
CCL Programmers Guide

Sybase Event Stream Processor
5.0

DOCUMENT ID: DC01612-01-0500-04
LAST REVISED: April 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Introduction to Sybase Event Stream
Processor ...1

Event Streams ..2
Event Stream Processor Compared to Databases2
Data-Flow Programming ...3
ESP Projects: Adapters, Streams, Windows, and

Continuous Queries ..4
Streams Versus Windows ...4
Schemas ...5
Inserts, Updates, and Deletes ..6
Product Components ..6
Input and Output Adapters ...7

Custom Adapters ..8
Authoring Methods ..8
Continuous Computation Language9
SPLASH ..10

CHAPTER 2: CCL Project Basics11
Order of Elements ..11
Comparing Streams, Windows, and Delta Streams11

Implicit Columns ...12
Input/Output/Local ..12

Windows ...14
Named Windows ...14
Unnamed Windows ...15
Retention ..15

Delta Streams ...17
Schemas ...17
Stores ..18

CCL Programmers Guide iii

Working with Adapters ..19
Receiving Data with Input Adapters19
Publishing Data with Output Adapters20

CHAPTER 3: Developing a Project in CCL21

CHAPTER 4: Language Components23
Datatypes ..23

Intervals ..26
Operators ..27
Expressions ...31
CCL Comments ..32
Case-Sensitivity ...33

CHAPTER 5: CCL Query Construction35
Filtering ...35
Unions ...36

Example: Merging Data from Streams or Windows36
Joins ...37

Key Field Rules ...39
Join Examples: ANSI Syntax ..40
Join Example: Comma-Separated Syntax42

Pattern Matching ..42
Aggregation ..43

CHAPTER 6: Advanced CCL Programming
Techniques ...45

Declare Blocks ...45
Typedefs ...46
Parameters ...47
Variables ...48

Contents

iv Sybase Event Stream Processor

Declaring Project Variables, Parameters, Datatypes,
and Functions ...50

Flex Operators ...50
Modularity ...51

Module Creation and Usage ...52
Example: Creating and Using Modules 53
Example: Parameters in Modules54

Data Recovery ..55
Log Store Optimization Techniques57

Error Streams ...57
Monitoring Streams for Errors59

CHAPTER 7: Statements ..61
ADAPTER START Statement ...61
ATTACH ADAPTER Statement ..62
CREATE DELTA STREAM Statement64
CREATE ERROR STREAM Statement66
CREATE FLEX Statement ..67
CREATE LIBRARY Statement ...70
CREATE LOG STORE Statement ..71
CREATE MEMORY STORE Statement73
CREATE MODULE Statement ...74
CREATE SCHEMA Statement ..76
DECLARE Statement ...77
CREATE STREAM Statement ..79
CREATE WINDOW Statement ...80
IMPORT Statement ..83
LOAD MODULE Statement ..84

CHAPTER 8: Clauses ..87
AGING Clause ..87
AS Clause ...88
CASE Clause ..89
IN Clause ..90

Contents

CCL Programmers Guide v

KEEP Clause ..91
OUT Clause ..93
PARAMETERS Clause ...94
PRIMARY KEY Clause ...95
SCHEMA Clause ..97
STORE Clause ..98
STORES Clause ...98

CHAPTER 9: Queries ..101
FROM Clause ...103

FROM Clause: Comma-Separated Syntax103
FROM Clause: ANSI Syntax104

GROUP BY Clause ...106
GROUP FILTER Clause ..107
GROUP ORDER BY Clause ...108
HAVING Clause ..109
MATCHING Clause ...110
ON Clause: Join Syntax ..112
SELECT Clause ..113
UNION Operator ...114
WHERE Clause ...116

CHAPTER 10: Functions ..119
User-Defined SPLASH Functions119
User-Defined External Functions120

External C/C++ Function Requirements120
Example: Using External C/C++ Functions122
Example: Using Java Functions124

Aggregate Functions ...126
any() ..127
avg() ..127
corr() ...128
covar_pop() ..129
covar_samp() ..130

Contents

vi Sybase Event Stream Processor

count() ...130
count(distinct) ...131
exp_weighted_avg() ..131
first() ..132
first_value() ...133
last() ..133
last_value() ...133
lwm_avg() ...133
max() ...134
meandeviation() ..135
median() ..135
min() ..136
nth() ..136
recent() ...137
regr_avgx() ...137
regr_avgy() ...138
regr_count() ..139
regr_intercept() ...139
regr_r2() ..140
regr_slope() ..140
regr_sxx() ..141
regr_sxy() ..142
regr_syy() ..142
stddev() ...143
stddeviation() ..143
stddev_pop() ...143
stddev_samp() ..144
sum() ...144
valueinserted() ..145
var_pop() ...145
var_samp() ..146
vwap() ... 146
weighted_avg() ...147
xmlagg() ..148

Scalar Functions ..148

Contents

CCL Programmers Guide vii

Numeric Functions ..149
acos() ...149
asin() ..149
atan() ...150
atan2() ...150
avgof() ..151
bitand() ...151
bitclear() ...152
bitflag() ...152
bitflaglong() ..153
bitmask() ..153
bitmasklong() ...154
bitnot() ..154
bitor() ...154
bitset() ..155
bitshiftleft() ...155
bitshiftright() ...156
bittest() ...156
bittoggle() ...157
bitxor() ..157
cbrt() ..158
ceil() ...158
compare() ..159
cos() ...159
cosd() ...160
cosh() ...160
distance() ...160
distancesquared() ..161
floor() ...162
isnull() ..162
length() ...163
ln() ..163
log2() ..164
log10() ..164
logx() ..165

Contents

viii Sybase Event Stream Processor

maxof() ...165
minof() ..165
nextval() ...166
pi() ..166
power() ...167
random() ..167
round() ...167
sign() ..168
sin() ..168
sinh() ..169
sqrt() ..169
tan() ...169
tand() ...170
tanh() ...170

String Functions ..171
int32() ...171
left() ..171
like() ...172
lower() ..172
ltrim() ...173
patindex() ...173
real() ..174
regexp_firstsearch() ...175
regexp_replace() ..175
regexp_search() ...176
replace() ...177
right() ...177
rtrim() ...178
string() ...178
substr() ...178
trim() ..179
trunc() ..179
upper() ...180

Conversion Functions ...180
ascii() ...180

Contents

CCL Programmers Guide ix

base64_binary() ...181
base64_string() ..181
cast() ..182
char() ...183
concat() ..183
extract() ..184
fromnetbinary() ..184
hex_binary() ...185
hex_string() ..185
msecToTime() ..186
secToTime() ...186
timeToMsec() ...186
timeToUsec() ..187
timeToSec() ..187
to_binary() ...188
to_bigdatetime() ...188
to_boolean() ...189
to_date() ..190
to_float() ...190
to_integer() ..191
to_interval() ..191
to_long() ...192
to_money() ...192
to_xml() ..193
tonetbinary() ..193
to_string() ..194
to_timestamp() ...196
usecToTime() ...196

XML Functions ..197
xmlconcat() ..197
xmlelement() ..197
xmlparse() ..198
xmlserialize() ..198

Date and Time Functions ..199
business() ..199

Contents

x Sybase Event Stream Processor

businessday() ...199
date() ...200
dateceiling() ..200
datefloor() ..202
datename() ..203
datepart() ...204
dateround() ..204
dayofmonth() ..206
dayofweek() ...206
dayofyear() ...207
hour() ...207
intdate() ..208
makebigdatetime() ...208
microsecond() ..210
minute() ..210
month() ..211
second() ...211
sysdate() ..212
systimestamp() ..212
unbigdatetime() ..212
undate() ...213
weekendday() ..213
year() ...214

Other Functions ...214
cacheSize() ...214
coalesce() ...216
dateint() ...216
deleteCache() ...217
exp() ..218
firstnonnull() ..219
get*columnbyindex() ...219
get*columnbyname() ...220
getCache() ..221
getData() ...222
getmoneycolumnbyindex() ..223

Contents

CCL Programmers Guide xi

getmoneycolumnbyname() ...224
getrowid() ..225
now() ...225
rank() ..226
recordDataToRecord ...226
recordDataToString ...226
sind() ...227
sysbigdatetime() ...227
totimezone() ..228

APPENDIX A: List of Keywords229

APPENDIX B: Date and Time Programming231
Time Zones ...231

Changes to Time Zone Defaults232
List of Time Zones ..232

Date/Time Format Codes ..240
Calendar Files ..244

Index ...247

Contents

xii Sybase Event Stream Processor

CHAPTER 1 Introduction to Sybase Event
Stream Processor

Sybase® Event Stream Processor enables you to create and run your own complex event
processing (CEP) applications to derive continuous intelligence from streaming event data in
real time.

Event Stream Processing and CEP
Event stream processing is a form of CEP, a technique for analyzing information about events,
in real time, for situational awareness. When vast numbers of event messages are flooding in,
it is difficult to see the big picture. With event stream processing, you can analyze events as
they stream in and identify emerging threats and opportunities as they happen. Event Stream
Processor Server filters, aggregates, and summarizes data to enable better decision making
based on more complete and timely information.

Event Stream Processor is not an end-user application, but an enabling technology that
provides tools that make it easy to develop and deploy both simple and complex projects. It
provides a highly scalable runtime environment in which to deploy those projects.

Event Stream Processor as a Development Platform
As a platform for developing CEP projects, Event Stream Processor provides high-level tools
for defining how events are processed and analyzed. Developers can work in either a visual or
text-oriented authoring environment. You can define logic that is applied to incoming events
to:

• Combine data from multiple sources, producing derived event streams that include richer
and more complete information.

• Compute value-added information to enable rapid decision making.
• Watch for specific conditions or patterns to enable instantaneous response.
• Produce high-level information, such as summary data, statistics, and trends to see the big

picture, or the net effect, of many individual events.
• Continuously recompute key operating values based on complex analysis of incoming

data.
• Collect raw and result data into a historical database for historical analysis and

compliance.

Event Stream Processor Runtime Environment
As an engine for an event-driven architecture (EDA), Event Stream Processor can absorb,
aggregate, correlate, and analyze events to produce new high-level events that can trigger
responses, and high-level information that shows the current state of the business. Event
Stream Processor:

CCL Programmers Guide 1

• Processes data continuously as it arrives
• Processes data before it is stored on disk, thus achieving extremely high throughput and

low latency, enabling better decision making based on more complete and timely
information

• Separates business logic from data management, making it easier to maintain the business
logic and reducing total cost of ownership

• Provides enterprise class scalability, reliability, and security

Event Streams
An business event is a message that contains information about an actual business event that
occurred. Many business systems produce events when things happen.

Examples of business events that are often transmitted as streams of event messages include:

• Financial market data feeds that transmit trade and quote events. Events may consist of
ticket symbol, price, quantity, time, and so on

• Radio Frequency Identification System (RFID) sensors that transmit events indicating that
an RFID tag was sensed nearby

• Click streams, which transmit a message (a click event) each time a user clicks a link,
button, or control on a Web site

• Transaction events, which occur each time a record is added to a database or updated in a
database

Many applications are already designed to produce events in real time, typically publishing
them on a message bus. Applications that are not designed in this way can be “event enabled”
using tools such as Sybase Replication Server®, which can monitor transaction logs to
produce a real-time stream of events based on application database updates .

Event Stream Processor Compared to Databases
Sybase Event Stream Processor complements traditional databases to help solve new classes
of problems where continuous, event-driven data analysis is required.

Event Stream Processor is not a replacement for databases. Databases excel at storing and
querying static data, and reliably processing transactions. However, databases are not
effective at continuously analyzing fast moving streams of data.

• Traditional databases must store all data on disk before beginning to process it.
• Databases do not use preregistered continuous queries. Database queries are "one-time-

only" queries. To ask a question ten times a second, you must issue the query ten times a
second. This model breaks down when one or more such queries need to be executed
continuously as polling the database faster results in a performance impact to the source
systems. Additionally, the polling approach has latency.

CHAPTER 1: Introduction to Sybase Event Stream Processor

2 Sybase Event Stream Processor

• Databases do not use incremental processing. Event Stream Processor can evaluate
queries incrementally as data arrives.

Event Stream Processor is not an in-memory database. It shares some traits with in-memory
databases in that it operates in and holds all data in memory, to achieve desired speed.
However, unlike an in-memory database, that is designed to efficiently process on-demand
queries, Event Stream Processor uses a data-flow architecture that is optimized for continuous
event-driven queries.

Data-Flow Programming
In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation processes an event only when it is received from
another operation. No other coordination is needed between operations.

Figure 1: Data-Flow Programming

CHAPTER 1: Introduction to Sybase Event Stream Processor

CCL Programmers Guide 3

ESP Projects: Adapters, Streams, Windows, and
Continuous Queries

An ESP project defines a set of event streams, any other required datasources, and the business
logic applied to incoming event data to produce results.

At its most basic level, a project consists of:

• Input streams and windows – where the input data flows into the project. An input stream
can receive incoming event data on an event-driven basis, and can also receive static or
semistatic sets of data that are loaded once or periodically refreshed.

• Adapters – connect an input stream or window to a datasource. Sybase Event Stream
Processor includes a large set of built-in adapters as well as an SDK that you can use to
build custom adapters. Adapters can also connect an output stream or window to a
destination.

• Derived streams and windows – take data from one or more streams or windows and
apply a continuous query to produce a new stream or window.

Getting Results from an ESP Project
Event Stream Processor has four ways to get output from a running project:

• Applications receive information automatically from internal output adapters attached to a
stream when you build the project.

• Applications can subscribe to data streams by means of an external subscriber, which users
can create using subscription APIs provided with the product.

• Users can start a new project that binds (connects) to a stream in a running project, without
reconfiguring the project.

• Users can run on-demand queries using the esp_query tool to query output windows in a
running ESP project. For more information see the Utilities Guide.

See also
• Working with Adapters on page 19

Streams Versus Windows
Both streams and windows process events. The difference is that windows have state, meaning
they can retain and store data, while streams are stateless and cannot.

Streams process incoming events and produce output events according to the continuous
query that is attached to the stream, but no data is retained.

By contrast, a window consists of a table where incoming events can add rows, update existing
rows, or delete rows. You can set the size of the window based on time, or on the number of

CHAPTER 1: Introduction to Sybase Event Stream Processor

4 Sybase Event Stream Processor

events recorded. For example, a window might retain all events over the past 20 minutes, or the
most recent 1,000 events. A window can also retain all events. In this case, the incoming event
stream must be self-managing in that it contains events that both insert rows into the window
and delete rows from the window, so that the window does not grow infinitely large. Windows
are needed for performing aggregate operations, as this cannot be done on streams.

Input, Output, and Local Streams and Windows
Streams and windows can be designated as input, output, or local. Input streams are the point
at which data enters the project from external sources via adapters. A project may have any
number of input streams. Input streams do not have continuous queries attached to them,
although you can define filters for them.

Local and output streams and windows take their input from other streams or windows, rather
than from adapters, and they apply a continuous query to produce their output. Local streams
and windows are identical to output streams and windows, except that local streams and
windows are hidden from outside subscribers. Thus, when a subscriber selects which stream
or window to subscribe to, only output streams and windows are available.

Note: The visual authoring palette lists local and output streams as derived streams, and lists
local and output windows as derived windows.

See also
• Comparing Streams, Windows, and Delta Streams on page 11

Schemas
Each stream or window has a schema, which defines the columns in the events produced by the
stream or window.

Each column has a name and datatype. All events that output from a single stream or window
have an identical set of columns. For example:

• An input stream called RFIDRaw, coming out of an RFID reader, may have columns for a
ReaderID and a TagID, both containing string data.

• An input stream called Trades, coming from a stock exchange, may have columns for the
Symbol (string), Volume (integer), Price (float), and Time (datetime).

See also
• Schemas on page 17

• Receiving Data with Input Adapters on page 19

• Publishing Data with Output Adapters on page 20

CHAPTER 1: Introduction to Sybase Event Stream Processor

CCL Programmers Guide 5

Inserts, Updates, and Deletes
Operation Codes (opcodes) associate insert, update, and delete events with a window. They
simplify development and improve performance by applying these events automatically.

In many Event Stream Processor use cases, events are independent of each other: each carries
information about something that happened. In these cases, a stream of events is a series of
independent events. If you define a window on this type of event stream, each incoming event
is inserted into the window. If you think of a window as a table, the new event is added to the
window as a new row.

In other use cases, events deliver new information about previous events. The ESP Server
needs to maintain a current view of the set of information as the incoming events continuously
update it. Two common examples are order books for securities in capital markets, or open
orders in a fulfillment system. In both applications, incoming events may indicate the need
to:

• Add an order to the set of open orders,
• Update the status of an existing open order, or,
• Remove a cancelled or filled order from the set of open orders.

To handle information sets that are updated by incoming events, Event Stream Processor
recognizes insert, update, and delete operations associated with incoming events. You can tag
events with an opcode, a special field that indicates whether the event is an insert event, an
update event, or a delete event. There is also an upsert opcode, which either updates an existing
record with a matching key, or inserts a new record.

Input windows apply insert, update, and delete events to the data in the window directly, as
events arrive. Inserts, updates, and deletes are propagated through the query graph, that is, all
downstream derived windows. Thus, when an event updates or deletes a record in an input
window, it automatically applies to any downstream derived windows. This native handling of
updates and deletes provides high performance and simplicity. Users do not need to manually
define the logic to examine incoming events and determine how to apply them to a window.

Product Components
Event Stream Processor includes a server component for processing and correlating streams
of data, a Studio environment for developing, testing, and starting applications that run on the
server, and administrative tools.

Components include:

• ESP Server – the software that processes and correlates data streams at runtime. Event
Stream Processor can process and analyze hundreds of thousands of messages per second.
Clustering provides scale-out support to ESP Server. A server cluster lets users run

CHAPTER 1: Introduction to Sybase Event Stream Processor

6 Sybase Event Stream Processor

multiple projects simultaneously; provides high availability and failover; and lets you
apply centralized security and support for managing cluster connections.

• ESP Studio – an integrated development environment for creating, modifying, and testing
ESP projects.

• CCL compiler – the compiler that translates and optimizes projects for processing by ESP
Server. It is invoked by ESP Studio or from the command line.

• Input and output adapters – the components that establish connections between Event
Stream Processor and datasources, as well as the connections between the ESP Server and
the consumers that will receive output from Event Stream Processor.

• Integration SDK – a set of APIs for creating custom adapters in C/C++, Java, and .NET,
for integrating custom function libraries, and for managing and monitoring live projects.

• Utilities – a set of executables that offer command line access to many administrative,
project development, publishing and subscription, and other features.

Input and Output Adapters
Input and output adapters enable Event Stream Processor to send and receive messages from
dynamic and static external sources and destinations.

External sources or destinations can include:

• Data feeds
• Sensor devices
• Messaging systems
• Radio frequency identification (RFID) readers
• E-mail servers
• Relational databases

Input adapters connect to an external datasource and translate incoming messages from the
external sources into a format that is accepted by the ESP server. Output adapters translate
rows processed by Event Stream Processor into message formats that are compatible with
external destinations and send those messages downstream.

The following illustration shows a series of input adapters that translate messages from a
temperature sensor, bar code scanner, and a Java Message Service (JMS) cloud into formats
compatible with Event Stream Processor. After the data is processed using various queries
within Event Stream Processor, output adapters convert the result rows into updates that are
sent to an external database server, e-mail server, and Web services dashboard.

CHAPTER 1: Introduction to Sybase Event Stream Processor

CCL Programmers Guide 7

Figure 2: Adapters in Event Stream Processor

For a complete list of adapters supplied by Event Stream Processor, see the Adapters
Guide.

Custom Adapters
In addition to the adapters provided by Event Stream Processor, you can write your own
adapters to integrate into the server.

Event Stream Processor provides a variety of SDKs that allow you to write adapters in a
number of programming languages, including:

• C
• C++
• Java
• .NET (C#, Visual Basic, and so on)

For detailed information about how to create custom adapters, see the Adapters Guide. For
versions supported by these SDKs, see the Installation Guide.

Authoring Methods
Event Stream Processor Studio provides visual and text authoring environments for
developing projects.

In the visual authoring environment, you can develop projects using graphical tools to define
streams and windows, connect them, integrate with input and output adapters, and create a
project consisting of queries.

In the text authoring environment, you can develop projects in the Continuous Computation
Language (CCL), as you would in any text editor. Create data streams and windows, develop
queries, and organize them in hierarchical modules and projects.

CHAPTER 1: Introduction to Sybase Event Stream Processor

8 Sybase Event Stream Processor

You can easily switch between the Visual editor and the CCL editor at any time. Changes made
in one editor are reflected in the other. You can also compile projects within Studio.

In addition to its visual and text authoring components, Studio includes environments for
working with sample projects, and for running and testing applications with a variety of
debugging tools. Studio also lets you record and playback project activity, upload data from
files, manually create input records, and run ad hoc queries against the server.

If you prefer to work from the command line, you can develop and run projects using the
esp_server, esp_client, and esp_compiler commands. For a full list of Event Stream
Processor utilities, see the Utilities Guide.

Continuous Computation Language
CCL is the primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CCL supports sophisticated data selection and calculation capabilities, including features
such as: data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous
execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time an event arrives from one of its datasources.

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
an SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. ESP servers are
optimized for incremental processing, hence the query optimization is different than for
databases. Compilation is typically performed within Event Stream Processor Studio, but it
can also be performed by invoking the CCL compiler from the command line.

CHAPTER 1: Introduction to Sybase Event Stream Processor

CCL Programmers Guide 9

SPLASH
Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has
similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

See also
• Declare Blocks on page 45

• User-Defined SPLASH Functions on page 119

• CREATE FLEX Statement on page 67

CHAPTER 1: Introduction to Sybase Event Stream Processor

10 Sybase Event Stream Processor

CHAPTER 2 CCL Project Basics

Before you begin a project, be familiar with the order in which statements and clauses must
appear, project development, and the basics of streams and windows.

Order of Elements
Determine the order of CCL project elements based on clause and statement syntax definitions
and limitations.

Define CCL elements that are referenced by other statements or clauses before using those
statements and clauses. Failure to do so causes compilation errors.

For example, define a schema using a CREATE SCHEMA statement before a CCL CREATE
STREAM statement references that schema by name. Similarly, declare parameters and
variables in a declare block before any CCL statements or clauses reference those parameters
or variables.

You cannot reorder subclause elements within CCL statements or clauses.

Comparing Streams, Windows, and Delta Streams
Streams, windows, and delta streams offer different characteristics and features, but also share
common designation, visibility, and column parameters.

The terms "stateless" and "stateful" commonly describe the most significant difference
between windows and streams. A stateful element has the capacity to store information, while
a stateless element does not.

Feature Capabili-
ty

Streams Windows Delta Streams

Type of element Stateless Stateful, due to reten-
tion and store capabili-
ties

Stateless

Data retention None Yes, rows (based on re-
tention policy)

None

Available store types Not applicable Memory store or log
store

Not applicable

CCL Programmers Guide 11

Feature Capabili-
ty

Streams Windows Delta Streams

Element types that can
be derived from this el-
ement

Stream or a Window
with an aggregation
clause (GROUP BY)

Stream, Window, Delta
Stream

Stream, Window, Delta
Stream

Primary key Required No Yes, explicit or de-
duced

Yes, explicit or de-
duced

Support for aggrega-
tion operations

No Yes No

Behavior on receiving
update

Receives and produces
insert

Receives and produces
update

Receives and produces
update

Behavior on receiving
insert

Receives and produces
insert

Receives and produces
insert

Receives and produces
insert

Behavior on receiving
delete

Receives but ignores Receives and produces
delete

Receives and produces
delete

Streams, windows, and delta streams share several important characteristics, including
implicit columns and visibility rules.

See also
• Windows on page 14
• Streams Versus Windows on page 4

Implicit Columns
All streams, windows, and delta streams use three implicit columns called ROWID,
ROWTIME, and BIGROWTIME.

• ROWID – provides a unique row identification number for each row of incoming data.
• ROWTIME – provides the last modification time as a date with second precision.
• BIGROWTIME – provides the last modification time of the row with microsecond

precision. You can perform filters and selections based on these columns, like filtering out
all of those data rows that occur outside of business hours.

Input/Output/Local
You can designate streams, windows, and delta streams as input, output, or local.

Input/Output Streams and Windows
Input streams and windows can accept data from a source external to the project using an input
adapter or by connecting to an external publisher. You can attach an output adapter or connect
external subscribers directly to an input window or input stream. You can also use the SQL

CHAPTER 2: CCL Project Basics

12 Sybase Event Stream Processor

interface to SELECT rows from an input window, INSERT rows in an input stream or INSERT/
UPDATE/DELETE rows in an input window.

Output windows, streams and delta streams can publish data to an output adapter or an
external subscriber. You can use the SQL interface to query (that is SELECT) rows from an
output window.

Local streams, windows, and delta streams are invisible outside the project and cannot have
input or output adapters attached to them. You cannot subscribe to or use the SQL interface to
query the contents of local streams, windows, or delta streams.

Examples
This is an input stream with a filter:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE INPUT STREAM IStr2 SCHEMA mySchema
 WHERE IStr2.Col2='abcd';

This is an output stream:
CREATE OUTPUT STREAM OStr1
 AS SELECT A.Col1 col1, A.Col2 col2
 FROM IStr1 A;

This is an input window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE INPUT WINDOW IWin1 SCHEMA mySchema
 PRIMARY KEY(Col1)
 STORE myStore;

This is an output window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE OUTPUT WINDOW OWin1
 PRIMARY KEY (Col1)
 STORE myStore
 AS SELECT A.Col1 col1, A.Col2 col2
 FROM IWin1 A;

Local Streams and Windows
Use a local stream, window, or delta stream when the stream does not need an adapter, or to
allow outside connections. Local streams, windows, and delta streams are visible only inside
the containing CCL project, which allows for more optimizations by the CCL compiler.
Streams and windows that do not have a qualifier are local.

Note: A local window cannot be debugged because it is not visible to the ESP Studio run/test
tools such as viewer or debugger.

Examples
This is a local stream:

CHAPTER 2: CCL Project Basics

CCL Programmers Guide 13

CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE LOCAL STREAM LStr1
 AS SELECT i.Col1 col1, i.Col2 col2
 FROM IStr1 i;

This is a local window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE LOCAL WINDOW LWin1
 PRIMARY KEY (Col1)
 STORE myStore
 AS SELECT i.Col1 col1, i.Col2 col2
 FROM IStr1 i;

Windows
A window is a stateful element that can be named or unnamed, and retains rows based on a
defined retention policy.

See also
• Comparing Streams, Windows, and Delta Streams on page 11

Named Windows
A named window is explicitly created using a CREATE WINDOW statement, and can be
referenced in other queries.

Named windows can be classed as input, output, or local. An input window can send and
receive data through adapters. An output window can send data to an adapter. Both input and
output windows are visible externally and can be subscribed to or queried. A local window is
private and invisible externally. When a qualifier for the window is missing, it is presumed to
be of type local.

Table 1. Named Window Capabilities

Named Window
Type

Receives Data
From

Sends Data To Visible Externally

input Adapter or connector Adapter or connector
and other streams

Yes

output Other streams Adapter or connector
and other streams

Yes

local Other streams Other streams No

See also
• CREATE WINDOW Statement on page 80

CHAPTER 2: CCL Project Basics

14 Sybase Event Stream Processor

Unnamed Windows
An unnamed window is an implicitly created stateful element that cannot be referenced or
used elsewhere in a project.

An unnamed window is implicitly created when the KEEP clause is used with a source name in
the FROM clause of a statement. Refer to the KEEP Clause on page 91 topic for details on the
syntax.

Note: On a Delta Stream, only unnamed windows can be created by specifying the KEEP
clause from the FROM clause.

Examples
This example creates an unnamed window on the input Trades for the MaxTradePrice
window to keep track of a maximum trade price for all symbols seen within the last 10000
trades:

CREATE WINDOW MaxTradePrice
PRIMARY KEY DEDUCED
STORE S1
AS SELECT trd.Symbol, max(trd.Price) MaxPrice
FROM Trades trd KEEP 10000 ROWS
GROUP BY trd.Symbol;

This example creates an unnamed window on Trades, and MaxTradePrice keeps track
of the maximum trade price for all the symbols during the last 10 minutes of trades:

In both examples, Trades can be a delta stream, or a window.

See also
• CREATE WINDOW Statement on page 80
• KEEP Clause on page 91

Retention
A retention policy specifies the maximum number of rows or the maximum period of time that
data are retained in a window.

In CCL, you can specify a retention policy when defining a Window. You can also create an
Unnamed Window by specifying a retention policy on a Window or Delta Stream when it is
used as source to another element.

Retention is specified through the KEEP clause. You can limit the number of records in a
window based on either the number, or age, of records in the window. These methods are
referred to as count-based retention and time-based retention, respectively. If you do not
specify a retention policy, the window retains all records. Or, you can use the ALL modifier to
explicitly specify that the window should retain all records.

Specifying the KEEP clause with no modifier produces a Sliding Window, which deletes
individual rows once a maximum age is reached or the maximum number of rows are retained.

CHAPTER 2: CCL Project Basics

CCL Programmers Guide 15

Note: You can only specify retention on windows with memory-based stores. Retention on a
log file-based store is only supported for input windows or when data is exactly copied from its
source.

Count-based Retention
In a count-based policy, a constant integer specifies the maximum number of rows retained in
the window. You can use parameters in the count expression.

A count-based policy also defines an optional SLACK value, which can enhance performance
by requiring less frequent cleaning of memory stores. A SLACK value accomplishes this by
ensuring that there are no more than N + S rows in the window, where N is the retention size
and S is the SLACK value. When the window reaches N + S rows, the system purges S rows.
The larger the SLACK value, the better the performance, since there is less cleaning required.

The default value for SLACK is 1, which means that after the window reaches the maximum
number of records, every new record inserted deletes the oldest record. This causes a
significant impact on performance. Larger slack values improve performance by reducing the
need to constantly delete rows.

The following example creates a Sliding Window that retains the most recent 100 records that
match the filter condition. Once there are 100 records in the window, the arrival of a new
record causes the deletion of the oldest record in the window.

CREATE WINDOW Last100Trades PRIMARY KEY DEDUCED
KEEP 100 ROWS
AS SELECT * FROM Trades
WHERE Trades.Volume > 1000;

Adding the SLACK value of 10 means the window may contain as many as 110 records before
any records are deleted.

CREATE WINDOW Last100Trades PRIMARY KEY DEDUCED
KEEP 100 ROWS SLACK 10
AS SELECT * FROM Trades
WHERE Trades.Volume > 1000;

Time-based Retention
In a time-based policy, a constant interval expression specifies the maximum age of the rows
retained in the window.

The following example creates a Sliding Window that retains each record received for ten
minutes. As each individual row exceeds the ten minute retention time limit, it is deleted.

CREATE WINDOW RecentPositions PRIMARY KEY DEDUCED
KEEP 10 MINS
AS SELECT * FROM Positions;

See also
• Data Recovery on page 55
• KEEP Clause on page 91

CHAPTER 2: CCL Project Basics

16 Sybase Event Stream Processor

Delta Streams
Delta streams are stateless elements that can understand all opcodes.

You can use a delta stream anywhere you use a computation, filter, or union, but do not need to
maintain a state. A delta stream performs these operations more efficiently than a window
because it keeps no state, thereby reducing memory use and increasing speed.

Example
This example creates a delta stream named DeltaTrades that incorporates the getrowid
and now functions.
CREATE LOCAL DELTA STREAM DeltaTrades
 SCHEMA (
 RowId long,
 Symbol STRING,
 Ts bigdatetime,
 Price MONEY(2),
 Volume INTEGER,
 ProcessDate bigdatetime)
 PRIMARY KEY (Ts)
AS SELECT getrowid (TradesWindow) RowId,
 TradesWindow.Symbol,
 TradesWindow.Ts Ts,
 TradesWindow.Price,
 TradesWindow.Volume,
 now() ProcessDate
 FROM TradesWindow

CREATE OUTPUT WINDOW TradesOut
 PRIMARY KEY DEDUCED
AS SELECT * FROM DeltaTrades ;

Schemas
A schema defines the structure of data rows in a stream or window.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

Create a schema using the CREATE SCHEMA statement and associate it with a particular
stream or window. You can create inline schemas within the syntax you use to create streams
and windows, or create a named schema separately to reference later.

CHAPTER 2: CCL Project Basics

CCL Programmers Guide 17

Simple Schema CCL Example

This is an example of a CREATE SCHEMA statement used to create a named schema.
TradeSchema represents the name of the schema.

CREATE SCHEMA TradeSchema (
 Ts BIGDATETIME,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

This example uses a CREATE SCHEMA statement to make an inline schema:
CREATE STREAM trades SCHEMA (
 Ts bigdatetime,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

See also
• CREATE SCHEMA Statement on page 76

Stores
Set store defaults, or choose a log store or memory store to specify how data from a window is
saved.

If you do not set a default store using the CREATE DEFAULT STORE statement, each window
is assigned to a default memory store. You can use default store settings for store types and
locations if you do not assign new windows to specific store types.

Memory Stores
A memory store does not use persistence and stores all data in memory. Memory stores retain
the state of queries for a project from the most recent server start-up for as long as the project is
running. Because query state is retained in memory rather than on disk, access to a memory
store is faster than to a log store.

Use the CREATE MEMORY STORE statement to create memory stores. If no default store is
defined, new windows are automatically assigned to a memory store.

Log Stores
Use a log store to implement persistence, which logs all data to the disk, meaning it guarantees
data state recovery in the event of a failure.

Use the CREATE LOG STORE statement to create a log store. You can also set a log store as a
default store using the CREATE DEFAULT STORE statement, which overrides the default
memory store.

CHAPTER 2: CCL Project Basics

18 Sybase Event Stream Processor

Log store dependency loops are a concern when using log stores, as they cause compilation
errors. Log store loops can be created when you use multiple log stores in a project, and assign
windows to these stores. The recommended way to use a log store is to either assign log stores
to source windows only or to assign all windows in a stream path to the same store. If you use
logstore1 for n of those windows, then use logstore2 for a different window, you
should never use logstore1 again further down the chain. Put differently, if Window Y
assigned to Logstore B gets its data from Window X assigned to Logstore A, no window that
(directly or indirectly) gets its data from Window Y should be assigned to Logstore A.

See also
• Data Recovery on page 55

• CREATE MEMORY STORE Statement on page 73

• CREATE LOG STORE Statement on page 71

Working with Adapters
Determine the prerequisites for using Event Stream Processor-supplied adapters and custom
adapters.

See the Adapters Guide for detailed information about configuring individual adapters,
datatype mapping, and schema discovery.

See also
• ATTACH ADAPTER Statement on page 62

• CREATE SCHEMA Statement on page 76

• Parameters on page 47

Receiving Data with Input Adapters
Use an input adapter to pull information into the system from external data sources.

This is an overview of typical tasks to perform before attaching an input adapter to the ESP
Server, as well as an introduction to the ATTACH ADAPTER statement.

1. Assess the input data. Determine which sets or subsets of data you want to pull into the ESP
Server.

2. Choose an input adapter.

If the data source uses datatypes that are not supported by ESP Server, the Server maps the
data to valid datatypes. Review the associated mapping description for your adapter in the
Adapters Guide.

3. Configure your adapter.

CHAPTER 2: CCL Project Basics

CCL Programmers Guide 19

4. Create an input stream or window, and define the structure for the incoming data in its
schema clause; alternatively use the schematic discovery feature in the visual editor to
import the schematic and create an attached stream or window.

5. Use the ATTACH ADAPTER statement to attach your adapter to the Server stream or
window, and set values for the adapter properties.

The ATTACH ADAPTER statement includes parameters that allow adapter properties to be
modified at server runtime.

Note: You can bind only declared parameters to a new value when a module or project is
loaded.

Continue to build the model, assuming the input from the source is available through the
stream or window you have defined.

Publishing Data with Output Adapters
Perform these tasks before you attach an output adapter to an external data destination.

1. Assess the output data. Determine which sets or subsets of data to send to an external data
destination.

2. Choose an output adapter.

If the output destination uses datatypes that are not supported by ESP Server, the Server
maps the data to valid datatypes. Review the associated mapping description for your
adapter in the Adapters Guide.

3. Configure your adapter.

4. Create an output stream or window and define the structure for outgoing data.

5. Use the ATTACH ADAPTER statement to attach your adapter to the output stream or
window, and set values for the adapter properties.

The ATTACH ADAPTER statement includes parameters that allow adapter properties to be
modified at server runtime.

Note: You can bind only declared parameters to a new value when a module or project is
loaded.

Data flows through the output stream or window and is sent by the adapter to the external
data destination.

CHAPTER 2: CCL Project Basics

20 Sybase Event Stream Processor

CHAPTER 3 Developing a Project in CCL

Use the CCL Editor in ESP Studio, or another supported editor, to create and modify your
CCL code. Start by developing a simple project, and test it iteratively as you gradually add
greater complexity.

For details of these high-level steps, see the rest of this CCL Programmers Guide, as well as the
Studio Users Guide, the Adapters Guide, and the SPLASH Programmers Guide.

1. Create a .ccl file.

Creating a project in ESP Studio creates the .ccl file automatically.

2. Add input streams and windows.

3. Add output streams and windows with simple continuous queries.

4. Attach adapters to streams and windows to subscribe to external sources or publish output.

5. Compile the CCL code.

6. Run the compiled project against test data, using the debugging tools in ESP Studio and
command line utilities.

Repeat this step as often as needed.

7. Add queries to the project. Start with simple queries and gradually add complexity.

8. (Optional) Use functions in your continuous queries to perform mathematical operations,
aggregations, datatype conversions, and other common tasks:

• Built-in functions for many common operations
• User-defined functions written in the SPLASH programming language
• User-defined external functions written in C/C++ or Java

9. (Optional) Create named schemas to define a reusable data structure for streams or
windows.

10. (Optional) Create memory stores or log stores to retain the state of data windows in
memory or on disk.

11. (Optional) Create modules to contain reusable CCL that can be loaded multiple times in a
project.

CCL Programmers Guide 21

CHAPTER 3: Developing a Project in CCL

22 Sybase Event Stream Processor

CHAPTER 4 Language Components

To ensure proper language use in your CCL projects, familiarize yourself with rules on case-
sensitivity, supported datatypes, operators, and expressions used in CCL.

Datatypes
Sybase Event Stream Processor supports integer, float, string, money, long, and timestamp
datatypes for all of its components.

Datatype Description

integer A signed 32-bit integer. The range of allowed values is -2147483648 to
+2147483647 (-231 to 231-1). Constant values that fall outside of this
range are automatically processed as long datatypes.

To initialize a variable, parameter, or column with a value of
-2147483648, specify (-2147483647) -1 to avoid CCL compiler errors.

long A signed 64-bit integer. The range of allowed values is
-9223372036854775808 to +9223372036854775807 (-263 to 263-1).

To initialize a variable, parameter, or column with a value of
-9223372036854775808, specify (-9223372036854775807) -1 to
avoid CCL compiler errors.

float A 64-bit numeric floating point with double precision. The range of
allowed values is approximately -10308 through +10308.

string Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but can be no more than
65535 bytes.

money A legacy datatype maintained for backward compatibility. It is a signed
64-bit integer that supports 4 digits after the decimal point. Currency
symbols and commas are not supported in the input data stream.

CCL Programmers Guide 23

Datatype Description

money(n) A signed 64-bit numerical value that supports varying scale, from 1 to
15 digits after the decimal point. Currency symbols and commas are not
supported in the input data stream, however, decimal points are.

The supported range of values change, depending on the specified scale.

money(1): -922337203685477580.8 to 922337203685477580.7

money(2): -92233720368547758.08 to 92233720368547758.07

money(3): -9223372036854775.808 to 9223372036854775.807

money(4): -922337203685477.5808 to 922337203685477.5807

money(5): -92233720368547.75808 to 92233720368547.75807

money(6): -92233720368547.75808 to 92233720368547.75807

money(7): -922337203685.4775808 to 922337203685.4775807

money(8): -92233720368.54775808 to 92233720368.54775807

money(9): -9223372036.854775808 to 9223372036.854775807

money(10): -922337203.6854775808 to 922337203.6854775807

money(11): -92233720.36854775808 to 92233720.36854775807

money(12): -9223372.036854775808 to 9223,372.036854775807

money(13): -922337.2036854775808 to 922337.2036854775807

money(14): -92233.72036854775808 to 92233.72036854775807

money(15): -9223.372036854775808 to 9223.372036854775807

To initialize a variable, parameter, or column with a value of
-92,233.72036854775807, specify (-9...7) -1 to avoid CCL compiler
errors.

Specify explicit scale for money constants with Dn syntax, where n

represents the scale. For example, 100.1234567D7, 100.12345D5.

Implicit conversion between money(n) types is not supported be-

cause there is a risk of losing range or scale. Perform the cast function to
work with money types that have different scale.

CHAPTER 4: Language Components

24 Sybase Event Stream Processor

Datatype Description

bigdatetime Timestamp with microsecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSSSSS.

All numeric datatypes are implicitly cast to bigdatetime.

The rules for conversion vary for some datatypes:

• All boolean, integer, and long values are converted in

their original format to bigdatetime

• Only the whole-number portions of money(n) and float
values are converted to bigdatetime. Use the cast function to

convert money(n) and float values to bigdatetime
with precision.

• All date values are multiplied by 1000000 and converted to mi-

croseconds to satisfy bigdatetime format.

• All timestamp values are multiplied by 1000 and converted to

microseconds to satisfy bigdatetime format.

timestamp Timestamp with millisecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSS.

date Date with second precision. The default format is YYYY-MM-
DDTHH:MM:SS.

CHAPTER 4: Language Components

CCL Programmers Guide 25

Datatype Description

interval A signed 64-bit integer that represents the number of microseconds
between two timestamps. Specify an interval using multiple units

in space-separated format, for example, "5 Days 3 hours 15 Minutes".
External data that is sent to an interval column is assumed to be in
microseconds. Unit specification is not supported for interval
values converted to or from string data.

When an interval is specified, the given interval must fit in a 64-bit

integer (long) when it is converted to the appropriate number of

microseconds. For each interval unit, the maximum allowed val-

ues that fit in a long when converted to microseconds are:

• MICROSECONDS (MICROSECOND, MICROS): +/-
9223372036854775807

• MILLISECONDS (MILLISECOND, MILLIS): +/-
9223372036854775

• SECONDS(SECOND, SEC): +/- 9223372036854

• MINUTES(MINUTE, MIN): +/- 153722867280

• HOURS(HOUR,HR): +/- 2562047788

• DAYS(DAY): +/- 106751991

The values in parentheses are alternate names for an interval unit.

When the maximum value for a unit is specified, no other unit can be
specified or it causes an overflow. Each unit can be specified only once.

binary Represents a raw binary buffer. Maximum length of value is platform-
dependent, but can be no more than 65535 bytes. NULL characters are
permitted.

boolean Value is true or false. The format for values outside of the allowed range
for boolean is 0/1/false/true/y/n/on/off/yes/no, which is case-insen-

sitive.

See also
• cast() on page 182

Intervals
Interval syntax supports day, hour, minute, second, millisecond, and microsecond values.

Intervals measure the elapsed time between two timestamps, using 64 bits of precision. All
occurrences of intervals refer to this definition:
value | {value [{DAY[S] | {HOUR[S] | HR} | MIN[UTE[S]] | SEC[OND[S]]
| {MILLISECOND[S] | MILLIS} | {MICROSECOND[S] | MICROS}] [...]}

CHAPTER 4: Language Components

26 Sybase Event Stream Processor

If only value is specified, the timestamp default is MICROSECOND[S]. You can specify
multiple time units by separating each unit with a space, however, you can specify each unit
only once. For example, if you specify HOUR[S], MIN[UTE[S]], and SEC[OND[S]]
values, you cannot specify these values again in the interval syntax.

Each unit has a maximum value when not combined with another unit:

Time Unit Maximum Value Allowed

MICROSECOND[S] | MICROS 9,223,372,036,854,775,807

MILLISECOND[S] | MILLIS 9,233,372,036,854,775

SEC[OND[S]] 9,223,372,036,854,775

MIN[UTE[S]] 153,722,867,280,912

HOUR[S] | HR 2,562,047,788,015

DAY[S] 106,751,991,167

These maximum values decrease when you combine units.

Specifying value with a time unit means it must be a positive value. If value is negative, it
is treated as an expression. That is, -10 MINUTES in the interval syntax is treated as -(10
MINUTES). Similarly, 10 MINUTES-10 SECONDS is treated as (10 MINUTES)-(10
SECONDS).

The time units can be specified only in CCL. When specifying values for the interval column
using the API or adapter, only the numeric value can be specified and is always sent in
microseconds.

Examples
3 DAYS, 1 HOUR, 54 MINUTES

2 SECONDS, 12 MILLISECONDS, 1 MICROSECOND

Operators
CCL supports a variety of numeric, nonnumeric, and logical operator types.

Arithmetic Operators
Arithmetic operators are used to negate, add, subtract, multiply, or divide numeric values.
They can be applied to numeric types, but they also support mixed numeric types. Arithmetic
operators can have one or two arguments. A unary arithmetic operator returns the same
datatype as its argument. A binary arithmetic operator chooses the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data-type, and
returns that type.

CHAPTER 4: Language Components

CCL Programmers Guide 27

Operator Meaning Example Usage

+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (Remainder) 8%3

^ Exponent 4^3

- Change signs -3

++ Increment

Preincrement (++argument) value is incremented before it
is passed as an argument

Postincrement (argument++) value is passed and then in-
cremented

++a (preincrement)

a++ (postincre-
ment)

-- Decrement

Predecrement (--argument) value is decremented before it
is passed as an argument

Postdecrement (argument--) value is passed and then de-
cremented

--a (predecrement)

a-- (postdecrement)

Comparison Operators
Comparison operators compare one expression to another. The result of such a comparison
can be TRUE, FALSE, or NULL.

Comparison operators use this syntax:
expression1 comparison_operator expression2

Operator Meaning Example Us-
age

= Equality a0=a1

!= Inequality a0!=a1

<> Inequality a0<>a1

> Greater than a0!>a1

>= Greater than or equal to a0!>=a1

CHAPTER 4: Language Components

28 Sybase Event Stream Processor

Operator Meaning Example Us-
age

< Less than a0!<a1

<= Less than or equal to a0!<=a1

IN Member of a list of values. If the value is in the expression list's
values, then the result is TRUE.

a0 IN (a1, a2, a3)

Logical Operators

Operator Meaning Example Usage

AND Returns TRUE if all expressions are TRUE, and FALSE oth-
erwise.

(a < 10) AND (b >
12)

NOT Returns TRUE if all expressions are FALSE, and TRUE oth-
erwise.

NOT (a = 5)

OR Returns TRUE if any of the expressions are TRUE, and
FALSE otherwise.

(b = 8) OR (b = 6)

XOR Returns TRUE if one expression is TRUE and the other is
FALSE. Returns FALSE if both expressions are TRUE or both
are FALSE.

(b = 8) XOR (a > 14)

String Operators

Operator Meaning Example Usage

+ Concatenates strings and returns another string.

Note: The + operator does not support mixed datatypes (such
as an integer and a string).

'go' + 'cart'

LIKE Operators
May be used in column expressions and WHERE clause expressions. LIKE supports the use of
the LIKE and REGEXP_LIKE operators to match string expressions to strings that closely
resemble each other but do not exactly match.

CHAPTER 4: Language Components

CCL Programmers Guide 29

Operator Syntax and Meaning Example Usage

LIKE Matches WHERE clause string expressions to strings that
closely resemble each other but do not exactly match.

compare_expression LIKE pat-
tern_match_expression

The LIKE operator returns a value of TRUE if compare_ex-

pression matches pattern_match_expression, or FALSE if
it does not. The expressions can contain wildcards, where the
percent sign (%) matches any length string, and the under-
score (_) matches any single character.

Trades.StockName
LIKE "%Corp%"

[] Operator
The [] operator is only supported in the context of dictionaries and vectors.

Operator Syntax and Meaning Example Usage

[] Allows you to perform functions on rows other than the cur-
rent row in a stream or window.

stream-or-window-name[index].column

stream-or-window-name is the name of a stream or window
and column indicates a column in the stream or window.
index is an expression that can include literals, parameters, or
operators, and evaluates to an integer. This integer indicates
the stream or window row, in relation to the current row or to
the window's sort order.

MyNamedWind-
ow[1].MyColumn

Order of Evaluation for Operators
When evaluating an expression with multiple operators, the engine evaluates operators with
higher precedence before those with lower precedence. Those with equal precedence are
evaluated from left to right within an expression. You can use parentheses to override operator
precedence, since the engine evaluates expressions inside parentheses before evaluating those
outside.

Note: The ^ operator is right-associative. Thus, a ^ b ^ c = a ^ (b ^ c), not (a ^ b) ^ c.

The operators in order of preference are as follows. Operators on the same line have the same
precedence:

• +.- (as unary operators)
• ^
• *, /, %
• +, - (as binary operators and for concatenation)
• =, !=, <>, <, >, <=, >= (comparison operators)

CHAPTER 4: Language Components

30 Sybase Event Stream Processor

• LIKE, IN, IS NULL, IS NOT NULL
• NOT
• AND
• OR, XOR

Expressions
An expression is a combination of one or more values, operators, and built in functions that
evaluate to a value.

An expression often assumes the datatype of its components. You can use expressions in many
places including:

• Column expressions in a SELECT clause
• A condition of the WHERE clause or HAVING clause

Expressions can be simple or compound. A built-in function such as length() or pi() can also be
considered an expression.

Simple Expressions
A simple CCL expression specifies a constant, NULL, or a column. A constant can be a
number or a text string. The literal NULL denotes a null value. NULL is never part of another
expression, but NULL by itself is an expression.

You can specify a column name by itself or with the name of its stream or window. To specify
both the column and the stream or window, use the format "stream_name.column_name."

Some valid simple expressions include:

• stocks.volume

• 'this is a string'

• 26

Compound Expressions
A compound CCL expression is a combination of simple or compound expressions.
Compound expressions can include operators and functions, as well as the simple CCL
expressions (constants, columns, or NULL).

You can use parentheses to change the order of precedence of the expression's components.

Some valid compound expressions include:

• sqrt (9) + 1

• ('example' + 'test' + 'string')

• (length ('example') *10) + pi()

CHAPTER 4: Language Components

CCL Programmers Guide 31

Conditional Expressions

A conditional CCL expression evaluates a set of conditions to determine its result. The
outcome of a conditional expression is evaluated based on the conditions set. In CCL, the
keyword CASE appears at the beginning of these expressions and follows a WHEN-THEN-
ELSE construct.

The basic structure looks like this:

CASE
WHEN expression THEN expression
[...]
ELSE expression
END

The first WHEN expression is evaluated to be either zero or non-zero. Zero means the
condition is false, and non-zero indicates that it is true. If the WHEN expression is true, the
following THEN expression is carried out. Conditional expressions are evaluated based on the
order specified. If the first expression is false, then the subsequent WHEN expression is tested.
If none of the WHEN expressions are true, the ELSE expression is carried out.

A valid conditional expression in CCL is:

CASE
WHEN mark>100 THEN grade:=invalid
WHEN mark>49 THEN grade:=pass
ELSE grade:=fail
END

See also
• HAVING Clause on page 109
• SELECT Clause on page 113
• WHERE Clause on page 116

CCL Comments
Like other programming languages, CCL lets you add comments to document your code.

CCL recognizes two types of comments: doc-comments and regular multi-line comments.
Only use doc-comments before CCL top-level statements such as CREATE SCHEMA or
CREATE INPUT WINDOW. Doc-comments not immediately preceding a top-level
statement are seen as errors by the visual editor with ESP Studio.

Multi-line comments are supported in any context and are therefore recommended over doc-
comments.

Begin a multi-line comment with /* and complete it with */. For example:

/*
This is a multi-line comment.

CHAPTER 4: Language Components

32 Sybase Event Stream Processor

All text within the begin and end tags is treated as a comment.
*/

Begin a doc-comment with /** and end it with */. For example:

/**
This is a doc-comment. Note that it begins with two * characters
instead of one. All text within the begin and end tags is treated
as a comment.
*/
CREATE SCHEMA S1 ...

Note that the doc-comment precedes the CREATE SCHEMA statement (provided here as a
sample only and not with complete syntax).

It is common to delineate a section of code using a row of asterisks. For example:
/***
Do not modify anything beyond this point without authorization
**/

CCL treats this rendering as a doc-comment because it begins with /**. To achieve the same
effect using a multi line comment, insert a space between the first two asterisks: /* *.

Case-Sensitivity
Some CCL syntax elements have case-sensitive names while others do not.

All identifiers are case-sensitive. This includes the names of streams, windows, parameters,
variables, schemas, and columns. Keywords are case-insensitive, and cannot be used as
identifier names. Adapter properties also include case-sensitivity restrictions.

Most built-in function names (except those that are keywords) and user-defined functions are
case-sensitive. While the following built-in function names are case-sensitive, you can
express them in two ways:

• setOpcode, setopcode
• getOpcode, getopcode
• setRange, setrange
• setSearch, setsearch
• copyRecord, copyrecord
• deleteIterator, deleteiterator
• getIterator, getiterator
• resetIterator, resetiterator
• businessDay, businessday
• weekendDay, weekendday
• expireCache, expirecache
• insertCache, insertcache
• keyCache, keycache

CHAPTER 4: Language Components

CCL Programmers Guide 33

• getNext, getnext
• getParam, getparam
• dateInt, dateint
• intDate, intdate
• uniqueId, uniqueid
• LeftJoin, leftjoin
• valueInserted, valueinserted

Example
Two variables, one defined as 'aVariable' and one as 'AVariable' can coexist in the same context
as they are treated as different variables. Similarly, you can define different streams or
windows using the same name, but with different cases.

See also
• Appendix A, List of Keywords on page 229

CHAPTER 4: Language Components

34 Sybase Event Stream Processor

CHAPTER 5 CCL Query Construction

Use a CCL query to produce a new derived stream or window from one or more other streams/
windows. You can construct a query to filter data, combine two or more queries, join multiple
datasources, use pattern matching rules, and aggregate data.

You can use queries only with derived elements, and can attach only one query to a derived
element. A CCL query consists of a combination of several clauses that indicate the
appropriate information for the derived element. A query is used with the AS clause to specify
data for the derived element.

Filtering
Use the WHERE clause in your CCL query to filter data to be processed by the derived
elements (streams, windows, or delta streams).

Using the WHERE clause and a filter expression, you can filter which incoming data is
accepted by your derived elements. The WHERE clause restricts the data captured by the
SELECT clause, reducing the number of results generated. Only data matching the value
specified in the WHERE clause is sent to your derived elements.

The output of your derived element consists of a subset of records from the input. Each input
record is evaluated against the filter expression. If a filter expression evaluates to false (0), the
record does not become part of the derived element.

This example creates a new window, IBMTrades, where its rows are any of the result rows
from Trades that have the symbol "IBM":

CREATE WINDOW IBMTrades
 PRIMARY KEY DEDUCED
 AS SELECT * FROM Trades WHERE Symbol = 'IBM';

See also
• Unions on page 36

• Joins on page 37

• Pattern Matching on page 42

• Aggregation on page 43

• WHERE Clause on page 116

• Expressions on page 31

CCL Programmers Guide 35

Unions
Use a UNION operator in your CCL query to combine the results of two or more queries into a
single result.

When combining two or more queries, duplicate rows are eliminated from the result set unless
you specify otherwise.

The input for a UNION operator comes from one or more streams or windows. Its output is a set
of records representing the union of the inputs. This example shows a simple union between
two windows, InStocks and InOptions:

CREATE INPUT WINDOW InStocks
 SCHEMA StocksSchema
 Primary Key (Ts)
;

CREATE INPUT WINDOW InOptions
 SCHEMA OptionsSchema
 Primary Key (Ts)
;
CREATE output Window Union1
 SCHEMA OptionsSchema
 PRIMARY KEY DEDUCED
 AS SELECT s.Ts as Ts, s.Symbol as StockSymbol,
 Null as OptionSymbol, s.Price as Price, s.Volume as
Volume
 FROM InStocks s
UNION
 SELECT s.Ts as Ts, s.StockSymbol as StockSymbol,
 s.OptionSymbol as OptionSymbol, s.Price as Price,
 s.Volume as Volume
 FROM InOptions s
;

See also
• Filtering on page 35
• Joins on page 37
• Pattern Matching on page 42
• Aggregation on page 43
• UNION Operator on page 114

Example: Merging Data from Streams or Windows
Use the UNION clause to merge data from two streams or windows and produce a derived
element (stream, window, or delta stream).

1. Create a new window:

CREATE WINDOW name

CHAPTER 5: CCL Query Construction

36 Sybase Event Stream Processor

You can also create a new stream or delta stream.

2. Specify the primary key:
PRIMARY KEY (…)

3. Specify the first derived element in the union:
SELECT * FROM StreamWindow1

4. Add the UNION clause:
UNION

5. Specify the second derived element in the union:

SELECT * FROM StreamWindow2

Joins
Use joins in your CCL query to combine multiple datasources into a single query.

Streams, windows, or delta streams can participate in a join. However, a delta stream can
participate in a join only if it has a KEEP clause. A join can contain any number of windows
and delta streams (with their respective KEEP clauses), but only one stream. Self joins are also
supported. For example, you can include the same window or delta stream more than once in a
join, provided each instance has its own alias.

In a stream-window join the target can be a stream or a window with aggregation. Using a
window as a target requires an aggregation because the stream-window join does not have
keys and a window requires a key. The GROUP BY columns in aggregation automatically
forms the key for the target window. This restriction does not apply to delta stream-window
joins because use of the KEEP clause converts a delta stream into an unnamed window.

Joins are performed in pairs but you can combine multiple joins to produce a complex
multitable join. Depending on the complexity and nature of the join, the compiler may create
intermediate joins. The comma join syntax supports only inner joins, and the WHERE clause in
this syntax is optional. When it is omitted, it means that there is a many-many relationship
between the streams in the FROM clause.

Event Stream Processor supports all join types:

Join Type Description

Inner Join One record from each side of the join is required for the join to
produce a record.

Left Outer Join A record from the left side (outer side) of the join is produced
regardless of whether a record exists on the right side (inner side).
When a record on the right side does not exist, any column from the
inner side has a NULL value.

CHAPTER 5: CCL Query Construction

CCL Programmers Guide 37

Join Type Description

Right Outer Join Reverse of left outer join, where the right side is the outer side and
the left side is the inner side of the join.

Full Outer Join A record is produced whether there is a match on the right side or
the left side of the join.

Event Stream Processor also supports these cardinalities:

Type Description

One-One Keys of one side of the join are completely mapped to the keys of the other side of
the join. One incoming row produces only one row as output.

One-Many One record from the one side joins with multiple records on the many side. The
one side of the join is the side where all the primary keys are mapped to the other
side of the join. Whenever a record comes on the one-side of the join, it produces
many rows as the output.

Many-Many The keys of both side of the join are not completely mapped to the keys of the
other side of the join. A row arriving on either side of the join has the potential to
produce multiple rows as output.

This example joins two windows (InStocks and InOptions) using the FROM clause with
ANSI syntax. The result is an output window.
CREATE INPUT Window InStocks SCHEMA StocksSchema Primary Key (Ts) ;

CREATE INPUT Window InOptions SCHEMA OptionsSchema Primary Key (Ts)
KEEP ALL;

CREATE Output Window OutStockOption SCHEMA OutSchema
 Primary Key (Ts)
 KEEP ALL
AS
 SELECT InStocks.Ts Ts,
 InStocks.Symbol Symbol,
 InStocks.Price StockPrice,
 InStocks.Volume StockVolume,
 InOptions.StockSymbol StockSymbol,
 InOptions.OptionSymbol OptionSymbol,
 InOptions.Price OptionPrice,
 InOptions.Volume OptionVolume
 FROM InStocks JOIN InOptions
 ON
 InStocks.Symbol = InOptions.StockSymbol and
 InStocks.Ts = InOptions.Ts ;

See also
• Filtering on page 35

CHAPTER 5: CCL Query Construction

38 Sybase Event Stream Processor

• Unions on page 36

• Pattern Matching on page 42

• Aggregation on page 43

• FROM Clause: Comma-Separated Syntax on page 103

• WHERE Clause on page 116

• FROM Clause: ANSI Syntax on page 104

• ON Clause: Join Syntax on page 112

• KEEP Clause on page 91

Key Field Rules
Key field rules ensure that rows are not rejected due to duplicate inserts or the key fields being
NULL.

• The key fields of the target are always derived completely from the keys of the many side of
the join. In a many-many relationship, the keys are derived from the keys of both sides of
the join.

• In a one-one relationship, the keys are derived completely from either side of the
relationship.

• In an outer join, the key fields are derived from the outer side of the join. An error is
generated if the outer side of the join is not the many-side of a relationship.

• In a full-outer join, the number of key columns and the type of key columns need to be
identical in all sources and targets. Also, the key columns require a FIRSTNONNULL
expression that includes the corresponding key columns in the sources.

When the result of a join is a window, specific rules determine the columns that form the
primary key of the target window. In a multitable join, the same rules apply because
conceptually each join is produced in pairs, and the result of a join is then joined with another
stream or window, and so on.

This table illustrates this information in the context of join types:

One-One One-Many Many-One Many-Many

INNER Keys from at least
one side should be
included in the pro-
jection list (or a
combination of
them if keys are
composite).

Keys from the right
side should be inclu-
ded in the projection
list.

Keys from the left
side should be inclu-
ded in the project
list.

Keys from both
sides should be in-
cluded in the projec-
tion list.

LEFT Keys from the left
side alone should be
included.

Not allowed. Keys from the left
side should be inclu-
ded in the projection
list.

Not allowed.

CHAPTER 5: CCL Query Construction

CCL Programmers Guide 39

One-One One-Many Many-One Many-Many

RIGHT Keys from the right
side alone should be
included.

Keys from the right
side should be inclu-
ded in the projection
list.

Not allowed. Not allowed.

OUTER Keys should be
formed using FIRST-
NONNULL () on
each pair of keys
from both sides.

Not allowed. Not allowed. Not allowed.

See also
• Join Examples: ANSI Syntax on page 40

• Join Example: Comma-Separated Syntax on page 42

Join Examples: ANSI Syntax
Examples of different join types using the ANSI syntax.

Refer to these inputs for the examples below.

CREATE INPUT STREAM S1 SCHEMA (Val1S1 integer, Val2S1 integer, Val3S1
string);
CREATE INPUT WINDOW W1 SCHEMA (Key1W1 integer, Key2W1 string, Val1W1
integer, Val2W1 string) PRIMARY KEY (Key1W1, Key2W1);
CREATE INPUT WINDOW W2 SCHEMA (Key1W2 integer, Key2W2 string, Val1W2
integer, Val2W2 string) PRIMARY KEY (Key1W2, Key2W2);
CREATE INPUT WINDOW W2 SCHEMA (Key1W3 integer, Val1W3 integer,
Val2W3 string) PRIMARY KEY (Key1W3);

Simple Inner Join: One-One
Here, keys can be derived from either W1 or W2.

CREATE OUTPUT WINDOW OW1
PRIMARY KEY (Key1W2, Key2W2)
SELECT W1.*, W2.*
FROM W1 INNER JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 =
W1.Key2W2

Simple Left Join: One-One
The keys are derived from the outer side of the left join. It is incorrect to derive the keys from
the inner side because the values could be null.

CREATE OUTPUT WINDOW OW1
PRIMARY KEY (Key1W1, Key2W1)
SELECT W1.*, W2.*
FROM W1 LEFT JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 =
W1.Key2W2

CHAPTER 5: CCL Query Construction

40 Sybase Event Stream Processor

Simple Full Outer Join: One-One
The key columns all have a required FIRSTNONNULL expression in it.

CREATE OUTPUT WINDOW OW2
PRIMARY KEY (Key1, Key2)
SELECT FIRSTNONNULL(W1.Key1W1, W2.Key1W2) Key1,
FIRSTNONNULL(W1.Key2W1, W2.Key2W2) Key2, W1.*, W2.*
FROM W1 FULL JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 =
W1.Key2W2

Simple Left Join: One-Many
All the keys of W2 are mapped and only one key of W1 is mapped in this join. The many-side
is W1 and the one-side is W2. The keys must be derived from the many-side.

CREATE OUTPUT WINDOW OW3
PRIMARY KEY (Key1W1, Key2W1)
SELECT W1.*, W2.*
FROM W1 LEFT JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Val2W1 =
W1.Key2W2

Simple Inner Join: Many-Many
This is a many-many join because neither of the keys are fully mapped. The keys of the target
must be the keys of all the windows participating in the join.

CREATE OUTPUT WINDOW OW3
PRIMARY KEY (Key1W1, Key2W1, Key2W1, Key2W2)
SELECT W1.*, W2.*
FROM W1 LEFT JOIN W2 ON W1.Val1W1 = W2.Val11W2 AND W1.Val2W1 =
W1.Val22W2

Simple Stream-Window Left Join
When a left join involves a stream, the stream must be on the outer side. The target cannot be a
window unless it is also performing aggregation.

CREATE OUTPUT STREAM OSW1
SELECT S1.*, W2.*
FROM S1 LEFT JOIN W2 ON S1.Key1S1 = W2.Key1W2 AND W1.Val2W1 =
W1.Key2W2

Complex Join
The keys for OW4 can be derived either from W1 or W2 because of the inner join between the
two tables.

CREATE OUTPUT WINDOW OW4
PRIMARY KEY DEDUCED
SELECT S1.*, W1.*, W2.*, W3.*
FROM W1 INNER JOIN (W2 LEFT JOIN W3 ON W2.Key1W2 = W3.Key1W3) ON
W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 = W2.Key2W2;

CHAPTER 5: CCL Query Construction

CCL Programmers Guide 41

Complex Stream-Window Join
Here, the join is triggered only when a record arrives on S1. Also, because there is aggregation,
the target must be a window instead of being restricted to a stream.

CREATE OUTPUT WINDOW OW5
PRIMARY KEY DEDUCED
SELECT S1.* W1.*, W2.*, W3.* //Some column expression.
FROM S1 LEFT JOIN (W1 INNER JOIN (W2 LEFT JOIN W3 ON W2.Key1W2 =
W3.Key1W3) ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 = W2.Key2W2) ON
S1.Val1S1 = W1.Key1.Val1
WHERE W2.Key1W2 = 'abcd'
GROUP BY W1.Key1W1, W1.Key2W2
HAVING SUM(W3.Val1W3) > 10;

See also
• Key Field Rules on page 39

• Join Example: Comma-Separated Syntax on page 42

Join Example: Comma-Separated Syntax
An example of a complex join using the comma separated syntax.

This join is a complex join of three windows using the comma-separated join syntax. The
WHERE clause specifies the conditions on which records are joined.

CREATE OUTPUT WINDOW OW4
PRIMARY KEY DEDUCED AS
SELECT W1.*, W2.*, W3.*
FROM W1 w1, W2 w2, W3 w3
WHERE w1.Key1W1 = w2.Key1W2 AND w1.Key2W2 = w2.Key2W2 AND w1.Key1W1
= w3.Key1W3;

See also
• Key Field Rules on page 39

• Join Examples: ANSI Syntax on page 40

Pattern Matching
Use the MATCHING clause in your CCL query to take input from one or more elements
(streams, windows, or delta streams) and produce records when a prescribed pattern is found
within the input data.

Patterns can check whether or not events occur during a specific time interval, and then send
records to downstream streams.

Attention: The pattern rule engine matches patterns regardless of the opcode of the input
records, unless the opcode is included as part of the pattern matching criteria.

CHAPTER 5: CCL Query Construction

42 Sybase Event Stream Processor

This example creates an output stream, ThreeConsecTrades, which monitors the
QTrades streams and sends a new event when it detects three consecutive trades on the same
symbol within five seconds. The output of this stream is the symbol of the traded stock, and its
latest three prices.
CREATE OUTPUT STREAM ThreeConsecTrades
AS
SELECT
 T1.Symbol,
 T1.Price Price1,
 T2.Price Price2,
 T3.Price Price3
FROM QTrades T1, QTrades T2, QTrades T3
MATCHING[5 SECONDS: T1, T2, T3]
ON T1.Symbol = T2.Symbol = T3.Symbol
;

See also
• Filtering on page 35
• Unions on page 36
• Joins on page 37
• Aggregation on page 43
• MATCHING Clause on page 110

Aggregation
Aggregation allows for input record grouping based on values in the columns set by the
GROUP BY clause, applies the specified aggregation function such as min, max, sum,
count and so forth, and produces one row of output per group.

Records in a group have the same values for the columns specified in the GROUP BY clause.
The columns specified in the GROUP BY clause also needs to be included in the SELECT
clause because these columns form the key for the target. This is the reason why the primary
key for the aggregate window must use the PRIMARY KEY DEDUCED clause instead of
explicitly specifying a primary key.

In addition to the GROUP BY clause, a GROUP FILTER and GROUP ORDER BY clause can be
specified. The GROUP ORDER BY clause orders the records in a group by the specified
columns before applying the GROUP FILTER clause and the aggregation functions. With the
records ordered, aggregation functions sensitive to the order of the records such as first,
last, and nth can be used meaningfully.

The GROUP FILTER clause is executed after the GROUP ORDER BY clause and eliminates any
rows in the group that do not meet the filter condition. The filter condition that is specified is
similar to the one in the WHERE clause. The only exception being that a special rank function
can be specified. The rank function is used in conjunction with the GROUP ORDER BY clause.
After the GROUP ORDER BY clause is executed every row in the group is ranked from 1 to N.

CHAPTER 5: CCL Query Construction

CCL Programmers Guide 43

Now in the GROUP FILTER clause one can say rank() < 11, which means that the
aggregation function is only applied to the first 10 rows in the group after it has been ordered
by the columns specified in the GROUP ORDER BY clause.

Finally an optional HAVING clause can also be specified. The HAVING clause filters records
based on the results of applying aggregation functions on the records in a given group. The
primary difference is that a HAVING clause aggregation operation is allowed and a WHERE
clause aggregation operation is not.

Note: The GROUP ORDER BY, GROUP FILTER, and HAVING clauses can only be specified in
conjunction with a GROUP BY clause.

Example
The following example computes the total number of trades, maximum trade price, and total
shares traded for every Symbol. The target window only has those Symbols where the total
traded volume is greater than 5000.

CREATE INPUT STREAM Trades
SCHEMA (TradeId integer, Symbol string, Price float, Shares integer);

CREATE OUTPUT WINDOW TradeSummary
PRIMARY KEY DEDUCED
AS
 SELECT trd.Symbol, count(trd.TradeId) NoOfTrades, max(trd.Price)
MaxPrice, sum(trd.Shares) TotalShares
 FROM Trades trd
 GROUP BY trd.Symbol
 HAVING sum(trd.Shares) > 5000;

See also
• Filtering on page 35

• Unions on page 36

• Joins on page 37

• Pattern Matching on page 42

• GROUP BY Clause on page 106

• GROUP FILTER Clause on page 107

• GROUP ORDER BY Clause on page 108

• HAVING Clause on page 109

CHAPTER 5: CCL Query Construction

44 Sybase Event Stream Processor

CHAPTER 6 Advanced CCL Programming
Techniques

Use advanced CCL techniques to develop sophisticated and complex projects.

Use declare blocks to define variables, constants, SPLASH functions, and custom datatypes.

Create modules to encapsulate reusable code.

Use explicit memory stores to fine tune performance. Use log stores to retain the contents of
named windows on disk, to allow for recovery in the event of a failure.

Declare Blocks
Declare blocks allow a model designer to include elements of functional programming, such
as variables, parameters, typedefs, and function definitions in CCL data models.

CCL supports global and local declare blocks.
• Global declare blocks – accessible to an entire project; however, you can also set

individual global declare blocks for each module.

Note: Global declare blocks are merged together if more are imported from other CCL
files. Only one is possible per project.

• Local declare blocks – declared in CREATE statements, are accessible only in the
SELECT clause of the stream or window in which they are declared.

Note: The variables and functions defined in a local declare block are only accessible in
the SELECT clause and anywhere inside the Flex Operator.

CCL variables allow for the storage of values that may change during the execution of the
model. Variables are defined in the declare block using the SPLASH syntax. See the SPLASH
Programmers Guide.

CCL typedefs are user-defined datatypes and can also be used to create an alias for a standard
datatype. A long type name can be shortened using typedef. Once a typedef has been defined
in the declare block, it can be used instead of the datatype in all SPLASH statements, and
throughout the project.

CCL parameters are constants for which you can set the value at the model's runtime. You can
use these parameters instead of literal values in a project to allow behavior changes at runtime,
such as window retention policies, store sizes, and other similar changes that can be easily
modified at runtime without changing the project. You define CCL parameters in a global
declare block, and initialize them in a project configuration file. You can also set a default
value for the parameter in its declaration, so that initialization at server start-up is optional.

CCL Programmers Guide 45

You can create SPLASH functions in a declare block to allow for operations that are more
easily handled using a procedural approach. Call these SPLASH functions from stream
queries and other functions throughout the project.

See also
• Flex Operators on page 50

• Typedefs on page 46

• Parameters on page 47

• Variables on page 48

• CREATE FLEX Statement on page 67

Typedefs
Declares new names for existing datatypes.

Syntax
typedef existingdatatypeName newdatatypeName;

Components

existingdatatypeName The original datatype.

newdatatypeName The new name for the datatype.

Usage
Typedefs allow giving new names for existing datatypes, which can be used to define new
variables and parameters, and specify the return type of functions. Typedefs can be declare in
declare blocks, UDFs and inside FLEX procedures. The types declared in typedefs must
resolve to simple types.

Note: For unsupported datatypes, use a typedef in a declare block to create an alias for a
supported datatype.

Example
This example declares euros to be another name for the money(2) datatype:
typedef money(2) euros;

Once you have defined the euro typedef, you can use:
euros price := 10.80d2;

which is the same as:
money(2) price := 10.80d2;

See also
• Datatypes on page 23

CHAPTER 6: Advanced CCL Programming Techniques

46 Sybase Event Stream Processor

• Declaring Project Variables, Parameters, Datatypes, and Functions on page 50

Parameters
Constants that you set during project setup using the server-command name or the project
configuration file.

Syntax
parameter typeName parameterName1 [:= constant_expression]
[,parameterName2 [:= constant_expression],…];

Components

typeName The datatype of the declared parameter.

parameterName The name of the declared parameter.

constant_expression An expression that evaluates to a constant.

Usage
Parameters are defined using the qualifier parameter. Optionally, you can specify a default
value. The default value is used only if no value is provided for the parameter at server start-
up.

Parameters can use only basic datatypes, and must be declared in the global DECLARE block
of a project or a module. Parameters cannot be declared with complex datatypes. Since
parameters are constant, their value cannot be changed in the model.

See the SPLASH Programmers Guide for information on complex datatypes.

Parameters at Project Setup
You can define parameters inside the global declare block for a project and inside the global
declare block for a module. Project-level parameters can be bound on server start-up. Module-
level parameters are bound when the module is loaded.

Parameters can be assigned values at server start-up time by specifying the values on the
command line used to start the server or through the project configuration file. You must
provide values for any project parameters that do not have a default value. Parameters can only
be bound to a new value when a module or project is loaded.

In the parameter declaration, you can specify a default value. The default value is used for the
parameter if it is not bound to a new value when the project or module is loaded. If a parameter
does not have a default value, it must be bound when the module or project is loaded, or an
error occurs.

When a parameter is initialized with an expression, that expression is evaluated only at
compile time. The parameter is then assigned the result as its default value.

CHAPTER 6: Advanced CCL Programming Techniques

CCL Programmers Guide 47

When supplying values at runtime for a parameter declared as an interval datatype, interval
values are specified with the unit notation in CCL and with a bare microsecond value in the
project configuration file. See the Studio Users Guide for more information on project
configurations and parameters in the project configuration file.

See also
• Declaring Project Variables, Parameters, Datatypes, and Functions on page 50

Variables
Variables represent a specific piece of information that may change throughout project
execution. Variables are declared using the SPLASH syntax.

Syntax
typeName {variableName[:=any_expression] [, ...]}

Usage
Variables may be declared within any declare block, SPLASH UDF, or Flex procedures.
Multiple variables may be declared on a single line.

The declaration of a variable can also include a optional initial value, which must be a constant
expression. Variables without an initial value initialize to NULL.

Variables can be of complex types. However, complex variables can only be used in local
declare blocks and declare blocks within a Flex stream.

Variables declared in a local declare block may subsequently be used in SELECT clauses, but
cause compiler errors when used in WHERE clauses.

For SPLASH language details, see SPLASH Programmers Guide.

Example
This example defines a variable, then uses the variable in both a regular stream and a FLEX
stream.

declare
 INTEGER ThresholdValue := 1000;
end;
//
// Create Schemas
Create Schema TradeSchema(
 Ts bigdatetime,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

Create Schema ControlSchema (
 Msg STRING,
 Value INTEGER

CHAPTER 6: Advanced CCL Programming Techniques

48 Sybase Event Stream Processor

); //
// Input Trade Window
//

CREATE INPUT WINDOW TradeWindow
 SCHEMA TradeSchema
 PRIMARY KEY (Ts);

//
// Input Stream for Control Messages
//

CREATE INPUT STREAM ControlMsg SCHEMA ControlSchema ;

//
// Output window, only has rows that were greater than the
thresholdvalue
// was when the row was received
CREATE Output WINDOW OutTradeWindow
 SCHEMA (Ts bigdatetime, Symbol STRING, Price MONEY(4), Volume
INTEGER)
 PRIMARY KEY (Ts)
as
select *
 from TradeWindow
 where TradeWindow.Volume > ThresholdValue;

//
//Flex Stream to process the control message
CREATE FLEX FlexControlStream
 IN ControlMsg
 OUT OUTPUT WINDOW SimpleOutput
 SCHEMA (a integer, b string, c integer)
 PRIMARY KEY (a)
BEGIN
 ON ControlMsg
 {
 // change the value of ThresholdValue
 if (ControlMsg.Msg = 'set')
{ThresholdValue:=ControlMsg.Value;}
 // The following is being populate so you can see that the
ThresholdValue is being set
 output [a=ControlMsg.Value; b=ControlMsg.Msg;
c=ThresholdValue; |];
 }
 ;
END
;

See also
• Declare Blocks on page 45

• SELECT Clause on page 113

• Declaring Project Variables, Parameters, Datatypes, and Functions on page 50

CHAPTER 6: Advanced CCL Programming Techniques

CCL Programmers Guide 49

Declaring Project Variables, Parameters, Datatypes, and Functions
Declare variables, parameters, typedefs, and functions in both global and local DECLARE
blocks.

1. Create a global declare block for your project by using the DECLARE statement in your
main project file.

2. Add parameters, variables, or user-defined SPLASH functions to the global declare
block.

Elements defined in this declare block are accessible to any elements in the project that are
not inside a module.

3. Create local declare blocks by using the DECLARE statement within derived streams,
windows, or both..

4. Add variables, parameters, or user-defined SPLASH functions to the local declare block.

These elements are accessible only from within the stream, window, or flex operator in
which the block is defined.

See also
• Typedefs on page 46

• Parameters on page 47

• Variables on page 48

Flex Operators
Flex operators provide extensibility to CCL, allowing custom event handlers, written in
SPLASH, to produce derived streams or windows.

A flex operator produces derived streams, windows, or delta streams in the same way that a
CREATE statement produces these elements. However, a CREATE statement uses a CCL
query to derive a new window from the inputs, whereas a flex operator uses a SPLASH script.

Flex operators make CCL extensible, allowing you to implement event processing logic that
would be difficult to implement in a declarative SELECT statement. SPLASH gives you
process control and provides data structures that can retain state from one event to the next.

All of the features of SPLASH are available for use in a flex operator, including:

Data structures • Variables
• EventCache (windows)
• Dictionaries
• Vectors

CHAPTER 6: Advanced CCL Programming Techniques

50 Sybase Event Stream Processor

Control structures • While
• If
• For

A flex operator can take any number of inputs, and they can be any mix of streams, delta
streams, or windows. You can write a splash event handler for each input. When an event
arrives on that input, the associated SPLASH script or method is invoked.

You need not have a method for every input. Some inputs may merely provide data for use in
methods associated with other inputs; for inputs without an associated method, incoming
events do not trigger an action, but are accessible to other methods in the same flex operator.

See the SPLASH Programmers Guide for details on writing the flex methods.

See also
• CREATE FLEX Statement on page 67

Modularity
A module in Sybase Event Stream Processor offers reusability; it can be loaded and used
multiple times in a single project or in many projects.

Modularity means organizing project elements into self-contained, reusable components
called modules, which have well-defined inputs and outputs, and allow you to encapsulate
data processing procedures that are commonly repeated.

Modules, along with other objects such as import files and the main project, have their own
scope, which defines the visibility range of variables or definitions. Any variables, objects, or
definitions declared in a scope are accessible within that scope only; they are inaccessible to
the containing scope, called the parent scope, or to any other outer scope. The parent scope can
be a module or the main project. For example, if module A loads module B and the main
project loads module A, then module A's scope is the parent scope to module B. Module A's
parent scope is the main project.

Modules have explicitly declared inputs and outputs. Inputs to the module are associated with
streams or windows in the parent scope, and outputs of the module are exposed to the parent
scope using identifiers. When a module is reused, any streams, variables, parameters, or other
objects within the module replicate, so that each version of the module exists separately from
the other versions.

You can load modules within other modules, so that module A can load module B, which can
load module C, and so on. Module dependency loops, however, are invalid. For example, if
module A loads module B, which loads A, the CCL compiler generates an error indicating a
dependency loop between modules A and B.

The CREATE MODULE statement creates a module that can be loaded multiple times in a
project, where its inputs and outputs can be bound to different parts of the larger project. The

CHAPTER 6: Advanced CCL Programming Techniques

CCL Programmers Guide 51

LOAD MODULE statement allows reuse of a defined module one or more times throughout a
project. Modularity is particularly useful when used with theIMPORT statement, which allows
you to use (LOAD) modules created in a separate CCL file.

Note: All module-related compilation errors are fatal.

See also
• Module Creation and Usage on page 52

• CREATE MODULE Statement on page 74

• IMPORT Statement on page 83

• LOAD MODULE Statement on page 84

• IN Clause on page 90

• OUT Clause on page 93

• PARAMETERS Clause on page 94

• STORES Clause on page 98

• Example: Parameters in Modules on page 54

• Example: Creating and Using Modules on page 53

Module Creation and Usage
Use the CREATE MODULE statement to create a reusable module, and LOAD MODULE to load
a previously created module.

When you load a module, you can connect or bind its input streams or windows to streams in
the project. A module's outputs can be exposed to its parent's scope and referenced in that
scope using the aliases provided in the LOAD MODULE statement.

Parameters inside the module are bound to parameters in the parent scope or to constant
expressions. Stores within the module are bound to stores in the parent scope. Binding a store
within a module to a store outside the module means that any windows using the module store
instead use the bound store.

See also
• Modularity on page 51

• CREATE MODULE Statement on page 74

• IMPORT Statement on page 83

• LOAD MODULE Statement on page 84

• Example: Creating and Using Modules on page 53

CHAPTER 6: Advanced CCL Programming Techniques

52 Sybase Event Stream Processor

Example: Creating and Using Modules
Use basic concepts of modularity to create a module that processes raw stock trade
information and outputs a list of trades with a price exceeding 1.00.

1. Create an import file to group your schemas and allow for reuse throughout the project.
In this example, the import file is called schemas.ccl and contains:

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
);

Note: You can define schemas directly inside a module or project; however, this example
uses an import file to decrease code duplication and increase maintainability of the CCL.

2. In the project, create a module using the CREATE MODULE statement, and import the
import file (schemas.ccl) using the IMPORT statement.

CREATE MODULE FilterByPrice IN TradeData OUT FilteredTradeData
BEGIN
 IMPORT 'schemas.ccl';

 CREATE INPUT STREAM TradeData SCHEMA TradesSchema;
 CREATE OUTPUT STREAM FilteredTradeData SCHEMA TradesSchema
 AS SELECT * FROM TradeData WHERE TradeData.Price > 1.00;
END;

The module's input stream, TradeData, takes in a raw feed from the stock market, and
its output stream, FilteredTradeData, provides filtered results. Using the IMPORT
statement inside the module allows you to use all of the schemas grouped in the
schemas.ccl file in the module streams.

3. Load the module into your main project using the LOAD MODULE statement.
This example also shows how to connect the module to a stock market stream:
IMPORT 'schemas.ccl';

CREATE INPUT STREAM NYSEData SCHEMA TradesSchema;

LOAD MODULE FilterByPrice AS FilterOver1 IN TradeData = NYSEData
OUT FilteredTradeData = NYSEPriceOver1Data;

• The first line of the project file imports schemas.ccl, which allows the use of the
same schema as the module.

• The input stream NYSEData represents trade information from the New York Stock
Exchange.

CHAPTER 6: Advanced CCL Programming Techniques

CCL Programmers Guide 53

• The LOAD MODULE statement loads the module, FilterByPrice, which is
identified by the instance name of FilterOver1.

• Binding the module's input stream, TradeData, with the input stream NYSEData
allows information to flow from the NYSEData stream into the module.

• The output of the module is exposed to the project (NYSEPriceOver1Data).

• To access the output of the module, select the information from the
NYSEPriceOver1Data stream.

See also
• Module Creation and Usage on page 52

• CREATE MODULE Statement on page 74

• IMPORT Statement on page 83

• LOAD MODULE Statement on page 84

• Modularity on page 51

Example: Parameters in Modules
Develop your understanding of parameter bindings. Create a module that defines a parameter
that can be bound to an expression or to another parameter in the parent scope.

The module FilterByPrice filters all incoming trades based on price, and outputs only
the trades that have a price greater than the value in the minimumPrice parameter.

minimumPrice can be set when FilterByPrice is loaded, or it can be bound to another
parameter within the project so that the value of minimumPrice is set when the project is
loaded on the server.

The module definition is:
CREATE MODULE FilterByPrice IN TradeData OUT FilteredTradeData
BEGIN
 IMPORT 'schemas.ccl';

 DECLARE
 parameter money(2) minimumPrice := 10.00d2;
 END;

 CREATE INPUT STREAM TradeData SCHEMA TradesSchema;
 CREATE OUTPUT STREAM FilteredTradeData SCHEMA TradesSchema AS
SELECT * FROM TradeData WHERE TradeData.Price > minimumPrice;
END;

Binding a Parameter to an Expression
In parameter to expression binding, minimumPrice binds to an expression at the time of
loading:
LOAD MODULE FilterByPrice AS FilterOver20 IN TradeData = NYSEData OUT
FilteredTradeData = NYSEPriceOver20Data PARAMETERS minimumPrice =
20.00d2;

CHAPTER 6: Advanced CCL Programming Techniques

54 Sybase Event Stream Processor

In this type of parameter binding, the module outputs stocks only with a price greater than
20.00.

Binding a Parameter in the Module to a Parameter in the Parent Scope
In this type of binding, the parameter inside the module binds to a parameter declared in the
main project, therefore modifying the value on which trades are filtered at runtime. This is
done by creating a parameter within the project's DECLARE block, then binding the parameter
(minimumPrice) within the module to the new parameter:

DECLARE
 parameter money(2) minProjectPrice := 15.00d2;
END;

LOAD MODULE FilterByPrice AS FilterOverMinProjPrice IN TradeData =
NYSEData OUT FilteredTradeData = NYSEPriceOverMinProjPrice
PARAMETERS minimumPrice = minProjectPrice;

If no value is specified for the project's parameter (minProjectPrice) at runtime, then the
module filters based on the project parameter's default value of 15.00. However, if
minProjectPrice is given a value at runtime, the module filters based on that value.

No Parameter Binding
In this example, minimumPrice has a default value in the module definition, therefore no
parameter binding is required when loading the module. The module can be loaded as:
LOAD MODULE FilterByPrice AS FilterOver10 IN TradeData = NYSEData OUT
FilteredTradeData = NYSEPriceOver10Data;

Since no binding is provided in the LOAD MODULE statement, the module filters on its default
value of 10.00.

See also
• Modularity on page 51

• Module Creation and Usage on page 52

• PARAMETERS Clause on page 94

• LOAD MODULE Statement on page 84

Data Recovery
A log store allows data recovery inside a window if a server fails or is shut down.

Log stores provide data recovery for a window. Properly specified log stores recover windows
elements on failure, and make sure that data gets restored correctly if the server fails and
restarts. You can use log stores with windows that have no retention policy; you cannot use log
stores with stateless elements.

When using log stores:

CHAPTER 6: Advanced CCL Programming Techniques

CCL Programmers Guide 55

• Log stores only store window contents.
• Log stores do not directly store intermediate state, such as variables.
• Local Flex stream variables and data structures are not directly stored. However, they may

be regenerated from source data if the source data is in persistent storage.
• Log stores do not preserve opcode information. (During periodic log store compaction and

checkpointing, only the current window state is preserved. Records are then restored as
inserts.)

• Row arrival order is not preserved. In any stream, multiple operations may be collapsed
into a single record during log store compaction, changing arrival order. Inter-stream
arrival order is not maintained.

• You can define one or more log stores in a project. When using multiple stores make sure
you prevent the occurrence of log store loops. A log store loop is created when, for
example, Window1 in Logstore1 feeds Window2 in Logstore2, which feeds
Window3 in Logstore1. Log store loops cause compilation errors.

• The contents of memory store windows that receive data directly from a log store window
are recomputed once the log store window is restored from disk.

• The contents of memory store windows that receive data from a log store window via other
memory store windows are also recomputed, once the input window's contents have been
recomputed.

Note: If a memory store window receives data from a log store window via a stateless element,
for example, a delta stream or a stream, its contents are not restored during server recovery.

Log stores are periodically compacted, at which point all data accumulated in the store is
checkpointed and multiple operations on the same key are collapsed. After a checkpoint, the
store continues appending incoming data rows to the end of the store until the next checkpoint.

Note: The recovery of data written to the store, but not yet checkpointed, is available for input
windows only. Sybase recommends that when you assign a window to a log store, you also
assign all of its input windows to a log store. Otherwise, data written to the window after the
last checkpoint is not restored.

Unlike memory stores, log stores do not extend automatically. Use the CCL maxfilesize
property to specify log store size. The size of a log store is extremely important. Log stores that
are too small can cause processing to stop due to overflow. They can also cause significant
performance degradation due to frequent cleaning cycles. A log store that is too large can
hinder performance due to larger disk and memory requirements.

See also
• Stores on page 18

• CREATE MEMORY STORE Statement on page 73

• CREATE LOG STORE Statement on page 71

• Retention on page 15

• KEEP Clause on page 91

CHAPTER 6: Advanced CCL Programming Techniques

56 Sybase Event Stream Processor

Log Store Optimization Techniques
Specify persistence to optimize data models for maximum performance.

• Whenever possible, create a small log store to store static (dimension) data, and one or
more larger log stores for dynamic (fact) data.

• If you are using multiple log stores are being used for larger, rapidly changing, dynamic
(fact) data, try to organize the stores on different RAID volumes.

• The correct sizing of log stores is extremely important. See Sizing a Log Store in the
Administrators Guide.

Error Streams
Error streams gather errors and the records that caused them.

Description
The error stream provides a means to capture error information along with the data that caused
the error. This can assist in debugging errors during development. It can also provide real-time
monitoring of projects in a production environment.

You can specify more than one error stream in a single project.

An error stream is identical to other user-defined streams, except it:

• Receives records from its source stream or window only when there is an error on the
source stream or window. The record it receives is the input to the source stream or window
that caused the error.

• Has a predefined schema that cannot be altered by the user.

Schema

Column Datatype Description

errorCode integer The numeric code for the error that was reported

errorRecord binary The record that caused the error

errorMessage string Plain text message describing the error

errorStreamName string The name of the stream on which this error was reported

sourceStream-
Name

string The name of the stream that sent the record that caused the error

errorTime bigdatetime The time the error occurred: a microsecond granularity time-
stamp

CHAPTER 6: Advanced CCL Programming Techniques

CCL Programmers Guide 57

Error Codes

• GENERIC_ERROR
• FP_EXCEPTION
• BADARGS
• DIVIDE_BY_ZERO
• OVERFLOW_ERR
• UNDERFLOW_ERR
• SYNTAX_ERR

Limitations
The syntax of the error stream provides a mechanism for trapping runtime errors, subject to
these limitations:

• Only errors that occur during record computation are captured in error streams. Errors in
computations that occur at server start-up, such as evaluation of expressions used to
initialize variables and parameters, are not propagated to error streams. Other errors, such
as connection errors and noncomputational errors, are not captured in error streams.

• Errors occurring during computations that happen without a triggering record, such as in
the ON START TRANS and ON END TRANS blocks of a flex block, propagate an error
record where the errorRecord field contains an empty record.

• For the recordDataToRecord built-in, the stream name must be a string literal constant.
This limitation is so that a record type of the return value of the built-in can be determined
during compilation.

• The triggering record must be retrieved using provided built-ins. No native nested record
support is provided to refer to the record directly.

• The triggering record reported is the immediate input for the stream in which the error
happened. This may be a user-defined stream or an intermediate stream generated by the
compiler. When using the recordDataToString and recordDataToRecord built-ins, the first
argument must match the intermediate stream if one has been generated.

• The subscription utility does not automatically decrypt (convert from binary to ASCII) the
error record.

• Output adapters do not automatically decrypt (convert from binary to ASCII) the error
record.

• Arithmetic and conversion errors occurring in external functions (C and Java) are not
handled; such errors are the users responsibility.

• Error streams are not guaranteed to work within the debugger framework.

CHAPTER 6: Advanced CCL Programming Techniques

58 Sybase Event Stream Processor

Monitoring Streams for Errors
Use error streams to monitor other streams for errors and the events that cause them.

Process

1. Identify the project and the specific streams to monitor.
2. Determine whether to use multiple error streams. Determine the visibility for each error

stream.
3. Create the error streams in that project.
4. Display some or all of the information from the error streams in the error record, that is,

information aggregated or derived from the error records.

Examples
In a project that has one input stream and two derived streams, create a locally visible error
stream to monitor all three streams using:
CREATE ERROR STREAM AllErrors ON InputStream, DerivedStream1,
DerivedStream2;

To keep a count of the errors according to the error code reported, add:
CREATE OUTPUT WINDOW errorHandlerAgg SCHEMA (errorNum integer, cnt
long)
PRIMARY KEY DEDUCED
AS
SELECT e.errorCode AS errorNum, COUNT(*) AS cnt
FROM AllErrors e
GROUP BY e.errorCode
;

In a project that has three derived streams, create an externally visible error stream to monitor
only the third derived stream (which calculates a volume weighted average price) using:
CREATE OUTPUT ERROR STREAM vwapErrors ON DerivedStream3;

To convert the format of the triggering record from binary to string, add:
CREATE OUTPUT vwapMessages SCHEMA (errorNum integer, streamName
string, errorRecord string) AS
SELECT e.errorcode AS errorNum,
 e.streamName AS streamName,
 recordDataToString(e.sourceStreamName, e.errorRecord) AS
errorRecord
FROM vwapErrors e;

To convert the format of the triggering record from binary to record, add:
CREATE OUTPUT vwapMessages SCHEMA (errorNum integer, streamName
string, errorRecord string) AS
SELECT e.errorcode AS errorNum,
 e.streamName AS streamName,
 recordDataToRecord(e.sourceStreamName, e.errorRecord) AS

CHAPTER 6: Advanced CCL Programming Techniques

CCL Programmers Guide 59

errorRecord
FROM vwapErrors e;

CHAPTER 6: Advanced CCL Programming Techniques

60 Sybase Event Stream Processor

CHAPTER 7 Statements

The CCL statement reference provides syntax, parameter descriptions, usage, and examples.

ADAPTER START Statement
Controls adapter start times.

Syntax
ADAPTER START
GROUPS {groupName[NOSTART]},[,...]
...
;

Usage

Adapter groups are created implicitly when their name is used in the GROUP clause of the
ATTACH ADAPTER statement. The order in which each groupName appears determines the
order in which the adapter groups start. Adapters that are not assigned to one of the ordered
groups are placed in a group that starts after all of the ordered groups have started. By default,
all output adapters in a group start in parallel, followed by all input adapters in parallel.

The ADAPTER START statement is optional. If the statement is absent, all output adapters start
in parallel, followed by all input adapters in parallel.

NOSTART identifies adapters that should not start automatically with the rest of the adapters.
The user can start these adapters using the external XMLRPC interface
(esp_client.exe).

Errors are generated when ADAPTER START:

• References a group that does not exist.
• Does not reference all adapter start groups created with the ATTACH ADAPTER statement.
• References the same group more than once.

Example
The ATTACH ADAPTER statement creates two named adapters groups (RunGroup1,
NoRunGroup), each containing one adapter. The ADAPTER START statement is executed
with instructions to start RunGroup1. The NOSTART syntax instructs the project server not
to start NoRunGroup.

ATTACH INPUT ADAPTER csvInRun
 TYPE dsv_in
 TO TradeWindow
 GROUP RunGroup1

CCL Programmers Guide 61

 PROPERTIES
 blockSize=1,
 dateFormat='%Y/%m/%d %H:%M:%S',
 delimiter=',',
 dir='$ProjectFolder/../data',
 expectStreamNameOpcode=false,
 fieldCount=0,
 file='stock-trades.csv',
 filePattern='*.csv',
 hasHeader=true,
 safeOps=false,
 skipDels=false,
 timestampFormat= '%Y/%m/%d %H:%M:%S';

ATTACH INPUT ADAPTER csvInNoRun
 TYPE dsv_in
 TO TradeWindow
 GROUP NoRunGroup
 PROPERTIES
 blockSize=1,
 dateFormat='%Y/%m/%d %H:%M:%S',
 delimiter=',',
 dir='$ProjectFolder/../data',
 expectStreamNameOpcode=false,
 fieldCount=0,
 file='stock-trades.csv',
 filePattern='*.csv',
 hasHeader=true,
 safeOps=false,
 skipDels=false,
 timestampFormat= '%Y/%m/%d %H:%M:%S';

ADAPTER START GROUPS NoRunGroup NOSTART, RunGroup1;

See also
• ATTACH ADAPTER Statement on page 62

ATTACH ADAPTER Statement
Attaches an adapter to a stream or window, or assigns an adapter to a group.

Syntax
ATTACH { INPUT|OUTPUT } ADAPTER name
TYPE type
TO streamorwindow
[GROUP groupName]
[PROPERTIES {prop=value} [, ...]];

CHAPTER 7: Statements

62 Sybase Event Stream Processor

Parameters

name Names to the adapter

type Specifies the type of the adapter

streamorwindow Specifies the stream or window to which you are attaching
the adapter

Usage
Adapters are defined with an inline definition of the type and the properties that make up the
adapter or else via an adapter property set. The type is the unique ID assigned to each adapter.
You can find each adapter's type in the Adapters Guide.

An ATTACH ADAPTER statement cannot appear after an ADAPTER START statement.

There is no statement that creates adapter groups. You can group adapters by providing the
groupname in the GROUP clause. This grouping is then later used in the ADAPTER START
statement to start the adapters in the prescribed order. You cannot specify a group without an
ADAPTER START statement.

An adapter marked as input can be attached only to an input stream or window. An adapter
marked as output can be attached to an input or output stream or window. An adapter (either
input or output) cannot be attached to a local stream or window. An adapter defined as an input
adapter in its cnxml file cannot be attached as an output adapter, and an adapter defined in its
cnxml file as an output adapter cannot be attached as an input adapter.

The property name and value pairs that are valid for an ATTACH ADAPTER statement are
dependent on the adapter type. The property names are case-insensitive. All specifications
relating to what properties are required by a particular adapter exist in that adapter's cnxml
file, which is stored in the Sybase Event Stream Processor installation folder. This file is used
in the validation of properties.

Any adapter property you provide must have its name defined in the adapter's cnxml file, and
the values for all properties must match their defined datatypes. If the same property is
provided twice, the compiler raises an error.

You can also specify property sets within an ATTACH ADAPTER statement. Property sets are
reusable sets of properties that are stored in the project configuration file. If you specify a
property set, verify that all required properties are set as individual properties. Property sets
override individual properties specified within the ATTACH ADAPTER statement.

Example
ATTACH INPUT ADAPTER MacysInventory
TYPE dsv_in
TO InventoryInfo
PROPERTIES
dir='C:/Operations/Stock/Inventory/MacysInventory',

CHAPTER 7: Statements

CCL Programmers Guide 63

file='inventory.csv',
propertyset '<name>';

See also
• ADAPTER START Statement on page 61

CREATE DELTA STREAM Statement
Defines a stateless element that can interpret all operational codes (opcodes): insert, delete and
update.

Syntax
CREATE [LOCAL | OUTPUT] DELTA STREAM name
[schema_clause]
primary_key_clause
[local-declare-block]
as_clause
Query;

Components

name The name of the delta stream being created.

schema_clause Schema definition for new windows. If no schema clause is speci-
fied, it can be derived from the query.

primary_key_clause Set primary key. See PRIMARY KEY Clause for more informa-
tion.

local-declare-block (Optional) A declaration of variables and functions that can be
accessed in the query.

as_clause Introduces query to statement.

Query A query implemented in a statement. See Queries for more infor-
mation.

Usage
A delta stream is a stateless element that can understand all opcodes. A delta stream can be
used when a computation, filter, or union must be performed, when a state does not need be
maintained.

However, for a filter, a delta stream modifies the opcode it receives. A delta stream typically
forwards the opcode it receives. An input record with an insert opcode that satisfies the filter
clause has an insert opcode on the output. An input record with an update opcode, where the
update meets the criteria but the original record does not, outputs with an insert opcode.

However, if the old record meets the criteria, it outputs with an update opcode. An input record
with a delete opcode outputs with a delete opcode, as long as it meets the filter criteria.

CHAPTER 7: Statements

64 Sybase Event Stream Processor

CREATE DELTA STREAM is used primarily in computations that transform through a simple
projection.

Restrictions

• A delta stream cannot use functions that cannot be repeated, such as random(), since the
stream must be able to produce the same result when deleting a record as what was
previously produced on the insertion of the same record.

• When subscribing to a delta stream, the opcodes the delta stream generates must be treated
as safe opcodes. This means that any inserts/updates must be treated as upserts (insert if the
record does not exist and update otherwise). Similarly, any deletes must be treated as a
delete if they exists, otherwise silently ignore the delete.

• There are no restrictions on the operations that a target node can perform when using a
delta stream as an input.

• When the delta stream is defined using a Flex operator, the SPLASH code can output only
inserts or deletes. Upserts and updates are not allowed because the delta streams have no
state to handle them correctly. To perform an update, issue a delete, followed by an insert.

• The query of a delta stream cannot contain clauses that perform aggregation or joins.

Examples
This creates a delta stream that computes total cost:

CREATE INPUT WINDOW Trades SCHEMA (
 TradeId long,
 Symbol string,
 Price money(4),
 Shares integer
)
PRIMARY KEY (TradeId)
;

CREATE DELTA stream TradesWithCost
PRIMARY KEY DEDUCED
AS SELECT
 trd.TradeId,
 trd.Symbol,
 trd.Price,
 trd.Shares,
 trd.Price * trd.Shares TotalCost
FROM
 Trades trd
;

This creates a delta stream that filters out records where total cost is less than 10,000:

CREATE DELTA stream LargeTrades
PRIMARY KEY DEDUCED
AS SELECT * FROM TradesWithCost twc WHERE twc.TotalCost >= 10000
;

CHAPTER 7: Statements

CCL Programmers Guide 65

See also
• DECLARE Statement on page 77

• PRIMARY KEY Clause on page 95

• SCHEMA Clause on page 97

• SELECT Clause on page 113

• AS Clause on page 88

• Chapter 9, Queries on page 101

CREATE ERROR STREAM Statement
Create a stream that collects errors and the events that caused them.

Syntax
CREATE [LOCAL|OUTPUT] ERROR STREAM name ON source [, source ...]

name is a string that identifies the newly created error stream.

source is a string that identifies a previously defined stream or window.

Usage
Error streams collect error data from the specified streams. Each error record includes the
error code and the input event that caused the error. You can simply display these records for
monitoring purposes, or they may trigger more processing logic downstream, just like the
records from other streams.

In production environments, error streams are used for real-time monitoring of one or more
streams in the project. They are also used in development environments to monitor the input
and derived streams when debugging a project.

The visibility of an error stream is, by default, LOCAL. To make the error stream visible to
external monitoring tools or devices, you must specify OUTPUT when you create it.

You can define more than one error stream in a single project.

Examples
To create a single error stream (that is visible externally) to monitor all the streams in a project
with one input stream and two derived streams, enter:
CREATE OUTPUT ERROR STREAM AllErrors ON InputStream, DerivedStream1,
DerivedStream2

To create separate error streams (both visible only locally) to monitor the input and derived
streams in a project with two input streams and three derived streams, enter:
CREATE ERROR STREAM InputErrors ON InputStream1, InputStream2
CREATE ERROR STREAM QueryErrors ON DerivedStream1, DerivedStream2,
DerivedStream3

CHAPTER 7: Statements

66 Sybase Event Stream Processor

CREATE FLEX Statement
A flex operator takes input from one or more streams/windows and produces a derived stream
or window as its output. It allows the use of SPLASH code to specify customizable processing
logic.

Note: The name of the Flex operator exists only for labeling in Studio and cannot be referred
to in queries. Instead, refer to the output element.

Syntax
CREATE FLEX procedureName
 IN input1 [KEEP keep_spec], ...
 OUT output_element
 BEGIN
 [DECLARE
 //variable and function declarations
 END;]
 ON input1 {
 //statements
 };
 [EVERY interval{
 //periodically executing tasks
 };]
 [ON START TRANSACTION {
 //tasks to be executed
 //at the start of every transaction
 };]
 [ON END TRANSACTION {
 //tasks to be executed
 //at the end of each transaction
 };]
 END;

OUT output_element
output_element:
{{[OUTPUT/LOCAL] STREAM name schema_clause
 [OUTPUT/LOCAL] DELTA STREAM name schema_clause|PRIMARY
KEY{column1,column2,...)
 [OUTPUT/LOCAL] WINDOW name schema_clause}
 [PRIMARY KEY(column1,column2,...)][store_clause][keep_clause]
[aging_clause]
 }
}

Components

procedureName The name of the Flex operator being created.

CHAPTER 7: Statements

CCL Programmers Guide 67

IN input1 Inputs to the Flex operator are declared in the IN
clause. The inputs can be streams, delta streams,
windows, or outputs of another flex operator.

KEEP keep_spec The KEEP clause modifies the retention policy of
existing input elements that are either delta
streams or windows.

OUT output_element The output of the Flex operator is defined in the
OUT clause. A Flex stream can have only one
output. The SCHEMA clause is mandatory for all
output types.

DECLARE ... END; (Optional) The DECLARE block can define vari-
ables and functions of all types, including com-
plex data types such as records, vectors, diction-
aries and event caches.

See the SPLASH Programmers Guide for addi-
tional information.

ON input1 The ON input clause must be declared for every
input of the Flex operator. The SPLASH code
specified in this block is executed each time an
input record is received. If an input element does
not require processing, use an empty ON input
clause.

EVERY interval (Optional) The EVERY interval clause allows you
to specify a block of code that is executed every
time the interval expires. The interval can be
specified explicitly, or specified through an inter-
val type parameter.

ON START TRANSACTION and ON END

TRANSACTION

(Optional) The SPLASH statements specified in
the START/END transaction block are executed
at the start/end of each transaction respectively.
You can individually specify a START TRANS-

ACTION block or END TRANSACTION block,
without the other block.

Usage
The CREATE FLEX statement is used to create a Flex operator that accepts any number of input
elements and produces one output element. The input elements are previously existing
streams, delta streams, and windows defined in the project. If the input element is a delta
stream or window, its retention policy can be modified by specifying a KEEP clause. The
output element is a stream, delta stream, or window with an unique name generated by the Flex

CHAPTER 7: Statements

68 Sybase Event Stream Processor

operator. Specification of the SCHEMA clause is mandatory for all output element types.
Specification of the PRIMARY KEY is mandatory for output elements that are delta streams or
windows.

The ON input clause contains the processing logic for inputs arriving on a particular input
element. Specification of the ON input clause is mandatory for each input of the Flex operator.
The ON START TRANSACTION and ON END TRANSACTION clauses are optional and contain
processing logic that should be executed at the start/end of each transaction respectively. The
optional EVERY interval clause contains logic that is executed periodically based on a fixed
time interval independent of any incoming events.

Restrictions

• A KEEP clause can be specified for the input of a Flex operator if the input element is a
window or a delta stream.

• You cannot declare functions in the ON input and EVERY clauses.
• You can define event cache types only in the local DECLARE block associated with the

statement.
• A Flex delta stream (a Flex stream for which the output is a delta stream) cannot be used to

generate records with update or upsert opcodes. To generate records with these opcodes,
use a Flex window instead of a Flex delta stream.

• The SPLASH output statement can be used inside the body of a function defined only in
the local declare block of a Flex operator and not in a global declare block or a local declare
block of any other element.

Example
This example computes the average trade price every five seconds.
CREATE FLEX ComputeAveragePrice
 IN NASDAQ_Trades
 OUT OUTPUT WINDOW AverageTradePrice SCHEMA (Symbol string,
 AveragePrice money(4)) PRIMARY KEY(Symbol)
 BEGIN
 DECLARE
 typedef [|money(4) TotalPrice; integer NumOfTrades] totalRec_t;
 dictionary(string,totalRec_t) averageDictionary;
 END;
 ON NASDAQ_Trades {
 totalRec_t rec := averageDictionary[NASDAQ_Trades.Symbol];
 if(isnull(rec)) {
 averageDictionary[NASDAQ_Trades.Symbol] :=
 [|TotalPrice = NASDAQ_Trades.Price; NumOfTrades = 1];
 } else {
 // accumulate the total price and number of trades per input record
 averageDictionary[NASDAQ_Trades.Symbol] :=
 [|TotalPrice=rec.TotalPrice + NASDAQ_Trades.Price;
 NumOfTrades=rec.NumOfTrades + 1];
 }
 };
 EVERY 5 SECONDS {
 totalRec_t rec;

CHAPTER 7: Statements

CCL Programmers Guide 69

 for (sym in averageDictionary) {
 rec := averageDictionary[sym];
 output setOpcode([Symbol=sym;|AveragePrice=(rec.TotalPrice/
rec.NumOfTrades);], upsert);
 }
 };
 END;

See also
• IN Clause on page 90

CREATE LIBRARY Statement
Before using external C/C++ and Java functions, declare them in your CCL project using the
CREATE LIBRARY statement.

Syntax
CREATE LIBRARY libraryName LANGUAGE {C|JAVA} FROM fileName(
returnType funcName (argType [argName],...);
...);

Components

libraryName The user-specified name of the library.

C, JAVA Defines the language of the library. The names are case-insensitive.

fileName For C/C++ functions, the directory of the shared library. You can
use a path relative to the current directory.

For Java functions, the name of the class file without the .class
suffix. You can specify it as a string parameter. You can use the -j
option when starting the Event Stream Processor Server to provide
the locations of the class files.

funcName The name of the declared function.

returnType, argType Datatype of the return value of the function and an argument of the
function, respectively.

argName The name of an argument of the function.

Usage
Call declared functions using the libraryName.funcName notation.

Use the IMPORT statement to import the CREATE LIBRARY statement from a different CCL
file to your main project.

CHAPTER 7: Statements

70 Sybase Event Stream Processor

You can reference only one external library using the CREATE LIBRARY statement, but you
can reference the external library any number of times in multiple CREATE LIBRARY
statements.

Libraries are defined, which means you can use them before they have been declared.
However, if a global user-defined function uses an external C/C++ or Java function, you must
declare the library, specifying the function signature, before the global DECLARE block.

Note: C/C++ external library calls support all datatypes, namely boolean, integer, long, float,
money(n), date, bigdatetime, binary, and string.

Java external library calls support only integer, long, double, and string datatypes.

Complex types such as dictionaries, vectors, event caches and record types are not supported
in external functions.

Examples
Create a C/C++ Library
CREATE LIBRARY MyCFunctions LANGUAGE C FROM '/opt/sybase/
MyFunctions.so' (
 integer MyFunc1 (integer, integer, float);
 string MyFunc2(string);
);

Create a Java Function
CREATE LIBRARY MyJavaFunctions LANGUAGE JAVA FROM 'MyClass' (
 integer MyFunc1 (integer, integer, float);
 string MyFunc2(string);
);

See also
• IMPORT Statement on page 83

CREATE LOG STORE Statement
Creates a log store for use by one or more windows. Unlike a memory store (which is the
default) a log store persists data to disk so that it can be recovered after a shutdown or failure.

Syntax
CREATE [DEFAULT] LOG STORE storename
PROPERTIES
filename='filepath'
[sync={ true | false},]
[sweepamount=size,]
[reservepct=size,]
[ckcount=size,]
[maxfilesize=filesize];

CHAPTER 7: Statements

CCL Programmers Guide 71

Parameters

filename The absolute or relative path to the folder where log store files
should be written. The relative path is preferred.

maxfilesize The maximum size of the log store file in MB. Default is 8MB.

sync Specifies whether the persisted data is updated synchronously
with every stream being updated. A value of true guarantees that
every record acknowledged by the system is persisted at the ex-
pense of performance. A value of false improves performance, but
it may result in a loss of data that is acknowledged, but not yet
persisted. Default is false.

reservepct The percentage of the log to keep as free space. Default is 20
percent.

sweepamount The amount of data, in megabytes, that can be cleaned in a single
pass. Default is 20 percent of maxfilesize.

ckcount The maximum number of records written before writing the in-
termediate metadata. Default is 10,000.

Components

storename An identifier that can be referenced in the STORE clause of stateful
elements. Must be unique.

filepath A path to the log store folder, enclosed in single quotes

size An integer.

filesize A size in MB.

Usage
A log store is a disk-optimized store that is persisted on the disk. The state of windows
assigned to a log store are restored upon recovery, and the state of memory store windows that
receive data from a log store window are recomputed when possible. Log stores are
implemented as memory mapped files. The filename parameter is required; however, sync,
sweepamount, reservepct, and ckcount are optional. If these parameters are not specified,
the store refers to their default values.

Specify parameters in the PARAMETERS clause, in any order.

You cannot specify memory store parameters for log store parameters, or log store parameters
for memory parameters.

CHAPTER 7: Statements

72 Sybase Event Stream Processor

If DEFAULT is specified, the store is the default store for the module or project. The store is
used for stateful elements that do not explicitly specify a store with a STORE clause. When a
store is not defined for the project or module, a default memory store is automatically created
for holding the stateful elements. Due to the restrictions on the use of log stores, making a log
store the default store for a project is NOT recommended

Example
CREATE LOG STORE myStore
PROPERTIES
filename='myfile',
maxfilesize=16,
sweepamount=4,
ckcount=15000,
reservepct=20,
sync=false;

See also
• CREATE MEMORY STORE Statement on page 73

• Stores on page 18

• Data Recovery on page 55

CREATE MEMORY STORE Statement
Creates a named memory store that one or more windows can be assigned to. Is not required
but can be used for performance optimization.

Syntax
CREATE [DEFAULT] MEMORY STORE storename
[PROPERTIES
[INDEXTYPE={'tree'|'hash'},]
[INDEXSIZEHINT=size]]

Parameters

INDEXTYPE The type of index mechanism for the stored elements. The default
is 'tree'. Use tree for binary trees. Binary trees are predictable

in use of memory and consistent in speed. Use hash for hash
tables, as hash tables are faster, but they often consume more
memory.

INDEXSIZEHINT (Optional) Determines the initial number of elements in the hash
table, when using hash. The value is in units of 1024. Setting this
higher consumes more memory, but reduces the chances of spikes
in latency. Default is 8KB.

CHAPTER 7: Statements

CCL Programmers Guide 73

Components

storename An identifier that can be referenced in the STORE clause of stateful
elements. Must be unique.

'tree' Default index mechanism.

'hash' Alternative index mechanism.

Usage
A memory store holds all the retained records for one or more windows. The data is held in
memory and does not persist on the disk. The INDEXTYPE parameter is optional, and the store
supports 'tree' or 'hash' index types. If you do not specify the index type and size
parameters, the store refers to their default values.

Specify parameters in the PARAMETERS clause, but this clause is optional for memory stores,
since all its parameters are optional. Properties may be specified in any order.

You cannot specify memory stores parameters for log stores, or log store parameters for
memory stores.

If you specify DEFAULT, the store is the default store for the module or project. The store is
used for stateful elements that do not explicitly specify a store with a STORE clause. When a
store is not defined for the project or module, a default memory store is automatically created
for holding the stateful elements.

Example
CREATE DEFAULT MEMORY STORE Store1 PROPERTIES INDEXTYPE='hash',
INDEXSIZEHINT=16;

See also
• CREATE LOG STORE Statement on page 71
• Stores on page 18
• Data Recovery on page 55

CREATE MODULE Statement
Create a module that contains specific functionality that you can load in a CCL project using
the LOAD MODULE statement.

Syntax
CREATE MODULE moduleName
IN input1 [,...]
OUT output1[,...]
BEGIN

CHAPTER 7: Statements

74 Sybase Event Stream Processor

 statements;
END;

Components

moduleName The name of the module.

input1 The input stream or window.

output1 The output stream or window.

Usage
All CCL statements are valid in a module except:

• CREATE MODULE

• ATTACH ADAPTER

• ADAPTER START GROUPS

moduleName should be unique across all object names in the scope in which the statement
exists. The names in the IN and OUT clauses must match the names of the streams or windows
defined in the BEGIN-END block. All streams or windows with input visibility must be listed in
the IN clause. All streams, windows, and delta streams (including those created by the flex
operator), with output visibility must be listed in the OUT clause. The compiler generates an
error if any input or output objects exist in the module and are not listed in their respective IN or
OUT clause.

While you can use multiple CREATE statements within modules, such as the CREATE
WINDOW and CREATE STREAM statements, the CREATE STORE statement uses a special
syntax that cannot be used outside of a module. The syntax used within a module does not
allow you to specify any store properties. The CREATE STORE syntax within a module is:
CREATE [DEFAULT] {MEMORY|LOG} STORE store1-inmodule;

Note: All CREATE MODULE statement compilation errors are fatal.

Restrictions

• You cannot use the CREATE MODULE statement within the module definition.

Example
This example creates a simple module that filters data based on a column's values:
CREATE MODULE filter_module
IN moduleIn
OUT moduleOut
BEGIN
 CREATE SCHEMA filter_schema (Value INTEGER);
 CREATE INPUT STREAM moduleIn SCHEMA filter_schema;
 CREATE OUTPUT STREAM moduleOut SCHEMA filterSchema AS SELECT *
FROM moduleIn WHERE moduleIn.Value > 10;
END;

CHAPTER 7: Statements

CCL Programmers Guide 75

See also
• CREATE LOG STORE Statement on page 71
• CREATE MEMORY STORE Statement on page 73
• IMPORT Statement on page 83
• LOAD MODULE Statement on page 84

CREATE SCHEMA Statement
Defines a named schema that can be referenced later and reused by one or more streams/
windows in the project or module.

Syntax
CREATE SCHEMA name {(columname type [,...])|
 INHERITS [FROM] schema_name [,...] [(columname type [,...])]};

Components

name An identifier that is referenced while defining
stateless or stateful elements.

columnname The unique name of a column.

type The datatype of the specified column.

schema_name The name of another schema.

Usage
The CREATE SCHEMA statement defines a named schema that can be referenced by stateful
and stateless elements such as streams or windows. You can define the schema as an inline
schema definition, or so that it inherits the definition from another schema.

You can extend a schema by setting it up to inherit an existing schema definition and
appending more columns. Additional columns you specify are appended to the inherited
schema. Otherwise, the inherited schema definition remains an exact replica of the specified
named schema. Alternatively, you can extend a schema by inheriting multiple schema
definitions.

The concatenation of the schemas is implicit in the specified order. Additional columns are
appended. These column names must be unique, otherwise an error is raised.

Examples
This creates two schemas, symbol_schema and trade_schema, which is extended from
symbol_schema:

CREATE SCHEMA symbol_schema (Symbol STRING);
CREATE SCHEMA trade_schema INHERITS FROM symbol_schema (Price
FLOAT);

CHAPTER 7: Statements

76 Sybase Event Stream Processor

See also
• Schemas on page 17

DECLARE Statement
DECLARE block statements specify the variables, parameters, typedefs and functions used in
a CCL project.

Syntax
DECLARE
 [declaration;]
 ...
END;

Usage
CCL declare blocks consist of a DECLARE statement and an END statement with zero or more
declarations between them.

A DECLARE block statement can be used to define variables, typedefs, parameters, and
functions. The syntax for each of these declarations is:

• Variables use the SPLASH syntax, and you can specify a default value:
datatypeName variableName [:=any_expression] [,...]

• Typedefs declare new names for datatypes:
existingdatatypeName newdatatypeName

• Parameters use the qualifier parameter, and you can specify a default value:
 parameter datatypeName parameterName [:=constant_expression]

Declare blocks can be local or global. When declare blocks are used inside a CREATE stream
or window statement they become local declare blocks. A local declare block is visible only
inside the stream or window with which it is used. When a DECLARE block statement is used
inside a module or project, it becomes a global declare block. Global declare blocks are visible
anywhere within that project or module.

Terminate each declaration in the DECLARE block statement with a semicolon.

Example
This example demonstrates the DECLARE block in the global context, meaning it is outside of
any CREATE command.
declare
 integer toggle(integer x) { if (x%2 = 0) { return 1; } else
{ return 2; } }
end;

CREATE SCHEMA sc1 (k1 integer,k2 string);
CREATE SCHEMA sc2a (k1 integer,k2 string,k3 string, k4 integer);
create schema s1_104(c2 integer, c3 date, c4 float, c5 string, c6

CHAPTER 7: Statements

CCL Programmers Guide 77

money);

CREATE INPUT WINDOW iwin1 SCHEMA sc1 primary key(k1);
CREATE INPUT WINDOW iwin2 SCHEMA sc1 primary key(k1);

create input window w1_104 schema s1_104 primary key(c2);
create delta stream ds2_104 primary key deduced as select * from
w1_104;

create output window ww_innerjoin1 schema sc2a primary key (k1,k2)

This example shows the DECLARE block local to a stream, meaning it is inside a CREATE
command (not flex)
declare
 integer i1 := 1;
 string s1 := 'ok';
end
 as
 select A.k1,(A.k2 + s1) k2,B.k2 k3, toggle(A.k1) k4
 from iwin1 A join iwin2 B
 on A.k1 = B.k1
;

create flex flex104
 in ds2_104
 out output stream flexos104 schema s1_104
 begin

This example shows a DECLARE block local to a flex stream.
 declare
 integer counter := 0;
 end;

 on ds2_104 {
 counter++;
 output ds2_104_stream[[c2=ds2_104.c2;|]];
 };

 on end transaction {
 if(counter = 4) {
 typeof(flexos104) rec;
 rec := flexos104_stream[[c2=0;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 rec := flexos104_stream[[c2=1;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 rec := flexos104_stream[[c2=2;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 rec := flexos104_stream[[c2=3;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 }

CHAPTER 7: Statements

78 Sybase Event Stream Processor

 };

 end;

See also
• CREATE DELTA STREAM Statement on page 64

• PRIMARY KEY Clause on page 95

• SCHEMA Clause on page 97

• SELECT Clause on page 113

• Declare Blocks on page 45

CREATE STREAM Statement
Create either an input stream that receives events from external sources, or a derived stream of
events that is the result of a continuous query applied to one or more inputs.

Syntax
CREATE INPUT STREAM name schema_clause
filter-expression-clause
;

CREATE [LOCAL | OUTPUT] STREAM name [schema_clause]
 [local-declare-block]
as_clause
;

Components

schema_clause Specifies the schema. The schema clause is required for input streams, but
is optional for local and output streams. If the schema is not specified for
local and output streams, it is deduced automatically by the compiler
based on the query specification.

filter-expression-clause Can be specified on an input stream. This clause filters the events before
accepting them from the adapter or an outside publisher.

Specify columns in the format node name.column name. For an input
stream, use the stream name for the node name. For local or output
streams, use the name or its alias from the FROM clause.

local-declare-block Allows variable and function declarations that can be accessed in expres-
sions in the query. You cannot define a local-declare-block on an input
stream.

as_clause Introduces a query to a statement.

CHAPTER 7: Statements

CCL Programmers Guide 79

Usage
The CREATE STREAM statement explicitly creates a stateless element known as a stream,
which can be designated as input, output, or local. Input streams include a mandatory schema,
and may include an optional filter expression that can remove unneeded data before further
processing. Each incoming event is processed, any output is published, and then the stream is
ready to process the next event.

Output and local streams have an optional schema. They can contain a local declare block to
define variables and functions that can be used in the SELECT clause of the query.

Example
This creates an input stream with a filter:

CREATE INPUT STREAM InStr
SCHEMA (Col1 INTEGER, Col2 STRING)
WHERE InStr.Col2='abcd';

This creates an output stream where the schema is implicitly determined by the SELECT
clause:

CREATE OUTPUT STREAM OutStr as
SELECT InStr.Col1, InStr.Col2
FROM InStr
WHERE InStr.Col1 > 1000;

See also
• SCHEMA Clause on page 97
• WHERE Clause on page 116
• DECLARE Statement on page 77
• SELECT Clause on page 113
• FROM Clause: ANSI Syntax on page 104
• FROM Clause: Comma-Separated Syntax on page 103
• AS Clause on page 88

CREATE WINDOW Statement
Defines a named window that can be referenced and used by one or more downstream
operators or, if an output window, can be used to publish results.

Syntax
CREATE INPUT WINDOW name schema_clause
primary_key_clause
[store_clause]
[keep_clause]
;

CHAPTER 7: Statements

80 Sybase Event Stream Processor

CREATE [LOCAL | OUTPUT] WINDOW name schema_clause
{ PRIMARY KEY (column1, column2, ...) | PRIMARY KEY DEDUCED }
[store_clause]
[aging_clause]
[keep_clause]
[local-declare-block]
as_clause
;

CREATE INPUT WINDOW Trades SCHEMA (Id long, Symbol string, Price
money(4)) PRIMARY KEY (Id);

Components

name A name for the window being created.

schema_clause Required for input windows, but optional for lo-
cal and output windows. When the schema clause
is not specified for local and output windows, it is
automatically deduced by the compiler.

primary_key_clause Set primary key.

store_clause (Optional) Specifies the physical mechanism
used to store the state of the records. If no clause is
specified, project or module defaults apply.

keep_clause (Optional) Specifies the retention policy for the
window. When not specified, the window uses the
KEEP ALL retention policy as a default.

aging_clause (Optional) Specifies the data aging policy. Used
only with output or local windows.

local-declare-block (Optional) Allows variable and function declara-
tions that can be accessed in expressions in the
query. You cannot define a local-declare-block on
an input stream.

as_clause Introduces a query to a statement.

Usage
The SCHEMA and PRIMARY KEY clause is mandatory for an input window. The SCHEMA
clause is optional for derived windows. If a SCHEMA is not defined the compiler implicitly
determines it based on the projection list. For derived windows, the primary key may be either
deduced or explicitly specified. There are a few exceptions to these rules, which is noted in the
appropriate context.

The CREATE WINDOW statement can also includes a STORE clause to determine how records
are stored, and a KEEP clause to determine how many records are stored and for how long. The

CHAPTER 7: Statements

CCL Programmers Guide 81

window can be of type input, output, or local. Local and output windows can include an
AGING clause that specifies the data aging policy.

Example
This example creates a local window containing only position records received in the last ten
minutes:

CREATE WINDOW TradesAge
PRIMARY KEY DEDUCED
KEEP 10 MINUTES
AGES EVERY 5 SECONDS SET AgeColumn 5 TIMES
AS
SELECT Trades.*, 0 AgeColumn FROM Trades;

This example creates a local window containing only position records recieved in the last ten
minutes. Inclusion of the local declare block lets you determine how old the record is since last
update; the maximum age is 25 seconds. It also enables you to keep track of how many records
have been processed (including updates and deletes).
CREATE WINDOW TradesAge
PRIMARY KEY DEDUCED
KEEP 10 MINUTES
AGES EVERY 5 SECONDS SET AgeColumn 5 TIMES
DECLARE
 long counter := 0;

 long getRecordCount() {
 return ++counter;
 }
END
AS
SELECT Trades.*, getRecordCount() RecordCount, 0 AgeColumn FROM
Trades;

See also
• SCHEMA Clause on page 97

• PRIMARY KEY Clause on page 95

• STORE Clause on page 98

• AGING Clause on page 87

• KEEP Clause on page 91

• User-Defined SPLASH Functions on page 119

• SELECT Clause on page 113

• FROM Clause: ANSI Syntax on page 104

• FROM Clause: Comma-Separated Syntax on page 103

• AS Clause on page 88

CHAPTER 7: Statements

82 Sybase Event Stream Processor

IMPORT Statement
Import libraries, parameters, variables, and schema, function, and module definitions from a
CCL file into a project, module, or another IMPORT file.

Syntax
IMPORT 'fileName';

Component

fileName The absolute or relative path of the CCL text file you are importing.

The relative path is relative to the file location of the file that
contains the IMPORT statement.

Usage
Only the following CCL statements are valid in an import file. Any other statements in the file
generate compiler error messages.

• IMPORT
• CREATE MODULE
• DECLARE
• CREATE SCHEMA
• CREATE LIBRARY

Any definitions used in an import file must be either defined in the file or imported by the file.
Once imported, these definitions belong to the scope into which they are imported. You can
use these definitions only in statements that follow the IMPORT statement.

Import files can be nested within other import files using the IMPORT statement. For example,
if file A imports file B, and the project imports file A, then the project has access to every
definition within A, which includes all of the definitions within B.

Import cycles are not allowed and are detected by the compiler. For example, if file B imports
file A, and file A imports file B, the compiler generates an error message indicating that a
cyclical dependency exists between files A and B. Importing the same file twice in a single
scope is also not allowed, and results in an error message.

Note: You cannot successfully compile your project if you cannot compile the import file, or if
the IMPORT statement attempts to import an invalid file (an improper file format or the file
cannot be found).

Example
This example imports and uses two schemas.
//Defines Schema1
//Imported using relative paths

CHAPTER 7: Statements

CCL Programmers Guide 83

IMPORT '../schemas/import1.ccl';

//Defines Schema2
//Imported using absolute paths
IMPORT '~/project/schemas/import2.ccl'; [For UNIX-based systems]
IMPORT 'C:/project/schemas/import2.ccl': [For Windows-based systems]

CREATE INPUT STREAM stream1 SCHEMA Schema1;
CREATE INPUT STREAM stream2 SCHEMA Schema2;

See also
• CREATE LIBRARY Statement on page 70

• Modularity on page 51

• CREATE MODULE Statement on page 74

• LOAD MODULE Statement on page 84

• DECLARE Statement on page 77

LOAD MODULE Statement
The LOAD MODULE statement loads a previously created module into the project.

Syntax
LOAD MODULE modulename AS moduleIdentifier
 in-clause
 out-clause
 [parameters-clause]
 [stores-clause];

Components

moduleName The name of the module, which must match the name of the pre-
viously created module.

module identifier The identifier name must be unique within the parent scope.

IN clause Binds the input streams or windows defined in the module to pre-
viously-created streams or windows in the parent scope.

OUT clause Exposes one or more output streams defined within the module to
the parent scope using unique identifiers.

PARAMETERS clause Binds one or more parameters defined inside the module to an
expression at load time, or binds parameters inside the module to
another parameter within the main project. If the parameter has a
default value defined, then no parameter binding is required.

STORES clause Binds a store in the module to a store within the parent scope.

CHAPTER 7: Statements

84 Sybase Event Stream Processor

Usage
All streams in a loaded module have local visibility at runtime, meaning they cannot be
subscribed to, published from, or queried. When a module is loaded on the server, all of the
streams and windows within the module, and the output streams and windows created by
exposing outputs to the parent scope, behave as if they have local visibility. Therefore, the
streams and windows within a module and the exposed outputs of the module cannot be
queried externally or subscribed to.

LOAD MODULE supports:

• IN clause
• OUT clause
• PARAMETERS clause
• STORES clause

Note: All LOAD MODULE statement compilation errors are fatal.

Example
This example uses a module that processes raw stock trade information and outputs a list of
trades with a price exceeding 1.00. The module loads into the main project using the LOAD
MODULE statement.
CREATE MODULE FilterByPrice IN TradeData OUT FilteredTradeData
BEGIN
 CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
);

 CREATE INPUT STREAM TradeData SCHEMA TradesSchema;
 CREATE OUTPUT STREAM FilteredTradeData SCHEMA TradesSchema
 AS SELECT * FROM TradeData WHERE TradeData.Price > 1.00;
END;

CREATE INPUT STREAM NYSEData SCHEMA TradesSchema;

LOAD MODULE FilterByPrice AS FilterOver1 IN TradeData = NYSEData OUT
FilteredTradeData = NYSEPriceOver1Data;

See also
• Modularity on page 51

• IN Clause on page 90

• OUT Clause on page 93

• PARAMETERS Clause on page 94

CHAPTER 7: Statements

CCL Programmers Guide 85

• STORES Clause on page 98

CHAPTER 7: Statements

86 Sybase Event Stream Processor

CHAPTER 8 Clauses

Syntax for the various clauses used in statements .

AGING Clause
Specifies the data aging policy.

Syntax
AGES EVERY agingTime SET agingField [maxAgingFieldValue TIMES] [FROM
agingTimeField]

Components

agingTime The time period after which the data aging process begins.
Specify the period in hours, minutes, seconds, milliseconds, or
microseconds. It can also be specified using a combination of
units (for example, 3 MINUTES 30 SECONDS).

Can also be specified using the interval parameter.

agingField The field in the record that is incremented by 1 every time the
agingTime period elapses and no activity has occurred on the
record.

maxAgingFieldValue (Optional) The maximum value that agingField is incremented
to. If not specified, agingField is incremented once.

Can also be specified by the interval parameter.

agingTimeField (Optional) The field containing the start time for the aging
process. For example, if the period of time specified in the
agingTime column has elapsed, the data aging process begins.

If not specified, the internal row time is used. If specified, the
field must contain a valid start time.

Usage
If data records have not been updated or deleted within a predefined period, they are
considered to have aged. When a data record ages, notifications are sent as update events to
subscribers of the window.

Note: You can only use the AGING clause with windows.

CCL Programmers Guide 87

When the predefined time period (agingTime) elapses, an integer field in the record
(agingField) is incremented once, or until a predefined maximum value
(maxAgingFieldValue) is reached. The start time of the aging process is specified through the
(agingTimeField) field in the record.

If the start time is not explicitly specified, the internal row time is used. When the aging
process begins, agingField defaults to 0, and it is incremented by 1 whenever the predefined
time period elapses. If a record is updated after aging commences, agingField resets to 0 and
the process restarts. If a record is deleted, no aging updates are generated.

When insert is received, the count field sets to 0, the insert is passed through, and aging begins.

Aging starts only after the specified inactivity period. If the data ages every five seconds, then
the record must remain inactive for five seconds before it starts counting. A record is
considered inactive when no updates or deletes have occurred.

When delete is received, aging stops and the delete is passed through. An update of a record
resets the counting to 0.

Example
This example creates an output window named AgingWindow. The age column for the
output window updates every 10 seconds 20 times.
CREATE OUTPUT WINDOW AgingWindow
 SCHEMA (
 AgeColumn integer,
 Symbol STRING,
 Ts bigdatetime)
 PRIMARY KEY (Symbol)
 AGES EVERY 10 SECONDS SET AgeColumn 20 TIMES
 AS
 SELECT 1 as AgeColumn,
 TradesWindow.Symbol AS Symbol,
 TradesWindow.Ts AS Ts
 FROM TradesWindow
;

See also
• CREATE WINDOW Statement on page 80

AS Clause
Introduces a CCL query to a derived element.

Syntax
[...]
 AS
 CCL Query
[...]

CHAPTER 8: Clauses

88 Sybase Event Stream Processor

Components

AS The AS clause introduces a CCL query to the rest
of the statement.

CCL Query The body of the CCL query.

Usage
The AS clause is used within derived elements (streams, windows, and delta streams) to
provide a CCL query that determines the type of data processed by the derived element.
Because of this, the AS clause is valid only with derived elements.

See the Queries section for information on structuring a query.

Example
This example shows the AS clause being used to specify the information selected by a derived
stream.

CREATE STREAM win1 SCHEMA (col1 string)
 AS
 SELECT inputStream.col1
 FROM inputStream;

See also
• Chapter 5, CCL Query Construction on page 35

• CREATE STREAM Statement on page 79

• CREATE WINDOW Statement on page 80

• Chapter 9, Queries on page 101

CASE Clause
Conditional processing evaluates set conditions to determine a result.

Syntax
CASE
 WHEN condition THEN expression [...] ELSE expression
END

Components

condition An expression that evaluates to either zero or non-zero. A non-
zero result indicates the condition is true, a result of zero in-
dicates the condition is false.

CHAPTER 8: Clauses

CCL Programmers Guide 89

expression The result of the evaluated conditions. This can be any valid
expression or variable.

Usage
A CASE clause is order-dependent and contains conditional expressions that require the
parameters WHEN, THEN, and ELSE. WHEN conditions filter the specific case and narrow
down the result through evaluations of whether the conditions set are true or false. If true,
following THEN expressions are carried out. If false, subsequent WHEN conditions are tested.

If all conditions prior to the ELSE parameter are false, then the ELSE expression is executed.
The CASE clause closes with the keyword END.

Example
This example filters weights and specifies a number to each condition set.
CASE
WHEN weight<500 THEN 1
WHEN weight>1000 THEN 3
ELSE 2
END

IN Clause
Used in the LOAD MODULE statement to bind inputs in the module to inputs in the parent
scope.

Syntax
IN
 input1-inModule = input1-parentScope [,...]

Components

input1-inModule The name of the input stream or window defined
in the module.

input1-parentScope The name of the stream or window in the parent
scope. Bind the module input stream or window
to this stream.

Usage
The streams or windows in the parent scope can have any visibility type. Schemas between the
bound input streams or windows must be compatible. Schemas are compatible if any one of
these requirements is met:

• The number and datatypes of the columns match and are in the same order.

CHAPTER 8: Clauses

90 Sybase Event Stream Processor

• The stream in the parent scope has more columns than the module stream, and the initial
column datatypes match and are in the same order. Any additional columns are ignored by
the module, and cannot be primary key columns.

• The parent module stream has fewer columns than the module stream, and the initial
column datatypes match and are in the same order. Any additional columns inside the
module stream are filled with a NULL value. Primary key columns cannot be null.

Note: For each of these requirements, column names need not match.

When associating inputs, a parent level object that does not have a primary key cannot be
bound to a module-level object that requires a primary key. For example, a stream cannot be
bound to a window.

Restrictions

• All input elements in the module must be bound for the IN clause.

Example
This example shows the input streams inside the module (modMarketIn1 and
modMarketIn2) being bound to their respective streams in the parent scope, marketIn1
and marketIn2.

LOAD MODULE filterModule AS filter1
IN modMarketIn1=marketIn1, modMarketIn2=marketIn2
OUT modMarketOut=marketOut;

See also
• Modularity on page 51

• LOAD MODULE Statement on page 84

• OUT Clause on page 93

• PARAMETERS Clause on page 94

• STORES Clause on page 98

KEEP Clause
Specify either a maximum number of records to retain in a window, or a length of time to retain
them.

Syntax
KEEP { count_policy | time_policy } | ALL;

CHAPTER 8: Clauses

CCL Programmers Guide 91

Components

count_policy Specify the maximum number of records that will be retained in the
window as either a simple maximum nn ROWS or a maximum with

some slack nn ROWS SLACK mm. A larger slack value improves

performance by reducing the need to delete one row every time a row is
inserted. The number of rows, nn, and the slack value, mm, can be either
an integer value or an expression.

time_policy Specify the length of time that records will be retained in the window as
described in the Intervals on page 26 topic.

ALL Specifies that all of the rows received will be retained.

Usage
The KEEP clause defines a retention policy for a Named or Unnamed Window. Window
retention policies include time-based policies (the time duration for which a window retains
rows) and count-based policies (the maximum number of rows that the window can retain). If
you omit the KEEP clause from a window definition, the default policy is KEEP ALL.

When specifying a count-based retention policy, you can specify a SLACK value to enhance
performance by requiring less frequent cleaning of memory stores. Slack cannot be specified
for windows using time-based retention policies.

The location of the KEEP clause in the CREATE WINDOW statement determines whether a
named or an unnamed window is created. When the KEEP clause is specified for the window
being created, a Named Window is created. If there is a KEEP clause in the query portion of the
statement, however, an Unnamed Window is implicitly created. This includes cases where
there is a KEEP clause attached to the FROM clause of the query.

Examples
In the following example, the first KEEP clause specifies the retention policy for the named
window RecentAvgVols, keeping records for ten minutes. The second instance of the KEEP
clause creates an unnamed window that stores the average volume over the last five minutes.

CREATE WINDOW RecentAvgVols PRIMARY KEY DEDUCED
KEEP 10 MINS
AS
SELECT Trades.Symbol, Avg(Trades.Volume) as Vol
FROM Trades KEEP 5 MINS
GROUP BY Trades.Symbol;

This example creates a Sliding Window that retains the most recent 100 records that match the
filter condition. The SLACK value means the window may contain as many as 110 records.

CREATE WINDOW Last100Trades PRIMARY KEY DEDUCED
KEEP 100 ROWS SLACK 10

CHAPTER 8: Clauses

92 Sybase Event Stream Processor

AS SELECT * FROM Trades
WHERE Trades.Volume > 1000;

See also
• Joins on page 37

• CREATE DELTA STREAM Statement on page 64

• CREATE WINDOW Statement on page 80

• Retention on page 15

• Data Recovery on page 55

OUT Clause
Used in the LOAD MODULE statement to expose outputs in the module to the parent scope.

Syntax
OUT
 output1-inModule = output1-parentScope [,...]

Components

output1-inModule The name of the output defined in the module.

output1-parentScope The name by which the output is exposed to the
parent scope.

Usage
The exposed output stream created by the LOAD MODULE statement has local visibility,
meaning that you cannot attach an output adapter directly to the output stream directly.
Outputs are exposed to the parent scope using the output1-parentScope identifier. The
output mapping provides a unique name for the module output so that it can be referred to in
the parent scope.

Restrictions

• At least one output stream must be exposed to the parent scope.

Example
This example exposes the outputs of the module, modFilteredOut and
marketAverageOut, using the respective names filteredOut and averageOut.

LOAD MODULE filterModule AS filter1
IN modMarketIn=marketIn1
OUT modFilteredOut=filteredOut, marketAverageOut=averageOut;

CHAPTER 8: Clauses

CCL Programmers Guide 93

See also
• Modularity on page 51
• LOAD MODULE Statement on page 84
• IN Clause on page 90
• PARAMETERS Clause on page 94
• STORES Clause on page 98

PARAMETERS Clause
Used in the LOAD MODULE statement to provide the bindings for the parameter inside the
module at load time.

Syntax
PARAMETERS
 parameter1-inModule = value-parentScope [,...]

Components

parameter1-inModule The name of the parameter defined in the module.

value-parentScope The value in the parent scope being bound to. This
value can be an expression or another parameter
defined in the parent scope.

Usage
Binding a parameter refers to the process of providing a value for a parameter within the
module at load time. This means that you can provide a value for the parameter that is specific
to each instance of the module. In the LOAD MODULE statement, you can bind a parameter
inside the module to:

• Another parameter declared within the parent scope, or,
• An expression when loading the module.

Note: Expressions involving parameters or variables are evaluated at compile time using
the parameter's default value and the variable's initial value. A parameter or variable in a
binding expression without a default value generates an error.

You cannot directly bind a parameter defined within a module at runtime; doing so generates a
server warning. You can bind module parameters using only the LOAD MODULE statement.

Example
This example maps the parameters in the module to another value (minValue=2) and to
another parameter (maxValue=serverMaxValue).

CREATE MODULE filterModule
IN filterIn

CHAPTER 8: Clauses

94 Sybase Event Stream Processor

OUT filterOut
BEGIN
 CREATE SCHEMA filterSchema (Value Integer);
 DECLARE
 PARAMETER Integer minValue := 4;
 PARAMETER Integer maxValue;
 END;
 CREATE INPUT STREAM filterIn SCHEMA filterSchema;
 CREATE OUTPUT STREAM filterOut SCHEMA filterSchema AS SELECT *
FROM filterIn WHERE filterIn.Value > minValue and filterIn.Value <
maxValue;
END;

DECLARE
 PARAMETER Integer serverMaxValue;
END;

LOAD MODULE filterModule AS filter1
IN filterIn=marketIn
OUT filterOut=marketOut
PARAMETERS minValue=2, maxValue=serverMaxValue;

See also
• Modularity on page 51

• LOAD MODULE Statement on page 84

• IN Clause on page 90

• OUT Clause on page 93

• STORES Clause on page 98

• Example: Parameters in Modules on page 54

PRIMARY KEY Clause
Specifies the primary key for a delta stream or window.

Syntax
PRIMARY KEY (column [,...]) | PRIMARY KEY DEDUCED

Components

column The name of a column in the element's schema

Usage
A primary key uniquely identifies a record, and is required for windows and delta streams.

The primary key is normally treated as "strict." Any records that violate consistency rules,
such as an insert of an existing record, or update or delete for a nonexistent record, are
discarded and reported in the log.

CHAPTER 8: Clauses

CCL Programmers Guide 95

The primary key is treated as "lax" when a keep policy is placed on a window. The expiration
of records caused by the KEEP clause creates inconsistencies with incoming records. An insert
on an existing record is treated as an update, and an update on a nonexistent record is treated as
an insert. A delete on a nonexistent record is silently ignored (as safedelete). This behavior
manifests when two records in a chain have expiry policies, and it is apparent that the target
window has a smaller expiry period.

Usage: Explicit Primary Key
An explicitly defined primary key uses the PRIMARY KEY clause and refers to one or more
columns of the window or delta stream's schema. When a primary key is specified, the engine
enforces the constraint, and erroneous operations are flagged as bad records and discarded at
runtime. To avoid this issue, ensure the primary key is defined correctly.

Usage: Deduced Primary Key
If the primary key is specified as PRIMARY KEY DEDUCED, the compiler automatically
deduces the primary key. If the primary key cannot be deduced, a compilation error is
generated.

The primary key is deduced as follows:

• Primary keys cannot be deduced for input windows and Flex operators. They need to be
explicitly specified.

• For single source queries, except aggregations, the primary key is deduced from the
source. All the key columns from the source needs to copied verbatim for the key
deduction to succeed.

• For aggregation the primary keys are the columns in the projection containing the group by
expressions.

Note: All GROUP BY clauses needs to be included in the projection list. If the same
expression appears in more than one column then the first column with the GROUP BY
clause is made the primary key.

For joins, the following rules apply:

• For a left outer join and right outer join the keys are derived from the outer side. For
example, the left side in the case of a left join and the right side in the case of a right join. All
key columns from the outer side must be present in the projection for the primary key
deduction to work correctly.

• For a inner join it depends on the cardinality of the join. For a one-many cardinality the key
is derived from the many side. For a many-many cardinality the deduced key is
combination of the keys from both sides of a join. For a one-one the key is deduced from
one of the sides. The side that is chosen as a key cannot be reliably determined. In all cases
the candidate key columns must be copied from the sources directly for key deduction to
work correctly.

• For a full outer join the columns containing only a coalesce() function with the key fields of
both sides of the join as arguments is deduced to be the key column.

CHAPTER 8: Clauses

96 Sybase Event Stream Processor

• For the joins of multiple windows, these rules are applied transitively

See also
• CREATE DELTA STREAM Statement on page 64
• DECLARE Statement on page 77
• SCHEMA Clause on page 97
• SELECT Clause on page 113
• CREATE WINDOW Statement on page 80

SCHEMA Clause
Provides a schema definition for new streams and windows.

Syntax
SCHEMA name | (column type [,...])

Components

name The name of schema previously defined with a
CREATE SCHEMA statement.

column The name of a column.

type The datatype of the column's entries.

Usage
A SCHEMA clause defines the columns and datatypes (inline schema) in a stream or window,
or refers to a previously defined named schema. It may also refer to a schema imported from a
different CCL file.

The schema clause is mandatory for input streams, input windows and Flex operators. For all
other cases it is optional. In which case the schema is implicitly determined by the columns in
the projection list.

In the case of UNION, if a schema is not explicitly specified then it is implicitly determine from
the first SELECT statement in the UNION.

See also
• CREATE DELTA STREAM Statement on page 64
• DECLARE Statement on page 77
• PRIMARY KEY Clause on page 95
• SELECT Clause on page 113
• CREATE STREAM Statement on page 79
• CREATE WINDOW Statement on page 80

CHAPTER 8: Clauses

CCL Programmers Guide 97

• UNION Operator on page 114

STORE Clause
Assigns the store for the window in any window definition.

Syntax
STORE storename

See also
• Data Recovery on page 55

• CREATE WINDOW Statement on page 80

STORES Clause
Used in the LOAD MODULE statement to bind stores in the module to stores in the parent
scope.

Syntax
STORES
 store1-inModule = store1-parentScope [,...]

Components

store-inModule The name of the store defined in the module.

store1-parentScope The name of the store in the parent scope. Bind
the module store to this store.

Usage
Unbound stores generate compilation errors. When you create windows without specifying a
store, and do not create a default store, a default parser-generated memory store is temporarily
created for the module. When you load the module, this parser-generated store is assigned to
the default memory store of the parent scope. If no default memory store exists in the parent
scope, the parser-generated memory store in the module is assigned to a parser-generated
memory store created in the parent scope.

Note: Modules can participate in store dependency loops. Since all dependency loops are
invalid, the instance of a dependency loop within a module will render the project unable to
compile.

CHAPTER 8: Clauses

98 Sybase Event Stream Processor

Restrictions

• You can bind stores only of the same type. For example, bind a log store with another log
store, and a memory store with another memory store.

Example
This example maps a store in the module to a store in its parent scope.
CREATE MODULE filterModule
IN filterIn
OUT filterOut
BEGIN
 CREATE MEMORY STORE filterStore;
 CREATE SCHEMA filterSchema (ID Integer, Value Integer);
 CREATE INPUT WINDOW filterIn SCHEMA filterSchema PRIMARY KEY ID
STORE filterStore;
 CREATE OUTPUT WINDOW filterOut SCHEMA filterSchema PRIMARY KEY
DEDUCED STORE filterSTore AS SELECT * FROM filterIn WHERE
filterIn.Value > 10;
END;

CREATE MEMORY STORE mainStore;
CREATE SCHEMA filterSchema (ID Integer, Value Integer);

LOAD MODULE filterModule AS filter1
IN filterIn=marketIn
OUT filterOUT=marketOut
STORES filterStore=mainStore;

See also
• Modularity on page 51

• LOAD MODULE Statement on page 84

• IN Clause on page 90

• OUT Clause on page 93

• PARAMETERS Clause on page 94

CHAPTER 8: Clauses

CCL Programmers Guide 99

CHAPTER 8: Clauses

100 Sybase Event Stream Processor

CHAPTER 9 Queries

Build a query using clauses and operators to specify its function. This section provides
reference for queries, query clauses, and operators.

Syntax
select_clause
from_clause
[matching_clause]
[where_clause]
[groupFilter_clause]
[groupBy_clause]
[groupOrder_clause]
[having_clause]

Components

select_clause Defines the set of columns to be included in the
output. See below and SELECT Clause for more
information.

from_clause Selects the source data is derived from. See below
and FROM Clause for more information.

matching_clause Used for pattern matching. See MATCHING
Clause and Pattern Matching for more informa-
tion.

where_clause Performs a filter. See WHERE Clause and Filters
for more information.

groupFilter_clause Filters incoming data in aggregation. See
GROUP FILTER Clause and Aggregation for
more information.

groupBy_clause Specifies what collection of rows to use the ag-
gregation operation on. See GROUP BY Clause
and Aggregation for more information.

groupOrder_clause Orders the data in a group before aggregation. See
GROUP ORDER BY Clause and Aggregation for
more information.

CCL Programmers Guide 101

having_clause Filters data that is output by the derived compo-
nents in aggregation. See HAVING Clause and
Aggregation for more information.

Usage
Queries can use the aforementioned clauses to fulfill various functions, as outlined in the CCL
Query Constructions chapter. However, the basic structure remains the same when starting a
query. The example below demonstrates the use of both the SELECT clause and FROM clause
as would be seen in any query.

The SELECT clause is used directly after the AS clause. The purpose of the SELECT clause is
to determine which columns from the source or expressions the query is to use.

Following the SELECT clause, the FROM clause names the source used by the query.
Following the FROM clause, implement available clauses to use filters, unions, joins, pattern
matching, and aggregation on the queried data.

Example
This example obtains the total trades, volume, and VWAP per trading symbol in five minute
intervals.
[...]
SELECT
 q.Symbol,
 (trunc(q.TradeTime) + (((q.TradeTime - trunc(q.TradeTime))/
300)*300)) FiveMinuteBucket,
 sum(q.Shares * q.Price)/sum(q.Shares) Vwap,
 count(*) TotalTrades,
 sum(q.Shares) TotalVolume
FROM
 QTrades q
[...]

See also
• Chapter 5, CCL Query Construction on page 35
• FROM Clause: Comma-Separated Syntax on page 103
• FROM Clause: ANSI Syntax on page 104
• GROUP BY Clause on page 106
• GROUP FILTER Clause on page 107
• GROUP ORDER BY Clause on page 108
• HAVING Clause on page 109
• MATCHING Clause on page 110
• ON Clause: Join Syntax on page 112
• SELECT Clause on page 113
• UNION Operator on page 114
• WHERE Clause on page 116

CHAPTER 9: Queries

102 Sybase Event Stream Processor

• AS Clause on page 88

FROM Clause
Identifies the stream(s) or window(s) or both that will provide the input to the query.

See also
• FROM Clause: Comma-Separated Syntax on page 103
• FROM Clause: ANSI Syntax on page 104

FROM Clause: Comma-Separated Syntax
Specify a single input to a query or use to list tow or more inputs in a join or for pattern
matching two data sources in a query, in combination with the WHERE clause, using an
alternative comma-separated syntax.

Syntax
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause |
window_name [[AS] alias] } [, …]

Components

stream The name of a data stream

alias An alias for the stream or window

keep_clause The policy that specifies how rows are maintained in the window

window_name The name of a window

Usage
Use the FROM clause with comma-separated syntax for single-source queries, inner joins, and
queries that use the MATCHING clause. This syntax specifies one or more data sources in a
query. Any column or datasource references in the query's other clauses must be to one of the
data sources named in this clause.

The comma-separated FROM clause can contain multiple data sources connected with an
inner join. The multiple sources are separated by commas. The WHERE clause, required when
using comma-separated syntax, creates the selection condition for the join.

Use comma-separated syntax for the FROM clause with a MATCHING clause to specify data
sources that should be monitored for a specified pattern. The list of data sources can include
only data streams, must include all data sources specified in the MATCHING clause, and cannot
include any other data source.

Use aliases to abbreviate stream or window names, and if required, for differentiating between
instances when the same data stream or window is used more than once in the FROM clause.

CHAPTER 9: Queries

CCL Programmers Guide 103

See also
• Key Field Rules on page 39

• Joins on page 37

• Join Example: Comma-Separated Syntax on page 42

• FROM Clause on page 103

FROM Clause: ANSI Syntax
Joins two data sources in a query using outer or inner join syntax.

Syntax
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause |
window_name [[AS] alias] | nested_join }
[RIGHT | LEFT | FULL] JOIN
{ stream [[AS] alias] | stream [[AS] alias] keep_clause |
window_name [[AS] alias] | nested_join }
nested_join

Components

stream The name of a data stream

alias An alias for the stream or window

keep_clause The policy that specifies how rows are maintained
in the window

window_name The name of a window

nested_join A nested join — see below

nested_join
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause |
window_name [[AS] alias] | nested_join }
[RIGHT | LEFT | FULL] JOIN
{ stream [[AS] alias] | stream [[AS] alias] keep_clause |
window_name [[AS] alias] | nested_join }
[on_clause]

Components

stream The name of a data stream

alias An alias for the stream or window

keep_clause The policy that specifies how rows are maintained
in the window

window_name The name of a window

CHAPTER 9: Queries

104 Sybase Event Stream Processor

nested_join A nested join. See Joins for more information

on_clause The join condition

Usage
For outer joins, use an ON clause to specify the join condition. This is optional for inner joins.

You can use this variation of FROM to create inner, left , right, and full joins:

JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published.

RIGHT JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All the
other rows from the right data source are also published. Unmatched col-
umns in the left data source publish a value of NULL .

LEFT JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All the
other rows from the left data source are also published. Unmatched columns
in the right data source publish a value of NULL.

FULL JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All
other rows from both data sources are published as well. Unmatched col-
umns in either data source publish a value of NULL .

The data sources used with this syntax can include data stream expressions, named and
unnamed window expressions, and queries. You can use aliases for datasources in this
variation of the FROM clause.

The join variation of the FROM clause (ANSI syntax) is limited to two datasources.
Accommodate additional datasources using a nested join as one of the datasources. If a nested
join is used, it can optionally be enclosed in parentheses, and can include its own ON clause.
The rules for the use of the ON clause with a nested join are the same as the rules that govern the
use of the ON clause in the join containing the nested join.

Restrictions

• Any column or datasource references in the query's other clauses must be to one of the data
sources named in this clause.

• For a left outer join, the data stream can only be on the left side. For a right outer join as
well, the data stream can only be on the right side.

• A full outer join cannot join a window to a data stream.

See also
• Key Field Rules on page 39

CHAPTER 9: Queries

CCL Programmers Guide 105

• Joins on page 37

• Join Examples: ANSI Syntax on page 40

• FROM Clause on page 103

GROUP BY Clause
Specifies the expressions on which to perform an aggregation operation.

Syntax
GROUP BY expression1 [, expression2 ...]

Components

expression An expression using constants, which can contain
one or more expressions from the input window
or stream. However, an expression cannot use
aggregate functions.

Usage
It combines one or more result rows into a single row of output. A GROUP BY clause is used
when the query result contains aggregate functions to specify what expressions to perform the
aggregation operation on.

When a GROUP BY clause is used in a query, the associated window needs to have a primary
key that is deduced by the compiler. If more than one column has the same expression, the first
column is used if it has not already been matched with a GROUP BY expression.

Note: Every expression in the GROUP BY clause must also be in at least one SELECT column
expression.

Use the actual expression in the GROUP BY clause, rather than the alias for that expression
which prevents the project from compiling. For example, use the expression T.Symbol
instead of an alias like Symbol.

Example
The GROUP BY clause collects together the rows according to T.Symbol:

CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice
FROM Trades T
GROUP FILTER rank() < 10
GROUP BY T.Symbol
GROUP ORDER BY T.Volume DESC
HAVING max(T.Price) > 100 AND T.Symbol ='IBM';

CHAPTER 9: Queries

106 Sybase Event Stream Processor

See also
• Aggregate Functions on page 126

• Aggregation on page 43

• GROUP FILTER Clause on page 107

• GROUP ORDER BY Clause on page 108

GROUP FILTER Clause
Filters data in a group before the aggregation operation is performed.

Syntax
GROUP FILTER expression

Components

expression Any Boolean expression that does not use aggre-
gate functions such as min() or max(). The ex-
pression may use columns from the source
streams or windows.

Usage
The GROUP FILTER clause filters data before the aggregation operations are applied to the
rows. The GROUP FILTER clause is used with the GROUP BY clause. If GROUP FILTER is
used with the GROUP ORDER BY clause, GROUP ORDER BY is executed before GROUP
FILTER.

The expression in the GROUP FILTER clause often uses filters based on functions such as
rank(). These functions restrict rows that are used in the aggregation. The rank() function
assigns a rank to each of the individual records in a group. rank() is meaningful only when used
with the GROUP ORDER BY clause.

Example
The GROUP FILTER clause filters out the chosen rows, keeping only those with a rank of less
than 10:
CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice
FROM Trades T
GROUP FILTER rank() < 10
GROUP BY T.Symbol
GROUP ORDER BY T.Volume DESC
HAVING max(T.Price) > 100 AND T.Symbol ='IBM';

CHAPTER 9: Queries

CCL Programmers Guide 107

See also
• Aggregate Functions on page 126
• Aggregation on page 43
• GROUP BY Clause on page 106
• GROUP ORDER BY Clause on page 108

GROUP ORDER BY Clause
Orders the data in a group before applying the GROUP FILTER clause and aggregating the
data.

Syntax
GROUP ORDER BY column [ASC[ENDING]|DESC[ENDING]] [, ...]

Components

column Any column in the source streams or windows.
You can order by more than one column.

Usage
The GROUP ORDER BY clause is used with the GROUP BY clause. Rows may be ordered by
one or more columns in the stream or window. GROUP ORDER BY orders the data in a group
before applying aggregation operations (and before applying GROUP FILTER).

Use ASC and DESC keywords to organize column data in ascending or descending order. If no
keyword is specified, the default is ascending order.

When used with a GROUP FILTER clause, GROUP ORDER BY is performed before GROUP
FILTER. The GROUP ORDER BY clause orders records in each group based on the ordering
criteria specified in the clause.

Example
The GROUP ORDER BY clause organizes the chosen rows by T.Volume in descending order:

CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice
FROM Trades T
GROUP FILTER rank() < 10
GROUP BY T.Symbol
GROUP ORDER BY T.Volume DESC
HAVING max(T.Price) > 100 AND T.Symbol ='IBM';

See also
• Aggregate Functions on page 126

CHAPTER 9: Queries

108 Sybase Event Stream Processor

• Aggregation on page 43

• GROUP FILTER Clause on page 107

• GROUP BY Clause on page 106

HAVING Clause
Filters rows that have been grouped by a grouping clause.

Syntax
HAVING expression

Components

expression Any Boolean expression. Can include aggregate
functions, as well as simple filters on columns.

Usage
The HAVING clause is semantically similar to the WHERE clause, but can be used only in a
query that specifies a GROUP BY clause. The HAVING clause filters rows after they have been
processed by the GROUP BY clause. Unlike the WHERE clause, the HAVING clause allows the
use of aggregates in the expression. Its function is to eliminate some of the grouped result
rows.

Example
The HAVING clause filters the rows that have been grouped by the GROUP FILTER, GROUP
BY, and GROUP ORDER clauses:
CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice
FROM Trades T
GROUP FILTER rank() < 10
GROUP BY T.Symbol
GROUP ORDER BY T.Volume DESC
HAVING max(T.Price) > 100 AND T.Symbol ='IBM';

See also
• Aggregate Functions on page 126

• Aggregation on page 43

• GROUP BY Clause on page 106

• GROUP FILTER Clause on page 107

• GROUP ORDER BY Clause on page 108

• Expressions on page 31

CHAPTER 9: Queries

CCL Programmers Guide 109

MATCHING Clause
This is used within a query for pattern matching, which allows detection of patterns of events
across one or more sources.

Note: This form of the ON clause is different from the ON clause with JOIN syntax. You cannot
specify both forms at the same time.

Syntax
MATCHING [interval:pattern]
ON { {source.column = source.column [=...]}|
 {source.column = constant }|
 {getOpcode() = opcode_constant} [AND...]
 }

pattern:[!]{event | (event)} [&&| || |,}event]

Components

MATCHING Identifies the MATCHING clause.

interval:pattern interval specifies the interval and pattern specifies the

matching patterns.

source.column The name of the source input and the column.

getOpcode() Includes opcode conditions on the pattern.

opcode_constant Specifies the opcode.

pattern The pattern you want to identify. Contains events connected by
event operators.

event Events compared in the pattern.

Usage
The MATCHING clause immediately follows the FROM clause in a SELECT statement. The
FROM clause contains the derived elements that are used as inputs for pattern matching.

SELECT statements containing a MATCHING clause cannot include any filtering or
aggregation criteria.

The MATCHING clause consists of a mandatory interval and pattern specification.

The interval specifies the time period within which the pattern must be detected. It supports
microsecond granularity and can either be represented as an interval constant (refer to the
interval data type) or a parameter.

CHAPTER 9: Queries

110 Sybase Event Stream Processor

The pattern specification indicates the events or groups of events that must occur, or not occur,
within the specified interval to meet the pattern matching criteria. Where a pattern
specification consists of more than one event, the events or groups of events must be connected
with the operators listed in the following table:

Opera-
tor

Operator
Name

Description

! Not operator Specifies a negative condition for a pattern component. Pattern con-
ditions are met when the pattern component does not occur within the
specified time interval. Since this is a negative condition, the pattern
match is deemed successful only after the expiration of the specified
time interval.

&& Conjunction
(logical AND)
operator

Both pattern components linked by the conjunction operator must
occur for the match condition to be met, but they do not have to occur
in the order listed.

|| Disjunction
(Logical OR)
operator

One or both pattern components linked by the Disjunction operator
must occur to meet the conditions of the match. Each output row
produced by a Disjunction match shows the match for one of the
members of the Disjunction, and NULL values for the other mem-
bers. This is true even when several members of the disjunction
produce events.

, Followed by op-
erator

Pattern components linked by this operator must both occur, in the
order listed, to meet the conditions of the match.

The default order of precedence in which pattern components are analyzed for a possible
pattern match follows the order of operators, as they are listed in the table. The tightest binding
between an operator and a pattern component is that of the Not operator. The bindings then get
progressively looser, for events linked with a conjunction, disjunction, and sequence
operators, respectively. This default order of precedence can be overridden by enclosing a
pattern component in parentheses.

Since pattern matching on a not operator is deemed successful only after the expiration of the
specified time interval, a not operator when included with a followed by operator must be its
last component. This is because events succeeding the not operator will never be evaluated by
the pattern rule engine owing to the expiration of the time interval.

The MATCHING clause of a SELECT statement that includes multiple derived elements in the
FROM clause can contain an optional ON sub-clause, which defines one or more equality
expressions that further refine the pattern matching criteria.

The equality expression is used to compare the column values of the input records or their
opcodes. The left hand side of the equality can either contain a fully qualified column name, or
the function 1.The right hand side of the equality can contain a fully qualified column name, a
constant value, or a parameter.

CHAPTER 9: Queries

CCL Programmers Guide 111

If the left hand side contains the function 2, the right hand side must contain a constant
specifying the desired opcode. Valid opcode values are insert, update and delete.

See also
• Pattern Matching on page 42

ON Clause: Join Syntax
Specifies join conditions for syntax using JOIN terminology.

Syntax
ON source1.columnA = source2.columnB [AND...]

Components

source The names of the sources in the FROM clause.

column The name of the column from a particular source. Use AND when

multiple column comparisons are specified. OR expressions are not

supported.

Usage
This form of the ON clause is required for outer and inner joins. It must consist of one or more
simple comparisons, comparing a column in one data source with a column in another data
source.

source1 and source2 refers to the sources (streams, windows, or delta streams) in the
FROM clause. If aliases are used in the FROM clause, use the aliases rather than the actual
source names.

Restrictions

• Join conditions are limited to comparisons between columns in the two data sources of the
join. The comparison cannot specify a literal value, or compare two columns in the same
data source.

See also
• Joins on page 37

• Join Examples: ANSI Syntax on page 40

1 getOpcode()
2 getOpcode()

CHAPTER 9: Queries

112 Sybase Event Stream Processor

SELECT Clause
Specifies a projection list for a query.

Syntax
SELECT { expression[AS column]}[,...]

Components

expression An expression that evaluates to a value of the
same data type as the corresponding destination
column.

column the name of a column in a query destination.

Usage
The expressions within each select list item can contain literals, column names from sources
referenced in the FROM clause, operators, scalar functions, and parenthesis. A wild card (*)
selects all the columns from underlying sources referenced in the FROM clause. The AS
column reference must map to a column name in the destination.

All the items in the projection must use the AS extension to map the items to the destination
columns, or none of them should, in which case the assignment is performed left to right.
Under some circumstances, a schema can be automatically generated for the destination,
based on a query. For expressions, provide a column with the AS extension.

The SELECT clause inside a query specifies a select-list of one or more items. Rows from the
datasources listed in the FROM clause are passed to the SELECT clause after being filtered by
the WHERE clause, if specified. The results of the expressions in the list are processed by other
clauses (if any). The query usually uses the processed select-list results as its input.

These rules apply to the select-list:

• The expression within each select-list item can contain literals, column names from one of
the datasources listed in the FROM clause, operators, scalar and miscellaneous functions,
and parentheses. A query select-list expression can also include aggregate functions.
Alternately, you can use the "select all" (wildcard) character (*) to specify expressions.
This is equivalent to listing all column values from all datasources listed in the statement's
FROM clause, from left to right, or to using data-source.*, which is equivalent to a list of all
column values from the specified data source (where data-source is the name or alias of
one of the data sources listed in the FROM clause).

• These rules apply to all expressions that do not include the wildcard character:

CHAPTER 9: Queries

CCL Programmers Guide 113

• Each list item can specify an AS output column reference subclause indicating the
column within the destination, to which the select-list item should be published. The
AS subclause must be used either for all or for none of the items in the select-list.

See also
• CREATE DELTA STREAM Statement on page 64

• DECLARE Statement on page 77

• PRIMARY KEY Clause on page 95

• SCHEMA Clause on page 97

• Chapter 5, CCL Query Construction on page 35

• FROM Clause on page 103

• AS Clause on page 88

• Scalar Functions on page 148

• Operators on page 27

UNION Operator
Combines the result of two or more SELECT clauses into a stream or window.

Syntax
{select_clause} UNION {select_clause} [UNION ...]

Components

select_clause A SELECT clause.

Usage
The union operation may produce a stream, delta stream, or a window.

• If the input to a union that produces a window is a stream, you must perform an aggregation
operation.

• When a union joins two SELECT clauses, the schema of the columns selected in the two
SELECT clauses must match.

• Ensure that a record with a particular key value is not produced by more than one input
node. Otherwise, you may see duplicate rows or invalid updates.

• To be compatible, the schema for all the nodes subject to the union must have the same
datatypes. However, the column names in the schemas may be different. In this case, the
column names from the first SELECT clause are used in the schema deduction.

• If the SELECT statement is not a direct copy from the source, intermediate nodes are
created. The compiler attempts to create delta streams or streams, but must generate
windows in cases when aggregation or a KEEP clause.

CHAPTER 9: Queries

114 Sybase Event Stream Processor

• DECLARE blocks are not allowed for union operations.
• A node created by a union operation can have a KEEP clause and an AGING clause if the

target is a window.

Restrictions

• The inputs to a union can be any combination of streams, delta streams, and windows.
• The inputs to a union delta stream can be a delta stream or a window, but not a stream.
• The inputs to a union window can be any combination of streams, delta streams, and

windows (provided the querying involving a stream has a GROUP BY clause).
• A union stream or delta stream cannot have a GROUP BY clause specified in any of the

underlying queries.

Examples
This example uses a union operation to produce an output stream:
CREATE SCHEMA MySchema (a0 integer, a1 STRING, a2 string);
CREATE SCHEMA MySchema2 (a0 integer, a1 STRING, a2 string);

CREATE INPUT STREAM InputStream1 SCHEMA MySchema;
CREATE INPUT STREAM InputStream2 SCHEMA MySchema2;
CREATE INPUT STREAM InputStream3 SCHEMA MySchema2;

CREATE OUTPUT STREAM UnionStream1 AS SELECT * FROM InputStream1
UNION
SELECT * FROM InputStream2;

Using a union operation to produce an output window:
CREATE OUTPUT WINDOW UnionWindow1
PRIMARY KEY DEDUCED
AS
 SELECT in1.a0, min(in1.a1) a1, min(in1.a2) a2
 FROM InputStream1 in1 GROUP BY in1.a0
 UNION
 SELECT in2.a0, min(in2.a1) a1, min(in2.a2) a2
 FROM InputStream2 in2 GROUP BY in2.a0;

Note: Since the source is a stream and target is a window, an aggregation is specified, as is
required.

This example uses a union operation to produce a delta stream:
CREATE DELTA STREAM Union1 PRIMARY KEY DEDUCED
AS
 SELECT * FROM Stream1
 UNION
 SELECT a.col1, a.col2, a.col3 FROM DeltaStream1 a WHERE a.col1 >
10
 UNION
 SELECT a.a, sum(a.b), max(a.c) FROM Window2 GROUP BY a.a

CHAPTER 9: Queries

CCL Programmers Guide 115

See also
• Unions on page 36

• Example: Merging Data from Streams or Windows on page 36

WHERE Clause
Specifies a selection condition, join condition, update condition, or delete condition to filter
rows of data.

Syntax
WHERE condition | filterexpression

Components

condition A Boolean expression representing a selection, update, delete, or join
condition, depending on the context.

filterexpression A Boolean expression based on the columns from a stream.

Usage
The WHERE clause filters rows and columns in several CCL statements, with similar syntax,
but different usage and context. The WHERE clause:

• Specifies a selection condition for filter input from data sources in a QUERY element.
• Provides join conditions in a FROM clause.

As a Selection Condition
The WHERE clause acts as a selection condition when used with a FROM clause.

The Boolean expression in this clause creates a selection that filters rows arriving in the
query's data sources before passing them on to the SELECT clause. WHERE clause filtering is
performed before the GROUP BY clause and before aggregation (if any), so it cannot include
aggregate functions or the filtering of results based on the results of aggregates. You can use
the HAVING clause for post-aggregate filtering.

The selection condition can include literals, column references from the query's data sources
listed in the FROM clause, operators, scalar functions, parameters, and parentheses.

In a query, column references within the selection condition must refer to columns in one of
the query's data sources.

As a Join Condition
When used in conjunction with the comma-separated syntax form of the FROM clause, the
WHERE clause creates one or more join condition for the comma-separated join. The use of a
WHERE clause is optional in a comma-separated join. In the absence of a join condition, all

CHAPTER 9: Queries

116 Sybase Event Stream Processor

rows from all data sources are selected. When a WHERE clause is present, its syntax resembles
the ON clause with ANSI join syntax.

The join condition can be any valid Boolean expression that specifies the condition for the
join. All column references in this form of the WHERE clause must refer to data sources
specified with the FROM clause.

As a Filter Expression
Filter expressions are supported only in input streams.

When using columns in a filter expression, use the nodeName.columnName notation.
nodeName is the name of the input stream.

Restrictions

• A WHERE clause cannot use aggregate functions.
• A WHERE clause cannot be used with a MATCHING clause.
• Joins using the JOIN keyword do not use the WHERE clause to specify join conditions

(though they can use the clause in its selection condition form).

Examples
This example uses a WHERE clause as a select condition:
CREATE INPUT WINDOW QTrades SCHEMA (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
PRIMARY KEY (Id);

CREATE OUTPUT WINDOW QTradesComputeSelected
PRIMARY KEY DEDUCED
AS SELECT
 trd.*
FROM
 QTrades trd
WHERE
 trd.Symbol IN ('DELL','CSCO','SAP')
;

This example uses a WHERE clause as a join condition:
CREATE INPUT WINDOW QTrades SCHEMA (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)

CHAPTER 9: Queries

CCL Programmers Guide 117

PRIMARY KEY (Id);

CREATE OUTPUT WINDOW RecentQTrades
PRIMARY KEY DEDUCED
AS
 SELECT q.Symbol, nth(0, q.Price) Price, nth(0, q.Shares) Shares
FROM
 QTrades q
GROUP BY q.Symbol
GROUP ORDER BY q.ROWID DESC
;

CREATE INPUT WINDOW Positions
SCHEMA (BookId STRING, Symbol STRING, SharesHeld INTEGER)
PRIMARY KEY (BookId, Symbol)
;

CREATE OUTPUT WINDOW PositionValue
PRIMARY KEY (BookId, Symbol)
AS SELECT
 pos.BookId,
 pos.Symbol,
 pos.SharesHeld,
 pos.SharesHeld * q.Price Value
FROM
 Positions pos, RecentQTrades q WHERE pos.Symbol = q.Symbol
;

This example uses a WHERE clause as a filter expression:
CREATE INPUT STREAM LSETradesFiltered SCHEMA (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
WHERE LSETradesFiltered.Symbol IN ('SAP', 'CSCO', 'DELL')
;

See also
• Filtering on page 35

• Expressions on page 31

CHAPTER 9: Queries

118 Sybase Event Stream Processor

CHAPTER 10 Functions

A function is a self-contained, reusable block of code that performs a specific task.

The Sybase Event Stream Processor supports:

• Built-in functions - including aggregate, scalar and other functions
• User-defined SPLASH functions
• User-defined external functions

Built-in functions come with the software and include functions for common mathematical
operations, aggregations, datatype conversions, and security.

Order of Evaluation of Operations
Operations in functions are evaluated from right to left. This is important when variables
depend on another operation that must pass before a function can execute because it can cause
unexpected results. For example:

integer a := 1;
integer b := 2;
max(a + b, ++a);

The built-in function max(), which returns the maximum value of a comma-separated list of
values, returns 4 since ++a is evaluated first, so max(4, 2) is executed instead of max(3,
2), which may have been expected.

See also
• Aggregate Functions on page 126
• Other Functions on page 214
• Scalar Functions on page 148
• User-Defined SPLASH Functions on page 119
• User-Defined External Functions on page 120

User-Defined SPLASH Functions
Use the SPLASH programming language to write user-defined functions in either global or
local declare blocks.

Syntax
DECLARE
 returnType funcName (argType argName,...) {

 //function body

CCL Programmers Guide 119

 return value;
 }
END;

Usage
Function names are case-sensitive.

Functions defined at the module or project level can be used anywhere in the expressions
inside that module or project. However, functions defined within streams, windows, and FLEX
operators are visible only in the scope of those elements.

Functions are defined and there is no need to declare a function. For example, function f2 can
reference f1 before f1 is defined.

User-Defined External Functions
In CCL projects, use the CREATE LIBRARY statement to call user-defined functions written in
C/C++ or Java.

Load C/C++ functions from shared libraries, .so files in Linux and UNIX, and .dll files in
Windows. Load Java functions from either .class files or .jar files.

Declare external functions in CCL using the CREATE LIBRARY statement. Once declared,
you can use the functions anywhere you use built-in functions.

Note: C/C++ external library calls support all datatypes, namely boolean, integer, long, float,
money(n), date, bigdatetime, and binary.

Java external library calls only support integer, long, double, and string datatypes.

Complex types such as dictionaries, vectors, event caches and record types are not supported
in external functions.

External C/C++ Function Requirements
External C/C++ functions must conform to the interface of the Sybase Event Stream Processor
by following the datatype, argument/return value, and output requirements.

Syntax
Write the function signature to the Event Stream Processor interface:

int32_t funcName (int numargs,
 DataValue::DataValue * top,
 DataValue::DataValue * nextArgs,
 std::vector<void *> & arena)

CHAPTER 10: Functions

120 Sybase Event Stream Processor

Datatype Requirements
The Event Stream Processor passes each function argument as a DataValue and expects to
receive the return value as DataValue. The DataValue is a structure that includes all the
datatypes understood by Event Stream Processor and is defined in DataValue.hpp, which
is located in $ESP_HOME\include. The DataValue structure has this definition:

struct DataValue {
 union {
 bool booleanv;
 int16_t int16v;
 int32_t int23v;
 int64_t int64v;
 interval_t intervalv;
 money_t moneyv;
 double doublev;
 time_t datev;
 timestampval_t timestampv;
 const char * stringv;
 hirestime_t bigdatetimev;
 binary_t binaryv;
 void * objectv;
 }
 bool null;
}

When the Boolean flag null is set to true, the value of the argument is NULL (the argument
does not have a value). binary_t is a class with two public member variables defined as:

• const uint8 t * _data;.

This variable points to the first byte of the data in the buffer.
• byte_size_t _used;.

This variable defines the length of data used in the buffer.

Note: Assign memory to _data using malloc or calloc, not new.

moneyv is a generic placeholder for money arguments with any scale; it must be told what
scale a particular money argument has.

Argument and Return Value Requirements
Since the Event Stream Processor internal processing engine is a bytecode stack machine that
keeps the top of the stack in a special location, ensure the Event Stream Processor splits
function arguments into two:

• A pointer to the top of the stack of type DataValue. The top of the stack points to the last
argument when more than one argument is passed to the function and to the first argument
if only one argument is passed. The first argument in the interface indicates the number of
arguments passed.

CHAPTER 10: Functions

CCL Programmers Guide 121

• A pointer to the rest of the arguments of type DataValue. The pointer points to the first
argument when there is more than one argument passed to the function. It is undefined if
the function has only one argument.

Note: Write the return value of the function to the top of the stack.

If the function allocates memory by calling malloc or calloc, the Event Stream Processor
can release the memory after it has processed the record by adding the memory to the arena.
The arena is the last argument to the function and is defined as vector of type void *. You
cannot add a pointer to the memory allocated by new to the arena; doing so can corrupt the
memory and cause an unrecoverable error.

Output Requirement
Ensure the function returns an error code to indicate successful completion of the function.
The return value is of type int32_t. A value of 0 indicates no error; any other values indicate
an error. When an error occurs, Event Stream Processor rejects the current record.

See also
• Example: Using External C/C++ Functions on page 122

Example: Using External C/C++ Functions
Write a C/C++ function that computes distances to the Event Stream Processor interface.
After compiling the function to a shared library, declare it using the CREATE LIBRARY
statement, and call the function as needed in your CCL project.

Prerequisites
Know the syntax and requirements for writing C/C++ functions to the interface of the Event
Stream Processor.

Task

1. Write the function, ensuring it conforms to the Event Stream Processor interface.

For example, this function computes distance:

#include math.h
double distance(int numvals, double * vals){
 double sum = 0.0;
 for (int i=0; i<numvals; i++){
 sum += vals[i]*vals[i];
 }
return sqrt(sum);
}

To conform to the interface of the Event Stream Processor, write the function as:

#include <math.h>
#include <vector>

CHAPTER 10: Functions

122 Sybase Event Stream Processor

#include "DataValue.hpp"

using namespace std;

#ifdef _WIN32
 #define __DLLEXPORT__ __declspec(dllexport)
#else
 #define __DLLEXPORT__
#endif

/**
 * This function computes the distance using the given
 * arguments.
 * @numargs - Number of arguments to this function.
 * @top - Points to the last argument. Also holds the
 * return value from this function.
 * @nextArgs - The remaining arguments in the order provided.
 * @arena - Anything assigned to the arena is freed by the
 * the server. NOTE: Do not assign return values
 * to the arena. Also anything to be freed must
 * be allocated using malloc only (DO NOT USE new).

/
extern "C" __DLLEXPORT__
int32_t distance(int numargs, DataTypes::DataValue * top,
 DataTypes::DataValue * nextArgs,
 std::vector<void *>& arena){

 double sum = 0.0;
 if (numargs <= 0){
 //Return value
 top->setDouble(0.0);

 //Return code.
 return 0;
 }

 //If any of the arguments is null result is null.
 if(top->null) return 0;

 //Top of the stack points to the last argument.
 double dist = top->val.doublev * top->val.doublev;

 //Processes the arguments from last to first.
 for(int i=numargs-2; i>=0; i--){

 //If any of the arguments is null result is null
 if((nextArgs+i)->null){
 top->null = true;
 return 0;
 }

 //accumulate the square of the distances.
 dist +=(nextArgs + i)->val.doublev * (nextArgs + i)-
>val.doublev;
 }

CHAPTER 10: Functions

CCL Programmers Guide 123

 //Return value
 top->setDouble(sqrt(dist));

 //Return code.
 return 0;
}

Note: Explicitly set whether the return value (top) is NULL or not.

The extern declaration ensures the function has the same name within the library and
not the C++ function name.

2. Compile the function to a shared library.

For example, using the gcc compiler, these commands create a shared library named
distance.so:

gcc -fPIC -shared -m64 -I.. -c -o distance.o distance.cpp
gcc -fPIC -shared -m64 distance.o -o distance.so

3. Declare the function in the CCL project using the CREATE LIBRARY statement.

CREATE LIBRARY DistanceLib LANGUAGE C FROM 'distance.so'(
 float distance(float arg1, float arg2, float arg3);
);

Note: When searching for shared libraries (.dll files), Windows checks the path of the
application. If the .dll file is not found in that directory, other directories are searched,
culminating in the directories specified in the PATH environment variable.

Ensure the name of the function matches the name of the function in the library.

4. Call the distance function in the project using DistanceLib.distance(arg1,
arg2, arg3).

See also
• External C/C++ Function Requirements on page 120

Example: Using Java Functions
Write a Java function that computes distances. After compiling the function as a .class
or .jar file, declare it using the CREATE LIBRARY statement, and call the function as needed
in your CCL project. Finally, link the library with the Event Stream Processor.

Note: The Java 1.6 runtime environment is included with Sybase Event Stream Processor. If
your function requires a different version of Java, set the environment variable
ESP_JAVA_HOME to the location of the appropriate Java virtual machine shared library. This
is usually libjvm.so on Linux, UNIX, or Solaris and jvm.dll on Windows.

For example, to set the variable on a Linux, UNIX, or Solaris machine in the shell, use:
export ESP_JAVA_HOME=/user/bin/java/jre/lib/libjvm.so

CHAPTER 10: Functions

124 Sybase Event Stream Processor

1. Write the function.

Define all functions as a public static method inside the class. For example, this function
computes distances:

public class Distance {
 public static double distance(double arg1, double arg2,
 double arg3) {
 double sum = 0;
 sum += arg1 * arg1;
 sum += arg2 * arg2;
 sum += arg3 * arg3;

 return Math.sqrt(sum);
 }
}

Note: You cannot pass or return null values to external Java functions.

2. Compile the function to a shared library:
javac -d /home/sybase/user/java/lib Distance.java

You can also create Java archives (.jar files) of classes and refer to those when declaring
the functions in the CCL project.

3. Declare the function and library in the CCL project using the CREATE LIBRARY
statement.
CREATE LIBRARY DistanceLib LANGUAGE JAVA FROM 'Distance' (
 double distance(double arg1, double arg2, double arg3);
);

Note: 'Distance' is the name of the class. If the class is defined in a package, replace
the class name with its directory, including the name.

Ensure the function signature in the library has the same name, argument datatypes, and
return datatypes as the function in the .class file.

4. Call the function in the project using DistanceLib.distance(arg1, arg2,
arg3).

5. Link the Java library to the Event Stream Processor Server.

The Event Stream Processor has a built-in Java runtime environment. To link the Java
function to your application, start the server with the -j option.

For .class files, specify only the directory of the file:
sp -j /home/sybase/user/java/lib

If the class is inside a .jar file located in, for example, /home/sybase/user/java,
then specify the directory of the file including the file name:
sp -j /home/sybase/user/java/Distance.jar

Separate multiple paths using ":" in Linux/UNIX and ";" in Windows.

CHAPTER 10: Functions

CCL Programmers Guide 125

Aggregate Functions
Aggregate functions operate on multiple records to calculate one value from a group of values.

The groups or rows are formed using the GROUP BY clause of the SELECT statement. The
GROUP FILTER and GROUP ORDER BY clauses are used in conjunction with the GROUP BY
clause to limit the rows in the group and to order the rows in the group respectively.

Aggregate functions, such as sum(), min() etc are allowed only in the select list and in the
HAVING clause of a SELECT statement. Aggregate functions cannot be specified in the
GROUP BY, GROUP ORDER BY, GROUP FILTER and WHERE clauses of the SELECT
statement.

All aggregate functions ignore NULL values when performing their aggregate calculations.
However, when all input passed to an aggregate function is NULL the function returns a
NULL except for the count() function, which returns a 0.

Certain aggregate functions namely count(), sum(), avg() and valueInserted()
are considered additive functions. Additive functions can compute its value only based upon
the column values in the current event without having to look at the rest of the events in the
group. A projection that uses ONLY additive functions allows the server to optimize the
aggregation so that additional aggregation indexes are not maintained. This improves the
performance of the aggregation operation considerably.

Note: Aggregate functions cannot be nested i.e. an aggregate function cannot be applied over
an expression containing another aggregate function.

Example
In general, the following example shows how the aggregate functions are incorporated into
CCL code:
 CREATE INPUT WINDOW Trades
SCHEMA (TradeId LONG, Symbol, STRING, Price FLOAT, Volume LONG,
TradeTime DATE)
PRIMARY KEY (TradeId);

CREATE OUTPUT WINDOW
TradeSummary PRIMARY KEY DEDUCED
AS SELECT trd.Symbol, max(trd.Price) MaxPrice, min(trd.Price)
MinPrice, sum(trd.Volume)
TotalVolume FROM Trades trd
GROUP BY trd.Symbol;

See also
• GROUP BY Clause on page 106

• GROUP FILTER Clause on page 107

• GROUP ORDER BY Clause on page 108

CHAPTER 10: Functions

126 Sybase Event Stream Processor

• HAVING Clause on page 109

• Aggregation on page 43

any()
Aggregate. Returns a value based on an arbitrary member in a group of values.

Syntax
any (expression)

Parameters

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
Returns the value for the expression based on an arbitrary member of the group unless the
group has no members in which case a NULL value is returned. The function takes any
datatype as its argument, and the function returns that same datatype.

avg()
Aggregate. Computes the average value of a given set of arguments to identify the central
tendancy of a value group.

Syntax
avg (numeric-expression)

Parameters

numeric-expression A numeric expression for which an average is computed. The ex-
pression accepts all datatypes except boolean. The expression will
normally reference one or more columns in a group of records such
that the average will be computed using the reference column value
for each member of the group.

Usage
Compute the average value across a set of rows. The average is computed according to the
following formula:

CHAPTER 10: Functions

CCL Programmers Guide 127

The avg function generates a 0 when a NULL value is received and takes any numeric datatype
as input; returns type FLOAT.

The average function could be used to indentify things such as the average trading price of a
stock over a determined period of time.

corr()
Aggregate. Returns the correlation coefficient of a set of number pairs to determine the
relationship between the two properties.

Syntax
corr (dependent-expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts all numeric da-
tatypes except timestamp, bigdatetime, and in-
terval. Will normally reference one or more col-
umns in the group of records to be aggregated.

independent-expression The variable that influences the outcome. The
expression accepts all numeric datatypes except
timestamp, bigdatetime, and interval. Will nor-
mally reference one or more columns in the
group of records to be aggregated.

Usage
Returns the correlation coefficient of a set of number pairs. The function converts its
arguments to FLOAT, performs the computation in double-precision floating point, and
returns a float as the result. If the function is applied to an empty set, then it returns NULL.

Both dependent-expression and independent-expression are numeric. The function is
applied to the set of (dependent-expression, independent-expression) after eliminating the
pairs for which either dependent-expression or independent-expression is NULL.

CHAPTER 10: Functions

128 Sybase Event Stream Processor

where x represents the independent-expression and y represents the dependent-expression.
Running totals of row_count, sum_x, sum_y, sum_xx, sum_yy and sum_xy are required.

The correlation function could be used to analyze the relationship between two sets of stock
variables to help benchmark against competitors.

covar_pop()
Aggregate. Returns the population covariance of a set of number pairs to determine the
relationship between the two data sets.

Syntax
covar_pop (dependent-expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts only a range of
integers.

independent-expression The variable that influences the outcome. The
expression accepts only a range of integers.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float as the result. If the function is applied to an empty set, then it
returns NULL. Both dependent-expression and independent-expression are numeric. The
function is applied to the set of (dependent-expression, independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is
NULL. The following computation is then made:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where x represents the dependent-expression, y represents the independent-expression,
and n represents the number of (x,y) pairs where neither x or y is NULL.

The covariance of a sample may be used to assess the relationship between things such as the
rate of economic growth and the rate of stock market return.

CHAPTER 10: Functions

CCL Programmers Guide 129

covar_samp()
Aggregate. Returns the sample covariance of a set of number pairs.

Syntax
covar_samp (dependent-expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent variable. The ex-
pression accepts only a range of integers.

independent-expression The variable that influences the outcome. The expression accepts
only a range of integers.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float as the result. If the function is applied to an empty set, then it
returns NULL. Both dependent-expression and independent-expression are numeric. The
function is applied to the set of (dependent-expression, independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is
NULL.

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / (n -1)

Here x represents the dependent-expression, y represents the independent-expression, and
n represents the number of (x,y) pairs where neither x or y is NULL.

The covariance of a sample may be used to indicate how two specific stocks may move
together in the future, which is an important aspect before analyzing the standard deviation of
a portfolio as a measure of risk.

count()
Aggregate. Returns the number of rows in a group, excluding NULL values.

Syntax
count (* | expression)

Parameters

expression A column from the source or an expression typically based upon
columns from the source. It can also be a constant expression.

CHAPTER 10: Functions

130 Sybase Event Stream Processor

Usage
This function counts all sets of non-NULL rows and returns a long. The function returns the
number of rows in a group, excluding NULL values. Use the * syntax to return the number of
rows in the group, or use the expression argument to return the number of non-NULL rows.

count(distinct)
Aggregate. Returns the number of distinct rows in a group.

Syntax
count (distinct expression)

Parameters

distinct expression A column of any datatype, except binary.

Usage
This function counts all sets of non-NULL rows and returns an integer. Duplicates are not
counted. A distinct expression is a column or another distinct expression that is counted.

exp_weighted_avg()
Aggregate. Calculates an exponential weighted average.

Syntax
exp_weighted_avg (expression, period-expression)

Parameters

expression A numeric expression for which a weighted value
is computed.

period-expression A numeric expression specifying the period for
which the average is computed.

Usage
An exponential moving average (EMA) function applies weighting factors to values that
decrease exponentially. The weighting for each older data point decreases exponentially,
giving more importance to recent observations while not discarding older observations and
allowing for descriptive statistical analysis.

The degree of weighting decrease is expressed as a constant smoothing factor α, a number
between 0 and 1. α may be expressed as a percentage, so a smoothing factor of 10% is
equivalent to α=0.1. Alternatively, α may be expressed in terms of N time periods. For
example,

CHAPTER 10: Functions

CCL Programmers Guide 131

N=19 is equivalent to α=0.1.

The observation at a time period t is designated Yt, and the value of the EMA at any time
period t is designated St. S1 is undefined. You can initialize S2 in a number of different ways,
most commonly by setting S2 to Y1, though other techniques exist, such as setting S2 to an
average of the first four or five observations. The prominence of the S2 initialization's effect on
the resultant moving average depends on α; smaller α values make the choice of S2 relatively
more important than larger α values, since a higher α discounts older observations faster.

This type of moving average reacts faster to recent price changes than a simple moving
average. The 12- and 26-day EMAs are the most popular short-term averages, and they are
used to create indicators like the moving average convergence divergence (MACD) and the
percentage price oscillator (PPO). In general, the 50- and 200-day EMAs are used as signals of
long-term trends.

The weighted average function could be used for benchmarking over a particular time
horizon.

first()
Aggregate. Returns the first value from the group of values.

Syntax
first (expression, index)

Parameters

expression The function returns the same datatype as the argument.

index (Optional) The index accepts NULL values and integer datatypes.
Returns the same datatype as the argument. Which row to use, as
offset from the last row in the group based on the group order by
sort order. If omitted or 0, uses the last row.

Usage
Returns the first value from a group of values. The function takes any datatype for the
expression argument and an optional integer as the index argument, and returns the same
datatype as the expression. The function performs a calculation on the specified expression
and returns the first value, including NULL values.

If the argument is a pure column name, use as a scalar.

This function could be used in a first in first out (FIFO) fashion for accounts and stocks.

CHAPTER 10: Functions

132 Sybase Event Stream Processor

first_value()
Aggregate. Returns the first value from the group of values. Alias for first().

last()
Aggregate. Returns the last value of a group of values.

Syntax
last (expression, index)

Parameters

expression The function returns the same datatype as the argument.

index (Optional) The index accepts NULL values and integer datatypes.
Returns the same datatype as the argument. Which row to use, as
offset from the last row in the group based on the group order by
sort order. If omitted or 0, uses the last row.

Usage
Performs a calculation on the specified expression and returns the last value from a group of
values. The function takes any datatype for the expression argument and an optional integer
as the index argument, and returns the same datatype as the expression. The function
performs a calculation on the specified expression and returns the first value, including NULL
values.

If the argument is a pure column name, use as a scalar.

This function could be used in a last in first out (LIFO) fashion for accounts and stocks.

last_value()
Aggregate. Returns the last value of a group of values. Alias for last().

lwm_avg()
Aggregate. Returns the linearly weighted moving average for a group of values.

Syntax
lwm_avg (numeric-expression)

Parameters

numeric-expression Expressions include integer, long, float, money, timestamp, and
interval types.

CHAPTER 10: Functions

CCL Programmers Guide 133

Usage
The function takes any datatype (except boolean) as its argument, and returns the same
datatype. The function places more importance on the most recently received data. NULL
values are not included.

An arithmetically weighted average is any average that has multiplying factors that give
different weights to different data points based on time sensitivity. In technical analysis, a
weighted moving average (WMA) has the specific meaning of weights which decrease
arithmetically. In an n-day WMA, the latest day has weight n, the second latest n − 1, and so on,
down to zero. The following equation is used to calculate the linear weighted moving average,
where pM represents the price of a good on a specific time n.

Moving averages could be used to identify current trends and trend reversals based on closing
numbers over a determined period of time. They also could be used to set up support and
resistance levels.

max()
Aggregate. Returns the maximum non-NULL value of a group of values.

Syntax
max (expression)

Parameters

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
The returned value is based on the datatype of the input to be counted logically. If all values are
NULL, the function returns NULL.

The max function can be used to assess portfolios and identify the top stocks in a group of
values.

CHAPTER 10: Functions

134 Sybase Event Stream Processor

meandeviation()
Aggregate. Returns the mean absolute deviation of a given expression over multiple rows.
Absolute deviation is the mean of the absolute value of the deviations from the mean of all
values.

Syntax
meandeviation (numeric-expression)

Parameters

numeric-expression An expression, commonly a column name, for which the sample-
based standard deviation is calculated over a set of rows. The ex-
pression will normally reference one or more columns in a group of
records such that the mean deviation will be computed using the
reference column value for each member of the group.

Usage
This function converts the argument to float, performs the computation in double-precision
floating point, and returns a float. The mean deviation is computed according to the following
formula:

This mean deviation does not include rows where numeric-expression is NULL. It returns
NULL for a group containing no rows.

The mean deviation function could be used for optimization of stock portfolios on a real-time
basis.

median()
Aggregate. Returns the median value of a given expression over multiple rows to identify the
central tendancy of the set of values.

Syntax
median (column)

Parameter

column Column name that accepts any datatype except binary.

Usage
The function returns the same datatype as the column.

CHAPTER 10: Functions

CCL Programmers Guide 135

Median is described as the numeric value separating the higher half of a sample, a population,
or a probability distribution, from the lower half. The median of a finite list of numbers can be
found by arranging all the observations from lowest value to highest value and identifying the
middle value (the central tendancy). In an even number of observations, there is no single
middle value; in this case the median is commonly defined as the mean of the two middle
values.

The median function behaves differently for different datatypes.

• Integer – the result is the average of two middle values rounded to the nearest whole
number.

• Money – the result is the average of two middle values.
• String – the result is the first of two middle values.

The median function could be used to find the median stock price of a group of stockcodes to
display the districts where variances occur between prices with the same stock.

min()
Aggregate. Returns the minimum non-NULL value from a group of values.

Syntax
min (expression)

Parameters

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
The returned value is based on the datatype of the input. If all values are NULL, the function
returns NULL.

The min function can be used to assess portfolios and identify the lowest stocks in a group of
values.

nth()
Aggregate. Returns the nth value from a group of values. The first argument determines which
value is returned.

Syntax
nth (number, expression)

CHAPTER 10: Functions

136 Sybase Event Stream Processor

Parameters

number An integer specifying which record in the group to reference. If no
group order is specified, the default order is arrival, where 0 would
be the most recent record. If group order is specified, then 0 will
reference the first record in the group, 1 the next, etc...

expression An expression that references the rows in the group. This will
typically include references to one or more columns in the input.
Supports any datatype.

Usage
The function returns the same datatype as its expression argument.

recent()
Aggregate. Returns the most recent non-NULL value in a group of values.

Syntax
recent (expression)

Parameter

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
The function returns the same datatype used in the expression.

The recent function could be used to asses profiles on a real time basis to analyze the most
current updates and changes.

regr_avgx()
Aggregate. Computes the average of the independent variable of the regression line.

Syntax
regr_avgx (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts integer, long, float,
timestamp, interval, and money datatypes.

CHAPTER 10: Functions

CCL Programmers Guide 137

independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp, in-
terval, and money datatypes.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where y represents the dependent-expression:
avg(y)

regr_avgy()
Aggregate. Computes the average of the dependent variable of the regression line.

Syntax
regr_avgy (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts integer, long,
float, timestamp, interval, and money datatypes.

independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp,
interval, and money datatypes.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent-expression:
avg(x)

CHAPTER 10: Functions

138 Sybase Event Stream Processor

regr_count()
Aggregate. Returns an integer that represents the number of non-NULL number pairs used to
fit the regression line.

Syntax
regr_count (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent var-
iable. The expression accepts integer, long, float,
timestamp, interval, and money datatypes.

independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp, in-
terval, and money datatypes.

Usage
This function counts all sets of non-NULL rows and returns a long. Rows are eliminated where
one or both inputs are NULL.

regr_intercept()
Aggregate. Computes the y-intercept of the linear regression line that best fits the dependent
and independent variables.

Syntax
regr_intercept (dependent-expression, independent-
expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this

CHAPTER 10: Functions

CCL Programmers Guide 139

computation is made, where x represents the independent variable and y represents the
dependent variable:
avg(x) - regr_slope(x, y) * avg(y)

regr_r2()
Aggregate. Computes the coefficient of determination (also referred to as R-squared or the
goodness of fit statistic) for the regression line.

Syntax
regr_r2 (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data using this formula, where x represents
the independent variable and y represents the dependent variable:
covarPOP = ((_sum_xy * count) – (sum_x * sum_y)) * ((_sum_xy * count)
– (sum_x * sum_y))
xVarPop = (sum_xx * count) – (sum_x * sum_x)
yVarPop = (sum_yy * count) – (sum_y * sum_y)
result = covarPOP / (xvarPop * yVarPop)

regr_slope()
Aggregate. Computes the slope of the linear regression line fitted to non-NULL pairs.

Syntax
regr_slope (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

CHAPTER 10: Functions

140 Sybase Event Stream Processor

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Parameters
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:
covar_pop(x, y) / var_pop(y)

regr_sxx()
Aggregate. Returns the sum of squares of independent expressions used in a linear regression
model. Evaluates Use the statistical validity of a regression model.

Syntax
regr_sxx (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:
regr_count(x, y) * var_pop(x)

CHAPTER 10: Functions

CCL Programmers Guide 141

regr_sxy()
Aggregate. Returns the sum of products of the dependent and independent variables.
Evaluates the statistical validity of a regression model.

Syntax
regr_sxy (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the dependent variable and y represents the
independent variable:
regr_count(x, y) * covar_pop(x, y)

regr_syy()
Aggregate. Returns values that represent the statistical validity of a regression model.

Syntax
regr_syy (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

CHAPTER 10: Functions

142 Sybase Event Stream Processor

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the dependent variable and y represents the
independent variable:
regr_count(x, y) * var_pop(y)

stddev()
Aggregate. Computes the standard deviation of a sample. Alias for stddev_samp().

stddeviation()
Aggregate. Returns the standard deviation of a given expression over multiple rows. Alias for
stddev_samp().

stddev_pop()
Aggregate. Computes the standard deviation of a population consisting of a numeric-
expression, as a float.

Syntax
stddev_pop (numeric-expression)

Parameters

numeric-expression The expression, usually a column name, for which
the population-based standard deviation is calcula-
ted over a set of rows.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The standard deviation is used to find the amount of
variation between data points and the groups average. The population-based standard
deviation is computed according to the following formula:

This standard deviation does not include rows where numeric-expression is NULL. The
function returns NULL for a group containing no rows.

CHAPTER 10: Functions

CCL Programmers Guide 143

The standard deviation of a population could be used to estimate and assess changes in
securities, which could be used to establish future expectations.

stddev_samp()
Aggregate. Computes the standard deviation of a sample consisting of a numeric-expression,
as a float.

Syntax
stddev_samp (numeric-expression)

Parameters

numeric-expression The expression, usually a column name, for which
the sample-based standard deviation is calculated
over a set of rows.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The standard deviation is used to find the amount of
variation between data points and the groups average. The standard deviation is computed
according to the following formula, which assumes a normal distribution:

This standard deviation does not include rows where numeric-expression is NULL. The
function returns NULL for a group containing either 0 or 1 rows.

The standard deviation of a sample could be used to asses the rate of return of an investment of
a determined period of time.

sum()
Aggregate. Returns the total value of the specified expression for each group of rows.

Syntax
sum (expression)

Parameters

expression The object that is summed. The expression accepts all datatypes
except boolean.

CHAPTER 10: Functions

144 Sybase Event Stream Processor

Usage
Typically, sum is performed on a column. The function returns the same datatype as the
expression. The sum function uses all of the specified values and totals their values.

The sum function could be used to find the combined annual sales in order to assess long term
and short term goals. By looking at the larger picture, the process of planning is simplified.

valueinserted()
Aggregate. Returns a value including NULLS, from a group based on the last row applied into
that group.

Syntax
valueinserted (expression)

Parameters

expression The expression accepts all datatypes.

Usage
This function returns the value of the expression computed using the most recent event used to
insert/update the group. If the current event removes a row from the group then it returns a
NULL.

This function is considered an additive function. Using only additive functions in the
projection of a SELECT statement allows the server to optimize the aggregation, which results
in greater throughput and lower memory utilization.

var_pop()
Aggregate. Computes the statistical variance of a population consisting of a numeric-
expression, as a float.

Syntax
var_pop (numeric-expression)

Parameters

numeric-expression A set of rows. expression is commonly a column
name.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The population-based variance (s2) of numeric-expression
(x) is computed according to this formula:

CHAPTER 10: Functions

CCL Programmers Guide 145

This variance does not include rows where numeric-expression is NULL. The function returns
NULL for a group containing no rows.

The variance of a population could be used as a measure of assessing risk.

var_samp()
Aggregate. Computes the statistical variance of a sample consisting of a numeric-expression,
as a float.

Syntax
var_samp (numeric-expression)

Parameters

numeric-expression A set of rows. expression is commonly a column
name.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The variance (s2) of numeric-expression (x) is computed
according to this formula, which assumes a normal distribution:

This variance does not include rows where numeric-expression is NULL. The function returns
NULL for a group containing either 0 or 1 rows.

The variance of a sample could be used as a measure of assessing risk for a specific portfolio.

vwap()
Aggregate. The vwap function computes a volume-weighted average price for a set of
transactions.

Syntax
vwap (price, quantity)

CHAPTER 10: Functions

146 Sybase Event Stream Processor

Parameters

price The name of the column containing the price in a set of transaction
records.

quantity The name of the column containing the number of units traded at
the specified price in a set of transaction records.

Note: For both of these parameters, you can specify an expression containing the column
name, but you must include the column name.

Usage
The volume-weighted average price (VWAP) is a measure of the average price a stock is
traded at over some period of time. For each trade, it determines the value by multiplying the
price paid per share times the number of shares traded. Then it takes the sum of all these values
and divides it by the sum of all the shares traded. The volume-weighted average price is
computed using the following formula:

The vwap function takes the price paid and the number of shares traded as arguments. As an
input stream or window delivers trading events, the vwap function computes the VWAP to
track the average price at which a stock has traded.

weighted_avg()
Aggregate. Calculates an arithmetically (or linearly) weighted average.

Syntax
weighted_avg (expression)

Parameters

expression A numeric expression that accepts integer, long,
float, money, timestamp, and interval datatypes.

Usage
An arithmetically weighted average has multiplying factors that give different weights to
different data points. In Event Processing, a weighted moving average (WMA) has the specific
default meaning of weights which decrease arithmetically with the age of an event. So the
oldest event is given the least weight and the newest event is given the most weight. The

CHAPTER 10: Functions

CCL Programmers Guide 147

weighted average is expressed using the following formula:

Where

• WMA – The weighted moving averagen - number of events in the group.

• pM – Refers to the newest event.

• pM-1 – Refers to the second newest event.

• pM-n+1 – Refers to the oldest event.

The weighted average function could be used in circumstances that each value does to
contribute equally to the group of values.

xmlagg()
Aggregate. Concatenates all the XML values in the group and produces a single value.

Syntax
xmlagg (value)

Parameters

value The XML value represented as a string.

Usage
The function, which can be used only in aggregate streams or with event caches, returns a
xmltype. Note that the xmltype cannot be stored directly in a record. To store the xml in the
record you need to apply the xmlserialize function to convert the xmltype into a string.

Example
xmlagg (xmlparse (stringCol))

Scalar Functions
Scalar functions take a list of scalar arguments and return a single scalar value.

Different types of scalar functions include:

• Numeric functions
• String functions
• Conversion functions

CHAPTER 10: Functions

148 Sybase Event Stream Processor

• XML functions
• Date and time functions

Scalar functions take one or more expression values as arguments and return a single result
value for each row of data processed by a query. These functions can appear in most
expressions, and are used most often in SELECT clauses and WHERE clauses.

See also
• SELECT Clause on page 113

• WHERE Clause on page 116

Numeric Functions
Numeric functions are used with numeric values. Some numeric functions can also be used
with interval and bigdatetime values. Examples of numeric functions include round () and
sqrt ().

acos()
Scalar. Returns the arccosine of a given value.

Syntax
acos (value)

Parameters

value A float between -1 and 1.

Usage
The function returns a float. If a value outside the range of -1 to 1 is given, the function returns
NULL.

Example
acos(0.0) returns 1.570796.

asin()
Scalar. Returns the arcsine of a given value.

Syntax
asin (value)

Parameters

value A float between -1 and 1.

CHAPTER 10: Functions

CCL Programmers Guide 149

Usage
The function returns a float. If a value outside the range of -1 to 1 is given, the function returns
NULL.

Example
asin(1.0)returns 1.570796.

atan()
Scalar. Returns the arctangent of a given value.

Syntax
atan (value)

Parameters

value A float.

Usage
The function returns a float.

Example
arctan(1.0) returns 0.785398.

atan2()
Scalar. Returns the arctangent of the quotient of two given values.

Syntax
atan2 (value1, value2)

Parameters

value1 A float.

value2 A float.

Usage
Returns the arctangent of the quotient of the given values, within the range of the standard
arctangent function:

• If value2 > 0, then atan2 (value1, value2) returns the value of atan
(value1/value2).

• If value1 >= 0 and value2 < 0, then atan2 (value1, value2) returns the value of
atan (value1/value2) + pi().

CHAPTER 10: Functions

150 Sybase Event Stream Processor

• If value1 < 0 and value2 < 0, then atan2 (value1, value2) returns the value of
atan (value1/value2) - pi().

• If value1 > 0 and value2 = 0, then atan2 (value1, value2) returns the value of
pi()/2.

• If value1 < 0 and value2 = 0, then atan2 (value1, value2) returns the value of
-pi()/2.

• If value1 = value2 = 0, then atan2 (value1, value2) returns 0.

Example
atan2 (1, 2) returns 0.463647609, the value of atan (0.5).

avgof()
Scalar. Returns the average value of multiple expressions, ignoring NULL parameters.

Syntax
avgof (expression, [,...])

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

Usage
If all parameters are NULL, the function returns NULL. The function accepts the following
datatypes: float, integer, long, interval, money types, and date/time types.

The function returns the same datatype as its argument, however, if the expressions are
numeric types (integers, floats, or longs), the function returns a float.

Example
avgof (1, 2, NULL, 3, NULL) returns 2.0.

bitand()
Scalar. Returns the result of performing a bitwise AND operation on two expressions.

Syntax
bitand (expression1, expression2)

Parameters

expression1 Expression that simplifies to an integer or a long (must be the same
datatype as expression2).

CHAPTER 10: Functions

CCL Programmers Guide 151

expression2 Expression that simplifies to an integer or a long (must be the same
datatype as expression1).

Usage
The function takes the two expressions, and performs the logical AND operation on each pair
of bits. The result for the pair is 1 if both bits are 1; otherwise, the result for the pair is 0. Both
arguments must be the same datatype (integers or longs), and the function returns the same
datatype as its arguments.

Example
bitand (5, 3) returns 1, or in binary, bitand (101, 011) returns 001. The user
cannot specify binary directly.

bitclear()
Scalar. Returns the value of an expression after setting a specific bit to zero.

Syntax
bitclear (expression, bit)

Parameters

expression The initial value as an integer or a long.

bit Which bit to clear, starting from 0 as the least-significant bit.

Usage
Any bit argument must be an integer.The function returns the same datatype as the initial
expression argument.

Example
bitclear (13, 0) returns 12, or in binary, bitclear (1101, 0) returns 1100.
The user cannot specify binary directly.

bitflag()
Scalar. Returns a value with all bits set to zero, except the specified bit.

Syntax
bitflag (bit)

Parameters

bit An integer indicating which bit to set, starting from 0 as the least-
significant bit.

CHAPTER 10: Functions

152 Sybase Event Stream Processor

Usage
The function returns an integer.

Example
bitflag(3) returns 8 or 1000 in binary.

bitflaglong()
Scalar. Returns a value with all bits set to zero, except a specified bit.

Syntax
bitflaglong (bit)

Parameters

bit An integer indicating which bit to set, starting from 0 as the least-
significant bit.

Usage
The function returns a long.

Example
bitflaglong (35) returns 34359738368 or
100000000000000000000000000000000000 in binary.

bitmask()
Scalar. Returns a value with all bits set to 0 except a specified range of bits.

Syntax
bitmask (first, last)

Parameters

first The first bit to set, starting from 0 as the least-significant bit.

last The last bit to set, starting from 0 as the least-significant bit.

Usage
Both arguments must be integers, and the function returns an integer. The order of the
arguments does not matter, that is, bitmask (1, 3) yields the same result as bitmask
(3, 1).

Example
bitmask (1, 3) returns 14 or 1110 in binary.

CHAPTER 10: Functions

CCL Programmers Guide 153

bitmask (3, 0) returns 15 or 1111 in binary.

bitmasklong()
Scalar. Returns a value with all bits set to 0, except a specified range of bits.

Syntax
bitmasklong (first, last)

Parameters

first The first bit to set, starting from 0 as the least-significant bit.

last The last bit to set, starting from 0 as the least-significant bit.

Usage
Both arguments must be integers, and the function returns a long.

Example
bitmasklong (33, 35) returns 60129542144 or
111000000000000000000000000000000000 in binary.

bitnot()
Scalar. Returns the value of an expression with all bits inverted.

Syntax
bitnot (expression)

Parameters

expression An integer or a long.

Usage
Returns the value of an expression after the bitwise operation is performed. Bits that were 0
become 1, and vice versa. The function returns the same datatype as the argument.

Example
bitnot (7) returns -8, or in binary, bitnot (111) returns
11111111111111111111111111111000. The user cannot specify binary directly.

bitor()
Scalar. Returns the results of performing a bitwise OR operation on two expressions.

Syntax
bitor (expression1, expression2)

CHAPTER 10: Functions

154 Sybase Event Stream Processor

Parameters

expression1 Expression that simplifies to an integer or a long (must be the same
as expression2).

expression2 Expression that simplifies to an integer or a long (must be the same
as expression1).

Usage
The function takes two bit patterns and produces another one of the same length by performing
the logical OR operation on each pair. The result for the pair is 1 if the first bit or the second bit
are 1, or if both bits are 1. Otherwise, the result for the pair is 0. The function returns the same
datatype as its arguments.

Example
bitor (5, 3) returns 7, or in binary, bitor (0101, 0011) returns 0111. The user
cannot specify binary directly.

bitset()
Scalar. Returns the value of an expression after setting a specific bit to 1.

Syntax
bitset (expression, bit)

Parameters

expression The initial value as an integer or a long.

bit Which bit to set, starting from 0 as the least-significant bit.

Usage
A bit argument must be an integer. The function returns the same datatype as the initial
expression argument.

Example
bitset (2, 3) returns 10, or in binary, bitset (0010, 3) returns 1010. The user
cannot specify binary directly.

bitshiftleft()
Scalar. Returns the value of an expression after shifting the bits left a specific number of
positions.

Syntax
bitshiftleft (expression, count)

CHAPTER 10: Functions

CCL Programmers Guide 155

Parameters

expression The initial value as an integer or a long. Can be an integer or a long.

count How many positions to shift. The same number of right-most bits
are set to 0. Must be an integer.

Usage
The bits that are shifted out the left are discarded, and zeros are shifted in on the right. The
expression argument can be an integer or a long, but the count argument must be an integer.
The function returns the same datatype as the initial expression argument.

Example
bitshiftleft (10, 2) returns 40, or in binary, bitshiftleft (1010, 2)
returns 101000. The user cannot specify binary directly.

bitshiftright()
Scalar. Returns the value of an expression after shifting the bits right a specific number of
positions.

Syntax
bitshiftright (expression, count)

Parameters

expression The initial value, as an integer or a long. Can be an integer or a
long.

count How many positions to shift. The same number of left-most bits are
set to 0. Must be an integer.

Usage
The bits that are shifted out the right are discarded, and zeros are shifted in on the left. The
function returns the same datatype as the initial expression argument.

Example
bitshiftright (3, 1) returns 1, or in binary, bitshiftright (0011, 1)
returns 0001. The user cannot specify binary directly.

bittest()
Scalar. Returns the value of a specific bit in a binary value.

Syntax
bittest (expression, bit)

CHAPTER 10: Functions

156 Sybase Event Stream Processor

Parameters

expression The initial value, as an integer or a long .

bit Which bit to return. All other bits are set to zero.

Usage
A bit argument must be an integer. The function returns the same datatype as the datatype of
the expression argument.

Example
bittest (15, 3) returns 8, or in binary, bittest(1111, 3) returns 1000. The user
cannot directly specify binary.

bittoggle()
Scalar. Returns the value of an expression after inverting the value of a specific bit.

Syntax
bittoggle (expression, bit)

Parameters

expression The initial value, as an integer or a long

bit Which bit to toggle

Usage
The expression argument can be an integer or a long, but the bit argument must be an integer.
The function returns the same datatype as the datatype of the expression argument.

Example
bittoggle (7, 3) returns 15, or in binary, bittoggle (0111, 3) returns 1111.
The user cannot specify binary directly.

bitxor()
Scalar. Returns the results of performing a bitwise exclusive OR (XOR) operation on two
expressions.

Syntax
bitxor (expression1, expression2)

CHAPTER 10: Functions

CCL Programmers Guide 157

Parameters

expression1 Expression that simplifies to an integer or a long (must be the same
datatype as expression2)

expression2 Expression that simplifies to an integer or a long (must be the same
datatype as expression1)

Usage
The function performs the logical XOR operation on each pair of corresponding bits. The
result for the pair of bits is 1 if the two bits are different, or 0 if they are the same. Using bitxor()
on the same expression yields 0. The function returns the same datatype as its arguments.

Example
bitxor (3, 3) returns 0.

bitxor (10, 15) returns 5, or in binary, bitxor (1010, 1111) returns 0101. The
user cannot specify binary directly.

cbrt()
Scalar. Returns the cube root of a number.

Syntax
cbrt (value)

Parameters

value A numeric datatype

Usage
The function returns a float. If the argument is invalid, the server logs a Floating-point
exception error.

Example
cbrt (1000.00) returns 10.0.

ceil()
Scalar. Rounds a number up to the nearest whole number..

Syntax
ceil (value)

CHAPTER 10: Functions

158 Sybase Event Stream Processor

Parameters

value A float or money type

Usage
The function returns the same datatype as the argument.

Example
ceil (100.20) returns 101.0.

compare()
Scalar. Determines which of two values is larger.

Syntax
compare (value1, value2)

Parameters

value1 Any datatype

value2 Any datatype

Usage
The function returns an integer (1, -1, or 0). If the first value is larger, the function returns 1. If
the second value is larger, the function returns -1. If they are equal, it returns 0.

Example
compare ((asin(0.5), (acos(0.5)) returns -1.

cos()
Scalar. Returns the cosine of a given value expressed in radians.

Syntax
cos (value)

Parameters

value A float

Usage
The function returns a float.

Example
cos (0.5) returns 0.87758.

CHAPTER 10: Functions

CCL Programmers Guide 159

cosd()
Scalar. Returns the cosine of a given value, expressed in degrees.

Syntax
cosd (value)

Parameters

value A float

Usage
The function returns a float.

Example
cosd (90.0) returns -0.448073616.

cosh()
Scalar. Returns the hyperbolic cosine of a given value expressed in radians.

Syntax
cosh (value)

Parameters

value A float

Usage
The function returns a float.

Example
cosh (0.5) returns 1.12762597.

distance()
Scalar. Returns a value representing the distance between two points in two or three
dimensions.

Syntax
distance (point1x, point1y, [point1z], point2x, point2y,
[point2z])

Parameters

point1x An expression that evaluates to a value representing the position of
the first point on the x axis.

CHAPTER 10: Functions

160 Sybase Event Stream Processor

point1y An expression that evaluates to a value representing the position of
the first point on the y axis.

point1z An expression that evaluates to a value representing the position of
the first point on the z axis.

point2x An expression that evaluates to a value representing the position of
the second point on the x axis.

point2y An expression that evaluates to a value representing the position of
the second point on the y axis.

point2z An expression that evaluates to a value representing the position of
the second point on the z axis.

Usage
Returns a number representing the distance between two points in either two or three
dimensions. All arguments must be the same numeric type, and the function returns the same
datatype.

Example
distance (7.5, 6.5, 10.5, 10.5)returns 5.0.

distance (1.2, 3.4, 5.6, 7.8, 9.10, 11.12) returns 10.320872.

distancesquared()
Scalar. Returns a number representing the square of the distance between two points in either
two or three dimensions.

Syntax
distancesquared (point1x, point1y, [point1z], point2x, point2y,
[point2z])

Parameters

point1x An expression that evaluates to a value representing the position of
the first point on the x axis.

point1y An expression that evaluates to a value representing the position of
the first point on the y axis.

point1z An expression that evaluates to a value representing the position of
the first point on the z axis.

point2x An expression that evaluates to a value representing the position of
the second point on the x axis.

CHAPTER 10: Functions

CCL Programmers Guide 161

point2y An expression that evaluates to a value representing the position of
the second point on the y axis.

point2z An expression that evaluates to a value representing the position of
the second point on the z axis.

Usage
Returns a number representing the square of the distance between two points in either two or
three dimensions. All arguments must be of the same numeric type, and the function returns
the same datatype.

Example
distancesquared (7.5, 6.5, 10.5, 10.5)returns 25.0.

distancesquared (1.2, 3.4, 5.6, 7.8, 9.10, 11.12) returns
106.502400.

floor()
Scalar. Rounds a number down.

Syntax
floor (value)

Parameters

value A float or a money type.

Usage
Rounds a given number down to the nearest whole number. The function takes a float or a
money type, and the function returns the same datatype as its argument.

Example
floor (100.20) returns 100.0.

floor (1.56) returns 1.0.

isnull()
Scalar. Determines if an expression is NULL.

Syntax
isnull (expression)

Parameters

expression An expression of any datatype.

CHAPTER 10: Functions

162 Sybase Event Stream Processor

Usage
Determines if an expression is NULL. The function can take any datatype as its argument, and
the function returns an integer. The function returns 1 if the argument is NULL, and 0
otherwise.

Example
isnull ('examplestring') returns 0.

length()
Scalar. Returns the number of bytes of a given binary value.

Syntax
length (binary)

Parameters

binary A binary value.

Usage
Returns the number of bytes that make up a given binary value. The function takes a binary
value as its argument, and the function returns an integer. If the binary value is NULL, the
function returns NULL.

Example
length (hex_binary ('0xaa1234')) returns 3.

length (hex_binary ('aa')) returns 1.

ln()
Scalar. Returns the natural logarithm of a given number.

Syntax
ln (value)

Parameters

value A float.

Usage
Returns the natural logarithm of a number. If the argument is invalid (for example, less than 0),
the server logs a “Floating-point exception” error. The function takes a float as its argument,
and the function returns a float.

CHAPTER 10: Functions

CCL Programmers Guide 163

Example
ln (2.718281828) returns 1.0.

log2()
Scalar. Returns the logarithm of a given value to the base 2.

Syntax
log2 (value)

Parameters

value An expression that evaluates to a float greater than or equal to 0.

Usage
Returns the logarithm of a given value to the base 2. The function expects a float for its
argument, however, an integer will be promoted to a float when the function executes. The
function returns a float.

Example
log2 (8.0) returns 3.0.

log10()
Scalar. Returns the logarithm of a given value to a base of 10.

Syntax
log10 (value)

Parameters

value An expression that evaluates to a float greater than or equal to 0.

Usage
Returns the logarithm of a given value to a base of 10. The function expects a float as it
argument, however, an integer will be promoted to a float when the function executes. The
function returns a float.

Example
log (100.0) returns 2.0.

CHAPTER 10: Functions

164 Sybase Event Stream Processor

logx()
Scalar. Returns the logarithm of a given value to a specified base.

Syntax
logx (value, base)

Parameters

value An expression that evaluates to a float greater than or equal to 0.

base An expression that evaluates to a float greater than 1.

Usage
Returns the logarithm of a given value to a specified base. The function expects floats for its
arguments, however, integers will be promoted to floats when the function executes. The
function returns a float.

Example
logx (8.0, 2.0) returns 3.0.

maxof()
Scalar. Returns the maximum value from a list of expressions.

Syntax
maxof (expression [,...])

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

Usage
Returns the maximum value from a list of expressions. NULL values are ignored. If all of the
arguments are NULL, the function returns NULL. The arguments can be of any datatype, but
they must be of the same datatype. The function returns the same datatype as its arguments.

Example
maxof (1.34, 3.35, 10.93, NULL) returns 10.93.

minof()
Scalar. Returns the minimum value from a list of expressions.

Syntax
minof (expression [,...])

CHAPTER 10: Functions

CCL Programmers Guide 165

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

Usage
Returns the minimum value from a list of expressions. NULL values are ignored. If all of the
arguments are NULL, the function returns NULL. The arguments can be of any datatype, but
they must be of the same datatype. The function returns the same datatype as its arguments.

Example
min (0.61, NULL, 2.34, 1.32) returns 0.61.

nextval()
Scalar. Returns a value larger than that returned by the previous call. The first call returns 1.

Syntax
nextval()

Usage
The first call to the function returns 1, and then each subsequent call returns a value larger than
that returned by the previous call. The increase in the values is not necessarily one; it may be
larger. Each call to nextval() returns a new value, even if it is called more than once in a single
statement. The function takes no arguments, and the function returns a long.

Example
The first call to nextval() returns 1. Calling nextval() a second time could return 14,
for example.

pi()
Scalar. Returns a numerical approximation of the constant pi.

Syntax
pi()

Usage
Returns a numerical approximation of the constant pi. The function does not take any
arguments, and the function returns a float.

Example
pi() returns 3.141593.

CHAPTER 10: Functions

166 Sybase Event Stream Processor

power()
Scalar. Returns the value of a given base raised to a specified exponent.

Syntax
power (base, exponent)

Parameters

base Any numeric type.

exponent Float that specifies the number that the base will be raised to.

Usage
Returns the value of a given base raised to a specified exponent. The function takes a numeric
type for the base argument, but the exponent must be a float. The function returns the same
datatype as the base argument.

Example
power (2.0, 3.0) returns 8.0.

random()
Scalar. Returns a random value greater than or equal to 0 and less than 1.

Syntax
random()

Usage
Returns a random value greater than or equal to 0 and less than 1. The function does not take
any arguments, and the function returns a float.

Example
random() may return 0.54 on a call, for example.

round()
Scalar. Returns a number rounded to the specified number of digits.

Syntax
round (value, digits)

Parameters

value A float representing a value that needs to be rounded.

digits The number of digits after the decimal point to round the value to.

CHAPTER 10: Functions

CCL Programmers Guide 167

Usage
Returns a number rounded to the specified number of digits. The value is rounded to the
number of decimal points specified by the digits argument. The function follows standard
rounding rules. Both arguments must be floats, and the function returns a float.

Example
round (66.778, 1) returns 66.8.

sign()
Scalar. Determines whether a given value is positive or negative.

Syntax
sign (value)

Parameters

value Any type that can have a sign (integer, float, long, interval, money).

Usage
Determines whether a given value is positive or negative. The function returns 1 if the value is
positive, -1 if the value is negative, and 0 otherwise. The argument can be any type that has a
sign, and the function returns an integer.

Example
sign (cosd(45.0)) returns 1.

sin()
Scalar. Returns the sine of a given value.

Syntax
sin (value)

Parameters

value A float.

Usage
Returns the sine of a given value, expressed in radians. The function takes a float as its
argument, and the function returns a float.

Example
sin (pi()) returns 0.

CHAPTER 10: Functions

168 Sybase Event Stream Processor

sinh()
Scalar. Returns the hyperbolic sine of a given value.

Syntax
sinh (value)

Parameters

value A float.

Usage
Returns the hyperbolic sine of a given value, expressed in radians. The function takes a float as
its argument, and the function returns a float.

Example
sinh (0.5) returns 0.521095305.

sqrt()
Scalar. Returns the square root of a given number.

Syntax
sqrt (value)

Parameters

value A money or numeric type.

Usage
Returns the square root of a given number. The function takes a numeric type or a money type
as its argument, and the function returns a float. If the argument is invalid, the function returns
a "Floating-point exception" error.

Example
sqrt (100.0) returns 10.0.

tan()
Scalar. Returns the tangent of a given value.

Syntax
tan (value)

CHAPTER 10: Functions

CCL Programmers Guide 169

Parameters

value A float.

Usage
Returns the tangent of a given value, expressed in radians. The function takes a float as its
argument, and the function returns a float.

Example
tan (0.0) returns 0.

tand()
Scalar. Returns the tangent of a given value, expressed in degrees.

Syntax
tand (value)

Parameters

value A float.

Usage
Returns the tangent of a given value, expressed in degrees. The function takes a float as its
argument, and the function returns a float.

Example
tand (45.0) returns 1.61977519.

tanh()
Scalar. Returns the hyperbolic tangent of a given value.

Syntax
tanh (value)

Parameters

value A float.

Usage
Returns the hyperbolic tangent of a given value. The function takes a float as its argument, and
the function returns a float.

Example
tanh (0.5) returns 0.462117157.

CHAPTER 10: Functions

170 Sybase Event Stream Processor

String Functions
String functions are used with STRING values and usually return a STRING value. Examples
of string functions include left (), rtrim (), and replace ().

int32()
Scalar. Converts a given string into an integer.

Syntax
int32 (string)

Parameters

string A string that starts with an optional minus sign and contains only
digits.

Usage
Converts a given string into an integer. The function takes a string as its argument, and the
function returns an integer. An invalid string causes the function to return NULL.

Example
int32 ('1935') returns 1935.

left()
Scalar. Returns a specified number of characters from the beginning of a given string.

Syntax
left (string, count)

Parameters

string A string.

count The number of characters to return.

Usage
Returns a specified number of characters from the beginning of a given string. The function
takes a string and an integer as the count argument. The function returns a string. If count is a
negative number, the function returns NULL. If count is 0, the function returns an empty
string.

The function works with UTF-8 strings if the -U server option is specified.

Example
left ('examplestring', 7) returns 'example'.

CHAPTER 10: Functions

CCL Programmers Guide 171

like()
Scalar. Determines whether a given string matches a specified pattern string.

Syntax
like (string, pattern)

Parameters

string A string.

pattern A pattern of characters, as a string. Can contain wildcards.

Usage
Determines whether a string matches a pattern string. The function returns 1 if the string
matches the pattern, and 0 otherwise. The pattern argument can contain wildcards: '_' matches
a single arbitrary character, and '%' matches 0 or more arbitrary characters. The function takes
in two strings as its arguments, and returns an integer.

Note: In SQL, the infix notation can also be used: sourceString like patternString.

Example
like ('MSFT', 'M%T') returns 1.

lower()
Scalar. Returns a new string where all the characters of the given string are lowercase.

Syntax
lower (string)

Parameters

string A string.

Usage
Returns a string where all the characters of a given string are lowercase. The function takes a
string as its argument, and the function returns a string.

Example
upper ('This Is A Test') returns 'this is a test'.

CHAPTER 10: Functions

172 Sybase Event Stream Processor

ltrim()
Scalar. Trims spaces from the left side of a string.

Syntax
ltrim (string)

Parameters

string A string.

Usage
Trims spaces from the left side of the string. The function takes a string as its argument, and the
function returns a string.

Example
ltrim (' examplestring') returns 'examplestring'.

patindex()
Scalar. Determines the position of the nth occurrence of a pattern within a source string.

Syntax
patindex (string, pattern, number [, position] [,
constant_string])

Parameters

string A source string.

pattern String representing the pattern to search for.

number Occurence of the pattern to look for.

position (optional) Starting position (0 based index) of the search. Default is
0.

constant_string (optional) Boolean indicating whether the pattern argument should
be treated as a constant string instead of a pattern. Default is false.

Usage
Determines the position of the nth occurrence of a pattern within a source string. The pattern
can contain wildcards: "_" matches a single arbitrary character; "%" matches 0 or more
arbitrary characters. If fewer than n instances of the pattern are found in the string, the function
returns -1.

The function takes strings for the string and the pattern arguments, and integers for the
number and position arguments. The constant_string argument is a Boolean. The function

CHAPTER 10: Functions

CCL Programmers Guide 173

returns an integer representing the position of the nth occurrence of the pattern within the
given string.

If number is less than or equal to zero, the function returns NULL. If position is less than 0, the
function starts searching from the start of the string. If position is greater than the length of the
string argument, patindex() returns -1.

The function works with UTF-8 strings if the -U server option is specified.

Example
patindex('longlonglongstring', 'long', 2) returns 4.

patindex('longstring', 'long', 2) returns - 1.

patindex('String', __n, 1) returns 2.

patindex('String', %n, 1) returns 0.

patindex('String', __n, 1, false) returns 2.

patindex('String', __n, 1, true) returns -1.

patindex('String', S, 1, 0, false) returns 0.

patindex('Stringi', i, 2, 2, true) returns 6.

real()
Scalar. Converts a given string into a float.

Syntax
real (string)

Parameters

string A valid string must be a sequence of digits, optionally containing a
decimal-point character. The input may also include an optional
minus sign as the first character, or an optional exponent part,
which itself consists of an 'e' or 'E' character followed by an op-
tional sign and a sequence of digits.

Usage
Converts a given string into a float. The function takes a string as its argument, and the function
returns a float. An invalid string causes the function to return NULL.

Example
real ('43.4745') returns 43.4745.

CHAPTER 10: Functions

174 Sybase Event Stream Processor

regexp_firstsearch()
Scalar. Returns the first occurrence of a POSIX regular expression pattern found in a given
string.

Syntax
regexp_firstsearch (string, regex)

Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the
Perl syntax.

Usage
Returns the first occurrence of a POSIX regular expression pattern found in a given string. If
string does not contain a match for the pattern, or if the specified pattern is not a valid regular
expression, the function returns NULL. One or more subexpressions can be included in the
pattern, each enclosed in parentheses. If string contains a match for the pattern, the function
only returns the parts of the pattern specified by the first subexpression. The function returns a
string.

The function works with UTF-8 strings if the -U server option is specified.

Example
regexp_firstsearch('aaadogaaa', '[b-z]*') returns 'dog'.

regexp_firstsearch('h', '[i-z]*') returns NULL.

regexp_firstsearch('aaaaabaaaabbbaaa', '[b-z]*') returns 'b'.

regexp_replace()
Scalar. Returns a given string with the first occurrence of a match for a POSIX regular
expression pattern replaced with a second, specified string.

Syntax
regexp_replace (string, regex, replacement)

Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the
Perl syntax.

replacement A string to replace the part of the string that matches regex.

CHAPTER 10: Functions

CCL Programmers Guide 175

Usage
Returns a given string with the first occurrence of a match for a POSIX regular expression
pattern replaced with a second, specified string. If string does not contain a match for the
POSIX regular expression, the function returns the string with no replacements. If regex is not
a valid regular expression, the function returns NULL.

The function works with UTF-8 strings if the -U server option is specified.

Example
regexp_replace('aaadogaaa', '[b-z]*', 'cat') returns 'aaacataaa'.

regexp_replace('aaadogaaa', '[b-z]*', '') returns 'aaaaaa'.

regexp_replace('aaa', '[a-z]*', 'dog') returns 'dog'.

regexp_replace('aaa', '[b-z]*', 'dog') returns 'aaa'.

regexp_search()
Scalar. Determines whether or not a string contains a match for a POSIX regular expression
pattern.

Syntax
regexp_search (string, regex)

Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the
Perl Syntax.

Usage
Determines whether or not a string contains a match for a POSIX regular expression pattern.
The function returns the Boolean expression corresponding to whether or not the string
contains the pattern (TRUE or FALSE).

The function works with UTF-8 strings if the -U server option is specified.

Example
regexp_search('aaadogaaa', '[b-z]*') returns TRUE.

regexp_search('h', '[i-z]*') returns FALSE.

CHAPTER 10: Functions

176 Sybase Event Stream Processor

replace()
Scalar. Returns a new string where all the occurrences of the second string in the first string are
replaced with the third string.

Syntax
replace (target, substring, repstring)

Parameters

target A string.

substring The string of characters to replace.

repstring The replacement for the characters, as a string.

Usage
Returns a new string where all the occurrences of the second string in the first string are
replaced with the third string. The function takes three string arguments, and returns a string.

Example
replace ('NewAmsterdam', 'New', 'Old') returns 'OldAmsterdam'.

right()
Scalar. Returns the rightmost characters of a string.

Syntax
right (string, number)

Parameters

string A string.

number The number of characters to return from the string.

Usage
Returns the rightmost characters of a string. The function takes in a string and an integer, and
returns a string.

Example
right ('examplestring', 6) returns 'string'.

CHAPTER 10: Functions

CCL Programmers Guide 177

rtrim()
Scalar. Trims spaces from the right of a string.

Syntax
rtrim (string)

Parameters

string A string.

Usage
Trims the spaces from the right side of the string. The function takes in a string as its argument,
and returns a string.

Example
rtrim ('examplestring ') returns 'examplestring'.

string()
Scalar. Converts a given value of any type to an equivalent string.

Syntax
string (value)

Parameters

value An argument of any datatype, except binary or string.

Usage
Converts a given value into an equivalent string expression. The argument can be any datatype,
except binary or string. The function returns a string.

Example
string (1935) returns '1935'.

substr()
Scalar. Returns a substring of a given string, based on a start position and number of
characters.

Syntax
substr (string, position, number)

CHAPTER 10: Functions

178 Sybase Event Stream Processor

Parameters

string A string.

position The starting position to start taking a substring. The first character
or space in a string is in position 0.

number The number of characters in the substring.

Usage
Returns a substring of a given string, based on a start position and number of characters. The
first argument must be a string, and the position and number arguments must be integers. The
function returns a string.

Example
substr ('thissubstring', 4, 3) returns 'sub'.

trim()
Scalar. Returns a given string after removing trailing and leading spaces.

Syntax
trim (string)

Parameters

string A string. Works with UTF-8 strings.

Usage
Returns a given string after removing trailing and leading spaces. The function takes a string as
the argument, and returns a string. The function returns the same value as applying ltrim() and
rtrim() to a given string.

Example
trim (' examplestring ') returns 'examplestring'.

trim(' ') returns ''.

trim('a') returns 'a'.

trunc()
Scalar. Truncates the time portion of a date to 00:00:00 and returns the new date value.

Syntax
trunc (datevalue)

CHAPTER 10: Functions

CCL Programmers Guide 179

Parameters

datevalue A date or bigdatetime.

Usage
Truncates the time portion of a date value to 00:00:00 and returns the new date value. The
function takes a date or bigdatetime as its argument, and the function returns the same
datatype.

Example
trunc (undate ('2001:05:23 12:34:64')) returns 2001:05:23 00:00:00.

upper()
Scalar. Returns a string where all the characters of a given string are uppercase.

Syntax
upper (string)

Parameters

string A string.

Usage
Returns a string where all the characters of a given string are uppercase. The argument of the
function is a string, and the function returns a string.

Example
upper ('This Is A Test') returns 'THIS IS A TEST'.

Conversion Functions
Conversion functions convert data values of various datatypes to the datatype specified by the
function name.

ascii()
Scalar. Returns the Unicode code point for a particular character, or the UTF-8 code point if
the -U server option is specified.

Syntax
ascii (character)

Parameters

character A character string.

CHAPTER 10: Functions

180 Sybase Event Stream Processor

Usage
If empty or NULL, the function returns NULL. Otherwise, the function returns the code point
as an integer.

Example
ascii ('D') returns 68.

ascii ('Dog') also returns 68 since only the first character is converted.

base64_binary()
Scalar. Returns a binary value for a given base64-encoded string.

Syntax
base64_binary (string)

Parameters

string A base64-encoded string. Valid characters include a-z, A-Z, 0-9, /,
and +.

Usage
The function converts a base64-encoded string to a binary type. The string length cannot have
a remainder of 1 when divided by 4, as it makes the encoding invalid. Optionally, use one or
two padding characters, '=' in order to make the length divisible by 4.

Example
base64_binary ('bGVhc3VyZS4=') returns 6C6561737572652E.

base64_binary ('ZQ==') returns 65.

base64_string()
Scalar. Returns a base64-encoded string for a given binary value.

Syntax
base64_string (binary)

Parameters

binary A binary value.

Usage
The function encodes a binary value to form a base64-encoded string. One or two padding
characters, '=' are added to the end to make the string length divisible by 4. The function
returns a string.

CHAPTER 10: Functions

CCL Programmers Guide 181

Example
base64_string (hex_binary ('64')) returns ZQ==.

base64_string (hex_binary ('6C6561737572652E')) returns
bGVhc3VyZS4=.

cast()
Scalar. Converts the value of one datatype to another datatype allowing overflows and
truncation.

Syntax
cast (type, number)

Parameters

type Any datatype, except binary or string.

number A datatype that can be cast to the new specified datatype.

Usage
The type argument must be a numeric type, money type, or a date/time type. You can cast
expressions of any type except binary or string types.

Casting from larger types to smaller types may cause overflow. Casting from decimal types
(like float or money) to nondecimal types (like integer) truncates the decimal portion. Both
overflows and truncation are allowed. Use this function to force a cast in places where an
implicit cast is disallowed, such as when converting an integer to a long.

When comparing values of varying scale, cast one value to the other to make the two values
compatible. For example, you can compare money values of different scale only by casting to
a common type.

How to cast money values of different scale depends on how you compare the two values:

• If you set 100.55D2, a money(2) type, as greater than (>) 100.545D3, a money(3) type, the
result is false because the values are represented internally without the decimal point.
Therefore, 10055 cannot be greater than 100545. In this example, you can perform casting
on either value to produce a true result. When you cast 10055 to 100545, the comparison
becomes 100550>100545, which is true. When you cast 100545 to 10055, the comparison
becomes 10055>10054, which is also true.

• If you set 100.55D2 as equal (=) to 100.556D3, the result is false. In this example, the result
changes depending on which value you cast. When you cast 10055 to 100556, the
comparison becomes 100550=100556, which is false. When you cast 100556 to 10055,
the comparison becomes 10055=10055, which is true.

You may prefer to cast lower scale values to higher scale values to avoid incorrect comparison
results and to maintain scale.

CHAPTER 10: Functions

182 Sybase Event Stream Processor

Example
cast (integer, 1.23) returns 1.

char()
Scalar. Returns the characters responding to one or more Unicode code points, or the UTF-8
code points if the -U server option is specified.

Syntax
char (expression [,...])

Parameters

expression One or more Unicode code points. The arguments must be integers.

Usage
An invalid code point, 0, or NULL returns NULL. The function returns a string.

Example
char (68) returns 'D'.

char(68, 68, 68) returns 'DDD'.

concat()
Scalar. Returns the binary value of the concatenation of two given binary values.

Syntax
concat (binary1, binary2)

Parameters

binary1 A binary value

binary2 A binary value

Usage
The function returns a binary value. The function returns NULL if either argument is NULL.

Example
concat (hex_binary ('aabbcc'), hex_binary ('ddeeff')) returns
AABBCCDDEEFF.

concat (hex_binary ('ddeeff'), hex_binary ('aabbcc'))returns
DDEEFFAABBCC.

CHAPTER 10: Functions

CCL Programmers Guide 183

extract()
Scalar. Extracts and returns a portion of a given binary value.

Syntax
extract (binary, startByte, numberOfBytes)

Parameters

binary A binary value.

startByte Integer representing the starting position for the extraction.

numberOfBytes Integer representing the length of the extraction.

Usage
Extracts a binary value starting at the startByte argument for a specified length. The function
takes a binary value and two integers as its arguments (for startByte and numberOfBytes),
and the function returns a binary value.

For example, if a binary value was composed of bytes abcde, extract(bytes, 2,3)
would produce cde. If length goes past end of binary value the rest of the binary value is
returned. In the previous example, extract(bytes,2,4) would still return cde.

Example
extract (hex_binary ('a1b2c3e4'),1,2)returns B2C3.

extract (hex_binary ('a1b2c3e4'),3,1) returns E4.

extract (hex_binary ('a1b2c3e4'),0,4)returns A1B2C3E4.

fromnetbinary()
Scalar. Converts a binary in network byte order to an integer in host byte order.

Syntax
fromnetbinary (binary)

Parameters

binary A binary in network byte order.

Usage
Takes a binary in network byte order and converts it to an integer in host byte order. Works for
positive and negative values. The function takes a binary value as its argument and the function
returns an integer. The function returns an error if the binary value is more than 4 bytes long.

CHAPTER 10: Functions

184 Sybase Event Stream Processor

Example
fromnetbinary (FFFFFFF6) returns -10.

fromnetbinary (0012ADE4) returns 1224164.

hex_binary()
Scalar. Converts a hex string into a binary type.

Syntax
hex_binary (string)

Parameters

string A hex string, with or without the preceding "0x" or "0X".

Usage
Takes a hex string, and converts it into a binary type. Valid characters for a hex string are a-f,
A-F, and 0-9. The string must contain an even number of characters. The function takes a
string as its argument, and the function returns a binary value.

Example
hex_binary ('0xAA1B223F') returns AA1B223F.

hex_binary ('0xaa') returns AA.

hex_string()
Scalar. Converts a binary value into a hex string.

Syntax
hex_string (binary)

Parameters

binary A binary value.

Usage
Converts a binary value into a hex string. The function takes a binary value as its argument, and
the function returns a string that represents a hex string without the preceding "0x" in all
uppercase.

Example
hex_string (hex_binary ('0xaa')) returns AA.

hex_string (hex_binary ('0xaa1234')) returns AA1234.

CHAPTER 10: Functions

CCL Programmers Guide 185

msecToTime()
Scalar. Converts a given number of milliseconds to a bigdatetime.

Syntax
msecToTime (milliseconds)

Parameters

milliseconds A long representing the number of milliseconds since the epoch
(midnight, January 1, 1970 UTC).

Usage
Converts a given number of milliseconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
msecToTime (3661001) returns 1970-01-01 01:01:01.001.

secToTime()
Scalar. Converts a given number of seconds to a bigdatetime.

Syntax
secToTime (seconds)

Parameters

seconds A long representing the number of seconds since the epoch (mid-
night, January 1, 1970 UTC).

Usage
Converts a given number of seconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
secToTime (3661) returns 1970-01-01 01:01:01.000000.

timeToMsec()
Scalar. Converts a bigdatetime to the number of milliseconds since the epoch (midnight,
January 1, 1970).

Syntax
timeToMsec (time)

CHAPTER 10: Functions

186 Sybase Event Stream Processor

Parameters

time A bigdatetime.

Usage
Converts a bigdatetime to the number of milliseconds since the epoch (midnight, January 1,
1970). The function takes a bigdatetime as its argument, and the function returns a long
representing the number of milliseconds since the epoch (midnight, January 1, 1970 UTC).
The function truncates the microseconds that are part of the bigdatetime.

Example
timeToMsec (unbigdatetime('1970-01-01 01:01:01:002100'))
returns 3661002.

timeToUsec()
Scalar. Converts a bigdatetime to the number of microseconds since the epoch (midnight,
January 1, 1970).

Syntax
timeToUsec (time)

Parameters

time A bigdatetime.

Usage
Converts a bigdatetime to the number of microseconds since the epoch (midnight, January 1,
1970). The function takes a bigdatetime as its argument, and the function returns a long
representing the number of microseconds since the epoch (midnight, January 1, 1970 UTC).

Example
timeToUsec (unbigdatetime ('1970-01-01 01:01:01.000001'))
returns 3661000001.

timeToSec()
Scalar. Converts a bigdatetime to the number of seconds since the epoch (midnight, January 1,
1970).

Syntax
timeToSec (time)

Parameters

time A bigdatetime.

CHAPTER 10: Functions

CCL Programmers Guide 187

Usage
Converts a bigdatetime to the number of seconds since the epoch (midnight, January 1, 1970).
The function takes a bigdatetime as its argument, and the function returns a long representing
the number of seconds since the epoch (midnight, January 1, 1970 UTC).The function
truncates the milliseconds or microseconds that are part of the bigdatetime.

Example
timeToSec (unbigdatetime('1970-01-01 01:01:01:000000'))
returns 3661.

to_binary()
Scalar. Converts a given value to a binary value.

Syntax
to_binary (value)

Parameter

value The value you wish to cast to is either string or binary type.

Usage
Converts a given string to a binary value. The function takes a string as its argument, and the
function returns a binary value. Note that the function can also take a binary value as its
argument, but it will return the same binary value.

Examples
to_binary('0123456789abcdef') returns a binary value equivalent to
0x30313233343536373839616263646566

to_binary('Hello there!') returns a binary value equivalent to 0x48656c6c6f20746865726521

to_string(to_binary('Good morning.')) returns the string 'Good morning.' after casting it to
binary type and then back to string type.

to_bigdatetime()
Scalar. Converts a given value to a bigdatetime.

Syntax
to_bigdatetime (value)
to_bigdatetime (value, format)

CHAPTER 10: Functions

188 Sybase Event Stream Processor

Parameters

value A string, float, long, or bigdatetime. Strings must be in the format
specified by the format argument. Numeric values represent the
number of microseconds from the epoch (midnight, January 1,
1970 UTC).

format A format string. Only valid if the value is a string. Must be one of
the format codes for a bigdatetime. See "Date/Time Format Codes"
for more information.

Usage
Converts a given value to a bigdatetime. The function takes a float, a long, or a string (and
associated format string) as its argument, and the function returns a bigdatetime. Note that the
function can also take a bigdatetime as its argument, but it will return the same bigdatetime.

Examples
to_bigdatetime(3600000000) returns 1970-01-01 01:00:00.000000.

to_bigdatetime('02/19/2010 10:15', '%m/%d/%Y %H:%M') returns
2010-02-19 10:15:00.000000.

to_bigdatetime('07/19/2010 10:15 -07.00', 'MM/DD/YYYY HH:MI
TZH:TZM') returns 2010-07-19 03:15:00.000000.

to_boolean()
Scalar. Converts a given value to a Boolean value.

Syntax
to_boolean (value)

Parameter

value A string, or a Boolean value.

Usage
Converts a given string to a Boolean value. The function takes a string as its argument, and the
function returns a Boolean value. Note that the function can also take a Boolean value as its
argument, but it will return the same Boolean value.

The strings "True", "Yes", and "On", regardless of case, or the numeral "1" returns TRUE.
NULL returns NULL. Any other string returns FALSE.

Examples
to_boolean ('1')returns TRUE.

CHAPTER 10: Functions

CCL Programmers Guide 189

to_boolean ('FALSE')returns FALSE.

to_boolean ('example')returns FALSE.

to_date()
Scalar. Converts a given value to a date.

Syntax
to_date (value)
to_date (value, format)

Parameters

value A string, float, long, or date. Strings must be in the format specified
by the format argument. Numeric values represent the number of
microseconds from the epoch (midnight, January 1, 1970 UTC).

format A format string. Only valid if the value is a string. Must be one of
the format codes for a date. See "Date/Time Format Codes" for
more information.

Usage
Converts a given value to a date. The function takes a float, a long, or a string (and associated
format string) as its argument, and the function returns a date. Note that the function can also
take a date as its argument, but it will return the same date.

Examples
to_date('02/19/2010 10:15', '%m/%d/%Y %H:%M') returns 2010-02-19
10:15:00.

to_date('07/19/2010 10:15 -07.00', 'MM/DD/YYYY HH:MI
TZH:TZM') returns 2010-07-19 03:15:00.

to_float()
Scalar. Converts a given value to a float.

Syntax
to_float (value)

Parameters

value A string, interval, date/time type, numeric type, or money type.

CHAPTER 10: Functions

190 Sybase Event Stream Processor

Usage
Converts a given value to a float. The function takes a string, interval, date/time type, numeric
type, or money type as its argument, and the function returns a float . Note that the function can
also take a float as its argument, but it will return the same float value.

A string converts based on the format for a float literal. An interval returns a value representing
a number of microseconds. A date/time type returns a value representing the number of
microseconds from the epoch (midnight, January 1, 1970 UTC). Those date/time types prior
to the epoch convert to a negative value.

Example
to_float ('100.0')returns 100.0.

to_integer()
Scalar. Converts a given value to an integer.

Syntax
to_integer (value)

Parameters

value The boolean, money, string, date, or any numeric type value you
wish to cast to integer.

Usage
Converts a given value to an integer. The function takes a string, date, or any numeric type as
its argument, and the function returns an integer. Note that the function can take an integer as
its argument, but it will return the same integer.

Numeric values return the integer portion of the value. Values outside the valid range for an
integer, or nonnumeric characters in a string value, return NULL. A date returns a value
representing the number of seconds from the epoch (midnight, January 1, 1970 UTC). Those
prior to the epoch convert to a negative value.

Example
to_integer ('1')returns 1.

to_interval()
Scalar. Converts a given value to an interval.

Syntax
to_interval (value)

CHAPTER 10: Functions

CCL Programmers Guide 191

Parameters

value A string, long, float, or interval representing a number in micro-
seconds. Strings must follow the format for an interval literal.

Usage
Converts a given value to an interval. The function takes a string, a long, or a float as its
argument, and the function returns an interval. Note that the function can also take an interval
as its argument, but it will return the same interval.

Example
to_interval('1234') returns 1234.

to_long()
Scalar. Converts a given value to a long.

Syntax
to_long (value)

Parameters

value A string, interval, date/time type, numeric type, or money type.

Usage
Converts a given string to a long. The function takes a string, interval, date/time type, numeric
type, or money type as its argument, and the function returns a long. Note that the function can
take a long as its argument, but it will return the same long.

Numeric types return the integer portion of the value. Strings with nonnumeric characters, or
with values outside the valid range for a long, return NULL. An interval returns a number of
microseconds. A date/time type returns a value representing the number of microseconds
from the epoch (midnight, January 1, 1970 UTC). Those prior to the epoch convert to a
negative value.

Example
to_long ('23')returns 23.

to_money()
Scalar. Converts a given value to the appropriate money type, based on a given scale.

Syntax
to_money (value, scale)

CHAPTER 10: Functions

192 Sybase Event Stream Processor

Parameters

value A string, or a numeric type. The string must be all numeric, but can
include a decimal point.

scale An integer from 1 to 15.

Usage
Converts a given value to a money type, based on the given scale. The function takes a string or
a numeric type as its argument, and the function returns a money.

Example
to_money (12.361, 2)returns 12.36.

to_xml()
Scalar. Converts a given value to XML.

Syntax
to_xml (value)

Parameters

value A string, or an XML type object.

Usage
Converts a given value to XML. The function takes a string as its argument, and the function
returns a string. The function can also take an XML type object as its argument, but it will
return the same object. The function is the same as xmlparse(), but it can also handle an XML
input.

Example
xmlserialize (to_xml ('<t/>')) returns '<t/>'. The string gets converted to
XML, then back into a string.

tonetbinary()
Scalar. Converts an integer in host byte order to a 4 byte binary in network byte order.

Syntax
tonetbinary (integer)

Parameters

integer An integer in host byte order.

CHAPTER 10: Functions

CCL Programmers Guide 193

Usage
Takes an integer in host byte order and converts it to a 4 byte binary in network byte order.
Works for positive and negative values.

Example
tonetbinary (1224164) returns 0012ADE4.

tonetbinary (-1224164) returns FFED521C.

to_string()
Scalar. Converts a given value to a string.

Syntax
to_string (value [, format] [, timezone])

Parameters

value A value of any datatype.

format (Optional) A format string. Only valid if the value is a date/time or
numeric type.

timezone (Optional) A time zone. Only valid if the value is a date/time type.
If none is specified, the UTC time zone is used.

Usage
Converts a given value to a string. The function can take any datatype as its argument, and the
function returns a string. Note that the function can take a string as its argument, but it will
return the same string. This function converts values as follows:

• For integers or longs, the user can include an optional format string to specify the format
for the output string. The format string follows the ISO standard for fprintf. The default for
integer expressions is '%d', while the default for long expressions is '%lld'.

• For a date/time type, the user can include to specify the format of the output string. The
string must be a valid timestamp format code.

• The optional time zone argument can only be used with a date/time type. This string must
be a valid time zone string. If no time zone is specified, UTC will be used. See "Time
Zones" and "List of Time Zones" for more information.

• The function works the same as xmlserialize() when converting an XML value to a string
• For binary values, the returned string can contain unprintable characters because the

function does a simple cast from binary to string rather than performing a conversion. To
convert to a hex string representation of the binary value, use the hex_string() function.

For a float value, the user can include an optional format string that specifies the format for the
output of the floating point number as a string. The format string can include the following
characters:

CHAPTER 10: Functions

194 Sybase Event Stream Processor

. or D Returns a decimal point in the specified position. Only one decimal point can be
specified, or the output will contain number signs instead of the values.

9 Replaced in the output by a single digit of the value. The value is returned with as
many characters as there are 9s in the format string.

If the value is positive, a leading space is included to the left of the value. If the
value is negative, a leading minus sign is included to the left of the value.

Excess 9s to the left of the decimal point are replaced with spaces, while excess 9s
to the right of the decimal point are replaced with zeros. Insufficient 9s to the left of
the decimal point returns number signs instead of the value, while insufficient 9s to
the right of the decimal point result in rounding.

0 To the left of the decimal point, replaced in the output by a single digit of the value
or a zero, if the value does not have a digit in the position of the zero. To the right of
the decimal point, treated as a 9.

If the value is positive, a leading space is included to the left of the value. If the
value is negative, a leading minus sign is included to the left of the value.

EEEE Returns the value in scientific notation. The output for this format always includes
a single digit before the decimal. Combine with a decimal point and 9s to specify
precision. 9s to the left of the decimal point are ignored.

Must be placed at the end of the format string.

S Returns a leading or trailing minus sign (-) or plus sign (+), depending on whether
the value is positive or negative. Can only be placed at the beginning or end of the
format string.

Eliminates the usual single leading space, but not leading spaces as the result of
excess 9s, zeros, or commas.

$ Returns a leading dollar sign in front of the value. Can be placed anywhere in the
format string.

. Returns a comma in the specified position. If there are no digits to the left of the
comma, the comma is replaced with a space.

The user can specify multiple commas, but cannot specify a comma as the first
character in the format, or to the right of the decimal point.

FM Strips spaces from the output.

Examples
to_string (45642) returns '45642'.

to_string (1234.567,'999') returns '####'.

to_string (1234.567,'9999D999') returns '1234.567'.

CHAPTER 10: Functions

CCL Programmers Guide 195

to_string (1234.567,'.99999999EEEE') returns '1.23456700E+03'.

to_timestamp()
Scalar. Converts a given value to a timestamp.

Syntax
to_timestamp (value)
to_timestamp (value, format)

Parameters

value A string, float, or long. Strings must be in the format specified by
the format argument. Numeric values represent the number of mi-
croseconds from the epoch (midnight, January 1, 1970 UTC).

format A format string. Only valid if the value is a string. Must be one of
the format codes for a timestamp. See "Date/Time Format Codes"
for more information.

Usage
Converts a given value to a timestamp. The function takes a float, a long, or a string (and
associated format string) as its argument, and the function returns a timestamp. Note that the
function can also take a timestamp as its argument, but it will return the same timestamp.

Examples
to_timestamp('02/19/2010 10:15', '%m/%d/%Y %H:%M') returns
2010-02-19 10:15:00.000.

to_timestamp('07/19/2010 10:15 -07.00', 'MM/DD/YYYY HH:MI
TZH:TZM') returns 2010-07-19 03:15:00.000.

usecToTime()
Scalar. Converts a given number of microseconds to a bigdatetime.

Syntax
usecToTime (microseconds)

Parameters

microseconds A long representing the number of microseconds since the epoch
(midnight, January 1, 1970 UTC).

Usage
Converts a given number of microseconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

CHAPTER 10: Functions

196 Sybase Event Stream Processor

Example
usecToTime (3661000001) returns 1970-01-01 01:01:01.000001.

XML Functions
There are special scalar functions which are designed to correctly handle XML data.

xmlconcat()
Scalar. Concatenates a number of XML values into a single value.

Syntax
xmlconcat (value, value [,value ...])

Parameters

value An XML value.

Usage
Concatenates a number of XML values into a single value. The function takes at least two
XML values, and the function returns an XML value.

Example
xmlconcat (xmlparse(stringCol), xmlparse('<t/>')))

xmlelement()
Scalar. Creates a new XML data element, with attributes and XML expressions within it.

Syntax
xmlelement (name, [xmlattributes (string AS name, ..., string AS
name),]
[XML value, ..., XML value])

Parameters

string Attribute name/value pairs. For example: 'attrValue' AS attrName
results in attrName = "attrValue" attribute created in the resulting
XML element.

name The name of the new element. Must adhere to naming conventions.

XML value An XML value representing a child element.

Usage
Creates a new XML data element, with attributes and XML expressions within it. The function
takes . The function returns an XML value.

CHAPTER 10: Functions

CCL Programmers Guide 197

Example
xmlelement (top, xmlattributes('data' as attr1),
xmlparse('<t/>')) returns a new XML element called top, with a 'data' attribute and
<t/> child element.

xmlparse()
Scalar. Converts a string into an XML value.

Syntax
xmlparse (string)

Parameters

value The XML value represented as a string.

Usage
Converts a string into an XML value. The function takes a string as its argument, and returns an
XML value. Since there is no XML data type, the value returned from this function can only be
used as input to other functions expecting XML as input, such as xmlserialize().

Example
xmlserialize (xmlparse ('<t/>')) returns '<t/>'. The string gets converted
into an XML value, then back into a string.

xmlserialize()
Scalar. Converts an XML value into a string.

Syntax
xmlserialize (value)

Parameters

value An XML value.

Usage
Converts an XML value into a string. The function takes an XML value as its argument, and
returns a string.

Example
xmlserialize (xmlparse ('<t/>')) returns '<t/>'. The string gets converted
into an XML value, then back into a string.

CHAPTER 10: Functions

198 Sybase Event Stream Processor

Date and Time Functions
Date and time functions set time zone parameters, date format code preferences, and define
calenders.

business()
Scalar. Determines the next business day from a date value, based on a specified offset.

Syntax
business (calendarfile, datevalue, offset)

Parameters

calendarfile A string representing the file path for a calendar file.

datevalue A date/time type.

offset A negative or positive integer (should not be zero).

Usage
The function returns the same datatype as the datevalue argument.

The offset argument can be any negative or positive integer, but it cannot be zero. The function
returns NULL if the offset is zero, and logs an error message. Negative integers return previous
business days.

Example
business('/cals/us.cal',v.TradeTime, 1) returns the next business day
within the calendar us.cal after the TradeTime date.

businessday()
Scalar. Determines if a date value falls on a business day (neither a weekend nor a holiday).

Note: This function is supported in mixed case. The Event Stream Processor considers
businessday() and businessDay() the same function.

Syntax
businessday (calendarfile, datevalue)

Parameters

calendar A string representing the file path for a calendar file

datevalue A date/time type

CHAPTER 10: Functions

CCL Programmers Guide 199

Usage
The function returns 1 if the date falls on a business day (true), or 0 otherwise (false). The
function returns an integer.

Example
businessDay('/cals/us.cal',v.TradeTime) returns 1 if the date portion of
v.TradeTime falls on a business day, and 0 otherwise.

date()
Scalar. Converts a date value into an integer with the digits YYYYMMDD.

Syntax
date (datevalue)

Parameters

datevalue A date

Usage
The function returns an integer.

Example
date (undate ('1991-04-01 12:43:32')) returns 19910401.

dateceiling()
Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded up to the
minimum date_part multiple that is greater than or equal to the input timestamp.

Syntax
dateceiling (date_part, expression [, multiple])

Parameters

date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.

expression Date-time expression containing the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

CHAPTER 10: Functions

200 Sybase Event Stream Processor

Valid Date Part Keywords and Multiples

Keyword Keyword mean-
ing

Multiples

yy or year Year Any positive integers

qq or quarter Quarter Any positive integers

mm or month Month Any positive integers

wk or week Week Any positive integers

dd or day Day Any positive integers.

hh or hour Hour 1, 2, 3, 4, 6, 8, 12 and 24

mi or minute Minute 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ss or second Second 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ms or millisecond Millisecond 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

Usage
This function determines the next largest date_part value expressed in the timestamp, and
zeros out all date_parts of finer granularity than date_part.

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the ceiling operation. For example, to
establish a date ceiling based on 10 minute intervals, use MINUTE or MI for the date_part, and
10 as the multiple.

Known errors:

• The server generates an invalid argument error if the value of the required
arguments evaluate to NULL.

• The server generates an invalid argument error if the value of the multiple argument
is not within range valid for the specified date_part argument. As an example, have the
value of multiple be less than 60 if date_part mi is specified.

Standards and Compatibility
Sybase extension.

CHAPTER 10: Functions

CCL Programmers Guide 201

Example
dateceiling('MINUTE', to_timestamp('2010-05-04T12:00:01.123',
'YYYY-MM-DDTHH24:MI:SS.FF'))
returns '2010-05-04 12:01:00.000'

datefloor()
Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded down to the
maximum date_part multiple that is less than or equal to the input timestamp.

Syntax
datefloor (date_part, expression [, multiple])

Parameters

date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.

expression Date-time expression containing the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

Valid Date Part Keywords and Multiples

Keyword Keyword mean-
ing

Multiples

yy or year Year Any positive integers

qq or quarter Quarter Any positive integers

mm or month Month Any positive integers

wk or week Week Any positive integers

dd or day Day Any positive integers.

hh or hour Hour 1, 2, 3, 4, 6, 8, 12 and 24

mi or minute Minute 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ss or second Second 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ms or millisecond Millisecond 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

CHAPTER 10: Functions

202 Sybase Event Stream Processor

Usage
This function zeros out all datetime values with a granularity finer than that specified by
date_part. Date_part is a keyword, and expression is any expression that evaluates or can be
implicitly converted to a datetime (or timestamp) datatype. Multiple is an integer that contains
the multiples of date_parts to be used in performing the floor operation. For example, to
establish a date floor based on 10 minute intervals, use MINUTE or MI for date_part, and 10 as
the multiple.

Known errors:

• The server generates an "invalid argument" error if the value of the required arguments
evaluate to NULL.

• The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, have the value
of multiple be less than 60 if date_part mi is specified.

Standards and compatibility
Sybase extension.

Example
datefloor('MINUTE', to_timestamp('2010-05-04T12:00:01.123', 'YYYY-
MM-DDTHH24:MI:SS.FF'))
returns '2010-05-04 12:00:00.000'

datename()
Scalar. Converts a date value into a string.

Syntax
datename (datevalue)

Parameters

datevalue A date or bigdatetime.

Usage
Converts a date value to a string of the form 'YYYY-MM-DD'. The function takes a date or
bigdatetime as its argument, and the function returns a string.

Example
datename (undate ('2010-03-03 12:34:34')) returns '20100303'.

CHAPTER 10: Functions

CCL Programmers Guide 203

datepart()
Scalar. Returns an integer representing a portion of a date.

Syntax
datepart (portion, datevalue)

Parameters

portion One of the following strings:

• The year, if the string is yy or yyyy.

• The month, if the string is mm or m.

• The day of the year, if the string is dy or y.

• The day of the month, if the string is dd or d.

• The day of the week, if the string is dw.

• The hour, if the string is hh.

• The minute, if the string is mi or n.

• The second, if the string is ss or s.

datevalue A date or bigdatetime.

Usage
Returns an integer representing a portion of a date. The portions that the function can return
are the year, the month, the day of the year, the day of the month, the day of the week, the hour,
the minute, or the second. The function takes a string as the portion argument, and a date or
bigdatetime for the datevalue argument. The function returns an integer.

Example
datepart ('ss', undate ('2010-03-03 12:34:34')) returns 34.

dateround()
Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded to the value of a
date_part multiple that is nearest to the input timestamp.

Syntax
dateround (date_part, expression [, multiple])

Parameters

date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.

CHAPTER 10: Functions

204 Sybase Event Stream Processor

expression Date-time expression containing the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

Valid Date Part Keywords and Multiples

Keyword Keyword mean-
ing

Multiples

yy or year Year Any positive integers

qq or quarter Quarter Any positive integers

mm or month Month Any positive integers

wk or week Week Any positive integers

dd or day Day Any positive integers.

hh or hour Hour 1, 2, 3, 4, 6, 8, 12 and 24

mi or minute Minute 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ss or second Second 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ms or millisecond Millisecond 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

Usage
This function rounds the datetime value to the nearest date_part or multiple of date_part, and
zeros out all date_parts of finer granularity than date_part or its multiple. For example, when
rounding to the nearest hour, the minutes portion is determined, and if >= 30, then the hour
portion is incremented by 1, and the minutes and other subordinate date parts are zeros.

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the rounding operation. For example, to
round to the nearest 10-minute increment, use MINUTE or MI for date_part, and 10 as the
multiple.

Known errors:

• The server generates an "invalid argument" error if the value of the required arguments
evaluate to NULL.

CHAPTER 10: Functions

CCL Programmers Guide 205

• The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, the value of
multiple must be less than 60 if date_part mi is specified.

Example
dateround('MINUTE', to_timestamp('2010-05-04T12:00:01.123', 'YYYY-
MM-DDTHH24:MI:SS.FF'))
returns '2010-05-04 12:00:00.000'

dayofmonth()
Scalar. Returns the integer representing the day of the month extracted from a given
bigdatetime.

Syntax
dayofmonth (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the day of the month extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
dayofmonth ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 3.

dayofweek()
Scalar. Returns the integer representing the day of the week (Sunday is 1) extracted from a
given bigdatetime.

Syntax
dayofweek (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

CHAPTER 10: Functions

206 Sybase Event Stream Processor

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the day of the week extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer. Sunday is represented by 1, and the rest of the days of the
week follow.

Example
dayofweek ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 4.

dayofyear()
Scalar. Returns the integer representing the day of the year extracted from a given bigdatetime.

Syntax
dayofyear (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the day of the year extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
dayofyear ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 62.

hour()
Scalar. Returns an integer representing the hour extracted from a given bigdatetime.

Syntax
hour (bigdatetime [,timezone])

CHAPTER 10: Functions

CCL Programmers Guide 207

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See 'Time Zones" and "List of Time Zones"
for more information.

Usage
Returns an integer representing the hour extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
hour ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 12.

intdate()
Scalar. Converts an integer representing the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch) to a date.

Note: This function is supported in mixed case. The Event Stream Processor supports both
intdate() and intDate(), and considers them the same function.

Syntax
intdate (number)

Parameters

number An integer representing the number of seconds since 1970-01-01
00:00:00 UTC (the Epoch).

Usage
Converts a value representing the number of seconds since 1970-01-01 00:00:00 UTC (the
Epoch) to a date. The function takes an integer as its argument, and the function returns a
date.

Example
intDate(1) returns a date, 1970-01-01 00:00:01.

makebigdatetime()
Scalar. Constructs a bigdatetime from the given values.

Syntax
makebigdatetime (year, month, day, hour, minute, second, microsecond
[,timezone])

CHAPTER 10: Functions

208 Sybase Event Stream Processor

Parameters

year An expression that evaluates to a value from 0001 to 9999. Values
outside of the range 1970 to 2099 may result in inaccuracies due to
leap years and daylight savings time.

month An expression that evaluates to a value specifying the month. 0-12
indicate January to December, with both 0 and 1 representing Jan-
uary. Values larger than 12 roll over into subsequent years, while
negative values subtract months from January of the specified year.

day An expression that evaluates to a value specifying the day of the
month. 0 and 1 both represent the first day of the year. Values larger
than the valid number of days for the specified month roll over into
subsequent months, while negative values subtract days from the
first day of the specified month.

hour An expression that evaluates to a value specifying the hour of the
day. Values larger than 23 roll over into subsequent days, while
negative values subtract hours from midnight of the specified day.

minute An expression that evaluates to a value specifying the minute.
Values larger than 59 roll over into subsequent hours, while nega-
tive values subtract minutes from the specified hour.

second An expression that evaluates to a value specifying the second.
Values larger than 59 roll over into subsequent minutes, while
negative values subtract seconds from the specified minute.

microsecond An expression that evaluates to a value specifying the microsecond.
Values larger than 999999 roll over into subsequent seconds, while
negative values subtract microseconds from the specified second.

timezone (Optional) A string representing the time zone. If omitted, the
engine assumes the local time zone. See "Time Zones" and "List of
Time Zones" for more information about valid time zone strings.

Usage
Constructs a bigdatetime from the given values. The function takes integer values as its
arguments (with the exception of the optional string representing a time zone), and the
function returns an bigdatetime. If any argument is NULL, the function returns NULL.

Example
to_string (makebigdatetime (2010, 3, 3, 12, 34, 34, 59111))
returns '2010-03-03 12:34:34:059111'.

CHAPTER 10: Functions

CCL Programmers Guide 209

microsecond()
Scalar. Returns an integer representing the microsecond extracted from a given bigdatetime.

Syntax
microsecond (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See 'Time Zones" and "List of Time Zones" for more
information.

Usage
Returns an integer representing the microsecond extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
microsecond ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 059111.

minute()
Scalar. Returns an integer representing the minutes extracted from a given bigdatetime.

Syntax
minute (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the minutes extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
minute ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 34.

CHAPTER 10: Functions

210 Sybase Event Stream Processor

month()
Scalar. Returns an integer representing the month extracted from a given bigdatetime.

Syntax
month (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the month extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
month ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 3.

second()
Scalar. Returns an integer representing the seconds extracted from a given bigdatetime.

Syntax
second (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See "Time Zones" and "List of Time Zones" for more
information.

Usage
Returns an integer representing the seconds extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer. If either argument is NULL, the function returns NULL.

Example
second ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 34.

CHAPTER 10: Functions

CCL Programmers Guide 211

sysdate()
Scalar. Returns the current system date as a date value.

Syntax
sysdate ()

Usage
Returns the current system date as a date value. The function has no arguments, and the
function returns a date.

Example
sysdate() on March 3, 2010, at 12:34:34 returns 2010-03-03 12:34:34.

systimestamp()
Scalar. Returns the current system date as a timestamp value.

Syntax
systimestamp ()

Usage
Returns the current date, based on the Event Stream Processor server clock time, as a
timestamp value. This date may differ from real time if the clock command in esp_client
was used to change the rate or time of the server clock. The function has no arguments, and the
function returns a timestamp.

Example
systimestamp() on March 3, 2010, at 12:34:34:059 returns 2010-03-03 12:34:34:059.

unbigdatetime()
Scalar. Converts a given string into a bigdatetime value.

Syntax
unbigdatetime (string)

Parameters

string A string representing a bigdatetime value.

Usage
Converts a given string into a bigdatetime value. The function takes a string as its argument,
and the function returns a bigdatetime.

CHAPTER 10: Functions

212 Sybase Event Stream Processor

Example
unbigdatetime ('2003-06-14 13:15:00:232323') returns 2003-06-14
13:15:00:232323 .

undate()
Scalar. Converts a given string into a date value.

Syntax
undate (string)

Parameters

string A string representing a date value.

Usage
Converts a given string into a date value. The function takes a string as its argument, and the
function returns a date.

Example
undate ('2003-06-14 13:15:00') returns 2003-06-14 13:15:0 .

weekendday()
Scalar. Determines if a given date/time type falls on a weekend.

Note: This function is supported in mixed case. The Event Stream Processor supports both
weekendday() and weekendDay(), and considers them the same function.

Syntax
weekendday (calendarfile, datevalue)

Parameters

calendar A string representing the file path for a calendar file.

datevalue A date/time type.

Usage
Determines if a date/time type value falls on a weekend. The function returns 1 if the date/time
type falls on a weekend (true), or 0 otherwise (false).The function takes a string to represent
the calendar path, and a date/time type as the datevalue. The function returns an integer.

Example
weekendDay('/cals/us.cal',v.TradeTime) returns 1 if the date portion of
v.TradeTime falls on a weekend, and 0 otherwise.

CHAPTER 10: Functions

CCL Programmers Guide 213

year()
Scalar. Returns an integer representing the year extracted from a given bigdatetime.

Syntax
year (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See "Time Zones" and "List of Time Zones" for more
information.

Usage
Returns an integer representing the year extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
year ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 2010.

Other Functions
Reference list for all functions that are neither aggregate nor scalar type functions.

cacheSize()
Returns the size of the current bucket in the event cache.

Syntax
cacheSize (cacheName)

Usage
Returns the size of the current bucket in the event cache. The function takes the argument of
the name of the event cache variable. It returns an integer.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.
CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,

CHAPTER 10: Functions

214 Sybase Event Stream Processor

 Symbol string,
 Price float,
 Shares integer
)
;

CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;
CREATE FLEX flexOp
 IN QTrades
 OUT OUTPUT WINDOW QTradesStats SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE
 typedef [integer Id;| date TradeTime; string Venue;
 string Symbol; float Price;
 integer Shares] QTradesRecType;
 eventCache(QTrades[Symbol], manual, Price asc) tradesCache;
 typeof(QTrades) insertIntoCache(typeof(QTrades) qTrades)
 {
 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);
 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else {
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }
 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }

CHAPTER 10: Functions

CCL Programmers Guide 215

 output setOpcode(QTrades, upsert);
 }
 };
 END;

coalesce()
Other. Returns the first non-NULL expression from a list of expressions.

Syntax
coalesce (expression [,...])

Parameters

expression All expressions must be of the same datatype.

Usage
Returns the first non-NULL expression from a list of expressions. The arguments can be of
any datatype, but they must be all of the same datatype. The function returns the same datatype
as its arguments.

Example
coalesce (NULL, NULL, 'examplestring', 'teststring', NULL)
returns 'examplestring'.

dateint()
Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch).

Note: This function is supported in mixed case. The Event Stream Processor supports both
dateint() and dateInt(), and considers them the same function.

Syntax
dateint (datevalue)

Parameters

datevalue A date.

Usage
Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch). The function takes a date as its argument, and the function returns an
integer.

Example
dateint (undate ('1970:01:01 00:01:01')) returns 61.

CHAPTER 10: Functions

216 Sybase Event Stream Processor

deleteCache()
Deletes a row at a particular location (specified by index) in the event cache.

Syntax
deleteCache (cacheName, index)

Parameters

index Row index in the event cache as an integer.

Usage
Deletes a row at a particular location (specifed by the index) in the event cache. This index is 0
based. The function takes an integer as its argument, and the function removes the row. The
function does not produce an output. Specifying of an invalid index parameter will result in the
generation of a bad record.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.
CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;
CREATE FLEX flexOp
 IN QTrades
 OUT OUTPUT WINDOW QTradesStats SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE
 typedef [integer Id;| date TradeTime; string Venue;
 string Symbol; float Price;
 integer Shares] QTradesRecType;
 eventCache(QTrades[Symbol], manual, Price asc) tradesCache;
 typeof(QTrades) insertIntoCache(typeof(QTrades) qTrades)
 {
 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);

CHAPTER 10: Functions

CCL Programmers Guide 217

 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else {
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }
 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }
 output setOpcode(QTrades, upsert);
 }
 };
 END;

exp()
Returns the value of e (the base of the natural logarithm) raised to the power of a given number.

Syntax
exp (value)

Parameters

value A float.

Usage
Returns the value of e (the base of the natural logarithm, 2.78128) raised to the power of a
given number. If the argument is invalid, the server logs a floating-point exception error.

Example
exp (2.0) returns 7.3890.

CHAPTER 10: Functions

218 Sybase Event Stream Processor

firstnonnull()
Other. Returns the first non-NULL expression from a list of expressions.

Syntax
firstnonnull (expression [,...])

Parameters

expression All expressions must be of the same datatype.

Usage
Returns the first non-NULL expression from a list of expressions. The function takes
arguments of any datatype, but they must be all of the same datatype. The function returns the
same datatype as its argument. This function behaves exactly like coalesce().

Example
firstnonnull (NULL, NULL, 'examplestring', 'teststring',
NULL) returns 'examplestring'.

get*columnbyindex()
Returns the value of a column identified by an index.

Syntax
getbinarycolumnbyindex (record, colname)
getstringcolumnbyindex (record, colname)
getlongcolumnbyindex (record, colname)
getintegercolumnbyindex (record, colname)
getdatecolumnbyindex (record, colname)
gettimestampcolumnbyindex (record, colname)
getbigdatetimecolumnbyindex (record, colname)
getintervalcolumnbyindex (record, colname)
getbooleancolumnbyindex (record, colname)
getfloatcolumnbyindex (record, colname)

Parameters

name The name of a stream or window.

colindex Integer corresponding to an index value of a column. Index is 0
based.

Usage
Returns the value of a column identified by an index. The function takes a string for thename
argument and an integer for the colindex argument. The function returns the same datatype as
specified in the function's name (a string for getstringcolumnbyindex(), for example).

CHAPTER 10: Functions

CCL Programmers Guide 219

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCHEMA (a int, b string)
PRIMARY KEY (a) MEMORY STORE "memstore";

If you assume that the input passed into iwin1 was (1, 'hello'), then
getstringcolumnbyindex (iwin1, 1) would return 'hello'.

get*columnbyname()
Returns the value of a column identified by an expression evaluated at runtime.

Syntax
getbinarycolumnbyname (name, colname)
getstringcolumnbyname (name, colname)
getlongcolumnbyname (name, colname)
getintegercolumnbyname (name, colname)
getfloatcolumnbyname (name, colname)
getdatecolumnbyname (name, colname)
gettimestampcolumnbyname (name, colname)
getbigdatetimecolumnbyname (name, colname)
getintervalcolumnbyname (name, colname)
getbooleancolumnbyname (name, colname)

Parameters

name The name of a stream or window.

colname An expression that evaluates to the name of a column with the same
datatype as the function, in the stream or window.

The colname argument for getstringcolumnbyname() would have
a string, for example.

Usage
Returns the value of a column identified by an expression evaluated at runtime. The function
takes a string for the name. The datatype of the colname arguments corresponds to the
function type, such as a string for getstringcolumnbyname(). The function returns the same
datatype as colname (as specified in the function's name).

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

CHAPTER 10: Functions

220 Sybase Event Stream Processor

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCHEMA (a int, b string)
PRIMARY KEY (a) MEMORY STORE "memstore";

If you assume that the input passed into iwin1 was (1, 'hello'), then
getstringcolumnbyname (iwin1, a) would return 'hello'.

getCache()
Returns the row specified by a given index from the current bucket in the event cache.

Syntax
getCache (cacheName, index)

Parameters

cacheName The name of the event cache.

index Row index in the event cache as an integer.

Usage
Returns the row specified by a given index from the current bucket in the event cache. This
index is 0 based. The function takes the name of the event cache and an integer as its
arguments, and returns a row from the event cache. Specifying an invalid index parameter
generates a bad record.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.
CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;
CREATE FLEX flexOp
 IN QTrades
 OUT OUTPUT WINDOW QTradesStats SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE

CHAPTER 10: Functions

CCL Programmers Guide 221

 typedef [integer Id;| date TradeTime; string Venue;
 string Symbol; float Price;
 integer Shares] QTradesRecType;
 eventCache(QTrades[Symbol], manual, Price asc) tradesCache;
 typeof(QTrades) insertIntoCache(typeof(QTrades) qTrades)
 {
 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);
 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else {
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }
 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }
 output setOpcode(QTrades, upsert);
 }
 };
 END;

getData()
This function takes a database query, gets rows from an external database table and returns
them in a vector of records.

Syntax
getData(vector, service, query, expr1, ... exprn)

CHAPTER 10: Functions

222 Sybase Event Stream Processor

Parameters

vector the name of the vector in which to return the selected records

service the name of the service to use to make the database query, a string

query a query for the database, a string

expr additional parameter to pass to the database along with the query, any of the basic
datatypes (such as money, integer, string)

Usage
Specify the name of the vector in which to put the records returned by the function as the first
argument. The function returns a vector with the name specified, containing the selected
records.

Specify the service to use when querying the database as the second argument. The services
that can be used to make the database queries are defined in the service.xml file. See the
Administrators Guide for more information about this file and the services described in it.

Specify the query to make of the database as the third argument. The query can be in any
database query language (such as SQL) as long as the appropriate service is defined in the
service.xml file. Specify any additional parameters to pass to the database along with the
query as subsequent arguments.

Note: The query statement must include placeholders, marked by a "?" character, for any
additional parameters being passed.

Example
getData(v, 'MyService', 'SELECT col1, col2 FROM myTable WHERE
id= ?', 'myId'); gets records from a table named “myTable” using a service named
“MyService”, selects the first two columns of every row where the "id" is equal to the value of
"myId" and returns them in a vector named “v”.

getmoneycolumnbyindex()
Returns the value of a column identified by an index.

Syntax
getmoneycolumnbyindex (name, colindex, scale)

Parameters

name The name of a stream or window.

colname Integer corresponding to an index value of a column. Index is 0
based.

CHAPTER 10: Functions

CCL Programmers Guide 223

scale An integer between 1 and 15.

Usage
Returns the value of a column identified by an index. The function takes a string for the name
and integers for the colindex and scale arguments. The function returns a money type with the
specified scale.

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCHEMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

If you assume that the input passed into iwin1 was (1.2, 1.23), then
getmoneycolumnbyindex (iwin1, 1, 3) would return 1.123.

getmoneycolumnbyname()
Returns the value of a column identified by an expression evaluated at runtime as a money
type.

Syntax
getmoneycolumnbyname (name, colname, scale)

Parameters

name The name of a stream or window.

colname An expression that evaluates to the name of a column with a money
datatype, in the stream or window.

scale An integer between 1 and 15.

Usage
Returns the value of a column identified by an expression evaluated at runtime. The function
takes a string for the name and colname arguments and an integer to represent the scale of the
money type. The function returns a money type with the specifed scale.

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCEHMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

CHAPTER 10: Functions

224 Sybase Event Stream Processor

If you assume that the input passed into iwin1 was (1.2, 1.23), then
getmoneycolumnbyname (iwin1, b, 3) would return 1.123.

getrowid()
Other. Returns the sequence number of a given row in the window.

Syntax
getrowid (row)

Parameters

row A row in a window.

Usage
Returns the sequence number of a given row in the window. The function takes a window ID as
its argument, and the function returns the sequence number of the row in the window. This
sequence number is known as the rowid, assigned uniquely as the rows get inserted.

Example
CREATE MEMORY STORE "memstore";

CREATE INPUT WINDOW iwin1 SCHEMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

CREATE INPUT WINDOW iwin2 SCHEMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

For these windows, getrowid (iwin1) would return 0 and getrowid (iwin2)
would return 1.

now()
Returns the current system date as a bigdatetime value.

Syntax
now ()

Usage
Returns the current system date as a bigdatetime value. The function has no arguments, and the
function returns a bigdatetime. This function works the same as sysbigdatetime().

Example
now() on March 3, 2010, at 12:34:34:059111 returns 2010-03-03 12:34:34:059111.

CHAPTER 10: Functions

CCL Programmers Guide 225

rank()
Other. Returns the position of the row in the current group (only used in GROUP HAVING
expression).

Syntax
rank()

Usage
Returns the position of the row in the current group, starting from position 0. This function is
useful only in a GROUP HAVING expressions only. This function has no arguments, and the
function returns an integer.

Example
rank() > 3 returns 1 for the first three rows in a group and 0 for all other rows.

recordDataToRecord
Converts the binary errorRecord value to a RECORD datatype value, based on the schema of
the specified source stream.

Syntax
recordDataToRecord (string sourceStreamName, binary errorRecord)

Parameters
sourceStreamName is a string that provides the name of the stream from which the error
record originated. To allow type checking of the return type, it must be an actual name, not a
variable that carries the name. If this argument does not point to an existing stream,
recordDataToRecord returns a NULL after setting an error flag to indicate that a bad
argument has been specified.

errorRecord is a binary that provides the record that triggered the error. This should always be
the errorRecord field of the error stream.

Note: Passing any arbitrary binary string or a mismatching schema (stream) name results in
undefined behavior ranging from garbage in the record to crashing the server. The arguments
to this built-in must be the sourceStreamName and errorRecord fields of the same error
stream.

recordDataToString
Converts the binary errorRecord value to string format.

Syntax
recordDataToString (string sourceStreamName, binary errorRecord)

CHAPTER 10: Functions

226 Sybase Event Stream Processor

Parameters
The sourceStreamName is a string that provides the name of the stream from which the error
record originated. This should always be the sourceStreamName field of an error stream.
Specifying the name of another stream (such as the error stream) can cause a fatal error due to a
schema mismatch. If this argument doesn't point to an existing stream, recordDataToString
returns a NULL after setting an error flag to indicate that a bad argument was specified.

The errorRecord is a binary that provides the record that triggered the error. This should
always be the errorRecord field of the error stream and the schema should always match the
record.

Note: Passing any arbitrary binary string or a mismatching schema (stream) name will result
in undefined behavior: ranging from garbage in the record to crashing the server. The
arguments to this built-in should always be the sourceStreamName and errorRecord fields of
the same error stream.

sind()
Returns the sine of a given value, expressed in degrees.

Syntax
sind (value)

Parameters

value A float.

Usage
Returns the sine of a given value, expressed in degrees. The function takes a float as its
argument, and the function returns a float.

Example
sind(45.0) returns 0.850903525.

sysbigdatetime()
Returns the current system date as a bigdatetime value.

Syntax
sysbigdatetime ()

Usage
Returns the current system date as a bigdatetime value. The function has no arguments, and the
function returns a bigdatetime. This function works the same as now().

CHAPTER 10: Functions

CCL Programmers Guide 227

Example
sysbigdatetime() on March 3, 2010, at 12:34:34:059111 returns 2010-03-03
12:34:34:059111.

totimezone()
Converts a date from the given time zone to a specified time zone.

Syntax
totimezone (datevalue, fromzone, tozone)

Parameters

datevalue A date or bigdatetime.

fromzone A string representing a legal time zone.

tozone A string representing a legal time zone.

Usage
Converts a date from a given time zone to a new time zone. The first argument is the date being
converted, the second argument is the original time zone, and the third argument is the new
time zone. Time zone values are taken from the industry-standard TZ database. The first
argument must be a date; the second and third arguments must be strings that represent legal
time zones. The function returns a date.

Example
totimezone(v.TradeTime, 'GMT', 'EDT') converts the time portion of each
TradeTime from Greenwich Mean Time to Eastern Daylight Time.

CHAPTER 10: Functions

228 Sybase Event Stream Processor

APPENDIX A List of Keywords

Reserved words in CCL that are case-insensitive. Keywords cannot be used as identifiers for
any CCL objects.

A list of keywords present in CCL:

adapter age(s) all and as asc

attach auto begin break case cast

connection continue count create day(s) declare

deduced default delete delta desc distinct

dumpfile dynamic else end eventCache every

exit external false fby filter first

flex for foreign foreignJava from full

group groups having hour(s) hr if

import in inherits inner input insert

into is join keep key last

language left library like load local

log max memory micros microsecond(s) millis

millisec-
ond(s)

min minute(s) module money name

new nostart not nth null on

or order out outfile output parameter(s)

pattern primary properties rank records retain

return right row(s) safedelete schema sec

second(s) select set setRange slack start

static store(s) stream sum sync switch

then times to top transaction true

type typedef typeof union update upsert

CCL Programmers Guide 229

values when where while window within

xmlattri-
butes

xmlelement

See also
• Case-Sensitivity on page 33

APPENDIX A: List of Keywords

230 Sybase Event Stream Processor

APPENDIX B Date and Time Programming

Set time zone parameters, date format code preferences, and define calendars.

Time Zones
A time zone is a geographic area that has adopted the same standard time, usually referred to as
the local time.

Most adjacent time zones are one hour apart. By convention, all time zones compute their local
time as an offset from GMT/UTC. GMT (Greenwich Mean Time) is an historical term,
originally referring to mean solar time at the Royal Greenwich Observatory in Britain. GMT
has been replaced by UTC (Coordinated Universal Time), which is based on atomic clocks.
For all Sybase Event Stream Processor purposes, GMT and UTC are equivalent. Due to
political and geographical practicalities, time zone characteristics may change over time. For
example, the start date and end date of daylight saving time may change, or new time zones
may be introduced in newly created countries.

Internally, Event Stream Processor always stores date and time type information as a number
of seconds, milliseconds, or microseconds since midnight January 1, 1970 UTC, depending
on the datatype. If a time zone designator is not used, UTC time is applied.

Daylight Saving Time
Daylight saving time is considered if the time zone uses daylight saving time and if the
specified timestamp is in the time period covered by daylight savings time. The starting and
ending dates for daylight saving time are stored in a C++ library.

If the user specifies a particular time zone, and if that time zone uses daylight saving time,
Event Stream Processor takes these dates into account to adjust the date and time datatype. For
example, since Pacific Standard Time (PST) is in daylight saving time setting, the engine
adjusts the timestamp accordingly:

to_timestamp('2002-06-18 13:52:00.123456 PST','YYYY-MM-DD
HH24:MI:SS.ff TZD')

Transitioning from Standard Time to Daylight Savings Time and Vice-Versa
During the transition to and from daylight saving time, certain times do not exist. For example,
in the US, during the transition from standard time to daylight savings time, the clock changes
from 01:59 to 03:00; therefore 02:00 does not exist. Conversely, during the transition from
daylight saving time to standard time, 01:00 to 01:59 appears twice during one night because
the time changes from 2:00 to 1:00 when daylight saving time ends.

CCL Programmers Guide 231

However, since there may be incoming data input during these undefined times, the engine
must deal with them in some manner. During the transition to daylight savings time, Event
Stream Processor interprets 02:59 PST as 01:59 PST. When transitioning back to standard
time, Event Stream Processor interprets 02:00 PDT as 01:00 PST.

Changes to Time Zone Defaults
If you do not specify a value for the optional time zone parameter in certain date and time
functions, Event Stream Processor uses Coordinated Universal Time (UTC).

Corresponding functions in Sybase CEP defaulted to the server's local time zone when no
parameter was specified. If you are migrating CEP projects that do not have a time zone
defined, they will use UTC when converted to Event Stream Processor. To continue using the
server’s local time zone, explicitly set that time zone in the time zone parameter for the
following functions:

Sybase CEP Functions Event Stream Processor Functions

dayofmonth dayofmonth

dayofweek dayofweek

dayofyear dayofyear

hour hour

maketimestamp makebigdatetime

microsecond microsecond

minute minute

month month

second second

to_string to_string

year year

List of Time Zones
Event Stream Processor supports standard time zones and their abbreviations.

Below is a list of time zones used in the Event Stream Processor from the industry-standard
Olson time zone (also known as TZ) database.

ACT AET AGT

ART AST Africa/Abidjan

APPENDIX B: Date and Time Programming

232 Sybase Event Stream Processor

Africa/Accra Africa/Addis_Ababa Africa/Algiers

Africa/Asmera Africa/Bamako Africa/Bangui

Africa/Banjul Africa/Bissau Africa/Blantyre

Africa/Brazzaville Africa/Bujumbura Africa/Cairo

Africa/Casablanca Africa/Ceuta Africa/Conakry

Africa/Dakar Africa/Dar_es_Salaam Africa/Djibouti

Africa/Douala Africa/El_Aaiun Africa/Freetown

Africa/Gaborone Africa/Harare Africa/Johannesburg

Africa/Kampala Africa/Khartoum Africa/Kigali

Africa/Kinshasa Africa/Lagos Africa/Libreville

Africa/Lome Africa/Luanda Africa/Lubumbashi

Africa/Lusaka Africa/Malabo Africa/Maputo

Africa/Maseru Africa/Mbabane Africa/Mogadishu

Africa/Monrovia Africa/Nairobi Africa/Ndjamena

Africa/Niamey Africa/Nouakchott Africa/Ouagadougou

Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu

Africa/Tripoli Africa/Tunis Africa/Windhoek

America/Adak America/Anchorage America/Anguilla

America/Antigua America/Araguaina America/Argentina/Bue-
nos_Aires

America/Argentina/Cata-
marca

America/Argentina/ComodRiva-
davia

America/Argentina/Cordoba

America/Argentina/Jujuy America/Argentina/La_Rioja America/Argentina/Mendoza

America/Argentina/
Rio_Gallegos

America/Argentina/San_Juan America/Argentina/Tucuman

America/Argentina/Ush-
uaia

America/Aruba America/Asuncion

America/Atka America/Bahia America/Barbados

America/Belem America/Belize America/Boa_Vista

APPENDIX B: Date and Time Programming

CCL Programmers Guide 233

America/Bogota America/Boise America/Buenos_Aires

America/Cambridge_Bay America/Campo_Grande America/Cancun

America/Caracas America/Catamarca America/Cayenne

America/Cayman America/Chicago America/Chihuahua

America/Coral_Harbour America/Cordoba America/Costa_Rica

America/Cuiaba America/Curacao America/Danmarkshavn

America/Dawson America/Dawson_Creek America/Denver

America/Detroit America/Dominica America/Edmonton

America/Eirunepe America/El_Salvador America/Ensenada

America/Fort_Wayne America/Fortaleza America/Glace_Bay

America/Godthab America/Goose_Bay America/Grand_Turk

America/Grenada America/Guadeloupe America/Guatemala

America/Guayaquil America/Guyana America/Halifax

America/Havana America/Hermosillo America/Indiana/Indianapolis

America/Indiana/Knox America/Indiana/Marengo America/Indiana/Petersburg

America/Indiana/Vevay America/Indiana/Vincennes America/Indianapolis

America/Inuvik America/Iqaluit America/Jamaica

America/Jujuy America/Juneau America/Kentucky/Louisville

America/Kentucky/Monti-
cello

America/Knox_IN America/La_Paz

America/Lima America/Los_Angeles America/Louisville

America/Maceio America/Managua America/Manaus

America/Martinique America/Mazatlan America/Mendoza

America/Menominee America/Merida America/Mexico_City

America/Miquelon America/Moncton America/Monterrey

America/Montevideo America/Montreal America/Montserrat

America/Nassau America/New_York America/Nipigon

America/Nome America/Noronha America/North_Dakota/Center

APPENDIX B: Date and Time Programming

234 Sybase Event Stream Processor

America/Panama America/Pangnirtung America/Paramaribo

America/Phoenix America/Port-au-Prince America/Port_of_Spain

America/Porto_Acre America/Porto_Velho America/Puerto_Rico

America/Rainy_River America/Rankin_Inlet America/Recife

America/Regina America/Rio_Branco America/Rosario

America/Santiago America/Santo_Domingo America/Sao_Paulo

America/Scoresbysund America/Shiprock America/St_Johns

America/St_Kitts America/St_Lucia America/St_Thomas

America/St_Vincent America/Swift_Current America/Tegucigalpa

America/Thule America/Thunder_Bay America/Tijuana

America/Toronto America/Tortola America/Vancouver

America/Virgin America/Whitehorse America/Winnipeg

America/Yakutat America/Yellowknife Antarctica/Casey

Antarctica/Davis Antarctica/DumontDUrville Antarctica/Mawson

Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera

Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok

Arctic/Longyearbyen Asia/Aden Asia/Almaty

Asia/Amman Asia/Anadyr Asia/Aqtau

Asia/Aqtobe Asia/Ashgabat Asia/Ashkhabad

Asia/Baghdad Asia/Bahrain Asia/Baku

Asia/Bangkok Asia/Beirut Asia/Bishkek

Asia/Brunei Asia/Calcutta Asia/Choibalsan

Asia/Chongqing Asia/Chungking Asia/Colombo

Asia/Dacca Asia/Damascus Asia/Dhaka

Asia/Dili Asia/Dubai Asia/Dushanbe

Asia/Gaza Asia/Harbin Asia/Hong_Kong

Asia/Hovd Asia/Irkutsk Asia/Istanbul

Asia/Jakarta Asia/Jayapura Asia/Jerusalem

APPENDIX B: Date and Time Programming

CCL Programmers Guide 235

Asia/Kabul Asia/Kamchatka Asia/Karachi

Asia/Kashgar Asia/Katmandu Asia/Krasnoyarsk

Asia/Kuala_Lumpur Asia/Kuching Asia/Kuwait

Asia/Macao Asia/Macau Asia/Magadan

Asia/Makassar Asia/Manila Asia/Muscat

Asia/Nicosia Asia/Novosibirsk Asia/Omsk

Asia/Oral Asia/Phnom_Penh Asia/Pontianak

Asia/Pyongyang Asia/Qatar Asia/Qyzylorda

Asia/Rangoon Asia/Riyadh Asia/Riyadh87

Asia/Riyadh88 Asia/Riyadh89 Asia/Saigon

Asia/Sakhalin Asia/Samarkand Asia/Seoul

Asia/Shanghai Asia/Singapore Asia/Taipei

Asia/Tashkent Asia/Tbilisi Asia/Tehran

Asia/Tel_Aviv Asia/Thimbu Asia/Thimphu

Asia/Tokyo Asia/Ujung_Pandang Asia/Ulaanbaatar

Asia/Ulan_Bator Asia/Urumqi Asia/Vientiane

Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg

Asia/Yerevan Atlantic/Azores Atlantic/Bermuda

Atlantic/Canary Atlantic/Cape_Verde Atlantic/Faeroe

Atlantic/Jan_Mayen Atlantic/Madeira Atlantic/Reykjavik

Atlantic/South_Georgia Atlantic/St_Helena Atlantic/Stanley

Australia/ACT Australia/Adelaide Australia/Brisbane

Australia/Broken_Hill Australia/Canberra Australia/Currie

Australia/Darwin Australia/Hobart Australia/LHI

Australia/Lindeman Australia/Lord_Howe Australia/Melbourne

Australia/NSW Australia/North Australia/Perth

Australia/Queensland Australia/South Australia/Sydney

Australia/Tasmania Australia/Victoria Australia/West

APPENDIX B: Date and Time Programming

236 Sybase Event Stream Processor

Australia/Yancowinna BET BST

Brazil/Acre Brazil/DeNoronha Brazil/East

Brazil/West CAT CET

CNT CST CST6CDT

CTT Canada/Atlantic Canada/Central

Canada/East-Saskatche-
wan

Canada/Eastern Canada/Mountain

Canada/Newfoundland Canada/Pacific Canada/Saskatchewan

Canada/Yukon Chile/Continental Chile/EasterIsland

Cuba EAT ECT

EET EST EST5EDT

Egypt Eire Etc/GMT

Etc/GMT+0 Etc/GMT+1 Etc/GMT+10

Etc/GMT+11 Etc/GMT+12 Etc/GMT+2

Etc/GMT+3 Etc/GMT+4 Etc/GMT+5

Etc/GMT+6 Etc/GMT+7 Etc/GMT+8

Etc/GMT+0 Etc/GMT-0 Etc/GMT-1

Etc/GMT-10 Etc/GMT-11 Etc/GMT-12

Etc/GMT-13 Etc/GMT-14 Etc/GMT-2

Etc/GMT-3 Etc/GMT-4 Etc/GMT-5

Etc/GMT-6 Etc/GMT-7 Etc/GMT-8

Etc/GMT-9 Etc/GMT0 Etc/Greenwich

Etc/UCT Etc/UTC Etc/Universal

Etc/Zulu Europe/Amsterdam Europe/Andorra

Europe/Athens Europe/Belfast Europe/Belgrade

Europe/Berlin Europe/Bratislava Europe/Brussels

Europe/Bucharest Europe/Budapest Europe/Chisinau

Europe/Copenhagen Europe/Dublin Europe/Gibraltar

APPENDIX B: Date and Time Programming

CCL Programmers Guide 237

Europe/Helsinki Europe/Istanbul Europe/Kaliningrad

Europe/Kiev Europe/Lisbon Europe/Ljubljana

Europe/London Europe/Luxembourg Europe/Madrid

Europe/Malta Europe/Mariehamn Europe/Minsk

Europe/Monaco Europe/Moscow Europe/Nicosia

Europe/Oslo Europe/Paris Europe/Prague

Europe/Riga Europe/Rome Europe/Samara

Europe/San_Marino Europe/Sarajevo Europe/Simferopol

Europe/Skopje Europe/Sofia Europe/Stockholm

Europe/Tallinn Europe/Tirane Europe/Tiraspol

Europe/Uzhgorod Europe/Vaduz Europe/Vatican

Europe/Vienna Europe/Vilnius Europe/Warsaw

Europe/Zagreb Europe/Zaporozhye Europe/Zurich

Factory GB GB-Eire

GMT GMT+0 GMT-0

GMT0 Greenwich HST

Hongkong IET IST

Iceland Indian/Antananarivo Indian/Chagos

Indian/Christmas Indian/Cocos Indian/Comoro

Indian/Kerguelen Indian/Mahe Indian/Maldives

Indian/Mauritius Indian/Mayotte Indian/Reunion

Iran Israel JST

Jamaica Japan Kwajalein

Libya MET MIT

MST MST7MDT Mexico/BajaNorte

Mexico/BajaSur Mexico/General Mideast/Riyadh87

Mideast/Riyadh88 Mideast/Riyadh89 NET

NST NZ NZ-CHAT

APPENDIX B: Date and Time Programming

238 Sybase Event Stream Processor

Navajo PLT PNT

PRC PRT PST

PST8PDT Pacific/Apia Pacific/Auckland

Pacific/Chatham Pacific/Easter Pacific/Efate

Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji

Pacific/Funafuti Pacific/Galapagos Pacific/Gambier

Pacific/Guadalcanal Pacific/Guam Pacific/Honolulu

Pacific/Johnston Pacific/Kiritimati Pacific/Kosrae

Pacific/Kwajalein Pacific/Majuro Pacific/Marquesas

Pacific/Midway Pacific/Nauru Pacific/Niue

Pacific/Norfolk Pacific/Noumea Pacific/Pago_Pago

Pacific/Palau Pacific/Pitcairn Pacific/Ponape

Pacific/Port_Moresby Pacific/Rarotonga Pacific/Saipan

Pacific/Samoa Pacific/Tahiti Pacific/Tarawa

Pacific/Tongatapu Pacific/Truk Pacific/Wake

Pacific/Wallis Pacific/Yap Poland

Portugal ROC ROK

SST Singapore SystemV/AST4

SystemV/AST4ADT SystemV/CST6 SystemV/CST6CDT

SystemV/EST5 SystemV/EST5EDT SystemV/HST10

SystemV/MST7 SystemV/MST7MDT SystemV/PST8

SystemV/PST8PDT SystemV/YST9 SystemV/YST9YDT

Turkey UCT US/Alaska

US/Aleutian US/Arizona US/Central

US/East-Indiana US/Eastern US/Hawaii

US/Indiana-Starke US/Michigan US/Mountain

US/Pacific US/Pacific-New US/Samoa

UTC Universal VST

APPENDIX B: Date and Time Programming

CCL Programmers Guide 239

W-SU WET Zulu

Date/Time Format Codes
A list of valid components that can be used to specify the format of a date/time type: date,
timestamp, or bigdatetime.

Date/time type formats must be specified with either the Event Stream Processor formatting
codes, or a subset of timestamp conversion codes provided by the C++ strftime() function. The
are a number of different valid codes, however, A valid date/time type specification can
contain no more than one occurrence of a code specifying a particular time unit (for example, a
code specifying the year).

Note: All designations of year, month, day, hour, minute, or second can also read a fewer
number of digits than is specified by the code. For example, DD reads both two-digit and
one-digit day entries.

Event Stream Processor Time Formatting Codes

Column Code Description Input Output

MM Month (01-12; JAN = 01). Y Y

YYYY Four-digit year. Y Y

YYY Last three digits of year. Y Y

YY Last two digits of year. Y Y

Y Last digit of year. Y Y

Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1). N Y

MON Abbreviated name of month (JAN, FEB, ..., DEC). Y Y

MONTH Name of month, padded with blanks to nine char-
acters (JANUARY, FEBRUARY, ..., DECEMBER).

Y Y

RM Roman numeral month (1-XII; JAN = I). Y Y

WW Week of year (1-53), where week 1 starts on the first
day of the year and continues to the seventh day of
the year.

N Y

W Week of month (1-5), where week 1 starts on the
first day of the month and continues to the seventh
day of the month.

N Y

D Day of week (1-7; SUNDAY = 1). N Y

APPENDIX B: Date and Time Programming

240 Sybase Event Stream Processor

Column Code Description Input Output

DD Day of month (1-31). Y Y

DDD Day of year (1-366). N Y

DAY Name of day (SUNDAY, MONDAY, ..., SATUR-
DAY).

Y Y

DY Abbreviated name of day (SUN, MON, ..., SAT). Y Y

HH Hour of day (1-12). Y Y

HH12 Hour of day (1-12). Y Y

HH24 Hour of day (0-23). Y Y

AM Meridian indicator (AM/PM). Y Y

PM Meridian indicator (AM/PM). Y Y

MI Minute (0-59). Y Y

SS Second (0-59). Y Y

SSSSS Seconds past midnight (0-86399). Y Y

SE Seconds since epoch (January 1, 1970 UTC). This
format can only be used by itself, with the FF for-
mat, and/or with the time zone codes TZD, TZR,
TZH and TZM.

Y Y

MIC Microseconds since epoch (January 1, 1970 UTC). Y Y

FF Fractions of seconds (0-999999). When used in
output, FF produces six digits for microseconds.
FFFF produces twelve digits, repeating the six dig-
its for microseconds twice. (In most circumstances,
this is not the desired effect.) When used in input, FF
collects all digits until a non-digit is detected, and
then uses only the first six, discarding the rest.

Y Y

FF[1-9] Fractions of seconds. For output only, produces the
specified number of digits, rounding or padding
with trailing zeros as needed.

N Y

APPENDIX B: Date and Time Programming

CCL Programmers Guide 241

Column Code Description Input Output

MS Milliseconds since epoch (January 1, 1970 UTC).
When used for input, this format code can only be
combined with FF (microseconds) and the time
zone codes TZD, TZR, TZH, TZM. All other format
code combinations generate errors. Furthermore,
when MS is used with FF, the MS code must pre-
cede the FF code: for example, MS.FF.

Y Y

FM Fill mode toggle: suppress zeros and blanks or not
(default: not).

Y Y

FX Exact mode toggle: match case and punctuations
exactly (default: not).

Y Y

RR Lets you store 20th century dates in the 21st century
using only two digits.

Y N

RRRR Round year. Accepts either four-digit or two-digit
input. If two-digit, provides the same return as RR.

Y N

TZD Abbreviated time zone designator such as PST. Y Y

TZH Time zone hour displacement. For example, -5 in-
dicates a time zone five hours earlier than GMT.

N Y

TZM Time zone hour and minute displacement. For ex-
ample, -5:30 indicates a time zone that is five hours
and 30 minutes earlier than GMT.

N Y

TZR Time zone region name. For example, US/Pacific
for PST.

N Y

Strftime() Timestamp Conversion Codes
Instead of using Event Stream Processor time formatting codes, output timestamp formats can
be specified using a subset of the C++ strftime() function codes. The following rules apply:

• Any timestamp format specification that includes a percent sign (%) is considered a
strftime() code.

• Strings can only include one type of formatting codes: the Event Stream Processor
formatting codes, or the strftime() codes.

• Some strftime() codes are valid only on Microsoft Windows or only on UNIX-like
operating systems. Different implementations of strftime() also include minor differences
in code interpretation. To avoid errors, ensure that both the ESP Server and the ESP Studio
are on the same platform, and are using compatible strftime() implementations. It is also
essential to confirm that the provided codes meet the requirements for the platform.

APPENDIX B: Date and Time Programming

242 Sybase Event Stream Processor

• All time zones for formats specified with strftime() are assumed to be the local time zone.
• strftime() codes cannot be used to specify date/time type input, only date/time type output.

The Event Stream Processor supports the following strftime() codes:

Strftime()
Code

Description

%a Abbreviated weekday name; example: "Mon".

%A Full weekday name: for example "Monday".

%b Abbreviated month name: for example: "Feb".

%B Full month name: for example "February".

%c Full date and time string: the output format for this code differs, depending on
whether Microsoft Windows or a UNIX-like operating system is being used.
Microsoft Windows output example: 08/26/08 20:00:00 UNIX-like operating
system output example: Tue Aug 26 20:00:00 2008

%d Day of the month, represented as a two-digit decimal integer with a value
between 01 and 31.

%H Hour, represented as a two-digit decimal integer with a value between 00 and
23.

%I Hour, represented as a two-digit decimal integer with a value between 01 and
12.

%j Day of the year, represented as a three-digit decimal integer with a value be-
tween 001 and 366.

%m Month, represented as a two-digit decimal integer with a value between 01 and
12.

%M Minute, represented as a two-digit decimal integer with a value between 00 and
59.

%p Locale's equivalent of AM or PM.

%S Second, represented as a two-digit decimal integer with a value between 00 and
61.

%U Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Sunday considered the first day of the week.

%w Weekday number, represented as a one-digit decimal integer with a value be-
tween 0 and 6, with Sunday represented as 0.

APPENDIX B: Date and Time Programming

CCL Programmers Guide 243

Strftime()
Code

Description

%W Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Monday considered the first day of the week.

%x Full date string (no time): The output format for this code differs, depending on
whether you are using Microsoft Windows or a UNIX-like operating system.
Microsoft Windows output example: 08/26/08 UNIX-like operating system
output example: Tue Aug 26 2008

%X Full time string (no date).

%y Year, without the century, represented as a two-digit decimal number with a
value between 00 and 99.

%Y Year, with the century, represented as a four-digit decimal number.

%% Replaced by %.

Calendar Files
A text file detailing the holidays and weekends in a given time period.

Syntax
weekendStart <integer>
weekendEnd <integer>
holiday yyyy-mm-dd
holiday yyyy-mm-dd
...

Components

weekendStart An integer that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=5, and Sun-
day=6.

weekendEnd An integer that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=5, and Sun-
day=6.

holiday A day of the year, in the form yyyy-mm-dd. A
calendar file can have unlimited holidays.

APPENDIX B: Date and Time Programming

244 Sybase Event Stream Processor

Usage
A calendar file is a text file that describes the start and end date of a weekend, and the holidays
within the year. The lines beginning with '#' characters are ignored, and can be used to provide
user clarification or comments.

Calendar files are loaded and cached on demand by the Event Stream Processor. If changes
occur in any of the calendar files, a command must be sent to refresh the cached calendar data,
the refresh_calendars command.

Example
The following is an example of a legal calendar file:
Sybase calendar data for US 1983
weekendStart 5
weekendEnd 6
holiday 1983-02-21
holiday 1983-04-01
holiday 1983-05-30
holiday 1983-07-04
holiday 1983-09-05
holiday 1983-11-24
holiday 1983-12-26

APPENDIX B: Date and Time Programming

CCL Programmers Guide 245

APPENDIX B: Date and Time Programming

246 Sybase Event Stream Processor

Index
A
acos() 149
ADAPTER START statement 61
adapters 19

custom 8
input adapters 19
output adapters 20
overview 7

aggregate functions 126
aggregates 126

any() 127
avg() 127
corr() 128
count() 130
count(distinct) 131
covar_pop() 129
covar_samp() 130
exp_weighted_avg() 131
first() 132
last() 133
lwm_avg() 133
max() 134
meandeviation() 135
median() 135
min() 136
nth() 136
recent() 137
regr_avgx() 137
regr_avgy() 138
regr_count() 139
regr_intercept() 139
regr_r2() 140
regr_slope() 140
regr_sxx() 141
regr_sxy() 142
regr_syy() 142
stddev_pop() 143
stddev_samp() 144
sum() 144
valueinserted() 145
var_pop() 145
var_samp() 146
vwap() 146
weighted_avg() 147
xmlagg() 148

aggregation
GROUP BY clause 43
GROUP FILTER clause 43
GROUP ORDER BY clause 43
HAVING clause 43

AGING clause 87
ANSI syntax 40
any() 127
APIs

supported languages 8
arccosine

acos() 149
arcsine

asin() 149
arctangent

atan() 150
atan2() 150

AS clause 88
ascii() 180
asin() 149
atan() 150
atan2() 150
ATTACH ADAPTER statement 62
avg() 127
avgof() 151

B
base64_binary() 181
base64_string() 181
basic project components

queries 101
bigdatetime

format codes 240
binary functions

base64_binary() 181
base64_string() 181
bitand() 151
bitclear() 152
bitflag() 152
bitflaglong() 153
bitmask() 153
bitmasklong() 154
bitnot() 154
bitor() 154
bitset() 155

Index

CCL Programmers Guide 247

bitshiftleft() 155
bitshiftright() 156
bittest() 156
bittoggle() 157
bitxor() 157
concat() 183
extract() 184
fromnetbinary() 184
hex_binary() 185
hex_string() 185
length() 163
tonetbinary() 193

bitand() 151
bitclear() 152
bitflag() 152
bitflaglong() 153
bitmask() 153
bitmasklong() 154
bitnot() 154
bitor() 154
bitset() 155
bitshiftleft() 155
bitshiftright() 156
bittest() 156
bittoggle() 157
bitwise functions

bitand() 151
bitclear() 152
bitflag() 152
bitflaglong() 153
bitmask() 153
bitmasklong() 154
bitnot() 154
bitor() 154
bitset() 155
bitshiftleft() 155
bitshiftright() 156
bittest() 156
bittoggle() 157
bitxor() 157

bitxor() 157
business() 199
businessday() 199

C
cacheSize() 214
calendar 244
calendar functions 244

business() 199

businessday() 199
weekendday() 213

CASE clause 89
case-insensitive 33
case-sensitive 33
cast() 182
cbrt() 158
CCL

advanced techniques overview 45
language components 23
order of elements 11
overview 9

CCL functions 119
CCL keywords 229
CCL statements

reference 61
ceil() 158
char() 183
clause

CASE 89
clauses

AGING 87
AS 88
FROM 103
FROM (ANSI syntax) 104
FROM (comma-separated syntax) 103
GROUP BY 43, 106
GROUP FILTER 43, 107
GROUP ORDER BY 43, 108
HAVING 43, 109
IN 90, 93, 94, 98
KEEP 91
MATCHING 42, 110
ON (join syntax) 110, 112
OUT 90, 93, 94, 98
PARAMETERS 90, 93, 94, 98
PRIMARY KEY 95
SCHEMA 97
SELECT 113
STORE 98
STORES 90, 93, 94, 98
UNION 36
WHERE 35, 116

coalesce() 216
column access functions

get*columnbyindex() 219
get*columnbyname() 220
getbigdatetimecolumnbyindex() 219
getbigdatetimecolumnbyname() 220

Index

248 Sybase Event Stream Processor

getbinarycolumnbyindex() 219
getbinarycolumnbyname() 220
getbooleancolumnbyindex() 219
getbooleancolumnbyname() 220
getdatecolumnbyindex() 219
getdatecolumnbyname() 220
getfloatcolumnbyindex() 219
getfloatcolumnbyname() 220
getintegercolumnbyindex() 219
getintegercolumnbyname() 220
getintervalcolumnbyindex() 219
getintervalcolumnbyname() 220
getlongcolumnbyindex() 219
getlongcolumnbyname() 220
getmoneycolumnbyindex() 223
getmoneycolumnbyname() 224
getstringcolumnbyindex() 219
getstringcolumnbyname() 220
gettimestampcolumnbyindex() 219
gettimestampcolumnbyname() 220

column/window access functions
cacheSize() 214
deleteCache() 217
get*columnbyindex() 219
get*columnbyname() 220
getbigdatetimecolumnbyindex() 219
getbigdatetimecolumnbyname() 220
getbinarycolumnbyindex() 219
getbinarycolumnbyname() 220
getbooleancolumnbyindex() 219
getbooleancolumnbyname() 220
getCache() 221
getdatecolumnbyindex() 219
getdatecolumnbyname() 220
getfloatcolumnbyindex() 219
getfloatcolumnbyname() 220
getintegercolumnbyindex() 219
getintegercolumnbyname() 220
getintervalcolumnbyindex() 219
getintervalcolumnbyname() 220
getlongcolumnbyindex() 219
getlongcolumnbyname() 220
getmoneycolumnbyindex() 223
getmoneycolumnbyname() 224
getrowid() 225
getstringcolumnbyindex() 219
getstringcolumnbyname() 220
gettimestampcolumnbyindex() 219
gettimestampcolumnbyname() 220

columns
BIGROWTIME 12
ROWID 12
ROWTIME 12

combining queries 36
comma-separated syntax 42
compare() 159
complex join example 42
concat() 183
conversion functions

cast() 182
date() 200
dateint() 216
datename() 203
int32() 171
intdate() 208
real() 174
string() 178
timeToMsec() 186
timeTosec() 187
timeToUsec() 187
to_bigdatetime() 188
to_binary() 188
to_boolean() 189
to_date() 190
to_float() 190
to_integer() 191
to_interval() 191
to_long() 192
to_money() 192
to_string() 194
to_timestamp() 196
to_xml() 193
totimezone() 228
unbigdatetime() 212
undate() 213
xmlparse() 198
xmlserialize() 198

correlation coefficient
corr() 128

cos() 159
cosd() 160
cosh() 160
cosine

cos() 159
cosd() 160
cosh() 160

count-based retention 15
count() 130

Index

CCL Programmers Guide 249

count(distinct) 131
covar_pop() 129
covar_samp() 130
CREATE DELTA STREAM statement 64
CREATE FLEX statement 67
CREATE LIBRARY statement 70
CREATE LOG STORE statement 71
CREATE MEMORY STORE statement 73
CREATE MODULE statement 74
CREATE SCHEMA statement 17, 76
CREATE STREAM statement 79
CREATE WINDOW statement 80
custom adapters

overview 8

D
data aging

AGING clause 87
data-flow programming

example 3
introduction 3

databases
compared to Sybase Event Stream Processor

2
datatypes

supported datatypes in Event Stream Processor
23

date
format codes 240

date and time functions
totimezone() 228

date() 200
date/time format codes 240
date/time functions

business() 199
businessday() 199
date() 200
dateceiling() 200
datefloor() 202
dateint() 216
datename() 203
datepart() 204
dateround() 204
dayofmonth() 206
dayofweek() 206
dayofyear() 207
hour() 207
intdate() 208
makebigdatetime() 208

microsecond() 210
minute() 210
month() 211
msecToTime() 186
now() 225
second() 211
secToTime() 186
sysbigdatetime() 227
sysdate() 212
systimestamp() 212
timeToMsec() 186
timeToSec() 187
timeToUsec() 187
trunc() 179
unbigdatetime() 212
undate() 213
usecToTime() 196
weekendday() 213
year() 214

dateceiling() 200
datefloor() 202
dateint() 216
datename() 203
datepart() 204
dateround() 204
daylight saving time (DST) 231
dayofmonth() 206
dayofweek() 206
dayofyear() 207
declaration

functions 77
parameters 77
typedefs 46, 77
variables 48, 77

declare blocks
DECLARE statement 77
declaring 50
global 45
local 45
overview 45

DECLARE statement 77
declaring parameters

parameters 47
deleteCache() 217
delta streams 11, 17, 64
dependency loops 18
distance() 160
distancesquared() 161
DST 231

Index

250 Sybase Event Stream Processor

E
error stream 66
error streams 57
event cache functions

cacheSize() 214
deleteCache() 217
getCache() 221
getrowid() 225

Event Stream Processor
components 6

event streams
overview 2

events
delete 6
examples 2
insert 6
update 6

examples
ANSI syntax 40
comma-separated syntax 42
complex join 40, 42
complex stream-window join 40
merging data 36
pattern matching 42
schema discovery 76
schema inheritance 76
simple full outer join 40
simple inner join 40
simple left join 40
simple stream-window left join 40
using a UNION operator 36

exp_weighted_avg() 131
exp() 218
exponential functions

exp() 218
power() 167

exponential moving average
exp_weighted_avg() 131

expressions
compound expressions 31
simple expressions 31

external data
input and output adapters 7

extract() 184

F
files

calendar 244

filtering data 35
filters

WHERE clause 116
first_value()

See first()
first() 132, 133
firstnonnull() 219
flex operators 50

CREATE FLEX statement 67
flex stream 67
floor() 162
format codes

bigdatetime 240
date 240
date/time 240
timestamp 240

FROM clause 103
ANSI syntax 104
comma-separated syntax 103

fromnetbinary() 184
functions

acos() 149
aggregate functions 126
any() 127
ascii() 180
asin() 149
atan() 150
atan2() 150
avg() 127
avgof() 151
base64_binary() 181
base64_string() 181
bitand() 151
bitclear() 152
bitflag() 152
bitflaglong() 153
bitmask() 153
bitmasklong() 154
bitnot() 154
bitor() 154
bitset() 155
bitshiftleft() 155
bitshiftright() 156
bittest() 156
bittoggle() 157
bitxor() 157
built-in functions 119
business() 199
businessday() 199

Index

CCL Programmers Guide 251

C/C++ functions 120, 122
cacheSize() 214
cast() 182
cbrt() 158
ceil() 158
char() 183
coalesce() 216
compare() 159
concat() 183
corr() 128
cos() 159
cosd() 160
cosh() 160
count() 130
count(distinct) 131
covar_pop() 129
covar_samp() 130
date() 200
dateceiling() 200
datefloor() 202
dateint() 216
datename() 203
datepart() 204
dateround() 204
dayofmonth() 206
dayofweek() 206
dayofyear() 207
deleteCache() 217
distance() 160
distancesquared() 161
exp_weighted_avg() 131
exp() 218
external functions 119, 120, 122, 124
extract() 184
first() 132
firstnonnull() 219
floor() 162
fromnetbinary() 184
get*columnbyindex() 219
get*columnbyname() 220
getbigdatetimecolumnbyindex() 219
getbigdatetimecolumnbyname() 220
getbinarycolumnbyindex() 219
getbinarycolumnbyname() 220
getbooleancolumnbyindex() 219
getbooleancolumnbyname() 220
getCache() 221
getData 222
getdatecolumnbyindex() 219

getdatecolumnbyname() 220
getfloatcolumnbyindex() 219
getfloatcolumnbyname() 220
getintegercolumnbyindex() 219
getintegercolumnbyname() 220
getintervalcolumnbyindex() 219
getintervalcolumnbyname() 220
getlongcolumnbyindex() 219
getlongcolumnbyname() 220
getmoneycolumnbyindex() 223
getmoneycolumnbyname() 224
getrowid() 225
getstringcolumnbyindex() 219
getstringcolumnbyname() 220
gettimestampcolumnbyindex() 219
gettimestampcolumnbyname() 220
hex_binary() 185
hex_string() 185
hour() 207
int32() 171
intdate() 208
isnull() 162
Java functions 120, 124
last() 133
left() 171
length() 163
like() 172
ln() 163
log10() 164
log2() 164
logx() 165
lower() 172
ltrim() 173
lwm_avg() 133
makebigdatetime() 208
max() 134
maxof() 165
meandeviation() 135
median() 135
microsecond() 210
min() 136
minof() 165
minute() 210
month() 211
msecToTime() 186
nextval() 166
now() 225
nth() 136
other functions 214

Index

252 Sybase Event Stream Processor

patindex() 173
pi() 166
power() 167
random() 167
rank() 226
real() 174
recent() 137
regexp_firstsearch() 175
regexp_replace() 175
regexp_search() 176
regr_avgx() 137
regr_avgy() 138
regr_count() 139
regr_intercept() 139
regr_r2() 140
regr_slope() 140
regr_sxx() 141
regr_sxy() 142
regr_syy() 142
replace() 177
right() 177
round() 167
rtrim() 178
scalar functions 148
second() 211
secToTime() 186
sign() 168
sin() 168
sind() 227
sinh() 169
SPLASH functions 119
sqrt() 169
stddev_pop() 143
stddev_samp() 144
string() 178
substr() 178
sum() 144
sysbigdatetime() 227
sysdate() 212
systimestamp() 212
tan() 169, 170
tanh() 170
timeToMsec() 186
timeToSec() 187
timeToUsec() 187
to_bigdatetime() 188
to_binary() 188
to_boolean() 189
to_date() 190

to_float() 190
to_integer() 191
to_interval() 191
to_long() 192
to_money() 192
to_string() 194
to_timestamp() 196
to_xml() 193
tonetbinary() 193
totimezone() 228
trim() 179
trunc() 179
unbigdatetime() 212
undate() 213
upper() 180
usecToTime() 196
user-defined 119
user-defined functions 119, 120, 122, 124
valueinserted() 145
var_pop() 145
var_samp() 146
vwap() 146
weekendday() 213
weighted_avg() 147
xmlagg() 148
xmlconcat() 197
xmlelement() 197
xmlparse() 198
xmlserialize() 198
year() 214

G
get*columnbyindex() 219
get*columnbyname() 220
getbigdatetimecolumnbyindex() 219
getbigdatetimecolumnbyname() 220
getbinarycolumnbyindex() 219
getbinarycolumnbyname() 220
getbooleancolumnbyindex() 219
getbooleancolumnbyname() 220
getCache() 221
getData function 222
getdatecolumnbyindex() 219
getdatecolumnbyname() 220
getfloatcolumnbyindex() 219
getfloatcolumnbyname() 220
getintegercolumnbyindex() 219
getintegercolumnbyname() 220
getintervalcolumnbyindex() 219

Index

CCL Programmers Guide 253

getintervalcolumnbyname() 220
getlongcolumnbyindex() 219
getlongcolumnbyname() 220
getmoneycolumnbyindex() 223
getmoneycolumnbyname() 224
getrowid() 225
getstringcolumnbyindex() 219
getstringcolumnbyname() 220
gettimestampcolumnbyindex() 219
gettimestampcolumnbyname() 220
GROUP BY clause 106

rank() 226
GROUP FILTER clause 107

rank() 226
group filtering function

rank() 226
GROUP ORDER BY clause 108

rank() 226
GUI authoring

See visual authoring

H

HAVING clause 109
rank() 226

hex_binary() 185
hex_string() 185
hour() 207
hyperbolic cosine

cosh() 160
hyperbolic sine

sinh() 169
hyperbolic tangent

tanh() 170

I

implicit
columns 12
windows 15

IMPORT statement 83
importing

CCL files 83
function definitions 83
IMPORT statement 83
parameters 83
schema definitions 83
variables 83

IN clause 90

input 12
input adapters

overview 7
int32() 171
intdate() 208
intervals

values 26
isnull() 162

J

joins
ANSI syntax 40
cardinality 37
complex join example 40, 42
complex stream-window join example 40
examples 37
key field rules 39
simple full outer join example 40
simple inner join example 40
simple left join example 40
simple stream-window left join example 40
types 37

K

KEEP clause 91
retention policies 15

key field rules 39
keywords 229

L

last_value()
See last()

last() 133
left() 171
length() 163
like() 172
linear regression functions

regr_avgx() 137
regr_avgy() 138
regr_count() 139
regr_intercept() 139
regr_r2() 140
regr_slope() 140
regr_sxx() 141
regr_sxy() 142
regr_syy 142

Index

254 Sybase Event Stream Processor

linearly weighted moving average
lwm_avg() 133

ln() 163
LOAD MODULE statement 84, 90, 93, 94, 98
local 12
log store

CREATE LOG STORE statement 71
CREATE MEMORY STORE statement 73
features 55
log store loops 18
optimization techniques 57
state after recovery 55

log stores
CREATE LOG STORE statement 71

log10() 164
log2() 164
logarithmic functions

ln() 163
log10() 164
log2() 164
logx() 165

logx() 165
lower() 172
ltrim() 173
lwm_avg() 133

M
makebigdatetime() 208
MATCHING clause 42
max() 134
maxof() 165
mean dervivation

meanderivation() 135
meandeviation() 135
median() 135
memory store 18

CREATE MEMORY STORE statement 73
microsecond() 210
min() 136
minof() 165
minute() 210
modularity 52–54, 84, 90, 93, 94, 98

CREATE MODULE statement 74
overview 51

module
create 52–54, 74
load 52–54, 84
parameters 54
use 52–54

modules
rules for 51

monitoring 59
month() 211
msecToTime() 186

N

named schema 5, 17
naming 33
nextval() 166
now() 225
nth() 136

O

ON clause
join syntax 110, 112

opcodes
defined 6
insert, update, and delete events 6

operators
arithmetic operators 27
comparison operators 27
LIKE operators 27
logical operators 27
string operators 27
UNION operator 114

other functions 214
OUT clause 93
output 12
output adapters

overview 7
output expiry

AGING clause 87
overview 9

Sybase Event Stream Processor 1

P

parameters 47
in modules 54
initializing parameters at runtime 47

PARAMETERS clause 94
parameter binding 54

patindex() 173
pattern matching 42
performance

count-based retention 15

Index

CCL Programmers Guide 255

SLACK value 15
persistence

CREATE LOG STORE statement 71
CREATE MEMORY STORE statement 73
log store 18, 55

pi() 166
population-based variance function

var_pop() 145
POSIX regular expression functions

regexp_firstsearch() 175
regexp_replace() 175
regexp_search() 176

power() 167
PRIMARY KEY clause 95
projects

development task flow 21
introduction 4

Q

queries
basic syntax 101
FROM clause 103
GROUP BY clause 43, 106
GROUP FILTER clause 43, 107
GROUP ORDER BY clause 43, 108
HAVING clause 43, 109
KEEP clause 91
MATCHING clause 42, 110
ON clause 112
SELECT 113
UNION operator 36, 114
WHERE clause 35, 116

query construction
aggregating data 35
combining queries 35
filtering data 35
joining multiple datasources 35
using pattern-matching rules 35

R

random() 167
rank() 107, 226
real() 174
recent() 137
recordDataToRecord 226
recordDataToString 226
regexp_firstsearch() 175

regexp_replace() 175
regexp_search() 176
regr_avgx() 137
regr_avgy() 138
regr_count() 139
regr_intercept() 139
regr_r2() 140
regr_slope() 140
regr_sxx() 141
regr_sxy() 142
regr_syy() 142
regular expression functions

regexp_firstsearch() 175
regexp_replace() 175
regexp_search() 176

replace() 177
retention 91

count-based 15
time-based 15

retention policies
description 15

right() 177
round() 167
rounding functions

ceil() 158
floor() 162
round() 167

rtrim() 178

S
sample-based variance function

var_samp() 146
scalar

acos() 149
ascii() 180
asin() 149
atan() 150
atan2() 150
avgof() 151
base64_binary() 181
base64_string() 181
bitand() 151
bitclear() 152
bitflag() 152
bitflaglong() 153
bitmask() 153
bitmasklong() 154
bitnot() 154
bitor() 154

Index

256 Sybase Event Stream Processor

bitset() 155
bitshiftleft() 155
bitshiftright() 156
bittest() 156
bittoggle() 157
bitxor() 157
business() 199
businessday() 199
cast() 182
cbrt() 158
ceil() 158
char() 183
compare() 159
concat() 183
cos() 159
cosd() 160
cosh() 160
date() 200
dateceiling() 200
datefloor() 202
dateint() 216
datename() 203
datepart() 204
dateround() 204
dayofmonth() 206
dayofweek() 206
dayofyear() 207
distance() 160
distancesquared() 161
exp() 218
extract() 184
floor() 162
fromnetbinary() 184
hex_binary() 185
hex_string() 185
hour() 207
int32() 171
intdate() 208
isnull() 162
left() 171
length() 163
like() 172
ln() 163
log10() 164
log2() 164
logx() 165
lower() 172
ltrim() 173
makebigdatetime() 208

maxof() 165
microsecond() 210
minof() 165
minute() 210
month() 211
msecToTime() 186
nextval() 166
now() 225
patindex() 173
pi() 166
power() 167
random() 167
real() 174
regexp_firstsearch() 175
regexp_replace() 175
regexp_search() 176
replace() 177
right() 177
round() 167
second() 211
secToTime() 186
sign() 168
sin() 168
sind() 227
sinh() 169
sqrt() 169
string() 178
substr() 178
sysbigdatetime() 227
sysdate() 212
systimestamp() 212
tan() 169, 170
tanh() 170
timeToMsec() 186
timeToSec() 187
timeToUsec() 187
to_bigdatetime() 188
to_binary() 188
to_boolean() 189
to_date() 190
to_float() 190
to_integer() 191
to_interval() 191
to_long() 192
to_money() 192
to_string() 194
to_timestamp() 196
to_xml() 193
tonetbinary() 193

Index

CCL Programmers Guide 257

totimezone() 228
trim() 179
trunc() 179
unbigdatetime() 212
undate() 213
usecToTime() 196
weekendday() 213
xmlconcat() 197
xmlelement() 197
xmlparse() 198
xmlserialize() 198
year() 214

scalar functions 148
rtrim() 178
upper() 180

schema 17
overview 5

SCHEMA clause 17, 97
scope

for modules 51
SDKs

supported languages 8
second() 211
secToTime() 186
SELECT clause 113
set functions

avgof() 151
coalesce() 216
firstnonnull() 219
maxof() 165
minof() 165

sign() 168
sin() 168
sind() 227
sine

sin() 168
sind() 227

sinh() 169
SLACK

count-based retention 15
performance 15

SPLASH
overview 10

SPLASH functions
declaring 119

sqrt() 169
standard deviation functions

stddev_pop() 143
stddev_samp() 144

stateful elements 14
stateless elements

delta stream 64
statements

ADAPTER START 61
ATTACH ADAPTER 62
CREATE DELTA STREAM 64
CREATE FLEX 67
CREATE LIBRARY statement 70
CREATE LOG STORE 18, 71
CREATE MEMORY STORE 18, 73
CREATE MODULE 52–54, 74
CREATE SCHEMA 76
CREATE STREAM 79
CREATE WINDOW 80
DECLARE 77
IMPORT 52–54, 83
LOAD MODULE 52–54, 74, 84

stddev_samp() 143, 144
stddev()

See stddev_samp()
stddeviation()

See stddev_samp()
STORE clause 98
stores

log store 18, 55
memory store 18

STORES clause 98
streams 11, 12, 59

error 57, 66
input 12, 79
introduction 4
local 12, 79
output 12, 79
schema 5, 17
structure 5, 17

string functions
ascii() 180
char() 183
int32() 171
left() 171
like() 172
lower() 172
ltrim() 173
patindex() 173
real() 174
regexp_firstsearch() 175
regexp_replace() 175
regexp_search() 176

Index

258 Sybase Event Stream Processor

replace() 177
right() 177
rtrim() 178
substr() 178
to_string() 194
trim() 179
unbigdatetime() 212
undate() 213
upper() 180

string() 178
Studio

overview 8
substr() 178
sum() 144
sysbigdatetime() 227
sysdate() 212
systimestamp() 212

T
tan() 169, 170
tangent

tan() 169, 170
tanh() 170
text authoring

overview 8
time zones 231, 232
time-based retention 15
timestamp

format codes 240
timeToMsec() 186
timeToSec() 187
timeToUsec() 187
to_bigdatetime() 188
to_binary() 188
to_boolean() 189
to_date() 190
to_float() 190
to_integer() 191
to_interval() 191
to_long() 192
to_money() 192
to_string() 194
to_timestamp() 196
to_xml() 193
tonetbinary() 193
totimezone() 228
trigonometric functions

acos() 149
asin() 149

atan() 150
atan2() 150
cos() 159
cosd() 160
cosh() 160
sin() 168
sind() 227
sinh() 169
tan() 169, 170
tanh() 170

trim() 179
trunc() 179
type transformation

int32() 171
type transformation functions

cast() 182
date() 200
dateint() 216
datename() 203
intdate() 208
real() 174
timeToMsec() 186
timeToSec() 187
timeToUsec() 187
to_bigdatetime() 188
to_binary() 188
to_boolean() 189
to_date() 190
to_float() 190
to_integer() 191
to_interval() 191
to_long() 192
to_money() 192
to_string() 194
to_timestamp() 196
to_xml() 193
unbigdatetime() 212
undate() 213
xmlparse() 198
xmlserialize() 198

typedefs 46

U
unbigdatetime() 212
undate() 213
UNION operator 36, 114
unions 36, 114
unnamed windows 15
upper() 180

Index

CCL Programmers Guide 259

usecToTime() 196

V
valueinserted() 145
var_pop() 145
var_samp() 146
variables 48
variance functions

var_pop() 145
var_samp() 146

visual authoring
overview 8

vwap() 146

W
weekendday() 213
weighted average functions

exp_weighted_avg() 131
lwm_avg() 133
vwap() 146
weighted_avg() 147

weighted moving average
weighted_avg() 147

weighted_avg() 147
WHERE clause 35, 116
window

input 80
local 80
named 80
output 80

window access functions
cacheSize() 214

deleteCache() 217
getCache() 221
getrowid() 225

windows 11, 12
implicit 15
input 12, 14
introduction 4
local 12, 14
named 14
output 12, 14
persistence 55
schema 5, 17
structure 5, 17
unnamed 14, 15

X

XML functions
xmlagg() 148
xmlconcat() 197
xmlelement() 197
xmlparse() 198
xmlserialize() 198

xmlagg() 148
xmlconcat() 197
xmlelement() 197
xmlparse() 198
xmlserialize() 198

Y

year() 214

Index

260 Sybase Event Stream Processor

	CCL Programmers Guide
	Contents
	CHAPTER 1: Introduction to Sybase Event Stream Processor
	Event Streams
	Event Stream Processor Compared to Databases
	Data-Flow Programming
	ESP Projects: Adapters, Streams, Windows, and Continuous Queries
	Streams Versus Windows
	Schemas
	Inserts, Updates, and Deletes
	Product Components
	Input and Output Adapters
	Custom Adapters

	Authoring Methods
	Continuous Computation Language
	SPLASH

	CHAPTER 2: CCL Project Basics
	Order of Elements
	Comparing Streams, Windows, and Delta Streams
	Implicit Columns
	Input/Output/Local

	Windows
	Named Windows
	Unnamed Windows
	Retention

	Delta Streams
	Schemas
	Stores
	Working with Adapters
	Receiving Data with Input Adapters
	Publishing Data with Output Adapters

	CHAPTER 3: Developing a Project in CCL
	CHAPTER 4: Language Components
	Datatypes
	Intervals

	Operators
	Expressions
	CCL Comments
	Case-Sensitivity

	CHAPTER 5: CCL Query Construction
	Filtering
	Unions
	Example: Merging Data from Streams or Windows

	Joins
	Key Field Rules
	Join Examples: ANSI Syntax
	Join Example: Comma-Separated Syntax

	Pattern Matching
	Aggregation

	CHAPTER 6: Advanced CCL Programming Techniques
	Declare Blocks
	Typedefs
	Parameters
	Variables
	Declaring Project Variables, Parameters, Datatypes, and Functions

	Flex Operators
	Modularity
	Module Creation and Usage
	Example: Creating and Using Modules
	Example: Parameters in Modules

	Data Recovery
	Log Store Optimization Techniques

	Error Streams
	Monitoring Streams for Errors

	CHAPTER 7: Statements
	ADAPTER START Statement
	ATTACH ADAPTER Statement
	CREATE DELTA STREAM Statement
	CREATE ERROR STREAM Statement
	CREATE FLEX Statement
	CREATE LIBRARY Statement
	CREATE LOG STORE Statement
	CREATE MEMORY STORE Statement
	CREATE MODULE Statement
	CREATE SCHEMA Statement
	DECLARE Statement
	CREATE STREAM Statement
	CREATE WINDOW Statement
	IMPORT Statement
	LOAD MODULE Statement

	CHAPTER 8: Clauses
	AGING Clause
	AS Clause
	CASE Clause
	IN Clause
	KEEP Clause
	OUT Clause
	PARAMETERS Clause
	PRIMARY KEY Clause
	SCHEMA Clause
	STORE Clause
	STORES Clause

	CHAPTER 9: Queries
	FROM Clause
	FROM Clause: Comma-Separated Syntax
	FROM Clause: ANSI Syntax

	GROUP BY Clause
	GROUP FILTER Clause
	GROUP ORDER BY Clause
	HAVING Clause
	MATCHING Clause
	ON Clause: Join Syntax
	SELECT Clause
	UNION Operator
	WHERE Clause

	CHAPTER 10: Functions
	User-Defined SPLASH Functions
	User-Defined External Functions
	External C/C++ Function Requirements
	Example: Using External C/C++ Functions
	Example: Using Java Functions

	Aggregate Functions
	any()
	avg()
	corr()
	covar_pop()
	covar_samp()
	count()
	count(distinct)
	exp_weighted_avg()
	first()
	first_value()
	last()
	last_value()
	lwm_avg()
	max()
	meandeviation()
	median()
	min()
	nth()
	recent()
	regr_avgx()
	regr_avgy()
	regr_count()
	regr_intercept()
	regr_r2()
	regr_slope()
	regr_sxx()
	regr_sxy()
	regr_syy()
	stddev()
	stddeviation()
	stddev_pop()
	stddev_samp()
	sum()
	valueinserted()
	var_pop()
	var_samp()
	vwap()
	weighted_avg()
	xmlagg()

	Scalar Functions
	Numeric Functions
	acos()
	asin()
	atan()
	atan2()
	avgof()
	bitand()
	bitclear()
	bitflag()
	bitflaglong()
	bitmask()
	bitmasklong()
	bitnot()
	bitor()
	bitset()
	bitshiftleft()
	bitshiftright()
	bittest()
	bittoggle()
	bitxor()
	cbrt()
	ceil()
	compare()
	cos()
	cosd()
	cosh()
	distance()
	distancesquared()
	floor()
	isnull()
	length()
	ln()
	log2()
	log10()
	logx()
	maxof()
	minof()
	nextval()
	pi()
	power()
	random()
	round()
	sign()
	sin()
	sinh()
	sqrt()
	tan()
	tand()
	tanh()

	String Functions
	int32()
	left()
	like()
	lower()
	ltrim()
	patindex()
	real()
	regexp_firstsearch()
	regexp_replace()
	regexp_search()
	replace()
	right()
	rtrim()
	string()
	substr()
	trim()
	trunc()
	upper()

	Conversion Functions
	ascii()
	base64_binary()
	base64_string()
	cast()
	char()
	concat()
	extract()
	fromnetbinary()
	hex_binary()
	hex_string()
	msecToTime()
	secToTime()
	timeToMsec()
	timeToUsec()
	timeToSec()
	to_binary()
	to_bigdatetime()
	to_boolean()
	to_date()
	to_float()
	to_integer()
	to_interval()
	to_long()
	to_money()
	to_xml()
	tonetbinary()
	to_string()
	to_timestamp()
	usecToTime()

	XML Functions
	xmlconcat()
	xmlelement()
	xmlparse()
	xmlserialize()

	Date and Time Functions
	business()
	businessday()
	date()
	dateceiling()
	datefloor()
	datename()
	datepart()
	dateround()
	dayofmonth()
	dayofweek()
	dayofyear()
	hour()
	intdate()
	makebigdatetime()
	microsecond()
	minute()
	month()
	second()
	sysdate()
	systimestamp()
	unbigdatetime()
	undate()
	weekendday()
	year()

	Other Functions
	cacheSize()
	coalesce()
	dateint()
	deleteCache()
	exp()
	firstnonnull()
	get*columnbyindex()
	get*columnbyname()
	getCache()
	getData()
	getmoneycolumnbyindex()
	getmoneycolumnbyname()
	getrowid()
	now()
	rank()
	recordDataToRecord
	recordDataToString
	sind()
	sysbigdatetime()
	totimezone()

	APPENDIX A: List of Keywords
	APPENDIX B: Date and Time Programming
	Time Zones
	Changes to Time Zone Defaults
	List of Time Zones

	Date/Time Format Codes
	Calendar Files

	Index

