SYBASE

Cmpy

.NET SDK Guide

Sybase Event Stream Processor
5.1

DOCUMENT ID: DC01619-01-0510-01

LAST REVISED: August 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Migration from Aleri Streaming Platformcccccoooooiees 1
Entity Lifecycles and Access Modesccceeveevveeeveiinnnnennn, 3
Starting the SDK ... 4
CoNNEeCtiNg t0 @ SEIVETeiiiieeiieeeeiee e 4
Getting and Connecting to a Projectcovvvvvvveeenneee. 5
PUDBIISRING oo 7
Publishing in Direct Access Modeccoeveveeviieeeeennnnn. 8
SUDSCIIDING Levtiiiiiiiiiiiiiiiiiie e 11
Subscribing to a Stream in Callback Mode.................... 11
Stopping the SDK ... 15
Failover Handling ... 17
F N I =] (=T =] Lo = S 19
N EX 21

.NET SDK Guide iii

Contents

iv Sybase Event Stream Processor

Migration from Aleri Streaming Platform

Migration from Aleri Streaming Platform

The SDK interface provided by Sybase® Event Stream Processor (ESP) differs from the SDK
interface provided in Aleri Streaming Platform (ASP). In Event Stream Processor, the SDK
has been modified for improved flexibility and performance, and to accommodate projects
running in a clustered environment.

Clusters and Projects

Because projects now run in a cluster, they are no longer accessed using the command and
control host and port. A project has a unique identity denoted by its URI which typically
consists of the cluster information, workspace name, and project name. The SDK takes care of
resolving the URI to the physical address internally. The project object in ESP loosely
corresponds to the platform object in ASP. There is no analogue of an ESP Server in the Pub/
Sub API.

Note: There are methods to connect to a standalone project but these should not be used as
they will be removed in a future release.

The ESP SDK includes new functionality to configure and monitor the cluster. There is no
counterpart for these in the ASP Pub/Sub API.

Access Modes

In the ASP Pub/Sub, the Platform and Publisher objects were accessed using synchronous
method calls. The Subscriber object required callback handlers. In ESP, this has changed. All
entities—that is server, project, publisher, and subscriber—can be accessed using either
DIRECT method calls or CALLBACK handlers. In addition, ESP introduces a third method
called SELECTION access.

DIRECT access is similar to the way old Platform and old Publisher objects were called in
ASP. Each call blocks until the task completes or results in an error. In ESP, you can use this
mode for Subscribers too.

In CALLBACK, users register handler functions and the SDK calls the functions when
anything of interest happens. This was the only way to work with subscribers in ASP. In ESP,
you can optionally use this method for other entities too.

The SELECT access mode lets you register multiple entities with a selector and have a single
thread wait for an event on any of those entities. Functionally, this is similar to the select/poll
mechanism of monitoring multiple file descriptors in a single thread.

Automatic Reconnection and Monitoring

In ASP, the Pub/Sub API supported automatic reconnection to a peer when working in hot-
active mode. ESP supports automatic reconnection but adds some additional functionality
when working in CALLBACK or SELECT access modes. Additional functionality includes

.NET SDK Guide 1

Migration from Aleri Streaming Platform

checking if a cluster or project has gone down and optionally monitoring the backend for
restarts.

Publishing

In DIRECT access mode, you can now optionally have the SDK spin a background thread
when publishing to lead to better throughput. When using ASP, tasks such as these had to be
done by the Pub/Sub user.

In ASP, a message was formatted using temporary storage (vectors) which needed to be filled
in before calling the Pub/Sub API to create the buffer. In ESP, this is avoided by writing
directly to a buffer. To create a message in the ESP SDK, users will indicate the start of a block
or row, then populate it in sequence. The fields must be filled in the same order as they appear
in the schema.

Subscribing

In ASP, the data from a message was available as a collection of objects. In the ESP SDK, that
step is skipped. Methods are provided to read the buffer directly as native data types or helper
objects (Money, BigDatetime, Binary). The data fields can be accessed in random order.

2 Sybase Event Stream Processor

Entity Lifecycles and Access Modes

Entity Lifecycles and Access Modes

The Sybase® Event Stream Processor .NET SDK offers the same functionality and uses the
same concepts as the C SDK. All entities exposed by the SDK have a common lifecycle.

User interaction in the Event Stream Processor (ESP) SDK is handled through entities the
SDK exposes. The main entities are Server, Project, Publisher, and Subscriber. These entities
correspond to the functional areas of the SDK. For example, the Server object represents a
running instance of a cluster, the Project corresponds to a single project deployed to the
cluster, the Publisher object deals with publishing data to a running project, and so on.

On initial retrieval, an entity is considered to be open. When an entity is open, you can retrieve
certain static information about it. To accomplish its assigned tasks, an entity has to connect to
the corresponding component in the cluster. A server connects to a running instance of a
cluster, and NetEspProject, NetEspPublisher, and NetEspSubscriber all connect to running
instances of a project in a cluster.

In the connected state, an entity can interact with the cluster components. Once an entity is
disconnected, it can no longer interact with the cluster but is still an active object in the SDK,
and can be reconnected to the cluster. Once an entity is closed, it is no longer available for

interaction and is reclaimed by the SDK. To reuse an entity that has closed, retrieve a fresh
copy of the entity.

For example, you can retrieve a Project object and connect it to a project in the cluster. If the
back-end project dies, the SDK Project receives a disconnected event. You can attempt to
reconnect manually, or, if you are using callback mode and your configuration supports it, the
SDK tries to reconnect automatically. Upon successful reconnection, the SDK generates a
connected event. If you actively close the entity, it disconnects from the back-end project and
the SDK reclaims the Project object. To reconnect, you first need to retrieve a new Project
object.

The SDK provides great flexibility in structuring access to the entities exposed by the API.
There are three modes that can be used to access entities: direct, callback, and select.

Direct access is the default mode when retrieving an entity. In this mode, all calls return when
an error occurs or the operation completes successfully. There are no events generated later, so
there is no need to have an associated event handler.

In callback access, an event handler must be associated with the request. Most calls to the
entity return immediately, but completion of the request is indicated by the generation of the
corresponding event. The SDK has two internal threads to implement the callback
mechanism. The update thread monitors all entities currently registered for callbacks for
applicable updates. If an update is found, an appropriate event is created and queued to the
dispatch thread. The dispatch thread calls the registered handlers for the user code to process
them.

.NET SDK Guide 3

Entity Lifecycles and Access Modes

The select access mode lets you multiplex various entities in a single user thread—somewhat
similar to the select and poll mechanisms available on many systems—to monitor file
descriptors. To register an entity, call the select_with(...) method on the entity you want to
monitor (NetEspServer, NetEspPublisher, NetEspSubscriber, or NetEspProject), passing in
the NetEspSelector instance together with the events to monitor for. Then, call the select(...)
method on the NetEspSelector instance, which blocks until a monitored update occurs in the
background. The function returns a list of NetEspEvent objects. First determine the category
(server, project, publisher, subscriber) of the event, then handle the appropriate event type. In
this mode, the SDK uses a single background update thread to monitor for updates. If detected,
the appropriate event is created and pushed to the NetEspSelector. The event is then handled in
your own thread.

Starting the SDK

Before performing operations, start the SDK.

1. Create an error message store for the following:
Net EspError error = new Net ESpError();
2. Get an instance of the .NET SDK and invoke the start method:

Net EspSdk s_sdk = Net EspSdk. get _sdk();
s_sdk. start (espError);

Connecting to a Server

When you have started the SDK, connect to a server.

Prerequisites
Start the SDK.

Task

1. Create a URI object:

Net EspUri uri = new Net EspUri ();
uri.set _uri("esp://nyserver:19011", error);

2. Create your credentials. The type of credentials depends on which security method is
configured with the cluster:

Net EspCredenti al s creds = new

Net EspCr edent i al s(Net EspCr edenti al s. NET_ESP_CREDENTI ALS _T. NET_ESP
_CREDENTI ALS _SERVER _RSA) ;

creds. set _user ("auser");

creds. set _password("1234");

creds. set _keyfile("..\\test_data\\keys\\client.peni);

4 Sybase Event Stream Processor

Entity Lifecycles and Access Modes

3. Set options:

Net EspServer Opti ons options = new Net EspServer Options();
opti ons. set _node(Net EspSer ver Opti ons. NET_ESP_ACCESS _MODE_T. NET_CA
LLBACK_ACCESS) ;

4. Connect to the server:

server new Net EspServer (uri, creds, options);
int rc server.connect(error);

Getting and Connecting to a Project

To publish or subscribe to data, get and connect to a project instance.

1. Get the project:

Net EspPr oj ect project = server.get_project(“workspacenane”,
“proj ect nane”,
error);

2. Connect to the project:
pr oj ect.connect (error);

.NET SDK Guide 5

Entity Lifecycles and Access Modes

6 Sybase Event Stream Processor

Publishing

Publishing

The SDK provides various options for publishing data to a project.
The steps involved in publishing data are:

1. Create a NetEspPublisher from a previously connected NetEspProject instance.

2. Create a NetEspMessageWriter for the stream to publish to. You can create multiple
NetEspMessageWriters from a single NetEspPublisher.

3. Create a NetEspRelativeRowWriter.

4. Format the data buffer to publish using NetEspRelativeRowWriter methods.

5. Publish the data.

While NetEspPublisher is thread-safe, NetEspMessageWriter and
NetEspRelativeRowWriter are not. Therefore, ensure that you synchronize access to the latter
two.

The SDK provides a number of options to tune the behavior of a NetEspPublisher. Specify
these options using NetEspPublisherOptions when creating the NetEspPublisher. Once
created, options cannot be changed. Like all other entities in the SDK, publishing also
supports the direct, callback, and select access modes.

In addition to access modes, the SDK supports internal buffering. When publishing is
buffered, the data is first written to an internal queue. This is picked up by a publishing thread
and then written to the ESP project. Buffering is possible only in direct access mode. Direct
and buffered publishing potentially provides the best throughput.

Two other settings influence publishing: batching mode and sync mode. Batching controls
how data rows are written to the socket. They can be written individually or grouped together
in either envelope or transaction batches. Envelopes group individual rows together to send to
the ESP project and are read together from the socket by the project. This improves network
throughput. Transaction batches, like envelope batches, are also written and read in groups.
However, with transaction batches, the ESP project only processes the group if all the rows in
the batch are processed successfully. If one fails, the whole batch is rolled back.

Sync mode settings control the publishing handshake between the SDK and the ESP project.
By default, the SDK sends data to the ESP project without waiting for acknowledgement. But
if sync mode is set to true, the SDK waits for acknowledgement from the ESP project before
sending the next batch of data. This provides an application level delivery guarantee, but it
reduces throughput.

Publishing in async mode improves throughput, but does not provide an application level
delivery guarantee. Since TCP does not provide an application level delivery guarantee either,
data in the TCP buffer could be lost when a client exits. Therefore, a commit must be executed
before a client exit when publishing in async mode.

.NET SDK Guide 7

Publishing

There are certain considerations to keep in mind when using callback or select mode
publishing. These modes are driven by the NET_ESP_PUBLISHER_EVENT_READY
event, which indicates that the publisher is ready to accept more data. In response, you can
publish data or issue a commit, but only one such action is permitted in response to a single
NET_ESP_PUBLISHER_EVENT_READY event.

Like all entities, if you intend to work in callback mode with a Publisher and want to get
notified, register the callback handler before the event is triggered. For example:

net _esp_publ i sher _options_set access_node(opti ons, CALLBACK ACCESS,
error);

net _esp_publ i sher_set _cal | back(publisher, events, callback, NULL,
error)

net _esp_publ i sher _connect (publisher, error);

Publishing in Direct Access Mode

Publishing in direct access mode is a multistep process that involves creating and connecting
to a publisher, then identifying the stream to publish to and the data to publish.

The following code snippets illustrate one way of publishing data. Adapt this sample as
necessary to suit your specific publishing scenario.

1. Create a publisher:

Net EspCredenti al s creds = new Net EspCredenti al s
(Net EspCredent i al s. NET_ESP_CREDENTI ALS_T. NET_ESP_CREDENTI ALS_USER
_PASSWORD) ;
creds. set _user("user");
creds. set _passwor d("password");
Net EspPubl i sher publisher = project.create_publisher(creds,
error);
2. Connect to the publisher:
Publ i sher. connect (error);
3. Get astream:
Net EspSt r eam st ream = proj ect.get_stream("WN2", error);
4. Get the Message Writer:
Net EspMessageWiter witer = publisher.get_nessage witer(stream
error);
5. Get and start the Row Writer, and set an opcode to insert one row:

Net EspRel ati veRowWiter rowmwiter =
writer.get_relative_rowwiter(error);
rowwiter.start_rowerror);
rowwiter.set_opcode(l, error);

6. Setthe column values sequentially, starting from the first column. Call the appropriate set
method for the data type of the column. For example, if the column type is string:

rc = rowiter.set_string(“some value”, error);

8 Sybase Event Stream Processor

Publishing

7. When you have set all column values, end the row:
rc = rowmmriter.end rowerror);

8. Publish the data:
rc = publisher.publish(witer, error);

.NET SDK Guide 9

Publishing

10 Sybase Event Stream Processor

Subscribing

Subscribing

The SDK provides various options for subscribing to a project.

The steps involved in subscribing to data using the SDK are:

1
2.
3.

Create a NetEspSubscriber from a previously connected NetEspProject instance.
Subscribe to streams.

In direct access mode, retrieve events using NetEspSubscriber.get_next_event(). In
callback and select access modes, the event is generated by the SDK and passed back to
user code.

For data events, retrieve NetEspMessageReader. This encapsulates a single message from
the ESP project. It may consist of a single data row or a transaction or envelope block with
multiple data rows.

Retrieve one or more NetEspRowReader. Use the methods in NetEspRowReader to read
in individual fields.

Subscribing to a Stream in Callback Mode

Subscribing in callback mode is a multistep process that involves creating a subscriber and
callback registry, connecting to the subscriber, and then subscribing to a stream.

The following code snippets illustrate one way of subscribing. Adapt this sample as necessary
to suit your particular subscription scenario.

1

Create a subscriber:

Net EspSubscri ber Opti ons opti ons = new Net EspSubscri ber Opti ons();
opti ons. set _node(Net EspSubscri ber Opti ons. NET_ESP_ACCESS _MODE_T. NE
T_CALLBACK_ACCESS) ;

Net EspSubscri ber subscriber =

proj ect.create_subscriber(options,error);

Create the callback registry:

Net EspSubscri ber. SUBSCRI BER_EVENT_CALLBACK cal | backl nst ance = new
Net EspSubscri ber. SUBSCRI BER_EVENT_CALLBACK(subscri ber _cal | back) ;
subscri ber. set _cal | back(Net EspSubscri ber. NET_ESP_SUBSCRI BER_EVENT
. NET_ESP_SUBSCRI BER_ EVENT_ALL, cal |l backlnstance, null, error);

Connect to the subscriber:

subscri ber. connect (error);

Subscribe to a stream:

subscri ber. subscri be_strean(stream error);

e Callback function implementation:

Public static void subscriber_call back(Net EspSubscri ber Event
event, Val ueType

.NET SDK Guide 11

Subscribing

data) {
switch (evt.getType())

case (uint)

(Net EspSubscri ber. NET_ESP_SUBSCRI BER_EVENT. NET_ESP_SUBSCRI BER
EVENT_CONNECTED) :

Consol e. Wi teLine("the call back happened
connected!");

br eak;
(uint)
(Net EspSubscri ber. NET_ESP_SUBSCRI BER_EVENT. NET_ESP_SUBSCRI BER
_EVENT_DATA)

/1 hand| eDat a

br eak;

defaul t:
br eak;

}//end subscriber_cal | back
handleData implementation:

Net EspRowReader row_reader = null
while ((row_reader = evt.get MessageReader (). next_row(error)) !=
nul) {

for (int i =0; i < schema.get_nuntol ums(); ++i)
{
if (rowreader.is null (i) == 1) {
Console. Wite("null, ");
conti nue;
sw tch

(Net EspSt ream get Type(schena. get _colum_type((uint)i, error)))
{

case
Net EspSt r eam NET_DATA TYPE_T. NET_ESP_DATATYPE_| NTECER
ival ue = row_reader. get _i nteger (i
error);
Console. Wite(ivalue + ", ");
br eak;
case
Net EspSt r eam NET_DATA TYPE T. NET_ESP_DATATYPE_LONG
| val ue = row_reader.get_long(i, error);
Console. Wite(lvalue + ", ");
br eak;
case
Net EspSt r eam NET_DATA TYPE T. NET_ESP_DATATYPE_FLOAT:
fvalue = row_reader.get _float (i
error);
Console. Wite(fvalue + ", ");
br eak;
case
Net EspSt r eam NET_DATA TYPE_T. NET_ESP_DATATYPE_STRI NG
sval ue = row_reader.get_string(i,
error);
Consol e. Wi te(sval ue);

12

Sybase Event Stream Processor

Subscribing

br eak;
case
Net EspSt r eam NET_DATA TYPE T. NET_ESP_DATATYPE_DATE:
dval ue = row_reader.get_date(i, error);
Consol e. Wite(dvalue + ", ");
br eak;
case
Net EspSt r eam NET_DATA TYPE T. NET_ESP_DATATYPE_TI MESTAMP:
tval ue = row_reader. get _tinestanp(i,
error);
Console. Wite(tvalue + ", ");
br eak;
case
Net EspSt r eam NET_DATA TYPE_T. NET_ESP_DATATYPE_BOOLEAN:
bool val ue = row_r eader. get _bool ean(i,
error);
Consol e. Wite(boolvalue + ", ");
br eak;
case
Net EspSt r eam NET_DATA TYPE T. NET_ESP_DATATYPE_BI NARY:
ui nt buffersize = 256;
bi nval ue = row_reader.get _binary(i,
buf f ersi ze, error);

Consol e. Wite(System Text. Encodi ng. Def aul t. Get Stri ng(bi nval ue)
+"");
br eak;
case
Net EspSt r eam NET_DATA_TYPE_T. NET_ESP_DATATYPE_| NTERVAL:
i nterval ue = row_reader.get_interval (i,
error);
Console. Wite(intervalue + ", ");
br eak;
case
Net EspSt r eam NET_DATA TYPE T. NET_ESP_DATATYPE_MONEYO1:
mon = row_r eader. get _noney(i, error);
Consol e. Wite(non.get _long(error) + ",

") ¢

br eak;
case
Net EspSt r eam NET_DATA_TYPE_T. NET_ESP_DATATYPE_MONEYO02:
| val ue =
row_r eader.get _noney_as_l ong(i, error);
Console. Wite(lvalue + ", ");
br eak;
case

Net EspSt r eam NET_DATA _TYPE_T. NET_ESP_DATATYPE_MONEYO03:
non = row_reader.get_noney(i, error);
Consol e. Wite(non.get_|ong(error) + ",
")
br eak;
case
Net EspSt r eam NET_DATA_TYPE_T. NET_ESP_DATATYPE_MONEY10:
nmon = row_r eader. get _noney(i, error);

Consol e. Wite(mon.get _long(error) + ",

)¢

.NET SDK Guide 13

Subscribing

br eak;
case
Net EspSt r eam NET_DATA TYPE T. NET_ESP_DATATYPE_MONEY15:
mon = row_r eader. get _noney(i, error)
Consol e. Wite(non.get _long(error) + ",
")
br eak;
case
Net EspSt ream NET_DATA TYPE_T. NET_ESP_DATATYPE_BI GDATETI ME
bdt2 = row_r eader. get _bi gdatetine(i,

error);
| ong usecs =
bdt 2. get _mi croseconds(error);
Console. Wite(usecs + ", ");
br eak;
}
}
}
rc = subscri ber. di sconnect (error);
}

14 Sybase Event Stream Processor

Stopping the SDK

Stopping the SDK

When your operations are complete, stop the .NET SDK to free up resources.

To stop the .NET SDK, use:
s_sdk. st op(espError);

.NET SDK Guide 15

Stopping the SDK

16 Sybase Event Stream Processor

Failover Handling

Failover Handling

The SDK supports either fully transparent or automatic failover in a number of situations.

¢ Cluster failover s—the URIs used to connect to a back-end component can include a list of
cluster manager specifications. The SDK maintains connections to these transparently. If
any one manager in the cluster goes down, the SDK tries to reconnect to another instance.
If connections to all known instances fail, the SDK returns an error. If working in callback
or select access modes, you can configure the SDK with an additional level of tolerance for
loss of connectivity. In this case, the SDK does not disconnect a NetEspServer instance
even if all known manager instances are down. Instead, it generates a
NET_ESP_SERVER_EVENT_STALE event. If it manages to reconnect after a
(configurable) number of attempts, it generates a
NET_ESP_SERVER_EVENT_UPTODATE event. Otherwise, it disconnects and
generates a NET_ESP_SERVER_EVENT_DISCONNECTED event.

* Project failover s—an Event Stream Processor cluster allows a project to be deployed with
failover. Based on the configuration settings, a cluster restarts a project if it detects that is
has exited (however, projects are not restarted if they are explicitly closed by the user). To
support this, you can have NetEspProject instances monitor the cluster for project restarts
and then reconnect. This works only in callback or select modes. A
NET_ESP_PROJECT_EVENT_STALE is generated when the SDK detects that the
project has gone down. If it is able to reconnect, it generates a
NET_ESP_PROJECT_EVENT_UPTODATE event. Otherwise, it generates a
NET_ESP_PROJECT EVENT_DISCONNECTED event.

* Active-active deployments— You can deploy a project in active-active mode. In this
mode, the cluster starts two instances of the project, a primary instance and a secondary
instance. Any data published to the primary instance is automatically mirrored to the
secondary instance. The SDK supports active-active deployments. When connected to an
active-active deployment, if the currently connected instance goes down, NetEspProject
tries to reconnect to the alternate instance. Unlike failovers, this happens transparently.
Therefore, if the reconnection is successful, there is no indication generated to the user. In
addition to NetEspProject, there is support for this mode when publishing and subscribing.
If subscribed to a project in an active-active deployment, the SDK does not disconnect the
subscription if the instance goes down. Instead, it generates a
NET_ESP_SUBSCRIBER_EVENT_DATA_LOST event. It then tries to reconnect to the
peer instance. If it is able to reconnect, the SDK resubscribes to the same streams.
Subscription clients then receive a NET_ESP_SUBSCRIBER_EVENT_SYNC_START
event, followed by the data events, and finally a
NET_ESP_SUBSCRIBER_EVENT_SYNC_END event. Clients can use this sequence
to maintain consistency with their view of the data if needed. Reconnection during
publishing is also supported but only if publishing in synchronous mode. It is not possible

.NET SDK Guide 17

Failover Handling

for the SDK to guarantee data consistency otherwise. Reconnection during publishing
happens transparently; there are no external user events generated.

18 Sybase Event Stream Processor

API| Reference

API Reference

Detailed information on methods, functions, and other programming building blocks is
provided in the API level documentation.

To access the API level documentation:

1. Navigateto<l nstal |l _Di r>\ESP-5_1\ doc\ sdk\ net .
2. Launchi ndex. htm .

.NET SDK Guide 19

API| Reference

20 Sybase Event Stream Processor

Index
A

access modes
callback 3
direct 3
select 3

C

callback mode
example 11
class details 19
connecting
to project 5
to server 4

D

direct access mode
example 8

E

example
publishing 8
subscribing 11

F

failover
active-active 17
cluster 17
project 17

fault tolerance 17

M

method details 19
modes of publishing
batching 7

sync 7
P
project
connecting 5
publishing to 7
publishing
example 8
improving throughput 7
in direct access mode 8
modes 7
to project 7
R
reference
classes 19
functions 19
methods 19
S
SDK
starting 4
stopping 15
server
connecting 4
subscribing
example 11
in callback mode 11
overview 11
to stream 11
U
URI

creating 4

Index

.NET SDK Guide

21

Index

22

Sybase Event Stream Processor

	.NET SDK Guide
	Contents
	Migration from Aleri Streaming Platform
	Entity Lifecycles and Access Modes
	Starting the SDK
	Connecting to a Server
	Getting and Connecting to a Project

	Publishing
	Publishing in Direct Access Mode

	Subscribing
	Subscribing to a Stream in Callback Mode

	Stopping the SDK
	Failover Handling
	API Reference
	Index

