SYBASE

Performance and Tuning Series:
Locking and Concurrency Control

Adaptive Server® Enterprise

15.0.2

DOCUMENT ID: DC00938-01-1502-01
LAST REVISED: October 2008

Copyright © 2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

.. vii
INtroduction t0 LOCKING ..vvveieiiiieee e 1
How locking affects performanceccccccvveeiiiciiiiiiie e, 1
Locking and data CONSISIENCYuvieeeiiiiiiiiiiee e 2
Granularity of locks and locking schemes...........ccoccoeveviiiiiciiienens 3
AlIPAGES I0CKING ..eviieiiiiiiiiiiii e 4
Datapages l0CKINGoiuviiiiiieeii e 6
Datarows I0CKINGviieeiiiiiiiiiiee e 7
Types of locks in Adaptive SErver.........cccocvieiiiiiiiiieeeeee e 7
Page and row [0CKSccuuviiiiieiiiiiiiiee e 8
TabIE IOCKS ... 10
DemMand l0CKS.........coiiiiiiiiiie e 13
Row-locked system tables............cccvvviveiieeiiiiiiee e 16
Range locking for serializable readsccccovcvveeiiiiininnnnn. 16
LAECNES ..t 17
Lock compatibility and lock sufficiency.........c.cccccoeciiiiiiiciiiiiinnnnnn. 18
How isolation levels affect I0CKING.........cccccoviviiiiiiiiicee 19
Isolation level 0, read uncommitted...........ccccevviieeciicieee i, 20
Isolation level 1, read committed............coccvveriiiereiiiieie i, 21
Isolation level 2, repeatable readccccco v, 23
Isolation level 3, serializable reads............cccccvvviiiiiiiieinnnnen, 23
Adaptive Server default isolation levelccccccovviiiiennnnnn. 25
Lock types and duration during query processing.........ccccceeevveeenns 26
Lock types during create index commands..........cccccoeeevvvveeen. 29
Locking for select queries at isolation level 1................c......... 29
Table scans and isolation levels 2 and 3...........cccooooieiiieeens 30
When update locks are not requiredcccccvveeeeiiiciiinenneenn. 30
Locking during Or ProCeSSINgcccvvurrieeeeiiiiiiiireeaeesesiiennes 31
Skipping uncommitted inserts during selectsccuu.... 32
Using alternative predicates to skip nonqualifying rows.......... 33
Pseudocolumn-level I0CKING..........cccviiiiiiiiiiieee e 34
Select queries that do not reference the updated column....... 35
Qualifying old and new values for uncommitted updates........ 36

Performance and Tuning Series: Locking and Concurrency Control iii

Contents

CHAPTER 2

CHAPTER 3

CHAPTER 4

RedUuCing CONTENTION ...uvviiiieiiiiiiiiie e 37
Locking Configuration and TUNINGcccvveeeeeeeiien e 39
Locking and performManCe...........cououeieiiiieeeiiiie e 39
Using sp_sysmon and sp_object_statS..........cccccevveeriiiiivinnen. 40
Reducing lock contentionccccvvviieieeeiiiiiiiiecce e, 40
Additional locking guidelinescccoeevviiiiiieeeeeiiiiiieeee e 43
Configuring locks and lock promotion thresholds...............c..c........ 44
Configuring the Adaptive Server lock limit............ccccceeeeiinnnnen, 44
Configuring the lock hashtable (lock manager)....................... 46
Setting lock promotion thresholdscccccoecciiiiiiie e, a7
Choosing the locking scheme for atableccccoocvviiiiiiiniiiiiinnnn, 53
Analyzing existing appliCationsS.............oocvvviiiieeeeiiiiiiiiiieee e 53
Choosing a locking scheme based on contention statistics 54
Monitoring and managing tables after conversion.................. 56
Applications not likely to benefit from data-only locking.......... 56
Optimistic INAEX 10CKINGvoiiiiiiiiiiic e 57
Using optimistic indeX [0CKINGccvvveeeeeiiiiiiieecee e, 58
CautionNs aNd ISSUESeveiiiiiieiiiiiae ettt 58
(o Tod 14T Lo B = =] oo] £ 61
LOCKING tOOIS ...ovveeeeieieiiee e 61
Getting information about blocked processescccuuv.... 61
Viewing locks with sSp_10CK..........eevviieiiiiiiiee e 63
Viewing locks with sp_familylocK............cccccovveeiiiiiiiiie s 66
Intrafamily blocking during network buffer merges.................. 66
Deadlocks and CONCUITENCYcoouurieiiiieieiiiiiee e 67
Server-side versus application-side deadlocks 67
Server task deadlOCKSc.ccvviiiiiiiiiii e 67
Deadlocks and parallel qUErIescovvvviiiiiiiiiieeiiiiiiieeeen 69
Printing deadlock information to the error 10g...........ccccuveeeennn. 70
Avoiding deadloCksccccooiiiiiiiiiic e 71
Identifying tables where concurrency is a problemcccc........ 73
Lock management reportingeeeeeeeeeiiiviiieee e 74
Using Locking Commandscooecciiiiiriireeeeee e senceeeeeee e 77
Specifying the locking scheme for atable............ccccveviieiiiiiiinnnen, 77
Specifying a server-wide locking schemeccccccccevvvvivvnneen. 77
Specifying a locking scheme with create table....................... 78
Changing a locking scheme with alter table..................ocuvveee. 78
Before and after changing locking schemesccccceeeeeen. 79
Expense of switching to or from allpages locking.................... 80

Adaptive Server Enterprise

Contents

CHAPTER 5

Performance and Tuning Series: Locking and Concurrency Control

Sort performance during alter table................cccovvvveee i, 81
Specifying a locking scheme with select intocc........ 81
Controlling isolation 1EVEIS...........ccuvviiiiiiiiiic e 82
Setting isolation levels for a SESSIONcccccovvvviiiiiieen i, 82
Syntax for query-level and table-level locking options 83
Using holdlock, noholdlock, or shared............ccccvevveeiniiiiinnnen. 83
Using the at isolation Clause............cccvvvveeiiiiiiiiiiiieee e 84
Making locks more restrictiveccvveeeeeeiiiiiiiiieeee i 85
Making [0CKS €SS reStriCtiVecoovivviiiiieeeiiiiiiiiee e 86
Readpast I0CKING.........uuiiiie e 86
Cursors and 1oCKiNGvvvveeeiiiiie e 87
Using the shared Keyword............ccocvuvviieeeeeiiiiiiiieee e 88
Additional locking comMmMaNndS............cccuvriiieeeeeiiiiiiieee e 89
[OCK tADIE ... 89
LOCK tIMEOULS ...ttt 90
INAEXES ..ttt et a e e e e e 91
TYPES OF INAEXES ..t 92
INAEX PAGES ... vvveeeieees ittt ettt a e et aae s 93
INAEX SIZE ...t 94
Indexes and PartitionScceeeiirieieiiiie e 95
Local indexes on partitioned tables..............occvvvviviieiniiiiinnnnn. 95
Global indexes on partitioned tablesc..occvvveeiiieiiiiiiinnnn. 95
Local versus global iNdeXesccccvvvviiveeeeiiiiiiiiiee e 96
Unsupported partition indeX types.......cccceeeviiciiiiirieees e, 96
Clustered indexes on allpages-locked tables..............ccccccoovinnnnnn. 96
Clustered indexes and select operationscccccceeevievvnnen. 97
Clustered indexes and insert operations...........cccccveeeiievvvnenn. 98
Page splitting on full data pagesccccccevvvviiiieeeeee e, 99
Page splitting on index pagesccccccvveeriiniiieeeie e 101
Performance impacts of page splittingccccceceeeviiiiinnnnn. 101
OVErflOW PAGES ... 102
Clustered indexes and delete operations............cccccvveeeriinns 103
NONCIUSLErEd INUEXES.....vieiiiiiiiiiiii e 105
Leaf pages revisitedc.vvveviveiiiiiiiiiiie e 105
Nonclustered iNdeX StrUCTUIe...........ccoriiiieriiiiee e 106
Nonclustered indexes and select operations......................... 107
Nonclustered index performanceccccoecvvvvvieeeseiscivnnnnn, 108
Nonclustered indexes and insert operationscc..u..... 109
Nonclustered indexes and delete operations 110
Clustered indexes on data-only-locked tables...................... 111
INAEX COVEIING ..ottt e ettt e e e e e e e e e e e as 111
Covering matching iNdeX SCanSscccuveevieeeiiiiiiiiieiieee s 112
Covering nonmatching index SCansccccccovvvvviiieeieeeniinnns 113

CHAPTER 6

Vi

INdexes and CACNING........ccoiiiiiiiee e 114

Using separate caches for data and index pages.................. 115
Index trips through the cachecccccoiiiiiiii e, 115
Indexing for Concurrency Control.........ccccccviiiiiiiiiiiiiiiiieneenenn. 117
How indexes affect performancecccccccovviiiiiiiieie i, 117
Detecting indexing ProblemS ..o 119
Symptoms of PoOr iNAEXiNGuvevvieeeiiiiiiiiiiiie e 119
Fixing corrupted iNAEXESccoiiiiiiiiiiiiiee e 122
Index limits and requUIremMENtS..........ooivvieiieeeeiiiiiiiee e 125
ChoOSING INAEXES ... 125
Index keys and logical KEYScccvvvvieeeeiiiiiiiiiece e 127
Guidelines for clustered iNdexes..........ccccceeeriiieeiiiiieeeniienn. 127
Choosing clustered iINAEXES..........cevveeeiiiiiiiiiieee e 128
Candidates for nonclustered iNAeXesccocevviieeeriiieeenns 128
Choosing function-based iNdeXes..........cccccveeeviiiiiiieeeeeee s 129
INAEX SEIECHION......eiiiiiiie ittt 129
Other indexing guidelineseevveiiiiiiiiiiiieee e 132
Choosing nonclustered INAEXES..........covvvvviieeeeeiiiiiiiiiieeeeeenn 133
Choosing COMPOSIte INAEXES......civiiiiiiiiiiiiieeee i 134
Key order and performance in composite indexes 134
Advantages and disadvantages of composite indexes.......... 136
Using online reorg rebuild for data-only-locked indexes........ 137
Techniques for choosiNg INAEXESvvvvvieeeeiiiiiiiieee e 137
Choosing an index for a range qQUery.......ccccccceeeecvvveereeeeseenns 137
Adding a point query with different indexing requirements.... 138
Index and statistics MaiNteNaNCecc.eeeiiiiieeeiiiie e 140
Dropping indexes that hurt performanceccccvvveeennn. 140
Choosing space management properties for indexes 140
Additional iNdeXiNg tPScccvvreririiieiiii e 141
Creating artificial COIUMNS...........ooveiiiiiiiiiiie e 141
Keeping index entries short and avoiding overhead.............. 141
Dropping and rebuilding iNdexescccccovviiiiieeeeeniniiiieeenn. 142
Configuring enough sort buffersccoccviiiiin 142
Creating the clustered index firStcccovvveeeiiiiiiiiiieeen 142
Configure large buffer poolscccccoiiiiiiiiiiiiie e 143
ASYNChronouUS 10g SEIVICE.......ccicciiiiiiiiiiiie e 143
Understanding the user log cache (ULC) architecture........... 144
When tO USE ALSoiiiiiiiiee ettt 145
USING ALS ..ot a e e 146
... 147

Adaptive Server Enterprise

About This Book

Audience This manual isintended for database administrators, database designers,
developers and system administrators.

How to use this book e Chapter 1, “Introduction to Locking” — describes the types of locks
that Adaptive Server uses and what types of locksare acquired during
query processing.

e Chapter 2, “Locking Configuration and Tuning” — describes the
impact of locking on performance and describes the tools to analyze
locking problems and configure locking.

e Chapter 3, “Locking Reports” —describesthe system proceduresthat
report on locks and lock contention

e Chapter 4, “Using Locking Commands’ — describes the commands
that set locking schemes for tables and control isolation levels and
other locking behavior during query processing

e Chapter 5, “Indexes’ — provides guidelines and examples for
choosing indexes

e Chapter 6, “Indexing for Concurrency Control” —introduces the
basic query analysis tools that can help you choose appropriate
indexes, and discussesindex selection criteriafor point queries, range
queries, and joins.

Related documents The Adaptive Server® Enterprise documentation set consists of the
following:

e Therelease bulletin for your platform — contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be avail able on the
World Wide Web. To check for critical product or document
information that was added after the release of the product CD, use
the Sybase Technical Library.

e Thelnstallation Guide for your platform — describes installation,
upgrade, and configuration procedures for all Adaptive Server and
related Sybase products.

Performance and Tuning Series: Locking and Concurrency Control vii

viii

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

ASE Replicator User’s Guide — describes how to use the Adaptive Server
Replicator feature of Adaptive Server to implement basic replication from
aprimary server to one or more remote Adaptive Servers.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

The Configuration Guide for your platform — provides instructions for
performing specific configuration tasks for Adaptive Server.

Enhanced Full-Text Search Specialty Data Store User’s Guide —describes
how to use the Full-Text Search feature with Verity to search Adaptive
Server Enterprise data.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Historical Server User’s Guide — describes how to use Historical Server
to obtain performance information for SQL Server® and Adaptive Server.

Java in Adaptive Server Enterprise— describeshow to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Job Scheduler User's Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or agraphical user interface (GUI).

Messaging Service User’s Guide — describes how to use Real Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Performance and Tuning Series —a series of books that explain how to
tune Adaptive Server for maximum performance:

Adaptive Server Enterprise

About This Book

e Basics—the basics for understanding and investigating performance
questions in Adaptive Server.

e Locking and Concurrency Control — describes how the various
locking schemas can be used for improving performance in Adaptive
Server, and how to select indexes to minimize concurrency.

e Query Processing and Abstract Plans — describes how the optimizer
processes queries and how abstract plans can be used to change some
of the optimizer plans.

e Physical Database Tuning — describes how to manage physical data
placement, space allocated for data, and the temporary databases.

e Monitoring Adaptive Server with sp_sysmon — describes how to
monitor Adaptive Server’s performance with sp_sysmon.

e Improving Performance with Satistical Analysis— describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

e Using the Monitoring Tables — describes how to query Adaptive
Server’s monitoring tables for statistical and diagnostic information.

e Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, data types, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

« Reference Manual —isaseries of four books that contains the following
detailed Transact-SQL information:;

e Building Blocks — Transact-SQL datatypes, functions, global
variables, expressions, identifiers and wildcards, and reserved words.

e Commands— Transact-SQL commands.

e Procedures— Transact-SQL system procedures, catal og stored
procedures, system extended stored procedures, and dbcc stored
procedures.

e Tables— Transact-SQL system tables and dbcc tables.
e System Administration Guide

Performance and Tuning Series: Locking and Concurrency Control iX

e \Volume 1 — provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and diagnosing system
problems. The second part of this book is an in-depth description of
security administration.

e Volume 2 —includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of this book describes how to back up and restore system
and user databases.

System Tables Diagram — illustrates system tables and their entity
relationshipsin aposter format. Full-size availableonly in print version; a
compact version is available in PDF format.

Transact-SQL User’s Guide — documents Transact-SQL , the Sybase
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

User Guide for Encrypted Columns — describes how configure and use
encrypted columns with Adaptive Server

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase Failover to configure an Adaptive Server as
acompanion server in a high availability system.

Unified Agent and Agent Management Console — describes the Unified
Agent, which provides runtime services to manage, monitor and control
distributed Sybase resources.

Utility Guide — documents the Adaptive Server utility programs, such as
isql and bep, which are executed at the operating system level.

Web Services User’s Guide — explains how to configure, use, and
troubleshoot Web Services for Adaptive Server.

Adaptive Server Enterprise

About This Book

Other sources of
information

Sybasecertifications
on the Web

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

XML Servicesin Adaptive Server Enter prise—describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manual s Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

Performance and Tuning Series: Locking and Concurrency Control Xi

Sybase EBFs and
software
maintenance

Xii

3

4

In the Certification Report filter select aproduct, platform, and timeframe
and then click Go.

Click a Certification Report title to display the report.

Finding the latest information on component certifications

1

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

Select Search to display the availability and certification report for the
selection.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybase isafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software maintenance

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Adaptive Server Enterprise

About This Book

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions

The following sections describe conventions used in this manual.

SQL isafree-formlanguage. Thereare no rulesabout the number of wordsyou
can put on aline or where you must break aline. However, for readability, all
examples and most syntax statementsin this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual :

Table 1: Font and syntax conventions for this manual

Element

Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font.

master database

Book names, file names, variables, and path namesare
initalics.

System Administration Guide
sql.ini file

column_name
$SYBASE/ASE directory

Variables—or words that stand for valuesthat you fill
in—when they are part of aquery or statement, arein
italicsin Courier font.

select column name
from table name
where search conditions

Type parentheses as part of the command.

compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed optionsisoptional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipeor vertical bar(|) meansyou may select only
one of the options shown.

Performance and Tuning Series: Locking and Concurrency Control

cash | check | credit

Xiii

Element

Example

Anéllipsis(...) meansthat you canrepeat thelast unit buy thing = price [cash | check | credit]

as many times asyou like.

[, thing = price [cash | check | creditl]...

You must buy at least onething and giveitsprice. You may
choose amethod of payment: one of the itemsenclosed in
sguare brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, giveits name, its price, and (optionally) a method of
payment.

Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]
For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italic font shows user-supplied words.

Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

Examples of output from the computer appear as follows:

pub id pub name city state
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples arein lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,

Sele

ct, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sengitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Xiv

Adaptive Server Enterprise

About This Book

Accessibility
features

If you need help

Thisdocument is availablein an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitias, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Performance and Tuning Series: Locking and Concurrency Control XV

XVi Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

This chapter discusses basic |ocking concepts and the locking schemes
and types of locks used in Adaptive Server.

Topic Page
How locking affects performance 1

L ocking and data consi stency 2
Granularity of locks and locking schemes 3
Types of locksin Adaptive Server 7
Lock compatibility and lock sufficiency 18
How isolation levels affect locking 19

L ock types and duration during query processing 26
Pseudocolumn-level locking 34
Reducing contention 37

How locking affects performance

Adaptive Server protects the tables, data pages, or data rows used by
active transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data within and across
transactions. Locking is necessary in amultiuser environment, since
several users may be working with the same data at the same time.

L ocking affects performance when one process holds locks that prevent
another process from accessing needed data. Thisis called lock
contention. The processthat isblocked by thelock sleepsuntil thelock is
released.

A more serious impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have alock on a page,
row, or table and each process wants to acquire alock on the page, row,
or table held by the other. The transaction with the least accumulated CPU
timeiskilled and all of itswork isrolled back.

Performance and Tuning Series: Locking and Concurrency Control 1

Locking and data consistency

Understanding the types of locksin Adaptive Server can help to reduce lock
contention and avoid or minimize deadlocks.

Locking and data consistency

Data consistency means that if multiple users repeatedly execute a series of
transactions, the results are correct for each transaction, each time.
Simultaneous retrievals and modifications of data do not interfere with each
other: the results of queries are consistent.

For example, in Table 1-1, transactions T1 and T2 are attempting to access data
at approximately the sametime. T1 is updating values in a column, while T2
needs to report the sum of the values.

Table 1-1: Consistency levels in transactions

T1

Event sequence T2

begin transaction

update account
set balance = bala
where acct_number

update account
set balance = bala
where acct_number

commit transaction

T1 and T2 start. begin transaction
T1 updates balance

nce - 100 for one account by

= 25 subtracting $100.
T2 queries the sum select sum(balance)
balance, which is off from account

by $100 at this point where acct _number < 50
in time—should it

return results now, or

wait until T1 ends?

commit transaction

nce + 100

_ 45 T1 updates balance of

the other account by
adding the $100.

T1 ends.

If T2runsbefore T1 starts or after T1 compl etes, either execution of T2 returns
the correct value. But if T2 runsin the middle of transaction T1 (after thefirst
update), the result for transaction T2 is different by $100. While such behavior
may be acceptable in some situations, most database transactions must return
correct, consistent results.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

By default, Adaptive Server locks the dataused in T1 until the transaction is
finished. Only then doesit allow T2 to complete its query. T2 “sleeps,” or
pauses in execution, until thelock it needsit isreleased when T1 is compl eted.

The aternative, returning data from uncommitted transactions, is known as a
dirty read. If results do not need to be exact, T2 can read the uncommitted
changes from T1 and return results immediately, without waiting for the lock
to be released.

Locking is handled automatically by Adaptive Server, with optionsthat can be
set at the session and query level by the user. You should know how and when
to use transactions to preserve data consistency while maintaining high
performance and throughput.

Granularity of locks and locking schemes

Thegranularity of locksin adatabase refersto how much of the dataislocked
at onetime. In theory, a database server can lock as much as an entire database
or as little as one column of data. Such extremes affect the concurrency
(number of usersthat can access the data) and locking overhead (amount of
work to process lock requests) in the server. Adaptive Server supports locking
at the table, page, and row level.

By locking at higher levels of granularity, the amount of work required to
obtain and manage locks is reduced. If a query needs to read or update many
rowsin atableit can acquire:

* Atablelevel lock
* Alock for each page that contains a required row
* Alock on each row

Lessoverall work is required when atable-level lock is used, but large-scale
locks can degrade performance by making other users wait until locks are
released. Decreasing lock granularity makes more data accessible to other
users. Finer granularity locks can degrade performance, since more work is
necessary to maintain and coordinate the increased number of locks. To
achieve optimum performance, alocking scheme must balance the needs of
concurrency and overhead.

Adaptive Server provides these locking schemes:

« Allpageslocking, which locks data pages and index pages

Performance and Tuning Series: Locking and Concurrency Control 3

Granularity of locks and locking schemes

Allpages locking

» Datapageslocking, which locks only data pages
e Datarows locking, which locks only data rows

For each locking scheme, Adaptive Server can lock an entiretable, for queries
that acquire many page or row locks, or can lock only the affected pages or
rows.

Note Theterms"data-only-locking” and“ data-only-locked table” refer to both
the datapages and datarows locking schemes, and are typically refered to as
“DOL" tables. Allpages-locked tables are known as“APL” tables.

Allpages locking locks data pages and index pages. When a query updates a
value in arow in an allpages-locked table, the data page is locked with an
exclusive lock. Any index pages affected by the update are also locked with
exclusivelocks. Theselocks are transactional, meaning that they are held until
the end of the transaction.

Figure 1-1 shows the locks acquired on data pages and indexes while a new
row is being inserted into an allpages-locked table.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Figure 1-1: Locks held during allpages locking

A

In many cases, concurrency problems that result from allpages locking arise
from the index page locks, rather than the locks on the data pages themsel ves.
Data pages have longer rows than indexes, and often have a small number of
rows per page. If index keysare short, an index page can store between 100 and
200 keys. An exclusive lock on an index page can block other users who need
to access any of therowsreferenced by theindex page, afar greater number of
rows than on alocked data page.

erformance and Tuning Series: Locking and Concurrency Contro 5

Granularity of locks and locking schemes

Datapages locking

In datapages locking, entire data pages are still locked, but index pages are not
locked. When arow needs to be changed on a data page, that page is |ocked,
and the lock is held until the end of the transaction. The updates to the index
pages are performed using latches, which are nontransactional. Latches are
held only as long as required to perform the physical changes to the page and
are then released immediately. Index page entries are implicitly locked by
locking the data page. No transactional locks are held on index pages. See
“Latches’ on page 17 and “ Choosing a locking scheme based on contention
statistics” on page 54 for more information.

Figure 1-2 showsan insert into adatapages-locked table. Only the affected data
pageis locked.

Figure 1-2: Locks held during datapages locking

insert authors values ("Mark", "Twain")

Index on FirstName Index on LastName

Index leaf

Mark 10,1

T Pa0ev0 \ Index leaf
\\‘
“\M Twain 10,1

Legend
Locked
Unlocked

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Datarows locking

In datarows locking, row-level locks are acquired on individual rows on data
pages. Index rows and pages are not locked. When arow is changed on a data
page, a nontransactional latch is acquired on the page. The latch is held while
the physical change is made to the data page, then the latch isreleased. The
lock on the datarow isheld until the end of the transaction. Theindex rows are
updated, using latches on the index page, but are not locked. Index entries are
implicitly locked by acquiring alock on the data row.

Figure 1-3 showsaninsert into adatarows-locked table. Only the affected data
row islocked.

Figure 1-3: Locks held during datarows locking

insert authors values ("Mark", "Twain")

Index on FirstName Index on LastName
Index leaf Page 10 Index leaf
Mark 10,1 Mark Twain Twain 10,1
[T T]
Legend ﬂT
Locked
Unlocked

Types of locks in Adaptive Server

Adaptive Server has two levels of locking:

» Pagelocks or table locks are used for tables that use allpages locking or
datapages locking.

* Row locks or table locks are used for tables that use datarows locking.

Performance and Tuning Series: Locking and Concurrency Control 7

Types of locks in Adaptive Server

Page or row locks are lessrestrictive (or smaller) than table locks. A pagelock
locks al the rows on a data page or an index page; atable lock locks an entire
table. A row lock locks only asingle row on apage. Adaptive Server uses page
or row locks whenever possible to reduce contention and to improve
concurrency.

Adaptive Server usesatablelock to provide moreefficient locking when an
entire table or alarge number of pages or rows is accessed by a statement.
Locking strategy is directly tied to the query plan, so aquery plan can be as
important for itslocking strategies as for its I/O implications. For data-only-
locked tables, an update or delete statement without a useful index performs a
table scan and acquires atable lock. For example, the following statement
acquiresatablelock if theaccount table usesthe datarows or datapages|ocking
scheme:

update account set balance = balance * 1.05

An update or delete statement using an index begins by acquiring page or row
locks. It acquires atable lock only when alarge number of pages or rows are
affected. To avoid the overhead of managing hundreds of locks on atable,
Adaptive Server uses alock promotion threshold setting (configured with
sp_setpglockpromote). Once table scan accumulates more page or row locks
than allowed by thelock promotion threshold, Adaptive Server triestoissue
atable lock. If it succeeds, the page or row locks are no longer necessary and
arereleased. See“ Configuring locks and lock promotion thresholds’ on page
44,

Adaptive Server chooses which type of lock to use after it determines the
query plan. Theway aquery or transaction iswritten can affect the type of lock
the server chooses. You can force the server to make certain locks more or less
restrictive by specifying options for select queries or by changing the
transaction’s isolation level. See “Controlling isolation levels’ on page 82.
Applications can use the lock table command to explicitly request a table lock.

Page and row locks
This section describes the types of page and row locks:

8 Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

e Shared locks— Adaptive Server applies shared locksfor read operations.
If ashared lock has been applied to a data page or datarow or to an index
page, other transactions can also acquire ashared lock, even when thefirst
transaction is active. However, no transaction can acquire an exclusive
lock on the page or row until all shared locks on the page or row are
released. This means that many transactions can simultaneously read a
page or row, but no transaction can change data on the page or row while
ashared lock exists. Transactions that require an exclusive lock wait for,
or “block,” for the release of the shared locks before continuing.

By default, Adaptive Server releases shared locks after it finishes scanning
the page or row. It does not hold shared locks until the statement is
completed or until the end of the transaction unless requested to do so by
the user. For more details on how shared locks are applied, see “Locking
for select queries at isolation level 1" on page 29.

e Exclusive locks — Adaptive Server applies an exclusive lock for adata
maodification operation. When atransaction has an exclusive lock, other
transactions cannot acquire alock of any kind on the page or row until the
exclusive lock is released at the end of its transaction. The other
transactions wait or “block” until the exclusive lock is released.

« Update locks— Adaptive Server applies an update lock during theinitial
phase of an update, delete, or fetch (for cursors declared for update)
operation while the page or row is being read. The update lock allows
shared |ocks on the page or row, but does not alow other update or
exclusive locks. Update locks help avoid deadlocks and lock contention.
If the page or row needs to be changed, the update lock is promoted to an
exclusive lock as soon as no other shared locks exist on the page or row.

In general, read operations acquire shared locks, and write operations acquire
exclusive locks. For operations that delete or update data, Adaptive Server
applies page-level or row-level exclusive and update locks only if the column
used in the search argument is part of anindex. If noindex exists on any of the
search arguments, Adaptive Server must acquire atable-level lock.

The examplesin Table 1-2 show what kind of page or row locks Adaptive
Server uses for basic SQL statements. For these examples, there is an index
acct_number, but no index on balance.

Table 1-2: Page locks and row locks

Statement Allpages-locked table Datarows-locked table

select balance Shared page lock Shared row lock
from account
where acct_number = 25

Performance and Tuning Series: Locking and Concurrency Control 9

Types of locks in Adaptive Server

Statement

Allpages-locked table

Datarows-locked table

insert account values

(34, 500)

Exclusive page lock on data page
and exclusive page lock on leaf-
level index page

Exclusive row lock

delete account

Update page locks followed by

Update row locks followed by

where acct_number = 25 exclusive page locks on datapages exclusive row locks on each
and exclusive page locks on leaf- affected row
level index pages
update account Update page lock on datapageand Update row locks followed by
set balance = 0 exclusive page lock on data page exclusive row locks on each
where acct number = 25 affected row

Table locks

10

This section describes the types of table locks.

Intent lock — indicates that page-level or row-level locks are held on a
table. Adaptive Server applies an intent table lock with each shared or
exclusive page or row lock, so an intent lock can be either an exclusive
lock or a shared lock. Setting an intent lock prevents other transactions
from acquiring conflicting table-level locks on the table containing the
locked page. Anintent lock is held aslong as page or row locks are in
effect for the transaction.

Shared lock — similar to a shared page or row lock, except that it affects
the entire table. For example, Adaptive Server applies a shared table lock
for aselect command with a holdlock clauseif the command does not use
an index. A create nonclustered index command also acquires a shared
table lock.

Exclusive lock — similar to an exclusive page or row lock, except that it
affectsthe entiretable. For example, Adaptive Server appliesan exclusive
tablelock during a create clustered index command. update and delete
statements on data-only-locked tables require exclusive tablelocksif their
search arguments do not reference indexed columns of the object.

The examplesin Table 1-3 show the respective page, row, and table locks of
page or row locks Adaptive Server uses for basic SQL statements. For these
examples, thereis an index on acct_number.

Adaptive Server Enterprise

CHAPTER 1

Introduction to Locking

Table 1-3: Table locks applied during query processing

Statement

Allpages-locked table

Datarows-locked table

select balance from account
where acct_number = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

insert account values
(34, 500)

Intent exclusive table lock
Exclusive page lock on data page
Exclusive page lock on leaf index

pages

Intent exclusive table lock
Exclusive row lock

delete account
where acct_number = 25

Intent exclusive table lock

Update page locks followed by
exclusive page locks on data pages
and leaf-level index pages

Intent exclusive table lock
Update row locks followed by
exclusive row locks on data
rows

update account
set balance = 0
where acct_number = 25

Intent exclusive table lock

Update page locks followed by
exclusive page locks on data pages
and leaf-level index pages

Withanindex onacct_number,
intent exclusive table lock
Update row locks followed by
exclusive row locks on data
rows. With no index on a data-
only-locked table, exclusive
table lock

Exclusive table locks are also applied to tables during select into operations,
including temporary tables created with tempdb..tablename syntax. Tables

created with #tablename arerestricted to the sole use of the processthat created
them, and are not locked.

Commands that take intent locks

Versions of Adaptive Server earlier than 15.0.2 used table locksto achive
system catalog synchronization. Adaptive Server version 15.0.2 and later uses
intent locks for table-level synchronization and row locks for row-level
synchronization. Earlier releases of Adaptive Server locked the entire system
catal og whil e performing operations on the object, so asinglelock request was
made. However, Adaptive Server version 15.0.2 and later requestslocksfor all
applicable rowswhile performing operations on the abject if there are multiple
rows corresponding to an object in a system catal og.

This change meansthat Adaptive Server version 15.0.2 and later requests more
locks to perform the same operation than earlier releases, and increases the
number of lock resources the system needs. Consequently, you may need to
change the number of locks configuration option after you upgrade Adaptive
Server.

These commands take intent locks in Adaptive Server version 15.0.2 later
when they update a system table:

Performance and Tuning Series: Locking and Concurrency Control 11

Types of locks in Adaptive Server

* create table

* drop table

* create index

* drop index

* create view

e drop view

* create procedure

* drop procedure

* create trigger

* drop trigger

e create default

* drop default

e createrule

e drop rule

e create function

* drop function

* create functional index
* drop functional index

* create computed column
* drop computed column
¢ selectinto

e alter table (all versions)
* create schema

* reorg rebuild

If two or more of these commands simultaneously access or update the same
system table, their intent locks do not conflict with each other so they do not
block on the system table.

The sp_fixindex and sp_spaceusage System procedures provide information
about the row-locked catalogs.

12 Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Demand locks

Adaptive Server setsademand lock to indicate that atransaction isnext inthe
gueue to lock atable, page, or row. Since many readers can hold shared locks
on agiven page, row, or table, tasks that require exclusive locks are queued
after atask that already holds a shared lock. Adaptive Server allows up to three
readers’ tasksto skip ahead of a queued update task.

After awrite transaction has been skipped by threetasks or families (inthe case
of queriesrunning in parallel) that acquire shared locks, Adaptive Server gives
ademand lock to the write transaction. Any subsequent requests for shared

locks are queued behind the demand lock, as shown in Figure 1-4 on page 14.

As soon asthe readers queued ahead of the demand | ock releasetheir locks, the
write transaction acquiresits lock and can proceed. The read transactions
gueued behind the demand lock wait for the write transaction to finish and
release its exclusive lock.

Adaptive Server uses demand locksto avoid lock starvation for write
transactions (when the required number of locks are not available).

Demand locking with serial execution

Figure 1-4 illustrates how the demand lock scheme works for serial query
execution. It shows four tasks with shared locks in the active lock position,
meaning that all four tasks are currently reading the page. These tasks can
accessthe same page simultaneously because they hold compatible locks. Two
other tasks are in the queue waiting for locks on the page. Here is a series of
eventsthat could lead to the situation shown in Figure 1-4 on page 14:

e Originally, task 2 holds a shared lock on the page.

e Task 6 makesan exclusivelock request, but must wait until the shared lock
is released because shared and exclusive locks are not compatible.

* Task 3makesashared lock request, whichisimmediately granted because
all shared locks are compatible.

e Tasks 1 and 4 make shared lock requests, which are also immediately
granted for the same reason.

e Task 6 has now been skipped three times, and is granted a demand lock.

e Task 5 makesashared lock request. It is queued behind task 6's exclusive
lock request because task 6 holds ademand lock. Task 5 is the fourth task
to make a shared page request.

Performance and Tuning Series: Locking and Concurrency Control 13

Types of locks in Adaptive Server

o Aftertasks 1, 2, 3, and 4 finish their reads and rel ease their shared locks,

task 6 is granted its exclusive lock.

» Aftertask 6 finishesitswrite and releasesits exclusive pagelock, task 5is

granted its shared page lock.

Figure 1-4: Demand locking with serial query execution

Active lock Demand lock Sleep wait

Page

Shared
page

Exclusive
page

Demand locking with parallel execution

14

When queries run in parallel, demand locking treats all shared locks from a
family of worker processes asthough they were asingletask. The demand lock
permits reads from three families (or atotal of three serial tasks and families
combined) before granting the exclusive lock.

Figure 1-5illustrates how the demand lock scheme workswhen parallel query
execution is enabled. The figure shows six worker processes from three
families with shared locks. A task waits for an exclusive lock, and aworker
process from afourth family waits behind the task. Here is a series of events
that could lead to the situation shown in Figure 1-5:

e Originally, worker process 1:3 (worker process 3 from a family with
family 1D 1) holds a shared lock on the page.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Task 9 makesan exclusivelock regquest, but must wait until the shared lock
isreleased.

Worker process 2:3 requests a shared lock, which isimmediately granted
because shared locks are compatible. The skip count for task 9 isnow 1.

Worker processes 1:1, 2:1, 3:1, task 10, and worker processes 3:2 and 1:2
are consecutively granted shared lock requests. Sincefamily ID 3 and task
10 have no prior locks queued, the skip count for task 9 isnow 3, and task
9 isgranted ademand lock.

Finally, worker process 4:1 makes a shared lock request, but it is queued
behind task 9's exclusive lock request.

Any additional shared lock requests from family IDs 1, 2, and 3 and from
task 10 are queued ahead of task 9, but all requests from other tasks are
queued after it.

After al thetasksintheactivelock position releasetheir shared locks, task
9isgranted its exclusive lock.

After task 9 releases its exclusive page lock, task 4:1 is granted its shared
page lock.

Performance and Tuning Series: Locking and Concurrency Control 15

Types of locks in Adaptive Server

Figure 1-5: Demand locking with parallel query execution

Active lock Demand lock Sleep wait

Page

Exclusive
Page

Row-locked system tables

System tables—except message tables, fake tables (nonrow-oriented tables),
and logs—in Adaptive Server version 15.0 and later are row-locked. These
tables no longer have a clustered index, but instead have a* placement” index,
withanew index ID. Pagesat thedatalevel for Adaptive Server are not chained
together, and table starting locations are no longer set, but are randomly

generated.

Range locking for serializable reads

16

Rowsthat can appear or disappear from aresultsset are called phantoms. Some
queriesthat require phantom protection (queries at isolation level 3) userange

locks. See “How isolation levels affect locking” on page 19.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Latches

Isolation level 3 requires serializable reads within the transaction. A query at
isolation level 3 that performstwo read operationswith the same query clauses
should return the same set of results each time. No other task be modify:

e Oneof theresult rowssothat it no longer qualifiesfor the serializable read
transaction, by updating or deleting the row

* Arow thatisnot included in the serializabl e read result set so that the row
now qualifies, or insert arow that would qualify for the result set

Adaptive Server uses range locks, infinity key locks, and next-key locksto
protect against phantoms on data-only-locked tables. Allpages-locked tables
protect against phantoms by holding locks on the index pages for the
serializable read transaction.

When aquery at isolation level 3 (serializable read) performs arange scan
using an index, al the keys that satisfy the query clause are locked for the
duration of the transaction. Also, the key that immediately followstherangeis
locked, to prevent new values from being added at the end of therange. If there
isno next valuein the table, an infinity key lock is used as the next key, to
ensure that no rows are added after the last key in the table.

Range locks can be shared, update, or exclusive locks; depending on the
locking scheme, they are either row locks or page locks. sp_lock output shows
“Fam dur, Range” in the context column for range locks. For infinity key locks,
sp_lock shows alock on a nonexistent row, row 0 of the root index page and
“Fam dur, Inf key” in the context column.

Every transaction that performs an insert or update to a data-only-locked table
checks for range locks.

L atches are nontransactional synchronization mechanisms used to guarantee
the physical consistency of apage. While rows are being inserted, updated, or
deleted, only one Adaptive Server process can access the page. Latches are
used for datapages and datarows locking, but not for allpages locking.

The most important distinction between alock and alatch is duration:

* Alock can persist for along period of time: while apage is being scanned,
while adisk read or network write takes place, for the duration of a
statement, or for the duration of a transaction.

Performance and Tuning Series: Locking and Concurrency Control 17

Lock compatibility and lock sufficiency

« Alatchisheld only for thelength of timerequired to insert or move afew
bytes on a data page, to copy pointers, columns, or rows, or to acquire a
latch on another index page.

Lock compatibility and lock sufficiency

Two basic concepts support issues of locking and concurrency:

» Lock compatibility —if atask holds alock on a page or row, can another
task also hold alock on the page or row?

» Lock sufficiency, for the current task—is the current lock held on a page or
row sufficient if the task needs to access the page again?

Lock compatibility affects performance when users must acquire alock on a
row or page, and that row or page is aready locked by another user with an
incompatible lock. The task that needs the lock waits, or blocks, until the
incompatible locks are rel eased.

Lock sufficiency workswith lock compatibility. If alock is sufficient, the task
does not need to acquire adifferent type of lock. For example, if atask updates
arow in atransaction, it holds an exclusive lock. If the task then selects from
the row before committing the transaction, the exclusive lock on therow is
sufficient; the task does not need to make an additional lock request. The
opposite caseis not true: if atask holds a shared lock on a page or row, and
wantsto update the row, the task may need to wait to acquire its exclusive lock
if other tasks also hold shared locks on the page.

Table 1-4 summarizesthe information about lock compatibility, showing when
locks can be acquired immediately.

Table 1-4: Lock compatibility

Can another process immediately acquire:

A shared An update An exclusive A shared An exclusive
If one process has: lock? lock? lock? intent lock? intent lock?
A shared lock Yes Yes No Yes No
An update lock Yes No No N/A N/A
An exclusive lock No No No No No
A shared intent lock Yes N/A No Yes Yes
An exclusive intent lock No N/A No Yes Yes

18

Table 1-5 shows the lock sufficiency matrix.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Table 1-5: Lock sufficiency

Is that lock sufficient if the task needs:

If a task has: A shared lock An update lock An exclusive lock
A shared lock Yes No No
An update lock Yes Yes No
An exclusive lock Yes Yes Yes

How isolation levels affect locking

The SQL standard defines four levels of isolation for SQL transactions. Each
isolation level specifiesthe kinds of interactions that are not permitted while
concurrent transactions are executing—that is, whether transactions are
isolated from each other, or if they can read or update information in use by
another transaction. Higher isolation levelsinclude the restrictionsimposed by
the lower levels.

Theisolation levels are summarized in Table 1-6, and are described in more
detail on the following pages.

Table 1-6: Transaction isolation levels

Number Name Description

0 read uncommitted The transaction is allowed to read uncommitted changes to data.

1 read committed The transaction is allowed to read only committed changes to data.

2 repeatable read The transaction can repeat the same query, and no rows that have
been read by the transaction are updated or del eted.

3 serializable read The transaction can repeat the same query, and receive exactly the

same results. No rows can be inserted that appear in the result set.

You can choosetheisolation level for all select queries during a session, or you
can choose theisolation level for a specific query or table in atransaction.

At all isolationlevels, all updatesacquire exclusive locks and hold them for the
duration of the transaction.

Note For tablesthat use alpages locking, requesting isolation level 2 also
enforcesisolationlevel 3. The Adaptive Server default isolation level islevel 1.

Performance and Tuning Series: Locking and Concurrency Control 19

How isolation levels affect locking

Isolation level 0, read uncommitted

Level 0, aso known as read uncommitted, allows atask to read uncommitted
changes to data in the database. Thisis also known as adirty read, since the
task can display resultsthat arelater rolled back. Table 1-7 showsasel ect query
performing a dirty read.

Table 1-7: Dirty reads in transactions

T3

Event sequence T4

begin transaction

update account

set balance = balance - 100 for one account by

where acct_number

rollback transaction

T3 and T4 start. begin transaction
T3 updates balance

= 25 subtracting $100.
T4 queries current select sum(balance)
sum of balance for from account
accounts. where acct_number < 50
T4 ends commit transaction
T3rolls back,
invalidating the
results from T4.

20

If transaction T4 queries the table after T3 updatesit, but before it rolls back
the change, the amount calculated by T4 is off by $100.The update statement
in T3 acquires an exclusive lock on account. However, T4 does not try to
acquire ashared lock before querying account, so it is not blocked by T3. The
oppositeisalso true. If T4 beginsto query account at isolation level 0 before
T3 starts, T3 can still acquire its exclusive lock on account while T4's query
executes, because T4 does not hold any locks on the pages it reads.

Atisolation level O, Adaptive Server performs dirty reads by:

» Allowing another task to read rows, pages, or tables that have exclusive
locks; that is, to read uncommitted changes to data.

» Not applying shared locks on rows, pages, or tables being searched.

Any datamodificationsthat are performed by T4 whiletheisolation level isset
to O acquireexclusivelocksat therow, page, or table level, and block if thedata
they need to changeis locked.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

If the table uses allpages locking, a unique index is required to perform an
isolation level O read, unlessthe databaseis read-only. Theindex isrequired to
restart the scan if an update by another process changes the query’s result set
by modifying the current row or page. Forcing the query to use atable scan or
anonunigque index can lead to problems if thereis significant update activity
on the underlying table, and is not recommended.

Applications that can use dirty reads may see better concurrency and fewer
deadl ocks than when the same data is accessed at a higher isolation level. If
transaction T4 requires only an estimate of the current sum of account
balances, which probably changes frequently in avery activetable, T4 should
query the table using isolation level 0. Other applications that require data
consistency, such as queries of deposits and withdrawals to specific accounts
in the table, should avoid using isolation level O.

Isolation level O can improve performance for applications by reducing lock
contention, but can impose performance costs in two ways:

« Dirty reads make in-cache copies of dirty datathat the isolation level 0
application needs to read.

e If adirty read is active on arow, and the data changes so that the row is
moved or deleted, the scan must be restarted, which may incur additional
logical and physical 1/0.

During deferred update of a data row, there can be a significant time interval
between the delete of theindex row and theinsert of the new index row. During
thisinterval, there is no index row corresponding to the data row. If a process
scanstheindex during thisinterval at isolation level O, it doesnot returntheold
or new value of the data row. See “ Deferred updates” in Chapter 1,
“Understanding Query Processing” in Performance and Tuning Series. Query
Processing and Abstract Plans.

sp_sysmon reports on these factors. See “Data Cache Management” in
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Isolation level 1, read committed

Level 1, also known as read committed, prevents dirty reads. Queries at level
1 can read only committed changesto data. At isolation level 1, if atransaction
needs to read a row that has been modified by an incomplete transaction in
another session, the transaction waits until the first transaction completes
(either commits or rolls back.)

Performance and Tuning Series: Locking and Concurrency Control 21

How isolation levels affect locking

For example, compare Table 1-8, showing a transaction executed at isolation
level 1, to Table 1-7, showing adirty read transaction.

Table 1-8: Transaction isolation level 1 prevents dirty reads

T5

Event sequence T6

begin transaction

update account

T5 and T6 start. begin transaction

T5 updates account

set balance = balance - 100 after getting

where acct_number

= 25 exclusive lock.
T6triestoget shared select sum(balance)
lock to query account from account

but must wait until where acct_number < 50

T5 releasesits lock.

rollback transaction

T5 ends and releases
itsexclusive lock.
commit transaction
T6 gets shared lock,
queries account, and
ends.

22

When the update statement intransaction T5 executes, Adaptive Server applies
an exclusivelock (arow-level or page-level lock if acct_number isindexed,;
otherwise, atable-level lock) on account.

If T5 holdsan exclusivetablelock, T6 blockstrying to acquireits shared intent
tablelock. If T5 holds exclusive page or exclusive row locks, T6 can begin
executing, but isblocked whenit triesto acquire ashared lock on apage or row
locked by T5. The query in T6 cannot execute (preventing the dirty read) until
the exclusive lock is released, when T5 ends with the rollback.

While the query in T6 holdsiits shared lock, other processes that need shared
locks can access the same data, and an update lock can also be granted (an
update lock indicates the read operation that precedes the exclusive-lock write
operation), but no exclusivelocks are allowed until all shared locks have been
released.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Isolation level 2, repeatable read

Level 2 prevents nonrepeatable reads. These occur when one transaction
reads arow and a second transaction modifies that row. If the second
transaction commits its change, subsequent reads by the first transaction yield
results that are different from the original read. Isolation level 2 is supported
only on data-only-locked tables. In asession at isolation level 2, isolation level
3isalso enforced on any tables that use the allpages locking scheme. Table 1-
9 shows a nonrepeatable read in atransaction at isolation level 1.

Table 1-9: Nonrepeatable reads in transactions

T7 Event sequence T8
begin transaction T7 and T8 start. begin transaction
select balance T7 queriesthe balance
from account for one account.
where acct_number = 25
T8 updatesthebalance
for that same account. update account
set balance = balance - 100
where acct number = 25
T8 ends.

commit transaction

T7 makes same query
as before and gets
different results.

select balance
from account
where acct_number = 25

commit transaction T7 ends.

If transaction T8 modifies and commits the changes to the account table after
thefirst query in T7, but before the second one, the same two queriesin T7
produce different results. Isolation level 2 blocks T8 from executing. It would
also block atransaction that attempted to delete the selected row.

Isolation level 3, serializable reads

Level 3 prevents phantoms. Phantoms occur when one transaction reads a set
of rows that satisfy a search condition, and then a second transaction modifies
the data (through an insert, delete, or update statement). If the first transaction
repeats the read with the same search conditions, it obtains a different set of
rows. In Table 1-10, transaction T9, operating at isolation level 1, seesa
phantom row in the second query.

Performance and Tuning Series: Locking and Concurrency Control 23

How isolation levels affect locking

Table 1-10: Phantoms in transactions

T9

Event sequence T10

begin transaction

select * from acco
where acct_number

select * from acco
where acct_number

commit transaction

T9 and T10 start.

unt
< 25

T9 queriesa certain set
of rows.

T10 inserts arow that
meets the criteriafor
the query in T9.

T10 ends.

unt

T9 makes the same
< 25

guery and gets a
new row.

T9 ends.

values

begin transaction

insert into account
(acct_number, balance)
(19,

500)

commit transaction

24

If transaction T10 inserts rows into the table that satisfy T9's search condition
after T9 executes thefirst select, subsequent reads by T9 using the same query

result in adifferent set of rows.

Adaptive Server prevents phantoms by:

» Applying exclusivelockson rows, pages, or tablesbeing changed. It holds

those locks until the end of the transaction.

» Applying shared locks on rows, pages, or tables being searched. It holds

those locks until the end of the transaction.

» Using range locks or infinity key locks for certain queries on data-only-

locked tables.

Holding the shared locks allows Adaptive Server to maintain the consistency
of the results at isolation level 3. However, holding the shared lock until the
transaction ends decreases Adaptive Server concurrency by preventing other
transactions from getting their exclusive locks on the data.

Compare the phantom, shown in Table 1-10, with the same transaction
executed at isolation level 3, as shown in Table 1-11.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Table 1-11: Avoiding phantoms in transactions

T11

Event sequence

T12

begin transaction

select * from
account holdlock
where acct_number < 25

select * from
account holdlock
where acct_number < 25

commit transaction

T11 and T12 start.

T11 queries account
and holds acquired
shared locks.

T12 triesto insert row
but must wait until T11
releasesits locks.

T11 makes same query
and gets same results.

T11 ends and releases
its shared locks.

T12 getsits exclusive
lock, inserts new row,
and ends.

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

In transaction T11, Adaptive Server applies shared page locks and holds the
locksuntil theend of T11. (If account isadata-only-locked table, and no index
existsontheacct_number argument, ashared tablelock isacquired.) Theinsert
in T12 cannot get its exclusive lock until T11 releasesits shared locks. If T11
isalong transaction, T12 (and other transactions), may wait for longer periods
of time. Use level 3 only when required.

Adaptive Server default isolation level

Adaptive Server’'s default isolation level is 1, which prevents dirty reads.
Adaptive Server enforces isolation level 1 by:

* Applying exclusive locks on pages or tables being changed. It holdsthose
locks until the end of the transaction. Only a process at isolation level 0
can read a page locked by an exclusive lock.

« Applying shared locks on pages being searched. It releases those locks
after processing the row, page, or table.

Performance and Tuning Series: Locking and Concurrency Control 25

Lock types and duration during query processing

Using exclusive and shared locks allows Adaptive Server to maintain the
consistency of the results at isolation level 1. Releasing the shared lock after
the scan moves off a page improves Adaptive Server concurrency by allowing
other transactions to obtain their exclusive locks on the data.

Lock types and duration during query processing

26

The types and the duration of locks acquired during query processing depend
on thetype of command, thelocking scheme of thetable, and theisolation level
at which the command isrun.

Thelock duration depends on the isolation level and the type of query. Lock
duration can be:

» Scan duration —locks are rel eased when the scan moves off the row or
page, for row or page locks, or when the scan of the table completes, for
table locks.

» Statement duration — locks are released when the statement execution
compl etes.

» Transaction duration —locks are released when the transaction compl etes.

Table 1-12 shows the types of locks acquired by queries at different isolation
levels, for each locking scheme for queriesthat do not use cursors. Table 1-13
shows information for cursor-based queries.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Table 1-12: Lock type and duration without cursors

Data Index Data
Isolation Locking Table page page row
Statement level scheme lock lock lock lock Duration
select 0 Allpages - - - - No locks are acquired.
readtext Datapages - - - -
any type of Datarows - - - -
scan 1 Allpages IS S S - * Depends on setting of read
2 with Datapages IS * - - committed with lock. See
noholdlock Datarows IS - - * “Locking for select queries at
3 with isolation level 1" on page 29.
noholdlock
2 Allpages IS S S - Locks are released at the end
Datapages IS S - - of the transaction. See
Datarows IS - - S “Isolation level 2 and
allpages-locked tables’ on
page 30.
select via 3 Allpages IS S S - Locks are released at the end
indexscan 1withholdlock Datapages 1S S - - of the transaction.
2withholdlock Datarows IS - - S
select 3 Allpages IS S - - Locks are released at the end
via 1withholdlock Datapages S - - - of the transaction.
table scan 2withholdlock Datarows S - - -
insert 0,123 Allpages IX X X - Locks are released at the end
Datapages X X - - of the transaction.
Datarows IX - - X
writetext 0,123 Allpages IX X - - Locks are held on first text
Datapages X X - - page or row; locksreleased at
Datarows IX - - X the end of the transaction.
delete 0,12 Allpages IX U, X U, X - “U” locks are released after
update Datapages X U, X - - the statement compl etes.
any type of Datarows X - - U, X “IX" and “X” locks are
scan released at the end of the
transaction.
delete 3 Allpages IX U, X U, X - “U” locks are released after
update Datapages X U, X - - the statement completes. “1X”
viaindex Datarows IX - - U, X and “ X" locks are released at
scan the end of the transaction.
delete 3 Allpages IX U, X - - Locks are released at the end
update Datapages X - - - of the transaction.
viatable Datarows X - - -
scan

Key: ISintent shared, IX intent exclusive, Sshared, U update, X exclusive

Performance and Tuning Series: Locking and Concurrency Control

27

Lock types and duration during query processing

Table 1-13: Lock type and duration with cursors

Data Index Data
Isolation Locking Table page page row
Statement level scheme lock lock lock lock Duration
select 0 Allpages - - - - No locks are acquired.
(without for Datapages - - - -
clause) Datarows - - - -
select... for 1 Allpages IS S [- * Depends on setting of read
read only 2 with Datapages IS * - - committed with lock. See
noholdlock Datarows IS - - * “Locking for select queries
3 with at isolation level 1" on page
noholdlock 29.
2,3 Allpages IS S S - L ocks become transactional
1 with holdlock ~ Détapages IS S - - after the cursor moves out of
2 with holdlock Datarows IS - - S the page/row. Locks are
released at the end of the
transaction.
select...for 1 Allpages I1X U, X X - “U” locks are released after
update Datapages X U, X - - the cursor moves out of the
Datarows IX - - U, X page/row. “1X” and “X”
locks are released at the end
of the transaction.
select...for 1 Allpages IX S, X X - “S’ locks are released after
update with Datapages X S, X - - the cursor moves out of
shared Datarows I1X - S X page/row. “1X” and “X”
locks are released at the end
of the transaction.
select...for 2,3, 1 holdlock Allpages IX U, X X - L ocks become transactional
update 2, holdlock Datapages IX ux - - after the cursor moves out of
Datarows I1X - - U, X thepage/row. Locks are
released at the end of the
transaction.
select...for 2,3 Allpages IX S, X X - L ocks become transactional
update with q with holdlock ~ Datapages X SX - - after the cursor moves out of
shared Datarows IX - - S, X the page/row. Locks are

2 with holdlock

released at the end of the
transaction.

Key: ISintent shared, IX intent exclusive, Sshared, U update, X exclusive

28

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Lock types during create index commands

Table 1-14 describes the types of locks applied by Adaptive Server for create
index statements:

Table 1-14: Summary of locks during create index statements

Statement Table lock Data page lock
create clustered index X -
create nonclustered index S -

Key: S= shared, X = exclusive

Locking for select queries at isolation level 1

When aselect query on an allpages-locked table performs a table scan at
isolation level 1, it first acquires a shared intent lock on the table and then
acquires a shared lock on the first data page. It locks the next data page, and
dropsthelock onthefirst page, so that the locks“walk through” the result set.
As soon as the query completes, the lock on the last data pageis rel eased, and
then the table-level lock isreleased. Similarly, during index scans on an
allpages-locked table, overlapping locks are held asthe scan descendsfrom the
index root page to the data page. Locks are al so held on the outer table of ajoin
while matching rows from the inner table are scanned.

select querieson data-only-locked tablesfirst acquire ashared intent tablelock.
You can configure locking behavior on data pages and data rows issuing the
parameter read committed with lock, as follows:

e If read committed with lock is set to O (the default), then select queries read
the column values with instant-duration page or row locks. The required
column values or pointers for the row are read into memory, and the lock
isreleased. Locks are not held on the outer tables of joinswhile rowsfrom
the inner tables are accessed. This reduces deadlocking and improves
concurrency.

If aselect query needsto read arow that islocked with an incompatible
lock, the query still blocks on that row until the incompatible lock is
released. Setting read committed with lock to O does not affect the isolation
level; only committed rows are returned to the user.

e If read committed with lock is set to 1, select queries acquire shared page
locks on datapages-locked tables and shared row locks on datarows-
locked tables. The lock on the first page or row is held, then the lock is
acquired on the second page or row and the lock on the first page or row
is dropped.

Performance and Tuning Series: Locking and Concurrency Control 29

Lock types and duration during query processing

You must declare cursors as read-only to avoid holding locks during scans
when read committed with lock is set to 0. Any implicitly or explicitly updatable
cursor on adata-only-locked table holds locks on the current page or row until
the cursor moves off the row or page. When read committed with lock is set to
1, read-only cursors hold a shared page or row lock on the row at the cursor
position.

read committed with lock does not affect locking behavior on allpages-locked
tables. For information on setting the configuration parameter, see Chapter 5,
“Setting Configuration Parameters” in System Administration Guide: Volume
1.

Table scans and isolation levels 2 and 3

This section describes special considerations for locking during table scans at
isolation levels 2 and 3.

Table scans and table locks at isolation level 3

When a query performs atable scan at isolation level 3 on a data-only-locked
table, ashared or exclusivetablelock provides phantom protection and reduces
the locking overhead of maintaining a large number of row or page locks. On
an allpages-locked table, an isolation level 3 scan first acquires a shared or
exclusive intent table lock and then acquires and holds page-level locks until
the transaction compl etes or until the lock promotion threshold isreached and
atable lock can be granted.

Isolation level 2 and allpages-locked tables

On alpages-locked tables, Adaptive Server supportsisolation level 2
(repeatable reads) by also enforcing isolation level 3 (seriaizable reads). If
transaction level 2 isset in a session, and an allpages-locked table isincluded
in aquery, isolation level 3isalso applied on the allpages-locked tables.
Transaction level 2 isused on all data-only-locked tablesin the session.

When update locks are not required

All update and delete commands on an allpages-locked table first acquire an
update lock on the data page and then change to an exclusive lock if the row
meets the qualificationsin the query.

30 Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

update and delete commands on data-only-locked tables do not first acquire
update locks when the query:

* Includes search argumentsfor every key intheindex chosen by the query,
so that the index unambiguously qualifies the row, and

* Doesnot contain an or clause.

Updates and del etions that meet these requirements immediately acquire an
exclusive lock on the data page or data row. This reduces lock overhead.

Locking during or processing

In some cases, queries using or clauses are processed as a union of more than
one query. Although some rows may match more than one of the or conditions,
each row must be returned only once. Different indexes can be used for each or
clause. If any of the clauses do not have auseful index, the query is performed
using atable scan.

The table's locking scheme and the isolation level affect how or processing is
performed and the types and duration of locks that are held during the query.

Processing or queries for allpages-locked tables

If the or query usesthe“or” strategy (different or clauses might match the same
rows), query processing retrieves the row 1Ds and matching key values from
the index and stores them in aworktable, holding shared locks on the index
pages containing the rows. When all row IDs have been retrieved, the
worktableis sorted to remove duplicate values. Then, theworktableis scanned,
and the row 1Ds are used to retrieve the data rows, acquiring shared locks on
the data pages. The index and data page locks are released at the end of the
statement (for isolation level 1) or at the end of the transaction (for isolation
levels 2 and 3).

If the or query has no possihility of returning duplicate rows, no worktable sort
isneeded. At isolation level 1, locks on the data pages are rel eased as soon as
the scan moves off the page.

Processing or queries for data-only-locked tables

On data-only-locked tables, the type and duration of locks acquired for or
queries using the “or” strategy (when multiple clauses might match the same
rows) depend on the isolation level.

Performance and Tuning Series: Locking and Concurrency Control 31

Lock types and duration during query processing

Processing or queries at isolation levels 1 and 2

No locks are acquired on the index pages or rows of data-only-locked tables
while row IDs are being retrieved from indexes and copied to a worktable.
After the worktableis sorted to remove duplicate values, the datarows are re-
qualified when the row IDs are used to read data from the table. If any rows
were deleted, they are not returned. If any rows were updated, they are re-
qualified by applying the full set of query clauses to them. The locks are
released when the row qualification completes, for isolation level 1, or at the
end of the transaction, for isolation level 2.

Processing or queries at isolation level 3

Isolation level 3 requires serializablereads. At thisisolation level, or queries
obtain locks on the data pages or data rows during the first phase of or
processing, as the worktable is being populated. These locks are held until the
transaction completes. Requalification of rows is not required.

Skipping uncommitted inserts during selects

select queries on data-only-locked tables do not block on uncommitted
insertions when the following conditions are true:

» Thetable uses datarow locking, and
* Theisolation level is1or 2.
Under these conditions, scans skip such arow.

Theonly exceptionto thisruleisif thetransaction performing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the same transaction. In this case, scans block on the uncommitted inserted
row.

Skipping uncommitted inserts during deletes, updates, and inserts

delete and update queries behave the same way as scans do, with regard to
uncommitted inserts. When the delete or update command encounters an
uncommitted inserted row with the key value of interest, it skipsit without
blocking.

32 Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

The only exception to thisruleis if the transaction doing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the same transaction. In this case, updates and deletes block on the
uncommitted inserted row.

Insert queries, upon encountering an uncommitted inserted row with the same
key value, raise a duplicate key error if the index is unique.

Using alternative predicates to skip nonqualifying rows

When aselect query includes multiplewhere clauseslinked with and, Adaptive
Server can apply the qualification for any columns that have not been affected
by an uncommitted update of arow. If the row does not qualify because of one
of the clauses on an unmodified column, the row does not need to be returned,
so the query does not block.

If the row qualifies when the conditions on the unmodified columns have been
checked, and the conditions described in“ Qualifying old and new values for
uncommitted updates” on page 36 do not allow the query to proceed, then the
query blocks until the lock is released.

For example, transaction T15in Table 1-15 updatesbalance, while transaction
T16 includes balance in the result set and in a search clause. However, T15
does not update the branch column, so T16 can apply that search argument.
Table 1-15 describes a transaction using pseudo columns, which are columns
in the index table that define the parameters of the search and provide access
to the results data.

Since the branch value in the row affected by T15 is not 77, the row does not
qualify, and the row is skipped, as shown. If T15 updated a row where branch
equals 77, aselect query would block until T15 either commits or rolls back.

Performance and Tuning Series: Locking and Concurrency Control 33

Pseudocolumn-level locking

Table 1-15: Pseudo-column-level locking with multiple predicates

T15

Event sequence T16

begin transaction

update accounts
set balance = 80
where acct_number
and branch = 23

commit transaction

T15and T16 start. begin transaction

T15 updates accounts
and holdsan exclusive

=20 row lock.
select acct number, balance
T16 queries accounts, from accounts
but does not block where balance < 50
because the branch and ?iartlch = 77
qualification can be commit tran
applied.

For select queries to avoid blocking when they reference columns in addition
to columnsthat are being updated, all of the following conditions must be met:

* Thetable must use datarows or datapages locking.

» Atleast one of the search clauses of the select query must be on a column
that isamong the first 32 columns of the table.

* Theselect query must run at isolation level 1 or 2.

» Theconfiguration parameter read committed with lock must be set to 0, the
default value.

Pseudocolumn-level locking

34

During concurrent transactions that involve select and update commands,
pseudo-column-level locking can allow some queries to return values from
locked rows, and can allow other queriesto avoid blocking on locked rowsthat
do not qualify. Pseudo-column-level locking can reduce blocking when:

e The select query does not reference columns on which thereisan
uncommitted update.

» Thewhere clause of aselect query references one or more columns
affected by an uncommitted update, but the row does not qualify dueto
conditions in other clauses.

» Neither the old nor the new value of the updated column qualifies, and an
index containing the updated column is being used.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Select queries that do not reference the updated column

A select query on adatarows-locked table can return values without blocking,
even though arow is exclusively locked, when:

e The query does not reference an updated column in the select list or any
clauses (where, having, group by, order by or compute), and

e The query does not use an index that includes the updated column.

Transaction T14 in Table 1-16 requests information about arow that islocked
by T13. However, since T14 does not include the updated column in the result
set or as a search argument, T14 does not block on T13's exclusive row lock.

Table 1-16: Pseudo-column-level locking with mutually exclusive
columns

T13

Event sequence T14

begin transaction

update accounts
set balance = 50
where acct_number

T13 and T14 start. begin transaction

T13 updates accounts
and holdsan exclusive
= 35 row lock.
select lname, fname, phone
T14 queries the same from accounts
row in accounts. but where acct_number = 35
doesnotacuxgihe commit transaction
updated column. T14
does not block.

commit transaction

If T14 uses an index that includes the updated column (for example,
acct_number, balance), the query blocks trying to read the index row.

For select queries to avoid blocking when they do not reference updated
columns, al of the following conditions must be met:

e Thetable must use datarows locking.

e The columns referenced in the select query must be among the first 32
columns of the table.

e Theselect query must run at isolation level 1.
e Theselect query must not use an index that contains the updated column.

e The configuration parameter read committed with lock must be set to 0, the
default value.

Performance and Tuning Series: Locking and Concurrency Control 35

Pseudocolumn-level locking

Qualifying old and new values for uncommitted updates

If aselect query includes conditions on a column affected by an uncommitted
update, and the query uses an index on the updated column, the query can
examine both the old and new values for the column:

* |f neither the old or new value meets the search criteria, the row can be
skipped, and the query does not block.

» If theold value, the new value, or both values qualify, the query blocks. In
Table 1-17, if the original balance is $80, and the new balanceis $90, the
row can be skipped, as shown. If either of the valuesislessthan $50, T18
must wait until T17 completes.

Table 1-17: Checking old and new values for an uncommitted update

T17

Event sequence T18

36

begin transaction

update accounts

T17 and T18 start. begin transaction

T17 updates accounts

set balance = balance + 10 and holds an exclusive

where acct_number

commit transaction

= 20 row lock; the original

balance was 80, so the
new baanceis 90 select acct_number, balance

from accounts
where balance < 50

T18 queries accounts ,
commit tran

using an index that
includes balance. It
does not block since
balance does not
qualify

For select queriesto avoid blocking when old and new val ues of uncommitted
updates do not qualify, al of the following conditions must be met:
» Thetable must use datarows or datapages locking.

e Atleast one of the search clauses of the select query must be on a column
that is among the first 32 columns of the table.

e Theselect query must run at isolation level 1 or 2.
e Theindex used for the select query must include the updated column.

» Theconfiguration parameter read committed with lock must be set to 0, the
default value.

Adaptive Server Enterprise

CHAPTER 1 Introduction to Locking

Reducing contention

To help reduce lock contention between update and select queries:

« Usedatarows or datapages locking for tables with lock contention caused
by update and select commands.

« If tables have more than 32 columns, make the first 32 columns the
columns most frequently used as search arguments and in other query
clauses.

* Select only needed columns. Avoid using select * when all columnsare not
needed by the application.

* Useany available predicates for select queries. When atable uses
datapages locking, the information about updated columnsis kept for the
entire page, so that if atransaction updates some columnsin one row, and
other columnsin another row on the same page, any select query that
needs to access that page must avoid using any of the updated columns,

Performance and Tuning Series: Locking and Concurrency Control 37

Reducing contention

38 Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and

Tuning

This chapter discusses the types of locks used in Adaptive Server and the

commands that can affect locking.

Topic Page
L ocking and performance 39
Configuring locks and lock promotion thresholds 44
Choosing the locking scheme for atable 53
Optimistic index locking 57

Locking and performance

Locking affects the Adaptive Server performance by limiting
concurrency. An increase in the number of simultaneous users may
increase lock contention, which decreases performance. L ocks affect
performance when:

Processes wait for locks to be released. Any time a process waits for
another process to complete its transaction and release its locks,
overall response time and throughput are affected.

Transactions result in frequent deadlocks. A deadlock causes one
transaction to be aborted, and the transaction must be restarted by the
application. If deadlocks occur often, the throughput of applications
is severely affected.

To help reduce deadlock frequency, change the locking schemeto
datapages or datarows locking, or redesign the way transactions
access data.

Creating indexes locks tables. Creating a clustered index locks all
users out of the table until the index is created; creating a
nonclustered index locks out all updates until it is created.

Either way, create indexes when thereislittle activity on your server.

Performance and Tuning Series: Locking and Concurrency Control 39

Locking and performance

e Turning off delayed deadlock detection causes spinlock contention.

Setting deadlock checking period to O causes more frequent deadlock
checking. The deadlock detection process holds spinlocks on the lock
structures in memory while it looks for deadlocks.

In a high transaction production environment, do not use the deadlock
checking period parameter.

Using sp_sysmon and sp_object_stats

Reducing lock co

40

Many of the following sections suggest that you change configuration
parameters to reduce lock contention.

Use sp_object_stats or sp_sysmon to determine whether lock contentionis a
problem. Then use the stored procedures to determine how tuning to reduce
lock contention affects the system.

See “|dentifying tables where concurrency is a problem” on page 73 for
information on using sp_object_stats.

See “Lock management” in Performance and Tuning Series. Monitoring
Adaptive Server with sp_sysmon for more information about using sp_sysmon
to view lock contention.

If lock contention is a problem, you can use Adaptive Server Monitor or the
monitoring tables to pinpoint locking problems by checking locks per object.

ntention

Lock contention can impact Adaptive Server throughput and response time.
Consider using locking during database design (for example, to avoid joining
ahigh number of tables during queries), and monitor locking during
application design.

Address locking contention by changing the locking scheme for tables with
high contention, or redesigning the application or tables that have the highest
lock contention. For example:

« Add indexesto reduce contention, especially for deletions and updates.
» Keep transactions short to reduce the time that locks are held.

e Check for contention “hot spots,” especially insertions on allpages-locked
heap tables (a heap table is atable that has no clustered index).

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

Adding indexes to reduce contention

For data-only-locked tables, an update or delete statement that has no useful
index on its search arguments results in atable scan that holds an exclusive
table lock for the entire scan time. If the data modification task also updates
other tables:

« It can be blocked by select queries or other updates.
* It may be blocked and have to wait while holding large numbers of locks.
e It canblock or deadlock with other tasks.

Creating auseful index for the query allowsthe data modification statement to
use page or row locks, improving concurrent access to the table. If you cannot
create an index for alengthy update or delete transaction, you can perform the
operationin acursor, with frequent commit transaction statementsto reduce the
number of page locks.

Keeping transactions short

Keep any transaction that acquires locks as short as possible. In particular,
avoid transactions that wait for user interaction while holding locks.

Table 2-1: Examples

With page-level locking With row-level locking
begin tran
select balance Intent shared table lock Intent shared table lock
from account holdlock Shared page lock Shared row lock
where acct number = 25 If theuser goestolunchnow, no If theuser goesto lunch now, no
onecan updaterowsonthepage one can update this row.
that holds this row.
update account Intent exclusive table lock Intent exclusive table lock
set balance = balance + 50 Update page lock on data page Update row lock followed by
where acct_number = 25 followed by exclusive row lock.
exclusive page lock on data
page

No one can read rows on the No one can read this row.

commit tran

page that holds this row.

Avoid network traffic as much as possible within transactions. The network is
slower than Adaptive Server. The example bel ow showsatransaction executed
from isql, sent as two packets.

Performance and Tuning Series: Locking and Concurrency Control 41

Locking and performance

Avoiding hot spots

42

begin tran isgl batch sent to Adaptive Server
update account Locks held waiting for commit
set balance = balance + 50

where acct_number = 25

go

update account isgl batch sent to Adaptive Server
set balance = balance - 50 Locksreleased

where acct_number = 45

commit tran

go

K eeping transactions short is especially crucial for data modifications that
affect nonclustered index keys on allpages-locked tables.

Nonclustered indexes are dense: the level abovethe datalevel containsonerow
for each row in the table. All inserts and deletes to the table, and any updates
to the key value, affect at least one nonclustered index page, and adjoining
pages in the page chain, if apage split or page shrink takes place.

While locking a data page may slow access for asmall number of rows, locks
on frequently used index pages can block access to a much larger set of rows.

Hot spotsoccur when all updatestake place on acertain page, asin an allpages-
locked heap table, where all insertions happen on the last page of the page
chain.

For example, an unindexed history table that is updated by everyone always
haslock contention on the last page. This sample output from sp_sysmon
shows that 11.9% of the inserts on a heap table need to wait for the lock:

Last Page Locks on Heaps

Granted 3.0 0.4 185 88.1 %
Waited 0.4 0.0 25 11.9 %
To avoid this:

e Changethelock scheme to datapages or datarows locking.

Since these locking schemes do not have chained data pages, they can
allocate additional pages when blocking occurs for inserts.

» Partition thetable using the round-robin strategy. Partitioning aheap table
creates multiple page chainsin thetable, and, therefore, multiplelast pages
for insertions.

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

Concurrent inserts to the table are less likely to block one another, since
multiple last pages are available. Partitioning improves concurrency for
heap tables without creating separate tables for different groups of users.

See “Improving insert performance with partitions” in Performance and
Tuning Series: Physical Database Tuning for information about
partitioning tables.

Create a clustered index to distribute updates across the data pages in the
table.

Like partitioning, this creates multiple insertion points for the table.
However, it a so introduces overhead for maintai ning the physical order of
the table'srows.

Additional locking guidelines

These locking guidelines can help reduce lock contention and speed
performance:

Usethelowest level of locking required by each application. Useisolation
level 2 or 3 only when necessary.

Updates by other transactions may be delayed until a transaction using
isolation level 3 releases any of its shared locks at the end of the
transaction.

Use isolation level 3 only when nonrepeatable reads or phantoms may
interfere with results.

If only afew queriesrequireisolation level 3, usethe holdlock keyword or
the at isolation serializing clause in those queries rather than using set
transaction isolation level 3 for the entire transaction.

If most queries in the transaction require isolation level 3, use set
transaction isolation level 3, but use noholdlock or at isolation read committed
in the queries that can execute at isolation level 1.

To perform mass insertions, updates, or deletions on active tables, reduce
blocking by performing the operation inside a stored procedure using a
cursor, with frequent commits.

If the application must return arow, wait for user interaction, and then
update the row, consider using timestamps and the tsequal function rather
than holdlock.

Performance and Tuning Series: Locking and Concurrency Control 43

Configuring locks and lock promotion thresholds

e If you use third-party software, check the locking model in applications
carefully for concurrency problems.

Other tuning efforts can also help reduce lock contention. For example, if a
process holds locks on a page, and must perform aphysical 1/0 to read an
additional page, the process holds the lock much longer than it would if the
additional page were already in cache. In this case, better cache utilization or
the use of large 1/0O can reduce lock contention. You can also reduce lock
contention by improving indexing and distributing physical 1/0 evenly across
disks.

Configuring locks and lock promotion thresholds

A system administrator can configure:
» Thetota number of locks available to processes on Adaptive Server

» Thesizeof thelock hash table and the number of spinlocksthat protect the
page/row lock hash table, tablelock hash table, and addresslock hash table

» The server-wide lock timeout limit, and the lock timeout limit for
distributed transactions

» Lock promotion thresholds, server-wide, for a database or for particular
tables

» The number of locks available per engine and the number of locks
transferred between the global free lock list and the engines

Configuring the Adaptive Server lock limit

44

By default, Adaptive Server is configured with 5000 locks. System
Administrators can use sp_configure to change thislimit. For example:

sp_configure "number of locks", 25000

You may also need to adjust the sp_configure parameter max memory, since
each lock uses memory.

The number of locks required by a query can vary widely, depending on the
locking scheme and on the number of concurrent and parallel processesand the
types of actions performed by the transactions. Configuring the correct number
for your system is amatter of experience and familiarity with the system.

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

Start with 20 locks for each active concurrent connection, plus 20 locks for
each worker process. Consider increasing the number of locksif:

e You use datarows locking
* Queriesrun at isolation level 2 or 3, or use serializable or holdlock

e Paralé query processing is enabled, especialy for isolation level 2 or 3
queries

e You perform many multirow updates

e Youincrease lock promotion thresholds

Estimating number of locks for data-only-locked tables

Changing to data-only locking may require more locks or may reduce the
number of locks required:

« Tablesusing datapages locking require fewer locks than tables using
allpages locking, since queries on datapages-locked tables do not acquire
separate locks on index pages.

e Tablesusing datarows locking can require alarge number of locks.
Although no locks are acquired on index pagesfor datarows-locked tables,
data modification commands that affect many rows may hold more locks.

Queries running at transaction isolation level 2 or 3 can acquire and hold
very large numbers of row locks.

insert commands and locks

select queries and locks

An insert with allpages locking requires N+1 locks, where N is the number of
indexes. The same insert on a data-only-locked table locks only the data page
or data row.

Scans at transaction isolation level 1, with read committed with lock set to hold
locks (1), acquire overlapping locksthat roll through the rows or pages, so they
hold, at most, two data page locks at atime.

However, transaction isolation level 2 and 3 scans, especially those using
datarowslocking, can acquire and hold very large numbers of locks, especially
when running in parallel. Using datarows locking, and assuming no blocking
during lock promotion, the maximum number of locks that might be required
for asingletable scanis:

Performance and Tuning Series: Locking and Concurrency Control 45

Configuring locks and lock promotion thresholds

row lock promotion HWM * parallel degree

If lock contention from exclusive locks prevents scans from promoting to a
table lock, the scans can acquire a very large number of locks.

Instead of configuring the number of locks to meet the extremely high locking
demands for queries at isolation level 2 or 3, consider changing applications
that affect large numbersof rowsto usethelock table command. Thiscommand
acquires atable lock without attempting to acquire individual page locks.

See “lock table” on page 89 for information on using lock table.

Data modification commands and locks

For tablesthat use the datarows-locking scheme, data modification commands
can require many more |locks than data modification on allpages- or datapages-
locked tables.

For example, atransaction that performs alarge number of insertsinto a heap
table may acquire only afew page locks for an allpages-locked table, but
requires one lock for each inserted row in a datarows-locked table. Similarly,
transactions that update or delete large numbers of rows may acquire many
more locks with datarows locking.

Configuring the lock hashtable (lock manager)

46

Table 2-2: lock hashtable size

Summary information Value

Default 2048

Range 1-2147483647
Status Static

Display level Comprehensive
Required role System Administrator

Thelock hashtable size parameter specifies the number of hash bucketsin the
lock hash table. Thistable manages all row, page, and table locks, and all lock
requests. Each time atask acquiresalock, thelock isassigned to ahash bucket,
and each lock request for that lock checks the same hash bucket. Setting this
value too low results in large numbers of locks in each hash bucket and slows
the searches.

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

On Adaptive Servers with multiple engines, setting this value too low can also
lead to increased spinlock contention. Do not set the value to less than the
default value, 2048. lock hashtable size must be a power of 2. If the value you
specify is not apower of 2, sp_configure rounds the value to the next highest
power of 2 and prints an informational message.

The optimal hash table sizeis a function of the number of distinct objects
(pages, tables, and rows) that will be locked concurrently. The optimal hash
tablesizeisat least 20 percent of the number of distinct objectsthat need to be
locked concurrently. See “Lock management” in Performance and Tuning
Series: Monitoring Adaptive Server with sp_sysmon for more information on
configuring the lock hash table size.

However, if you have alarge number of users and have had to increase the
number of locks parameter to avoid running out of locks, use sp_sysmon to
check the average hash chain length at peak periods. If the average length of
the hash chains exceeds 4 or 5, consider increasing the value of lock hashtable
size from its current setting to the next power of 2.

The hash chain length may be high during large insert batches, such as bulk
copy operations. Thisis expected behavior, and does not require you to reset
lock hashtable size.

Setting lock promotion thresholds

Thelock promotion thresholds set the number of page or row locks permitted
by atask or worker process before Adaptive Server attemptsto escalate to a
table lock on the object. You can set lock promotion thresholds at the server-
wide level, at the database level, and for individual tables.

The default values provide good performance for awide range of table sizes.
Configuring thethresholds higher reducesthe chance of queriesacquiring table
locks, especially for very large tables where queries lock hundreds of data

Note Lock promotion is aways two-tiered: from page locks to table locks or
from row locks to table locks. Row locks are never promoted to page locks.

Lock promotion and scan sessions
Lock promotion occurs on a per-scan-session basis.

Performance and Tuning Series: Locking and Concurrency Control 47

Configuring locks and lock promotion thresholds

48

A scan session is how Adaptive Server tracks scans of tables within a
transaction. A single transaction can have more than one scan session for the
following reasons:

» A table may be scanned more than once inside asingle transaction in the
case of joins, subqueries, exists clauses, and so on. Each scan of the table
iSascan session.

» A query executedin parallel scansatable using multiple worker processes.
Each worker process has a scan session.

A scan session may scan datafrom morethan one partition. Lock promationis
based on the number of page or row locks acquired across all the partitions
accessed in the scan.

A table lock is more efficient than multiple page or row locks when an entire
table might eventually be needed. At first, atask acquires page or row locks,
then attemptsto escal ate to atable lock when a scan session acquires more page
or row locks than the value set by the lock promotion threshold.

Since lock escalation occurs on a per-scan-session basis, the total number of
page or row locks for a single transaction can exceed the lock promation
threshold, as long as no single scan session acquires more than the lock
promotion threshold number of locks. Locks may persist throughout a
transaction, so atransaction that includes multiple scan sessions can
accumulate a large number of locks.

Lock promotion cannot occur if another task holds locks that conflict with the
type of tablelock needed. For instance, if atask holdsany exclusive pagelocks,
no other process can promote to atable lock until the exclusive page locks are
released.

When lock promotion is denied due to conflicting locks, a process can
accumulate page or row locksin excess of the lock promotion threshold and
may exhaust all available locksin Adaptive Server.

The lock promotion parameters are:

» For alpages-locked tables and datapages-locked tables, page lock
promotion HWM, page lock promotion LWM, and page lock promotion PCT.

» For datarows-locked tables, row lock promotion HWM, row lock promotion
LWM, and row lock promotion PCT.

The abbreviations in these parameters are;
e HWM - high water mark

e LWM - ow water mark

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

¢« PCT —percent

Lock promotion high water mark

page lock promotion HWM and row lock promotion HWM set amaximum number
of page or row locks allowed on a table before Adaptive Server attempts to
escalate to atable lock. The default value is 200.

When the number of locks acquired during a scan session exceeds this number,
Adaptive Server attempts to acquire a table lock.

Setting the high water mark to a value greater than 200 reduces the chance of
any task or worker process acquiring a table lock on a particular table. For
example, if a process updates more than 200 rows of avery large table during
atransaction, setting the lock promotion high water mark higher keeps this
process from attempting to acquire a table lock.

Setting the high water mark to less than 200 increases the chances of a
particular task or worker process acquiring a table lock.

Lock promotion low water mark

page lock promotion LWM and row lock promotion LWM Set @ minimum number
of locks allowed on atable before Adaptive Server can acquire atable lock.
The default value is 200. Adaptive Server cannot acquire atable lock until the
number of lockson atableis equal to the low water mark.

Thelow water mark must be lessthan or equal to the corresponding high water
mark.

Setting the low water mark to a very high value decreases the chance for a
particular task or worker processto acquire atablelock, which uses morelocks
for the duration of the transaction, potentially exhausting all available locksin
Adaptive Server. The possihility of al locks being exhausted is especially high
with queries that update alarge number of rowsin a datarows-locked table, or
that select large numbers of rows from datarows-locked tables at isolation
levels2 or 3.

If conflicting locks prevent lock promotion, you may need to increasethevalue
of the number of locks configuration parameter.

Performance and Tuning Series: Locking and Concurrency Control 49

Configuring locks and lock promotion thresholds

Lock promotion percent

50

page lock promotion PCT and row lock promotion PCT set the percentage of
locked pages or rows (based on the table size) above which Adaptive Server
attempts to acquire a table lock when the number of locks is between the lock
promotion HWM and the lock promotion LWM.

The default value is 100.

Adaptive Server attempts to promote page locksto atable lock or row locksto
atable lock when the number of locks on the table exceeds:

(PCT * number of pages or rows in the table) / 100

Setting lock promotion PCT to avery low value increases the chance of a
particular user transaction acquiring atable lock. Figure 2-1 shows how
Adaptive Server determineswhether to promote pagelockson atableto atable

lock.

Figure 2-1: Lock promotion logic

Does this scan session hold No

lock promotion LWM number —

of page or row locks?

%&s

Do not promote
to table lock.

Does this scan session No
hold lock promotion HWM >
number of page or row
locks?

Yes Yes

Does any other process hold
exclusive lock on object?

Yes

Do not promote
to table lock.

Does this scan session Do not
hold lock promotion PCT ———| promote to
No table lock
page or row locks? apble lock.

No

Promote to
table lock.

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

Setting server-wide lock promotion thresholds

Thefollowing command sets the server-wide page lock promotion LWM to 100,
the page lock promotion HWM to 2000, and the page lock promotion PCT to 50
for all datapages-locked and allpages-locked tables:

sp_setpglockpromote "server", null, 100, 2000, 50

In this example, the task does not attempt to promote to atable lock unless the
number of locks on the table is between 100 and 2000.

If acommand requires morethan 100 but |essthan 2000 | ocks, Adaptive Server
compares the number of locks to the percentage of locks on the table.

If the number of locksis greater than the number of pages resulting from the
percentage calculation, Adaptive Server attempts to issue a table lock.

sp_setrowlockpromote sets the configuration parameters for all datarows-
locked tables:

sp_setrowlockpromote "server", null, 300, 500, 50

Thedefault valuesfor lock promotion configuration parametersarelikely to be
appropriate for most applications.

Setting the lock promotion threshold for a table or database

To configure lock promotion values for an individual table or database,
initialize all three lock promotion thresholds. For example:

sp_setpglockpromote "table", titles, 100, 2000, 50
sp_setrowlockpromote "table", authors, 300, 500, 50

After the values areinitialized, you can change any individual value. For
example, to change the lock promotion PCT only:

sp_setpglockpromote "table", titles, null, null, 70
sp_setrowlockpromote "table", authors, null, null,
50

To configure values for a database, use:

sp_setpglockpromote "database", pubs3, 1000, 1100,
45
sp_setrowlockpromote "database", pubs3, 1000, 1100,
45

Performance and Tuning Series: Locking and Concurrency Control 51

Configuring locks and lock promotion thresholds

Precedence of settings

You can change the lock promotion thresholds for any user database or for an
individual table. Settings for an individual table override the database or
server-wide settings; settings for a database override the server-wide values.

Server-wide values for lock promotion apply to all user tables on the server,
unless the database or tables have lock promotion values configured.

Dropping database and table settings

To remove table or database lock promotion thresholds, use
sp_dropglockpromote or sp_droprowlockpromote. When you drop a database's
lock promotion thresholds, tables that do not have lock promotion thresholds
configured use the server-wide values.

When you drop atable's lock promotion thresholds, Adaptive Server usesthe
database’s lock promation thresholds, if they have been configured, or the
server-wide values, if thelock promotion threshol ds have not been configured.
You cannot drop server-wide lock promotion thresholds.

Using sp_sysmon while tuning lock promotion thresholds

Use sp_sysmon to see how many times lock promotions take place and the
types of promotions they are.

If there is a problem, look for signs of lock contention in the “Granted” and
“Waited” datainthe “Lock Detail” section of sp_sysmon output.

See“Lock promotions’ and “Lock detail” in Performance and Tuning Series:
Monitoring Adaptive Server with sp_sysmon for more information.

If lock contention ishigh and lock promotionisfrequent, consider changing the
lock promotion thresholds for the tables involved.

Use Monitor Server or the monitoring tables to see how changes to the lock
promotion threshold affect the system at the object level.

52 Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

Choosing the locking scheme for a table

In general, choose alock scheme for a new table based on the likelyhood that
applications will experience lock contention on the table. Whether to change
the locking scheme for an existing table can be based on contention
measurements on the table, but should also take application performance into
account.

Here are some typical situations and general guidelines for choosing the
locking scheme:

Applications require clustered access to data rows due to range queries or
order by clauses. Allpages|ocking provides more efficient clustered access
than data-only-locking. Rows may not be returned in key order of the
clustered index for queries.

againgt a data-only-locked table without the use of an order by clause..

A large number of applications access 10 to 20% of the data rows, with
many updates and selects on the same data.

Use datarows or datapages locking to reduce contention, especially on
tables that have the highest contention.

Thetable is aheap table that will have ahigh rate of inserts.

Use datarows locking to avoid contention. If the number of rows inserted
per batch is high, datapages locking is also acceptable. Allpages locking
has more contention for the “last page” of heap tables.

Applications need to maintain an extremely high transaction rate;
contention is likely to be low.

Use allpages locking; lesslocking and latching overhead yieldsimproved
performance.

Analyzing existing applications

If existing applications experience blocking and deadlock problems, to analyze
the problem:

1 Check for deadlocks and lock contention:

* Usesp_object_stats to determine the tables where blocking isa
problem.

Performance and Tuning Series: Locking and Concurrency Control 53

Choosing the locking scheme for a table

2

e ldentify the tables involved in the deadlock, either using
sp_object_stats or by enabling the print deadlock information
configuration parameter.

If the table uses allpages locking and has a clustered index, ensure that
performance of the modified clustered index structure on data-only-locked
tables will not hurt performance.

See “Tables where clustered index performance must remain high” on
page 56.

If the table uses allpages|ocking, convert thelocking scheme to datapages
locking to determine whether that solves the concurrency problem.

Re-run the concurrency tests. If concurrency is still an issue, change the
locking scheme to datarows locking.

Choosing alocking scheme based on contention statistics

If the locking scheme for the table is alpages, the lock statistics reported by
sp_object_stats include both data page and index lock contention.

If lock contention totals 15% or more for al shared, update, and exclusive
locks, sp_object_stats recommends changing to datapages locking. Make the
recommended change, and run sp_object_stats again.

If contention using datapages locking is more than 15%, sp_object_stats
recommends changing to datarows locking. This two-phase approach is based
on these characteristics:

54

Changing from allpages locking to either data-only-locking schemeis
time consuming and expensive, intermsof 1/0 cost, but changing between
thetwo data-only-locking schemesisfast and does not require copying the
table.

Datarows locking requires more locks and consumes more locking
overhead.

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

If your applications experience little contention after you convert high-
contending tables to use datapages locking, you do not need to incur the
locking overhead of datarows locking.

Note The number of locks available to all processes on the server is
limited by the number of locks configuration parameter.

Changing to datapages locking reduces the number of locks required,
since index pages are no longer locked.

Changing to datarows locking can increase the number of locks required,
since alock is needed for each row. See “ Estimating number of locks for
data-only-locked tables’ on page 45.

When examining sp_object_stats output, look at tablesthat are used together in
transactions in your applications. Locking on tables that are used together in
gueries and transactions can affect the locking contention of the other tables.

Reducing lock contention on one table could ease lock contention on other
tables aswell, or it could increase lock contention on another table that was
masked by blocking on the first table in the application. For example:

» Lock contention is high for two tables that are updated in transactions
involving severa tables. Applications first lock TableA, then attempt to
acquire locks on TableB, and block, holding locks on TableA.

Additional tasks running the same application block while trying to
acquire locks on TableA. Both tables show high contention and high wait
times.

Changing TableB to data-only locking may alleviate the contention on
both tables.

« Contention for TableT is high, so its locking schemeis changed to a data-
only locking scheme.

Re-running sp_object_stats how shows contention on TableX, which had
shown very little lock contention. The contention on TableX was masked
by the blocking problem on TableT.

If your application uses many tables, you may want to convert your set of tables
to data-only locking gradually, by changing only those tables with the highest
lock contention. Then test the results of these changes by re-running
Sp_object_stats.

Run your usual performance monitoring tests both before and after you make
the changes.

Performance and Tuning Series: Locking and Concurrency Control 55

Choosing the locking scheme for a table

Monitoring and managing tables after conversion

After you have converted one or more tables in an application to a data-only-
locking scheme:

e Check query plansand 1/O statistics, especially for those queries that use
clustered indexes.

e Monitor the tables to learn how changing the locking scheme affects:
e Cluster ratios, especially for tables with clustered indexes

e The number of forwarded rows in the table

Applications not likely to benefit from data-only locking

This section describes tables and application types that may get little benefit
from converting to data-only locking, or may require additional management
after the conversion.

Tables where clustered index performance must remain high

56

If queries with high performance requirements use clustered indexes to return
large numbers of rowsinindex order, you may see performance degradation if
you change these tables to use data-only locking. Clustered indexes on data-
only-locked tables are structurally the same as nonclustered indexes.

Placement al gorithms keep newly inserted rows close to existing rows with
adjacent values, as long as space is available on nearby pages.

Performance for a data-only-locked table with a clustered index should be
close to the performance of the same table with allpages locking immediately
after acreate clustered index command or areorg rebuild command, but
performance, especialy with large I/O, declines if cluster ratios decline
because of insertion and forwarded rows.

Performance remains high for tables that do not experience many insertions.
On tables that get many insertions, a System Administrator may need to drop
and re-create the clustered index or run reorg rebuild more frequently.

Using space management properties such asfillfactor, exp_row_size, and
reservepagegap can help reduce the frequency of maintenance operations. In
some cases, using the allpages-locking scheme for the table, even if thereis
some contention, may provide better performance for queries performing
clustered index scans than using data-only locking for the tables.

Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

Tables with maximum-length rows

Data-only-locked tables require more overhead per page and per row than
allpages-locked tables, so the maximum row size for a data-only-locked table
is dightly shorter than the maximum row size for an allpages-locked table.

For tables with fixed-length columns only, the maximum row size is 1958
bytes of user data for data-only-locked tables. Allpages-locked tables allow a
maximum of 1960 bytes.

For tables with variable-length columns, subtract 2 bytes for each variable-
length column (thisincludes all columnsthat allow null values). For example,
the maximum user row size for adata-only-locked table with 4 variable-length
columnsis 1950 bytes.

If you try to convert an allpages-locked table that has more than 1958 bytesin
fixed-length columns, the command fails as soon as it reads the table schema.

When you try to convert an allpages-locked table with variable-length
columns, and some rows exceed the maximum size for the data-only-locked
table, the alter table command fails at the first row that istoo long to convert.

Optimistic index locking

Optimistic index locking can resolve increased contention on some important
resources, such asthe spinlocksthat guard address|ocks on the root page of an
index partition.

Applications where this amount of contention might occur are typically those
in which:

* Accessto aspecified index constitutes a significant portion of the
transaction profile, and many users are concurrently executing the same
workload.

« Different transactions, such as ad hoc and standardized queries, use the
same index concurrently.

Optimistic index locking does not acquire an address lock on the root page of
an index partition during normal data manipulation language (DML)
operations. If your updates and insertions can cause modifications to the root
page of the accessed index partition, optimistic index locking restarts the
search and acquires an exclusive table lock, not an address lock.

Two stored procedures are changed by optimistic index locking:

Performance and Tuning Series: Locking and Concurrency Control 57

Optimistic index locking

e sp_chgattribute enables or disables optimistic index locking; when
enabled, setting an exclusive table lock on the table you specify.

e sp_help includes a column that displays optimistic index lock.

For more information, see the Adaptive Server Reference Manual: Procedures.

Using optimistic index locking

Use optimistic index locking when any or all of the following conditions are
true:

» Thereissignificant contention on the lock address hash bucket spinlock.
* None of the indexes on this table cause modifications to the root page.

» The number of index levelsis high enough to cause no splitting or
shrinking of the root page.

» Thereare large numbers of concurrent accesses to read-only tables on
heavily trafficked index pages.

* A databaseisread-only.

Cautions and issues

Since an exclusivetablelock blocksall access by other taskstothe entiretable,
you must thoroughly understand the user access patterns of your application
before enabling optimistic index locking.

The following circumstances require an exclusive table lock:
e Adding anew level to the root page
e Shrinking the root page

e Splitting or shrinking the immediate child of the root page, causing an
update on the root page

Do not use optimistic index locking when:

* You have small tables (that are not read-only) with index levels no higher
than 3.

58 Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning

e You envision possible modifications to the root page of an index

Note An exclusivetablelock isan expensive operation, sinceit blocks access
to the entire table. Use extreme caution in setting the optimistic index locking
property.

Performance and Tuning Series: Locking and Concurrency Control 59

Optimistic index locking

60 Adaptive Server Enterprise

CHAPTER 3 Locking Reports

This chapter discusses tools that report on locks and locking behavior.

Topic Page
Locking tools 61
Deadlocks and concurrency 67
Identifying tables where concurrency is a problem 73
Lock management reporting 74

Locking tools

sp_who, sp_lock, and sp_familylock report on locks held by usersand show
processes that are blocked by other transactions.

Getting information about blocked processes

sp_who reportson system processes. If auser’scommand is being blocked
by locks held by another task or worker process, the status column
shows “lock sleep” to indicate that this task or worker process iswaiting
for an existing lock to be released.

Theblk spid Or block xloid column shows the process|D of the
task or transaction holding the lock or locks.

You can add a user name parameter to get sp_who information about a
particular Adaptive Server user. If you do not provide a user name,
sp_who reports on all processesin Adaptive Server.

For example, consider what happensif you run three sessionsin the pubs2
database: session one deletesthe authors table, on two selects all the
data from the authors table, and the third session running sp_who against
spid 15. In this situation, session two hangs, and session three reportsthis
in the sp_who outpuit:

1> sp_who "15"

Performance and Tuning Series: Locking and Concurrency Control 61

Locking tools

sp_who
fid
dbname

spid status loginame origname hostname blk spid
cmd block xloid

15 recv sleep sa sa PSALDINGXP 0
AWAITING COMMAND 0

If you run sp_who against spid 16:

n 16 n

spid status loginame origname hostname blk spid
cmd block xloid

16 lock sleep sa sa PSALDINGXP 15
SELECT 0

1> sp lock 15

fid
row

62

If you run sp_lock against spid 15, the c1ass column displaysthe cursor name
for locks associated with the current user’s cursor and the cursor |D for other

users.
spid loid locktype table id page
dbname class context
15 30 EX_intent 576002052 0
pubs2 Non Cursor Lock
15 30 Ex page-blk 576002052 1008
pubs2 Non Cursor Lock
15 30 Ex page 576002052 1040
pubs2 Non Cursor Lock Ind pg
If you runsp_lock against spid 16, the c1ass column displays the cursor name
for locks associated with the current user’s cursor and the cursor ID for other
users.
spid loid locktype table id
row dbname class context
16 32 Sh_intent 576002052

Adaptive Server Enterprise

CHAPTER 3 Locking Reports

pubs2 Non Cursor

Lock

Note Thesampleoutput for sp_lock and sp_familylock inthis chapter omitsthe
class column to increase readability. The class column reports either the
names of cursors that hold locks or “Non Cursor Lock.”

Viewing locks with sp_lock

To get areport on the locks currently being held on Adaptive Server, use

sp_lock:
sp_lock
fid spid loid locktype table id page row
0 15 30 Ex intent 208003772 0 0
0 15 30 Ex page 208003772 2400 0
0 15 30 Ex page 208003772 2404 0
0 15 30 Ex page-blk 208003772 946 0
0 30 60 Ex intent 208003772 0 0
0 30 60 Ex page 208003772 997 0
0 30 60 Ex page 208003772 2405 0
0 30 60 Ex page 208003772 2406 0
0 35 70 Sh intent 16003088 0 0
0 35 70 Sh page 16003088 1096 0
0 35 70 Sh page 16003088 3102 0
0 35 70 Sh page 16003088 3113 0
0 35 70 Sh page 16003088 3365 0
0 35 70 Sh page 16003088 3604 0
0 49 98 Sh intent 464004684 0 0
0 50 100 Ex intent 176003658 0 0
0 50 100 Ex row 176003658 36773 8
0 50 100 Ex intent 208003772 0 0
0 50 100 Ex row 208003772 70483 1
0 50 100 Ex row 208003772 70483 2
0 50 100 Ex row 208003772 70483 3
0 50 100 Ex row 208003772 70483 5
0 50 100 Ex row 208003772 70483 8
0 50 100 Ex row 208003772 70483 9
32 13 64 Sh page 240003886 17264 0
32 16 64 Sh page 240003886 4376 0
32 17 64 Sh page 240003886 7207 0
32 18 64 Sh page 240003886 12766 0
32 18 64 Sh page 240003886 12767 0

Performance and Tuning Series: Locking and Concurrency Control

dbname context
sales Fam dur
sales Fam dur, Ind pg
sales Fam dur, Ind pg
sales Fam dur
sales Fam dur
sales Fam dur
sales Fam dur, Ind pg
sales Fam dur, Ind pg
sales Fam dur
sales Fam dur, Inf key
sales Fam dur, Range
sales Fam dur, Range
sales Fam dur, Range
sales Fam dur, Range
master Fam dur
stock Fam dur
stock Fam dur
stock Fam dur
stock Fam dur
stock Fam dur
stock Fam dur
stock Fam dur
stock Fam dur
stock Fam dur
stock
stock
stock
stock
stock
63

Locking tools

32
32
32
32
32
32
32
32
32

64

18
19
32
32
32
32
32
32
32

64
64
64
64
64
64
64
64
64

Sh page

Sh page

Sh intent
Sh intent
Sh intent
Sh intent
Sh intent
Sh intent
Sh intent

240003886 12808 0 stock
240003886 22367 0 stock
16003088 0 0 stock Fam dur
48003202 0 0 stock Fam dur
80003316 0 0 stock Fam dur
112003430 0 0 stock Fam dur
176003658 0 0 stock Fam dur
208003772 0 0 stock Fam dur
240003886 0 0 stock Fam dur

This example showsthelock status of serial processesand one parallel process:

spid 15 holds an exclusive intent lock on atable, one data page lock, and
two index pagelocks. A “blk” suffix indicatesthat this processisblocking
another process that needs to acquire alock; spid 15 is blocking another
process. As soon as the blocking process compl etes, the other processes
move forward.

spid 30 holds an exclusive intent lock on atable, one lock on a data page,
and two locks on index pages.

spid 35isperforming arange query atisolationlevel 3. It holdsrangelocks
on several pages and an infinity key lock.

spid 49 isthetask that ran sp_lock; it holds ashared intent lock on the
spt_values table in master whileit runs.

spid 50 holds intent locks on two tables, and several row locks.

fid 32 shows several spidsholding locks: the parent process (spid 32) holds
shared intent locks on 7 tables, while the worker processes hold shared
page locks on one of the tables.

The 1ock type column indicates not only whether the lock is a shared lock
(“Sh” prefix), an exclusive lock (“Ex” prefix), or an “Update” lock, but also
whether it isheld on atable (“table” or “intent”) or on a“page” or “row.”

A “demand” suffix indicates that the process will acquire an exclusive lock as
soon as all current shared locks are released.

The context column consists of one or more of the following values:

“Fam dur” meansthat thetask will hold thelock until the query compl etes,
that is, for the duration of the family of worker processes. Shared intent
locks are an example of family duration locks.

Adaptive Server Enterprise

CHAPTER 3 Locking Reports

For aparallel query, the coordinating process always acquires a shared
intent table lock that is held for the duration of the parallel query. If the
parallel query is part of atransaction, and earlier statementsin the
transaction performed data modifications, the coordinating process holds
family duration locks on all the changed data pages.

Worker processes can hold family duration locks when the query operates
at isolation level 3.

“Ind pg” indicates locks on index pages (allpages-locked tables only).

“Inf key” indicates an infinity key lock, used on data-only-locked tables
for some range queries at transaction isolation level 3.

“Range” indicates arange lock, used for somerange queries at transaction
isolation level 3.

To seelock information about a particular login, give the spid for the process:

fid spid loid locktype

o O O O

fid spid loid

O O O O O o o o

30
30
30
30

15
15
15
15
30
30
30
30

60
60
60
60

30
30
30
30
60
60
60
60

Ex intent
Ex_page
Ex_page
Ex_page

sp_lock 30
table id page row dbname context
208003772 0 0 sales Fam dur
208003772 997 0 sales Fam dur
208003772 2405 0 sales Fam dur, Ind pg
208003772 2406 0 sales Fam dur, Ind pg

If the spid you specify is also the fid for afamily of processes, sp_who prints
information for all of the processes.

You can also request information about locks on multiple spids:

sp_lock 30, 15

locktype table id page row dbname context
Ex_intent 208003772 0 0 sales Fam dur
Ex page 208003772 2400 0 sales Fam dur, Ind pg
Ex page 208003772 2404 0 sales Fam dur, Ind pg
Ex page-blk 208003772 946 0 sales Fam dur
Ex intent 208003772 0 0 sales Fam dur
Ex page 208003772 997 0 sales Fam dur
Ex page 208003772 2405 0 sales Fam dur, Ind pg
Ex page 208003772 2406 0 sales Fam dur, Ind pg

Performance and Tuning Series: Locking and Concurrency Control 65

Locking tools

Viewing locks with sp_familylock

sp_familylock displaysthe locks held by afamily. This example showsthat the
coordinating process (fid 51, spid 51) holdsa shared intent lock on each of four
tables and a worker process holds a shared page lock:

sp_familylock 51

fid spid loid locktype table id page row dbname context
51 23 102 Sh page 208003772 945 0 sales

51 51 102 Sh intent 16003088 0 0 sales Fam dur
51 51 102 Sh intent 48003202 0 0 sales Fam dur
51 51 102 Sh intent 176003658 0 0 sales Fam dur
51 51 102 Sh intent 208003772 0 0 sales Fam dur

You can also specify two IDs for sp_familylock.

Intrafamily blocking during network buffer merges

When many worker processes are returning query results, you may see
blocking between worker processes. This example shows five worker
processes blocking on the sixth worker process:

sp_who 11

fid spid status loginame origname hostname blk dbname cmd

11 11 sleeping diana diana olympus 0 sales SELECT

11 16 lock sleep diana diana olympus 18 sales WORKER PROCESS
11 17 lock sleep diana diana olympus 18 sales WORKER PROCESS
11 18 send sleep diana diana olympus 0 sales WORKER PROCESS
11 19 lock sleep diana diana olympus 18 sales WORKER PROCESS
11 20 lock sleep diana diana olympus 18 sales WORKER PROCESS
11 21 lock sleep diana diana olympus 18 sales WORKER PROCESS

Each worker process acquires an exclusive address lock on the network buffer
whilewriting resultstoit. When the buffer isfull, it is sent to the client, and the
lock is held until the network write completes.

66 Adaptive Server Enterprise

CHAPTER 3 Locking Reports

Deadlocks and concurrency

Simply stated, adeadlock occurswhen two user processes each have alock on
aseparate data page, index page, row, or table and each wantsto acquire alock
on the page, row, or table locked by the other process. When this happens, the
first processiswaiting for the second to rel ease thelock, but the second process
will not release it until the lock held by thefirst processis released.

Server-side versus application-side deadlocks

When tasks deadlock in Adaptive Server, adeadlock detection mechanism
rolls back one of the transactions, and sends messages to the user and to the
Adaptive Server error log. Sometimes application-side deadlock situations
arisein which aclient opens multiple connections, and these client connections
wait for locks held by the other connection of the same application. These are
not true server-side deadlocks and cannot be detected by Adaptive Server
deadlock detection mechanisms.

Application deadlock example

Some devel opers simulate cursors by using two or more connectionsfrom DB-
Library™. One connection performs a select and the other connection
performs updates or deletions on the same tables. This can create application
deadlocks. For example:

e Connection A holds a shared lock on a page. Aslong as there are rows
pending from Adaptive Server, a shared lock is kept on the current page.

« Connection B requests an exclusive lock on the same pages and then waits.

e The application waits for Connection B to succeed before invoking the
logic needed to remove the shared lock. But this never happens.

Since Connection A never requests alock that is held by Connection B, thisis
not a server-side deadlock.

Server task deadlocks

Below is an example of a deadlock between two processes.

Performance and Tuning Series: Locking and Concurrency Control 67

Deadlocks and concurrency

T19 Event sequence T20
begin transaction T19 and T20 start. begin transaction
update savings T19 getsexclusivelock
set balance = balance - 250 on savings while T20
where acct_number = 25 gets exclusive lock on update checking

Ched“ng- set balance = balance - 75
where acct _number = 45

update checking T19 waitsfor T20 to

sit balance = balance + 250 release its lock while

where acct_number = 45 T20 waits for T19 to
release its lock;

deadlock occurs. .
update savings

set balance = balance + 75
where acct_number = 25

commit transaction commit transaction

If transactions T19 and T20 execute simultaneously, and both transactions
acquire exclusive locks with their initial update statements, they deadlock,
waiting for each other to release their locks, which will not happen.

Adaptive Server checks for deadl ocks and chooses the user whose transaction
has accumulated the least amount of CPU time as the victim.

Adaptive Server rolls back that user’s transaction, notifies the application
program of thisaction with message number 1205, and allowsthe other process
to move forward.

The example above shows two data modification statements that deadlock;
deadlocks can also occur between a process holding and needing shared locks,
and one holding and needing exclusive locks.

In amultiuser situation, each application program should check every
transaction that modifies data for message 1205 if there is any chance of
deadlocking. Message 1205 indicates that a user transaction has been selected
asthe victim of adeadlock and rolled back. The application program must
restart that transaction.

68 Adaptive Server Enterprise

CHAPTER 3 Locking Reports

Deadlocks and parallel queries

Worker processes can acquire only shared locks, but they can still beinvolved
in deadlocks with processes that acquire exclusive locks. The locks they hold
meet one or more of these conditions:

e A coordinating process holds atable lock as part of a parallel query.

Thecoordinating process could hold exclusive lockson other tables as part
of aprevious query in atransaction.

e A paralé query isrunning at transactionisolation level 3 or using holdlock
and holds locks.

e A pardlel query isjoining two or more tables while another processis
performing a sequence of updates to the same tables within a transaction.

A single worker process can beinvolved in adeadlock such asthose that occur
between two serial processes. For example, aworker processthat isperforming
ajoin between two tables can deadlock with a serial processthat is updating
the same two tables.

In some cases, deadlocks between serial processesand familiesinvolve alevel
of indirection.

For example, if atask holds an exclusive lock on tableA and needs alock on
tableB, but aworker process holds a family-duration lock on tableB, the task
must wait until the transaction that theworker processisinvolvedin completes.

If another worker processin the same family needs alock on tableA, the result
isadeadlock. Figure 3-1 illustrates the following deadl ock scenario:

e Thefamily identified by fid 8 isdoing aparallel query that involvesajoin
of stock_tbl and sales_thl, at transaction level 3.

e Theseria task identified by spid 17 (T17) isperforming insertsto stock_tbl
and sales_tbl in atransaction.

These are the steps that lead to the deadl ock:

W89, aworker process with afid of 8 and aspid of 9, holds a shared lock
on page 10862 of stock_thl.

e T17 holds an exclusive lock on page 634 of sales_tbl. T17 needs an
exclusivelock on page 10862, which it cannot acquire until W8 9 releases
its shared lock.

e Theworker process W8 10 needs a shared lock on page 634, which it
cannot acquire until T17 releases its exclusive lock.

Performance and Tuning Series: Locking and Concurrency Control 69

Deadlocks and concurrency

Figure 3-1: A deadlock involving a family of worker processes

stock_tbl Shared
page
lock
R 4 Page 10862
. Worker
(level 3) process
sales_tbl Worker
E;é:leusive T process
lock Page 634 (- Shared
intent
lock

Legend: —» Lock held by
---- P Needs lock

Printing deadlock information to the error log

70

Adaptive Server detects server-side deadl ocks to the application and reports
theminthe server’serror log. The error message sent to the application iserror
1205.

To get information about the tasks that deadlock, set the print deadlock
information configuration parameter to 1. This setting sends more detailed
deadlock messages to the log and to the terminal session where the server
started.

The message sent to the error log, by default, merely identifies that a deadlock
occurred. The numbering in the message indicates the number of deadlocks
since the last boot of the server.

03:00000:00029:1999/03/15 13:16:38.19 server Deadlock Id 11 detected

In this output, fid 0, spid 29 started the deadlock detection check, so itsfid and
spid values are used as the second and third values in the deadlock message.
(Thefirst value, 03, is the engine number.)

However, setting print deadlock information to 1 can degrade Adaptive Server
performance. For this reason, useit only to determine the cause of deadlocks.

Adaptive Server Enterprise

CHAPTER 3 Locking Reports

Disabling print deadlock information (setting it to 0) meansthat Adaptive Server
does not send any information about deadlocks to the error log.

The deadlock messages contain detailed information, including:
e Thefamily and server-process IDs of the tasks involved

e Thecommandsand tablesinvolved in deadlocks; if astored procedure was
involved, the procedure name is shown

e Thetypeof locks each task held, and the type of lock each task wastrying
to acquire

e Theserver login IDs (suid values)

In the following report, spid 29 is deadlocked with a parallel task, fid 94, spid
38. Thedeadlock involves exclusive versus shared lock requests on the authors
table. spid 29 is chosen as the deadlock victim:

Deadlock Id 11: detected. 1 deadlock chain(s) involved.

Deadlock Id 11: Process (Familyid 94, 38) (suid 62) was executing a SELECT
command at line 1. SQL Text select * from authors where au_id like '172%'
Deadlock Id 11: Process (Familyid 29, 29) (suid 56) was executing a INSERT
command at line 1

SQL Text: insert authors (au_id, au fname, au lname) values (’A999999816’,
'Bill’, ’'Dewart’)

Deadlock Id 11: Process (Familyid 0, Spid 29) was waiting for a ’exclusive page’
lock on page 1155 of the ’authors’ table in database 8 but process (Familyid
94, Spid 38) already held a ‘shared page’ lock on it.

Deadlock Id 11: Process (Familyid 94, Spid 38) was waiting for a ’shared page’
lock on page 2336 of the ’‘authors’ table in database 8 but process (Familyid
29, Spid 29) already held a ’'exclusive page’ lock on it.

Deadlock Id 11: Process (Familyid 0, 29) was chosen as the victim. End of
deadlock information.

Avoiding deadlocks

Deadlocks may occur when many long-running transactions are executed at the
same time in the same database. Deadl ocks become more common as lock
contention increases between transactions, which decreases concurrency.

Methods for reducing lock contention, such as changing the locking scheme,
avoiding tablelocks, and not holding shared locks, are described in Chapter 2,
“Locking Configuration and Tuning.”

Performance and Tuning Series: Locking and Concurrency Control 71

Deadlocks and concurrency

Acquiring locks on objects in the same order

Well-designed appli cations can minimize deadl ocks by always acquiring locks
in the same order. Updates to multiple tables should always be performed in
the same order.

For example, the transactions described in Figure 3-1 could have avoided their
deadlock by updating either the savings or checking table first in both
transactions. That way, one transaction gets the exclusive lock first and
proceeds while the other transaction waits to receive its exclusive lock on the
same table when the first transaction ends.

In applications with large numbers of tables and transactions that update
several tables, establish alocking order that can be shared by al application
developers.

Delaying deadlock checking

72

Adaptive Server performs deadlock checking after a minimum period of time
for any processwaiting for alock to berel eased (sleeping). Deadlock checking
is time-consuming overhead for applications that wait without a deadlock.

If your applications deadlock infrequently, Adaptive Server can delay
deadlock checking and reduce the overhead cost. Use the deadlock checking
period configuration parameter to specify the minimum amount of time (in
milliseconds) that a process waits before it initiates a deadlock check.

Valid values are 0 — 2147483. The default value is 500. deadlock checking
period isadynamic configuration value, so any changeto it takesimmediate
effect.

If you set thevalueto 0, Adaptive Server initiates deadlock checking when the
process begins to wait for alock. If you set the value to 600, Adaptive Server
initiates a deadlock check for the waiting process after at least 600 ms. For
example:

sp_configure "deadlock checking period", 600

Setting deadlock checking period to a higher value produces longer delays
before deadl ocks are detected. However, since Adaptive Server grants most
lock requests before this time elapses, the deadlock checking overhead is
avoided for those lock requests.

Adaptive Server performs deadlock checking for all processes at fixed
intervals, determined by deadlock checking period. If Adaptive Server performs
adeadlock check while a process's deadlock checking is delayed, the process
waits until the next interval.

Adaptive Server Enterprise

CHAPTER 3 Locking Reports

Therefore, aprocess may wait from the number of milliseconds set by deadlock
checking period to almost twice that value before deadlock checking is
performed. sp_sysmon can help you tune deadlock checking behavior.

See “Deadlock detection” in Performance and Tuning Series. Monitoring
Adaptive Server with sp_sysmon..

ldentifying tables where concurrency is a problem

sp_object_stats prints table-level information about lock contention. Useiit to:
* Report on tables that have the highest contention level
* Report contention on tables in a single database
* Report contention on individual tables
The syntax is:
sp_object_stats interval [, top_n [, dbname [, objname [, rpt_option]]]]

To measure lock contention on all tablesin all databases, specify only the
interval. This example monitors lock contention for 20 minutes, and reports
statistics on the 10 tables with the highest levels of contention:

sp _object stats "00:20:00"
Additional argumentsto sp_object_stats are asfollows:

e top_n-—allowsyou to specify the number of tables to be included in the
report. The default is 10. To report on the top 20 high-contention tables,
for example, use:

sp_object stats "00:20:00", 20
e dbname - prints statistics for the specified database.
e objname —measures contention for the specified table.
e rpt_option — specifies the report type:

e rpt_locks reportsgrants, waits, deadlocks, and wait timesfor thetables
with the highest contention. rpt_locks is the default.

e rpt_objlist reports only the names of the objects with the highest level
of lock activity.

Here is sample output for titles, which uses datapages locking:

Performance and Tuning Series: Locking and Concurrency Control 73

Lock management reporting

Object Name: pubtune..titles (dbid=7, objid=208003772, lockscheme=Datapages)

Page Locks SH_PAGE UP_PAGE EX_PAGE
Grants: 94488 4052 4828
Waits: 532 500 776
Deadlocks: 4 0 24
Wait-time: 20603764 ms 14265708 mg 2831556 ms
Contention: 0.56% 10.98% 13.79%

*** Consider altering pubtune..titles to Datarows locking.
Table 3-1 shows the meaning of the values.

Table 3-1: sp_object_stats output

Output row Value

Grants The number of times the lock was granted immediately

Waits The number of times the task needing alock had to wait

Deadlocks The number of deadlocks that occurred

Wait-time The total number of milliseconds that all tasks spent
waiting for alock

Contention The percentage of timesthat atask had to wait or

encountered a deadlock
sp_object_stats recommends changing the locking scheme when total
contention on atable is more than 15 percent, as follows:

» If thetable uses alpages locking, it recommends changing to datapages
locking.

» If the table uses datapages locking, it recommends changing to datarows
locking.

Lock management reporting

Output from sp_sysmon provides statistics on locking and deadl ocks discussed
in this chapter.

Use the statistics to determine whether the Adaptive Server systemis
experiencing performance problems due to lock contention.

74 Adaptive Server Enterprise

CHAPTER 3 Locking Reports

For more information about sp_sysmon and lock statistics, see “Lock
management” in Performance and Tuning Series: Monitoring Adaptive Serve
with sp_sysmon.

Use Monitor Server and the monitoring tables to pinpoint locking problems.
For more information, see the Performance and Tuning Series: Monitoring
Tables and the Monitor Server User Guide.

Performance and Tuning Series: Locking and Concurrency Control 75

Lock management reporting

76 Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

This chapter discusses the types of locks used in Adaptive Server and the

commands that can affect locking.

Topic Topic
Specifying the locking scheme for atable 77
Controlling isolation levels 82
Readpast locking 86
Cursors and locking 87
Additional locking commands 89

Specifying the locking scheme for a table

Thelocking schemesin Adaptive Server provide the flexibility to choose
the best locking scheme for each table in an application and to adapt the
locking scheme for atableif contention or performance requiresachange.

The tools for specifying locking schemes are:

e sp_configure — specifies a server-wide default locking scheme

e create table — specifies the locking scheme for newly created tables

e alter table — changes the locking scheme for a table to any other

locking scheme

e select into — specifies the locking scheme for atable created by

selecting results from other tables

Specifying a server-wide locking scheme

Thelock scheme configuration parameter sets the locking scheme to be
used for any new table, if the create table command does not specify the

lock scheme.

To see the current locking scheme, use:

Performance and Tuning Series: Locking and Concurrency Control

77

Specifying the locking scheme for a table

sp_configure "lock scheme"

Parameter Name Default Memory Used Config Value Run Value

lock scheme allpages 0 datarows datarows

The syntax for changing the locking scheme is:

sp_configure "lock scheme", 0,
{allpages | datapages | datarows}

This command sets the default lock scheme for the server to data pages:
sp_configure "lock scheme", 0, datapages

When you first install Adaptive Server, lock scheme is set to allpages.

Specifying alocking scheme with create table
Use create table to specify the locking scheme for anew table. The syntax is:

create table table_name (column_name_list)
[lock {datarows | datapages | allpages}]

If you do not specify thelock schemefor atable, the default value for the server
is used, as determined by the setting of the lock scheme configuration
parameter.

This command specifies datarows locking for the new_publishers table:

create table new publishers

(pub_id char (4) not null,
pub name varchar (40) null,
city varchar (20) null,
state char (2) null)

lock datarows

Specifying the locking scheme with create table overrides the default server-
wide setting.

Changing a locking scheme with alter table
Use alter table to change the locking scheme for atable. The syntax is:

alter table table_name
lock {allpages | datapages | datarows}

78 Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

This command changes the locking scheme for the titles table to datarows
locking:

alter table titles lock datarows

alter table supports changing from one locking scheme to any other locking
scheme. Changing from allpages locking to data-only locking requires you to
copy the data rows to new pages and re-create any indexes on the table.

Changing the locking scheme takes several steps and requires sufficient space
to make the copy of the table and indexes. The time required depends on the
size of the table and the number of indexes.

If you are changing from datapages locking to datarows locking or vice versa
you need not copy data pages and rebuild indexes. Switching between data-
only locking schemes updates only system tables, and finishes quickly.

Note You cannot use data-only locking on tablesthat have rowsthat are at, or
near, the maximum length of 1962 (including the two bytesfor the offset table).

For data-only-locked tables with only fixed-length columns, the maximum
user datarow size is 1960 bytes (including the 2 bytes for the offset table).

Tables with variable-length columns require 2 additional bytes for each
column that is variable-length (this includes columns that allow nulls.)

See “Determining Sizes of Tables and Indexes’ in Performance and Tuning
Series: Physical Database Tuning for information on rows and row overhead.

Before and after changing locking schemes

Before you change from allpages locking to data-only locking or vice versa,
Sybase recommends that you take these steps:

« If thetableis partitioned, and you have not run update statistics since
making major data modifications to the table, run update statistics on the
table that you plan to alter. alter table...lock performs better with accurate
statistics for partitioned tables.

Changing the locking scheme does not affect the distribution of data on
partitions; rows in partition 1 are copied to partition 1 in the copy of the
table.

e Perform a database dump.

Performance and Tuning Series: Locking and Concurrency Control 79

Specifying the locking scheme for a table

Set any space management propertiesthat should be applied to the copy of
the table or its rebuilt indexes. See “ Setting Space Management
Properties’ in Performance and Tuning Series: Physical Database Tuning
for information on rows and row overhead.

Determine if thereis enough space. See “ Determining the space available
for maintenance activities’ in Performance and Tuning Series: Physical
Database Tuning .

If any of the tables in the database are partitioned and require a parallel
sort:

e Usesp_dboption to set the database option select into/bulkcopy/plisort
to true.

e Configure for optimum parallel sort performance.

After alter table compl etes:

Run dbce checktable on the table and dbcc checkalloc on the database to
ensure database consistency.

Perform a database dump.

Note After you have changed the locking scheme from allpages locking
to data-only locking or vice versa, you cannot use dump transaction to back
up the transaction log.

You must first perform a full database dump.

Expense of switching to or from allpages locking

Switching from allpages locking to data-only locking or vice versais an
expensive operation in terms of 1/0O cost. Most of the cost comes from the 1/O
required to copy the tables and re-create the indexes. Some logging is also
required.

80

When moving from allpagesto data-only locking or from data-only to allpages
locking, alter table ... lock:

1

Copiesall rowsin the table to new data pages, formatting rows according
to the new format. If you are changing to data-only locking, any datarows
of fewer than 10 bytes are padded to 10 bytes during this step. If you are
changing to allpages locking from data-only locking, padding is stripped
from rows of fewer than 10 bytes.

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

Drops and re-creates all indexes on the table.
Deletes the old set of table pages.
Updates the system tables to indicate the new locking scheme.

g b W N

Updates a counter maintained for the table, to cause the recompilation of
query plans.

If aclustered index exists on the table, rows are copied in clustered index key
order onto the new data pages. If no clustered index exists, the rows are copied
in page-chain order for an allpages-locking to data-only-locking conversion.

The entire alter table...lock command is performed as a single transaction to
ensure recoverability. An exclusive table lock is held on the table for the
duration of the transaction.

Sort performance during alter table

During alter table, indexes are re-created one at atime. If your system has
enough engines, data cache, and I/O throughput to handle simultaneous create
index operations, you can reduce the overall time required to change locking
schemes by:

» Dropping the nonclustered indexes
e Altering the locking scheme
« Configuring for best parallel sort performance

* Re-creating two or more nonclustered indexes at once

Specifying a locking scheme with select into

You can specify alocking scheme when you create a new table using select
into. The syntax is:
select [all | distinct] select_list
into [[database.]Jowner.]table_name

lock {datarows | datapages | allpages}
from...

If you do not specify alocking scheme with select into, the new table uses the
server-wide default |ocking scheme, as defined by the configuration parameter
lock scheme.

Performance and Tuning Series: Locking and Concurrency Control 81

Controlling isolation levels

This command specifies datarows locking for the table it creates:

select title id, title, price
into bus titles

lock datarows

from titles

where type = "businesg"

Temporary tables created with the #tablename form of naming are single-user
tables, so lock contention is not an issue. For temporary tables that can be
shared among multiple users, that is, tables created with tempdb..tablename,
any locking scheme can be used.

Controlling isolation levels

You can set the transaction isolation level used by select commands:

e For al queriesin the session, with the set transaction isolation level
command

e For anindividua query, with the at isolation clause

» For specific tables in a query, with the holdlock, noholdlock, and shared
keywords

When choosing locking levelsin your applications, use the minimum locking
level consistent with your business model. The combination of setting the
session level while providing control over locking behavior at the query level
allows concurrent transactions to achieve required results with the least
blocking.

Note If you use transaction isolation level 2 (repeatable reads) on allpages-
locked tables, isolation level 3 (serializing reads) is also enforced.

Setting isolation levels for a session

82

The SQL standard specifies adefault isolation level of 3. To enforcethislevel,
Transact-SQL provides the set transaction isolation level command. For
example, you can make level 3 the default isolation level for your session
using:

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

set transaction isolation level 3

If the session has enforced isolation level 3, you can make the query operate at
level 1 using noholdlock, as described below.

If you are using the Adaptive Server default isolation level of 1, or if you have
used the set transaction isolation level command to specify level O or 2, you can
enforce level 3 by using the holdlock option to hold shared locks until the end

of atransaction.

You can display the current isolation level for asession with the global variable
@@isolation.

Syntax for query-level and table-level locking options

You can specify the holdlock, noholdlock, and shared options for each table in
aselect or readtext statement, with the at isolation clause applied to the entire
query.
select select_list
from table_name [holdlock | noholdlock] [shared]
[, table_name [[holdlock | noholdlock] [shared]
{where/group by/order by/compute clauses}
[at isolation {
[read uncommitted | O] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]]

Here is the syntax for the readtext command:

readtext [[database.Jowner.]table_name.column_name text_pointer
offset size
[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {
[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]}]

Using holdlock, noholdlock, or shared

You can override asession’slocking level by applying the holdlock, noholdlock,
and shared options to individual tables in select or readtext commands:

Performance and Tuning Series: Locking and Concurrency Control 83

Controlling isolation levels

Level to use Keyword Effect

1 noholdlock Do not hold locks until the end of the
transaction; use from level 3 to enforce
level 1.

2,3 holdlock Hold shared locks until the transaction
completes; use from level 1 to enforce
level 3.

N/A shared Applies shared rather than update locks

for select statementsin cursors open for
update.

These keywords affect locking for the transaction: if you use holdlock, all locks
are held until the end of the transaction.

If you specify holdlock in aquery whileisolation level 0 isin effect for the
session, Adaptive Server issues awarning and ignores the holdlock clause, not
acquiring locks as the query executes.

If you specify holdlock and read uncommitted, Adaptive Server prints an error
message, and the query is not executed.

Using the at isolation clause

You can change the isolation level for al tablesin the query by using the at
isolation clause with aselect or readtext command. The optionsin the at
isolation clause are:

Level to use Option Effect
0 read Reads uncommitted changes; use from
uncommitted level 1, 2, or 3 queriesto perform dirty

reads (level 0).

1 read committed Reads only committed changes; wait
for locks to be released; use from level
0 to read only committed changes, but
without holding locks.

2 repeatable read Holds shared locks until the transaction
completes; use from level O or level 1
gueriesto enforce level 2.

3 serializable Holds shared locks until the transaction

completes; use from level 1 or level 2
queriesto enforce level 3.

84

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

For example, the following statement queriesthetitles table at isolation level 0:

select *
from titles
at isolation read uncommitted

Making locks more restrictive

If isolation level 1 issufficient for most work, but some queries require higher
levels of isolation, you can selectively enforce the higher isolation level using
clausesin the select statement:

* Userepeatable read to enforce level 2
¢ Useholdlock or at isolation serializable to enforce level 3

The holdlock keyword makes a shared page, row, or tablelock morerestrictive.
holdlock applies:

e Toshared locks
e Tothetable or view for which it is specified
e For the duration of the statement or transaction containing the statement

Theat isolation clause appliesto al tablesinthefrom clause, andisapplied only
for the duration of the transaction. The locks are rel eased when the transaction
compl etes.

In atransaction, holdlock instructs Adaptive Server to hold shared locks until
the completion of that transaction instead of releasing the lock as soon as the
required table, view, row, or data page is no longer needed. Adaptive Server
always holds exclusive locks until the end of atransaction.

Theuseof holdlock inthefollowing example ensuresthat thetwo queriesreturn
consistent results:

begin transaction
select branch, sum(balance)
from account holdlock
group by branch
select sum(balance) from account
commit transaction

The first query acquires a shared table lock on account so that no other
transaction can update the data before the second query runs. Thislock is not
released until the transaction including the holdlock command compl etes.

Performance and Tuning Series: Locking and Concurrency Control 85

Readpast locking

If the session isolation level is 0, and only committed changes must be read
from the database, you can use the at isolation level read committed clause.

Making locks less restrictive

In contrast to holdlock, the noholdlock keyword prevents Adaptive Server from
holding any shared locksacquired during the execution of the query, regardless
of the transaction isolation level currently in effect.

noholdlock is useful in situations where transactions require a default isolation
level of 2 or 3. If any queriesin those transactions do not need to hold shared
locks until the end of the transaction, you can improve concurrency by
specifying noholdlock with those queries.

For example, if thetransactionisolation level isset to 3, which normally causes
aselect query to hold locks until the end of the transaction, this command
rel eases the locks when the scan moves off the page or row:

select balance from account noholdlock
where acct number < 100

If the session isolation level is1, 2, or 3, and you want to perform dirty reads,
you can use the at isolation level read uncommitted clause.

The shared keyword instructs Adaptive Server to use a shared lock (instead of
an update lock) on a specified table or view in acursor.

See “Using the shared keyword” on page 88 for more information.

Readpast locking

86

Readpast locking allows select and readtext queriesto skip all rows or pages
locked with incompatible locks. The queries do not block, terminate, or return
error or advisory messagesto the user. Readpast locking islargely designed to
be used in queue-processing applications.

In general, these applications allow queriesto return thefirst unlocked row that
meets query qualifications. An example might be an application tracking calls
for service: the query needs to find the row with the earliest timestamp that is
not locked by another repair representative.

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

For more information on readpast locking, see “Locking Commands and
Options’ in the Transact-SQL User’s Guide.

Cursors and locking

Cursor locking methods are similar to the other locking methods in Adaptive
Server. For cursors declared as read only or declared without the for update
clause, Adaptive Server uses a shared page lock on the data page that includes
the current cursor position.

When additional rows for the cursor are fetched, Adaptive Server acquires a
lock on the next page, the cursor position is moved to that page, and the
previous page lock is released (unless you are operating at isolation level 3).

For cursors declared with for update, Adaptive Server uses update page locks
by default when scanning tables or views referenced with the for update clause
of the cursor. For data-only-locked tables, Adaptive Server may use atable
scan to avoid the Halloween problem. For more information see * Optimization
for Cursors’ in Performance and Tuning Series: Query Processing and
Abstract Plans.

If thefor update listisempty, al tables and viewsreferenced in the from clause
of the select statement receive update locks. An update lock isaspecial type of
read lock that indicates that the reader may modify the data soon. An update
lock allows other shared locks on the page, but does not allow other update or
exclusive locks.

If arow isupdated or deleted through a cursor, the data modification
transaction acquires an exclusive lock. Any exclusive locks acquired by
updates through a cursor in atransaction are held until the end of that
transaction and are not affected by closing the cursor. Thisisalso true of shared
or update locks for cursors that use the holdlock keyword or isolation level 3.

Locking behavior for cursors at each isolation level is as follows:

« Atlevel 0, Adaptive Server uses no locks on any base table page that
contains arow representing a current cursor position. Cursors acquire no
read locks for their scans, so they do not block other applications from
accessing the same data.

However, cursors operating at this isolation level are not updatable, and
they require a unique index on the base table to ensure accuracy.

Performance and Tuning Series: Locking and Concurrency Control 87

Cursors and locking

» Atleved 1, Adaptive Server uses shared or update locks on base table or
leaf-level index pages that contain arow representing a current cursor
position.

The page remains locked until the current cursor position moves off the
page as aresult of fetch statements.

» Atleve 2or 3, Adaptive Server uses shared or update locks on any base
tableor leaf-level index pagesthat have been read in atransaction through
the cursor.

Adaptive Server holds the locks until the transaction ends; it does not
release the locks when the data page is no longer needed or when the
cursor is closed.

If you do not set the close on endtran or chained options, a cursor remains open
past the end of the transaction, and its current page locks remain in effect. It
may also continue to acquire locks as it fetches additional rows.

Using the shared keyword

88

When declaring an updatable cursor using the for update clause, you can use
shared page locks (instead of update page locks) in the declare cursor
Statement:

declare cursor_name cursor
for select select_list
from {table_name | view_name} shared
for update [of column_name_list]

This alows other users to obtain an update lock on the table or an underlying
table of the view.

You can use the holdlock keyword with shared after each table or view name.
holdlock must precede shared in the select statement. For example:

declare authors crsr cursor

for select au id, au lname, au fname
from authors holdlock shared
where state != ’CA’
for update of au lname, au_ fname

These arethe effects of specifying theholdlock or shared optionswhen defining
an updatable cursor:

» If you do not specify either option, the cursor holds an update lock on the
row or on the page containing the current row.

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

Other users cannot update, through a cursor or otherwise, the row at the
cursor position (for datarows-locked tables) or any row on this page (for
allpages and datapages-locked tables).

Other users can declare acursor on the same tablesyou usefor your cursor,
and can read data, but they cannot get an update or exclusive lock on your
current row or page.

If you specify the shared option, the cursor holds a shared lock on the
current row or on the page containing the currently fetched row.

Other users cannot update, through a cursor or otherwise, the current row,
or the rows on this page. They can, however, read the row or rows on the

page.

If you specify the holdlock option, you hold update locks on all therows or
pages that have been fetched (if transactions are not being used) or only
the pages fetched since the last commit or rollback (if in atransaction).

Other users cannot update, through acursor or otherwise, currently fetched
rows or pages.

Other users can declare acursor on the same tablesyou usefor your cursor,
but they cannot get an update lock on currently fetched rows or pages.

If you specify both options, the cursor holds shared locks on all the rows
or pagesfetched (if not using transactions) or on the rows or pagesfetched
since the last commit or rollback.

Other users cannot update, through acursor or otherwise, currently fetched
rows or pages.

Additional locking commands

lock table

In transactions, you can use the lock table command to:

To immediately lock the entire table, rather than waiting for lock
promotion to take effect.

Performance and Tuning Series: Locking and Concurrency Control 89

Additional locking commands

Lock timeouts

90

* Whenthe query or transactions uses multiple scans, and none of the scans
locks a sufficient number of pages or rows to trigger lock promotion, but
the total number of locksis very large.

» When large tables, especially those using datarows locking, need to be
accessed at transaction level 2 or 3, and lock promotion islikely to be
blocked by other tasks. Using lock table can prevent running out of locks.

The table locks are released at the end of the transaction.

lock table allowsyou to specify await period. If thetablelock cannot be granted
within the wait period, an error message is printed, but the transaction is not
rolled back.

You can specify the amount of time that atask waits for alock:

» Attheserver level, with the lock wait period configuration parameter

» Forasession or in astored procedure, with the set lock wait command

» For alock table command

Seethe Transact-SQL User’s Guide for moreinformation on these commands.

Except for lock table, atask that attempts to acquire alock and failsto acquire
it within the time period returns an error message and the transaction is rolled
back.

Using lock timeouts can be useful for removing tasks that acquire some locks,
and then wait for long periods of time blocking other users. However, since
transactions are rolled back, and users may simply resubmit their queries,
timing out a transaction means that the work needs to be repeated.

Usesp_sysmon to monitor the number of tasksthat exceed thetimelimit while
waiting for alock.

See “Lock time-out information” in Performance and Tuning Series:
Monitoring Adaptive Server with sp_sysmon.

Adaptive Server Enterprise

CHAPTER 5

Indexes

This chapter describes how Adaptive Server storesindexes and usesthem

to speed dataretrieval for select, update, delete, and insert operations.

Topic Page
Types of indexes 92
Indexes and partitions 95
Clustered indexes on allpages-locked tables 96
Nonclustered indexes 105
Index covering 111
Indexes and caching 114

Indexes are the most important physical design element in improving
database performance:

« Indexes help to avoid table scans. A few index pages and data pages
can satisfy many querieswithout requiring reads on hundreds of data

pages.

e For some queries, data can be retrieved from a nonclustered index

without accessing data rows.

e Clustered indexes can randomize data inserts, avoiding insert hot
spots on the last page of atable.

« Indexes can help to avoid sorts, if the index order matches the order

of the columnsin an order by clause.

e For most partitioned tables, you can create global indexes with one
index tree to cover the whole table, or you can create local indexes
with multiple index trees, each of which covers one partition of the

table.

In addition to their performance benefits, indexes can enforce the
uniqueness of data.

Indexes are database objects created on atable to speed direct access to
specific data rows. Indexes store the values of the keys named when the
index was created and logical pointersto the data pages or to other index

pages.

Performance and Tuning Series: Locking and Concurrency Control

91

Types of indexes

Although indexes speed dataretrieval, they can slow down datamodifications,
since most changes to the data require index updates. Optimal indexing
demands an understanding of:

» Thebehavior of queries that access unindexed heap tables, tables with
clustered indexes, and tables with nonclustered indexes

e Themix of queriesthat run on your server
e Therelative benefits of local and global indexes on partitioned tables
e The Adaptive Server optimizer

Types of indexes

92

Adaptive Server provides two general types of indexes that can be created at
the table or at the partition level.

» Clustered indexes, where the data is physically stored in the order of the
keys on the index:

» For allpages-locked tables, rows are stored in key order on pages, and
pages are linked in key order.

» For data-only-locked tables, indexes are used to direct the storage of
data on rows and pages, but strict key ordering is not maintained.

* Nonclustered indexes, where the storage order of datain the table is not
related to index keys

You can create only one clustered index on atable or partition because thereis
only one possible physical ordering of the datarows. You can create up to 249
nonclustered indexes per table.

A tablethat hasno clustered index is called aheap. Therowsin thetablearein
no particular order, and all new rows are added to the end of the table. Chapter
2, “Data Storage,” in Performance and Tuning Series: Physical Database
Tuning discusses heaps and SQL operations on heaps.

For partitioned tables, indexes may be either local or global (see “Indexes and
partitions” on page 95).

Function-based indexes are a type of nonclustered index which use one or
more expressions as the index key. See the Transact-SQL User’s Guide for
more on creating function-based indexes. See also Chapter 6, “Indexing for
Concurrency Control,” for information on when to use function-based indexes.

Adaptive Server Enterprise

CHAPTER 5 Indexes

Index pages

Root level

Leaf level

Index entries are stored as rows on index pages in aformat similar to that of
data rows on data pages. Index entries store key values and pointers to lower
levels of the index, to the data pages, or to individual data rows.

Adaptive Server uses B-tree indexing, so each node in the index structure can
have multiple children.

Index entriesare usually much smaller than adatarow in adatapage, and index
pages aretypically much moredensely populated than data pages. If adatarow
has 200 bytes (including row overhead), there are 10 rows per page on a 2K
server. However, anindex on a15-bytefield has about 100 rows per index page
onaZ2K server (the pointersrequire 4 — 9 bytes per row, depending on the type
of index and the index level).

Indexes can have multiple levels:
* Root level
e Ledf level

* Intermediate level

Theroot level isthe highest level of theindex. Thereis only one root page. If
an allpages-locked table is very small, so that the entire index fits on asingle
page, there are no intermediate or leaf levels, and the root page stores pointers
to the data pages.

Data-only-locked tables always have aleaf level between the root page and the
data pages.

For larger tables, the root page stores pointers to the intermediate level index
pages or to leaf-level pages.

The lowest level of theindex isthe leaf level. At the leaf level, an index
containsakey value for each row inthetable, and the rows are stored in sorted
order by the index key:

e For clustered indexes on allpages-locked tables, the leaf level isthe data.
No other level of theindex contains one index row for each data row.

Performance and Tuning Series: Locking and Concurrency Control 93

Types of indexes

Intermediate level

Index size

94

» For nonclustered indexes and clustered indexes on data-only-locked
tables, the leaf level contains the index key value for each row, a pointer
to the page, and the row containing the specific key value.

Theleaf level isthelevel just abovethe data; it containsoneindex row for
each data row. Index rows on the index page are stored in key value order.

All levels between theroot and leaf levelsareintermediate levels. Anindex on
alarge table or an index using long keys may have many intermediate levels.
Indexes on avery small table may not have an intermediate level; the root
pages point directly to the leaf level.

Table 5-1 describes the limits for index size for APL and DOL tables:

Table 5-1: Index row-size limit

User-visible index row-size Internal index row-
Page size limit size limit
2K (2048 bytes) 600 650
4K (4096 bytes) 1250 1310
8K (8192 bytes) 2600 2670
16K (16384 bytes) | 5300 5400

You can create tables with columns wider than the limit for the index key;
however, these columns become nonindexable. For example, if you perform
the following on a 2K page server, then try to create an index on c3, the
command fails and Adaptive Server issues an error message because column
c3islarger than the index row-size limit (600 bytes).

create table tl (
cl int

c2 int

c3 char(700))

You can till create statistics for anonindexable column, or includeit in search
results. Also, if you includethe columninawhere clause, it isevaluated during
optimization.

Adaptive Server Enterprise

CHAPTER 5 Indexes

Anindex row sizethat istoo large can result in frequent index page splits. Page
splits can make the index level grow linearly with the number of rowsin the
table, making theindex usel ess because the index traverse becomes expensive.
Adaptive Server limitsthe index size to, at most, approximately one third of
server’s page size, so that each index page contains at least three index rows.

Indexes and partitions

Partitioned tables include additional indexing options. Indexes on partitioned
tables can be either global (one index tree covering all the datain the table) or
local (multiple index trees, each of which covers only the data within its
corresponding data partition).

Local indexes on partitioned tables

Both clustered and nonclustered local indexes are supported on all types of
partitioned tables. Each index partition spans asingle data partition; that is, the
index partition is “equipartitioned” with the table. On range-, list-, and hash-
partitioned tables, clustered indexes are alwayslocal indexes. When you create
alocal index, you actually create separate index trees for each partition in the
table. However, Adaptive Server does not support partial indexes, so you
cannot selectively create local indexes for certain partitions.

Global indexes on partitioned tables

Global indexes on partitioned tables span al the partitionsin thetable; that is,
asingleindex tree covers all the datain the table, regardless of partitions.
Global indexes on range-, list-, or hash-partitioned tables may only be
nonclustered, since clustered index ordering conflictswith partition ordering of
the data.

Global clustered indexes are allowed on round-robin partitioned tables.

Performance and Tuning Series: Locking and Concurrency Control 95

Clustered indexes on allpages-locked tables

Local versus global indexes

Local indexes can increase concurrency through multiple index access
points, which reduces root-page contention.

You can place local nonclustered index subtrees (index partitions) on
separate segments to increase |/O parallelism.

You can run reorg rebuild on a per-partition basis, reorganizing the local
index sub-tree while minimizing the impact on other operations.

Global nonclustered indexes are better for covered scans than local
indexes, especially for queries that need to fetch rows across partitions.

Unsupported partition index types

Global partitioned indexes are not supported, meaning that global indexes
that cover all the datain the table are not themselves partitioned.

Global clustered indexes are supported only on round-robin partitioned
tables.

Clustered indexes on allpages-locked tables

In clustered indexes on allpages-locked tables, leaf-level pages are also the
data pages, and all rows are kept in physical order by the keys.

Physical ordering means that:

All entries on a data page are in index key order.

By following the “ next page” pointers on the data pages, Adaptive Server
reads the entire table in index key order.

On the root and intermediate pages, each entry pointsto a page on the next
level.

96

Adaptive Server Enterprise

CHAPTER 5 Indexes

Clustered indexes and select operations

Adaptive Server uses syspartitions to find the root page to select a particular
column (for example, alast name) using a clustered index (in versions earlier
than 15.0, Adaptive Server used sysindexes). Adaptive Server examines the
values on the root page and then follows page pointers, performing a binary
search on each page it accesses as it traverses the index.

Figure 5-1: Selecting a row using a clustered index, allpages-locked

table
select *
from employees 5
where Iname = =
"Green" > S Page 1132
4 o Bennet
_ Page 1007 Chan
s Bennet | 1132 Dull
2 -g Greane | 1133 Edwards
X (ol Hunter 1127 Page 1133
Page 1001 Greane |
Bennet 1007 Page 1009 Green
Karsen 1009 Karsen 1315 Greene
Smith 1062
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

In Figure 5-1, the root level page, “ Green” is greater than “Bennet,” but less
than Karsen, so the pointer for “Bennet” isfollowed to page 1007. On page
1007, “Green” isgreater than “ Greane,” but less than “Hunter,” so the pointer
to page 1133 isfollowed to the data page, wheretherow islocated and returned
to the user.

Thisretrieval using the clustered index requires one read for each of the:
* Root level of the index
e Intermediate level

o Datapage

Performance and Tuning Series: Locking and Concurrency Control 97

Clustered indexes on allpages-locked tables

These reads may come either from cache or from disk. On tables that are
frequently used, the higher levels of the indexes are often found in cache, with
lower levels and data pages being read from disk.

Relationship between physical and logical reads

If Adaptive Server reads a page from disk, it is counted as a physical and a
logical read. The cost of logical 1/O isaways greater than or equal to physical
1/O.

Logical 1/0 aways reports 2K data pages. Physical reads and writes are
reported in buffer-sized units. Multiple pages that are read in asingle 1/O
operation are treated as a unit: they are read, written, and moved through the
cache as asingle buffer.

Clustered indexes and insert operations

Whenyou insert arow into an all pages-locked table with a clustered index, the
data row must be placed in physical order according to the key value on the
table.

Other rows on the data page move down on the page, as needed, to make room
for the new value. Aslong as there is room for the new row on the page, the
insertion does not affect any other pages in the database.

The clustered index is used to find the location for the new row.

Figure 5-2 shows a simple case where there is room on an existing data page
for the new row. Inthis case, the key valuesin theindex do not need to change.

98 Adaptive Server Enterprise

CHAPTER 5 Indexes

Figure 5-2: Inserting a row into an allpages-locked table with a
clustered index

insert employees (Iname) Page 1132
values ("Greco") 5 Bennet
- oull
u
5 X o Edwards
= Page 1007
> =
1) 8 Bennet 1132 Page 1133

Karsen 1009
Smith 1062 Page 1009 Greene
Karsen 1315

X Greane | 1133 [——— .|
Page 1001 Hunter | 1127 grea”e
Bennet | 1007 G:Zg(r:

Page 1127

Hunter
Jenkins

Root page Intermediate Data pages

Page splitting on full data pages

If there is not enough room on the data page for the new row, a page split must
be performed.

* A new datapageis allocated on an extent already in use by the table. If
thereis no free page available, anew extent is allocated.

* The next and previous page pointers on adjacent pages are changed to
incorporate the new page in the page chain. This requires reading those
pages into memory and locking them.

« Approximately half of the rows are moved to the new page, with the new
row inserted in order.

* The higher levels of the clustered index change to point to the new page.

« If thetable also has nonclustered indexes, all pointers to the affected data
rows must be changed to point to the new page and row locations.

Performance and Tuning Series: Locking and Concurrency Control 99

Clustered indexes on allpages-locked tables

In some cases, page splitting ishandled slightly differently. See“Exceptionsto
page splitting” on page 100.
In Figure 5-3, the page split requires adding a new row to an existing index
page, page 1007.

Figure 5-3: Page splitting in an allpages-locked table with a clustered

index
Page 1133
Greane Before
Greco Page 1132
Green Bennet
Greene Chan
Dull
- Edwards
insert employees g
(Iname) Py S Page 1133
values ("Greaves") < o Greane
Page 1007 Greaves
o Bennet 1132 Greco
- j= Greane | 1133
) o
™ g Green 1144
Hunter 1127
Page 1001 Page 1144
Bennet | 1007 Page 1009 Green
Karsen 1009 Karsen | 1315 Greene
Smith 1062
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Exceptions to page splitting
There are exceptions to 50-50 page splits:

» If youinsert alargerow that cannot fit on the page before or the page after
the page that requires splitting, two new pages are allocated, one for the
large row and one for the rows that follow it.

100 Adaptive Server Enterprise

CHAPTER 5 Indexes

e |If possible, Adaptive Server keeps duplicate values together when it splits
pages.

« If Adaptive Server detectsthat all inserts are taking place at the end of
the page, dueto aincreasing key value, the pageisnot split whenitistime
toinsert anew row that does not fit at the bottom of the page. Instead, a
new page is alocated, and the row is placed on the new page.

e |f Adaptive Server detects that inserts are taking place in order at other
locations on the page, the page is split at the insertion paint.

Page splitting on index pages

If anew row needs to be added to afull index page, the page split process on
the index page is similar to the data page split.

A new pageisallocated, and half of the index rows are moved to the new page.

A new row isinserted at the next highest level of the index to point to the new
index page.

Performance impacts of page splitting

Page splits are expensive operations. In addition to the actual work of moving
rows, allocating pages, and logging the operations, the cost is increased by
updating:

e Theclustered index itself
« Page pointers on adjacent pages to maintain page linkage
e All nonclustered index entries that point to the rows affected by the split

When you create aclustered index for atablethat will grow over time, you may
want to usefillfactor to leave room on data pages and index pages. Thisreduces
the number of page splits for atime.

See “ Choosing space management properties for indexes’ on page 140.

Performance and Tuning Series: Locking and Concurrency Control 101

Clustered indexes on allpages-locked tables

Overflow pages

Specia overflow pages are created for nonunique clustered indexes on
allpages-locked tables when a newly inserted row has the same key asthe last
row on afull data page. A new data page is allocated and linked into the page
chain, and the newly inserted row is placed on the new page.

Figure 5-4: Adding an overflow page to a clustered index, allpages-

locked table

insert employees (Iname)
values("Greene")

Before insert

Page 1133
Greane
Greco
Green
Greene

Page 1134
Gresham
Gridley

Data pages

Overflow
data page

After insert

Page 1133
Greane
Greco
Green
Greene

Page 1156
Greene

Page 1134
Gresham
Gridley

The only rows that are placed on the overflow page are additional rows with
the same key value. In anonunique clustered index with many duplicate key
values, there can be numerous overflow pages for the same value.

The clustered index does not contain pointers directly to overflow pages.
Instead, the next page pointers are used to follow the chain of overflow pages
until avalueis found that does not match the search value.

102

Adaptive Server Enterprise

CHAPTER 5 Indexes

Clustered indexes and delete operations

When you delete arow from an allpages-locked table that has a clustered
index, other rows on the page move up to fill the empty space so that the data
remains contiguous on the page.

Figure 5-5 shows a page that has four rows before a delete operation removes
the second row on the page. The two rows that follow the deleted row are

moved up.

Figure 5-5: Deleting a row from a table with a clustered index

Before delete Page 1133
Greane Data to
Green be
Greco deleted
Greene
delete 5 Page 1132
from employees = Bennet
—u " > £
where Iname = "Green)) Chan
i~ o
Dull
- Page 1007 Edwards
9 Bennet 1132
> -g Greane | 1133
¥ o Hunter 1127
Page 1001 Page 1133
Bennet 1007 greane
Karsen | 1009 Page 1009 reco
Smith 1062 B Karsen | 1315 Greene
Page 1127
Hunter |"|
Jenkins
Root page Intermediate Data pages

Performance and Tuning Series: Locking and Concurrency Control 103

Clustered indexes on allpages-locked tables

Deleting the last row on a page

If you delete the last row on a data page, the page is deallocated and the next
and previous page pointers on the adjacent pages are changed.

delete
from employees
where Iname =

g
> £
(]
> g
Page 1001

Bennet 1007

Karsen | 1009
Smith 1062

104

Root page

The rowsthat point to that pagein theleaf and intermediate levels of the index

are removed.

If the deallocated data page is on the same extent as other pages belonging to
the table, it can be used again when that table needs an additional page.

If the deall ocated data page is the last page on the extent that belongs to the
table, the extent is also deall ocated and becomes available for the expansion of
other objects in the database.

In Figure 5-6, which shows the table after the deletion, the pointer to the
deleted page has been removed from index page 1007 and the following index
rows on the page have been moved up to keep the used space contiguous.

Figure 5-6: Deleting the last row on a page (after the delete)

3
> £
(] @]
X o

Page R1007

Bennet 1132
Greane 1133
/"Hu nter 1127

Page 1133
Greane
Green
Greane

Page 1009
Karsen 1315

Intermediate

Page 1127
Hunter
Jenkins

Data pages

Page 1134

Empty page
available for
reallocation

Adaptive Server Enterprise

CHAPTER 5 Indexes

Index page merges

If you delete a pointer from an index page, leaving only one row on that page,
therow ismoved onto an adjacent page, and the empty pageisdeallocated. The
pointers on the parent page are updated to reflect the changes.

Nonclustered indexes

The B-tree works much the same for nonclustered indexes as it does for
clustered indexes, but there are some differences. In nonclustered indexes:

* Leaf pages are not the same as the data pages.
* Leaf level stores one key-pointer pair for each row in the table.

* Leaf-level pages store theindex keys, data page number, and row number
for the data row to which thisindex row is pointing. This combination of
page number and row offset number is called therow ID.

* Theroot and intermediate levels store index keys and page pointers to
other index pages. They also store the row 1D of the key’s data row.

With keys of the same size, nonclustered indexes require more space than
clustered indexes.

Leaf pages revisited

Theleaf page of anindex isthe lowest level of theindex where all of the keys
for the index appear in sorted order.

In clustered indexes on al| pages-locked tables, the datarows are stored in order
by the index keys, so by definition, the datalevel isthe leaf level. Thereisno
other level of the clustered index that contains oneindex row for each datarow.
Clustered indexes on all pages-locked tables are sparse indexes.

Thelevel above the data contains one pointer for every data page, not datarow.

In nonclustered indexes and clustered indexes on data-only-locked tables, the
level just abovethe dataistheleaf level: it contains akey-pointer pair for each
datarow. Theseindexesaredense. At thelevel above the data, they contain one
index row for each data row.

Performance and Tuning Series: Locking and Concurrency Control 105

Nonclustered indexes

Nonclustered index structure

106

Thetablein Figure 5-7 shows anonclustered index on Iname. The datarows at
the far right show pagesin ascending order by employee_id (10, 11, 12, and so
on) because there is a clustered index on that column.

The root and intermediate pages store:

e Thekey vaue

+ TherowID

e The pointer to the next level of the index
The leaf level stores:

e Thekey vaue

+ TherowID

Therow ID in higher levelsof theindex isused for indexesthat allow duplicate
keys. If adatamodification changes the index key or deletesarow, therow ID
positively identifies all occurrences of the key at al index levels.

Adaptive Server Enterprise

CHAPTER 5 Indexes
Figure 5-7: Nonclustered index structure
S
[}
‘E Page 1242
> = :
g no_ 12 g_Leary
— inger
a g 12 White
> = £ Page 1132 13 Jenkins
g DC:’ o Bennet 1421,1
o Chan 1129,3
Page 1007 Dull 1409,1
a 5 Edwards 1018,5 Page 1307
- = c Bennet 1421,1 1132 14 Hunter
<) o o) Greane 1307,4 1133 15 Smith
v o a Hunter 1307,1 1127 16 Ringer
Page 1001 Page 1133 17 Greane
Bennet 14211 | 1007 g’ea”e 1221*‘2‘
Karsen 1411,3 | 1009 G:ggge 12692
Smith 1307,2 | 1062 \ Page 1009 ' Page 1421
Karsen 1411,3 1315 18 Bennet
19 Green
20 Yokomoto
Page 1127
Hunter 1307,1
Jenkins 1242,4
Page 1409
21 Dull
22 Greene
23 White
Root page Intermediate Leaf pages Datapages

Nonclustered indexes and select operations

When you select arow using a nonclustered index, the search starts at the root
level. syspartitions stores the page number for the root page of the nonclustered
index (stored in sysindexes in Adaptive Server versions earlier than 15.0).

In Figure 5-8, “Green” is greater than “Bennet,” but less than “Karsen,” so the

pointer to page 1007 isfollowed.

“Green” isgreater than “ Greane,” but less than “Hunter,” so the pointer to page
1133 isfollowed. Page 1133 isthe leaf page, showing that the row for “ Green”
isrow 2 on page 1421. This page is fetched, the “2” byte in the offset table is
checked, and the row is returned from the byte position on the data page.

Performance and Tuning Series: Locking and Concurrency Control

107

Nonclustered indexes

select *

from employee
where Iname =

"Green"
a) 9]
—_— +—
> = £
(] o o
~ @ o
Page 1001
Bennet 14211 1007
Karsen 1411,3 1009
Smith 1307,2 | 1062

Root page

S

o)

o]

> =

(O] (@]

X o

Page 1132

Bennet 1421,1
Chan 1129,3
Dull 1409,1

Edwards 1018,5

) @
— -
> = £
Q] o
X x© o
Page 1007
Bennet 1421,1 |1132
Greane 1307,4 1133
Hunter 1307,1 1127
Page 1009
Karsen 1411,3 1315

Intermediate

Nonclustered index performance
The query in Figure 5-8 requires one read for each:

108

If your applications use a particular nonclustered index frequently, the root and
intermediate pages are probably in cache, so it islikely that only one or two

Root level page
Intermediate level page
L eaf-level page

Data page

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1

Jenkins 1242,4

Figure 5-8: Selecting rows using a nonclustered index

Leaf pages

physical disk 1/Os need to be performed.

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins
Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane
Page 1421
lan Bennet
Andy | Green
Les Yokomoto
Page 1409
Chad | Dull
Eddy | Greene
Gabe | White
Kip Greco
Data pages

Adaptive Server Enterprise

CHAPTER 5

Indexes

insert employees

(empid, Iname)

Nonclustered indexes and insert operations

When you insert rows into a heap that has a nonclustered index and no
clustered index, the rows are inserted in the last page of the table.

If the heapispartitioned, theinsert goesto the last page on one of the partitions.
Then, the nonclustered index is updated to include the new row.

If thetable hasaclustered index, the clustered index is used to find the location
for therow. The clustered index isupdated, if necessary, and each nonclustered
index is updated to include the new row.

Figure 5-9 showsan insert into a heap table with anonclustered index. Therow
is placed at the end of the table. A row containing the new key value and the
row ID isaso inserted into the leaf level of the nonclustered index.

Figure 5-9: An insert into a heap table with a nonclustered index

values(24,
Greco") o 5
— —
> = £
< € g
2 g
> = < Page 1007
g DC:J o Bennet 1421,1 1132
o Greane | 1307,4 | 1133
Page 1001 Hunter 1307,1 1127
Bennet 14211 | 1007
Karsen 1411,3 1009
Smith 1307,2 | 1062
Page 1009
Karsen 14113 | 1315
Root page Intermediate

S

g

> £

Q o

X o
Page 1132

Bennet 14211

Chan 1129,3

Dull 1409,1

Edwards 1018,5
Page 1133

Greane 1307,4

Greco 1409,4

Green 1421,2

Greene 1409,2
Page 1127

Hunter 1307,1

Jenkins 1242,4

Leaf pages

Performance and Tuning Series: Locking and Concurrency Control

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins
Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane
Page 1421
lan Bennet
Andy| Green
Les Yokomoto
Page 1409
Chad | Dull
Edi Greene
Gabe| White
Kip Greco
Data pages

109

Nonclustered indexes

Nonclustered indexes and delete operations

delete employees

where Iname = "Green"

a) 9]
_— -
> = £
Q o o
4 o o
Page 1001
Bennet 1421,1 | 1007
Karsen 1411,3 1009
Smith 1307,2 |1062
Root page

110

When arow is del eted from atable, the query can use a nonclustered index on
the columnsin the where clause to locate the data row to delete, as shown in
Figure 5-10.

Therow in the leaf level of the nonclustered index that points to the data row
is also removed. If there are other nonclustered indexes on the table, the rows
on the leaf level of those indexes are also deleted.

Figure 5-10: Deleting a row from a table with a nonclustered index

o Page 1242
= Ray O’Leary
q>)~ g Ron Ringer
Lisa White
a = X o Bob Jenkins
= % Page 1132
Yy ° S Bennet 1421,1
X x a Chan 1129,3
Dull 1409,1
Page 1007 Edwards | 10185 - Pa?_'e 1f07
Bennet 14211 1132 L!m Sur_] ﬁr
Greane 1307,4 |1133 v mit
Hunter 1307,1 [1127 Ann Ringer
Jo Greane
Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Page 1009 Greene 1409 2 Page 1421

Karsen 1411,3 |1315 \ lan Bennet
LAndy | Green
Les Yokomoto
Page 1127
Hunter 1307,1
Jenkins 1242,4
Page 1409
Chad | Dull
Eddy | Greene
Gabe | White

Kip Greco
Intermediate Leaf pages “l" Data pages

If the deletion removes the last row on the data page, the page is deallocated
and the adjacent page pointers are adjusted in allpages-locked tables. Any
references to the page are also deleted in higher levels of the index.

If the del ete operation leaves only a single row on an index intermediate page,
index pages may be merged, as with clustered indexes.

Adaptive Server Enterprise

CHAPTER 5 Indexes

See “Index page merges’ on page 105.

Thereisno automatic page merging on datapages, so if your applications make
many random deletes, you may end up with data pages that have only asingle
row, or afew rows, on a page.

Clustered indexes on data-only-locked tables

Clustered indexes on data-only-locked tables are structured like nonclustered
indexes. They have aleaf level above the data pages. The leaf level contains
the key values and row ID for each row in the table.

Unlike clustered indexes on allpages-locked tables, the datarowsin a data-
only-locked table are not necessarily maintained in exact order by the key.
Instead, the index directs the placement of rows to pages that have adjacent or
nearby keys.

When arow isinserted in a data-only-locked table with a clustered index, the
insert uses the clustered index key just before the value to be inserted. The
index pointers are used to find that page, and the row isinserted on the page if
thereisroom. If there is not room, the row isinserted on a page in the same
allocation unit, or on another allocation unit already used by the table.

To provide nearby space for maintaining data clustering during inserts and
updates to data-only-locked tables, you can set space management properties
to provide space on pages (using fillfactor and exp_row_size) or on allocation
units (using reservepagegap).

See “ Setting Space Management Properties,” in Performance and Tuning
Series: Physical Database Tuning.

Index covering

Index covering can produce dramatic performance improvements when all
columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite
indexes. Composite indexes can have up to 31 columns, adding up to a
maximum 600 bytes.

Performance and Tuning Series: Locking and Concurrency Control 111

Index covering

If you create a composite nonclustered index on each column referenced in the
query’sselect list and in any where, having, group by, and order by clauses, the
query can be satisfied by accessing only the index.

Sincetheleaf level of anonclustered index or a clustered index on adata-only-
locked table contains the key valuesfor each row in atable, queriesthat access
only the key values can retrieve the information by using the leaf level of the
nonclustered index asif it were the actual table data. Thisiscalled index
covering.

Both matching and nonmatching index scans can use an index that covers a
query.

For both types of covered queries, theindex keys must contain all the columns
named in the query. Matching scans have additional requirements.

“Choosing composite indexes’ on page 134 describes query types that make
good use of covering indexes.

Covering matching index scans

112

Covering matching index scansletsyou skip thelast read for each row returned
by the query, the read that fetches the data page.

For point queriesthat return only asingle row, the query’s performancegainis
dight— just one page.

For range queries, the performance gain is larger, since the covering index
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all
columns named in the query. In addition, the columns in the where clauses of
the query must include the leading column of the columns in the index.

For example, for an index on columns A, B, C, and D, the following sets can

perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and ABCD. The
columns B, BC, BCD, BD, C, CD, or D do not include the leading column and
can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index
access methodsto move from theroot of theindex to the nonclustered leaf page
that contains the first row.

In Figure 5-11, the nonclustered index on Iname, fname covers the query. The
where clause includes the leading column, and all columnsintheselect list are
included in the index, so the data page need not be accessed.

Adaptive Server Enterprise

CHAPTER 5 Indexes

Figure 5-11: Matching index access does not have to read the data row

S
select fname, Iname Q
from employees > £ Page 1647
where Iname = ~; g 10 O'Leary
- 11 Ringer
Page 1560 12| White
Bennet,Sam 1580,1 13 Jenkins
Chan,Sandra 1129,3
Dull,Normal 1409,1
- Edwards,Linda 1018,5
a o Page 1649
> = £ 14 Hunter
c o 15 Smith
X x o 16 Ringer
Page 1561 17 Greane
Page 1544
Bennet,Sam 1580,1 1560 Greane Grey 1307,4
Greco,Del 1409,4
Greane,Grey 1649,4 1561 Green Rita 14212
Hunter,Hugh 1649,1 1843 G ’ Cind 1703'2
reene,Cindy) Page 1580
18 Bennet
20 Yokomoto
Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 1242,4
Page 1703
21 Dull
22 Greene
23 White
24 Greco
Root page Intermediate Leaf pages Data pages

Covering nonmatching index scans

When the columns specified in the where clause do not include the leading
column in the index, but all columns named in the select list and other query
clauses (such as group by or having) are included in the index, Adaptive Server
saves|/O by scanning the entireleaf level of theindex, rather than scanning the
table.

It cannot perform a matching scan because the first column of theindex is not
specified.
The query in Figure 5-12 shows a nonmatching index scan. This query does

not use the leading columns on the index, but all columnsrequiredin the query
are in the nonclustered index on Iname, fname, emp_id.

Performance and Tuning Series: Locking and Concurrency Control 113

Indexes and caching

The nonmatching scan must examine all rowson the leaf level. It scansal |eaf
level index pages, starting from the first page. It has no way of knowing how

many rows might match the query conditions, so it must examine every row in
the index. Since it must begin at the first page of the leaf level, it can use the

pointer in syspartitions.firstpage rather than descend the index.

Figure 5-12: A nonmatching index scan

select Iname, 3]
emp_l d % g Page 1647
from employees v a 10 O'Leary
11 Ringer
/ Page 1560 12 White
sysindexes.firstpag Bennet,Sam,409... 1580,1 13 Jenkins
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5
- Page 1649
o ot 14 Hunter
> % £ 15 Smith
o 16 Ringer
X o e b 1561 17 Greane
age
Page 1544
Bennet,Sam,409... | 1580,1 1560 2{232"5‘2.’ ?;’;86"' 128;'3
Greane,Grey,486...[1649,4 1561 OSL0f :
Hunter,Hugh.457..] 1649.1 1843 SRS A Page 1580
’ e ’ Greene,Cindy,127... 1703,2 18 Bennet
20 Yokomoto
Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4 Page 1703
21 Dull
22 Greene
23 White
24 Greco
Root page Intermediate Leaf pages Data pages

Indexes and caching

114

“How Adaptive Server performs /O for heap operations’ in Performance and
Tuning Series: Physical Database Tuning introduces the basic concepts of the
Adaptive Server data cache, and showshow caches are used when reading heap
tables.

Adaptive Server Enterprise

CHAPTER 5 Indexes

Index pages get specia handling in the data cache:

* Root and intermediate index pages always use least recently used (L RU)
strategy.

« Index pages can use one cache while the data pages use a different cache,
if the index is bound to a different cache.

e Covering index scans can use fetch-and-discard strategy.

« Index pages can cycle through the cache many times, if number of index
trips is configured.

When a query that uses an index is executed, the root, intermediate, |eaf, and
data pages are read in that order. If these pages are not in cache, they are read
into the MRU end of the cache and are moved toward the LRU end as
additional pages are read in.

Each time a page is found in cache, it is moved to the MRU end of the page
chain, so the root page and higher levels of the index tend to stay in the cache.

Using separate caches for data and index pages

Indexes and the tables they index can use different caches. A system
administrator or table owner can bind a clustered or nonclustered index to one
cache and its table to another.

Index trips through the cache

A specia strategy keeps index pages in cache. Data pages make only asingle
trip through the cache: they are read in at the MRU end of the cache or placed
immediately before the wash marker (A point in the cache on the MRU/LRU
chain), depending on the cache strategy chosen for the query.

Once the pages reach the LRU end of the cache, the buffer for that pageis
reused when another page needs to be read into cache.

For index pages, a counter controls the number of trips that an index page can
make through the cache.

When the counter is greater than O for an index page, and it reaches the LRU
end of the page chain, the counter is decremented by 1, and the pageis placed
at the MRU end again.

Performance and Tuning Series: Locking and Concurrency Control 115

Indexes and caching

By default, the number of trips that an index page makes through the cacheis
set to 0. To change the default, a system administrator can set the number of
index trips configuration parameter.

116 Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency
Control

This chapter introduces the basic query analysis tools that can help you
choose appropriate indexes. It also discusses index selection criteriafor
point queries, range queries, and joins.

Topic Page
How indexes affect performance 117
Symptoms of poor indexing 119
Detecting indexing problems 119
Fixing corrupted indexes 122
Index limits and requirements 125
Choosing indexes 125
Techniques for choosing indexes 137
Index and statistics maintenance 140
Additional indexing tips 141

How indexes affect performance

Carefully considered indexes, built on top of agood database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and del ete operations can take
longer when alarge number of indexes must be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The Adaptive Server query optimizer analyzesthe costs of possible query
plans and chooses the plan that has the lowest estimated cost. Since much
of the cost of executing a query consists of disk 1/0, creating the correct

indexes for your applications means that the optimizer can use indexesto:

* Avoid table scans when accessing data

Performance and Tuning Series: Locking and Concurrency Control 117

How indexes affect performance

e Target specific data pages that contain specific values in apoint query
e Establish upper and lower bounds for reading datain a range query
» Avoid data page access completely, when an index covers a query

» Use ordered data to avoid sorting data or to favor the less costly ordered-
input based JOIN, UNION, GROUP, Of DISTINCT Operatorsover other more
expensive agorithms (for example, using merge joins instead of nested-
loop joins and so on).

For example, to select the best index for ajoin clause:
r.cl=s.cl and ... r.cn=s.cn

* Indexesonr or s that have any subset of c1 ... cnasaprefix avoid
the sort on the side of the merge join with the prefix.

* You can use indexes on both sides of the and clause if they are
compatible (that is, they have anonempty common prefix covered by
the equijoin clause. This common prefix determines the part of the
equijoin clause used as a merge clause (the longer the merge clause,
the more effective it is).

» Thequery processor enumerates plans with an index on one side and
asort on the other. In the example above, the index prefix covered by
the equijoin clause determinesthe part of the equijoin clause used as a
merge clause (again, the longer the merge clause, the more effective
itis).

You can use similar stepsto identify the best index for union, distinct, and

group clauses.

You can create indexes to enforce the uniqueness of data and to randomize the
storage location of inserts.

You can set sp_chgattribute ‘concurrency_opt_threshold' parameter to avoid
table scans for increased concurrency. The syntax is:

sp_chgattribute table name, "concurrency opt threshold", min page count

For example, this sets the concurrency optimization threshold for atableto 30
pages.
sp_chgattribute lookup table, "concurrency opt threshold", 30

118 Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Detecting indexing problems

Some of the major indications of insufficient or incorrect indexing include:
e A select statement takes too long.
e A join between two or more tables takes an extremely long time.

* select operations perform well, but data modification processes perform
poorly.

« Point queries (for example, where colvalue = 3) performwell, but
range queries (for example, where colvalue > 3 and colvalue <
30) perform poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing

A primary goal of improving performance with indexesisavoiding table scans
(which read every page of the table from disk), or partial table scans, which
read only data pages from disk.

A query searching for aunique valuein atablethat has 600 data pages requires
600 physical and logical reads. If anindex points to the data value, the same
query can be satisfied with 2 or 3 reads, a 200 to 300 fold performance
improvement

On asystem with a12-millisecond disk, thisis a difference of severa seconds
compared to lessthan asecond. Heavy disk I/O by asingle query hasanegative
impact on overall throughput.

Lack of indexes is causing table scans

If select operations and joins take too long, it probably indicates that either an
appropriate index does not exist or, it exists, but is not being used by the
optimizer.

showplan output reports whether the table is being accessed by atable scan or
index. If you think an index should be used, but showplan reports a table scan,
dbcc traceon(302) output can help you determine the reason. dbcc traceon
displays the costing computations for all optimizing query clauses.

Performance and Tuning Series: Locking and Concurrency Control 119

Detecting indexing problems

If thereisno clauseisincluded in dbcc traceon(302) output, there may be
problems with the way the clause is written. If a clause that you think should
limit the scan isincluded in dbcc traceon(302) output, look carefully at its
costing, and that of the chosen plan reported with dbcc traceon(310). See
Adaptive Server Reference Manual: Commands for more information about
dbcc traceon.

Index is not selective enough

Anindex is selectiveif it helps the optimizer find a particular row or a set of
rows. An index on a unique identifier such as a passport number is highly
selective, since it lets the optimizer pinpoint asingle row. Anindex on a
nonunigue entry such assex (M, F) isnot very selective, and the optimizer uses
such an index only in very special cases.

Index does not support range queries

Generally, clustered indexes and covering indexes provide good performance
for range queries and for search arguments that match many rows. Range
queriesthat reference the keys of noncovering indexes use theindex for ranges
that return alimited number of rows.

Asthe number of rows the query returnsincreases, however, using a
nonclustered index or a clustered index on a data-only-locked table can cost
more than a table scan.

Too many indexes slow data modification

120

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications.

Every insert or delete operation affects the leaf level, (and sometimes higher
levels) of aclustered index on a data-only-locked table, and each nonclustered
index, for any locking scheme.

Updates to clustered index keys on all pages-locked tables can move the rows
to different pages, requiring an update of every nonclustered index. Analyze
the requirements for each index and try to eliminate those that are unnecessary
or rarely used.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Index entries are too large

Try to keep index entries as small as possible. You can create an index’s total
key length up to one-third the page size. However, indexes with thiskey length
can store very few rows per index page, and the index level may be high. This
increases the number of pagesto traverse from the index root to the leaf pages,
and increases the amount of disk 1/O needed during queries.

The following example uses values reported by sp_estspace to demonstrate
how the number of index pagesand leaf levelsrequired increaseswith key size.
It creates nonclustered indexes using 10-, 20-, and 40-character keyson a
server configured for 2K pages.

create table demotable (cl0 char(10),
c20 char(20),
c40 char(40))
create index tl1l0 on demotable (cl0)
create index t20 on demotable (c20)
create index t40 on demotable (c40)
sp_estspace demotable, 500000

Table 6-1 shows the results.

Table 6-1: Effects of key size on index size and levels

Index, key size Leaf-level pages Index levels
110, 10 bytes 4311 3
t20, 20 bytes 6946 3
t40, 40 bytes 12501 4

The output showsthat theindexesfor the 10-column and 20-column keys each
have three levels, while the 40-column key requires a fourth level.

The number of pages required is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows
Indexes with wide rows may be useful when:

e Thetable has very wide rows, resulting in very few rows per data page.

e Theset of queries run on the table provideslogical choicesfor acovering
index.

e Queriesreturn a sufficiently large number of rows.

Performance and Tuning Series: Locking and Concurrency Control 121

Fixing corrupted indexes

For example, if atable hasvery long rows, and only one row per page, aquery
that needsto return 100 rows must access 100 data pages. Anindex that covers
this query, even with long index rows, can improve performance.

For example, if theindex rows are 240 bytes, the index stores 8 rows per page,
and the query must access only 12 index pages.

Fixing corrupted indexes

122

If the index on one of your system tables has been corrupted, you can use the
sp_fixindex system procedure to repair the index. For syntax information, see
the entry for sp_fixindex in “ System Procedures’ in the Adaptive Server
Reference Manual.

Repairing the system table index with sp_fixindex

1 Gettheobject name, object ID, and index |ID of the corrupted index. If
you only have a page number and you need to find the object_name, see
the Adaptive Server Troubleshooting and Error Messages Guide for
instructions.

2 If the corrupted index is on a system table in the master database, put
Adaptive Server in single-user mode. See the Adaptive Server
Troubleshooting and Error Messages Guide for instructions.

3 If the corrupted index is on a system table in a user database, put the
database in single-user mode and reconfigure to allow updates to system
tables:

1> use master

2> go

1> sp dboption database name, "single user", true
2> go

1> sp _configure "allow updates", 1

2> go

4 |ssuethesp fixindex command:

1> use database name
2> go

1> checkpoint
2> go

1> sp_fixindex database name, object name, index ID

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

2> go

You can use the checkpoint to identify the one or more databases or use an
all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Note You must be assigned sa_role to run sp_fixindex.

5 Rundbcc checktable to verify that the corrupted index is now fixed.
6 Disallow updatesto system tables:

1> use master
2> go

1> sp configure "allow updates", 0
2> go

7 Turn off single-user mode:

1> sp dboption database name, "single user", false
2> go

1> use database name
2> go

1> checkpoint
2> go

You can use the checkpoint to identify the one or more databases or use an
all clause, which means you do not have to issue the use database
command.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

v Repairing a nonclustered index on sysobjects

1 Perform steps 1 — 3, asdescribed in “ Repairing the system table index
with sp_fixindex,” above.

2 Issue

1> use database name
2> go

1> checkpoint

2> go

1> select sysstat from sysobjects
2> where id = 1
3> go

Performance and Tuning Series: Locking and Concurrency Control 123

Fixing corrupted indexes

124

You can use the checkpoint to identify the one or more databases or use an
all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Savethe original sysstat value.
Change the sysstat column to the value required by sp_fixindex:

1> update sysobjects

2> set sysstat = sysstat | 4096
3> where id =1

4> go

Run:

1> sp_ fixindex database name, sysobjects, 2
2> go

Restore the original sysstat value:

1> update sysobjects

2> set sysstat = sysstat ORIGINAL
3> where id = object ID

4> go

Run dbcc checktable to verify that the corrupted index is now fixed.
Disallow updates to system tables:

1> sp_configure "allow updates", 0
2> go

Turn off single-user mode:

1> sp dboption database name, "single user", false
2> go

1> use database_name
2> go

1> checkpoint
2> go

You can use the checkpoint to identify the one or more databases or use an
all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Index limits and requirements
These limits apply to indexes in Adaptive Server:

Becausethedatafor acluster index isordered by index key, you can create
only one clustered index per table. Adaptive Server creates a clustered
index by default as alocal index for range-, list-, and hash-partitioned
tables. You cannot create global clustered indexes on range-, list-, or hash-
partitioned tables.

You can create a maximum of 249 nonclustered indexes per table.

When you create a clustered index, Adaptive Server requires empty free
space to copy the rows in the table and allocate space for the clustered
index pages. It also requires space to re-create any nonclustered indexes
on the table.

The amount of space required can vary, depending on how full thetable's
pages are when you begin and the space management properties are
applied to the table and index pages.

See “Determining the space available for maintenance activities” in
“Database Maintenance,” in Performance and Tuning Series. Physical
Database Tuning.

The referential integrity constraints unique and primary key create unique
indexes to enforce their restrictions on the keys. By default, unique
constraints create nonclustered indexes and primary key constraints create
clustered indexes.

A key can be made up of as many as 31 columns. The maximum number
of bytes per index key is varies by the page size in bytes as follows:

Page Size Max key length
2048 600

4096 1250

8192 2600

16384 5300

Choosing indexes

When you are working with index selection you may want to ask these
questions:

Performance and Tuning Series: Locking and Concurrency Control 125

Choosing indexes

» What indexes are associated currently with a given table?
* What are the most important processes that make use of the table?

* What istheratio of select operations to data modifications performed on
the table?

» Hasaclustered index been created for the table?
e Cantheclustered index be replaced by a nonclustered index?
» Do any of the indexes cover one or more of the critical queries?

* Isacomposite index required to enforce the uniqueness of a compound
primary key?

» Do existing queries contain expressionsthat could be accelerated by using
function-based indexes?

* What indexes can be defined as unique?

e What are the mgjor sorting requirements?

* Do some queries use descending ordering of result sets?

e Do theindexes support joins and referential integrity checks?

e Doesindexing affect update types (direct versus deferred)?

» What indexes are needed for cursor positioning?

» If dirty reads are required, are there unique indexes to support the scan?

e Should IDENTITY columns be added to tables and indexes to generate
unique indexes? Unique indexes are required for updatable cursors and
dirty reads.

When deciding how many indexes to use, consider:

e Space congtraints

e Accesspathsto table

e Percentage of data modifications versus select operations
» Performance requirements of reports versus OLTP

» Performance impacts of index changes

» How often you can use update statistics

126 Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Index keys and logical keys

You must differentiate index keys from logical keys. Logical keys are part of
the database design, defining the relationships between tables: primary keys,
foreign keys, and common keys.

When you optimize your queries by creating indexes, the logical keys may or
may not be used as the physical keysfor creating indexes. You can create
indexes on columns that are not logical keys, and you may have logical keys
that are not used asindex keys.

Choose index keys for performance reasons. Create indexes on columns that
support the joins, search arguments, and ordering requirementsin queries.

A common error isto create the clustered index for atable on the primary key,
even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes
These are general guidelines for clustered indexes:

* Most alpages-locked tables should have clustered indexes or use
partitions to reduce contention on the last page of heap tables.

In a high-transaction environment, the locking on the last page severely
limits throughput.

« If your environment requires alot of inserts, do not place the clustered
index key on a steadily increasing value such asan IDENTITY column.
Instead, choose akey that placesinserts on random pagesto minimizelock
contention whileremaining useful in many queries. Often, the primary key
does not meet this condition.

Thisproblemisless severe on data-only-locked tables, but is often amajor
source of lock contention on allpages-locked tables.

e Clustered indexes provide very good performance when the key matches
the search argument in range queries, such as:

where colvalue >= 5 and colvalue < 10

In allpages-locked tables, rows are maintained in key order and pages are
linked in order, providing very fast performance for queries using a
clustered index.

In data-only-locked tables, rowsarein key order after theindex is created,
but the clustering can decline over time.

Performance and Tuning Series: Locking and Concurrency Control 127

Choosing indexes

e Other good choicesfor clustered index keys are columns used in order by
clausesandinjoains.

» If possible, do not include frequently updated columnsaskeysin clustered
indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current
location to anew page. Also, if the index is clustered, but not unique,
updates are performed in deferred mode.

Choosing clustered indexes

Choose indexes based on the kinds of where clauses or joins you perform.
Choicesfor clustered indexes are:

* Theprimary key, if it isused for where clausesand if it randomizesinserts
» Columnsthat are accessed by range, such as:

coll between 100 and 200
coll2 > 62 and < 70

e Columns used by order by
e Columnsthat change infrequently
e Columnsusedinjoins

If there are several possible choices, choose the most commonly needed
physical order as afirst choice.

Asasecond choice, look for range queries. During performance testing, check
for “hot spots’ due to lock contention.

Candidates for nonclustered indexes

128

When choosing columns for nonclustered indexes, consider all the uses that
were not satisfied by your clustered index choice. In addition, look at columns
that can provide performance gains through index covering.

On data-only-locked tables, clustered indexes can perform index covering,
since they have aleaf level above the data level.

On alpages-locked tables, noncovered range queries work well for clustered
indexes, but may not be supported by nonclustered indexes, depending on the
size of the range.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Consider using composite indexes to cover critical queries and to support less
frequent queries:

e Themost critical queries should be able to perform point queries and
matching scans.

e Other queries should be able to perform nonmatching scans using the
index, which avoids table scans.

Choosing function-based indexes

Index selection

Function-based indexes can provide an inexpensive option for enhancing the
performance of certain legacy applications.

Function-based indexes allow you to create indexes based directly on one or
more expressions (see the Transact-SQL User’s Guide). When the index is
built, theresult of evaluating the expressions for each row is stored as an index
key value, and is not reevaluated at query execution time. This meanslookups
on the result of an expression within a SQL query can be very fast. Without
function-based indexes, table scans are typically be required to evaluate the
expression for each row in the table for comparison. Adaptive Server createsa
hidden computed column containing the evaluated key expressions and
indexes this column.

You can effectively use function-based indexes for queries that need to apply
afunction or operation to a column value and compare the result to another
column in the same row or to a constant or variable.

You can also obtain the performance benefits of function-based indexes by
adding amaterialized computed column with index to atable and rewriting the
query to use the indexed computed column. This can be a good approach for
new application devel opment. The advantage of function-based indexesisthat
you can simply add to an existing table an index that matches expressions used
in existing queries. In this way, you can enhance the performance of legacy
applications with a minimal schema addition and no change to SQL query
code.

Index selection allows you to determine which indexes are actively being used
and those that are rarely used.

Performance and Tuning Series: Locking and Concurrency Control 129

Choosing indexes

This section assumes that the monitoring tables featureis already set up. See
the Performance and Tuning Series. Monitoring Tables for information about
installing and using the monitoring tables.

Index selection uses these columns of the monitoring access table,
monOpenObjectActivity:

e IndexID —unique identifier for the index.

e OptSelectCount — reports the number of times that the corresponding
object (such as atable or index) was used as the access method by the
optimizer.

e LastOptSelectDate — reportsthelast time OptSelectCount wasincremented.

e UsedCount —reports the number of times that the corresponding object
(such as atable or index) was used as an access method when a query
executed.

e LastUsedDate —reports the last time UsedCount was incremented.

If aplan has already been compiled and cached, OptSelectCount is not
incremented each time the plan is executed. However, UsedCount is
incremented when aplan is executed. If no exec ison, OptSelectCount is
incremented, but UsedCount is not.

Monitoring datais nonpersistent. That is, when you restart the server, the
monitoring datais reset. Monitoring datais reported only for active objects.
For example, monitoring data does not exist for objects that have not been
opened, since there are no active object descriptors for such objects. If the
system isinadequately configured and has reused object descriptors,
monitoring datafor these object descriptorsisreinitialized and the datafor the
previous object islost. When the old object is reopened, its monitoring datais
reset.

Examples of using index selection

The following example queries the monitoring tables for the last time all
indexes for a specific object were selected by the optimizer, aswell asthe last
time they were actually used during execution, and reports the counts in each
case:

select DBID, ObjectID, IndexID, OptSelectCount, LastOptSelectDate, UsedCount,
LastUsedDate

from monOpenObjectActivity

where DBID=db id("financials db") and ObjectID =

object id('financials db..expenses')

130 Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

order by UsedCount

This example displays all indexes that are used—or not currently used—in an
application:

select DBID, ObjectID, IndexID, ObjectName = object name (ObjectID, DBID),
LastOptSelectDate, UsedCount, LastUsedDate

from monOpenObjectActivity

where DBID = db id("MY 1253 RS RSSD")

and ObjectID = object id('MY 1253 RS RSSD..rs columns')

DBID ObjectID IndexID ObjectName
LastOptSelectDate UsedCount LastUsedDate

4 192000684 0 rs_columns

May 15 2006 4:18PM 450 May 15 2006 4:18PM
4 192000684 1 rs_columns

NULL 0 NULL

4 192000684 2 rs_columns

NULL 0 NULL

4 192000684 3 rs_columns

May 12 2006 6:11PM 1 May 12 2006 6:11PM
4 192000684 4 rs_columns

NULL 0 NULL

4 192000684 5 rs_columns

NULL 0 NULL

If theindex isnot used, it resultsin aNULL date. If anindex isused, it results
in adate like “May 15 2006 4:18PM.”

Inthisexample, the query displaysall indexesthat are not currently used in the

current database;
select DB = convert (char(20), db name()),
TableName = convert (char(20), object name(i.id, db _id())),
IndexName = convert (char (20),1i.name),

IndID = i.indid

from master..monOpenObjectActivity a, sysindexes i
where a.ObjectID =* i.id

and a.IndexID =* i.indid

and (a.UsedCount = 0 or a.UsedCount is NULL)

and i.indid > 0

and object name(i.id, db id()) not like "sys%"

order by 2, 4 asc

DB TableName IndexName IndID
MY 1253 _RS_RSSD rs_articles rs_key articles 1
MY 1253 RS RSSD rs_articles rs _key4 articles 2

Performance and Tuning Series: Locking and Concurrency Control 131

Choosing indexes

MY 1253 RS _RSSD rs_classes rs_key_classes 1
MY 1253 RS _RSSD rs_classes rs_key2 classes 2
MY 1253 RS RSSD rs_config rs_key config 1
MY 1253 RS RSSD rs_databases rs_key databases 1
MY 1253 RS RSSD rs_databases rs_key9 databases 2
MY 1253 RS _RSSD rs_databases rs_keyl3_ databases 3
MY 1253 RS _RSSD rs_databases rs_keyl4 databases 4
MY 1253 RS _RSSD rs_databases rs_keyl5_databases 5
MY 1253 RS RSSD rs_datatype rs_key datatypes 1
MY 1253 RS RSSD rs_datatype rs_key2 datatype 2

Other indexing guidelines
Here are some other considerations for choosing indexes:

132

If an index key is unique, defineit as unique so the optimizer knows
immediately that only one row matches a search argument or ajoin on the

key.

If your database design uses referential integrity (the references keyword
or the foreign key...references keywords in the create table statement), the
referenced columns must have a unique index, or the attempt to create the
referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on the
referencing column. If your application updates primary keys or deletes
rows from primary key tables, you may want to create an index on the
referencing column so that these |lookups do not perform atable scan.

If your applications use cursors, see “Index use and requirements for
cursors’ in“Optimization for Cursors’ in Performance and Tuning Series.
Query Processing and Abstract Plans.

If you are creating an index on atable that will have alot of insert activity,
use fillfactor to temporarily minimize page splits, improve concurrency,
and minimize deadl ocking.

If you are creating an index on aread-only table, use afillfactor of 100 to
make the table or index as compact as possible.

Keep the size of the key as small as possible. Your index trees remain
flatter, accelerating tree traversals.

Use small datatypes whenever it fits your design.

e Internaly, numerics compare slightly faster than strings.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

e Variable-length character and binary types require more row
overhead than fixed-length types, so if thereislittle difference
between the average length of a column and the defined length, use
fixed length. Character and binary typesthat accept null valuesare, by
definition, variable-length.

« Whenever possible, usefixed-length, nonnull typesfor short columns
that will be used asindex keys.

e Besurethat the datatypes of the join columnsin different tables are
compatible. If Adaptive Server has to convert a datatype on one side of a
join, it may not use an index for that table.

Choosing nonclustered indexes

When you consider adding nonclustered indexes, you must weigh the
improvement inretrieval timeagainst theincreasein datamodificationtime. In
addition, consider:

e How much space will the indexes use?

* How voldtileisthe candidate column?

* How selective are the index keys? Would a scan be better?
« Aretherealot of duplicate values?

Because of data modification overhead, add nonclustered indexes only when
your testing shows that they are helpful.

Performance price for data modification

For all locking schemes, each nonclustered index needs to be updated for each
insertion into, and each deletion from, the table

An update to the table that changes part of an index’s key requires only that
index be updated.

For tables that use allpages locking, all indexes need to be updated for:

e Any update that changes the location of arow by updating a clustered
index key so that the row moves to another page

« Every row affected by adata page split

Performance and Tuning Series: Locking and Concurrency Control 133

Choosing indexes

For allpages-locked tables, exclusivelocks are held on affected index pagesfor
the duration of the transaction, increasing lock contention aswell as processing
overhead.

Some applications experience unacceptabl e performance i mpacts with only
three or four indexes on tables that experience heavy data modification. Other
applications can perform well with many more tables.

Choosing composite indexes

If your analysis shows that more than one column is a good candidate for a
clustered index key, you may be able to provide clustered-like access with a
composite index that covers a particular query or set of queries. Theseinclude:

* Range queries.

» Vector (grouped) aggregates, if both the grouped and grouping columns
are included. Any search arguments must also be included in the index.

* Queriesthat return a high number of duplicates.
* Queriesthat include order by.
* Queriesthat table scan, but use asmall subset of the columns on the table.

Tables that are read-only or read-mostly can be heavily indexed, aslong as
your database has enough space available. If thereis little update activity and
high select activity, provide indexesfor all frequently used queries. Be sureto
test the performance benefits of index covering.

Key order and performance in composite indexes

134

Covered queries can provide excellent response time for specific querieswhen
the leading columns are used.

With the composite nonclustered index on au_Iname, au_fname, au_id, this
query runsvery quickly:

select au_id
from authors
where au_fname = "Eliot" and au_lname = "Wilk"

This covered point query needs to read only the upper levels of the index and
asingle page in the leaf-level row in the nonclustered index of a 5000-row
table.

Adaptive Server Enterprise

CHAPTER 6

Indexing for Concurrency Control

This similar-looking query (using the same index) does not perform quite as
well. This query is still covered, but searcheson au_id:

select au_fname, au_lname

from authors

where au id = "Al1714224678"

Sincethis query does not include the leading column of theindex, it hasto scan
the entire leaf level of the index, about 95 reads.

Adding a column to the select list in the query above, which may seem like a
minor change, makes the performance even worse:

select au_fname, au lname, phone

from authors

where au id = "Al1714224678"

This query performs a table scan, reading 222 pages. In this case, the
performance is noticeably worse. For any search argument that is not the
|eading column, Adaptive Server has only two possible access methods: atable
scan, or a covered index scan.

It doesnot scan theleaf level of theindex for anonleading search argument and
then accessthe data pages. A composite index can be used only when it covers
the query or when the first column appearsin the where clause.

For aquery that includes the leading column of the composite index, adding a
column that isnot included in the index adds only asingle data pageread. This
query must read the data page to find the phone number:

select au_id, phone

from authors

where au_fname = "Eliot" and au_lname = "Wilk"

Table 6-2 shows the performance characteristics of different where clauses
with anonclustered index on au_Iname, au_fname, au_id and no other indexes
onthetable.

Table 6-2: Composite nonclustered index ordering and performance

Columns in the where clause

Performance with the indexed
columns in the select list

Performance with other
columns in the select list

au_lname
or au_lname, au_fname

or au_Iname, au_fname, au_id

Good; index used to descend tree; data

leve is not accessed

Good; index used to descend tree;
datais accessed (one more page
read per row)

au_fname
orau id

or au_fname, au_id

Moderate; index is scanned to return

values

Poor; index not used, table scan

Performance and Tuning Series: Locking and Concurrency Control

135

Choosing indexes

Choose the ordering of the composite index so that most queriesform a prefix
subset.

Advantages and disadvantages of composite indexes

Composite indexes have these advantages:

136

A composite index provides opportunities for index covering.

If queries provide search arguments on each of the keys, the composite
index requiresfewer I/Osthan the same query using anindex on any single
attribute.

A composite index is agood way to enforce the uniqueness of multiple
attributes.

Good choices for composite indexes are:

L ookup tables
Columns that are frequently accessed together
Columns used for vector aggregates

Columns that make a frequently used subset from atable with very wide
rows

The disadvantages of composite indexes are:

Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

An update to any attribute of a composite index causes the index to be
modified. The columns you choose should not be those that are updated
often.

Poor choices are:

Index rows that are nearly as wide as the datarows

Composite indexes where only aminor key is used in the where clause

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Using online reorg rebuild for data-only-locked indexes

You can run online reorg rebuild index on DOL indexes to recompact the data,
collect garbage from spaces | eft by previous deallocations, and rearrange the
data to improve the index page clustering ratio. Running online reorg rebuild
index reduces the space an index requires, and improves the query execution
with higher clustering.

Techniques for choosing indexes

This section presents astudy of two queriesthat must accessasingletable, and
the indexing choices for these two queries. The two queries are:

e A range query that returns alarge number of rows

e A point query that returns only one or two rows

Choosing an index for a range query
Assume that you need to improve the performance of the following query:

select title
from titles
where price between $20.00 and $30.00

Some basic statistics on the table are:
e Thetable has 1,000,000 rows, and uses allpages locking.

e Thereare 10 rows per page; pages are 75 percent full, so the table has
approximately 135,000 pages.

« 190,000 (19%) of the titles are priced between $20 and $30.
With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book and
begin reading sequentially until it gets to the last $30 book. With pages about
75 percent full, the average number of rows per pageis 7.5. To read 190,000
matching rows, the query would read approximately 25,300 pages, plus 3 or 4
index pages.

Performance and Tuning Series: Locking and Concurrency Control 137

Techniques for choosing indexes

With anonclustered index on price and random distribution of price values,
using theindex to find the rowsfor thisquery requiresreading about 19 percent
of the leaf level of the index; about 1,500 pages.

If the price valuesare randomly distributed, the number of datapagesthat must
be read islikely to be high, perhaps as many data pages as there are qualifying
rows, 190,000. Since a table scan requires only 135,000 pages, you would not
want to use a nonclustered index.

Another choice isanonclustered index on price, title. The query can perform a
matching index scan, using the index to find the first page with a price of $20,
and then scanning forward on the leaf level until it finds a price of more than
$30. Thisindex requires about 35,700 leaf pages, so to scan the matching | eaf
pages requires reading about 19 percent of the pages of thisindex, or about
6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements

Theindex choice for the range query on price produced a clear performance
choice when all possibly useful indexes were considered. Now, assume this
query also needs to run against titles:

select price
from titles
where title = "Looking at Leeks"

You know that there are very few duplicatetitles, so thisquery returnsonly one
or two rows.

Considering both this query and the previous query, Table 6-3 shows four
possible indexing strategies and estimate costs of using each index. The
estimates for the numbers of index and data pages were generated using a
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75
The values were rounded for easier comparison.

Table 6-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title
1 Nonclustered on title 36,800 Clustered index, about 26,600 Nonclustered index, 6 1/Os
Clustered on price 650 pages (135,000 *.19)

138

With 16K 1/0: 3,125 1/0s

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Possible index choice Index pages Range query on price Point query on title
2 Clustered on title 3,770 Table scan, 135,000 pages Clustered index, 6 1/0s
Nonclustered on price 6,076 With 16K 1/0: 17,500 1/Os
3 Nonclustered ontitle, 36,835 Nonmatching index scan, Nonclustered index,
price about 35,700 pages 51/0s
With 16K 1/0: 4,500 1/0s
4 Nonclustered on price, 36,835 Matching index scan, about Nonmatching index scan,
title 6,800 pages (35,700 *.19) about 35,700 pages
With 16K 1/0: 850 1/0s With 16K 1/0O: 4,500 1/0s

Examining the figuresin Table 6-3 shows that:

« For therange query on price, choice 4 is best; choices 1 and 3 are
acceptable with 16K 1/0.

« For the point query on titles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for acombination of these two queriesisto use two
indexes:

« Choice 4, for range queries on price.

e Choice 2, for point queries on title, since the clustered index requires very
little space.

You may need additional information to help you determine which indexing
strategy to use to support multiple queries. Typical considerations are:

* Whatisthefrequency of each query? How many times per day or per hour
isthe query run?

e What are the response time requirements? I's one of them especially time
critical?

* What arethe response time requirements for updates? Does creating more
than one index slow updates?

* Istherange of valuestypical ? Isawider or narrower range of prices, such
as $20 to $50, often used? How do different ranges affect index choice?

* Istherealarge data cache? Are these queries critical enough to provide a
35,000-page cachefor the nonclustered compositeindexesin index choice
3 or 4? Binding thisindex to its own cache would provide very fast
performance.

e What other queries and what other search arguments are used? Isthistable
frequently joined with other tables?

Performance and Tuning Series: Locking and Concurrency Control 139

Index and statistics maintenance

Index and statistics maintenance

To ensure that indexes evolve with your system:

* Monitor queries to determine if indexes are still appropriate for your
applications.

Periodically, check the query plans, as described in “Using showplan,” in
Performance and Tuning Series:. Query Processing and Abstract Plans
and the I/O statistics for your most frequent user queries. Pay special
attention to noncovering indexesthat support range queries. They are most
likely to switch to table scans if the data distribution changes

» Drop and rebuild indexes that hurt performance.
» Keepindex statistics up to date.

» Use space management properties to reduce page splits and to reduce the
frequency of maintenance operations.

Dropping indexes that hurt performance

Drop indexes that hurt performance. If an application performs data
modifications during the day and generates reports at night, you may want to
drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever,
actually used by the query optimizer. Make sure that you base indexes on the
current transactions and processes that are being run, not on the original
database design.

Check query plansto determine whether your indexes are being used.

See “Maintaining index and column statistics” and “Rebuilding indexes” in
“Maintenance Activities and Performance,” in Performance and Tuning
Series: Physical Database Tuning.

Choosing space management properties for indexes

140

Space management properties can help reduce the frequency of index
maintenance. | n particular, choosing the fillfactor value can reduce the number
of page splits on leaf pages of nonclustered indexes and on the data pages of
allpages-locked tables with clustered indexes.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

See “ Setting Space Management Properties,” in Performance and Tuning
Series: Physical Database Tuning.

Additional indexing tips

These suggestions may improve performance when you are creating and using
indexes:

Modify the logical design to make use of an artificial column and alookup
table for tables that require alarge index entry.

Reduce the size of an index entry for a frequently used index.

Drop indexes during periods when frequent updates occur, and rebuild
them before periods when frequent selects occur.

If you perform frequent index maintenance, configure your server to speed
up the sorting.

See “Configuring Adaptive Server to speed sorting” in “Maintenance
Activitiesand Performance,” in Performance and Tuning Series: Physical
Database Tuning for information about configuration parameters that
enabl e faster sorting.

Creating artificial columns

When indexes, especially composite indexes, become too large, it may be
beneficial to create an artificial column that is assigned to arow, with a
secondary lookup table that is used to trand ate between the internal I1D and the
original columns.

This may increase response time for certain queries, but the overall
performance gain due to amore compact index and shorter datarowsisusually
worth the effort.

Keeping index entries short and avoiding overhead

Avoid storing purely numeric | Dsascharacter data. Useinteger or numeric IDs
whenever possible to:

Performance and Tuning Series: Locking and Concurrency Control 141

Additional indexing tips

e Save storage space on the data pages
e Makeindex entries more compact
» Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on char
columns. For short index keys, especially thosewithlittlevariationinlengthin
the column data, use char for more compact index entries.

Dropping and rebuilding indexes

You might drop nonclustered indexes prior to a major set of inserts, and then
rebuild them afterwards. the speeds the inserts and bulk copies, since the
nonclustered indexes do not have to be updated with every insert.

See “Rebuilding indexes’ in “ Database Maintenance” in Performance and
Tuning Series. Physical Database Tuning.

Configuring enough sort buffers

The sort buffers decide how many pages of datayou can sort in each run. The
number of pagesisthe basis for the logarithmic function used to calculate the
number of runs needed to finish the sort.

For example, if you have 500 buffers, then the number of runsis calculated
with “log (number of pagesin table) with 500 as the log base.”

Also, the number of sort buffersis shared by threadsin the parallel sort; if you
do not have enough sort buffers, the parallel sort may not work as fast as it
should.

Creating the clustered index first

142

Do not create nonclustered indexes, then clustered indexes. When you create
the clustered index, all previous nonclustered indexes are rebuilt.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

Configure large buffer pools

To set up for larger 1/Os, configure large buffers pools in a named cache and
bind the cache to the table.

Asynchronous log service

Disabling ALS

Asynchronous log service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

You cannot use AL S if you have fewer than four engines. If you try to enable
AL S with fewer than four online engines, an error message appears.

You can enable, disable, or configure ALS using sp_dboption:

sp_dboption <db Name>, "async log service",
"true|false"

After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

You can use the checkpoint to identify one or more databases, or use an all
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Beforeyou disable AL S, make sure there are no active usersin the database. If
there are, you receive an error message when you issue the checkpoint:

sp_dboption "mydb", "async log service", "false"

use mydb

checkpoint

Error 3647: Cannot put database in single-user mode.
Wait until all users have logged out of the database and
issue a CHECKPOINT to disable "async log service".

If there are no active users in the database, this example disables AL S:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Performance and Tuning Series: Locking and Concurrency Control 143

Asynchronous log service

Displaying ALS You can see whether ALS is enabled in a specified database using:

sp_helpdb "mydb"

mydb 3.0 MB sa 2
July 09, 2002
select into/bulkcopy/pllsort, trunc log on chkpt,
async log service

Understanding the user log cache (ULC) architecture

The Adaptive Server logging architecture features the user log cache, or ULC,
by which each task ownsits own log cache. No other task can write to this
cache, and the task continues writing to the user log cache whenever a
transaction generates alog record. When the transaction commits or aborts, or
the user log cacheisfull, the user log cacheisflushed to the common log cache,
shared by all the current tasks, which is then written to the disk.

Flushing the UL Cisthefirst part of acommit or abort operation. It requiresthe
following steps, each of which can cause delay or increase contention:

1 Obtain alock on thelast log page.
2 Allocate new log pages if necessary.
3 Copy thelog records from the ULC to the log cache.

The processesin steps 2 and 3 require you to hold alock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

4 Flushthelog cache to disk.

Step 4 requires repeated scanning of thelog cacheto issue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which thelog is bound. Under alarge transaction load, contention on this
spinlock can be significant.

144 Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control

When to use ALS

You can enable AL S on any specified database that has at |east one of the
following performance issues, so long as your systems runs 4 or more online
engines:

e Heavy contention on the last log page.

You can tell that the last log pageisunder contention when thesp_sysmon
output in the Task Management Report section shows asignificantly high
value. For example:

Table 6-4: Log page under contention

Task
Management
Report per sec per xact count % of total
Log Semaphore 58.0 0.3 34801 73.1
Contention
e Heavy contention on the cache manager spinlock for the log cache.
You can tell that the cache manager spinlock isunder contention when the
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:
Table 6-5:
Cache c_log | per sec | per xact | count | % of total
Spinlock n/a n/a n/a 40.0%
Contention

e Under utilized bandwidth in the log device.

Note Use ALSonly when you identify asingle database with high transaction
reguirements, since setting AL S for multiple databases may cause unexpected
variations in throughput and response times. If you want to configure ALS on
multiple databases, first check that your throughput and response times are
satisfactory.

Performance and Tuning Series: Locking and Concurrency Control 145

Asynchronous log service

Using ALS

ULC flusher

Log writer

Two threads—the UL C flusher and the log writer—scan the dirty buffers
(buffers full of data not yet written to the disk), copy the data, and writeiit to
thelog.

The ULC flusher is a system task thread that is dedicated to flushing the user
log cache of atask into the general 1og cache. When atask is ready to commit,
the user enters a commit request into the flusher queue. Each entry has a
handle, by which the ULC flusher can access the UL C of the task that queued
the request. The UL C flusher task continuously monitors the flusher queue,
removing regquests from the queue and servicing them by flushing ULC pages
into the log cache.

Once the UL C flusher has finished flushing the ULC pagesinto the log cache,
it queues the task request into awakeup queue. Thelog writer patrolsthe dirty
buffer chain in the log cache, issuing awrite command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Stored procedure support for ALS

146

sp_dboption and sp_help support asynchronous log service by:
* sp_dboption adds an option that enables and disables ALS.
* sp_helpdb adds a column to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual: Procedures.

Adaptive Server Enterprise

Index

Symbols
::= (BNF notation)

in SQL statements xiii
, (comma)

in SQL statements xiii
{} (curly braces)

in SQL statements Xiii
() (parentheses)

in SQL statements xiii
[1 (square brackets)

in SQL statements xiii

A

alpageslocking 4
changing to with alter table 78
or strategy 31
specifying with create table 78
specifying with select into 81
specifying with sp_configure 77
ALS
log writer 146
user log cache 144
whentouse 145
ALS, see asynchronouslog service 143
alter table command
changing table locking scheme with 78-82
sp_dboption and changing lock scheme 80
aternative predicates
nonqualifying rows 33
application design
deadlock avoidance 72
deadlock detectionin 68
delaying deadlock checking 72
isolation level O considerations 21
levelsof locking 43
primary keysand 132
user interaction in transactions 41

artificial columns 141

B

Backus Naur Form (BNF) notation ~ xiii
batch processing
transactions and lock contention 41
blocking 53
blocking process
avoiding during mass operations 43
sp_lock reporton 64
sp_who reporton 61
BNF notation in SQL statements Xxiii
brackets. See square brackets| |
B-trees, index
nonclustered indexes 105

C
case sensitivity
inSQL xiv
chains of pages
overflow pagesand 102
clustered indexes 92
changing locking modesand 81
delete operations 103
guidelinesfor choosing 127
insert operationsand 98
order of key values 96
overflow pagesand 102
pagereads 97
structureof 96
column-level locking

pseudo- 34
columns

artificia 141
comma (,)

in SQL statements Xiii

Performance and Tuning Series: Locking and Concurrency Control 147

Index

compositeindexes 134
advantagesof 136

concurrency
deadlocksand 67
lockingand 3, 67

configuration (Server)

lock limit 44
consistency
transactionsand 2
constraints
primary key 125
unique 125
contention
avoiding with clustered indexes 91
reducing 40

contention, lock

locking schemeand 54

sp_object_stats reporton 74
context column of sp_lock output 64
conventions

See also syntax

Transact-SQL syntax Xiii

used in the Reference Manual Xiii
CPU usage

deadlocksand 68
create index command

locks acquired by 29
create table command

locking scheme specification 78
curly braces ({}) in SQL statements xiii
cursors

close on endtran option 88

isolation levelsand 87

lock duration 28

lock type 28, 30

lockingand 87-89

shared keywordin 88

D

data
consistency 2
uniqueness 91
data modification
nonclustered indexesand 133

148

number of indexesand 120
data pages

clustered indexesand 96

full, and insert operations 99
database design

indexingbasedon 140

logical keysandindex keys 127
databases

lock promotion thresholdsfor 44
data-only locking (DOL) tables

maximum row size 79

or strategy and locking 31
datapages locking

changing to with alter table 78

described 6

specifying with create table 78

specifying with select into 81

specifying with sp_configure 77
datarows locking

changing to with alter table 78

described 7

specifying with create table 78

specifying with select into 81

specifying with sp_configure 77
datatypes

choosing 132, 141

numeric compared to character 141
deadlock checking period configuration parameter

72

deadlocks 67-73, 74

application-generated 67

avoiding 71

defined 67

delaying checking 72

detection 68, 74

diagnosing 53

error messages 68

performanceand 39

read committed with lock effectson 29

sp_object_stats reporton 74

worker processexample 69
delete

clustered indexes 103

nonclustered indexes 110

transaction isolation levelsand 23

uncommitted 32

Adaptive Server Enterprise

demandlocks 13
sp_lock reporton 64
detecting deadlocks 74
dirtyreads 3
preventing 21
transaction isolation levelsand 20
duration of latches 18
duration of locks
read committed with lock and 29
read-only cursors 30
transaction isolation level and 26

E

error messages
deadlocks 68
escalation, lock 48
exclusive locks
page 9
sp_lock reporton 64
table 10

F

family duration locks 64
fetching cursors
lockingand 88
fillfactor
index creationand 132
fixed-length columns
forindex keys 133
overhead 133

H

holdlock keyword

locking 85

shared keyword and 88
hot spots

avoiding 42

Performance and Tuning Series: Locking and Concurrency Control

Index

IDENTITY columns

indexing and performance 127
index keys, logical keysand 127
index pages

lockson 5

page splitsfor 101

storageon 93
index selection 129
indexes 91-116

accessthrough 91

design considerations 117

dropping infrequently used 140

guidelinesfor 132

intermediatelevel 94

leaf level 93

leaf pages 105

locking with 9

number alowed 125

partitions 95

performance 91

root level 93

selectivity 120

size of entriesand performance 121

typesof 92
indexing

configure large buffer pools 143

create aclaustered index first 142
infinity key locks 17
insert command

contentionand 42

transaction isolation levelsand 23
insert operations

clustered indexes 98

nonclustered indexes 109

page split exceptionsand 100
intent tablelocks 10

sp_lock reporton 64
intermediate levels of indexes 94
isolation levels 19-26, 82-87

cursors 87

default 82

dirtyreads 21

lock durationand 26, 27, 28

nonrepeatablereads 23

phantoms 23

149

Index

serializablereadsand locks 17
transactions 19

J
joins
choosing indexesfor 128
datatype compatibility in -~ 133
K
key values

index storage 91
order for clustered indexes 96
overflow pagesand 102
keys, index
choosing columnsfor 127
clustered and nonclustered indexesand 92
composite 134
logical keysand 127
monotonically increasing 101
size and performance 132

sizeof 125
unique 132
L
latches 17
leaf levels of indexes 93
leaf pages 105
levels
indexes 93
locking 43

lock allpages option
alter table command 79
create table command 78
select into command 81
lock datapages option
alter table command 79
create table command 78
select into command 81
lock datarows option
alter table command 79

150

create table command 78
select into command 81
lock duration. See duration of locks
lock promotion thresholds 44-52
database 51
default 51
dropping 52
precedence 52
promotion logic 50
server-wide 51
table 51
lock scheme configuration parameter 77
locking 1-45
allpageslocking scheme 4
commands 77-90
concurrency 3
contention, reducing 4044
control over 3,8
cursorsand 87
datapages locking scheme 6
datarows locking scheme 7
deadlocks 67-73
entiretable 8
for update clause 87
forcing awrite 13
holdlock keyword 83
index pages 5
indexesused 9
isolation levelsand 19-26, 82-87
last pageinsertsand 127
monitoring contention 56
noholdlock keyword 83
noholdlock keyword 86
overhead 3
page and table, controlling 19, 47
performance 39
read committed clause 84
read uncommitted clause 84, 86
reducing contention 40
serializable clause 84
shared keyword 83, 86
sp_lock report on 63
transactionsand 3
locking scheme 53-57
alpages 4
changing with alter table ~ 78-82

Adaptive Server Enterprise

clustered indexes and changing 81
create table and 78
datapages 6

datarows 7

lock typesand 7
server-wide default 77
specifying with create table 78
specifying with select into 81
locks

blocking 61

command typeand 27, 28
demand 13

escalation 48

exclusivepage 9
exclusivetable 10

family duration 64
granularity 3

infinity key 17

intent table 10

isolation levelsand 27, 28
latchesand 17

limits 29

“lock deep” status 61
number of, data-only-locking 45
or queriesand 31

page 8
reportingon 61
shared page 9
shared table 10
sizeof 3
table 10

tableversuspage 48
tableversusrow 48
table, tablescansand 30

typesof 7,64
update page 9
viewing 63

worker processesand 14
locktype column of sp_lock output 64
logical keys, index keysand 127

M

matching index scans 112
messages

deadlock victim 68
monitoring
index usage 140
indexes 129-132
indexes, examplesof 130
lock contention 56
multicolumn index. See composite indexes

N

noholdlock keyword, select 86
nonclustered indexes 92
definition of 105
delete operations 110
guidelinesfor 128, 129
insert operations 109
number allowed 125
select and 107
sizeof 105
structure 106
nonmatching index scans 113-114
nonrepeatable reads 23
null columns
variable-length 132
null values
datatypesallowing 132
number (quantity of)
bytesper index key 125
clustered indexes 92
indexes per table 125
locksinthesystem 44
lockson atable 49
nonclustered indexes 92
number of locks configuration parameter
data-only-locked tablesand 45
number of sort buffers 142

numbers
row offset 105
@)
observing deadlocks 74
offset table

nonclustered index selectsand 107

Performance and Tuning Series: Locking and Concurrency Control

Index

151

Index

row IDsand 105
optimisticindex locking 57
added option in sp_chgattribute 57
cautionsand issues 58
using 58
optimizer
dropping indexesnot used by 140
indexesand 117
nonunique entriesand 120
or queries
alpages-locked tablesand 31
data-only-locked tablesand 31
isolation levelsand 32
lockingand 31
row requdificationand 32
order
compositeindexesand 134
dataand index storage 92
index key values 96
order by clause
indexesand 91
output
sp_estspace 121
overflow pages 102
key valuesand 102
overhead
datatypesand 132, 142
nonclustered indexes 133
variable-length columns 133

performanceimpact of 101

pages
overflow 102
pages, data
splitting 99
pages, index
leaf level 105
storageon 93

parallel query processing
demand locksand 14

parallel sort

configure enough sort buffers 142
parentheses ()

in SQL statements xiii
performance

clustered indexesand 56

data-only-locked tablesand 56

indexesand 117

lockingand 39

number of indexesand 120
phantoms 16

seridlizablereadsand 17
phantomsin transactions 23
pointers

index 93
precedence

lock promotion thresholds 52
primary key constraint

index created by 125
promotion, lock 48

P
page chains Q

overflow pagesand 102 qualifying old and new values
page lock promotion HWM configuration parameter 49 uncommitted updates 36
page lock promotion LWM configuration parameter 49 queries
page lock promotion PCT configuration parameter 50 range 120
pagelocks 7

sp_lock reporton 64
tablelocksversus 48

typesof 8 R
page splits range queries 120
datapages 99 read committed with lock configuration parameter
index pagesand 101 deadlocksand 29
nonclustered indexes, effecton 99 lock duration 29

152 Adaptive Server Enterprise

Index

reads shared locks
clustered indexesand 97 cursorsand 88
reduce contention holdlock keyword 85
suggestions 37 page 9
referential integrity sp_lock reporton 64
references and unique index requirements 132 table 10
root level of indexes 93 size
row ID (RID) 105 nonclustered and clustered indexes 105
row lock promotion HWM configuration parameter skip
49 nonqualifying rows 33
row lock promotion LWM configuration parameter deeping locks 61
49 sort operations (order by)
row lock promotion PCT configuration parameter indexing to avoid 91
50 sp_chgattribute, added option for optimistic index
row locks locking 57
sp_lock reporton 64 sp_dropglockpromote 52
tablelocksversus 48 sp_droprowlockpromote 52
row offset number 105 sp_help, displays optimistic index locking 57
row-level locking. See data-only locking sp_lock 63

sp_object_stats 73-74
sp_setpglockpromote 51
sp_setrowlockpromote 51

S sp_who
scan session 47 blocking process 61
scanning space
skipping uncommitted transactions 32 clustered compared to nonclustered indexes 105
scans, table space allocation
avoiding 91 clustered index creation 125
search conditions deallocation of index pages 105
clustered indexesand 127 index page splits 101
locking 9 monotonically increasing key valuesand 101
select 97 page splitsand 99
clustered indexesand 97 splitting
nonclustered indexesand 107 datapagesoninserts 99
optimizing 119 SQL standards
queries 35 concurrency problems 44
skipping uncommitted transactions 32 square brackets|]
serial query processing in SQL statements xiii
demand locksand 13 storage management
seriaizable reads space deallocationand 104
phantomsand 17 symbols
set command in SQL statements xiii
transaction isolation level 82 syntax conventions, Transact-SQL Xiii

shared keyword
cursorsand 88
lockingand 88

Performance and Tuning Series: Locking and Concurrency Control 153

Index

T

tablelocks 7
controlling 19
pagelocksversus 48
row locksversus 48
sp_lock reporton 64
typesof 10
table scans
avoiding 91
locksand 30
tables
locksheldon 19, 64
secondary 141
tasks
demandlocksand 13
testing
hot spots 128
nonclustered indexes 133
timeinterval
deadlock checking 72
transaction isolation level option, set 82
transaction isolation levels
lock durationand 26
or processingand 32
transactions
close on endtran option 88
deadlock resolution 68
default isolation level 82
locking 3
tsequal system function
compared to holdlock 43

U

uncommitted

insertsduring selects 32

updates, qualifyingoldand new 36
unique constraints

index created by 125
uniqueindexes 91

optimizing 132
update command

transaction isolation levelsand 23
updatelocks 9

sp_lock reporton 64

154

update operations
hot spots 42
index updatesand 133
user log cache, inALS 144
using asynchronous log service (Als)

Vv

variable-length columns
index overhead and 142

W

waittimes 74
whentouse ALS 145
where clause
creating indexesfor 128
worker processes
deadlock detectionand 69
lockingand 14

Adaptive Server Enterprise

143

Index

Performance and Tuning Series: Locking and Concurrency Control 155

156 Adaptive Server Enterprise

	Performance and Tuning Series: Locking and Concurrency Control
	Adaptive Server® Enterprise
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	v Finding the latest information on product certifications
	v Finding the latest information on component certifications
	v Creating a personalized view of the Sybase Web site (including support pages)
	Sybase EBFs and software maintenance
	v Finding the latest information on EBFs and software maintenance
	Conventions
	Table 1: Font and syntax conventions for this manual
	Accessibility features
	If you need help

	CHAPTER 1 Introduction to Locking
	How locking affects performance
	Locking and data consistency
	Table 1-1: Consistency levels in transactions

	Granularity of locks and locking schemes
	Allpages locking
	Figure 1-1: Locks held during allpages locking

	Datapages locking
	Figure 1-2: Locks held during datapages locking

	Datarows locking
	Figure 1-3: Locks held during datarows locking

	Types of locks in Adaptive Server
	Page and row locks
	Table 1-2: Page locks and row locks

	Table locks
	Table 1-3: Table locks applied during query processing
	Commands that take intent locks

	Demand locks
	Demand locking with serial execution
	Figure 1-4: Demand locking with serial query execution

	Demand locking with parallel execution
	Figure 1-5: Demand locking with parallel query execution

	Row-locked system tables
	Range locking for serializable reads
	Latches

	Lock compatibility and lock sufficiency
	Table 1-4: Lock compatibility
	Table 1-5: Lock sufficiency

	How isolation levels affect locking
	Table 1-6: Transaction isolation levels
	Isolation level 0, read uncommitted
	Table 1-7: Dirty reads in transactions

	Isolation level 1, read committed
	Table 1-8: Transaction isolation level 1 prevents dirty reads

	Isolation level 2, repeatable read
	Table 1-9: Nonrepeatable reads in transactions

	Isolation level 3, serializable reads
	Table 1-10: Phantoms in transactions
	Table 1-11: Avoiding phantoms in transactions

	Adaptive Server default isolation level

	Lock types and duration during query processing
	Table 1-12: Lock type and duration without cursors
	Table 1-13: Lock type and duration with cursors
	Lock types during create index commands
	Table 1-14: Summary of locks during create index statements

	Locking for select queries at isolation level 1
	Table scans and isolation levels 2 and 3
	Table scans and table locks at isolation level 3
	Isolation level 2 and allpages-locked tables

	When update locks are not required
	Locking during or processing
	Processing or queries for allpages-locked tables
	Processing or queries for data-only-locked tables
	Processing or queries at isolation levels 1 and 2
	Processing or queries at isolation level 3

	Skipping uncommitted inserts during selects
	Skipping uncommitted inserts during deletes, updates, and inserts

	Using alternative predicates to skip nonqualifying rows
	Table 1-15: Pseudo-column-level locking with multiple predicates

	Pseudocolumn-level locking
	Select queries that do not reference the updated column
	Table 1-16: Pseudo-column-level locking with mutually exclusive columns

	Qualifying old and new values for uncommitted updates
	Table 1-17: Checking old and new values for an uncommitted update

	Reducing contention

	CHAPTER 2 Locking Configuration and Tuning
	Locking and performance
	Using sp_sysmon and sp_object_stats
	Reducing lock contention
	Adding indexes to reduce contention
	Keeping transactions short
	Table 2-1: Examples

	Avoiding hot spots

	Additional locking guidelines

	Configuring locks and lock promotion thresholds
	Configuring the Adaptive Server lock limit
	Estimating number of locks for data-only-locked tables
	insert commands and locks
	select queries and locks
	Data modification commands and locks

	Configuring the lock hashtable (lock manager)
	Table 2-2: lock hashtable size

	Setting lock promotion thresholds
	Lock promotion and scan sessions
	Lock promotion high water mark
	Lock promotion low water mark
	Lock promotion percent
	Figure 2-1: Lock promotion logic

	Setting server-wide lock promotion thresholds
	Setting the lock promotion threshold for a table or database
	Precedence of settings
	Dropping database and table settings
	Using sp_sysmon while tuning lock promotion thresholds

	Choosing the locking scheme for a table
	Analyzing existing applications
	Choosing a locking scheme based on contention statistics
	Monitoring and managing tables after conversion
	Applications not likely to benefit from data-only locking
	Tables where clustered index performance must remain high
	Tables with maximum-length rows

	Optimistic index locking
	Using optimistic index locking
	Cautions and issues

	CHAPTER 3 Locking Reports
	Locking tools
	Getting information about blocked processes
	Viewing locks with sp_lock
	Viewing locks with sp_familylock
	Intrafamily blocking during network buffer merges

	Deadlocks and concurrency
	Server-side versus application-side deadlocks
	Application deadlock example

	Server task deadlocks
	Deadlocks and parallel queries
	Figure 3-1: A deadlock involving a family of worker processes

	Printing deadlock information to the error log
	Avoiding deadlocks
	Acquiring locks on objects in the same order
	Delaying deadlock checking

	Identifying tables where concurrency is a problem
	Table 3-1: sp_object_stats output

	Lock management reporting

	CHAPTER 4 Using Locking Commands
	Specifying the locking scheme for a table
	Specifying a server-wide locking scheme
	Specifying a locking scheme with create table
	Changing a locking scheme with alter table
	Before and after changing locking schemes
	Expense of switching to or from allpages locking
	Sort performance during alter table
	Specifying a locking scheme with select into

	Controlling isolation levels
	Setting isolation levels for a session
	Syntax for query-level and table-level locking options
	Using holdlock, noholdlock, or shared
	Using the at isolation clause
	Making locks more restrictive
	Making locks less restrictive

	Readpast locking
	Cursors and locking
	Using the shared keyword

	Additional locking commands
	lock table
	Lock timeouts

	CHAPTER 5 Indexes
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index size
	Table 5-1: Index row-size limit

	Indexes and partitions
	Local indexes on partitioned tables
	Global indexes on partitioned tables
	Local versus global indexes
	Unsupported partition index types

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Figure 5-1: Selecting a row using a clustered index, allpages-locked table
	Relationship between physical and logical reads

	Clustered indexes and insert operations
	Figure 5-2: Inserting a row into an allpages-locked table with a clustered index

	Page splitting on full data pages
	Figure 5-3: Page splitting in an allpages-locked table with a clustered index
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Figure 5-4: Adding an overflow page to a clustered index, allpages- locked table

	Clustered indexes and delete operations
	Figure 5-5: Deleting a row from a table with a clustered index
	Deleting the last row on a page
	Figure 5-6: Deleting the last row on a page (after the delete)

	Index page merges

	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Figure 5-7: Nonclustered index structure

	Nonclustered indexes and select operations
	Figure 5-8: Selecting rows using a nonclustered index

	Nonclustered index performance
	Nonclustered indexes and insert operations
	Figure 5-9: An insert into a heap table with a nonclustered index

	Nonclustered indexes and delete operations
	Figure 5-10: Deleting a row from a table with a nonclustered index

	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Figure 5-11: Matching index access does not have to read the data row

	Covering nonmatching index scans
	Figure 5-12: A nonmatching index scan

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache

	CHAPTER 6 Indexing for Concurrency Control
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Table 6-1: Effects of key size on index size and levels

	Exception for wide data rows and wide index rows

	Fixing corrupted indexes
	v Repairing the system table index with sp_fixindex
	v Repairing a nonclustered index on sysobjects

	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Choosing function-based indexes
	Index selection
	Examples of using index selection

	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Table 6-2: Composite nonclustered index ordering and performance

	Advantages and disadvantages of composite indexes
	Using online reorg rebuild for data-only-locked indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements
	Table 6-3: Comparing index strategies for two queries

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes
	Configuring enough sort buffers
	Creating the clustered index first
	Configure large buffer pools

	Asynchronous log service
	Disabling ALS
	Displaying ALS
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Table 6-4: Log page under contention
	Table 6-5:

	Using ALS
	ULC flusher
	Log writer
	Stored procedure support for ALS

	Index

