Automatic partitioning is the creation of parallel instances of an element and splitting input data across these instances. This can improve the performance of an element and complex projects, which perform computationally expensive operations such as aggregation and joins.
You can create parallel instances of a delta stream, stream, window, or module. Reference streams, unions, inputs, adapters, splitters, and error streams cannot use partitioning.
The partitioning degree is the natural number of parallel instances you wish to create for a given element (delta stream, stream, window, or module). As an alternative to specifying the partitioning degree as a constant, you can specify it using an integer parameter with an optional default value. You can then provide the actual value for the parameter in the CCR project configuration file.
The partitioning function is effectively a demultiplexer which determines the target parallel instances for a given partitioning key. There are three valid types of partition functions: ROUNDROBIN, HASH, and CUSTOM. Choose a type based on the calculations you are performing on the input data. For example, ROUNDROBIN is sufficient for stateless operations like simple filters, but not for aggregation as this would produce differing results. HASH is necessary for grouping records together, but grouping may not evenly distribute the data across instances.
The CUSTOM partitioning function is defined as an inline function which does not take any parameters. This function creates an implicit global parameter called <targetName>_partitions where <targetName> represents the name of the current element you are partitioning and partitions is a fixed part of the parameter name. For example, if you are partitioning an output window called maxPriceW, use maxPriceW_partitions as the global parameter name. The value of this parameter is equal to the number of partitions.
The CUSTOM partitioning function returns an integer which determines the parallel instance that should receive a given event (row). A modulo operation applies to this result, which ensures that the returned instance number is greater than or equal to zero and is less than the number of available instances. This prevents runtime errors. For example, if you create three partitions, those partitions will have the IDs 0, 1, and 2.
BY priceW
{
integer hashValue := ascii(substr(priceW.isin,1,1));
return hashValue % maxPriceW_partitions;
}
You cannot apply the PARTITION BY clause to these elements: inputs, splitters, unions, reference streams, and adapters. Doing so results in a syntax error. However, you can partition these elements within a module that you are partitioning.
Here is an example of ROUNDROBIN partitioning on a CCL query with one input window (TradeWindow):
create input window TradeWindow
schema (
Ts BIGDATETIME,
Symbol STRING,
Price MONEY(2),
Volume INTEGER)
primary key (Ts);
create output window TradeOutWindow
schema (
Ts BIGDATETIME,
Symbol STRING,
Price MONEY(2),
Volume INTEGER)
primary key (Ts)
PARTITION
by TradeWindow ROUNDROBIN
PARTITIONS 2
as
SELECT * FROM TradeWindow
WHERE TradeWindow.Volume > 10000;
This
example partitions the output window, TradeOutWindow, using
ROUNDROBIN partitioning and creates two parallel instances.create input stream priceW schema (isin string, price money(2)); create output window maxPriceW schema (isin string, maxPrice money(2)) primary key deduced keep 5 minutes PARTITION by priceW HASH(isin) PARTITIONS 5 as SELECT upper(left(priceW.isin,1)) isin, max(priceW.price) maxPrice FROM priceW group by upper(left(priceW.isin,1));This example partitions the output window, maxPriceW, using HASH partitioning and creates five parallel instances.
create input window priceW
schema (isin string, price float) primary key (isin) keep 5 minutes;
create input window volumeW
schema (isin string, volume integer)
primary key (isin) keep 5 minutes;
create output window vwapW
primary key deduced keep 1 minute
PARTITION
by priceW HASH (isin)
PARTITIONS 2
as
SELECT priceW.isin, vwap(priceW.price, volumeW.volume) vwap_val
FROM priceW LEFT JOIN volumeW ON priceW.isin = volumeW.isin
group by priceW.isin;
This
example partitions the output window, vwapW, using HASH
partitioning and creates two parallel instances.create input window priceW
schema (isin string, price float)
primary key (isin) keep 5 minutes;
create input window volumeW
schema (isin string, volume integer)
primary key (isin) keep 5 minutes;
create output window vwapW
schema (isin string, vwap float)
primary key deduced
partition
by priceW {
return ascii(substr(priceW.isin,1,1)) % vwapW_partitions;
},
by volumeW {
return ascii(substr(volumeW.isin,1,1)) % vwapW_partitions;
}
partitions 2
as
SELECT priceW.isin, vwap(priceW.price, volumeW.volume) vwap_val
FROM priceW LEFT JOIN volumeW ON priceW.isin = volumeW.isin
group by priceW.isin;
This
example partitions the output window, vwapW, using
a CUSTOM partitioning function and creates two parallel instances.