
SNAPSHOT_VERSIONING Option82

Procedures ... 83
sa_conn_info system procedure83
sa_report_deadlocks System Procedure86
sa_server_option System Procedure88
sp_iqcolumn Procedure102

Contents

Administration: In-Memory Row-Level Versioning v

sp_iqconnection Procedure104
sp_iqdbsize Procedure107
sp_iqdbspace Procedure109
sp_iqfile Procedure ..111
sp_iqlocks Procedure ..114
sp_iqmergerlvstore Procedure117
sp_iqrlvmemory Procedure118
sp_iqspaceinfo Procedure119
sp_iqspaceused Procedure120
sp_iqstatistics Procedure122
sp_iqstatus Procedure126
sp_iqsysmon Procedure128
sp_iqtable Procedure ...135
sp_iqtablesize Procedure139
sp_iqtransaction Procedure140
sp_iqwho Procedure ..144

Server Startup Options ...147
-iqrlvmem start_iq Server Option147

SQL Statements ...148
ALTER DBSPACE Statement148
ALTER TABLE Statement152
CREATE DBSPACE Statement165
CREATE TABLE Statement168
DELETE Statement ...185
DROP Statement ...187
INSERT Statement ..190
LOAD TABLE Statement198
LOCK TABLE Statement216
TRUNCATE Statement219
UPDATE Statement ...220

Views ..223
SYSIQDBSPACE System View224
SYSIQRLVMERGEHISTORY System View225
SYSIQRVLOG System View226
SYSIQTAB System View226

Contents

vi SAP Sybase IQ

Index ..229

Contents

Administration: In-Memory Row-Level Versioning vii

Contents

viii SAP Sybase IQ

About In-Memory Row-Level Versioning

With in-memory row-level versioning (RLV) for SAP® Sybase® IQ, more than one user can
modify the same table concurrently, users can wait for transaction locks instead of having to
retry, and a hybrid storage model optimizes data write-access, without sacrificing read-access
performance.

• Concurrent Table Writes – in earlier versions of SAP Sybase IQ, incoming stream data
had to be batched, and run serially, which caused conversion overhead, and latency in data
availability. With in-memory row-level versioning, the IQ server allows concurrent, low-
latency modifications to tables. This means that multiple connections can modify the same
table, as long as they are adding or modifying different rows

• Blocking and Locking – with earlier versions of SAP Sybase IQ, a transaction would lock
a table, blocking all other connections from writing to the table while the transaction was
open. These other connections would have to implement retry logic through a form of
looping, which affected performance. In-memory row-level versioning supports multi-
version concurrency control (MVCC), for version management at the row level.
Connections can wait for locks (on either the table or a single row), eliminating the need
for retry.

• Hybrid Storage – in-memory row-level versioning introduces the row-level versioning
(RLV) store to SAP Sybase IQ. The new RLV store combines with the existing on-disk IQ
main store to provide a hybrid storage mechanism that combines the extreme performance
and low-latency of the in-memory store with the robust high-performance and scalability
of on-disk storage. Immediate data modifications (load table / insert / update / delete)
occur within the write-optimized RLV store. The RLV store is periodically merged into the
read-optimized IQ main store through asynchronous data transfer. Thus, most data in an
IQ table can be accessed via indexes, and provides expected IQ query performance.

In-Memory Row-Level Versioning Terminology
The definitions of specific terms are helpful when describing in-memory row-level
versioning.

• Data Definition Language (DDL) – refers to SQL commands which create or modify the
schema of a table, for example CREATE TABLE, ALTER TABLE, DROP TABLE.

• Data Modification Language (DML) – refers to SQL commands which create or modify
the data in a table, for example INSERT, LOAD, UPDATE, DELETE and TRUNCATE.

• Multi-Version Concurrency Control (MVCC) – a concurrency control mechanism
providing stable read-only versions so that writers do not block readers of the same table.

• Row-Level Versioning (RLV) – an MVCC versioning technique which logically versions
table rows for a write transaction, and allows concurrent writes to different rows of the
same table. Each time a writer commits a transaction, the server creates a new version of

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 1

the updated row, resulting in a different row-level version being created. An RLV-enabled
table is one in which row-level versioning is permitted.

• RLV Store – the write-optimized, in-memory store that works with the existing, read-
optimized, on-disk IQ main-store to make in-memory row-level versioning possible.

• RLV Store Merge – the periodic asynchronous transfer of per-table in-memory data from
the RLV store to the IQ main store. The merge occurs automatically, but can also be
triggered manually. Only committed transactions are merged.

• Snapshot – the technique of establishing a stable version of an object, determined at the
start of a transaction.

• Table-Level Versioning (TLV) – an MVCC versioning technique which logically
versions the entire table for a write transaction, and does not allow concurrent writers of
the same table. Each time a writer commits a transaction, the server creates a new version
of the entire table, resulting in a different table-level version being created. A TLV table is
one which row-level versioning is not enabled.

In-Memory Row-Level Versioning Architecture
The RLV and IQ main stores together provide hybrid table storage which enables row-level
snapshot isolation for tables with concurrent transactions. The server tracks the data location
when querying and manipulating the data, but logically, the data is in one (hybrid) store.

• Version Manager – The version manager works with the table-level version to ensure that
there is a consistent row ID view.

About In-Memory Row-Level Versioning

2 SAP Sybase IQ

• Transaction Manager – Only RLV transactions are written to the RLV store. A single
TLV write transaction on a table will block all RLV write attempts to that table until the
TLV transaction is terminated.

• Transaction Log – The RLV store transaction log (persistence log) tracks and makes
durable all new and modified data stored in-memory.

In-Memory Row-Level Versioning Restrictions
The in-memory row-level versioning feature has some restrictions including aggregation
preference, table type, and data type.

Feature Restriction

Server
Types

Only single-server configurations are supported: tables cannot be enabled for row-
level versioning in a multiplex configuration.

Table Types Only SAP Sybase IQ base tables are supported in the RLV store: catalog, temporary
and global temporary tables are not supported.

Data Types LONG BINARY (LOB) and LONG VARCHAR (CLOB) data types are not supported
on RLV-enabled tables.

• You cannot add a LOB column to an RLV-enabled table.
• You cannot enable RLV storage on a TLV table with a LOB column.

Index Types TEXT indexes and WORD indexes are not supported on RLV-enabled tables.

Constraint
Types

Foreign key constraints are not supported on RLV-enabled tables or across a combi-
nation of RLV-enabled and TLV tables. Referential integrity is not supported.

• You cannot add a foreign key constraint to an RLV-enabled table.
• You cannot enable RLV storage on a TLV table that has a foreign key constraint

defined.
• You cannot enable RLV storage on a TLV table if another table has a foreign key

constraint referencing this table.
• When altering a TLV table, you cannot add a foreign key reference to an RLV

table.

SQL State-
ments

• The LOCK TABLE statement is not supported on RLV-enabled tables.
• The BEGIN PARALLEL IQ...END PARALLEL IQ statement results in an error if one

of its CREATE INDEX statements specifies an RLV-enabled table.
• The TRUNCATE statement will result in an error if the PARTITION or SUBPAR-

TITION clause specifies an RLV-enabled table.
• The SKIP clause of the LOAD TABLE statement will not function if you set the

MAX_QUERY_PARALLELISM database option to 1.

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 3

Feature Restriction

Database
Options

REVERT_TO_V15_OPTIMIZER='ON' results in an error if your query speci-
fies an RLV-enabled table.

See also
• Row ID Stability on page 16

The Row-Level Versioning (RLV) Store
Row-level versioning allows multiple transactions to modify different rows of the same table
concurrently. The in-memory, write-optimized RLV store supplements the SAP Sybase IQ
main store in providing concurrent read- and write-access to IQ base tables.

The IQ server provides the ability to configure, on a connection basis, single- or multiple-
writer concurrent access to IQ base tables. Multiple connections can modify the same table, as
long as they are adding or modifying different rows. Only tables which have RLV storage
enabled are eligible for multiple-writer concurrent access.

The RLV store provides:

• Low latency writes with minimal index and compression overhead, resulting in efficient
in-memory read/write operations

• Efficient concurrent updates with row versioning and minimal lock contention
• High performance column scans which feature in-memory read operations

The RLV store records incremental DML from an IQ table and automatically merges these
changes into the IQ main store. The combined RLV and main stores are write-optimized for
efficient DML and low latency data access, yet still have read-optimized on-disk query
performance across the majority of data.

Whereas traditional, table-level versioned (TLV) tables reside only in the IQ main column
store, row-level versioning (RLV) enabled tables reside in both the IQ main and RLV stores.

The RLV Store Merge
The RLV store is an autonomous self-managing, in-memory store that merges into the IQ main
store automatically (either periodically or when thresholds are reached).

The RLV merge process moves rows from committed row-level transactions stored in the RLV
store to the IQ main store on a per table basis. The merged data becomes part of a new table
level version of the same table, in the IQ main store.

A blocking merge waits for all write-transactions on the table to complete, then blocks all
write operations until the merge is complete. A non-blocking merge allows existing and new
write-operations to continue on the table while the merge is active.

The merge process can be triggered in one of three ways:

About In-Memory Row-Level Versioning

4 SAP Sybase IQ

1. Manually, by using the sp_iqmergerlvtable stored procedure. For example
call sp_iqmergerlvstore('BLOCKING', 'my_table', 'DBA')

which runs a blocking merge on the RLV-enabled table "DBA.my_table".
2. Automatically, when a DDL or table-level DML statement is executed on an RLV-enabled

table. For example
alter table DBA.my_table add c2 int

which forces a blocking merge on the RLV-enabled table "DBA.my_table", and then adds
the new column "c2" to the table.

3. Automatically, when a resource threshold is reached, such as the maximum number of
rows in the RLV store for a given table, or the maximum amount of memory allowed for the
RLV in memory store.

RLV merge failures are not typical. The only legitimate RLV merge failures would be due to
the IQ main store running out of dbspace or experiencing storage errors (hardware or
permission issues). If the RLV merge were to fail, the transaction would roll back. All changes
to the IQ main store TLV version would be undone. This is the same process used when the
server executes DML through a transaction.

See also
• Merge RLV Store into IQ Main Store on page 35

RLV Merge Phases
The RLV merge executes in five phases.

• Begin – the server performs an auto-commit, begins a new transaction, and prepares for
the merge.

• Delete – the server applies all delete transactions recorded in the IQ main store. Rows
deleted from the RLV store portion of the table are not merged since they are deleted in-
memory. Any committed IQ main store rows deleted prior to RLV enablement are simply
recorded as deleted by the RLV store. The merge will apply the deletes against the new IQ
main store table level version being created by the merge.

• Update – the server applies all update transactions recorded the IQ main store. Rows
updated from the IQ main store table will store the new values in the RLV store. The
updated new values will be applied to the IQ main store during the merge.

• Insert – the server transfers the new RLV store inserted rows into the IQ main store table

• End – the server completes the merge and commits a new TLV version (or rolls back).

The merge is logged in the database IQMSG file and the SYSIQMERGERLVHISTORY system
view.

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 5

RLV Store Partitioning
All IQ base tables, whether unpartitioned, range-partitioned, hash-partitioned or range-hash
partitioned, can be enabled for row-level versioning, however the in-memory RLV store
portion is not partitioned.

The actual partitioning occurs during the merge from the RLV store to the (partitioned) IQ
main store. At this time, table rows are placed in the appropriate range-partitioned dbspace.
Every partitioned table has a corresponding pseudo-column in the RLV store which contains
partition information. Query engine uses these pseudo-columns to support partitioning
semantics.

Table Fragments and Subfragments
A table fragment is where data is stored. The fragment is further subdivided into
subfragments. A table fragment may contain one or more subfragments.

Data is stored in data blocks inside subfragments. There are two types of data blocks:

• Variable length data block – used to store variable length data types like varchar. A
variable length data block is 512KB in size.

• Fix length data block – used to store fix length data types, like int and big int. A fixed
length data block is 16MB in size.

Each subfragment has an independent storage data structure and only the dictionary is shared
across subfragments. An active subfragment can contain multiple data blocks, but only one
data block is active for insertion for each column at any one time.

An insertion into a table always uses the active data block. When the active data block
becomes full, a new active data block is automatically created in the subfragment. During
parallel inserts, if contention occurs, new subfragments, each containing an active data block
are created.

Memory allocation is triggered by insertions that require the creation of new subfragments or
additional data blocks within a subfragment. Subsequent inserts into active data blocks do not
require the allocation of additional memory. It is not until additional subfragments or data
blocks are required that additional memory is allocated. This may result in the appearance of
periodic memory spikes during a bulk load rather than a continuous, gradual rise in memory
allocation.

RLV Store Persistence and Durability
Transactions in the RLV store are fully durable. Committed transactions are guaranteed to be
recovered in the event of a system crash.

Data in the RLV store is not written to disk, but remains in-memory until it is merged into the
IQ main store.

About In-Memory Row-Level Versioning

6 SAP Sybase IQ

The performance of the I/O system supporting the RLV dbspace is a major factor in the
ingestion and commit performance of the RLV store. Sustained write throughput is important
for high volume data ingestion. Write latency is important for commit performance. Random
write performance is important when simultaneously ingesting data into multiple RLV
enabled tables.

A commit request from an application is not acknowledged until the entire transaction,
including the commit state, has been written to stable storage.

Each RLV enabled table has its own logical persistence log. The space for these logs comes
exclusively from the RLV dbspace. Log space is consumed during transactions and is freed by
merge. At the end of a merge, the log for a table is truncated back to the oldest open transaction
at the beginning of the merge. A long-running open transaction that spans multiple merges has
the potential to prevent log space from being truncated. You can monitor the amount of RLV
log space used for a table with the sp_iqtablesize stored procedure.

Because it is not possible for uncommitted data to be in the database at the start of recovery,
recovery is a logical, transaction-oriented process rather than a physical, page-oriented
process. RLV recovery is concerned with inserting committed data instead of physically
modifying pages.

See also
• Merge RLV Store into IQ Main Store on page 35

• Manage Memory for the RLV Store on page 61

RLV Store Backup/Restore
Backing up and restoring the RLV store is part of the normal backup process.

The RLV dbspace is a persistence dbspace. The internal structure is the same as for other
supported dbspaces. As a result, it is fully integrated into the SAP Sybase IQ dbspace
management system.

Various system procedures are able to report meta data from the RLV store persistence
dbspace. In addition, it is fully integrated into the existing Sybase IQ backup and restore
architecture. In backup restore, the dbspace is part of the normal backup, and is restored. In
normal recovery, the catalog store and IQ main store are recovered first, and then the server
recovers the in-memory portion (the RLV-enabled tables). RLV recovery takes place against
any RLV enabled table that had committed data in memory.

The RLV Dbspace
The RLV store requires an RLV dbspace for persistence logging.

The RLV dbspace houses persistence logs for RLV-enabled tables.

RLV storage cannot be enabled on any table unless the RLV dbspace is configured.

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 7

See also
• Configure the RLV Dbspace on page 22

RLV Dbspace Restrictions
There is only one RLV dbspace per database, but it can have multiple dbfiles.

The RLV dbspace files may not be dropped or made read-only while there are RLV-enabled
tables in the database. To drop RLV dbspace files, all RLV enabled-tables must be dropped or
RLV-disabled first.

Unlike other dbspaces, the RLV dbspace does not allow striping.

RLV Store Persistence Log
The asynchronous write-ahead persistence log for the RLV store is separate from the database
persistence log. It tracks and makes durable all new and modified data stored the RLV store

The RLV persistence log contains a disk-based copy of the contents of the RLV store. It is
stored in a compressed format to balance disk utilization and runtime recovery performance.
The log is organized per-table and is stored exclusively in the RLV dbspace. It uses efficient,
asynchronous I/O to minimize table modification overhead, and efficient, parallel processing
for fast recovery on restart. The log is used to restore the in-memory RLV store on server
restart after clean or abnormal shutdown.

Log Space Usage
RLV log space usage is reported by the sp_iqtablesize stored procedure.

In particular, two columns of sp_iqtablesize relate to the RLV log.

Column Name Description

RlvLogPages Number of IQ pages being used to store RLV logs for this table

RlvLogKBytes Number of kilobytes being used to store RLV logs for this table

See also
• sp_iqtablesize Procedure on page 139

Data and Transaction Management
All tables in SAP Sybase IQ are stored in the IQ main store. This on-disk storage is table-level
versioned (TLV). When a table is enabled for row-level versioning (RLV), the on-disk version
remains fixed, and the in-memory RLV store is activated. As table transactions are performed,
the server manages many row-level versions which are committed and stored in-memory.
Over time, this data from the RLV store is merged with the IQ main store.

About In-Memory Row-Level Versioning

8 SAP Sybase IQ

Data Modification Language (DML)
The disk I/O per row in the RLV store is substantially less than in the IQ main store, thus
enabling smaller-granularity DML.

Row-level snapshot isolation allows concurrent DML, whereas table-level snapshot isolation
does not.

With an insert transaction (including bulk loads), new rows are added to the RLV store. Data is
only inserted into the IQ main store by the merge operation. There is never a lock on an insert
because the RLV store is an append-only store. Insert has the advantage of leveraging the fully
bulk parallel load engine.

With a delete transaction, there is a lock. When a row is deleted from an RLV-enabled table, the
data is not removed from the RLV store during commit. Instead, all deleted rows that are
committed remain in-memory until a merge, but are invisible to query operations.

An update transaction is implemented as a delete plus an insert.

Merging the RLV store with the IQ main store does not free up memory used by open
transactions, this memory is held until the transaction is closed.

See also
• Table-Level DML Locking Considerations on page 15

DML Best Practices
Best practices will improve performance with batch loads and large updates.

For batch loads:

• Perform small- or medium-sized concurrent loads through the RLV store.
• Do not perform excessively large loads through the RLV store, because loads exceeding

maximum RLV memory may fail.

Even if a very large load does not exceed the maximum RLV memory (and does not fail),
merges of other committed RLV data may be triggered during the load. This may impact load
performance.

For large updates:

• Perform large updates on RLV-enabled tables with a table-level versioned connection.
• Do not perform very large updates through the RLV store because updates copy on-disk

rows to the RLV in-memory store for modification.

Constraints
To maintain consistent behavior between the IQ main and RLV stores, constraints are checked
during load, insert and update statements.

Primary key and unique indexes are supported, but require additional memory and processing
during the modification of RLV-enabled tables. To optimize performance while modifying

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 9

RLV-enabled table, keep these index types to a minimum. Referential integrity and foreign
key constraints are not supported on RLV-enabled tables.

Detected constraint violations cause DML commands to fail. The load command provides an
IGNORE CONSTRAINT clause which allows a specified number of constraint violations to
be reported and ignored before the load command is aborted.

Table Constraints
RLV store loads use the same table constraint evaluation mechanism as IQ main store loads,
and have identical performance characteristics with regards to table constraint evaluation.

Table constraints allow expressions to be evaluated against each inserted row. For example

col1 >= col2, col1 NOT NULL

These expressions may only involve columns within the row being loaded.

See also
• CREATE TABLE Statement on page 168

• ALTER TABLE Statement on page 152

Unique and Primary Key Constraints
Primary key and unique constraints are supported for RLV store loads, inserts and updates, in a
specific way.

Because the RLV store does not maintain secondary indexes, enforcement requires a separate
unique value checking process. Furthermore, no exclusive table lock is taken for RLV table
writes, so new row values can be inserted, updated or deleted and subsequently committed by
other connections while the current connection performs its operations.

Although RLV modifications committed after a transaction snapshot are not visible to the
current connection, before any new values can be committed, any values added or removed
due to those modifications are considered during unique and primary key checking, to avoid
constraint violation.

Unique and primary key value checking has two phases.

1. The new values are checked against values in the RLV store for uniqueness. As values are
inserted into the RLV store, each one is checked for uniqueness against committed and
uncommitted values in the RLV store (a "first updater wins" methodology). Uncommitted
deletes are not considered for unique checking unless they are part of the current
transaction.

2. The new values are checked against IQ main store values. Before inserting into the RLV
store, each value is checked against the IQ main store index for uniqueness (excluding any
deleted and updated IQ main store rows visible to the transaction in the RLV store).

About In-Memory Row-Level Versioning

10 SAP Sybase IQ

Referential Integrity Constraints
Referential integrity constraints are not supported in the RLV store.

In the IQ main store, referential constraint enforcement checks that no foreign tables involved
in a referential integrity constraint are currently being modified, by taking a write-intent lock
on the foreign table for the duration of the transaction. This referential concurrency checking
is handled by the global IQ in-memory catalog. However, taking a global write-intent lock for
referential-integrity enforcement is not supported for RLV store tables.

Referential integrity relationships on RLV-enabled tables would also require global table
locks from RLV transactions that accessed table-level versioned foreign tables.

For these reasons RI constraints are not supported.

Transaction Management
The transaction manager includes support for transaction access to the RLV store. The
transaction manager works the version manager to provide table- and row-level versioning
support.

The transaction manager also works with the RLV merge to enable blocking and non-blocking
merges. Blocking merges do not allow transactions to access an RLV-enabled table until the
merge commits or rollback. Non-blocking merges allow transactions to exist beyond the start
and end of a merge, so that these transactions still see a consistent state of the database.

After RLV-enabled tables are committed, the data resides in the RLV dbspace until a merge.
(The RLV dbspace is an on-disk representation of what is in memory). The merge won't free
up memory from open transactions (that is, those which have not yet ended).

When a TLV connection accesses an RLV enabled table, table-level read-write access will
force a merge of the RLV store. The TLV transaction will hold a table-level write-lock, which
will block RLV and other TLV connections from writing to the table for the duration of the
transaction. Reads from other connections are not affected. An example of this scenario is a
nightly load. The application performs a large load in the night, when the system is not being
accessed. A bulk load into the IQ main portion is more efficient than loading into the RLV
store and then manually triggering a merge.

See also
• Merge RLV Store into IQ Main Store on page 35

Transactions
A transaction accesses the rows visible in its snapshot. .

Transactions can be simple, multi-table or composite:

• Simple transactions involve a single RLV-enabled table and the RLV store only. The log
records exist entirely in a single log stream.

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 11

• Multi-table transactions involve multiple RLV-enabled tables, and contain records in
multiple log streams.

• Composite transactions involve traditional IQ tables (with table-level versioning), SAP®

Sybase SQL Anywhere tables (in the IQ catalog store), and RLV-enabled tables coexisting
in the same transaction. The server commits the TLV tables, followed by the SQL
Anywhere tables and finally, the RLV-enabled tables.

Lock Management
Row locks, and their prerequisite write-intent locks, ensure consistency between concurrent
transactions at a row level. For example, a transaction can lock a particular row to prevent
another transaction from changing it. Transactions place write-intent locks on the table itself,
and on the table rows they intend to modify, to prevent conflicts from both competing row-
level and table-level snapshot-versioned transactions.

An RLV-enabled table uses row locks for updated and deleted rows; and write-intent locks
when accessed by read-write transactions with row-level snapshot versioning. The IQ write
table lock is used when accessed by read-write transactions with table-level snapshot
versioning.

DDL changes to an RLV-enabled table require an exclusive table-level lock; the writing
connection has an exclusive lock on the table. DML changes to an RLV-enabled table first take
out a write-intent lock to block table-level versioned transactions from locking the table, and
then take out a row-level lock to prevent other row-level versioned transactions from writing to
those rows.

• Row lock – a table row write lock allowing the holder to write to any column of a locked
row. Only one holder of this lock can exist at a time. A write-intent lock is a prerequisite;
you must hold a write-intent lock before the lock manager grants you a row lock.

• Write-intent lock – a table write-intent lock indicates you intend to write to a table row in
the future. A write-intent lock can be held by multiple requesters.

The write-intent lock conflicts with table write locks and table exclusive locks. This
conflict prevents a table-level snapshot-versioned transaction from writing to the table or
performing a DDL operation until the lock manager releases all write-intent locks on the
table.

See also
• Schema Locks on page 13

• Row Locks on page 13

• Write-Intent Locks on page 14

• Row-Level DDL Locking Considerations on page 15

• Table-Level DML Locking Considerations on page 15

• Monitor Locks and Deadlocks on page 43

About In-Memory Row-Level Versioning

12 SAP Sybase IQ

Schema Locks
Whereas a table-lock in the IQ main store places a lock on all the rows in the table, a schema
lock places a lock on the table's schema.

Schema locks ensure that transactions using a table are not affected by schema changes
initiated by other connections. For example, a schema lock prevents an ALTER TABLE
statement from dropping a column from a table when that table is being read by an open cursor
on another connection. Readers and writers both take schema locks.

A schema lock can be modified for exclusive access. The exclusive access can only be granted
when there are no other schema locks present. This means that there are no other readers or
writers to the table. All DDL statements will take an exclusive schema lock prior to being
allowed to execute. Only one connection can acquire an exclusive schema lock on a table at
any time—all other attempts to lock the table's schema will either block or fail with an error.

See also
• Row Locks on page 13
• Write-Intent Locks on page 14
• Table-Level DML Locking Considerations on page 15
• Row-Level DDL Locking Considerations on page 15

Row Locks
A row lock is a table-row write lock that allows the holding transaction to write to any column
of a locked row. Only one holder of this lock can exist at a time. A write-intent lock is a
prerequisite; the transaction must hold a write-intent lock before the lock manager grants it a
row lock.

A table-row write lock allows the holding transaction to write to any column of locked
row. This lock cannot be granted without the requesting transaction first holding the write
intent lock. Row write locks are exclusive locks; only one transaction can hold a write lock on
a row at any time. Once a transaction acquires a write lock, requests to lock the row by other
transactions are denied.

Row locks exist only during row deletions. The RLV store is an append-only store, meaning
that every write action results in a new row appended to the store. INSERT statements append a
new row to the store, as do UPDATE statements. The RLV store considers an UPDATE to be a
DELETE followed by an INSERT. Before a row is deleted, either in the context of a DELETE or
UPDATE statement, the database takes out a row-level lock.

See also
• Schema Locks on page 13
• Write-Intent Locks on page 14
• Table-Level DML Locking Considerations on page 15
• Row-Level DDL Locking Considerations on page 15

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 13

• Tutorial: Monitoring Row-Level Locks on page 46

Write-Intent Locks
A write-intent lock is a table write lock that grants the transaction permission to write to a table
row in the future. A write-intent lock can be held by multiple requesting connections.

A write intent lock always exists when the RLV-enabled portion of the table exists in memory.
You can view details of the write intent lock using the sp_iqlocks stored procedure.

The write-intent lock conflicts with table write locks and table exclusive locks. This conflict
prevents a table-level snapshot-versioned transaction from writing to the table or performing a
DDL operation until the lock manager releases all write-intent locks on the table. In a situation
where both table-level snapshot-versioned transactions and row-level snapshot-versioned
transaction connections write to a table, write-intent locks provide synchronization. Consider
this scenario:

Connection Action

Row-level snapshot-versioned transaction A • Executes query writing to multiple rows of
table_1.

• Lock manager creates a write-intent lock for
table_1.

• Lock manager creates multiple local write-
intent locks for row-level DML updates.
Lock manager creates row-level locks.

Table-level snapshot-versioned transaction B Attempts to write to table_1. Transaction B
blocked by write intent lock.

Row-level snapshot-versioned transaction A Commits transaction A. Table changes are
merged from the RLV store to the IQ main store.
Write-intent locks released.

Table-level snapshot-versioned transaction B Proceeds with write to table_1.

See also
• Schema Locks on page 13

• Row Locks on page 13

• Table-Level DML Locking Considerations on page 15

• Row-Level DDL Locking Considerations on page 15

• Tutorial: Monitoring Write-Intent Locks on page 43

About In-Memory Row-Level Versioning

14 SAP Sybase IQ

Table-Level DML Locking Considerations
If a table is enabled for RLV storage, you can still issue table-level snapshot versioning DML
statements against it. The DML engine recognizes table-level and row-level versioned
transactions, and manages the locks accordingly.

When a transaction issues a table-level snapshot versioning DML statement against an RLV-
enabled table:

• In-memory data is merged into the IQ main store portion of the table
• The write-intent lock releases
• The table-level DML statement proceeds

Once the transaction completes, the next connection issuing a DML statement in a row-level
snapshot-versioned transaction causes the RLV portion of the table to be recreated in memory.
Until the current transaction issuing the table-level snapshot versioning DML statement
completes, row-level snapshot versioned transactions either block, or fail.

Note: If a table is enabled for RLV storage, the LOCK TABLE statement cannot be used.

See also
• Schema Locks on page 13

• Row Locks on page 13

• Write-Intent Locks on page 14

• Row-Level DDL Locking Considerations on page 15

• LOCK TABLE Statement on page 216

Row-Level DDL Locking Considerations
Data Definition Language (DDL) changes (for example, CREATE INDEX, DROP INDEX, and
ALTER TABLE ADD, ALTER, or DROP) to an RLV-enabled table require an exclusive table-
level lock. For DDL events, the locking behavior for an RLV-enabled table is the same as for an
IQ main store table: the writing connection has an exclusive lock on the table. When
BLOCKING is set to ON, all competing DML and DDL transactions against the table are
blocked until the DDL changes are committed. When BLOCKING is set to OFF, the competing
transaction will immediately fail the lock request.

See also
• Schema Locks on page 13

• Row Locks on page 13

• Write-Intent Locks on page 14

• Table-Level DML Locking Considerations on page 15

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 15

Version Management
Transactions involving RLV-enabled tables create row-level transaction snapshot versions. A
row-level snapshot allows the transaction to commit a version of the table row, rather than a
version of the entire table.

Row-level versioning permits concurrent DML changes to the table. (An update to one row
may not block another connection's update to another row).

• A row-level operation on an RLV-enabled table creates a row-level version.
• A table-level operation (such as DDL and table-level DML) on an RLV-enabled table

creates a table-level version.
• A transaction not involving an RLV-enabled table creates a table-level version.

Note: You must enable row-level transaction snapshot versioning before you can write data to
the RLV store.

Open transactions hold versions which are accessible to that transaction. If a transaction is
long-running, the server will hold the memory and disk space associated with the RLV and
TLV versions until that transaction terminates. Even after a merge, memory for RLV versions
will not be freed until the transactions with snapshots referencing these versions are
terminated.

See also
• Configure Snapshot Versioning on page 30

• Specifying Snapshot Versioning on page 31

• Restricting Snapshot Versioning on page 32

Row ID Stability
The row ID of rows in an RLV-enabled table may change.

In TLV tables which reside completely on the IQ main store, when a row is inserted, its row ID
is stable for the lifespan of that row. Once the row is deleted, the row ID is available to be
assigned to a newly inserted row.

In RLV-enabled tables, an inserted row is assigned a temporary RLV row ID.

The temporary row ID assigned to a row in the RLV store is guaranteed to be stable only for the
duration of each transaction to which it is visible. Its row ID becomes permanent only after the
row has been both committed and merged into the IQ main store

About In-Memory Row-Level Versioning

16 SAP Sybase IQ

Query and the RLV Store
Queries on RLV-enabled tables scan data from both the on-disk IQ main and in-memory RLV
stores.

Because of lack of specialized indexes, some query optimizations are not applied for queries
on RLV store:

• IQ indexes (HG, LF) do not cover the RLV store.
• There is limited parallelism for predicate evaluation.

In general, this has a small performance impact, and relates to the proportion of data in the
RLV and IQ main stores.

The RLV portion of the query relies on fast in-memory column scans. In some partitioned
hash-join cases, in-memory indexes are created on-demand to enhance query performance.

See also
• The Row-Level Versioning (RLV) Store on page 4

• Row ID Stability on page 16

Impact of Row-Level Versioning on Queries
Specific situations will have performance impacts, including queries with multiple invariant
predicates, indexes, and row IDs.

• Order of Predicate Execution – when a query has multiple invariant predicates, the order
in which the predicates are executed on the data in the RLV store depends on the usefulness
of the predicates. The order of predicate execution in the RLV store could differ from the
order of execution in the IQ main store.

• Lack of Indexes – unlike the IQ main store, the RLV store does not have the capability to
execute predicates using the best possible index when present. Therefore, there could be a
difference in the query plans, depending on whether the query is executed on data that is in
the IQ main store only, or on the same data in the RLV store. Furthermore, some predicates
that require special support from specific indexes may result in an error when run on RLV-
enabled tables. For example, contains predicate requires support from TEXT or WORD
indexes, neither of which are supported in RLV-enabled tables. In order to avoid the
performance degradation due to lack of indexes on the RLV side, SAP Sybase IQ may
create an ad hoc hash index when these queries are detected. The query plan will indicate
that the store is using the hash index.

• No DQP support – querying RLV-enabled tables is supported in simplex configurations
only.

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 17

Note: Do not make use of a specific row ID when querying. If you make use of a specific row
ID (for doing a join) and select a row ID from another table, the row ID may not remain
consistent.

See also
• QP Output Details for RLV Tables on page 18

QP Output Details for RLV Tables
The Optimization Note, Condition 1 RLV Index and Output 1 RLV Index fields of query plan
output details give insight as to how querying works with row-level versioning.

In the query plan output details for the leaf node:

• Optimization Note – indicates if an on-demand hash index was created for the data in the
RLV store.

• Condition 1 RLV Index – describes which index was used for predicate execution.
• Output 1 RLV Index – lists the RLV indexes present on a column.

Query that Uses Flat FP Index for Execution
SELECT * from test_char
WHERE c1>1;

If this query were run, in the query plan output details, the Condition 1 RLV Index field would
display FP, indicating that the query used a Flat FP index for predicate execution. The Output
1 RLV Index field would also display FP, indicating that only an FP index was present on
c1.

Query that Creates Hash Index During Execution
SELECT * from R1KD100
WHERE R1KD100.c1 in (SELECT R100D100.c1 FROM R100D100 WHERE
R1KD100.c1)
 = R100D100.c1)

If this query were run, in the query plan output details, the Optimization Note field would
indicate that a hash index was created for RLV data. The Output 1 RLV Index field would
display FP, Hash, indicating that there were two indexes present on c1.

Query that Uses Previously-Created Hash Index for Execution
SELECT * from R100D100
 WHERE c1 = 1;

If this query were run after the previous query, and the hash index still existed on
R100D100.c1, in the query plan output details, the Condition 1 RLV Index field would display
Hash. (Whenever a hash index exists on a column, it is always preferred over a Flat FP Index
for predicate execution on the that column). The Output 1 RLV Index field would display FP,
Hash, indicating that there were two indexes present on c1.

About In-Memory Row-Level Versioning

18 SAP Sybase IQ

Query that Creates Partitioned Hash Index During Execution
SELECT * from hash1, hash2
WHERE hash1.c1 = hash2.c1;
// hash1 and hash2 are hash partitioned on c1

Suppose tables hash1 and hash2 are equi-partitioned tables (both hash partitioned on column
c1), and the join condition is on column c1. If this query were run, the IQ query optimizer
would create a partitioned index on both the tables. In the query plan output details for each
leaf, the Optimization Note field would indicate that a partitioned-index was created for the
RLV store data.

See also
• Impact of Row-Level Versioning on Queries on page 17

About In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 19

About In-Memory Row-Level Versioning

20 SAP Sybase IQ

Configure In-Memory Row-Level Versioning

Row-level versioning allows multiple transactions to modify different rows of the same table
concurrently. In order to utilize the RLV store, several setup steps must first be configured..

1. Configuration Prerequisites
Before configuring in-memory row level versioning, in addition to the base configuration
for SAP Sybase IQ you will need RAM for the RLV store, and a high-performance disk for
the RLV dbspace.

2. Configure RLV Memory
RLV memory is configured in addition to existing IQ cache memory. The host machine
must have enough memory for both the RLV memory and the IQ main cache, which are
independent memory pools.

3. Configure the RLV Dbspace
The RLV dbspace houses persistence logs of tables enabled for in-memory RLV storage.

4. Configure RLV Storage on Tables
A table enabled for RLV storage has two parts: one residing on the IQ main store, and the
other residing on the dedicated in-memory RLV Column Store.

5. Configure Snapshot Versioning
Snapshot versioning describes the type of versioning access that the database server uses
for tables: table-level snapshot versioning, or row-level snapshot versioning. Row-level
versioning allows concurrent writer access and row-level locking for RLV-enabled tables.

6. Tutorial: Using Row-Level Versioning on a Table
In this tutorial, create an RLV enabled dbspace and table, insert data, and then merge the
RLV store into the IQ main store.

Configuration Prerequisites
Before configuring in-memory row level versioning, in addition to the base configuration for
SAP Sybase IQ you will need RAM for the RLV store, and a high-performance disk for the
RLV dbspace.

Balance the memory size with the merge frequency. Although a smaller in-memory allocation
may be sufficient if you anticipate frequent transactions, consider that the smaller in-memory
size may affect the frequency of RLV store merges, thus impacting overall performance.

• For batch loads use at least twice the maximum single-transaction load data size, per table.
• For continuous/OLTP loads, the size depends on incoming data and transaction rate.

For the RLV Log dbspace, disk requirements include:

Configure In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 21

• A minimum of two times the RLV in-memory size.
• High random access write performance, enterprise SSD and HBA attached disk array.

Configure RLV Memory
RLV memory is configured in addition to existing IQ cache memory. The host machine must
have enough memory for both the RLV memory and the IQ main cache, which are
independent memory pools.

The maximum size of the RLV store, for all tables, is specified with a server option, which can
be set with:

• The server startup switch -iqrlvmem <max MB>
• The run time sa_server_option system procedure option 'rlv_memory_mb’, <max MB>

A size of 2 GB or greater is recommended. If the server switch is not specified, the value
defaults to 2 GB.

See also
• Manage Memory for the RLV Store on page 61

• -iqrlvmem start_iq Server Option on page 147

• sa_server_option System Procedure on page 88

Configure the RLV Dbspace
The RLV dbspace houses persistence logs of tables enabled for in-memory RLV storage.

A portion of the RLV dbspace must be reserved for memory used by data structures during
critical operations. The size of this portion can be set using the
RV_RESERVED_DBSPACE_MB database option.

See also
• Configure RLV Storage on Tables on page 28

• The RLV Dbspace on page 7

• RV_RESERVED_DBSPACE_MB Option on page 81

Configure In-Memory Row-Level Versioning

22 SAP Sybase IQ

Creating the RLV Dbspace
In order to use RLV storage with tables, you first need to create the RLV dbspace with a
minimum of one dbfile added to it.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task
Use the statement CREATE DBSPACE <dbspace name> IQ RLV STORE

CREATE DBSPACE d1 using file f1 '/dev/raw/raw1/f1.iq' size 1000 IQ
RLV STORE

Disk striping is always OFF for the RLV dbspace. Creating the RLV dbspace with STRIPING
ON | OFF or using the STRIPESIZEKB option is not supported.

See also
• CREATE DBSPACE Statement on page 165

Permitted ALTER DBSPACE Syntax for RLV Store
You can use the ALTER DBSPACE statement to configure the RLV dbspace. The statement
usage may differ from other dbspaces.

RLV Dbspace
State

ALTER Type Permitted for RLV Dbspace

Online ALTER DBSPACE OFFLINE Yes, if the dbspace is read-only

ALTER DBSPACE ONLINE No

ALTER DBSPACE READONLY Yes, if the dbspace is read-write
and no RLV-enabled objects exist

ALTER DBSPACE READWRITE Yes, if the dbspace is read-only

ALTER STRIPING or STRIPESIZEKB No

RENAME DBSPACE Yes

ADD FILE Yes

DROP FILE Yes, if the file is not in use

ALTER FILE READONLY No

ALTER FILE READWRITE No

ALTER FILE SIZE Yes, if the dbspace is read-write

Configure In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 23

RLV Dbspace
State

ALTER Type Permitted for RLV Dbspace

ALTER FILE RENAME LOGICAL NAME Yes

ALTER FILE RENAME PATH No

Offline ALTER DBSPACE OFFLINE No

ALTER DBSPACE ONLINE Yes

ALTER DBSPACE READONLY No

ALTER DBSPACE READWRITE No

ALTER STRIPING or STRIPESIZEKB No

RENAME DBSPACE Yes

ADD FILE No

DROP FILE Yes. File is, by definition, empty

ALTER FILE READONLY No

ALTER FILE READWRITE No

ALTER FILE SIZE No

ALTER FILE RENAME LOGICAL NAME Yes

ALTER FILE RENAME PATH Yes

Read-only ALTER DBSPACE OFFLINE Yes

ALTER DBSPACE ONLINE Yes

ALTER DBSPACE READONLY No

ALTER DBSPACE READWRITE Yes

ALTER STRIPING or STRIPESIZEKB No

RENAME DBSPACE Yes

ADD FILE Yes

DROP FILE Yes

ALTER FILE READONLY No

ALTER FILE READWRITE No

ALTER FILE SIZE No

ALTER FILE RENAME LOGICAL NAME Yes

Configure In-Memory Row-Level Versioning

24 SAP Sybase IQ

RLV Dbspace
State

ALTER Type Permitted for RLV Dbspace

ALTER FILE RENAME PATH No

Read-write ALTER DBSPACE OFFLINE No

ALTER DBSPACE ONLINE No

ALTER DBSPACE READONLY Yes, if no RLV-enabled objects ex-
ist

ALTER DBSPACE READWRITE No

ALTER STRIPING or STRIPESIZEKB No

RENAME DBSPACE Yes, if no RLV-enabled objects ex-
ist

ADD FILE Yes, if no RLV-enabled objects ex-
ist

DROP FILE Yes, if the file is not in use

ALTER FILE READONLY No

ALTER FILE READWRITE No

ALTER FILE SIZE Yes, but when decreasing file size,
truncated space must be empty

ALTER FILE RENAME LOGICAL NAME Yes

ALTER FILE RENAME PATH No

See also
• ALTER DBSPACE Statement on page 148

Altering the RLV Store Dbspace to Read-only
You can use the ALTER DBSPACE statement to set the RLV store to read-only. However, the
RLV store is, by definition, a read-write store. Therefore only make the dbspace read-only if
necessary (as in the case of dropping the dbspace).

Prerequisites

• SAP Sybase IQ server has a simplex database.
• A single RLV store dbspace exists on the database.

Task
Alter the dbspace to be read-only, using the statement ALTER DBSPACE <dbspacename>
READONLY.

Configure In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 25

ALTER DBSPACE d1 READONLY

See also
• Permitted ALTER DBSPACE Syntax for RLV Store on page 23

• ALTER DBSPACE Statement on page 148

• Dropping the RLV Dbspace on page 26

Dropping the RLV Dbspace
The RLV dbspace cannot be dropped unless it is empty. Dropping the RLV dbspace will mean
that you can no longer create RLV-enabled tables, or alter existing tables to enable RLV
storage.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• A single RLV dbspace exists on the database.
• The RLV dbspace is read-only.

Task
Unlike an IQ main store dbspace, you cannot relocate objects (transaction logs) resident on the
RLV dbspace in order to empty it. Instead, in order to empty the RLV dbspace, you must
ensure that there are no RLV-enabled table in the store.

Note: Dropping the RLV dbspace will mean that you can no longer create RLV-enabled tables,
or modify existing tables to be RLV-enabled.

1. Check for RLV-enabled tables (for example, SYSIQTAB).

a) If RLV-enabled tables exist, disable RLV storage, or drop the tables.
SELECT table_id, table_name
FROM SYSIQTAB
WHERE table_id IN (SELECT table_id FROM SYSIQTAB WHERE is_rlv='T')

2. Alter the dbspace to be read-only, using the statement ALTER DBSPACE <dbspacename>
READONLY.
ALTER DBSPACE d1 READONLY

3. Drop the dbspace using the command DROP DBSPACE <dbspacename>.
DROP DBSPACE d1

See also
• Permitted ALTER DBSPACE Syntax for RLV Store on page 23

Configure In-Memory Row-Level Versioning

26 SAP Sybase IQ

Adding a File to the RLV Dbspace
You may wish to add a file to the RLV dbspace for extra capacity in storing RLV transaction
logs.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• A single RLV dbspace exists on the database, and is online.
• If the dbspace is read-write, no RLV-enabled objects exist.

Task
Use the statement ALTER DBSPACE <dbspace name> ADD FILE <filename>
ALTER DBSPACE d1 ADD FILE 'rlv2.iq'

Because of the nature of in-memory RLV storage, you cannot specify files as being
READONLY.

See also
• Permitted ALTER DBSPACE Syntax for RLV Store on page 23

Dropping a File from the RLV Dbspace
You can remove a file from the RLV dbspace, provided that it is not the only file, and it is not in
use.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• A single RLV dbspace exists on the database.
• The RLV dbspace is read-only, or the file is not in use if the dbspace is read-write.

Task
Use the statement ALTER DBSPACE <dbspace name> DROP FILE <dbspace filename>
ALTER DBSPACE d1 DROP FILE rlv2

See also
• Permitted ALTER DBSPACE Syntax for RLV Store on page 23

Configure In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 27

Configure RLV Storage on Tables
A table enabled for RLV storage has two parts: one residing on the IQ main store, and the other
residing on the dedicated in-memory RLV Column Store.

You can have tables enabled for row-level versioning storage coexisting on the same database
with other tables having table-level versioning storage.

Row-level versioning of global and local temporary tables is not supported.

See also
• Configure the RLV Dbspace on page 22

• Configure Snapshot Versioning on page 30

Creating a New Table with RLV Storage Settings
When creating a new base table, you can specifically enable or disable RLV storage.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• The RLV dbspace exists with at least one dbfile.
• Table owned by self – Requires CREATE privilege on the dbspace where the table is

created. Also requires one of:
• CREATE TABLE system privilege.
• CREATE ANY OBJECT system privilege.

• Table owned by any user – Requires CREATE privilege on the dbspace where the table is
created. Also requires one of:
• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Task
To create a new RLV-enabled table, execute:
CREATE TABLE [owner.]table-name
 {ENABLE | DISABLE} RLV STORE
 [IN dbspace-name]

• table-name – the name of the table for which the RLV storage is to be enabled.
• dbspace-name – a valid IQ main dbspace.

Note: If the ENABLE | DISABLE RLV STORE clause is omitted, RLV storage settings for the
table will default to the value of the global database option
BASE_TABLES_IN_RLV_STORE.

Configure In-Memory Row-Level Versioning

28 SAP Sybase IQ

See also
• BASE_TABLES_IN_RLV_STORE Option on page 75

• CREATE TABLE Statement on page 168

Enabling or Disabling RLV Settings for an Existing Table
You can alter an existing base table so that it is enabled or disabled for RLV storage.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• The RLV dbspace exists with at least one dbfile.
• Requires ALTER ANY OBJECT or ALTER ANY TABLE system privilege.

Task
To enable or disable RLV storage settings on an existing table, execute:
ALTER TABLE [owner.]table-name
 { ENABLE | DISABLE } RLV STORE

• table-name – the name of table for which the RLV storage is to be enabled or disabled.

See also
• ALTER TABLE Statement on page 152

Configuring Default Storage for Tables
When the {ENABLE | DISABLE} RLV STORE clause of the CREATE TABLE statement is
not present, the BASE_TABLES_IN_RLV_STORE option setting is used to determine RLV
storage. Thus, you can allow existing CREATE TABLE statements to run without modifying
scripts to enable RLV storage.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• The RLV dbspace exists with at least one dbfile.

Task
Enable the option at the database level.
Set option PUBLIC.BASE_TABLES_IN_RLV_STORE = 'ON'

Note: The settings on an individual table made by using the CREATE TABLE statement
override this option. The default setting is OFF. If set to ON, any CREATE TABLE statement
without the ENABLE | DISABLE RLV clause results in the creation of an RLV-enabled table.

Configure In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 29

See also
• BASE_TABLES_IN_RLV_STORE Option on page 75

Configure Snapshot Versioning
Snapshot versioning describes the type of versioning access that the database server uses for
tables: table-level snapshot versioning, or row-level snapshot versioning. Row-level
versioning allows concurrent writer access and row-level locking for RLV-enabled tables.

Table-level versioning is the default, and provides versioning based on the entire table.

Row-level versioning provides versioning at the row level against a fixed table version.
Versioning occurs at transaction start time. Once the snapshot version has been defined for a
started transaction, you cannot change it until the transaction is complete.

See also
• Configure RLV Storage on Tables on page 28
• Tutorial: Using Row-Level Versioning on a Table on page 33

Row-Level Snapshot Versioning
Row-level snapshot versioning applies only to tables enabled for in-memory RLV storage.
Row-level snapshot versioning allows multiple writers to make concurrent DML changes to a
table, but never to the same rows at the same time.

Row-level snapshot versioning locks the table at the row level using row locks. A row lock
provides a write lock for a table row, meaning the transaction gets blocked, or fails, depending
on the BLOCKING and BLOCKING_TIMEOUT option settings. If BLOCKING is ON, the
transaction blocks. If BLOCKING is OFF, the transaction fails immediately with an ALREADY
LOCKED SQL exception.

Transaction blocking enables row-level snapshot versioning to write to different rows of the
same table simultaneously. Depending on the BLOCKING and BLOCKING_TIMEOUT option
settings, row-lock contention results either in an error, or a retry to obtain the lock if it is
released within the specified timeout period. When a transaction configured for table-level
versioning attempts to write to a table with a row locked by a row-level versioned transaction,
the table-level transaction either fails with an error, or blocks and retries if the lock is released
within the specified timeout period.

DDL changes to a table (CREATE, DROP, and ALTER), however, lock the table at the table
level.

See also
• Manage Blocking in the RLV Store on page 55
• BLOCKING Option on page 76
• BLOCKING_TIMEOUT Option on page 76

Configure In-Memory Row-Level Versioning

30 SAP Sybase IQ

Specifying Snapshot Versioning
Use the SNAPSHOT_VERSIONING option to set the snapshot versioning type to either Row-
level or Table-Level. You can set the option at the database (PUBLIC) level,
connection level (TEMPORARY) or user level. To use the in-memory RLV store, enable row-
level snapshot versioning for your transactions. For simultaneous updates to different rows of
the same table, each transaction or connection must also enable row-level snapshot
versioning.

Prerequisites

• If setting to Row-level, the RLV store dbspace exists with at least one dbfile.
• If setting to Row-level, the table is RLV-enabled.
• Requires the SET ANY PUBLIC OPTION system privilege to set this option for PUBLIC

or for other user or role.

Task
Once the snapshot versioning property has been set for a transaction, it remains the same until
the transaction commits.

1. Determine the scope of the SET OPTION command to set the option as a database-wide
option, connection-level option, or user-level option:

• SET OPTION public.SNAPSHOT_VERSIONING...

• SET TEMPORARY OPTION SNAPSHOT_VERSIONING...

• SET OPTION username.SNAPSHOT_VERSIONING...

2. Specify the snapshot versioning type.

Level Option

Row-level Row-level snapshot versioning. Required for in-memory RLV storage.
Row-level snapshot versioning allows multiple writers to make
concurrent DML changes to a table, but never to the same rows at the same
time.

Table-level Classic (backward-compatible) SAP Sybase IQ versioning behavior.
Takes snapshots at the table-level. Multiple writers cannot make
concurrent DML changes to a table.

SET TEMPORARY OPTION Snapshot_Versioning = 'Row-level';

CREATE TABLE rv_locks(c1 int, c2 int, c3 int);

INSERT INTO rv_locks VALUES (1,1,1);
INSERT INTO rv_locks VALUES (2,2,2);
INSERT INTO rv_locks VALUES (3,3,3);

Configure In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 31

INSERT INTO rv_locks VALUES (4,4,4);
COMMIT;

See also
• SNAPSHOT_VERSIONING Option on page 82

Restricting Snapshot Versioning
Use the ALLOW_SNAPSHOT_VERSIONING database option to restrict the versioning
allowed in the database to Table-level, Row-level, or any (no restriction).
ALLOW_SNAPSHOT_VERSIONING can be set at the database (PUBLIC) level only. You
cannot set it at the connection level, or user level.

Prerequisites

• If setting to Row-level, the SAP Sybase IQ server has a simplex database.
• Requires the SET ANY SYSTEM OPTION system privilege.

Task

1. Use the SET OPTION command to set the option at the PUBLIC level. SET TEMPORARY
OPTION... and SET OPTION <username>... are not allowed.

2. Restrict the type of versioning allowed in the database to either Table-level only, or Row-
level only.

Restriction Option

Table-level only set PUBLIC option ALLOW_SNAPSHOT_VERSIONING = 'Table-
level'

Row-level only set PUBLIC option ALLOW_SNAPSHOT_VERSIONING = 'Row-
level'

Setting the option to 'Table-level' prevents RLV access to any tables in the database,
effectively turning off the RLV store.

To remove the versioning restriction from the database, set the option to 'any.'

Restriction Option

No restriction set PUBLIC option ALLOW_SNAPSHOT_VERSIONING = 'any'

See also
• SNAPSHOT_VERSIONING Option on page 82

Configure In-Memory Row-Level Versioning

32 SAP Sybase IQ

Tutorial: Using Row-Level Versioning on a Table
In this tutorial, create an RLV enabled dbspace and table, insert data, and then merge the RLV
store into the IQ main store.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task

1. Create an RLV dbspace dbsp1 with the db file file1.

CREATE DBSPACE dbsp1
USING FILE file1 'file1.iqrlv'
SIZE 1000
IQ RLV STORE

2. Create an RLV enabled table in the dbspace or RLV enable an existing table.
Enable new table:
CREATE TABLE test1
 (rowid INT NOT NULL,
 col1 char(25) NOT NULL,
 col2 char(25) NULL,
 col3 varchar(25) NOT NULL,
 col4 varchar(25) NULL)
 ENABLE RLV STORE

Enable existing table:
ALTER TABLE test1
ENABLE RLV STORE

3. Verify the table is RLV enabled.
SELECT is_rlv FROM sysiqtab
WHERE table_id = (SELECT table_id FROM systab WHERE table_name =
'test1')

4. Set the snapshot versioning option to "row-level".
SET TEMPORARY OPTION snapshot_versioning = 'Row-level'

5. Check RLV memory usage prior to inserting data into RLV enabled table.
SELECT TOTAL FROM sp_iqrlvmemory('test1', 'DBA')

6. Insert data into the table.
INSERT INTO test1 VALUES (1, 'char25', NULL, 'varchar25', NULL)
INSERT INTO test1 VALUES (2, 'char25', NULL, 'varchar25', NULL)
INSERT INTO test1 VALUES (3, 'char25', NULL, 'varchar25', NULL)

7. Check RLV memory usage after inserting data to RLV enabled table.
SELECT TOTAL FROM sp_iqrlvmemory('test1', 'DBA')

Configure In-Memory Row-Level Versioning

Administration: In-Memory Row-Level Versioning 33

8. Manually merge the data to main Blocking merge.
sp_iqmergerlvstore 'BLOCKING', 'test1','DBA'

9. Check RLV memory usage after merging data to main.
SELECT TOTAL FROM sp_iqrlvmemory('test1', 'DBA')

See also
• Configure Snapshot Versioning on page 30

Configure In-Memory Row-Level Versioning

34 SAP Sybase IQ

Merge RLV Store into IQ Main Store

Over time, or when thresholds are triggered, the data committed in-memory is merged to the
IQ main store, through an asynchronous data transfer process, the RLV store merge.

The merge of RLV-enabled table data into the IQ main store uses one of two approaches:

1. Non-blocking (background) merge: Transactions normally still read and write to the RLV
store while a non-blocking merge is in progress. There is a possible impact on runtime
operations due to the merge's use of system resources. The non-blocking merge briefly
locks write-access to the table being merged. This may result in a brief pause, but will not
cause transactions to fail.
• The non-blocking merge is initiated by the server as needed. The server merge

evaluator executes a merge periodically, at a configurable interval. The merge can also
be triggered by automated merge thresholds.

• It is also possible to execute a non-blocking merge manually. However, this is not
recommended.

2. Blocking (foreground) merge: The table containing the data to be merged into the IQ main
store is locked while the merge takes place. The RLV merge operates as a transaction
which creates a new version of the table. The visibility of this table version follows normal
table versioning rules.
• Certain events trigger a blocking merge to execute automatically.
• In the event that you need to execute a manual merge, on most occasions you would run

a blocking merge.

See also
• RLV Store Persistence and Durability on page 6

• Manage Memory for the RLV Store on page 61

• The RLV Store Merge on page 4

Automated Foreground Merge
The IQ server will automatically perform a blocking (foreground) merge when necessary.

Certain actions require an automatic blocking merge before the action can commence:

• Accessing a table at table-level snapshot isolation (rather than row-level snapshot
isolation)

• RLV DML approaching RLV memory limit
• Using DDL commands such as CREATE or ALTER.

Merge RLV Store into IQ Main Store

Administration: In-Memory Row-Level Versioning 35

Commands which require an immediate automatic blocking merge may experience a pause
while the merge is executed, before the command proceeds.

See also
• Setting Merge Trigger Thresholds on page 36

• Running a Manual Merge on page 37

• Viewing Merge History on page 38

• Logged Merge Phases in IQMSG File on page 39

• Post-Merge Table Fragments on page 40

• Tutorial: Using Row-Level Versioning on a Table on page 41

Setting Merge Trigger Thresholds
The IQ server periodically evaluates the adjustable set of merge thresholds for each RLV-
enabled table, and automatically performs background (non-blocking) merges as needed. The
threshold settings can be changed, however care should be exercised before doing so because
of possible impacts on performance.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• RLV storage is configured.

Task

When a merge occurs, there may be a performance impact in the server because of the
resources used by the merge.

1. (Optional) Change the interval between IQ server merge evaluations.

The merge evaluator examines the merge parameters of each row-level versioning (RLV)
enabled table against configured threshold values to determine whether a non-blocking
(background) merge of the RLV table to IQ main stores should occur. You can change the
interval between activation times of the merge evaluator. If the merge evaluator is already
active or if a merge is already running when the interval ends, the merge evaluator waits for
the next interval to re-initiate.

Database Option Description Default

RV_AUTO_MERGE_EVAL_INTER-
VAL

Length of time between merge evalua-
tions

15 minutes

2. (Optional) Change the table thresholds.

When a table threshold is exceeded, a merge will be triggered for that specific table.

Merge RLV Store into IQ Main Store

36 SAP Sybase IQ

Table Threshold Description Default

RV_MERGE_TA-
BLE_NUMROWS

Number of committed RLV rows 10 million

RV_MERGE_TA-
BLE_MEMPERCENT

Percentage of total RLV memory size 100/ number of RLV ta-
bles

3. (Optional) Change the node threshold.

When a node threshold is exceeded, the merge condition evaluator will determine which
table(s) to merge. If multiple tables must be merged to satisfy the node threshold, parallel
merges will be triggered for each table to be merged.

Node Threshold Description Default

RV_MERGE_NODE_MEMSIZE Total RLV memory size 75% of configured size

See also
• Automated Foreground Merge on page 35

• Running a Manual Merge on page 37

• Viewing Merge History on page 38

• Logged Merge Phases in IQMSG File on page 39

• Post-Merge Table Fragments on page 40

• Tutorial: Using Row-Level Versioning on a Table on page 41

• Manage Memory for the RLV Store on page 61

• RV_AUTO_MERGE_EVAL_INTERVAL Option on page 78

• RV_MERGE_TABLE_NUMROWS Option on page 80

• RV_MERGE_TABLE_MEMPERCENT Option on page 80

• RV_MERGE_NODE_MEMSIZE Option on page 79

Running a Manual Merge
The RLV store is self-managing and performs automatic merges, as needed. However, in a few
cases, you may wish to trigger a merge manually.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• RLV storage is configured.

Task
Some reasons you might consider a manual merge include

Merge RLV Store into IQ Main Store

Administration: In-Memory Row-Level Versioning 37

• When you are preparing to perform a table-level load (to ensure that the DDL or load
command performance is not impacted by an automatic merge). You would run a blocking
merge in this instance.

• To free memory before a DML operation, such as a bulk load, on a table which is known to
affect a large data volume (to ensure that an automatic merge does not run concurrently
with the DML command). You would run a blocking merge in this instance.

• Prior to shutdown, in order to reduce startup time (otherwise, RLV recovery will be
performed, which may be time-consuming).

• If the automated merge period is set to a large time, and system resources are approaching
threshold limits. You would run a non-blocking merge in this instance, but would also
modify the times and thresholds so that you would not need to monitor as closely in the
future.

To manually run an RLV merge, use the SQL stored procedure sp_iqmergerlvstore
[[merge_type], [table_name], [table_owner]].

• If a table name is not specified, all the active data (from all RLV-enabled tables) in the RLV
store will be merged into the IQ main store.

• Merge-type can be BLOCKING | NON-BLOCKING .
• After performing the merge, the stored procedure will automatically commit the merge

transaction.

See also
• Automated Foreground Merge on page 35

• Setting Merge Trigger Thresholds on page 36

• Viewing Merge History on page 38

• Logged Merge Phases in IQMSG File on page 39

• Post-Merge Table Fragments on page 40

• Tutorial: Using Row-Level Versioning on a Table on page 41

• sp_iqmergerlvstore Procedure on page 117

Viewing Merge History
View a list of merges which took place on a specific table, including information on merge
date, merge type, and merge statistics.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• RLV storage is configured.

Merge RLV Store into IQ Main Store

38 SAP Sybase IQ

Task

1. Use the SYSIQRLVMERGEHISTORY view to see when the merge occurred, what data
was merged, and why.

2. Look at the IQMSG file to see logged merge failures.

See also
• Automated Foreground Merge on page 35
• Setting Merge Trigger Thresholds on page 36
• Running a Manual Merge on page 37
• Logged Merge Phases in IQMSG File on page 39
• Post-Merge Table Fragments on page 40
• Tutorial: Using Row-Level Versioning on a Table on page 41
• SYSIQRLVMERGEHISTORY System View on page 225

Logged Merge Phases in IQMSG File
The server logs RLV merge activity in the database IQMSG file.

The five phases of the merge are logged with a line suffixed by Mrg.

Log Suffix Merge Phase

Mrg B <table_id> <merge_type> [merge_host] Begin

Mrg D Delete

Mrg U Update

Mrg I Insert

Mrg E End

For the merge Begin phase, <merge_type> is one of:

• D – automatic DDL blocking merge

• M – automatic DML blocking merge

• N – non-blocking merge

[merge_host] is an optional connection handle for an internal connection used to run the
merge. This occurs if you execute a DDL merge. The connection running the DDL will use
another internal server connection to run the merge. When the merge completes, the
connection calling the DDL connection resumes.

An example IQMSG entry for a merge is:
I. 01/20 17:25:27. 0000000022 Txn 179 0 179
I. 01/20 17:25:27. 0000000021 Mrg B 775 D 0000000017

Merge RLV Store into IQ Main Store

Administration: In-Memory Row-Level Versioning 39

I. 01/20 17:26:28. 0000000021 Mrg D
I. 01/20 17:26:29. 0000000021 Mrg U
I. 01/20 17:26:34. 0000000021 Mrg I
I. 01/20 17:26:39. 0000000021 Mrg E
I. 01/20 17:26:39. 0000000021 Cmt 188

The prefix to each line is a timestamp and the connection ID logging the request. In this case,
connection 21 is an internal connection running the merge. In the first line, Txn 179 0 179
is the standard message denoting a begin transaction with ID 179. The third line shows that a
merge has begun against table ID 775, that it is a DDL blocking merge and that the connection
that launched the merge is 17. The last line shows that connection 21 commits, and the commit
ID is 188.

See also
• Automated Foreground Merge on page 35
• Setting Merge Trigger Thresholds on page 36
• Running a Manual Merge on page 37
• Viewing Merge History on page 38
• Post-Merge Table Fragments on page 40
• Tutorial: Using Row-Level Versioning on a Table on page 41

Post-Merge Table Fragments
In a NON-BLOCKING merge, the most recently committed data from the RLV store is
written to the IQ main store to create a new table-level version of the RLV-enabled table. This
new table-level version combines the previous table-level version plus the changes from the
RLV store (the in-memory changes from committed transactions). Uncommitted transactions
may reference snapshot versions on the pre-merged RLV store. These fragments are held in-
memory until the transactions terminate.

The merge operation itself has an impact on the RLV store:

• When the merge starts, a new RLV store instance is created.
• From then on, all data changes go to the new instance.
• The committed changes of the original instance of the RLV store are merged into the IQ

main store
• Then the merge ends

An active merge operation uses two RLV store disjoint instances. The original RLV store
instance contains all committed changes done before the beginning of the merge; the new RLV
store contains all changes done after the beginning of the merge. Because of any open
transactions residing in the original instance (transactions begun, but not committed before
the merge), the original instance is preserved until all transactions have been committed.

For BLOCKING merges the scenario is much simpler. There are no uncommitted transactions
referencing snapshot versions on the pre-merged RLV store, nor are there any data changes

Merge RLV Store into IQ Main Store

40 SAP Sybase IQ

happening while the merge is running. Hence, when a BLOCKING merge completes, there is
only ever a single, empty RLV table fragment.

See also
• Automated Foreground Merge on page 35

• Setting Merge Trigger Thresholds on page 36

• Running a Manual Merge on page 37

• Viewing Merge History on page 38

• Logged Merge Phases in IQMSG File on page 39

• Tutorial: Using Row-Level Versioning on a Table on page 41

Tutorial: Using Row-Level Versioning on a Table
In this tutorial, create an RLV enabled dbspace and table, insert data, and then merge the RLV
store into the IQ main store.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task

1. Create an RLV dbspace dbsp1 with the db file file1.

CREATE DBSPACE dbsp1
USING FILE file1 'file1.iqrlv'
SIZE 1000
IQ RLV STORE

2. Create an RLV enabled table in the dbspace or RLV enable an existing table.
Enable new table:
CREATE TABLE test1
 (rowid INT NOT NULL,
 col1 char(25) NOT NULL,
 col2 char(25) NULL,
 col3 varchar(25) NOT NULL,
 col4 varchar(25) NULL)
 ENABLE RLV STORE

Enable existing table:
ALTER TABLE test1
ENABLE RLV STORE

3. Verify the table is RLV enabled.
SELECT is_rlv FROM sysiqtab
WHERE table_id = (SELECT table_id FROM systab WHERE table_name =
'test1')

Merge RLV Store into IQ Main Store

Administration: In-Memory Row-Level Versioning 41

4. Set the snapshot versioning option to "row-level".
SET TEMPORARY OPTION snapshot_versioning = 'Row-level'

5. Check RLV memory usage prior to inserting data into RLV enabled table.
SELECT TOTAL FROM sp_iqrlvmemory('test1', 'DBA')

6. Insert data into the table.
INSERT INTO test1 VALUES (1, 'char25', NULL, 'varchar25', NULL)
INSERT INTO test1 VALUES (2, 'char25', NULL, 'varchar25', NULL)
INSERT INTO test1 VALUES (3, 'char25', NULL, 'varchar25', NULL)

7. Check RLV memory usage after inserting data to RLV enabled table.
SELECT TOTAL FROM sp_iqrlvmemory('test1', 'DBA')

8. Manually merge the data to main Blocking merge.
sp_iqmergerlvstore 'BLOCKING', 'test1','DBA'

9. Check RLV memory usage after merging data to main.
SELECT TOTAL FROM sp_iqrlvmemory('test1', 'DBA')

See also
• Automated Foreground Merge on page 35

• Setting Merge Trigger Thresholds on page 36

• Running a Manual Merge on page 37

• Viewing Merge History on page 38

• Logged Merge Phases in IQMSG File on page 39

• Post-Merge Table Fragments on page 40

Merge RLV Store into IQ Main Store

42 SAP Sybase IQ

Monitor Locks and Deadlocks

Use the sp_iqlocks stored procedure to display details about row-locks, write-intent locks,
and deadlocks in the database.

See also
• sp_iqlocks Procedure on page 114

Tutorial: Monitoring Write-Intent Locks
In this tutorial, create RLV-enabled tables, execute a transaction, and use the sp_iqlocks
stored procedure to report on schema-level locks and write-intent locks in the database. Then
use the sp_iqconnection and sa_conn_info stored procedures to view the internal connection
controlling the write-intent lock.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• RLV storage is configured.

Task

Tip: You can monitor locks using Sybase Control Center. For more information, see the
Sybase Control Center for SAP Sybase IQ online help in SCC or at http://
sybooks.sybase.com/sybooks/sybooks.xhtml?prodID=10680.

1. Create RLV-enabled tables rv_locks and rv_locks2, and configure table-level
snapshot versioning.
SET TEMPORARY OPTION SNAPSHOT_VERSIONING = 'Table-level';

CREATE TABLE rv_locks(c1 INT, c2 INT, c3 INT);

INSERT INTO rv_locks VALUES (1,1,1);
INSERT INTO rv_locks VALUES (2,2,2);
INSERT INTO rv_locks VALUES (3,3,3);
INSERT INTO rv_locks VALUES (4,4,4);
COMMIT;

CREATE TABLE rv_locks2(c1 int, c2 int, c3 int);

INSERT INTO rv_locks2 VALUES (1,1,1);
INSERT INTO rv_locks2 VALUES (2,2,2);
INSERT INTO rv_locks2 VALUES (3,3,3);
INSERT INTO rv_locks2 VALUES (4,4,4);
COMMIT;

Monitor Locks and Deadlocks

Administration: In-Memory Row-Level Versioning 43

http://sybooks.sybase.com/sybooks/sybooks.xhtml?prodID=10680
http://sybooks.sybase.com/sybooks/sybooks.xhtml?prodID=10680

ALTER TABLE rv_locks ENABLE RLV STORE;
ALTER TABLE rv_locks2 ENABLE RLV STORE;

2. Enable connection blocking and set the blocking timeout threshold:
SET TEMPORARY OPTION BLOCKING = 'ON';
SET TEMPORARY OPTION BLOCKING_TIMEOUT = '0';

3. Use the sp_iqlocks stored procedure to view the current set of database locks. At this
point, no locks are returned.
sp_iqlocks

The absence of a write-intent lock for the RLV-enabled table indicates that the in-memory
RLV portion of the table has yet to be created.

4. Set the snapshot versioning property of the transaction to row-level.
SET TEMPORARY OPTION SNAPSHOT_VERSIONING = 'row-level';

5. Write to the table.
INSERT INTO rv_locks VALUES (5,5,5);

Writing to, or querying, an RLV-enabled table creates the RLV-enabled portion of the table
in memory, on demand.

6. Re-execute sp_iqlocks.
sp_iqlocks

This time, the procedure returns a write-intent lock.
conn_name,conn_id,user_id,table_type,creator,table_name,index_id,
lock_class,lock_duration,lock_type,row_identifier,row_range
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks',,'Schema','Transaction','Shared',
,
'RLV_CONN_T775',
1000000407,'','BASE','DBA','rv_locks',,'Table','Transaction','Int
ent',,

Connection ID 100000407 has a write-intent lock on the rv_locks table. The lock
type is set to Intent, which indicates a write intent lock.

Note: The connection ID number (100000407) is large because it represents an internal
connection within the server itself. This internal connection is used to manage locks on the
RLV-enabled table.

ConnectionID 3 has a schema lock on the table. The lock type is set to Shared, which
indicates a shared schema lock

7. Return to the uncommitted transaction that performed the insert, and commit it:
Commit

During the commit, the database releases the locks held by the transaction. For the tutorial,
this releases only the shared schema lock. The RLV-enabled table now exists in memory,

Monitor Locks and Deadlocks

44 SAP Sybase IQ

with committed data. Therefore, the only lock present at this point is the write-intent lock
held by the RLV-enabled portion of the table.

8. Re-execute sp_iqlocks.
sp_iqlocks

The schema lock is gone, but the write-intent lock remains:
conn_name,conn_id,user_id,table_type,creator,table_name,index_id,
lock_class,lock_duration,lock_type,row_identifier,row_range
'RVL_CONN_T775',
1000000407,'','BASE','DBA','rv_locks2',,'Table','Transaction','In
tent',,

Note: The row for conn_id 100000407 has not changed since the last time you executed
sp_iqlocks.

9. Execute sp_iqconnection to view connection details
sp_iqconnection

You see:
ConnHandle,Name,Userid,LastReqTime,ReqType,IQCmdType,LastIQCmdTim
e,IQCursors,LowestIQCursorState,IQthreads,TxnID,ConnCreateTime,Te
mpTableSpaceKB,TempWorkSpaceKB,IQconnID,satoiq_count,iqtosa_count
,CommLink,NodeAddr,LastIdle,MPXServerName,LSName,INCConnName,INCC
onnSuspended
1,'SQL_DBC_13de5fd8','DBA','2012-08-08
08:49:25.629','PREFETCH','NONE',2012-08-08 08:49:25.0,0,'NONE',
0,0,2012-08-08 08:49:24.0,0,0,70,40,2,'local','',0,,,'','N'
3,'SQL_DBC_13cd6038','DBA','2012-08-08
09:25:32.920','OPEN','IQUTILITYOPENCURSOR',2012-08-08
09:25:32.0,0,'NONE',0,1008,2012-08-08
08:50:04.0,0,0,92,187,413,'local','',8789,,,'','N'
1000000407,'INT: RLVLockConn','','','unknown (0)','NONE',
0001-01-01 00:00:00.0,0,'NONE',0,0,2012-08-08
09:00:40.0,0,0,410,2,0,'NA','NA',0,,,'','N'

The third row (ConnHandle 1000000407) provides information on the internal connection
(RLVLockConn) used by the RLV-enabled table to control the write-intent lock.

Note: ConnHandle 1000000407 matches conn_id 100000407 in sp_iqlocks output. It
also matches ConnHandle 1000000407 in sp_iqtransaction output.

10. Execute sa_conn_info to view additional connection details. sa_conn_info is similar to
sp_iqconnection.
sa_conn_info

You see:
Number,Name,Userid,DBNumber,LastReqTime,ReqType,CommLink,NodeAddr
,ClientPort,ServerPort,BlockedOn,LockRowID,LockIndexID,LockTable,
UncommitOps,ParentConnection
1000000407,sa_'INT: RLVLockConn','',0,'','unknown (0)','NA','NA',
0,0,0,0,,'',0,
3,'SQL_DBC_13cd6038','DBA',0,'2012-08-08

Monitor Locks and Deadlocks

Administration: In-Memory Row-Level Versioning 45

09:30:43.799','FETCH','local','',0,0,0,0,,'',0,
1,'SQL_DBC_13de5fd8','DBA',0,'2012-08-08
08:49:25.629','PREFETCH','local','',0,0,0,0,,'',0,

Note: In the first row, Number 1000000407 matches ConnHandle 1000000407 in the
sp_iqconnection output, and conn_id 100000407 in the sp_iqlocks output.

Userid "INT: RLVLockConn" indicates an internal connection. This connection is used by
the RLV-enabled table to control the write-intent lock.

See also
• Manage Blocking in the RLV Store on page 55
• Row-Level Snapshot Versioning on page 30
• sa_conn_info system procedure on page 83
• sp_iqconnection Procedure on page 104
• sp_iqlocks Procedure on page 114

Tutorial: Monitoring Row-Level Locks
In this tutorial, create RLV-enabled tables, commit a transaction, and delete the committed
row to show row locking, and row-range locking. The sp_iqlocks stored procedure reports on
the row-level locks.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task

Tip: You can monitor locks using Sybase Control Center. See the Sybase Control Center
online help.

1. Create RLV-enabled tables rv_locks and rv_locks2, and configure table-level
snapshot versioning:
SET TEMPORARY OPTION SNAPSHOT_VERSIONING = 'Table-level';

CREATE TABLE rv_locks(c1 INT, c2 INT, c3 INT);

INSERT INTO rv_locks VALUES (1,1,1);
INSERT INTO rv_locks VALUES (2,2,2);
INSERT INTO rv_locks VALUES (3,3,3);
INSERT INTO rv_locks VALUES (4,4,4);
COMMIT;

CREATE TABLE rv_locks2(c1 int, c2 int, c3 int);

INSERT INTO rv_locks2 VALUES (1,1,1);

Monitor Locks and Deadlocks

46 SAP Sybase IQ

INSERT INTO rv_locks2 VALUES (2,2,2);
INSERT INTO rv_locks2 VALUES (3,3,3);
INSERT INTO rv_locks2 VALUES (4,4,4);
COMMIT;

ALTER TABLE rv_locks ENABLE RLV STORE;
ALTER TABLE rv_locks2 ENABLE RLV STORE;

2. Enable connection blocking and set the blocking timeout threshold.
set temporary option blocking = 'On';
set temporary option blocking_timeout = '0';

3. Write to the table.
insert into rv_locks values (5,5,5);

Writing to, or querying, an RLV-enabled table creates the RLV-enabled portion of the table
in memory, on demand.

4. Execute sp_iqlocks.
sp_iqlocks

A write-intent lock displays.
conn_name,conn_id,user_id,table_type,creator,table_name,index_id,
lock_class,lock_duration,lock_type,row_identifier,row_range
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks',,'Schema','Transaction','Shared',
,
'RLV_CONN_T775',
1000000407,'','BASE','DBA','rv_locks',,'Table','Transaction','Int
ent',,

Connection ID 100000407 has a write intent lock on the rv_locks table. The lock type is set
to Intent, which indicates a write intent lock.

Note: The connection ID number (100000407) is large because it represents an internal
connection within the server itself. This internal connection is used to manage locks on the
RLV-enabled table.

ConnectionID 3 has a schema lock on the table. The lock type is set to Shared, which
indicates a shared schema lock. Shared schema locks prevent other transactions from
performing DML actions against the table.

5. Commit the transaction.
Commit

During the commit, the database releases the locks held by the transaction. In this example,
this releases only the shared schema lock. The RLV-enabled table now exists in memory,
with committed data. Therefore, the only lock present at this point is the write-intent lock
held by the RLV-enabled portion of the table.

6. Delete the row that was previously committed.
delete from rv_locks where c1 = 5;

Monitor Locks and Deadlocks

Administration: In-Memory Row-Level Versioning 47

Before deleting the row, the database takes-out a row-level lock.

7. Execute sp_iqlocks again.
sp_iqlocks

Three locks display: a shared lock, a row lock, and a write-intent lock.
conn_name,conn_id,user_id,table_type,creator,table_name,index_id,
lock_class,lock_duration,lock_type,row_identifier,row_range
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks2',,'Schema','Transaction','Shared'
,,
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks2',,'Row','Transaction','Row',
281474976710656,1
'RVL_CONN_T775',
1000000407,'','BASE','DBA','rv_locks2',,'Table','Transaction','In
tent',,

Row 1 shows a lock type of Shared, indicating a shared schema lock. This lock is held by
the DML for the DELETE statement. The shared schema lock prevents other transactions
from performing DDL actions against the table.

Row 2 shows a lock type of Row, indicating a row-level lock:

• row_identifier – 281474976710656 is the row identifier of the row the lock starts on.
• row_range – 1 indicates that a single row was locked.

8. Delete a range of rows to illustrate row-range locking.

a) Roll back the current transaction which is performing the delete, where c1=5.
Rollback

b) Delete all rows where c1>0.
Delete from rv_locks2 where c1 > 0;

9. Execute sp_iqlocks again.
sp_iqlocks

Four locks display: a shared lock, two row locks (one with a row_range value), and a
write-intent lock:
conn_name,conn_id,user_id,table_type,creator,table_name,index_id,
lock_class,lock_duration,lock_type,row_identifier,row_range
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks2',,'Schema','Transaction','Shared'
,,
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks2',,'Row','Transaction','Row',1,4
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks2',,'Row','Transaction','Row',
281474976710656,1
'RVL_CONN_T775',
1000000407,'','BASE','DBA','rv_locks2',,'Table','Transaction','In
tent',,

Monitor Locks and Deadlocks

48 SAP Sybase IQ

Note: The second output row represents rows locked from the table-level version, whereas
the third output row represents the rows locked from the row-level version.

See also
• Manage Blocking in the RLV Store on page 55
• Row-Level Snapshot Versioning on page 30
• Row Locks on page 13
• sp_iqlocks Procedure on page 114

Tutorial: Monitoring Deadlocks
In this tutorial, add deadlocks to the RLV store, log the deadlocks for reporting purposes, and
report deadlock information using sa_report_deadlocks.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• RLV storage is configured.

Task

This tutorial creates a cycle between two transactions in order to create the deadlock:

1. Transaction A will have lock A, and will then request lock B. Transaction B will have lock
B and then attempt to request lock A.

2. Transaction A will block on the request for lock B, which will not be released until
transaction B releases it.

3. At the same time, transaction B will request lock A, which will not be released until
transaction A releases it.

These releases will never happen, since each transaction is waiting on a resource currently
held by the other transaction. This is a classic deadlock scenario. The database server prevents
user statements from inducing a deadlock scenario and automatically rolls back the
transaction for the statement that introduced the deadlock.

Tip: You can monitor locks using Sybase Control Center. See the Sybase Control Center
online help.

1. Create RLV-enabled tables rv_locks and rv_locks2, and configure table-level
snapshot versioning.
SET TEMPORARY OPTION SNAPSHOT_VERSIONING = 'Table-level';

CREATE TABLE rv_locks(c1 INT, c2 INT, c3 INT);

INSERT INTO rv_locks VALUES (1,1,1);

Monitor Locks and Deadlocks

Administration: In-Memory Row-Level Versioning 49

INSERT INTO rv_locks VALUES (2,2,2);
INSERT INTO rv_locks VALUES (3,3,3);
INSERT INTO rv_locks VALUES (4,4,4);
COMMIT;

CREATE TABLE rv_locks2(c1 int, c2 int, c3 int);

INSERT INTO rv_locks2 VALUES (1,1,1);
INSERT INTO rv_locks2 VALUES (2,2,2);
INSERT INTO rv_locks2 VALUES (3,3,3);
INSERT INTO rv_locks2 VALUES (4,4,4);
COMMIT;

ALTER TABLE rv_locks ENABLE RLV STORE;
ALTER TABLE rv_locks2 ENABLE RLV STORE;

2. Use sp_iqlocks to ensure no row locks exist on the rv_locks and rv_locks2 tables.

3. Enable connection blocking and set the blocking timeout threshold.
set temporary option blocking = 'On';
set temporary option blocking_timeout = '0';

4. Each connection deletes a row.

• Connection A:
delete from rv_locks where c1 = 1

• Connection B:
delete from rv_locks2 where c1 = 1

These two DML actions begin the two separate transactions.

5. Execute sp_iqlocks.
sp_iqlocks

6. View the locks held by the two transactions.
Conn_name,conn_id,user_id,table_type,creator,table_name,index_id,
lock_class,lock_duration,lock_type,row_identifier,row_range
'SQL_DBC_13de5fd8',
1,'DBA','BASE','DBA','rv_locks2',,'Schema','Transaction','Shared'
,,
'SQL_DBC_13de5fd8',
1,'DBA','BASE','DBA','rv_locks2',,'Row','Transaction','Row',1,1
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks',,'Schema','Transaction','Shared',
,
'SQL_DBC_13cd6038',
3,'DBA','BASE','DBA','rv_locks',,'Row','Transaction','Row',1,1
'RVL_CONN_T775',
1000000407,'','BASE','DBA','rv_locks2',,'Table','Transaction','In
tent',,
'RVL_CONN_T774',
1000006141,'','BASE','DBA','rv_locks',,'Table','Transaction','Int
ent',,

In the output rows, note the conn_id's 1, and 3.

Monitor Locks and Deadlocks

50 SAP Sybase IQ

7. Connection A deletes the same row that Connection B already locked:
delete from rv_locks2 where c1 = 1

This connection blocks because Connection B already has the lock on that row.

8. Connection B tries to delete the same row that Connection A already locked:
delete from rv_locks where c1 = 1

The connection deadlocks. The database server recognizes the deadlock, and does not
allow it to continue. The database server cancels this delete statement, rolls back the
transaction, releases its locks, and issues this error message to Connection B's application:
SQL error, state = 40001 “Deadlock Detected”.

9. Roll back the Connection A delete action.

• Connection A:
rollback

10. Enable deadlock logging.

• Connection B:
set option public.log_deadlocks = 'on';

Set logging for Connection B, since that is the connection that will induce the deadlock.
Setting the log_deadlocks option for Connection A will not record any deadlocks.

11. Repeat the deadlock scenario.

• Connection A:
delete from rv_locks where c1 = 1

• Connection A:
delete from rv_locks2 where c1 = 1

• Connection B:
delete from rv_locks2 where c1 = 1

• Connection B:
delete from rv_locks where c1 = 1

Connection B receives a SQL error and its transaction is rolled back, as before. However,
because deadlock logging is enabled, the system logged the deadlock event.

12. Execute sa_report_deadlocks.
sa_report_deadlocks

13. View the logged deadlock event.
snapshotId,snapshotAt,waiter,who,what,object_id,record_id,owner,i
s_victim,rollback_operation_count,iq_rid,iq_txn_id
1,2012-08-08 12:24:04.339,3,'DBA',delete from rv_locks2 where c1 =
1,1,775,1,false,0,1,13184
1,2012-08-08 12:24:04.339,1,'DBA',delete from rv_locks where c1 =
1,0,774,3,true,0,1,13160

Monitor Locks and Deadlocks

Administration: In-Memory Row-Level Versioning 51

The is_victim column indicates which transaction was selected as the rollback candidate.

Creating a Deadlock Reporting Event in Interactive SQL
Create a table and a system event for obtaining information about deadlocks.

Prerequisites
SAP Sybase IQ server has a simplex database.

Task

1. Create a table to store the data returned from the sa_report_deadlocks system
procedure.
CREATE TABLE DeadlockDetails(
 deadlockId INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 snapshotId BIGINT,
 snapshotAt TIMESTAMP,
 waiter INTEGER,
 who VARCHAR(128),
 what LONG VARCHAR,
 object_id UNSIGNED BIGINT,
 record_id BIGINT,
 owner INTEGER,
 is_victim BIT,
 rollback_operation_count UNSIGNED INTEGER);

2. Create an event that sends an e-mail notification when a deadlock occurs.

CREATE EVENT DeadlockNotification
TYPE Deadlock
HANDLER
BEGIN
 INSERT INTO DeadlockDetails WITH AUTO NAME
 SELECT snapshotId, snapshotAt, waiter, who, what, object_id,
record_id,
 owner, is_victim, rollback_operation_count
 FROM sa_report_deadlocks ();
 COMMIT;
 CALL xp_startmail (mail_user ='John Smith',
 mail_password ='mypwd');
 CALL xp_sendmail(recipient='DBAdmin',
 subject='Deadlock details added to the
DeadlockDetails table.');
 CALL xp_stopmail ();
END;

This event copies the results of the sa_report_deadlocks system procedure into a table
and notifies the administrator about the deadlock.

3. Set the log_deadlocks option on.

Monitor Locks and Deadlocks

52 SAP Sybase IQ

SET OPTION PUBLIC.log_deadlocks = 'On';
4. Enable logging of the most-recently executed statement.

CALL sa_server_option('RememberLastStatement', 'YES');

Monitor Locks and Deadlocks

Administration: In-Memory Row-Level Versioning 53

Monitor Locks and Deadlocks

54 SAP Sybase IQ

Manage Blocking in the RLV Store

The RLV store uses the same transaction blocking mechanism as the IQ main store. Suppose
you set the BLOCKING option to ON. If write lock A held be transaction 1 conflicts with write
lock B which transaction 2 is attempting to obtain, then transaction 2 must wait until write lock
A is released, or until the BLOCKING_TIMEOUT threshold is reached. By default, BLOCKING
is OFF.

Although transaction blocking minimizes lock contention, transaction blocking can lead to
deadlock.

See also
• sp_iqconnection Procedure on page 104

• sp_iqtransaction Procedure on page 140

• sa_conn_info system procedure on page 83

Enabling Connection Blocking
Enable connection blocking to force any transaction attempting to obtain a lock that conflicts
with another transaction's existing lock to wait: either until every conflicting lock is released,
or until the BLOCKING_TIMEOUT threshold is reached.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task
Set the BLOCKING database option to ON.
set temporary option blocking = 'On';

Note: The blocking option can be set either at the connection or PUBLIC level.

See also
• Disabling Connection Blocking on page 56

• Setting the Blocking Timeout Threshold on page 56

• Transaction Blocking Deadlocks on page 57

• Tutorial: Monitoring Blocking on page 58

• BLOCKING Option on page 76

Manage Blocking in the RLV Store

Administration: In-Memory Row-Level Versioning 55

Disabling Connection Blocking
Disable connection blocking to force any transaction attempting to obtain a lock that conflicts
with another transaction's existing lock to roll back the transaction and display an error.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task
Set the BLOCKING database option to OFF.
set temporary option blocking = 'Off';

Note: The blocking option can be set either at the connection or PUBLIC level.

See also
• Enabling Connection Blocking on page 55

• Setting the Blocking Timeout Threshold on page 56

• Transaction Blocking Deadlocks on page 57

• Tutorial: Monitoring Blocking on page 58

• BLOCKING Option on page 76

• BLOCKING_TIMEOUT Option on page 76

Setting the Blocking Timeout Threshold
Use the threshold to set the length of time, in milliseconds, a transaction waits to obtain a lock.
If the transaction attempting to obtain a lock conflicts with another transaction's existing lock,
it waits until the BLOCKING_TIMEOUT option threshold is reached. If the conflict still exists,
the transaction rolls back and you see an error.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task

Note: The default value, 0, indicates that a blocked transaction must wait indefinitely until all
conflicting transactions release their locks.

Set the BLOCKING_TIMEOUT database option value to the number of milliseconds you want
the transaction to wait for conflicting transactions to release their locks.

Manage Blocking in the RLV Store

56 SAP Sybase IQ

set temporary option blocking_timeout = '400';

Note: The blocking option can be set either at the connection or PUBLIC level.

See also
• Enabling Connection Blocking on page 55

• Disabling Connection Blocking on page 56

• Transaction Blocking Deadlocks on page 57

• Tutorial: Monitoring Blocking on page 58

Transaction Blocking Deadlocks
Transaction blocking can lead to a deadlock situation, in which a set of transactions arrive at a
state where none of them can proceed.

A deadlock can arise for two reasons:

• Cyclical blocking conflict – transaction A is blocked on transaction B, and transaction B
is blocked on transaction A. Additional time cannot solve the problem, and one of the
transactions must be canceled, allowing the other to proceed. The same situation can arise
with more than two transactions blocked in a cycle.

To eliminate a transactional deadlock, the database server selects a connection from those
involved in the deadlock, rolls back the changes for the transaction that is active on that
connection and returns an error. The database server selects the connection to roll back by
using an internal heuristic that prefers the connection with the smallest blocking wait time
left as determined by the BLOCKING_TIMEOUT option. If all connections are set to wait
forever, then the connection that caused the server to detect a deadlock is selected as the
victim connection.

• All workers are blocked – when a transaction becomes blocked, its worker is not
relinquished. For example, a database server is configured with three workers.
Transactions A, B, and C are blocked on transaction D, which is not currently executing a
request. A deadlock situation arises because there are no available workers. This situation
is called thread deadlock.

Suppose that the database server has n workers. Thread deadlock occurs when n-1 workers
are blocked, and the last worker is about to block. The database server's kernel cannot
permit this last worker to block, since doing so results in all workers being blocked, and the
database server stops responding. Instead, the database server ends the task that is about to
block the last worker, rolls back the changes for the transaction active on that connection,
and returns an error.

Database servers with tens or hundreds of connections may experience thread deadlocks in
long-running requests, either because of the size of the database or because of blocking. In
this case, you may want to increase the value of the -gn server option of the start_iq utility.

Manage Blocking in the RLV Store

Administration: In-Memory Row-Level Versioning 57

To view locks and deadlocks in Sybase Control Center, see the Sybase Control Center online
help.

See also
• Enabling Connection Blocking on page 55

• Disabling Connection Blocking on page 56

• Setting the Blocking Timeout Threshold on page 56

• Tutorial: Monitoring Blocking on page 58

• LOG_DEADLOCKS Option on page 77

• sa_report_deadlocks System Procedure on page 86

• sa_conn_info system procedure on page 83

• sp_iqconnection Procedure on page 104

• sp_iqtransaction Procedure on page 140

Tutorial: Monitoring Blocking
In this tutorial, create RLV-enabled tables, execute a transaction, and use the sp_iqtransaction
stored procedure to report on connection blocking and blocking timeout information for all
transactions in the database.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• RLV storage is configured.

Task

1. Create RLV-enabled tables rv_locks and rv_locks2, and configure table-level
snapshot versioning:
SET TEMPORARY OPTION SNAPSHOT_VERSIONING = 'Table-level';

CREATE TABLE rv_locks(c1 INT, c2 INT, c3 INT);

INSERT INTO rv_locks VALUES (1,1,1);
INSERT INTO rv_locks VALUES (2,2,2);
INSERT INTO rv_locks VALUES (3,3,3);
INSERT INTO rv_locks VALUES (4,4,4);
COMMIT;

CREATE TABLE rv_locks2(c1 int, c2 int, c3 int);

INSERT INTO rv_locks2 VALUES (1,1,1);
INSERT INTO rv_locks2 VALUES (2,2,2);
INSERT INTO rv_locks2 VALUES (3,3,3);
INSERT INTO rv_locks2 VALUES (4,4,4);

Manage Blocking in the RLV Store

58 SAP Sybase IQ

COMMIT;

ALTER TABLE rv_locks ENABLE RLV STORE;
ALTER TABLE rv_locks2 ENABLE RLV STORE;

2. Set the snapshot versioning property of the transaction to row-level.
set temporary option Snapshot_Versioning = 'Row-level';

3. Enable connection blocking and set the blocking timeout threshold.
set temporary option blocking = 'On';
set temporary option blocking_timeout = '0';

4. Write to the table.
insert into rv_locks values (5,5,5);

Writing to, or querying, an RLV-enabled table creates the RLV-enabled portion of the table
in-memory, on-demand.

5. Execute sp_iqtransaction to view information for all transactions in the database.
sp_iqtransaction

Transaction information displays, with each row representing a different transaction:
Name,Userid,TxnID,CmtID,VersionID,State,ConnHandle,IQConnID,MainT
ableKBCr,MainTableKBDr,TempTableKBCr,TempTableKBDr,TempWorkSpaceK
B,TxnCreateTime,CursorCount,SpCount,SpNumber,MPXServerName,Global
TxnID,VersioningType,Blocking,BlockingTimeout
'SQL_DBC_13cd6038','DBA',1008,0,0,'ACTIVE',
3,92,0,0,0,0,0,'2012-08-08 09:00:39.511',0,4,36,,0,'Row-
level','True',0

The Blocking value is True, meaning that connection blocking is enabled using the
BLOCKING database option. Connection blocking means that when lock contention is
detected, the transaction waits (or blocks) for the conflicting lock to release before
requesting the lock again.

The Blocking_Timeout value is 0 (the default value), meaning the transaction will wait
indefinitely for the conflicting lock to release.

See also
• Enabling Connection Blocking on page 55

• Disabling Connection Blocking on page 56

• Setting the Blocking Timeout Threshold on page 56

• Transaction Blocking Deadlocks on page 57

Manage Blocking in the RLV Store

Administration: In-Memory Row-Level Versioning 59

Manage Blocking in the RLV Store

60 SAP Sybase IQ

Manage Memory for the RLV Store

You can configure the amount of memory to use for the RLV store. The amount of memory
relates directly to the amount of data that the RLV store can hold. When memory consumption
reaches the set threshold, the RLV store merges automatically with the IQ main store.

When the RLV store memory size approaches its limit, the automated merge moves
committed rows from the RLV store to the IQ main store, thus freeing memory for new RLV
store rows.

If the merge operation does not free enough memory, and there are uncommitted rows pending
in the RLV store from other transactions, current operations are blocked until other operations
commit, and an automated merge occurs. If no further memory can be freed by merging, the
current operation is rolled back.

See also
• Merge RLV Store into IQ Main Store on page 35
• RLV Store Persistence and Durability on page 6

Configuring RLV Store Memory Size
You can configure, on a per-server basis, the maximum memory size of the RLV store.

Prerequisites

• SAP Sybase IQ server has a simplex database.

Task

The size of the RLV store should be carefully chosen to avoid exceeding the physical memory
on the host. Therefore, consider:

• Physical memory available to the host
• Size of IQ main store and temporary buffer caches
• Size of IQ large memory pool
• Memory requirements of other applications running on the host

Choosing a value which is too small will result in extra merges. This may potentially cause
DMLs to fail if the frequency of the automated merge is too high.

1. Use the -iqrlvmem boot parameter, to specify the maximum size of the RLV store in Mb.
-iqrlvmem 8192

This specifies an RLV size of 8192 Mb.

Manage Memory for the RLV Store

Administration: In-Memory Row-Level Versioning 61

Note: A DML which causes the size of the RLV store to exceed the configured memory
limit will immediately trigger an automatic merge. However, the
RV_MERGE_NODE_MEMSIZE node threshold will usually trigger the automated
merge before this limit is reached.

2. (Optional) At runtime, change the size of the RLV store using the sa_server_option.
sa_server_option 'RLV_memory_mb', 16384

This reconfigures the RLV store size to 16384 Mb.

Note: This size is a “soft” limit. It is possible for the RLV store to temporarily exceed the
configured memory. RLV store memory is normally freed by merge. However merge
itself requires memory. Therefore during merge the memory limit may be temporarily
exceeded. Furthermore, open transactions remain in the RLV store (and thus use memory),
even after the merge.

See also
• RV_MERGE_NODE_MEMSIZE Option on page 79

• -iqrlvmem start_iq Server Option on page 147

• sa_server_option System Procedure on page 88

• Setting Merge Trigger Thresholds on page 36

• Monitoring RLV Memory Usage on page 62

Monitoring RLV Memory Usage
Monitor system-wide RLV memory use and/or per table memory use.

Prerequisites

• SAP Sybase IQ server has a simplex database.
• RLV storage is configured.

Task

1. Monitor system-wide RLV memory use with the sp_iqstatus stored procedure.

Row Name Description

RLV memory lim-
it

The memory limit as specified by sp_iqrlvmemory stored procedure or
sa_server_option RLV_memory_mb

Manage Memory for the RLV Store

62 SAP Sybase IQ

Row Name Description

RLV memory used Amount of RLV store memory used.

Note: Memory used may legally exceed the memory limit during a merge of
the RLV and main stores.

2. Monitor per-table RLV memory use with the sp_iqrlvmemory stored procedure for a
specified owner and table name.

The procedure outputs one row per table consuming RLV memory.

Output Column Description

table_id ID of the table this row represents

fragments number of store fragments for this table

total total RLV memory used by this table

data RLV memory used to store the table data

dictionary RLV memory used to store the dictionaries for
this table

bitmap RLV memory used to store table level bitmaps

Note: Version-specific data, such as version bitmaps and on-demand indexes, do not count
against the RLV memory limit and are not reported in sp_iqrlvmemory. sp_iqrlvmemory
accepts optional parameters for owner name and table name which limit the output to a
single row.

sp_iqrlvmemory 'RLV_table','DBA'

See also
• sp_iqrlvmemory Procedure on page 118

• Configuring RLV Store Memory Size on page 61

Manage Memory for the RLV Store

Administration: In-Memory Row-Level Versioning 63

Manage Memory for the RLV Store

64 SAP Sybase IQ

Appendix: Troubleshoot the RLV Store

The troubleshooting appendix includes a collection of symptoms, with information to further
diagnose or solve the problem.

RLV Store Out of Memory
Problem: You receive the error message "RLV Store has run out of memory".

Explanation A
Long running active transaction(s) may be holding RLV store fragments in memory. To
correct, try:

• Running sp_iqrlvmemory stored procedure to determine whether old RLV store
fragments exist.

• Using sp_iqtransaction stored procedure to locate old active transactions, and
terminating them.

Explanation B
Row-level versioned transactions adding or modifying too much data on an RLV-enabled
table will eventually run out of store memory. To correct, try:

• Reducing the update size.
• Reducing the load size.
• Increasing the frequency of commits (to reduce the amount of data modified per

transaction).

Explanation C
Automated merge is not keeping pace with number of RLV transactions. To correct, try:

• Reviewing the merge history table, SYSIQRLVMERGEHISTORY.
• Adjusting the automated merge period, RV_AUTO_MERGE_EVAL_INTERVAL option.
• Adjusting the automated merge thresholds, RV_MERGE_TABLE_NUMROWS,

RV_MERGE_TABLE_MEMPERCENT, and RV_MERGE_NODE_MEMSIZE options.

Explanation D
Maximum RLV memory configured value is too low. To correct, try:

• Increasing the maximum RLV memory, using server startup option -iqrlvmem.

Note: Increasing the maximum RLV memory may require adjusting IQ caches, or adding
RAM. It also requires a server restart, as the parameter is not dynamic.

Appendix: Troubleshoot the RLV Store

Administration: In-Memory Row-Level Versioning 65

See also
• sp_iqrlvmemory Procedure on page 118
• sp_iqtransaction Procedure on page 140
• SYSIQRLVMERGEHISTORY System View on page 225
• RV_AUTO_MERGE_EVAL_INTERVAL Option on page 78
• RV_MERGE_NODE_MEMSIZE Option on page 79
• RV_MERGE_TABLE_MEMPERCENT Option on page 80
• RV_MERGE_TABLE_NUMROWS Option on page 80
• -iqrlvmem start_iq Server Option on page 147

Cannot Convert to Multiplex
Problem: You receive the error message "Cannot convert database to
multiplex. An RLV dbspace exists".

Explanation
A row-level versioning (RLV) dbspace exists on the simplex database you are trying to convert
to multiplex. Row-level versioning is not supported in multiplex in the current version of SAP
Sybase IQ.

Cannot Create RLV Dbspace in Multiplex
Problem: You receive the error message "Create RLV dbspace not allowed in
multiplex".

Explanation
Row-level versioning (RLV) is not supported in multiplex in the current version of SAP
Sybase IQ.

RLV Dbspace Already Exists
Problem: You receive the error message "RLV dbspace already exists. Cannot
create more than one RLV dbspace".

Explanation A
A row-level versioning (RLV) dbspace exists on the database. SAP Sybase IQ only supports
one RLV dbspace per simplex database.

Explanation B
You could encounter this error while trying to increase the size of the RLV dbspace. If so,
instead of trying to create another RLV dbspace, add a new dbfile to the existing RLV dbspace.

Appendix: Troubleshoot the RLV Store

66 SAP Sybase IQ

Cannot Make RLV Dbspace Read-Only
Problem: You receive the error message "The RLV dbspace N cannot be made
read only because it contains RLV enabled tables".

Explanation
A row-level versioning (RLV) dbspace is intended to be read-write, because of the role it plays
in real-time transactions. However, it is possible to make the dbspace read-only as long as
there are no RLV-enabled tables.

• Drop or disable the RLV-enabled tables before making the RLV dbspace read-only.

See also
• Configure the RLV Dbspace on page 22

Cannot Create Table in RLV Dbspace
Problem: You receive the error message "Cannot create table N in an RLV
dbspace".

Explanation
Each RLV-enabled table automatically makes use of the RLV dbspace during transactions.
However, SAP Sybase IQ does not support the creation of tables in the RLV dbspace.

Cannot Enable Table for RLV Storage
Problem: You receive an error message indicating that the table cannot be enabled for row-
level versioning (RLV).

Explanation A
RLV storage cannot be enabled on tables unless the RLV store dbspace is configured.

Explanation B
RLV storage cannot be enabled on any table that has:

• LONG BINARY (LOB) or LONG VARCHAR (CLOB) data types.
• WORD (WD) or TEXT indexes.
• Foreign key constraints.

Explanation C
RLV storage cannot be enabled on temporary or global temporary tables.

Appendix: Troubleshoot the RLV Store

Administration: In-Memory Row-Level Versioning 67

Cannot Use Foreign Keys in RLV Enabled Table
Problem: You receive the error message "The use of foreign keys in a RLV
table is not supported".

Explanation
The use of foreign keys within a row-level versioning (RLV) enabled table is not supported in
the current version of SAP Sybase IQ. You cannot create foreign keys on a table enabled for
row-level versioning. Furthermore, you can not enable row-level versioning on a table which
has foreign keys.

Cannot Use Index Type in RLV Enabled Table
Problem: You either receive the error message "The index type 'TEXT' cannot be
used with an RLV enabled table", or "The index type 'WD' cannot
be used with an RLV enabled table".

Explanation
The use of text indexes and word indexes within a row-level versioning (RLV) enabled table
are not supported in the current version of SAP Sybase IQ. You cannot create these indexes on
a table enabled for row-level versioning. Furthermore, you can not enable row-level
versioning on a table which has a text or word index.

Merge Required Before Table Level Modification
Problem: You receive the error message "Table N requires an RLV store merge
before table-level modification".

Explanation A
A table-level (TLV) read-write operation is attempting to modify a row-level versioning
(RLV) enabled table with the BLOCKING option set to OFF. This TLV transaction requires a
merge of the RLV store, but because BLOCKING is set to OFF, it cannot wait for the automated
merge to complete. To correct, try:

• Setting the BLOCKING option ON, and ensuring that the first statement in the transaction is
a table-level read-write.

• Performing a manual merge before the table level DML transaction, using the
sp_iqmergerlvstorestored procedure.

Appendix: Troubleshoot the RLV Store

68 SAP Sybase IQ

Explanation B
A table-level (TLV) read-write operation is attempting to modify a row-level versioning
(RLV) enabled table. This TLV transaction requires a merge of the RLV store. However, this
merge cannot occur automatically because the TLV transaction has already established a
snapshot version for this table. To correct, try:

• Ensuring that the first statement in the transaction is a table-level read-write.
• Performing a manual merge before the table level DML transaction, using the

sp_iqmergerlvstore stored procedure.

Explanation C
A TLV transaction is attempting to modify multiple RLV-enabled tables. To correct, try:

• Dividing the transaction so that individual transactions each modify one RLV table.

See also
• BLOCKING Option on page 76

• sp_iqmergerlvstore Procedure on page 117

Cannot Perform Merge of RLV Store
Problem: You receive an error message indicating that the RLV store cannot be merged with
the IQ main store.

Explanation A
An RLV store merge was attempted on a table which was not RLV-enabled. Only tables which
are RLV-enabled may be merged.

Explanation B
There was an error during the merge. Consult the database IQMSG file for possible exceptions
or errors codes, which may describe a problem and allow you to perform a DML operation to
address the item causing the issue.

For example, if there was an error inserting a row from the RLV store into the IQ main store,
and the IQMSG file contained an exception on row X or value Y, it might be possible to:

• Identify the source row
• Save the row
• Delete the row.

In this case, the merge should then succeed. The exported row could then be dealt with
separately.

Appendix: Troubleshoot the RLV Store

Administration: In-Memory Row-Level Versioning 69

See also
• sp_iqtransaction Procedure on page 140

RLV Store Merge Already in Progress
Problem: You receive the error message "RLV store merge already in progress
for table N".

Explanation
There is already an RLV store merge in progress for this table. Only one RLV merge is allowed
at a time for an RLV table.

Cannot Open the Requested Object for Write in the Current
Transaction

Problem: You receive an error message indicating that the system cannot open the requested
object for write in the current transaction, and that another user has the row locked.

Explanation
Multiple connections are trying to update the same row of a table when you are running a
manual merge. A table-level versioning transaction exists that owns a write lock on the table.

Transaction Seems to Hang
Problem: Transaction appears to hang.

Explanation
Multiple connections may be waiting on a table-level write-lock. If the transactions are in
progress when a foreground (blocking) merge of the RLV store and IQ main store is triggered,
the transactions will appear to hang. To troubleshoot further, run the appropriate stored
procedures from another connection to see if there are locks being held or a merge in progress.

Failed RLV Recovery
You encounter a recovery problem such as Checksum error reading a page from disk,
mismatched sequence number on head / tail of page, or OS exception reading a page from
disk.

Recover occurs in four high level phases:

Appendix: Troubleshoot the RLV Store

70 SAP Sybase IQ

1. Initialization (SYSIQRVLOG table is scanned and log identity block is loaded. Tables are
added to the recovery list if log pages exist).

2. Commit log analysis
3. Table log analysis
4. Operations which belong to committed transactions are redone.

Recovery errors in phases 1, 3, or 4 will result in an IQ server shutdown. An error in phase 2 is
handled by doing an extended phase 3.

Recommendations

1. Use two server startup switches to restrict access:
• Use -gd DBA so that only users with the SERVER OPERATOR system privilege can

start and stop databases on a running server.
• Use -gm 1 to allow a single connection plus one DBA connection above the limit so that

a DBA can connect and drop others in an emergency.
2. Set -iqrvrec_bypass = 1 to bypass all RLV recovery. This option is intended to be for

emergency repairs, such as dropping a problematic RLV table. As currently implemented
this disables further logging, but there are no other checks in the code that will prevent
general RLV operations. As such, this mode is likely unstable if non-DBA users are
allowed general access.

3. Manually establish / correct the consistency of the database.
4. Truncate the RLV portion of a table. This may leave the database inconsistent, but will

allow a subsequent recovery.

Note: All data in the RLV portion of the table will be lost.

5. Reboot with normal recovery.

Appendix: Troubleshoot the RLV Store

Administration: In-Memory Row-Level Versioning 71

Appendix: Troubleshoot the RLV Store

72 SAP Sybase IQ

Appendix: SQL Reference

Reference material for SQL statements, database options, functions, system procedures,
system tables, and views mentioned in this document.

Database Options
Database options customize and modify database behavior.

AGGREGATION_PREFERENCE Option
Controls the choice of algorithms for processing an aggregate.

Allowed Values
-6 to 6

Default
0

Scope
Option can be set at the database (PUBLIC) or user level. When set at the database level, the
value becomes the default for any new user, but has no impact on existing users. When set at
the user level, overrides the PUBLIC value for that user only. No system privilege is required
to set option for self. System privilege is required to set at database level or at user level for any
user other than self.

Requires the SET ANY PUBLIC OPTION system privilege to set this option. Can be set
temporary for an individual connection or for the PUBLIC role. Takes effect immediately.

Description
For aggregation (GROUP BY, DISTINCT, SET functions) within a query, the SAP Sybase IQ
optimizer has a choice of several algorithms for processing the aggregate.
AGGREGATION_PREFERENCE lets you override the costing decision of the optimizer when
choosing the algorithm. the option does not override internal rules that determine whether an
algorithm is legal within the query engine.

This option is normally used for internal testing and for manually tuning queries that the
optimizer does not handle well. Only experienced DBAs should use it. Inform SAP Sybase
Technical Support, if you need to set AGGREGATION_PREFERENCE, as setting this option
might mean that a change to the optimizer may be appropriate.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 73

Value Action

0 Let the optimizer choose

1 Prefer aggregation with a sort

2 Prefer aggregation using IQ indexes

3 Prefer aggregation with a hash

4 Prefer aggregation with a distinct/grouping sort

5 Prefer aggregation with a sort if grouping columns include all the partition-
ing keys of a hash partitioned table.

6 Prefer aggregation with a hash if grouping columns include all the parti-
tioning keys of a hash partitioned table.

-1 Avoid aggregation with a sort

-2 Avoid aggregation using IQ indexes

-3 Avoid aggregation with a hash

-4n Avoid aggregation with a distinct/grouping sort

-5 Avoid aggregation with a sort if grouping columns include all the partitioning
keys of a hash partitioned table.

-6 Avoid aggregation with a hash if grouping columns include all the parti-
tioning keys of a hash partitioned table.

ALLOW_SNAPSHOT_VERSIONING Option
Applies to all base tables in the database (as opposed to RLV-enabled tables only). Restricts
table versioning for all base tables to either table-level or row-level snapshot versioning. This
option does not apply to the IQ catalog store.

Allowed Values
any, table-level, row-level

Default
any

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately.

Appendix: SQL Reference

74 SAP Sybase IQ

Description

Value Action

any No restrictions on snapshot versioning.

row-level Allows only row-level snapshot versioning. Any
transactions attempting to use table-level ver-
sioning to modify a table will fail with an Il-
legal snapshot isolation error.

table-level Allows only table-level snapshot versioning. Any
transactions attempting to use row-level version-
ing to modify a table will fail with an Illegal
snapshot isolation error.

BASE_TABLES_IN_RLV_STORE Option
Registers newly created tables in the RLV store, enabling row-level versioning. RLV-enabled
tables are eligible for multiple writer concurrent access. You can override this setting at the
table level using the CREATE_TABLE statement.

Allowed Values
ON, OFF

Default
OFF

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately.

Description
When set to ON, newly created tables are registered in the RLV store. RLV-enabled tables are
optimized for real-time updates.

The { ENABLE | DISABLE } RLV STORE clause of the CREATE_TABLE statement always
overrides the BASE_TABLES_IN_RLV_STORE option.

Once Base_Tables_in_RLV_STORE option is enabled, any newly created IQ base tables are
automatically RLV enabled. Enabling this option has no impact on existing IQ base tables.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 75

BLOCKING Option
Controls the behavior in response to locking conflicts. BLOCKING is not supported on
secondary nodes of a multiplex.

Allowed Values
ON, OFF

Default
OFF

Scope
Option can be set at the database (PUBLIC) or user level. When set at the database level, the
value becomes the default for any new user, but has no impact on existing users. When set at
the user level, overrides the PUBLIC value for that user only. No system privilege is required
to set option for self. System privilege is required to set at database level or at user level for any
user other than self.

Requires the SET ANY PUBLIC OPTION system privilege to set this option. Can be set
temporary for an individual connection or for the PUBLIC role. Takes effect immediately.

Description
When BLOCKING is off, a transaction receives an error when it attempts a write operation and
is blocked by the read lock of another transaction.

When BLOCKING is on, any transaction attempting to obtain a lock that conflicts with an
existing lock held by another transaction waits until every conflicting lock is released or until
the blocking_timeout is reached. If the lock is not released within blocking_timeout
milliseconds, then an error is returned for the waiting transaction.

BLOCKING_TIMEOUT Option
Controls the length of time a transaction waits to obtain a lock. BLOCKING_TIMEOUT is
not supported on secondary nodes of a multiplex.

Allowed Values
Integer, in milliseconds.

Default
0

Scope
Option can be set at the database (PUBLIC) or user level. When set at the database level, the
value becomes the default for any new user, but has no impact on existing users. When set at
the user level, overrides the PUBLIC value for that user only. No system privilege is required

Appendix: SQL Reference

76 SAP Sybase IQ

to set option for self. System privilege is required to set at database level or at user level for any
user other than self.

Requires the SET ANY PUBLIC OPTION system privilege to set this option. Can be set
temporary for an individual connection or for the PUBLIC role. Takes effect immediately.

Description
When the blocking option is on, any transaction attempting to obtain a lock that conflicts with
an existing lock waits for the indicated number of milliseconds for the conflicting lock to be
released. If the lock is not released within blocking_timeout milliseconds, an error is returned
for the waiting transaction.

Set the option to 0 to force all transactions attempting to obtain a lock to wait until all
conflicting transactions release their locks.

ENABLE_ASYNC_IO Option
Allows a DBA to enable or disable the asynchronous IO used by the RLV persistence log.

Allowed Values
TRUE, FALSE

A change in value requires a database close and re-open, or a server restart.

Default
TRUE

Scope
Option can be set at the database (PUBLIC) or user level. When set at the database level, the
value becomes the default for any new user, but has no impact on existing users. When set at
the user level, overrides the PUBLIC value for that user only. No system privilege is required
to set option for self. System privilege is required to set at database level or at user level for any
user other than self.

Requires the SET ANY PUBLIC OPTION system privilege to set this option. Can be set
temporary for an individual connection or for the PUBLIC role. If permitted, can be set for an
arbitrary other user or role, or for all users via the role. Takes effect immediately.

LOG_DEADLOCKS Option
Controls whether deadlock reporting is turned on or off.

Allowed values
On, Off

Default
Off

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 77

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately.

Remarks
When this option is set to On, the database server logs information about deadlocks in an
internal buffer. The size of the buffer is fixed at 10000 bytes. You can view the deadlock
information using the sa_report_deadlocks stored procedure. The contents of the buffer are
retained when this option is set to Off.

When deadlock occurs, information is reported for only those connections involved in the
deadlock. The order in which connections are reported is based on which connection is
waiting for which row. For thread deadlocks, information is reported about all connections.

When you have deadlock reporting turned on, you can also use the Deadlock system event to
take action when a deadlock occurs

RV_AUTO_MERGE_EVAL_INTERVAL Option
This option configures the evaluation period used to determine when an automated merge of
the row-level versioned (RLV) and IQ main stores should occur.

Allowed Values
1 – MAX_UINT (minutes)

Default
15 (minutes)

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately.

Description
This option is be used to configure the period of wait time, in minutes, between activations of
the merge evaluator. The merge evaluator examines the merge parameters of each row-level
versioning (RLV) enabled table against configured threshold values to determine whether a
non-blocking (background) merge of the RLV table to IQ main stores should occur.

If the interval ends while the evaluator is active, or when a merge is already in progress, the
interval re-sets.

Any new value for the interval is used when the merge evaluator is next activated.

Appendix: SQL Reference

78 SAP Sybase IQ

RV_MAX_ACTIVE_SUBFRAGMENT_COUNT Option
This value maximizes utilization of the number of cores on the machine.

Allowed Values
>=0

Default
0

Note: Use of any value other than the default is not recommended as it could negatively impact
CPU utilization and scalability of bulk loads.

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. This option
takes effect on a table with the first write operation on the table. If the value of this option is
changed after the first write operation has occurred, the new value does not take effect on the
table until after a restart of the server.

Description
If the value is set to anything other than the default, the system uses the specified value or the
total number of cores on the machine, whichever is less.

RV_MERGE_NODE_MEMSIZE Option
An automated merge of the row-level versioned (RLV) store and IQ main stores occurs based
on the merge thresholds, including RV_MERGE_NODE_MEMSIZE. When this node
threshold is exceeded, a merge will be triggered.

Allowed Values
0 - 100 (percent)

Default
75 (percent)

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately.

Description
This option sets the percentage of total RLV memory size as a merge threshold for the node. If
the total RLV memory size surpasses the threshold, the merge condition evaluator will

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 79

determine which table(s) to merge. If multiple tables must be merged to satisfy the node
threshold, parallel merges will be triggered for each table to be merged.

RV_MERGE_TABLE_MEMPERCENT Option
An automated merge of the row-level versioned (RLV) store and IQ main stores occurs based
on the merge thresholds, including RV_MERGE_TABLE_MEMPERCENT. If this table
threshold is exceeded, a merge will be triggered for the specific table.

Allowed Values
0 - 100 (percent)

Default
0 (percent)

Note: When RV_MERGE_TABLE_MEMPERCENT = 0, then the system uses a (per-table)
threshold of 100% / N, where N is the number of RLV-enabled tables that have been loaded.

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately.

Description
This option sets the percentage of memory used as a merge threshold for an RLV-enabled
table. If the memory used surpasses the threshold, a merge will occur.

The system evaluates whether to merge the RLV and IQ main stores on a per-table basis. It
enumerates through all loaded RLV tables, and for each one decides whether a merge is
warranted. A merge for a single table is deemed warranted if:

1. The table violates either the memory threshold
(RV_MERGE_TABLE_MEMPERCENT) or the row threshold
(RV_MERGE_TABLE_NUMROWS), and

2. The system does not determine that a large percentage of the RLV rows are uncommitted,
and are therefore unable to be merged.

RV_MERGE_TABLE_NUMROWS Option
An automated merge of the row-level versioned (RLV) store and IQ main stores occurs based
on the merge thresholds, including RV_MERGE_TABLE_NUMROWS. If this table
threshold is exceeded, a merge will be triggered for the specific table.

Allowed Values
1000 - 100000000

Appendix: SQL Reference

80 SAP Sybase IQ

Default
10000000

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately.

Description
This option sets the number of rows used as a merge threshold for an RLV-enabled table. If the
number of rows used surpasses the threshold, a merge will occur.

The system evaluates whether to merge the RLV and IQ main stores on a per-table basis. It
enumerates through all loaded RLV tables, and for each one decides whether a merge is
warranted. A merge for a single table is deemed warranted if:

1. The table violates either the memory threshold
(RV_MERGE_TABLE_MEMPERCENT) or the row threshold
(RV_MERGE_TABLE_NUMROWS), and

2. The system does not determine that a large percentage of the RLV rows are uncommitted,
and are therefore unable to be merged.

RV_RESERVED_DBSPACE_MB Option
A portion of the RLV store must be reserved for memory used by data structures during critical
operations.

Allowed Values
Integer greater than or equal to 50 (megabytes)

Default
lesser of 50 Mb or half the size of the RLV dbspace

Scope
Option can be set at the database (PUBLIC) level only.

Requires the SET ANY SYSTEM OPTION system privilege to set this option. Takes effect
immediately. The server does not need to be restarted in order to change reserved space size.

Description
This option allows you to control the amount of space set aside in the RLV store for small but
critical data structures used during release savepoint, commit, and rollback operations.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 81

SNAPSHOT_VERSIONING Option
Applies to RLV-enabled tables only (as opposed to all base tables in the database). Controls
whether RLV-enabled tables are accessed using single-writer table-level versioning, or
multiple writer row-level versioning. This option does not apply to the IQ catalog store.

Allowed Values

Value Action

row-level Enables concurrent writer access and row-level
versioning for RLV-enabled tables.

The first transaction to modify a table row estab-
lishes a row write lock that persists until the end of
the transaction.

Subsequent transactions attempting to modify a
locked row either fail with a lock/future version
error, or block until the lock is released based on
the value of the BLOCKING option.

table-level Enables single-writer access and table-level ver-
sioning.

The first transaction to access the table estab-
lishes a table write lock which persists until the
end of the transaction.

Subsequent transactions attempting to write to a
locked table either fail with a lock/future version
error, or block until the lock is released based on
the value of the BLOCKING option.

Default
table-level

Scope
Option can be set at the database (PUBLIC) or user level. When set at the database level, the
value becomes the default for any new user, but has no impact on existing users. When set at
the user level, overrides the PUBLIC value for that user only. No system privilege is required
to set option for self. System privilege is required to set at database level or at user level for any
user other than self.

Requires the SET ANY PUBLIC OPTION system privilege to set this option. Takes effect
immediately.

Appendix: SQL Reference

82 SAP Sybase IQ

Procedures
Use the system-supplied stored procedures in SAP Sybase IQ databases to retrieve system
information.

sa_conn_info system procedure
Reports connection property information.

Syntax
sa_conn_info([connidparm])

Arguments

• connidparm – This optional INTEGER parameter specifies the connection ID number.
The default is NULL.

Result set

Column name Data type Description

Number INTEGER Returns the connection ID (a
number) for the current connec-
tion.

Name VARCHAR(255) Returns the connection ID (a
number) for the current connec-
tion.

Temporary connection names
have INT: prepended to the

connection name.

Userid VARCHAR(255) Returns the user ID for the con-
nection.

DBNumber INTEGER Returns the ID number of the
database.

LastReqTime VARCHAR(255) Returns the time at which the
last request for the specified
connection started. This proper-
ty can return an empty string for
internal connections, such as
events.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 83

Column name Data type Description

ReqType VARCHAR(255) Returns the type of the last re-
quest. If a connection has been
cached by connection pooling,
its ReqType value is CON-
NECT_POOL_CACHE.

CommLink VARCHAR(255) Returns the communication link
for the connection. This is one
of the network protocols sup-
ported by SAP Sybase IQ, or
local for a same-computer con-
nection.

NodeAddr VARCHAR(255) Returns the address of the client
in a client/server connection.

ClientPort INTEGER Returns the client's TCP/IP port
number or 0 if the connection
isn't a TCP/IP connection.

ServerPort INTEGER Returns the database server's
TCP/IP port number or 0.

BlockedOn INTEGER Returns zero if the current con-
nection isn't blocked, or if it is
blocked, the connection number
on which the connection is
blocked because of a locking
conflict.

LockRowID UNSIGNED BIGINT Returns the identifier of the
locked row.

LockRowID is NULL if the
connection is not waiting on a
lock associated with a row (that
is, it is not waiting on a lock, or it
is waiting on a lock that has no
associated row).

Appendix: SQL Reference

84 SAP Sybase IQ

Column name Data type Description

LockIndexID INTEGER Returns the identifier of the
locked index.

LockIndexID is -1 if the lock is
associated with all indexes on
the table in LockTable. LockIn-
dexID is NULL if the connec-
tion is not waiting on a lock as-
sociated with an index (that is, it
is not waiting on a lock, or it is
waiting on a lock that has no
associated index).

LockTable VARCHAR(255) Returns the name of the table
associated with a lock if the
connection is currently waiting
for a lock. Otherwise, LockTa-
ble returns an empty string.

UncommitOps INTEGER Returns the number of uncom-
mitted operations.

ParentConnection INTEGER Returns the connection ID of the
connection that created a tem-
porary connection to perform a
database operation (such as per-
forming a backup or creating a
database). For other types of
connections, this property re-
turns NULL.

Remarks
If connidparm is less than zero, then a result set consisting of connection properties for the
current connection is returned. If connidparm is not supplied or is NULL, then connection
properties are returned for all connections to all databases running on the database server.

In a block situation, the BlockedOn value returned by this procedure allows you to check
which users are blocked, and who they are blocked on. The sa_locks system procedure can be
used to display the locks held by the blocking connection.

For more information based on any of these properties, you can execute something similar to
the following:
SELECT *, DB_NAME(DBNumber),
 CONNECTION_PROPERTY('LastStatement', Number)
 FROM sa_conn_info();

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 85

The value of LockRowID can be used to look up a lock in the output of the sa_locks procedure.

The value in LockIndexID can be used to look up a lock in the output of the sa_locks
procedure. Also, the value in LockIndexID corresponds to the primary key of the ISYSIDX
system table, which can be viewed using the SYSIDX system view.

Every lock has an associated table, so the value of LockTable can be used to unambiguously
determine whether a connection is waiting on a lock.

Privileges
No privileges are required to execute this system procedure for the current connection ID. To
execute this system procedure for other connections, you must have either the SERVER
OPERATOR, MONITOR, or DROP CONNECTION system privilege.

Side effects
None

Examples

The following example uses the sa_conn_info system procedure to return a result set
summarizing connection properties for all connections to the server.
CALL sa_conn_info();

Number Name Userid DBNumber ...

79 SQL_DBC_10dc
f810

DBA 0 ...

46 setup User1 0 ...

...

The following example uses the sa_conn_info system procedure to return a result set showing
which connection created a temporary connection.
SELECT Number, Name, ParentConnection FROM sa_conn_info();

Connection 8 created the temporary connection that executed a CREATE DATABASE
statement.
Number Name ParentConnection
--
1000000048 INT: CreateDB 8
9 SQL_DBC_14675af8 (NULL)
8 SQL_DBA_152d5ac0 (NULL)

sa_report_deadlocks System Procedure
Retrieves information about deadlocks from an internal buffer created by the database server.

Syntax
sa_report_deadlocks()

Appendix: SQL Reference

86 SAP Sybase IQ

Result set

Column Name Data Type Description

snapshotId BIGINT The deadlock instance (all rows
pertaining to a particular dead-
lock have the same ID).

snapshotAt TIMESTAMP The time when the deadlock oc-
curred.

waiter INT The connection handle of the
waiting connection.

who VARCHAR(128) The user ID associated with the
connection that is waiting.

what LONG VARCHAR The command being executed
by the waiting connection.

This information is only availa-
ble if you have turned on cap-
turing of the most recently-pre-
pared SQL statement by speci-
fying the -zl option on the data-
base server command line.

object_id UNSIGNED BIGINT The object ID of the table con-
taining the row.

record_id BIGINT The row ID for system tables

owner INT The connection handle of the
connection owning the lock be-
ing waited on.

is_victim BIT Identifies the rolled back trans-
action.

rollback_operation_count UNSIGNED INT The number of uncommitted
operations that may be lost if the
transaction rolls back.

iq_rid UNSIGNED BIGINT The row ID for IQ RLV enabled
tables.

iq_txn_id UNSIGNED BIGINT The transaction id of the associ-
ated row

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 87

Remarks
When the log_deadlocks option is set to On, the database server logs information about
deadlocks in an internal buffer. You can view the information in the log using the
sa_report_deadlocks system procedure.

Privileges
You must have the MONITOR system privilege.

Side effects
None.

sa_server_option System Procedure
Overrides a server option while the server is running..

Syntax
sa_server_option(opt , val)

Arguments

• opt – Use this CHAR(128) parameter to specify a server option name.

• val – Use this CHAR(128) parameter to specify the new value for the server option.

Remarks

Option Name Values Additional information

AutoMultiProg-
rammingLevel

YES,
NO

Default is YES.

When set to YES, the database server automatically adjusts its mul-
tiprogramming level, which controls the maximum number of tasks
that can be active at a time. If you choose to control the multiprog-
ramming level manually by setting this option to NO, you can still set
the initial, minimum, and maximum values for the multiprogram-
ming level.

AutoMultiProg-
rammingLevel-
Statistics

YES,
NO

Default is NO.

When set to YES, statistics for automatic multiprogramming level
adjustments appear in the database server message log.

CacheSizingSta-
tistics

YES,
NO

Default is NO.

When set to YES, display cache information in the database server
messages window whenever the cache size changes.

Appendix: SQL Reference

88 SAP Sybase IQ

Option Name Values Additional information

CollectStatistics YES,
NO

Default is YES.

When set to YES, the database server collects Performance Monitor
statistics.

ConnsDisabled YES,
NO

Default is NO.

When set to YES, no other connections are allowed to any databases
on the database server.

ConnsDisabled-
ForDB

YES,
NO

Default is NO.

When set to YES, no other connections are allowed to the current
database.

ConsoleLogFile filename The name of the file used to record database server message log
information. Specifying an empty string stops logging to the file.
Double any backslash characters in the path because this value is a
SQL string.

ConsoleLog-
MaxSize

file-size
(bytes)

The maximum size, in bytes, of the file used to record database server
message log information. When the database server message log file
reaches the size specified by either this property or the -on server
option, the file is renamed with the extension .old appended (replac-
ing an existing file with the same name if one exists). The database
server message log file is then restarted.

CurrentMulti-
ProgrammingLe-
vel

integer Default is 20.

Sets the multiprogramming level of the database server.

DatabaseCleaner ON, OFF Default is ON.

Do not change the setting of this option except on the recommenda-
tion of Technical Support.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 89

Option Name Values Additional information

DeadlockLog-
ging

ON,
OFF,
RESET,
CLEAR

Default is OFF.

Controls deadlock logging. The value deadlock_logging is also sup-
ported. The following values are supported:

• ON – Enables deadlock logging.

• OFF – Disables deadlock logging and leaves the deadlock data
available for viewing.

• RESET – Clears the logged deadlock data, if any exists, and then
enables deadlock logging.

• CLEAR – Clears the logged deadlock data, if any exists, and then
disables deadlock logging.

Once deadlock logging is enabled, you can use the sa_report_dead-
locks system procedure to retrieve deadlock information from the
database.

DebuggingInfor-
mation

YES,
NO

Default is NO.

Displays diagnostic messages and other messages for troubleshoot-
ing purposes. The messages appear in the database server messages
window.

DiskSandbox ON, OFF Default is OFF.

Sets the default disk sandbox settings for all databases started on the
database server that do not have explicit disk sandbox settings.
Changing the disk sandbox settings by using the sa_server_option
system procedure does not affect databases already running on the
database server. To use the sa_server_option system procedure to
change disk sandbox settings, you must provide the secure feature
key for the manage_disk_sandbox secure feature.

DropBadStatis-
tics

YES,
NO

Default is YES.

Allows automatic statistics management to drop statistics that return
bad estimates from the database.

DropUnusedSta-
tistics

YES,
NO

Default is YES.

Allows automatic statistics management to drop statistics that have
not been used for 90 consecutive days from the database.

IdleTimeout Integer
(mi-
nutes)

Default is 240.

Disconnects TCP/IP connections that have not submitted a request
for the specified number of minutes. This prevents inactive connec-
tions from holding locks indefinitely

Appendix: SQL Reference

90 SAP Sybase IQ

Option Name Values Additional information

IPAddressMoni-
torPeriod

Integer
(sec-
onds)

The minimum value is 10 and the default is 0. For portable devices,
the default value is 120.

Sets the time to check for new IP addresses in seconds.

LivenessTimeout Integer
(sec-
onds)

Default is 120.

A liveness packet is sent periodically across a client/server TCP/IP
network to confirm that a connection is intact. If the network server
runs for a LivenessTimeout period without detecting a liveness pack-
et, the communication is severed.

MaxMultiProg-
rammingLevel

Integer Default is four times the value for CurrentMultiProgrammingLevel.

Sets the maximum database server multiprogramming level.

MessageCategor-
yLimit

Integer Default is 400.

Sets the minimum number of messages of each severity and category
that can be retrieved using the sa_server_messages system procedure.

MinMultiProg-
rammingLevel

Integer Default is the minimum of the value of the -gtc server option and the
number of logical CPUs on the computer.

OptionWatchAc-
tion

MES-
SAGE,
ERROR

Default is MESSAGE.

Specifies the action that the database server takes when an attempt is
made to set an option in the list. When OptionWatchAction is set to
MESSAGE, and an option specified by OptionWatchList is set, a
message appears in the database server messages window indicating
that the option being set is on the options watch list.When Option-
WatchAction is set to ERROR, an error is returned indicating that the
option cannot be set because it is on the options watch list.

You can view the current setting for this property by executing

SELECT DB_PROPERTY('OptionWatchAction');

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 91

Option Name Values Additional information

OptionWatchList Comma-
separa-
ted list of
database
options

Specifies a comma-separated list of database options that you want to
be notified about, or have the database server return an error for, when
they are set. The string length is limited to 128 bytes. By default, it is
an empty string. For example, the following command adds the au-
tomatic_timestamp, float_as_double, and tsql_hex_constant option
to the list of options being watched:

CALL sa_server_option('OptionWatchList','au-
tomatic_timestamp,
float_as_double,tsql_hex_constant');
You can view the current setting for this property by executing:

SELECT DB_PROPERTY('OptionWatchList');

ProcedureProfil-
ing

YES,
NO, RE-
SET,
CLEAR

Default is NO.

ProfileFilterConn connec-
tion-id

Instructs the database server to capture profiling information for a
specific connection ID, without preventing other connections from
using the database. When connection filtering is enabled, the value
returned for SELECT PROPERTY('ProfileFilterConn') is the con-
nection ID of the connection being monitored. If no ID has been
specified, or if connection filtering is disabled, the value returned is
-1.

Appendix: SQL Reference

92 SAP Sybase IQ

Option Name Values Additional information

ProcessorAffini-
ty

Comma-
delimi-
ted list of
process-
or num-
bers and/
or rang-
es. The
default is
that all
process-
ors are
used or
the set-
ting of
the -gta
option.

Instructs the database server which logical processors to use on Win-
dows or Linux. Specify a comma-delimited list of processor numbers
and/or ranges. If the lower endpoint of a range is omitted, then it is
assumed to be zero. If the upper endpoint of a range is omitted, then it
is assumed to be the highest CPU known to the operating system. The
in_use column returned by the sa_cpu_topology system procedure
contains the current processor affinity of the database server, and the
in_use column indicates whether the database server is using a pro-
cessor. Alternatively, you can query the value of the ProcessorAffin-
ity database server property.

The database server might not use all of the specified logical pro-
cessors in the following cases:

• If one or more of the specified logical processors does not exist, or
is offline.

• If the license does not allow it.

If you specify an invalid processor ID, sa_server_option returns an
error.

ProfileFilterUser user-id Instructs the database server to capture profiling information for a
specific user ID.

QuittingTime Valid
date and
time

Instructs the database server to shut down at the specified time.

RememberLast-
Plan

YES,
NO

Default is NO.

Instructs the database server to capture the long text plan of the last
query executed on the connection. This setting is also controlled by
the -zp server option.When RememberLastPlan is turned on, obtain
the textual representation of the plan of the last query executed on the
connection by querying the value of the LastPlanText connection
property:

SELECT CONNECTION_PROPERTY('LastPlanText');

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 93

Option Name Values Additional information

RememberLast-
Statement

YES,
NO

Default is NO.

Instructs the database server to capture the most recently prepared
SQL statement for each database running on the server. For stored
procedure calls, only the outermost procedure call appears, not the
statements within the procedure.When RememberLastStatement is
turned on, you can obtain the current value of the LastStatement for a
connection by querying the value of the LastStatement connection
property:

SELECT CONNECTION_PROPERTY('LastState-
ment');
When client statement caching is enabled, and a cached statement is
reused, this property returns an empty string. When RememberLast-
Statement is turned on, the following statement returns the most
recently-prepared statement for the specified connection:

SELECT CONNECTION_PROPERTY('LastStatement',
connection-id);
The sa_conn_activity system procedure returns this same informa-
tion for all connections.

Note: When -zl is specified, or when the RememberLastStatement
server setting is turned on, any user can call the sa_conn_activity
system procedure or obtain the value of the LastStatement connection
property to find out the most recently-prepared SQL statement for
any other user. Use this option with caution and turn it off when it is
not required.

Appendix: SQL Reference

94 SAP Sybase IQ

Option Name Values Additional information

RequestFilter-
Conn

connec-
tion-id,
-1

Filter the request logging information so that only information for a
particular connection is logged. This filtering can reduce the size of
the request log file when monitoring a database server with many
active connections or multiple databases. You can obtain the con-
nection ID by executing the following:

CALL sa_conn_info();
To log a specific connection once you have obtained the connection
ID, execute the following statement:

CALL sa_server_option('RequestFilterConn',
connection-id);
Filtering remains in effect until it is explicitly reset, or until the da-
tabase server is shut down. To reset filtering, use the following state-
ment:

CALL sa_server_option('RequestFilterConn',
-1);

RequestFilterDB data-
base-id,
-1

Filter the request logging information so that only information for a
particular database is logged. This can help reduce the size of the
request log file when monitoring a server with multiple databases.
You can obtain the database ID by executing the following statement
when you are connected to the desired database:

SELECT CONNECTION_PROPERTY('DBNumber');
To log only information for a particular database, execute the fol-
lowing statement:

CALL sa_server_option('RequestFilterDB', da-
tabase-id);
Filtering remains in effect until it is explicitly reset, or until the da-
tabase server is shut down. To reset filtering, use the following state-
ment:

CALL sa_server_option('RequestFilterDB',
-1);

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 95

Option Name Values Additional information

RequestLogFile filename The name of the file used to record request information. Specifying
an empty string stops logging to the request log file. If request logging
is enabled, but the request log file was not specified or has been set to
an empty string, the server logs requests to the database server mes-
sages window. Double any backslash characters in the path because
this value is a SQL string.

When client statement caching is enabled, set the max_client_state-

ments_cached option to 0 to disable client statement caching while
the request log is captured, if the log will be analyzed using the
tracetime.pl Perl script.

Appendix: SQL Reference

96 SAP Sybase IQ

Option Name Values Additional information

RequestLogging SQL,
HOST-
VARS,
PLAN,
PROCE-
DURES,
TRIG-
GERS,
OTHER,
BLOCK
S, RE-
PLACE,
ALL,
YES,
NONE,
NO

Default is NONE.

This call turns on logging of individual SQL statements sent to the
database server for use in troubleshooting with the database server -zr
and -zo options. Values can be combinations of the following, sepa-
rated by either a plus sign (+), or a comma:

• PLAN – enables logging of execution plans (short form). If
logging of procedures (PROCEDURES) is enabled, execution
plans for procedures are also recorded.

• HOSTVARS – enables logging of host variable values. If you
specify HOSTVARS, the information listed for SQL is also log-
ged.

• PROCEDURES – enables logging of statements executed from
within procedures.

• TRIGGERS – enables logging of statements executed from
within triggers.

• OTHER – enables logging of additional request types not in-
cluded by SQL, such as FETCH and PREFETCH. However, if
you specify OTHER but do not specify SQL, it is the equivalent of
specifying SQL+OTHER. Including OTHER can cause the log
file to grow rapidly and could negatively impact server perform-
ance.

• BLOCKS – enables logging of details showing when a connec-
tion is blocked and unblocked on another connection.

• REPLACE – at the start of logging, the existing request log is
replaced with a new (empty) one of the same name. Otherwise,
the existing request log is opened and new entries are appended to
the end of the file.

• ALL – logs all supported information. This value is equivalent to
specifying SQL+PLAN+HOSTVARS+PROCEDURES+TRIG-
GERS+OTHER+BLOCKS. This setting can cause the log file to
grow rapidly and could negatively impact server performance.

• NO or NONE – turns off logging to the request log.

You can view the current setting for this property by executing:

SELECT PROPERTY('RequestLogging');

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 97

Option Name Values Additional information

RequestLogMax-
Size

file-size
(bytes)

The maximum size of the file used to record request logging infor-
mation, in bytes. If you specify 0, then there is no maximum size for
the request logging file, and the file is never renamed. This value is the
default. When the request log file reaches the size specified by either
the sa_server_option system procedure or the -zs server option, the
file is renamed with the extension .old appended (replacing an ex-
isting file with the same name if one exists). The request log file is
then restarted.

RequestLog-
NumFiles

Integer The number of request log file copies to retain.If request logging is
enabled over a long period, the request log file can become large. The
-zn option allows you to specify the number of request log file copies
to retain

RequestTiming YES,
NO

Default is NO.

Instructs the database server to maintain timing information for each
new connection. This feature is turned off by default. When it is
turned on, the database server maintains cumulative timers for all new
connections that indicate how much time the connection spent in the
server in each of several states. The change is only effective for new
connections, and lasts for the duration each connection.You can use
the sa_performance_diagnostics system procedure to obtain a sum-
mary of this timing information, or you can retrieve individual values
by inspecting the following connection properties:

• ReqCountUnscheduled

• ReqTimeUnscheduled

• ReqCountActive

• ReqTimeActive

• ReqCountBlockIO

• ReqTimeBlockIO

• ReqCountBlockLock

• ReqTimeBlockLock

• ReqCountBlockContention

• ReqTimeBlockContention

When the RequestTiming server property is on, there is a small over-
head for each request to maintain the additional counters.

Appendix: SQL Reference

98 SAP Sybase IQ

Option Name Values Additional information

rlv_auto_merge ON, OFF The default is ON.

Enables or disables automatic merges of the RLV store into the IQ
main store for row-level versioning-enabled tables.

If rlv_auto_merge is OFF, no automated merges of the RLV and IQ
main stores occur. This implies that you assume responsibility to
manually merge data so that the RLV store gets synced to the IQ main
store before the upper rlv_memory_mb threshold is reached.

rlv_memory_mb The min-
imum
value is 1
MB. The
maxi-
mum
value is
2048.
Any oth-
er value
will set
the
amount
of mem-
ory to
2048
MB.

Specifies the maximum amount of memory (the RLV store), in MB,
to reserve for row-level versioning. The default value is 2048 MB.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 99

Option Name Values Additional information

SecureFeatures feature-
list

Allows you to manage secure features for a database server that is
already running. The feature-list is a comma-separated list of feature
names or feature sets. By adding a feature to the list, you limit its
availability. To remove items from the list of secure features, specify a
minus sign (-) before the secure feature name.

To call sa_server_option('SecureFeatures',...), the connection must
have the ManageFeatures secure feature enabled on the connection.
The -sf key (the system secure feature key) enables ManageFeatures,
as well as all of the other features. So if you used the system secure
feature key, then changing the set of SecureFeatures will not have any
effect on the connection. But if you used another key (for example a
key that had been created using the create_secure_feature_key sys-
tem procedure) then your connection may be immediately affected by
the change, depending on what other features are included in the key.

Any changes you make to allow or prevent access to features take
effect immediately for the database server. The connection that exe-
cutes the sa_server_option system procedure may or may not be
affected, depending on the secure feature key the connection is using
and whether or not it allows the connection access to the specified
features.

For example, to secure two features, use the following syntax:

CALL sa_server_option('SecureFeatures', 'CON-
SOLE_LOG,WEBCLIENT_LOG');
After executing this statement, the list of secure features is set ac-
cording to what has been changed.

StatisticsCleaner ON, OFF Default is ON.

The statistics cleaner fixes statistics that give bad estimates by per-
forming scans on tables. By default the statistics cleaner runs in the
background and has a minimal impact on performance.

Turning off the statistics cleaner does not disable the statistic gover-
nor, but when the statistics cleaner is turned off, statistics are only
created or fixed when a query is run.

WebClientLog-
File

filename The name of the web service client log file. The web service client log
file is truncated each time you use the -zoc server option or the Web-
ClientLogFile property to set or reset the file name. Double any
backslash characters in the path because this value is a string.

Appendix: SQL Reference

100 SAP Sybase IQ

Option Name Values Additional information

WebClientLog-
ging

ON, OFF Default is OFF.

This option enables and disables logging of web service clients. The
information that is logged includes HTTP requests and response data.
Specify ON to start logging to the web service client log file, and
specify OFF to stop logging to the file.

Privileges
You must have the MANAGE PROFILING system privilege to use the following options,
which are related to application profiling or request logging:

• ProcedureProfiling
• ProfileFilterConn
• ProfileFilterUser
• RequestFilterConn
• RequestFilterDB
• RequestLogFile
• RequestLogging
• RequestLogMaxSize
• RequestLogNumFiles

For all other options, your must have the SERVER OPERATOR system privilege.

Side effects
None.

Example
The following statement causes cache information to be displayed in the database server
messages window whenever the cache size changes:
CALL sa_server_option('CacheSizingStatistics', 'YES');

The following statement disallows new connections to the current database:
CALL sa_server_option('ConnsDisabledForDB', 'YES');

The following statement enables logging of all SQL statements, procedure calls, plans,
blocking and unblocking events, and starts a new request log:
CALL sa_server_option('RequestLogging', 'SQL+PROCEDURES+BLOCKS+PLAN
+REPLACE');

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 101

sp_iqcolumn Procedure
Displays information about columns in a database.

Syntax1
sp_iqcolumn ([table_name],[table_owner], [table_loc])

Syntax2
sp_iqcolumn [table_name='table_name'],[table_owner='tableowner'],
[table_loc='table_loc’]

Usage

Syntax Description

Syntax1 If you specify table_owner without specifying
table_name, you must substitute NULL for ta-
ble_name. For example, sp_iqcolumn
NULL,DBA.

Syntax2 The parameters can be specified in any order.
Enclose 'table_name' and 'table_owner' in single
quotes.

Privileges
No specific system privileges are required to run this stored procedure.

Description
Displays information about columns in a database. Specifying the table_name parameter
returns the columns only from tables with that name. Specifying the table_owner parameter
returns only tables owned by that user. Specifying both table_name and table_owner
parameters chooses the columns from a unique table, if that table exists. Specifying table_loc
returns only tables that are defined in that segment type. Specifying no parameters returns all
columns for all tables in a database. sp_iqcolumn does not return column information for
system tables.

Column name Description

table_name The name of the table

table_owner The owner of the table

column_name The name of the column

domain_name The data type

Appendix: SQL Reference

102 SAP Sybase IQ

Column name Description

width The precision of numeric data types that have precision and scale or
the storage width of numeric data types without scale; the width of
character data types

scale The scale of numeric data types

nulls 'Y' if the column can contain NULLS, 'N' if the column cannot contain
NULLS

default 'Identity/Autoincrement' if the column is an identity/autoincrement
column, null if not.

cardinality The distinct count, if known, by indexes.

location TEMP = IQ temporary store, MAIN = IQ main store, SYSTEM =
catalog store

isPartitioned 'Y' if the column belongs to a partitioned table and has one or more
partitions whose dbspace is different from the table partition’s
dbspace, 'N' if the column’s table is not partitioned or each partition of
the column resides in the same dbspace as the table partition.

remarks User comments added with the COMMENT statement

check the check constraint expression

sp_iqcolumn Procedure Example
Use the example as a reference for sp_iqcolumn usage.

The following variations in syntax both return all of the columns in the table
Departments:

sp_iqcolumn Departments
call sp_iqcolumn (table_name='Departments')
table_name table_owner column_name domain_name width scale
 nulls default
Departments GROUPO DepartmentID integer 4 0
 N (NULL)
Departments GROUPO DepartmentName char 40 0
 N (NULL)
Departments GROUPO DepartmentHead integer 4 0
 Y (NULL)

cardinality location isPartitioned remarks check
5 Main N (NULL) (NULL)
0 Main N (NULL) (NULL)
0 Main N (NULL) (NULL)

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 103

The following variation in syntax returns all of the columns in all of the tables owned by table
owner DBA.

sp_iqcolumn table_owner='DBA'

sp_iqconnection Procedure
Shows information about connections and versions, including which users are using
temporary dbspace, which users are keeping versions alive, what the connections are doing
inside SAP Sybase IQ, connection status, database version status, and so on.

Syntax
sp_iqconnection [connhandle]

Applies to
Simplex and multiplex.

Usage
connhandle is equal to the Number connection property and is the ID number of the
connection. The connection_property system function returns the connection ID:
SELECT connection_property ('Number')

When called with an input parameter of a valid connhandle, sp_iqconnection returns the one
row for that connection only.

Privileges
Requires the DROP CONNECTION, MONITOR or SERVER OPERATOR system privilege.
Users without one of these system privileges must be granted EXECUTE permission to run the
stored procedure.

Description
sp_iqconnection returns a row for each active connection. The columns ConnHandle, Name,
Userid, LastReqTime, ReqType, CommLink, NodeAddr, and LastIdle are the connection
properties Number, Name, Userid, LastReqTime, ReqType, CommLink, NodeAddr, and
LastIdle respectively, and return the same values as the system function sa_conn_info. The
additional columns return connection data from the SAP Sybase IQ side of the SAP Sybase IQ
engine. Rows are ordered by ConnCreateTime.

The column MPXServerName stores information related to internode communication (INC),
as shown:

Server Where Run MPXServerName Column Content

Simplex server NULL (All connections are local/user connec-
tions)

Appendix: SQL Reference

104 SAP Sybase IQ

Server Where Run MPXServerName Column Content

Multiplex coordinator • NULL for local/user connections

• Contains value of secondary node’s server
name (source of connection) for every INC
connection (either on-demand or dedicated
heartbeat connection)

Multiplex secondary • NULL for local/user connections

• Contains value of coordinator’s server name
(source of connection).

In Java applications, specify SAP Sybase IQ-specific connection properties from TDS clients
in the RemotePWD field. This example, where myconnection becomes the IQ connection
name, shows how to specify IQ specific connection parameters:
p.put("RemotePWD",",,CON=myconnection");

Column Name Description

ConnHandle The ID number of the connection.

Name The name of the server.

Userid The user ID for the connection.

LastReqTime The time at which the last request for the specified connection started.

ReqType A string for the type of the last request.

IQCmdType The current command executing on the SAP Sybase IQ side, if any. The com-
mand type reflects commands defined at the implementation level of the engine.
These commands consist of transaction commands, DDL and DML commands
for data in the IQ store, internal IQ cursor commands, and special control com-
mands such as OPEN and CLOSE DB, BACKUP, RESTORE, and others.

LastIQCmdTime The time the last IQ command started or completed on the IQ side of the SAP
Sybase IQ engine on this connection.

IQCursors The number of cursors open in the IQ store on this connection.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 105

Column Name Description

LowestIQCursorState The IQ cursor state, if any. If multiple cursors exist on the connection, the state
that appears is the lowest cursor state of all the cursors; that is, the furthest from
completion. Cursor state reflects internal SAP Sybase IQ implementation detail
and is subject to change in the future. For this version, cursor states are: NONE,
INITIALIZED, PARSED, DESCRIBED, COSTED, PREPARED, EXECU-
TED, FETCHING, END_OF_DATA, CLOSED and COMPLETED. As sug-
gested by the names, cursor state changes at the end of the operation. A state of
PREPARED, for example, indicates that the cursor is executing.

IQthreads The number of SAP Sybase IQ threads currently assigned to the connection.
Some threads may be assigned but idle. This column can help you determine
which connections are using the most resources.

TxnID The transaction ID of the current transaction on the connection. This is the same
as the transaction ID in the .iqmsg file by the BeginTxn, CmtTxn, and

PostCmtTxn messages, as well as the Txn ID Seq logged when the database is
opened.

ConnCreateTime The time the connection was created.

TempTableSpaceKB The number of kilobytes of IQ temporary store space in use by this connection for
data stored in IQ temp tables.

TempWorkSpaceKB The number of kilobytes of IQ temporary store space in use by this connection for
working space such as sorts, hashes, and temporary bitmaps. Space used by
bitmaps or other objects that are part of indexes on SAP Sybase IQ temporary
tables are reflected in TempTableSpaceKB.

IQConnID The ten-digit connection ID included as part of all messages in the .iqmsg file.

This is a monotonically increasing integer unique within a server session.

satoiq_count An internal counter used to display the number of crossings from the SQL Any-
where side to the IQ side of the SAP Sybase IQ engine. This might be occasion-
ally useful in determining connection activity. Result sets are returned in buffers
of rows and do not increment satoiq_count or iqtosa_count once per row.

iqtosa_count An internal counter used to display the number of crossings from the IQ side to
the SQL Anywhere side of the SAP Sybase IQ engine. This might be occasionally
useful in determining connection activity.

CommLink The communication link for the connection. This is one of the network protocols
supported by SAP Sybase IQ, or is local for a same-machine connection.

NodeAddr The node for the client in a client/server connection.

LastIdle The number of ticks between requests.

Appendix: SQL Reference

106 SAP Sybase IQ

Column Name Description

MPXServerName If an INC connection, the varchar(128) value contains the name of the multiplex
server where the INC connection originates. NULL if not an INC connection.

LSName The logical server name of the connection. NULL if logical server context is
unknown or not applicable.

INCConnName The name of the underlying INC connection for a user connection. The data type
for this column is varchar(255). If sp_iqconnection shows an INC connection
name for a suspended user connection, that user connection has an associated
INC connection that is also suspended.

INCConnSuspended The value "Y" in this column indicates that the underlying INC connection for a
user connection is in a suspended state. The value "N" indicates that the con-
nection is not suspended.

Example
sp_iqconnection

ConnHandle Name Userid LastReqTime ReqType
=== =================== ====== ========================== =======
 1 'SQL_DBC_100525210' 'DBA' '2011-03-28 09:29:24.466' 'OPEN'

 IQCmdType LastIQCmdTime IQCursors LowestIQCursorState
==================== ============== ========= ===================
'IQUTILITYOPENCURSOR' 2011-03-28 09:29:24.0 0 'NONE'

IQthreads TxnID ConnCreateTime TempTableSpaceKB TempWorkSpaceKB
========= ======= ===================== =============== ===============
 0 3352568 2011-03-28 09:29:20.0 0 0

IQconnID satoiq_count iqtosa_count CommLink NodeAdd LastIdle MPXServerName
======== ============ ============ ======== ======= ======== ============
 34 43 2 'local' '' 244 (NULL)

LSName INCConnName INCConnSuspended
========== =================== ================
Finance_LS 'IQ_MPX_SERVER_P54' 'Y'

sp_iqdbsize Procedure
Displays the size of the current database.

Syntax
sp_iqdbsize([main])

Applies to
Simplex and multiplex.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 107

Privileges
Requires the ALTER DATABASE system privilege. Users without the ALTER DATABASE
system privilege must be granted EXECUTE permission to run the stored procedure.

Description
Returns the total size of the database. Also returns the number of pages required to hold the
database in memory and the number of IQ pages when the database is compressed (on disk).

If run on a multiplex database, the default parameter is main, which returns the size of the
shared IQ store.

If run when there are no rows in any RLV-enabled tables, the Physical Blocks, the
RLVLogBlocks and RLVLogKBytes columns will contain non-zero entries, and the
remaining columns contain zeros. This indicate no row-level versioned tables.

Column Name Description

Database The path name of the database file.

Physical Blocks Total database size in blocks.

An IQ database consists of one or more dbspaces. Each dbspace has
a fixed size, which is originally specified in units of megabytes. This
megabyte quantity is converted to blocks using the IQ page size and
the corresponding block size for that IQ page size. The Physical
Blocks column reflects the cumulative total of each SAP Sybase IQ
dbspace size, represented in blocks.

KBytes The total size of the database in kilobytes. This value is the total size
of the database in blocks (Physical Blocks in the previous sp_iqdb-

size column) multiplied by the block size. The block size depends on
the IQ page size.

Pages The total number of IQ pages necessary to represent in memory all of
the data stored in tables and the metadata for these objects. This
value is always greater than or equal to the value of Compressed
Pages (the next sp_iqdbsize column).

Compressed Pages The total number of IQ pages necessary to store on disk the data in
tables and metadata for these objects. This value is always less than
or equal to the value of Pages (the previous sp_iqdbsize column),
because SAP Sybase IQ compresses pages when the IQ page is
written from memory to disk. The sp_iqdbsize Compressed Pages
column represents the number of compressed pages.

NBlocks The total size in blocks used to store the data in tables. This value is
always less than or equal to the sp_iqdbsize Physical Blocks value.

Appendix: SQL Reference

108 SAP Sybase IQ

Column Name Description

Catalog Blocks The total size in blocks used to store the metadata for tables.

RLVLogBlocks Number of blocks used for log information for the RLV store.

RLVLogKBytes Total size of the RLV log, in Kb.

Example
Displays size information for the database iqdemo:

sp_iqdbsize
Database

PhysicalBlocks KBytes Pages CompressedPages NBlocks CatalogBlocks
RLVLogBlocks RLVLogKBytes
============== ====== ===== =============== ======= =============
============ ============
/system1/sybase/IQ-16_0/demo/iqdemo.db
 1280 522 688 257 1119 18

sp_iqdbspace Procedure
Displays detailed information about each IQ dbspace.

Syntax
sp_iqdbspace [dbspace-name]

Applies to
Simplex and multiplex.

Privileges
Requires MANAGE ANY DBSPACE system privilege. Users without MANAGE ANY
DBSPACE system privilege must be granted EXECUTE permission.

Description
Use the information from sp_iqdbspace to determine whether data must be moved, and for
data that has been moved, whether the old versions have been deallocated.

Column Name Description

DBSpaceName Name of the dbspace as specified in the CREATE DBSPACE statement.
Dbspace names are always case-insensitive, regardless of the CREATE DA-

TABASE...CASE IGNORE or CASE RESPECT specification.

DBSpaceType Type of the dbspace (MAIN, SHARED_TEMP, TEMPORARY, or RLV).

Writable T (writable) or F (not writable).

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 109

Column Name Description

Online T (online) or F (offline).

Usage Percent of dbspace currently in use by all files in the dbspace.

TotalSize Total size of all files in the dbspace in the units B (bytes), K (kilobytes), M
(megabytes), G (gigabytes), T (terabytes), or P (petabytes).

Reserve Total reserved space that can be added to all files in the dbspace.

NumFiles Number of files in the dbspace.

NumRWFiles Number of read/write files in the dbspace.

Stripingon F (Off).

StripeSize Always 1, if disk striping is on.

BlkTypes Space used by both user data and internal system structures.

OkToDrop "Y" indicates the dbspace can be dropped; otherwise "N".

Values of the BlkTypes block type identifiers:

Identifier Block Type

A Active version

B Backup structures

C Checkpoint log

D Database identity

F Free list

G Global free list manager

H Header blocks of the free list

I Index advice storage

M Multiplex CM*

O Old version

R RLV free list manager

T Table use

U Index use

N Column use

Appendix: SQL Reference

110 SAP Sybase IQ

Identifier Block Type

X Drop at checkpoint

*The multiplex commit identity block (actually 128 blocks) exists in all IQ databases, even
though it is not used by simplex databases.

Example
Displays information about dbspaces:
sp_iqdbspace;

Note: The following example shows objects in the iqdemo database to better illustrate
output. iqdemo includes a sample user dbspace named iq_main that may not be present in
your own databases.

DBSpa-
ceName

DBSpa-
ceType

Writ-
able

On-
line

Us-
ag
e

To-
tal
Size

Re-
ser
ve

N
u
m
Fil
es

Num
RWF
iles

Stri-
pin-
gon

Str
ipe
Siz
e

Blk
Typ
es

Ok
To
Dr
op

IQ_MAIN MAIN T T 55 75M 200
M

1 1 T 1K 1H,
5169
A,
190

N

IQ__ SYS-
TEM_
MAIN

MAIN T T 21 300
M

50M 1 1 F 8K 1H,
7648
F,
32D,
128
M

N

IQ_SYS-
TEM_
TEMP

TEMPO-
RARY

T T 1 100
M

50M 1 1 F 8K 1H,
64F,
32A

N

sp_iqfile Procedure
Displays detailed information about each dbfile in a dbspace.

Syntax
sp_iqfile [dbspace-name]

Applies to
Simplex and multiplex.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 111

Privileges
Requires the MANAGE ANY DBSPACE system privilege. Users without the MANAGE
ANY DBSPACE system privilege must be granted EXECUTE permission.

Description
sp_iqfile displays the usage, properties, and types of data in each dbfile in a dbspace. You can
use this information to determine whether data must be moved, and for data that has been
moved, whether the old versions have been deallocated.

Column Name Description

DBSpaceName Name of the dbspace as specified in the CREATE DBSPACE statement.
Dbspace names are always case-insensitive, regardless of the CREATE

DATABASE...CASE IGNORE or CASE RESPECT specification.

DBFileName Logical file name.

Path Location of the physical file or raw partition.

SegmentType Type of dbspace (MAIN, TEMPORARY, or RLV).

RWMode Mode of the dbspace: always read-write (RW).

Online T (online) or F (offline).

Usage Percent of dbspace currently in use by this file in the dbspace. When run
against a secondary node in a multiplex configuration, this column dis-
plays NA.

DBFileSize Current size of the file or raw partition. For a raw partition, this size value
can be less than the physical size.

Reserve Reserved space that can be added to this file in the dbspace.

StripeSize Always 1, if disk striping is on.

BlkTypes Space used by both user data and internal system structures.

FirstBlk First IQ block number assigned to the file.

LastBlk Last IQ block number assigned to the file.

OkToDrop "Y" indicates the file can be dropped; otherwise "N".

Identifier Block Type

A Active Version

B Backup Structures

Appendix: SQL Reference

112 SAP Sybase IQ

Identifier Block Type

C Checkpoint Log

D Database Identity

F Free list

G Global Free list Manager

H Header Blocks of the Free List

I Index Advice Storage

M Multiplex CM*

O Old Version

R RLV Free list manager

T Table Use

U Index Use

N Column Use

X Drop at Checkpoint

*The multiplex commit identity block (actually 128 blocks) exists in all IQ databases, even
though it is not used by simplex databases.

Example
Displays information about the files in the dbspaces:
sp_iqfile;

sp_iqfile;
DBSpaceName,DBFileName,Path,SegmentType,RWMode,Online,
Usage,DBFileSize,Reserve,StripeSize,BlkTypes,FirstBlk,
LastBlk,OkToDrop

'IQ_SYSTEM_MAIN','IQ_SYSTEM_MAIN','/sun1-c1/users/smith/mpx/m/
mpx_db.iq','MAIN','RW','T','21','
2.92G','0B','1K','1H,76768F,32D,19A,185O,128M,34B,32C'
,1,384000,'N'

'mpx_main1','mpx_main1','/sun1-c1/users/smith/mpx/m/
mpx_main1.iq','MAIN','RW','T','1'
,'100M','0B','1K','1H',1045440,1058239,'N'

'IQ_SHARED_TEMP','sharedfile1_bcp','/sun1-c1/users/smith/mpx/m/
f1','SHARED_TEMP','RO','T','0',
'50M','0B','1K','1H',1,6400,'N'

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 113

'IQ_SHARED_TEMP','sharedfile2_bcp','/sun1-c1/users/smith/mpx/m/
f2','SHARED_TEMP','RO','T','0',
'50M','0B','1K','1H',1045440,1051839,'N'

'IQ_SYSTEM_TEMP','IQ_SYSTEM_TEMP','/sun1-c1/users/smithmpx/m/
mpx_db.iqtmp','TEMPORARY','RW',
'T','1','2.92G','0B','1K','1H,64F,33A',1,384000,'N'

sp_iqlocks Procedure
Shows information about locks in the database, for both the IQ main store and the IQ catalog
store.

Syntax
sp_iqlocks ([connection,] [[owner.]table_name,] max_locks,]
[sort_order])

Privileges
Requires the MONITOR system privilege. Users without the MONITOR system privilege
must be granted EXECUTE permission to run the stored procedure.

Usage
Optional sp_iqlocks parameters you can specify to restrict results:

Parameter Data Type Description

connection integer Connection ID. With this option, the procedure re-
turns information about locks for the specified con-
nection only. Default is zero, which returns informa-
tion about all connections.

owner.table_name char(128) Table name. With this option, the procedure returns
information about locks for the specified table only.
Default is NULL, which returns information about all
tables in the database. If you do not specify owner, it is
assumed that the caller of the procedure owns the
table.

max_locks integer Maximum number of locks for which to return infor-
mation. Default is 0, which returns all lock informa-
tion.

sort_order char(1) Order in which to return information:

• C sorts by connection (default)

• T sorts by table_name

Appendix: SQL Reference

114 SAP Sybase IQ

Description
Displays information about current locks in the database. Depending on the options you
specify, you can restrict results to show locks for a single connection, a single table, or a
specified number of locks.

sp_iqlocks displays the following information, sorted as specified in the sort_order parameter:

Column Data type Description

conn_name VARCHAR(128) The name of the current connection.

conn_id INTEGER Connection ID that has the lock.

user_id CHAR(128) User associated with this connection ID.

table_type CHAR(6) The type of table. This type is either BASE for a
table, GLBTMP for global temporary table, or
MVIEW for a materialized view.

Materialized views are only supported for SQL
Anywhere tables in the IQ catalog store.

creator VARCHAR(128) The owner of the table.

table_name VARCHAR(128) Table on which the lock is held.

index_id INTEGER The index ID or NULL

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 115

Column Data type Description

lock_class CHAR(8) String of characters indicating the type of lock:

• S – share.

• SW – share and write.

• EW – exclusive and write.

• E – exclusive.

• P – phantom.

• A – antiphantom.

• W – write.

All locks listed have one of S, E, EW, or SW, and
may also have P, A, or both. Phantom and anti-
phantom locks also have a qualifier of T or *:

• T – the lock is with respect to a sequential scan.

• * – the lock is with respect to all scans.

• nnn – Index number; the lock is with respect to
a particular index.

SAP Sybase IQ obtains a share lock before a write
lock. If a connection has exclusive lock, share lock
does not appear. For write locks, if a connection
has all-exclusive, share, and write locks, it is EW.

lock_duration CHAR(11) The duration of the lock. One of Transaction, Po-
sition, or Connection.

lock_type CHAR(9) Value identifying the lock (dependent on the lock
class)

row_identifier UNSIGNED BIGINT The identifier for the row the lock starts on, or
NULL.

row_range BIGINT The number of contiguous rows that are locked.
Row locks in the RLV store can either be a single
row, or a range of rows.

If sp_iqlocks cannot find the connection ID or user name of the user who has a lock on a table,
it displays a 0 (zero) for the connection ID and User unavailable for the user name.

Note: Exclusive, phantom, or antiphantom locks can be placed on IQ catalog store tables, but
not on SAP Sybase IQ tables in the IQ main store. Unless you have explicitly taken out locks
on a table in the catalog store, you never see these types of locks (or their qualifiers T, *, and
nnn) in a SAP Sybase IQ database.

Appendix: SQL Reference

116 SAP Sybase IQ

Examples
The example shows the sp_iqlocks procedure call and its output in the SAP Sybase IQ
database. The procedure is called with all default options, so that the output shows all locks,
sorted by connection.

call sp_iqlocks()
conn_name conn_id
user_id table_type creator table_name
========= =======
======= ========== ======= ==========
SQL_DBC_13cd6038 3 DBA BASE DBA rv_locks2
SQL_DBC_13cd6038 3 DBA BASE DBA rv_locks2
SQL_DBC_13cd6038 3 DBA BASE DBA rv_locks2
RVL_CONN_T775 1000000407 BASE DBA rv_locks2

index_id lock_class lock_duration lock_type row_identifier
row_range
======== ========== ============= ========= ==============
=========
 Schema Transaction Shared
 Row Transaction Row 1 4
 Row Transaction Row 281474976710656 1
 Table Transaction Intent

sp_iqmergerlvstore Procedure
Triggers a merge of the row-level versioned (RLV) store with the IQ main store.

Syntax
sp_iqmergerlvstore (merge_type, table_name, [table_owner])

Privileges
None required.

Usage

• If a table name is not specified, all the active data (from all RLV-enabled tables) in the RLV
store will be merged into the IQ main store.

• Merge-type can be BLOCKING | NON-BLOCKING . (Of the rare cases where you may wish
to run a manual merge, almost all would be blocking merges.)

• After performing the merge, the stored procedure will automatically commit the merge
transaction.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 117

sp_iqrlvmemory Procedure
Monitors RLV store memory usage per table.

Syntax
sp_iqrlvmemory (table_name, [table_owner])

Privileges
Requires the MONITOR system privilege. Users without the MONITOR system privilege
must be granted EXECUTE permission to run the stored procedure.

Usage
Version-specific data, such as version bitmaps and on-demand indexes, are not included in
RLV memory accounting. They do not count against the RLV memory limit, and are not
reported in sp_iqrlvmemory.

The table owner and table name are optional. Specify the table owner and/or table name to
limit the scope.

Description
sp_iqrlvmemory outputs one row per table consuming RLV store memory, with the following
output columns:

Column Name Description

table_id ID of the table this row represents.

fragments Number of store fragments for this table.

total Total RLV store memory used by this table.

data RLV store memory used for the column frag-
ments for this table.

dictionary RLV store memory used for the dictionaries for
this table.

bitmap RLV store memory used to store table-level bit-
maps.

sp_iqrlvmemory ‘rlv_table1’, ‘DBA’

Appendix: SQL Reference

118 SAP Sybase IQ

sp_iqspaceinfo Procedure
Displays the number of blocks used by each object in the current database and the name of the
dbspace in which the object is located.

Syntax
sp_iqspaceinfo [‘main
| [table table-name | index index-name] [...] ‘]

Applies to
Simplex and multiplex.

Privileges
Requires the MANAGE ANY DBSPACE system privilege. Users without the MANAGE
ANY DBSPACE system privilege must be granted EXECUTE permission.

Description
For the current database, displays the object name, number of blocks used by each object, and
the name of the dbspace. sp_iqspaceinfo requires no parameters.

The information returned by sp_iqspaceinfo is helpful in managing dbspaces.

If run on a multiplex database, the default parameter is main, which returns the size of the
shared IQ store.

If you supply no parameter, you must have at least one user-created object, such as a table, to
receive results.

Example
This output is from the sp_iqspaceinfo stored procedure run on the iqdemo database. Output
for some tables and indexes are removed from this example.

 Name NBlocks dbspace_name
Contacts 19 IQ_SYSTEM_MAIN
SalesOrderItems.DBA.ASIQ_IDX_T205_C5_FP 56 IQ_SYSTEM_MAIN
Contacts.DBA.ASIQ_IDX_T206_C10_FP 55 IQ_SYSTEM_MAIN
Contacts.DBA.ASIQ_IDX_T206_C1_FP 61 IQ_SYSTEM_MAIN
...
Contacts.DBA.ASIQ_IDX_T206_C9_FP 55 IQ_SYSTEM_MAIN
Contacts.DBA.ASIQ_IDX_T206_I11_HG 19 IQ_SYSTEM_MAIN
Customers 20 IQ_SYSTEM_MAIN
Customers.DBA.ASIQ_IDX_T207_C1_FP 61 IQ_SYSTEM_MAIN
Customers.DBA.ASIQ_IDX_T207_C2_FP 55 IQ_SYSTEM_MAIN
...
Customers.DBA.ASIQ_IDX_T207_I10_HG 19 IQ_SYSTEM_MAIN
...

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 119

sp_iqspaceused Procedure
Shows information about space available and space used in the IQ store, IQ temporary store,
RLV store, and IQ global and local shared temporary stores.

Syntax

sp_iqspaceused(out mainKB unsigned bigint,
 out mainKBUsed unsigned bigint,
 out tempKB unsigned bigint,
 out tempKBUsed unsigned bigint,
 out shTempTotalKB unsigned bigint,
 out shTempTotalKBUsed unsigned bigint,
 out shTempLocalKB unsigned bigint,
 out shTempLocalKBUsed unsigned bigint,
 out rlvLogKB unsigned bigint,
 out rlvLogKBUsed unsigned bigint)

Applies to
Simplex and multiplex.

Privileges
Requires the ALTER DATABASE, MANAGE ANY DBSPACE, or MONITOR system
privileges. Users without one of these system privileges must be granted EXECUTE
permission.

Usage
sp_iqspaceused returns several values as unsigned bigint out parameters. This system stored
procedure can be called by user-defined stored procedures to determine the amount of main,
temporary, and RLV store space in use.

Description
sp_iqspaceused returns a subset of the information provided by sp_iqstatus, but allows the
user to return the information in SQL variables to be used in calculations.

If run on a multiplex database, this procedure applies to the server on which it runs. Also
returns space used on IQ_SHARED_TEMP.

Column Name Description

mainKB The total IQ main store space, in kilobytes.

mainKBUsed The number of kilobytes of IQ main store space
used by the database. Secondary multiplex no-
des return '(Null)'.

tempKB The total IQ temporary store space, in kilobytes.

Appendix: SQL Reference

120 SAP Sybase IQ

Column Name Description

tempKBUsed The number of kilobytes of total IQ temporary
store space in use by the database.

shTempTotalKB The total IQ global shared temporary store
space, in kilobytes.

shTempLocalKB The total IQ local shared temporary store space,
in kilobytes.

shTempLocalKBUsed The number of kilobytes of IQ local shared
temporary store space in use by the database.

rlvLogKB The total RLV store space, in kilobytes.

rlvLogKBUsed The number of kilobytes of RLV store space in
use by the database.

Example
sp_iqspaceused requires seven output parameters. Create a user-defined stored procedure
myspace that declares the seven output parameters, then calls sp_iqspaceused:
 create or replace procedure dbo.myspace()
begin
 declare mt unsigned bigint;
 declare mu unsigned bigint;
 declare tt unsigned bigint;
 declare tu unsigned bigint;
 declare gt unsigned bigint;
 declare gu unsigned bigint;
 declare lt unsigned bigint;
 declare lu unsigned bigint;
 declare tt_t unsigned bigint;
 declare mt_t unsigned bigint;
 declare gt_t unsigned bigint;
 declare lt_t unsigned bigint;
 call sp_iqspaceused(mt,mu,tt,tu,gt,gu,lt,lu);
 if (tt = 0) then
 set tt_t = 0;
 else
 set tt_t = tu*100/tt;
 end if;
 if (mt = 0) then
 set mt_t = 0;
 else
 set mt_t = mu*100/mt;
 end if;
 if (gt = 0) then
 set gt_t = 0;
 else
 set gt_t = gu*100/gt;
 end if;

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 121

 if (lt = 0) then
 set lt_t = 0;
 else
 set lt_t = lu*100/lt;
 end if;
 select cast(mt/1024 as unsigned bigint) as mainMB,
 cast(mu/1024 as unsigned bigint) as mainusedMB, mt_t as
mainPerCent,
 cast(tt/1024 as unsigned bigint) as tempMB,
 cast(tu/1024 as unsigned bigint) as tempusedMB, tt_t as
tempPerCent,
 cast(gt/1024 as unsigned bigint) as shTempTotalKB,
 cast(gu/1024 as unsigned bigint) as shTempTotalKBUsed, gt_t
as globalshtempPerCent,
 cast(lt/1024 as unsigned bigint) as shTempLocalMB,
 cast(lu/1024 as unsigned bigint) as shTempLocalKBUsed, lt_t
as localshtempPerCent;
end

To display the output of sp_iqspaceused, execute myspace:
myspace

sp_iqstatistics Procedure
Returns serial number, name, description, value, and unit specifier for each available statistic,
or a specified statistic.

Syntax
sp_iqstatistics [stat_name]

Usage

Parameter Description

stat_name (Optional) VARCHAR parameter specifying the

name of a statistic.

Privileges
Requires the MANAGE ANY STATISTICS system privilege. Users without MANAGE ANY
STATISTICS system privilege must be granted EXECUTE permission to run the stored
procedure.

Description
When stat_name is provided, sp_iqstatistics returns one row for the given statistic, or zero
rows if the name is invalid. When invoked without any parameter, sp_iqstatistics returns all
statistics.

Appendix: SQL Reference

122 SAP Sybase IQ

Result Set

Column name Data type Description

stat_num UNSIGNED INTEGER Serial number of a statistic

stat_name VARCHAR(255) Name of statistic

stat_desc VARCHAR(255) Description of statistic

stat_value LONG VARCHAR Value of statistic

stat_unit VARCHAR(128) Unit specifier

The following statistics may be returned:

stat
_nu
m

stat_name stat_desc stat_uni
t

0 CpuTotalTime Total CPU time in seconds consumed
by the SAP Sybase IQ server since last
server startup

Second

1 CpuUserTime CPU user time in seconds consumed by
the SAP Sybase IQ server since last
server startup

Second

2 CpuSystemTime CPU system time in seconds consumed
by the SAP Sybase IQ server since last
server startup

Second

3 ThreadsFree Number of SAP Sybase IQ threads free N/A

4 ThreadsInUse Number of SAP Sybase IQ threads in
use

N/A

5 MemoryAllocated Allocated memory in megabytes MB

6 MemoryMaxAllocated Max allocated memory in megabytes MB

7 MainCacheCurrentSize Main cache current size in megabytes MB

8 MainCacheFinds Main cache total number of lookup re-
quests

N/A

9 MainCacheHits Main cache total number of hits N/A

10 MainCachePagesPinned Main cache number of pages pinned Page

11 MainCachePagesPinnedPercentage Percentage of main cache pages pinned %

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 123

stat
_nu
m

stat_name stat_desc stat_uni
t

12 MainCachePagesDirtyPercentage Percentage of main cache pages dirtied %

13 MainCachePagesInUsePercentage Percentage of main cache pages in use %

14 TempCacheCurrentSize Temporary cache current size in meg-
abytes

MB

15 TempCacheFinds Temporary cache total number of look-
up requests

N/A

16 TempCacheHits Temporary cache total number of hits N/A

17 TempCachePagesPinned Temporary cache number of pages pin-
ned

Page

18 TempCachePagesPinnedPercentage Percentage of temporary cache pages
pinned

%

19 TempCachePagesDirtyPercentage Percentage of temporary cache pages
dirtied

%

20 TempCachePagesInUsePercentage Percentage of temporary cache pages
in use

%

21 MainStoreDiskReads Number of kilobytes read from main
store

KB

22 MainStoreDiskWrites Number of kilobytes written to main
store

KB

23 TempStoreDiskReads Number of kilobytes read from main
store

KB

24 TempStoreDiskWrites Number of kilobytes written to main
store

KB

25 ConnectionsTotalConnections Total number of connections since
server startup

N/A

26 ConnectionsTotalDisonnections Total number of disconnections since
server startup

N/A

27 ConnectionsActive Number of active connections N/A

28 OperationsWaiting Number of operations waiting for SAP
Sybase IQ resource governor

N/A

Appendix: SQL Reference

124 SAP Sybase IQ

stat
_nu
m

stat_name stat_desc stat_uni
t

29 OperationsActive Number of active concurrent opera-
tions admitted by SAP Sybase IQ re-
source governor

N/A

30 OperationsActiveLoadTableState-
ments

Number of active LOAD TABLE state-
ments

N/A

Examples
Displays a single statistic, the total CPU time:
sp_iqstatistics 'CpuTotalTime'

Displays all statistics for MainCache%:
SELECT * from sp_iqstatistics() WHERE stat_name LIKE 'MainCache%'

stat_num stat_name stat_desc stat_value stat_unit

7 MainCacheCur-
rentSize

Main cache cur-
rent size in mega-
bytes

64 mb

8 MainCacheFinds Main cache total
number of lookup
requests

95303

9 MainCacheHits Main cache total
number of hits

95283

10 MainCachePa-
gesPinned

Main cache num-
ber of pages pin-
ned

0 page

11 MainCachePa-
gesPinnedPercent-
age

Percentage of
main cache pages
pinned

0 %

12 MainCachePa-
gesDirtyPercent-
age

Percentage of
main cache pages
dirtied

0.39 %

13 MainCachePage-
sInUsePercentage

Percentage of
main cache pages
in use

4.44 %

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 125

sp_iqstatus Procedure
Displays a variety of SAP Sybase IQ status information about the current database.

Syntax
sp_iqstatus

Applies to
Simplex and multiplex.

Privileges
Requires the ALTER DATABASE, MANAGE ANY DBSPACE, MONITOR, or SERVER
OPERATOR system privilege. Users without one of these system privileges must be granted
EXECUTE permission.

Description
Shows status information about the current database, including the database name, creation
date, page size, number of dbspace segments, block usage, buffer usage, I/O, backup
information, and so on.

sp_iqstatus displays an out-of-space status for main and temporary stores. If a store runs into
an out-of-space condition, sp_iqstatus shows Y in the store’s out-of-space status display
value.

Memory used by the row-level versioning (RLV) store can be monitored with sp_iqstatus.
The RLV memory limit row displays the memory limit as specified by the -iqrlvmem server
option, or the sa_server_option rlv_memory_mb. The RLV memory used row displays
the amount of memory used by the RLV store.

sp_iqspaceused returns a subset of the same information as provided by sp_iqstatus, but
allows the user to return the information in SQL variables to be used in calculations.

To display space that can be reclaimed by dropping connections, use sp_iqstatus and add the
results from the two returned rows:

(DBA)> select * from sp_iqstatus() where name like '%Versions:%'
Execution time: 6.25 seconds
Name Value

Other Versions: 2 = 1968Mb
Active Txn Versions: 1 = C:2175Mb/D:2850Mb

(First 2 rows)

The above example output shows that one active write transaction created 2175MB and
destroyed 2850 MB of data. The total data consumed in transactions and not yet released is
4818MB, or 1968MB + 2850MB = 4818MB.

Appendix: SQL Reference

126 SAP Sybase IQ

sp_iqstatus omits blocks that will be deallocated at the next checkpoint. These blocks do
however, appear in sp_iqdbspace output as type X.

In a multiplex, this procedure also lists information about the shared IQ store and IQ
temporary store. If sp_iqstatusshows a high percentage of main blocks in use on a multiplex
server, run sp_iqversionuse to see which versions are being used and the amount of space that
can be recovered by releasing versions.

Example

Note: This example includes a sample user dbspace named iq_main that may not be present
in your own databases.

The following output is from the sp_iqstatus stored procedure:

SAP Sybase IQ (TM) Copyright (c) 1992-2013 by Sybase,
Inc.
 All rights reserved.
Version: 16.0.0.160/120507/D/ELAN/
Sun_x64/OS 5.10/
 64bit/2012-05-07 17:36:36
Time Now: 2013-05-16 09:53:13.590
Build Time: 2013-05-07 17:36:36
File Format: 23 on 03/18/1999
Server mode: IQ Multiplex Coordinator Server
Catalog Format: 2
Stored Procedure Revision: 1
Page Size: 131072/8192blksz/16bpp
Number of Main DB Files : 3
Main Store Out Of Space: N
Number of Shared Temp DB Files: 0
Shared Temp Store Out Of Space: N
Number of Local Temp DB Files : 1
Local Temp Store Out Of Space: N
DB Blocks: 1-640000 IQ_SYSTEM_MAIN
DB Blocks: 1045440-130101439 iqmain1
DB Blocks: 2090880-2346879 iqmain2
Local Temp Blocks: 1-384000 IQ_SYSTEM_TEMP
Create Time: 2013-05-08 15:54:15.549
Update Time: 2013-05-16 09:53:00.077
Local Temp Blocks: 1-1600 IQ_SYSTEM_TEMP
Create Time: 2013-05-08 15:54:15.549
Update Time: 2013-05-16 09:53:00.077
Main IQ Buffers: 510, 64Mb
Temporary IQ Buffers: 510, 64Mb
Main IQ Blocks Used: 157379 of 1126400, 13%=1229Mb,
Max Block#: 2128363
Shared Temporary IQ Blocks Used: 0 of 0, 0%=0Mb, Max Block#: 0
Local Temporary IQ Blocks Used: 81 of 358400, 0%=0Mb, Max
Block#: 81
Main Reserved Blocks Available: 25600 of 25600, 100%=200Mb
Shared Temporary Reserved Blocks Available: 0 of 0, 0%=0Mb
Local Temporary Reserved Blocks Available: 25600 of 25600,
100%=200Mb

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 127

IQ Dynamic Memory: Current: 178mb, Max: 178mb
Main IQ Buffers: Used: 99, Locked: 0
Temporary IQ Buffers: Used: 5, Locked: 0
Main IQ I/O: I: L60904/P29 O: C5463/D11343/
P9486
 D:5450 C:51.3
Temporary IQ I/O: I: L12526/P0 O: C165/D319/P157
D:160 C:100.0
Other Versions: 6 = 0Mb
Active Txn Versions: 0 = C:0Mb/D:0Mb
Last Full Backup ID: 0
Last Full Backup Time:
Last Backup ID:
Last Backup Type: None
Last Backup Time:
DB Updated: 1
Blocks in next ISF Backup: 0 Blocks: =0Mb
Blocks in next ISI Backup: 0 Blocks: =0Mb
Main Tlvlog Size: Pages: 1, Recs: 193, Replays:
0/0
DB File Encryption Status: OFF

The following is a key to understanding the Main IQ I/O and Temporary IQ I/O
output codes:

• I: Input

• L: Logical pages read (“Finds”)

• P: Physical pages read

• O: Output

• C: Pages created

• D: Pages dirtied

• P: Physically written

• D: Pages destroyed

• C: Compression ratio

sp_iqsysmon Procedure
Monitors multiple components of SAP Sybase IQ, including the management of buffer cache,
memory, threads, locks, I/O functions, and CPU utilization.

Batch Mode Syntax
sp_iqsysmon start_monitor
sp_iqsysmon stop_monitor [, “section(s)”]
or
sp_iqsysmon “time-period” [, “section(s)”]

File Mode Syntax
sp_iqsysmon start_monitor, ‘filemode’ [, ”monitor-options”]
sp_iqsysmon stop_monitor

Appendix: SQL Reference

128 SAP Sybase IQ

Privileges
Requires the MONITOR system privilege. Users without the MONITOR system privilege
must be granted EXECUTE permission to run the stored procedure.

Batch Mode Usage

Parameter Description

start_monitor Starts monitoring.

stop_monitor Stops monitoring and displays the report.

time-period The time period for monitoring, in the form
HH:MM:SS.

section(s) The abbreviation for one or more sections to be
shown by sp_iqsysmon. If you specify more than
one section, separate the section abbreviations
using spaces, and enclose the list in single or
double quotes. The default is to display all sec-
tions.

For sections related to the IQ store, you can spec-
ify main or temporary store by prefixing the sec-
tion abbreviation with “m” or “t”, respectively.
Without the prefix, both stores are monitored. For
example, if you specify “mbufman”, only the IQ
main store buffer manager is monitored. If you
specify “mbufman tbufman” or “bufman”, both
the main and temporary store buffer managers are
monitored.

Report Section or IQ Component Abbreviation

Buffer manager (m/t)bufman

Buffer pool (m/t)bufpool

Prefetch management (m/t)prefetch

Free list management (m/t)freelist

Buffer allocation (m/t)bufalloc

Memory management memory

Thread management threads

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 129

Report Section or IQ Component Abbreviation

CPU utilization cpu

Transaction management txn

Server context statistics server

Catalog statistics catalog

Note: The SAP Sybase IQ components Disk I/O and Lock Manager are not currently
supported by sp_iqsysmon.

File Mode Usage

Parameter Description

start_monitor Starts monitoring.

stop_monitor Stops monitoring and writes the remaining output
to the log file.

filemode Specifies that sp_iqsysmon is running in file
mode. In file mode, a sample of statistics appear
for every interval in the monitoring period. By
default, the output is written to a log file named
dbname.connid-iqmon. Use the file_suffix option
to change the suffix of the output file. See the
monitor_options parameter for a description of
the file_suffix option.

monitor_options The monitor _options string

The monitor _options string can include one or more options:

Appendix: SQL Reference

130 SAP Sybase IQ

Table 1. monitor_options string options

monitor_options String Option Description

-interval seconds Specifies the reporting interval, in seconds. A
sample of monitor statistics is output to the log
file after every interval. The default is every 60
seconds, if the -interval option is not specified.
The minimum reporting interval is 2 seconds. If
the interval specified for this option is invalid or
less than 2 seconds, the interval is set to 2 seconds.

The first display shows the counters from the start
of the server. Subsequent displays show the dif-
ference from the previous display. You can usu-
ally obtain useful results by running the monitor
at the default interval of 60 seconds during a
query with performance problems or during a
time of day that generally has performance prob-
lems. A very short interval may not provide
meaningful results. The interval should be pro-
portional to the job time; 60 seconds is usually
more than enough time.

-file_suffix suffix Creates a monitor output file named
dbname.connid-suffix. If you do not

specify the -file_suffix option, the suffix defaults
to iqmon. If you specify the -file_suffix option

and do not provide a suffix or provide a blank
string as a suffix, no suffix is used.

-append or -truncate Directs sp_iqsysmon to append to the existing
output file or truncate the existing output file,
respectively. Truncate is the default. If both op-
tions are specified, the option specified later in the
string takes precedence.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 131

monitor_options String Option Description

-section section(s) Specifies the abbreviation of one or more sections
to write to the monitor log file. The default is to
write all sections. The abbreviations specified in
the sections list in file mode are the same abbre-
viations used in batch mode. When more than one
section is specified, spaces must separate the sec-
tion abbreviations.

If the -section option is specified with no sec-
tions, none of the sections are monitored. An in-
valid section abbreviation is ignored and a warn-
ing is written to the IQ message file.

Usage Syntax Examples

Syntax Result

sp_iqsysmon start_monitor

sp_iqsysmon stop_monitor

Starts the monitor in batch mode and displays all sec-
tions for the main and temporary stores

sp_iqsysmon start_monitor

sp_iqsysmon stop_monitor “mbufman mbuf-
pool”

Starts the monitor in batch mode and displays the
Buffer Manager and Buffer Pool statistics for themain
store

sp_iqsysmon “00:00:10”, “mbufpool memo-
ry”

Runs the monitor in batch mode for 10 seconds and
displays the consolidated statistics at the end of the
time period

sp_iqsysmon start_monitor, ‘filemode’, “-in-
terval 5 -sections mbufpool memory”

sp_iqsysmon stop_monitor

Starts the monitor in file mode and writes statistics for
Main Buffer Pool and Memory Manager to the log file
every 5 seconds

Description
The sp_iqsysmon stored procedure monitors multiple components of SAP Sybase IQ,
including the management of buffer cache, memory, threads, locks, I/O functions, and CPU
utilization.

The sp_iqsysmon procedure supports two modes of monitoring:

• Batch mode –
In batch mode, sp_iqsysmon collects the monitor statistics for the period between starting
and stopping the monitor or for the time period specified in the time-period parameter. At
the end of the monitoring period, sp_iqsysmon displays a list of consolidated statistics.

Appendix: SQL Reference

132 SAP Sybase IQ

sp_iqsysmon in batch mode is similar to the SAP® Sybase Adaptive Server Enterprise
procedure sp_sysmon.

• File mode –
In file mode, sp_iqsysmon writes the sample statistics in a log file for every interval period
between starting and stopping the monitor.
The first display in file mode shows the counters from the start of the server. Subsequent
displays show the difference from the previous display.
sp_iqsysmon in file mode is similar to the IQ UTILITIES command START MONITOR and
STOP MONITOR interface.

Batch Mode Examples
Prints monitor information after 10 minutes:
sp_iqsysmon “00:10:00”

Prints only the Memory Manager section of the sp_iqsysmon report after 5 minutes:
sp_iqsysmon “00:05:00”, memory

Starts the monitor, executes two procedures and a query, stops the monitor, then prints only the
Buffer Manager section of the report:
sp_iqsysmon start_monitor
go
execute proc1
go
execute proc2
go
select sum(total_sales) from titles
go
sp_iqsysmon stop_monitor, bufman
go

Prints only the Main Buffer Manager and Main Buffer Pool sections of the report after 20
minutes:
sp_iqsysmon “00:02:00”, “mbufman mbufpool”

File Mode Examples
Truncates and writes information to the log file every 2 seconds between starting the monitor
and stopping the monitor:
sp_iqsysmon start_monitor, ‘filemode’, ‘-interval 2’
.
.
.
sp_iqsysmon stop_monitor

Appends output for only the Main Buffer Manager and Memory Manager sections to an
ASCII file with the name dbname.connid-testmon. For the database iqdemo, writes
results in the file iqdemo.2-testmon:

sp_iqsysmon start_monitor, ‘filemode’,
“-file_suffix testmon -append -section mbufman memory”

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 133

.

.

.
sp_iqsysmon stop_monitor

Example
Run the monitor in batch mode for 10 seconds and display the consolidated statistics at the end
of the time period
sp_iqsysmon “00:00:10”, “mbufpool memory”

==============================
Buffer Pool (Main)
==============================
STATS-
NAME TOTAL NONE BTREEV BTREEF BV VDO DBEXT DBID SORT
MovedToMRU 0 0 0 0 0 0 0 0 0
MovedToWash 0 0 0 0 0 0 0 0 0
RemovedFromLRU 0 0 0 0 0 0 0 0 0
RemovedFromWash 0 0 0 0 0 0 0 0 0
RemovedInScanMode 0 0 0 0 0 0 0 0 0

STORE GARRAY BARRAY BLKMAP HASH CKPT BM TEST CMID RIDCA LOB
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

STATS-NAME VALUE
Pages 127 (100.0 %)
InUse 4 (3.1 %)
Dirty 1 (0.8 %)
Pinned 0 (0.0 %)
Flushes 0
FlushedBufferCount 0
GetPageFrame 0
GetPageFrameFailure 0
GotEmptyFrame 0
Washed 0
TimesSweepersWoken 0

washTeamSize 0
WashMaxSize 26 (20.5 %)
washNBuffers 4 (3.1 %)
washNDirtyBuffers 1 (0.8
%)
 washSignalThreshold 3 (2.4 %)
washNActiveSweepers 0
washIntensity 1

==============================
Memory Manager
==============================
STATS-NAME VALUE

Appendix: SQL Reference

134 SAP Sybase IQ

MemAllocated 43616536 (42594 KB)
MemAllocatedMax 43735080 (42710 KB)
MemAllocatedEver 0 (0 KB)
MemNAllocated 67079
MemNAllocatedEver 0
MemNTimesLocked 0
MemNTimesWaited 0 (0.0 %)

sp_iqtable Procedure
Displays information about tables in the database.

Syntax1
sp_iqtable ([table_name],[table_owner],[table_type])

Syntax2
sp_iqtable [table_name='tablename'],
[table_owner='tableowner'],[table_type='tabletype']

Privileges
No specific system privileges are required to run the procedure.

Usage: Syntax1
If you do not specify either of the first two parameters, but specify the next parameter in the
sequence, you must substitute NULL for the omitted parameters. For example,
sp_iqtable NULL,NULL,TEMP and sp_iqtable NULL,dbo,SYSTEM.

Note: The table_type values ALL and VIEW must be enclosed in single quotes in Syntax1.

Usage: Syntax2
The parameters can be specified in any order. Enclose them in single quotes.

The allowed values for the table_type parameter:

table_type value Information displayed

TEMP Global temporary tables

VIEW Views

ALL IQ tables, global temporary tables, and views

any other value IQ tables

Description
Specifying one parameter returns only the tables that match that parameter. Specifying more
than one parameter filters the results by all of the parameters specified. Specifying no
parameters returns all SAP Sybase IQ tables in the database. There is no method for returning
the names of local temporary tables.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 135

Column name Description

table_name The name of the table.

table_type BASE – a base table.

MAT VIEW - a materialized view. (SA tables only)

GBL TEMP - a global temporary table.

PARTITION - a table partition (this table is for internal use only and
cannot be used by SAP Sybase IQ users).

VIEW – a view.

table_owner The owner of the table

server_type IQ – an object created in the IQ store.

SA – an object created in the SA store.

All views are created in the SA store.

location TEMP – IQ temporary store.

MAIN – IQ store.

SYSTEM – catalog store.

dbspace_id Number that identifies the dbspace.

isPartitioned 'Y' if the column belongs to a partitioned table and has one or more
partitions whose dbspace is different from the table partition’s
dbspace, 'N' if the column’s table is not partitioned or each partition of
the column resides in the same dbspace as the table partition.

remarks User comments added with the COMMENT statement.

table_constraints Constraints against the table.

PartitionType If partitioned, indicates the type of partition.

• Hash-Range

• Range

• Hash

• None

isRLV Indicates if the table is RLV-enabled.

sp_iqtable Procedure Examples
sp_iqtable output examples.

The following variations in syntax both return information about the table Departments:

Appendix: SQL Reference

136 SAP Sybase IQ

sp_iqtable ('Departments')
sp_iqtable table_name='Departments'

Table_name Table_type Table_owner

Departments BASE GROUPO

Server_type location dbspace_id

IQ Main 16387

isPartitioned Remarks table_constraints

N contains the names and heads of the
various departments in the sporting
goods company

(NULL)

PartitionType isRlv

None F

The following variations in syntax both return all tables that are owned by table owner
GROUPO:

sp_iqtable NULL,GROUPO
sp_iqtable table_owner='GROUPO'

Table_name Ta-
ble_type

Table_own-
er

Serv-
er_type

location

Contacts BASE GROUPO IQ Main

Customers BASE GROUPO IQ Main

Departments BASE GROUPO IQ Main

Employees BASE GROUPO IQ Main

FinancialCodes BASE GROUPO IQ Main

FinancialData BASE GROUPO IQ Main

Products BASE GROUPO IQ Main

SalesOrders BASE GROUPO IQ Main

SalesOrderItems BASE GROUPO IQ Main

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 137

dbspace
_id

isParti-
tioned

Remarks table_con-
straints

16387 N names, addresses, and telephone numbers of all
people with whom the company wishes to retain
contact information

(NULL)

16387 N customers of the sporting goods company (NULL)

16387 N contains the names and heads of the various de-
partments in the sporting goods company

(NULL)

16387 N contains information such as names, salary, hire
date and birthday

(NULL)

16387 N types of revenue and expenses that the sporting
goods company has

(NULL)

16387 N revenues and expenses of the sporting goods com-
pany

(NULL)

16387 N products sold by the sporting goods company (NULL)

16387 N individual items that make up the sales orders (NULL)

16387 N sales orders that customers have submitted to the
sporting goods company

(NULL)

PartitionType isRlvd

None F

None F

None F

None F

None F

None F

None F

None F

None F

Appendix: SQL Reference

138 SAP Sybase IQ

sp_iqtablesize Procedure
Returns the size of the specified table.

Syntax
sp_iqtablesize (table_owner.table_name)

Privileges
User must be a table owner or have the MANAGE ANY DBSPACE or ALTER ANY TABLE
system privilege. Users without one of these system privileges must be granted EXECUTE
permission to run the stored procedure.

Description
Returns the total size of the table in KBytes and NBlocks (IQ blocks). Also returns the number
of pages required to hold the table in memory, and the number of IQ pages that are compressed
when the table is compressed (on disk). You must specify the table_name parameter with this
procedure. If you are the owner of table_name, then you do not have to specify the
table_owner parameter.

Column name Description

Ownername Name of owner

Tablename Name of table

Columns Number of columns in the table

KBytes Physical table size in KB

Pages Number of IQ pages needed to hold the table in memory

CompressedPages Number of IQ pages that are compressed, when the table is com-
pressed (on disk)

NBlocks Number of IQ blocks

RlvLogPages Number of IQ pages needed to hold the RLV table log information on
disk

RlvLogKBytes Size of the RLV table log, in kilobytes.

Pages is the total number of IQ pages for the table. The unit of measurement for pages is IQ
page size. All in-memory buffers (buffers in the IQ buffer cache) are the same size.

IQ pages on disk are compressed. Each IQ page on disk uses 1 to 16 blocks. If the IQ page size
is 128KB, then the IQ block size is 8KB. In this case, an individual on-disk page could be 8, 16,
24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, or 128 KB.

If you divide the KBytes value by page size, you see the average on-disk page size.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 139

Note: SAP Sybase IQ always reads and writes an entire page, not blocks. For example, if an
individual page compresses to 88K, then IQ reads and writes the 88K in one I/O. The average
page is compressed by a factor of 2 to 3.

NBlocks is Kbytes divided by IQ block size.

CompressedPages is the number of pages that are compressed. For example, if Pages is
1000 and CompressedPages is 992, this means that 992 of the 1000 pages are compressed.
CompressedPages divided by Pages is usually near 100%, because most pages
compress. An empty page is not compressed, since SAP Sybase IQ does not write empty
pages. IQ pages compress well, regardless of the fullness of the page.

Example
call sp_iqtablesize ('dba.t1')

Owner-
name

Table-
name

Col-
umn
s

KByt
es

Pa-
ges

Compres-
sedPages

NBl
ocks

RlvL
og-
Pag-
es

RlvL
og-
Byte
s

DBA t1 3 192 5 4 24 96 1228
8

sp_iqtransaction Procedure
Shows information about transactions and versions.

Syntax
sp_iqtransaction

Applies to
Simplex and multiplex.

Privileges
Requires the MONITOR system privilege. Users without the MONITOR system privilege
must be granted EXECUTE permission to run the stored procedure.

Description
sp_iqtransaction returns a row for each transaction control block in the SAP Sybase IQ
transaction manager. The columns Name, Userid, and ConnHandle are the connection
properties Name, Userid, and Number, respectively. Rows are ordered by TxnID.

sp_iqtransaction output does not include connections without transactions in progress. To
include all connections, use sp_iqconnection.

Appendix: SQL Reference

140 SAP Sybase IQ

Note: Although you can use sp_iqtransaction to identify users who are blocking other users
from writing to a table, sp_iqlocks is a better choice for this purpose.

Column Name Description

Name The name of the application.

Userid The user ID for the connection.

TxnID The transaction ID of this transaction control block. The transaction ID is
assigned during begin transaction. It appears in the .iqmsg file by the

BeginTxn, CmtTxn, and PostCmtTxn messages, and is the same as the Txn ID
Seq that is logged when the database is opened.

CmtID The ID assigned by the transaction manager when the transaction commits. For
active transactions, the CmtID is zero.

VersionID For simplex and multiplex nodes, a value of 0 indicates that the transaction is
unversioned, and the VersionID has not been assigned.

For the multiplex coordinator, the VersionID is assigned after the transaction
establishes table locks. Multiplex secondary servers receive the VersionID
from the coordinator. The VersionID is used internally by the SAP Sybase IQ
in-memory catalog and the IQ transaction manager to uniquely identify a
database version to all nodes within a multiplex database.

State The state of the transaction control block. This variable reflects internal SAP
Sybase IQ implementation details and is subject to change in the future. Cur-
rently, transaction states are NONE, ACTIVE, ROLLING_BACK, ROL-
LED_BACK, COMMITTING, COMMITTED, and APPLIED.

NONE, ROLLING_BACK, ROLLED_BACK, COMMITTING and AP-
PLIED are transient states with a very small life span.

ACTIVE indicates that the transaction is active.

COMMITTED indicates that the transaction has completed and is waiting to be

APPLIED, at which point a version that is invisible to any transaction is

subject to garbage collection.

Once the transaction state is ROLLED_BACK, COMMITTED, or AP-
PLIED, ceases to own any locks other than those held by open cursors.

ConnHandle The ID number of the connection.

IQConnID The ten-digit connection ID that is included as part of all messages in
the .iqmsg file. This is a monotonically increasing integer unique within a

server session.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 141

Column Name Description

MainTableKBCr The number of kilobytes of IQ store space created by this transaction.

MainTableKBDr The number of kilobytes of IQ store space dropped by this transaction, but
which persist on disk in the store because the space is visible in other database
versions or other savepoints of this transaction.

TempTableKBCr The number of kilobytes of IQ temporary store space created by this transac-
tion for storage of IQ temporary table data.

TempTableKBDr The number of kilobytes of IQ temporary table space dropped by this trans-
action, but which persist on disk in the IQ temporary store because the space is
visible to IQ cursors or is owned by other savepoints of this transaction.

TempWorkSpaceKB For ACTIVE transactions, a snapshot of the work space in use at this instant by
this transaction, such as sorts, hashes, and temporary bitmaps. The number
varies depending on when you run sp_iqtransaction. For example, the query
engine might create 60MB in the temporary cache but release most of it
quickly, even though query processing continues. If you run sp_iqtransaction

after the query finishes, this column shows a much smaller number. When the
transaction is no longer active, this column is zero.

For ACTIVE transactions, this column is the same as the TempWorkSpaceKB
column of sp_iqconnection.

TxnCreateTime The time the transaction began. All SAP Sybase IQ transactions begin im-
plicitly as soon as an active connection is established or when the previous
transaction commits or rolls back.

CursorCount The number of open SAP Sybase IQ cursors that reference this transaction
control block. If the transaction is ACTIVE, it indicates the number of open
cursors created within the transaction. If the transaction is COMMITTED, it
indicates the number of hold cursors that reference a database version owned
by this transaction control block.

SpCount The number of savepoint structures that exist within the transaction control
block. Savepoints may be created and released implicitly. Therefore, this
number does not indicate the number of user-created savepoints within the
transaction.

SpNumber The active savepoint number of the transaction. This is an implementation
detail and might not reflect a user-created savepoint.

MPXServerName Indicates if an active transaction is from an internode communication (INC)
connection. If from INC connection, the value is the name of the multiplex
server where the transaction originates. NULL if not from an INC connection.
Always NULL if the transaction is not active.

Appendix: SQL Reference

142 SAP Sybase IQ

Column Name Description

GlobalTxnID The global transaction ID associated with the current transaction, 0 (zero) if
none.

VersioningType The snapshot versioning type of the transaction; either table-level (the default),
or row-level. Row-level snapshot versioning (RLV) applies only to RLV-ena-
bled tables. Once a transaction is started, this value cannot change.

Blocking Indicates if connection blocking is enabled (True) or disabled (False). You set
connection blocking using the BLOCKING database option. If true, the trans-
action blocks, meaning it waits for a conflicting lock to release before it at-
tempts to retry the lock request.

BlockingTimeout Indicates the time, in milliseconds, a transaction waits for a locking conflict to
clear. You set the timeout threshold using the BLOCKING_TIMEOUT database
option. A value of 0 (default) indicates that the transaction waits indefinitely.

Example
Example sp_iqtransaction output:

Name Userid TxnID CmtID VersionID State ConnHandle IQConnID
====== ====== ====== ====== ========= ========== ===========
========
red2 DBA 10058 10700 10058 Active 419740283 14

MainTableKBCr MainTableKBDr TempTableKBCr TempTableKBDr
============= ================== ================ =============
 0 0 65824 0

TempWorkSpaceKB TxnCreateTime CursorCount SpCount
SpNumber
==============
======================= =========== ======= ========
 0 2013-03-26 13:17:27.612 1 3 2

MPXServerName GlobalTxnID VersioningType Blocking
BlockingTimeout
============= =========== ============== ========
===============
 (NULL) 0 Row-level True
0

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 143

sp_iqwho Procedure
Displays information about all current users and connections, or about a particular user or
connection.

Syntax
sp_iqwho [{ connhandle | user-name } [, arg-type]]

Privileges
Requires the DROP CONNECTION, MONITOR, and SERVER OPERATOR system
privileges. Users without these system privileges must be granted EXECUTE permission to
run the stored procedure.

Description
The sp_iqwho stored procedure displays information about all current users and connections,
or about a particular user or connection.

Column name Description

ConnHandle The SA connection handle

IQConnID The SAP Sybase IQ specific connection ID

Userid The name of the user that opened the connection “ConnHandle”

BlockedOn The connection on which a particular connection is blocked; 0 if not blocked
on any connection

BlockUserid The owner of the blocking connection; NULL if there is no blocking con-
nection

ReqType The type of the request made through the connection; DO_NOTHING if no
command is issued

IQCmdType The type of SAP Sybase IQ command issued from the connection; NONE if
no command is issued

IQIdle The time in seconds since the last SAP Sybase IQ command was issued
through the connection; in case of no last SAP Sybase IQ command, the
time since ‘01-01-2000’ is displayed

SAIdle The time in seconds since the last SA request was issued through the con-
nection; in case of no last SA command, the time since ‘01-01-2000’ is
displayed

IQCursors The number of active cursors in the connection; 0 if no cursors

Appendix: SQL Reference

144 SAP Sybase IQ

Column name Description

IQThreads The number of threads with the connection. At least one thread is started as
soon as the connection is opened, so the minimum value for IQThreads is
1.

TempTableSpaceKB The size of temporary table space in kilobytes; 0 if no temporary table space
is used

TempWorkSpaceKB The size of temporary workspace in kilobytes; 0 if no temporary workspace
is used

Table 2. Mapping of sp_who and sp_iqwho columns

sp_who column sp_iqwho column

fid Family to which a lock belongs; omitted, as not applicable to SAP Sybase
IQ

spid ConnHandle, IQConnID

status IQIdle, SAIdle

loginame Userid

origname User alias; omitted, as not applicable to SAP Sybase IQ

hostname Name of the host on which the server is running; currently not supported

blk_spid BlockedOn

dbname Omitted, as there is one server and one database for SAP Sybase IQ and
they are the same for every connection

cmd ReqType, IQCmdType

block_xloid BlockUserid

Usage

Parameter Description

connhandle An integer representing the connection ID. If this
parameter is specified, sp_iqwho returns infor-
mation only about the specified connection. If the
specified connection is not open, no rows are dis-
played in the output.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 145

Parameter Description

user-name A char(255) parameter representing a user login
name. If this parameter is specified, sp_iqwho

returns information only about the specified user.
If the specified user has not opened any connec-
tions, no rows are displayed in the output. If the
specified user name does not exist in the database,
sp_iqwho returns the error message ”User
user-name does not exist”

arg-type The arg-type parameter is optional and can be
specified only when the first parameter has been
specified. The only value for arg-type is “user”. If
the arg-type value is specified as “user”, sp_iq-

who interprets the first parameter as a user name,
even if the first parameter is numeric. If any value
other than “user” is specified for arg-type, sp_iq-

who returns the error

“Invalid parameter.”
Enclose the arg-type value in double quotes.

If no parameters are specified, sp_iqwho displays information about all currently active
connections and users.

Either a connection handle or a user name can be specified as the first sp_iqwho parameter.
The parameters connhandle and user-name are exclusive and optional. Only one of these
parameters can be specified at a time. By default, if the first parameter is numeric, the
parameter is assumed to be a connection handle. If the first parameter is not numeric, it is
assumed to be a user name.

SAP Sybase IQ allows numeric user names. The arg-type parameter directs sp_iqwho to
interpret a numeric value in the first parameter as a user name. For example:
sp_iqwho 1, “user”

When the arg-type “user” is specified, sp_iqwho interprets the first parameter 1as a user
name, not as a connection ID. If a user named 1 exists in the database, sp_iqwho displays
information about connections opened by user 1.

Syntax Output

sp_iqwho Displays all active connections

sp_iqwho 3 Displays information about connection 3

sp_iqwho “DBA” Displays connections opened by user DBA

Appendix: SQL Reference

146 SAP Sybase IQ

Syntax Output

sp_iqwho 3, “user” Interprets 3 as a user name and displays connections opened by
user 3. If user 3 does not exist, returns the error “User 3
does not exist”

sp_iqwho non-existing-user Returns error “User non-existing-user does
not exist”

sp_iqwho 3, “xyz” Returns the error “Invalid parameter: xyz”

sp_iqwho Procedure Example
Use the example as a reference for sp_iqwho usage.

Display all active connections:
ConnHandle IQConnID Userid ReqType IQCmdType Blocked
On BlockUserid IQCursors

12 118 DBA CURSOR_OPEN IQUTILITYOPENCURSOR 0
 (NULL) 0
13 119 shweta DO_NOTHING NONE 0
 (NULL) 0

IQThreads IQIdle SAIdle TempTableSpaceKB TempWorkSpaceKB
1 1 0 0 0
1 16238757 470 0 0

sp_iqwho compatibility with Adaptive Server Enterprise
The SAP Sybase IQ sp_iqwho stored procedure incorporates the SAP Sybase IQ equivalents
of columns displayed by the Adaptive Server Enterprise sp_who procedure.

Some Adaptive Server Enterprise columns are omitted, as they are not applicable to SAP
Sybase IQ.

Server Startup Options
The database startup utility start_iq starts an SAP Sybase IQ network database server. The
switches for the parameters related to row-level versioning are listed here.

For a complete description of all available switches, see the Utility Guide.

-iqrlvmem start_iq Server Option
Specifies the amount of memory, in megabytes, available to the RLV store.

Syntax
-iqrlvmem size

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 147

Default
2048 (megabytes)

Remarks
If you specify 0 or an invalid value, then the default (2048 MB) is used.

Usage
-iqrlvmem is used at server startup to tell the server how much memory to reserve for row-level
versioning.

SQL Statements
Lists the SQL statements that relate to in-memory row-level versioning.

ALTER DBSPACE Statement
Changes the read/write mode, changes the size, or extends an existing dbspace.

Syntax
ALTER DBSPACE dbspace-name
 { ADD new-file-spec [, new-file-spec ...]
 | DROP FILE logical-file-name [, FILE logical-file-name ...]
 | RENAME TO newname | RENAME 'new-file-pathname'
 | READONLY | READWRITE
 | ONLINE | OFFLINE
 | STRIPING{ ON | OFF }
 | STRIPESIZEKB size-in-KB
ALTER FILE file-name
 { READONLY | [FORCE] READWRITE }
 | SIZE file-size [KB | MB | GB | TB]
 | ADD file-size [KB | MB | GB | TB | PAGES] }
RENAME PATH 'new-file-pathname'
RENAME TO newname

new-file-spec:
 FILE logical-file-name 'file-path' iq-file-opts

iq-file-opts:
 [[SIZE] file-size]
 …[KB | MB | GB | TB]]
 [RESERVE reserve-size [KB | MB | GB | TB]]

Parameters

• ADD – adds one or more files to the specified dbspace. The dbfile name and the physical
file path are required for each file and must be unique. You can add files to IQ main, IQ
shared temporary, or IQ temporary dbspaces. You may add a file to a read-only dbspace,

Appendix: SQL Reference

148 SAP Sybase IQ

but the dbspace remains read-only. You can add files to multiplex shared temporary
dbspaces only in read-only mode (the default for ADD FILE).

A catalog dbspace may contain only one file, so ADD FILE may not be used on catalog
dbspaces.

For an RLV dbspace, use ADD FILE on simplex servers only. You cannot add a file to a
multiplex RLV dbspace.

When used in the ALTER FILE clause, extends the size of the file in units of pages,
kilobytes (KB), megabytes (MB), gigabytes (GB), or terabytes (TB). The default is MB.
You can ADD only if the free list (an allocation map) has sufficient room and if the dbspace
has sufficient reserved space.

• DROP FILE – removes the specified file from an IQ dbspace. The file must be empty. You
cannot drop the last file from the specified dbspace. Instead use DROP DBSPACE if the
dbspace contains only one file. Rename TO clause—Renames the dbspace-name to a new
name. The new name must be unique in the database. You cannot rename
IQ_SYSTEM_MAIN, IQ_SYSTEM_MSG, IQ_SYSTEM_TEMP, IQ_SHARED_TEMP,
or SYSTEM.

• RENAME TO – when used with the DROP FILE clause, renames the pathname of the
dbspace that contains a single file. It is semantically equivalent to the RENAME PATH
clause. An error is returned if the dbspace contains more than one file.

When used with the ALTER FILE clause, renames the specified file’s logical name to a
new name. The new name must be unique in the database.

• READONLY – when used with the DROP clause, changes any dbspace except
IQ_SYSTEM_MAIN, IQ_SYSTEM_TEMP, IQ_SYSTEM_MSG, IQ_SHARED_TEMP,
and SYSTEM to read-only. Disallows DML modifications to any object currently assigned
to the dbspace. Can only be used for dbspaces in the IQ main store.

When used with the ALTER FILE clause, changes the specified file to read-only. The file
must be associated with an IQ main dbspace. You cannot change files in
IQ_SHARED_TEMP to READONLY status.

• READWRITE – when used with the DROP FILE clause, changes the dbspace to read-
write. The dbspace must be online. Can only be used for dbspaces in the IQ main store.

When used with the ALTER FILE clause, changes specified IQ main or temporary store
dbfile to read-write. The file must be associated with an IQ main or temporary dbspace.

• ONLINE – puts an offline dbspace and all associated files online. Can only be used for
dbspaces in the IQ main store.

• OFFLINE – puts an online read-only dbspace and all associated files offline. (Returns an
error if the dbspace is read-write, offline already, or not of the IQ main store.) Can only be
used for dbspaces in the IQ main store.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 149

• STRIPING – changes the disk striping on the dbspace as specified. When disk striping is
set ON, data is allocated from each file within the dbspace in a round-robin fashion. For
example, the first database page written goes to the first file, the second page written goes
to the next file within given dbspace, and so on. Read-only dbspaces are skipped.

• STRIPESIZEKB – specifies the number of kilobytes (KB) to write to each file before the
disk striping algorithm moves to the next stripe for the specified dbspace.

• FORCE READWRITE – when used with the ALTER FILE clause, changes the status of
the specified shared temporary store dbfile to read-write, although there may be known file
status problems on secondary nodes. The file may be associated with an IQ main, shared
temporary, or temporary dbspace, but because new dbfiles in IQ_SYSTEM_MAIN and
user main are created read-write, this clause only affects shared temporary dbspaces.

• SIZE – specifies the new size of the file in units of kilobytes (KB), megabytes (MB),
gigabytes (GB), or terabytes (TB). The default is megabytes. You can increase the size of
the dbspace only if the free list (an allocation map) has sufficient room and if the dbspace
has sufficient reserved space. You can decrease the size of the dbspace only if the portion to
be truncated is not in use.

• RENAME PATH – when used with the ALTER FILE clause, renames the file pathname
associated with the specified file. This clause merely associates the file with the new file
path instead of the old path. The clause does not actually change the operating system file
name. You must change the file name through your operating system. The dbspace must be
offline to rename the file path. The new path is used when the dbspace is altered online or
when the database is restarted.

You may not rename the path of a file in IQ_SYSTEM_MAIN, because if the new path
were not accessible, the database would be unable to start. If you need to rename the path of
a file in IQ_SYSTEM_MAIN, make the file read-only, empty the file, drop the file, and add
the file again with the new file path name. Enclose the physical file path to the dbfile in
single quotes.

Examples

• Example 1 – changes the mode of a dbspace called DspHist to READONLY:

ALTER DBSPACE DspHist READONLY
• Example 2 – adds 500MB to the dbspace DspHist by adding the file FileHist3 of

size 500MB:

ALTER DBSPACE DspHist
ALTER FILE FileHist3 ADD 500MB

• Example 3 – on a UNIX system, adds two 500MB files to the dbspace DspHist:

ALTER DBSPACE DspHist ADD
FILE FileHist3 '/History1/data/file3' SIZE 500MB,
FILE FileHist4 '/History1/data/file4' SIZE 500

Appendix: SQL Reference

150 SAP Sybase IQ

• Example 4 – increases the size of the dbspace IQ_SYSTEM_TEMP by 2GB:

ALTER DBSPACE IQ_SYSTEM_TEMP ADD 2 GB
• Example 5 – removes two files from dbspace DspHist. Both files must be empty:

ALTER DBSPACE DspHist
DROP FILE FileHist2, FILE FileHist4

• Example 6 – increases the size of the dbspace IQ_SYSTEM_MAIN by 1000 pages. (ADD
clause defaults to pages):

ALTER DBSPACE IQ_SYSTEM_MAIN ADD 1000

Usage

ALTER DBSPACE changes the read-write mode, changes the online/offline state, alters the file
size, renames the dbspace name, file logical name or file path, or sets the dbspace striping
parameters. For details about existing dbspaces, run sp_iqdbspace procedure,
sp_iqdbspaceinfo procedure, sp_iqfile procedure, sp_iqdbspaceobjectinfo, and
sp_iqobjectinfo. Dbspace and dbfile names are always case-insensitive. The physical file
paths are case-sensitive, if the database is CASE RESPECT and the operating system supports
case-sensitive files. Otherwise, the file paths are case-insensitive.

Enclose dbspace and dbfile names either in no quotes or in double quotes.

In Windows, if you specify a path, any backslash characters (\) must be doubled if they are
followed by an n or an x. This prevents them being interpreted as a newline character (\n) or as
a hexadecimal number (\x), according to the rules for strings in SQL. It is safer to always
double the backslash.

Side effects:

• Automatic commit
• Automatic checkpoint
• A mode change to READONLY causes immediate relocation of the internal database

structures on the dbspace to one of the read-write dbspaces.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Requires the MANAGE ANY DBSPACE system privilege.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 151

ALTER TABLE Statement
Modifies a table definition.

Syntax

Syntax 1
ALTER TABLE table_name ALTER OWNER TO new_owner
 [{ PRESERVE | DROP } PERMISSIONS]
 [{ PRESERVE | DROP } FOREIGN KEYS]

Syntax 2
ALTER TABLE [owner.]table-name
 |{ ENABLE | DISABLE } RLV STORE
 { alter-clause, ... }

alter-clause:
 ADD create-clause
 | ALTER column-name column-alteration
 | ALTER [CONSTRAINT constraint-name] CHECK (condition)
 | DROP drop-object
 | RENAME rename-object
 | move-clause
 | SPLIT PARTITION range-partition-name
 INTO(range-partition-decl-1, range-partition-decl-2
 | MERGE PARTITION partition-name-1 INTO partition-name-2
 | UNPARTITION
 | PARTITION BY
 range-partitioning-scheme

create-clause:
 column-name column-definition [column-constraint]
 | table-constraint
 | [PARTITION BY] range-partitioning-scheme

column definition:
 column-name data-type [NOT NULL | NULL]
 [IN dbspace-name]
 [DEFAULT default-value | IDENTITY]

column-constraint:
 [CONSTRAINT constraint-name]
 { UNIQUE
 | PRIMARY KEY
 | REFERENCES table-name [(column-name)] [actions]
 | CHECK (condition)
 | IQ UNIQUE (integer)
 }

table-constraint:
 [CONSTRAINT constraint-name]
 { UNIQUE (column-name [, …])
 | PRIMARY KEY (column-name [, …])
 | foreign-key-constraint

Appendix: SQL Reference

152 SAP Sybase IQ

 | CHECK (condition)
 }

foreign-key-constraint:
 FOREIGN KEY [role-name] [(column-name [, …])]
 ... REFERENCES table-name [(column-name [, …])]
 ... [actions]

actions:
 [ON { UPDATE | DELETE } { RESTRICT }]

column-alteration:
 { column-data-type | alterable-column-attribute } [alterable-column-attribute …]

 | ADD [constraint-name] CHECK (condition)
 | DROP { DEFAULT | CHECK | CONSTRAINT constraint-name }

alterable-column-attribute:
 [NOT] NULL
 | DEFAULT default-value
 | [CONSTRAINT constraint-name] CHECK { NULL |(condition)
 }

default-value:
 CURRENT { DATABASE |DATE |REMOTE USER |TIME |TIMESTAMP | USER |
PUBLISHER)
 | string
 | global variable
 | [-] number
 | (constant-expression)
 | built-in-function (constant-expression)
 | AUTOINCREMENT
 | NULL
 | TIMESTAMP
 | LAST USER
 | USER

drop-object:
 { column-name
 | CHECK constraint-name
 | CONSTRAINT
 | UNIQUE (index-columns-list)
 | PRIMARY KEY
 | FOREIGN KEY fkey-name
 | [PARTITION] range-partition-name
 }

rename-object:
 new-table-name
 | column-name TO new-column-name
 | CONSTRAINT constraint-name TO new-constraint-name
 | [PARTITION] range-partition-name TO new-range-partition-name

move-clause:
 { ALTER column-name
 MOVE

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 153

 { PARTITION (range-partition-name TO new-dbspace-name)
 | TO new-dbspace-name }
 }
 | MOVE PARTITION range-partition-name TO new-dbspace-name
 | MOVE TO new-dbspace-name
 | MOVE METADATA TO new-dbspace-name
 }

range-partitioning-scheme:
 RANGE(partition-key)
 (range-partition-decl [,range-partition-decl ...])

partition-key:
 column-name

range-partition-decl:
 range-partition-name VALUES <= ({constant | MAX }) [IN dbspace-
name]

Parameters

• { ENABLE | DISABLE } RLV STORE – registers this table with the RLV store for real-
time in-memory updates. Not supported for IQ temporary tables. This value overrides the
value of the database option BASE_TABLES_IN_RLV. Requires the CREATE TABLE
system privilege and CREATE permissions on the RLV store dbspace to set this value to
ENABLE.

• ADD column-definition [column-constraint] – add a new column to the table.

The table must be empty to specify NOT NULL. The table might contain data when you
add an IDENTITY or DEFAULT AUTOINCREMENT column. If the column has a default
IDENTITY value, all rows of the new column are populated with sequential values. You
can also add FOREIGN constraint as a column constraint for a single column key. The
value of the IDENTITY/DEFAULT AUTOINCREMENT column uniquely identifies every
row in a table.

The IDENTITY/DEFAULT AUTOINCREMENT column stores sequential numbers that
are automatically generated during inserts and updates. DEFAULT AUTOINCREMENT
columns are also known as IDENTITY columns. When using IDENTITY/DEFAULT
AUTOINCREMENT, the column must be one of the integer data types, or an exact numeric
type, with scale 0. See CREATE TABLE Statement for more about column constraints and
IDENTITY/DEFAULT AUTOINCREMENT columns.

IQ UNIQUE constraint – Defines the expected cardinality of a column and determines
whether the column loads as Flat FP or NBit FP. An IQ UNIQUE(n) value explicitly set to
0 loads the column as Flat FP. Columns without an IQ UNIQUE constraint implicitly load
as NBit up to the limits defined by the FP_NBIT_AUTOSIZE_LIMIT,
FP_NBIT_LOOKUP_MB, and FP_NBIT_ROLLOVER_MAX_MB options.

Using IQ UNIQUE with an n value less than the FP_NBIT_AUTOSIZE_LIMIT is not
necessary. Auto-size functionality automatically sizes all low or medium cardinality

Appendix: SQL Reference

154 SAP Sybase IQ

columns as NBit. Use IQ UNIQUE in cases where you want to load the column as Flat FP
or when you want to load a column as NBit when the number of distinct values exceeds the
FP_NBIT_AUTOSIZE_LIMIT.

Note:

• Consider memory usage when specifying high IQ UNIQUE values. If machine
resources are limited, avoid loads with FP_NBIT_ENFORCE_LIMITS='OFF'
(default).
Prior to SAP Sybase IQ 16.0, an IQ UNIQUE n value > 16777216 would rollover to
Flat FP. In 16.0, larger IQ UNIQUE values are supported for tokenization, but may
require significant memory resource requirements depending on cardinality and
column width.

• BIT, BLOB,and CLOB data types do not support NBit dictionary compression. If
FP_NBIT_IQ15_COMPATIBILITY=’OFF’, a non-zero IQ UNIQUE column
specification in a CREATE TABLE or ALTER TABLE statement that includes these
data types returns an error.

• ALTER column-name column-alteration – change the column definition:

• SET DEFAULT default-value – Change the default value of an existing column in a
table. You can also use the MODIFY clause for this task, but ALTER is ISO/ANSI
SQL compliant, and MODIFY is not. Modifying a default value does not change any
existing values in the table.

• DROP DEFAULT – Remove the default value of an existing column in a table. You can
also use the MODIFY clause for this task, but ALTER is ISO/ANSI SQL compliant,
and MODIFY is not. Dropping a default does not change any existing values in the
table.

• ADD – Add a named constraint or a CHECK condition to the column. The new
constraint or condition applies only to operations on the table after its definition. The
existing values in the table are not validated to confirm that they satisfy the new
constraint or condition.

• CONSTRAINT column-constraint-name – The optional column constraint name lets
you modify or drop individual constraints at a later time, rather than having to modify
the entire column constraint.

• [CONSTRAINT constraint-name] CHECK (condition) – Use this clause to add a
CHECK constraint on the column.

• SET COMPUTE (expression) – Change the expression associated with a computed
column. The values in the column are recalculated when the statement is executed, and
the statement fails if the new expression is invalid.

• DROP COMPUTE – Change a column from being a computed column to being a non-
computed column. This statement does not change any existing values in the table.

• ADD table-constraint – add a constraint to the table.

You can also add a foreign key constraint as a table constraint for a single-column or
multicolumn key. If PRIMARY KEY is specified, the table must not already have a

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 155

primary key created by the CREATE TABLE statement or another ALTER TABLE
statement. See CREATE TABLE Statement for a full explanation of table constraints.

Note: You cannot MODIFY a table or column constraint. To change a constraint,
DELETE the old constraint and ADD the new constraint.

• DROP drop-object – drops a table object:

• DROP column-name – Drop the column from the table. If the column is contained in
any multicolumn index, uniqueness constraint, foreign key, or primary key, then the
index, constraint, or key must be deleted before the column can be deleted. This does
not delete CHECK constraints that refer to the column. An IDENTITY/DEFAULT
AUTOINCREMENT column can only be deleted if IDENTITY_INSERT is turned off
and the table is not a local temporary table.

• DROP CHECK – Drop all check constraints for the table. This includes both table check
constraints and column check constraints.

• DROP CONSTRAINT constraint-name – Drop the named constraint for the table or
specified column.

• DROP UNIQUE (column-name, ...) – Drop the unique constraints on the specified
column(s). Any foreign keys referencing the unique constraint (rather than the primary
key) are also deleted. Reports an error if there are associated foreign-key constraints.
Use ALTER TABLE to delete all foreign keys that reference the primary key before
you delete the primary key constraint.

• DROP PRIMARY KEY – Drop the primary key. All foreign keys referencing the primary
key for this table are also deleted. Reports an error if there are associated foreign key
constraints. If the primary key is unenforced, DELETE returns an error if associated
unenforced foreign key constraints exist.

• DROP FOREIGN KEY role-name – Drop the foreign key constraint for this table with
the given role name. Retains the implicitly created non-unique HG index for the
foreign key constraint. Users can explicitly remove the HG index with the DROP
INDEX statement.

• DROP [PARTITION] – Drop the specified partition. The rows in partition P1 are
deleted and the partition definition is dropped. You cannot drop the last partition
because dropping the last partition would transform a partitioned table to a non-
partitioned table. (To merge a partitioned table, use an UNPARTITION clause
instead.) For example:
 CREATE TABLE foo (c1 INT, c2 INT)
 PARTITION BY RANGE (c1)
 (P1 VALUES <= (100) IN dbsp1,
 P2 VALUES <= (200) IN dbsp2,
 P3 VALUES <= (MAX) IN dbsp3
) IN dbsp4);
 LOAD TABLE ….
 ALTER TABLE DROP PARTITION P1;

• RENAME rename-object – renames an object in the table:

Appendix: SQL Reference

156 SAP Sybase IQ

• RENAME new-table-name – Change the name of the table to the new-table-name. Any
applications using the old table name must be modified. Also, any foreign keys that
were automatically assigned the same name as the old table name do not change
names.

• RENAME column-name TO new-column-name – Change the name of the column to
new-column-name. Any applications using the old column name must be modified.

• RENAME [PARTITION] – Rename an existing partition.
• RENAME constraint-name TO new-constraint-name – Change the name of the

constraint to new-constraint-name. Any applications using the old constraint name
must be modified.

• MOVE clause – moves a table object. A table object can only reside in one dbspace. Any
type of ALTER MOVE blocks any modification to the table for the entire duration of the
move.

• MOVE TO – Move all table objects including columns, indexes, unique constraints,
primary key, foreign keys, and metadata resided in the same dbspace as the table is
mapped to the new dbspace. The ALTER Column MOVE TO clause cannot be
requested on a partitioned table.

• MOVE TABLE METADATA – Move the metadata of the table to a new dbspace. For a
partitioned table, MOVE TABLE METADATA also moves metadata that is shared
among partitions.

• MOVE PARTITION – Move the specified partition to the new dbspace.

• PARTITION BY RANGE – maps data to partitions based on a range of partition keys
established for each partition.

A non-partitioned table can be partitioned if all existing rows belong to the first partition.
You can specify a different dbspace for the first partition than the dbspace of the column or
table. But existing rows are not moved. Instead, the proper dbspace for the column/
partition is kept in SYS.ISYSIQPARTITIONCOLUMN for existing columns. Only the
default or max identity column(s) that are added later for the first partition are stored in the
specified dbspace for the first partition.

Note: ALTER TABLE does not support hash partitioning, hash-range partitioning, or sub-
partitioning.

• MERGE PARTITION – merge partition-name-1 into partition-name-2. Two partitions can
be merged if they are adjacent partitions and the data resides on the same dbspace. You can
only merge a partition with a lower partition value into the adjacent partition with a higher
partition value. Note that the server does not check CREATE permission on the dbspace
into which the partition is merged. For an example of how to create adjacent partitions, see
CREATE TABLE Statement examples.

• RENAME PARTITION – rename an existing PARTITION.

• UNPARTITION – remove partitions from a partitioned table. Each column is placed in a
single dbspace. Note that the server does not check CREATE permission on the dbspace to

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 157

which data of all partitions is moved. ALTER TABLE UNPARTITION blocks all database
activities.

• ALTER OWNER – change the owner of a table. The ALTER OWNER clause may not be used
in conjunction with any other [alter-clause] clauses of the ALTER TABLE statement.

• [PRESERVE | DROP] PERMISSIONS – If you do not want the new owner to have the
same privileges as the old owner, use the DROP permissions clause (default) to drop all
explicitly-granted privileges that allow a user access to the table. Implicitly-granted
privileges given to the owner of the table are given to the new owner and dropped from
the old owner.

• [PRESERVE | DROP] FOREIGN KEYS – If you want to prevent the new owner from
accessing data in referenced tables, use the DROP FOREIGN KEYS clause (default) to
drop all foreign keys within the table, as well as all foreign keys referring to the table.
Use of the PRESERVE FOREIGN KEYS clause with the DROP PERMISSIONS
clause fails unless all referencing tables are owned by the new owner.

The ALTER TABLE ALTER OWNER statement fails if:

• Another table with the same name as the original table exists and is owned by the new
user.

• The PRESERVE FOREIGN KEYS and PRESERVE PERMISSIONS clauses are both
specified and there is a foreign key owned by a user other than the new table owner
referencing the table that relies on implicitly-granted permissions (such as those given
to the owner of a table). To avoid this failure, explicitly grant SELECT permissions to
the referring table's original owner, or drop the foreign keys.

• The PRESERVE FOREIGN KEYS clause is specified, but the PRESERVE
PERMISSIONS clause is NOT, and there is a foreign key owned by a user other than
the new table owner referencing the table. To avoid this failure, drop the foreign keys.

• The PRESERVE FOREIGN KEYS clause is specified and the table contains a foreign
key that relies on implicitly-granted permissions (such as those given to the owner of a
table). To avoid this failure, explicitly GRANT SELECT permissions to the new owner
on the referenced table, or drop the foreign keys.

• The table contains a column with a default value that refers to a sequence, and the
USAGE permission of the sequence generator relies on implicitly-granted permissions
(such as those given to the owner of a sequence). To avoid this failure, explicitly grant
USAGE permission on the sequence generator to the new owner of the table.

• Enabled materialized views that depend on the original table exist.

Examples

• Example 1 – adds a new column to the Employees table showing which office they work
in:

ALTER TABLE Employees
ADD office CHAR(20)

Appendix: SQL Reference

158 SAP Sybase IQ

• Example 2 – drops the office column from the Employees table:

ALTER TABLE Employees
DROP office

• Example 3 – Adds a column to the Customers table assigning each customer a sales
contact:

ALTER TABLE Customers
ADD SalesContact INTEGER
REFERENCES Employees (EmployeeID)

• Example 4 – adds a new column CustomerNum to the Customers table and assigns a
default value of 88:

ALTER TABLE Customers
ADD CustomerNum INTEGER DEFAULT 88

• Example 5 – moves FP indexes for c2, c4, and c5, from dbspace Dsp3 to Dsp6. FP
index for c1 remains in Dsp1. FP index for c3 remains in Dsp2. The primary key for c5
remains in Dsp4. DATE index c4_date remains in Dsp5.

CREATE TABLE foo (
 c1 INT IN Dsp1,
 c2 VARCHAR(20),
 c3 CLOB IN Dsp2,
 c4 DATE,
 c5 BIGINT,
 PRIMARY KEY (c5) IN Dsp4) IN Dsp3);

 CREATE DATE INDEX c4_date ON foo(c4) IN Dsp5;
 ALTER TABLE foo
 MOVE TO Dsp6;

• Example 6 – moves only FP index c1 from dbspace Dsp1 to Dsp7:

ALTER TABLE foo ALTER c1 MOVE TO Dsp7
• Example 7 – uses many ALTER TABLE clauses to move, split, rename, and merge

partitions.

Create a partitioned table:

CREATE TABLE bar (
 c1 INT,
 c2 DATE,
 c3 VARCHAR(10))
 PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2005-12-31') IN dbsp1,
 p2 VALUES <= ('2006-12-31') IN dbsp2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);
INSERT INTO bar VALUES(3, '2007-01-01', 'banana nut');
INSERT INTO BAR VALUES(4, '2007-09-09', 'grape jam');
INSERT INTO BAR VALUES(5, '2008-05-05', 'apple cake');

Move partition p2 to dbsp5:

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 159

ALTER TABLE bar MOVE PARTITION p2 TO DBSP5;

Split partition p4 into 2 partitions:

ALTER TABLE bar SPLIT PARTITION p4 INTO
 (P41 VALUES <= ('2008-06-30') IN dbsp4,
 P42 VALUES <= ('2008-12-31') IN dbsp4);

This SPLIT PARTITION reports an error, as it requires data movement. Not all existing rows
are in the same partition after split.

ALTER TABLE bar SPLIT PARTITION p3 INTO
 (P31 VALUES <= ('2007-06-30') IN dbsp3,
 P32 VALUES <= ('2007-12-31') IN dbsp3);

This error is reported:

No data move is allowed, cannot split partition p3.

This SPLIT PARTITION reports an error, because it changes the partition boundary value:

ALTER TABLE bar SPLIT PARTITION p2 INTO
 (p21 VALUES <= ('2006-06-30') IN dbsp2,
 P22 VALUES <= ('2006-12-01') IN dbsp2);

This error is reported:

Boundary value for the partition p2 cannot be changed.

Merge partition p3 into p2. An error is reported as a merge from a higher boundary value
partition into a lower boundary value partition is not allowed.

ALTER TABLE bar MERGE PARTITION p3 into p2;

This error is reported:

Partition 'p2' is not adjacent to or before partition 'p3'.

Merge partition p2 into p3:

ALTER TABLE bar MERGE PARTITION p2 INTO P3;

Rename partition p1 to p1_new:

ALTER TABLE bar RENAME PARTITION p1 TO p1_new;

Unpartition table bar:

ALTER TABLE bar UNPARTITION;

Partition table bar. This command reports an error, because all rows must be in the first
partition.

ALTER TABLE bar PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2005-12-31') IN dbsp1,
 P2 VALUES <= ('2006-12-31') IN DBSP2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);

Appendix: SQL Reference

160 SAP Sybase IQ

This error is reported:

All rows must be in the first partition.

Partition table bar:

ALTER TABLE bar PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2008-12-31') IN dbsp1,
 P2 VALUES <= ('2009-12-31') IN dbsp2,
 P3 VALUES <= ('2010-12-31') IN dbsp3,
 P4 VALUES <= ('2011-12-31') IN dbsp4);

• Example 8 – changes a table tab1 so that it is no longer registered for in-memory real-
time updates in the RLV store.

ALTER TABLE tab1 DISABLE RLV STORE

Usage

The ALTER TABLE statement changes table attributes (column definitions and constraints)
in a table that was previously created. The syntax allows a list of alter clauses; however, only
one table constraint or column constraint can be added, modified, or deleted in each ALTER
TABLE statement. ALTER TABLE is prevented whenever the statement affects a table that is
currently being used by another connection. ALTER TABLE can be time consuming, and the
server does not process requests referencing the same table while the statement is being
processed.

Note: You cannot alter local temporary tables, but you can alter global temporary tables when
they are in use by only one connection.

SAP Sybase IQ enforces REFERENCES and CHECK constraints. Table and/or column check
constraints added in an ALTER TABLE statement are evaluated, only if they are defined on
one of the new columns added, as part of that alter table operation. For details about CHECK
constraints, see CREATE TABLE Statement.

If SELECT * is used in a view definition and you alter a table referenced by the SELECT * ,
then you must run ALTER VIEW <viewname> RECOMPILE to ensure that the view definition
is correct and to prevent unexpected results when querying the view.

Side effects:

• Automatic commit. The ALTER and DROP options close all cursors for the current
connection. The Interactive SQL data window is also cleared.

• A checkpoint is carried out at the beginning of the ALTER TABLE operation.
• Once you alter a column or table, any stored procedures, views or other items that refer to

the altered column no longer work.

Standards

• SQL – Vendor extension to ISO/ANSI SQL grammar.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 161

• Sybase – Some clauses are supported by Adaptive Server Enterprise.

Permissions

Syntax 1

Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table
• You own the table

Syntax 2

The system privileges required for syntax 1 varies depending upon the clause used.

Clause Privilege Required

Add Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• ALTER privilege on the underlying ta-

ble
• You own the underlying table

UNIQUE, PRIMARY KEY, FOREIGN
KEY, or IQ UNIQUE column constraint –
Requires above along with REFERENCE
privilege on the underlying table.

FOREIGN KEY table constraint requires
above along with one of:

• CREATE ANY INDEX system privi-
lege

• CREATE ANY OBJECT system priv-
ilege

• REFERENCE privilege on the base ta-
ble

PARTITION BY RANGE requires above
along with one of:

• CREATE ANY OBJECT system priv-
ilege

• CREATE permission on the dbspaces
where the partitions are being created

Appendix: SQL Reference

162 SAP Sybase IQ

Clause Privilege Required

Alter Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• ALTER permission on the table
• You own the table.

To alter a primary key or unique constraint,
also requires REFERENCE permission on
the table.

Drop Drop a column with no constraints – Re-
quires one of:

• ALTER ANY OBJECT system privi-
lege

• ALTER ANY TABLE system privilege
• ALTER permission on the underlying

table
• You own the underlying table

Drop a column or table with a constraint
requires above along with REFERENCE
permission if using ALTER permission.

Drop a partition on table owned by self –
None required.

Drop a partition on table owned by other
users – Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• ALTER permission on the table

RENAME Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• ALTER permission on the table
• You own the table

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 163

Clause Privilege Required

Move Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• MANAGE ANY DBSPACE system

privilege
• ALTER privilege on the underlying ta-

ble
• You own the underlying table

Also requires one of the following:

• CREATE ANY OBJECT system priv-
ilege

• CREATE privilege on the dbspace to
which the partition is being moved

Split Partition Partition on table owned by self – None
required.

Partition on table owned by other users –
Requires one of:

• SELECT ANY TABLE system privi-
lege

• SELECT privilege on table

Also requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• ALTER privilege on the table

Merge Partition,
Unpartition

Table owned by self – None required.

Table owned by other users – Requires one
of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• ALTER privilege on the table

Appendix: SQL Reference

164 SAP Sybase IQ

Clause Privilege Required

Partition By Requires one of:

• CREATE ANY OBJECT system priv-
ilege

• CREATE permission on the dbspaces
where the partitions are being created

Also requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege
• ALTER permission on the table
• You own the table

Enable or disable
RLV store

Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privi-

lege

See also
• CREATE TABLE Statement on page 168

CREATE DBSPACE Statement
Creates a new dbspace and the associated dbfiles for the IQ main store, catalog store, or RLV
store.

Syntax

Syntax 1 – Use for catalog store dbspaces only (SQL Anywhere (SA) dbspaces).
CREATE DBSPACE dbspace-name AS file-path CATALOG STORE

Syntax 2 – Use for IQ main store dbspaces.
CREATE DBSPACE dbspace-name USING file-specification
 [IQ STORE] iq-dbspace-opts

Syntax 3 – Use for RLV dbspaces.
CREATE DBSPACE dbspace-name USING file-specification
 IQ RLV STORE

file-specification:
 { single-path-spec | new-file-spec [, ...] }

single-path-spec:
 'file-path' | iq-file-opts

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 165

new-file-spec:
 FILE logical-file-name | 'file-path' iq-file-opts

iq-file-opts:
 [[SIZE] file-size]
 …[KB | MB | GB | TB]]
 [RESERVE size
 …[KB | MB | GB | TB]]

iq-dbspace-opts:
 [STRIPING] {ON | OFF}] …[STRIPESIZEKB sizeKB]

Parameters

• new-file-spec – creates a dbspace for the IQ main store. You can specify one or more
dbfiles for the IQ main store. The dbfile name and physical file path are required for each
file, and must be unique.

• RESERVE – specifies the size in kilobytes (KB), megabytes (MB), gigabytes (GB), or
terabytes (TB) of space to reserve, so that the dbspace can be increased in size in the future.
The size parameter can be any number greater than 0; megabytes is the default. You cannot
change the reserve after the dbspace dbfile is created.

When RESERVE is specified, the database uses more space for internal (free list)
structures. If reserve size is too large, the space needed for the internal structures can be
larger than the specified size, which results in an error.

• dbspace-name and dbfile-name – internal names for dbspaces and dbfiles. A database
can have as many as (32KB - 1) dbspaces, including the initial dbspaces created when you
create the database. However, your operating system might limit the number of dbfiles per
database.

• file-path – the actual operating system file name of the dbfile, with a preceding path where
necessary. file-path without an explicit directory is created in the same directory as the
catalog store of the database. Any relative directory is relative to the catalog store.

• SIZE – specifies the size, from 0 to 4 terabytes, of the operating system file specified in
file-path. The default depends on the store type and block size. For the IQ main store, the
default number of bytes equals 1000* the block size. You cannot specify the SIZE clause
for the catalog store. A SIZE value of 0 creates a dbspace of minimum size, which is 8MB
for the IQ main store.

For raw partitions, do not explicitly specify SIZE. SAP Sybase IQ automatically sets this
parameter to the maximum raw partition size, and returns an error if you attempt to specify
another size.

• STRIPESIZEKB – specifies the number of kilobytes (KB) to write to each file before the
disk striping algorithm moves to the next stripe for the specified dbspace.

Appendix: SQL Reference

166 SAP Sybase IQ

If you do not specify striping or stripe size, the default values of the options
DEFAULT_DISK_STRIPING and DEFAULT_KB_PER_STRIPE apply.

Examples

• Example 1 – creates a dbspace called DspHist for the IQ main store with two dbfiles on
a UNIX system. Each dbfile is 1GB in size and can grow 500MB:

CREATE DBSPACE DspHist USING FILE
FileHist1 '/History1/data/file1'
SIZE 1000 RESERVE 500,
FILE FileHist2 '/History1/data/file2'
SIZE 1000 RESERVE 500;

• Example 2 – creates a second catalog dbspace called DspCat2:

CREATE DBSPACE DspCat2 AS
'catalog_file2'
CATALOG STORE;

• Example 3 – creates an IQ main dbspace called EmpStore1 for the IQ store (three
alternate syntax examples):

CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' SIZE 8 MB IQ STORE;
CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' 8 IQ STORE;
CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' 8;

• Example 4 – creates a RLV store dbspace called d1:
CREATE DBSPACE d1
USING FILE f1
'f1.iq' SIZE 100 IQ RLV STORE;

Usage

CREATE DBSPACE creates a new dbspace for the IQ main store, catalog store, or RLV store.
The dbspace you add can be on a different disk device than the initial dbspace, allowing you to
create stores that are larger than one physical device.

Syntax 1 creates a dbspace for the catalog store, where both dbspace and dbfile have the same
logical name. Each dbspace in the catalog store has a single file.

The dbspace name and dbfile names are always case-insensitive. The physical file paths have
the case sensitivity of the operating system if the database is CASE RESPECT, and are case-
insensitive if the database is CASE IGNORE.

You cannot create a dbspace for an IQ temporary store. A single temporary dbspace,
IQ_SYSTEM_TEMP, is created when you create a new database or upgrade one that was

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 167

created in a version earlier than SAP Sybase IQ 15.3. You can add additional files to the
IQ_SYSTEM_TEMP dbspace using the ALTER DBSPACE ADD FILE syntax.

Note: Creating a RLV dbspace containing a minimum of one file is a prerequisite for RLV
storage. Before enabling RLV storage on a simplex server, check that the RLV dbspace exists.

You can create a unique path in any of these ways:

• Specify a different extension for each file (for example, mydb.iq)

• Specify a different file name (for example, mydb2.iq)

• Specify a different path name (for example, /iqfiles/main/iq) or different raw
partitions

Warning! On UNIX platforms, to maintain database consistency, specify file names that are
links to different files. SAP Sybase IQ cannot detect the target where linked files point. Even if
the file names in the command differ, make sure they do not point to the same operating system
file.

Side effects:

• Automatic commit
• Automatic checkpoint.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise.

Permissions

Requires the MANAGE ANY DBSPACE system privilege.

CREATE TABLE Statement
Creates a new table in the database or on a remote server.

Syntax
CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE
 [IF NOT EXISTS] [owner.]table-name
 … (column-definition [column-constraint] …
 [, column-definition [column-constraint] …]
 [, table-constraint] …)
 |{ ENABLE | DISABLE } RLV STORE

 …[IN dbspace-name]
 …[ON COMMIT { DELETE | PRESERVE } ROWS]
 [AT location-string]
 [PARTITION BY
 range-partitioning-scheme

Appendix: SQL Reference

168 SAP Sybase IQ

 | hash-partitioning-scheme
 | composite-partitioning-scheme]

column-definition:
 column-name data-type
 [[NOT] NULL]
 [DEFAULT default-value | IDENTITY]
 [PARTITION | SUBPARTITION (partition-name IN dbspace-name
[, ...])]

default value:
 special-value
 | string
 | global variable
 | [-] number
 | (constant-expression)
 | built-in-function(constant-expression)
 | AUTOINCREMENT
 | CURRENT DATABASE
 | CURRENT REMOTE USER
 | NULL
 | TIMESTAMP
 | LAST USER

special value:
 CURRENT
 { DATE
 | TIME
 | TIMESTAMP
 | USER
 | PUBLISHER }
 | USER

column-constraint:
 [CONSTRAINT constraint-name] {
 { UNIQUE
 | PRIMARY KEY
 | REFERENCES table-name [(column-name)] [action]
 }
 [IN dbspace-name]
 | CHECK (condition)
 | IQ UNIQUE (integer)
 }

table-constraint:
 [CONSTRAINT constraint-name]
 { { UNIQUE (column-name [, column-name] …)
 | PRIMARY KEY (column-name [, column-name] …)
 }
 [IN dbspace-name]
 | foreign-key-constraint
 | CHECK (condition)
 | IQ UNIQUE (integer)
 }

foreign-key-constraint:

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 169

 FOREIGN KEY [role-name] [(column-name [, column-name] …)]
 …REFERENCES table-name [(column-name [, column-name] …)]
 …[actions] [IN dbspace-name]

actions:
 [ON { UPDATE | DELETE } RESTRICT]

location-string:
 { remote-server-name. [db-name].[owner].object-name
 | remote-server-name; [db-name];[owner];object-name }

range-partitioning-scheme:
 RANGE(partition-key) (range-partition-decl [,range-partition-
decl ...])

partition-key:
 column-name

range-partition-decl:
 VALUES <= ({constant-expr
 | MAX } [, { constant-expr
 | MAX }]...)
 [IN dbspace-name]

hash-partitioning-scheme:
 HASH (partition-key [, partition-key, …])

composite-partitioning-scheme:
 hash-partitioning-scheme SUBPARTITION range-partitioning-scheme

Parameters

• IN – used in the column-definition, column-constraint, table-constraint, foreign-key, and
partition-decl clauses to specify the dbspace where the object is to be created. If the IN
clause is omitted, SAP Sybase IQ creates the object in the dbspace where the table is
assigned.

Specify SYSTEM with this clause to put either a permanent or temporary table in the
catalog store. Specify IQ_SYSTEM_TEMP to store temporary user objects (tables,
partitions, or table indexes) in IQ_SYSTEM_TEMP or, if the
TEMP_DATA_IN_SHARED_TEMP option is set 'ON', and the IQ_SHARED_TEMP
dbspace contains RW files, in IQ_SHARED_TEMP. (You cannot specify the IN clause
with IQ_SHARED_TEMP.) All other use of the IN clause is ignored. By default, all
permanent tables are placed in the main IQ store, and all temporary tables are placed in the
temporary IQ store. Global temporary and local temporary tables can never be in the IQ
store.

The following syntax is unsupported:

CREATE LOCAL TEMPORARY TABLE tab1(c1 int) IN IQ_SHARED_TEMP

Appendix: SQL Reference

170 SAP Sybase IQ

• ON COMMIT – allowed for temporary tables only. By default, the rows of a temporary
table are deleted on COMMIT.

• AT – creates a proxy table that maps to a remote location specified by the location-string
clause. Proxy table names must be 30 characters or less. The AT clause supports semicolon
(;) delimiters. If a semicolon is present anywhere in the location-string clause, the
semicolon is the field delimiter. If no semicolon is present, a period is the field delimiter.
This allows file names and extensions to be used in the database and owner fields.

Semicolon field delimiters are used primarily with server classes not currently supported;
however, you can also use them in situations where a period would also work as a field
delimiter. For example, this statement maps the table proxy_a to the SQL Anywhere
database mydb on the remote server myasa:

CREATE TABLE proxy_a1
AT 'myasa;mydb;;a1'

Foreign-key definitions are ignored on remote tables. Foreign-key definitions on local
tables that refer to remote tables are also ignored. Primary key definitions are sent to the
remote server if the server supports primary keys.

In a simplex environment, you cannot create a proxy table that refers to a remote table on
the same node. In a multiplex environment, you cannot create a proxy table that refers to
the remote table defined within the multiplex. .

• IF NOT EXISTS – if the named object already exists, no changes are made and an error is
not returned.

• { ENABLE | DISABLE } RLV STORE – registers this table with the RLV store for real-
time in-memory updates. Not supported for IQ temporary tables. This value overrides the
value of the database option BASE_TABLES_IN_RLV. Requires the CREATE TABLE
system privilege and CREATE permissions on the RLV store dbspace to set this value to
ENABLE.

• column-definition – defines a table column. Allowable data types are described in
Reference: Building Blocks, Tables, and Procedures >SQL Data Types. Two columns in
the same table cannot have the same name. You can create up to 45,000 columns; however,
there might be performance penalties in tables with more than 10,000 columns.

• [NOT] NULL] – includes or excludes NULL values. If NOT NULL is specified, or if
the column is in a UNIQUE or PRIMARY KEY constraint, the column cannot contain
any NULL values. The limit on the number of columns per table that allow NULLs is
approximately 8*(database-page-size - 30).

• DEFAULT default-value – specify a default column value with the DEFAULT
keyword in the CREATE TABLE (and ALTER TABLE) statement. A DEFAULT value
is used as the value of the column in any INSERT (or LOAD) statement that does not
specify a column value.

• DEFAULT AUTOINCREMENT – the value of the DEFAULT AUTOINCREMENT
column uniquely identifies every row in a table. Columns of this type are also known as

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 171

IDENTITY columns, for compatibility with Adaptive Server Enterprise. The
IDENTITY/DEFAULT AUTOINCREMENT column stores sequential numbers that
are automatically generated during inserts and updates. When using IDENTITY or
DEFAULT AUTOINCREMENT, the column must be one of the integer data types, or
an exact numeric type, with scale 0. The column value might also be NULL. You must
qualify the specified table name with the owner name.

ON inserts into the table. If a value is not specified for the IDENTITY/DEFAULT
AUTOINCREMENT column, a unique value larger than any other value in the column
is generated. If an INSERT specifies a value for the column, it is used; if the specified
value is not larger than the current maximum value for the column, that value is used as
a starting point for subsequent inserts.

Deleting rows does not decrement the IDENTITY/AUTOINCREMENT counter.
Gaps created by deleting rows can only be filled by explicit assignment when using an
insert. The database option IDENTITY_INSERT must be set to the table name to
perform an insert into an IDENTITY/AUTOINCREMENT column.

For example, this creates a table with an IDENTITY column and explicitly adds some
data to it:

CREATE TABLE mytable(c1 INT IDENTITY);
SET TEMPORARY OPTION IDENTITY_INSERT = "DBA".mytable;
INSERT INTO mytable VALUES(5);

After an explicit insert of a row number less than the maximum, subsequent rows
without explicit assignment are still automatically incremented with a value of one
greater than the previous maximum.

You can find the most recently inserted value of the column by inspecting the
@@identity global variable.

• IDENTITY – a Transact-SQL-compatible alternative to using the
AUTOINCREMENT default. In SAP Sybase IQ, the identity column may be created
using either the IDENTITY or the DEFAULT AUTOINCREMENT clause.

• table-constraint – helps ensure the integrity of data in the database. There are four types
of integrity constraints:

• UNIQUE – identifies one or more columns that uniquely identify each row in the table.
No two rows in the table can have the same values in all the named columns. A table
may have more than one unique constraint.

• PRIMARY KEY – the same as a UNIQUE constraint except that a table can have only
one primary-key constraint. You cannot specify the PRIMARY KEY and UNIQUE
constraints for the same column. The primary key usually identifies the best identifier
for a row. For example, the customer number might be the primary key for the customer
table.

• FOREIGN KEY – restricts the values for a set of columns to match the values in a
primary key or uniqueness constraint of another table. For example, a foreign-key

Appendix: SQL Reference

172 SAP Sybase IQ

constraint could be used to ensure that a customer number in an invoice table
corresponds to a customer number in the customer table.

You cannot create foreign-key constraints on local temporary tables. Global temporary
tables must be created with ON COMMIT PRESERVE ROWS.

• CHECK – allows arbitrary conditions to be verified. For example, a check constraint
could be used to ensure that a column called Gender contains only the values male or
female. No row in a table is allowed to violate a constraint. If an INSERT or UPDATE
statement would cause a row to violate a constraint, the operation is not permitted and
the effects of the statement are undone.

Column identifiers in column check constraints that start with the symbol ‘@’ are
placeholders for the actual column name. A statement of the form:

CREATE TABLE t1(c1 INTEGER CHECK (@foo < 5))

is exactly the same as this statement:

CREATE TABLE t1(c1 INTEGER CHECK (c1 < 5))

Column identifiers appearing in table check constraints that start with the symbol
‘@’are not placeholders.

If a statement would cause changes to the database that violate an integrity constraint, the
statement is effectively not executed and an error is reported. (Effectively means that any
changes made by the statement before the error was detected are undone.)

SAP Sybase IQ enforces single-column UNIQUE constraints by creating an HG index for
that column.

Note: You cannot define a column with a BIT data type as a UNIQUE or PRIMARY KEY
constraint. Also, the default for columns of BIT data type is to not allow NULL values; you
can change this by explicitly defining the column as allowing NULL values.

• column-constraint – restricts the values the column can hold. Column and table
constraints help ensure the integrity of data in the database. If a statement would cause a
violation of a constraint, execution of the statement does not complete, any changes made
by the statement before error detection are undone, and an error is reported. Column
constraints are abbreviations for the corresponding table constraints. For example, these
are equivalent:

CREATE TABLE Products (
 product_num integer UNIQUE
)
CREATE TABLE Products (
 product_num integer,
 UNIQUE (product_num)
)

Column constraints are normally used unless the constraint references more than one
column in the table. In these cases, a table constraint must be used.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 173

• IQ UNIQUE – defines the expected cardinality of a column and determines whether
the column loads as Flat FP or NBit FP. An IQ UNIQUE(n) value explicitly set to 0
loads the column as Flat FP. Columns without an IQ UNIQUE constraint implicitly
load as NBit up to the limits defined by the FP_NBIT_AUTOSIZE_LIMIT,
FP_NBIT_LOOKUP_MB, and FP_NBIT_ROLLOVER_MAX_MB options:

• FP_NBIT_AUTOSIZE_LIMIT limits the number of distinct values that load as
NBit

• FP_NBIT_LOOKUP_MB sets a threshold for the total NBit dictionary size
• FP_NBIT_ROLLOVER_MAX_MB sets the dictionary size for implicit NBit

rollovers from NBit to Flat FP
• FP_NBIT_ENFORCE_LIMITS enforces NBit dictionary sizing limits. This

option is OFF by default

Using IQ UNIQUE with an n value less than the FP_NBIT_AUTOSIZE_LIMIT is not
necessary. Auto-size functionality automatically sizes all low or medium cardinality
columns as NBit. Use IQ UNIQUE in cases where you want to load the column as Flat
FP or when you want to load a column as NBit when the number of distinct values
exceeds the FP_NBIT_AUTOSIZE_LIMIT.

Note:

• Consider memory usage when specifying high IQ UNIQUE values. If machine
resources are limited, avoid loads with FP_NBIT_ENFORCE_LIMITS='OFF'
(default).
Prior to SAP Sybase IQ 16.0, an IQ UNIQUE n value > 16777216 would rollover to
Flat FP. In 16.0, larger IQ UNIQUE values are supported for tokenization, but may
require significant memory resource requirements depending on cardinality and
column width.

• BIT, BLOB,and CLOB datatypes do not support NBit dictionary compression. If
FP_NBIT_IQ15_COMPATIBILITY=’OFF’, a non-zero IQ UNIQUE column
specification in a CREATE TABLE or ALTER TABLE statement that includes these
data types returns an error.

• column-constraint and table-constraint clauses – column and table constraints help
ensure the integrity of data in the database.

• PRIMARY KEY or PRIMARY KEY (column-name, …) – the primary key for the
table consists of the listed columns, and none of the named columns can contain any
NULL values. SAP Sybase IQ ensures that each row in the table has a unique primary
key value. A table can have only one PRIMARY KEY.

When the second form is used (PRIMARY KEY followed by a list of columns), the
primary key is created including the columns in the order in which they are defined, not
the order in which they are listed.

When a column is designated as PRIMARY KEY, FOREIGN KEY, or UNIQUE, SAP
Sybase IQ creates a High_Group index for it automatically. For multicolumn primary

Appendix: SQL Reference

174 SAP Sybase IQ

keys, this index is on the primary key, not the individual columns. For best
performance, you should also index each column with a HG or LF index separately.

• REFERENCES primary-table-name [(primary-column-name)] – defines the
column as a foreign key for a primary key or a unique constraint of a primary table.
Normally, a foreign key would be for a primary key rather than an unique constraint. If
a primary column name is specified, it must match a column in the primary table which
is subject to a unique constraint or primary key constraint, and that constraint must
consist of only that one column. Otherwise the foreign key references the primary key
of the second table. Primary key and foreign key must have the same data type and the
same precision, scale, and sign. Only a non unique single-column HG index is created
for a single-column foreign key. For a multicolumn foreign key, SAP Sybase IQ creates
a non unique composite HG index. The maximum width of a multicolumn composite
key for a unique or non unique HG index is 1KB.

A temporary table cannot have a foreign key that references a base table and a base
table cannot have a foreign key that references a temporary table. Local temporary
tables cannot have or be referenced by a foreign key.

• FOREIGN KEY [role-name] [(...)] REFERENCES primary-table-name [(...)] –
defines foreign-key references to a primary key or a unique constraint in another table.
Normally, a foreign key would be for a primary key rather than an unique constraint.
(In this description, this other table is called the primary table.)

If the primary table column names are not specified, the primary table columns are the
columns in the table's primary key. If foreign key column names are not specified, the
foreign-key columns have the same names as the columns in the primary table. If
foreign-key column names are specified, then the primary key column names must be
specified, and the column names are paired according to position in the lists.

If the primary table is not the same as the foreign-key table, either the unique or
primary key constraint must have been defined on the referenced key. Both referenced
key and foreign key must have the same number of columns, of identical data type with
the same sign, precision, and scale.

The value of the row's foreign key must appear as a candidate key value in one of the
primary table's rows unless one or more of the columns in the foreign key contains nulls
in a null allows foreign key column.

Any foreign-key column not explicitly defined is automatically created with the same
data type as the corresponding column in the primary table. These automatically
created columns cannot be part of the primary key of the foreign table. Thus, a column
used in both a primary key and foreign key must be explicitly created.

role-name is the name of the foreign key. The main function of role-name is to
distinguish two foreign keys to the same table. If no role-name is specified, the role
name is assigned as follows:

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 175

1. If there is no foreign key with a role-name the same as the table name, the table
name is assigned as the role-name.

2. If the table name is already taken, the role-name is the table name concatenated
with a zero-padded 3-digit number unique to the table.

The referential integrity action defines the action to be taken to maintain foreign-key
relationships in the database. Whenever a primary key value is changed or deleted from
a database table, there may be corresponding foreign key values in other tables that
should be modified in some way. You can specify an ON DELETE clause, followed by
the RESTRICT clause.

• RESTRICT – generates an error if you try to update or delete a primary key value
while there are corresponding foreign keys elsewhere in the database. Generates an
error if you try to update a foreign key so that you create new values unmatched by a
candidate key. This is the default action, unless you specify that LOAD optionally
reject rows that violate referential integrity. This enforces referential integrity at the
statement level.

If you use CHECK ON COMMIT without specifying any actions, then RESTRICT is
implied as an action for DELETE. SAP Sybase IQ does not support CHECK ON
COMMIT.

a global temporary table cannot have a foreign key that references a base table and a
base table cannot have a foreign key that references a global temporary table. Local
temporary tables cannot have or be referenced by a foreign key.

• CHECK (condition) – no row is allowed to fail the condition. If an INSERT
statement would cause a row to fail the condition, the operation is not permitted and the
effects of the statement are undone.

The change is rejected only if the condition is FALSE; in particular, the change is
allowed if the condition is UNKNOWN. CHECK condition is not enforced by SAP
Sybase IQ.

Note: If possible, do not define referential integrity foreign key-primary key
relationships in SAP Sybase IQ unless you are certain there are no orphan foreign
keys.

• Remote Tables – foreign-key definitions are ignored on remote tables. Foreign-key
definitions on local tables that refer to remote tables are also ignored. Primary-key
definitions are sent to the remote server if the server supports it.

• PARTITION BY – divides large tables into smaller, more manageable storage objects.
Partitions share the same logical attributes of the parent table, but can be placed in separate
dbspaces and managed individually. SAP Sybase IQ supports several table partitioning
schemes:

• hash-partitions
• range-partitions

Appendix: SQL Reference

176 SAP Sybase IQ

• composite-partitions

A partition-key is the column or columns that contain the table partitioning keys. Partition
keys can contain NULL and DEFAULT values, but cannot contain:

• LOB (BLOB or CLOB) columns
• BINARY, or VARBINARY columns
• CHAR or VARCHAR columns whose length is over 255 bytes
• BIT columns
• FLOAT/DOUBLE/REAL columns

• PARTITION BY RANGE – partitions rows by a range of values in the partitioning
column. Range partitioning is restricted to a single partition key column and a maximum
of 1024 partitions. In a range-partitioning-scheme, the partition-key is the column that
contains the table partitioning keys:

range-partition-decl:
 partition-name VALUES <= ({constant-expr | MAX } [,
{ constant-expr | MAX }]...)
 [IN dbspace-name]

The partition-name is the name of a new partition on which table rows are stored. Partition
names must be unique within the set of partitions on a table. The partition-name is
required.

• VALUE – specifies the inclusive upper bound for each partition (in ascending order).
The user must specify the partitioning criteria for each range partition to guarantee that
each row is distributed to only one partition. NULLs are allowed for the partition
column and rows with NULL as partition key value belong to the first table partition.
However, NULL cannot be the bound value.

There is no lower bound (MIN value) for the first partition. Rows of NULL cells in the
first column of the partition key will go to the first partition. For the last partition, you
can either specify an inclusive upper bound or MAX. If the upper bound value for the
last partition is not MAX, loading or inserting any row with partition key value larger
than the upper bound value of the last partition generates an error.

• Max – denotes the infinite upper bound and can only be specified for the last partition.
• IN – specifies the dbspace in the partition-decl on which rows of the partition should

reside.

These restrictions affect partitions keys and bound values for range partitioned tables:

• Partition bounds must be constants, not constant expressions.
• Partition bounds must be in ascending order according to the order in which the

partitions were created. That is, the upper bound for the second partition must be higher
than for the first partition, and so on.
In addition, partition bound values must be compatible with the corresponding
partition-key column data type. For example, VARCHAR is compatible with CHAR.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 177

• If a bound value has a different data type than that of its corresponding partition key
column, SAP Sybase IQ converts the bound value to the data type of the partition key
column, with these exceptions:

• Explicit conversions are not allowed. This example attempts an explicit conversion
from INT to VARCHAR and generates an error:
CREATE TABLE Employees(emp_name VARCHAR(20))
PARTITION BY RANGE(emp_name)
(p1 VALUES <=(CAST (1 AS VARCHAR(20))),
p2 VALUES <= (CAST (10 AS VARCHAR(20)))

• Implicit conversions that result in data loss are not allowed. In this example, the
partition bounds are not compatible with the partition key type. Rounding assumptions
may lead to data loss and an error is generated:
CREATE TABLE emp_id (id INT) PARTITION BY RANGE(id) (p1 VALUES
<= (10.5), p2 VALUES <= (100.5))

• In this example, the partition bounds and the partition key data type are compatible.
The bound values are directly converted to float values. No rounding is required, and
conversion is supported:
CREATE TABLE id_emp (id FLOAT)
PARTITION BY RANGE(id) (p1 VALUES <= (10),
p2 VALUES <= (100))

• Conversions from non-binary data types to binary data types are not allowed. For
example, this conversion is not allowed and returns an error:
CREATE TABLE newemp (name BINARY)
PARTITION BY RANGE(name)
(p1 VALUES <= ("Maarten"),
p2 VALUES <= ("Zymmerman")

• NULL cannot be used as a boundary in a range-partitioned table.
• The row will be in the first partition if the cell value of the 1st column of the partition

key evaluated to be NULL. SAP Sybase IQ supports only single column partition keys,
so any NULL in the partition key distributes the row to the first partition.

• PARTITION BY HASH – maps data to partitions based on partition-key values
processed by an internal hashing function. Hash partition keys are restricted to a maximum
of eight columns with a combined declared column width of 5300 bytes or less. For hash
partitions, the table creator determines only the partition key columns; the number and
location of the partitions are determined internally.

In a hash-partitioning declaration, the partition-key is a column or group of columns,
whose composite value determines the partition where each row of data is stored:
hash-partitioning-scheme:
 HASH (partition-key [, partition-key, …])

• Restrictions –

• You can only hash partition a base table. Attempting to partitioning a global
temporary table or a local temporary table raises an error.

Appendix: SQL Reference

178 SAP Sybase IQ

• You cannot add, drop, merge, or split a hash partition.
• You cannot add or drop a column from a hash partition key.

• PARTITION BY HASH RANGE – subpartitions a hash-partitioned table by range. In a
hash-range-partitioning-scheme declaration, a SUBPARTITION BY RANGE clause adds
a new range subpartition to an existing hash-range partitioned table:
hash-range-partitioning-scheme:
PARTITION BY HASH (partition-key [, partition-key, …])
 [SUBPARTITION BY RANGE (range-partition-decl [, range-
partition-decl ...])]

The hash partition specifies how the data is logically distributed and colocated; the range
subpartition specifies how the data is physically placed. The new range subpartition is
logically partitioned by hash with the same hash partition keys as the existing hash-range
partitioned table. The range subpartition key is restricted to one column.

• Restrictions –

• You can only hash partition a base table. Attempting to partitioning a global
temporary table or a local temporary table raises an error.

• You cannot add, drop, merge, or split a hash partition.
• You cannot add or drop a column from a hash partition key.

Note: Range-partitions and composite partitioning schemes, like hash-range
partitions, require the separately licensed VLDB Management option.

Examples

• Example 1 – create a table named SalesOrders2 with five columns. Data pages for
columns FinancialCode, OrderDate, and ID are in dbspace Dsp3. Data pages for
integer column CustomerID are in dbspace Dsp1. Data pages for CLOB column
History are in dbspace Dsp2. Data pages for the primary key, HG for ID, are in dbspace
Dsp4:

CREATE TABLE SalesOrders2 (
FinancialCode CHAR(2),
CustomerID int IN Dsp1,
History CLOB IN Dsp2,
OrderDate TIMESTAMP,
ID BIGINT,
PRIMARY KEY(ID) IN Dsp4
) IN Dsp3

• Example 2 – create a table fin_code2 with four columns. Data pages for columns
code, type, and id are in the default dbspace, which is determined by the value of the
database option DEFAULT_DBSPACE. Data pages for CLOB column description
are in dbspace Dsp2. Data pages from foreign key fk1, HG for c1 are in dbspace Dsp4:

CREATE TABLE fin_code2 (
code INT,
type CHAR(10),

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 179

description CLOB IN Dsp2,
id BIGINT,
FOREIGN KEY fk1(id) REFERENCES SalesOrders(ID) IN Dsp4
)

• Example 3 – create a table t1 where partition p1 is adjacent to p2 and partition p2 is
adjacent to p3:

CREATE TABLE t1 (c1 INT, c2 INT)
PARTITION BY RANGE(c1)
(p1 VALUES <= (0), p2 VALUES <= (10), p3 VALUES <= (100))

• Example 4 – create a RANGE partitioned table bar with six columns and three partitions,
mapping data to partitions based on dates:

CREATE TABLE bar (
 c1 INT IQ UNIQUE(65500),
 c2 VARCHAR(20),
 c3 CLOB PARTITION (P1 IN Dsp11, P2 IN Dsp12,
 P3 IN Dsp13),
 c4 DATE,
 c5 BIGINT,
 c6 VARCHAR(500) PARTITION (P1 IN Dsp21,
 P2 IN Dsp22),
 PRIMARY KEY (c5) IN Dsp2) IN Dsp1
 PARTITION BY RANGE (c4)
 (P1 VALUES <= ('2006/03/31') IN Dsp31,
 P2 VALUES <= ('2006/06/30') IN Dsp32,
 P3 VALUES <= ('2006/09/30') IN Dsp33
) ;

Data page allocation for each partition:

Partition Dbspa-
ces

Columns

P1 Dsp31 c1, c2, c4, c5

P1 Dsp11 c3

P1 Dsp21 c6

P2 Dsp32 c1, c2, c4, c5

P2 Dsp12 c3

P2 Dsp22 c6

P3 Dsp33 c1, c2, c4, c5, c6

P3 Dsp13 c3

P1, P2, P3 Dsp1 lookup store of c1 and other shared data

Appendix: SQL Reference

180 SAP Sybase IQ

Partition Dbspa-
ces

Columns

P1, P2, P3 Dsp2 primary key (HG for c5)

• Example 5 – create a HASH partitioned (table tbl42) that includes a PRIMARY KEY
(column c1) and a HASH PARTITION KEY (columns c4 and c3).

CREATE TABLE tbl42 (
 c1 BIGINT NOT NULL,
 c2 CHAR(2) IQ UNIQUE(50),
 c3 DATE IQ UNIQUE(36524),
 c4 VARCHAR(200),
 PRIMARY KEY (c1)
)
 PARTITION BY HASH (c4, c3)

• Example 6 – create a hash-ranged partitioned table with a PRIMARY KEY (column c1), a
hash partition key (columns c4 and c2) and a range subpartition key (column c3).

CREATE TABLE tbl42 (
 c1 BIGINT NOT NULL,
 c2 CHAR(2) IQ UNIQUE(50),
 c3 DATE,
 c4 VARCHAR(200),
 PRIMARY KEY (c1)) IN Dsp1

 PARTITION BY HASH (c4, c2)
 SUBPARTITION BY RANGE (c3)
 (P1 VALUES <= (2011/03/31) IN Dsp31,
 P2 VALUES <= (2011/06/30) IN Dsp32,
 P3 VALUES <= (2011/09/30) IN Dsp33) ;

• Example 7 – create a table for a library database to hold information on borrowed books:

CREATE TABLE borrowed_book (
date_borrowed DATE NOT NULL,
date_returned DATE,
book CHAR(20)
 REFERENCES library_books (isbn),
CHECK(date_returned >= date_borrowed)
)

• Example 8 – create table t1 at the remote server SERVER_A and create a proxy table
named t1 that is mapped to the remote table:

CREATE TABLE t1
(a INT,
 b CHAR(10))
AT 'SERVER_A.db1.joe.t1'

• Example 9 – create table tab1 that contains a column c1 with a default value of the
special constant LAST USER:

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 181

CREATE TABLE tab1(c1 CHAR(20) DEFAULT LAST USER)
• Example 10 – create a local temporary table tab1 that contains a column c1:

CREATE LOCAL TEMPORARY TABLE tab1(c1 int) IN IQ_SYSTEM_TEMP

The example creates tab1 in the IQ_SYSTEM_TEMP dbspace in the following cases:

• DQP_ENABLED logical server policy option is set ON but there are no read-write files
in IQ_SHARED_TEMP

• DQP_ENABLED option is OFF, TEMP_DATA_IN_SHARED_TEMP logical server
policy option is ON, but there are no read-write files in IQ_SHARED_TEMP

• Both the DQP_ENABLED option and the TEMP_DATA_IN_SHARED_TEMP option
are set OFF

The example creates the same table tab1 in the IQ_SHARED_TEMP dbspace in the
following cases:

• DQP_ENABLED is ON and there are read-write files in IQ_SHARED_TEMP

• DQP_ENABLED is OFF, TEMP_DATA_IN_SHARED_TEMP is ON, and there are
read-write files in IQ_SHARED_TEMP

• Example 11 – create a table tab1 that is enabled to use row-level versioning, and real-
time storage in the in-memory RLV store.

CREATE TABLE tab1 (c1 INT, c2 CHAR(25)) ENABLE RLV STORE

Usage

You can create a table for another user by specifying an owner name. If GLOBAL
TEMPORARY or LOCAL TEMPORARY is not specified, the table is referred to as a base
table. Otherwise, the table is a temporary table.

A created global temporary table exists in the database like a base table and remains in the
database until it is explicitly removed by a DROP TABLE statement. The rows in a temporary
table are visible only to the connection that inserted the rows. Multiple connections from the
same or different applications can use the same temporary table at the same time and each
connection sees only its own rows. A given connection inherits the schema of a global
temporary table as it exists when the connection first refers to the table. The rows of a
temporary table are deleted when the connection ends.

When you create a local temporary table, omit the owner specification. If you specify an owner
when creating a temporary table, for example, CREATE TABLE dbo.#temp(col1
int), a base table is incorrectly created.

An attempt to create a base table or a global temporary table will fail, if a local temporary table
of the same name exists on that connection, as the new table cannot be uniquely identified by
owner.table.

Appendix: SQL Reference

182 SAP Sybase IQ

You can, however, create a local temporary table with the same name as an existing base table
or global temporary table. References to the table name access the local temporary table, as
local temporary tables are resolved first.

For example, consider this sequence:

CREATE TABLE t1 (c1 int);
INSERT t1 VALUES (9);

CREATE LOCAL TEMPORARY TABLE t1 (c1 int);
INSERT t1 VALUES (8);

SELECT * FROM t1;

The result returned is 8. Any reference to t1 refers to the local temporary table t1 until the
local temporary table is dropped by the connection.

In a procedure, use the CREATE LOCAL TEMPORARY TABLE statement, instead of the
DECLARE LOCAL TEMPORARY TABLE statement, when you want to create a table that
persists after the procedure completes. Local temporary tables created using the CREATE
LOCAL TEMPORARY TABLE statement remain until they are either explicitly dropped, or
until the connection closes.

Local temporary tables created in IF statements using CREATE LOCAL TEMPORARY
TABLE also persist after the IF statement completes.

SAP Sybase IQ does not support the CREATE TABLE ENCRYPTED clause for table-level
encryption of SAP Sybase IQ tables. However, the CREATE TABLE ENCRYPTED clause is
supported for SQL Anywhere tables in an SAP Sybase IQ database.

Side Effects

• Automatic commit

Standards

• SQL–Vendor extension to ISO/ANSI SQL grammar.

These are vendor extensions:
• The { IN | ON } dbspace-name clause
• The ON COMMIT clause
• Some of the default values

• Supported by Adaptive Server Enterprise, with some differences.
• Temporary tables – You can create a temporary table by preceding the table name in a

CREATE TABLE statement with a pound sign (#). These temporary tables are SAP
Sybase IQ declared temporary tables, which are available only in the current
connection. For information about declared temporary tables, see DECLARE LOCAL
TEMPORARY TABLE Statement.

• Physical placement – Physical placement of a table is carried out differently in SAP
Sybase IQ and in Adaptive Server Enterprise. The ON segment-name clause supported

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 183

by Adaptive Server Enterprise is supported in SAP Sybase IQ, but segment-name
refers to an IQ dbspace.

• Constraints – SAP Sybase IQ does not support named constraints or named defaults,
but does support user-defined data types that allow constraint and default definitions to
be encapsulated in the data type definition. It also supports explicit defaults and
CHECK conditions in the CREATE TABLE statement.

• NULL default – By default, columns in Adaptive Server Enterprise default to NOT
NULL, whereas in SAP Sybase IQ the default setting is NULL, to allow NULL values.
This setting can be controlled using the ALLOW_NULLS_BY_DEFAULT option. See
ALLOW_NULLS_BY_DEFAULT Option [TSQL]. To make your data definition
statements transferable, explicitly specify NULL or NOT NULL.

Permissions

Table Type Privileges Required

Base table in the IQ main store Table owned by self – Requires CREATE privilege on
the dbspace where the table is created. Also requires one
of:

• CREATE TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Table owned by any user – Requires CREATE privilege
on the dbspace where the table is created. Also requires
one of:

• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Global temporary table Table owned by self – Requires one of:

• CREATE TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Table owned by any user – Requires one of:

• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Appendix: SQL Reference

184 SAP Sybase IQ

Table Type Privileges Required

Proxy table Table owned by self – Requires one of:

• CREATE PROXY TABLE system privilege.
• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Table owned by any user – Requires one of:

• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

See also
• CREATE DBSPACE Statement on page 165

DELETE Statement
Deletes all the rows from the named table that satisfy the search condition. If no WHERE
clause is specified, all rows from the named table are deleted.

Syntax
DELETE [FROM] [owner.]table-name
 …[FROM table-list]
 …[WHERE search-condition]

Examples

• Example 1 – removes employee 105 from the database:

DELETE
FROM Employees
WHERE EmployeeID = 105

• Example 2 – removes all data prior to 1993 from the FinancialData table:

DELETE
FROM FinancialData
WHERE Year < 1993

• Example 3 – removes all names from the Contacts table if they are already present in
the Customers table:

DELETE
FROM Contacts
FROM Contacts, Customers
WHERE Contacts.Surname = Customers.Surname
AND Contacts.GivenName = Customers.GivenName

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 185

Usage

DELETE can be used on views provided the SELECT statement defining the view has only one
table in the FROM clause and does not contain a GROUP BY clause, an aggregate function, or
involve a UNION operation.

The optional second FROM clause in the DELETE statement allows rows to be deleted based
on joins. If the second FROM clause is present, the WHERE clause qualifies the rows of this
second FROM clause. Rows are deleted from the table name given in the first FROM clause.

Note: You cannot use the DELETE statement on a join virtual table. If you attempt to delete
from a join virtual table, an error is reported.

There is a potential ambiguity in table names in DELETE statements with two FROM clauses
that use correlation names, as illustrated in the following statement.

DELETE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

The table table_1 is identified without a correlation name in the first FROM clause, but
with a correlation name in the second FROM clause. In this case, table_1 in the first clause
is identified with alias_1 in the second clause. In this illustration, there is only one instance
of table_1.

This is an exception to the general rule that where the same table is identified with and without
a correlation name in the same statement, two instances of the table are considered.

Consider this example:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

In this case, there are two instances of table_1 in the second FROM clause. There is no way
of identifying which instance the first FROM clause should be identified with. The usual rules
of correlation names apply, and table_1 in the first FROM clause is identified with neither
instance in the second clause: there are three instances of table_1 in the statement.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise, including the vendor extension.

Permissions

Requires DELETE privilege on the table.

Appendix: SQL Reference

186 SAP Sybase IQ

DROP Statement
Removes objects from the database.

Syntax
DROP
 { DBSPACE dbspace-name
 | { DATATYPE [IF EXISTS]
 | DOMAIN [IF EXISTS] } datatype-name
 | EVENT [IF EXISTS] event-name
 | INDEX [IF EXISTS] [[owner].table-name.]index-name
 | MESSAGE message-number
 | TABLE [IF EXISTS] [owner.]table-name
 | VIEW [IF EXISTS] [owner.]view-name
 | MATERIALIZED VIEW [IF EXISTS] [owner.]view-name
 | PROCEDURE [IF EXISTS] [owner.]procedure-name
 | FUNCTION [IF EXISTS] [owner.]function-name }

Parameters

• IF EXISTS – use if you do not want an error returned when the DROP statement attempts
to remove a database object that does not exist.

• INDEX – deletes any explicitly created index. It deletes an implicitly created index only if
there are no unique or foreign-key constraints or associated primary key.

DROP INDEX for a nonunique HG index fails if an associated unenforced foreign key
exists.

Warning! Do not delete views owned by the DBO user. Deleting such views or changing
them into tables might cause problems.

DROP INDEX is prevented whenever the statement affects a table that is currently being
used by another connection.

• TABLE – DROP TABLE is prevented if the primary table has foreign-key constraints
associated with it, including unenforced foreign-key constraints

DROP TABLE is also prevented if the table has an IDENTITY column and
IDENTITY_INSERT is set to that table. To drop the table you must clear
IDENTITY_INSERT, that is, set IDENTITY_INSERT to ' ' (an empty string), or set to
another table name.

A foreign key can have either a nonunique single or a multicolumn HG index. A primary
key may have unique single or multicolumn HG indexes. You cannot drop the HG index
implicitly created for an existing foreign key, primary key, and unique constraint.

The four initial dbspaces are SYSTEM, IQ_SYSTEM_MAIN, IQ_SYSTEM_TEMP, and
IQ_SYSTEM_MSG. You cannot drop these initial dbspaces, but you may drop dbspaces

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 187

from the IQ main store or catalog store, which may contain multiple dbspaces, as long as at
least one dbspace remains with readwrite mode.

You must drop tables in the dbspace before you can drop the dbspace. An error is returned
if the dbspace still contains user data; other structures are automatically relocated when the
dbspace is dropped. You can drop a dbspace only after you make it read-only.

Note: A dbspace may contain data at any point after it is used by a command, thereby
preventing a DROP DBSPACE on it.

DROP TABLEis prevented whenever the statement affects a table that is currently being
used by another connection.

• PROCEDURE – DROP PROCEDURE is prevented when the procedure is in use by
another connection.

• DATATYPE – DROP DATATYPE is prevented if the data type is used in a table. You must
change data types on all columns defined on the user-defined data type to drop the data
type. It is recommended that you use DROP DOMAIN rather than DROP DATATYPE, as
DROP DOMAIN is the syntax used in the ANSI/ISO SQL3 draft.

Examples

• Example 1 – drop the Departments table from the database:

DROP TABLE Departments
• Example 2 – drop the emp_dept view from the database:

DROP VIEW emp_dept

Usage

DROP removes the definition of the indicated database structure. If the structure is a dbspace,
then all tables with any data in that dbspace must be dropped or relocated prior to dropping the
dbspace; other structures are automatically relocated. If the structure is a table, all data in the
table is automatically deleted as part of the dropping process. Also, all indexes and keys for the
table are dropped by DROP TABLE.

DROP DBSPACE is prevented whenever the statement affects a table that is currently being
used by another connection. DROP PROCEDURE is prevented when the procedure is in use by
another connection.

Side Effects

• Automatic commit. Clears the Data window in dbisql. DROP TABLE and DROP INDEX
close all cursors for the current connection.

• Local temporary tables are an exception; no commit is performed when one is dropped.

Appendix: SQL Reference

188 SAP Sybase IQ

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

DBSPACE clause – Requires the DROP ANY OBJECT system privilege and user must be the
only connection to the database.

DOMAIN clause – Requires one of:

• DROP DATATYPE system privilege.
• DROP ANY OBJECT system privilege.
• You own the object.

FUNCTION clause – Requires one of:

• DROP ANY PROCEDURE system privilege.
• DROP ANY OBJECT system privilege.
• You own the function.

INDEX clause – Requires one of:

• DROP ANY INDEX system privilege.
• DROP ANY OBJECT system privilege.
• REFERENCE privilege on the underlying table being indexed.
• You own the underlying table being indexed.

DBA or users with the appropriate privilege can drop an index on tables that are owned other
users without using a fully-qualified name. All other users must provide a fully-qualified
index name to drop an index on a base table owned by the DBA.

MATERIALIZED VIEW clause – Requires one of:

• DROP ANY MATERIALIZED VIEW system privilege.
• DROP ANY OBJECT system privilege.
• You own the materialized view.

PROCEDURE clause – Requires one of:

• DROP ANY PROCEDURE system privilege.
• DROP ANY OBJECT system privilege.
• You own the procedure.

TABLES clause – Requires one of:

• DROP ANY TABLE system privilege.
• DROP ANY OBJECT system privilege.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 189

• You own the table.

Global temporary tables cannot be dropped unless all users that have referenced the temporary
table have disconnected.

VIEW clause – Requires one of:

• DROP ANY VIEW system privilege.
• DROP ANY OBJECT system privilege.
• You own the view.

All other clauses – Requires one of:

• DROP ANY OBJECT system privilege.
• You own the object.

INSERT Statement
Inserts a single row or a selection of rows, from elsewhere in the current database, into the
table. This command can also insert a selection of rows from another database into the table.

Syntax

Syntax 1

INSERT [INTO] [owner.]table-name [(column-name [, …])]
 ... VALUES ([expression | DEFAULT,…)]
or
 INSERT [INTO] [owner.]table-name DEFAULT VALUES

Syntax 2

INSERT [INTO] [owner.]table-name [(column-name [, …])]
 ... insert-load-options insert-select-load-options
 ... select-statement

insert-load-options:
 [LIMIT number-of-rows]
 [NOTIFY number-of-rows]
 [SKIP number-of-rows]

insert-select-load-options:
 [WORD SKIP number]
 [IGNORE CONSTRAINT constraint-type [, …]]
 [MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG logwhat
[, …]]]
 [LOG DELIMITED BY ‘string’]

constraint-type:
 { CHECK integer
 | UNIQUE integer
 | NULL integer
 | FOREIGN KEY integer
 | DATA VALUE integer
 } ALL integer

Appendix: SQL Reference

190 SAP Sybase IQ

 }

logwhat:
 { CHECK
 | ALL
 | NULL
 | UNIQUE
 | DATA VALUE
 | FOREIGN KEY
 | WORD
 }

Syntax 3

INSERT [INTO] [owner.]table-name[(column-name [, …])]
 ... insert-load-options insert-select-load-options
 LOCATION 'servername.dbname'
 [location-options]
 ... { { select-statement } | ‘select statement’ }

insert-load-options:
 [LIMIT number-of-rows]
 [NOTIFY number-of-rows]
 [SKIP number-of-rows]

insert-select-load-options: [WORD SKIP number]
 [IGNORE CONSTRAINT constraint-type [, …]]
 [MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG logwhat
[, …]]]
 [LOG DELIMITED BY ‘string’]

constraint-type:
 { CHECK integer
 | UNIQUE integer
 | NULL integer
 | FOREIGN KEY integer
 | DATA VALUE integer
 } ALL integer
 }

logwhat:
 { CHECK
 | ALL
 | NULL
 | UNIQUE
 | DATA VALUE
 | FOREIGN KEY
 | WORD
 }

location-options:
 [ENCRYPTED PASSWORD]
 [PACKETSIZE packet-size]
 [QUOTED_IDENTIFIER { ON | OFF }]
 [ISOLATION LEVEL { READ UNCOMMITTED | READ
COMMITTED | SERIALIZABLE }]

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 191

Parameters

• insert-load-options – options that constrain the load:

• LIMIT – specifies the maximum number of rows to insert into the table from a query.
The default is 0 for no limit. The maximum is 2GB -1.

• NOTIFY – specifies that you be notified with a message each time the number of rows
are successfully inserted into the table. The default is every 100,000 rows.

• SKIP – defines the number of rows to skip at the beginning of the input tables for this
insert. The default is 0.

• WORD SKIP – allows the load to continue when it encounters data longer than the limit
specified when the word index was created. The number parameter specifies the number of
times to ignore the error. Setting this option to 0 means there is no limit.

If a row is not loaded because a word exceeds the maximum permitted size, a warning is
written to the .iqmsg file. WORD size violations can be optionally logged to the
MESSAGE LOG file. If the option is not specified, the operation rolls back on the first
occurrence of a word that is longer than the specified limit.

• IGNORE CONSTRAINT – determines whether the load engine ignores CHECK,
UNIQUE, NULL, DATA VALUE, and FOREIGN KEY integrity constraint violations that
occur during a load and the maximum number of violations to ignore before initiating a
rollback.

If limit is zero, the number of CHECK constraint violations to ignore is infinite. If CHECK
is not specified, the first occurrence of any CHECK constraint violation causes the load to
roll back. If limit is nonzero, then the limit +1 occurrence of a CHECK constraint violation
causes the load to roll back

• MESSAGE LOG – specifies the file names where the load engine logs integrity constraint
violations. Timestamps indicating the start and completion of the load are logged in both
the MESSAGE LOG and the ROW LOG files. Both MESSAGE LOG and ROW LOG
must be specified, or no information about integrity violations is logged.

Information is logged on all integrity constraint-type violations specified in the ONLY
LOG clause or for all word index-length violations if the keyword WORD is specified. If
theONLY LOG clause is not specified, no information on integrity constraint violations is
logged. Only the timestamps indicating the start and completion of the load are logged.

• LOG DELIMITED BY – specifies the separator between data values in the ROW LOG
file. The default separator is a comma.

• ENCRYPTED PASSWORD – specifies the use of Open Client Library default password
encryption when connecting to a remote server. If you specify this parameter and the
remote server does not support Open Client Library default password encryption, an error
is reported indicating that an invalid user ID or password was used.

Appendix: SQL Reference

192 SAP Sybase IQ

To enable the SAP Sybase IQ server to accept a jConnect connection with an encrypted
password, set the jConnect ENCRYPT_PASSWORD connection property to true.

• PACKETSIZE – specifies the TDS packet-size in bytes. The default TDS packet-size on
most platforms is 512 bytes. If the packet size is not specified or is specified as zero, then
the default packet size value for the platform is used.

The packet-size value must be a multiple of 512, either equal to the default network packet
size or between the default network packet size and the maximum network packet size.
The maximum network packet size and the default network packet size are multiples of
512 in the range 512 – 524288 bytes. The maximum network packet size is always greater
than or equal to the default network packet size.

• QUOTED_IDENTIFIER – sets the QUOTED_IDENTIFIER option on the remote
server. The default setting is 'OFF.' You set QUOTED_IDENTIFIER to ‘ON’ only if any of
the identifiers in the SELECT statement are enclosed in double quotes, as in this example
using ‘c1’:

INSERT INTO foo
LOCATION 'ase.database'
QUOTED_IDENTIFIER ON {select "c1" from xxx};

• ISOLATION LEVEL – specifies an isolation level for the connection to a remote server:

Isolation Level Characteristics

READ UNCOMMITTED • Isolation level 0
• Read permitted on row with or without write lock
• No read locks are applied
• No guarantee that concurrent transaction will not modify row

or roll back changes to row

READ COMMITTED • Isolation level 1
• Read only permitted on row with no write lock
• Read lock acquired and held for read on current row only, but

released when cursor moves off the row
• No guarantee that data will not change during transaction

SERIALIZABLE • Isolation level 3
• Read only permitted on rows in result without write lock
• Read locks acquired when cursor is opened and held until

transaction ends

Note: For additional information on the insert-select-load-options and location-options as
well as the constraint-type and logwhat parameters, see the LOAD TABLE Statement.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 193

Examples

• Example 1 – add an Eastern Sales department to the database:

INSERT INTO Departments
(DepartmentID, DepartmentName, DepartmentHeadID)
VALUES (600, 'Eastern Sales', 501)

• Example 2 – fill the table dept_head with the names of department heads and their
departments:

INSERT INTO dept_head (name, dept)
 NOTIFY 20
 SELECT Surname || ' ' || GivenName
 AS name,
 dept_name
FROM Employees JOIN Departments
 ON EmployeeID= DepartmentHeadID

• Example 3 – insert data from the l_shipdate and l_orderkey columns of the
lineitem table from the SAP Sybase IQ database iqdet on the remote server
detroit into the corresponding columns of the lineitem table in the current
database:

INSERT INTO lineitem
 (l_shipdate, l_orderkey)
 LOCATION 'detroit.iqdet'
 PACKETSIZE 512
 ' SELECT l_shipdate, l_orderkey
FROM lineitem '

• Example 4 – the INSERT statement permits a list of values allowing several rows to be
inserted at once.

INSERT into t1 values(10, 20, 30), (11, 21, 31), (12, 22,
32)

Usage

Syntax 1 allows the insertion of a single row with the specified expression values. If the list of
column names is not specified, the values are inserted into the table columns in the order they
were created (the same order as retrieved with SELECT *). The row is inserted into the table at
an arbitrary position. (In relational databases, tables are not ordered.)

Syntax 2 allows the user to perform a mass insertion into a table using the results of a fully
general SELECT statement. Insertions are done in an arbitrary order unless the SELECT
statement contains an ORDER BY clause. The columns from the select list are matched
ordinally with the columns specified in the column list, or sequentially in the order in which
the columns were created.

Note: The NUMBER(*) function is useful for generating primary keys with Syntax 2 of the
INSERT statement.

Syntax 3 INSERT...LOCATION is a variation of Syntax 2 that allows you to insert data from an
Adaptive Server Enterprise or SAP Sybase IQ database. The servername.dbname specified in

Appendix: SQL Reference

194 SAP Sybase IQ

the LOCATION clause identifies the remote server and database for the table in the FROM
clause. To use Syntax 3, the Adaptive Server Enterprise or SAP Sybase IQ remote server to
which you are connecting must exist in the SAP Sybase Open Client interfaces or
sql.ini file on the local machine.

In queries using Syntax 3, you can insert a maximum of 2147483647 rows.

The SELECT statement can be delimited by either curly braces or straight single quotation
marks.

Note: Curly braces represent the start and end of an escape sequence in the ODBC standard,
and might generate errors in the context of ODBC or Sybase Control Center. The workaround
is to use single quotes to escape the SELECT statement.

The local SAP Sybase IQ server connects to the server and database you specify in the
LOCATION clause. The results from the queries on the remote tables are returned and the local
server inserts the results in the current database. If you do not specify a server name in the
LOCATION clause, SAP Sybase IQ ignores any database name you specify, since the only
choice is the current database on the local server.

When SAP Sybase IQ connects to the remote server, INSERT...LOCATION uses the remote
login for the user ID of the current connection, if a remote login has been created with CREATE
EXTERNLOGIN and the remote server has been defined with a CREATE SERVER statement. If
the remote server is not defined, or if a remote login has not been created for the user ID of the
current connection, SAP Sybase IQ connects using the user ID and password of the current
connection.

Note: If you rely on the user ID and password of the current connection, and a user changes the
password, you must stop and restart the server before the new password takes effect on the
remote server. Remote logins created with CREATE EXTERNLOGIN are unaffected by
changes to the password for the default user ID.

Creating a remote login with the CREATE EXTERNLOGIN statement and defining a remote
server with a CREATE SERVER statement sets up an external login and password for
INSERT...LOCATION such that any user can use the login and password in any context. This
avoids possible errors due to inaccessibility of the login or password, and is the recommended
way to connect to a remote server.

For example, user russid connects to the SAP Sybase IQ database and executes this
statement:

INSERT local_SQL_Types LOCATION ‘ase1.ase1db’
{SELECT int_col FROM SQL_Types};

On server ase1, there exists user ID ase1user with password sybase. The owner of the
table SQL_Types is ase1user. The remote server is defined on the IQ server as:

CREATE SERVER ase1 CLASS ‘ASEJDBC’
USING ‘system1:4100’;

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 195

The external login is defined on the IQ server as:

CREATE EXTERNLOGIN russid TO ase1 REMOTE LOGIN ase1user IDENTIFIED BY
sybase;

INSERT...LOCATION connects to the remote server ase1 using the user ID ase1user and
the password sybase for user russid.

Use the ENCRYPTED PASSWORD parameter to specify the use of Open Client Library default
password encryption when connecting to a remote server. If ENCRYPTED PASSWORD is
specified and the remote server does not support Open Client Library default password
encryption, an error is reported indicating that an invalid user ID or password was used.

When used as a remote server, SAP Sybase IQ supports TDS password encryption. The SAP
Sybase IQ server accepts a connection with an encrypted password sent by the client. For
information on connection properties to set for password encryption, see Software
Developer's Kit 15.5 > Open Client Client-Library/C Reference Manual > Client-Library
Topics > Security features > Adaptive Server Enterprise security features > Security
handshaking: encrypted password for Open Server 15.5.

Note: Password encryption requires Open Client 15.0. TDS password encryption requires
Open Client 15.0 ESD #7 or later.

When INSERT...LOCATION is transferring data between an SAP Sybase IQ server and a
remote SAP Sybase IQ or Adaptive Server Enterprise server, the value of the
INSERT...LOCATION TDS PACKETSIZE parameter is always 512 bytes, even if you specify a
different value for PACKETSIZE.

Note: If you specify an incorrect packet size (for example 933, which is not a multiple of 512),
the connection attempt fails with an Open Client ct_connect “Connection failed” error. Any
unsuccessful connection attempt returns a generic “Connection failed” message. The
Adaptive Server Enterprise error log might contain more specific information about the cause
of the connection failure.

SAP Sybase IQ does not support the Adaptive Server Enterprise data type TEXT, but you can
execute INSERT...LOCATION (Syntax 3) from both an IQ CHAR or VARCHAR column whose
length is greater than 255 bytes, and from an ASE database column of data type TEXT. ASE
TEXT and IMAGE columns can be inserted into columns of other SAP Sybase IQ data types, if
SAP Sybase IQ supports the internal conversion. By default, if a remote data column contains
over 2GB, SAP Sybase IQ silently truncates the column value to 2GB.

Warning! SAP Sybase IQ does not support the Adaptive Server Enterprise data types
UNICHAR, UNIVARCHAR, or UNITEXT. An INSERT...LOCATION command from
UNICHAR or UNITEXT to CHAR or CLOB columns in the ISO_BINENG collation may
execute without error; if this happens, the data in the columns may be inconsistent. An error is
reported in this situation, only if the conversion fails.

Appendix: SQL Reference

196 SAP Sybase IQ

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc32840.1550/html/ctref/X44192.htm

Users must be specifically licensed to use the large object functionality of the Unstructured
Data Analytics Option.

Note: If you use INSERT...LOCATION to insert data selected from a VARBINARY column, set
ASE_BINARY_DISPLAY to OFF on the remote database.

INSERT...LOCATION (Syntax 3) does not support the use of variables in the SELECT
statement.

Inserts can be done into views, provided the SELECT statement defining the view has only one
table in the FROM clause and does not contain a GROUP BY clause, an aggregate function, or
involve a UNION operation.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. Thus, a string “Value” inserted into a table is
always held in the database with an uppercase V and the remainder of the letters lowercase.
SELECT statements return the string as 'Value.' If the database is not case-sensitive, however,
all comparisons make 'Value' the same as 'value,' 'VALUE," and so on. Further, if a single-
column primary key already contains an entry Value, an INSERT of value is rejected, as it
would make the primary key not unique.

Whenever you execute an INSERT...LOCATION statement, SAP Sybase IQ loads the
localization information needed to determine language, collation sequence, character set, and
date/time format. If your database uses a nondefault locale for your platform, you must set an
environment variable on your local client to ensure that SAP Sybase IQ loads the correct
information.

If you set the LC_ALL environment variable, SAP Sybase IQ uses its value as the locale name.
If LC_ALL is not set, SAP Sybase IQ uses the value of the LANG environment variable. If
neither variable is set, SAP Sybase IQ uses the default entry in the locales file.

Use the (DEFAULT), DEFAULT VALUES or VALUES() clauses to insert rows with all
default values. Assuming that there are 3 columns in table t2, these examples are semantically
equivalent:
INSERT INTO t2 values (DEFAULT, DEFAULT, DEFAULT);
INSERT INTO t2 DEFAULT VALUES;
INSERT INTO t2() VALUES();

INSERT...VALUES also supports multiple rows. The following example inserts 3 rows into
table t1:
CREATE TABLE t1(c1 varchar(30));
INSERT INTO t1 VALUES ('morning'),('afternoon'),
 ('evening');

SAP Sybase IQ treats all load/inserts as full-width inserts. Columns not explicitly specified on
the load/insert statement, the value loaded will either be the column’s DEFAULT value (if one
is defined) or NULL (if no DEFAULT value is defined for the column).

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 197

SAP Sybase IQ supports column DEFAULT values for INSERT...VALUES, INSERT...SELECT,
and INSERT...LOCATION. If a DEFAULT value is specified for a column, this DEFAULT value
is used as the value of the column in any INSERT (or LOAD) statement that does not specify a
value for the column.

An INSERT from a stored procedure or function is not permitted, if the procedure or function
uses COMMIT, ROLLBACK, or some ROLLBACK TO SAVEPOINT statements.

The result of a SELECT…FROM may be slightly different from the result of an INSERT…
SELECT…FROM due to an internal data conversion of an imprecise data type, such as
DOUBLE or NUMERIC, for optimization during the insert. If a more precise result is required,
a possible workaround is to declare the column as a DOUBLE or NUMERIC data type with a
higher precision.

Standards

• SQL—ISO/ANSI SQL compliant.
• Sybase—Supported by Adaptive Server Enterprise (excluding the insert-load-options).

Permissions

Requires INSERT privilege on the table.

See also
• LOAD TABLE Statement on page 198

LOAD TABLE Statement
Imports data into a database table from an external file.

Syntax
LOAD [INTO] TABLE [owner.]table-name
 ... (load-specification [, …])
 ... { FROM | USING [CLIENT] FILE }
 { 'filename-string' | filename-variable } [, …]
 ... [CHECK CONSTRAINTS { ON | OFF }]
 ... [DEFAULTS { ON | OFF }]
 ... [QUOTES OFF]
 ... ESCAPES OFF
 ... [FORMAT { ascii | binary | bcp }]
 ... [DELIMITED BY 'string']
 ... [STRIP { OFF | RTRIM }]
 ... [WITH CHECKPOINT { ON | OFF }]
 ... [BYTE ORDER { NATIVE | HIGH | LOW }]
 ... [LIMIT number-of-rows]
 ... [NOTIFY number-of-rows]
 ... [ON FILE ERROR { ROLLBACK | FINISH | CONTINUE }]
 ... [PREVIEW { ON | OFF }]
 ... [ROW DELIMITED BY 'delimiter-string']
 ... [SKIP number-of-rows]

Appendix: SQL Reference

198 SAP Sybase IQ

 ... [HEADER SKIP number [HEADER DELIMITED BY 'string']]
 ... [WORD SKIP number]
 ... [ON PARTIAL INPUT ROW { ROLLBACK | CONTINUE }]
 ... [IGNORE CONSTRAINT constraint-type [, …]]
 ... [MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG log-what
[, …]]
 ... [LOG DELIMITED BY ‘string’]

load-specification:
 { column-name [column-spec]
 | FILLER (filler-type) }

column-spec:
 { ASCII (input-width)
 | BINARY [WITH NULL BYTE]
 | PREFIX { 1 | 2 | 4 }
 | 'delimiter-string'
 | DATE [FORMAT] (input-date-format) [, input-date-format, …]
 | DATETIME [FORMAT] (input-datetime-format [, input-datetime-
format, …])
 | ENCRYPTED (data-type ‘key-string’ [, ‘algorithm-string’])
 | DEFAULT default-value }
 [NULL ({ BLANKS | ZEROS | 'literal', …})

filler-type:
 { input-width
 | PREFIX { 1 | 2 | 4 }
 | 'delimiter-string'
 }

constraint-type:
 { CHECK integer
 | UNIQUE integer
 | NULL integer
 | FOREIGN KEYinteger
 | DATA VALUE integer
 | ALL integer
 }

log-what:
 { CHECK
 | ALL
 | NULL
 | UNIQUE
 | DATA VALUE
 | FOREIGN KEY
 | WORD
 }

Parameters

• FROM – identifies one or more files from which to load data. To specify more than one
file, use a comma to separate each filename-string. The filename-string is passed to
the server as a string. The string is therefore subject to the same formatting requirements as
other SQL strings.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 199

To indicate directory paths on Windows, the backslash character \ must be represented by
two backslashes. Therefore, the statement to load data from the file c:\temp
\input.dat into the Employees table is:

LOAD TABLE Employees
FROM 'c:\\temp\\input.dat' ...

The path name is relative to the database server, not to the client application. If you are
running the statement on a database server on some other computer, the directory names
refers to directories on the server machine, not on the client machine. When loading a
multiplex database, use absolute (fully qualified) paths in all file names. Do not use
relative path names.

Because of resource constraints, SAP Sybase IQ does not guarantee that all the data can be
loaded. If resource allocation fails, the entire load transaction is rolled back. The files are
read one at a time, and processed in the order specified in the FROM clause. Any SKIP or
LIMIT value only applies in the beginning of the load, not for each file.

The LOAD TABLE FROM clause is deprecated, but may be used to specify a file that
exists on the server. This example loads data from the file a.inp on a client computer.

LOAD TABLE t1(c1,c2,filler(30))
USING CLIENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF
IGNORE CONSTRAINT UNIQUE 0, NULL 0
MESSAGE LOG 'c:\\client-data\\m.log'
ROW LOG 'c:\\client-data\\r.log'
ONLY LOG UNIQUE

• USING – USING FILE loads one or more files from the server. This clause is synonymous
with specifying the FROM filename clause. USING CLIENT FILE bulk loads one or more
files from a client. The character set of the file on the client side must be the same as the
server collation. SAP Sybase IQ serially processes files in the file list. Each file is locked in
read mode as it is processed, then unlocked. Client-side bulk loading incurs no
administrative overhead, such as extra disk space, memory or network-monitoring
daemon requirements, but does forces single threaded processing for each file.

When bulk loading large objects, the USING CLIENT FILE clause applies to both
primary and secondary files.

During client-side loads, the IGNORE CONSTRAINT log files are created on the client
host and any error while creating the log files causes the operation to roll back.

Client-side bulk loading is supported by Interactive SQL and ODBC/JDBC clients using
the Command Sequence protocol. It is not supported by clients using the TDS protocol.
For data security over a network, use Transport Layer Security. To control who can use
client-side bulk loads, use the secure feature (-sf) server startup switch, the
ALLOW_READ_CLIENT_FILE database option, and/or the READCLIENTFILE access
control.

Appendix: SQL Reference

200 SAP Sybase IQ

• CHECK CONSTRAINTS – evaluates check constraints, which you can ignore or log.
CHECK CONSTRAINTS defaults to ON.

Setting CHECK CONSTRAINTS OFF causes SAP Sybase IQ to ignore all check
constraint violations. This can be useful, for example, during database rebuilding. If a table
has check constraints that call user-defined functions that are not yet created, the rebuild
fails unless this option is set to OFF.

This option is mutually exclusive to the following options. If any of these options are
specified in the same load, an error results:

• IGNORE CONSTRAINT ALL
• IGNORE CONSTRAINT CHECK
• LOG ALL
• LOG CHECK

• DEFAULTS – uses a column's default value. This option is ON by default. If the
DEFAULTS option is OFF, any column not present in the column list is assigned NULL.

The setting for the DEFAULTS option applies to all column DEFAULT values, including
AUTOINCREMENT.

• QUOTES – indicates that input strings are enclosed in quote characters. QUOTES is an
optional parameter and is ON by default. The quote character is either an apostrophe
(single quote) or a quotation mark (double quote). The first such character encountered in a
string is treated as the quote character for the string. String data must be terminated with a
matching quote.

With QUOTES ON, column or row delimiter characters can be included in the column
value. Leading and ending quote characters are assumed not to be part of the value and are
excluded from the loaded data value.

To include a quote character in a value with QUOTES ON, use two quotes. For example,
this line includes a value in the third column that is a single quote character:

‘123 High Street, Anytown’, ‘(715)398-2354’,’’’’

With STRIP turned on (the default), trailing blanks are stripped from values before they are
inserted. Trailing blanks are stripped only for non-quoted strings. Quoted strings retain
their trailing blanks. Leading blank or TAB characters are trimmed only when the setting is
ON.

The data extraction facility provides options for handling quotes
(TEMP_EXTRACT_QUOTES, TEMP_EXTRACT_QUOTES_ALL, and
TEMP_EXTRACT_QUOTE). If you plan to extract data to be loaded into an IQ main store
table and the string fields contain column or row delimiter under default ASCII extraction,
use the TEMP_EXTRACT_BINARY option for the extract and the FORMAT binary and
QUOTES OFF options for LOAD TABLE.

Limits:

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 201

• QUOTES ON applies only to column-delimited ASCII fields.
• With QUOTES ON, the first character of a column delimiter or row terminator cannot

be a single or double quote mark.
• QUOTES ON forces single threaded processing for a given file.
• The QUOTES option does not apply to loading binary large object (BLOB) or

character large object (CLOB) data from the secondary file, regardless of its setting. A
leading or trailing quote is loaded as part of CLOB data. Two consecutive quotes
between enclosing quotes are loaded as two consecutive quotes with the QUOTES ON
option.

• Adaptive Server Enterprise BCP does not support the QUOTES option. All field data is
copied in or out equivalent to the QUOTES OFF setting. As QUOTES ON is the default
setting for the SAP Sybase IQ LOAD TABLE statement, you must specify QUOTES
OFF when importing ASE data from BCP output to an SAP Sybase IQ table.

Exceptions:

• If LOAD TABLE encounters any nonwhite characters after the ending quote character
for an enclosed field, this error is reported and the load operation is rolled back:
Non-SPACE text found after ending quote character for
an enclosed field.
SQLSTATE: QTA14 SQLCODE: -1005014L

• With QUOTES ON, if a single or double quote is specified as the first character of the
column delimiter, an error is reported and the load operation fails:
Single or double quote mark cannot be the 1st character
of column delimiter or row terminator with QUOTES option
ON.
SQLSTATE: QCA90 SQLCODE: -1013090L

• ESCAPES – if you omit a column-spec definition for an input field and ESCAPES is ON
(the default), characters following the backslash character are recognized and interpreted
as special characters by the database server. You can include newline characters as the
combination \n, and other characters as hexadecimal ASCII codes, such as \x09 for the tab
character. A sequence of two backslash characters (\\) is interpreted as a single backslash.
For SAP Sybase IQ, you must set ESCAPES OFF.

• FORMAT – SAP Sybase IQ supports ASCII and binary input fields. The format is usually
defined by the column-spec described above. If you omit that definition for a column, by
default SAP Sybase IQ uses the format defined by this option. Input lines are assumed to
have ascii (the default) or binary fields, one row per line, with values separated by the
column delimiter character.

SAP Sybase IQ also accepts data from BCP character files as input to the LOAD TABLE
command.

• The BCP data file loaded into SAP Sybase IQ tables using the LOAD TABLE FORMAT
BCP statement must be exported (BCP OUT) in cross-platform file format using the -c
option.

Appendix: SQL Reference

202 SAP Sybase IQ

• For FORMAT BCP, the default column delimiter for the LOAD TABLE statement is
<tab> and the default row terminator is <newline>.

• For FORMAT BCP, the last column in a row must be terminated by the row terminator,
not by the column delimiter. If the column delimiter is present before the row
terminator, then the column delimiter is treated as a part of the data.

• Data for columns that are not the last column in the load specification must be
delimited by the column delimiter only. If a row terminator is encountered before a
column delimiter for a column that is not the last column, then the row terminator is
treated as a part of the column data.

• Column delimiter can be specified via the DELIMITED BY clause. For FORMAT
BCP, the delimiter must be less than or equal to 10 characters in length. An error is
returned, if the delimiter length is more than 10.

• For FORMAT BCP, the load specification may contain only column names, NULL,
and ENCRYPTED. An error is returned, if any other option is specified in the load
specification.
For example, these LOAD TABLE load specifications are valid:
LOAD TABLE x(c1, c2 null(blanks), c3)
FROM 'bcp_file.bcp'
FORMAT BCP
...
LOAD TABLE x(c1 encrypted(bigint,'KEY-ONE','aes'), c2, c3)
FROM 'bcp_file.bcp'
FORMAT BCP
...

• DELIMITED BY – if you omit a column delimiter in the column-spec definition, the
default column delimiter character is a comma. You can specify an alternative column
delimiter by providing a single ASCII character or the hexadecimal character
representation. The DELIMITED BY clause is:

... DELIMITED BY '\x09' ...

To use the newline character as a delimiter, you can specify either the special combination
'\n' or its ASCII value '\x0a'. Although you can specify up to four characters in the column-
spec delimiter-string, you can specify only a single character in the DELIMITED BY
clause.

• STRIP – determines whether unquoted values should have trailing blanks stripped off
before they are inserted. The LOAD TABLE command accepts these STRIP keywords:

• STRIP OFF – do not strip off trailing blanks.
• STRIP RTRIM – strip trailing blanks.
• STRIP ON – deprecated. Use STRIP RTRIM.

With STRIP turned on (the default), SAP Sybase IQ strips trailing blanks from values
before inserting them. This is effective only for VARCHAR data. STRIP OFF preserves
trailing blanks.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 203

Trailing blanks are stripped only for unquoted strings. Quoted strings retain their trailing
blanks. If you do not require blank sensitivity, you can use the FILLER option as an
alternative to be more specific in the number of bytes to strip, instead of all the trailing
spaces. STRIP OFF is more efficient for SAP Sybase IQ, and it adheres to the ANSI
standard when dealing with trailing blanks. (CHAR data is always padded, so the STRIP
option only affects VARCHAR data.)

The STRIP option applies only to variable-length non-binary data and does not apply to
ASCII fixed-width inserts. For example, assume this schema:

CREATE TABLE t(c1 VARCHAR(3));
LOAD TABLE t(c1 ',') STRIP RTRIM // trailing blanks
trimmed

LOAD TABLE t(c1 ',') STRIP OFF // trailing blanks
not trimmed

LOAD TABLE t(c1 ASCII(3)) ... STRIP RTRIM // trailing blanks
not trimmed
LOAD TABLE t(c1 ASCII(3)) ... STRIP OFF // trailing blanks
trimmed

LOAD TABLE t(c1 BINARY) STRIP RTRIM // trailing blanks
trimmed
LOAD TABLE t(c1 BINARY) STRIP OFF // trailing blanks
trimmed

Trailing blanks are always trimmed from binary data.

• WITH CHECKPOINT – determines whether SAP Sybase IQ performs a checkpoint.
This option is useful only when loading SQL Anywhere tables in an SAP Sybase IQ
database.

The default setting is OFF. If this clause is set to ON, a checkpoint is issued after
successfully completing and logging the statement. If the server fails after a connection
commits and before the next checkpoint, the data file used to load the table must be present
for the recovery to complete successfully. However, if WITH CHECKPOINT ON is
specified, and recovery is subsequently required, the data file need not be present at the
time of recovery.

The data files are required, regardless of what is specified for this clause, if the database
becomes corrupt and you need to use a backup and apply the current log file.

Warning! If you set the database option CONVERSION_ERROR to OFF, you may load
bad data into your table without any error being reported. If you do not specify WITH
CHECKPOINT ON, and the database needs to be recovered, the recovery may fail as
CONVERSION_ERROR is ON (the default value) during recovery. It is recommended
that you do not load tables when CONVERSION_ERROR is set to OFF and WITH
CHECKPOINT ON is not specified.

See also CONVERSION_ERROR Option [TSQL].

Appendix: SQL Reference

204 SAP Sybase IQ

• BYTE ORDER – specifies the byte order during reads. This option applies to all binary
input fields. If none are defined, this option is ignored. SAP Sybase IQ always reads binary
data in the format native to the machine it is running on (default is NATIVE). You can also
specify:

• HIGH when multibyte quantities have the high order byte first (for big endian
platforms like Sun, IBM AIX, and HP).

• LOW when multibyte quantities have the low order byte first (for little endian
platforms like Windows).

• LIMIT – specifies the maximum number of rows to insert into the table. The default is 0
for no limit. The maximum is 231 - 1 (2147483647) rows.

• NOTIFY – specifies that you be notified with a message each time the specified number of
rows is successfully inserted into the table. The default is 0, meaning no notifications are
printed. The value of this option overrides the value of the NOTIFY_MODULUS database
option.

• ON FILE ERROR – specifies the action SAP Sybase IQ takes when an input file cannot
be opened because it does not exist or you have incorrect permissions to read the file. You
can specify one of the following:

• ROLLBACK – aborts the entire transaction (the default).
• FINISH – finishes the insertions already completed and ends the load operation.
• CONTINUE – returns an error but only skips the file to continue the load operation.

Only one ON FILE ERROR clause is permitted.

• PREVIEW – displays the layout of input into the destination table including starting
position, name, and data type of each column. SAP Sybase IQ displays this information at
the start of the load process. If you are writing to a log file, this information is also included
in the log

• ROW DELIMITED BY delimiter-string – specifies a string up to 4 bytes in length that
indicates the end of an input record. You can use this option only if all fields within the row
are any of the following:

• Delimited with column terminators
• Data defined by the DATE or DATETIME column-spec options
• ASCII fixed length fields

Always include ROW DELIMITED BY to insure parallel loads. Omitting this clause from
the LOAD specification may cause SAP Sybase IQ to load serially rather than in parallel.

You cannot use this option if any input fields contain binary data. With this option, a row
terminator causes any missing fields to be set to NULL. All rows must have the same row
delimiters, and it must be distinct from all column delimiters. The row and field delimiter
strings cannot be an initial subset of each other. For example, you cannot specify “*” as a

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 205

field delimiter and “*#” as the row delimiter, but you could specify “#” as the field
delimiter with that row delimiter.

If a row is missing its delimiters, SAP Sybase IQ returns an error and rolls back the entire
load transaction. The only exception is the final record of a file where it rolls back that row
and returns a warning message. On Windows, a row delimiter is usually indicated by the
newline character followed by the carriage return character. You might need to specify this
as the delimiter-string (see above for description) for either this option or FILLER.

• SKIP – defines the number of rows to skip at the beginning of the input tables for this load.
The maximum number of rows to skip is 231 - 1 (2147483647). The default is 0. SKIP runs
in single-threaded mode as it reads the rows to skip.

• HEADER SKIP…HEADER DELIMITED BY – specifies a number of lines at the
beginning of the data file, including header rows, for LOAD TABLE to skip. All LOAD
TABLE column specifications and other load options are ignored, until the specified
number of rows is skipped.

• The number of lines to skip is greater than or equal to zero.
• Lines are determined by a 1 to 4 character delimiter string specified in the HEADER

DELIMITED BY clause. The default HEADER DELIMITED BY string is the ‘\n’
character.

• The HEADER DELIMITED BY string has a maximum length of four characters. An
error is returned, if the string length is greater than four or less than one.

• When a non-zero HEADER SKIP value is specified, all data inclusive of the HEADER
DELIMITED BY delimiter is ignored, until the delimiter is encountered the number of
times specified in the HEADER SKIP clause.

• All LOAD TABLE column specifications and other load options are ignored, until the
specified number of rows has been skipped. After the specified number of rows has
been skipped, the LOAD TABLE column specifications and other load options are
applied to the remaining data.

• The "header" bytes are ignored only at the beginning of the data. When multiple files
are specified in the USING clause, HEADER SKIP only ignores data starting from the
first row of the first file, until it skips the specified number of header rows, even if those
rows exist in subsequent files. LOAD TABLE does not look for headers once it starts
parsing actual data.

• No error is reported, if LOAD TABLE processes all input data before skipping the
number of rows specified by HEADER SKIP.

• WORD SKIP – allows the load to continue when it encounters data longer than the limit
specified when the word index was created.

If a row is not loaded because a word exceeds the maximum permitted size, a warning is
written to the .iqmsg file. WORD size violations can be optionally logged to the
MESSAGE LOG file and rejected rows logged to the ROW LOG file specified in the LOAD
TABLE statement.

Appendix: SQL Reference

206 SAP Sybase IQ

• If the option is not specified, LOAD TABLE reports an error and rolls back on the first
occurrence of a word that is longer than the specified limit.

• number specifies the number of times the “Words exceeding the maximum
permitted word length not supported” error is ignored.

• 0 (zero) means there is no limit.

• ON PARTIAL INPUT ROW – specifies the action to take when a partial input row is
encountered during a load. You can specify one of the following:

• CONTINUE issues a warning and continues the load operation. This is the default.
• ROLLBACK aborts the entire load operation and reports the error.

Partial input record skipped at EOF.
SQLSTATE: QDC32 SQLSTATE: -1000232L

• IGNORE CONSTRAINT – specifies whether to ignore CHECK, UNIQUE, NULL,
DATA VALUE, and FOREIGN KEY integrity constraint violations that occur during a
load and the maximum number of violations to ignore before initiating a rollback.
Specifying each constrainttype has the following result:

• CHECK limit – if limit specifies zero, the number of CHECK constraint violations to
ignore is infinite. If CHECK is not specified, the first occurrence of any CHECK
constraint violation causes the LOAD statement to roll back. If limit is nonzero, then the
limit +1 occurrence of a CHECK constraint violation causes the load to roll back.

• UNIQUE limit – if limit specifies zero, then the number of UNIQUE constraint
violations to ignore is infinite. If limit is nonzero, then the limit +1 occurrence of a
UNIQUE constraint violation causes the load to roll back.

• NULL limit – if limit specifies zero, then the number of NULL constraint violations to
ignore is infinite. If limit is nonzero, then the limit +1 occurrence of a NULL constraint
violation causes the load to roll back.

• FOREIGN KEY limit – if limit specifies zero, the number of FOREIGN KEY
constraint violations to ignore is infinite. If limit is nonzero, then the limit +1
occurrence of a FOREIGN KEY constraint violation causes the load to roll back.

• DATA VALUE limit – f the database option CONVERSION_ERROR = ON, an error
is reported and the statement rolls back. If limit specifies zero, then the number of
DATA VALUE constraint violations (data type conversion errors) to ignore is infinite.
If limit is nonzero, then the limit +1 occurrence of a DATA VALUE constraint violation
causes the load to roll back.

• ALL limit – if the database option CONVERSION_ERROR = ON, an error is reported
and the statement rolls back. If limit specifies zero, then the cumulative total of all
integrity constraint violations to ignore is infinite. If limit is nonzero, then load rolls
back when the cumulative total of all ignored UNIQUE, NULL, DATA VALUE, and
FOREIGN KEY integrity constraint violations exceeds the value of limit. For
example, you specify this IGNORE CONSTRAINT option:

IGNORE CONSTRAINT NULL 50, UNIQUE 100, ALL 200

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 207

The total number of integrity constraint violations cannot exceed 200, whereas the
total number of NULL and UNIQUE constraint violations cannot exceed 50 and 100,
respectively. Whenever any of these limits is exceeded, the LOAD TABLE statement
rolls back.

Note: A single row can have more than one integrity constraint violation. Every
occurrence of an integrity constraint violation counts towards the limit of that type of
violation.

Set the IGNORE CONSTRAINT option limit to a nonzero value if you are logging the
ignored integrity constraint violations. Logging an excessive number of violations
affects the performance of the load

If CHECK, UNIQUE, NULL, or FOREIGN KEY is not specified in the IGNORE
CONSTRAINT clause, then the load rolls back on the first occurrence of each of these
types of integrity constraint violation.

If DATA VALUE is not specified in the IGNORE CONSTRAINT clause, then the load
rolls back on the first occurrence of this type of integrity constraint violation, unless the
database option CONVERSION_ERROR = OFF. If CONVERSION_ERROR = OFF, a
warning is reported for any DATA VALUE constraint violation and the load continues.

When the load completes, an informational message regarding integrity constraint
violations is logged in the .iqmsg file. This message contains the number of integrity
constraint violations that occurred during the load and the number of rows that were
skipped.

• MESSAGE LOG – specifies the names of files in which to log information about integrity
constraint violations and the types of violations to log. Timestamps indicating the start and
completion of the load are logged in both the MESSAGE LOG and the ROW LOG files.
Both MESSAGE LOG and ROW LOG must be specified, or no information about
integrity violations is logged.

• If the ONLY LOG clause is not specified, no information on integrity constraint
violations is logged. Only the timestamps indicating the start and completion of the
load are logged.

• Information is logged on all integrity constraint-type violations specified in the ONLY
LOG clause or for all word index-length violations if the keyword WORD is specified.

• If constraint violations are being logged, every occurrence of an integrity constraint
violation generates exactly one row of information in the MESSAGE LOG file.
The number of rows (errors reported) in the MESSAGE LOG file can exceed the
IGNORE CONSTRAINT option limit, because the load is performed by multiple
threads running in parallel. More than one thread might report that the number of
constraint violations has exceeded the specified limit.

• If constraint violations are being logged, exactly one row of information is logged in
the ROW LOG file for a given row, regardless of the number of integrity constraint
violations that occur on that row.

Appendix: SQL Reference

208 SAP Sybase IQ

The number of distinct errors in the MESSAGE LOG file might not exactly match the
number of rows in the ROW LOG file. The difference in the number of rows is due to
the parallel processing of the load described above for the MESSAGE LOG.

• The MESSAGE LOG and ROW LOG files cannot be raw partitions or named pipes.
• If the MESSAGE LOG or ROW LOG file already exists, new information is appended

to the file.
• Specifying an invalid file name for the MESSAGE LOG or ROW LOG file generates

an error.
• Specifying the same file name for the MESSAGE LOG and ROW LOG files generates

an error.

Various combinations of the IGNORE CONSTRAINT and MESSAGE LOG options
result in different logging actions.

Table 3. LOAD TABLE Logging Actions

IGNORE CON-
STRAINT Speci-
fied?

MESSAGE LOG
Specified?

Action

yes yes All ignored integrity constraint violations are
logged, including the user specified limit, be-
fore the rollback.

no yes The first integrity constraint violation is logged
before the rollback.

yes no Nothing is logged.

no no Nothing is logged. The first integrity constraint
violation causes a rollback.

Tip: Set the IGNORE CONSTRAINT option limit to a nonzero value, if you are logging
the ignored integrity constraint violations. If a single row has more than one integrity
constraint violation, a row for each violation is written to the MESSAGE LOG file.
Logging an excessive number of violations affects the performance of the load.

• LOG DELIMITED BY – specifies the separator between data values in the ROW LOG
file. The default separator is a comma.

SAP Sybase IQ no longer returns an error message when FORMAT BCP is specified as a
LOAD TABLE clause. In addition, these conditions are verified and proper error messages
are returned

• If the specified load format is not ASCII, BINARY, or BCP, SAP Sybase IQ returns the
message “Only ASCII, BCP and BINARY are supported LOAD
formats.”

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 209

• If the LOAD TABLE column specification contains anything other than column name,
NULL, or ENCRYPTED, then SAP Sybase IQ returns the error message “Invalid
load specification for LOAD ... FORMAT BCP.”

• If the column delimiter or row terminator size for the FORMAT BCP load is greater
than 10 characters, then SAP Sybase IQ returns the message “Delimiter ‘%2’
must be 1 to %3 characters in length.” (where %3 equals 10).

Messages corresponding to error or warning conditions which can occur for FORMAT
BCP as well as FORMAT ASCII are the same for both formats.

• If the load default value specified is AUTOINCREMENT, IDENTITY, or GLOBAL
AUTOINCREMENT, SAP Sybase IQ returns the error “Default value %2
cannot be used as a LOAD default value. %1”

• If the LOAD TABLE specification does not contain any columns that need to be loaded
from the file specified, SAP Sybase IQ returns the error “The LOAD statement
must contain at least one column to be loaded from input
file.” and the LOAD TABLE statement rolls back.

• If a load exceeds the limit on the maximum number of terms for a text document with
TEXT indexes, SAP Sybase IQ returns the error “Text document exceeds
maximum number of terms. Support up to 4294967295 terms
per document.”

Examples

• Example 1 – load data from one file into the Products table on a Windows system. A
tab is used as the column delimiter following the Description and Color columns:

LOAD TABLE Products
(ID ASCII(6),
FILLER(1),
Name ASCII(15),
FILLER(1),
Description '\x09',
Size ASCII(2),
FILLER(1),
Color '\x09',
Quantity PREFIX 2,
UnitPrice PREFIX 2,
FILLER(2))
FROM 'C:\\mydata\\source1.dmp'
QUOTES OFF
ESCAPES OFF
BYTE ORDER LOW
NOTIFY 1000

• Example 2 – load data from a file a.inp on a client computer:

LOAD TABLE t1(c1,c2,filler(30))
USING CLIENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF
IGNORE CONSTRAINT UNIQUE 0, NULL 0

Appendix: SQL Reference

210 SAP Sybase IQ

MESSAGE LOG 'c:\\client-data\\m.log'
ROW LOG 'c:\\client-data\\r.log'ONLY LOG UNIQUE

• Example 3 – load data from two files into the product_new table (which allows NULL
values) on a UNIX system. The tab character is the default column delimiter, and the
newline character is the row delimiter:

LOAD TABLE product_new
(id,
name,
description,
size,
color '\x09' NULL('null', 'none', 'na'),
quantity PREFIX 2,
unit_price PREFIX 2)
FROM '/s1/mydata/source2.dump',
'/s1/mydata/source3.dump'
QUOTES OFF
ESCAPES OFF
FORMAT ascii
DELIMITED BY '\x09'
ON FILE ERROR CONTINUE
ROW DELIMITED BY '\n'

• Example 4 – ignore 10 word-length violations; on the 11th, deploy the new error and roll
back the load:

load table PTAB1(
 ck1 ',' null ('NULL') ,
 ck3fk2c2 ',' null ('NULL') ,
 ck4 ',' null ('NULL') ,
 ck5 ',' null ('NULL') ,
 ck6c1 ',' null ('NULL') ,
 ck6c2 ',' null ('NULL') ,
 rid ',' null ('NULL'))
FROM 'ri_index_selfRI.inp'
 row delimited by '\n'
 LIMIT 14 SKIP 10
 IGNORE CONSTRAINT UNIQUE 2, FOREIGN KEY 8
 word skip 10 quotes off escapes off strip
 off

• Example 5 – load data into table t1 from the BCP character file bcp_file.bcp using
the FORMAT BCP load option:

LOAD TABLE t1 (c1, c2, c3)
FROM ‘bcp_file.bcp’
FORMAT BCP
...

• Example 6 – load default values 12345 into c1 using the DEFAULT load option, and load
c2 and c3 with data from the LoadConst04.dat file:

LOAD TABLE t1 (c1 DEFAULT ‘12345 ’, c2, c3, filler(1))
FROM ‘LoadConst04.dat’
STRIP OFF
QUOTES OFF

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 211

ESCAPES OFF
DELIMITED BY ‘,’;

• Example 7 – load c1 and c2 with data from the file bcp_file.bcp using the FORMAT
BCP load option and set c3 to the value 10:

LOAD TABLE t1 (c1, c2, c3 DEFAULT ‘10’)
FROM ‘bcp_file.bcp’
FORMAT BCP
QUOTES OFF
ESCAPES OFF;

• Example 8 – this code fragment ignores one header row at the beginning of the data file,
where the header row is delimited by ‘&&’:

LOAD TABLE
...HEADER SKIP 1 HEADER DELIMITED by '&&'

• Example 9 – this code fragment ignores 2 header rows at the beginning of the data file,
where each header row is delimited by ‘\n’:

LOAD TABLE
...HEADER SKIP 2

• Example 10 – load a file into a RLV-enabled table.

Load data into RLV-enabled table rvt1 from the BCP character file bcp_file.bcp
using the FORMAT BCP load option:

LOAD TABLE rvt1 (c1, c2, c3)
FROM ‘bcp_file.bcp’
FORMAT BCP
...

Usage

The LOAD TABLE statement allows efficient mass insertion into a database table from a file
with ASCII or binary data.

The LOAD TABLE options also let you control load behavior when integrity constraints are
violated and to log information about the violations.

You can use LOAD TABLE on a temporary table, but the temporary table must have been
declared with ON COMMIT PRESERVE ROWS, or the next COMMIT removes the rows you
have loaded.

LOAD TABLE supports loading of large object (LOB) data.

SAP Sybase IQ supports loading from both ASCII and binary data, and it supports both fixed-
and variable-length formats. To handle all of these formats, you must supply a load-
specification to tell SAP Sybase IQ what kind of data to expect from each “column” or field in
the source file. The column-spec lets you define these formats:

Appendix: SQL Reference

212 SAP Sybase IQ

• ASCII with a fixed length of bytes. The input-width value is an integer indicating the fixed
width in bytes of the input field in every record.

• Binary or non-binary fields that use a number of PREFIX bytes (1, 2, or 4) to specify the
length of the input.
There are two parts related to a PREFIX clause:
• Prefix value – always a binary value.
• Associated data bytes – always character format; never binary format.
If the data is unloaded using the extraction facility with the TEMP_EXTRACT_BINARY
option set ON, you must use the BINARY WITH NULL BYTE parameter for each column
when you load the binary data.

• Variable-length characters delimited by a separator. You can specify the terminator as
hexadecimal ASCII characters. The delimiter-string can be any string of up to 4 characters,
including any combination of printable characters, and any 8-bit hexadecimal ASCII code
that represents a nonprinting character. For example, specify:
• '\x09' to represent a tab as the terminator.
• '\x00' for a null terminator (no visible terminator as in “C” strings).
• '\x0a' for a newline character as the terminator. You can also use the special character

combination of '\n' for newline.

Note: The delimiter string can be from 1 to 4 characters long, but you can specify only a
single character in the DELIMITED BY clause. For BCP, the delimiter can be up to 10
characters.

• DATE or DATETIME string as ASCII characters. You must define the input-date-format
or input-datetime-format of the string using one of the corresponding formats for the date
and datetime data types supported by SAP Sybase IQ. Use DATE for date values and
DATETIME for datetime and time values.

Table 4. Formatting Dates and Times

Option Meaning

yyyy or YYYY

yy or YY

Represents number of year. Default is current year.

mm or MM Represents number of month. Always use leading zero or blank for number of the
month where appropriate, for example, '05' for May. DATE value must include a
month. For example, if the DATE value you enter is 1998, you receive an error. If you
enter '03', SAP Sybase IQ applies the default year and day and converts it to
'1998-03-01'.

dd or DD

jjj or JJJ

Represents number of day. Default day is 01. Always use leading zeros for number of
day where appropriate, for example, '01' for first day. J or j indicates a Julian day (1 to
366) of the year.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 213

Option Meaning

hh

HH

Represents hour. Hour is based on 24-hour clock. Always use leading zeros or blanks
for hour where appropriate, for example, '01' for 1 am. '00' is also valid value for hour of
12 a.m.

nn Represents minute. Always use leading zeros for minute where appropriate, for ex-
ample, '08' for 8 minutes.

ss[.ssssss] Represents seconds and fraction of a second.

aa Represents the a.m. or p.m. designation.

pp Represents the p.m. designation only if needed. (This is an incompatibility with SAP
Sybase IQ versions earlier than 12.0; previously, “pp” was synonymous with “aa”.)

hh SAP Sybase IQ assumes zero for minutes and seconds. For example, if the DATETIME
value you enter is '03', SAP Sybase IQ converts it to '03:00:00.0000'.

hh:nn or hh:mm SAP Sybase IQ assumes zero for seconds. For example, if the time value you enter is
'03:25', SAP Sybase IQ converts it to '03:25:00.0000'.

Table 5. Sample DATE and DATETIME Format Options

Input data Format specification

12/31/98 DATE ('MM/DD/YY')

19981231 DATE ('YYYYMMDD')

123198140150 DATETIME ('MMDDYYhhnnss')

14:01:50 12-31-98 DATETIME ('hh:nn:ss MM-DD-YY')

18:27:53 DATETIME ('hh:nn:ss')

12/31/98 02:01:50AM DATETIME ('MM/DD/YY hh:nn:ssaa')

SAP Sybase IQ has built-in load optimizations for common date, time, and datetime formats.
If your data to be loaded matches one of these formats, you can significantly decrease load
time by using the appropriate format.

You can also specify the date/time field as an ASCII fixed-width field (as described above) and
use the FILLER(1) option to skip the column delimiter.

The NULL portion of the column-spec indicates how to treat certain input values as NULL
values when loading into the table column. These characters can include BLANKS, ZEROS,
or any other list of literals you define. When specifying a NULL value or reading a NULL
value from the source file, the destination column must be able to contain NULLs.

ZEROS are interpreted as follows: the cell is set to NULL if (and only if) the input data (before
conversion, if ASCII) is all binary zeros (and not character zeros).

Appendix: SQL Reference

214 SAP Sybase IQ

• If the input data is character zero, then:
1. NULL (ZEROS) never causes the cell to be NULL.
2. NULL ('0') causes the cell to be NULL.

• If the input data is binary zero (all bits clear), then:
1. NULL (ZEROS) causes the cell to be NULL.
2. NULL ('0') never causes the cell to be NULL.

For example, if your LOAD statement includes col1 date('yymmdd') null(zeros)
and the date is 000000, you receive an error indicating that 000000 cannot be converted to a
DATE(4). To get LOAD TABLE to insert a NULL value in col1 when the data is 000000, either
write the NULL clause as null('000000'), or modify the data to equal binary zeros and
use NULL(ZEROS).

If the length of a VARCHAR cell is zero and the cell is not NULL, you get a zero-length cell. For
all other data types, if the length of the cell is zero, SAP Sybase IQ inserts a NULL. This is
ANSI behavior. For non-ANSI treatment of zero-length character data, set the
NON_ANSI_NULL_VARCHAR database option.

Use the DEFAULT option to specify a load default column value. You can load a default value
into a column, even if the column does not have a default value defined in the table schema.
This feature provides more flexibility at load time.

• The LOAD TABLE DEFAULTS option must be ON in order to use the default value specified
in the LOAD TABLE statement. If the DEFAULTS option is OFF, the specified load default
value is not used and a NULL value is inserted into the column instead.

• The LOAD TABLE command must contain at least one column that needs to be loaded from
the file specified in the LOAD TABLE command. Otherwise, an error is reported and the
load is not performed.

• The specified load default value must conform to the supported default values for columns
and default value restrictions. The LOAD TABLE DEFAULT option does not support
AUTOINCREMENT, IDENTITY, or GLOBAL AUTOINCREMENT as a load default value.

• The LOAD TABLE DEFAULT default-value must be of the same character set as that of the
database.

• Encryption of the default value is not supported for the load default values specified in the
LOAD TABLE DEFAULT clause.

• A constraint violation caused by evaluation of the specified load default value is counted
for each row that is inserted in the table.

Another important part of the load-specification is the FILLER option. This option indicates
you want to skip over a specified field in the source input file. For example, there may be
characters at the end of rows or even entire fields in the input files that you do not want to add to
the table. As with the column-spec definition, FILLER specifies ASCII fixed length of bytes,
variable length characters delimited by a separator, and binary fields using PREFIX bytes.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 215

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not applicable.

Permissions

The permissions required to execute a LOAD TABLE statement depend on the database server
-gl command line option, as follows:

• -gl ALL – You must be the owner of the table, have ALTER or LOAD permission on the
table, or have the ALTER ANY TABLE, LOAD ANY TALBE, or ALTER ANY OBJECT
system privilege.

• -gl DBA – You must have the ALTER ANY TABLE, LOAD ANY TABLE, or ALTER
ANY OBJECT system privilege.

• -gl NONE – Execution of the LOAD TABLE statement is not permitted.

For more information on the -gl command line option, please refer Utility Guide > start_iq
Database Server Startup Utility > start_iq Server Options.

LOAD TABLE also requires a write lock on the table.

LOCK TABLE Statement
Prevents other concurrent transactions from accessing or modifying a table within the
specified time.

Syntax
LOCK TABLE table-list [WITH HOLD]
 IN { SHARE | WRITE | EXCLUSIVE } MODE [WAIT time]

table-list:
 [owner.] table-name [, [owner.] table-name, …]

Parameters

• table-name – must be a base table, not a view. WRITE mode is only valid for IQ base
tables. LOCK TABLE either locks all tables in the table list, or none. The table must not be
enabled for row-level versioning (RLV). If obtaining a lock for a SQL Anywhere table, or
when obtaining SHARE or EXCLUSIVE locks, you may only specify a single table.
Standard SAP Sybase IQ object qualification rules are used to parse table-name.

• WITH HOLD – the lock is held until the end of the connection. If the clause is not
specified, the lock is released when the current transaction is committed or rolled back.
Using the WITH HOLD clause in the same statement with WRITE MODE is unsupported
and returns the error SQLCODE=-131, ODBC 3 State="42000".

Appendix: SQL Reference

216 SAP Sybase IQ

• SHARE – prevents other transactions from modifying the table, but allows them read
access. In this mode, you can change data in the table as long as no other transaction has
locked the row being modified, either indirectly, or explicitly by using LOCK TABLE.

• WRITE – prevents other transactions from modifying a list of tables. Unconditionally
commits the connections outermost transaction. The transaction’s snapshot version is
established not by the LOCK TABLE IN WRITE MODE statement, but by the execution of
the next command processed by SAP Sybase IQ.

WRITE mode locks are released when the transaction commits or rolls back, or when the
connection disconnects.

• EXCLUSIVE – prevents other transactions from accessing the table. In this mode, no
other transaction can execute queries, updates of any kind, or any other action against the
table.

• WAIT time – specifies maximum blocking time for all lock types. This clause is
mandatory when lock mode is WRITE. When a time argument is given, the server locks
the specified tables only if available within the specified time. The time argument can be
specified in the format hh:nn:ss:sss. If a date part is specified, the server ignores it and
converts the argument into a timestamp. When no time argument is given, the server waits
indefinitely until a WRITE lock is available or an interrupt occurs.

Examples

• Example 1 – obtain a WRITE lock on the Customers and Employees tables, if
available within 5 minutes and 3 seconds:

LOCK TABLE Customers, Employees IN WRITE MODE WAIT
'00:05:03'

• Example 2 – wait indefinitely until the WRITE lock on the Customers and
Employees tables is available, or an interrupt occurs:

LOCK TABLE Customers, Employees IN WRITE MODE WAIT

Usage

LOCK TABLE statements run on tables in the IQ main store on the coordinator do not affect
access to those tables from connections on secondary servers. For example:

On a coordinator connection, issue the command:

LOCK TABLE coord1 WITH HOLD IN EXCLUSIVE MODE

sp_iqlocks on the coordinator confirms that the table coord1 has an exclusive (E) lock.

The result of sp_iqlocks run on a connection on a secondary server does not show the
exclusive lock on table coord1. The user on this connection can see updates to table
coord1 on the coordinator.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 217

Other connections on the coordinator can see the exclusive lock on coord1 and attempting to
select from table coord1 from another connection on the coordinator returns User DBA
has the row in coord1 locked.
LOCK TABLE on views is unsupported. Attempting to lock a view acquires a shared schema
lock regardless of the mode specified in the command. A shared schema lock prevents other
transactions from modifying the table schema.

The Transact-SQL (T-SQL) stored procedure dialect does not support LOCK TABLE. For
example, this statement returns Syntax error near LOCK:

CREATE PROCEDURE tproc()
AS
BEGIN
COMMIT;
LOCK TABLE t1 IN SHARE MODE
INSERT INTO t1 VALUES(30)
END

The Watcom-SQL stored procedure dialect supports LOCK TABLE. The default command
delimiter is a semicolon (;). For example:

CREATE PROCEDURE tproc()
AS
BEGIN
COMMIT;
LOCK TABLE t1 IN SHARE MODE
INSERT INTO t1 VALUES(30)
END

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• SAP Sybase—Supported in Adaptive Server Enterprise. The WITH HOLD clause is not

supported in Adaptive Server Enterprise. Adaptive Server Enterprise provides a WAIT
clause that is not supported in SQL Anywhere.

Permissions

To lock a table in SHARE mode, SELECT privileges are required.

To lock a table in EXCLUSIVE mode, you must be the table owner or have any of the
following system privileges:

• ALTER ANY OBJECT
• INSERT ANY TABLE
• UPDATE ANY TABLE
• DELETE ANY TABLE
• ALTER ANY TABLE
• LOAD ANY TABLE

Appendix: SQL Reference

218 SAP Sybase IQ

• TRUNCATE ANY TABLE

.

TRUNCATE Statement
Deletes all rows from a table or materialized view without deleting the table definition.

Syntax

Syntax 1
TRUNCATE
 TABLE [owner.]table-name
 | MATERIALIZED VIEW owner.] materialized-view-name

Syntax 2
TRUNCATE TABLE [owner .]table
 [PARTITION partition-name
 | SUBPARTITION subpartition-name]

Parameters

• PARTITION – specifies which partition to truncate, and does not affect data in other
partitions.

Note: Specifying an RLV-enabled table in the PARTITION clause results in an error.

• SUBPARTITION – to truncate tables partitioned by a composite partitioning scheme.

Note: Specifying an RLV-enabled table in the SUBPARTITION clause results in an error.

Examples

• Example 1 – delete all rows from the Sale table:

TRUNCATE TABLE Sale

Usage

TRUNCATE is equivalent to a DELETE statement without a WHERE clause, except that each
individual row deletion is not entered into the transaction log. After a TRUNCATE TABLE
statement, the table structure and all of the indexes continue to exist until you issue a DROP
TABLE statement. The column definitions and constraints remain intact, and permissions
remain in effect.

The TRUNCATE statement is entered into the transaction log as a single statement, like data
definition statements. Each deleted row is not entered into the transaction log.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 219

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Supported by Adaptive Server Enterprise.

Permissions

Requires one of:

• TRUNCATE ANY TABLE system privilege.
• ALTER ANY TABLE system privilege.
• ALTER ANY OBJECT system privilege.
• TRUNCATE privilege on the table.
• You own the object.

For both temporary and base tables, you can execute TRUNCATE TABLE while other users
have read access to the table. This behavior differs from SQL Anywhere, which requires
exclusive access to truncate a base table. SAP Sybase IQ table versioning ensures that
TRUNCATE TABLE can occur while other users have read access; however, the version of the
table these users see depends on when the read and write transactions commit.

UPDATE Statement
Modifies existing rows of a single table, or a view that contains only one table.

Syntax
UPDATE table
 ... SET [column-name = expression, …
 ... [FROM table-expression,]
 ... [WHERE search-condition]
 ... [ORDER BY expression [ASC | DESC] , …]
 FROM table-expression

table-expression:

 table-spec
 | table-expression join-type table-spec [ON condition]
 | table-expression, …

Examples

• Example 1 – transfer employee Philip Chin (employee 129) from the sales department to
the marketing department:

UPDATE Employees
SET DepartmentID = 400
WHERE EmployeeID = 129;

• Example 2 – the Marketing Department (400) increases bonuses from 4% to 6% of each
employee’s base salary:

Appendix: SQL Reference

220 SAP Sybase IQ

UPDATE Employees
SET bonus = base * 6/100
WHERE DepartmentID =400;

• Example 3 – each employee gets a pay increase with the department bonus:

UPDATE Employees
SET emp.Salary = emp.Salary + dept.bonus
FROM Employees emp, Departments dept
WHERE emp.DepartmentID = dept.DepartmentID;

• Example 4 – another way to give each employee a pay increase with the department
bonus:

UPDATE Employees
SET emp.salary = emp.salary + dept.bonus
FROM Employees emp JOIN Departments dept
ON emp.DepartmentID = dept.DepartmentID;

Usage

The table on which you use UPDATE may be a base table or a temporary table.

Defaults on updates are honored for current user, user and current timestamp, and timestamp
only.

Each named column is set to the value of the expression on the right-hand side of the equal
sign. Even column-name can be used in the expression—the old value is used.

The FROM clause can contain multiple tables with join conditions and returns all the columns
from all the tables specified and filtered by the join condition and/or WHERE condition.

Using the wrong join condition in a FROM clause causes unpredictable results. If the FROM
clause specifies a one-to-many join and the SET clause references a cell from the “many” side
of the join, the cell is updated from the first value selected. In other words, if the join condition
causes multiple rows of the table to be updated per row ID, the first row returned becomes the
update result. For example:

UPDATE T1
SET T1.c2 = T2.c2
FROM T1 JOIN TO T2
ON T1.c1 = T2.c1

If table T2 has more than one row per T2.c1, results might be as follows:

T2.c1 T2.c2 T2.c3
1 4 3
1 8 1
1 6 4
1 5 2

With no ORDER BY clause, T1.c2 may be 4, 6, 8, or 9.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 221

• With ORDER BY T2.c3, T1.c2 is updated to 8.
• With ORDER BY T2.c3 DESC, T1.c2 is updated to 6.

SAP Sybase IQ rejects any UPDATE statement in which the table being updated is on the null-
supplying side of an outer join. In other words:

• In a left outer join, the table on the left side of the join cannot be missing any rows on joined
columns.

• In a right outer join, the table on the right side of the join cannot be missing any rows on
joined columns.

• In a full outer join, neither table can be missing any rows on joined columns.

For example, in this statement, table T1 is on the left side of a left outer join, and thus cannot
contain be missing any rows:

UPDATE T1
SET T1.c2 = T2.c4
FROM T1 LEFT OUTER JOIN T2
ON T1.rowid = T2.rowid

Normally, the order in which rows are updated does not matter. However, in conjunction with
the NUMBER(*) function, an ordering can be useful to get increasing numbers added to the
rows in some specified order. If you are not using the NUMBER(*) function, avoid using the
ORDER BY clause, because the UPDATE statement performs better without it.

In an UPDATE statement, if the NUMBER(*) function is used in the SET clause and the FROM
clause specifies a one-to-many join, NUMBER(*) generates unique numbers that increase, but
do not increment sequentially due to row elimination.

You can use the ORDER BY clause to control the result from an UPDATE when the FROM
clause contains multiple joined tables.

SAP Sybase IQ ignores the ORDER BY clause in searched UPDATE and returns a message that
the syntax is not valid ANSI syntax.

If no WHERE clause is specified, every row is updated. If you specify a WHERE clause, SAP
Sybase IQ updates only rows satisfying the search condition.

The left side of each SET clause must be a column in a base table.

Views can be updated provided the SELECT statement defining the view does not contain a
GROUP BY clause or an aggregate function, or involve a UNION operation. The view should
contain only one table.

Character strings inserted into tables are always stored in the case they are entered, regardless
of whether the database is case-sensitive or not. Thus a character data type column updated
with the string 'Value' is always held in the database with an uppercase V and the remainder of
the letters lowercase. SELECT statements return the string as 'Value.' If the database is not
case-sensitive, however, all comparisons make 'Value' the same as 'value,' 'VALUE,' and so on.
The IQ server may return results in any combination of lowercase and uppercase, so you
cannot expect case-sensitive results in a database that is case-insensitive (CASE IGNORE).

Appendix: SQL Reference

222 SAP Sybase IQ

Further, if a single-column primary key already contains an entry 'Value,' an INSERT of 'value'
is rejected, as it would make the primary key not unique.

If the update violates any check constraints, the whole statement is rolled back.

SAP Sybase IQ supports scalar subqueries within the SET clause, for example:

UPDATE r
SET r.o= (SELECT MAX(t.o)
FROM t ... WHERE t.y = r.y),
r.s= (SELECT SUM(x.s)
FROM x ...
WHERE x.x = r.x)
WHERE r.a = 10

SAP Sybase IQ supports DEFAULT column values in UPDATE statements. If a column has a
DEFAULT value, this DEFAULT value is used as the value of the column in any UPDATE
statement that does not explicitly modify the value for the column.

See CREATE TABLE Statement for details about updating IDENTITY/AUTOINCREMENT
columns, which are another type of DEFAULT column.

Standards

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—With these exceptions, syntax of the IQ UPDATE statement is generally

compatible with the Adaptive Server Enterprise UPDATE statement Syntax 1: SAP Sybase
IQ supports multiple tables with join conditions in the FROM clause.
Updates of remote tables are limited to SAP Sybase IQ syntax supported by CIS.

Permissions

Requires UPDATE privilege on the columns being modified.

See also
• CREATE TABLE Statement on page 168

Views
Use the system views to view the contents of the system tables.

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 223

SYSIQDBSPACE System View
Presents group information from ISYSIQDBSPACE in a readable format.

Column name Column type Description

dbspace_id small int Each dbspace in a database is as-
signed a unique number (dbspace
ID)

last_modified timestamp Time at which the dbspace's read-
write status was last modified

segment_type char(8) Segment type: Main, Temp or Msg

read_write char(1) 'T' – read writable; 'F' – read only

online char(1) 'T' – online; 'F' – offline

create_txn_id unsigned bigint Transaction ID that create the
dbspace

alter_txn_id unsigned bigint Transaction ID that last modified
read_write status

striping_on char(1) 'T' – disk striping on; 'F' – disk strip-
ing off

stripe_size_kb unsigned int Number of kilobytes written to each
file of the dbspace before the disk
striping algorithm moves to the next
dbfile

is_rlv_store char(1) 'T' – dbspace is a RLV store dbspace;
'F' – dbspace is a MIN,
SHARED_TEMP, or TEMPORA-
RY store dbspace.

Constraints on underlying system table:

Primary key (dbspace_id)

Foreign key (dbspace_id) references SYS.ISYSDBSPACE(dbspace_id)

Appendix: SQL Reference

224 SAP Sybase IQ

SYSIQRLVMERGEHISTORY System View
A log entry is added for each row-level versioning (RLV) enabled-table each time a merge
between the RLV store and the IQ main store begins. Log entries are updated when the merge
is complete.

Column Name Column Type Description

merge_id unsigned bigint Unique log entry identifier

table_id unsigned int Foreign key to the sys.systable
system table

start_time timestamp Time the merge started

end_time timestamp Time the merge ended

status char (9) STARTED | COMPLETED |
FAILED

return_code tinyint SQL code of the merge once
completed

merge_type char (9) The cause of the merge trigger:
 AUTOMATIC | DML | DDL |
SHUTDOWN | USER

merge_mode char (12) BLOCKING | NON-BLOCK-
ING

merge_detail varchar (255) Additional information, if pro-
vided, such as error information

rows_inserted unsigned bigint Number of rows that were in-
serted as a result of the merge

rows_updated unsigned bigint Number of rows that were up-
dated as a result of the merge

rows_deleted unsigned bigint Number of rows that were de-
leted as a result of the merge

rows_forwarded unsigned bigint Number of rows that were un-
committed at the time of the
merge

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 225

SYSIQRVLOG System View
Presents group information from ISYSIQRVLOG in a readable format. Each row in the
SYSIQRVLOG view corresponds to a log for a RLV-enabled table . The row with table_id 0
represents the server-wide commit log.

Column Name Column Type Description

stream_id unsigned int The log stream identifier.

table_id unsigned int Indicates the table the log
stream belongs to. NULL indi-
cates a commit log stream.

partition_low unsigned int Corresponds to the partition
map in use when that log was
last active.

partition_high int Corresponds to the partition
map in use when that log was
last active.

identity_location unsigned bigint Location of the log stream iden-
tity block.

SYSIQTAB System View
Presents group information from ISYSIQTAB in a readable format. Each row in the
SYSIQTAB view describes an IQ table.

ALTER VIEW "SYS"."SYSIQTAB"
as select * from SYS.ISYSIQTAB

Note: This view replaces the deprecated system view SYSIQTABLE.

Column name Column type Description

table_id unsigned int Each table is assigned a unique
number (the table number) that
is the primary key.

block_map hs_blockmapidentity For internal use.

block_map_size unsigned int For internal use.

vdo hs_vdoidentity For internal use.

vdoid_size unsigned int For internal use.

info_location hs_vdorecid Not used. Always zero.

Appendix: SQL Reference

226 SAP Sybase IQ

Column name Column type Description

info_recid_size unsigned int Not used. Always zero.

info_location_size unsigned int Not used. Always zero.

commit_txn_id unsigned bigint For internal use.

txn_id unsigned bigint For internal use.

update_time timestamp Last date and time the IQ table
was modified.

is_rlv char(1) 'T' – RLV storage is enabled on
the table; 'F' – RLV storage is
not enabled on the table.

Constraints on underlying system table:

Primary key (table_id)

Appendix: SQL Reference

Administration: In-Memory Row-Level Versioning 227

Appendix: SQL Reference

228 SAP Sybase IQ

Index
A
aggregation preference 3
AGGREGATION_PREFERENCE option 73
aliases

in the DELETE statement 185
ALLOW_SNAPSHOT_VERSIONING

all 32
row-level 32
table-level 32

ALLOW_SNAPSHOT_VERSIONING option 74
ALTER DBSPACE statement

syntax 148
ALTER TABLE statement

syntax 152
ALTER VIEW statement

RECOMPILE 152
Architecture 2
AUTOINCREMENT column default 168

B
backup 7
BASE_TABLES_IN_RLV option 75
blanks

trimming trailing 198
blocking 55, 57

viewing 58
BLOCKING option 55, 56, 76
blocking timeout

viewing 58
BLOCKING_TIMEOUT option 56, 76
buffer cache

monitoring with sp_iqsysmon 128
bulk load 198

C
catalog store

monitoring with 128
character sets

client file bulk load 198
CHECK conditions

about 168
CHECK ON COMMIT clause

referential integrity 168

client file bulk load
character sets 198
errors 198
rollback 198

collations
client file bulk load 198

columns
altering 152
constraints 168

concurrency
locking tables 216

connections
displaying information about 144

constraints 9–11
correlation names

in the DELETE statement 185
CREATE DBSPACE statement

syntax 165
CREATE EXTERNLOGIN statement

INSERT...LOCATION 195
CREATE SERVER statement

INSERT...LOCATION 195
CREATE TABLE statement

syntax 168

D
data types

dropping user-defined 187
database files

altering 148
creating 165

databases
loading data into 198

dbo user ID
views owned by 187

dbspaces
altering 148
creating 165
dropping 187
setting offline 148

DDL 15
deadlock 57

viewing 49
deadlocks 55

reporting 52

Index

Administration: In-Memory Row-Level Versioning 229

DELETE statement
syntax 185

deleting all rows from a materialized view 219
deleting all rows from a table 219
DML 9–11

tips 9
DROP DATATYPE statement

syntax 187
DROP DBSPACE statement

syntax 187
DROP DOMAIN statement

syntax 187
DROP EVENT

syntax 187
DROP FUNCTION statement

syntax 187
DROP INDEX statement

syntax 187
DROP MESSAGE

syntax 187
DROP PROCEDURE statement

syntax 187
DROP statement

syntax 187
DROP TABLE

IDENTITY_INSERT option 187
DROP TABLE statement

syntax 187
DROP VIEW statement

restriction 187
syntax 187

dropping
views 187

dropping partitions 152
durability 6

E

ENABLE_ASYNC_IO option 77
encryption

TDS password 196
events

dropping 187

F

files
dbspaces 148, 165
setting offline 148

setting online 148
Foreign key constraints 3
foreign keys

integrity constraints 168
unnamed 168

fragments 6
functions

dropping 187

G

Global temporary tables 3

H

HEADER SKIP option
LOAD TABLE statement 198

I

IDENTITY column
and DROP TABLE 187

IDENTITY_INSERT option
dropping tables 187

in-memory row-level (RLV)
about 1

indexes
dropping 187

INSERT
syntax 190

INSERT statement
WORD SKIP option 190

iqrlvmem startup switch 147

J

joins
deletes 185

L

LOAD TABLE statement
HEADER SKIP option 198
new syntax 198
ON PARTIAL INPUT ROW option 198
performance 198
QUOTES option 198
STRIP keyword 198

Index

230 SAP Sybase IQ

syntax 198
syntax changes 198
USING keyword 198

LOB 3
Local temporary tables 3
local write-intent 14
LOCK TABLE

syntax 216
locking

tables 216
locks

displaying 114

M
materialized view

truncating 219
materialized views

dropping 187
memory 61

monitor 62
monitoring with sp_iqsysmon 128
size 61

Merge 4, 35
automated 35, 36
background 36
foreground 35
history 38
impact on table 40
IQMSG 39
logged phases 39
manual 37
phases 5
thresholds 36
troubleshoot 68–70

messages
dropping 187

monitor
sp_iqsysmon procedure 128

MPXServerName column 104
multiplex

system procedures 104
multiplex databases

adding dbspaces 165

N
named pipes 198

O
offline

dbspaces 148

online
dbspaces 148

options
AGGREGATION_PREFERENCE 73
ALLOW_SNAPSHOT_VERSIONING 74
ENABLE_ASYNC_IO 77
RV_AUTO_MERGE_EVAL_INTERVAL 78
rv_max_active_subfragment_count 79
RV_MERGE_NODE_MEMSIZE 79
RV_MERGE_TABLE_NUMROWS 80
RV_RESERVED_DBSPACE_MBS 81
SNAPSHOT_VERSIONING 80, 82

P

partitioning 6
partitions

dropping 152
password

TDS encryption 196
password encryption

TDS 196
passwords

encryption 196
performance

monitoring 128
sp_iqsysmon procedure 128

persistence 6
prefetching

monitoring with sp_iqsysmon 128
procedures

dropping 187

Q

query 17, 18
behavior 17

R

read only
locking tables 216

REFERENCES clause 152
remote data access 220
remote server

connecting 195
restore 7
RESTRICT action 168

Index

Administration: In-Memory Row-Level Versioning 231

restrictions
aggregation preference 3
Foreign key constraints 3
Global temporary tables 3
Local temporary tables 3
REVERT_TO_V15_OPTIMIZER Option 3
RID stability 3
table size 3
Unique constraint 3
WORD index 3

REVERT_TO_V15_OPTIMIZER Option 3
RID stability 3
RLV

configure 21
configure, memory 22
configure, prerequisites 21

RLV dbspace
altering 23
configuring 21, 22
creating 23
deleting 26
file, adding 27
file, dropping 27
read-only 25
restrictions 8

RLV Dbspace
creating in multiplex 66
duplication 66
read-only 67
tables 67

RLV storage
configuring 21, 28
disabling, all base table 29
disabling, existing table 29
enabling, all base table 29
enabling, existing table 29
enabling, new table 28

RLV store 2, 4, 6
manual merge 37
merging with IQ main store 4, 5, 35
multiplex 66
out of memory 65
persistence log 8
thresholds for automated merge 36, 38

RLV Store 6, 7
query 17, 18

RLV Tables
troubleshoot 67

RLV-enabled table
foreign keys 68
text index 68
word index 68

row lock 12, 13
row-level lock

viewing 46
row-level snapshot versioning 30
Row-level snapshot versioning 16

configuring 30
row-level versioning 75
RV_AUTO_MERGE_EVAL_INTERVAL option

78
rv_max_active_subfragment_count option 79
RV_MERGE_NODE_MEMSIZE option 79
RV_MERGE_TABLE_MEMPERCENT option 80
RV_MERGE_TABLE_NUMROWS option 80
RV_RESERVED_DBSPACE_MB option 81

S
sa_conn_info 43
sa_report_deadlocks system procedure 52
schema lock 13
SELECT * 152
setting dbspaces online 148
snapshot versioning 32

row-level 30, 31
SNAPSHOT_VERSIONING 31
SNAPSHOT_VERSIONING option 82
sp_iqcolumn system procedure 102
sp_iqconnection 43
sp_iqconnection system procedure 104
sp_iqdbsize system procedure 107
sp_iqdbspace system procedure 109
sp_iqfile system procedure 111
sp_iqlocks 43, 46
sp_iqlocks system procedure 114
sp_iqmergerlvstore system procedure 117
sp_iqrlvmemory system procedure 118
sp_iqspaceinfo system procedure 119

sample output 119
sp_iqspaceused system procedure 120
sp_iqstatistics system procedure 122
sp_iqstatus system procedure 126

sample output 127
sp_iqsysmon system procedure 128
sp_iqtable system procedure 135
sp_iqtablesize system procedure 139
sp_iqtransaction 58

Index

232 SAP Sybase IQ

sp_iqtransaction system procedure 140
sp_iqwho system procedure 144
STRIP

LOAD TABLE keyword 198
STRIP option 198
subfragments 6
SYSIQDBSPACE system view 224
SYSIQRLVMERGEHISTORY system view 225
SYSIQRVLOG system view 226
SYSIQTAB system view 226
system procedures

sp_iqcolumn 102
sp_iqconnection 104
sp_iqdbsize 107
sp_iqfile 111
sp_iqspaceinfo 119
sp_iqspaceused 120
sp_iqstatistics 122
sp_iqstatus 126
sp_iqsysmon 128
sp_iqtable 135
sp_iqtablesize 139
sp_iqtransaction 140
sp_iqwho 144

system views
SYSIQDBSPACE 224
SYSIQITAB 226
SYSIQRLVMERGEHISTORY 225
SYSIQRVLOG 226

T
table constraints 168
table lock

viewing 43
table size 3
tables

altering 152
altering definition 152
creating 168
dropping 187
GLOBAL TEMPORARY 168
loading 198
locking 216
temporary 183
truncating 219

TDS
password encryption 196

temporary dbspaces
creating 165

temporary tables 183
creating 168

Terminology 1
trailing blanks

trimming 198
transaction log

TRUNCATE statement 219
transaction management

monitoring with sp_iqsysmon 128
transactions 11

blocking 55, 57
trimming trailing blanks 198
Troubleshoot 65

foreign keys 68
Hung transaction 70
Merge 68–70
multiplex 66
out of memory 65
recovery 70
RLV Dbspace 66, 67
RLV-enabled tables 67
word index 68
Write transaction 70

TRUNCATE statement
syntax 219

U

unique
constraint 168

Unique constraint 3
user-defined data types

dropping 187
users

displaying information about 144
USING

LOAD TABLE keyword 198
USING FILE clause

LOAD TABLE statement 198

V

versioning 30
views

altered tables in 152
deleting 187
dropping 187

Index

Administration: In-Memory Row-Level Versioning 233

W
WORD index 3
WORD SKIP option 190

INSERT statement 190

write-intent lock 12, 14
viewing 43

Index

234 SAP Sybase IQ

	Administration: In-Memory Row-Level Versioning
	Contents
	About In-Memory Row-Level Versioning
	In-Memory Row-Level Versioning Terminology
	In-Memory Row-Level Versioning Architecture
	In-Memory Row-Level Versioning Restrictions
	The Row-Level Versioning (RLV) Store
	The RLV Store Merge
	RLV Merge Phases

	RLV Store Partitioning
	Table Fragments and Subfragments

	RLV Store Persistence and Durability
	RLV Store Backup/Restore
	The RLV Dbspace
	RLV Dbspace Restrictions

	RLV Store Persistence Log
	Log Space Usage

	Data and Transaction Management
	Data Modification Language (DML)
	DML Best Practices
	Constraints
	Table Constraints
	Unique and Primary Key Constraints
	Referential Integrity Constraints

	Transaction Management
	Transactions

	Lock Management
	Schema Locks
	Row Locks
	Write-Intent Locks
	Table-Level DML Locking Considerations
	Row-Level DDL Locking Considerations

	Version Management
	Row ID Stability

	Query and the RLV Store
	Impact of Row-Level Versioning on Queries
	QP Output Details for RLV Tables

	Configure In-Memory Row-Level Versioning
	Configuration Prerequisites
	Configure RLV Memory
	Configure the RLV Dbspace
	Creating the RLV Dbspace
	Permitted ALTER DBSPACE Syntax for RLV Store
	Altering the RLV Store Dbspace to Read-only

	Dropping the RLV Dbspace
	Adding a File to the RLV Dbspace
	Dropping a File from the RLV Dbspace

	Configure RLV Storage on Tables
	Creating a New Table with RLV Storage Settings
	Enabling or Disabling RLV Settings for an Existing Table
	Configuring Default Storage for Tables

	Configure Snapshot Versioning
	Row-Level Snapshot Versioning
	Specifying Snapshot Versioning
	Restricting Snapshot Versioning

	Tutorial: Using Row-Level Versioning on a Table

	Merge RLV Store into IQ Main Store
	Automated Foreground Merge
	Setting Merge Trigger Thresholds
	Running a Manual Merge
	Viewing Merge History
	Logged Merge Phases in IQMSG File
	Post-Merge Table Fragments
	Tutorial: Using Row-Level Versioning on a Table

	Monitor Locks and Deadlocks
	Tutorial: Monitoring Write-Intent Locks
	Tutorial: Monitoring Row-Level Locks
	Tutorial: Monitoring Deadlocks
	Creating a Deadlock Reporting Event in Interactive SQL

	Manage Blocking in the RLV Store
	Enabling Connection Blocking
	Disabling Connection Blocking
	Setting the Blocking Timeout Threshold
	Transaction Blocking Deadlocks
	Tutorial: Monitoring Blocking

	Manage Memory for the RLV Store
	Configuring RLV Store Memory Size
	Monitoring RLV Memory Usage

	Appendix: Troubleshoot the RLV Store
	RLV Store Out of Memory
	Cannot Convert to Multiplex
	Cannot Create RLV Dbspace in Multiplex
	RLV Dbspace Already Exists
	Cannot Make RLV Dbspace Read-Only
	Cannot Create Table in RLV Dbspace
	Cannot Enable Table for RLV Storage
	Cannot Use Foreign Keys in RLV Enabled Table
	Cannot Use Index Type in RLV Enabled Table
	Merge Required Before Table Level Modification
	Cannot Perform Merge of RLV Store
	RLV Store Merge Already in Progress
	Cannot Open the Requested Object for Write in the Current Transaction
	Transaction Seems to Hang
	Failed RLV Recovery

	Appendix: SQL Reference
	Database Options
	AGGREGATION_PREFERENCE Option
	ALLOW_SNAPSHOT_VERSIONING Option
	BASE_TABLES_IN_RLV_STORE Option
	BLOCKING Option
	BLOCKING_TIMEOUT Option
	ENABLE_ASYNC_IO Option
	LOG_DEADLOCKS Option
	RV_AUTO_MERGE_EVAL_INTERVAL Option
	RV_MAX_ACTIVE_SUBFRAGMENT_COUNT Option
	RV_MERGE_NODE_MEMSIZE Option
	RV_MERGE_TABLE_MEMPERCENT Option
	RV_MERGE_TABLE_NUMROWS Option
	RV_RESERVED_DBSPACE_MB Option
	SNAPSHOT_VERSIONING Option

	Procedures
	sa_conn_info system procedure
	sa_report_deadlocks System Procedure
	sa_server_option System Procedure
	sp_iqcolumn Procedure
	sp_iqcolumn Procedure Example

	sp_iqconnection Procedure
	sp_iqdbsize Procedure
	sp_iqdbspace Procedure
	sp_iqfile Procedure
	sp_iqlocks Procedure
	sp_iqmergerlvstore Procedure
	sp_iqrlvmemory Procedure
	sp_iqspaceinfo Procedure
	sp_iqspaceused Procedure
	sp_iqstatistics Procedure
	sp_iqstatus Procedure
	sp_iqsysmon Procedure
	sp_iqtable Procedure
	sp_iqtable Procedure Examples

	sp_iqtablesize Procedure
	sp_iqtransaction Procedure
	sp_iqwho Procedure
	sp_iqwho Procedure Example
	sp_iqwho compatibility with Adaptive Server Enterprise

	Server Startup Options
	-iqrlvmem start_iq Server Option

	SQL Statements
	ALTER DBSPACE Statement
	ALTER TABLE Statement
	CREATE DBSPACE Statement
	CREATE TABLE Statement
	DELETE Statement
	DROP Statement
	INSERT Statement
	LOAD TABLE Statement
	LOCK TABLE Statement
	TRUNCATE Statement
	UPDATE Statement

	Views
	SYSIQDBSPACE System View
	SYSIQRLVMERGEHISTORY System View
	SYSIQRVLOG System View
	SYSIQTAB System View

	Index

