
Reference: Statements and Options

Sybase® IQ
15.1

DOCUMENT ID: DC00801-01-1510-01

LAST REVISED: July 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Reference: Statements and Options iii

About This Book ... xi

CHAPTER 1 SQL Statements .. 1
Using the SQL statement reference... 1

Common elements in SQL syntax... 1
Syntax conventions ... 3
Statement applicability indicators .. 4

ALLOCATE DESCRIPTOR statement [ESQL]................................. 4
ALTER DATABASE statement... 6
ALTER DBSPACE statement... 9
ALTER DOMAIN statement.. 13
ALTER EVENT statement .. 14
ALTER FUNCTION statement ... 16
ALTER INDEX statement ... 17
ALTER LOGIN POLICY statement... 19
ALTER PROCEDURE statement ... 20
ALTER SERVER statement ... 20
ALTER SERVICE statement .. 23
ALTER TABLE statement .. 25
ALTER USER statement .. 37
ALTER VIEW statement... 38
BACKUP statement.. 41
BEGIN … END statement .. 47
BEGIN PARALLEL IQ … END PARALLEL IQ statement 50
BEGIN TRANSACTION statement... 51
CALL statement ... 55
CASE statement... 57
CHECKPOINT statement ... 58
CLEAR statement [DBISQL] .. 59
CLOSE statement [ESQL] [SP] .. 59
COMMENT statement .. 61
COMMIT statement .. 62
CONFIGURE statement [DBISQL]... 64
CONNECT statement [ESQL] [DBISQL] .. 65

Contents

iv Sybase IQ

CREATE DATABASE statement.. 68
CREATE DBSPACE statement.. 81
CREATE DOMAIN statement .. 84
CREATE EVENT statement... 86
CREATE EXISTING TABLE statement.. 93
CREATE EXTERNLOGIN statement ... 96
CREATE FUNCTION statement .. 97
CREATE INDEX statement.. 105
CREATE JOIN INDEX statement... 114
CREATE LOGIN POLICY statement ... 117
CREATE MESSAGE statement [T-SQL] 119
CREATE PROCEDURE statement.. 120
CREATE PROCEDURE statement [T-SQL] 127
CREATE SCHEMA statement ... 129
CREATE SERVER statement .. 130
CREATE SERVICE statement ... 132
CREATE TABLE statement ... 135
CREATE USER statement... 151
CREATE VARIABLE statement ... 153
CREATE VIEW statement.. 155
DEALLOCATE DESCRIPTOR statement [ESQL] 156
Declaration section [ESQL] .. 157
DECLARE statement ... 158
DECLARE CURSOR statement [ESQL] [SP] 159
DECLARE CURSOR statement [T-SQL] 166
DECLARE LOCAL TEMPORARY TABLE statement 167
DELETE statement .. 169
DELETE (positioned) statement [ESQL] [SP] 171
DESCRIBE statement [ESQL] ... 173
DISCONNECT statement [DBISQL] .. 176
DROP statement .. 177
DROP CONNECTION statement... 180
DROP DATABASE statement.. 181
DROP EXTERNLOGIN statement ... 182
DROP LOGIN POLICY statement.. 183
DROP SERVER statement .. 183
DROP SERVICE statement ... 184
DROP STATEMENT statement [ESQL]....................................... 184
DROP USER statement ... 185
DROP VARIABLE statement ... 186
EXECUTE statement [ESQL]... 186
EXECUTE statement [T-SQL].. 188
EXECUTE IMMEDIATE statement [ESQL] [SP] 190
EXIT statement [DBISQL] .. 192

Contents

Reference: Statements and Options v

FETCH statement [ESQL] [SP] .. 193
FOR statement... 197
FORWARD TO statement.. 199
FROM clause ... 200
GET DESCRIPTOR statement [ESQL].. 205
GOTO statement [T-SQL] .. 205
GRANT statement.. 206
IF statement ... 212
IF statement [T-SQL].. 213
INCLUDE statement [ESQL] .. 215
INSERT statement ... 216
INSTALL JAVA statement.. 224
IQ UTILITIES statement... 227
LEAVE statement... 229
LOAD TABLE statement .. 230
LOCK TABLE statement .. 252
LOOP statement .. 255
MESSAGE statement... 257
OPEN statement [ESQL] [SP].. 260
OUTPUT statement [DBISQL] ... 263
PARAMETERS statement [DBISQL] ... 267
PREPARE statement [ESQL]... 268
PRINT statement [T-SQL] .. 270
PUT statement [ESQL]... 272
RAISERROR statement [T-SQL] ... 274
READ statement [DBISQL] .. 275
RELEASE SAVEPOINT statement .. 276
REMOVE statement... 277
RESIGNAL statement .. 278
RESTORE statement ... 279
RESUME statement ... 284
RETURN statement ... 286
REVOKE statement ... 287
ROLLBACK statement ... 289
ROLLBACK TO SAVEPOINT statement...................................... 290
SAVEPOINT statement.. 291
SELECT statement .. 291
SET statement [ESQL]... 301
SET statement [T-SQL].. 303
SET CONNECTION statement [DBISQL] [ESQL] 306
SET DESCRIPTOR statement [ESQL] .. 307
SET OPTION statement... 307
SET OPTION statement [DBISQL] .. 310
SET SQLCA statement [ESQL].. 311

Contents

vi Sybase IQ

SIGNAL statement ... 312
START DATABASE statement [DBISQL] 313
START ENGINE statement [DBISQL].. 314
START JAVA statement... 315
STOP DATABASE statement [DBISQL] 316
STOP ENGINE statement [DBISQL].. 317
STOP JAVA statement... 317
SYNCHRONIZE JOIN INDEX statement 318
TRIGGER EVENT statement ... 319
TRUNCATE TABLE statement .. 319
UNION operation.. 321
UPDATE statement.. 322
UPDATE (positioned) statement [ESQL] [SP].............................. 326
WAITFOR statement.. 328
WHENEVER statement [ESQL] ... 329
WHILE statement [T-SQL] ... 330

CHAPTER 2 Database Options .. 333
Introduction to database options .. 333

Setting options... 333
Finding option settings .. 334
Scope and duration of database options............................... 335
Setting public options .. 337
Deleting option settings ... 337
Option classification .. 338
Initial option settings.. 338
Deprecated database options ... 339

General database options .. 339
Transact-SQL compatibility options ... 345
DBISQL options ... 347
Alphabetical list of options.. 348

AGGREGATION_PREFERENCE option 348
ALLOW_NULLS_BY_DEFAULT option [TSQL].................... 349
ANSI_CLOSE_CURSORS_ON_ROLLBACK option [TSQL] 349
ANSI_PERMISSIONS option [TSQL].................................... 350
ANSINULL option [TSQL].. 351
ANSI_UPDATE_CONSTRAINTS option............................... 351
ALLOW_READ_CLIENT_FILE option................................... 352
APPEND_LOAD option ... 353
ASE_BINARY_DISPLAY option.. 353
ASE_FUNCTION_BEHAVIOR option 354
AUDITING option [database]... 355
BIT_VECTOR_PINNABLE_CACHE_PERCENT option 356
BLOCKING option ... 356

Contents

Reference: Statements and Options vii

BT_PREFETCH_MAX_MISS option 357
BT_PREFETCH_SIZE option.. 357
BTREE_PAGE_SPLIT_PAD_PERCENT option 358
CACHE_PARTITIONS option ... 358
CHAINED option [TSQL] ... 360
CHECKPOINT_TIME option ... 360
CIS_ROWSET_SIZE option.. 361
CLOSE_ON_ENDTRANS option [TSQL].............................. 361
CONTINUE_AFTER_RAISERROR option [TSQL] 361
CONVERSION_ERROR option [TSQL] 362
CONVERSION_MODE option... 363
CONVERT_VARCHAR_TO_1242 option 368
COOPERATIVE_COMMIT_TIMEOUT option....................... 369
COOPERATIVE_COMMITS option....................................... 369
CURSOR_WINDOW_ROWS option 370
DATE_FIRST_DAY_OF_WEEK option................................. 370
DATE_FORMAT option... 371
DATE_ORDER option ... 373
DBCC_LOG_PROGRESS option ... 374
DBCC_PINNABLE_CACHE_PERCENT option.................... 374
DEBUG_MESSAGES option... 375
DEDICATED_TASK option ... 376
DEFAULT_DBSPACE option .. 376
DEFAULT_DISK_STRIPING option...................................... 378
DEFAULT_HAVING_SELECTIVITY_PPM option................. 378
DEFAULT_ISQL_ENCODING option [DBISQL] 379
DEFAULT_KB_PER_STRIPE option 380
DEFAULT_LIKE_MATCH_SELECTIVITY_PPM option........ 380
DEFAULT_LIKE_RANGE_SELECTIVITY_PPM option........ 381
DELAYED_COMMIT_TIMEOUT option 382
DELAYED_COMMITS option.. 382
DISABLE_RI_CHECK option .. 383
EARLY_PREDICATE_EXECUTION option 383
EXTENDED_JOIN_SYNTAX option 384
FORCE_DROP option... 385
FORCE_NO_SCROLL_CURSORS option 385
FORCE_UPDATABLE_CURSORS option............................ 386
FP_LOOKUP_SIZE option .. 386
FP_LOOKUP_SIZE_PPM option .. 387
FP_PREDICATE_WORKUNIT_PAGES option 388
FPL_EXPRESSION_MEMORY_KB option........................... 389
GARRAY_FILL_FACTOR_PERCENT option 389
GARRAY_INSERT_PREFETCH_SIZE option...................... 390
GARRAY_PAGE_SPLIT_PAD_PERCENT option................ 390

Contents

viii Sybase IQ

GARRAY_RO_PREFETCH_SIZE option.............................. 391
HASH_PINNABLE_CACHE_PERCENT option 391
HASH_THRASHING_PERCENT option 392
HG_DELETE_METHOD option... 392
HG_SEARCH_RANGE option .. 393
IDENTITY_ENFORCE_UNIQUENESS option...................... 394
IDENTITY_INSERT option .. 394
INDEX_ADVISOR option .. 395
INDEX_ADVISOR_MAX_ROWS option 397
INDEX_PREFERENCE option .. 398
INFER_SUBQUERY_PREDICATES option.......................... 399
IN_SUBQUERY_PREFERENCE option 400
IQGOVERN_MAX_PRIORITY option 401
IQGOVERN_PRIORITY option ... 401
IQGOVERN_PRIORITY_TIME option................................... 401
ISOLATION_LEVEL option ... 402
JOIN_EXPANSION_FACTOR option.................................... 402
JOIN_OPTIMIZATION option.. 403
JOIN_PREFERENCE option... 405
JOIN_SIMPLIFICATION_THRESHOLD option..................... 406
LARGE_DOUBLES_ACCUMULATOR option 407
LF_BITMAP_CACHE_KB option... 407
LOAD_MEMORY_MB option .. 408
LOAD_ZEROLENGTH_ASNULL option 409
LOCKED option... 410
LOG_CONNECT option .. 410
LOG_CURSOR_OPERATIONS option................................. 410
LOGIN_MODE option.. 411
LOGIN_PROCEDURE option ... 411
MAIN_RESERVED_DBSPACE_MB option 412
MAX_CARTESIAN_RESULT option 413
MAX_CLIENT_NUMERIC_PRECISION option 413
MAX_CLIENT_NUMERIC_SCALE option 414
MAX_CONNECTIONS option ... 415
MAX_CUBE_RESULT option.. 415
MAX_CURSOR_COUNT option ... 415
MAX_DAYS_SINCE_LOGIN option...................................... 416
MAX_FAILED_LOGIN_ATTEMPTS option........................... 416
MAX_HASH_ROWS option... 416
MAX_IQ_THREADS_PER_CONNECTION option 417
MAX_IQ_THREADS_PER_TEAM option 417
MAX_JOIN_ENUMERATION option 418
MAX_QUERY_PARALLELISM option 418
MAX_QUERY_TIME option .. 419

Contents

Reference: Statements and Options ix

MAX_STATEMENT_COUNT option 419
MAX_TEMP_SPACE_PER_CONNECTION option 420
MAX_WARNINGS option .. 420
MINIMIZE_STORAGE option.. 421
MIN_PASSWORD_LENGTH option 422
MONITOR_OUTPUT_DIRECTORY option........................... 422
NEAREST_CENTURY option [TSQL]................................... 423
NOEXEC option .. 424
NON_ANSI_NULL_VARCHAR option 425
NON_KEYWORDS option [TSQL] .. 425
NOTIFY_MODULUS option .. 426
ODBC_DISTINGUISH_CHAR_AND_VARCHAR option....... 426
ON_CHARSET_CONVERSION_FAILURE option................ 426
ON_TSQL_ERROR option [TSQL] 427
OS_FILE_CACHE_BUFFERING option 428
PASSWORD_EXPIRY_ON_NEXT_LOGIN option 429
PASSWORD_GRACE_TIME option 429
PASSWORD_LIFE_TIME option .. 429
POST_LOGIN_PROCEDURE option.................................... 429
PRECISION option.. 430
PREFETCH option .. 430
PREFETCH_BUFFER_LIMIT option..................................... 431
PREFETCH_BUFFER_PERCENT option............................. 431
PREFETCH_GARRAY_PERCENT option............................ 432
PREFETCH_SORT_PERCENT option 432
PRESERVE_SOURCE_FORMAT option [database]............ 432
QUERY_DETAIL option .. 433
QUERY_NAME option .. 433
QUERY_PLAN option ... 434
QUERY_PLAN_AFTER_RUN option.................................... 435
QUERY_PLAN_AS_HTML option... 435
QUERY_PLAN_AS_HTML_DIRECTORY option.................. 436
QUERY_PLAN_TEXT_ACCESS option 437
QUERY_PLAN_TEXT_CACHING option.............................. 438
QUERY_ROWS_RETURNED_LIMIT option 439
QUERY_TEMP_SPACE_LIMIT option 439
QUERY_TIMING option .. 440
QUOTED_IDENTIFIER option [TSQL].................................. 441
RECOVERY_TIME option... 441
RETURN_DATE_TIME_AS_STRING option 442
ROW_COUNT option .. 442
SCALE option.. 443
SIGNIFICANTDIGITSFORDOUBLEEQUALITY option......... 443
SORT_COLLATION option ... 444

Contents

x Sybase IQ

SORT_PINNABLE_CACHE_PERCENT option 445
SQL_FLAGGER_ERROR_LEVEL option [TSQL]................. 446
SQL_FLAGGER_WARNING_LEVEL option [TSQL] 446
STRING_RTRUNCATION option [TSQL] 447
SUBQUERY_CACHING_PREFERENCE option 447
SUBQUERY_FLATTENING_PERCENT option.................... 448
SUBQUERY_FLATTENING_PREFERENCE option 449
SUBQUERY_PLACEMENT_PREFERENCE option............. 450
SUPPRESS_TDS_DEBUGGING option............................... 450
SWEEPER_THREADS_PERCENT option 451
TDS_EMPTY_STRING_IS_NULL option [database] 451
TEMP_EXTRACT_APPEND option 452
TEMP_EXTRACT_BINARY option 452
TEMP_EXTRACT_COLUMN_DELIMITER option 453
TEMP_EXTRACT_DIRECTORY option................................ 454
TEMP_EXTRACT_ESCAPE_QUOTES option 455
TEMP_EXTRACT_NAMEn options....................................... 456
TEMP_EXTRACT_NULL_AS_EMPTY option 458
TEMP_EXTRACT_NULL_AS_ZERO option......................... 458
TEMP_EXTRACT_QUOTE option .. 459
TEMP_EXTRACT_QUOTES option...................................... 460
TEMP_EXTRACT_QUOTES_ALL option 461
TEMP_EXTRACT_ROW_DELIMITER option....................... 461
TEMP_EXTRACT_SIZEn options ... 462
TEMP_EXTRACT_SWAP option .. 463
TEMP_RESERVED_DBSPACE_MB option 464
TEMP_SPACE_LIMIT_CHECK option.................................. 465
TIME_FORMAT option.. 466
TIMESTAMP_FORMAT option ... 466
TOP_NSORT_CUTOFF_PAGES option............................... 468
TRIM_PARTIAL_MBC option.. 468
TSQL_VARIABLES option [TSQL].. 469
USER_RESOURCE_RESERVATION option 469
VERIFY_PASSWORD_FUNCTION option 469
WASH_AREA_BUFFERS_PERCENT option 471
WAIT_FOR_COMMIT option .. 471
WD_DELETE_METHOD option .. 472

Index ... 475

Reference: Statements and Options xi

About This Book

Subject This book provides reference material for Sybase IQ SQL statements and
database options. Reference material for other aspects of Sybase IQ,
including language elements, data types, functions, system procedures,
and system tables is provided in Reference: Building Blocks, Tables, and
Procedures. Other books provide more context on how to perform
particular tasks. This reference book is the place to look for information
such as available SQL syntax, parameters, and options. For command line
utility start-up parameters, see the Utility Guide.

Audience This manual is a reference for all users of Sybase IQ.

How to use this book This book provides comprehensive descriptions of Sybase IQ statements
and options, but it does not describe why you might want to use these
features. Use this book as a reference together with the other books in the
Sybase IQ documentation set.

Windows platforms
The Windows information in this book applies to all supported Windows
platforms, unless otherwise noted. For supported Windows platforms, see
the Sybase IQ Release Bulletin for Windows.

Related documents The Sybase IQ 15.1 documentation set includes:

• Release Bulletin provides information about last-minute changes to
the product and documentation.

• Installation and Configuration Guide provides platform-specific
instructions on installing, migrating to a new version, and configuring
Sybase IQ for a particular platform.

• Advanced Security in Sybase IQ covers the use of user encrypted
columns within the Sybase IQ data repository. You need a separate
license to install this product option.

• Error Messages lists Sybase IQ error messages referenced by Sybase
error code, SQLCode, and SQLState, and SQL preprocessor errors
and warnings.

xii Sybase IQ

• IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Library
contains a concise description of the IMSL C Stat Library time series C
functions. This book is only available to RAP – The Trading Edition™
Enterprise users.

• Introduction to Sybase IQ includes hands-on exercises for those
unfamiliar with Sybase IQ or with the Sybase Central™ database
management tool.

• Large Objects Management in Sybase IQ explains storage and retrieval of
Binary Large Objects (BLOBs) and Character Large Objects (CLOBs)
within the Sybase IQ data repository. You need a separate license to install
this product option.

• New Features in Sybase IQ 15.0 documents new features and behavior
changes for version 15.0.

• New Features Summary Sybase IQ 15.1 summarizes new features and
behavior changes for the current version.

• Performance and Tuning Guide describes query optimization, design, and
tuning issues for very large databases.

• Quick Start lists steps to build and query the demo database provided with
Sybase IQ for validating the Sybase IQ software installation. Includes
information on converting the demo database to multiplex.

• Reference Manual – Includes two reference guides to Sybase IQ:

• Reference: Building Blocks, Tables, and Procedures describes SQL,
stored procedures, data types, and system tables that Sybase IQ
supports.

• Reference: Statements and Options describes the SQL statements and
options that Sybase IQ supports.

• System Administration Guide – Includes two volumes:

• System Administration Guide: Volume 1 describes startup,
connections, database creation, population and indexing, versioning,
collations, system backup and recovery, troubleshooting, and
database repair.

• System Administration Guide: Volume 2 describes writing and
running procedures and batches, programming with OLAP, accessing
remote data, setting up IQ as an Open Server, scheduling and event
handling, programming with XML, and debugging.

 About This Book

Reference: Statements and Options xiii

• User-Defined Functions Guide provides information about the user-
defined functions, their parameters, and possible usage scenarios.

• Using Sybase IQ Multiplex tells how to use multiplex capability, designed
to manage large query loads across multiple nodes.

• Utility Guide provides Sybase IQ utility program reference material, such
as available syntax, parameters, and options.

Sybase IQ and SQL Anywhere
Because Sybase IQ is an extension of SQL Anywhere Server, a component of
the SQL Anywhere® package, Sybase IQ supports many of the same features
as SQL Anywhere Server. The IQ documentation set refers you to SQL
Anywhere documentation, where appropriate.

Documentation for SQL Anywhere includes:

• SQL Anywhere Server – Database Administration describes how to run,
manage, and configure SQL Anywhere databases. It describes database
connections, the database server, database files, backup procedures,
security, high availability, and replication with Replication Server®, as
well as administration utilities and options.

• SQL Anywhere Server – Programming describes how to build and deploy
database applications using the C, C++, Java, PHP, Perl, Python, and .NET
programming languages such as Visual Basic and Visual C#. This book
also describes a variety of programming interfaces such as ADO.NET and
ODBC.

• SQL Anywhere Server – SQL Reference provides reference information
for system procedures, and the catalog (system tables and views). It also
provides an explanation of the SQL Anywhere implementation of the SQL
language (search conditions, syntax, data types, and functions).

• SQL Anywhere Server – SQL Usage describes how to design and create
databases; how to import, export, and modify data; how to retrieve data;
and how to build stored procedures and triggers.

You can also refer to the SQL Anywhere documentation in the SQL Anywhere
11.0.1 collection at Product Manuals at http://sybooks.sybase.com and in
DocCommentXchange at http://dcx.sybase.com/dcx_home.php.

Documentation for Sybase Software Asset Management (SySAM) includes:

http://sybooks.sybase.com
http://dcx.sybase.com/dcx_home.php

xiv Sybase IQ

• Sybase Software Asset Management (SySAM) 2 introduces asset
management concepts and provides instructions for establishing and
administering SySAM 2 licenses.

• SySAM 2 Quick Start Guide tells you how to get your SySAM-enabled
Sybase product up and running.

• FLEXnet Licensing End User Guide explains FLEXnet Licensing for
administrators and end users and describes how to use the tools that are
part of the standard FLEXnet Licensing distribution kit from Sybase.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://sybooks.sybase.com.

http://sybooks.sybase.com

 About This Book

Reference: Statements and Options xv

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at http://
certification.sybase.com/ucr/search.do.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at http://
certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at http://www.sybase.com/
support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at http://
www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

http://certification.sybase.com/ucr/search.do
http://certification.sybase.com/ucr/search.do
http://certification.sybase.com
http://certification.sybase.com
http://www.sybase.com
http://www.sybase.com/support
http://www.sybase.com/support

xvi Sybase IQ

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Syntax conventions This documentation uses these conventions in syntax descriptions:

• Keywords SQL keywords are shown in UPPERCASE. However,
SQL keywords are case-insensitive, so you can enter keywords in any
case; SELECT, Select, and select are equivalent.

• Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown in italics.

• Continuation Lines beginning with an ellipsis (...) are a continuation
of the statements from the previous line.

• Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (...). One or more list elements are
allowed. If multiple elements are specified, they must be separated by
commas.

• Optional portions Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

The square brackets indicate that the savepoint-name is optional. Do not
type the brackets.

• Options When none or only one of a list of items must be chosen, the
items are separated by vertical bars and the list enclosed in square
brackets. For example:

[ASC | DESC]

The square brackets indicate that you can choose ASC, DESC, or neither.
Do not type the brackets.

• Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces. For example:

QUOTES { ON | OFF }

The curly braces indicate that you must include either ON or OFF. Do not
type the brackets.

 About This Book

Reference: Statements and Options xvii

Typographic
conventions

Table 1 lists the typographic conventions used in this documentation.

Table 1: Typographic conventions

The demo database Sybase IQ includes scripts to create a demo database (iqdemo.db). Many of the
queries and code samples in this document use the demo database as a data
source.

The demo database contains internal information about a small company
(employees, departments, and financial data), as well as product (products),
and sales information (sales orders, customers, and contacts).

See the Sybase IQ installation guide for your platform or talk to your system
administrator for more information about the demo database.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Sybase IQ 15.1 and the HTML documentation have been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Configuring your accessibility tool
You might need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool for information on using screen
readers.

Item Description

Code SQL and program code appears in a monospaced (fixed-
width) font.

User entry Text entered by the user is shown in a monospaced (fixed-
width) font.

emphasis Emphasized words are shown in italic.

file names File names are shown in italic.

database objects Names of database objects, such as tables and procedures,
are shown in bold, sans serif type in print, and in italic
online.

xviii Sybase IQ

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

For a Section 508 compliance statement for Sybase IQ, go to Sybase
Accessibility at http://www.sybase.com/products/accessibility.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility
http://www.sybase.com/products/accessibility

Reference: Statements and Options 1

C H A P T E R 1 SQL Statements

About this chapter This chapter presents an alphabetical listing of the SQL statements
available in Sybase IQ, including some that can be used only from
Embedded SQL or DBISQL.

Using the SQL statement reference
This section describes the conventions used in documenting the SQL
statements.

Common elements in SQL syntax
This section lists language elements that are found in the syntax of many
SQL statements.

For more information on the elements described here, see the sections
“Identifiers,” “Search conditions,” “Expressions,” and “Strings” in
Chapter 2, “SQL Language Elements” in Reference: Building Blocks,
Tables, and Procedures.

• column-name – an identifier that represents the name of a column.

• condition – an expression that evaluates to TRUE, FALSE, or
UNKNOWN.

• connection-name – a string representing the name of an active
connection.

• data-type – a storage data type.

• expression – an expression.

• filename – a string containing a file name.

• host-variable – a C language variable, declared as a host variable,
preceded by a colon.

Using the SQL statement reference

2 Sybase IQ

• indicator-variable – a second host variable of type short int immediately
following a normal host variable. An indicator variable must also be
preceded by a colon. Indicator variables are used to pass NULL values to
and from the database.

• number – any sequence of digits followed by an optional decimal part and
preceded by an optional negative sign. Optionally, the number can be
followed by an ‘e’ and then an exponent. For example,

42
-4.038
.001
3.4e10
1e-10

• owner – an identifier representing the user ID who owns a database object.

• role-name – an identifier representing the role name of a foreign key.

• savepoint-name – an identifier that represents the name of a savepoint.

• search-condition – a condition that evaluates to TRUE, FALSE, or
UNKNOWN.

• special-value – one of the special values described in “Special values” in
Chapter 2, “SQL Language Elements” in Reference: Building Blocks,
Tables, and Procedures.

• statement-label – an identifier that represents the label of a loop or
compound statement.

• table-list – a list of table names, which might include correlation names.
For more information, see FROM clause on page 200.

• table-name – an identifier that represents the name of a table.

• userid – an identifier representing a user name. The user ID is not case
sensitive and is unaffected by the setting of the CASE RESPECT property
of the database.

• variable-name – an identifier that represents a variable name.

CHAPTER 1 SQL Statements

Reference: Statements and Options 3

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

• Keywords – All SQL keywords appear in UPPERCASE; however, SQL
keywords are case insensitive, so you can type keywords in any case. For
example, SELECT is the same as Select, which is the same as select.

• Placeholders – Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

• Continuation – Lines beginning with an ellipsis (…) are a continuation
from the previous line.

• Optional portions – Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

This example indicates that the savepoint-name is optional. Do not type
the square brackets.

• Repeating items – Lists of repeating items are shown with an element of
the list followed by an ellipsis. One or more list elements are allowed.
When more than one is specified, they must be separated by commas if
indicated as such. For example:

UNIQUE (column-name [, ...])

The example indicates that you can specify column-name more than once,
separated by commas. Do not type the square brackets.

• Alternatives – When one option must be chosen, the alternatives are
enclosed in curly braces. For example:

[QUOTES { ON | OFF }]

The example indicates that if you choose the QUOTES option, you must
provide one of ON or OFF. Do not type the braces.

• One or more options – If you choose more than one, separate your choices
by commas. For example:

{ CONNECT, DBA, RESOURCE }

ALLOCATE DESCRIPTOR statement [ESQL]

4 Sybase IQ

Statement applicability indicators
Some statement titles are followed by an indicator in square brackets that
shows where the statement can be used. These indicators are as follows:

• [ESQL] – The statement is for use in Embedded SQL.

• [DBISQL] – The statement is for use only in DBISQL.

• [SP] – The statement is for use in stored procedures or batches.

• [TSQL] – The statement is implemented for compatibility with Adaptive
Server Enterprise. In some cases, the statement cannot be used in stored
procedures that are not Transact-SQL format. In other cases, there is an
alternative statement that is closer to the SQL92 standard that is
recommended unless Transact-SQL compatibility is an issue.

If two sets of brackets are used, the statement can be used in both
environments. For example, [ESQL] [SP] means a statement can be used either
in Embedded SQL or in stored procedures.

ALLOCATE DESCRIPTOR statement [ESQL]
Description Allocates space for a SQL descriptor area (SQLDA).

Syntax ALLOCATE DESCRIPTOR descriptor-name
… [WITH MAX { integer | host-variable }]

Parameters descriptor-name:
string

For more information, see Chapter 2, “SQL Language Elements” in
Reference: Building Blocks, Tables, and Procedures.

Examples The following sample program includes an example of ALLOCATE
DESCRIPTOR statement usage.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

#include <sqldef.h>

CHAPTER 1 SQL Statements

Reference: Statements and Options 5

EXEC SQL BEGIN DECLARE SECTION;
int x;
short type;
int numcols;
char string[100];
a_sql_statement_number stmt = 0;
EXEC SQL END DECLARE SECTION;

int main(int argc, char * argv[])
{

struct sqlda * sqlda1;

if(!db_init(&sqlca)) {
return 1;

}
db_string_connect(&sqlca,

"UID=dba;PWD=sql;DBF=d:\\IQ-15_1\\sample.db");

EXEC SQL ALLOCATE DESCRIPTOR sqlda1 WITH MAX 25;

EXEC SQL PREPARE :stmt FROM
'select * from Employees';

EXEC SQL DECLARE curs CURSOR FOR :stmt;
EXEC SQL OPEN curs;

EXEC SQL DESCRIBE :stmt into sqlda1;
EXEC SQL GET DESCRIPTOR sqlda1 :numcols=COUNT;

// how many columns?
if(numcols > 25) {

// reallocate if necessary
EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL ALLOCATE DESCRIPTOR sqlda1

WITH MAX :numcols;
}
type = DT_STRING; // change the type to string
EXEC SQL SET DESCRIPTOR sqlda1 VALUE 2 TYPE = :type;
fill_sqlda(sqlda1); // allocate space for the

variables

EXEC SQL FETCH ABSOLUTE 1 curs USING DESCRIPTOR
sqlda1;

EXEC SQL GET DESCRIPTOR sqlda1 VALUE 2 :string =
DATA;

ALTER DATABASE statement

6 Sybase IQ

printf("name = %s", string);

EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL CLOSE curs;
EXEC SQL DROP STATEMENT :stmt;

db_string_disconnect(&sqlca, "");
db_fini(&sqlca);

return 0;
}

Usage You must declare the following in your C code prior to using this statement:

struct sqlda * descriptor_name

The WITH MAX clause lets you specify the number of variables within the
descriptor area. The default size is 1.

You must still call fill_sqlda to allocate space for the actual data items before
doing a fetch or any statement that accesses the data within a descriptor area.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

See also DEALLOCATE DESCRIPTOR statement [ESQL] on page 156

 “The SQL descriptor area (SQLDA)” in SQL Anywhere Server –
Programming > SQL Anywhere Data Access APIs > SQL Anywhere embedded
SQL

ALTER DATABASE statement
Description Upgrades a database created with a previous version of the software or adds or

removes Java or jConnect support. Run this statement with Interactive SQL
Java.

Syntax ALTER DATABASE
UPGRADE

[JAVA { ON | OFF
| JDK { ‘ 1.1.8 ‘ | ‘ 1.3 ’ } }]

[JCONNECT { ON | OFF }]
| REMOVE JAVA

CHAPTER 1 SQL Statements

Reference: Statements and Options 7

Examples Upgrade a database created with the Java options off:

ALTER DATABASE UPGRADE JAVA OFF JCONNECT OFF

Usage The ALTER DATABASE statement upgrades databases created with earlier
versions of the software. This applies to maintenance releases as well as major
releases. For example, you can upgrade a database created with version 15.0 to
15.1.

Note See the Installation and Configuration Guide for backup
recommendations before you upgrade.

When you upgrade a database, Sybase IQ makes the following changes:

• Upgrades the system tables to the current version.

• Adds any new database options.

You can also use ALTER DATABASE UPGRADE simply to add Java or jConnect
features if the database was created with the current version of the software.

 Warning! Be sure to start the server in a way that restricts user connections
before you run ALTER DATABASE UPGRADE. For instructions and other
upgrade caveats, see the chapter “Migrating Data,” in the Installation and
Configuration Guide for your platform.

After using ALTER DATABASE UPGRADE, shut down the database.

Note Use the iqunload utility to upgrade databases created prior to version
15.0. For details, see Chapter 6, “Migrating Data” in the Installation and
Configuration Guide for your platform.

JAVA clause Controls support for Java in the upgraded database.

• Specify JAVA ON to enable support for Java in the database by adding
entries for the default Sybase runtime Java classes to the system tables. If
Java in the database is already installed, but is at a lower version than the
default classes, this clause upgrades it to the current default classes. The
default classes are the JDK 1.3 classes.

ALTER DATABASE statement

8 Sybase IQ

• Specify JAVA OFF to prevent the addition of Java in the database to
databases that do not already have it installed. For databases that already
have Java installed, setting JAVA OFF does not remove Java support: the
version of Java remains at the current version. To remove Java from the
database, use the REMOVE JAVA clause.

• Specify JAVA JDK ‘1.1.8’ or JAVA JDK ‘1.3’ to install support for the named
version of the JDK.

The ALTER DATABASE UPGRADE statement only upgrades your database
to a higher version of JDK. To downgrade, first remove Java from the
database, then add it back with the lower JDK version. For example, to
downgrade from JDK 1.3 to JDK 1.1.8:

ALTER DATABASE REMOVE JAVA
ALTER DATABASE UPGRADE JAVA JDK '1.1.8'

Classes for JDK 1.1.8 are stored in java/1.1/classes.zip under the Sybase
IQ installation directory. Classes for JDK 1.3 are stored in java/1.3/rt.jar.

The default behavior is JAVA OFF.

To use Java after adding it in the database, you must restart the database.

JCONNECT clause To allow the Sybase jConnect JDBC driver to access
system catalog information, you must specify JCONNECT ON. This installs
jConnect system tables and procedures. To exclude the jConnect system
objects, specify JCONNECT OFF. You can still use JDBC, as long as you do
not access system catalog information. The default is to include jConnect
support (JCONNECT ON).

REMOVE JAVA clause Removes Java from a database. The operation leaves
the database as if it were created with JAVA OFF. When the statement is issued
Java in the database must not be in use. Remove all Java classes from the
database before executing this statement. The statement ignores stored
procedures and triggers that reference Java objects, and the presence of these
objects does not trigger an error in the ALTER DATABASE statement.

Side effects

• Automatic commit

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

CHAPTER 1 SQL Statements

Reference: Statements and Options 9

See also CREATE DATABASE statement on page 68

“Migrating Data” in the Installation and Configuration Guide for your
platform

“Introduction to Java support” in SQL Anywhere Server – Programming >
Java in the database > Java support in SQL Anywhere

ALTER DBSPACE statement
Description Changes the read/write mode, changes the size, or extends an existing dbspace.

Syntax ALTER DBSPACE dbspace-name
{ ADD new-file-spec [, new-file-spec ...]
| DROP FILE logical-file-name [, FILE logical-file-name ...]
| RENAME TO newname | RENAME 'new-file-pathname'
| READONLY | READWRITE
| ONLINE | OFFLINE
| STRIPING{ ON | OFF }
| STRIPESIZEKB size-in-KB

ALTER FILE file-name
{ READONLY | READWRITE }
| SIZE file-size [KB | MB | GB | TB | PAGES]
| ADD file-size [KB | MB | GB | TB | PAGES] }

SERVER ”server-name”] RENAME PATH 'new-file-pathname'
RENAME TO newname

Parameters new-file-spec:

FILE logical-file-name 'file-path' iq-file-opts

iq-file-opts:

[[SIZE] file-size]
…[KB | MB | GB | TB]]

[RESERVE reserve-size [KB | MB | GB | TB]]

Examples Example 1 Change the mode of a dbspace called DspHist to READONLY.

ALTER DBSPACE DspHist READONLY

Example 2 Add 500MB to the dbspace FileHist3.

ALTER DBSPACE DspHist
ALTER FILE FileHist3 ADD 500MB

ALTER DBSPACE statement

10 Sybase IQ

Example 3 On Solaris, add two 500MB files to the dbspace DspHist.

ALTER DBSPACE DspHist ADD
FILE FileHist3 ‘/History1/data/file3’ SIZE 500MB
FILE FileHist3 ‘/History1/data/file4’ SIZE 500

Example 4 Increase the size of the dbspace IQ_SYSTEM_TEMP by 2GB.

ALTER DBSPACE IQ_SYSTEM_TEMP ADD 2 GB

Example 5 Remove two files from dbspace DspHist. Both files must be empty.

ALTER DBSPACE DspHist
DROP FILE FileHist2, FILE FileHist4

Example 6 Increase the size of the dbspace IQ_SYSTEM_MAIN by 1000 pages.
(ADD defaults to pages.)

ALTER DBSPACE IQ_SYSTEM_MAIN ADD 1000

Usage The ALTER DBSPACE statement changes the read/write mode, changes the
online/offline state, alters the file size, renames the dbspace name, file logical
name or file path, or sets the dbspace striping parameters. For details about
existing dbspaces, run sp_iqdbspace procedure, sp_iqdbspaceinfo procedure,
sp_iqfile procedure, sp_iqdbspaceobjectinfo, and sp_iqobjectinfo. Dbspace and
dbfile names are always case insensitive. The physical file paths are case
sensitive, if the database is CASE RESPECT and the operating system supports
case sensitive files. Otherwise, the file paths are case insensitive.

ADD FILE clause Adds one or more files to the specified dbspace. The
dbfile name and the physical file path are required for each file and must be
unique. You can add files to dbspaces of IQ main or IQ temporary dbspaces.
You may add a file to a read-only dbspace, but the dbspace remains read-only.

A catalog dbspace may contain only one file, so ADD FILE may not be used on
catalog dbspaces.

DROP FILE clause Removes the specified file(s) from an IQ dbspace. The
file must be empty. You cannot drop the last file from the specified dbspace.
Instead use DROP DBSPACE if the dbspace contains only one file.

RENAME TO clause
Renames the dbspace-name to a new name. The new name must be unique in
the database. You cannot rename IQ_SYSTEM_MAIN, IQ_SYSTEM_MSG,
IQ_SYSTEM_TEMP or SYSTEM.

RENAME clause Renames the pathname of the dbspace that contains a
single file. It is semantically equivalent to the ALTER FILE RENAME PATH
clause. An error is returned if the dbspace contains more than one file.

CHAPTER 1 SQL Statements

Reference: Statements and Options 11

READONLY clause Changes any dbspace except IQ_SYSTEM_MAIN,
IQ_SYSTEM_TEMP, IQ_SYSTEM_MSG, and SYSTEM to read-only.
Disallows DML modifications to any object currently assigned to the dbspace.
Can only be used for dbspaces in the IQ main store.

READWRITE clause Changes the dbspace to read-write. The dbspace must
be online. Can only be used for dbspaces in the IQ main store.

ONLINE clause Puts an offline dbspace and all associated files online. Can
only be used for dbspaces in the IQ main store.

OFFLINE clause Puts an online read-only dbspace and all associated files
offline. (Returns an error if the dbspace is read-write, offline already, or not of
the IQ main store.) Can only be used for dbspaces in the IQ main store.

STRIPING clause Changes the disk striping on the dbspace as specified.
When disk striping is set ON, data is allocated from each file within the
dbspace in a round-robin fashion. For example, the first database page written
goes to the first file, the second page written goes to the next file within given
dbspace, and so on. Read-only dbspaces are skipped.

STRIPESIZEKB clause Specifies the number of kilobytes (KB) to write to
each file before the disk striping algorithm moves to the next stripe for the
specified dbspace.

ALTER FILE READONLY Changes the specified file to read-only. The file
must be associated with an IQ main dbspace.

ALTER FILE READWRITE Changes specified IQ main or temporary store
dbfile to read-write. The file must be associated with an IQ main or temporary
dbspace.

ALTER FILE SIZE clause Specifies the new size of the file in units of
kilobytes (KB), megabytes (MB), gigabytes (GB), or terabytes (TB). The
default is megabytes. You can increase the size of the dbspace only if the free
list (an allocation map) has sufficient room and if the dbspace has sufficient
reserved space. You can decrease the size of the dbspace only if the portion to
be truncated is not in use.

ALTER FILE ADD clause Extends the size of the file in units of pages,
kilobytes (KB), megabytes (MB), gigabytes (GB), or terabytes (TB). The
default is MB. You can ADD only if the free list (an allocation map) has
sufficient room and if the dbspace has sufficient reserved space.

You can also view and change the dbspace mode and size through the Sybase
Central Dbspaces window.

ALTER DBSPACE statement

12 Sybase IQ

ALTER FILE RENAME PATH clause Renames the file pathname associated
with the specified file. This clause merely associates the file with the new file
path instead of the old path. The clause does not actually change the operating
system file name. You must change the file name through your operating
system. The dbspace must be offline to rename the file path. The new path is
used when the dbspace is altered online or when the database is restarted.

You may not rename the path of a file in IQ_SYSTEM_MAIN, because if the new
path were not accessible, the database would be unable to start. If you need to
rename the path of a file in IQ_SYSTEM_MAIN, make the file read-only, empty
the file, drop the file, and add the file again with the new file path name.

ALTER FILE RENAME TO clause Renames the specified file’s logical name
to a new name. The new name must be unique in the database.

Side effects

• Automatic commit

• Automatic checkpoint

• A mode change to READONLY causes immediate relocation of the internal
database structures on the dbspace to one of the read/write dbspaces.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also CREATE DBSPACE statement on page 81

CREATE DATABASE statement on page 68

DROP statement on page 177

sp_iqdbspace procedure in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

“Working with dbspaces” in Chapter 5, “Working with Database Objects,” of
the System Administration Guide: Volume 1

CHAPTER 1 SQL Statements

Reference: Statements and Options 13

ALTER DOMAIN statement
Description Renames a user-defined domain or data type. Does not rename Java types.

Syntax ALTER { DOMAIN | DATATYPE } user-type
RENAME new-name

Parameters new-name:
an identifier representing the new domain name.

user-type:
user-defined data type of the domain being renamed.

Examples The following renames the Address domain to MailingAddress:

ALTER DOMAIN Address RENAME MailingAddress

Usage The ALTER DOMAIN statement updates the name of the user-defined domain or
data type in the SYSUSERTYPE system table.

You must recreate any procedures, views or events that reference the user-
defined domain or data type, or else they will continue to reference the former
name.

Side effects

Automatic commit.

Permissions Must have DBA authority or be the database user who created the domain.

See also CREATE DOMAIN statement on page 84

Chapter 3, “SQL Data Types” in Reference: Building Blocks, Tables, and
Procedures

“SYSUSERTYPE system view”in Chapter 8, “System Views” in Reference:
Building Blocks, Tables, and Procedures

ALTER EVENT statement

14 Sybase IQ

ALTER EVENT statement
Description Changes the definition of an event or its associated handler for automating

predefined actions. Also alters the definition of scheduled actions.

Syntax ALTER EVENT event-name
[DELETE TYPE | TYPE event-type]
{ WHERE { trigger-condition | NULL }

| { ADD | [MODIFY] | DELETE } SCHEDULE schedule-spec
}
[ENABLE | DISABLE]
[[MODIFY] HANDLER compound-statement | DELETE HANDLER }

Parameters event-type:
BackupEnd | “Connect”
| ConnectFailed | DatabaseStart
| DBDiskSpace | “Disconnect”
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| LogDiskSpace | “RAISERROR”
| ServerIdle | TempDiskSpace

trigger-condition:
[event_condition(condition-name) { = | < | > | != | <= | >= }value]

schedule-spec:
[schedule-name]
{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week, …) | (day-of-month, …) }]
[START DATE start-date]

event-name | schedule-name:
identifier

day-of-week:
string

value | period | day-of-month:
integer

start-time | end-time:
time

start-date:
date

CHAPTER 1 SQL Statements

Reference: Statements and Options 15

Usage The ALTER EVENT statement lets you alter an event definition created with
CREATE EVENT. Possible uses include the following:

• Use ALTER EVENT to change an event handler during development.

• Define and test an event handler without a trigger condition or schedule
during a development phase, and then add the conditions for execution
using ALTER EVENT once the event handler is completed.

• Disable an event handler temporarily by disabling the event.

When you alter an event using ALTER EVENT, specify the event name and,
optionally, the schedule name.

List event names by querying the system table SYSEVENT. For example:

SELECT event_id, event_name FROM SYS.SYSEVENT

List schedule names by querying the system table SYSSCHEDULE. For
example:

SELECT event_id, sched_name FROM SYS.SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

DELETE TYPE clause Removes an association of the event with an event
type.

ADD | MODIFY | DELETE SCHEDULE clause Changes the definition of a
schedule. Only one schedule can be altered in any one ALTER EVENT
statement.

WHERE clause The WHERE NULL option deletes a condition.

For descriptions of most of the parameters, see CREATE EVENT statement on
page 86.

Side effects

Automatic commit.

Permissions Must have DBA authority.

See also BEGIN … END statement on page 47

CREATE EVENT statement on page 86

Chapter 6, “Automating Tasks Using Schedules and Events” in the System
Administration Guide: Volume 2

ALTER FUNCTION statement

16 Sybase IQ

ALTER FUNCTION statement
Description Modifies an existing function. You must include the entire new function in the

ALTER FUNCTION statement.

Syntax Syntax 1

ALTER FUNCTION [owner.]function-name function-definition

function-definition : CREATE FUNCTION syntax

Syntax 2

ALTER FUNCTION [owner.]function-name

SET HIDDEN

Syntax 3

ALTER FUNCTION [owner.]function-name

RECOMPILE

Usage Syntax 1 Identical in syntax to the CREATE FUNCTION statement except for
the first word. Either version of the CREATE FUNCTION statement can be
altered.

Existing permissions on the function are maintained and do not have to be
reassigned. If a DROP FUNCTION and CREATE FUNCTION were carried out,
execute permissions must be reassigned.

Syntax 2 Use SET HIDDEN to scramble the definition of the associated
function and cause it to become unreadable. The function can be unloaded and
reloaded into other databases.

 Warning! The SET HIDDEN setting is irreversible. If you need the original
source again, you must maintain it outside the database.

If you use SET HIDDEN, debugging using the stored procedure debugger does
not show the function definition, nor is it be available through procedure
profiling.

Syntax 3 Use RECOMPILE to recompile a user-defined function. When you
recompile a function, the definition stored in the catalog is re-parsed and the
syntax is verified. The preserved source for a function is not changed by
recompiling. When you recompile a function, the definitions scrambled by the
SET HIDDEN clause remain scrambled and unreadable.

Side Effects

Automatic commit.

CHAPTER 1 SQL Statements

Reference: Statements and Options 17

Standards • SQL2003 Vendor extension.

Permissions Must be the owner of the function or have DBA authority.

See also ALTER PROCEDURE statement on page 20

CREATE FUNCTION statement on page 97

DROP statement on page 177

“Hiding the contents of procedures, functions, and views” in Chapter 1,
“Using Procedures and Batches” in the System Administration Guide: Volume
2

ALTER INDEX statement
Description Renames indexes in base or global temporary tables and foreign key role

names of indexes and foreign keys explicitly created by a user.

Syntax ALTER { INDEX index-name
| [INDEX] FOREIGN KEY role-name
| [INDEX] PRIMARY KEY
| ON [owner.]table-name { rename-clause | move-clause }

Parameters rename-clause
:
RENAME TO | AS new-name

move-clause:
MOVE TO dbspace-name

Examples Example 1 The following statement moves the primary key, HG for c5, from
dbspace Dsp4 to Dsp8.

CREATE TABLE foo
c1 INT IN Dsp1,
c2 VARCHAR(20),
c3 CLOB IN Dsp2,
c4 DATE,
c5 BIGINT,
PRIMARY KEY (c5) IN Dsp4) IN Dsp3;

CREATE DATE INDEX c4_date ON foo(c4) IN Dsp5;

ALTER INDEX PRIMARY KEY ON foo MOVE TO Dsp8;

ALTER INDEX statement

18 Sybase IQ

Example 2 Moves DATE index from Dsp5 to Dsp9

ALTER INDEX c4_date ON foo MOVE TO Dsp9

Example 3 Renames an index COL1_HG_OLD in the table jal.mytable to
COL1_HG_NEW:

ALTER INDEX COL1_HG_OLD ON jal.mytable
RENAME AS COL1_HG_NEW

Example 4 Renames a foreign key role name ky_dept_id in table
dba.Employees to emp_dept_id:

ALTER INDEX FOREIGN KEY ky_dept_id
ON dba.Employees
RENAME TO emp_dept_id

Usage The ALTER INDEX statement renames indexes and foreign key role names of
indexes and foreign keys that were explicitly created by a user. Only indexes
on base tables or global temporary tables can be renamed. You cannot rename
indexes created to enforce key constraints.

ON clause The ON clause specifies the name of the table that contains the
index or foreign key to rename.

RENAME [AS | TO] clause The RENAME clause specifies the new name of
the index or foreign key role.

MOVE clause The MOVE clause moves the specified index, unique
constraint, foreign key, or primary key to the specified dbspace. For unique
constraint or foreign key, you must specify its unique index name.

You must have DBA authority or have CREATE privilege on the new dbspace
and be the table owner

Note Attempts to alter an index in a local temporary table return the error
“index not found.” Attempts to alter a nonuser-created index, such as a default
index (FP), return the error “Cannot alter index. Only indexes in base tables or
global temporary tables with an owner type of USER can be altered.”

Side Effects

Automatic commit. Clears the Results tab in the Results pane in Interactive
SQL. Closes all cursors for the current connection.

Standards • SQL92 Entry-level feature.

• Sybase Not supported by Adaptive Server Enterprise.

CHAPTER 1 SQL Statements

Reference: Statements and Options 19

Permissions Must own the table, or have REFERENCES permissions on the table, or have
DBA authority.

See also ALTER TABLE statement on page 25

CREATE INDEX statement on page 105

CREATE TABLE statement on page 135

ALTER LOGIN POLICY statement
Description Modifies some or all option values for existing login policies in the database.

Syntax ALTER LOGIN POLICY policy-name policy-options
[MULTIPLEX SERVER server-name]

Parameters policy-options

policy-option [policy-option...]

policy_option:

policy-option-name =policy-option-value

policy-option-value={ UNLIMITED | ROOT | value }

Examples The following example alters the Test1 login policy. This example changes the
locked and max_connections options. The locked value indicates that users with
the policy are prohibited from establishing new connections and the
max_connections value indicates the number of concurrent connections
allowed.

ALTER LOGIN POLICY Test1
locked=ON
max_connections=5;

Usage For descriptions of login policy options, see CREATE LOGIN POLICY
statement on page 117.

When a login policy is altered, changes are immediately applied to all users.

Permissions Must have DBA authority.

See also “Login management” in Chapter 8, “Managing User IDs and Permissions,”
in the System Administration Guide: Volume 1

ALTER PROCEDURE statement

20 Sybase IQ

ALTER PROCEDURE statement
Description Replaces an existing procedure with a modified version. You must include the

entire new procedure in the ALTER PROCEDURE statement, and reassign user
permissions on the procedure.

Syntax ALTER PROCEDURE [owner.]procedure-name procedure-definition

Parameters procedure-definition:
CREATE PROCEDURE syntax following the name

Usage The ALTER PROCEDURE statement is identical in syntax to the CREATE
PROCEDURE statement.

Existing permissions on the procedure are maintained and need not be
reassigned. If a DROP procedure and CREATE PROCEDURE were carried out,
execute permissions would have to be reassigned.

Side effects

Automatic commit is a side effect of this statement.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be the owner of the procedure or a DBA. Automatic commit.

See also CREATE PROCEDURE statement on page 120

ALTER SERVER statement
Description Modifies the attributes of a remote server.

Syntax ALTER SERVER server-name
[CLASS 'server-class']
[USING 'connection-info']
[CAPABILITY 'cap-name' { ON | OFF }]
[CONNECTION CLOSE [CURRENT | ALL | connection-id]]

Parameters server-class:
{ ASAJDBC | ASEJDBC
| ASAODBC | ASEODBC
| DB2ODBC | MSSODBC
| ORAODBC | ODBC }

CHAPTER 1 SQL Statements

Reference: Statements and Options 21

connection-info:
{ machine-name:port-number [/dbname] | data-source-name }

cap-name:
the name of a server capability

Examples Example 1 Changes the server class of the Adaptive Server Enterprise server
named ase_prod so its connection to Sybase IQ is ODBC-based. The Data
Source Name is ase_prod.

ALTER SERVER ase_prod
CLASS 'ASEODBC'
USING 'ase_prod'

Example 2 Changes a capability of server infodc:

ALTER SERVER infodc
CAPABILITY 'insert select' OFF

Example 3 The following example closes all connections to the remote server
named rem_test.

ALTER SERVER rem_test
CONNECTION CLOSE ALL

Example 4 The following example closes the connection to the remote server
named rem_test that has the connection ID 142536.

ALTER SERVER rem_test
CONNECTION CLOSE 142536

Usage Changes made by ALTER SERVER do not take effect until the next connection
to the remote server.

CLASS clause Use the CLASS clause to change the server class. For more
information on server classes, see Chapter 4, “Accessing Remote Data” and
Chapter 5, “Server Classes for Remote Data Access” in the System
Administration Guide: Volume 2.

USING clause The USING clause changes the server’s connection
information. For more information about connection information, see
CREATE SERVER statement on page 130.

ALTER SERVER statement

22 Sybase IQ

CAPABILITY clause The CAPABILITY clause turns a server capability ON or
OFF. Server capabilities are stored in the system table SYSCAPABILITY. The
names of these capabilities are stored in the system table
SYSCAPABILITYNAME. The SYSCAPABILITY table contains no entries for a
remote server until the first connection is made to that server. At the first
connection, Sybase IQ interrogates the server about its capabilities and then
populates SYSCAPABILITY. For subsequent connections, the server’s
capabilities are obtained from this table.

In general, you need not alter a server’s capabilities. It might be necessary to
alter capabilities of a generic server of class ODBC.

CONNECTION CLOSE clause When a user creates a connection to a remote
server, the remote connection is not closed until the user disconnects from the
local database. The CONNECTION CLOSE clause allows you to explicitly
close connections to a remote server. You may find this useful when a remote
connection becomes inactive or is no longer needed.

The following SQL statements are equivalent and close the current connection
to the remote server:

ALTER SERVER server-name CONNECTION CLOSE

ALTER SERVER server-name CONNECTION CLOSE CURRENT

You can close both ODBC and JDBC connections to a remote server using this
syntax. You do not need DBA authority to execute either of these statements.

You can also disconnect a specific remote ODBC connection by specifying a
connection ID, or disconnect all remote ODBC connections by specifying the
ALL keyword. If you attempt to close a JDBC connection by specifying the
connection ID or the ALL keyword, an error occurs. When the connection
identified by connection-id is not the current local connection, the user must
have DBA authority to be able to close the connection.

Side Effects

Automatic commit is a side effect of this statement.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have DBA authority to execute this command.

See also CREATE SERVER statement on page 130

DROP SERVER statement on page 183

Chapter 4, “Accessing Remote Data” and Chapter 5, “Server Classes for
Remote Data Access” in the System Administration Guide: Volume 2

CHAPTER 1 SQL Statements

Reference: Statements and Options 23

ALTER SERVICE statement
Description Alters a Web service.

Syntax ALTER SERVICE service-name
[TYPE 'service-type-string']
[attributes]
[AS statement']

Parameters attributes:[AUTHORIZATION { ON | OFF }] [SECURE { ON | OFF }] [USER
user-name | NULL }] [URL [PATH] { PATH] { ON | OFF | ELEMENTS }]
[USING (SOAP-prefix | NULL }]

service-type-string: { ‘RAW’ | ‘HTML’ | ‘XML’ | ‘SOAP’ | ’DISH’ }

Examples To set up a Web server quickly, start a database server with the -xs switch, then
execute the following statements:

CREATE SERVICE tables TYPE 'HTML'

ALTER SERVICE tables
AUTHORIZATION OFF
USER DBA
AS SELECT * FROM SYS.ISYSTAB

After executing these statements, use any Web browser to open the URL http:/
/localhost/tables.

Usage The alter service statement causes the database server to act as a Web server.

service-name You cannot rename Web services.

service-type-string Identifies the type of the service. The type must be one of
the listed service types. There is no default value.

AUTHORIZATION clause Determines whether users must specify a user
name and password when connecting to the service. If authorization is OFF, the
AS clause is required and a single user must be identified by the USER clause.
All requests are run using that user’s account and permissions.

If authorization is ON, all users must provide a user name and password.
Optionally, you might limit the users that are permitted to use the service by
providing a user or group name using the USER clause. If the user name is
NULL, all known users can access the service.

The default value is ON. It is recommended that production systems be run
with authorization turned on and that you grant permission to use the service
by adding users to a group.

ALTER SERVICE statement

24 Sybase IQ

SECURE clause Indicates whether unsecure connections are accepted. ON
indicates that only HTTPS connections are to be accepted. Service requests
received on the HTTP port are automatically redirected to the HTTPS port. If
set to OFF, both HTTP and HTTPS connections are accepted. The default value
is OFF.

USER clause If authorization is disabled, this parameter becomes mandatory
and specifies the user id used to execute all service requests. If authorization is
enabled (the default), this optional clause identified the user or group permitted
access to the service. The default value is NULL, which grants access to all
users.

URL clause Determines whether URI paths are accepted and, if so, how they
are processed. OFF indicates that nothing must follow the service name in a
URI request. ON indicates that the remainder of the URI is interpreted as the
value of a variable named url. ELEMENTS indicates that the remainder of the
URI path is to be split at the slash characters into a list of up to 10 elements.
The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are url1, url2, and
url3. If fewer than 10 values are supplied, the remaining variables are set to
NULL. If the service name ends with the character /, then URL must be set to
OFF. The default value is OFF.

USING clause This clause applies only to DISH services. The parameter
specifies a name prefix. Only SOAP services whose names begin with this
prefix are handled.

statement If the statement is NULL, the URI must specify the statement to be
executed. Otherwise, the specified SQL statement is the only one that can be
executed through the service. SOAP services must have statements; DISH
services must have none. The default value is NULL.

It is strongly recommended that all services run in production systems define a
statement. The statement can be NULL only if authorization is enabled.

RAW The result set is sent to the client without any further formatting. You
can produce formatted documents by generating the required tags explicitly
within your procedure.

HTML The result set of a statement or procedure is automatically formatted
into an HTML document that contains a table.

XML The result set is assumed to be in XML format. If it is not already so, it
is automatically converted to XML RAW format.

CHAPTER 1 SQL Statements

Reference: Statements and Options 25

SOAP The request must be a valid Simple Object Access Protocol, or SOAP,
request. The result set is automatically formatted as a SOAP response. For
more information about the SOAP standards, see www.w3.org/TR/SOAP at http:/
/www.w3.org/TR/SOAP.

DISH A Determine SOAP Handler, or DISH, service acts as a proxy for one
or more SOAP services. In use, it acts as a container that holds and provides
access to a number of SOAP services. A Web Services Description Language
(WSDL) file is automatically generated for each of the included SOAP
services. The included SOAP services are identified by a common prefix,
which must be specified in the USING clause.

Standards • SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also CREATE SERVICE statement on page 132

DROP SERVICE statement on page 184

“Using the Built-in Web Server” in SQL Anywhere Server – Database
Administration

ALTER TABLE statement
Description Modifies a table definition.

Syntax ALTER TABLE [owner.]table-name
{ alter-clause, ... }

Parameters alter-clause:
ADD create-clause
| ALTER column-name column-alteration
| ALTER [CONSTRAINT constraint-name] CHECK (condition)
| DROP drop-object
| RENAME rename-object
| move-clause
| SPLIT PARTITION partition-name INTO (partition-decl-1, partition-

decl-2)
| MERGE PARTITION partition-name-1 INTO partition-name-2
| UNPARTITION
| PARTITION BY RANGE (partition-key) range-partition-decl

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

ALTER TABLE statement

26 Sybase IQ

create-clause:
column-name column-definition [column-constraint]
| table-constraint
| PARTITION BY partitioning-schema

column-alteration:
{ column-data-type | alterable-column-attribute } [alterable-column-
attribute…]
| ADD [constraint-name] CHECK (condition)
| DROP { DEFAULT | CHECK | CONSTRAINT constraint-name }

alterable-column-attribute:
[NOT] NULL
| DEFAULT default-value
| [CONSTRAINT constraint-name] CHECK { NULL | (condition) }

column-constraint:
[CONSTRAINT constraint-name] { UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [actions]
| CHECK (condition)
| IQ UNIQUE (integer) }

drop-object:
{ column-name
| CHECK|
| CONSTRAINT constraint-name
| UNIQUE (index-columns-list)
| PRIMARY KEY
| FOREIGN KEY fkey-name
| PARTITION range-partition-name

}

move-clause:
{ ALTER column-name MOVE

{ PARTITION (partition-name TO new-dbspace-name)
| TO new-dbspace-name } }

| MOVE PARTITION partition-name TO new-dbspace-name
| MOVE TO new-dbspace-name
| MOVE METADATA TO new-dbspace-name

CHAPTER 1 SQL Statements

Reference: Statements and Options 27

rename-object:
new-table-name
| column-name TO new-column-name
| CONSTRAINT constraint-name TO new-constraint-name
| PARTITION partition-name TO new-partition-name

column-definition:
column-name data-type [NOT NULL]
[DEFAULT default-value | IDENTITY]

default-value:
special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function (constant-expression)
| AUTOINCREMENT
| NULL
| TIMESTAMP
| LAST USER
| USER

special-value:
CURRENT { DATABASE | DATE | REMOTE USER | TIME
 | TIMESTAMP | USER | PUBLISHER }

table-constraint:
[CONSTRAINT constraint-name]
{ UNIQUE (column-name [, …])
| PRIMARY KEY (column-name [, …])
| foreign-key-constraint
| CHECK (condition) }

foreign-key-constraint:
FOREIGN KEY [role-name] [(column-name [, …])]
... REFERENCES table-name [(column-name [, …])]
... [actions] [

rename-object:
new-table-name | column-name TO new-column-name
| CONSTRAINT constraint-name TO new-constraint-

name | PARTITION partition-name TO new-partition-name

ALTER TABLE statement

28 Sybase IQ

range-partitioning-scheme:
RANGE(partition-key)
(
range-partition-decl [,range-partition-decl ...]
)

partition-key:
column-name

range-partition-decl:
partition-name VALUES <= ({constant | MAX }) [IN dbspace-name]

actions:
[ON { UPDATE | DELETE } action]

action:
{ RESTRICT }

Examples Example 1 Adds a new column to the Employees table showing which office
they work in:

ALTER TABLE Employees
ADD office CHAR(20)

Example 2 Drops the office column from the Employees table:

ALTER TABLE Employees
DROP office

Example 3 Adds a column to the Customers table assigning each customer a
sales contact:

ALTER TABLE Customers
ADD SalesContact INTEGER
REFERENCES Employees (EmployeeID)

Example 4 Adds a new column CustomerNum to the Customers table and
assigns a default value of 88:

ALTER TABLE Customers
ADD CustomerNum INTEGER DEFAULT 88

CHAPTER 1 SQL Statements

Reference: Statements and Options 29

Example 5 Only FP indexes for c2, c4 and c5, are moved from dbspace Dsp3
to Dsp6. FP index for c1 remains in Dsp1. FP index for c3 remains in Dsp2.
The primary key for c5 remains in Dsp4. Date index c4_date remains in Dsp5.

CREATE TABLE foo (
c1 INT IN Dsp1,
c2 VARCHAR(20),
c3 CLOB IN Dsp2,
c4 DATE,
c5 BIGINT,
PRIMARY KEY (c5) IN Dsp4) IN Dsp3;

CREATE DATE INDEX c4_date ON foo(c4) IN Dsp5;
ALTER TABLE foo

MOVE TO Dsp6;

Example 6 Moves only FP index c1 from dbspace Dsp1 to Dsp7.

ALTER TABLE foo ALTER c1 MOVE TO Dsp7

Example 7 This example illustrates the use of many ALTER TABLE clauses to
move, split, rename, and merge partitions.

Create a partitioned table:

CREATE TABLE bar (
c1 INT,
c2 DATE,
c3 VARCHAR(10))

PARTITION BY RANGE(c2)
(p1 VALUES <= ('2005-12-31') IN dbsp1,
 p2 VALUES <= ('2006-12-31') IN dbsp2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);

INSERT INTO bar VALUES(3, '2007-01-01', 'banana
nut');

INSERT INTO BAR VALUES(4, '2007-09-09', 'grape
jam');

INSERT INTO BAR VALUES(5, '2008-05-05', 'apple
cake');

Move partition p2 to dbsp5:

ALTER TABLE bar MOVE PARTITION p2 TO DBSP5;

ALTER TABLE statement

30 Sybase IQ

Split partition p4 into 2 partitions:

ALTER TABLE bar SPLIT PARTITION p4 INTO
(P41 VALUES <= ('2008-06-30') IN dbsp4,
 P42 VALUES <= ('2008-12-31') IN dbsp4);

The following SPLIT PARTITION reports an error as it requires data movement.
Not all existing rows will be in the same partition after split.

ALTER TABLE bar SPLIT PARTITION p3 INTO
(P31 VALUES <= ('2007-06-30') IN dbsp3,
 P32 VALUES <= ('2007-12-31') IN dbsp3);

The following error is reported:

"No data move is allowed, cannot split partition p3."

The following SPLIT PARTITION reports an error, because it changes the
partition boundary value.

ALTER TABLE bar SPLIT PARTITION p2 INTO
(p21 VALUES <= ('2006-06-30') IN dbsp2,
 P22 VALUES <= ('2006-12-01') IN dbsp2);

The following error is reported:

"Boundary value for the partition p2 cannot be changed."

Merge partition p3 into p2. An error is reported as a merge from a higher
boundary value partition into a lower boundary value partition is not allowed.

ALTER TABLE bar MERGE PARTITION p3 into p2;

The following error is reported:

"Partition 'p2' is not adjacent to or before partition
'p3'."

Merge partition p2 into p3:

ALTER TABLE bar MERGE PARTITION p2 INTO P3;

Rename partition p1 to p1_new:

ALTER TABLE bar RENAME PARTITION p1 TO p1_new;

Unpartition table bar:

ALTER TABLE bar UNPARTITION;

CHAPTER 1 SQL Statements

Reference: Statements and Options 31

Partition table bar. This command reports an error, because all rows must be in
the first partition.

ALTER TABLE bar PARTITION BY RANGE(c2)
(p1 VALUES <= ('2005-12-31') IN dbsp1,
 P2 VALUES <= ('2006-12-31') IN DBSP2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);

The following error is reported:

"All rows must be in the first partition."

Partition table bar:

ALTER TABLE bar PARTITION BY RANGE(c2)
(p1 VALUES <= ('2008-12-31') IN dbsp1,
 P2 VALUES <= ('2009-12-31') IN dbsp2,
 P3 VALUES <= ('2010-12-31') IN dbsp3,
 P4 VALUES <= ('2011-12-31') IN dbsp4);

Usage The ALTER TABLE statement changes table attributes (column definitions and
constraints) in a table that was previously created. The syntax allows a list of
alter clauses; however, only one table constraint or column constraint can be
added, modified, or deleted in each ALTER TABLE statement.

Note You cannot alter local temporary tables, but you can alter global
temporary tables when they are in use by only one connection.

Sybase IQ enforces REFERENCES and CHECK constraints. Table and/or
column check constraints added in an ALTER TABLE statement are not
evaluated as part of that alter table operation. For details about CHECK
constraints, see CREATE TABLE statement on page 135.

If SELECT * is used in a view definition and you alter a table referenced by the
SELECT *, then you must run ALTER VIEW <viewname> RECOMPILE to
ensure that the view definition is correct and to prevent unexpected results
when querying the view.

ALTER TABLE statement

32 Sybase IQ

ADD column-definition [column-constraint] Add a new column to the
table. The table must be empty to specify NOT NULL. The table might contain
data when you add an IDENTITY or DEFAULT AUTOINCREMENT column. If the
column has a default IDENTITY value, all rows of the new column are
populated with sequential values. You can also add a foreign key constraint as
a column constraint for a single column key. The value of the IDENTITY/
DEFAULT AUTOINCREMENT column uniquely identifies every row in a table.
The IDENTITY/DEFAULT AUTOINCREMENT column stores sequential numbers
that are automatically generated during inserts and updates. DEFAULT
AUTOINCREMENT columns are also known as IDENTITY columns. When
using IDENTITY/DEFAULT AUTOINCREMENT, the column must be one of the
integer data types, or an exact numeric type, with scale 0. See CREATE
TABLE statement on page 135 for more about column constraints and
IDENTITY/DEFAULT AUTOINCREMENT columns.

Note You cannot add foreign key constraints to an unenforced primary key
created with Sybase IQ version 12.4.3 or earlier.

ALTER column-name column-alteration Change the definition of a column.
The permitted modifications are as follows:

• SET DEFAULT default-value Change the default value of an existing
column in a table. You can also use the MODIFY clause for this task, but
ALTER is SQL92 compliant, and MODIFY is not. Modifying a default value
does not change any existing values in the table.

• DROP DEFAULT Remove the default value of an existing column in a
table. You can also use the MODIFY clause for this task, but ALTER is
SQL92 compliant, and MODIFY is not. Dropping a default does not change
any existing values in the table.

• ADD Add a named constraint or a CHECK condition to the column. The
new constraint or condition applies only to operations on the table after its
definition. The existing values in the table are not validated to confirm that
they satisfy the new constraint or condition.

• CONSTRAINT column-constraint-name The optional column
constraint name lets you modify or drop individual constraints at a later
time, rather than having to modify the entire column constraint.

• [CONSTRAINT constraint-name] CHECK (condition) Use this
clause to add a CHECK constraint on the column.

CHAPTER 1 SQL Statements

Reference: Statements and Options 33

• SET COMPUTE (expression) Change the expression associated with a
computed column. The values in the column are recalculated when the
statement is executed, and the statement fails if the new expression is
invalid.

• DROP COMPUTE Change a column from being a computed column to
being a noncomputed column. This statement does not change any
existing values in the table.

DROP partition clause The DROP partition clause drops the specified
partition. The rows are deleted and the partition definition is dropped. You
cannot drop the last partition because dropping the last partition would
transform a partitioned table to a non-partitioned table. (To merge a partitioned
table, use UNPARTITION clause instead.) For example:

CREATE TABLE foo (c1 INT, c2 INT)
PARTITION BY RANGE (c1)
(P1 VALUES <= (100) IN dbsp1,
 P2 VALUES <= (200) IN dbsp2,
 P3 VALUES <= (MAX) IN dbsp3
) IN dbsp4);

LOAD TABLE ….
ALTER TABLE DROP PARTITION P1;

ADD table-constraint Add a constraint to the table. You can also add a
foreign key constraint as a table constraint for a single-column or multicolumn
key. See CREATE TABLE statement on page 135 for a full explanation of
table constraints.

If PRIMARY KEY is specified, the table must not already have a primary key
created by the CREATE TABLE statement or another ALTER TABLE statement.

Note You cannot MODIFY a table or column constraint. To change a constraint,
DELETE the old constraint and ADD the new constraint.

DROP column-name Drop the column from the table. If the column is
contained in any multicolumn index, uniqueness constraint, foreign key, or
primary key, then the index, constraint, or key must be deleted before the
column can be deleted. This does not delete CHECK constraints that refer to
the column. An IDENTITY/DEFAULT AUTOINCREMENT column can only
be deleted if IDENTITY_INSERT is turned off and the table is not a local
temporary table.

DROP CHECK Drop all check constraints for the table. This includes both
table check constraints and column check constraints.

ALTER TABLE statement

34 Sybase IQ

DROP CONSTRAINT constraint-name Drop the named constraint for the
table or specified column.

DROP UNIQUE (column-name,…) Drop the unique constraints on the
specified column(s). Any foreign keys referencing the unique constraint (rather
than the primary key) are also deleted. Reports an error if there are associated
foreign-key constraints. Use ALTER TABLE to delete all foreign keys that
reference the primary key before you delete the primary key constraint.

DROP PRIMARY KEY Drop the primary key. All foreign keys referencing
the primary key for this table are also deleted. Reports an error if there are
associated foreign key constraints. If the primary key is unenforced, DELETE
returns an error if associated unenforced foreign key constraints exist.

DROP FOREIGN KEY role-name Drop the foreign key constraint for this
table with the given role name. Retains the implicitly created nonunique HG
index for the foreign key constraint. Users can explicitly remove the HG index
with the DROP INDEX statement.

DROP PARTITION The DROP PARTITION request deletes rows in partition
P1 and drops the partition definition of P1. If a new row with value 99 for
column c1 is inserted, it will be placed under partition p2 in dbspace dbsp2.

RENAME new-table-name Change the name of the table to the new-table-
name. Any applications using the old table name must be modified. Also, any
foreign keys that were automatically assigned the same name as the old table
name do not change names.

RENAME column-name TO new-column-name Change the name of the
column to the new-column-name. Any applications using the old column name
must be modified.

RENAME constraint-name TO new-constraint-name Change the name of
the constraint to the new-constraint-name. Any applications using the old
constraint name must be modified.

ALTER TABLE is prevented whenever the statement affects a table that is
currently being used by another connection. ALTER TABLE can be time
consuming, and the server does not process requests referencing the same table
while the statement is being processed.

ALTER Column MOVE TO The ALTER Column MOVE TO clause moves
the specified column to the new dbspace for a non-partitioned table. The
ALTER Column MOVE TO clause cannot be requested on a partitioned table.
The ALTER Column MOVE PARTITION clause moves the column of the
specified partition to the specified dbspace.

CHAPTER 1 SQL Statements

Reference: Statements and Options 35

MOVE PARTITION The MOVE PARTITION clause moves the specified
partition to the new dbspace.

MOVE TO The MOVE TO clause moves all table objects including columns,
indexes, unique constraints, primary key, foreign keys, and metadata resided in
the same dbspace as the table is mapped to the new dbspace.

Each table object can reside in only one dbspace. Any type of ALTER MOVE
blocks any modification to the table for the entire duration of the move.

MOVE TABLE METADATA The MOVE TABLE METADATA clause moves
the metadata of the table, such as the EBM, DeleteBM, and InsertBM of the
table, to a new dbspace. For a partitioned table, the MOVE TABLE
METADATA clause also moves metadata that is shared among partitions.

You must have DBA authority or have CREATE privilege on the new dbspace
and be the table owner or have alter permission on the table.

SPLIT PARTITION The SPLIT PARTITION clause splits the specified
partition into two partitions. In Sybase IQ 15.1, a partition can be split only if
no data must be moved. All existing rows of the partition to be split must
remain in a single partition after the split. The boundary value for partition-
decl-1 must be less than the boundary value of partition-name and the
boundary value for partition-decl-2 must be equal to the boundary value of
partition-name. You can specify different names for the two new partitions.
The old partition-name can only be used for the second partition, if a new name
is not specified.

MERGE PARTITION The MERGE PARTITION clause merges partition-
name-1 into partition-name-2. In Sybase IQ 15.1, two partitions can be merged
if they are adjacent partitions and the data resides on the same dbspace. You
can only merge a partition with a lower partition value into the adjacent
partition with a higher partition value. Note that the server does not check
CREATE permission on the dbspace into which the partition is merged. For an
example of how to create adjacent partitions, see Example 3 in CREATE
TABLE statement.

UNPARTITION The UNPARTITION keyword removes partitions from a
partitioned table. Each column is placed in a single dbspace. Note that the
server does not check CREATE permission on the dbspace to which data of all
partitions is moved. ALTER TABLE UNPARTITION blocks all database
activities.

ALTER TABLE statement

36 Sybase IQ

PARTITION BY The PARTITION BY clause partitions a non-partitioned
table. In Sybase IQ 15.1, a non-partitioned table can be partitioned, if all
existing rows belong to the first partition. You can specify a different dbspace
for the first partition than the dbspace of the column or table. But existing rows
are not moved. Instead, the proper dbspace for the column/partition is kept in
SYS.ISYSIQPARTITIONCOLUMN for existing columns. Only the default or
max identity column(s) that are added later for the first partition are stored in
the specified dbspace for the first partition.

RENAME PARTITION The RENAME PARTITION clause renames an
existing partition name to a new partition name.

Side effects

• Automatic commit. The ALTER and DROP options close all cursors for the
current connection. The DBISQL data window is also cleared.

• A checkpoint is carried out at the beginning of the ALTER TABLE
operation.

• Once you alter a column or table, any stored procedures, views or other
items that refer to the altered column no longer work.

Standards • SQL92 Intermediate-level feature.

• Sybase Some clauses are supported by Adaptive Server Enterprise.

Permissions Must have DBA authority or CREATE permission on the new dbspace and be
the table owner or have ALTER permission on the table. Requires exclusive
access to the table.

See also CREATE TABLE statement on page 135

DROP statement on page 177

“IDENTITY_INSERT option” on page 394

Chapter 3, “SQL Data Types” in Reference: Building Blocks, Tables, and
Procedures

CHAPTER 1 SQL Statements

Reference: Statements and Options 37

ALTER USER statement
Description Changes user settings.

Syntax Syntax 1

ALTER USER user-name [IDENTIFIED BY password] [LOGIN
POLICY policy-name] [FORCE PASSWORD CHANGE { ON | OFF }]

Syntax 2

ALTER USER user-name [RESET LOGIN POLICY]

Examples The following alters a user named SQLTester. The password is set to
“welcome”. The SQLTester user is assigned to the Test1 login policy and the
password does not expire on the next login.

ALTER USER SQLTester IDENTIFIED BY welcome

LOGIN POLICY Test1

FORCE PASSWORD CHANGE off;

Usage user-name The name of the user.

IDENTIFIED BY clause Clause providing the password for the user.

policy-name The name of the login policy to assign the user. No change is
made if the LOGIN POLICY clause is not specified.

FORCE PASSWORD CHANGE clause Controls whether the user must
specify a new password when they log in. This setting overrides the
password_expiry_on_next_login option setting in their policy.

RESET LOGIN POLICY clause Reverts the settings of the user's login to the
original values in the login policy. This usually clears all locks that are
implicitly set due to the user exceeding the failed logins or exceeding the
maximum number of days since the last login. When you reset a login policy,
a user can access an account that has been locked for exceeding a login policy
option limit such as max_failed_login_attempts or max_days_since_login.

Enhanced ALTER LOGIN POLICY syntax for multiplex is described in Using
Sybase IQ Multiplex.

User IDs and passwords cannot:

• Begin with white space, single quotes, or double quotes

• End with white space

• Contain semicolons

ALTER VIEW statement

38 Sybase IQ

If you set the PASSWORD_EXPIRY_ON_NEXT_LOGIN value to ON, the
passwords of all users assigned to this login policy expire immediately when
they next log in. You can use the ALTER USER and LOGIN POLICY clauses
to force a user to change the password when he next logs in.

Standards • SQL2003 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be owner of the view or have DBA authority.

See also “ALTER LOGIN POLICY statement” on page 19

“COMMENT statement” on page 61

“CREATE LOGIN POLICY statement” on page 117

“CREATE USER statement” on page 151

“DROP LOGIN POLICY statement” on page 183

“DROP USER statement” on page 185

“GRANT statement” on page 206

“Managing login policies overview” in SQL Anywhere Server – Database
Administration > Configuring Your Database > Managing user IDs,
authorities, and permissions

“REVOKE statement” on page 287

ALTER VIEW statement
Description Replaces a view definition with a modified version.

Syntax Syntax 1

ALTER VIEW
… [owner.]view-name [(column-name [, …])]
… AS select-statement
… [WITH CHECK OPTION]

Syntax 2

ALTER VIEW
… [owner.]view-name
… { SET HIDDEN | RECOMPILE | DISABLE | ENABLE }

CHAPTER 1 SQL Statements

Reference: Statements and Options 39

Usage AS Purpose and syntax Identical to CREATE VIEW statement. See “CREATE
VIEW statement” on page 155

WITH CHECK OPTION Purpose and syntax Identical to CREATE VIEW
statement. See “CREATE VIEW statement” on page 155

SET HIDDEN Use the SET HIDDEN clause to obfuscate the definition of the
view and cause the view to become hidden from view, for example in Sybase
Central. Explicit references to the view still works.

 Warning! The SET HIDDEN operation is irreversible.

RECOMPILE Recreates the column definitions for the view. Identical in
functionality to the ENABLE clause, except you can use it on a view that is not
disabled.

DISABLE Disables the view from use by the database server.

ENABLE Enables a disabled view, which causes the database server to
recreate the column definitions for the view. Before you enable a view, you
must enable any views on which it depends.

When you alter a view, existing permissions on the view are maintained and do
not require reassignment. Instead of using the ALTER VIEW statement, you
could also drop the view and recreate it using DROP VIEW and CREATE VIEW,
respectively. If you do this, view permissions must be reassigned.

After completing the view alteration using Syntax 1, the database server
recompiles the view. Depending on the type of change you made, if there are
dependent views, the database server attempts to recompile them. If you made
changes that impact a dependent view, you might need to alter the definition
for the dependent view, as well. For more information about view alterations
and how they impact view dependencies, see “View dependencies” in SQL
Anywhere Server – SQL Usage > Creating Databases > Working with
database objects > Working with views.

 Warning! If the SELECT statement defining the view contains an asterisk (*),
the number of the columns in the view could change if columns were added or
deleted from the underlying tables. The names and data types of the view
columns could also change.

ALTER VIEW statement

40 Sybase IQ

Syntax 1 Alters the structure of the view. Unlike altering tables, where your
change might be limited to individual columns, altering the structure of a view
requires that you replace the entire view definition with a new definition, much
as you would when creating the view. For a description of the parameters used
to define the structure of a view, see “CREATE VIEW statement” on page 155.

Syntax 2 Changes attributes for the view, such as whether the view definition
is hidden.

When you use SET HIDDEN, you can unload and reload the view into other
databases. Debugging using the debugger does not show the view definition,
nor is it available through procedure profiling. If you need to change the
definition of a hidden view, you must drop the view and create it again using
the CREATE VIEW statement.

When you use the DISABLE clause, the view is no longer available for use by
the database server to answer queries. Disabling a view is similar to dropping
one, except that the view definition remains in the database. Disabling a view
also disables any dependent views. Therefore, the DISABLE clause requires
exclusive access, not only to the view being disabled, but to any dependent
views, which are also disabled.

Side Effects

Automatic commit.

All procedures and triggers are unloaded from memory, so that any procedure
or trigger that references the view reflects the new view definition. The
unloading and loading of procedures and triggers can have a performance
impact if you regularly alter views.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be owner of the view or have DBA authority.

See also CREATE VIEW statement on page 155

DROP statement on page 177

“sa_dependent_views procedure,” Chapter 7, “System Procedures,” in
Reference: Building Blocks, Tables, and Procedures

“Hiding the contents of procedures, functions, and views” in Chapter 1,
“Using Procedures and Batches” in System Administration Guide: Volume 2

“View dependencies” in SQL Anywhere Server – SQL Usage > Creating
Databases > Working with database objects > Working with views

CHAPTER 1 SQL Statements

Reference: Statements and Options 41

BACKUP statement
Description Backs up a Sybase IQ database on one or more archive devices.

Syntax BACKUP DATABASE
[backup-option…]
TO archive_device [archive-option...]
… [WITH COMMENT string]

Parameters backup-option:

{ READWRITE FILES ONLY |
READONLY dbspace-or-file [, …] }
CRC { ON | OFF }
ATTENDED { ON | OFF }
BLOCK FACTOR integer
{ FULL | INCREMENTAL | INCREMENTAL SINCE FULL }
VIRTUAL { DECOUPLED |
ENCAPSULATED ‘shell_command’ }
WITH COMMENT comment

dbspace-or-file:

{ DBSPACES identifier-list | FILES identifier-list }

identifier-list:
identifier [, …]

archive-option:
SIZE integer
STACKER integer

Examples Example 1 The following UNIX example backs up the iqdemo database onto
tape devices /dev/rmt/0 and /dev/rmt/2 on a Sun Solaris platform. On Solaris,
the letter n after the device name specifies the “no rewind on close” feature.
Always specify this feature with BACKUP, using the naming convention
appropriate for your UNIX platform (Windows does not support this feature).
This example backs up all changes to the database since the last full backup:

BACKUP DATABASE
INCREMENTAL SINCE FULL
TO '/dev/rmt/0n' SIZE 10000000
TO '/dev/rmt/2n' SIZE 15000000

Note Size units are kilobytes (KB). In this example, the specified sizes are
10GB and 15GB.

BACKUP statement

42 Sybase IQ

Example 2 The following BACKUP commands specify read-only files and
dbspaces:

BACKUP DATABASE READONLY DBSPACES dsp1
TO '/dev/rmt/0'

BACKUP DATABASE READONLY FILES dsp1_f1, dsp1_f2
TO 'bkp.f1f2'

BACKUP DATABASE READONLY DBSPACES dsp2, dsp3
READONLY FILES dsp4_f1, dsp5_f2
TO 'bkp.RO'

Usage The IQ database might be open for use by many readers and writers when you
execute a BACKUP command. It acts as a read-only user and relies on the Table
Level Versioning feature of Sybase IQ to achieve a consistent set of data.
BACKUP implicitly issues a CHECKPOINT prior to commencing, and then it
backs up the catalog tables that describe the database (and any other tables you
have added to the catalog store). During this first phase, Sybase IQ does not
allow any metadata changes to the database (such as adding or dropping
columns and tables). Correspondingly, a later RESTORE of the backup restores
only up to that initial CHECKPOINT.

The BACKUP command lets you specify full or incremental backups. You can
choose two kinds of incremental backups. INCREMENTAL backs up only those
blocks that have changed and committed since the last BACKUP of any type
(incremental or full). INCREMENTAL SINCE FULL backs up all of the blocks
that have changed since the last full backup. The first type of incremental
backup can be smaller and faster to do for BACKUP commands, but slower and
more complicated for RESTORE commands. The opposite is true for the other
type of incremental backup. The reason is that the first type generally results in
N sets of incremental backup archives for each full backup archive. If a restore
is required, the DBA must RESTORE the full backup archive first, and then
each incremental archive in the proper order. (Sybase IQ keeps track of which
ones are needed.) The second type requires the DBA to restore only the full
backup archive and the last incremental archive.

Incremental virtual backup is supported using the VIRTUAL DECOUPLED and
VIRTUAL ENCAPSULATED parameters of the BACKUP statement.

To make a virtual backup of one or more read-only dbspaces you may simply
perform an OS level copy of the tablespaces, but Sybase recommends that you
use the virtual backup statement because it records the backup in the IQ system
tables. See “SYSIQBACKUPHISTORY system view” and
“SYSIQBACKUPHISTORYDETAIL system view” in Chapter 8, “System
Views” of Reference: Building Blocks, Tables, and Procedures.

CHAPTER 1 SQL Statements

Reference: Statements and Options 43

READWRITE FILES ONLY may be used with FULL, INCREMENTAL, and
INCREMENTAL SINCE FULL to restrict the backup to only the set of read-
write files in the database. The read-only dbspaces/files must be IQ dbspaces.

If READWRITE FILES ONLY is used with an INCREMENTAL or
INCREMENTAL SINCE FULL backup, the backup will not back up data on
read-only dbspaces or dbfiles that has changed since the depends-on backup. If
READWRITE FILES ONLY is not specified for an INCREMENTAL or
INCREMENTAL SINCE FULL backup, the backup backs up all database
pages that have changed since the depends-on backup, both on read-write and
read-only dbspaces.

CRC clause Activates 32-bit cyclical redundancy checking on a per block
basis (in addition to whatever error detection is available in the hardware).
When you specify this clause, the numbers computed on backup are verified
during any subsequent RESTORE operation, affecting performance of both
commands. The default is ON.

ATTENDED clause Applies only when backing up to a tape device. If
ATTENDED ON (the default) is used, a message is sent to the application that
issued the BACKUP statement if the tape drive requires intervention. This might
happen, for example, when a new tape is required. If you specify OFF,
BACKUP does not prompt for new tapes. If additional tapes are needed and
OFF has been specified, Sybase IQ gives an error and aborts the BACKUP
command. However, a short delay is included to account for the time an
automatic stacker drive requires to switch tapes.

BLOCK FACTOR clause Specifies the number of blocks to write at one time.
Its value must be greater than 0, or Sybase IQ generates an error message. Its
default is 25 for UNIX systems and 15 for Windows systems (to accommodate
the smaller fixed tape block sizes). This clause effectively controls the amount
of memory used for buffers. The actual amount of memory is this value times
the block size times the number of threads used to extract data from the
database. Sybase recommends setting BLOCK FACTOR to at least 25.

FULL clause Specifies a full backup; all blocks in use in the database are
saved to the archive devices. This is the default action.

INCREMENTAL clause Specifies an incremental backup; all blocks changed
since the last backup of any kind are saved to the archive devices.

The keyword INCREMENTAL is not allowed with READONLY FILES.

INCREMENTAL SINCE FULL clause Specifies an incremental backup; all
blocks changed since the last full backup are saved to the archive devices.

BACKUP statement

44 Sybase IQ

VIRTUAL DECOUPLED clause Specifies a decoupled virtual backup. For
the backup to be complete, you must copy the IQ dbspaces after the decoupled
virtual backup finishes, and then perform a nonvirtual incremental backup.

VIRTUAL ENCAPSULATED clause Specifies an encapsulated virtual
backup. The ‘shell-command’ argument can be a string or variable containing
a string that is executed as part of the encapsulated virtual backup. The shell
commands execute a system-level backup of the IQ store as part of the backup
operation.

TO clause Specifies the name of the archive_device to be used for backup,
delimited with single quotation marks. The archive_device is a file name or
tape drive device name for the archive file. If you are using multiple archive
devices, specify them using separate TO clauses. (A comma-separated list is
not allowed.) Archive devices must be distinct. The number of TO clauses
determines the amount of parallelism Sybase IQ attempts with regard to output
devices.

BACKUP overwrites existing archive files unless you move the old files or use
a different archive_device name or path.

The backup API DLL implementation lets you specify arguments to pass to the
DLL when opening an archive device. For third-party implementations, the
archive_device string has the following format:

'DLLidentifier::vendor_specific_information'

A specific example:

'spsc::workorder=12;volname=ASD002'

The archive_device string length can be up to 1023 bytes. The DLLidentifier
portion must be 1 to 30 bytes in length and can contain only alphanumeric and
underscore characters. The vendor_specific_information portion of the string
is passed to the third-party implementation without checking its contents. Do
not specify the SIZE or STACKER clauses of the BACKUP command when
using third-party implementations, as that information should be encoded in
the vendor_specific_information portion of the string.

Note Only certain third-party products are certified with Sybase IQ using this
syntax. See the Release Bulletin for additional usage instructions or
restrictions. Before using any third-party product to back up your Sybase IQ
database in this way, make sure it is certified. See the Release Bulletin, or see
the Sybase Certification Reports for the Sybase IQ product in Technical
Documents at http://www.sybase.com/support/techdocs/.

http://www.sybase.com/support/techdocs

CHAPTER 1 SQL Statements

Reference: Statements and Options 45

For the Sybase implementation of the backup API, you need to specify only the
tape device name or file name. For disk devices, you should also specify the
SIZE value, or Sybase IQ assumes that each created disk file is no larger than
2GB on UNIX, or 1.5GB on Windows. An example of an archive device for
the Sybase API DLL that specifies a tape device for certain UNIX systems is:

'/dev/rmt/0'

SIZE clause Specifies maximum tape or file capacity per output device
(some platforms do not reliably detect end-of-tape markers). No volume used
on the corresponding device should be shorter than this value. This value
applies to both tape and disk files but not third-party devices. Units are
kilobytes (KB) so, for example, for a 3.5GB tape, you specify 3500000.
Defaults are by platform and medium.

The SIZE parameter is per output device. SIZE does not limit the number of
bytes per device; SIZE limits the file size. Each output device can have a
different SIZE parameter. During backup, when the amount of information
written to a given device reaches the value specified by the SIZE parameter,
BACKUP does one of the following:

• If the device is a file system device, BACKUP closes the current file and
creates another file of the same name, with the next ascending number
appended to the file name, for example, bkup1.dat1.1, bkup1.dat1.2,
bkup1.dat1.3.

• If the device is a tape unit, BACKUP closes the current tape and you need
to mount another tape.

It is your responsibility to mount additional tapes if needed, or to ensure that
the disk has enough space to accommodate the backup.

When multiple devices are specified, BACKUP distributes the information
across all devices.

BACKUP statement

46 Sybase IQ

Table 1-1: BACKUP default sizes

STACKER clause Specifies that the device is automatically loaded, and
specifies the number of tapes with which it is loaded. This value is not the tape
position in the stacker, which could be zero. When ATTENDED is OFF and
STACKER is ON, Sybase IQ waits for a predetermined amount of time to allow
the next tape to be autoloaded. The number of tapes supplied along with the
SIZE clause are used to determine whether there is enough space to store the
backed-up data. Do not use this clause with third-party media management
devices.

WITH COMMENT clause Specifies an optional comment recorded in the
archive file and in the backup history file. Maximum length is 32KB. If you do
not specify a value, a NULL string is stored.

Other issues for BACKUP include:

• BACKUP does not support raw devices as archival devices.

• Windows systems support only fixed-length I/O operations to tape devices
(for more information about this limitation, see your Installation and
Configuration Guide). Although Windows supports tape partitioning,
Sybase IQ does not use it, so do not use another application to format tapes
for BACKUP. Windows has a simpler naming strategy for its tape devices,
where the first tape device is \\.\tape0, the second is \\.\tape1, and so on.

 Warning! For backup (and for most other situations) Sybase IQ treats the
leading backslash in a string as an escape character, when the backslash
precedes an n, an x, or another backslash. For this reason, when you
specify backup tape devices, you must double each backslash required by
the Windows naming convention. For example, indicate the first Windows
tape device you are backing up to as '\\\\.\\tape0', the second as '\\\\.\\tape1',
and so on. If you omit the extra backslashes, or otherwise misspell a tape
device name, and write a name that is not a valid tape device on your
system, Sybase IQ interprets this name as a disk file name.

Platform Default SIZE for tape Default SIZE for disk

UNIX none 2GB

Windows 1.5GB

SIZE must be a multiple of 64. Other
values are rounded down to a multiple
of 64.

1.5GB

CHAPTER 1 SQL Statements

Reference: Statements and Options 47

• Sybase IQ does not rewind tapes before using them. You must ensure the
tapes used for BACKUP or RESTORE are at the correct starting point
before putting them in the tape device. Sybase IQ does rewind tapes after
using them on rewinding devices.

• During BACKUP and RESTORE operations, if Sybase IQ cannot open the
archive device (for example, when it needs the media loaded) and the
ATTENDED parameter is ON, it waits for ten seconds and tries again. It
continues these attempts indefinitely until either it is successful or the
operation is terminated with a Ctrl+C.

• If you enter Ctrl+C, BACKUP fails and returns the database to the state it
was in before the backup started.

• If disk striping is used, such as on a RAID device, the striped disks are
treated as a single device.

• If you are recovering a SQL Anywhere database, see “Backup and Data
Recovery” in SQL Anywhere Server – Database Administration >
Maintaining Your Database for additional options.

Side effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be the owner of the database or have DBA authority.

See also RESTORE statement on page 279

Chapter 12, “Data Backup, Recovery, and Archiving,” in System
Administration Guide: Volume 1

BEGIN … END statement
Description Groups SQL statements together.

Syntax [statement-label :]
… BEGIN [[NOT] ATOMIC]
… [local-declaration ; …]
… statement-list
… [EXCEPTION [exception-case …]]
… END [statement-label]

BEGIN … END statement

48 Sybase IQ

Parameters local-declaration:
{ variable-declaration
| cursor-declaration
| exception-declaration
| temporary-table-declaration }

variable-declaration:
DECLARE variable-name data-type

exception-declaration:
DECLARE exception-name EXCEPTION
FOR
SQLSTATE [VALUE] string

exception-case:
WHEN exception-name [, …] THEN statement-list
| WHEN OTHERS THEN statement-list

Examples The body of a procedure is a compound statement:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION FOR
SQLSTATE '02000' ;

DECLARE curThisCust CURSOR FOR
SELECT CompanyName, CAST(

sum(SalesOrderItems.Quantity *
Products.UnitPrice) AS INTEGER) VALUE

FROM Customers
LEFT OUTER JOIN Salesorders
LEFT OUTER JOIN SalesOrderItems
LEFT OUTER JOIN Products

GROUP BY CompanyName ;
DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;

CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;

IF SQLSTATE = err_notfound THEN
LEAVE CustomerLoop ;

END IF ;

CHAPTER 1 SQL Statements

Reference: Statements and Options 49

IF ThisValue > TopValue THEN
SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;

END IF ;
END LOOP CustomerLoop ;

CLOSE curThisCust ;
END

Usage The body of a procedure or trigger is a compound statement. Compound
statements can also be used in control statements within a procedure or trigger.

A compound statement allows one or more SQL statements to be grouped
together and treated as a unit. A compound statement starts with BEGIN and
ends with END. Immediately following BEGIN, a compound statement can
have local declarations that exist only within the compound statement. A
compound statement can have a local declaration for a variable, a cursor, a
temporary table, or an exception. Local declarations can be referenced by any
statement in that compound statement, or in any compound statement nested
within it. Local declarations are not visible to other procedures that are called
from within a compound statement.

If the ending statement-label is specified, it must match the beginning
statement-label. The LEAVE statement can be used to resume execution at the
first statement after the compound statement. The compound statement that is
the body of a procedure has an implicit label that is the same as the name of the
procedure or trigger.

ATOMIC clause An atomic statement is a statement executed completely or
not at all. For example, an UPDATE statement that updates thousands of rows
might encounter an error after updating many rows. If the statement does not
complete, all changes revert back to their original state. Similarly, if you
specify that the BEGIN statement is atomic, the statement is executed either in
its entirety or not at all.

For a complete description of compound statements and exception handling,
see Chapter 1, “Using Procedures and Batches” in the System Administration
Guide: Volume 2.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Supported by Adaptive Server Enterprise. This does not mean
that all statements inside a compound statement are supported.

BEGIN PARALLEL IQ … END PARALLEL IQ statement

50 Sybase IQ

BEGIN and END keywords are not required in Transact-SQL.

BEGIN and END are used in Transact-SQL to group a set of statements into
a single compound statement, so that control statements such as IF …
ELSE, which affect the performance of only a single SQL statement, can
affect the performance of the whole group. The ATOMIC keyword is not
supported by Adaptive Server Enterprise.

In Transact-SQL. DECLARE statements need not immediately follow
BEGIN, and the cursor or variable that is declared exists for the duration of
the compound statement. You should declare variables at the beginning of
the compound statement for compatibility.

Permissions None

See also DECLARE LOCAL TEMPORARY TABLE statement on page 167

DECLARE CURSOR statement [ESQL] [SP] on page 159

LEAVE statement on page 229

RESIGNAL statement on page 278

SIGNAL statement on page 312

BEGIN PARALLEL IQ … END PARALLEL IQ statement
Description Groups CREATE INDEX statements together for execution at the same time.

Syntax ... BEGIN PARALLEL IQ
 statement-list
... END PARALLEL IQ

Parameters statement-list
a list of CREATE INDEX statements

Examples The following statement executes atomically. If one command fails, the entire
statement rolls back:

BEGIN PARALLEL IQ
CREATE HG INDEX c1_HG on table1 (col1);
CREATE HNG INDEX c12_HNG on table1 (col12);
CREATE LF INDEX c1_LF on table1 (col1);
CREATE HNG INDEX c2_HNG on table1 (col2);

END PARALLEL IQ

CHAPTER 1 SQL Statements

Reference: Statements and Options 51

Usage The BEGIN PARALLEL IQ … END PARALLEL IQ statement lets you execute a
group of CREATE INDEX statements as though they are a single DDL
statement, creating indexes on multiple IQ tables at the same time. While this
statement is executing, you and other users cannot issue other DDL statements.

You can specify multiple tables within the statement list. Granularity is at the
column level. In other words, multiple indexes on the same column are
executed serially.

Side effects

Automatic commit.

Standards • SQL92 Not supported.

• Sybase Not supported by Adaptive Server Enterprise. For support of
statements inside the statement, see CREATE INDEX statement on page
105.

Permissions None

See also CREATE INDEX statement on page 105

BEGIN TRANSACTION statement
Description Starts a user-defined transaction.

Syntax BEGIN TRAN[SACTION] [transaction-name]

Examples Example 1 Illustrates the effect of a BEGIN TRANSACTION statement on the
snapshot version of a table:

In the first case, assume that table t1 contains no data. Two connections, Conn1
and Conn2, are made at the same time. Table 1-2 is a timeline of the commands
executed within the two connections:

BEGIN TRANSACTION statement

52 Sybase IQ

Table 1-2: first case command timeline

In the first case, user Conn2 issues a SELECT statement after user Conn1 issues
a COMMIT. Since the SELECT of Conn2 is the first command executed
following the connect, a transaction begins at this time and a snapshot is taken
of table t1 after t1 contains data. User Conn2 can see the updated table.

In the second case, assume again that table t1 contains no data. Two
connections, Conn1 and Conn2, are made at the same time. The commands
executed by the two users are in the following timeline:

Table 1-3: second command timeline

In this case, user Conn2 issues a BEGIN TRANSACTION statement after
connecting and Sybase IQ takes a snapshot of table t1 before user Conn1 inserts
any data. Even though Conn2 issues a SELECT after Conn1 has committed the
inserted data, Conn2 still has a snapshot of t1 before the data was inserted. In
this case, Conn2 cannot see the updated table and the SELECT returns no data.
Until the current transaction of user Conn2 ends, the image of table t1 remains
unchanged to user Conn2.

Conn1 Conn2

CONNECT CONNECT

INSERT INTO t1 VALUES(1)
(an implicit begin transaction)

…

COMMIT …

… SELECT * FROM t1
(an implicit begin transaction)

Data returned from table t1: 1

Conn1 Conn2

CONNECT CONNECT

… BEGIN TRANSACTION

INSERT INTO t1 VALUES(1)
(an implicit begin transaction)

…

COMMIT …

… SELECT * FROM t1

No data returned from table t1

CHAPTER 1 SQL Statements

Reference: Statements and Options 53

Example 2 The following batch reports successive values of @@trancount as
0, 1, 2, 1, 0. The values are printed on the server window:

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount

See “Usage,” below, for more information about the @@trancount global
variable.

Usage The optional parameter transaction-name is the name assigned to this
transaction. It must be a valid identifier. Use transaction names only on the
outermost pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK statements.

BEGIN TRANSACTION creates a transaction for the current connection, if the
connection does not currently have a transaction. When a transaction starts, it
selects the snapshot version that is used until the next commit or rollback.

A transaction automatically starts at the start of the first command following a
connect, commit, or rollback, if there is no explicit BEGIN TRANSACTION.

When executed inside a transaction, BEGIN TRANSACTION increases the
nesting level of transactions by one. The nesting level is decreased by a
COMMIT statement. When transactions are nested, only the outermost COMMIT
makes the changes to the database permanent.

Chained and unchained modes

Adaptive Server Enterprise and Sybase IQ have two transaction modes.

The default Adaptive Server Enterprise transaction mode, called unchained
mode, commits each statement individually, unless an explicit BEGIN
TRANSACTION statement is executed to start a transaction. In contrast, the
SQL92-compatible chained mode commits a transaction only when an
explicit COMMIT is executed, or when a statement that carries out an
autocommit (such as data definition statements) is executed.

You can control the mode by setting the CHAINED database option. The default
setting for ODBC and Embedded SQL connections in Sybase IQ is ON, in
which case Sybase IQ runs in chained mode. (ODBC users should also check
the AutoCommit ODBC setting.) The default for TDS connections is OFF.

BEGIN TRANSACTION statement

54 Sybase IQ

You cannot alter the CHAINED option within a transaction.

 Warning! When calling a stored procedure, ensure that it operates correctly
under the required transaction mode.

For more information about the CHAINED option and the chained mode, see
“CHAINED option [TSQL]” on page 360.

The current nesting level is held in the global variable @@trancount. The
@@trancount variable has a value of zero before a BEGIN TRANSACTION
statement is executed, and only a COMMIT executed when @@trancount is
equal to one makes changes to the database permanent.

A ROLLBACK statement without a transaction or savepoint name always rolls
back statements to the outermost BEGIN TRANSACTION (explicit or implicit)
statement, and cancels the entire transaction.

@@trancount values in Adaptive Server Enterprise and IQ

Do not rely on the value of @@trancount for more than keeping track of the
number of explicit BEGIN TRANSACTION statements that have been issued.

When Adaptive Server Enterprise starts a transaction implicitly, @@trancount
is set to 1. Sybase IQ does not set the @@trancount value to 1 when a
transaction is started implicitly. Consequently, the IQ @@trancount variable
has a value of zero before any BEGIN TRANSACTION statement (even though
there is a current transaction), while in Adaptive Server Enterprise (in chained
mode) @@trancount has a value of 1.

For transactions starting with a BEGIN TRANSACTION statement,
@@trancount has a value of 1 in both Sybase IQ and Adaptive Server
Enterprise after the BEGIN TRANSACTION statement. If a transaction is started
implicitly with a different statement, and a BEGIN TRANSACTION statement is
then executed, @@trancount has a value of 2 in both Sybase IQ and Adaptive
Server Enterprise after the BEGIN TRANSACTION statement.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions None.

CHAPTER 1 SQL Statements

Reference: Statements and Options 55

See also “ISOLATION_LEVEL option” on page 402

COMMIT statement on page 62

ROLLBACK statement on page 289

SAVEPOINT statement on page 291

CALL statement
Description Invokes a procedure.

Syntax Syntax 1

[variable =] CALL procedure-name ([expression] [, …])

Syntax 2

[variable =] CALL procedure-name ([parameter-name = expression]
[, …])

Examples Example 1 This example calls the sp_customer_list procedure. This procedure
has no parameters, and returns a result set:

CALL sp_customer_list()

Example 2 This DBISQL example creates a procedure to return the number of
orders placed by the customer whose ID is supplied, creates a variable to hold
the result, calls the procedure, and displays the result:

CREATE PROCEDURE OrderCount (IN CustomerID INT, OUT
Orders INT)
BEGIN
SELECT COUNT("DBA".SalesOrders.ID)
INTO Orders
FROM "DBA".Customers
KEY LEFT OUTER JOIN "DBA".SalesOrders
WHERE "DBA".Customers.ID = CustomerID ;
END
go
-- Create a variable to hold the result
CREATE VARIABLE Orders INT
go

-- Call the procedure, FOR customer 101
-- -----------------------------
CALL OrderCount (101, Orders)

CALL statement

56 Sybase IQ

go

-- Display the result
SELECT Orders FROM DUMMY
go

Usage CALL invokes a procedure that has been previously created with a CREATE
PROCEDURE statement. When the procedure completes, any INOUT or OUT
parameter values are copied back.

You can specify the argument list by position or by using keyword format. By
position, arguments match up with the corresponding parameter in the
parameter list for the procedure. By keyword, arguments match the named
parameters.

Procedure arguments can be assigned default values in the CREATE
PROCEDURE statement, and missing parameters are assigned the default
value, or, if no default is set, NULL.

Inside a procedure, CALL can be used in a DECLARE statement when the
procedure returns result sets. See Chapter 1, “Using Procedures and Batches”
in the System Administration Guide: Volume 2.

Procedures can return an integer value (as a status indicator, say) using the
RETURN statement. You can save this return value in a variable using the
equality sign as an assignment operator:

CREATE VARIABLE returnval INT ;
returnval = CALL proc_integer (arg1 = val1, ...)

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise. For an alternative
that is supported, see EXECUTE statement [ESQL] on page 186.

Permissions Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

See also CREATE PROCEDURE statement on page 120

GRANT statement on page 206

CHAPTER 1 SQL Statements

Reference: Statements and Options 57

CASE statement
Description Selects execution path based on multiple cases.

Syntax CASE value-expression
…WHEN [constant | NULL] THEN statement-list …
… [WHEN [constant | NULL] THEN statement-list] …
…ELSE statement-list
… END

Examples This procedure using a CASE statement classifies the products listed in the
Products table of the demo database into one of shirt, hat, shorts, or unknown:

CREATE PROCEDURE ProductType (IN product_id INT, OUT
type CHAR(10))

BEGIN
DECLARE prod_name CHAR(20) ;
SELECT name INTO prod_name FROM "DBA"."Products"
WHERE ID = product_id;
CASE prod_name
WHEN 'Tee Shirt' THEN

SET type = 'Shirt'
WHEN 'Sweatshirt' THEN

SET type = 'Shirt'
WHEN 'Baseball Cap' THEN

SET type = 'Hat'
WHEN 'Visor' THEN

SET type = 'Hat'
WHEN 'Shorts' THEN

SET type = 'Shorts'
ELSE

SET type = 'UNKNOWN'
END CASE ;
END

CHECKPOINT statement

58 Sybase IQ

Usage The CASE statement is a control statement that lets you choose a list of SQL
statements to execute based on the value of an expression. If a WHEN clause
exists for the value of value-expression, the statement-list in the WHEN clause
is executed. If no appropriate WHEN clause exists, and an ELSE clause exists,
the statement-list in the ELSE clause is executed. Execution resumes at the first
statement after the END.

Note The ANSI standard allows two forms of CASE statements. Although
Sybase IQ allows both forms, when CASE is in the predicate, for best
performance you must use the form shown here.

If you require the other form (also called ANSI syntax) for compatibility with
SQL Anywhere, see the CASE statement Syntax 2 in “CASE statement” in SQL
Anywhere Server – SQL Reference > Using SQL > SQL statements > SQL
statements (A-D).

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE statement with that of the CASE
expression.

For information on the CASE expression, see “Expressions” in Chapter 2,
“SQL Language Elements” in Reference: Building Blocks, Tables, and
Procedures.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None.

See also BEGIN … END statement on page 47

CHECKPOINT statement
Description Checkpoints the database.

Syntax CHECKPOINT

CHAPTER 1 SQL Statements

Reference: Statements and Options 59

Usage CHECKPOINT forces the database server to execute a checkpoint. Checkpoints
are also performed automatically by the database server according to an
internal algorithm. Applications do not normally need to issue CHECKPOINT.
For a full description of checkpoints, see Chapter 12, “Data Backup, Recovery,
and Archiving,” in the System Administration Guide: Volume 1.

Side effects

None.

Standards • SQL92 Vendor extension

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must have DBA authority to checkpoint the network database server. No
permissions are required to checkpoint the personal database server.

CLEAR statement [DBISQL]
Description Clears the Interactive SQL (DBISQL) data window.

Syntax CLEAR

Usage The CLEAR statement is used to clear the DBISQL main window.

Side effects

Closes the cursor associated with the data being cleared.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None.

See also EXIT statement [DBISQL] on page 192

CLOSE statement [ESQL] [SP]
Description Closes a cursor.

Syntax CLOSE cursor-name

Parameters cursor-name:
{ identifier | host-variable }

CLOSE statement [ESQL] [SP]

60 Sybase IQ

Examples Example 1 Close cursors in Embedded SQL:

EXEC SQL CLOSE employee_cursor;
EXEC SQL CLOSE :cursor_var;

Example 2 Uses a cursor:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION
FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR

SELECT CompanyName,
CAST(sum(SalesOrderItems.Quantity *
Products.UnitPrice) AS INTEGER) VALUE

FROM Customers
LEFT OUTER JOIN SalesOrders
LEFT OUTER JOIN SalesOrderItems
LEFT OUTER JOIN Products

GROUP BY CompanyName ;
DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;
END IF ;

END LOOP CustomerLoop ;
CLOSE curThisCust ;

END

Usage This statement closes the named cursor.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

CHAPTER 1 SQL Statements

Reference: Statements and Options 61

Permissions The cursor must have been previously opened.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

OPEN statement [ESQL] [SP] on page 260

PREPARE statement [ESQL] on page 268

COMMENT statement
Description Stores a comment in the system tables for a database object.

Syntax COMMENT ON
{ COLUMN [owner.]table-name.column-name
| DBSPACE dbspace-name
| EVENT event-name
| EXTERNAL ENVIRONMENT environment-name
| EXTERNAL OBJECT object-name
| FOREIGN KEY [owner.]table-name.role-name
| INDEX [[owner.]table.]index-name
| INTEGRATED LOGIN integrated-login-id
| JAVA CLASS java-class-name
| JAVA JAR java-jar-name
| KERBEROS LOGIN “client-Kerberos-principal”
| LOGIN POLICY policy-name
| MATERIALIZED VIEW [owner.]materialized-view-name
| PROCEDURE [owner.]table-name
| SERVICE web-service-name
| TABLE [owner.]table-name
| TRIGGER [[owner.]table-name.]trigger-name
| USER userid
| VIEW [owner.]view-name }
IS comment

Parameters comment:
{ string | NULL }

environment-name:
JAVA
| PERL
| PHP
| CLR
| C_ESQL32
| C_ESQL64
| C_ODBC32
| C_ODBC64

COMMIT statement

62 Sybase IQ

Examples Example 1 Adds a comment to the Employees table:

COMMENT
ON TABLE Employees
IS "Employee information"

Example 2 Removes the comment from the Employees table:

COMMENT
ON TABLE Employees
IS NULL

Usage The COMMENT statement allows you to set a remark (comment) for an object
in the database. The COMMENT statement updates remarks listed in the
ISYSREMARK system table. You can remove a comment by setting it to NULL.
For a comment on an index or trigger, the owner of the comment is the owner
of the table on which the index or trigger is defined.

The COMMENT ON DBSPACE, COMMENT ON JAVA JAR, and COMMENT ON
JAVA CLASS statements allow you to set the Remarks column in the
SYS.ISYSREMARK system table. The comment can be removed by setting it to
NULL.

You cannot add comments for local temporary tables.

The environment-name is one of JAVA, PERL, PHP, CLR, C_ESQL32,
C_ESQL64, C_ODBC32, or C_ODBC64.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must either be the owner of the database object being commented, or have
DBA authority. (You must have DBA authority to issue this statement with the
DBSPACE clause.)

COMMIT statement
Description Makes changes to the database permanent, or terminates a user-defined

transaction.

CHAPTER 1 SQL Statements

Reference: Statements and Options 63

Syntax Syntax 1

COMMIT [WORK]

Syntax 2

COMMIT TRAN[SACTION] [transaction-name]

Examples Example 1 This statement commits the current transaction:

COMMIT

Example 2 The following Transact-SQL batch reports successive values of
@@trancount as 0, 1, 2, 1, 0:

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
go

Usage Syntax 1 The COMMIT statement ends a transaction and makes all changes
made during this transaction permanent in the database.

Data definition statements carry out commits automatically. For information,
see the Side effects listing for each SQL statement.

COMMIT fails if the database server detects any invalid foreign keys. This
makes it impossible to end a transaction with any invalid foreign keys. Usually,
foreign key integrity is checked on each data manipulation operation.
However, if the database option WAIT_FOR_COMMIT is set ON or a particular
foreign key was defined with a CHECK ON COMMIT clause, the database server
delays integrity checking until the COMMIT statement is executed.

Syntax 2 You can use BEGIN TRANSACTION and COMMIT TRANSACTION
statements in pairs to construct nested transactions. Nested transactions are
similar to savepoints. When executed as the outermost of a set of nested
transactions, the statement makes changes to the database permanent. When
executed inside a transaction, COMMIT TRANSACTION decreases the nesting
level of transactions by one. When transactions are nested, only the outermost
COMMIT makes the changes to the database permanent.

The optional parameter transaction-name is the name assigned to this
transaction. It must be a valid identifier. Use transaction names only on the
outermost pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK statements.

CONFIGURE statement [DBISQL]

64 Sybase IQ

You can use a set of options to control the detailed behavior of the COMMIT
statement. For information, see “COOPERATIVE_COMMIT_TIMEOUT
option” on page 369, “COOPERATIVE_COMMITS option” on page 369,
“DELAYED_COMMITS option” on page 382, and
“DELAYED_COMMIT_TIMEOUT option” on page 382. You can use the
Commit connection property to return the number of commits on the current
connection.

Side effects

Closes all cursors except those opened WITH HOLD.

Deletes all rows of declared temporary tables on this connection, unless they
were declared using ON COMMIT PRESERVE ROWS.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise. Syntax 2 is a
Transact-SQL extension.

Permissions Must be connected to the database.

See also BEGIN TRANSACTION statement on page 51

CONNECT statement [ESQL] [DBISQL] on page 65

DISCONNECT statement [DBISQL] on page 176

ROLLBACK statement on page 289

SAVEPOINT statement on page 291

SET CONNECTION statement [DBISQL] [ESQL] on page 306

CONFIGURE statement [DBISQL]
Description Activates the DBISQL configuration window.

Syntax CONFIGURE

Usage The DBISQL configuration window displays the current settings of all
DBISQL options. It does not display or let you modify database options.

If you select Permanent, the options are written to the SYSOPTION table in the
database and the database server performs an automatic COMMIT. If you do not
choose Permanent, and instead click OK, options are set temporarily and
remain in effect for the current database connection only.

CHAPTER 1 SQL Statements

Reference: Statements and Options 65

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None.

See also SET OPTION statement on page 307

CONNECT statement [ESQL] [DBISQL]
Description Establishes a connection to a database.

Syntax Syntax 1

CONNECT
… [TO engine-name]
…[DATABASE database-name]
…[AS connection-name]
…[USER] userid [IDENTIFIED BY]

Syntax 2

CONNECT USING connect-string

Parameters engine-name:
identifier, string, or host-variable

database-name:
identifier, string, or host-variable

 connection-name:
identifier, string, or host-variable

userid:
identifier, string, or host-variable

 password:
identifier, string, or host-variable

 connect-string:
a valid connection string or host-variable

CONNECT statement [ESQL] [DBISQL]

66 Sybase IQ

Examples Example 1 This is an example of CONNECT usage within Embedded SQL:

EXEC SQL CONNECT AS :conn_name
USER :userid IDENTIFIED BY :password;
EXEC SQL CONNECT USER "dba" IDENTIFIED BY "sql";

Example 2 These are examples of CONNECT usage from dbisql.

• Connect to a database from dbisql. Prompts display for user ID and
password:

CONNECT

• Connect to the default database as DBA, from dbisql. A password prompt
displays:

CONNECT USER "DBA"

• Connect to the sample database as the DBA, from dbisql:

CONNECT
TO <machine>_iqdemo
USER "DBA"
IDENTIFIED BY sql

where <machine>_iqdemo is the engine name.

• Connect to the sample database using a connect string, from dbisql:

CONNECT
USING 'UID=DBA;PWD=sql;DBN=iqdemo'

Usage The CONNECT statement establishes a connection to the database identified by
database-name running on the server identified by engine-name.

Embedded SQL behavior In Embedded SQL, if no engine-name is
specified, the default local database server is assumed (the first database server
started). If a local database server is not running and the Anywhere Client
(DBCLIENT) is running, the default server is assumed (the server name
specified when the client was started). If no database-name is specified, the
first database on the given server is assumed.

The WHENEVER statement, SET SQLCA, and some DECLARE statements do
not generate code and thus might appear before the CONNECT statement in the
source file. Otherwise, no statements are allowed until a successful CONNECT
statement has been executed.

The user ID and password are used for permission checks on all dynamic SQL
statements. By default, the password is case sensitive; the user ID is not.

CHAPTER 1 SQL Statements

Reference: Statements and Options 67

For a detailed description of the connection algorithm, see “How Sybase IQ
makes connections” in Chapter 3, “Sybase IQ Connections” in the System
Administration Guide: Volume 1.

DBISQL behavior If no database or server is specified in the CONNECT
statement, dbisql remains connected to the current database, rather than to the
default server and database. If a database name is specified without a server
name, dbisql attempts to connect to the specified database on the current server.
You must specify the database name defined in the -n database switch, not the
database file name. If a server name is specified without a database name,
dbisql connects to the default database on the specified server. For example, if
the following batch is executed while connected to a database, the two tables
are created in the same database.

CREATE TABLE t1(c1 int);
CONNECT DBA IDENTIFIED BY sql;
CREATE TABLE t2 (c1 int);

No other database statements are allowed until a successful CONNECT
statement has been executed.

The user ID and password are used for checking the permissions on SQL
statements. If the password or the user ID and password are not specified, the
user is prompted to type the missing information. By default, the password is
case sensitive; the user ID is not.

Multiple connections are managed through the concept of a current connection.
After a successful connect statement, the new connection becomes the current
one. To switch to a different connection, use SET CONNECTION. Executing a
CONNECT statement does not close the existing connection (if any). Use
DISCONNECT to drop connections.

Static SQL statements use the user ID and password specified with the -l option
on the SQLPP statement line. If no -l option is given, then the user ID and
password of the CONNECT statement are used for static SQL statements also.

Connecting with no password If you are connected to a user ID with DBA
authority, you can connect to another user ID without specifying a password.
(The output of dbtran requires this capability.) For example, if you are
connected to a database from Interactive SQL as DBA, you can connect
without a password with the statement:

CONNECT other_user_id

In Embedded SQL, you can connect without a password by using a host
variable for the password and setting the value of the host variable to be the null
pointer.

CREATE DATABASE statement

68 Sybase IQ

AS clause A connection can optionally be named by specifying the AS
clause. This allows multiple connections to the same database, or multiple
connections to the same or different database servers, all simultaneously. Each
connection has its own associated transaction. You might even get locking
conflicts between your transactions if, for example, you try to modify the same
record in the same database from two different connections.

Syntax 2 A connect-string is a list of parameter settings of the form
keyword=value, and must be enclosed in single quotes.

Side effects

None.

Standards • SQL92 Syntax 1 is a full SQL feature; Syntax 2 is a vendor extension.

• Sybase Open Client Embedded SQL supports a different syntax for the
CONNECT statement.

Permissions None.

See also DISCONNECT statement [DBISQL] on page 176

GRANT statement on page 206

SET CONNECTION statement [DBISQL] [ESQL] on page 306

CREATE DATABASE statement
Description Creates a database consisting of several operating system files.

Syntax CREATE DATABASE db-name
… [[TRANSACTION] { LOG ON [log-file-name]

[MIRROR mirror-file-name] }]
… [CASE { RESPECT | IGNORE }]
… [PAGE SIZE page-size]
… [COLLATION collation-label[(collation-tailoring-string)]]
… [ENCRYPTED [TABLE] {algorithm-key-spec | OFF }]
… { … [BLANK PADDING ON]
… [JAVA { ON | OFF }]
… [JCONNECT { ON | OFF }]
… [IQ PATH iq-file-name]
… [IQ SIZE iq-file-size]
… [IQ PAGE SIZE iq-page-size]
… [BLOCK SIZE block-size]
… [IQ RESERVE sizeMB]

CHAPTER 1 SQL Statements

Reference: Statements and Options 69

… [TEMPORARY RESERVE sizeMB]
… [MESSAGE PATH message-file-name]
… [TEMPORARY PATH temp-file-name]
… [TEMPORARY SIZE temp-db-size]

Parameters db-name | log-file-name | mirror-file-name | iq-file-name
| message-file-name | temp-file-name:

 'file-name'

page-size:
{ 4096 | 8192 | 16384 | 32768 }

iq-page-size:
{ 65536 | 131072 | 262144 | 524288 }

block-size:
{ 4096 | 8192 | 16384 | 32768 }

collation-label:
string

collation-tailoring-string:
keyword=value

algorithm-key-spec:
ON
| [ON] KEY key [ALGORITHM AES-algorithm]
| [ON] ALGORITHM AES-algorithm KEY key
| [ON] ALGORITHM ‘SIMPLE’

AES-algorithm:
‘AES’ | ‘AES256’ | ‘AES_FIPS’ | ‘AES256_FIPS’

key:
quoted string

Examples Example 1 The following Windows example creates an IQ database named
mydb with its corresponding mydb.db, mydb.iq, mydb.iqtmp, and mydb.iqmsg
files in the C:\s1\data directory:

CREATE DATABASE 'C:\\s1\\data\\mydb'
BLANK PADDING ON
IQ PATH 'C:\\s1\\data'
IQ SIZE 2000
IQ PAGE SIZE 65536

Example 2 The following UNIX command creates an IQ database with raw
devices for IQ PATH and TEMPORARY PATH. The default IQ page size of
128KB applies.

CREATE DATABASE statement

70 Sybase IQ

CREATE DATABASE '/s1/data/bigdb'
IQ PATH '/dev/md/rdsk/bigdb'
MESSAGE PATH '/s1/data/bigdb.iqmsg'
TEMPORARY PATH '/dev/md/rdsk/bigtmp'

Example 3 The following Windows command creates an IQ database with a
raw device for IQ PATH. Note the doubled backslashes in the raw device name
(a Windows requirement):

CREATE DATABASE 'company'
IQ PATH '\\\\.\\E:'
JCONNECT OFF
IQ SIZE 40

Example 4 The following UNIX example creates a strongly encrypted IQ
database using the AES encryption algorithm with the key “is!seCret.”

CREATE DATABASE 'marvin.db'
JAVA OFF
BLANK PADDING ON
CASE RESPECT
COLLATION 'ISO_BINENG'
IQ PATH '/filesystem/marvin.main1'
IQ SIZE 6400
IQ PAGE SIZE 262144
TEMPORARY PATH '/filesystem/marvin.temp1'
TEMPORARY SIZE 3200
ENCRYPTED ON KEY 'is!seCret' ALGORITHM 'AES'

Usage Creates an IQ database with the supplied name and attributes. The IQ PATH
clause is required for creating the IQ database. Otherwise, you create a
standard SQL Anywhere database. If you omit the IQ PATH option, specifying
any of the following options generates an error: IQ SIZE, IQ PAGE SIZE,
BLOCK SIZE, MESSAGE PATH, TEMPORARY PATH, and TEMPORARY SIZE.

When Sybase IQ creates an IQ database, it automatically generates four
database files to store different types of data that constitute an IQ database.
Each file corresponds to a dbspace, the logical name by which Sybase IQ
identifies database files. The files are:

• db-name.db is the file that holds the catalog dbspace, SYSTEM. It contains
the system tables and stored procedures describing the database and any
standard SQL Anywhere database objects you add. If you do not include
the .db extension, Sybase IQ adds it. This initial dbspace contains the
catalog store, and you can later add dbspaces to increase its size. It cannot
be created on a raw partition.

CHAPTER 1 SQL Statements

Reference: Statements and Options 71

• db-name.iq is the default name of the file that holds the main data dbspace,
IQ_SYSTEM_MAIN, containing the IQ tables and indexes. You can specify
a different file name with the IQ PATH clause. This initial dbspace contains
the IQ store.

IQ_SYSTEM_MAIN is a special dbspace that contains all structures
necessary for the database to open: the IQ db_identity blocks, the IQ
checkpoint log, the IQ rollforward/rollback bitmaps of each committed
transaction and each active checkpointed transaction, the incremental
backup bitmaps, and the freelist root pages. IQ_SYSTEM_MAIN is always
online when the database is open.

The administrator can allow user tables to be created in
IQ_SYSTEM_MAIN, especially if these tables are small, very important
tables. However, the more common case is that immediately after creating
the database, the administrator creates a second main dbspace, revokes
CREATE privilege IN DBSPACE IQ_SYSTEM_MAIN from all users,
grants CREATE IN DBSPACE for the new main dbspace to selected users,
and sets PUBLIC.default_dbspace to the new main dbspace.

• db-name.iqtmp is the default name of the file that holds the initial
temporary dbspace, IQ_SYSTEM_TEMP. It contains the temporary tables
generated by certain queries. The required size of this file can vary
depending on the type of query and amount of data. You can specify a
different name using the TEMPORARY PATH clause. This initial dbspace
contains the temporary store.

• db-name.iqmsg is the default name of the file that contains the messages
trace dbspace, IQ_SYSTEM_MSG. You can specify a different file name
using the MESSAGE PATH clause.

In addition to these files, an IQ database has a transaction log file
(db-name.log), and might have a transaction log mirror file.

File names

The file names (db-name, log-file-name, mirror-file-name, iq-file-name,
message-file-name, temp-file-name) are strings containing operating system
file names. As literal strings, they must be enclosed in single quotes.

• In Windows, if you specify a path, any backslash characters (\) must be
doubled if they are followed by an n or an x. This prevents them being
interpreted as a newline character (\n) or as a hexadecimal number (\x),
according to the rules for strings in SQL. It is safer to always double the
backslash. For example:

CREATE DATABASE statement

72 Sybase IQ

CREATE DATABASE 'c:\\sybase\\mydb.db'
LOG ON 'e:\\logdrive\\mydb.log'
JCONNECT OFF
IQ PATH 'c:\\sybase\\mydb'
IQ SIZE 40

• If you specify no path, or a relative path:

• The catalog store file (db-name.db) is created relative to the working
directory of the server.

• The IQ store, temporary store, and message log files are created in the
same directory as, or relative to, the catalog store.

Relative path names are recommended.

 Warning! The database file, temporary dbspace, and transaction log file must
be located on the same physical machine as the database server. Do not place
database files and transaction log files on a network drive. The transaction log
should be on a separate device from its mirror, however.

On UNIX systems, you can create symbolic links, which are indirect pointers
that contain the path name of the file to which they point. You can use symbolic
links as relative path names. There are several advantages to creating a
symbolic link for the database file name:

• Symbolic links to raw devices can have meaningful names, while the
actual device name syntax can be obscure.

• A symbolic name might eliminate problems restoring a database file that
was moved to a new directory since it was backed up.

To create a symbolic link, use the ln -s command. For example:

ln -s /disk1/company/iqdata/company.iq company_iq_store

Once you create this link, you can specify the symbolic link in commands like
CREATE DATABASE or RESTORE instead of the fully qualified path name.

When you create a database or a dbspace, the path for every dbspace file must
be unique. If your CREATE DATABASE command specifies the identical path
and file name for these two stores, you receive an error.

Note To create multiplex databases, see Using Sybase IQ Multiplex.

CHAPTER 1 SQL Statements

Reference: Statements and Options 73

You can create a unique path in any of these ways:

• Specify a different extension for each file (for example, mydb.iq and
mydb.iqtmp)

• Specify a different file name (for example, mydb.iq and mytmp.iq)

• Specify a different path name (for example, /iqfiles/main/iq and /iqfiles/
temp/iq) or different raw partitions

• Omit TEMPORARY PATH when you create the database. In this case, the
temporary store is created in the same path as the catalog store, with the
default name and extension dbname.iqtmp, where dbname is the database
name.

 Warning! On UNIX platforms, to maintain database consistency, you must
specify file names that are links to different files. Sybase IQ cannot detect the
target where linked files point. Even if the file names in the command differ, it
is your responsibility to make sure they do not point to the same operating
system file.

Clauses and options of CREATE DATABASE

TRANSACTION LOG The transaction log is a file where the database server
logs all changes made to the database. The transaction log plays a key role in
system recovery. If you do not specify any TRANSACTION LOG clause, or if
you omit a path for the file name, it is placed in the same directory as the .db
file. However, you should place it on a different physical device from the .db
and .iq. It cannot be created on a raw partition.

MIRROR A transaction log mirror is an identical copy of a transaction log,
usually maintained on a separate device, for greater protection of your data. By
default, Sybase IQ does not use a mirrored transaction log. If you do want to
use a transaction log mirror, you must provide a file name. If you use a relative
path, the transaction log mirror is created relative to the directory of the catalog
store (db-name.db). Sybase recommends that you always create a mirror copy
of the transaction log.

CASE For databases created with CASE RESPECT, all affected values are
case sensitive in comparisons and string operations. Database object names
such as columns, procedures, or user IDs, are unaffected. Dbspace names are
case insensitive for databases created with CASE IGNORE or CASE RESPECT.

The default (RESPECT) is that all comparisons are case sensitive. CASE
RESPECT provides better performance than CASE IGNORE.

CREATE DATABASE statement

74 Sybase IQ

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. If the string
Value is inserted into a character data type column, the string is always stored
in the database with an uppercase V and the remainder of the letters lowercase.
SELECT statements return the string as Value. If the database is not case
sensitive, however, all comparisons make Value the same as value, VALUE, and
so on. The IQ server may return results in any combination of lowercase and
uppercase, so you cannot expect case sensitive results in a database that is case
insensitive (CASE IGNORE).

For example, given the following table and data:

CREATE TABLE tb (id int NOT NULL,
string VARCHAR(30) NOT NULL);

INSERT INTO tb VALUES (1, ‘ONE’);
SELECT * FROM tb WHERE string = ‘oNe’;

The result of the SELECT can be ‘oNe’ (as specified in the WHERE clause) and
not necessarily ‘ONE’ (as stored in the database).

Similarly, the result of

SELECT * FROM tb WHERE string = ‘One’;

can be ‘One’ and the result of

SELECT * FROM tb WHERE string = ‘ONe’;

can be ‘ONe’.

All databases are created with at least one user ID:

DBA

and password:

sql

In new databases, all passwords are case sensitive, regardless of the case-
sensitivity of the database. The user ID is unaffected by the CASE RESPECT
setting.

PAGE SIZE The page size for the SQL Anywhere segment of the database
(containing the catalog tables) can be 4096, 8192, 16384, or 32768 bytes, with
4096 being the default. Normally, you should use the default, 4096 (4KB).
Large databases might need a larger page size than the default and could see
performance benefits as a result. Smaller values might limit the number of
columns your database can support. If you specify a page size smaller than
4096, Sybase IQ uses a page size of 4096.

CHAPTER 1 SQL Statements

Reference: Statements and Options 75

When you start a database, its page size cannot be larger than the page size of
the current server. The server page size is taken from the first set of databases
started or is set on the server command line using the -gp command line option.

Command line length for any statement is limited to the Catalog page size. The
4KB default is large enough in most cases; however, in a few cases a larger
PAGE SIZE value is needed to accommodate very long commands, such as
RESTORE commands that reference numerous dbspaces. A larger page size
might also be needed to execute queries involving large numbers of tables or
views.

Because the default Catalog page size is 4KB, this is only a problem when the
connection is to a database such as utility_db, which has a page size of 1024.
This restriction may cause RESTORE commands that reference numerous
dbspaces to fail. To avoid the problem, make sure the length of SQL command
lines is less than the Catalog page size.

Alternatively, start the engine with -gp 32768 to increase Catalog page size.

COLLATION The collation sequence used for sorting and comparison of
character data types in the database. The collation provides character
comparison and ordering information for the encoding (character set) being
used. If the COLLATION clause is not specified, Sybase IQ chooses a collation
based on the operating system language and encoding.

For most operating systems, the default collation sequence is ISO_BINENG,
which provides the best performance. In ISO_BINENG, the collation order is
the same as the order of characters in the ASCII character set. All uppercase
letters precede all lowercase letters (for example, both ‘A’ and ‘B’ precede ‘a’).

The collation can be chosen from a list of supported collations. For SQL
Anywhere databases created on a Sybase IQ server, the collation can also be
the Unicode Collation Algorithm (UCA). If UCA is specified, you should also
specify the ENCODING clause. For more information on the ENCODING
clause, see “CREATE DATABASE statement” in SQL Anywhere Server – SQL
Reference > Using SQL > SQL statements > SQL statements (A-D).

Sybase IQ does not support any of the UCA based collations for IQ databases.
If a UCA based collation is specified in the CREATE DATABASE statement for
an IQ database, the server returns the error “UCA collation is not
supported” and database creation fails.

Carefully choosing your collation is important. The collation cannot be
changed after the database is created. For information on choosing a collation,
see Chapter 11, “International Languages and Character Sets” in the System
Administration Guide: Volume 1.

CREATE DATABASE statement

76 Sybase IQ

Optionally, you can specify collation tailoring options (collation-tailoring-
string) for additional control over the sorting and comparing of characters.
These options take the form of keyword=value pairs, assembled in parentheses,
following the collation name.

Note Several collation tailoring options are supported when specifying the
UCA collation for a SQL Anywhere database created on an Sybase IQ server.
For all other collations and for Sybase IQ, only case sensitivity tailoring is
supported. Also, databases created with collation tailoring options cannot be
started using a pre-15.0 database sever.

Table 1-4 contains the supported keyword, allowed alternate forms, and
allowed values for the collation tailoring option (collation-tailoring-string) for
a Sybase IQ database.

Table 1-4: Collation tailoring option for Sybase IQ

For syntax and a complete list of the collation tailoring options supported when
specifying the UCA collation for a SQL Anywhere database, see “CREATE
DATABASE statement” in SQL Anywhere Server – SQL Reference > Using
SQL > SQL statements > SQL statements (A-D).

ENCRYPTED Encryption makes the data stored in your physical database
file unreadable. Use the CREATE DATABASE ENCRYPTED keyword without
the TABLE keyword when you want to encrypt the entire database. Use the
ENCRYPTED TABLE clause when you only want to enable table encryption for
SQL Anywhere tables. Table level encryption is not supported for Sybase IQ
tables. Enabling table encryption means that the tables that are subsequently
created or altered using the ENCRYPTED clause are encrypted using the
settings you specified at database creation.

There are two levels of database and table encryption: simple and strong.

Keyword Collation
Alternate
forms Allowed values

CaseSensitivity All supported
collations

CaseSensitive,
Case

• respect Respect case differences between letters. For
the UCA collation, this is equivalent to UpperFirst. For
other collations, it depends on the collation itself.

• ignore Ignore case differences between letters.

• UpperFirst Always sort upper case first (Aa).

• LowerFirst Always sort lowercase first (aA).

CHAPTER 1 SQL Statements

Reference: Statements and Options 77

• Simple encryption is equivalent to obfuscation. The data is unreadable, but
someone with cryptographic expertise could decipher the data. For simple
encryption, specify the CREATE DATABASE clause ENCRYPTED ON
ALGORITHM ‘SIMPLE’, ENCRYPTED ALGORITHM ‘SIMPLE’, or specify
the ENCRYPTED ON clause without specifying an algorithm or key.

• Strong encryption is achieved through the use of a 128-bit algorithm and
a security key. The data is unreadable and virtually undecipherable
without the key. For strong encryption, specify the CREATE DATABASE
clause ENCRYPTED ON ALGORITHM with a 128-bit or 256-bit AES
algorithm and use the KEY clause to specify an encryption key. You should
choose a value for your key that is at least 16 characters long, contains a
mix of uppercase and lowercase, and includes numbers, letters, and special
characters.

This encryption key is required each time you start the database.

 Warning! Protect your encryption key! Be sure to store a copy of your key in
a safe location. A lost key results in a completely inaccessible database from
which there is no recovery.

Encryption can be specified only during database creation. To introduce
encryption to an existing database requires a complete unload, database
recreation, and reload of all data.

If the ENCRYPTED clause is used but no algorithm is specified, the default is
AES. Encryption is OFF by default.

BLANK PADDING By default, trailing blanks are ignored for comparison
purposes (BLANK PADDING ON), and Embedded SQL programs pad strings
fetched into character arrays. This option is provided for compatibility with the
ISO/ANSI SQL standard.

 For example, these two strings are treated as equal in a database created with
BLANK PADDING ON:

'Smith'
'Smith '

Note CREATE DATABASE no longer supports BLANK PADDING OFF.

CREATE DATABASE statement

78 Sybase IQ

JAVA To use Java in your database, you must install entries for the Sybase
runtime Java classes into the catalog system tables. By default, these entries are
installed. If you do not need to use Java, you can specify JAVA OFF to avoid
installing these entries.

JCONNECT To use the Sybase jConnect for JDBC driver to access system
catalog information, you must install jConnect support. Use this option to
exclude the jConnect system objects (the default is ON). You can still use
JDBC, as long as you do not access system information.

IQ PATH The path name of the main segment file containing the Sybase IQ
data. You can specify an operating system file or a raw partition of an I/O
device. (The Installation and Configuration Guide for your platform describes
the format for specifying a raw partition.) Sybase IQ automatically detects
which type based on the path name you specify. If you use a relative path, the
file is created relative to the directory of the catalog store (the .db file).

IQ SIZE The size in MB of either the raw partition or the operating system
file you specify with the IQ PATH clause. For raw partitions, you should always
take the default by not specifying IQ SIZE, which allows Sybase IQ to use the
entire raw partition; if you specify a value for IQ SIZE, it must match the size
of the I/O device or Sybase IQ returns an error. For operating system files, you
can specify a value based on the size of your data, from the minimum in Table
1-5 up to a maximum of 128GB. The default for operating system files depends
on IQ PAGE SIZE:

Table 1-5: Default and minimum sizes of IQ and temporary store files

IQ PAGE SIZE The page size in bytes for the Sybase IQ segment of the
database (containing the IQ tables and indexes). The value must be a power of
2, from 65536 to 524288 bytes. The default is 131072 (128KB). Other values
for the size are changed to the next larger size. The IQ page size determines the
default I/O transfer block size and maximum data compression for your
database.

IQ PAGE
SIZE

IQ SIZE
default

TEMPORARY
SIZE default

Minimum
explicit IQ
SIZE

Minimum
explicit
TEMPORARY
SIZE

65536 4096000 2048000 4MB 2MB

131072 8192000 4096000 8MB 4MB

262144 16384000 8192000 16MB 8MB

524288 32768000 16384000 32MB 16MB

CHAPTER 1 SQL Statements

Reference: Statements and Options 79

For the best performance, Sybase recommends the following minimum IQ
page sizes:

• 64KB (IQ PAGE SIZE 65536) for databases whose largest table contains up
to 1 billion rows, or a total size less than 8TB. This is the absolute
minimum for a new database. On 32-bit platforms, a 64KB IQ page size
gives the best performance.

• 128KB (IQ PAGE SIZE 131072) for databases on a 64-bit platform whose
largest table contains more than 1 billion rows and fewer than 4 billion
rows, or might grow to a total size of 8TB or greater. 128KB is the default
IQ page size.

• 256KB (IQ PAGE SIZE 262144) for databases on a 64-bit platform whose
largest table contains more than 4 billion rows, or might grow to a total
size of 8TB or greater.

Very wide tables, such as tables with multiple columns of wide VARCHAR data
(columns from 255 to 32,767 bytes) might need the next larger IQ PAGE SIZE.

BLOCK SIZE The I/O transfer block size in bytes for the Sybase IQ segment
of the database. The value must be less than IQ PAGE SIZE, and must be a
power of two between 4096 and 32768. Other values for the size are changed
to the next larger size. The default value depends on the value of the IQ PAGE
SIZE clause. For most applications, this default value is optimum. Before
specifying a different value, see Chapter 4, “Managing System Resources” in
the Performance and Tuning Guide.

IQ RESERVE Specifies the size in megabytes of space to reserve for the main
IQ store (IQ_SYSTEM_MAIN dbspace), so that the dbfile can be increased in
size in the future. The sizeMB parameter can be any number greater than 0. The
reserve cannot be changed after the dbspace is created.

When IQ RESERVE is specified, the database uses more space for internal (free
list) structures. If reserve size is too large, the space needed for the internal
structures can be larger than the specified size, which results in an error.

TEMPORARY RESERVE clause Specifies the size in megabytes of space to
reserve for the temporary IQ store (IQ_SYSTEM_TEMP dbspace), so that the
dbfile can be increased in size in the future. The sizeMB parameter can be any
number greater than 0. The reserve cannot be changed after the dbspace is
created.

CREATE DATABASE statement

80 Sybase IQ

When TEMPORARY RESERVE is specified, the database uses more space for
internal (free list) structures. If reserve size is too large, the space needed for
the internal structures can be larger than the specified size, which results in an
error.

Note Reserve and mode for temporary dbspaces are lost if the database is
restored from a backup.

MESSAGE PATH The path name of the segment containing the Sybase IQ
messages trace file. You must specify an operating system file; the message file
cannot be on a raw partition. If you use a relative path or omit the path, the
message file is created relative to the directory of the .db file.

TEMPORARY PATH The path name of the temporary segment file
containing the temporary tables generated by certain queries. You can specify
an operating system file or a raw partition of an I/O device. (The Installation
and Configuration Guide for your platform describes the format for specifying
a raw partition.) Sybase IQ automatically detects which type based on the path
name you specify. If you use a relative path or omit the path, the temporary file
is created relative to the directory of the .db file.

TEMPORARY SIZE The size in MB of either the raw partition or the
operating system file you specify with the TEMPORARY PATH clause. For raw
partitions, you should always take the default by not specifying TEMPORARY
SIZE, which allows Sybase IQ to use the entire raw partition. The default for
operating system files is always one-half the value of IQ SIZE. If the IQ store
is on a raw partition and the temporary store is an operating system file, the
default TEMPORARY SIZE is half the size of the IQ store raw partition.

Side effects

Several operating system files are created.

Standards • SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise provides a CREATE DATABASE
statement, but with different options.

Permissions The permissions required to execute this statement are set on the server
command line, using the -gu option. The default setting is to require DBA
authority.

The account under which the server is running must have write permissions on
the directories where files are created.

CHAPTER 1 SQL Statements

Reference: Statements and Options 81

See also CREATE DBSPACE statement on page 81

DROP DATABASE statement on page 181

“CREATE DATABASE statement” in SQL Anywhere Server – SQL Reference
> Using SQL > SQL statements > SQL statements (A-D)

Chapter 11, “International Languages and Character Sets” in the System
Administration Guide: Volume 1

CREATE DBSPACE statement
Description Creates a new dbspace and the associated dbfiles for the IQ main store or

catalog store.

Syntax Syntax 1

Use for catalog store dbspaces only (SA dbspaces).

CREATE DBSPACE dbspace-name AS file-path CATALOG STORE

Syntax 2

Use for IQ dbspaces.

CREATE DBSPACE dbspace-name USING file-specification
[IQ STORE] iq-dbspace-opts

Parameters file-specification:
{ single-path-spec | new-file-spec [, ...] }

single-path-spec:
'file-path' | iq-file-opts

new-file-spec:
FILE logical-file-name | 'file-path' iq-file-opts

iq-file-opts:
[[SIZE] file-size]
…[KB | MB | GB | TB]]
[RESERVE size
…[KB | MB | GB | TB]]

iq-dbspace-opts:
[STRIPING] {ON | OFF}]
…[STRIPESIZEKB sizeKB]

CREATE DBSPACE statement

82 Sybase IQ

Examples Example 1 Creates a dbspace called DspHist for the IQ main store with two
files on a UNIX system. Each file has 1GB and can grow 500MB:

CREATE DBSPACE DspHist USING FILE
FileHist1 '/History1/data/file1'
SIZE 1000 RESERVE 500,
FILE FileHist2 '/History1/data/file2'
SIZE 1000 RESERVE 500;

Example 2 Creates a second catalog dbspace called DspCat2:

CREATE DBSPACE DspCat2 AS
'catalog_file2'
CATALOG STORE;

Example 3 Creates an IQ main dbspace called EmpStore1 for the IQ store
(three alternate syntax examples):

CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' SIZE 8 MB IQ STORE;

CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' 8 IQ STORE;

CREATE DBSPACE EmpStore1
USING FILE EmpStore1
'EmpStore1.IQ' 8;

Usage CREATE DBSPACE creates a new dbspace for the IQ main store or the catalog
store. The dbspace you add can be on a different disk device than the initial
dbspace, allowing the creation of stores larger than one physical device.

Syntax 1 creates a dbspace for the catalog store, where both dbspace and dbfile
have the same logical name. Each dbspace in the catalog store has a single file.

new-file-spec creates a dbspace for the IQ main store. One or more dbfiles can
be specified for the IQ main store. The dbfile name and physical file path are
required for each file and must be unique.

The dbspace name and dbfile names are always case insensitive. The physical
file paths have the case sensitivity of the operating system, if the database is
CASE RESPECT and are case insensitive, if the database is CASE IGNORE.

You cannot create a dbspace for an IQ temporary store. A single temporary
dbspace, IQ_SYSTEM_TEMP, is created when you create a new database or
upgrade one created prior to Sybase IQ 15.1. You can add additional files to the
IQ_SYSTEM_TEMP dbspace using the ALTER DBSPACE ADD FILE syntax.

CHAPTER 1 SQL Statements

Reference: Statements and Options 83

If you do not specify striping or stripe size, the default values of the options
DEFAULT_DISK_STRIPING and DEFAULT_KB_PER_STRIPE apply.

RESERVE clause Specifies the size in kilobytes (KB), megabytes (MB),
gigabytes (GB), or terabytes (TB) of space to reserve, so that the dbspace can
be increased in size in the future. The size parameter can be any number greater
than 0; megabytes is the default. The reserve cannot be changed after the
dbspace dbfile is created.

When RESERVE is specified, the database uses more space for internal (free
list) structures. If reserve size is too large, the space needed for the internal
structures can be larger than the specified size, which results in an error.

See CREATE DATABASE statement on page 68 for the names and types of
files created by default.

Note For information on creating dbspaces for a multiplex database, see Using
Sybase IQ Multiplex.

You can create a unique path in any of these ways:

• Specify a different extension for each file (for example, mydb.iq)

• Specify a different file name (for example, mydb2.iq)

• Specify a different path name (for example, /iqfiles/main/iq) or different
raw partitions

 Warning! On UNIX platforms, to maintain database consistency you must
specify file names that are links to different files. Sybase IQ cannot detect the
target where linked files point. Even if the file names in the command differ, it
is your responsibility to make sure they do not point to the same operating
system file.

The dbspace-name and dbfile-name are internal names for dbspaces and
dbfiles. The filepath is the actual operating system file name of the dbfile, with
a preceding path where necessary. A filepath without an explicit directory is
created in the same directory as the catalog store of the database. Any relative
directory is relative to the catalog store.

SIZE clause Specifies the size, from 0 to 4 terabytes, of the operating system
file you specify in filepath. The default depends on the store type and block
size. For the IQ main store, the default number of bytes equals 1000 * the block
size. You cannot specify the SIZE clause for the catalog store.

CREATE DOMAIN statement

84 Sybase IQ

A SIZE value of 0 creates a dbspace of minimum size, which is 8Mb for IQ
main store.

For raw partitions, do not specify SIZE explicitly. Sybase IQ sets this parameter
to the maximum raw partition size automatically, and returns an error if you
attempt to specify another size.

A database can have up to (32k - 1) dbspaces, including the initial dbspaces
created when you create the database. However, your operating system might
limit the number of files per database.

Side effects

Automatic commit. Automatic checkpoint.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also DROP statement on page 177

Chapter 5, “Working with Database Objects,” in the System Administration
Guide: Volume 1

CREATE DOMAIN statement
Description Creates a user-defined data type in the database.

Syntax CREATE { DOMAIN | DATATYPE } domain-name data-type
… [NOT] NULL]
… [DEFAULT default-value]

Parameters domain-name:
identifier

data-type:
built-in data type, with precision and scale

CHAPTER 1 SQL Statements

Reference: Statements and Options 85

default-value:
special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| NULL
| TIMESTAMP
| LAST USER

special-value:
CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER }
| USER

Examples The following statement creates a data type named address, which holds a 35-
character string, and which may be NULL:

CREATE DOMAIN address CHAR(35) NULL

Usage User-defined data types are aliases for built-in data types, including precision
and scale values, where applicable. They improve convenience and encourage
consistency in the database.

Sybase recommends that you use CREATE DOMAIN, rather than CREATE
DATATYPE, as CREATE DOMAIN is the ANSI/ISO SQL3 term.

The user who creates a data type is automatically made the owner of that data
type. No owner can be specified in the CREATE DATATYPE statement. The
user-defined data type name must be unique, and all users can access the data
type without using the owner as prefix.

User-defined data types are objects within the database. Their names must
conform to the rules for identifiers. User-defined data type names are always
case insensitive, as are built-in data type names.

By default, user-defined data types allow NULLs unless the
allow_nulls_by_default option is set to OFF. In this case, new user-defined data
types by default do not allow NULLs. The nullability of a column created on a
user-defined data type depends on the setting of the definition of the user-
defined data type, not on the setting of the allow_nulls_by_default option when
the column is referenced. Any explicit setting of NULL or NOT NULL in the
column definition overrides the user-defined data type setting.

CREATE EVENT statement

86 Sybase IQ

The CREATE DOMAIN statement allows you to specify DEFAULT values on
user-defined data types. The DEFAULT value specification is inherited by any
column defined on the data type. Any DEFAULT value explicitly specified on
the column overrides that specified for the data type. For more information on
the use of column DEFAULT values, see “Using column defaults” in Chapter
9, “Ensuring Data Integrity” in the System Administration Guide: Volume 1.

The CREATE DOMAIN statement lets you incorporate a rule, called a CHECK
condition, into the definition of a user-defined data type.

Sybase IQ enforces CHECK constraints for base, global temporary. local
temporary tables, and user-defined data types.

To drop the data type from the database, use the DROP statement. You must be
either the owner of the data type or have DBA authority in order to drop a user-
defined data type.

Side effects

Automatic commit.

Standards • SQL92 Intermediate-level feature.

• Sybase Not supported by Adaptive Server Enterprise. Transact-SQL
provides similar functionality using the sp_addtype system procedure and
the CREATE DEFAULT and CREATE RULE statements.

Permissions Must have RESOURCE authority.

See also DROP statement on page 177

Chapter 3, “SQL Data Types” in Reference: Building Blocks, Tables, and
Procedures

CREATE EVENT statement
Description Defines an event and its associated handler for automating predefined actions.

Also defines scheduled actions.

CHAPTER 1 SQL Statements

Reference: Statements and Options 87

Syntax CREATE EVENT event-name
[TYPE event-type

[WHERE trigger-condition [AND trigger-condition], ...]
 | SCHEDULE schedule-spec, …]
…[ENABLE | DISABLE]
…[AT { CONSOLIDATED | REMOTE | ALL }]
…[HANDLER

BEGIN
…

END]

Parameters event-type:
BackupEnd | “Connect”
| ConnectFailed | DatabaseStart
| DBDiskSpace | “Disconnect”
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| IQMainDBSpaceFree
| IQTempDBSpaceFree | LogDiskSpace
| “RAISERROR”
| ServerIdle | TempDiskSpace

trigger-condition:
event_condition(condition-name) { = | < | > | != | <= | >= } value

schedule-spec:
[schedule-name]
{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week, …) | (day-of-month, …) }]
[START DATE start-date]

event-name | schedule-name:
identifier

day-of-week:
string

day-of-month | value | period:
integer

start-time | end-time:
time

start-date:
date

CREATE EVENT statement

88 Sybase IQ

Examples Example 1 This example instructs the database server to carry out an automatic
incremental backup daily at 1 a.m.:

CREATE EVENT IncrementalBackup
SCHEDULE
START TIME '1:00AM' EVERY 24 HOURS
HANDLER

BEGIN
BACKUP DATABASE INCREMENTAL
TO 'backups/daily.incr'

END

Example 2 This example instructs the database server to call the system stored
procedure sp_iqspaceused every 10 minutes, then store in a table the returned
current date and time, the current number of connections to the database, and
current information about the use of main and temporary IQ store:

CREATE TABLE mysummary(dt DATETIME,
users INT, mainKB UNSIGNED BIGINT,
mainPC UNSIGNED INT,
tempKB UNSIGNED BIGINT,
tempPC UNSIGNED INT) ;

CREATE EVENT mysummary
SCHEDULE sched_mysummary

START TIME '00:01 AM' EVERY 10 MINUTES
HANDLER
BEGIN

DECLARE mt UNSIGNED BIGINT;
DECLARE mu UNSIGNED BIGINT;
DECLARE tt UNSIGNED BIGINT;
DECLARE tu UNSIGNED BIGINT;
DECLARE conncount UNSIGNED INT;

SET conncount = DB_PROPERTY('ConnCount');
CALL SP_IQSPACEUSED(mt,mu,tt,tu);

INSERT INTO mysummary VALUES(NOW(),
conncount, mu, (mu*100)/mt, tu,
(tu*100)/tt);

END ;

For more examples, see “Defining trigger conditions for events” in Chapter 6,
“Automating Tasks Using Schedules and Events” in the System
Administration Guide: Volume 2.

CHAPTER 1 SQL Statements

Reference: Statements and Options 89

Usage Events can be used in two main ways:

• Scheduling actions The database server carries out a set of actions on a
schedule of times. You can use this capability to schedule backups,
validity checks, queries to fill up reporting tables, and so on.

• Event handling actions The database server carries out a set of actions
when a predefined event occurs. The events that can be handled include
disk space restrictions (when a disk fills beyond a specified percentage),
when the server is idle, and so on.

An event definition includes two distinct pieces. The trigger condition can be
an occurrence, such as a disk filling up beyond a defined threshold. A schedule
is a set of times, each of which acts as a trigger condition. When a trigger
condition is satisfied, the event handler executes. The event handler includes
one or more actions specified inside a compound statement (BEGIN... END).

If no trigger condition or schedule specification is supplied, only an explicit
TRIGGER EVENT statement can trigger the event. During development, you
might want to develop and test event handlers using TRIGGER EVENT and add
the schedule or WHERE clause once testing is complete.

Event errors are logged to the database server console.

When event handlers are triggered, the server makes context information, such
as the connection ID that caused the event to be triggered, available to the event
handler using the EVENT_PARAMETER function.

Note Although statements that return result sets are disallowed in events, you
can allow an event to call a stored procedure and insert the procedure results
into a temporary table. For details, see “Extraction and events” in Chapter 7,
“Moving Data In and Out of Databases,” in System Administration Guide:
Volume 1.

CREATE EVENT The event name is an identifier. An event has a creator,
which is the user creating the event, and the event handler executes with the
permissions of that creator. This is the same as stored procedure execution. You
cannot create events owned by other users.

You can list event names by querying the system table SYSEVENT. For
example:

SELECT event_id, event_name FROM SYS.SYSEVENT

CREATE EVENT statement

90 Sybase IQ

TYPE The event-type is one of the listed set of system-defined event types.
The event types are case insensitive. To specify the conditions under which this
event-type triggers the event, use the WHERE clause.

• DiskSpace event types If the database contains an event handler for
one of the DiskSpace types, the database server checks the available space
on each device associated with the relevant file every 30 seconds.

In the event the database has more than one dbspace, on separate drives,
DBDiskSpace checks each drive and acts depending on the lowest
available space.

The LogDiskSpace event type checks the location of the transaction log
and any mirrored transaction log, and reports based on the least available
space.

The disk space event types require Windows and are not available on
UNIX platforms.

• Globalautoincrement event type This event fires when the GLOBAL
AUTOINCREMENT default value for a table is within one percent of the
end of its range. A typical action for the handler could be to request a new
value for the GLOBAL_DATABASE_ID option.

You can use the EVENT_CONDITION function with RemainingValues as an
argument for this event type.

• ServerIdle event type If the database contains an event handler for the
ServerIdle type, the server checks for server activity every 30 seconds.

WHERE clause The trigger condition determines the condition under which
an event is fired. For example, to take an action when the disk containing the
transaction log becomes more than 80% full, use the following triggering
condition:

...
WHERE event_condition('LogDiskSpacePercentFree') < 20
...

The argument to the EVENT_CONDITION function must be valid for the event
type.

You can use multiple AND conditions to make up the WHERE clause, but you
cannot use OR conditions or other conditions.

 For information on valid arguments, see EVENT_CONDITION function
[System] in Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures.

CHAPTER 1 SQL Statements

Reference: Statements and Options 91

SCHEDULE This clause specifies when scheduled actions are to take place.
The sequence of times acts as a set of triggering conditions for the associated
actions defined in the event handler.

You can create more than one schedule for a given event and its associated
handler. This permits complex schedules to be implemented. While it is
compulsory to provide a schedule name when there is more than one schedule,
it is optional if you provide only a single schedule.

You can list schedule names by querying the system table SYSSCHEDULE. For
example:

SELECT event_id, sched_name FROM SYS.SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

When a nonrecurring scheduled event has passed, its schedule is deleted, but
the event handler is not deleted.

Scheduled event times are calculated when the schedules are created, and again
when the event handler completes execution. The next event time is computed
by inspecting the schedule or schedules for the event, and finding the next
schedule time that is in the future. If an event handler is instructed to run every
hour between 9:00 and 5:00, and it takes 65 minutes to execute, it runs at 9:00,
11:00, 1:00, 3:00, and 5:00. If you want execution to overlap, you must create
more than one event.

The subclauses of a schedule definition are as follows:

• START TIME The first scheduled time for each day on which the event
is scheduled. If a START DATE is specified, the START TIME refers to that
date. If no START DATE is specified, the START TIME is on the current day
(unless the time has passed) and each subsequent day.

• BETWEEN … AND A range of times during the day outside of which no
scheduled times occur. If a START DATE is specified, the scheduled times
do not occur until that date.

• EVERY An interval between successive scheduled events. Scheduled
events occur only after the START TIME for the day, or in the range
specified by BETWEEN …AND.

• ON A list of days on which the scheduled events occur. The default is
every day. These can be specified as days of the week or days of the month.

CREATE EVENT statement

92 Sybase IQ

Days of the week are Monday, Tuesday, and so on. The abbreviated forms
of the day, such as Mon, Tue, and so on, may also be used. The database
server recognizes both full-length and abbreviated day names in any of the
languages supported by Sybase IQ.

Days of the month are integers from 0 to 31. A value of 0 represents the
last day of any month.

• START DATE The date on which scheduled events are to start occurring.
The default is the current date.

Each time a scheduled event handler is completed, the next scheduled time and
date is calculated.

1 If the EVERY clause is used, find whether the next scheduled time falls on
the current day, and is before the end of the BETWEEN …AND range. If so,
that is the next scheduled time.

2 If the next scheduled time does not fall on the current day, find the next
date on which the event is to be executed.

3 Find the START TIME for that date, or the beginning of the BETWEEN …
AND range.

ENABLE | DISABLE By default, event handlers are enabled. When DISABLE
is specified, the event handler does not execute even when the scheduled time
or triggering condition occurs. A TRIGGER EVENT statement does not cause a
disabled event handler to be executed.

AT To execute events at remote or consolidated databases in a SQL Remote
setup, use this clause to restrict the databases at which the event is handled. By
default, all databases execute the event.

HANDLER Each event has one handler. Like the body of a stored procedure,
the handler is a compound statement. There are some differences, though: you
can use an EXCEPTION clause within the compound statement to handle errors,
but not the ON EXCEPTION RESUME clause provided within stored
procedures.

Side effects

Automatic commit.

The actions of an event handler are committed if no error is detected during
execution, and rolled back if errors are detected.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

CHAPTER 1 SQL Statements

Reference: Statements and Options 93

Permissions Must have DBA authority.

Event handlers execute on a separate connection, with the permissions of the
event owner. To execute with permissions other than DBA, you can call a
procedure from within the event handler: the procedure executes with the
permissions of its owner. The separate connection does not count towards the
ten-connection limit of the personal database server.

See also ALTER EVENT statement on page 14

BEGIN … END statement on page 47

COMMENT statement on page 61

DROP statement on page 177

TRIGGER EVENT statement on page 319

Chapter 6, “Automating Tasks Using Schedules and Events” in the System
Administration Guide: Volume 2

CREATE EXISTING TABLE statement
Description Creates a new proxy table representing an existing object on a remote server.

Syntax CREATE EXISTING TABLE [owner.]table_name
[(column-definition, …)]
AT 'location-string'

Parameters column-definition:
column-name data-type [NOT NULL]

location-string:
remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name

Examples Example 1 This example creates a proxy table named blurbs for the blurbs table
at the remote server server_a:

CREATE EXISTING TABLE blurbs
(author_id id not null,
copy text not null)
AT 'server_a.db1.joe.blurbs'

CREATE EXISTING TABLE statement

94 Sybase IQ

Example 2 This example creates a proxy table named blurbs for the blurbs
table at the remote server server_a. Sybase IQ derives the column list from the
metadata it obtains from the remote table:

CREATE EXISTING TABLE blurbs
AT 'server_a.db1.joe.blurbs'

Example 3 This example creates a proxy table named rda_employee for the
Employees table at the Sybase IQ remote server iqdemo:

CREATE EXISTING TABLE rda_employee
AT 'iqdemo..dba.Employees'

Usage CREATE EXISTING TABLE is a variant of the CREATE TABLE statement. The
EXISTING keyword is used with CREATE TABLE to specify that a table already
exists remotely and that its metadata is to be imported into Sybase IQ. This
establishes the remote table as a visible entity to its users. Sybase IQ verifies
that the table exists at the external location before it creates the table.

Tables used as proxy tables cannot have names longer than 30 characters.

If the object does not exist (either host data file or remote server object), the
statement is rejected with an error message.

Index information from the host data file or remote server table is extracted and
used to create rows for the system table sysindexes. This defines indexes and
keys in server terms and enables the query optimizer to consider any indexes
that might exist on this table.

Referential constraints are passed to the remote location when appropriate.

If column definitions are not specified, Sybase IQ derives the column list from
the metadata it obtains from the remote table. If column definitions are
specified, Sybase IQ verifies the column definitions. Column names, data
types, lengths, and null properties are checked for the following:

• Column names must match identically (although case is ignored).

• Data types in CREATE EXISTING TABLE must match or be convertible to
the data types of the column on the remote location. For example, a local
column data type is defined as NUMERIC, whereas the remote column data
type is MONEY.

• Each column’s NULL property is checked. If the local column’s NULL
property is not identical to the remote column’s NULL property, a warning
message is issued, but the statement is not aborted.

CHAPTER 1 SQL Statements

Reference: Statements and Options 95

• Each column’s length is checked. If the lengths of CHAR, VARCHAR,
BINARY, DECIMAL, and NUMERIC columns do not match, a warning
message is issued, but the command is not aborted. You might choose to
include only a subset of the actual remote column list in your CREATE
EXISTING statement.

• AT specifies the location of the remote object. The AT clause supports the
semicolon (;) as a delimiter. If a semicolon is present anywhere in the
location string, the semicolon is the field delimiter. If no semicolon is
present, a period is the field delimiter. This allows file names and
extensions to be used in the database and owner fields. Semicolon field
delimiters are used primarily with server classes not currently supported;
however, you can also use them where a period would also work as a field
delimiter. For example, the following statement maps the table proxy_a1
to the SQL Anywhere database mydb on the remote server myasa:

CREATE EXISTING TABLE
proxy_a1
AT 'myasa;mydb;;a1'

In a simplex environment, creating a proxy table which refers to a remote table
on the same node is not allowed. In a multiplex environment, creating a proxy
table which refers to the remote table defined within the multiplex is not
allowed.

For example, in a simplex environment, if you try to create proxy table proxy_e
which refers to base table Employees defined on the same node, then the
CREATE EXISTING TABLE statement is rejected with an error message. In a
multiplex environment, the CREATE EXISTING TABLE statement is rejected if
you create proxy table proxy_e from any node (coordinator or secondary)
which refers to remote table Employees defined within a multiplex.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have RESOURCE authority. To create a table for another user, you must
have DBA authority.

See also CREATE TABLE statement on page 135

Chapter 4, “Accessing Remote Data” and Chapter 5, “Server Classes for
Remote Data Access” in the System Administration Guide: Volume 2

CREATE EXTERNLOGIN statement

96 Sybase IQ

CREATE EXTERNLOGIN statement
Description Assigns an alternate login name and password to be used when communicating

with a remote server.

Syntax CREATE EXTERNLOGIN login-name
TO remote-server
REMOTE LOGIN remote-user
[IDENTIFIED BY remote-password]

Examples Maps the local user named DBA to the user sa with password 4TKNOX when
connecting to the server sybase1:

CREATE EXTERNLOGIN dba
TO sybase1
REMOTE LOGIN sa
IDENTIFIED BY 4TKNOX

Usage By default, Sybase IQ uses the names and passwords of its clients whenever it
connects to a remote server on behalf of those clients. CREATE EXTERNLOGIN
assigns an alternate login name and password to be used when communicating
with a remote server. It stores the password internally in encrypted form. The
remote_server must be known to the local server by an entry in the
ISYSSERVER system table. For more information, see CREATE SERVER
statement on page 130.

Sites with automatic password expiration should plan for periodic updates of
passwords for external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.

login-name Specifies the local user login name. When using integrated
logins, the login-name is the database user to which the Windows user ID is
mapped.

TO The TO clause specifies the name of the remote server.

REMOTE LOGIN The REMOTE LOGIN clause specifies the user account on
remote-server for the local user login-name.

IDENTIFIED BY The IDENTIFIED BY clause specifies remote-password is
the password for remote-user. If you omit the IDENTIFIED BY clause, the
password is sent to the remote server as NULL. If you specify IDENTIFIED BY
"''" (an empty string), then the password sent is the empty string.

The remote-user and remote-password combination must be valid on remote-
server.

CHAPTER 1 SQL Statements

Reference: Statements and Options 97

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Only users with DBA authority can add or modify an external login for login-
name.

See also DROP EXTERNLOGIN statement on page 182

INSERT statement on page 216

CREATE FUNCTION statement
Description Creates a new function in the database.

Syntax Syntax 1

CREATE [TEMPORARY] FUNCTION [owner.]function-name
([parameter, …])
RETURNS data-type routine-characteristics
[SQL SECURITY { INVOKER | DEFINER }]
{ compound-statement

| AS tsql-compound-statement
| external-name }

Syntax 2

CREATE FUNCTION [owner.]function-name ([parameter, …])
RETURNS data-type
URL url-string
[HEADER header-string]
[SOAPHEADER soap-header-string]
[TYPE { 'HTTP[:{ GET | POST }] ' | 'SOAP[:{ RPC | DOC }]' }]
[NAMESPACE namespace-string]
[CERTIFICATE certificate-string]
[CLIENTPORT clientport-string]
[PROXY proxy-string]

Parameters url-string:
' { HTTP | HTTPS | HTTPS_FIPS }://[user:password@]hostname[:port][/
path] '

parameter:
IN parameter-name data-type [DEFAULT expression]

CREATE FUNCTION statement

98 Sybase IQ

routine-characteristics:
ON EXCEPTION RESUME | [NOT] DETERMINISTIC

tsql-compound-statement:
sql-statement
sql-statement
…

external-name:
EXTERNAL NAME library-call
| EXTERNAL NAME java-call LANGUAGE JAVA

library-call:
'[operating-system:]function-name@library; …'

operating-system:
 UNIX

java-call:
'[package-name.]class-name.method-name method-signature'

method-signature:
([field-descriptor, ….]) return-descriptor

field-descriptor and return-descriptor:
Z | B | S | I | J | F | D | C | V | [descriptor | L class-name;

Examples Example 1 Concatenates a firstname string and a lastname string:

CREATE FUNCTION fullname (
firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ' ' || lastname;
RETURN (name);

END

The following examples illustrate the use of the fullname function.

• To return a full name from two supplied strings, enter:

SELECT fullname ('joe','smith')

fullname('joe', 'smith')

joe smith

CHAPTER 1 SQL Statements

Reference: Statements and Options 99

• To list the names of all employees, enter:

SELECT fullname (givenname, surname)
FROM Employees

Example 2 Uses Transact-SQL syntax:

CREATE FUNCTION DoubleIt (@Input INT)
RETURNS INT
AS
DECLARE @Result INT
SELECT @Result = @Input * 2
RETURN @Result

The statement SELECT DoubleIt(5) returns a value of 10.

Example 3 Creates an external function written in Java:

CREATE FUNCTION dba.encrypt(IN name char(254))
RETURNS VARCHAR
EXTERNAL NAME
'Scramble.encrypt (Ljava/lang/String;)Ljava/lang/
String;'
LANGUAGE JAVA

Usage The CREATE FUNCTION statement creates a user-defined function in the
database. A function can be created for another user by specifying an owner
name. Subject to permissions, a user-defined function can be used in exactly
the same way as other non-aggregate functions.

The following sections describe each clause of the CREATE FUNCTION
statement.

CREATE FUNCTION Parameter names must conform to the rules for
database identifiers. They must have a valid SQL data type and be prefixed by
the keyword IN, signifying that the argument is an expression that provides a
value to the function.

fullname (givenname, surname)

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

Robert Breault

...

CREATE FUNCTION statement

100 Sybase IQ

When functions are executed, not all parameters need to be specified. If a
default value is provided in the CREATE FUNCTION statement, missing
parameters are assigned the default values. If an argument is not provided by
the caller and no default is set, an error is given.

Specifying TEMPORARY (CREATE TEMPORARY FUNCTION) means that the
function is visible only by the connection that created it, and that it is
automatically dropped when the connection is dropped. Temporary functions
can also be explicitly dropped. You cannot perform ALTER, GRANT, or
REVOKE operations on them, and unlike other functions, temporary functions
are not recorded in the catalog or transaction log.

Temporary functions execute with the permissions of their creator (current
user), and can only be owned by their creator. Therefore, do not specify owner
when creating a temporary function.

Temporary functions can be created and dropped when connected to a read-
only database.

SQL SECURITY Defines whether the function is executed as the INVOKER,
the user who is calling the function, or as the DEFINER, the user who owns the
function. The default is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because
annotation must be done for each user that calls the procedure. Also, when SQL
SECURITY INVOKER is specified, name resolution is done as the invoker as
well. Therefore, take care to qualify all object names (tables, procedures, and
so on) with their appropriate owner.

compound-statement A set of SQL statements bracketed by BEGIN and
END, and separated by semicolons. See BEGIN … END statement on page
47.

tsql-compound-statement A batch of Transact-SQL statements. See
“Transact-SQL batch overview” in Appendix A, “Compatibility with Other
Sybase Databases” in Reference: Building Blocks, Tables, and Procedures and
CREATE PROCEDURE statement [T-SQL] on page 127.

EXTERNAL NAME A function using the EXTERNAL NAME clause is a
wrapper around a call to a function in an external library. A function using
EXTERNAL NAME can have no other clauses following the RETURNS clause.
The library name may include the file extension, which is typically .dll on
Windows and .so on UNIX. In the absence of the extension, the software
appends the platform-specific default file extension for libraries.

CHAPTER 1 SQL Statements

Reference: Statements and Options 101

The EXTERNAL NAME clause is not supported for temporary functions. For
information about external library calls, see “Calling external libraries from
procedures” in SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere External Function API.

EXTERNAL NAME LANGUAGE JAVA A function that uses EXTERNAL
NAME with a LANGUAGE JAVA clause is a wrapper around a Java method. For
information on calling Java procedures, see CREATE PROCEDURE
statement on page 120.

ON EXCEPTION RESUME Uses Transact-SQL-like error handling. See
CREATE PROCEDURE statement on page 120.

NOT DETERMINISTIC A function specified as NOT DETERMINISTIC is re-
evaluated each time it is called in a query. The results of functions not specified
in this manner may be cached for better performance, and re-used each time the
function is called with the same parameters during query evaluation.

Functions that have side effects, such as modifying the underlying data, should
be declared as NOT DETERMINISTIC. For example, a function that generates
primary key values and is used in an INSERT … SELECT statement should be
declared NOT DETERMINISTIC:

CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN

DECLARE keyval INTEGER;
UPDATE counter SET x = x + increment;
SELECT counter.x INTO keyval FROM counter;
RETURN keyval

END
INSERT INTO new_table
SELECT keygen(1), ...
FROM old_table

Functions may be declared as DETERMINISTIC if they always return the same
value for given input parameters.

All user-defined functions are treated as deterministic unless they are declared
NOT DETERMINISTIC. Deterministic functions return a consistent result for the
same parameters and are free of side effects. That is, the database server
assumes that two successive calls to the same function with the same
parameters will return the same result without unwanted side-effects on the
semantics of the query.

CREATE FUNCTION statement

102 Sybase IQ

If a function returns a result set, it cannot also set output parameters or return
a return value.

Note User-defined functions are processed by SQL Anywhere. They do not
take advantage of the performance features of Sybase IQ. Queries that include
user-defined functions run at least 10 times slower than queries without them.

In certain cases, differences in semantics between SQL Anywhere and Sybase
IQ can produce different results for a query if it is issued in a user-defined
function. For example, Sybase IQ treats the CHAR and VARCHAR data types as
distinct and different, while Anywhere treats CHAR data as if it were
VARCHAR.

To modify a user-defined function, or to hide the contents of a function by
scrambling its definition, use the ALTER FUNCTION statement. For more
information, see “ALTER FUNCTION statement” in SQL Anywhere Server –
SQL Reference > Using SQL > SQL statements > SQL statements (A-D).

URL For use only when defining an HTTP or SOAP web services client
function. Specifies the URL of the web service. The optional user name and
password parameters provide a means of supplying the credentials needed for
HTTP basic authentication. HTTP basic authentication base-64 encodes the user
and password information and passes it in the “Authentication” header of the
HTTP request.

For web service client functions, the return type of SOAP and HTTP functions
must one of the character data types, such as VARCHAR. The value returned is
the body of the HTTP response. No HTTP header information is included. If
more information is required, such as status information, use a procedure
instead of a function.

Parameter values are passed as part of the request. The syntax used depends on
the type of request. For HTTP:GET, the parameters are passed as part of the
URL; for HTTP:POST requests, the values are placed in the body of the request.
Parameters to SOAP requests are always bundled in the request body.

HEADER When creating HTTP web service client functions, use this clause
to add or modify HTTP request header entries. Only printable ASCII characters
can be specified for HTTP headers, and they are case-insensitive. For more
information about how to use this clause, see the HEADER clause of the
CREATE PROCEDURE statement on page 120.

For more information about using HTTP headers, see “Working with HTTP
headers” in SQL Anywhere Server – Programming > SQL Anywhere Data
Access APIs > SQL Anywhere web services.

CHAPTER 1 SQL Statements

Reference: Statements and Options 103

SOAPHEADER When declaring a SOAP web service as a function, use this
clause to specify one or more SOAP request header entries. A SOAP header can
be declared as a static constant, or can be dynamically set using the parameter
substitution mechanism (declaring IN, OUT, or INOUT parameters for hd1, hd2,
and so on). A web service function can define one or more IN mode substitution
parameters, but can not define an INOUT or OUT substitution parameter. For
more information about how to use this clause, see the SOAPHEADER clause
of the “CREATE PROCEDURE statement (web services)” in SQL Anywhere
Server – SQL Reference > Using SQL > SQL statements > SQL statements (A-
D).

TYPE Specifies the format used when making the web service request. If
SOAP is specified or no type clause is included, the default type SOAP:RPC is
used. HTTP implies HTTP:POST. Since SOAP requests are always sent as XML
documents, HTTP:POST is always used to send SOAP requests.

NAMESPACE Applies to SOAP client functions only and identifies the
method namespace usually required for both SOAP:RPC and SOAP:DOC
requests. The SOAP server handling the request uses this namespace to
interpret the names of the entities in the SOAP request message body. The
namespace can be obtained from the WSDL description of the SOAP service
available from the web service server. The default value is the procedure's
URL, up to but not including the optional path component.

CERTIFICATE To make a secure (HTTPS) request, a client must have access
to the certificate used by the HTTPS server. The necessary information is
specified in a string of semicolon-separated key/value pairs. The certificate can
be placed in a file and the name of the file provided using the file key, or the
whole certificate can be placed in a string, but not both. The following keys are
available:

Certificates are required only for requests that are either directed to an HTTPS
server or can be redirected from a non-secure to a secure server.

Key Abbreviation Description

file File name of certificate

certificate cert The certificate

company co Company specified in the certificate

unit Company unit specified in the certificate.

name Common name specified in the certificate

CREATE FUNCTION statement

104 Sybase IQ

CLIENTPORT Identifies the port number on which the HTTP client
procedure communicates using TCP/IP. It is provided for and recommended
only for connections across firewalls, as firewalls filter according to the TCP/
UDP port. You can specify a single port number, ranges of port numbers, or a
combination of both; for example, CLIENTPORT '85,90-97'.

See “ClientPort parameter [CPort],” Chapter 4, “Connection and
Communication Parameters,” in System Administration Guide: Volume 1.

PROXY Specifies the URI of a proxy server. For use when the client must
access the network through a proxy. Indicates that the procedure is to connect
to the proxy server and send the request to the web service through it.

Side effects

Automatic commit.

Standards • SQL 2003 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have RESOURCE authority.

External functions, including Java functions, must have DBA authority.

See also “ALTER FUNCTION statement” on page 16

BEGIN … END statement on page 47

CREATE PROCEDURE statement on page 120

DROP statement on page 177

RETURN statement on page 286

Chapter 1, “Using Procedures and Batches” in the System Administration
Guide: Volume 2

CHAPTER 1 SQL Statements

Reference: Statements and Options 105

CREATE INDEX statement
Description Creates an index on a specified table, or pair of tables.

Syntax CREATE [UNIQUE] [index-type] INDEX index-name
…ON [owner.]table-name
… (column-name [, column-name] …)
…[{ IN | ON } dbspace-name]
…[NOTIFY integer]
…[DELIMITED BY ‘separators-string ‘]
…[LIMIT maxwordsize-integer]

Parameters index-type:
{ CMP | HG | HNG | LF | WD | DATE | TIME | DTTM }

Examples Example 1 Creates a Compare index on the projected_earnings and
current_earnings columns. These columns are decimal columns with identical
precision and scale.

CREATE
CMP INDEX proj_curr_cmp
ON sales_data
(projected_earnings, current_earnings)

Example 2 Creates a High_Group index on the ID column of the
SalesOrderItems table. The data pages for this index are allocated from dbspace
Dsp5.

CREATE
HG INDEX id_hg
ON SalesOrderItems
(ID) IN Dsp5

Example 3 Creates a High_Group index on the SalesOrderItems table for the
ProductID column:

CREATE HG INDEX item_prod_hg
ON Sales_OrderItems
(ProductID)

Example 4 Creates a Low_Fast index on the SalesOrderItems table for the
same ProductID column without any notification messages:

CREATE LF INDEX item_prod
ON SalesOrderItems
(ProductID)
 NOTIFY 0

CREATE INDEX statement

106 Sybase IQ

Example 5 Creates a WD index on the earnings_report table. Specify that the
delimiters of strings are space, colon, semicolon, and period. Limit the length
of the strings to 25.

CREATE WD INDEX earnings_wd
ON earnings_report_table(varchar)
DELIMITED BY ‘ :;.’
LIMIT 25

• Create a DTTM index on the SalesOrders table for the OrderDate column.

CREATE DTTM INDEX order_dttm
ON SalesOrders
(OrderDate)

Usage The CREATE INDEX statement creates an index on the specified column of the
named table. Once an index is created, it is never referenced in a SQL statement
again except to delete it using the DROP INDEX statement.

For columns in Sybase IQ tables, you can specify an index-type of HG
(High_Group), HNG (High_Non_Group), LF (Low_Fast), WD (Word), DATE,
TIME, or DTTM (Datetime). If you do not specify an index-type, an HG index is
created by default.

To create an index on the relationship between two columns in an IQ table, you
can specify an index-type of CMP (Compare). Columns must be of identical
data type, precision and scale. For a CHAR, VARCHAR, BINARY or VARBINARY
column, precision means that both columns have the same width.

For maximum query speed, the correct type of index for a column depends on:

• The number of unique values in the column

• How the column is going to be used in queries

• The amount of disk space available

The System Administration Guide: Volume 1 describes the index types in detail
and tells how to determine the appropriate index types for your data.

You can specify multiple indexes on a column of an IQ table, but these must be
of different index types. CREATE INDEX does not let you add a duplicate index
type. Sybase IQ chooses the fastest index available for the current query or
portion of the query. However, each additional index type might significantly
add to the space requirements of that table.

CHAPTER 1 SQL Statements

Reference: Statements and Options 107

column-name Specifies the name of the column to be indexed. A column
name is an identifier preceded by an optional correlation name. (A correlation
name is usually a table name. For more information on correlation names, see
FROM clause on page 200.) If a column name has characters other than letters,
digits, and underscore, enclose it in quotation marks (“”).

When you omit UNIQUE, you can specify only an HG index. Foreign keys
require nonunique HG indexes and composite foreign keys require nonunique
composite HG indexes. The multicolumn composite key for both unique and
nonunique HG indexes has a maximum width of 5300 bytes. CHAR or
VARCHAR data cannot be more than 255 bytes when it is part of a composite
key or single-column HG, LF, HNG, DATE, TIME, or DTTM indexes.

UNIQUE UNIQUE ensures that no two rows in the table have identical values
in all the columns in the index. Each index key must be unique or contain a
NULL in at least one column. You can create unique HG indexes with more
than one column, but you cannot create multicolumn indexes using other index
types. You cannot specify UNIQUE with the CMP, HNG, WD, DATE, TIME, or
DTTM index types.

Sybase IQ allows the use of NULL in data values on a user created unique
multicolumn HG index, if the column definition allows for NULL values and
a constraint (primary key or unique) is not being enforced. See “Multicolumn
indexes” in “Notes” on page 109 for more information.

IN Specifies index placement. If the IN clause is omitted, the index is created
in the dbspace where the table is created. An index is always placed in the same
type of dbspace (IQ store or temporary store) as its table. When you load the
index, the data is spread across any database files of that type with room
available. Sybase IQ ensures that any dbspace-name you specify is appropriate
for the index. If you try to specify IQ_SYSTEM_MAIN or other main
dbspaces for indexes on temporary tables, or vice versa, you receive an error.
Dbspace names are case insensitive for databases created with CASE
RESPECT.

DELIMITED BY Specifies separators to use in parsing a column string into
the words to be stored in that column’s WD index. If you omit this clause or
specify the value as an empty string, Sybase IQ uses the default set of
separators. The default set of separators is designed for the default collation
order (ISO-BINENG). It includes all 7-bit ASCII characters that are not 7-bit
ASCII alphanumeric characters, except for the hyphen and the single quotation
mark. The hyphen and the single quotation mark are part of words by default.
There are 64 separators in the default separator set. For example, if the column
value is this string:

The cat is on the mat

CREATE INDEX statement

108 Sybase IQ

and the database was created with the CASE IGNORE setting using default
separators, the following words are stored in the WD index from this string:

cat is mat on the

If you specify multiple DELIMITED BY and LIMIT clauses, no error is returned,
but only the last clause of each type is used.

separators-string The separators string must be a sequence of 0 or more
characters in the collation order used when the database was created. Each
character in the separators string is treated as a separator. If there are no
characters in the separators string, the default set of separators is used. (Each
separator must be a single character in the collation sequence being used.)
There cannot be more than 256 characters (separators) in the separators string.

To specify tab as a delimiter, you can either type a <TAB> character within the
separator string, or use the hexadecimal ASCII code of the tab character, \x09.
“\t” specifies two separators, \ and the letter t. To specify newline as a delimiter,
you can type a <RETURN> character or the hexadecimal ASCII code \x0a.

For example, the clause DELIMITED BY ' :;.\/t' specifies these seven
separators: space : ; . \ / t

Table 1-6: Tab and newline as delimiters

For these delimiters
Use this separators string in the
DELIMITED BY clause

tab ' ' (type <TAB>)

or

'\x09'

newline ' ' (type <RETURN>)
or
'\x0a'

CHAPTER 1 SQL Statements

Reference: Statements and Options 109

LIMIT Can be used for the creation of the WD index only. Specifies the
maximum word length that is permitted in the WD index. Longer words found
during parsing causes an error. The default is 255 bytes. The minimum
permitted value is 1 and the maximum permitted value is 255. If the maximum
word length specified in the CREATE INDEX statement or determined by
default exceeds the column width, the used maximum word length is silently
reduced to the column width. Using a lower maximum permitted word length
allows insertions, deletions, and updates to use less space and time. The empty
word (two adjacent separators) is silently ignored. After a WD index is created,
any insertions into its column are parsed using the separators and maximum
word size determined at create time. These separators and maximum word size
cannot be changed after the index is created.

NOTIFY Gives notification messages after n records are successfully added
for the index. The messages are sent to the standard output device. A message
contains information about memory usage, database space, and how many
buffers are in use. The default is 100,000 records. To turn off NOTIFY, set it to
0.

Notes

• Index ownership There is no way to specify the index owner in the
CREATE INDEX statement. Indexes are automatically owned by the owner
of the table on which they are defined. The index name must be unique for
each owner.

• No indexes on views Indexes cannot be created for views.

• Index name The name of each index must be unique for a given table.

• Exclusive table use CREATE INDEX is prevented whenever the
statement affects a table currently being modified by another connection.
However, queries are allowed on a table that is also adding an index.

• CHAR columns After a WD index is created, any insertions into its
column are parsed using the separators, and maximum word size cannot
be changed after the index is created.

For CHAR columns, Sybase recommends that you specify a space as at
least one of the separators or use the default separator set. Sybase IQ
automatically pads CHAR columns to the maximum column width. If your
column contains blanks in addition to the character data, queries on WD
indexed data might return misleading results. For example, column
CompanyName contains two words delimited by a separator, but the
second word is blank padded:

‘Concord’ ‘Farms ’

CREATE INDEX statement

110 Sybase IQ

Suppose that a user entered the following query:

SELECT COUNT(*)FROM Customers WHERE CompanyName
contains (‘Farms’)

The parser determines that the string contains:

‘Farms ’

instead of:

‘Farms’

and returns 0 instead of 1. You can avoid this problem by using VARCHAR
instead of CHAR columns.

• Data types You cannot use CREATE INDEX to create an index on a
column with BIT data. Only the default index, CMP index, or WD index can
be created on CHAR and VARCHAR data with more than 255 bytes. Only
the default and WD index types can be created on LONG VARCHAR data.
Only the default index and CMP index can be created on VARBINARY data
with more than 255 bytes. In addition, you cannot create an HNG index or
a CMP index on a column with FLOAT, REAL, or DOUBLE data. A TIME
index can be created only on a column having the data type TIME. A DATE
index can be created only on a column having the data type DATE. A DTTM
index can be created only on a column having the data type DATETIME or
TIMESTAMP.

• Multicolumn indexes You can create a unique or nonunique HG index
with more than one column. Sybase IQ implicitly creates a nonunique HG
index on a set of columns that makes up a foreign key.

HG and CMP are the only types of indexes that can have multiple columns.
You cannot create a unique HNG or LF index with more than one column,
and you cannot create a DATE, TIME, or DTTM index with more than one
column.

The maximum width of a multicolumn concatenated key is 5KB (5300
bytes). The number of columns allowed depends on how many columns
can fit into 5KB. CHAR or VARCHAR data greater than 255 bytes are not
allowed as part of a composite key in single-column HG, LF, HNG, DATE,
TIME, or DTTM indexes.

Multicolumn indexes on base tables are not replicated in join indexes
created using those base tables.

An INSERT on a multicolumn index must include all columns of the index.

CHAPTER 1 SQL Statements

Reference: Statements and Options 111

Queries with a single column in the ORDER BY clause run faster using
multicolumn HG indexes. For example:

SELECT abs (x) from t1
ORDER BY x

In the above example, the HG index vertically projects x in sorted order.

To enhance query performance, use multicolumn HG indexes to run
ORDER BY operations on more than one column (that can also include
ROWID) in the SELECT or ORDER BY clause with the following
conditions:

• All projected columns, plus all ordering columns (except ROWID),
exist within the index

• The ordering keys match the leading HG columns, in order

If more than one multicolumn HG index satisfies these conditions, the
index with the lowest distinct counts is used.

If a query has an ORDER BY clause, and the ORDER BY column list is a
prefix of a multicolumn index where all columns referenced in the
SELECT list are present in a multicolumn index, then the multicolumn
index performs vertical projection; for example:

SELECT x,z,y FROM T
ORDER BY x,y

If expressions exist on base columns in the SELECT list, and all the
columns referenced in all the expressions are present in the multicolumn
index, then the query will use a multicolumn index; for example:

SELECT power(x,2), x+y, sin(z) FROM T
ORDER BY x,y

In addition to the two previous examples, if the ROWID() function is in the
SELECT list expressions, multicolumn indexes will be used. For example:

SELECT rowid()+x, z FROM T
ORDER BY x,y,z

In addition to the three previous examples, if ROWID() is present at the end
of an ORDER BY list, and if the columns of that list—except for
ROWID()—use multicolumn indexes in the exact order, multicolumn
indexes will be used for the query. For example:

SELECT z,y FROM T
ORDER BY x,y,z,ROWID()

CREATE INDEX statement

112 Sybase IQ

Sybase IQ allows the use of NULL in data values on a user created unique
multicolumn HG index, if the column definition allows for NULL values
and a constraint (primary key or unique) is not being enforced. The rules
for this feature are as follows:

• A NULL is treated as an undefined value.

• Multiple rows with NULL values in a unique index column or
columns are allowed.

1 In a single column index, multiple rows with a NULL value in an
index column are allowed.

2 In a multicolumn index, multiple rows with a NULL value in
index column or columns are allowed, as long as non-NULL
values in the rest of the columns guarantee uniqueness in that
index.

3 In a multicolumn index, multiple rows with NULL values in all
columns participating in the index are allowed.

The following examples illustrate these rules. Given the table table1:

CREATE TABLE table1
(c1 INT NULL, c2 INT NULL, c3 INT NOT NULL);

Create a unique single column HG index on a column that allows NULLs:

CREATE UNIQUE HG INDEX c1_hg1 ON table1 (c1);

According to rule 1 above, you can insert a NULL value into an index
column in multiple rows:

INSERT INTO table1(c1,c2,c3) VALUES (NULL,1,1);
INSERT INTO table1(c1,c2,c3) VALUES (NULL,2,2);

Create a unique multicolumn HG index on a columns that allows NULLs:

CREATE UNIQUE HG INDEX c1c2_hg2 ON table1(c1,c2);

According to rule 2 above, you must guarantee uniqueness in the index.
The following INSERT does not succeed, since the multicolumn index
c1c2_hg2 on row 1 and row 3 has the same value:

INSERT INTO table1(c1,c2,c3) VALUES (NULL,1,3);

The following INSERT operations are successful, however, according to
rules 1 and 3:

INSERT INTO table1(c1,c2,c3) VALUES (NULL,NULL,3);
INSERT INTO table1(c1,c2,c3) VALUES (NULL,NULL,4);

CHAPTER 1 SQL Statements

Reference: Statements and Options 113

Uniqueness is preserved in the multicolumn index.

The following UPDATE operation is successful, as rule 3 allows multiple
rows with NULL values in all columns in the multicolumn index:

UPDATE table1 SET c2=NULL WHERE c3=1

When a multicolumn HG index is governed by a unique constraint, a
NULL value is not allowed in any column participating in the index.

• Parallel index creation You can use the BEGIN PARALLEL IQ … END
PARALLEL IQ statement to group CREATE INDEX statements on multiple
IQ tables, so that they execute as though they are a single DDL statement.
See BEGIN PARALLEL IQ … END PARALLEL IQ statement on page
50 for more information.

 Warning! Using the CREATE INDEX command on a local temporary table
containing uncommitted data fails and generates the following error message:
“Local temporary table, <tablename>, must be committed in order to create an
index.” Commit the data in the local temporary table before creating an index.

Side effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise has a more complex CREATE INDEX
statement than Sybase IQ. While the Adaptive Server Enterprise syntax is
permitted in Sybase IQ, some clauses and keywords are ignored. For the
full syntax of the Adaptive Server Enterprise CREATE INDEX statement,
see the Adaptive Server Enterprise Reference Manual, Volume 2:
Commands.

Adaptive Server Enterprise indexes can be either clustered or nonclustered.
A clustered index almost always retrieves data faster than a nonclustered index.
Only one clustered index is permitted per table.

Sybase IQ does not support clustered indexes. The CLUSTERED and
NONCLUSTERED keywords are allowed by SQL Anywhere, but are ignored
by Sybase IQ. If no index-type is specified, Sybase IQ creates an HG index on
the specified column(s).

Sybase IQ does not permit the DESC keyword.

Index names must be unique on a given table for both Sybase IQ and Adaptive
Server Enterprise.

CREATE JOIN INDEX statement

114 Sybase IQ

Permissions Must have DBA authority or RESOURCE authority and CREATE privilege in
the specified dbspace to create an index.

See also CREATE JOIN INDEX statement on page 114

DROP statement on page 177

“INDEX_PREFERENCE option” on page 398

Chapter 6, “Using Sybase IQ Indexes,” in the System Administration Guide:
Volume 1

CREATE JOIN INDEX statement
Description Creates a join index, which defines a group of tables that are prejoined through

specific columns, to improve performance of queries using tables in a join
operation.

Syntax CREATE JOIN INDEX join-index-name FOR join-clause
IN dbspace-name

Parameters join-clause:
[(] join-expression join-type join-expression
[ON search-condition] [)]

join-expression:
{ table-name | join-clause }

join-type:
[NATURAL] FULL [OUTER] JOIN

search-condition:
[(] search-expression [AND search-expression] [)]

search-expression:
[(] [table-name.] column-name = [table-name.] column-name [)]

Examples Example 1 Creates a join index between the Departments and Employees tables
using the DepartmentID column, which is the primary key for Departments and
foreign key for Employees.

CREATE JOIN INDEX emp_dept_join
FOR Departments FULL OUTER JOIN Employees
ON Departments.DepartmentID = Employees.DepartmentID

CHAPTER 1 SQL Statements

Reference: Statements and Options 115

Example 2 Creates tables t1 and t2, where future data allocation is from the
default dbspace, and join index t1t2, where future data allocation is from
dbspace Dsp6.

CREATE TABLE t1(c1 int, c2 char(5));
CREATE TABLE t2(c1 int, c3 char(5));
CREATE JOIN INDEX t1t2 FOR t1

FULL OUTER JOIN t2 ON t2.c1=t1.c1 IN Dsp6;

Usage CREATE JOIN INDEX creates a join index on the specified columns of the
named tables. Once a join index is created, it is never referenced again except
to delete it using DROP JOIN INDEX or to synchronize it using SYNCHRONIZE
JOIN INDEX. This statement supports joins only of type FULL OUTER; the
OUTER keyword is optional.

IN Specifies the join index placement. If the IN clause is omitted, Sybase IQ
creates the join index in the default dbspace (as specified by the option
default_dbspace.)

ON References only columns from two tables. One set of columns must be
from a single table in the left subtree and the other set of columns must be from
a table in the right subtree. The only predicates supported are equijoin
predicates. Sybase IQ does not allow single-variable predicates, intra-column
comparisons, or nonequality joins.

Join index columns must have identical data type, precision, and scale.

To specify a multipart key, include more than one predicate linking the two
tables connected by a logical AND. A disjunct ON clause is not supported; that
is, Sybase IQ does not permit a logical OR of join predicates. Also, the ON
clause does not accept a standard WHERE clause, so you cannot specify an
alias.

You can use the NATURAL keyword instead of an ON clause. A NATURAL
join is one that pairs columns up by name and implies an equijoin. If the
NATURAL join generates predicates involving more than one pair of tables,
CREATE JOIN INDEX returns an error. You can specify NATURAL or ON, but
not both.

CREATE JOIN INDEX statement

116 Sybase IQ

CREATE JOIN INDEX looks for a primary-key-to-foreign-key relationship in
the tables to determine the direction of the one-to-many relationship. (The
direction of a one-to-one relationship is not important.) The primary key is
always the “one” and the foreign key is always the “many”. If such information
is not defined, Sybase IQ assumes the subtree on the left is the “one” while the
subtree on the right is the “many”. If the opposite is true, CREATE JOIN INDEX
returns an error.

Note Query optimizations for all joins rely heavily on underlying primary
keys. They do not require foreign keys. However, you can benefit from using
foreign keys. Sybase IQ enforces foreign keys if you set up your loads to check
for primary key-foreign key relationships.

Join index tables must be Sybase IQ base tables. They cannot be temporary
tables, remote tables, or proxy tables.

Multicolumn indexes on base tables are not replicated in join indexes created
using those base tables.

A star-join index is one in which a single table at the center of the star is joined
to multiple tables in a one-to-many relationship. To define a star-join index,
you must define single-column key and primary keys, and then use the key join
syntax in the CREATE JOIN INDEX statement. Sybase IQ does not support star-
join indexes that use multiple join key columns for any join.

The FLOAT_AS_DOUBLE option, which defaults to OFF, must be set ON for
JDBC and client connections for CREATE JOIN INDEX statements to succeed.

If a join column is a REAL data type, however, you must set
FLOAT_AS_DOUBLE to OFF when creating join indexes, or an error occurs.
Issues might also result from using inexact numerics for join columns.

Note You must explicitly grant permissions on the underlying “join virtual
table” to other users in your group before they can manipulate tables in the join.
For information on granting privileges on the join virtual table, see “Inserting
or deleting from tables in a join index” in Chapter 6, “Using Sybase IQ
Indexes” in the System Administration Guide: Volume 1.

Side effects

Automatic commit.

Standards • SQL92 Intermediate-level feature.

• Sybase Not supported by Adaptive Server Enterprise.

CHAPTER 1 SQL Statements

Reference: Statements and Options 117

Permissions Must have DBA authority or have RESOURCE authority, be the owner of all
tables involved in the join, and have CREATE permission in the dbspace.

See also CREATE INDEX statement on page 105

CREATE TABLE statement on page 135

Chapter 6, “Using Sybase IQ Indexes,” in System Administration Guide:
Volume 1

CREATE LOGIN POLICY statement
Description Creates a login policy in the database.

Syntax CREATE LOGIN POLICY policy-name policy-options

Parameters policy-options:
policy-option [policy-option...]

policy_option:
policy-option-name =policy-option-value policy-option-
value={ UNLIMITED | ROOT | legal-option-value }

Examples The following example creates the Test1 login policy. This example has an
unlimited password life and allows the user a maximum of five attempts to
enter a correct password before the account is locked.

CREATE LOGIN POLICY Test1
password_life_time=UNLIMITED
max_failed_login_attempts=5;

Usage policy-name is the name of the login policy.

policy-option-name is the name of the login policy option. If you do not
specify an option, the value from the root login policy is applied.

policy-option-value is the value assigned to the login policy option. If you
specify UNLIMITED, no limits are imposed.

If you do not specify a policy option, values for the login policy are taken from
the root login policy. Table 1-7 describes the default options for the root login
policy.

CREATE LOGIN POLICY statement

118 Sybase IQ

Table 1-7: Login policy options

Permissions Must have DBA authority.

Option Description Values

Initial
value for
ROOT
policy Applies to

locked If the value for this option is
ON, users are prohibited
from establishing new
connections

ON, OFF OFF Users without
DBA authority
only

max_connections The maximum number of
concurrent connections
allowed for a user.

0 - 2147483647 Unlimited Users without
DBA authority
only

max_days_since_login The maximum number of
days that can elapse
between two successive
logins by the same user.

0 - 2147483647 Unlimited Users without
DBA authority
only

max_failed_login_attempts The maximum number of
failed attempts, since the
last successful attempt, to
login to the user account
before the account is
locked.

0 - 2147483647 Unlimited Users without
DBA authority
only

max_non_dba_connections The maximum number of
concurrent connections that
a user without DBA
authority can make. This
option is only supported in
the root login policy.

0 - 2147483647 Unlimited Users without
DBA authority
only. Only to
the root login
policy.

password_expiry_on_next_login If the value for this option is
ON, the user's password
will expire in the next login.

ON, OFF OFF All users
including those
with DBA
authority

password_grace_time The number of days before
password expiration during
which login is allowed but
the default post_login
procedure issues warnings.

0 - 2147483647 0 All users
including those
with DBA
authority

password_life_time The maximum number of
days before a password
must be changed.

0 - 2147483647 Unlimited All users
including those
with DBA
authority

CHAPTER 1 SQL Statements

Reference: Statements and Options 119

CREATE MESSAGE statement [T-SQL]
Description Adds a user-defined message to the SYSUSERMESSAGES system table for use

by PRINT and RAISERROR statements.

Syntax CREATE MESSAGE message-number
... AS 'message-text'

Usage CREATE MESSAGE associates a message number with a message string. The
message number can be used in PRINT and RAISERROR statements.

• message_number The message number of the message to add. The
message number for a user-defined message must be 20000 or greater.

• message_text The text of the message to add. The maximum length is
255 bytes. PRINT and RAISERROR recognize placeholders in the message
text to print out. A single message can contain up to 20 unique
placeholders in any order. These placeholders are replaced with the
formatted contents of any arguments that follow the message when the text
of the message is sent to the client.

Placeholders are numbered to allow reordering of the arguments when
translating a message to a language with a different grammatical structure.
A placeholder for an argument appears as “%nn!”—a percent sign (%),
followed by an integer from 1 to 20, followed by an exclamation mark
(!)—where the integer represents the position of the argument in the
argument list, “%1!” is the first argument, “%2!” is the second argument,
and so on.

There is no parameter corresponding to the language argument for
sp_addmessage.

Side effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase The functionality of CREATE MESSAGE is provided by the
sp_addmessage procedure in Adaptive Server Enterprise.

Permissions Must have RESOURCE authority.

See also PRINT statement [T-SQL] on page 270

RAISERROR statement [T-SQL] on page 274

CREATE PROCEDURE statement

120 Sybase IQ

CREATE PROCEDURE statement
Description Creates a new procedure in the database.

Syntax CREATE PROCEDURE [owner.]procedure-name ([parameter, …]) {
[RESULT (result-column, …) | NO RESULT SET]
[ON EXCEPTION RESUME] compound statement
| AT location-string | | [DYNAMIC RESULT SETS integer-expression]
[EXTERNAL NAME java-call LANGUAGE JAVA]
}

Parameters parameter:
parameter_mode parameter-name data-type [DEFAULT expression]
| SQLCODE
| SQLSTATE

parameter_mode:
IN | OUT | INOUT

result-column:
 column-name data-type

library-call:
'function-name@library.dll; …'

java-call:
'[package-name.]class-name.method-name method-signature'

method-signature:
([field-descriptor, …]) return-descriptor

field-descriptor | return-descriptor:
Z | B | S | I | J | F | D | C | V | [descriptor | Lclass-name;

Examples Example 1 This procedure uses a case statement to classify the results of a
query.

CREATE PROCEDURE ProductType (IN product_id INT, OUT
type CHAR(10))
BEGIN

DECLARE prod_name CHAR(20) ;
SELECT name INTO prod_name FROM "DBA"."Products"
WHERE ID = product_id;
CASE prod_name
WHEN 'Tee Shirt' THEN

SET type = 'Shirt'
WHEN 'Sweatshirt' THEN

SET type = 'Shirt'
WHEN 'Baseball Cap' THEN

mailto:name@library.dll

CHAPTER 1 SQL Statements

Reference: Statements and Options 121

SET type = 'Hat'
WHEN 'Visor' THEN

SET type = 'Hat'
WHEN 'Shorts' THEN

SET type = 'Shorts'
ELSE

SET type = 'UNKNOWN'
END CASE ;

END

Example 2 This procedure uses a cursor and loops over the rows of the cursor
to return a single value.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION
FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR
SELECT CompanyName, CAST(
sum(SalesOrderItems.Quantity *
Products.UnitPrice) AS INTEGER) VALUE
FROM Customers
LEFT OUTER JOIN SalesOrdes
LEFT OUTER JOIN SalesorderItems
LEFT OUTER JOIN Products
GROUP BY CompanyName ;

DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;
END IF ;

END LOOP CustomerLoop ;
CLOSE curThisCust ;

END

CREATE PROCEDURE statement

122 Sybase IQ

Usage CREATE PROCEDURE creates a procedure in the database. Users with DBA
authority can create procedures for other users by specifying an owner. A
procedure is invoked with a CALL statement.

The body of a procedure consists of a compound statement. For information on
compound statements, see BEGIN … END statement on page 47.

Note There are two ways to create stored procedures: SQL92 and T-SQL.
BEGIN TRANSACTION, for example, is T-SQL specific when using CREATE
PROCEDURE syntax. Do not mix syntax when creating stored procedures.

CREATE PROCEDURE Parameter names must conform to the rules for
other database identifiers such as column names. They must be a valid SQL
data type and must be prefixed by IN, OUT or INOUT. See Chapter 3, “SQL
Data Types” in Reference: Building Blocks, Tables, and Procedures. The
keywords have the following meanings:

• IN The parameter is an expression that provides a value to the procedure.

• OUT The parameter is a variable that could be given a value by the
procedure.

• INOUT The parameter is a variable that provides a value to the
procedure, and could be given a new value by the procedure.

When procedures are executed using CALL, not all parameters need to be
specified. If a default value is provided in the CREATE PROCEDURE
statement, missing parameters are assigned the default values. If an argument
is not provided in the CALL statement, and no default is set, an error is given.

SQLSTATE and SQLCODE are special parameters that output the SQLSTATE or
SQLCODE value when the procedure ends (they are OUT parameters). Whether
or not a SQLSTATE and SQLCODE parameter is specified, the SQLSTATE and
SQLCODE special values can always be checked immediately after a procedure
call to test the return status of the procedure.

The SQLSTATE and SQLCODE special values are modified by the next SQL
statement. Providing SQLSTATE or SQLCODE as procedure arguments allows
the return code to be stored in a variable.

RESULT The RESULT clause declares the number and type of columns in the
result set. The parenthesized list following the RESULT keyword defines the
result column names and types. This information is returned by the Embedded
SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL statement is being
described. Allowed data types are listed in Chapter 3, “SQL Data Types” in
Reference: Building Blocks, Tables, and Procedures.

CHAPTER 1 SQL Statements

Reference: Statements and Options 123

For more information on returning result sets from procedures, see Chapter 1,
“Using Procedures and Batches” in the System Administration Guide: Volume
2.

Some procedures can return more than one result set, with different numbers
of columns, depending on how they are executed. For example, the following
procedure returns two columns under some circumstances, and one in others.

CREATE PROCEDURE names(IN formal char(1))
BEGIN

IF formal = 'n' THEN
SELECT GivenName
FROM Employees

ELSE
SELECT Surname,GivenName
FROM Employees

END IF
END

Procedures with variable result sets must be written without a RESULT clause,
or in Transact-SQL. Their use is subject to the following limitations:

• Embedded SQL You must DESCRIBE the procedure call after the cursor
for the result set is opened, but before any rows are returned, in order to
get the proper shape of result set. The CURSOR cursor-name clause on the
DESCRIBE statement is required.

• ODBC Variable result-set procedures can be used by ODBC
applications. The proper description of the result sets is carried out by the
ODBC driver.

• Open Client applications Variable result-set procedures can be used by
Open Client applications.

If your procedure returns only one result set, use a RESULT clause. The
presence of this clause prevents ODBC and Open Client applications from
describing the result set again after a cursor is open.

To handle multiple result sets, ODBC must describe the currently executing
cursor, not the procedure’s defined result set. Therefore, ODBC does not
always describe column names as defined in the RESULT clause of the
procedure definition. To avoid this problem, use column aliases in the SELECT
statement that generates the result set.

NO RESULT SET This clause declares that this procedure returns no result
set. This is useful when an external environment needs to know that a
procedure does not return a result set.

CREATE PROCEDURE statement

124 Sybase IQ

ON EXCEPTION RESUME This clause enables Transact-SQL -like error
handling to be used within a Watcom-SQL syntax procedure.

If you use ON EXCEPTION RESUME, the procedure takes an action that
depends on the setting of the ON_TSQL_ERROR option. If ON_TSQL_ERROR
is set to CONDITIONAL (which is the default) the execution continues if the
next statement handles the error; otherwise, it exits.

Error-handling statements include the following:

• IF

• SELECT @variable =

• CASE

• LOOP

• LEAVE

• CONTINUE

• CALL

• EXECUTE

• SIGNAL

• RESIGNAL

• DECLARE

• SET VARIABLE

Do not use explicit error-handling code with an ON EXCEPTION RESUME
clause.

For more information, see “ON_TSQL_ERROR option [TSQL]” on page 427.

AT location-string Create a proxy stored procedure on the current database
for a remote procedure specified by location-string. The AT clause supports the
semicolon (;) as a field delimiter in location-string. If no semicolon is present,
a period is the field delimiter. This allows file names and extensions to be used
in the database and owner fields.

Remote procedures can return only up to 254 characters in output variables.

For information on remote servers, see CREATE SERVER statement on page
130. For information on using remote procedures, see the section “Using
remote procedure calls (RPCs)” in Chapter 4, “Accessing Remote Data” in the
System Administration Guide: Volume 2.

CHAPTER 1 SQL Statements

Reference: Statements and Options 125

DYNAMIC RESULT SETS This clause is for use with procedures that are
wrappers around Java methods. If the DYNAMIC RESULT SETS clause is not
provided, it is assumed that the method returns no result set.

EXTERNAL NAME LANGUAGE JAVA A procedure that uses EXTERNAL
NAME with a LANGUAGE JAVA clause is a wrapper around a Java method.

If the number of parameters is less than the number indicated in the method-
signature, the difference must equal the number specified in DYNAMIC
RESULT SETS, and each parameter in the method signature in excess of those
in the procedure parameter list must have a method signature of [Ljava/sql/
ResultSet;.

Java method signatures A Java method signature is a compact character
representation of the types of the parameters and the type of the return value.

The meanings of field-descriptor and return-descriptor are listed in Table 1-8.

Table 1-8: Java method signatures

For example:

double some_method(
 boolean a,
 int b,
 java.math.BigDecimal c,
 byte [][] d,
 java.sql.ResultSet[] d) {
}

Field type Java data type

B byte

C char

D double

F float

I int

J long

Lclass-name; an instance of the class-name class. The class name must be fully
qualified, and any dot in the name must be replaced by a
backslash. For example, java/lang/String

S short

V void

Z boolean

[use one for each dimension of an array

CREATE PROCEDURE statement

126 Sybase IQ

would have the following signature:

'(ZILjava/math/BigDecimal;[[B[Ljava/sql/ResultSet;)D'

Note As procedures are dropped and created, databases created prior to Sybase
IQ 12.6 may eventually reach the maximum proc_id limit of 32767, causing
CREATE PROCEDURE to return an “Item already exists” error in Sybase IQ
12.6. For workaround, see “Insufficient procedure identifiers,” in Chapter 14,
“Troubleshooting Hints,” in the System Administration Guide: Volume 1.

Side effects

Automatic commit.

Standards • SQL92 Persistent Stored Module feature.

• Sybase The Transact-SQL CREATE PROCEDURE statement is
different.

• SQLJ The syntax extensions for Java result sets are as specified in the
proposed SQLJ1 standard.

Permissions Must have RESOURCE authority. For external procedures, must have DBA
authority.

See also BEGIN … END statement on page 47

CALL statement on page 55

DROP statement on page 177

EXECUTE IMMEDIATE statement [ESQL] [SP] on page 190

GRANT statement on page 206

“Copy Definition utility (defncopy)” in Chapter 3, “Database Administration
Utilities” of the Utility Guide

CHAPTER 1 SQL Statements

Reference: Statements and Options 127

CREATE PROCEDURE statement [T-SQL]
Description Creates a new procedure in the database in a manner compatible with Adaptive

Server Enterprise.

Syntax The following subset of the Transact-SQL CREATE PROCEDURE statement is
supported in Sybase IQ.

CREATE PROCEDURE [owner.]procedure_name
… [[(] @parameter_name data-type [= default] [OUTPUT] [, …]
[)]]
…[WITH RECOMPILE]
… AS
… statement-list

Usage The following differences between Transact-SQL and Sybase IQ statements
are listed to help those writing in both dialects.

• Variable names prefixed by @ The “@” sign denotes a Transact-SQL
variable name, while Sybase IQ variables can be any valid identifier, and
the @ prefix is optional.

• Input and output parameters Sybase IQ procedure parameters are
specified as IN, OUT, or INOUT, while Transact-SQL procedure parameters
are INPUT parameters by default or can be specified as OUTPUT. Those
parameters that would be declared as INOUT or as OUT in Sybase IQ
should be declared with OUTPUT in Transact-SQL.

• Parameter default values Sybase IQ procedure parameters are given a
default value using the keyword DEFAULT, while Transact-SQL uses an
equality sign (=) to provide the default value.

• Returning result sets Sybase IQ uses a RESULT clause to specify
returned result sets. In Transact-SQL procedures, the column names or
alias names of the first query are returned to the calling environment.

CREATE PROCEDURE showdept @deptname varchar(30)
AS

SELECT Employees.Surname, Employees.givenName
FROM Departmens, Employees
WHERE Departments.DepartmentName = @deptname
AND Departments.DepartmentID =

Employees.DepartmentID

CREATE PROCEDURE statement [T-SQL]

128 Sybase IQ

The following is the corresponding Sybase IQ procedure:

CREATE PROCEDURE showdept(in deptname
varchar(30))

RESULT (lastname char(20), firstname char(20))
ON EXCEPTION RESUME
BEGIN

SELECT Employees.SurName, Employees.GivenName
FROM Departments, Employees
WHERE Departments.DepartmentName = deptname
AND Departments.DepartmentID =

Employees.DepartmentID
END

• Procedure body The body of a Transact-SQL procedure is a list of
Transact-SQL statements prefixed by the AS keyword. The body of a
Sybase IQ procedure is a compound statement, bracketed by BEGIN and
END keywords.

Note There are two ways to create stored procedures: T-SQL and SQ/92.
BEGIN TRANSACTION, for example, is T-SQL specific when using CREATE
PROCEDURE syntax. Do not mix syntax when creating stored procedures.

Side effects

Automatic commit.

Standards • SQL92 Transact-SQL extension.

• Sybase Sybase IQ supports a subset of the Adaptive Server Enterprise
CREATE PROCEDURE statement syntax.

If the Transact-SQL WITH RECOMPILE optional clause is supplied, it is
ignored. SQL Anywhere always recompiles procedures the first time they
are executed after a database is started, and stores the compiled procedure
until the database is stopped.

Groups of procedures are not supported.

Permissions Must have RESOURCE authority.

See also CREATE PROCEDURE statement on page 120

“Copy Definition utility (defncopy)” in Chapter 3, “Database Administration
Utilities” of the Utility Guide

CHAPTER 1 SQL Statements

Reference: Statements and Options 129

CREATE SCHEMA statement
Description Creates a schema, which is a collection of tables, views, and permissions and

their associated permissions, for a database user.

Syntax CREATE SCHEMA AUTHORIZATION userid
... [{ create-table-statement
| create-view-statement
| grant-statement }] …

Usage The userid must be the user ID of the current connection. You cannot create a
schema for another user. The user ID is not case sensitive.

If any of the statements in the CREATE SCHEMA statement fail, the entire
CREATE SCHEMA statement is rolled back.

CREATE SCHEMA statement is simply a way to collect individual CREATE and
GRANT statements into one operation. There is no SCHEMA database object
created in the database, and to drop the objects you must use individual DROP
TABLE or DROP VIEW statements. To revoke permissions, use a REVOKE
statement for each permission granted.

Note The CREATE SCHEMA statement is invalid on an active multiplex.

Individual CREATE or GRANT statements are not separated by statement
delimiters. The statement delimiter marks the end of the CREATE SCHEMA
statement itself.

The individual CREATE or GRANT statements must be ordered such that the
objects are created before permissions are granted on them.

Although you can currently create more than one schema for a user, this is not
recommended, and might not be supported in future releases.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Sybase IQ does not support the use of REVOKE statements
within the CREATE SCHEMA statement, and does not allow its use within
Transact-SQL batches or procedures.

Permissions Must have RESOURCE authority.

CREATE SERVER statement

130 Sybase IQ

See also CREATE TABLE statement on page 135

CREATE VIEW statement on page 155

GRANT statement on page 206

CREATE SERVER statement
Description Adds a server to the ISYSSERVER table.

Syntax CREATE SERVER server-name
CLASS 'server-class'
USING 'connection-info'
[READ ONLY]

Parameters server-class:
{ ASAJDBC | ASEJDBC
| ASAODBC | ASEODBC
| DB2ODBC | MSSODBC
| ORAODBC | ODBC }

connection-info:
{ machine-name:port-number [/dbname] | data-source-name }

Examples Example 1 Creates a remote server for the JDBC-based Adaptive Server
Enterprise server named ase_prod. Its machine name is “banana” and port
number is 3025.

CREATE SERVER ase_prod
CLASS 'asejdbc'
USING 'banana:3025'

Example 2 Creates a SQL Anywhere remote server named testasa, located on
the machine “apple,” and listening on port number 2638. Use:

CREATE SERVER testasa
CLASS 'asajdbc'
USING 'apple:2638'

Example 3 Creates a remote server for the Oracle server named oracle723. Its
ODBC Data Source Name is “oracle723.”

CREATE SERVER oracle723
CLASS 'oraodbc'
USING 'oracle723'

CHAPTER 1 SQL Statements

Reference: Statements and Options 131

Usage CREATE SERVER defines a remote server from the Sybase IQ catalogs.

For more information on server classes and how to configure a server, see
Chapter 5, “Server Classes for Remote Data Access” in the System
Administration Guide: Volume 2.

USING clause If a JDBC-based server class is used, the USING clause is
hostname:port-number [/dbname] where:

• hostname Is the machine on which the remote server runs.

• portnumber Is the TCP/IP port number on which the remote server
listens. The default port number for Sybase IQ and SQL Anywhere is
2638.

• dbname For SQL Anywhere remote servers, if you do not specify a
dbname, the default database is used. For Adaptive Server Enterprise, the
default is the master database, and an alternative to using dbname is to
another database by some other means (for example, in the FORWARD TO
statement).

For more information, see “JDBC-based server classes” in Chapter 5, “Server
Classes for Remote Data Access” in the System Administration Guide: Volume
2.

If an ODBC-based server class is used, the USING clause is the data-source-
name. The data-source-name is the ODBC Data Source Name.

READ ONLY The READ ONLY clause specifies that the remote server is a
read-only data source. Any update request is rejected by Sybase IQ.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have DBA authority to execute this command.

See also “ALTER SERVER statement” on page 20

“DROP SERVER statement” on page 183

CREATE SERVICE statement

132 Sybase IQ

CREATE SERVICE statement
Description Permits a database server to act as a Web server.

Syntax CREATE SERVICE service-name
TYPE service-type-string
[attributes] [
AS statement]

Parameters attributes:
[AUTHORIZATION { ON
| OFF }] [SECURE
{ ON | OFF }] [USER { user-name | NULL } [] URL [PATH/]
{ ON | OFF | ELEMENTS }]
[USING { SOAP-prefix | NULL }]

service-type-string:
 { 'RAW ' | 'HTML ' |
'XML ' |
'SOAP ' |
' DISH ' }

service-name Web service names may be any sequence of alphanumeric
characters or “/”, “-”, “_”, “.”, “!”, “~”, “*”, “'”, “(“, or “”)”, except that the first
character cannot begin with a slash (/) and the name cannot contain two or more
consecutive slash characters.

service-type-string Identifies the type of the service. The type must be one
of the listed service types. There is no default value.

AUTHORIZATION clause Determines whether users must specify a user
name and password when connecting to the service. If authorization is OFF, the
AS clause is required and a single user must be identified by the USER clause.
All requests are run using that user's account and permissions.

If authorization is ON, all users must provide a user name and password.
Optionally, you can limit the users that are permitted to use the service by
providing a user or group name using the USER clause. If the user name is
NULL, all known users can access the service.

The default value is ON. Sybase recommends that production systems be
run with authorization turned on and that you grant permission to use the
service by adding users to a group.

CHAPTER 1 SQL Statements

Reference: Statements and Options 133

SECURE clause Indicates whether unsecure connections are accepted. ON
indicates that only HTTPS connections are to be accepted. Service requests
received on the HTTP port are automatically redirected to the HTTPS port. If
set to OFF, both HTTP and HTTPS connections are accepted. The default value
is OFF.

USER clause If authorization is disabled, this parameter becomes mandatory
and specifies the user id used to execute all service requests. If authorization is
enabled (the default), this optional clause identifies the user or group permitted
access to the service. The default value is NULL, which grants access to all
users.

URL clause Determines whether URI paths are accepted and, if so, how they
are processed. OFF indicates that nothing must follow the service name in a
URI request. ON indicates that the remainder of the URI is interpreted as the
value of a variable named url. ELEMENTS indicates that the remainder of the
URI path is to be split at the slash characters into a list of up to 10 elements.
The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are url1, url2,
and url3. If fewer than 10 values are supplied, the remaining variables are set
to NULL. If the service name ends with the character /, then URL must be set
to OFF. The default value is OFF.

USING clause This clause applies only to DISH services. The parameter
specifies a name prefix. Only SOAP services whose names begin with this
prefix are handled.

statement If the statement is NULL, the URI must specify the statement to
be executed. Otherwise, the specified SQL statement is the only one that can
be executed through the service. The statement is mandatory for SOAP
services, and ignored for DISH services. The default value is NULL.

Sybase strongly recommends that all services run in production systems
define a statement. The statement can be NULL only if authorization is
enabled.

RAW The result set is sent to the client without any further formatting. You
can produce formatted documents by generating the required tags explicitly
within your procedure, as demonstrated in an example, below.

HTML The result set of a statement or procedure is automatically formatted
into an HTML document that contains a table.

XML The result set is assumed to be in XML format. If it is not already so, it
is automatically converted to XML RAW format.

CREATE SERVICE statement

134 Sybase IQ

SOAP The request must be a valid Simple Object Access Protocol, or SOAP,
request. The result set is automatically formatted as a SOAP response. For
more information about the SOAP standards, see www.w3.org/TR/SOAP at http:/
/www.w3.org/TR/SOAP.

DISH A Determine SOAP Handler, or DISH, service acts as a proxy for one
or more SOAP services. In use, it acts as a container that holds and provides
access to a number of SOAP services. A Web Services Description Language
(WSDL) file is automatically generated for each of the included SOAP
services. The included SOAP services are identified by a common prefix,
which must be specified in the USING clause.

The create service statement causes the database server to act as a web
server. A new entry is created in the SYSWEBSERVICE system table.

Examples To set up a Web server quickly, start a database server with the -xs switch, then
execute the following statement:

CREATE SERVICE tables TYPE 'HTML'
AUTHORIZATION OFF USER DBA
AS SELECT * FROM SYS.ISYSTAB

After executing this statement, use any Web browser to open the URL http://
localhost/tables.

Usage The create service statement causes the database server to act as a web server.
A new entry is created in the SYSWEBSERVICE system table.

Standards • SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also “ALTER SERVICE statement” on page 23

“DROP SERVICE statement” on page 184

“Introduction to web services” in SQL Anywhere Server – Programming >
SQL Anywhere Data Access APIs > SQL Anywhere web services

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://localhost/tables
http://localhost/tables

CHAPTER 1 SQL Statements

Reference: Statements and Options 135

CREATE TABLE statement
Description Creates a new table in the database or on a remote server.

Syntax CREATE [GLOBAL TEMPORARY] TABLE [owner.]table-name
… (column-definition [column-constraint] …
[, column-definition [column-constraint] …]
[, table-constraint] …)
…[IN dbspace-name]
…[ON COMMIT { DELETE | PRESERVE } ROWS
| NOT TRANSACTIONAL]
[AT location-string]
[PARTITION BY range-partitioning-scheme]

Parameters column-definition:
column-name data-type [[NOT] NULL]
[IN dbspace-name]
[DEFAULT default-value | IDENTITY]
[PARTITION (partition-name IN dbspace-name [, ...])]

default-value:
special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| NULL
| TIMESTAMP
| LAST USER

special-value:
CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER }
| USER

 column-constraint:
[CONSTRAINT constraint-name] {
{ UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [action]
} [IN dbspace-name]
| CHECK (condition)
| IQ UNIQUE (integer) }

CREATE TABLE statement

136 Sybase IQ

table-constraint:
[CONSTRAINT constraint-name] {
{ UNIQUE (column-name [, column-name] …)
| PRIMARY KEY (column-name [, column-name] …)
} [IN dbspace-name]
| foreign-key-constraint| CHECK (condition)
| IQ UNIQUE (integer) }

foreign-key-constraint:
 FOREIGN KEY [role-name]
[(column-name [, column-name] …)]
…REFERENCES table-name [(column-name [, column-name] …)]
…[action]
[IN dbspace-name]

action:
ON { UPDATE | DELETE { RESTRICT }

location-string:
{ remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name }

range-partitioning-scheme:
 RANGE(partition-key)
(
range-partition-decl [,range-partition-decl ...]
)

partition-key:
 column-name

range-partition-decl:
partition-name VALUES <= ({constant-expr | MAX }) [IN dbspace-name]

CHAPTER 1 SQL Statements

Reference: Statements and Options 137

Examples Example 1 Creates a table named SalesOrders2 with five columns. Data pages
for columns FinancialCode, OrderDate, and ID are in dbspace Dsp3.

Data pages for integer column CustomerID are in dbspace Dsp1. Data pages for
CLOB column History are in dbspace Dsp2. Data pages for the primary key, HG
for ID, are in dbspace Dsp4.

CREATE TABLE SalesOrders2 (
FinancialCode CHAR(2),
CustomerID int IN Dsp1,
History CLOB IN Dsp2,
OrderDate TIMESTAMP,
ID BIGINT
PRIMARY KEY(ID) IN Dsp4
) IN Dsp3

Example 2 Creates a table fin_code2 with four columns. Data pages for
columns code, type, and id are in the default dbspace, which is determined by
the value of the database option DEFAULT_DBSPACE.

Data pages for CLOB column description are in dbspace Dsp2. Data pages from
foreign key fk1, HG for c1 are in dbspace Dsp4:

CREATE TABLE fin_code2 (
code INT,
type CHAR(10),
description CLOB IN Dsp2,
id BIGINT,
FOREIGN KEY fk1(id) REFERENCES SalesOrders(ID) IN Dsp4
)

Example 3 Creates a table t1 where partition p1 is adjacent to p2 and partition
p2 is adjacent to p3.

CREATE TABLE t1 (c1 INT, c1 INT) (
PARTITION BY RANGE(c1),
(p1 VALUES <= (0), p2 VALUES <= (10), p3 VALUES <= (100))

CREATE TABLE statement

138 Sybase IQ

Example 4 Creates a partitioned table bar with six columns and three
partitions, mapping data to partitions based on dates.

CREATE TABLE bar (
c1 INT IQ UNIQUE(65500),
c2 VARCHAR(20),
c3 CLOB PARTITION (P1 IN Dsp11, P2 IN Dsp12,

P3 IN Dsp13),
c4 DATE,
c5 BIGINT,
c6 VARCHAR(500) PARTITION (P1 IN Dsp21,

P2 IN Dsp22),
PRIMARY KEY (c5) IN Dsp2) IN Dsp1
PARTITION BY RANGE (c4)
(P1 VALUES <= ('2006/03/31') IN Dsp31,
 P2 VALUES <= ('2006/06/30') IN Dsp32,
 P3 VALUES <= ('2006/09/30') IN Dsp33
) ;

Data page allocation for each partition follows:

Partition Dbspaces Columns

P1 Dsp31 c1, c2, c4, c5

P1 Dsp11 c3

P1 Dsp21 c6

P2 Dsp32 c1, c2, c4, c5

P2 Dsp12 c3

P2 Dsp22 c6

P3 Dsp33 c1, c2, c4, c5, c6

P3 Dsp13 c3

P1, P2, P3 Dsp1 lookup store of c1 and other shared data

P1, P2, P3 Dsp2 primary key (HG for c5)

CHAPTER 1 SQL Statements

Reference: Statements and Options 139

Example 5 Creates a table for a library database to hold book information:

CREATE TABLE library_books (
isbn CHAR(20) PRIMARY KEY IQ UNIQUE (150000),
copyright_date DATE,
title CHAR(100),
author CHAR(50)
)

Example 6 Creates a table for a library database to hold information on
borrowed books:

CREATE TABLE borrowed_book (
date_borrowed DATE NOT NULL,
date_returned DATE,
book CHAR(20)
 REFERENCES library_books (isbn),
CHECK(date_returned >= date_borrowed)
)

Example 7 Creates a table named t1at the remote server SERVER_A and create
a proxy table named t1 that is mapped to the remote table:

CREATE TABLE t1
(a INT,
 b CHAR(10))
AT 'SERVER_A.db1.joe.t1'

Example 8 Creates a table named tab1 that contains a column c1 with a default
value of the special constant LAST USER:

CREATE TABLE tab1(c1 CHAR(20) LAST USER)

Usage You can create a table for another user by specifying an owner name. If
GLOBAL TEMPORARY is not specified, the table is referred to as a base table.
Otherwise, the table is a temporary table.

A created global temporary table exists in the database like a base table and
remains in the database until it is explicitly removed by a DROP TABLE
statement. The rows in a temporary table are visible only to the connection that
inserted the rows. Multiple connections from the same or different applications
can use the same temporary table at the same time and each connection sees
only its own rows. A given connection inherits the schema of a global
temporary table as it exists when the connection first refers to the table. The
rows of a temporary table are deleted when the connection ends.

When you create a local temporary table, omit the owner specification. If you
specify an owner when creating a temporary table, as, for example, with
CREATE TABLE dbo.#temp(col1 int), a base table is incorrectly created.

CREATE TABLE statement

140 Sybase IQ

An attempt to create a base table or a global temporary table will fail, if a local
temporary table of the same name exists on that connection, as the new table
cannot be uniquely identified by owner.table.

You can, however, create a local temporary table with the same name as an
existing base table or global temporary table. References to the table name
access the local temporary table, as local temporary tables are resolved first.

For example, consider the following sequence:

CREATE TABLE t1 (c1 int);
INSERT t1 VALUES (9);

DECLARE LOCAL TEMPORARY TABLE t1 (c1 int);
INSERT t1 VALUES (8);

SELECT * FROM t1;

The result returned is 8. Any reference to t1 refers to the local temporary table
t1 until the local temporary table is dropped by the connection.

You cannot use a temporary table to create a join index.

Do not update a base table that is part of any join index. This is disallowed, and
returns the following error:

-1000102 Cannot update table %2 because it is defined
in one or more join indexes

Sybase IQ does not support the CREATE TABLE ENCRYPTED clause for table
level encryption of Sybase IQ tables. The CREATE TABLE ENCRYPTED clause
is supported for SQL Anywhere tables in a Sybase IQ database, however.

IN Specifies in which database file (dbspace) the table is to be created. You
can specify SYSTEM with this clause to put either a permanent or temporary
table in the catalog store. All other use of the IN clause is ignored. You cannot
use this clause to place an IQ table in a particular dbspace. By default, all
permanent tables are placed in the main IQ store, and all temporary tables are
placed in the temporary IQ store. Global temporary tables can never be in the
IQ store.

The IN clauses in column-definition, column-constraint, table-constraint, and
foreign-key clauses specify the dbspace where the object is to be created. If the
IN clause is omitted, Sybase IQ creates the object in the dbspace where the table
is assigned.

For more information about dbspaces, see CREATE DBSPACE statement on
page 81.

CHAPTER 1 SQL Statements

Reference: Statements and Options 141

ON COMMIT Allowed for temporary tables only. By default, the rows of a
temporary table are deleted on COMMIT.

For clause behavior on multiplex global temporary tables, see “Preserving
rows” in Chapter 3, “Running Multiplex Transactions” of Using Sybase IQ
Multiplex.

NOT TRANSACTIONAL Allowed only for temporary tables. A table created
using NOT TRANSACTIONAL is not affected by either COMMIT or ROLLBACK.

The NOT TRANSACTIONAL clause provides performance improvements in
some circumstances because operations on nontransactional temporary tables
do not cause entries to be made in the rollback log. For example, NOT
TRANSACTIONAL might be useful if procedures that use the temporary table
are called repeatedly with no intervening COMMITs or ROLLBACKs.

The parenthesized list following the CREATE TABLE statement can contain the
following clauses in any order:

AT Used to create a table at the remote location specified by location-string.
The local table that is created is a proxy table that maps to the remote location.
Tables used as proxy tables must have names of 30 characters or less. The AT
clause supports the semicolon (;) as a delimiter. If a semicolon is present
anywhere in the location-string, the semicolon is the field delimiter. If no
semicolon is present, a period is the field delimiter. This allows file names and
extensions to be used in the database and owner fields.

Semicolon field delimiters are used primarily with server classes not currently
supported; however, you can also use them in situations where a period would
also work as a field delimiter. For example, the following statement maps the
table proxy_a to the SQL Anywhere database mydb on the remote server
myasa:

CREATE TABLE proxy_a1
AT 'myasa;mydb;;a1'

Foreign-key definitions are ignored on remote tables. Foreign-key definitions
on local tables that refer to remote tables are also ignored. Primary key
definitions are sent to the remote server if the server supports primary keys.

In a simplex environment, creating a proxy table which refers to a remote table
on the same node is not allowed. In a multiplex environment, creating a proxy
table which refers to the remote table defined within the multiplex is not
allowed.

CREATE TABLE statement

142 Sybase IQ

For example, in a simplex environment, if you try to create proxy table proxy_e
which refers to base table Employees defined on the same node, then the
CREATE TABLE ... AT statement is rejected with an error message. In a
multiplex environment, the CREATE TABLE AT statement is rejected if you
create proxy table proxy_e from any node (coordinator or secondary) which
refers to remote table Employees defined within a multiplex.

column-definition Defines a column in the table. Allowable data types are
described in Chapter 3, “SQL Data Types” in Reference: Building Blocks,
Tables, and Procedures. Two columns in the same table cannot have the same
name. If NOT NULL is specified, or if the column is in a UNIQUE or PRIMARY
KEY constraint, the column cannot contain any NULL values. You can create
up to 45,000 columns; however, there might be performance penalties with
more than 10,000 columns in a table.

• DEFAULT default-value When defining a column for a table, you can
specify a default value for the column using the DEFAULT keyword in the
CREATE TABLE (and ALTER TABLE) statement. If a DEFAULT value is
specified for a column, this DEFAULT value is used as the value of the
column in any INSERT (or LOAD) statement that does not specify a value
for the column.

For detailed information on the use of column DEFAULT values, see
“Using column defaults” in Chapter 9, “Ensuring Data Integrity” in the
System Administration Guide: Volume 1.

• DEFAULT AUTOINCREMENT The value of the DEFAULT
AUTOINCREMENT column uniquely identifies every row in a table.
Columns of this type are also known as IDENTITY columns, for
compatibility with Adaptive Server Enterprise. The IDENTITY/
DEFAULT AUTOINCREMENT column stores sequential numbers that
are automatically generated during inserts and updates. When using
IDENTITY or DEFAULT AUTOINCREMENT, the column must be one
of the integer data types, or an exact numeric type, with scale 0. The
column value might also be NULL. You must qualify the specified
tablename with the owner name.

ON inserts into the table. If a value is not specified for the IDENTITY/
DEFAULT AUTOINCREMENT column, a unique value larger than any
other value in the column is generated. If an INSERT specifies a value for
the column, it is used; if the specified value is not larger than the current
maximum value for the column, that value is used as a starting point for
subsequent inserts.

CHAPTER 1 SQL Statements

Reference: Statements and Options 143

Deleting rows does not decrement the IDENTITY/AUTOINCREMENT
counter. Gaps created by deleting rows can only be filled by explicit
assignment when using an insert. The database option IDENTITY_INSERT
must be set to the table name to perform an insert into an IDENTITY/
AUTOINCREMENT column.

For example, the following creates a table with an IDENTITY column and
explicitly adds some data to it:

CREATE TABLE mytable(c1 INT IDENTITY);
SET TEMPORARY OPTION IDENTITY_INSERT =
"DBA".mytable;
INSERT INTO mytable VALUES(5);

After an explicit insert of a row number less then the maximum,
subsequent rows without explicit assignment are still automatically
incremented with a value of one greater than the previous maximum.

You can find the most recently inserted value of the column by inspecting
the @@identity global variable.

• IDENTITY A Transact-SQL-compatible alternative to using the
AUTOINCREMENT default. In Sybase IQ, the identity column may be
created using either the IDENTITY or the DEFAULT AUTOINCREMENT
clause.

table-constraint Helps ensure the integrity of data in the database. There
are four types of integrity constraints:

• UNIQUE constraint Identifies one or more columns that uniquely
identify each row in the table. No two rows in the table can have the same
values in all the named columns. A table may have more than one unique
constraint.

• PRIMARY KEY constraint Is the same as a UNIQUE constraint except
that a table can have only one primary-key constraint. You cannot specify
the PRIMARY KEY and UNIQUE constraints for the same column. The
primary key usually identifies the best identifier for a row. For example,
the customer number might be the primary key for the customer table.

CREATE TABLE statement

144 Sybase IQ

• FOREIGN KEY constraint Restricts the values for a set of columns to
match the values in a primary key or uniqueness constraint of another
table. For example, a foreign-key constraint could be used to ensure that a
customer number in an invoice table corresponds to a customer number in
the customer table.

Note You cannot create foreign-key constraints on local temporary tables.
Global temporary tables must be created with ON COMMIT PRESERVE
ROWS.

• CHECK constraint Allows arbitrary conditions to be verified. For
example, a check constraint could be used to ensure that a column called
Gender contains only the values male or female. No row in a table is
allowed to violate a constraint. If an INSERT or UPDATE statement would
cause a row to violate a constraint, the operation is not permitted and the
effects of the statement are undone.

Column identifiers in column check constraints that start with the symbol
‘@’ are placeholders for the actual column name. Thus a statement of the
form:

CREATE TABLE t1(c1 INTEGER CHECK (@foo < 5))

is exactly the same as the following statement:

CREATE TABLE t1(c1 INTEGER CHECK (c1 < 5))

Column identifiers appearing in table check constraints that start with the
symbol ‘@’are not placeholders.

If a statement would cause changes to the database that would violate an
integrity constraint, the statement is effectively not executed and an error is
reported. (Effectively means that any changes made by the statement before the
error was detected are undone.)

Sybase IQ enforces single-column UNIQUE constraints by creating an HG
index for that column.

Note You cannot define a column with a BIT data type as a UNIQUE or
PRIMARY KEY constraint. Also, the default for columns of BIT data type is to
not allow NULL values; you can change this by explicitly defining the column
as allowing NULL values.

CHAPTER 1 SQL Statements

Reference: Statements and Options 145

column-constraint Restricts the values the column can hold. Column and
table constraints help ensure the integrity of data in the database. If a statement
would cause a violation of a constraint, execution of the statement does not
complete, any changes made by the statement before error detection are
undone, and an error is reported. Column constraints are abbreviations for the
corresponding table constraints. For example, the following are equivalent:

CREATE TABLE Products (
product_num integer UNIQUE

)
CREATE TABLE Products (

product_num integer,
UNIQUE (product_num)

)

Column constraints are normally used unless the constraint references more
than one column in the table. In these cases, a table constraint must be used.

IQ UNIQUE constraint This constraint can be specified for columns only.
IQ UNIQUE defines the cardinality of the column, and it is used to optimize the
indexes internally. The default value is 0, which gives IQ no information for
optimizing the default index. The IQ UNIQUE constraint should be applied if
the expected distinct count (the number of unique values) for the column is less
than or equal to 65536. This allows Sybase IQ to optimize storage of this
column's data.

When the MINIMIZE_STORAGE option is ON (the default for new databases is
OFF), it is equivalent to specifying IQ UNIQUE 255 for every newly created
column, and there is no need to specify IQ UNIQUE except for columns with
more than 65536 unique values. For related information, see “Optimizing
storage and query performance,”Chapter 5, “Working with Database
Objects,” in the System Administration Guide: Volume 1.

Integrity constraints

UNIQUE or UNIQUE (column-name, …) No two rows in the table can
have the same values in all the named columns. A table may have more than
one unique constraint.

There is a difference between a unique constraint and a unique index.
Columns of a unique index are allowed to be NULL, while columns in a unique
constraint are not. A foreign key can reference either a primary key or a column
with a unique constraint, but not a unique index, because it can include multiple
instances of NULL.

CREATE TABLE statement

146 Sybase IQ

PRIMARY KEY or PRIMARY KEY (column-name, …) The primary key
for the table consists of the listed columns, and none of the named columns can
contain any NULL values. Sybase IQ ensures that each row in the table has a
unique primary key value. A table can have only one PRIMARY KEY.

When the second form is used (PRIMARY KEY followed by a list of columns),
the primary key is created including the columns in the order in which they are
defined, not the order in which they are listed.

When a column is designated as PRIMARY KEY, FOREIGN KEY, or UNIQUE,
Sybase IQ creates a High_Group index for it automatically. For multicolumn
primary keys, this index is on the primary key, not the individual columns. For
best performance, you should also index each column with a HG or LF index
separately.

REFERENCES primary-table-name [(primary-column-name)] This
clause defines the column as a foreign key for a primary key or a unique
constraint of a primary table. Normally, a foreign key would be for a primary
key rather than an unique constraint. If a primary column name is specified, it
must match a column in the primary table which is subject to a unique
constraint or primary key constraint, and that constraint must consist of only
that one column. Otherwise the foreign key references the primary key of the
second table. Primary key and foreign key must have the same data type and
the same precision, scale, and sign. Only a nonunique single-column HG index
is created for a single-column foreign key. For a multicolumn foreign key,
Sybase IQ creates a nonunique composite HG index. The maximum width of a
multicolumn composite key for a unique or nonunique HG index is 1KB.

A temporary table cannot have a foreign key that references a base table and a
base table cannot have a foreign key that references a temporary table. Local
temporary tables cannot have or be referenced by a foreign key.

FOREIGN KEY [role-name] [(...)] REFERENCES primary-table-name
[(...)] This clause defines foreign-key references to a primary key or a
unique constraint in another table. Normally, a foreign key would be for a
primary key rather than an unique constraint. (In this description, this other
table is called the primary table.)

If the primary table column names are not specified, the primary table columns
are the columns in the table’s primary key. If foreign key column names are not
specified, the foreign-key columns have the same names as the columns in the
primary table. If foreign-key column names are specified, then the primary key
column names must be specified, and the column names are paired according
to position in the lists.

CHAPTER 1 SQL Statements

Reference: Statements and Options 147

If the primary table is not the same as the foreign-key table, either the unique
or primary key constraint must have been defined on the referenced key. Both
referenced key and foreign key must have the same number of columns, of
identical data type with the same sign, precision, and scale.

The value of the row’s foreign key must appear as a candidate key value in one
of the primary table’s rows unless one or more of the columns in the foreign
key contains nulls in a null allows foreign key column.

Any foreign-key column not explicitly defined is automatically created with
the same data type as the corresponding column in the primary table. These
automatically created columns cannot be part of the primary key of the foreign
table. Thus, a column used in both a primary key and foreign key must be
explicitly created.

role-name is the name of the foreign key. The main function of role-name is to
distinguish two foreign keys to the same table. If no role-name is specified, the
role name is assigned as follows:

1 If there is no foreign key with a role-name the same as the table name, the
table name is assigned as the role-name.

2 If the table name is already taken, the role-name is the table name
concatenated with a zero-padded 3-digit number unique to the table.

The referential integrity action defines the action to be taken to maintain
foreign-key relationships in the database. Whenever a primary key value is
changed or deleted from a database table, there may be corresponding foreign
key values in other tables that should be modified in some way. You can specify
an ON DELETE clause, followed by the RESTRICT clause:

RESTRICT Generates an error if you try to update or delete a primary key
value while there are corresponding foreign keys elsewhere in the database.
Generates an error if you try to update a foreign key so that you create new
values unmatched by a candidate key. This is the default action, unless you
specify that LOAD optionally reject rows that violate referential integrity.This
enforces referential integrity at the statement level.

If you use CHECK ON COMMIT without specifying any actions, then
RESTRICT is implied as an action for DELETE. Sybase IQ does not support
CHECK ON COMMIT.

A global temporary table cannot have a foreign key that references a base table
and a base table cannot have a foreign key that references a global temporary
table. Local temporary tables cannot have or be referenced by a foreign key.

CREATE TABLE statement

148 Sybase IQ

CHECK (condition) No row is allowed to fail the condition. If an INSERT
statement would cause a row to fail the condition, the operation is not permitted
and the effects of the statement are undone.

The change is rejected only if the condition is FALSE; in particular, the change
is allowed if the condition is UNKNOWN. CHECK condition is not enforced
by Sybase IQ. For more information about TRUE, FALSE, and UNKNOWN
conditions, see “NULL value” and “Search conditions” in Chapter 2, “SQL
Language Elements” in Reference: Building Blocks, Tables, and Procedures.

Note Sybase recommends that you not define referential integrity foreign key-
primary key relationships in Sybase IQ unless you are certain there are no
orphan foreign keys.

Remote tables

Foreign-key definitions are ignored on remote tables. Foreign-key definitions
on local tables that refer to remote tables are also ignored. Primary-key
definitions are sent to the remote server if the server supports it.

PARTITION BY RANGE Specifies that rows are to be partitioned according
to the specified ranges of values in the partitioning column.

The column-name in the partition-key clause specifies the partition key column.
Sybase IQ 15.1 supports a single partition key column.

The partition-name in the range-partition-decl clause specifies the name of a
new partition on which table rows are stored. Partition names must be unique
within the set of partitions on a table. The partition_name clause is required.

VALUE clause Specifies the inclusive upper bound for each partition for
range partitioning criteria. The user must specify the partitioning criteria for
each range partition to guarantee that each row is distributed to only one
partition. NULLs are allowed for the partition column and rows with NULL as
partition key value belong to the first table partition. However, NULL cannot
be the bound value. There is no lower bound (MIN value) for the first partition.
Rows of NULL cells in the first column of the partition key will go to the first
partition. For the last partition, you can either specify an inclusive upper bound
or MAX. If the upper bound value for the last partition is not MAX, loading or
inserting any row with partition key value larger than the upper bound value of
the last partition generates an error.

MAX Denotes the infinite upper bound and can only be specified for the last
partition.

CHAPTER 1 SQL Statements

Reference: Statements and Options 149

IN In the partition-decl, specifies the dbspace on which rows of the partition
should reside.

The following restrictions affect partitions keys and bound values for range
partitioned tables:

• Partition bounds must be constants, not constant expressions.

• Partition bounds must be in ascending order according to the order in
which the partitions were created. That is, the upper bound for the second
partition must be higher than for the first partition, and so on.

In addition, partition bound values must be compatible with the
corresponding partition-key column data type. For example, VARCHAR is
compatible with CHAR.

• If a bound value has a different data type than that of its corresponding
partition key column, Sybase IQ converts the bound value to the data type
of the partition key column, with these exceptions:

• Explicit conversions are not allowed. This example attempts an explicit
conversion from INT to VARCHAR and generates an error.

CREATE TABLE Employees(emp_name VARCHAR(20))
PARTITION BY RANGE(emp_name)
(p1 VALUES <=(CAST (1 AS VARCHAR(20))),
p2 VALUES <= (CAST (10 AS VARCHAR(20)))

• Implicit conversions that result in data loss are not allowed. In this
example, the partition bounds are not compatible with the partition key
type. Rounding assumptions may lead to data loss and an error will be
generated.

CREATE TABLE emp_id (id INT) PARTITION BY RANGE(id)
(p1 VALUES <= (10.5), p2 VALUES <= (100.5))

• In this example, the partition bounds and the partition key data type are
compatible. The bound values are directly converted to float values. No
rounding is required, and conversion is supported.

CREATE TABLE id_emp (id FLOAT)
PARTITION BY RANGE(id) (p1 VALUES <= (10),
p2 VALUES <= (100))

CREATE TABLE statement

150 Sybase IQ

• Conversions from nonbinary datatypes to binary datatypes are not
allowed. For example, the following conversion is not allowed and returns
an error:

CREATE TABLE newemp (name BINARY)
PARTITION BY RANGE(name)
(p1 VALUES <= ("Maarten"),
p2 VALUES <= ("Zymmerman")

• NULL cannot be used as a boundary in a range-partitioned table.

• The row will be in the first partition if the cell value of the 1st column of
the partition key evaluated to be NULL. Sybase IQ 15.1 supports only
single column partition keys, so any NULL in the partition key distributes
the row to the first partition.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

The following are vendor extensions:

• The { IN | ON } dbspace-name clause

• The ON COMMIT clause

• Some of the default values

• Sybase Supported by Adaptive Server Enterprise, with some
differences.

• Temporary tables You can create a temporary table by preceding
the table name in a CREATE TABLE statement with a pound sign (#).
These temporary tables are Sybase IQ declared temporary tables,
which are available only in the current connection. For information
about declared temporary tables, see DECLARE LOCAL
TEMPORARY TABLE statement on page 167.

• Physical placement Physical placement of a table is carried out
differently in Sybase IQ and in Adaptive Server Enterprise. The ON
segment-name clause supported by Adaptive Server Enterprise is
supported in Sybase IQ, but segment-name refers to an IQ dbspace.

• Constraints Sybase IQ does not support named constraints or
named defaults, but does support user-defined data types that allow
constraint and default definitions to be encapsulated in the data type
definition. It also supports explicit defaults and CHECK conditions in
the CREATE TABLE statement.

CHAPTER 1 SQL Statements

Reference: Statements and Options 151

• NULL default By default, columns in Adaptive Server Enterprise
default to NOT NULL, whereas in Sybase IQ the default setting is
NULL, to allow NULL values. This setting can be controlled using
the ALLOW_NULLS_BY_DEFAULT option. For information on this
option, see “ALLOW_NULLS_BY_DEFAULT option [TSQL]” on
page 349. You should explicitly specify NULL or NOT NULL to
make your data definition statements transferable.

Permissions Must have RESOURCE authority. To create a table for another user, you must
have DBA authority. To create a base table in an IQ main store dbspace, you
must have DBA authority or RESOURCE authority and CREATE privilege in
the specified dbspace.

See also ALTER TABLE statement on page 25

Chapter 5, “Working with Database Objects” in System Administration Guide:
Volume 1

CREATE DBSPACE statement on page 81

CREATE INDEX statement on page 105

“Creating tables” in Chapter 5, “Working with Database Objects,” in the
System Administration Guide: Volume 1

DECLARE LOCAL TEMPORARY TABLE statement on page 167

DROP statement on page 177

“MINIMIZE_STORAGE option” on page 421

CREATE USER statement
Description Creates a user.

Syntax CREATE USER user-name [IDENTIFIED BY password]
[LOGIN POLICY policy-name]
[FORCE PASSWORD CHANGE { ON | OFF }]

Examples Example 1 The following example creates a user named SQLTester with the
password welcome. The SQLTester user is assigned to the Test1 login policy
and the password expires on the next login.

CREATE USER SQLTester IDENTIFIED BY welcome
LOGIN POLICY Test1
FORCE PASSWORD CHANGE ON;

CREATE USER statement

152 Sybase IQ

Example 2 The following example creates a group named MyGroup
CREATE USER MyGroup;
GRANT GROUP TO MyGroup;

Usage user-name The name of the user.

IDENTIFIED BY clause Clause providing the password for the user.

policy-name The name of the login policy to assign the user. No change is
made if the LOGIN POLICY clause is not specified.

FORCE PASSWORD CHANGE clause Controls whether the user must
specify a new password when they log in. This setting overrides the
password_expiry_on_next_login option setting in their policy.

You do not have to specify a password for the user. A user without a password
cannot connect to the database. This is useful if you are creating a group and
do not want anyone to connect to the database using the group user ID. A user
ID must be a valid identifier.

User IDs and passwords cannot:

• Begin with white space, single quotes, or double quotes

• End with white space

• Contain semicolons

A password can be either a valid identifier, or a string (maximum 255 bytes)
placed in single quotes. Passwords are case sensitive. It is recommended that
the password be composed of 7-bit ASCII characters, as other characters may
not work correctly if the database server cannot convert them from the client's
character set to UTF-8.

The VERIFY_PASSWORD_FUNCTION option can be used to specify a function
to implement password rules (for example, passwords must include at least one
digit). If a password verification function is used, you cannot specify more than
one user ID and password in the GRANT CONNECT statement. For details, see
“VERIFY_PASSWORD_FUNCTION option” on page 469 and “GRANT
statement” on page 206.

Side Effects None.

Standards • SQL2003 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be owner of the view or have DBA authority.

CHAPTER 1 SQL Statements

Reference: Statements and Options 153

See also “ALTER LOGIN POLICY statement” on page 19

“CREATE USER statement” on page 151

“COMMENT statement” on page 61

“CREATE LOGIN POLICY statement” on page 117

“DROP LOGIN POLICY statement” on page 183

“DROP USER statement” on page 185

“GRANT statement” on page 206.

“Managing login policies overview” in SQL Anywhere Server – Database
Administration > Configuring Your Database > Managing user IDs,
authorities, and permissions

CREATE VARIABLE statement
Description Creates a SQL variable.

Syntax CREATE VARIABLE identifier data-type

Examples The following code fragment inserts a large text value into the database:

EXEC SQL BEGIN DECLARE SECTION;
char buffer[5000];
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob VARCHAR;
EXEC SQL SET hold_blob = '';
for(;;) {

/* read some data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;
/* add data to blob using concatenation
Note that concatenation works for binary
data too! */
EXEC SQL SET hold_blob = hold_blob || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

Usage The CREATE VARIABLE statement creates a new variable of the specified data
type. The variable contains the NULL value until it is assigned a different value
by the SET VARIABLE statement.

CREATE VARIABLE statement

154 Sybase IQ

A variable can be used in a SQL expression anywhere a column name is
allowed. If a column name exists with the same name as the variable, the
variable value is used.

Variables belong to the current connection, and disappear when you disconnect
from the database, or when you use the DROP VARIABLE statement. Variables
are not visible to other connections. Variables are not affected by COMMIT or
ROLLBACK statements.

In Version 12.5 and above, variables created with the CREATE VARIABLE
statement persist for a connection even when the statement is issued within a
(BEGIN...END) statement. You must use DECLARE to create variables that only
persist within a (BEGIN...END) statement, for example, within stored
procedures.

Variables are useful for creating large text or binary objects for INSERT or
UPDATE statements from Embedded SQL programs.

Local variables in procedures and triggers are declared within a compound
statement. See “Using compound statements” in Chapter 1, “Using Procedures
and Batches” in the System Administration Guide: Volume 2.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None.

See also BEGIN … END statement on page 47

Chapter 3, “SQL Data Types” in Reference: Building Blocks, Tables, and
Procedures

DECLARE statement on page 158

DROP VARIABLE statement on page 186

SET statement [ESQL] on page 301

CHAPTER 1 SQL Statements

Reference: Statements and Options 155

CREATE VIEW statement
Description Creates a view on the database. Views are used to give a different perspective

on the data even though it is not stored that way.

Syntax CREATE VIEW
… [owner.]view-name [(column-name [, …])]
… AS select-without-order-by
… [WITH CHECK OPTION]

Examples Example 1 Creates a view showing all information for male employees only.
This view has the same column names as the base table.

CREATE VIEW male_employee
AS SELECT *
FROM Employees
WHERE Sex = 'M'

Example 2 Creates a view showing employees and the departments they
belong to:

CREATE VIEW emp_dept
AS SELECT Surname, GivenName, DepartmentName
FROM Employees JOIN Departments
ON Employees.DepartmentID = Departments.DepartmentID

Usage A view can be created for another user by specifying the owner. You must have
DBA authority to create a view for another user.

A view name can be used in place of a table name in SELECT, DELETE,
UPDATE, and INSERT statements. Views, however, do not physically exist in
the database as tables. They are derived each time they are used. The view is
derived as the result of the SELECT statement specified in the CREATE VIEW
statement. Table names used in a view should be qualified by the user ID of the
table owner. Otherwise, a different user ID might not be able to find the table
or might get the wrong table.

The columns in the view are given the names specified in the column name list.
If the column name list is not specified, then the view columns are given names
from the select list items. To use the names from the select list items, the items
must be a simple column name or they must have an alias name specified (see
SELECT statement on page 291). You cannot add or drop IDENTIY/
AUTOINCREMENT columns from a view.

Views can be updated unless the SELECT statement defining the view contains
a GROUP BY clause, an aggregate function, or involves a UNION operation. An
update to the view causes the underlying tables to be updated.

view-name An identifier. The default owner is the current user ID.

DEALLOCATE DESCRIPTOR statement [ESQL]

156 Sybase IQ

column-name The columns in the view are given the names specified in the
column-name list. If the column name list is not specified, the view columns
are given names from the select list items. To use the names from the select list
items, each item must be a simple column name or have an alias name specified
(see SELECT statement on page 291).

AS The SELECT statement on which the view is based must not contain an
ORDER BY clause, a subquery in the SELECT list, or a TOP or FIRST
qualification. It may have a GROUP BY clause and may be a UNION.

WITH CHECK OPTION Rejects any updates and inserts to the view that do
not meet the criteria of the views as defined by its SELECT statement.
However, Sybase IQ currently ignores this option (it supports the syntax for
compatibility reasons).

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must have RESOURCE authority and SELECT permission on the tables in the
view definition.

See also CREATE TABLE statement on page 135

DROP statement on page 177

“Copy Definition utility (defncopy)” in Chapter 3, “Database Administration
Utilities” in the Utility Guide

DEALLOCATE DESCRIPTOR statement [ESQL]
Description Frees memory associated with a SQL descriptor area.

Syntax DEALLOCATE DESCRIPTOR descriptor-name:
string

Examples See ALLOCATE DESCRIPTOR statement [ESQL] on page 4.

Usage Frees all memory associated with a descriptor area, including the data items,
indicator variables, and the structure itself.

Side effects

None.

CHAPTER 1 SQL Statements

Reference: Statements and Options 157

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also SET DESCRIPTOR statement [ESQL] on page 307

Declaration section [ESQL]
Description Declares host variables in an Embedded SQL program. Host variables are used

to exchange data with the database.

Syntax EXEC SQL BEGIN DECLARE SECTION;
... C declarations
EXEC SQL END DECLARE SECTION;

Examples EXEC SQL BEGIN DECLARE SECTION;
char *emp_lname, initials[5];
int dept;
EXEC SQL END DECLARE SECTION;

Usage A declaration section is simply a section of C variable declarations surrounded
by the BEGIN DECLARE SECTION and END DECLARE SECTION statements.
A declaration section makes the SQL preprocessor aware of C variables that
are used as host variables. Not all C declarations are valid inside a declaration
section. See “Embedded SQL programming techniques” in SQL Anywhere
Server – Programming > SQL Anywhere Data Access APIs > SQL Anywhere
embedded SQL for more information.

Standards • SQL92

• Sybase

Permissions None.

See also BEGIN … END statement on page 47

DECLARE statement

158 Sybase IQ

DECLARE statement
Description Declares a SQL variable within a compound statement (BEGIN... END).

Syntax DECLARE variable_name data-type

Examples The following batch illustrates the use of the DECLARE statement and prints a
message on the server window:

BEGIN
 DECLARE varname CHAR(61);
 SET varname = 'Test name';
 MESSAGE varname;
END

Usage Variables used in the body of a procedure can be declared using the DECLARE
statement. The variable persists for the duration of the compound statement in
which it is declared.

The body of a procedure is a compound statement, and variables must be
declared immediately following BEGIN. In a Transact-SQL procedure or
trigger, there is no such restriction.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Supported by Adaptive Server Enterprise.

• To be compatible with Adaptive Server Enterprise, the variable name
must be preceded by an @.

• In Adaptive Server Enterprise, a variable that is declared in a
procedure or trigger exists for the duration of the procedure or trigger.
In Sybase IQ, if a variable is declared inside a compound statement,
it exists only for the duration of that compound statement (whether it
is declared in a Sybase IQ SQL or Transact-SQL compound
statement).

Permissions None

CHAPTER 1 SQL Statements

Reference: Statements and Options 159

DECLARE CURSOR statement [ESQL] [SP]
Description Declares a cursor. Cursors are the primary means for manipulating the results

of queries.

Syntax DECLARE cursor-name
[SCROLL

| NO SCROLL
| DYNAMIC SCROLL

]
CURSOR FOR
{ select-statement
| statement-name

[FOR { READ ONLY | UPDATE [OF column-name-list] }]
| USING variable-name }

Parameters cursor-name:
identifier

statement-name:
identifier | host-variable

column-name-list:
identifiers

variable-name:
identifier

Examples Example 1 Illustrates how to declare a scroll cursor in Embedded SQL:

EXEC SQL DECLARE cur_employee SCROLL CURSOR
FOR SELECT * FROM Employees;

Example 2 Illustrates how to declare a cursor for a prepared statement in
Embedded SQL:

EXEC SQL PREPARE employee_statement
FROM 'SELECT emp_lname FROM Employees';
EXEC SQL DECLARE cur_employee CURSOR
FOR employee_statement ;

DECLARE CURSOR statement [ESQL] [SP]

160 Sybase IQ

Example 3 Illustrates the use of cursors in a stored procedure:

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT emp_lname
 FROM Employees;
 DECLARE name CHAR(40);
 OPEN cur_employee;
 LOOP
 FETCH NEXT cur_employee INTO name;
 ...
 END LOOP;
 CLOSE cur_employee;
END

Usage The DECLARE CURSOR statement declares a cursor with the specified name
for a SELECT statement or a CALL statement.

SCROLL A cursor declared as SCROLL supports the NEXT, PRIOR, FIRST,
LAST, ABSOLUTE, and RELATIVE options of the FETCH statement. A
SCROLL cursor lets you fetch an arbitrary row in the result set while the cursor
is open.

NO SCROLL A cursor declared as NO SCROLL is restricted to moving
forward through the result set using only the FETCH NEXT and FETCH
ABSOLUTE (0) seek operations.

Since rows cannot be returned to once the cursor leaves the row, there are no
sensitivity restrictions on the cursor. Consequently, when a NO SCROLL
cursor is requested, Sybase IQ supplies the most efficient kind of cursor, which
is an asensitive cursor.

DYNAMIC SCROLL A cursor declared as DYNAMIC SCROLL supports
the NEXT, PRIOR, FIRST, LAST, ABSOLUTE, and RELATIVE options of
the FETCH statement. A DYNAMIC SCROLL cursor lets you fetch an
arbitrary row in the result set while the cursor is open.

FOR statement-name Statements are named using the PREPARE statement.
Cursors can be declared only for a prepared SELECT or CALL.

FOR READ ONLY A cursor declared FOR READ ONLY may not be used in
a positioned UPDATE or a positioned DELETE operation.

A cursor declared FOR READ ONLY sees the version of table(s) on which the
cursor is declared when the cursor is opened, not the version of table(s) at the
time of the first FETCH.

CHAPTER 1 SQL Statements

Reference: Statements and Options 161

For example,

CREATE TABLE t1 (c1 INT);
INSERT t1 VALUES (1);

BEGIN
DECLARE t1_cursor CURSOR FOR SELECT * FROM t1
FOR READ ONLY;
OPEN t1_cursor;
INSERT t1 VALUES (2);
FETCH T1_CURSOR;
END

When the cursor is fetched, only one row can be fetched from the table.

FOR UPDATE You can update the cursor result set of a cursor declared FOR
UPDATE. Only asensitive behavior is supported for updatable cursors; any
other sensitivity is ignored.

When the cursor is opened, exclusive table locks are taken on all tables that are
opened for update. Standalone LOAD TABLE, UPDATE, INSERT, DELETE, and
TRUNCATE statements are not allowed on tables that are opened for update in
the same transaction, since Sybase IQ permits only one statement to modify a
table at a time. You can open only one updatable cursor on a specific table at a
time.

Updatable cursors are allowed to scroll, except over Open Client.

READ ONLY is the default value of the FOR clause.

OF column-name-list The list of columns from the cursor result set
(specified by the select-statement) defined as updatable.

USING variable-name You can declare a cursor on a variable in stored
procedures and user-defined functions. The variable is a string containing a
SELECT statement for the cursor. The variable must be available when the
DECLARE is processed, and so must be one of the following:

DECLARE CURSOR statement [ESQL] [SP]

162 Sybase IQ

• A parameter to the procedure. For example:

create function get_row_count(in qry varchar)
returns int
begin
 declare crsr cursor using qry;
 declare rowcnt int;

 set rowcnt = 0;
 open crsr;
 lp: loop
 fetch crsr;
 if SQLCODE <> 0 then leave lp end if;
 set rowcnt = rowcnt + 1;
 end loop;
 return rowcnt;
end

• Nested inside another BEGIN…END after the variable has been assigned a
value. For example:

create procedure get_table_name(
in id_value int, out tabname char(128))

begin
declare qry varchar;

set qry = 'select table_name from SYS.ISYSTAB '
||
 'where table_id=' || string(id_value);
begin

declare crsr cursor using qry;

open crsr;
fetch crsr into tabname;
close crsr;

end
end

Embedded SQL

Statements are named using the PREPARE statement. Cursors can be declared
only for a prepared SELECT or CALL.

CHAPTER 1 SQL Statements

Reference: Statements and Options 163

Updatable cursor support

Sybase IQ support of updatable cursors is similar to SQL Anywhere support of
updatable cursors. For a full discussion of cursor types and working with
cursors, see “Introduction to cursors” in SQL Anywhere Server – Programming
> Introduction to Programming with SQL Anywhere > Using SQL in
applications. This section contains information important to the use of
updatable cursors in Sybase IQ.

Sybase IQ supports one type of cursor sensitivity, which is defined in terms of
which changes to underlying data are visible. All Sybase IQ cursors are
asensitive, which means that changes might be reflected in the membership,
order, or values of the result set seen through the cursor, or might not be
reflected at all.

With an asensitive cursor, changes effected by positioned UPDATE and
positioned DELETE statements are visible in the cursor result set, except where
client-side caching prevents seeing these changes. Inserted rows are not
visible.

Rows that are updated so that they no longer meet the requirements of the
WHERE clause of the open cursor are still visible.

When using cursors, there is always a trade-off between efficiency and
consistency. Asensitive cursors provide efficient performance at the expense of
consistency.

Sybase IQ supports updatable cursors on single tables.

Scalar user-defined functions and user-defined aggregate functions are not
supported in updatable cursors.

Supported query specifications for updatable cursors in Sybase IQ are as
follows:

• Expressions in the select list against columns that are not functionally
dependent on columns being updated

• Arbitrary subqueries with asensitive behavior, that is, changes to data
referenced by subqueries are not visible in the cursor result set

• ORDER BY clause; the ORDER BY columns may be updated, but the result
set does not reorder

• Columns that meet these requirements:

• No CAST on a column

• Base columns of a base table in the SELECT clause

DECLARE CURSOR statement [ESQL] [SP]

164 Sybase IQ

• There are no expressions or functions on that column in the SELECT
clause and it is not duplicated in the select list (for example, SELECT
c1, c1).

• Base columns of a base table restricted to those listed in the FOR
UPDATE OF column-name-list clause, if the clause is specified.

Sybase IQ does not permit updatable cursors on queries that contain any
operator that precludes a one-to-one mapping of result set rows to rows in a
base table; specifically:

• SELECT DISTINCT

• Operator that has a UNION

• Operator that has a GROUP BY

• Operator that has a SET function

• Operator that has an OLAP function, with the exception of RANK()

See the description of the UPDATE (positioned) statement [ESQL] [SP] on
page 326 for information on the columns and expressions allowed in the SET
clause for the update of a row in the result set of a cursor.

Sybase IQ supports inserts only on updatable cursors where all nonnullable,
nonidentity columns are both selected and updatable.

In Sybase IQ, COMMIT and ROLLBACK are not allowed inside an open
updatable cursor, even if the cursor is opened as a hold cursor. Sybase IQ does
support ROLLBACK TO SAVEPOINT inside an updatable cursor.

Any failure that occurs after the cursor is open results in a rollback of all
operations that have been performed through this open cursor.

Updatable cursor limitations

A declared cursor is read-only and not updatable in cases where:

• The data extraction facility is enabled with the TEMP_EXTRACT_NAME1
option set to a pathname

• As a join index, or within a join index

• ANSI_CLOSE_CURSORS_ON_ROLLBACK is set OFF

• CHAINED is set OFF

• The statement is INSERT SELECT or SELECT INTO

• More than one table is included

• No updatable columns exist

CHAPTER 1 SQL Statements

Reference: Statements and Options 165

If Sybase IQ fails to set an updatable cursor when requested, see the .iqmsg file
for related information.

There is a limitation regarding updatable cursors and ODBC. A maximum of
65535 rows or records can be updated, deleted, or inserted at a time using the
following ODBC functions:

• SQLSetPos SQL_UPDATE, SQL_DELETE, and SQL_ADD

• SQLBulkOperations SQL_ADD, SQL_UPDATE_BY_BOOKMARK, and
SQL_DELETE_BY_BOOKMARK

There is an implementation-specific limitation to the maximum value in the
statement attribute that controls the number of effected rows to the largest
value of an UNSIGNED SMALL INT, which is 65535.

SQLSetStmtAttr(HANDLE,SQL_ATTR_ROW_ARRAY_SIZE,
VALUE,0)

Updatable cursor differences

Sybase IQ updatable cursors differ from ANSI SQL3 standard behavior as
follows:

• Hold cursor update close on commit.

• Sybase IQ locks tables when the cursor is open.

• All updates, deletes, and insert operations are applied when the cursor is
closed, in the following order: deletes first, then updates, then inserts.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also CALL statement on page 55

DELETE (positioned) statement [ESQL] [SP] on page 171

OPEN statement [ESQL] [SP] on page 260

PREPARE statement [ESQL] on page 268

SELECT statement on page 291

UPDATE (positioned) statement [ESQL] [SP] on page 326

DECLARE CURSOR statement [T-SQL]

166 Sybase IQ

sp_iqcursorinfo procedure in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

DECLARE CURSOR statement [T-SQL]
Description Declares a cursor in a manner compatible with Adaptive Server Enterprise.

Syntax DECLARE cursor-name
… CURSOR FOR select-statement
…[FOR { READ ONLY | UPDATE }]

Usage Sybase IQ supports a DECLARE CURSOR syntax that is not supported in
Adaptive Server Enterprise. For information on the full DECLARE CURSOR
syntax, see DECLARE CURSOR statement [ESQL] [SP] on page 159.

This section describes the overlap between the Sybase IQ and Adaptive Server
Enterprise versions of DECLARE CURSOR.

Side effects

None.

Standards • SQL92 Entry-level compliant. The FOR UPDATE and FOR READ
ONLY options are Transact-SQL extensions.

• Sybase There are some features of the Adaptive Server Enterprise
DECLARE CURSOR statement that are not supported in Sybase IQ.

• In the Sybase IQ dialect, DECLARE CURSOR in a procedure or batch
must immediately follow the BEGIN keyword. In the Transact-SQL
dialect, there is no such restriction.

• In Adaptive Server Enterprise, when a cursor is declared in a
procedure or batch, it exists for the duration of the procedure or batch.
In Sybase IQ, if a cursor is declared inside a compound statement, it
exists only for the duration of that compound statement (whether it is
declared in a Sybase IQ or Transact-SQL compound statement).

Permissions None.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

sp_iqcursorinfo procedure in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

CHAPTER 1 SQL Statements

Reference: Statements and Options 167

DECLARE LOCAL TEMPORARY TABLE statement
Description Declares a local temporary table.

Syntax DECLARE LOCAL TEMPORARY TABLE table-name
… (column-definition [column-constraint] …
[, column-definition [column-constraint] …]
[, table-constraint] …)
…[ON COMMIT { DELETE | PRESERVE } ROWS
NOT TRANSACTIONAL]

Examples Example 1 Illustrates how to declare a local temporary table in Embedded
SQL:

EXEC SQL DECLARE LOCAL TEMPORARY TABLE MyTable (
 number INT

);

Example 2 Illustrates how to declare a local temporary table in a stored
procedure:

BEGIN
 DECLARE LOCAL TEMPORARY TABLE TempTab (
 number INT
);
 ...
END

Usage The DECLARE LOCAL TEMPORARY TABLE statement declares a temporary
table.

A local temporary table and the rows in it are visible only to the connection that
created the table and inserted the rows. By default, the rows of a temporary
table are deleted on COMMIT.

Declared local temporary tables within compound statements exist within the
compound statement. Otherwise, the declared local temporary table exists until
the end of the connection.

See CREATE TABLE statement on page 135 for definitions of column-
definition, column-constraint, and table-constraint, and the NOT
TRANSACTIONAL clause. See SELECT statement on page 291 for an
example of how to select data into a temporary table.

Once you create a local temporary table, either implicitly or explicitly, you
cannot create another temporary table of that name for as long as the temporary
table exists. For example, you can create a local temporary table implicitly by
entering:

select * into #tmp from table1

DECLARE LOCAL TEMPORARY TABLE statement

168 Sybase IQ

Or you can create a local temporary table explicitly by declaring it:

declare local temporary table foo

If you then try to select into #tmp or foo, or declare #tmp or foo again, you
receive an error indicating that #tmp or foo already exists.

When you declare a local temporary table, omit the owner specification. If you
specify the same owner.table in more than one DECLARE LOCAL TEMPORARY
TABLE statement in the same session, a syntax error is reported. For example,
an error is reported when the following statements are executed in the same
session:

DECLARE LOCAL TEMPORARY TABLE user1.temp(col1 int);
DECLARE LOCAL TEMPORARY TABLE user1.temp(col1 int);

If the owner name is omitted, then the error “Item temp already exists” is
reported:

DECLARE LOCAL TEMPORARY TABLE temp(col1 int);
DECLARE LOCAL TEMPORARY TABLE temp(col1 int);

An attempt to create a base table or a global temporary table will fail, if a local
temporary table of the same name exists on that connection, as the new table
cannot be uniquely identified by owner.table.

You can, however, create a local temporary table with the same name as an
existing base table or global temporary table. References to the table name
access the local temporary table, as local temporary tables are resolved first.

For example, consider the following sequence:

CREATE TABLE t1 (c1 int);
INSERT t1 VALUES (9);

DECLARE LOCAL TEMPORARY TABLE t1 (c1 int);
INSERT t1 VALUES (8);

SELECT * FROM t1;

The result returned is 8. Any reference to t1 refers to the local temporary table
t1 until the local temporary table is dropped by the connection.

You cannot use the ALTER TABLE and DROP INDEX statements on local
temporary tables.

You cannot use the sp_iqindex, sp_iqtablesize, and sp_iqindexsize stored
procedures on local temporary tables.

CHAPTER 1 SQL Statements

Reference: Statements and Options 169

Side effects

None.

Standards • SQL92 Conforms to SQL92 standard

• Sybase Adaptive Server Enterprise does not support DECLARE
TEMPORARY TABLE.

Permissions None.

See also CREATE TABLE statement on page 135

SELECT statement on page 291

DELETE statement
Description Deletes rows from the database.

Syntax DELETE [FROM] [owner.]table-name
…[FROM table-list]
…[WHERE search-condition]

Examples Example 1 Removes employee 105 from the database:

DELETE
FROM Employees
WHERE EmployeeID = 105

Example 2 Removes all data prior to 1993 from the FinancialData table:

DELETE
FROM FinancialData
WHERE Year < 1993

Example 3 Removes all names from the Contacts table if they are already
present in the Customers table:

DELETE
FROM Contacts
FROM Contacts, Customers
WHERE Contacts.Surname = Customers.Surname
AND Contacts.GivenName = Customers.GivenName

Usage DELETE deletes all the rows from the named table that satisfy the search
condition. If no WHERE clause is specified, all rows from the named table are
deleted.

DELETE statement

170 Sybase IQ

DELETE can be used on views provided the SELECT statement defining the
view has only one table in the FROM clause and does not contain a GROUP BY
clause, an aggregate function, or involve a UNION operation.

The optional second FROM clause in the DELETE statement allows rows to be
deleted based on joins. If the second FROM clause is present, the WHERE
clause qualifies the rows of this second FROM clause. Rows are deleted from
the table name given in the first FROM clause.

The effects of a DELETE on a table can be passed on to any of the join indexes
that reference that table through the SYNCHRONIZE JOIN INDEX command.
For performance reasons, you should do as many deletes as possible before
synchronizing the join indexes.

Note You cannot use the DELETE statement on a join virtual table. If you
attempt to delete from a join virtual table, an error is reported.

Correlation name resolution

The following statement illustrates a potential ambiguity in table names in
DELETE statements with two FROM clauses that use correlation names:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

The table table_1 is identified without a correlation name in the first FROM
clause, but with a correlation name in the second FROM clause. In this case,
table_1 in the first clause is identified with alias_1 in the second clause; there
is only one instance of table_1 in this statement.

This is an exception to the general rule that where a table is identified with a
correlation name and without a correlation name in the same statement, two
instances of the table are considered.

Consider the following example:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

CHAPTER 1 SQL Statements

Reference: Statements and Options 171

In this case, there are two instances of table_1 in the second FROM clause.
There is no way of identifying which instance the first FROM clause should be
identified with. The usual rules of correlation names apply, and table_1 in the
first FROM clause is identified with neither instance in the second clause: there
are three instances of table_1 in the statement.

Side effects

None.

Standards • SQL92 Entry-level compliant. The use of more than one table in the
FROM clause is a vendor extension.

• Sybase Supported by Adaptive Server Enterprise, including the vendor
extension.

The Transact-SQL ROWCOUNT option has no effect on DELETE
operations in Sybase IQ.

Permissions Must have DELETE permission on the table.

See also FROM clause on page 200

INSERT statement on page 216

SYNCHRONIZE JOIN INDEX statement on page 318

TRUNCATE TABLE statement on page 319

DELETE (positioned) statement [ESQL] [SP]
Description Deletes the data at the current location of a cursor.

Syntax DELETE [FROM table-spec]
WHERE CURRENT OF cursor-name

Parameters cursor-name:
identifier | hostvar

table-spec:
[owner.]correlation-name

owner:
identifier

Examples The following statement removes the current row from the database:

DELETE WHERE CURRENT OF cur_employee

DELETE (positioned) statement [ESQL] [SP]

172 Sybase IQ

Usage This form of the DELETE statement deletes the current row of the specified
cursor. The current row is defined to be the last row fetched from the cursor.

The table from which rows are deleted is determined as follows:

• If no FROM clause is included, the cursor must be on a single table only.

• If the cursor is for a joined query (including using a view containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

• If a FROM clause is included, and no table owner is specified, table-spec
is first matched against any correlation names.

• If a correlation name exists, table-spec is identified with the
correlation name.

• If a correlation name does not exist, table-spec must be
unambiguously identifiable as a table name in the cursor.

• If a FROM clause is included, and a table owner is specified, table-spec
must be unambiguously identifiable as a table name in the cursor.

The positioned DELETE statement can be used on a cursor open on a view as
long as the view is updatable.

Changes effected by positioned DELETE statements are visible in the cursor
result set, except where client-side caching prevents seeing these changes.

Standards • SQL92 Entry-level feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS option is
set to OFF.

• SQL99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS option is
set to OFF.

• Sybase Embedded SQL use is supported by Open Client/Open Server.
Procedure and trigger use is supported in SQL Anywhere.

Permissions Must have DELETE permission on tables used in the cursor.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

INSERT statement on page 216

UPDATE statement on page 322

UPDATE (positioned) statement [ESQL] [SP] on page 326

CHAPTER 1 SQL Statements

Reference: Statements and Options 173

sp_iqcursorinfo procedure in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

DESCRIBE statement [ESQL]
Description Gets information about the host variables required to store data retrieved from

the database or host variables used to pass data to the database.

Syntax DESCRIBE
…[USER TYPES]
…[{ ALL | BIND VARIABLES FOR | INPUT
| OUTPUT | SELECT LIST FOR }]
…[{ LONG NAMES [long-name-spec] | WITH VARIABLE RESULT }]
…[FOR] { statement-name | CURSOR cursor-name }
…INTO sqlda-name

Parameters long-name-spec:
{ OWNER.TABLE.COLUMN | TABLE.COLUMN | COLUMN }

statement-name:
identifier | host-variable

cursor-name:
declared cursor

sqlda-name:
identifier

Examples The following example shows how to use the DESCRIBE statement:

sqlda = alloc_sqlda(3);
EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
if(sqlda->sqld > sqlda->sqln) {
 actual_size = sqlda->sqld;
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(actual_size);
 EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
}

Usage DESCRIBE sets up the named SQLDA to describe either the OUTPUT
(equivalently SELECT LIST) or the INPUT (BIND VARIABLES) for the named
statement.

DESCRIBE statement [ESQL]

174 Sybase IQ

In the INPUT case, DESCRIBE BIND VARIABLES does not set up the data types
in the SQLDA: this needs to be done by the application. The ALL keyword lets
you describe INPUT and OUTPUT in one SQLDA.

If you specify a statement name, the statement must have been previously
prepared using the PREPARE statement with the same statement name and the
SQLDA must have been previously allocated (see ALLOCATE
DESCRIPTOR statement [ESQL] on page 4).

If you specify a cursor name, the cursor must have been previously declared
and opened. The default action is to describe the OUTPUT. Only SELECT
statements and CALL statements have OUTPUT. A DESCRIBE OUTPUT on any
other statement, or on a cursor that is not a dynamic cursor, indicates no output
by setting the sqld field of the SQLDA to zero.

USER TYPES A DESCRIBE statement with the USER TYPES clause returns
information about user-defined data types of a column. Typically, such a
DESCRIBE is done when a previous DESCRIBE returns an indicator of
DT_HAS_USERTYPE_INFO.

The information returned is the same as for a DESCRIBE without the USER
TYPES keywords, except that the sqlname field holds the name of the user-
defined data type, instead of the name of the column.

If DESCRIBE uses the LONG NAMES clause, the sqldata field holds this
information.

SELECT DESCRIBE OUTPUT fills in the data type and length in the SQLDA
for each select list item. The name field is also filled in with a name for the
select list item. If an alias is specified for a select list item, the name is that
alias. Otherwise, the name derives from the select list item: if the item is a
simple column name, it is used; otherwise, a substring of the expression is
used. DESCRIBE also puts the number of select list items in the sqld field of the
SQLDA.

If the statement being described is a UNION of two or more SELECT
statements, the column names returned for DESCRIBE OUTPUT are the same
column names which would be returned for the first SELECT statement.

CALL The DESCRIBE OUTPUT statement fills in the data type, length, and
name in the SQLDA for each INOUT or OUT parameter in the procedure.
DESCRIBE OUTPUT also puts the number of INOUT or OUT parameters in the
sqld field of the SQLDA.

CHAPTER 1 SQL Statements

Reference: Statements and Options 175

CALL (result set) DESCRIBE OUTPUT fills in the data type, length, and
name in the SQLDA for each RESULT column in the procedure definition.
DESCRIBE OUTPUT also puts the number of result columns in the sqld field of
the SQLDA.

INPUT A bind variable is a value supplied by the application when the
database executes the statements. Bind variables can be considered parameters
to the statement. DESCRIBE INPUT fills in the name fields in the SQLDA with
the bind variable names. DESCRIBE INPUT also puts the number of bind
variables in the sqld field of the SQLDA.

DESCRIBE uses the indicator variables in the SQLDA to provide additional
information. DT_PROCEDURE_IN and DT_PROCEDURE_OUT are bits
that are set in the indicator variable when a CALL statement is described.
DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure
RESULT columns has both bits clear. After a describe OUTPUT, these bits can
be used to distinguish between statements that have result sets (need to use
OPEN, FETCH, RESUME, CLOSE) and statements that do not (need to use
EXECUTE). DESCRIBE INPUT sets DT_PROCEDURE_IN and
DT_PROCEDURE_OUT appropriately only when a bind variable is an
argument to a CALL statement; bind variables within an expression that is an
argument in a CALL statement sets the bits.

DESCRIBE ALL lets you describe INPUT and OUTPUT with one request to the
database server. This has a performance benefit in a multiuser environment.
The INPUT information is filled in the SQLDA first, followed by the OUTPUT
information. The sqld field contains the total number of INPUT and OUTPUT
variables. The DT_DESCRIBE_INPUT bit in the indicator variable is set for
INPUT variables and clear for OUTPUT variables.

Retrieving long column names

The LONG NAMES clause is provided to retrieve column names for a statement
or cursor. Without this clause, there is a 29-character limit on the length of
column names: with the clause, names of an arbitrary length are supported.

If LONG NAMES is used, the long names are placed into the SQLDATA field
of the SQLDA, as if you were fetching from a cursor. None of the other fields
(SQLLEN, SQLTYPE, and so on) are filled in. The SQLDA must be set up like
a FETCH SQLDA: it must contain one entry for each column, and the entry
must be a string type.

The default specification for the long names is TABLE.COLUMN.

DISCONNECT statement [DBISQL]

176 Sybase IQ

Describing variable result sets

The WITH VARIABLE RESULT statement is used to describe procedures that
might have more than one result set, with different numbers or types of
columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT
value after the describe to one of the following values:

• 0 The result set may change: the procedure call should be described
again following each OPEN statement.

• 1 The result set is fixed. No re-describing is required.

For more information on the use of the SQLDA structure, see “Embedded SQL
programming techniques” in SQL Anywhere Server – Programming > SQL
Anywhere Data Access APIs > SQL Anywhere embedded SQL.

Side effects

None.

Standards • SQL92 Part of the SQL92 standard. Some clauses are vendor extensions.

• Sybase Some clauses supported by Open Client/Open Server.

Permissions None.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

OPEN statement [ESQL] [SP] on page 260

PREPARE statement [ESQL] on page 268

DISCONNECT statement [DBISQL]
Description Drops a connection with the database.

Syntax DISCONNECT [{ connection-name | CURRENT | ALL }]

Parameters connection-name:
identifier, string, or host-variable

Examples Example 1 The following statement shows how to use DISCONNECT in
Embedded SQL:

EXEC SQL DISCONNECT :conn_name

CHAPTER 1 SQL Statements

Reference: Statements and Options 177

Example 2 The following statement shows how to use DISCONNECT from
DBISQL to disconnect all connections:

DISCONNECT ALL

Usage The DISCONNECT statement drops a connection with the database server and
releases all resources used by it. If the connection to be dropped was named on
the CONNECT statement, then the name can be specified. Specifying ALL drops
all of the application’s connections to all database environments. CURRENT is
the default and drops the current connection.

An implicit ROLLBACK is executed on connections that are dropped.

Side effects

None.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None

See also CONNECT statement [ESQL] [DBISQL] on page 65

SET CONNECTION statement [DBISQL] [ESQL] on page 306

DROP statement
Description Removes objects from the database.

Syntax DROP
{ DBSPACE dbspace-name
| { DATATYPE [IF EXISTS]
| DOMAIN [IF EXISTS] } datatype-name
| EVENT [IF EXISTS] event-name
| INDEX [IF EXISTS] [[owner].table-name.]index-name
| JOIN INDEX [owner.]join-index-name
| MESSAGE message-number
| TABLE [IF EXISTS] [owner.]table-name
| VIEW [IF EXISTS] [owner.]view-name
| PROCEDURE [IF EXISTS] [owner.]procedure-name
| FUNCTION [IF EXISTS] [owner.]function-name }

DROP statement

178 Sybase IQ

Examples Example 1 Drops the Departments table from the database:

DROP TABLE Departments

Example 2 Drops the emp_dept view from the database:

DROP VIEW emp_dept

Usage DROP removes the definition of the indicated database structure. If the
structure is a dbspace, then all tables with any data in that dbspace must be
dropped or relocated prior to dropping the dbspace; other structures are
automatically relocated. If the structure is a table, all data in the table is
automatically deleted as part of the dropping process. Also, all indexes and
keys for the table are dropped by DROP TABLE. However, you cannot drop the
table if any join indexes use that table. You must first use DROP JOIN INDEX
to remove the join indexes.

Use the IF EXISTS clause if you do not want an error returned when the DROP
statement attempts to remove a database object that does not exist.

DROP INDEX deletes any explicitly created index. It only deletes an implicitly
created index if there is no associated primary key, unique, or foreign-key
constraints.

DROP INDEX for a nonunique HG index fails if an associated unenforced
foreign key exists.

 Warning! Do not delete views owned by the DBO user. Deleting such views
or changing them into tables might cause problems.

DROP TABLE, DROP INDEX, DROP JOIN INDEX, and DROP DBSPACE are
prevented whenever the statement affects a table that is currently being used by
another connection.

DROP TABLE is prevented if the primary table has foreign-key constraints
associated with it, including unenforced foreign-key constraints

DROP TABLE is also prevented if the table has an IDENTITY column and
IDENTITY_INSERT is set to that table. To drop the table you must clear
IDENTITY_INSERT, that is, set it to ' ' (an empty string), or set it to another
table name.

A foreign key can have either a nonunique single or a multicolumn HG index.
A primary key may have unique single or multicolumn HG indexes. You cannot
drop the HG index implicitly created for an existing foreign key, primary key,
and unique constraint. If a DBA is dropping a join index belonging to another
user, the join index name must be qualified with an owner name.

CHAPTER 1 SQL Statements

Reference: Statements and Options 179

The four initial dbspaces are SYSTEM, IQ_SYSTEM_MAIN,
IQ_SYSTEM_TEMP, and IQ_SYSTEM_MSG. You cannot drop these initial
dbspaces, but you may drop dbspaces from the IQ main store or catalog store,
which may contain multiple dbspaces, as long as at least one dbspace remains
with readwrite mode.

You must drop tables in the dbspace before you can drop the dbspace. An error
is returned if the dbspace still contains user data; other structures are
automatically relocated when the dbspace is dropped. You can drop a dbspace
only after you make the dbspace read-only.

Note A dbspace may contain data at any point after it is used by a command,
thereby preventing a DROP DBSPACE on it.

For more information on modifying dbspaces, see “Working with dbspaces” in
Chapter 5, “Working with Database Objects” in the System Administration
Guide: Volume 1.

DROP PROCEDURE is prevented when the procedure is in use by another
connection.

DROP DATATYPE is prevented if the data type is used in a table. You must
change data types on all columns defined on the user-defined data type to drop
the data type. It is recommended that you use DROP DOMAIN rather than DROP
DATATYPE, as DROP DOMAIN is the syntax used in the ANSI/ISO SQL3 draft.

Side effects

Automatic commit. Clears the Data window in DBISQL. DROP TABLE and
DROP INDEX close all cursors for the current connection.

Local temporary tables are an exception; no commit is performed when one is
dropped.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

Permissions For DROP DBSPACE, must have DBA authority and must be the only
connection to the database.

For others, must be the owner of the object, or have DBA authority.

Global temporary tables cannot be dropped unless all users that have
referenced the temporary table have disconnected.

DROP CONNECTION statement

180 Sybase IQ

See also ALTER DBSPACE statement on page 9

ALTER TABLE statement on page 25

CREATE DBSPACE statement on page 81

CREATE DOMAIN statement on page 84

CREATE EVENT statement on page 86

CREATE INDEX statement on page 105

CREATE MESSAGE statement [T-SQL] on page 119

CREATE PROCEDURE statement on page 120

CREATE TABLE statement on page 135

CREATE VIEW statement on page 155

sp_iqdbspace procedure in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

Chapter 5, “Working with Database Objects” in the System Administration
Guide: Volume 1

DROP CONNECTION statement
Description Drops connection of any user to the database.

Syntax DROP CONNECTION connection-id

Examples The following statement drops connection with ID number 4:

DROP CONNECTION 4

Usage DROP CONNECTION disconnects a user from the database by dropping the
connection to the database. You cannot drop your current connection; you must
first create another connection, then drop your first connection.

The connection-id for the connection is obtained using the connection_property
function to request the connection number. The following statement returns the
connection ID of the current connection:

SELECT connection_property('number')

Side effects

None.

CHAPTER 1 SQL Statements

Reference: Statements and Options 181

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also CONNECT statement [ESQL] [DBISQL] on page 65

DROP DATABASE statement
Description Drops a database and its associated dbspace segment files.

Syntax DROP DATABASE db-filename [KEY key-spec]

Parameters key-spec:
A string, including mixed cases, numbers, letters, and special characters. It
might be necessary to protect the key from interpretation or alteration by the
command shell.

Examples Example 1 Drops database mydb:

DROP DATABASE 'mydb.db'

Example 2 Drops the encrypted database marvin.db, which was created with
the key is!seCret:

DROP DATABASE 'marvin.db' KEY 'is!seCret'

Example 3 The following UNIX example drops the database temp.db from the
/s1/temp directory:

DROP DATABASE '/s1/temp/temp.db'

Usage DROP DATABASE drops all the database segment files associated with the IQ
store and temporary store before it drops the catalog store files.

The database must be stopped before you can drop it. If the connection
parameter AUTOSTOP=no is used, you might need to issue a STOP DATABASE
statement.

The db-filename you specify corresponds to the database filename you defined
for the database using CREATE DATABASE. If you specified a directory path
for this value in the CREATE DATABASE command, you must also specify the
directory path for DROP DATABASE. Otherwise, Sybase IQ looks for the
database files in the default directory where the server files reside.

You cannot execute a DROP DATABASE statement to drop an IQ database that
has a DatabaseStart event defined for it.

DROP EXTERNLOGIN statement

182 Sybase IQ

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Required permissions are set using the database server -gu command line
option. The default setting is to require DBA authority.

See also CREATE DATABASE statement on page 68

DROP EXTERNLOGIN statement
Description Drops an external login from the Sybase IQ system tables.

Syntax DROP EXTERNLOGIN login-name
TO remote-server

Examples DROP EXTERNLOGIN dba TO sybase1

Usage DROP EXTERNLOGIN deletes an external login from the Sybase IQ system
tables.

login-name Specifies the local user login name.

TO The TO clause specifies the name of the remote server. The local user's
alternate login name and password for that server is the external login that is
deleted.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have DBA authority.

See also CREATE EXTERNLOGIN statement on page 96

CHAPTER 1 SQL Statements

Reference: Statements and Options 183

DROP LOGIN POLICY statement
Description Removes a login policy from the database.

Syntax DROP LOGIN POLICY policy-name

Examples The following example creates the Test11 login policy and then deletes it.

CREATE LOGIN POLICY Test11;
DROP LOGIN POLICY Test11 ;

Usage A DROP LOGIN POLICY statement fails if you attempt to drop a policy that
is assigned to a user. You can use either the ALTER USER statement to change
the user's policy assignment or DROP USER to drop the user.

Permissions Must have DBA authority.

DROP SERVER statement
Description Drops a remote server from the Sybase IQ system tables.

Syntax DROP SERVER server-name

Examples DROP SERVER ase_prod

Usage You must drop all the proxy tables that have been defined for the remote server
before this statement will succeed.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Only the DBA account can delete a remote server.

See also CREATE SERVER statement on page 130

DROP SERVICE statement

184 Sybase IQ

DROP SERVICE statement
Description Deletes a Web service.

Syntax DROP SERVICE service-name

Examples To drop a Web service named “tables”, execute the following statement:

DROP SERVICE tables

Usage DROP SERVICE deletes a Web service.

Side effects

None.

Standards • SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also ALTER SERVICE statement on page 23

CREATE SERVICE statement on page 132

“Introduction to web services” in SQL Anywhere Server – Programming >
SQL Anywhere Data Access APIs > SQL Anywhere web services

DROP STATEMENT statement [ESQL]
Description Frees statement resources.

Syntax DROP STATEMENT [owner.]statement-name

Parameters statement-name:
identifier or host-variable

Examples The following are examples of DROP STATEMENT use:

EXEC SQL DROP STATEMENT S1;
EXEC SQL DROP STATEMENT :stmt;

Usage DROP STATEMENT frees resources used by the named prepared statement.
These resources are allocated by a successful PREPARE statement, and are
normally not freed until the database connection is released.

Side effects

None.

CHAPTER 1 SQL Statements

Reference: Statements and Options 185

Standards • SQL92 Vendor extension.

• Sybase Not supported in Open Client/Open Server

Permissions Must have prepared the statement.

See also PREPARE statement [ESQL] on page 268

DROP USER statement
Description Removes a user.

Syntax DROP USER user-name

Examples The following example drops a user named SQLTester from the database.

DROP USER SQLTester;

Usage user-name The name of the user.

Side effects

None.

Standards • SQL2003 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also “ALTER LOGIN POLICY statement” on page 19

“CREATE USER statement” on page 151

“CREATE LOGIN POLICY statement” on page 117

“DROP LOGIN POLICY statement” on page 183

“GRANT statement” on page 206

“Managing login policies overview” in SQL Anywhere Server – Database
Administration > Configuring Your Database > Managing user IDs,
authorities, and permissions

DROP VARIABLE statement

186 Sybase IQ

DROP VARIABLE statement
Description Eliminates a SQL variable.

Syntax DROP VARIABLE identifier

Usage The DROP VARIABLE statement eliminates a SQL variable that was previously
created using the CREATE VARIABLE statement. Variables are automatically
eliminated when the database connection is released. Variables are often used
for large objects, so eliminating them after use or setting them to NULL can
free up significant resources (primarily disk space).

Use the IF EXISTS clause if you do not want an error returned when the DROP
statement attempts to remove a database object that does not exist.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise.

Permissions None

See also CREATE VARIABLE statement on page 153

SET statement [ESQL] on page 301

EXECUTE statement [ESQL]
Description Executes a SQL statement.

Syntax Syntax 1

EXECUTE statement-name
... [{ USING DESCRIPTOR sqlda-name | USING host-variable-list }]
... [{ INTO DESCRIPTOR into-sqlda-name | INTO into-host-variable-list]
... [ARRAY :nnn }]

Syntax 2

EXECUTE IMMEDIATE statement

Parameters statement-name:
identifier or host-variable

sqlda-name:
identifier

CHAPTER 1 SQL Statements

Reference: Statements and Options 187

into-sqlda-name:
identifier

statement:
string or host-variable

Examples Example 1 Executes a DELETE:

EXEC SQL EXECUTE IMMEDIATE
'DELETE FROM Employees WHERE EmployeeID = 105';

Example 2 Executes a prepared DELETE statement:

EXEC SQL PREPARE del_stmt FROM
'DELETE FROM Employees WHERE EmployeeID = :a';
EXEC SQL EXECUTE del_stmt USING :employee_number;

Example 3 Executes a prepared query:

EXEC SQL PREPARE sel1 FROM
'SELECT Surname FROM Employees WHERE EmployeeID = :a';
EXEC SQL EXECUTE sel1 USING :employee_number INTO
:emp_lname;

Usage Syntax 1 executes the named dynamic statement that was previously prepared.
If the dynamic statement contains host variable placeholders which supply
information for the request (bind variables), then either the sqlda-name must
specify a C variable which is a pointer to an SQLDA containing enough
descriptors for all bind variables occurring in the statement, or the bind
variables must be supplied in the host-variable-list.

The optional ARRAY clause can be used with prepared INSERT statements, to
allow wide inserts, which insert more than one row at a time and which might
improve performance. The value nnn is the number of rows to be inserted. The
SQLDA must contain nnn * (columns per row) variables. The first row is
placed in SQLDA variables 0 to (columns per row)-1, and so on.

OUTPUT from a SELECT statement or a CALL statement is put either into the
variables in the variable list or into the program data areas described by the
named SQLDA. The correspondence is one to one from the OUTPUT (selection
list or parameters) to either the host variable list or the SQLDA descriptor
array.

If EXECUTE is used with an INSERT statement, the inserted row is returned in
the second descriptor. For example, when using autoincrement primary keys
that generate primary-key values, EXECUTE provides a mechanism to refetch
the row immediately and determine the primary-key value assigned to the row.

EXECUTE statement [T-SQL]

188 Sybase IQ

Syntax 2 is a short form to PREPARE and EXECUTE a statement that does not
contain bind variables or output. The SQL statement contained in the string or
host variable is immediately executed and is dropped on completion.

EXECUTE can be used for any SQL statement that can be prepared. Cursors are
used for SELECT statements or CALL statements that return many rows from
the database.

After successful execution of an INSERT, UPDATE, or DELETE statement, the
sqlerrd[2] field of the SQLCA (SQLCOUNT) is filled in with the number of
rows affected by the operation.

Side effects

None.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported in Open Client/Open Server.

Permissions Permissions are checked on the statement being executed.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

PREPARE statement [ESQL] on page 268

EXECUTE statement [T-SQL]
Description Invokes a procedure, as an Adaptive Server Enterprise-compatible alternative

to the CALL statement.

Syntax EXECUTE [@return_status =] [owner.]procedure_name
... { [@parameter-name =] expression
| [@parameter-name =] @variable [output] } ,...

Examples Illustrates the EXECUTE statement.

CREATE PROCEDURE p1(@var INTEGER = 54)
AS
PRINT 'on input @var = %1! ', @var
DECLARE @intvar integer
SELECT @intvar=123
SELECT @var=@intvar
PRINT 'on exit @var = %1!', @var;

CHAPTER 1 SQL Statements

Reference: Statements and Options 189

• The following statement executes the procedure, supplying the input value
of 23 for the parameter. If you are connected from an Open Client
application, PRINT messages are displayed on the client window. If you
are connected from an ODBC or Embedded SQL application, messages
display on the database server window.

EXECUTE p1 23

• An alternative way of executing the procedure, which is useful if there are
several parameters:

EXECUTE p1 @var = 23

• Executes the procedure, using the default value for the parameter:

EXECUTE p1

• Executes the procedure, and stores the return value in a variable for
checking return status:

EXECUTE @status = p1 23

Usage EXECUTE executes a stored procedure, optionally supplying procedure
parameters and retrieving output values and return status information.

EXECUTE is implemented for Transact-SQL compatibility, but can be used in
either Transact-SQL or Sybase IQ batches and procedures.

Side effects

None.

Permissions Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

See also CALL statement on page 55

EXECUTE IMMEDIATE statement [ESQL] [SP]

190 Sybase IQ

EXECUTE IMMEDIATE statement [ESQL] [SP]
Description Enables dynamically constructed statements to be executed from within a

procedure.

Syntax Syntax 1

EXECUTE IMMEDIATE [execute-option] string-expression

execute-option:
WITH QUOTES [ON | OFF]
| WITH ESCAPES { ON | OFF }
| WITH RESULT SET { ON | OFF }

Syntax 2

EXECUTE (string-expression)

Examples The following procedure creates a table, where the table name is supplied as a
parameter to the procedure. The full EXECUTE IMMEDIATE statement must be
on a single line.

CREATE PROCEDURE CreateTableProc(
IN tablename char(30)
)

BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE ' || tablename ||

' (column1 INT PRIMARY KEY)'
END;

To call the procedure and create a table mytable:

CALL CreateTableProc('mytable')

Usage EXECUTE IMMEDIATE extends the range of statements that can be executed
from within procedures. It lets you execute dynamically prepared statements,
such as statements that are constructed using the parameters passed in to a
procedure.

Literal strings in the statement must be enclosed in single quotes, and must
differ from any existing statement name in a PREPARE or EXECUTE
IMMEDIATE statement. The statement must be on a single line.

Only global variables can be referenced in a statement executed by EXECUTE
IMMEDIATE.

Only syntax 2 can be used inside Transact-SQL stored procedures.

CHAPTER 1 SQL Statements

Reference: Statements and Options 191

WITH QUOTES When you specify WITH QUOTES or WITH QUOTES
ON, any double quotes in the string expression are assumed to delimit an
identifier. When you do not specify WITH QUOTES, or specify WITH
QUOTES OFF, the treatment of double quotes in the string expression depends
on the current setting of the QUOTED_IDENTIFIER option.

WITH QUOTES is useful when an object name that is passed into the stored
procedure is used to construct the statement that is to be executed, but the name
might require double quotes and the procedure might be called when
QUOTED_IDENTIFIER is set to OFF.

For more information, see “QUOTED_IDENTIFIER option [TSQL]” on page
441

WITH ESCAPES WITH ESCAPES OFF causes any escape sequences (such
as \n, \x, or \\) in the string expression to be ignored. For example, two
consecutive backslashes remain as two backslashes, rather than being
converted to a single backslash. The default setting is equivalent to WITH
ESCAPES ON.

You can use WITH ESCAPES OFF for easier execution of dynamically
constructed statements referencing file names that contain backslashes.

In some contexts, escape sequences in the string-expression are transformed
before EXECUTE IMMEDIATE is executed. For example, compound statements
are parsed before being executed, and escape sequences are transformed during
this parsing, regardless of the WITH ESCAPES setting. In these contexts,
WITH ESCAPES OFF prevents further translations from occurring. For
example:

BEGIN
DECLARE String1 LONG VARCHAR;
DECLARE String2 LONG VARCHAR;
EXECUTE IMMEDIATE
'SET String1 = ''One backslash: \\\\ ''';
EXECUTE IMMEDIATE WITH ESCAPES OFF
'SET String2 = ''Two backslashes: \\\\ ''';
SELECT String1, String2
END

EXIT statement [DBISQL]

192 Sybase IQ

WITH RESULT SET You can have an EXECUTE IMMEDIATE statement
return a result set by specifying WITH RESULT SET ON. With this clause, the
containing procedure is marked as returning a result set. If you do not include
this clause, an error is reported when the procedure is called if the statement
does not produce a result set.

Note The default option is WITH RESULT SET OFF, meaning that no result
set is produced when the statement is executed.

Side effects

None. However, if the statement is a data definition statement with an
automatic commit as a side effect, then that commit does take place.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported in Open Client/Open Server.

Permissions None. The statement is executed with the permissions of the owner of the
procedure, not with the permissions of the user who calls the procedure.

See also BEGIN … END statement on page 47

CREATE PROCEDURE statement on page 120

EXIT statement [DBISQL]
Description Leaves DBISQL.

Syntax { EXIT | QUIT | BYE }

Usage Leaves the DBISQL environment and return to the operating system. This
closes your connection with the database. The default action is to COMMIT any
changes you have made to the database.

Standards • SQL92 Vendor extension.

• Sybase Not applicable in Adaptive Server Enterprise.

Permissions None

See also SET OPTION statement on page 307

CHAPTER 1 SQL Statements

Reference: Statements and Options 193

FETCH statement [ESQL] [SP]
Description Repositions a cursor and gets data from it.

Syntax FETCH
{ NEXT | PRIOR | FIRST | LAST
| ABSOLUTE row-count | RELATIVE row-count }
... cursor-name
... { [INTO host-variable-list]
| USING DESCRIPTOR sqlda-name
| INTO variable-list }
... [PURGE] [BLOCK n] [ARRAY fetch-count]
... INTO variable-list
... IQ CACHE row-count

Parameters cursor-name:
identifier or host variable

sqlda-name:
identifier

host-variable-list:
may contain indicator variables

row-count:
number or host variable

fetch-count:
integer or host variable

Examples Example 1 An Embedded SQL example:

EXEC SQL DECLARE cur_employee CURSOR FOR
SELECT EmployeeID, Surname FROM Employees;
EXEC SQL OPEN cur_employee;
EXEC SQL FETCH cur_employee
INTO :emp_number, :emp_name:indicator;

FETCH statement [ESQL] [SP]

194 Sybase IQ

Example 2 A procedure example:

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT Surname
FROM Employees;

DECLARE name CHAR(40) ;
OPEN cur_employee;
LOOP

FETCH NEXT cur_employee into name ;
 .
 .
 .

END LOOP
CLOSE cur_employee;

END

Usage FETCH retrieves one row from the named cursor.

The ARRAY clause allows wide fetches, which retrieve more than one row at a
time, and which might improve performance.

The cursor must have been previously opened.

One row from the result of SELECT is put into the variables in the variable list.
The correspondence from the select list to the host variable list is one-to-one.

One or more rows from the result of SELECT are put either into the variables
in the variable list or into the program data areas described by the named
SQLDA. In either case, the correspondence from the select list to either the
host variable list or the SQLDA descriptor array is one-to-one.

The INTO clause is optional. If it is not specified, then FETCH positions the
cursor only (see the following paragraphs).

An optional positional parameter can be specified that allows the cursor to be
moved before a row is fetched. The default is NEXT, which causes the cursor
to be advanced one row before the row is fetched. PRIOR causes the cursor to
be backed up one row before fetching.

RELATIVE positioning is used to move the cursor by a specified number of
rows in either direction before fetching. A positive number indicates moving
forward and a negative number indicates moving backwards. Thus, a NEXT is
equivalent to RELATIVE 1 and PRIOR is equivalent to RELATIVE -1. RELATIVE
0 retrieves the same row as the last fetch statement on this cursor.

The ABSOLUTE positioning parameter is used to go to a particular row. A zero
indicates the position before the first row. See Chapter 1, “Using Procedures
and Batches” in the System Administration Guide: Volume 2.

CHAPTER 1 SQL Statements

Reference: Statements and Options 195

A one (1) indicates the first row, and so on. Negative numbers are used to
specify an absolute position from the end of the cursor. A negative one (-1)
indicates the last row of the cursor. FIRST is a short form for ABSOLUTE 1.
LAST is a short form for ABSOLUTE -1.

Note Sybase IQ handles the FIRST, LAST, ABSOLUTE, and negative
RELATIVE options less efficiently than some other DBMS products, so there is
a performance impact when using them.

OPEN initially positions the cursor before the first row.

A cursor declared FOR READ ONLY sees the version of table(s) on which the
cursor is declared when the cursor is opened, not the version of table(s) at the
time of the first FETCH

If the fetch includes a positioning parameter and the position is outside the
allowable cursor positions, then the SQLE_NOTFOUND warning is issued.

The IQ CACHE clause specifies the maximum number of rows buffered in the
FIFO queue. If you do not specify a value for it, the value of the
CURSOR_WINDOW_ROWS database option is used. The default setting of
CURSOR_WINDOW_ROWS is 200.

Using the FETCH and OPEN statements in Embedded SQL

The following clauses are for use in Embedded SQL only:

• USING DESCRIPTOR sqlda-name

• INTO host-variable-list

• PURGE

• BLOCK n

• ARRAY fetch-count

• Use of host-variable in cursor-name and row-count.

DECLARE CURSOR must appear before FETCH in the C source code, and the
OPEN statement must be executed before FETCH. If a host variable is being
used for the cursor name, then the DECLARE statement actually generates code
and thus must be executed before FETCH.

FETCH statement [ESQL] [SP]

196 Sybase IQ

In the multiuser environment, rows can be fetched by the client more than one
at a time. This is referred to as block fetching or multirow fetching. The first
fetch causes several rows to be sent back from the server. The client buffers
these rows and subsequent fetches are retrieved from these buffers without a
new request to the server.

The BLOCK clause gives the client and server a hint as to how many rows may
be fetched by the application. The special value of 0 means the request is sent
to the server and a single row is returned (no row blocking).

The PURGE clause causes the client to flush its buffers of all rows and then
send the fetch request to the server. This fetch request may return a block of
rows.

If the SQLSTATE_NOTFOUND warning is returned on the fetch, then the
sqlerrd[2] field of the SQLCA (SQLCOUNT) contains the number of rows
that the attempted fetch exceeded the allowable cursor positions. (A cursor can
be on a row, before the first row or after the last row.) The value is 0 if the row
was not found but the position is valid, for example, executing FETCH
RELATIVE 1 when positioned on the last row of a cursor. The value is positive
if the attempted fetch was further beyond the end of the cursor, and negative if
the attempted fetch was further before the beginning of the cursor.

After successful execution of the FETCH statement, the sqlerrd[1] field of the
SQLCA (SQLIOCOUNT) is incremented by the number of input/output
operations required to perform the fetch. This field is actually incremented on
every database statement.

To use wide fetches in Embedded SQL, include the FETCH statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count nnn
can be a host variable. The SQLDA must contain nnn * (columns per row)
variables. The first row is placed in SQLDA variables 0 to (columns per row)-
1, and so on.

The server returns in SQLCOUNT the number of records fetched and always
returns a SQLCOUNT greater than zero unless there is an error. Older versions
of the server only return a single row and the SQLCOUNT is set to zero. Thus
a SQLCOUNT of zero with no error condition indicates one valid row has been
fetched.

Side effects

None.

CHAPTER 1 SQL Statements

Reference: Statements and Options 197

Standards • SQL92 Entry-level feature. Use in procedures is a Persistent Stored
Module feature.

• Sybase Supported in Adaptive Server Enterprise.

Permissions The cursor must be opened and the user must have SELECT permission on the
tables referenced in the declaration of the cursor.

See also CURSOR_WINDOW_ROWS option on page 370

DECLARE CURSOR statement [ESQL] [SP] on page 159

OPEN statement [ESQL] [SP] on page 260

PREPARE statement [ESQL] on page 268

FOR statement
Description Repeats the execution of a statement list once for each row in a cursor.

Syntax [statement-label:]
FOR for-loop-name AS cursor-name [cursor-type] CURSOR

{ FOR statement
... [{ FOR { UPDATE cursor-concurrency | FOR READ ONLY }]

| USING variable-name }
DO statement-list

END FOR [statement-label]

Parameters cursor-type:
NO SCROLL
| DYNAMIC SCROLL
| SCROLL
| INSENSITIVE
| SENSITIVE

cursor-concurrency:
BY { VALUES | TIMESTAMP | LOCK]

variable-name:
identifier

FOR statement

198 Sybase IQ

Examples The following fragment illustrates the use of the FOR loop:

FOR names AS curs CURSOR FOR
SELECT Surname
FROM Employees
DO

CALL search_for_name(Surname);
END FOR;

Usage FOR is a control statement that lets you execute a list of SQL statements once
for each row in a cursor. The FOR statement is equivalent to a compound
statement with a DECLARE for the cursor and a DECLARE of a variable for each
column in the result set of the cursor followed by a loop that fetches one row
from the cursor into the local variables and executes statement-list once for
each row in the cursor.

For descriptions of the cursor-type parameters and more examples, see “FOR
statement” in SQL Anywhere Server – SQL Reference > Using SQL > SQL
statements > SQL statements (E-O).

The name and data type of the local variables that are declared are derived from
the statement used in the cursor. With a SELECT statement, the data type is the
data type of the expressions in the select list. The names are the select list item
aliases where they exist; otherwise, they are the names of the columns. Any
select list item that is not a simple column reference must have an alias. With
a CALL statement, the names and data types are taken from the RESULT clause
in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement
after the END FOR. If the ending statement-label is specified, it must match the
beginning statement-label.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

FETCH statement [ESQL] [SP] on page 193

LEAVE statement on page 229

LOOP statement on page 255

CHAPTER 1 SQL Statements

Reference: Statements and Options 199

FORWARD TO statement
Description Sends native syntax to a remote server.

Syntax Syntax 1

FORWARD TO server-name { sql-statement }

Syntax 2

FORWARD TO [server-name]

Examples Shows a passthrough session with the remote server ase_prod:

FORWARD TO aseprod
SELECT * from titles
SELECT * from authors
FORWARD TO

Usage The FORWARD TO statement enables users to specify the server to which a
passthrough connection is required. The statement can be used in two ways:

• To send a statement to a remote server (Syntax 1)

• To place Sybase IQ into passthrough mode for sending a series of
statements to a remote server (Syntax 2)

When establishing a connection to server-name on behalf of the user, the server
uses:

• A remote login alias set using CREATE EXTERNLOGIN

• If a remote login alias is not set up, the name and password used to
communicate with Sybase IQ.

If the connection cannot be made to the server specified, the reason is
contained in a message returned to the user.

After statements are passed to the requested server, any results are converted
into a form that can be recognized by the client program.

server-name is the name of the remote server.

sql-statement is a command in the native syntax of the remote server. The
command or group of commands is enclosed in curly braces ({}) or single
quotes.

FROM clause

200 Sybase IQ

When you specify a server_name, but do not specify a statement in the
FORWARD TO query, your session enters passthrough mode, and all
subsequent queries are passed directly to the remote server. To turn
passthrough mode off, issue FORWARD TO without a server_name
specification.

Note The FORWARD TO statement is a server directive and cannot be used in
stored procedures, triggers, events, or batches.

Side effects

The remote connection is set to AUTOCOMMIT (unchained) mode for the
duration of the FORWARD TO session. Any work that was pending prior to the
FORWARD TO statement is automatically committed.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also CREATE SERVER statement on page 130

FROM clause
Description Specifies the database tables or views involved in a SELECT statement.

Syntax ... FROM table-expression [, …]

Parameters table-expression:
{ table-spec
| table-expression join-type table-spec [ON condition]
| (table-expression [, …]) }

table-spec:
{ [userid.] table-name [[AS] correlation-name]
| select-statement [AS correlation-name (column-name [, …])] }

CHAPTER 1 SQL Statements

Reference: Statements and Options 201

join-type:
{ CROSS JOIN
| [NATURAL | KEY] JOIN
| [NATURAL | KEY] INNER JOIN
| [NATURAL | KEY] LEFT OUTER JOIN
| [NATURAL | KEY] RIGHT OUTER JOIN
| [NATURAL | KEY] FULL OUTER JOIN }

Examples Example 1 The following are valid FROM clauses:

...
FROM Employees
...
...
FROM Employees NATURAL JOIN Departments
...
...
FROM Customers
KEY JOIN SalesOrders
KEY JOIN SalesOrderItems
KEY JOIN Products
...

Example 2 The following query illustrates how to use derived tables in a
query:

SELECT Surname, GivenName, number_of_orders
FROM Customers JOIN
 (SELECT CustomerID, count(*)
 FROM SalesOrders
 GROUP BY CustomerID)
 AS sales_order_counts (CustomerID,
 number_of_orders)
ON (Customers.ID = sales_order_counts.cust_id)
WHERE number_of_orders > 3

Usage The SELECT statement requires a table list to specify which tables are used by
the statement.

Note Although this description refers to tables, it also applies to views unless
otherwise noted.

The FROM table list creates a result set consisting of all the columns from all
the tables specified. Initially, all combinations of rows in the component tables
are in the result set, and the number of combinations is usually reduced by join
conditions and/or WHERE conditions.

FROM clause

202 Sybase IQ

A SELECT statement can also return a result set from a procedure. Note that
CIS functional compensation performance considerations apply. For syntax
and an example, see “FROM clause” in SQL Anywhere Server – SQL
Reference > Using SQL > SQL statements > SQL statements (E-O).

The join-type keywords are described in Table 1-9.

Table 1-9: FROM clause join-type keywords

Do not mix comma-style joins and keyword-style joins in the FROM clause.
The same query can be written two ways, each using one of the join styles. The
ANSI syntax keyword style join is preferable.

The following query uses a comma-style join:

SELECT *
FROM Products pr, SalesOrders so, SalesOrderItems si
WHERE pr.ProductID = so.ProductID

AND pr.ProductID = si.ProductID;

The same query can use the preferable keyword-style join:

SELECT *
FROM Products pr INNER JOIN SalesOrders so

ON (pr.ProductID = so.ProductID)
INNER JOIN SalesOrderItems si

ON (pr.ProductID = si.ProductID);

join-type keyword Description

CROSS JOIN Returns the Cartesian product (cross product) of the
two source tables

NATURAL JOIN Compares for equality all corresponding columns with
the same names in two tables (a special case equijoin;
columns are of same length and data type)

KEY JOIN Restricts foreign-key values in the first table to be
equal to the primary-key values in the second table

INNER JOIN Discards all rows from the result table that do not have
corresponding rows in both tables

LEFT OUTER JOIN Preserves unmatched rows from the left table, but
discards unmatched rows from the right table

RIGHT OUTER JOIN Preserves unmatched rows from the right table, but
discards unmatched rows from the left table

FULL OUTER JOIN Retains unmatched rows from both the left and the
right tables

CHAPTER 1 SQL Statements

Reference: Statements and Options 203

The ON clause filters the data of inner, left, right, and full joins. Cross joins do
not have an ON clause. In an inner join, the ON clause is equivalent to a WHERE
clause. In outer joins, however, the ON and WHERE clauses are different. The
ON clause in an outer join filters the rows of a cross product and then includes
in the result the unmatched rows extended with nulls. The WHERE clause then
eliminates rows from both the matched and unmatched rows produced by the
outer join. You must take care to ensure that unmatched rows you want are not
eliminated by the predicates in the WHERE clause.

You cannot use subqueries inside an outer join ON clause.

For information on writing Transact-SQL compatible joins, see Appendix A,
“Compatibility with Other Sybase Databases” in Reference: Building Blocks,
Tables, and Procedures.

Tables owned by a different user can be qualified by specifying the userid.
Tables owned by groups to which the current user belongs are found by default
without specifying the user ID.

The correlation name is used to give a temporary name to the table for this SQL
statement only. This is useful when referencing columns that must be qualified
by a table name but the table name is long and cumbersome to type. The
correlation name is also necessary to distinguish between table instances when
referencing the same table more than once in the same query. If no correlation
name is specified, then the table name is used as the correlation name for the
current statement.

If the same correlation name is used twice for the same table in a table
expression, that table is treated as if it were only listed once. For example, in:

SELECT *
FROM SalesOrders
KEY JOIN SalesOrderItems,
SalesOrders
KEY JOIN Employees

The two instances of the SalesOrders table are treated as one instance that is
equivalent to:

SELECT *
FROM SalesOrderItems
KEY JOIN SalesOrders
KEY JOIN Employees

FROM clause

204 Sybase IQ

By contrast, the following is treated as two instances of the Person table, with
different correlation names HUSBAND and WIFE.

SELECT *
FROM Person HUSBAND, Person WIFE

You can supply a SELECT statement instead of one or more tables or views in
the FROM clause, letting you use groups on groups, or joins with groups,
without creating a view. This use of SELECT statements is called derived
tables.

Join columns require like data types for optimal performance.

Depending on the query, Sybase IQ allows between 16 and 64 tables in the
FROM clause with the optimizer turned on; however, performance might suffer
if you have more than 16 to 18 tables in the FROM clause in very complex
queries.

Note If you omit the FROM clause, or if all tables in the query are in the
SYSTEM dbspace, the query is processed by SQL Anywhere instead of Sybase
IQ and might behave differently, especially with respect to syntactic and
semantic restrictions and the effects of option settings. See the SQL Anywhere
documentation for rules that might apply to processing.

If you have a query that does not require a FROM clause, you can force the
query to be processed by Sybase IQ by adding the clause “FROM iq_dummy,”
where iq_dummy is a one-row, one-column table that you create in your
database.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase The JOIN clause is not supported in some versions of Adaptive
Server Enterprise. Instead, you must use the WHERE clause to build joins.

Permissions Must be connected to the database.

See also DELETE statement on page 169

SELECT statement on page 291

“Search conditions” in Chapter 2, “SQL Language Elements” in Reference:
Building Blocks, Tables, and Procedures

Chapter 2, “Using OLAP,” in the System Administration Guide: Volume 2

CHAPTER 1 SQL Statements

Reference: Statements and Options 205

GET DESCRIPTOR statement [ESQL]
Description Retrieves information about variables within a descriptor area, or retrieves

actual data from a variable in a descriptor area.

Syntax GET DESCRIPTOR descriptor-name
... { hostvar = COUNT } | VALUE n assignment [,…] }

Parameters assignment:
hostvar = { TYPE | LENGTH | PRECISION | SCALE | DATA
| INDICATOR | NAME | NULLABLE | RETURNED_LENGTH }

Examples For an example, see ALLOCATE DESCRIPTOR statement [ESQL] on page
4.

Usage The value n specifies the variable in the descriptor area about which
information is retrieved. Type checking is performed when doing GET … DATA
to ensure that the host variable and the descriptor variable have the same data
type. LONG VARCHAR and LONG BINARY are not supported by GET
DESCRIPTOR ... DATA.

If an error occurs, it is returned in the SQLCA.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None

See also DEALLOCATE DESCRIPTOR statement [ESQL] on page 156

SET DESCRIPTOR statement [ESQL] on page 307

GOTO statement [T-SQL]
Description Branches to a labeled statement.

Syntax label:
GOTO label

GRANT statement

206 Sybase IQ

Examples The following Transact-SQL batch prints the message “yes” on the server
window four times:

declare @count smallint
select @count = 1
restart:

print 'yes'
select @count = @count + 1
while @count <=4
 goto restart

Usage Any statement in a Transact-SQL procedure or batch can be labeled. The label
name is a valid identifier followed by a colon. In the GOTO statement, the colon
is not used.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Adaptive Server Enterprise supports the GOTO statement.

Permissions None.

GRANT statement
Description Gives permissions to specific users and creates new user IDs.

Syntax Syntax 1

GRANT CONNECT TO userid [, …] IDENTIFIED BY password [, …]

Syntax 2

GRANT
{ DBA
| GROUP
| MEMBERSHIP IN GROUP userid [, …]
| RESOURCE | ALL }
... TO userid [, …]

CHAPTER 1 SQL Statements

Reference: Statements and Options 207

Syntax 3

GRANT
{ ALL [PRIVILEGES]
| ALTER
| DELETE
| INSERT
| REFERENCES [(column-name [, …])]
| SELECT [(column-name [, …])]
| UPDATE [(column-name,...)]
... ON [owner.]table-name TO userid [, …]
[WITH GRANT OPTION] [FROM userid]

Syntax 4

GRANT EXECUTE ON [owner.]procedure-name TO userid [, …]

Syntax 5

GRANT INTEGRATED LOGIN TO user_profile_name [, …] AS USER
userid

Syntax 6

GRANT CREATE ON dbspace_name TO userid [, …]

Syntax 7

GRANT KERBEROS LOGIN TO client-Kerberos-principal, ...

AS USER userid

Examples Example 1 Makes two new users for the database:

GRANT
CONNECT TO Laurel, Hardy
IDENTIFIED BY Stan, Ollie

Example 2 Grants permissions on the Employees table to user Laurel:

GRANT
SELECT, INSERT, DELETE
ON Employees
TO Laurel

Example 3 Allows the user Hardy to execute the Calculate_Report procedure:

GRANT
EXECUTE ON Calculate_Report
TO Hardy

GRANT statement

208 Sybase IQ

Example 4 Gives users Lawrence and Swift CREATE permission on dbspace
DspHist:

GRANT
CREATE ON DspHist
TO LAWRENCE, SWIFT

Example 5 Grants CREATE privilege on dbspace DspHist to users Fiona and
Ciaran:

GRANT CREATE ON DspHist TO Fiona, Ciaran

Usage The GRANT statement is used to grant database permissions to individual user
IDs and groups. It is also used to create and delete users and groups.

Syntax 1 and 2 of the GRANT statement are used for granting special privileges
to users as follows:

Syntax 6 gives CREATE permission on the specified dbspace to the specified
user(s) and/or group(s).

CONNECT TO userid,... Creates a new user. GRANT CONNECT can also be
used by any user to change their own password.

Note Sybase recommends using the CREATE USER statement to create users.
See CREATE USER statement on page 151.

To create a user with the empty string as the password, enter:

GRANT CONNECT TO userid IDENTIFIED BY ""

If you have DBA authority, you can change the password of any existing user
with the following command:

GRANT CONNECT TO userid IDENTIFIED BY password

You can also use the same command to add a new user. For this reason, if you
inadvertently enter the user ID of an existing user when you mean to add a new
user, you are actually changing the password of the existing user. You do not
receive a warning because this behavior is considered normal. This behavior
differs from pre-version 12 Sybase IQ.

CHAPTER 1 SQL Statements

Reference: Statements and Options 209

To avoid this situation, use the system procedures sp_addlogin and sp_adduser
to add users. These procedures give you an error if you try to add an existing
user ID, as in Adaptive Server Enterprise, and pre-version 12 Sybase IQ.

Note If Login Management is enabled for the database, you must use system
procedures, not GRANT and REVOKE, to add and remove user IDs.

To create a user with no password, enter:

GRANT CONNECT TO userid

The user ID is not case sensitive.

A user with no password cannot connect to the database. This is useful when
you are creating groups and you do not want anyone to connect to the group
user ID.

The password must be a valid identifier, as described in “Identifiers” in
Chapter 2, “SQL Language Elements” in Reference: Building Blocks, Tables,
and Procedures. Passwords have a maximum length of 255 bytes. If the
database option VERIFY_PASSWORD_FUNCTION is set to a value other than
the empty string, the GRANT CONNECT TO userid IDENTIFIED BY password
statement calls the function identified by the option value. The function returns
NULL to indicate that the password conforms to rules. If the
VERIFY_PASSWORD_FUNCTION option is set, you can specify only one
userid and password with the GRANT CONNECT statement. For details, see
“VERIFY_PASSWORD_FUNCTION option” on page 469.

The following are invalid for database user IDs and passwords:

• Names that begin with white space or single or double quotes

• Names that end with white space

• Names that contain semicolons

DBA Database Administrator authority gives a user permission to do
anything. This is usually reserved for the person in the organization who is
looking after the database.

GROUP Allows users to have members. See Chapter 8, “Managing User IDs
and Permissions,” in the System Administration Guide: Volume 1 for a
complete description.

MEMBERSHIP IN GROUP userid,… Allows users to inherit table
permissions from a group and to reference tables created by the group without
qualifying the table name.

GRANT statement

210 Sybase IQ

If you do not want a specific user to access a particular table, view, or
procedure, then do not make that user a member of a group that has permissions
on that object.

Syntax 3 of the GRANT statement is used to grant permission on individual
tables or views. You can list the table permissions together, or specify ALL to
grant all six permissions at once. The permissions have the following meaning:

RESOURCE Allows the user to create tables and views. In syntax 2, ALL is a
synonym for RESOURCE, which is compatible with Adaptive Server
Enterprise.

ALL In syntax 3, this grants all of the permissions outlined below.

ALTER Users can alter this table with the ALTER TABLE statement. This
permission is not allowed for views.

DELETE Users can delete rows from this table or view.

INSERT Users can insert rows into the named table or view.

REFERENCES [(column-name,...)] Users can create indexes on the named
tables, and foreign keys that reference the named tables. If column names are
specified, then users can reference only those columns. REFERENCES
permissions on columns cannot be granted for views, only for tables.

SELECT [(column-name,...)] Users can look at information in this view or
table. If column names are specified, then the users can look at only those
columns. SELECT permissions on columns cannot be granted for views, only
for tables.

UPDATE [(column-name,...)] Users can update rows in this view or table. If
column names are specified, users can update only those columns. UPDATE
permissions on columns cannot be granted for views, only for tables. To update
a table, users must have both SELECT and UPDATE permission on the table.

For example, to grant SELECT and UPDATE permissions on the Employees
table to user Laurel, enter:

GRANT
SELECT, UPDATE (street)
ON Employees
TO Laurel

If WITH GRANT OPTION is specified, then the named user ID is also given
permission to GRANT the same permissions to other user IDs.

Syntax 4 of the GRANT statement is used to grant permission to execute a
procedure.

CHAPTER 1 SQL Statements

Reference: Statements and Options 211

Syntax 5 of the GRANT statement creates an explicit integrated login mapping
between one or more Windows user profiles and an existing database user ID,
allowing users who successfully log in to their local machine to connect to a
database without having to provide a user ID or password.

Syntax 6 grants CREATE permission to the specified user(s) or group(s).

Syntax 7 creates a Kerberos authenticated login mapping from one or more
Kerberos principals to an existing database user ID. This allows users who
have successfully logged in to Kerberos (users who have a valid Kerberos
ticket-granting ticket) to connect to a database without having to provide a user
ID or password. For more information on this syntax, see “GRANT statement”
in SQL Anywhere Server – SQL Reference > Using SQL > SQL statements >
SQL statements (E-O).

Side effects

Automatic commit.

Standards • SQL92 Syntax 3 is an entry-level feature. Syntax 4 is a Persistent Stored
Module feature. Other syntaxes are vendor extensions.

• Sybase Syntax 2 and 3 are supported in Adaptive Server Enterprise. The
security model is different in Adaptive Server Enterprise and Sybase IQ,
so other syntaxes differ.

Permissions • For Syntax 1 or 2, one of the three following conditions must be met:

• You are changing your own password using GRANT CONNECT

• You are adding members to your own user ID

• You have DBA authority

If you are changing another user’s password, the other user cannot be
connected to the database.

• For Syntax 3, one of the following conditions must be met:

• You created the table

• You have been granted permissions on the table with GRANT OPTION

• You have DBA authority

• For Syntax 4, one of the following conditions must be met:

• You created the procedure

• You have DBA authority

• For Syntax 5, you must have DBA authority.

IF statement

212 Sybase IQ

• For Syntax 6, you must have DBA authority.

• For Syntax 7, you must have DBA authority.

See also REVOKE statement on page 287

IF statement
Description Provides conditional execution of SQL statements.

Syntax IF search-condition THEN statement-list
... [ELSE IF search-condition THEN statement-list]...
... [ELSE statement-list]
... END IF

Examples The following procedure illustrates the use of the IF statement:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION
FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR
SELECT CompanyName, CAST(

sum(SalesOrderItems.Quantity *
Products.UnitPrice) AS INTEGER) VALUE
FROM Customers
LEFT OUTER JOIN SalesOrders
LEFT OUTER JOIN SalesOrsderItems
LEFT OUTER JOIN Product
GROUP BY CompanyName ;

DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN

CHAPTER 1 SQL Statements

Reference: Statements and Options 213

SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;

END IF ;
END LOOP CustomerLoop ;
CLOSE curThisCust ;

END

Usage The IF statement lets you conditionally execute the first list of SQL statements
whose search-condition evaluates to TRUE. If no search-condition evaluates
to TRUE, and an ELSE clause exists, the statement-list in the ELSE clause is
executed. If no search-condition evaluates to TRUE, and there is no ELSE
clause, the expression returns a NULL value.

Execution resumes at the first statement after the END IF.

When comparing variables to the single value returned by a SELECT statement
inside an IF statement, you must first assign the result of the SELECT to another
variable.

IF statement is different from IF expression
Do not confuse the syntax of the IF statement with that of the IF expression.

For information on the IF expression, see “Expressions” in Chapter 2, “SQL
Language Elements” in Reference: Building Blocks, Tables, and Procedures.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase The Transact-SQL IF statement has a slightly different syntax.

Permissions None.

See also BEGIN … END statement on page 47

IF statement [T-SQL]
Description Provides conditional execution of a Transact-SQL statement, as an alternative

to the Sybase IQ IF statement.

Syntax IF expression
... statement
... [ELSE [IF expression] statement]...

IF statement [T-SQL]

214 Sybase IQ

Examples Example 1 The following example illustrates the use of the Transact-SQL IF
statement:

IF (SELECT max(id) FROM sysobjects) < 100
RETURN

ELSE
BEGIN

PRINT 'These are the user-created objects'
SELECT name, type, id
FROM sysobjects
WHERE id < 100

END

Example 2 The following two statement blocks illustrate Transact-SQL and
Sybase IQ compatibility:

/* Transact-SQL IF statement */
IF @v1 = 0

PRINT '0'
ELSE IF @v1 = 1

PRINT '1'
ELSE

PRINT 'other'
/* IQ IF statement */
IF v1 = 0 THEN

PRINT '0'
ELSEIF v1 = 1 THEN

PRINT '1'
ELSE

PRINT 'other'
END IF

Usage The Transact-SQL IF conditional and the ELSE conditional each control the
performance of only a single SQL statement or compound statement (between
the keywords BEGIN and END).

In contrast to the Sybase IQ IF statement, the Transact-SQL IF statement has
no THEN. The Transact-SQL version also has no ELSE IF or END IF keywords.

When comparing variables to the single value returned by a SELECT statement
inside an IF statement, you must first assign the result of the SELECT to another
variable.

Side effects

None.

CHAPTER 1 SQL Statements

Reference: Statements and Options 215

Standards • SQL92 Transact-SQL extension.

• Sybase Adaptive Server Enterprise supports the Transact-SQL IF
statement.

Permissions None

INCLUDE statement [ESQL]
Description Includes a file into a source program to be scanned by the SQL source language

preprocessor.

Syntax INCLUDE filename

Parameters filename:
identifier

Usage The INCLUDE statement is very much like the C preprocessor #include
directive. However, the SQL preprocessor reads the given file, inserting its
contents into the output C file. Thus, if an include file contains information that
the SQL preprocessor requires, it should be included with the Embedded SQL
INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. Any C
program using Embedded SQL must contain the following statement before
any Embedded SQL statements:

EXEC SQL INCLUDE SQLCA;

This statement must appear at a position in the C program where static variable
declarations are allowed. Many Embedded SQL statements require variables
(invisible to the programmer) which are declared by the SQL preprocessor at
the position of the SQLCA include statement. The SQLDA file must be
included if any SQLDAs are used.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None

INSERT statement

216 Sybase IQ

INSERT statement
Description Inserts into a table either a single row (Syntax 1) or a selection of rows (Syntax

2) from elsewhere in the current database. Inserts a selection of rows from
another database (Syntax 3).

Syntax Syntax 1

INSERT [INTO] [owner.]table-name [(column-name [, …])]
... { DEFAULT VALUES | VALUES ([expression | DEFAULT,…)] }

Syntax 2

INSERT [INTO] [owner.]table-name [(column-name [, …])]
... insert-load-options insert-select-load-options
... select-statement

Syntax 3

INSERT [INTO] [owner.]table-name[(column-name [, …])]
... insert-load-options insert-select-load-options
LOCATION 'servername.dbname'
[location-options]
... { { select-statement } | ‘select statement’ }

Parameters insert-load-options:
[LIMIT number-of-rows]
[NOTIFY number-of-rows]
[SKIP number-of-rows]
[START ROW ID number]

 insert-select-load-options:
[WORD SKIP number]
[IGNORE CONSTRAINT constrainttype [, …]]
[MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG logwhat [, …]]]
[LOG DELIMITED BY ‘string’]

constrainttype:
{ CHECK integer
| UNIQUE integer
| NULL integer
| FOREIGN KEY integer
| DATA VALUE integer
| ALL integer }

logwhat:
{ CHECK | ALL | NULL | UNIQUE | DATA VALUE | FOREIGN KEY | WORD }

CHAPTER 1 SQL Statements

Reference: Statements and Options 217

location-options:
[ENCRYPTED PASSWORD]
[PACKETSIZE packet-size]
[QUOTED_IDENTIFIER { ON | OFF }]
[ISOLATION LEVEL { READ UNCOMMITTED | READ
COMMITTTED | SERIALIZABLE }]

Examples Example 1 Adds an Eastern Sales department to the database:

INSERT INTO Departments
(DepartmentID, DepartmentName, DepartmentHeadID)
VALUES (600, 'Eastern Sales', 501)

Example 2 Fills the table dept_head with the names of department heads and
their departments:

INSERT INTO dept_head (name, dept)
NOTIFY 20
SELECT Surname || ' ' || GivenName
AS name,
dept_name

FROM Employees JOIN Departments
ON EmployeeID= DepartmentHeadID

Example 3 Inserts data from the l_shipdate and l_orderkey columns of the
lineitem table from the Sybase IQ database iqdet on the remote server detroit into
the corresponding columns of the lineitem table in the current database:

INSERT INTO lineitem
(l_shipdate, l_orderkey)
LOCATION 'detroit.iqdet'
PACKETSIZE 512
' SELECT l_shipdate, l_orderkey

FROM lineitem '

Usage Syntax 1 allows the insertion of a single row with the specified expression
values. If the list of column names is not specified, the values are inserted into
the table columns in the order they were created (the same order as retrieved
with SELECT *). The row is inserted into the table at an arbitrary position. (In
relational databases, tables are not ordered.)

INSERT statement

218 Sybase IQ

Syntax 2 allows the user to do mass insertion into a table with the results of a
fully general SELECT statement. Insertions are done in an arbitrary order
unless the SELECT statement contains an ORDER BY clause. The columns
from the select list are matched ordinally with the columns specified in the
column list, or sequentially in the order in which the columns were created.

Note The NUMBER(*) function is useful for generating primary keys with
Syntax 2 of the INSERT statement. See Chapter 4, “SQL Functions” in
Reference: Building Blocks, Tables, and Procedures.

Syntax 3 INSERT...LOCATION is a variation of Syntax 2 that allows you to
insert data from an Adaptive Server Enterprise or Sybase IQ database. The
servername.dbname specified in the LOCATION clause identifies the remote
server and database for the table in the FROM clause. To use Syntax 3, the
Adaptive Server Enterprise or Sybase IQ remote server to which you are
connecting must exist in the Sybase Open Client interfaces or sql.ini file on the
local machine.

In queries using Syntax 3, you can insert a maximum of 2147483647 rows.

The SELECT statement can be delimited by either curly braces or straight
single quotation marks. (Curly braces represent the start and end of an escape
sequence in the ODBC standard, and might generate errors in the context of
ODBC.)

The local Sybase IQ server connects to the server and database you specify in
the LOCATION clause. The results from the queries on the remote tables are
returned and the local server inserts the results in the current database. If you
do not specify a server name in the LOCATION clause, Sybase IQ ignores any
database name you specify, since the only choice is the current database on the
local server.

When Sybase IQ connects to the remote server, INSERT...LOCATION uses the
remote login for the user ID of the current connection, if a remote login has
been created with CREATE EXTERNLOGIN and the remote server has been
defined with a CREATE SERVER statement. If the remote server is not defined
or a remote login has not been created for the user ID of the current connection,
Sybase IQ connects using the user ID and password of the current connection.

Creating a remote login with the CREATE EXTERNLOGIN statement and
defining a remote server with a CREATE SERVER statement sets up an external
login and password for INSERT...LOCATION such that any user can use the
login and password in any context. This avoids possible errors due to
inaccessibility of the login or password.

CHAPTER 1 SQL Statements

Reference: Statements and Options 219

For example, user russid connects to the Sybase IQ database and executes the
following statement:

INSERT local_SQL_Types LOCATION ‘ase1.ase1db’
{SELECT int_col FROM SQL_Types};

On server ase1, there exists user ID ase1user with password sybase. The
owner of the table SQL_Types is ase1user. The remote server is defined on the
IQ server as follows:

CREATE SERVER ase1 CLASS ‘ASEJDBC’
USING ‘system1:4100’;

The external login is defined on the IQ server as follows:

CREATE EXTERNLOGIN russid TO ase1 REMOTE LOGIN ase1user
IDENTIFIED BY sybase;

INSERT...LOCATION connects to the remote server ase1 using the user ID
ase1user and the password sybase for user russid.

The ENCRYPTED PASSWORD parameter lets you specify the use of Open
Client Library default password encryption when connecting to a remote
server. If ENCRYPTED PASSWORD is specified and the remote server does not
support Open Client Library default password encryption, an error is reported
indicating that an invalid user ID or password was used. When used as a remote
server, Sybase IQ does not support this password encryption.

Note Password encryption requires Open Client 15.0.

The PACKETSIZE parameter specifies the TDS packet size in bytes. The
default TDS packet size on most platforms is 512 bytes. If your application is
receiving large amounts of text or bulk data across a network, then a larger
packet size might significantly improve performance.

The value of packet-size must be a multiple of 512 either equal to the default
network packet size or between the default network packet size and the
maximum network packet size. The maximum network packet size and the
default network packet size are multiples of 512 in the range 512 – 524288
bytes. The maximum network packet size is always greater than or equal to the
default network packet size. See the Adaptive Server Enterprise System
Administration Guide, Volume 1 for more information on network packet size.

If INSERT...LOCATION PACKETSIZE packet-size is not specified or is specified
as zero, then the default packet size value for the platform is used.

INSERT statement

220 Sybase IQ

When INSERT...LOCATION is transferring data between a Sybase IQ server and
a remote Sybase IQ or Adaptive Server Enterprise server, the value of the
INSERT...LOCATION TDS PACKETSIZE parameter is always equal to 512
bytes, even if you specify a different value for PACKETSIZE.

Note If you specify an incorrect packet size (for example 933, which is not a
multiple of 512), the connection attempt fails with an Open Client ct_connect
“Connection failed” error. Any unsuccessful connection attempt returns a
generic “Connection failed” message. The Adaptive Server Enterprise error
log might contain more specific information about the cause of the connection
failure.

The QUOTED_IDENTIFIER parameter lets you specify the setting of the
QUOTED_IDENTIFIER option on the remote server. The default setting is
‘OFF’. You set QUOTED_IDENTIFIER to ‘ON’ only if any of the identifiers in
the SELECT statement are enclosed in double quotes, as in the following
example using ‘c1’:

INSERT INTO foo
LOCATION 'ase.database'
QUOTED_IDENTIFIER ON {select "c1" from xxx};

The ISOLATION LEVEL parameter allows you to specify an isolation level for
the connection to a remote server.

Isolation level Characteristics

READ UNCOMMITTED • Isolation level 0

• Read permitted on row with or
without write lock

• No read locks are applied

• No guarantee that concurrent
transaction will not modify row or roll
back changes to row

READ COMMITTED • Isolation level 1

• Read only permitted on row with no
write lock

• Read lock acquired and held for read
on current row only, but released
when cursor moves off the row

• No guarantee that data will not change
during transaction

CHAPTER 1 SQL Statements

Reference: Statements and Options 221

For more information on isolation levels, see “Isolation levels and consistency”
in SQL Anywhere Server – SQL Usage > Creating Databases > Using
transactions and isolation levels.

Sybase IQ does not support the Adaptive Server Enterprise data type TEXT, but
you can execute INSERT...LOCATION (Syntax 3) from both an IQ CHAR or
VARCHAR column whose length is greater than 255 bytes, and from an ASE
database column of data type TEXT. ASE TEXT and IMAGE columns can be
inserted into columns of other Sybase IQ data types, if Sybase IQ supports the
internal conversion. By default, if a remote data column contains over 2GB,
Sybase IQ silently truncates the column value to 2GB.

 Warning! Sybase IQ does not support the Adaptive Server Enterprise data
types UNICHAR, UNIVARCHAR, or UNITEXT. If an INSERT...LOCATION
command from UNICHAR or UNITEXT to CHAR or CLOB columns in the
ISO_BINENG collation executes without error, the data in the columns may be
inconsistent. An error is reported in this situation, only if the conversion fails.

Users must be specifically licensed to use the Large Objects Management
functionality. For details on the Large Objects Management option, see Large
Objects Management in Sybase IQ.

Note If you use INSERT...LOCATION to insert data selected from a VARBINARY
column, set the LOAD_MEMORY_MB option on the local database to limit
memory used by the insert, and set ASE_BINARY_DISPLAY to OFF on the
remote database.

INSERT...LOCATION (Syntax 3) does not support the use of variables in the
SELECT statement.

Inserts can be done into views, provided the SELECT statement defining the
view has only one table in the FROM clause and does not contain a GROUP BY
clause, an aggregate function, or involve a UNION operation.

SERIALIZABLE • Isolation level 3

• Read only permitted on rows in result
without write lock

• Read locks acquired when cursor is
opened and held until transaction ends

Isolation level Characteristics

INSERT statement

222 Sybase IQ

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. Thus, a
string “Value” inserted into a table is always held in the database with an
uppercase V and the remainder of the letters lowercase. SELECT statements
return the string as Value. If the database is not case-sensitive, however, all
comparisons make Value the same as value, VALUE, and so on. Further, if a
single-column primary key already contains an entry Value, an INSERT of
value is rejected, as it would make the primary key not unique.

Whenever you execute an INSERT … LOCATION statement, Sybase IQ loads
the localization information needed to determine language, collation sequence,
character set, and date/time format. If your database uses a nondefault locale
for your platform, you must set an environment variable on your local client to
ensure that Sybase IQ loads the correct information.

If you set the LC_ALL environment variable, Sybase IQ uses its value as the
locale name. If LC_ALL is not set, Sybase IQ uses the value of the LANG
environment variable. If neither variable is set, Sybase IQ uses the default entry
in the locales file. For an example, see “Setting locales” in Chapter 11,
“International Languages and Character Sets” in the System Administration
Guide: Volume 1.

The DEFAULT VALUES and VALUES clauses allow you to specify the values to
insert. If you want to insert the default column values as specified in the
CREATE TABLE statement, specify DEFAULT VALUES. Specifying DEFAULT
VALUES is semantically equivalent to specifying the following explicit syntax:

INSERT [INTO} <tablename>
VALUES(default, default, ..., default)

where the number of default entries is equal to the number of columns in the
table.

You can also use the INSERT VALUES(DEFAULT ...) clause to insert into NULL
columns.

The LIMIT option specifies the maximum number of rows to insert into the table
from a query. The default is 0 for no limit. The maximum is 2GB -1.

The NOTIFY option specifies that you be notified with a message each time the
number of rows are successfully inserted into the table. The default is every
100,000 rows.

The SKIP option lets you define a number of rows to skip at the beginning of
the input tables for this insert. The default is 0.

CHAPTER 1 SQL Statements

Reference: Statements and Options 223

The START ROW ID option specifies the record identification number of a row
in the IQ table where it should start inserting. This option is used for partial-
width inserts, which are inserts into a subset of the columns in the table. By
default, new rows are inserted wherever there is space in the table, and each
insert starts a new row. Partial-width inserts need to start at an existing row.
They also need to insert data from the source table into the destination table
positionally by column, so you must specify the destination columns in the
same order as their corresponding source columns. The default is 0. For more
information about partial-width inserts, see Chapter 7, “Moving Data In and
Out of Databases” in the System Administration Guide: Volume 1.

The START ROW ID clause of the LOAD TABLE and the INSERT commands is
not allowed on a partitioned table.

Note Use the START ROW ID option for partial-width inserts only. If the
columns being loaded already contain data, the insert fails.

For information on the insert-select-load-options WORD SKIP, IGNORE
CONSTRAINT, MESSAGE LOG, ROW LOG, and LOG DELIMITED BY and the
constrainttype and logwhat parameters, see the LOAD TABLE statement on
page 230.

An INSERT on a multicolumn index must include all columns of the index.

Sybase IQ supports column DEFAULT values for INSERT...VALUES,
INSERT...SELECT, and INSERT...LOCATION. If a DEFAULT value is specified
for a column, this DEFAULT value is used as the value of the column in any
INSERT (or LOAD) statement that does not specify a value for the column.

For more information on the use of column DEFAULT values with inserts, see
“Using column defaults” in Chapter 9, “Ensuring Data Integrity” in the System
Administration Guide: Volume 1.

An INSERT from a stored procedure or function is not permitted, if the
procedure or function uses COMMIT, ROLLBACK, or some ROLLBACK TO
SAVEPOINT statements. For more information, see “Atomic compound
statements” and “Transactions and savepoints in procedures” in Chapter 1,
“Using Procedures and Batches” of the System Administration Guide: Volume
2.

Side effects

None.

INSTALL JAVA statement

224 Sybase IQ

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise (excluding the insert-
load-options).

Permissions Must have INSERT permission on the table.

See also DELETE statement on page 169

LOAD TABLE statement on page 230

SYNCHRONIZE JOIN INDEX statement on page 318

“Using the INSERT statement” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1

INSTALL JAVA statement
Description Makes Java classes available for use within a database.

Syntax INSTALL JAVA [install-mode] [JAR jar-name] FROM source

Parameters install-mode:
{ NEW | UPDATE }

source:
{ FILE filename | URL url-value }

Examples Example 1 Installs the user-created Java class named “Demo” by providing the
file name and location of the class:

INSTALL JAVA NEW
FROM FILE 'D:\JavaClass\Demo.class'

After installation, the class is referenced using its name. Its original file path
location is no longer used. For example, the following statement uses the class
installed in the previous statement:

CREATE VARIABLE d Demo

If the Demo class was a member of the package sybase.work, the fully
qualified name of the class must be used, for example:

CREATE VARIABLE d sybase.work.Demo

CHAPTER 1 SQL Statements

Reference: Statements and Options 225

Example 2 Installs all the classes contained in a zip file, and associates them
within the database with a JAR file name:

INSTALL JAVA
JAR 'Widgets'
FROM FILE 'C:\Jars\Widget.zip'

Again, the location of the zip file is not retained, and classes must be referenced
using the fully qualified class name (package name and class name).

Usage Install mode Specifying an install mode of NEW requires that the referenced
Java classes be new classes, rather than updates of currently installed classes.
An error occurs if a class with the same name exists in the database and the
NEW install mode is used.

Specifying UPDATE specifies that the referenced Java classes may include
replacements for Java classes already installed in the given database.

Connection must be dropped for update to take effect Updating a Java class
installed in a database takes effect immediately. However, the connection used
to execute the INSTALL JAVA UPDATE statement has access only to the older
version of the Java class until the connection is dropped.

Note A client application executing this statement should drop the database
connection used to execute the statement and reconnect to get access to the
latest version.

This applies to the DBISQL utility also. If you update a Java class by executing
the INSTALL statement from DBISQL, the new version is not available until
you disconnect from the database engine or server and reconnect.

If install mode is omitted, the default is NEW.

JAR If this is specified, the file-name or text-pointer must designate a JAR
file or a column containing a JAR. JAR files typically have extensions of .jar
or .zip.

Installed JAR and zip files can be compressed or uncompressed. However,
JAR files produced by the Sun JDK jar utility are not supported. Files
produced by other zip utilities are supported.

If the JAR option is specified, then the JAR is retained as a JAR after the
classes that it contains have been installed. That JAR is the associated JAR of
each of those classes. The set of JARs installed in a database with the JAR
option are called the retained JARs of the database.

INSTALL JAVA statement

226 Sybase IQ

Retained JARs are referenced in INSTALL and REMOVE statements. Retained
JARs have no effect on other uses of Java-SQL classes. Retained JARs are used
by the SQL system for requests by other systems for the class associated with
given data. If a requested class has an associated JAR, the SQL system can
supply that JAR, rather than the individual class.

jar-name is a character string value of length up to 255 bytes. jar-name is used
to identify the retained JAR in subsequent INSTALL, UPDATE, and REMOVE
statements.

source Specifies the location of the Java classes to be installed.

The formats supported for file-name include fully qualified file names, such as
'c:\libs\jarname.jar' and '/usr/u/libs/jarname.jar', and relative file names,
which are relative to the current working directory of the database server.

The filename must identify either a class file, or a JAR file.

Class availability

The class definition for each class is loaded by each connection’s VM the first
time that class is used. When you INSTALL a class, the VM on your connection
is implicitly restarted. Therefore, you have immediate access to the new class,
whether the INSTALL has an install-mode of NEW or UPDATE.

For other connections, the new class is loaded the next time a VM accesses the
class for the first time. If the class is already loaded by a VM, that connection
does not see the new class until the VM is restarted for that connection (for
example, with a STOP JAVA and START JAVA).

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions • Requires DBA permissions to execute the INSTALL statement.

• All installed classes can be referenced in any way by any user.

See also REMOVE statement on page 277

CHAPTER 1 SQL Statements

Reference: Statements and Options 227

IQ UTILITIES statement
Description Collects statistics on the buffer caches for a Sybase IQ database.

Syntax IQ UTILITIES { MAIN | PRIVATE }
[INTO] table-name
{ START MONITOR ['monitor-options']
| STOP MONITOR }

Parameters monitor-options:
{ -summary |
{ -append | -truncate }
-bufalloc |
-cache |
-cache_by_type |
-contention |
-debug |
-file_suffix suffix|
-io |
-interval seconds |
-threads }...

Examples Starts the buffer cache monitor and records activity for the IQ temp buffer
cache:

IQ UTILITIES PRIVATE INTO monitor START MONITOR '-cache
-interval 20'

Usage START MONITOR starts the IQ buffer cache monitor. For START and STOP
MONITOR, the table_name is a dummy table. You can specify any IQ base or
temporary table, although it is best to have a table that you use only for
monitoring. Results go to a text file, dbname.connection#-main-iqmon for
MAIN buffer cache results, or dbname.connection#-temp-iqmon for PRIVATE
(Temp) buffer cache results. Running the monitor again from the same
database and connection number overwrites previous results. To set the
directory location of the monitor output file, set the
MONITOR_OUTPUT_DIRECTORY option.

The monitor-options define the content and frequency of results. You can
specify more than one, and they must be enclosed with quotation marks.

• -summary displays summary information for both the main and temp
(private) buffer caches. This option is the default.

• -append | -truncate appends to the existing output file or truncates the
existing output file, respectively. Truncate is the default.

IQ UTILITIES statement

228 Sybase IQ

• -bufalloc displays information on the main or temp buffer allocator, which
reserves space in the buffer cache for objects like sorts, hashes, and
bitmaps.

• -cache displays main or temp buffer cache activity in detail.

• -cache_by_type produces the same results as -cache, but broken down by
IQ page type. This format is used mainly to supply information to Sybase
Technical Support.

• -contention displays many key buffer cache and memory manager locks.

• -debug displays all the information that is available to the performance
monitor, whether or not there is a standard display mode that covers the
same information. This option is used mainly to supply information to
Sybase Technical Support.

• -file_suffix suffix creates a monitor output file named
<dbname>.<connid>-<main_or_temp>-<suffix>. If you do not
specify a suffix, it defaults to iqmon.

• -io displays main or temp buffer cache I/O rates and data compression
ratios.

• -interval specifies the reporting interval in seconds. The default is every 60
seconds. The minimum is every 2 seconds.

• -threads displays information about processing threads.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise.

Permissions None

See also “sp_iqsysmon procedure” in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

MONITOR_OUTPUT_DIRECTORY option on page 422

Chapter 5, “Monitoring and Tuning Performance” in the Performance and
Tuning Guide for examples of monitor results

Chapter 1, “Using Procedures and Batches” in System Administration Guide:
Volume 2 for advanced use of IQ UTILITIES to create procedures that extend
the functionality of Sybase IQ system stored procedures

CHAPTER 1 SQL Statements

Reference: Statements and Options 229

LEAVE statement
Description Continues execution by leaving a compound statement or LOOP.

Syntax LEAVE statement-label

Examples Example 1 The following fragment shows how the LEAVE statement is used to
leave a loop:

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters (number)
VALUES (i) ;
IF i >= 10 THEN

LEAVE lbl ;
END IF ;
SET i = i + 1

END LOOP lbl

Example 2 The following fragment uses LEAVE in a nested loop:

outer_loop:
LOOP

SET i = 1;
inner_loop:
LOOP

...
SET i = i + 1;
IF i >= 10 THEN

LEAVE outer_loop
END IF

END LOOP inner_loop
END LOOP outer_loop

Usage LEAVE is a control statement that lets you leave a labeled compound statement
or a labeled loop. Execution resumes at the first statement after the compound
statement or loop.

The compound statement that is the body of a procedure has an implicit label
that is the same as the name of the procedure.

Side effects

None.

LOAD TABLE statement

230 Sybase IQ

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported in Adaptive Server Enterprise. The break
statement provides a similar feature for Transact-SQL compatible
procedures.

Permissions None

See also BEGIN … END statement on page 47

FOR statement on page 197

LOOP statement on page 255

LOAD TABLE statement
Description Imports data into a database table from an external file.

Syntax LOAD [INTO] TABLE [owner.]table-name
... (load-specification [, …])
... { FROM | USING [CLIENT] FILE }
{ 'filename-string' | filename-variable } [, …]
... [CHECK CONSTRAINTS { ON | OFF }]
... [DEFAULTS { ON | OFF }]
... [QUOTES OFF]
... ESCAPES OFF
... [FORMAT { ascii | binary | bcp }]
... [DELIMITED BY 'string']
... [STRIP { ON | OFF | RTRIM }]
... [WITH CHECKPOINT { ON | OFF }]
... [{ BLOCK FACTOR number | BLOCK SIZE number }]
... [BYTE ORDER { NATIVE | HIGH | LOW }]
... [LIMIT number-of-rows]
... [NOTIFY number-of-rows]
... [ON FILE ERROR { ROLLBACK | FINISH | CONTINUE }]
... [PREVIEW { ON | OFF }]
... [ROW DELIMITED BY 'delimiter-string']
... [SKIP number-of-rows]
... [WORD SKIP number]
... [START ROW ID number]
... [UNLOAD FORMAT]
... [ON PARTIAL INPUT ROW { ROLLBACK | CONTINUE }]
... [IGNORE CONSTRAINT constrainttype [, …]]
... [MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG logwhat [, …]]
... [LOG DELIMITED BY ‘string’]

CHAPTER 1 SQL Statements

Reference: Statements and Options 231

Parameters load-specification:
{ column-name [column-spec]
| FILLER (filler-type) }

column-spec:
{ ASCII (input-width)
| BINARY [WITH NULL BYTE]
| PREFIX { 1 | 2 | 4 }
| 'delimiter-string'
| DATE (input-date-format)
| DATETIME (input-datetime-format)
| ENCRYPTED (data-type ‘key-string’ [, ‘algorithm-string’])
| DEFAULT default-value }
[NULL ({ BLANKS | ZEROS | 'literal', …})]

filler-type:
{ input-width
| PREFIX { 1 | 2 | 4 }
| 'delimiter-string' }

constrainttype:
{ CHECK integer
| UNIQUE integer
| NULL integer
| FOREIGN KEY integer
| DATA VALUE integer
| ALL integer }

logwhat:
{ CHECK | ALL | NULL | UNIQUE | DATA VALUE | FOREIGN KEY | WORD }

LOAD TABLE statement

232 Sybase IQ

Examples Example 1 Loads data from one file into the Products table on a Windows
system. A tab is used as the column delimiter following the Description and
Color columns.

LOAD TABLE Producis
(IDASCII(6),
FILLER(1),
Name ASCII(15),
FILLER(1),
Description '\x09',
Size ASCII(2),
FILLER(1),
Color '\x09',
Quantity PREFIX 2,
UnitPrice PREFIX 2,
FILLER(2))
FROM 'C:\\mydata\\source1.dmp'
QUOTES OFF
ESCAPES OFF
BYTE ORDER LOW
NOTIFY 1000

Example 2 Loads data from a file, a.inp, on a client computer.

LOAD TABLE t1(c1,c2,filler(30))
USING CLIENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF
IGNORE CONSTRAINT UNIQUE 0, NULL 0
MESSAGE LOG 'c:\\client-data\\m.log'
ROW LOG 'c:\\client-data\\r.log'

ONLY LOG UNIQUE

Example 3 Loads data from two files into the product_new table (which allows
NULL values) on a UNIX system. The tab character is the default column
delimiter, and the newline character is the row delimiter.

LOAD TABLE product_new
(id,
name,
description,
size,
color '\x09' NULL('null', 'none', 'na'),
quantity PREFIX 2,
unit_price PREFIX 2)
FROM '/s1/mydata/source2.dump',
'/s1/mydata/source3.dump'
QUOTES OFF
ESCAPES OFF

CHAPTER 1 SQL Statements

Reference: Statements and Options 233

BLOCKSIZE 100000
FORMAT ascii
DELIMITED BY '\x09'
ON FILE ERROR CONTINUE
ROW DELIMITED BY '\n'

Example 4 Ignores 10 word-length violations; on the 11th, deploys the new
error and rolls back the load:

load table PTAB1(
ck1 ',' null ('NULL') ,
ck3fk2c2 ',' null ('NULL') ,
ck4 ',' null ('NULL') ,
ck5 ',' null ('NULL') ,
ck6c1 ',' null ('NULL') ,
ck6c2 ',' null ('NULL') ,
rid ',' null ('NULL'))

FROM 'ri_index_selfRI.inp'
row delimited by '\n'
LIMIT 14 SKIP 10
IGNORE CONSTRAINT UNIQUE 2, FOREIGN KEY 8
word skip 10 quotes off escapes off strip
off

Example 5 Loads data into table t1from the BCP character file bcp_file.bcp
using the FORMAT BCP load option:

LOAD TABLE t1 (c1, c2, c3)
FROM ‘bcp_file.bcp’
FORMAT BCP
...

Example 6 The following LOAD TABLE statement loads default values 12345
into c1 using the DEFAULT load option and loads c2 and c3 with data from the
LoadConst04.dat file:

LOAD TABLE t1 (c1 DEFAULT ‘12345 ’, c2, c3, filler(1))
FROM ‘LoadConst04.dat’
STRIP OFF
QUOTES OFF
ESCAPES OFF
DELIMITED BY ‘,’;

LOAD TABLE statement

234 Sybase IQ

Example 7 The following LOAD TABLE statement loads c1 and c2 with data
from the file bcp_file.bcp using the FORMAT BCP load option and sets c3 to the
value 10.

LOAD TABLE t1 (c1, c2, c3 DEFAULT ‘10’)
FROM ‘bcp_file.bcp’
FORMAT BCP
QUOTES OFF
ESCAPES OFF;

Usage The LOAD TABLE statement allows efficient mass insertion into a database
table from a file with ASCII or binary data.

The LOAD TABLE options also let you control load behavior when integrity
constraints are violated and to log information about the violations.

You can use LOAD TABLE on a temporary table, but the temporary table must
have been declared with ON COMMIT PRESERVE ROWS, or the next COMMIT
removes the rows you have loaded.

You can also specify more than one file to load data. In the FROM clause, you
specify each filename-string separated by commas. Sybase IQ does not
guarantee that all the data can be loaded because of memory constraints. If
memory allocation fails, the entire load transaction is rolled back. The files are
read one at a time, and processed in the order specified in the FROM clause.
Any SKIP or LIMIT value only applies in the beginning of the load, not for
each file.

Note When loading a multiplex database, use absolute (fully qualified) paths
in all file names. Do not use relative path names.

Sybase IQ supports loading from both ASCII and binary data, and it supports
both fixed- and variable-length formats. To handle all of these formats, you
must supply a load-specification to tell Sybase IQ what kind of data to expect
from each “column” or field in the source file. The column-spec lets you define
the following formats:

• ASCII with a fixed length of bytes. The input-width value is an integer
value indicating the fixed width in bytes of the input field in every record.

• Binary fields that use a number of PREFIX bytes (1, 2, or 4) to specify the
length of the binary input.

If the data is unloaded using the extraction facility with the
TEMP_EXTRACT_BINARY option set ON, you must use the BINARY WITH
NULL BYTE parameter for each column when you load the binary data.

CHAPTER 1 SQL Statements

Reference: Statements and Options 235

• Variable-length characters delimited by a separator. You can specify the
terminator as hexadecimal ASCII characters. The delimiter-string can be
any string of up to 4 characters, including any combination of printable
characters, and any 8-bit hexadecimal ASCII code that represents a
nonprinting character. For example, specify:

• '\x09' to represent a tab as the terminator.

• '\x00' for a null terminator (no visible terminator as in “C” strings).

• '\x0a' for a newline character as the terminator. You can also use the
special character combination of '\n' for newline.

Note The delimiter string can be from 1 to 4 characters long, but you can
specify only a single character in the DELIMITED BY clause. For BCP, the
delimiter can be up to 10 characters.

• DATE or DATETIME string as ASCII characters. You must define the
input-date-format or input-datetime-format of the string using one of the
corresponding formats for the date and datetime data types supported by
Sybase IQ. Use DATE for date values and DATETIME for datetime and
time values.

Table 1-10: Formatting dates and times

Option Meaning

yyyy or YYYY

yy or YY

Represents number of year. Default is current year.

mm or MM Represents number of month. Always use leading zero or blank for number of the month
where appropriate, for example, '05' for May. DATE value must include a month. For
example, if the DATE value you enter is 1998, you receive an error. If you enter '03', Sybase
IQ applies the default year and day and converts it to '1998-03-01'.

dd or DD

jjj or JJJ

Represents number of day. Default day is 01. Always use leading zeros for number of day
where appropriate, for example, '01' for first day. J or j indicates a Julian day (1 to 366) of
the year.

hh

HH

Represents hour. Hour is based on 24-hour clock. Always use leading zeros or blanks for
hour where appropriate, for example, '01' for 1 am. '00' is also valid value for hour of 12 a.m.

nn Represents minute. Always use leading zeros for minute where appropriate, for example,
'08' for 8 minutes.

ss[.ssssss] Represents seconds and fraction of a second.

aa Represents the a.m. or p.m. designation.

pp Represents the p.m designation only if needed. (This is an incompatibility with Sybase IQ
versions earlier than 12.0; previously, “pp” was synonymous with “aa”.)

LOAD TABLE statement

236 Sybase IQ

Table 1-11: Sample DATE and DATETIME format options

Sybase IQ has built-in load optimizations for common date, time, and datetime
formats. If your data to be loaded matches one of these formats, you can
significantly decrease load time by using the appropriate format. For a list of
these formats, and details about optimizing performance when loading date and
datetime data, see Chapter 7, “Moving Data In and Out of Databases” in the
System Administration Guide: Volume 1.

You can also specify the date/time field as an ASCII fixed-width field (as
described above) and use the FILLER(1) option to skip the column delimiter.
For more information about specifying date and time data, see Date and time
data types in Chapter 3, “SQL Data Types” in Reference: Building Blocks,
Tables, and Procedures or Chapter 7, “Moving Data In and Out of Databases”
in the System Administration Guide: Volume 1.

The NULL portion of the column-spec indicates how to treat certain input
values as NULL values when loading into the table column. These characters
can include BLANKS, ZEROS, or any other list of literals you define. When
specifying a NULL value or reading a NULL value from the source file, the
destination column must be able to contain NULLs.

ZEROS are interpreted as follows: the cell is set to NULL if (and only if) the
input data (before conversion, if ASCII) is all binary zeros (and not character
zeros).

• If the input data is character zero, then:

a NULL (ZEROS) never causes the cell to be NULL.

b NULL ('0') causes the cell to be NULL.

hh Sybase IQ assumes zero for minutes and seconds. For example, if the DATETIME value you
enter is '03', Sybase IQ converts it to '03:00:00.0000'.

hh:nn or hh:mm Sybase IQ assumes zero for seconds. For example, if the time value you enter is '03:25',
Sybase IQ converts it to '03:25:00.0000'.

Option Meaning

Input data Format specification

12/31/98 DATE ('MM/DD/YY')

19981231 DATE ('YYYYMMDD')

123198140150 DATETIME ('MMDDYYhhnnss')

14:01:50 12-31-98 DATETIME ('hh:mm:ss MM-DD-YY')

18:27:53 DATETIME ('hh:mm:ss')

12/31/98 02:01:50AM DATETIME ('MM/DD/YY hh:mm:ssaa')

CHAPTER 1 SQL Statements

Reference: Statements and Options 237

• If the input data is binary zero (all bits clear), then:

a NULL (ZEROS) causes the cell to be NULL.

b NULL ('0') never causes the cell to be NULL.

For example, if your LOAD statement includes col1 date('yymmdd')
null(zeros) and the date is 000000, you receive an error indicating that
000000 cannot be converted to a DATE(4). To get LOAD TABLE to insert a
NULL value in col1 when the data is 000000, either write the NULL clause as
null('000000'), or modify the data to equal binary zeros and use
NULL(ZEROS).

If the length of a VARCHAR cell is zero and the cell is not NULL, you get a
zero-length cell. For all other data types, if the length of the cell is zero, Sybase
IQ inserts a NULL. This is ANSI behavior. For non-ANSI treatment of zero-
length character data, set the Non_Ansi_Null_Varchar database option.

Use the DEFAULT option to specify a load default column value. You can load
a default value into a column, even if the column does not have a default value
defined in the table schema. This feature provides more flexibility at load time.

• The LOAD TABLE DEFAULTS option must be ON in order to use the default
value specified in the LOAD TABLE statement. If the DEFAULTS option is
OFF, the specified load default value is not used and a NULL value is
inserted into the column instead.

• The LOAD TABLE command must contain at least one column that needs
to be loaded from the file specified in the LOAD TABLE command.
Otherwise, an error is reported and the load is not performed.

• The specified load default value must conform to the supported default
values for columns and default value restrictions as described in the
section “Using column defaults,” in Chapter 9, “Ensuring Data Integrity,”
of the System Administration Guide: Volume 1. The LOAD TABLE
DEFAULT option does not support AUTOINCREMENT, IDENTITY, or
GLOBAL AUTOINCREMENT as a load default value.

• The LOAD TABLE DEFAULT default-value must be of the same character
set as that of the database.

• Encryption of the default value is not supported for the load default values
specified in the LOAD TABLE DEFAULT clause.

• A constraint violation caused by evaluation of the specified load default
value is counted for each row that is inserted in the table.

LOAD TABLE statement

238 Sybase IQ

Another important part of the load-specification is the FILLER option. This
option indicates you want to skip over a specified field in the source input file.
For example, there may be characters at the end of rows or even entire fields in
the input files that you do not want to add to the table. As with the column-spec
definition, FILLER lets you specify ASCII fixed length of bytes, variable length
characters delimited by a separator, and binary fields using PREFIX bytes.

filename-string The filename-string is passed to the server as a string. The
string is therefore subject to the same formatting requirements as other SQL
strings. In particular:

• To indicate directory paths in Windows systems, the backslash character \
must be represented by two backslashes. Therefore, the statement to load
data from the file c:\temp\input.dat into the Employees table is:

LOAD TABLE Employees
FROM 'c:\\temp\\input.dat' ...

• The path name is relative to the database server, not to the client
application. If you are running the statement on a database server on some
other computer, the directory names refers to directories on the server
machine, not on the client machine.

Descriptions of each statement clause follow:

USING USING FILE loads one or more files from the server. This clause is
synonymous with specifying the FROM filename clause. USING CLIENT FILE
bulk loads one or more files from a client. The character set of the file on the
client side must be the same as the server collation. Sybase IQ processes files
in the file list serially. Each file is locked in read mode as it is processed, then
unlocked. Client-side bulk loading incurs no administrative overhead such as
extra disk space, memory or network-monitoring daemon requirements.

When bulk loading large objects, the USING CLIENT FILE clause applies to
both primary and secondary files. (If you have the Large Objects Management
Option, see Large Objects Management in Sybase IQ for details.)

During client-side loads, the IGNORE CONSTRAINT log files are created on the
client host and any error while creating the log files causes the operation to roll
back.

CHAPTER 1 SQL Statements

Reference: Statements and Options 239

Client-side bulk loading is supported by Interactive SQL and ODBC/JDBC
clients using the Command Sequence protocol. It is not supported by clients
using the TDS protocol. For data security over a network, use Transport Layer
Security. To control who can use client-side bulk loads, use the secure feature
(-sf) server startup switch, the ALLOW_READ_CLIENT_FILE database option,
and/or the READCLIENTFILE access control. For details, see SQL Anywhere
Server – SQL Usage.

The LOAD TABLE FROM clause is deprecated, but may be used to specify a file
that exists on the server.

The following example loads data from the file a.inp on a client computer.

LOAD TABLE t1(c1,c2,filler(30))
USING CLIENT FILE 'c:\\client-data\\a.inp'
QUOTES OFF ESCAPES OFF
IGNORE CONSTRAINT UNIQUE 0, NULL 0
MESSAGE LOG 'c:\\client-data\\m.log'
ROW LOG 'c:\\client-data\\r.log'
ONLY LOG UNIQUE

CHECK CONSTRAINTS This option defaults to ON. When you specify
CHECK CONSTRAINTS ON, check constraints are evaluated and you are free
to ignore or log them.

Setting CHECK CONSTRAINTS OFF causes Sybase IQ to ignore all check
constraint violations. This can be useful, for example, during database
rebuilding. If a table has check constraints that call user-defined functions that
are not yet created, the rebuild fails unless this option is set to OFF.

This option is mutually exclusive to the following options. If any of these
options are specified in the same load, an error results:

• IGNORE CONSTRAINT ALL

• IGNORE CONSTRAINT CHECK

• LOG ALL

• LOG CHECK

DEFAULTS If the DEFAULTS option is ON (the default) and the column has
a default value, that value is used. If the DEFAULTS option is OFF, any column
not present in the column list is assigned NULL.

The setting for the DEFAULTS option applies to all column DEFAULT values,
including AUTOINCREMENT.

LOAD TABLE statement

240 Sybase IQ

For detailed information on the use of column DEFAULT values with loads
and inserts, see “Using column defaults” in Chapter 9, “Ensuring Data
Integrity” in the System Administration Guide: Volume 1.

QUOTES This parameter is optional and the default is ON. With QUOTES
turned on, LOAD TABLE expects input strings to be enclosed in quote
characters. The quote character is either an apostrophe (single quote) or a
quotation mark (double quote). The first such character encountered in a string
is treated as the quote character for the string. String data must be terminated
with a matching quote.

With QUOTES ON, column or row delimiter characters can be included in the
column value. Leading and ending quote characters are assumed not to be part
of the value and are excluded from the loaded data value.

To include a quote character in a value with QUOTES ON, use two quotes. For
example, the following line includes a value in the third column that is a single
quote character:

‘123 High Street, Anytown’, ‘(715)398-2354’,’’’’

With STRIP turned on (the default), trailing blanks are stripped from values
before they are inserted. Trailing blanks are stripped only for non-quoted
strings. Quoted strings retain their trailing blanks. (See “STRIP” on page 243
for more information.) Leading blank or TAB characters are trimmed only
when the QUOTES setting is ON.

The data extraction facility provides options for handling quotes
(TEMP_EXTRACT_QUOTES, TEMP_EXTRACT_QUOTES_ALL, and
TEMP_EXTRACT_QUOTE). If you plan to extract data to be loaded into an IQ
table and the string fields contain column or row delimiter under default ASCII
extraction, use the TEMP_EXTRACT_BINARY option for the extract and the
FORMAT binary and QUOTES OFF options for LOAD TABLE.

Limits:

• The QUOTES ON option applies only to column-delimited ASCII fields.

• With QUOTES ON, the first character of a column delimiter or row
terminator cannot be a single or double quote mark.

• The QUOTES option does not apply to loading binary large object (BLOB)
or character large object (CLOB) data from the secondary file, regardless
of its setting, A leading or trailing quote is loaded as part of CLOB data.
Two consecutive quotes between enclosing quotes are loaded as two
consecutive quotes with the QUOTES ON option.

CHAPTER 1 SQL Statements

Reference: Statements and Options 241

• Adaptive Server Enterprise BCP does not support the QUOTES option. All
field data is copied in or out equivalent to the QUOTES OFF setting. As
QUOTES ON is the default setting for the Sybase IQ LOAD TABLE
statement, you must specify QUOTES OFF when importing ASE data from
BCP output to a Sybase IQ table.

Exceptions:

• If LOAD TABLE encounters any nonwhite characters after the ending quote
character for an enclosed field, the following error is reported and the load
operation is rolled back:

Non-SPACE text found after ending quote character for

an enclosed field.

SQLSTATE: QTA14 SQLCODE: -1005014L

• With QUOTES ON, if a single or double quote is specified as the first
character of the column delimiter, an error is reported and the load
operation fails:

Single or double quote mark cannot be the 1st character

of column delimiter or row terminator with QUOTES option

ON.

SQLSTATE: QCA90 SQLCODE: -1013090L

For an example of the QUOTES option, see “Bulk loading data using the
LOAD TABLE statement” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

ESCAPES If you omit a column-spec definition for an input field and
ESCAPES is ON (the default), characters following the backslash character are
recognized and interpreted as special characters by the database server.
Newline characters can be included as the combination \n, other characters can
be included in data as hexadecimal ASCII codes, such as \x09 for the tab
character. A sequence of two backslash characters (\\) is interpreted as a single
backslash. For Sybase IQ, you must set this option OFF.

FORMAT Sybase IQ supports ASCII and binary input fields. The format is
usually defined by the column-spec described above. If you omit that definition
for a column, by default Sybase IQ uses the format defined by this option. Input
lines are assumed to have ascii (the default) or binary fields, one row per line,
with values separated by the column delimiter character.

LOAD TABLE statement

242 Sybase IQ

For a detailed description of the binary format used by Sybase IQ to produce
data files that can be read by the LOAD TABLE statement using the FORMAT
BINARY and BINARY column specification clauses, see Sybase IQ binary load
format in Chapter 3, “SQL Data Types” of Reference: Building Blocks, Tables,
and Procedures.

Sybase IQ also accepts data from BCP character files as input to the LOAD
TABLE command.

• The BCP data file loaded into Sybase IQ tables using the LOAD TABLE
FORMAT BCP statement must be exported (BCP OUT) in cross-platform
file format using the -c option.

• For FORMAT BCP, the default column delimiter for the LOAD TABLE
statement is <tab> and the default row terminator is <newline>.

• For FORMAT BCP, the last column in a row must be terminated by the row
terminator, not by the column delimiter. If the column delimiter is present
before the row terminator, then the column delimiter is treated as a part of
the data.

• Data for columns that are not the last column in the load specification must
be delimited by the column delimiter only. If a row terminator is
encountered before a column delimiter for a column that is not the last
column, then the row terminator is treated as a part of the column data.

• Column delimiter can be specified via the DELIMITED BY clause. For
FORMAT BCP, the delimiter must be less than or equal to 10 characters in
length. An error is returned, if the delimiter length is more than 10.

• For FORMAT BCP, the load specification may contain only column names,
NULL, and ENCRYPTED. An error is returned, if any other option is
specified in the load specification.

For example, the following LOAD TABLE load specifications are valid:

LOAD TABLE x(c1, c2 null(blanks), c3)
FROM ‘bcp_file.bcp’
FORMAT BCP
...

LOAD TABLE x(c1 encrypted(bigint,'KEY-ONE','aes'),
c2, c3)
FROM ‘bcp_file.bcp’
FORMAT BCP
...

CHAPTER 1 SQL Statements

Reference: Statements and Options 243

For information on the LOAD TABLE ENCRYPTED clause, see Advanced
Security in Sybase IQ.

DELIMITED BY If you omit a column delimiter in the column-spec
definition, the default column delimiter character is a comma. You can specify
an alternative column delimiter by providing a single ASCII character or the
hexadecimal character representation. The DELIMITED BY clause is as follows:

... DELIMITED BY '\x09' ...

To use the newline character as a delimiter, you can specify either the special
combination '\n' or its ASCII value '\x0a'. Although you can specify up to four
characters in the column-spec delimiter-string, you can specify only a single
character in the DELIMITED BY clause

STRIP The STRIP clause specifies whether unquoted values should have
trailing blanks stripped off before they are inserted. The LOAD TABLE
command accepts the following STRIP keywords:

• STRIP OFF Do not strip off trailing blanks.

• STRIP RTRIM Strip trailing blanks.

• STRIP ON Deprecated. Equivalent to STRIP RTRIM.

With STRIP turned on (the default), Sybase IQ strips trailing blanks from
values before inserting them. This is effective only for VARCHAR data. STRIP
OFF preserves trailing blanks.

Trailing blanks are stripped only for unquoted strings. Quoted strings retain
their trailing blanks. If you do not require blank sensitivity, you can use the
FILLER option as an alternative to be more specific in the number of bytes to
strip, instead of all the trailing spaces. STRIP OFF is more efficient for Sybase
IQ, and it adheres to the ANSI standard when dealing with trailing blanks.
(CHAR data is always padded, so the STRIP option only affects VARCHAR
data.)

LOAD TABLE statement

244 Sybase IQ

The STRIP option applies only to variable-length non-binary data and does not
apply to ASCII fixed-width inserts. For example, assume the following
schema:

CREATE TABLE t(c1 VARCHAR(3));
LOAD TABLE t(c1 ',') STRIP RTRIM // trailing blanks trimmed

LOAD TABLE t(c1 ',') STRIP OFF // trailing blanks not trimmed

LOAD TABLE t(c1 ASCII(3)) ... STRIP RTRIM // trailing blanks not trimmed
LOAD TABLE t(c1 ASCII(3)) ... STRIP OFF // trailing blanks trimmed

LOAD TABLE t(c1 BINARY) STRIP RTRIM // trailing blanks trimmed
LOAD TABLE t(c1 BINARY) STRIP OFF // trailing blanks trimmed

Trailing blanks are always trimmed from binary data.

WITH CHECKPOINT The default setting is OFF. If set to ON, a checkpoint
is issued after successfully completing and logging the statement.

If WITH CHECKPOINT ON is not specified, the file used for loading must be
retained in case recovery is required. If WITH CHECKPOINT ON is specified, a
checkpoint is carried out after loading, and recovery is guaranteed even if the
data file is then removed from the system.

BLOCK FACTOR Specifies blocking factor, or number of records per block
used when a tape was created. This option is not valid for inserts from variable-
length input fields; use the BLOCKSIZE option instead. However, it does affect
all file inserts (including from disk) with fixed-length input fields, and it can
dramatically affect performance. You cannot specify this option along with the
BLOCK SIZE option. The default is 10,000.

BLOCK SIZE Specifies the default size in bytes in which input should be
read. This option only affects variable length input data read from files; it is not
valid for fixed length input fields. It is similar to BLOCK FACTOR, but there are
no restrictions on the relationship of record size to block size. You cannot
specify this option along with the BLOCK FACTOR option. The default is
500,000.

BYTE ORDER Specifies the byte order during reads. This option applies to
all binary input fields. If none are defined, this option is ignored. Sybase IQ
always reads binary data in the format native to the machine it is running on
(default is NATIVE). You can also specify:

• HIGH when multibyte quantities have the high order byte first (for big
endian platforms like Sun, IBM AIX, and HP).

CHAPTER 1 SQL Statements

Reference: Statements and Options 245

• LOW when multibyte quantities have the low order byte first (for little
endian platforms like Windows).

LIMIT Specifies the maximum number of rows to insert into the table. The
default is 0 for no limit. The maximum is 2GB - 1.

NOTIFY Specifies that you be notified with a message each time the
specified number of rows is successfully inserted into the table. The default is
every 100,000 rows. The value of this option overrides the value of the
NOTIFY_MODULUS database option.

ON FILE ERROR Specifies the action Sybase IQ takes when an input file
cannot be opened because it does not exist or you have incorrect permissions
to read the file. You can specify one of the following:

• ROLLBACK aborts the entire transaction (the default).

• FINISH finishes the insertions already completed and ends the load
operation.

• CONTINUE returns an error but only skips the file to continue the load
operation. You cannot use this option with partial-width inserts.

Only one ON FILE ERROR clause is permitted.

PREVIEW Displays the layout of input into the destination table including
starting position, name, and data type of each column. Sybase IQ displays this
information at the start of the load process. If you are writing to a log file, this
information is also included in the log. This option is especially useful with
partial-width inserts.

ROW DELIMITED BY Specifies a string up to 4 bytes in length that indicates
the end of an input record. You can use this option only if all fields within the
row are any of the following:

• Delimited with column terminators

• Data defined by the DATE or DATETIME column-spec options

• ASCII fixed length fields

You cannot use this option if any input fields contain binary data. With this
option, a row terminator causes any missing fields to be set to NULL. All rows
must have the same row delimiters, and it must be distinct from all column
delimiters. The row and field delimiter strings cannot be an initial subset of
each other. For example, you cannot specify “*” as a field delimiter and “*#”
as the row delimiter, but you could specify “#” as the field delimiter with that
row delimiter.

LOAD TABLE statement

246 Sybase IQ

If a row is missing its delimiters, Sybase IQ returns an error and rolls back the
entire load transaction. The only exception is the final record of a file where it
rolls back that row and returns a warning message. On Windows, a row
delimiter is usually indicated by the newline character followed by the carriage
return character. You might need to specify this as the delimiter-string (see
above for description) for either this option or FILLER.

SKIP Lets you define a number of rows to skip at the beginning of the input
tables for this load. The default is 0.

WORD SKIP Allows the load to continue when it encounters data longer than
the limit specified when the word index was created.

If a row is not loaded because a word exceeds the maximum permitted size, a
warning is written to the .iqmsg file. WORD size violations can be optionally
logged to the MESSAGE LOG file and rejected rows logged to the ROW LOG
file specified in the LOAD TABLE statement.

• If the option is not specified, LOAD TABLE reports an error and rolls back
on the first occurrence of a word that is longer than the specified limit.

• number specifies the number of times the “Words exceeding the maximum
permitted word length not supported” error is ignored.

• 0 (zero) means there is no limit.

START ROW ID Specifies the record identification number of a row in the
Sybase IQ table where it should start inserting. This option is used for partial-
width inserts, which are inserts into a subset of the columns in the table. By
default, new rows are inserted wherever there is space in the table, and each
insert starts a new row. Partial-width inserts need to start at an existing row.
They also need to insert data from the source file into the destination table
positionally by column, so you must specify the destination columns in the
same order as their corresponding source columns. Define the format of each
input column with a column-spec. The default is 0. For more information about
partial-width inserts see Chapter 7, “Moving Data In and Out of Databases” in
the System Administration Guide: Volume 1.

Use the START ROW ID option for partial-width inserts only. If the columns
being loaded already contain data, the insert fails.

The START ROW ID clause of the LOAD TABLE and the INSERT commands is
not allowed on a partitioned table.

UNLOAD FORMAT Specifies that the file has Sybase IQ internal unload
formats for each column created by an earlier version of Sybase IQ (before
Version 12.0). This load option has the following restrictions:

CHAPTER 1 SQL Statements

Reference: Statements and Options 247

• You cannot specify any column-spec (such as ASCII or PREFIX) for a
column other than BINARY. This includes the NULL specifications.

• If you need to load null values for a column using the BINARY column-
spec, you must specify the WITH NULL BYTE keyword or Sybase IQ
returns an error.

• You cannot use the DELIMITED BY or ROW DELIMITED BY options with
UNLOAD FORMAT.

ON PARTIAL INPUT ROW Specifies the action to take when a partial input
row is encountered during a load. You can specify one of the following:

• CONTINUE issues a warning and continues the load operation. This is the
default.

• ROLLBACK aborts the entire load operation and reports the error.

Partial input record skipped at EOF.

SQLSTATE: QDC32 SQLSTATE: -1000232L

IGNORE CONSTRAINT Specifies whether to ignore CHECK, UNIQUE,
NULL, DATA VALUE, and FOREIGN KEY integrity constraint violations
that occur during a load and the maximum number of violations to ignore
before initiating a rollback. Specifying each constrainttype has the following
result:

• CHECK limit If limit specifies zero, the number of CHECK constraint
violations to ignore is infinite. If CHECK is not specified, the first
occurrence of any CHECK constraint violation causes the LOAD statement
to roll back. If limit is nonzero, then the limit +1 occurrence of a CHECK
constraint violation causes the load to roll back.

• UNIQUE limit If limit specifies zero, then the number of UNIQUE
constraint violations to ignore is infinite. If limit is nonzero, then the limit
+1 occurrence of a UNIQUE constraint violation causes the load to roll
back.

• NULL limit If limit specifies zero, then the number of NULL constraint
violations to ignore is infinite. If limit is nonzero, then the limit +1
occurrence of a NULL constraint violation causes the load to roll back.

• FOREIGN KEY limit If limit specifies zero, the number of FOREIGN
KEY constraint violations to ignore is infinite. If limit is nonzero, then the
limit +1 occurrence of a FOREIGN KEY constraint violation causes the
load to roll back.

LOAD TABLE statement

248 Sybase IQ

• DATA VALUE limit If the database option CONVERSION_ERROR =
ON, an error is reported and the statement rolls back. If limit specifies
zero, then the number of DATA VALUE constraint violations (data type
conversion errors) to ignore is infinite. If limit is nonzero, then the limit +1
occurrence of a DATA VALUE constraint violation causes the load to roll
back.

• ALL limit If the database option CONVERSION_ERROR = ON, an error
is reported and the statement rolls back. If limit specifies zero, then the
cumulative total of all integrity constraint violations to ignore is infinite.
If limit is nonzero, then load rolls back when the cumulative total of all
ignored UNIQUE, NULL, DATA VALUE, and FOREIGN KEY integrity
constraint violations exceeds the value of limit. For example, you specify
the following IGNORE CONSTRAINT option:

IGNORE CONSTRAINT NULL 50, UNIQUE 100, ALL 200

The total number of integrity constraint violations cannot exceed 200,
whereas the total number of NULL and UNIQUE constraint violations
cannot exceed 50 and 100, respectively. Whenever any of these limits is
exceeded, the LOAD TABLE statement rolls back.

Note A single row can have more than one integrity constraint violation.
Every occurrence of an integrity constraint violation counts towards the
limit of that type of violation.

Sybase strongly recommends setting the IGNORE CONSTRAINT option
limit to a nonzero value if you are logging the ignored integrity constraint
violations. Logging an excessive number of violations affects the
performance of the load.

If CHECK, UNIQUE, NULL, or FOREIGN KEY is not specified in the
IGNORE CONSTRAINT clause, then the load rolls back on the first occurrence
of each of these types of integrity constraint violation.

If DATA VALUE is not specified in the IGNORE CONSTRAINT clause, then the
load rolls back on the first occurrence of this type of integrity constraint
violation, unless the database option CONVERSION_ERROR = OFF. If
CONVERSION_ERROR = OFF, a warning is reported for any DATA VALUE
constraint violation and the load continues.

When the load completes, an informational message regarding integrity
constraint violations is logged in the .iqmsg file. This message contains the
number of integrity constraint violations that occurred during the load and the
number of rows that were skipped.

CHAPTER 1 SQL Statements

Reference: Statements and Options 249

MESSAGE LOG Specifies the names of files in which to log information
about integrity constraint violations and the types of violations to log.
Timestamps indicating the start and completion of the load are logged in both
the MESSAGE LOG and the ROW LOG files. Both MESSAGE LOG and ROW
LOG must be specified, or no information about integrity violations is logged.

• If the ONLY LOG clause is not specified, no information on integrity
constraint violations is logged. Only the timestamps indicating the start
and completion of the load are logged.

• Information is logged on all integrity constraint-type violations specified
in the ONLY LOG clause or for all word index-length violations if the
keyword WORD is specified.

• If constraint violations are being logged, every occurrence of an integrity
constraint violation generates exactly one row of information in the
MESSAGE LOG file.

The number of rows (errors reported) in the MESSAGE LOG file can
exceed the IGNORE CONSTRAINT option limit, because the load is
performed by multiple threads running in parallel. More than one thread
might report that the number of constraint violations has exceeded the
specified limit.

• If constraint violations are being logged, exactly one row of information is
logged in the ROW LOG file for a given row, regardless of the number of
integrity constraint violations that occur on that row.

The number of distinct errors in the MESSAGE LOG file might not exactly
match the number of rows in the ROW LOG file. The difference in the
number of rows is due to the parallel processing of the load described
above for the MESSAGE LOG.

• The MESSAGE LOG and ROW LOG files cannot be raw partitions or
named pipes.

• If the MESSAGE LOG or ROW LOG file already exists, new information is
appended to the file.

• Specifying an invalid file name for the MESSAGE LOG or ROW LOG file
generates an error.

• Specifying the same file name for the MESSAGE LOG and ROW LOG files
generates an error.

Various combinations of the IGNORE CONSTRAINT and MESSAGE LOG
options result in different logging actions, as indicated in Table 1-12.

LOAD TABLE statement

250 Sybase IQ

Table 1-12: LOAD TABLE logging actions

Note Sybase strongly recommends setting the IGNORE CONSTRAINT option
limit to a nonzero value, if you are logging the ignored integrity constraint
violations. If a single row has more than one integrity constraint violation, a
row for each violation is written to the MESSAGE LOG file. Logging an
excessive number of violations affects the performance of the load.

LOG DELIMITED BY Specifies the separator between data values in the
ROW LOG file. The default separator is a comma.

For more details on the contents and format of the MESSAGE LOG and ROW
LOG files, see “Bulk loading data using the LOAD TABLE statement” in
Chapter 7, “Moving Data In and Out of Databases” in the System
Administration Guide: Volume 1.

Error messages

Sybase IQ no longer returns an error message when FORMAT BCP is specified
as a LOAD TABLE clause. In addition, the following conditions are verified and
proper error messages are returned.

• If the specified load format is not ASCII, BINARY, or BCP, Sybase IQ now
returns the message “Only ASCII, BCP and BINARY are supported
LOAD formats.”

• If the LOAD TABLE column specification contains anything other than
column name, NULL, or ENCRYPTED, then Sybase IQ returns the new
error message “Invalid load specification for
LOAD ... FORMAT BCP.”

IGNORE
CONSTRAINT
specified?

MESSAGE
LOG
specified? Action

yes yes All ignored integrity constraint violations
are logged, including the user specified
limit, before the rollback.

no yes The first integrity constraint violation is
logged before the rollback.

yes no Nothing is logged.

no no Nothing is logged. The first integrity
constraint violation causes a rollback.

CHAPTER 1 SQL Statements

Reference: Statements and Options 251

• If the column delimiter or row terminator size for the FORMAT BCP load
is greater than 10 characters, then Sybase IQ returns the message
“Delimiter ‘%2’ must be 1 to %3 characters in length.”
(where %3 equals 10).

Messages corresponding to error or warning conditions which can occur
for FORMAT BCP as well as FORMAT ASCII are the same for both formats.

• If the load default value specified is AUTOINCREMENT, IDENTITY, or
GLOBAL AUTOINCREMENT, the error “Default value %2 cannot be

used as a LOAD default value. %1” is reported.

• If the LOAD TABLE specification does not contain any columns that need
to be loaded from the file specified, the error “The LOAD statement
must contain at least one column to be loaded from input

file.” is reported and the LOAD TABLE statement rolls back.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions The permissions required to execute a LOAD TABLE statement depend on the
database server -gl command line option, as follows:

• If the -gl option is set to ALL, you must be the owner of the table, have
DBA authority, or have ALTER permission.

• If the -gl option is set to DBA, you must have DBA authority.

• If the -gl option is set to NONE, LOAD TABLE is not permitted.

For more information, see the -gl command line option in “Server command-
line switches” on page 7 in Chapter 1, “Running the Database Server” in the
Utility Guide.

LOAD TABLE also requires an exclusive lock on the table.

LOCK TABLE statement

252 Sybase IQ

See also INSERT statement on page 216

“LOAD_ZEROLENGTH_ASNULL option” on page 409

“NON_ANSI_NULL_VARCHAR option” on page 425

“Bulk loading data using the LOAD TABLE statement” in Chapter 7,
“Moving Data In and Out of Databases” in the System Administration Guide:
Volume 1

“Monitoring disk space usage,” Chapter 14, “Troubleshooting Hints,” in the
System Administration Guide: Volume 1

LOCK TABLE statement
Description Prevents other concurrent transactions from accessing or modifying a table

within the specified time.

Syntax LOCK TABLE table-list [WITH HOLD] IN { SHARE | WRITE | EXCLUSIVE }
MODE [WAIT time]

Parameters table-list:
[owner.] table-name [, [owner.] table-name, …]

time:

string

Examples Example 1 For example, the following statement obtains a WRITE lock on the
Customers and Employees tables, if available within 5 minutes and 3 seconds:

LOCK TABLE Customers, Employees IN WRITE MODE WAIT
'00:05:03'

Example 2 The following statement waits indefinitely, until the WRITE lock
on the Customers and Employees tables, if available or an interrupt occurs:

LOCK TABLE Customers, Employees IN WRITE MODE WAIT

CHAPTER 1 SQL Statements

Reference: Statements and Options 253

Usage table-name The table must be a base table, not a view. WRITE mode is only
valid for IQ base tables. LOCK TABLE either locks all tables in the table list,
or none. If obtaining a lock for a SQL Anywhere table, or when obtaining
SHARE or EXCLUSIVE locks, you may only specify a single table. Standard
Sybase IQ object qualification rules are used to parse table-name. For related
details, see the section “Identifiers” in Chapter 2, “SQL Language Elements”
in Reference: Building Blocks, Tables, and Procedures and “Types of tables”
in Chapter 5, “Working with Database Objects” in the System Administration
Guide: Volume 1.

WITH HOLD If this clause is specified, the lock is held until the end of the
connection. If the clause is not specified, the lock is released when the current
transaction is committed or rolled back.

SHARE Prevents other transactions from modifying the table, but allows
them read access. In this mode, you can change data in the table as long as no
other transaction has locked the row being modified, either indirectly, or
explicitly by using LOCK TABLE.

WRITE Prevents other transactions from modifying a list of tables.
Unconditionally commits the connections outermost transaction.The
transaction’s snapshot version is established not by the LOCK TABLE IN WRITE
MODE statement, but by the execution of the next command processed by
Sybase IQ.

A WRITE mode lock on an IQ table that participates in a join index also locks:

• The top table of the join index hierarchy in WRITE mode when X is a non-
top table

• The corresponding join virtual table (JVT)

WRITE mode locks are released when the transaction commits or rolls back,
or when the connection disconnects.

EXCLUSIVE Prevents other transactions from accessing the table. In this
mode, no other transaction can execute queries, updates of any kind, or any
other action against the table. If a table t is locked exclusively with LOCK
TABLE t IN EXCLUSIVE MODE, the default server behavior is not to acquire row
locks for t. This behavior can be disabled by setting the
SUBSUME_ROW_LOCKS option OFF. For more information on the
SUBSUME_ROW_LOCKS option, refer to “subsume_row_locks option
[database]” in SQL Anywhere Server – Database Administration >
Configuring Your Database > Database options > Introduction to database
options > Alphabetical list of options.

LOCK TABLE statement

254 Sybase IQ

LOCK TABLE statements run on tables in the IQ main store on the coordinator
do not affect access to those tables from connections on secondary servers. For
example:

On a coordinator connection, issue the command:

LOCK TABLE coord1 WITH HOLD IN EXCLUSIVE MODE

sp_iqlocks on the coordinator confirms that the table coord1 has an exclusive
(E) lock.

The result of sp_iqlocks run on a connection on a secondary server does not
show the exclusive lock on table coord1. The user on this connection can see
updates to table coord1 on the coordinator.

Other connections on the coordinator can see the exclusive lock on coord1 and
attempting to select from table coord1 from another connection on the
coordinator returns the error "User DBA has the row in coord1
locked."

WAIT time Wait options specify maximum blocking time for all lock types.
This option is mandatory when lock mode is WRITE. When a time argument
is given, the server locks the specified tables only if available within the
specified time. The time argument can be specified in the format hh:nn:ss:sss.
If a date part is specified, the server ignores it and converts the argument into
a timestamp. When no time argument is given, the server waits indefinitely
until a WRITE lock is available or an interrupt occurs.

LOCK TABLE on views is unsupported. Attempting to lock a view acquires a
shared schema lock regardless of the mode specified in the command. A shared
schema lock prevents other transactions from modifying the table schema.

The Transact-SQL (TSQL) stored procedure dialect does not support LOCK
TABLE. For example, the following statement returns Syntax error near
LOCK:

CREATE PROCEDURE tproc()
AS
BEGIN
COMMIT
LOCK TABLE t1 IN SHARE MODE
INSERT INTO t1 VALUES(30)
END

CHAPTER 1 SQL Statements

Reference: Statements and Options 255

The Watcom-SQL stored procedure dialect supports LOCK TABLE. The default
command delimiter is a semicolon (;). For example:

CREATE PROCEDURE wproc()
BEGIN
COMMIT;
LOCK TABLE t1 IN SHARE MODE;
INSERT INTO t1 VALUES (20);
END

Standards • SQL92 Vendor extension.

• Sybase Supported in Adaptive Server Enterprise. The WITH HOLD
clause is not supported in Adaptive Server Enterprise. Adaptive Server
Enterprise provides a WAIT clause that is not supported in SQL Anywhere.

Permissions To lock a table in SHARE mode, SELECT privileges are required.

To lock a table in EXCLUSIVE mode, you must be the table owner or have
DBA authority.

See also SELECT statement on page 291

sp_iqlocks procedure in Chapter 7, “System Procedures,” in Reference:
Building Blocks, Tables, and Procedures

LOOP statement
Description Repeats the execution of a statement list.

Syntax [statement-label:]
... [WHILE search-condition] LOOP
... statement-list
... END LOOP [statement-label]

Examples Example 1 A WHILE loop in a procedure:

...
SET i = 1 ;
WHILE i <= 10 LOOP

INSERT INTO Counters(number) VALUES (i) ;
SET i = i + 1 ;

END LOOP ;
...

LOOP statement

256 Sybase IQ

Example 2 A labeled loop in a procedure:

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters(number)
VALUES (i) ;
IF i >= 10 THEN

LEAVE lbl ;
END IF ;
SET i = i + 1 ;

END LOOP lbl

Usage The WHILE and LOOP statements are control statements that let you repeatedly
execute a list of SQL statements while a search-condition evaluates to TRUE.
The LEAVE statement can be used to resume execution at the first statement
after the END LOOP.

If the ending statement-label is specified, it must match the beginning
statement-label.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported in Adaptive Server Enterprise. The WHILE
statement provides looping in Transact-SQL stored procedures.

Permissions None.

See also FOR statement on page 197

LEAVE statement on page 229

CHAPTER 1 SQL Statements

Reference: Statements and Options 257

MESSAGE statement
Description Displays a message.

Syntax MESSAGE expression, …
[TYPE { INFO | ACTION | WARNING | STATUS }]
[TO { CONSOLE
 | CLIENT [FOR { CONNECTION conn_id [IMMEDIATE] | ALL }]
| [EVENT | SYSTEM] LOG }
[DEBUG ONLY]]

conn_id : integer

Parameters

TYPE The TYPE clause has an effect only if the message is sent to the client.
The client application must decide how to handle the message. Interactive SQL
displays messages in the following locations:

• INFO – The Message window (default).

• ACTION– A Message box with an OK button.

• WARNING – A Message box with an OK button.

• STATUS – The Messages pane.

TO Specifies the destination of a message:

• CONSOLE – Send messages to the database server window.
CONSOLE is the default.

• CLIENT – Send messages to the client application. Your application
must decide how to handle the message, and you can use the TYPE as
information on which to base that decision.

• LOG – Send messages to the server log file specified by the -o option.

FOR For messages TO CLIENT, this clause specifies which connections
receive notification about the message:

• CONNECTION conn_id – Specifies the recipient's connection ID for
the message.

• ALL – Specifies that all open connections receive the message.

MESSAGE statement

258 Sybase IQ

DEBUG ONLY Lets you control whether debugging messages added to
stored procedures are enabled or disabled by changing the setting of the
DEBUG_MESSAGES option. When DEBUG ONLY is specified, the MESSAGE
statement is executed only when the DEBUG_MESSAGES option is set to ON.

Note DEBUG ONLY messages are inexpensive when the DEBUG_MESSAGES
option is set to OFF, so these statements can usually be left in stored procedures
on a production system. However, they should be used sparingly in locations
where they would be executed frequently; otherwise, they might result in a
small performance penalty.

Examples Example 1 Displays the string The current date and time, and the
current date and time, on the database server message window:

CREATE PROCEDURE message_test ()
BEGIN
MESSAGE 'The current date and time: ', Now();
END;
CALL message_test();

Example 2 To register a callback in ODBC, first declare the message handler:

void SQL_CALLBACK my_msgproc(
void * sqlca,
unsigned char msg_type,
long code,
unsigned short len,
char* msg)

{ … }

Install the declared message handler by calling the SQLSetConnectAttr
function.

rc = SQLSetConnectAttr(
dbc,
ASA_REGISTER_MESSAGE_CALLBACK,
(SQLPOINTER) &my_msgproc, SQL_IS_POINTER);

Usage The MESSAGE statement displays a message, which can be any expression.
Clauses can specify where the message is displayed.

The procedure issuing a MESSAGE … TO CLIENT statement must be
associated with a connection.

CHAPTER 1 SQL Statements

Reference: Statements and Options 259

For example, the message box is not displayed in the following example
because the event occurs outside of a connection.

CREATE EVENT CheckIdleTime TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER
BEGIN

MESSAGE 'Idle engine' type warning to client;
END;

However, in the following example, the message is written to the server
console.

CREATE EVENT CheckIdleTime TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER
BEGIN

MESSAGE 'Idle engine' type warning to console;
END;

Valid expressions can include a quoted string or other constant, variable, or
function. However, queries are not permitted in the output of a MESSAGE
statement even though the definition of an expression includes queries.

The FOR clause can be used to notify another application of an event detected
on the server without the need for the application to explicitly check for the
event. When the FOR clause is used, recipients receive the message the next
time that they execute a SQL statement. If the recipient is currently executing
a SQL statement, the message is received when the statement completes. If the
statement being executed is a stored procedure call, the message is received
before the call is completed.

If an application requires notification within a short time after the message is
sent and when the connection is not executing SQL statements, you can use a
second connection. This connection can execute one or more WAITFOR
DELAY statements. These statements do not consume significant resources on
the server or network (as would happen with a polling approach), but permit
applications to receive notification of the message shortly after it is sent.

For information about the IMMEDIATE parameter, see “MESSAGE statement”
in SQL Anywhere Server – SQL Reference > Using SQL > SQL statements >
SQL statements (E-O).

ESQL and ODBC clients receive messages via message callback functions. In
each case, these functions must be registered. To register ESQL message
handlers, use the db_register_callback function.

OPEN statement [ESQL] [SP]

260 Sybase IQ

ODBC clients can register callback functions using the SQLSetConnectAttr
function.

Side effects

None.

Standards • SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise. The
Transact-SQL PRINT statement provides a similar feature, and is available
in SQL Anywhere.

Permissions Must be connected to the database.

DBA authority is required to execute a MESSAGE statement containing a FOR
clause.

See also CREATE PROCEDURE statement on page 120

“DEBUG_MESSAGES option” on page 375

“Using callback functions” in SQL Anywhere Server – Programming > SQL
Anywhere Database Tools Interface > Database tools interface > Using the
database tools interface for information about using callback functions

OPEN statement [ESQL] [SP]
Description Opens a previously declared cursor to access information from the database.

Syntax OPEN cursor-name
... [USING [DESCRIPTOR { sqlda-name | host-variable [, …] }]]
... [WITH HOLD]

Parameters cursor-name:
identifier or host-variable

sqlda-name:
identifier

CHAPTER 1 SQL Statements

Reference: Statements and Options 261

Examples Example 1 Examples showing the use of OPEN in Embedded SQL:

EXEC SQL OPEN employee_cursor;

and

EXEC SQL PREPARE emp_stat FROM
'SELECT EmployeeID, Surname FROM Employees WHERE name
like ?';
EXEC SQL DECLARE employee_cursor CURSOR FOR emp_stat;
EXEC SQL OPEN employee_cursor USING :pattern;

Example 2 An example from a procedure:

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT Surname
FROM Employees ;

DECLARE name CHAR(40) ;
OPEN cur_employee;
LOOP
FETCH NEXT cur_employee into name ;

 ...
END LOOP
CLOSE cur_employee;
END

Usage By default, all cursors are automatically closed at the end of the current
transaction (COMMIT or ROLLBACK). The optional WITH HOLD clause keeps
the cursor open for subsequent transactions. The cursor remains open until the
end of the current connection or until an explicit CLOSE statement is executed.
Cursors are automatically closed when a connection is terminated.

The cursor is positioned before the first row. See Chapter 1, “Using Procedures
and Batches” in the System Administration Guide: Volume 2.

A cursor declared FOR READ ONLY sees the version of table(s) on which the
cursor is declared when the cursor is opened, not the version of table(s) at the
time of the first FETCH

Embedded SQL

The USING DESCRIPTOR sqlda-name, host-variable and BLOCK n formats are
for Embedded SQL only.

If the cursor name is specified by an identifier or string, then the corresponding
DECLARE CURSOR statement must appear prior to the OPEN in the C
program; if the cursor name is specified by a host variable, then the DECLARE
CURSOR statement must execute before the OPEN statement.

OPEN statement [ESQL] [SP]

262 Sybase IQ

The optional USING clause specifies the host variables that are bound to the
placeholder bind variables in the SELECT statement for which the cursor has
been declared.

After successful execution of the OPEN statement, the sqlerrd[3] field of the
SQLCA (SQLIOESTIMATE) is filled in with an estimate of the number of
input/output operations required to fetch all rows of the query. Also, the
sqlerrd[2] field of the SQLCA (SQLCOUNT) is filled in with either the actual
number of rows in the cursor (a value greater than or equal to 0), or an estimate
thereof (a negative number whose absolute value is the estimate). The
sqlerrd[2] field is the actual number of rows, if the database server can
compute this value without counting the rows.

Side effects

None.

Standards • SQL92 Embedded SQL use is an entry-level feature. Use of procedures
is a Persistent Stored Module feature.

• Sybase The simple OPEN cursor-name syntax is supported by Adaptive
Server Enterprise. None of the other clauses are supported in Adaptive
Server Enterprise stored procedures. Open Client/Open Server supports
the USING descriptor or host name variable syntax.

Permissions • Must have SELECT permission on all tables in a SELECT statement or
EXECUTE permission on the procedure in a CALL statement.

• When the cursor is on a CALL statement, OPEN causes the procedure to
execute until the first result set (SELECT statement with no INTO clause)
is encountered. If the procedure completes and no result set is found, the
SQLSTATE_PROCEDURE_COMPLETE warning is set.

See also CLOSE statement [ESQL] [SP] on page 59

DECLARE CURSOR statement [ESQL] [SP] on page 159

FETCH statement [ESQL] [SP] on page 193

PREPARE statement [ESQL] on page 268

RESUME statement on page 284

CHAPTER 1 SQL Statements

Reference: Statements and Options 263

OUTPUT statement [DBISQL]
Description Writes the current query results to a file.

Syntax OUTPUT TO filename
[APPEND] [VERBOSE]
[FORMAT output-format]
[ESCAPE CHARACTER character]
[DELIMITED BY string]
[QUOTE string [ALL]]
[COLUMN WIDTHS (integer, …)]
[HEXADECIMAL { ON | OFF | ASIS }]
[ENCODING encoding]

Parameters output-format:
ASCII| DBASEII | DBASEIII | EXCEL | FIXED |
FOXPRO | HTML | LOTUS | SQL | XML

encoding:
string or identifier

Examples Example 1 Places the contents of the Employees table in a file in ASCII format:

SELECT * FROM Employees;
OUTPUT TO employee.txt FORMAT ASCII

Example 2 Places the contents of the Employees table at the end of an existing
file, and includes any messages about the query in this file as well:

SELECT * FROM Employees;
OUTPUT TO employee.txt APPEND VERBOSE

Example 3 Suppose you need to export a value that contains an embedded line
feed character. A line feed character has the numeric value 10, which you can
represent as the string '\x0a' in a SQL statement. You could execute the
following statement, with HEXADECIMAL ON:

SELECT 'line1\x0aline2'; OUTPUT TO file.txt HEXADECIMAL
ON

You get a file with one line in it, containing the following text:

line10x0aline2

If you execute the same statement with HEXADECIMAL OFF, you get the
following:

line1\x0aline2

Finally, if you set HEXADECIMAL to ASIS, you get a file with two lines:

'line1
line2'

OUTPUT statement [DBISQL]

264 Sybase IQ

Using ASIS generates two lines because the embedded line feed character has
been exported without being converted to a two-digit hex representation, and
without a prefix.

Usage The OUTPUT statement copies the information retrieved by the current query
to a file.

You can specify the output format with the optional FORMAT clause. If no
FORMAT clause is specified, the Interactive SQL OUTPUT_FORMAT option
setting is used.

The current query is the SELECT or LOAD TABLE statement that generated the
information that appears on the Results tab in the Results pane. The OUTPUT
statement reports an error if there is no current query.

Note OUTPUT is especially useful in making the results of a query or report
available to another application, but it is not recommended for bulk operations.
For high-volume data movement, use the ASCII and BINARY data extraction
functionality with the SELECT statement. The extraction functionality
provides much better performance for large-scale data movement, and creates
an output file you can use for loads.

APPEND This optional keyword is used to append the results of the query to
the end of an existing output file without overwriting the previous contents of
the file. If the APPEND clause is not used, the OUTPUT statement overwrites
the contents of the output file by default. The APPEND keyword is valid if the
output format is ASCII, FIXED, or SQL.

VERBOSE When the optional VERBOSE keyword is included, error
messages about the query, the SQL statement used to select the data, and the
data itself are written to the output file. If VERBOSE is omitted (the default),
only the data is written to the file. The VERBOSE keyword is valid if the output
format is ASCII, FIXED, or SQL.

FORMAT Allowable output formats are:

• ASCII The output is an ASCII format file with one row per line in the
file. All values are separated by commas, and strings are enclosed in
apostrophes (single quotes). The delimiter and quote strings can be
changed using the DELIMITED BY and QUOTE clauses. If ALL is specified
in the QUOTE clause, all values (not just strings) are quoted.

CHAPTER 1 SQL Statements

Reference: Statements and Options 265

Three other special sequences are also used. The two characters \n
represent a newline character, \\ represents a single \, and the sequence
\xDD represents the character with hexadecimal code DD. This is the
default output format.

If you are exporting Java methods that have string return values, you must
use the HEXADECIMAL OFF clause.

• DBASEII The output is a dBASE II format file with the column
definitions at the top of the file. Note that a maximum of 32 columns can
be output. Column names are truncated to 11 characters, and each row of
data in each column is truncated to 255 characters.

• DBASEIII The output is a dBASE III format file with the column
definitions at the top of the file. Note that a maximum of 128 columns can
be output. Column names are truncated to 11 characters, and each row of
data in each column is truncated to 255 characters.

• EXCEL The output is an Excel 2.1 worksheet. The first row of the
worksheet contains column labels (or names, if there are no labels
defined). Subsequent worksheet rows contain the actual table data.

• FIXED The output is fixed format with each column having a fixed
width. The width for each column can be specified using the COLUMN
WIDTHS clause. No column headings are output in this format.

If COLUMN WIDTHS is omitted, the width for each column is computed
from the data type for the column, and is large enough to hold any value
of that data type. The exception is that LONG VARCHAR and LONG
BINARY data defaults to 32KB.

• FOXPRO The output is a FoxPro format file (the FoxPro memo field is
different than the dBASE memo field) with the column definitions at the
top of the file. Note that a maximum of 128 columns can be output.
Column names are truncated to 11 characters. Column names are truncated
to 11 characters, and each row of data in each column is truncated to 255
characters.

• HTML The output is in the Hyper Text Markup Language format.

• LOTUS The output is a Lotus WKS format worksheet. Column names
are put as the first row in the worksheet. Note that there are certain
restrictions on the maximum size of Lotus WKS format worksheets that
other software (such as Lotus 1-2-3) can load. There is no limit to the size
of file Interactive SQL can produce.

OUTPUT statement [DBISQL]

266 Sybase IQ

• SQL The output is an Interactive SQL INPUT statement required to
recreate the information in the table.

Note Sybase IQ does not support the INPUT statement. You would need
to edit this statement to a valid LOAD TABLE (or INSERT) statement to use
it to load data back in.

• XML The output is an XML file encoded in UTF-8 and containing an
embedded DTD. Binary values are encoded in CDATA blocks with the
binary data rendered as 2-hex-digit strings. The LOAD TABLE statement
does not accept XML as a file format.

ESCAPE CHARACTER The default escape character for characters stored as
hexadecimal codes and symbols is a backslash (\), so \x0A is the line feed
character, for example.

This default can be changed using the ESCAPE CHARACTER clause.
For example, to use the exclamation mark as the escape character, you would
enter:

... ESCAPE CHARACTER '!'

DELIMITED BY The DELIMITED BY clause is for the ASCII output format
only. The delimiter string is placed between columns (default comma).

QUOTE The QUOTE clause is for the ASCII output format only. The quote
string is placed around string values. The default is a single quote character. If
ALL is specified in the QUOTE clause, the quote string is placed around all
values, not just around strings.

COLUMN WIDTHS The COLUMN WIDTHS clause is used to specify the
column widths for the FIXED format output.

HEXADECIMAL The HEXADECIMAL clause specifies how binary data is to
be unloaded for the ASCII format only. When set to ON, binary data is
unloaded in the format 0xabcd. When set to OFF, binary data is escaped when
unloaded (\xab\xcd). When set to ASIS, values are written as is, that is, without
any escaping—even if the value contains control characters. ASIS is useful for
text that contains formatting characters such as tabs or carriage returns.

ENCODING The encoding argument lets you specify the encoding that is
used to write the file. The ENCODING clause can be used only with the ASCII
format.

If encoding is not specified, Interactive SQL determines the code page that is
used to write the file as follows, where code page values occurring earlier in
the list take precedence over those occurring later:

CHAPTER 1 SQL Statements

Reference: Statements and Options 267

• The code page specified with the DEFAULT_ISQL_ENCODING option (if
this option is set)

• The code page specified with the -codepage option when Interactive SQL
was started

• The default code page for the computer Interactive SQL is running on

Side effects

In Interactive SQL, the Results tab displays only the results of the current
query. All previous query results are replaced with the current query results.

Standards • SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not applicable.

Permissions None

See also DEFAULT_ISQL_ENCODING option [DBISQL] on page 379

SELECT statement on page 291

PARAMETERS statement [DBISQL]
Description Specifies parameters to a DBISQL command file.

Syntax PARAMETERS parameter1, parameter2, …

Examples The following DBISQL command file takes two parameters:

PARAMETERS department_id, file ;
SELECT Surname
FROM Employees
WHERE DepartmentID = {department_id}
>#{file}.dat;

Usage PARAMETERS specifies how many parameters there are to a command file and
also names those parameters so that they can be referenced later in the
command file.

Parameters are referenced by putting into the file where you want the named
parameter to be substituted.:

{parameter1}

There must be no spaces between the braces and the parameter name.

PREPARE statement [ESQL]

268 Sybase IQ

If a command file is invoked with fewer than the required number of
parameters, DBISQL prompts for values of the missing parameters.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None

See also READ statement [DBISQL] on page 275

PREPARE statement [ESQL]
Description Prepares a statement to be executed later or used for a cursor.

Syntax PREPARE statement-name
FROM statement
... [DESCRIBE describe-type INTO [[SQL] DESCRIPTOR] descriptor]
... [WITH EXECUTE]

Parameters statement-name:
identifier or host-variable

statement:
string, or host-variable

describe-type:
{ ALL | BIND VARIABLES | INPUT | OUTPUT | SELECT LIST }
... { LONG NAMES [[OWNER.]TABLE.]COLUMN] | WITH VARIABLE
RESULT }

Examples Prepares a simple query:

EXEC SQL PREPARE employee_statement FROM
'SELECT Surname FROM Employees';

Usage The PREPARE statement prepares a SQL statement from the statement and
associates the prepared statement with statement-name. This statement name is
referenced to execute the statement, or to open a cursor if the statement is a
SELECT statement. Statement-name may be a host variable of type
a_sql_statement_number defined in the sqlca.h header file that is automatically
included. If an identifier is used for the statement-name, only one statement per
module may be prepared with this statement-name.

CHAPTER 1 SQL Statements

Reference: Statements and Options 269

If a host variable is used for statement-name, it must have the type short int.
There is a typedef for this type in sqlca.h called a_sql_statement_number. This
type is recognized by the SQL preprocessor and can be used in a DECLARE
section. The host variable is filled in by the database during the PREPARE
statement and need not be initialized by the programmer.

If the DESCRIBE INTO DESCRIPTOR clause is used, the prepared statement is
described into the specified descriptor. The describe type may be any of the
describe types allowed in the DESCRIBE statement.

If the WITH EXECUTE clause is used, the statement is executed if and only if it
is not a CALL or SELECT statement, and it has no host variables. The statement
is immediately dropped after a successful execution. If PREPARE and
DESCRIBE (if any) are successful but the statement cannot be executed, a
warning SQLCODE 111, SQLSTATE 01W08 is set, and the statement is not
dropped.

The DESCRIBE INTO DESCRIPTOR and WITH EXECUTE clauses might
improve performance, as they decrease the required client/server
communication.

Describing variable result sets

The WITH VARIABLE RESULT clause is used to describe procedures that may
have more than one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT
value after the describe to one of the following values:

• 0 The result set may change: the procedure call should be described
again following each OPEN statement.

• 1 The result set is fixed. No redescribing is required.

Statements that can be prepared

The following is a list of statements that can be PREPARED:

• ALTER

• CALL

• COMMENT ON

• CREATE

• DELETE

• DROP

• GRANT

PRINT statement [T-SQL]

270 Sybase IQ

• INSERT

• REVOKE

• SELECT

• SET OPTION

Compatibility issue

For compatibility reasons, preparing COMMIT, PREPARE TO COMMIT, and
ROLLBACK statements is still supported. However, we recommend that you do
all transaction management operations with static Embedded SQL because
certain application environments may require it. Also, other Embedded SQL
systems do not support dynamic transaction management operations.

Note Make sure that you DROP the statement after use. If you do not, then the
memory associated with the statement is not reclaimed.

Side effects

Any statement previously prepared with the same name is lost.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

DESCRIBE statement [ESQL] on page 173

DROP STATEMENT statement [ESQL] on page 184

EXECUTE statement [ESQL] on page 186

OPEN statement [ESQL] [SP] on page 260

PRINT statement [T-SQL]
Description Displays a message on the message window of the database server.

Syntax PRINT format-string [, arg-list]

CHAPTER 1 SQL Statements

Reference: Statements and Options 271

Examples Example 1 Displays a message on the server message window:

CREATE PROCEDURE print_test
AS
PRINT 'Procedure called successfully'

This statement returns the string “Procedure called successfully” to the client:

EXECUTE print_test

Example 2 Illustrates the use of placeholders in the PRINT statement; execute
these statements inside a procedure:

DECLARE @var1 INT, @var2 INT
SELECT @var1 = 3, @var2 = 5
PRINT 'Variable 1 = %1!, Variable 2 = %2!', @var1, @var2

Example 3 Uses RAISERROR to disallow connections:

CREATE procedure DBA.login_check()
begin

// Allow a maximum of 3 concurrent connections
IF(db_property('ConnCount') > 3) then
raiserror 28000

'User %1! is not allowed to connect -- there are
already %2! users logged on',
current user,
cast(db_property('ConnCount') as int)-1;

ELSE
call sp_login_environment;

end if;
end
go
grant execute on DBA.login_check to PUBLIC
go
set option PUBLIC.Login_procedure='DBA.login_check'
go

For an alternate way to disallow connections, see “LOGIN_PROCEDURE
option” on page 411 or “sp_iqmodifylogin procedure” in Chapter 7, “System
Procedures” in Reference: Building Blocks, Tables, and Procedures.

Usage The PRINT statement returns a message to the client window if you are
connected from an Open Client application or JDBC application. If you are
connected from an Embedded SQL or ODBC application, the message displays
on the database server window.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %nn!, where nn is an integer
between 1 and 20.

PUT statement [ESQL]

272 Sybase IQ

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must be connected to the database.

See also MESSAGE statement on page 257

PUT statement [ESQL]
Description Inserts a row into the specified cursor.

Syntax PUT cursor-name [USING DESCRIPTOR sqlda-name
| FROM hostvar-list] [INTO { DESCRIPTOR into-sqlda-name
| into-hostvar-list }] [ARRAY :nnn]

cursor-name : identifier or hostvar

sqlda-name : identifier

hostvar-list : may contain indicator variables

Examples The following statement illustrates the use of PUT in Embedded SQL:

EXEC SQL PUT cur_employee FROM :EmployeeID, :Surname;

Usage Inserts a row into the named cursor. Values for the columns are taken from the
first SQLDA or the host variable list, in a one-to-one correspondence with the
columns in the INSERT statement (for an INSERT cursor) or the columns in the
select list (for a SELECT cursor).

The PUT statement can be used only on a cursor over an INSERT or SELECT
statement that references a single table in the FROM clause, or that references
an updatable view consisting of a single base table.

If the sqldata pointer in the SQLDA is the null pointer, no value is specified for
that column. If the column has a DEFAULT VALUE associated with it, that is
used; otherwise, a NULL value is used.

The second SQLDA or host variable list contains the results of the PUT
statement.

CHAPTER 1 SQL Statements

Reference: Statements and Options 273

The optional ARRAY clause can be used to carry out wide puts, which insert
more than one row at a time and which might improve performance. The value
nnn is the number of rows to be inserted. The SQLDA must contain nnn *
(columns per row) variables. The first row is placed in SQLDA variables 0 to
(columns per row)-1, and so on.

Inserting into a cursor
For scroll (values-sensitive) cursors, the inserted row appears if the new row
matches the WHERE clause and the keyset cursor has not finished populating.
For dynamic cursors, if the inserted row matches the WHERE clause, the row
might appear. Insensitive cursors cannot be updated.

For information on putting LONG VARCHAR or LONG BINARY values into the
database, see SET statement [ESQL].

Side Effects

When inserting rows into a value-sensitive (keyset-driven) cursor, the inserted
rows appear at the end of the result set, even when they do not match the
WHERE clause of the query or if an ORDER BY clause would normally have
placed them at another location in the result set. For more information, see
“Value-sensitive cursors” in SQL Anywhere Server – Programming >
Introduction to Programming with SQL Anywhere > Using SQL in
applications > SQL Anywhere cursors.

Standards • SQL92 Entry-level feature.

• SQL99 Core feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have INSERT permission.

See also DELETE (positioned) statement [ESQL] [SP] on page 171

INSERT statement on page 216

UPDATE statement on page 322

UPDATE (positioned) statement [ESQL] [SP] on page 326

RAISERROR statement [T-SQL]

274 Sybase IQ

RAISERROR statement [T-SQL]
Description Signals an error and sends a message to the client.

Syntax RAISERROR error-number [format-string] [, arg-list]

Examples Raises error 99999, which is in the range for user-defined errors, and sends a
message to the client:

RAISERROR 99999 'Invalid entry for this
column: %1!', @val

There is no comma between the error-number and the format-string
parameters. The first item following a comma is interpreted as the first item in
the argument list.

Usage The RAISERROR statement allows user-defined errors to be signaled, and
sends a message on the client.

The error-number is a 5-digit integer greater than 17000. The error number is
stored in the global variable @@error.

If format-string is not supplied or is empty, the error number is used to locate
an error message in the system tables. Adaptive Server Enterprise obtains
messages 17000-19999 from the SYSMESSAGES table. In Sybase IQ, this
table is an empty view, so errors in this range should provide a format string.
Messages for error numbers of 20000 or greater are obtained from the
SYS.SYSUSERMESSAGES table.

The format-string can be up to 255 bytes long. This is the same as in Adaptive
Server Enterprise.

The extended values supported by the SQL Server or Adaptive Server
Enterprise RAISERROR statement are not supported in Sybase IQ.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %nn!, where nn is an integer
between 1 and 20.

Intermediate RAISERROR status and code information is lost after the
procedure terminates. If at return time an error occurs along with the
RAISERROR then the error information is returned and the RAISERROR
information is lost. The application can query intermediate RAISERROR
statuses by examining @@error global variable at different execution points.

Side effects

None.

CHAPTER 1 SQL Statements

Reference: Statements and Options 275

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must be connected to the database.

See also CONTINUE_AFTER_RAISERROR option [TSQL] on page 361

ON_TSQL_ERROR option [TSQL] on page 427

READ statement [DBISQL]
Description Reads DBISQL statements from a file.

Syntax READ filename [parameters]

Examples Examples of the READ statement:

READ status.rpt '160'
READ birthday.sql [>= '1988-1-1'] [<= '1988-1-30']

Usage The READ statement reads a sequence of DBISQL statements from the named
file. This file can contain any valid DBISQL statement, including other READ
statements, which can be nested to any depth. To find the command file,
DBISQL first searches the current directory, then the directories specified in
the environment variable SQLPATH, then the directories specified in the
environment variable PATH. If the named file has no file extension, DBISQL
also searches each directory for the same file name with the extension SQL.

Parameters can be listed after the name of the command file. These parameters
correspond to the parameters named on the PARAMETERS statement at the
beginning of the statement file (see PARAMETERS statement [DBISQL] on
page 267). DBISQL then substitutes the corresponding parameter wherever the
source file contains:

{ parameter-name }

where parameter-name is the name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted
identifiers, or strings. When quotes are used around a parameter, the quotes are
put into the text during the substitution. Parameters that are not identifiers,
numbers, or strings (contain spaces or tabs) must be enclosed in square
brackets ([]). This allows for arbitrary textual substitution in the command file.

If not enough parameters are passed to the command file, DBISQL prompts for
values for the missing parameters.

RELEASE SAVEPOINT statement

276 Sybase IQ

Encoding

The READ statement also supports an ENCODING clause, which lets you
specify the encoding that is used to read the file. For more information, see
“READ statement [Interactive SQL]” in SQL Anywhere Server – SQL
Reference > Using SQL > SQL statements > SQL statements (P-Z).

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None.

See also DEFAULT_ISQL_ENCODING option [DBISQL] on page 379

PARAMETERS statement [DBISQL] on page 267

RELEASE SAVEPOINT statement
Description Releases a savepoint within the current transaction.

Syntax RELEASE SAVEPOINT [savepoint-name]

Usage The savepoint-name is an identifier specified on a SAVEPOINT statement
within the current transaction. If savepoint-name is omitted, the most recent
savepoint is released.

For a description of savepoints, see Chapter 1, “Using Procedures and
Batches” in the System Administration Guide: Volume 2. Releasing a savepoint
does not perform any type of COMMIT; it simply removes the savepoint from
the list of currently active savepoints.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. A similar feature
is available in an Adaptive Server Enterprise-compatible manner using
nested transactions.

Permissions There must have been a corresponding SAVEPOINT within the current
transaction.

CHAPTER 1 SQL Statements

Reference: Statements and Options 277

See also ROLLBACK TO SAVEPOINT statement on page 290

SAVEPOINT statement on page 291

REMOVE statement
Description Removes a class, a package, or a JAR file from a database. Removed classes

are no longer available for use as a variable type.

Any class, package, or JAR to be removed must be already installed.

Syntax REMOVE JAVA classes_to_remove

Parameters classes_to_remove:
{ CLASS java_class_name [, java_class_name]…
| PACKAGE java_package_name [, java_package_name]…
| JAR jar_name [, jar_name]… [RETAIN CLASSES] }

jar_name:
character_string_expression

Examples The following statement removes a Java class named “Demo” from the current
database:

REMOVE JAVA CLASS Demo

Usage java_class_name The name of one or more Java classes to be removed.
Those classes must be installed classes in the current database.

java_package_name The name of one or more Java packages to be removed.
Those packages must be the name of packages in the current database.

jar_name A character string value of maximum length 255.

Each jar_name must be equal to the jar_name of a retained JAR in the current
database. Equality of jar_name is determined by the character string
comparison rules of the SQL system.

If JAR...RETAIN CLASSES is specified, the specified JARs are no longer
retained in the database, and the retained classes have no associated JAR. If
RETAIN CLASSES is specified, this is the only action of the REMOVE
statement.

RESIGNAL statement

278 Sybase IQ

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. A similar feature
is available in an Adaptive Server Enterprise-compatible manner using
nested transactions.

Permissions Must have DBA authority or must own the object.

RESIGNAL statement
Description Resignals an exception condition.

Syntax RESIGNAL [exception-name]

Examples The following fragment returns all exceptions except for “Column Not Found”
to the application.

...
DECLARE COLUMN_NOT_FOUND EXCEPTION

FOR SQLSTATE '52003';
...
EXCEPTION
WHEN COLUMN_NOT_FOUND THEN
SET message='Column not found' ;
WHEN OTHERS THEN
RESIGNAL ;

Usage Within an exception handler, RESIGNAL lets you quit the compound statement
with the exception still active, or to quit reporting another named exception.
The exception is handled by another exception handler or returned to the
application. Any actions by the exception handler before the RESIGNAL are
undone.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported in Adaptive Server Enterprise. Error handling in
Transact-SQL procedures is carried out using the RAISERROR statement.

Permissions None

See also BEGIN … END statement on page 47

SIGNAL statement on page 312

CHAPTER 1 SQL Statements

Reference: Statements and Options 279

RESTORE statement
Description Restores a Sybase IQ database backup from one or more archive devices.

Syntax Syntax 1

RESTORE DATABASE 'db_file'
FROM 'archive_device' [FROM 'archive_device']…
… [KEY key_spec]
… [RENAME dbspace-name TO 'new-dbspace-path']…
… [CATALOG ONLY]

Syntax 2

RESTORE DATABASE 'database-name'
[restore-option ...]
FROM 'archive_device' ...

Parameters db_file:
relative or absolute path of the database to be restored. Can be the original
location, or a new location for the catalog store file.

key_spec:
quoted string including mixed cases, numbers, letters, and special
characters. It might be necessary to protect the key from interpretation or
alteration by the command shell.

restore-option:

READONLY dbspace-or-file [, …]
KEY key_spec
RENAME file-name TO new-file-path ...

Examples Example 1 The following UNIX example restores the iqdemo database from
tape devices /dev/rmt/0 and /dev/rmt/2 on a Sun Solaris platform. On Solaris,
the letter n after the device name specifies “no rewind on close.” To specify this
feature with RESTORE, use the naming convention appropriate for your UNIX
platform. (Windows does not support this feature.)

RESTORE DATABASE 'iqdemo'
FROM '/dev/rmt/0n'
FROM '/dev/rmt/2n'

Example 2 The following example restores an encrypted database named
marvin that was encrypted with the key is!seCret.

RESTORE DATABASE 'marvin'
FROM 'marvin_bkup_file1'
FROM 'marvin_bkup_file2'
FROM 'marvin_bkup_file3'
KEY 'is!seCret'

RESTORE statement

280 Sybase IQ

Example 3 The following example shows the syntax of a BACKUP statement
and two possible RESTORE statements.

Given the following BACKUP statement:

BACKUP DATABASE READONLY DBSPACES iq_main
TO '/system1/IQ15/IQ-15_1/demo/backup/iqmain'

The dbspace iq_main can be restored using either of the following RESTORE
statements:

RESTORE DATABASE 'iqdemo' READONLY DBSPACES iq_main
FROM '/system1/IQ15/IQ-15_0/demo/backup/iqmain'

or

RESTORE DATABASE 'iqdemo'
FROM '/system1/IQ15/IQ-15_0/demo/backup/iqmain'

A selective backup backs up either all READWRITE dbspaces or specific
read-only dbspaces or dbfiles.

Notes:

• You can take a READONLY selective backup and restore all objects from
this backup (as in the second example above).

• You can take an all-inclusive backup and restore read-only files and
dbspaces selectively.

• You can take a READONLY selective backup of multiple read-only files
and dbspaces and restore a sub-set of real-only files and dbspaces
selectively.

• You can restore the read-only backup, only if the read-only files have
not changed since the backup. Once the dbspace is made read-write
again, the read-only backup is invalid, unless you restore the entire
read-write portion of the database back to the point at which the read-
only dbspace was read-only.

Usage The RESTORE command requires exclusive access by the DBA to the
database. This exclusive access is achieved by setting the -gd switch to DBA,
which is the default when you start the server engine. Issue the RESTORE
command before you start the database (you must be connected to the utility_db
database). Once you finish specifying RESTORE commands for the type of
backup, that database is ready to be used. The database is left in the state that
existed at the end of the first implicit CHECKPOINT of the last backup you
restored. You can now specify a START DATABASE to allow other users to
access the restored database.

CHAPTER 1 SQL Statements

Reference: Statements and Options 281

When restoring to a raw device, make sure the device is large enough to hold
the dbspace you are restoring. IQ RESTORE checks the raw device size and
returns an error, if the raw device is not large enough to restore the dbspace.
For more information, see “Restoring to a raw device” in Chapter 12, “Data
Backup, Recovery, and Archiving,” in the System Administration Guide:
Volume 1.

BACKUP allows you to specify full or incremental backups. There are two
kinds of incremental backups. INCREMENTAL backs up only those blocks that
have changed and committed since the last backup of any type (incremental or
full). INCREMENTAL SINCE FULL backs up all the blocks that have changed
since the last full backup. If a RESTORE of a full backup is followed by one or
more incremental backups (of either type), no modifications to the database are
allowed between successive RESTORE commands. This rule prevents a
RESTORE from incremental backups on a database in need of crash recovery,
or one that has been modified. You can still overwrite such a database with a
RESTORE from a full backup.

Before starting a full restore, you must delete two files: the catalog store file
(default name dbname.db) and the transaction log file (default name
dbname.log).

If you restore an incremental backup, RESTORE ensures that backup media
sets are accessed in the proper order. This order restores the last full backup
tape set first, then the first incremental backup tape set, then the next most
recent set, and so forth, until the most recent incremental backup tape set. If the
DBA produced an INCREMENTAL SINCE FULL backup, only the full backup
tape set and the most recent INCREMENTAL SINCE FULL backup tape set is
required; however, if there is an INCREMENTAL made since the INCREMENTAL
SINCE FULL, it also must be applied.

Sybase IQ ensures that the restoration order is appropriate, or it displays an
error. Any other errors that occur during the restore results in the database
being marked corrupt and unusable. To clean up a corrupt database, do a
RESTORE from a full backup, followed by any additional incremental
backups. Since the corruption probably happened with one of those backups,
you might need to ignore a later backup set and use an earlier set.

To restore read-only files or dbspaces from an archive backup, the database
may be running and the administrator may connect to the database when
issuing the RESTORE statement. The read-only file pathname need not match
the names in the backup, if they otherwise match the database system table
information.

RESTORE statement

282 Sybase IQ

The database must not be running to restore a FULL, INCREMENTAL SINCE
FULL, or INCREMENTAL restore of either a READWRITE FILES ONLY or an all
files backup. The database may or may not be running to restore a backup of
read-only files. When restoring specific files in a read-only dbspace, the
dbspace must be offline. When restoring read-only files in a read-write
dbspace, the dbspace can be online or offline. The restore closes the read-only
files, restores the files, and reopens those files at the end of the restore.

You can use selective restore to restore a read-only dbspace, as long as the
dbspace is still in the same read-only state.

FROM Specifies the name of the archive_device from which you are
restoring, delimited with single quotation marks. If you are using multiple
archive devices, specify them using separate FROM clauses. A comma-
separated list is not allowed. Archive devices must be distinct. The number of
FROM clauses determines the amount of parallelism Sybase IQ attempts with
regard to input devices.

The backup/restore API DLL implementation lets you specify arguments to
pass to the DLL when opening an archive device. For third-party
implementations, the archive_device string has the following format:

'DLLidentifier::vendor_specific_information'

A specific example is:

'spsc::workorder=12;volname=ASD002'

The archive_device string length can be up to 1023 bytes. The DLLidentifier
portion must be 1 to 30 bytes in length and can contain only alphanumeric and
underscore characters. The vendor_specific_information portion of the string
is passed to the third-party implementation without checking its contents.

Note Only certain third-party products are certified with Sybase IQ using this
syntax. See the Release Bulletin for additional usage instructions or
restrictions. Before using any third-party product to back up your Sybase IQ
database, make sure it is certified. See the Release Bulletin, or see the Sybase
Certification Reports for the Sybase IQ product in Technical Documents at http:/
/www.sybase.com/support/techdocs/.

http://www.sybase.com/support/techdocs

CHAPTER 1 SQL Statements

Reference: Statements and Options 283

For the Sybase implementation of the backup/restore API, you need not specify
information other than the tape device name or file name. However, if you use
disk devices, you must specify the same number of archive devices on the
RESTORE as given on the backup; otherwise, you may have a different number
of restoration devices than the number used to perform the backup. A specific
example of an archive device for the Sybase API DLL that specifies a
nonrewinding tape device for a UNIX system is:

'/dev/rmt/0n'

RENAME Lets you restore one or more Sybase IQ database files to a new
location. Specify each dbspace-name you are moving as it appears in the
SYSFILE table. Specify new-dbspace-path as the new raw partition, or the new
full or relative path name, for that dbspace.

If relative paths were used to create the database files, the files are restored by
default relative to the catalog store file (the SYSTEM dbspace), and a rename
clause is not required. If absolute paths were used to create the database files
and a rename clause is not specified for a file, it is restored to its original
location.

Relative path names in the RENAME clause work as they do when you create a
database or dbspace: the main IQ store dbspace, temporary store dbspaces, and
Message Log are restored relative to the location of db_file (the catalog store);
user-created IQ store dbspaces are restored relative to the directory that holds
the main IQ dbspace.

Do not use the RENAME clause to move the SYSTEM dbspace, which holds the
catalog store. To move the catalog store, and any files created relative to it and
not specified in a RENAME clause, specify a new location in the db_file
parameter.

CATALOG ONLY Restores only the backup header record from the archive
media.

Other RESTORE issues:

• RESTORE to disk does not support raw devices as archival devices.

• Sybase IQ does not rewind tapes before using them; on rewinding tape
devices, it does rewind tapes after using them. You must position each tape
to the start of the Sybase IQ data before starting the RESTORE.

RESUME statement

284 Sybase IQ

• During BACKUP and RESTORE operations, if Sybase IQ cannot open the
archive device (for example, when it needs the media loaded) and the
ATTENDED option is ON, it waits for ten seconds for you to put the next
tape in the drive, and then tries again. It continues these attempts
indefinitely until either it is successful or the operation is terminated with
Ctrl+C.

• If you press Ctrl+C, RESTORE fails and returns the database to its state
before the restoration began.

• If disk striping is used, the striped disks are treated as a single device.

• The file_name column in the SYSFILE system table for the SYSTEM
dbspace is not updated during a restore. For the SYSTEM dbspace, the
file_name column always reflects the name when the database was created.
The filename of the SYSTEM dbspace is the name of the database file.

The maximum size for a complete RESTORE command, including all clauses,
is 32KB.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also BACKUP statement on page 41

RESUME statement
Description Resumes a procedure after a query.

Syntax Syntax 1

RESUME cursor-name

Syntax 2

RESUME [ALL]

Parameters cursor-name:
identifier

cursor-name:
identifier or host-variable

CHAPTER 1 SQL Statements

Reference: Statements and Options 285

Examples Example 1 Embedded SQL examples:

EXEC SQL RESUME cur_employee;

and

EXEC SQL RESUME :cursor_var;

Example 2 dbisql example:

CALL sample_proc() ;
RESUME ALL;

Usage The RESUME statement resumes execution of a procedure that returns result
sets. The procedure executes until the next result set (SELECT statement with
no INTO clause) is encountered. If the procedure completes and no result set is
found, the SQLSTATE_PROCEDURE_COMPLETE warning is set. This
warning is also set when you RESUME a cursor for a SELECT statement.

Note The RESUME statement is supported in dbisqlc, but is invalid in dbisql
(Interactive SQL Java) or when connected to the database using the iAnywhere
JDBC driver.

The DBISQL RESUME statement (Format 2) resumes the current procedure. If
ALL is not specified, executing RESUME displays the next result set or, if no
more result sets are returned, completes the procedure.

The DBISQL RESUME ALL statement cycles through all result sets in a
procedure, without displaying them, and completes the procedure. This is
useful mainly in testing procedures.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions The cursor must have been previously opened.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

RETURN statement

286 Sybase IQ

RETURN statement
Description Exits a function or procedure unconditionally, optionally providing a return

value. Statements following RETURN are not executed.

Syntax RETURN [(expression)]

Examples Example 1 Returns the product of three numbers:

CREATE FUNCTION product (a numeric,
b numeric ,
c numeric)

RETURNS numeric
BEGIN

RETURN (a * b * c) ;
END

Example 2 Calculates the product of three numbers:

SELECT product (2, 3, 4)

product (2,3,4)
24

Example 3 Uses the RETURN statement to avoid executing a complex query
if it is meaningless:

CREATE PROCEDURE customer_products
(in customer_id integer DEFAULT NULL)
RESULT (id integer, quantity_ordered integer)
BEGIN

IF customer_id NOT IN (SELECT ID FROM Customers)
OR customer_id IS NULL THEN

RETURN
ELSE

SELECT ID,sum(
SalesOrderItems.Quantity)

FROM Products,
SalesOrderItems,
SalesOrders

WHERE SalesOrders.CustomerID = customer_id
AND SalesOrders.ID = SalesOrderItems.ID
AND SalesOrderItems.ProductID = Products.D
GROUP BY Products.ID

END IF
END

Usage If expression is supplied, the value of expression is returned as the value of the
function or procedure.

CHAPTER 1 SQL Statements

Reference: Statements and Options 287

Within a function, the expression should be of the same data type as the
function’s RETURNS data type.

RETURN is used in procedures for Transact-SQL-compatibility, and is used to
return an integer error code.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Transact-SQL procedures use the return statement to return an
integer error code.

Permissions None.

See also BEGIN … END statement on page 47

CREATE PROCEDURE statement on page 120

REVOKE statement
Description Removes permissions for specified users.

Syntax Syntax 1

REVOKE
{ CONNECT | DBA | INTEGRATED LOGIN | GROUP
| KERBEROS LOGIN | MEMBERSHIP IN GROUP userid [, …] |
RESOURCE }
… FROM userid [, …]

Syntax 2

REVOKE
{…ALL [PRIVILEGES] | ALTER | DELETE | INSERT
| REFERENCE | SELECT [(column-name [, …])] | UPDATE
[(column-name, …)] }
… ON [owner.]table-name FROM userid [, …]

Syntax 3

REVOKE EXECUTE ON [owner.]procedure-name FROM userid [, …]

Syntax 4

REVOKE CREATE ON dbspace-name FROM userid [, …]

REVOKE statement

288 Sybase IQ

Examples Example 1 Prevents user “dave” from inserting into the Employees table:

REVOKE INSERT ON Employees FROM dave ;

Example 2 Revokes resource permission from user “Jim”:

REVOKE RESOURCE FROM Jim ;

Example 3 Prevents user “dave” from updating the Employees table:

REVOKE UPDATE ON Employees FROM dave ;

Example 4 Revokes integrated login mapping from the user profile name
“Administrator”:

REVOKE INTEGRATED LOGIN FROM Administrator ;

Example 5 Disallows the finance group from executing the procedure
sp_customer_list:

REVOKE EXECUTE ON sp_customer_list
FROM finance ;

Example 6 Drops user ID franw from the database:

REVOKE CONNECT FROM franw ;

Example 7 Revokes CREATE privilege on dbspace DspHist from user Latifah:

REVOKE CREATE ON DspHist FROM Latifah

Example 8 Revokes CREATE permission on dbspace DspHist from user ID
fionat from the database:

REVOKE CREATE ON DspHist FROM fionat ;

Usage The REVOKE statement is used to remove permissions that were given using
the GRANT statement. Syntax 1 is used to revoke special user permissions and
Syntax 2 is used to revoke table permissions. Syntax 3 is used to revoke
permission to execute a procedure. REVOKE CONNECT is used to remove a
user ID from a database.

Note If Login Management is enabled for the database, you must use system
procedures, not GRANT and REVOKE, to add and remove user IDs.

REVOKE GROUP automatically revokes membership from all members of the
group.

REVOKE CREATE removes Create permission on the specified dbspace from
the specified user IDs.

CHAPTER 1 SQL Statements

Reference: Statements and Options 289

You cannot revoke permissions for a specific user within a group. If you do not
want a specific user to access a particular table, view, or procedure, then do not
make that user a member of a group that has permissions on that object.

Note You cannot revoke the connect privileges of a user if that user owns
database objects, such as tables. Attempting to do so with a REVOKE statement
or sp_dropuser procedure returns an error such as “Cannot drop a user that
owns tables in runtime system.”

Side effects

Automatic commit.

Standards • SQL92 Syntax 1 is a vendor extension. Syntax 2 is an entry-level
feature. Syntax 3 is a Persistent Stored Module feature.

• Sybase Syntax 2 and 3 are supported by Adaptive Server Enterprise.
Syntax 1 is not supported by Adaptive Server Enterprise. User
management and security models are different for Sybase IQ and Adaptive
Server Enterprise.

Permissions Must be the grantor of the permissions that are being revoked, or must have
DBA authority.

If revoking CONNECT permissions or revoking table permissions from another
user, the other user must not be connected to the database.

For Syntax 4, you must have DBA authority.

See also GRANT statement on page 206

ROLLBACK statement
Description Undoes any changes made since the last COMMIT or ROLLBACK.

Syntax ROLLBACK [WORK]

Usage ROLLBACK ends a logical unit of work (transaction) and undoes all changes
made to the database during this transaction. A transaction is the database work
done between COMMIT or ROLLBACK statements on one database connection.

Side effects

Closes all cursors not opened WITH HOLD.

Releases locks held by the transaction issuing the ROLLBACK.

ROLLBACK TO SAVEPOINT statement

290 Sybase IQ

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must be connected to the database.

See also COMMIT statement on page 62

ROLLBACK TO SAVEPOINT statement on page 290

ROLLBACK TO SAVEPOINT statement
Description Cancels any changes made since a SAVEPOINT.

Syntax ROLLBACK TO SAVEPOINT [savepoint-name]

Usage The ROLLBACK TO SAVEPOINT statement will undo any changes that have
been made since the SAVEPOINT was established. Changes made prior to the
SAVEPOINT are not undone; they are still pending. For a description of
savepoints, see Chapter 1, “Using Procedures and Batches” in the System
Administration Guide: Volume 2.

The savepoint-name is an identifier that was specified on a SAVEPOINT
statement within the current transaction. If savepoint-name is omitted, the most
recent savepoint is used. Any savepoints since the named savepoint are
automatically released.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Savepoints are not supported by Adaptive Server Enterprise. To
implement similar features in an Adaptive Server Enterprise-compatible
manner, you can use nested transactions.

Permissions There must have been a corresponding SAVEPOINT within the current
transaction.

See also RELEASE SAVEPOINT statement on page 276

ROLLBACK statement on page 289

SAVEPOINT statement on page 291

CHAPTER 1 SQL Statements

Reference: Statements and Options 291

SAVEPOINT statement
Description Establishes a savepoint within the current transaction.

Syntax SAVEPOINT [savepoint-name]

Usage The savepoint-name is an identifier that can be used in a RELEASE
SAVEPOINT or ROLLBACK TO SAVEPOINT statement. All savepoints are
automatically released when a transaction ends. See Chapter 1, “Using
Procedures and Batches” in the System Administration Guide: Volume 2.

Savepoints that are established while a trigger is executing or while an atomic
compound statement is executing are automatically released when the atomic
operation ends.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise. To implement
similar features in an Adaptive Server Enterprise-compatible manner, use
nested transactions.

Permissions None

See also RELEASE SAVEPOINT statement on page 276

ROLLBACK TO SAVEPOINT statement on page 290

SELECT statement
Description Retrieves information from the database.

Syntax SELECT [ALL | DISTINCT] [FIRST | TOP number-of-rows] select-list
… [INTO { host-variable-list | variable-list | table-name }]
… [FROM table-list]
… [WHERE search-condition]
… [GROUP BY [expression [, …]

| ROLLUP (expression [, …])
| CUBE (expression [, …])]]

… [HAVING search-condition]
… [ORDER BY { expression | integer } [ASC | DESC] [, …]]

SELECT statement

292 Sybase IQ

Parameters select-list:
{ column-name
| expression [[AS] alias-name]
| * }

Examples Example 1 Lists all the tables and views in the system catalog:

SELECT tname
FROM SYS.SYSCATALOG
WHERE tname LIKE 'SYS%' ;

Example 2 Lists all customers and the total value of their orders:

SELECT CompanyName,
CAST(sum(SalesOrderItems.Quantity *
Products.UnitPrice) AS INTEGER) VALUE

FROM Customers
LEFT OUTER JOIN SalesOrders
LEFT OUTER JOIN SalesOrderItems
LEFT OUTER JOIN Products

GROUP BY CompanyName
ORDER BY VALUE DESC

Example 3 Lists the number of employees:

SELECT count(*)
FROM Employees;

Example 4 Shows an Embedded SQL SELECT statement:

SELECT count(*) INTO :size FROM Employees;

Example 5 Lists the total sales by year, model, and color:

SELECT year, model, color, sum(sales)
FROM sales_tab
GROUP BY ROLLUP (year, model, color);

Example 6 Selects all items with a certain discount into a temporary table:

SELECT * INTO #TableTemp FROM lineitem
WHERE l_discount < 0.5

CHAPTER 1 SQL Statements

Reference: Statements and Options 293

Usage You can use a SELECT statement in DBISQL to browse data in the database or
to export data from the database to an external file.

You can also use a SELECT statement in procedures or in Embedded SQL. The
SELECT statement with an INTO clause is used for retrieving results from the
database when the SELECT statement returns only one row. (Tables created
with SELECT INTO do not inherit IDENTITY/AUTOINCREMENT tables.)
For multiple-row queries, you must use cursors.When you select more than one
column and do not use #table, SELECT INTO creates a permanent base table.
SELECT INTO #table always creates a temporary table regardless of the
number of columns. SELECT INTO table with a single column selects into a
host variable.

Tables with the same name but different owners require aliases. A query like
the following returns incorrect results:

SELECT * FROM user1.t1
WHERE NOT EXISTS
(SELECT *
FROM user2.t1
WHERE user2.t1.col1 = user1.t.col1);

For correct results, use an alias for each table, as follows:

SELECT * FROM user1.t1 U1
WHERE NOT EXISTS
(SELECT *
FROM user2.t1 U2
WHERE U2.col1 = U1.col1);

The INTO clause with a variable-list is used in procedures only.

In SELECT statements, a stored procedure call can appear anywhere a base
table or view is allowed. Note that CIS functional compensation performance
considerations apply. For example, a SELECT statement can also return a result
set from a procedure. For syntax and an example, see “FROM clause” in the
SQL Anywhere Server – SQL Reference > Using SQL > SQL statements > SQL
statements (E-O). See “Creating and selecting from temporary tables” in
Chapter 1, “Using Procedures and Batches” in the System Administration
Guide: Volume 2 for a restriction that affects selecting from temporary tables
within stored procedures.

The various parts of the SELECT statement are described below:

SELECT statement

294 Sybase IQ

ALL or DISTINCT If neither is specified, all rows that satisfy the clauses
of the SELECT statement are retrieved. If DISTINCT is specified, duplicate
output rows are eliminated. This is called the projection of the result of the
statement. In many cases, statements take significantly longer to execute when
DISTINCT is specified, so reserve the use of DISTINCT for cases where it is
necessary.

If DISTINCT is used, the statement cannot contain an aggregate function with a
DISTINCT parameter.

FIRST or TOP number-of-rows Specifies the number of rows returned from
a query. FIRST returns the first row selected from the query. TOP returns the
specified number of rows from the query where number-of-rows is in the range
1 – 2147483647 and can be an integer constant or integer variable.

FIRST and TOP are used primarily with the ORDER BY clause. If you use these
keywords without an ORDER BY clause, the result might vary from run to run
of the same query, as the optimizer might choose a different query plan.

FIRST and TOP are permitted only in the top-level SELECT of a query, so they
cannot be used in derived tables or view definitions. Using FIRST or TOP in a
view definition might result in the keyword being ignored when a query is run
on the view.

Using FIRST is the same as setting the ROW_COUNT database option to 1.
Using TOP is the same as setting the ROW_COUNT option to the same number
of rows. If both TOP and ROW_COUNT are set, then the value of TOP takes
precedence.

The ROW_COUNT option could produce inconsistent results when used in a
query involving global variables, system functions or proxy tables. See
“ROW_COUNT option” on page 442 for details.

CHAPTER 1 SQL Statements

Reference: Statements and Options 295

select-list The select-list is a list of expressions, separated by commas,
specifying what is retrieved from the database. If an asterisk (*) is specified, all
columns of all tables in the FROM clause (table-name all columns of the named
table) are selected. Aggregate functions and analytical functions are allowed in
the select-list. See Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures.

Note In Sybase IQ, scalar subqueries (nested selects) are allowed in the select
list of the top level SELECT, as in SQL Anywhere and Adaptive Server
Enterprise. Subqueries cannot be used inside a conditional value expression
(for example, in a CASE statement).

In Sybase IQ, subqueries can also be used in a WHERE or HAVING clause
predicate (one of the supported predicate types). However, inside the WHERE
or HAVING clause, subqueries cannot be used inside a value expression or
inside a CONTAINS or LIKE predicate. Subqueries are not allowed in the ON
clause of outer joins or in the GROUP BY clause.

For more details on the use of subqueries, see “Subqueries in expressions” and
“Subqueries in search conditions” in Chapter 2, “SQL Language Elements” in
Reference: Building Blocks, Tables, and Procedures.

alias-names can be used throughout the query to represent the aliased
expression. Alias names are also displayed by DBISQL at the top of each
column of output from the SELECT statement. If the optional alias-name is not
specified after an expression, DBISQL displays the expression. If you use the
same name or expression for a column alias as the column name, the name is
processed as an aliased column, not a table column name.

INTO host-variable-list This clause is used in Embedded SQL only. It
specifies where the results of the SELECT statement goes. There must be one
host-variable item for each item in the select-list. Select list items are put into
the host variables in order. An indicator host variable is also allowed with each
host-variable so the program can tell if the select list item was NULL.

INTO variable-list This clause is used in procedures only. It specifies where
the results of the SELECT statement go. There must be one variable for each
item in the select list. Select list items are put into the variables in order.

INTO table-name This clause is used to create a table and fill it with data.

If the table name starts with #, the table is created as a temporary table.
Otherwise, the table is created as a permanent base table. For permanent tables
to be created, the query must satisfy the following conditions:

SELECT statement

296 Sybase IQ

• The select-list contains more than one item, and the INTO target is a single
table-name identifier, or

• The select-list contains a * and the INTO target is specified as owner.table.

To create a permanent table with one column, the table name must be specified
as owner.table. Omit the owner specification for a temporary table.

This statement causes a COMMIT before execution as a side effect of creating
the table. RESOURCE authority is required to execute this statement. No
permissions are granted on the new table: the statement is a short form for
CREATE TABLE followed by INSERT... SELECT.

A SELECT INTO from a stored procedure or function is not permitted, as
SELECT INTO is an atomic statement and you cannot do COMMIT, ROLLBACK,
or some ROLLBACK TO SAVEPOINT statements in an atomic statement. For
more information, see “Atomic compound statements” and “Transactions and
savepoints in procedures” in Chapter 1, “Using Procedures and Batches” of
the System Administration Guide: Volume 2.

Tables created using this statement do not have a primary key defined. You can
add a primary key using ALTER TABLE. A primary key should be added before
applying any UPDATEs or DELETEs to the table; otherwise, these operations
result in all column values being logged in the transaction log for the affected
rows.

Use of this clause is restricted to valid SQL Anywhere queries. Sybase IQ
extensions are not supported.

FROM table-list Rows are retrieved from the tables and views specified in
the table-list. Joins can be specified using join operators. For more
information, see FROM clause on page 200. A SELECT statement with no
FROM clause can be used to display the values of expressions not derived from
tables. For example:

SELECT @@version

displays the value of the global variable @@version. This is equivalent to:

CHAPTER 1 SQL Statements

Reference: Statements and Options 297

SELECT @@version
FROM DUMMY

Note If you omit the FROM clause, or if all tables in the query are in the
SYSTEM dbspace, the query is processed by SQL Anywhere instead of Sybase
IQ and might behave differently, especially with respect to syntactic and
semantic restrictions and the effects of option settings. See the SQL Anywhere
documentation for rules that might apply to processing.

If you have a query that does not require a FROM clause, you can force the
query to be processed by Sybase IQ by adding the clause “FROM iq_dummy,”
where iq_dummy is a one-row, one-column table that you create in your
database.

WHERE search-condition Specifies which rows are selected from the tables
named in the FROM clause. It is also used to do joins between multiple tables.
This is accomplished by putting a condition in the WHERE clause that relates
a column or group of columns from one table with a column or group of
columns from another table. Both tables must be listed in the FROM clause.

The use of the same CASE statement is not allowed in both the SELECT and the
WHERE clause of a grouped query. See “Search conditions” in Chapter 2,
“SQL Language Elements” in Reference: Building Blocks, Tables, and
Procedures for a full description.

Sybase IQ also supports the disjunction of subquery predicates. Each subquery
can appear within the WHERE or HAVING clause with other predicates and can
be combined using the AND or OR operators. See “Disjunction of subquery
predicates” in Chapter 2, “SQL Language Elements” in Reference: Building
Blocks, Tables, and Procedures.

GROUP BY You can group by columns or alias names or functions. GROUP
BY expressions must also appear in the select list. The result of the query
contains one row for each distinct set of values in the named columns, aliases,
or functions. The resulting rows are often referred to as groups since there is
one row in the result for each group of rows from the table list. For the sake of
GROUP BY, all NULL values are treated as identical. Aggregate functions can
then be applied to these groups to get meaningful results.

GROUP BY must contain more than a single constant. You do not need to add
constants to the GROUP BY clause to select the constants in grouped queries.
If the GROUP BY expression contains only a single constant, an error is
returned and the query is rejected.

SELECT statement

298 Sybase IQ

When GROUP BY is used, the select list, HAVING clause, and ORDER BY clause
cannot reference any identifiers except those named in the GROUP BY clause.
The following exception applies: The select-list and HAVING clause may
contain aggregate functions.

ROLLUP operator The ROLLUP operator in the GROUP BY clause lets you
analyze subtotals using different levels of detail. It creates subtotals that roll up
from a detailed level to a grand total.

The ROLLUP operator requires an ordered list of grouping expressions to be
supplied as arguments. ROLLUP first calculates the standard aggregate values
specified in the GROUP BY. Then ROLLUP moves from right to left through the
list of grouping columns and creates progressively higher-level subtotals. A
grand total is created at the end. If n is the number of grouping columns,
ROLLUP creates n+1 levels of subtotals.

Restrictions on the ROLLUP operator are:

• The ROLLUP operator supports all of the aggregate functions available to
the GROUP BY clause, but ROLLUP does not currently support COUNT
DISTINCT and SUM DISTINCT.

• ROLLUP can be used only in the SELECT statement; you cannot use
ROLLUP in a SELECT subquery.

• A multiple grouping specification that combines ROLLUP, CUBE, and
GROUP BY columns in the same GROUP BY clause is not currently
supported.

• Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the ROLLUP operator to distinguish between stored
NULL values and NULL values in query results created by ROLLUP.

ROLLUP syntax:

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| ROLLUP (expression [, …])]

See “Expressions” in Chapter 2, “SQL Language Elements” in Reference:
Building Blocks, Tables, and Procedures for the format of an operator
expression.

GROUPING takes a column name as a parameter and returns a Boolean value
as listed in Table 1-13.

CHAPTER 1 SQL Statements

Reference: Statements and Options 299

Table 1-13: Values returned by GROUPING with the ROLLUP operator

For ROLLUP examples, see Chapter 2, “Using OLAP,” in the System
Administration Guide: Volume 2.

CUBE operator The CUBE operator in the GROUP BY clause analyzes data
by forming the data into groups in more than one dimension. CUBE requires an
ordered list of grouping expressions (dimensions) as arguments and enables the
SELECT statement to calculate subtotals for all possible combinations of the
group of dimensions.

Restrictions on the CUBE operator are:

• The CUBE operator supports all of the aggregate functions available to the
GROUP BY clause, but CUBE does not currently support COUNT
DISTINCT or SUM DISTINCT.

• CUBE does not currently support the inverse distribution analytical
functions, PERCENTILE_CONT and PERCENTILE_DISC.

• CUBE can be used only in the SELECT statement; you cannot use CUBE in
a SELECT subquery.

• A multiple GROUPING specification that combines ROLLUP, CUBE, and
GROUP BY columns in the same GROUP BY clause is not currently
supported.

• Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the CUBE operator to distinguish between stored
NULL values and NULL values in query results created by CUBE.

CUBE syntax:

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| CUBE (expression [, …])]

GROUPING takes a column name as a parameter and returns a Boolean value
as listed in Table 1-14.

If the value of the result is GROUPING returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a ROLLUP operation 0 (FALSE)

a stored NULL 0 (FALSE)

SELECT statement

300 Sybase IQ

Table 1-14: Values returned by GROUPING with the CUBE operator

When generating a query plan, the IQ optimizer estimates the total number of
groups generated by the GROUP BY CUBE hash operation. The
MAX_CUBE_RESULTS database option sets an upper boundary for the number
of estimated rows the optimizer considers for a hash algorithm that can be run.
If the actual number of rows exceeds the MAX_CUBE_RESULT option value,
the optimizer stops processing the query and returns the error message
“Estimate number: nnn exceed the DEFAULT_MAX_CUBE_RESULT of
GROUP BY CUBE or ROLLUP”, where nnn is the number estimated by the
IQ optimizer. See “MAX_CUBE_RESULT option” in Chapter 2, “Database
Options” for information on setting the MAX_CUBE_RESULT option.

For CUBE examples, see Chapter 2, “Using OLAP,” in the System
Administration Guide: Volume 2.

HAVING search-condition Based on the group values and not on the
individual row values. The HAVING clause can be used only if either the
statement has a GROUP BY clause or if the select list consists solely of
aggregate functions. Any column names referenced in the HAVING clause must
either be in the GROUP BY clause or be used as a parameter to an aggregate
function in the HAVING clause.

ORDER BY Orders the results of a query. Each item in the ORDER BY list can
be labeled as ASC for ascending order or DESC for descending order.
Ascending is assumed if neither is specified. If the expression is an integer n,
then the query results are sorted by the nth item in the select list.

In Embedded SQL, the SELECT statement is used for retrieving results from
the database and placing the values into host variables with the INTO clause.
The SELECT statement must return only one row. For multiple row queries,
you must use cursors.

You cannot include a Java class in the SELECT list, but you can, for example,
create a function or variable that acts as a wrapper for the Java class and then
select it.

Side effects

None.

If the value of the result is GROUPING returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a CUBE operation 0 (FALSE)

a stored NULL 0 (FALSE)

CHAPTER 1 SQL Statements

Reference: Statements and Options 301

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise, with some
differences in syntax.

Permissions Must have SELECT permission on the named tables and views.

See also CREATE VIEW statement on page 155

DECLARE CURSOR statement [ESQL] [SP] on page 159

FETCH statement [ESQL] [SP] on page 193

FROM clause on page 200

OPEN statement [ESQL] [SP] on page 260

UNION operation on page 321

“SUBQUERY_CACHING_PREFERENCE option” on page 447

“Search conditions,” “Disjunction of subquery predicates,” and
“Expressions” in Chapter 2, “SQL Language Elements” in Reference:
Building Blocks, Tables, and Procedures

Chapter 2, “Using OLAP,” in System Administration Guide: Volume 2

“Accessing fields and methods of the Java object” in SQL Anywhere Server –
Programming > Java in the database > Java support in SQL Anywhere

SET statement [ESQL]
Description Assigns a value to a SQL variable.

Syntax SET identifier = expression

SET statement [ESQL]

302 Sybase IQ

Examples Example 1 The following code fragment can be used to insert a large text value
into the database:

EXEC SQL BEGIN DECLARE SECTION;
char buffer[5001];
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE VARIABLE hold_text VARCHAR;
EXEC SQL SET hold_text = '';
for(;;) {

/* read some data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;

/* buffer must be null-terminated */
buffer[size] = '\0';
/* add data to blob using concatenation */
EXEC SQL SET hold_text = hold_text || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES (1, hold_text);
EXEC SQL DROP VARIABLE hold_text;

Example 2 The following code fragment can be used to insert a large binary
value into the database:

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(5000) buffer;
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob LONG BINARY;
EXEC SQL SET hold_blob = '';
for(;;) {

/* read some data into buffer ... */
size = fread(&(buffer.array), 1, 5000, fp);
if(size <= 0) break;
buffer.len = size;

/* add data to blob using concatenation
Note that concatenation works for
binary data too! */

EXEC SQL SET hold_blob = hold_blob || :buffer;
}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

CHAPTER 1 SQL Statements

Reference: Statements and Options 303

Usage The SET statement assigns a new value to a variable that was previously
created using the CREATE VARIABLE statement.

You can use a variable in a SQL statement anywhere a column name is allowed.
If there is no column name that matches the identifier, the database server
checks to see if there is a variable that matches, and uses its value.

Variables are local to the current connection, and disappear when you
disconnect from the database or when you use DROP VARIABLE. They are not
affected by COMMIT or ROLLBACK statements.

Variables are necessary for creating large text or binary objects for INSERT or
UPDATE statements from Embedded SQL programs because Embedded SQL
host variables are limited to 32,767 bytes.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported. In Adaptive Server Enterprise, variables are
assigned using the SELECT statement with no table, a Transact-SQL
syntax that is also supported by Sybase IQ. The SET statement is used to
set database options in Adaptive Server Enterprise.

Permissions None.

See also CREATE VARIABLE statement on page 153

DROP VARIABLE statement on page 186

“Expressions” in Chapter 2, “SQL Language Elements” in Reference:
Building Blocks, Tables, and Procedures

SET statement [T-SQL]
Description Sets database options in an Adaptive Server Enterprise-compatible manner.

Syntax SET option-name option-value

Usage Table 1-15 lists available options.

SET statement [T-SQL]

304 Sybase IQ

Table 1-15: Transact-SQL SET options

Database options in Sybase IQ are set using the SET OPTION statement.
However, Sybase IQ also provides support for the Adaptive Server Enterprise
SET statement for a set of options particularly useful for compatibility.

You can set the following options using the Transact-SQL SET statement in
Sybase IQ, as well as in Adaptive Server Enterprise:

• SET ANSINULL { ON | OFF } The default behavior for comparing
values to NULL in Sybase IQ and Adaptive Server Enterprise is different.
Setting ANSINULL to OFF provides Transact-SQL compatible
comparisons with NULL

• SET ANSI_PERMISSIONS { ON | OFF } The default behavior in Sybase
IQ and Adaptive Server Enterprise regarding permissions required to carry
out a DELETE containing a column reference is different. Setting
ANSI_PERMISSIONS to OFF provides Transact-SQL-compatible
permissions on DELETE.

• SET CLOSE_ON_ENDTRANS { ON } When CLOSE_ON_ENDTRANS
is set to ON (the default and only allowable value), cursors are closed at
the end of a transaction. With the option set ON, CLOSE_ON_ENDTRANS
provides Transact-SQL-compatible behavior.

• SET QUOTED_IDENTIFIER { ON | OFF } Controls whether strings
enclosed in double quotes are interpreted as identifiers (ON) or as literal
strings (OFF).

Option name Option value

ANSINULL ON | OFF

ANSI_PERMISSIONS ON | OFF

CLOSE_ON_ENDTRANS ON

QUOTED_IDENTIFIER ON | OFF

ROWCOUNT integer

STRING_RTRUNCATION ON | OFF

TRANSACTION ISOLATION LEVEL 0 | 1 | 2 | 3

CHAPTER 1 SQL Statements

Reference: Statements and Options 305

• SET ROWCOUNT integer The Transact-SQL ROWCOUNT option
limits to the specified integer the number of rows fetched for any cursor.
This includes rows fetched by repositioning the cursor. Any fetches
beyond this maximum return a warning. The option setting is considered
when returning the estimate of the number of rows for a cursor on an
OPEN request.

Note The ROWCOUNT option has no effect on UPDATE and DELETE
operations in Sybase IQ. Also note that Sybase IQ does not support the
@@rowcount global variable.

In Sybase IQ, if ROWCOUNT is greater than the number of rows that DBISQL
can display, DBISQL may do some extra fetches to reposition the cursor. Thus,
the number of rows actually displayed may be less than the number requested.
Also, if any rows are refetched due to truncation warnings, the count might be
inaccurate.

A value of zero resets the option to get all rows.

• SET STRING_RTRUNCATION { ON | OFF } The default behavior in
Sybase IQ and Adaptive Server Enterprise when nonspace characters are
truncated on assigning SQL string data is different. Setting
STRING_RTRUNCATION to ON provides Transact-SQL-compatible string
comparisons, including hexadecimal string (binary data type)
comparisons.

• SET TRANSACTION ISOLATION LEVEL { 0 | 1 | 2 | 3 } Sets the
locking isolation level for the current connection, as described in Chapter
10, “Transactions and Versioning” in the System Administration Guide:
Volume 1. For Adaptive Server Enterprise, only 1 and 3 are valid options.
For Sybase IQ, only 3 is a valid option.

In addition, the following SET statement is allowed by Sybase IQ for
compatibility, but has no effect:

• SET PREFETCH { ON | OFF }

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Sybase IQ supports a subset of the Adaptive Server Enterprise
database options.

Permissions None

SET CONNECTION statement [DBISQL] [ESQL]

306 Sybase IQ

See also SET OPTION statement on page 307

SET CONNECTION statement [DBISQL] [ESQL]
Description Changes the active database connection.

Syntax SET CONNECTION [connection-name]

Parameters connection-name:
identifier, string or host-variable

Examples Example 1 In Embedded SQL:

EXEC SQL SET CONNECTION :conn_name

Example 2 From DBISQL, sets the current connection to the connection
named “conn1”:

SET CONNECTION conn1

Usage The current connection state is saved and is resumed when it again becomes the
active connection. If connection-name is omitted and there is a connection that
was not named, that connection becomes the active connection.

Note When cursors are opened in Embedded SQL, they are associated with the
current connection. When the connection is changed, the cursor names are not
accessible. The cursors remain active and in position and become accessible
when the associated connection becomes active again.

Side effects

None.

Standards • SQL92 DBISQL use is a vendor extension. Embedded SQL is a full-
level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also CONNECT statement [ESQL] [DBISQL] on page 65

DISCONNECT statement [DBISQL] on page 176

CHAPTER 1 SQL Statements

Reference: Statements and Options 307

SET DESCRIPTOR statement [ESQL]
Description Describes the variables in a SQL descriptor area, and places data into the

descriptor area.

Syntax SET DESCRIPTOR descriptor-name
… { COUNT = { integer | hostvar }
| VALUE n assignment [, …] }

Parameters assignment:
{ { TYPE | SCALE | PRECISION | LENGTH | INDICATOR }
= { integer | hostvar }
| DATA = hostvar }

Examples For an example, see ALLOCATE DESCRIPTOR statement [ESQL] on page
4.

Usage SET...COUNT sets the number of described variables within the descriptor area.
The value for count cannot exceed the number of variables specified when the
descriptor area was allocated.

The value n specifies the variable in the descriptor area upon which the
assignments are performed.

Type checking is performed when doing SET...DATA to ensure that the variable
in the descriptor area has the same type as the host variable.

If an error occurs, the code is returned in the SQLCA.

Side effects

None.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None

See also DEALLOCATE DESCRIPTOR statement [ESQL] on page 156

SET OPTION statement
Description Changes database options.

Syntax SET [EXISTING] [TEMPORARY] OPTION
… [userid. | PUBLIC.]option-name = [option-value]

SET OPTION statement

308 Sybase IQ

Parameters userid:
identifier, string, or host-variable

option-name:
identifier, string, or host-variable

option-value:
host-variable (indicator allowed), string, identifier, or number

Examples Example 1 Sets the DATE_FORMAT option:

SET OPTION public.date_format = 'Mmm dd yyyy'

Example 2 Sets the WAIT_FOR_COMMIT option to on:

SET OPTION wait_for_commit = 'on'

Example 3 Embedded SQL examples:

1. EXEC SQL SET OPTION :user.:option_name = :value;
2. EXEC SQL SET TEMPORARY OPTION Date_format = 'mm/dd/
yyyy';

Usage The SET OPTION statement is used to change options that affect the behavior
of the database and its compatibility with Transact-SQL. Setting the value of
an option can change the behavior for all users or an individual user, in either
a temporary or permanent scope.

The classes of options are:

• General database options

• Transact-SQL compatibility database options

Specifying either a user ID or the PUBLIC user ID determines whether the
option is set for an individual user, a user group represented by userid, or the
PUBLIC user ID (the user group to which all users are a member). If no user
group is specified, the option change is applied to the currently logged-on user
ID that issued the SET OPTION statement.

For example, the following statement applies an option change to the PUBLIC
user ID, a user group to which all users belong:

SET OPTION Public.login_mode = standard

Only users with DBA privileges have the authority to set an option for the
PUBLIC user ID.

In Embedded SQL, only database options can be set temporarily.

CHAPTER 1 SQL Statements

Reference: Statements and Options 309

Changing the value of an option for the PUBLIC user ID sets the value of the
option for any user that has not set its own value. Option values cannot be set
for an individual user ID unless there is already a PUBLIC user ID setting for
that option.

Users cannot set the options of another user, unless they have DBA authority.

Users can use the SET OPTION statement to change the values for their own
user IDs. Setting the value of an option for a user ID other then your own is
permitted only if you have DBA authority.

If you use the EXISTING keyword, option values cannot be set for an individual
user ID unless there is already a PUBLIC user ID setting for that option.

Adding the TEMPORARY keyword to the SET OPTION statement changes the
duration that the change takes effect. Without the TEMPORARY keyword, an
option change is permanent: it does not change until it is explicitly changed
using SET OPTION.

When SET TEMPORARY OPTION is applied using an individual user ID, the
new option value is in effect as long as that user is logged in to the database.

When SET TEMPORARY OPTION is used with the PUBLIC user ID, the change
is in place for as long as the database is running. When the database is shut
down, TEMPORARY options for the PUBLIC user ID revert back to their
permanent value.

Temporarily setting an option for the PUBLIC user ID as opposed to setting the
value of the option permanently offers a security advantage. For example,
when the login_mode option is enabled, the database relies on the login
security of the system on which it is running. Enabling the option temporarily
means a database relying on the security of a Windows domain is not
compromised if the database is shut down and copied to a local machine. In that
case, the temporary enabling of login_mode reverts to its permanent value,
which might be Standard, a mode in which integrated logins are not permitted.

If option-value is omitted, the specified option setting is deleted from the
database. If it was a personal option setting, the value used reverts to the
PUBLIC setting. If a TEMPORARY option is deleted, the option setting reverts
to the permanent setting.

Note For all database options that accept integer values, Sybase IQ truncates
any decimal option-value setting to an integer value. For example, the value 3.8
is truncated to 3.

SET OPTION statement [DBISQL]

310 Sybase IQ

The maximum length of option-value when set to a string is 127 bytes.

 Warning! Changing option settings while fetching rows from a cursor is not
supported, as it can lead to ill-defined behavior. For example, changing the
DATE_FORMAT setting while fetching from a cursor returns different date
formats among the rows in the result set. Do not change option settings while
fetching rows.

Database options

For information about specific database options, see Chapter 2, “Database
Options.”

Side effects

If TEMPORARY is not specified, an automatic commit is performed.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. Sybase IQ does
support some Adaptive Server Enterprise options using the SET statement.

Permissions None required to set your own options. Must have DBA authority to set
database options for another user or PUBLIC.

See also Chapter 2, “Database Options”

SET OPTION statement [DBISQL]
Description Changes DBISQL options.

Syntax Syntax 1

SET [TEMPORARY] OPTION
… [userid. | PUBLIC.]option-name = [option-value]

Syntax 2

SET PERMANENT

Syntax 3

SET

CHAPTER 1 SQL Statements

Reference: Statements and Options 311

Parameters userid:
identifier, string or host-variable

option-name:
identifier, string, or host-variable

option-value:
host-variable (indicator allowed), string, identifier, or number

Usage SET PERMANENT (Syntax 2) stores all current DBISQL options in the
SYSOPTION system table. These settings are automatically established every
time DBISQL is started for the current user ID.

Syntax 3 is used to display all of the current option settings. If there are
temporary options set for DBISQL or the database server, these display;
otherwise, permanent option settings are displayed.

If you incorrectly type the name of an option when you are setting the option,
the incorrect name is saved in the SYSOPTION table. You can remove the
incorrectly typed name from the SYSOPTION table by setting the option
PUBLIC with an equality after the option name and no value:

SET OPTION PUBLIC.a_mistyped_name=;

See also Chapter 2, “Database Options”

SET SQLCA statement [ESQL]
Description Tells the SQL preprocessor to use a SQLCA other than the default global sqlca.

Syntax SET SQLCA sqlca

Parameters sqlca:
identifier or string

SIGNAL statement

312 Sybase IQ

Examples Shows the following function that can be found in a Windows DLL. Each
application that uses the DLL has its own SQLCA.

an_sql_code FAR PASCAL ExecuteSQL(an_application *app,
char *com)
{

EXEC SQL BEGIN DECLARE SECTION;
char *sqlcommand;
EXEC SQL END DECLARE SECTION;
EXEC SQL SET SQLCA "&app->.sqlca";
sqlcommand = com;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL EXECUTE IMMEDIATE :sqlcommand;

return(SQLCODE);
}

Usage The SET SQLCA statement tells the SQL preprocessor to use a SQLCA other
than the default global sqlca. The sqlca must be an identifier or string that is a
C language reference to a SQLCA pointer.

The current SQLCA pointer is implicitly passed to the database interface
library on every Embedded SQL statement. All Embedded SQL statements that
follow this statement in the C source file use the new SQLCA. This statement
is necessary only when you are writing code that is reentrant. The sqlca should
reference a local variable. Any global or module static variable is subject to
being modified by another thread.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Open Client/Open Server.

Permissions None.

See also “The SQL Communication Area (SQLCA)” in SQL Anywhere Server –
Programming > SQL Anywhere Data Access APIs > SQL Anywhere embedded
SQL

SIGNAL statement
Description Signals an exception condition.

Syntax SIGNAL exception-name

CHAPTER 1 SQL Statements

Reference: Statements and Options 313

Usage SIGNAL lets you raise an exception. See Chapter 1, “Using Procedures and
Batches,” in the System Administration Guide: Volume 2 for a description of
how exceptions are handled.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase SIGNAL is not supported by Adaptive Server Enterprise.

Permissions None.

See also BEGIN … END statement on page 47

RESIGNAL statement on page 278

START DATABASE statement [DBISQL]
Description Starts a database on the specified database server

Syntax START DATABASE database-file
… [AS database-name]
… [ON engine-name]
… [AUTOSTOP { YES | NO }]
… [KEY key]

Examples Example 1 On a UNIX system, starts the database file /s1/sybase/sample_2.db
on the current server:

START DATABASE '/s1/sybase/sample_2.db'

Example 2 On a Windows system, starts the database file
c:\sybase\sample_2.db as “sam2” on the server named “eng1”:

START DATABASE 'c:\sybase\sample_2.db'
AS sam2
ON eng1

Usage The database server must be running. The full path must be specified for the
database file unless the file is located in the current directory.

The START DATABASE statement does not connect DBISQL to the specified
database: a CONNECT statement must be issued to make a connection.

If database-name is not specified, a default name is assigned to the database.
This default name is the root of the database file. For example, a database in
file c:\sybase\IQ-15_1\demo\iqdemo.db is given the default name iqdemo.

START ENGINE statement [DBISQL]

314 Sybase IQ

If engine-name is not specified, the default database server is assumed. The
default database server is the first started server among those currently running.

The default setting for the AUTOSTOP clause is YES. With AUTOSTOP set to
YES, the database is unloaded when the last connection to it is dropped. If
AUTOSTOP is set to NO, the database is not unloaded.

If the database is strongly encrypted, enter the KEY value (password) using the
KEY clause.

Sybase recommends that you start only one database on a given Sybase IQ
database server.

Side effects

None

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions Must have DBA authority.

START ENGINE statement [DBISQL]
Description Starts a database server.

Syntax START ENGINE AS engine-name [STARTLINE command-string]

Examples Example 1 Start a database server, named “eng1”, without starting any
databases on it:

START ENGINE AS eng1

Example 2 The following example shows the use of a STARTLINE clause.

START ENGINE AS eng1 STARTLINE 'start_iq -c 8096'

CHAPTER 1 SQL Statements

Reference: Statements and Options 315

Usage To specify a set of options for the server, use the STARTLINE keyword together
with a command string. Valid command strings are those that conform to the
database server command line description in Chapter 1, “Running the
Database Server” in the Utility Guide.

Note Several server options are required for Sybase IQ to operate well. To
ensure that you are using the right set of options, Sybase recommends that you
start your server by using either Sybase Central or a configuration file with the
start_iq command.

Side effects

None

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None.

See also STOP ENGINE statement [DBISQL] on page 317

Chapter 1, “Running the Database Server” in the Utility Guide

START JAVA statement
Description Starts the Java VM.

Syntax START JAVA

Examples Start the Java VM.

START JAVA

Usage The main use of START JAVA is to load the VM at a convenient time so that
when the user starts to use Java functionality there is no initial pause while the
VM is loaded.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions Must have DBA authority.

STOP DATABASE statement [DBISQL]

316 Sybase IQ

See also STOP JAVA statement on page 317

STOP DATABASE statement [DBISQL]
Description Stops a database on the specified database server.

Syntax STOP DATABASE database-name
… [ON engine-name]
… [UNCONDITIONALLY]

Examples Stop the database named “sample” on the default server:

STOP DATABASE sample

Usage If engine-name is not specified, all running engines are searched for a database
of the specified name.

The database-name is the name specified in the -n parameter when the
database is started, or in the DBN (DatabaseName) connection parameter. This
name is typically the file name of the database file that holds the catalog store,
without the .db extension, but can be any user-defined name

If UNCONDITIONALLY is supplied, the database is stopped even if there are
connections to the database. If UNCONDITIONALLY is not specified, the
database is not stopped if there are connections to it.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions Must have DBA authority.

See also DISCONNECT statement [DBISQL] on page 176

START DATABASE statement [DBISQL] on page 313

CHAPTER 1 SQL Statements

Reference: Statements and Options 317

STOP ENGINE statement [DBISQL]
Description Stops a database server

Syntax STOP ENGINE engine-name [UNCONDITIONALLY]

Examples Stop the database server named “sample”:

STOP ENGINE sample

Usage If UNCONDITIONALLY is supplied, the database server is stopped even if there
are connections to the server. If UNCONDITIONALLY is not specified, the
database server is not stopped if there are connections to it.

Side effects

None

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None

See also START ENGINE statement [DBISQL] on page 314

STOP JAVA statement
Description Stops the Java VM.

Syntax STOP JAVA

Examples Stops the Java VM:

STOP JAVA

Usage The main use of STOP JAVA is to economize on the use of system resources.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions DBA authority

See also START JAVA statement on page 315

SYNCHRONIZE JOIN INDEX statement

318 Sybase IQ

SYNCHRONIZE JOIN INDEX statement
Description Synchronizes one or more join indexes after one of their base tables has been

updated.

Syntax SYNCHRONIZE JOIN INDEX [join-index-name [, join-index-name]…]

Examples Synchronizes the join indexes emp_dept_join1 and emp_dept_join2:

SYNCHRONIZE JOIN INDEX emp_dept_join1, emp_dept_join2

Usage When a base table that contributes to a join index is updated, Sybase IQ flags
the join index as unavailable. Queries that previously took advantage of the
join index perform an ad-hoc join instead, perhaps affecting their performance.
The SYNCHRONIZE JOIN INDEX command lets you bring the join index up-to-
date, making it available for queries to use.

Note A join index defines a one-to-many relationship (also known as primary
key to foreign key) between two table columns. If an insert into the “one” (or
primary key) column results in one or more duplicate values, the join index
becomes invalid and cannot be synchronized. You must delete the rows
containing the duplicate values before SYNCHRONIZE JOIN INDEX can make
it valid again.

Synchronizing join indexes can be time-consuming, depending on the size of
the base tables that make up the join. It is up to you to decide when to use this
command. You can schedule it as a batch job at night or on weekends when you
expect your system to have less work to do. You can perform it immediately
after Sybase IQ commits a series of inserts and deletes to make the join index
available as soon as possible. However, do not synchronize a join index after
each insert or delete as the time to update the join index depends on the order
of the updates to the tables.

SYNCHRONIZE JOIN INDEX lets you specify multiple join-index-names,
separated by commas. You must be the owner of each join index or the DBA.
If you do not specify a join-index-name, Sybase IQ synchronizes all the join
indexes you own (or all the join indexes in the database if you are the DBA),
which might adversely affect the performance of your system.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions Must be owner of the join indexes or be DBA.

CHAPTER 1 SQL Statements

Reference: Statements and Options 319

See also CREATE JOIN INDEX statement on page 114

TRIGGER EVENT statement
Description Triggers a named event. The event may be defined for event triggers or be a

scheduled event.

Syntax TRIGGER EVENT event-name [(parm = value, ...)]

Usage Actions are tied to particular trigger conditions or schedules by a CREATE
EVENT statement. You can use TRIGGER EVENT to force the event handler to
execute, even when the scheduled time or trigger condition has not occurred.
TRIGGER EVENT does not execute disabled event handlers.

parm = value When a triggering condition causes an event handler to
execute, the database server can provide context information to the event
handler using the event_parameter function. TRIGGER EVENT allows you to
explicitly supply these parameters, to simulate a context for the event handler.

When you trigger an event, specify the event name. You can list event names
by querying the system table SYSEVENT. For example:

SELECT event_id, event_name FROM SYS.SYSEVENT

Side effects

None.

Permissions Must have DBA authority.

See also ALTER EVENT statement on page 14

CREATE EVENT statement on page 86

Chapter 6, “Automating Tasks Using Schedules and Events” in the System
Administration Guide: Volume 2

TRUNCATE TABLE statement
Description Deletes all rows from a table without deleting the table definition.

Syntax Syntax 1

TRUNCATE TABLE [owner.]table-name

TRUNCATE TABLE statement

320 Sybase IQ

Syntax 2

TRUNCATE TABLE [owner .]table [PARTITION partition-name]

Examples Deletes all rows from the Sale table:

TRUNCATE TABLE Sale

Usage TRUNCATE TABLE is equivalent to a DELETE statement without a WHERE
clause, except that each individual row deletion is not entered into the
transaction log. After a TRUNCATE TABLE statement, the table structure and all
of the indexes continue to exist until you issue a DROP TABLE statement. The
column definitions and constraints remain intact, and permissions remain in
effect.

The TRUNCATE TABLE statement is entered into the transaction log as a single
statement, like data definition statements. Each deleted row is not entered into
the transaction log.

The partition clause specifies which partition to truncate. It does not affect data
in other partitions.

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions • Must be the table owner or have DBA authority.

• For both temporary and base tables, you can execute TRUNCATE TABLE
while other users have read access to the table. This behavior differs from
SQL Anywhere, which requires exclusive access to truncate a base table.
Sybase IQ table versioning ensures that TRUNCATE TABLE can occur
while other users have read access; however, the version of the table these
users see depends on when the read and write transactions commit.

See also DELETE statement on page 169

Chapter 10, “Transactions and Versioning” in System Administration Guide:
Volume 1

CHAPTER 1 SQL Statements

Reference: Statements and Options 321

UNION operation
Description Combines the results of two or more select statements.

Syntax select-without-order-by
… UNION [ALL] select-without-order-by
… [UNION [ALL] select-without-order-by]…
… [ORDER BY integer [ASC | DESC] [, …]]

Examples Lists all distinct surnames of employees and customers:

SELECT Surname
FROM Employees
UNION
SELECT Surname
FROM Customers

Usage The results of several SELECT statements can be combined into a larger result
using UNION. The component SELECT statements must each have the same
number of items in the select list, and cannot contain an ORDER BY clause. See
“FROM clause” on page 200.

The results of UNION ALL are the combined results of the component SELECT
statements. The results of UNION are the same as UNION ALL except that
duplicate rows are eliminated. Eliminating duplicates requires extra
processing, so UNION ALL should be used instead of UNION where possible.

If corresponding items in two select lists have different data types, Sybase IQ
chooses a data type for the corresponding column in the result, and
automatically converts the columns in each component SELECT statement
appropriately.

If ORDER BY is used, only integers are allowed in the order by list. These
integers specify the position of the columns to be sorted.

The column names displayed are the same column names that display for the
first SELECT statement.

Note When SELECT statements include constant values and UNION ALL
views but omit the FROM clause, use iq_dummy to avoid errors. See “FROM
clause” on page 200 for details.

Side effects

None.

UPDATE statement

322 Sybase IQ

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise, which also supports a
COMPUTE clause.

Permissions Must have SELECT permission for each of the component SELECT
statements.

See also SELECT statement on page 291

UPDATE statement
Description Modifies existing rows of a single table, or a view that contains only one table.

Syntax UPDATE table
... SET [column-name = expression, …
... [FROM table-expression,]
... [WHERE search-condition]
... [ORDER BY expression [ASC | DESC] , …]

FROM table-expression
table-expression:
table-spec | table-expression join-type table-spec [ON condition] | table-
expression, …

Examples Example 1 Transfers employee Philip Chin (employee 129) from the sales
department to the marketing department:

UPDATE Employees
SET DepartmentID = 400
WHERE EmployeeID = 129;

Example 2 The Marketing Department (400) increases bonuses from 4% to
6% of each employee’s base salary:

UPDATE Employees
SET bonus = base * 6/100
WHERE DepartmentID =400;

Example 3 Each employee gets a pay increase with the department bonus:

UPDATE Employees
SET emp.Salary = emp.Salary + dept.bonus
FROM Employees emp, Departments dept
WHERE emp.DepartmentID = dept.DepartmentID;

CHAPTER 1 SQL Statements

Reference: Statements and Options 323

Example 4 Another way to give each employee a pay increase with the
department bonus:

UPDATE Employees
SET emp.salary = emp.salary + dept.bonus
FROM Employees emp JOIN Departments dept
ON emp.DepartmentID = dept.DepartmentID;

Usage The table on which you use UPDATE may be a base table or a temporary table.

Note The base table cannot be part of any join index.

Each named column is set to the value of the expression on the right-hand side
of the equal sign. Even column-name can be used in the expression—the old
value is used.

The FROM clause can contain multiple tables with join conditions and returns
all the columns from all the tables specified and filtered by the join condition
and/or WHERE condition.

Using the wrong join condition in a FROM clause causes unpredictable results.
If the FROM clause specifies a one-to-many join and the SET clause references
a cell from the “many” side of the join, the cell is updated from the first value
selected. In other words, if the join condition causes multiple rows of the table
to be updated per row ID, the first row returned becomes the update result. For
example:

UPDATE T1
SET T1.c2 = T2.c2
FROM T1 JOIN TO T2
ON T1.c1 = T2.c1

If table T2 has more than one row per T2.c1, results might be as follows:

T2.c1 T2.c2 T2.c3
1 4 3
1 8 1
1 6 4
1 5 2

With no ORDER BY clause, T1.c2 may be 4, 6, 8, or 9.

• With ORDER BY T2.c3, T1.c2 is updated to 8.

• With ORDER BY T2.c3 DESC, T1.c2 is updated to 6.

UPDATE statement

324 Sybase IQ

Sybase IQ rejects any UPDATE statement in which the table being updated is
on the null-supplying side of an outer join. In other words:

• In a left outer join, the table on the left side of the join cannot be missing
any rows on joined columns.

• In a right outer join, the table on the right side of the join cannot be missing
any rows on joined columns.

• In a full outer join, neither table can be missing any rows on joined
columns.

For example, in the following statement, table T1 is on the left side of a left
outer join, and thus cannot contain be missing any rows:

UPDATE T1
SET T1.c2 = T2.c4
FROM T1 LEFT OUTER JOIN T2
ON T1.rowid = T2.rowid

Normally, the order in which rows are updated does not matter. However, in
conjunction with the NUMBER(*) function, an ordering can be useful to get
increasing numbers added to the rows in some specified order. If you are not
using the NUMBER(*) function, avoid using the ORDER BY clause, because the
UPDATE statement performs better without it.

In an UPDATE statement, if the NUMBER(*) function is used in the SET clause
and the FROM clause specifies a one-to-many join, NUMBER(*) generates
unique numbers that increase, but do not increment sequentially due to row
elimination. For more information about the NUMBER(*) function, see
“NULLIF function [Miscellaneous]” in Chapter 4, “SQL Functions” in
Reference: Building Blocks, Tables, and Procedures.

You can use the ORDER BY clause to control the result from an UPDATE when
the FROM clause contains multiple joined tables.

Sybase IQ ignores the ORDER BY clause in searched UPDATE and returns a
message that the syntax is not valid ANSI syntax.

If no WHERE clause is specified, every row is updated. If you specify a WHERE
clause, Sybase IQ updates only rows satisfying the search condition.

The left side of each SET clause must be a column in a base table.

Views can be updated provided the SELECT statement defining the view does
not contain a GROUP BY clause or an aggregate function, or involve a UNION
operation. The view should contain only one table.

CHAPTER 1 SQL Statements

Reference: Statements and Options 325

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. Thus a
character data type column updated with a string Value is always held in the
database with an uppercase V and the remainder of the letters lowercase.
SELECT statements return the string as Value. If the database is not case
sensitive, however, all comparisons make Value the same as value, VALUE, and
so on. The IQ server may return results in any combination of lowercase and
uppercase, so you cannot expect case sensitive results in a database that is case
insensitive (CASE IGNORE). Further, if a single-column primary key already
contains an entry Value, an INSERT of value is rejected, as it would make the
primary key not unique.

If the update violates any check constraints, the whole statement is rolled back.

Sybase IQ supports scalar subqueries within the SET clause, for example:

UPDATE r
SET r.o= (SELECT MAX(t.o)
FROM t ... WHERE t.y = r.y),
r.s= (SELECT SUM(x.s)
FROM x ...
WHERE x.x = r.x)
WHERE r.a = 10

Sybase IQ supports DEFAULT column values in UPDATE statements. If a
column has a DEFAULT value, this DEFAULT value is used as the value of the
column in any UPDATE statement that does not explicitly modify the value for
the column.

For detailed information on the use of column DEFAULT values, see “Using
column defaults” in Chapter 9, “Ensuring Data Integrity” in the System
Administration Guide: Volume 1.

See CREATE TABLE statement on page 135 for details about updating
IDENTITY/AUTOINCREMENT columns, which are another type of
DEFAULT column.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase With the following exceptions, syntax of the IQ UPDATE
statement is generally compatible with the Adaptive Server Enterprise
UPDATE statement Syntax 1: Sybase IQ supports multiple tables with join
conditions in the FROM clause.

UPDATE (positioned) statement [ESQL] [SP]

326 Sybase IQ

The Transact-SQL ROWCOUNT option has no effect on UPDATE
operations in Sybase IQ.

Updates of remote tables are limited to Sybase IQ syntax supported by
CIS, as described in Chapter 4, “Accessing Remote Data” and Chapter 5,
“Server Classes for Remote Data Access” in the System Administration
Guide: Volume 2.

Permissions Must have UPDATE permission for the columns being modified.

UPDATE (positioned) statement [ESQL] [SP]
Description Modifies the data at the current location of a cursor.

Syntax UPDATE table-list
SET set-item, …
WHERE CURRENT OF cursor-name

Parameters cursor-name:
identifier | hostvar

set-item:
column-name [.field-name…] = scalar-value)

SET
The columns that are referenced in set-item must be in the base table that is
updated. They cannot refer to aliases, nor to columns from other tables or
views. If the table you are updating is given a correlation name in the cursor
specification, you must use the correlation name in the SET clause.

The expression on the right side of the SET clause may reference columns,
constants, variables, and expressions from the SELECT clause of the query.
The set-item expression cannot contain functions or expressions.

Examples The following is an example of an UPDATE statement WHERE CURRENT OF
cursor:

UPDATE Employees SET surname = 'Jones'
WHERE CURRENT OF emp_cursor

Usage This form of the UPDATE statement updates the current row of the specified
cursor. The current row is defined to be the last row successfully fetched from
the cursor, and the last operation on the cursor cannot have been a positioned
DELETE statement.

CHAPTER 1 SQL Statements

Reference: Statements and Options 327

The requested columns are set to the specified values for the row at the current
row of the specified query. The columns must be in the select list of the
specified open cursor.

Changes effected by positioned UPDATE statements are visible in the cursor
result set, except where client-side caching prevents seeing these changes.
Rows that are updated so that they no longer meet the requirements of the
WHERE clause of the open cursor are still visible.

Sybase does not recommend the use of ORDER BY in the WHERE CURRENT
OF clause. The ORDER BY columns may be updated, but the result set does not
reorder. The results appear to fetch out of order and appear to be incorrect.

Since Sybase IQ does not support the CREATE VIEW... WITH CHECK OPTION,
positioned UPDATE does not support this option. The WITH CHECK OPTION
does not allow an update that creates a row that is not visible by the view.

A rowid column cannot be updated by a positioned UPDATE.

Sybase IQ supports repeatedly updating the same row in the result set.

Standards • SQL92 Entry-level feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

• SQL99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

• Sybase Embedded SQL use is supported by Open Client/Open Server,
and procedure and trigger use is supported in SQL Anywhere.

Permissions Must have UPDATE permission on the columns being modified.

See also DECLARE CURSOR statement [ESQL] [SP] on page 159

DELETE statement on page 169

DELETE (positioned) statement [ESQL] [SP] on page 171

UPDATE statement on page 322

sp_iqcursorinfo procedure in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

WAITFOR statement

328 Sybase IQ

WAITFOR statement
Description Delays processing for the current connection for a specified amount of time or

until a given time.

Syntax WAITFOR {
DELAY time | TIME time }
[CHECK EVERY integer }
[AFTER MESSAGE BREAK]

Parameters time : string

Examples Example 1 The following example waits for three seconds:

WAITFOR DELAY '00:00:03'

Example 2 The following example waits for 0.5 seconds (500 milliseconds):

WAITFOR DELAY '00:00:00:500'

Example 3 The following example waits until 8 p.m.:

WAITFOR TIME '20:00'

Usage The WAITFOR statement wakes up periodically (every 5 seconds by default) to
check if it has been canceled or if messages have been received. If neither of
these has happened, the statement continues to wait.

If DELAY is used, processing is suspended for the given interval. If TIME is
specified, processing is suspended until the server time reaches the time
specified.

If the current server time is greater than the time specified, processing is
suspended until that time on the following day.

WAITFOR provides an alternative to the following statement, and might be
useful for customers who choose not to enable Java in the database:

call java.lang.Thread.sleep(
<time_to_wait_in_millisecs>)

In many cases, scheduled events are a better choice than using WAITFOR TIME,
because scheduled events execute on their own connection.

CHECK EVERY clause This optional clause controls how often the
WAITFOR statement wakes up. By default, WAITFOR wakes up every 5
seconds. The value is in milliseconds, and the minimum value is
250milliseconds.

CHAPTER 1 SQL Statements

Reference: Statements and Options 329

AFTER MESSAGE BREAK clause The WAITFOR statement can be used to
wait for a message from another connection. In most cases, when a message is
received it is forwarded to the application that executed the WAITFOR
statement and the WAITFOR statement continues to wait. If the AFTER
MESSAGE BREAK clause is specified, when a message is received from
another connection, the WAITFOR statement completes. The message text is
not forwarded to the application, but it can be accessed by obtaining the value
of the MessageReceived connection property.

Side effects

The implementation of this statement uses a worker thread while it is waiting.
This uses up one of the threads specified by the -gn server command line
option.

Standards • SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase This statement is also implemented by Adaptive Server
Enterprise.

Permissions None.

See also CREATE EVENT statement on page 86

WHENEVER statement [ESQL]
Description Specifies error handling in an Embedded SQL program.

Syntax WHENEVER
{ SQLERROR | SQLWARNING | NOTFOUND }
… { GOTO label | STOP | CONTINUE | C code; }

Parameters label:
identifier

Examples The following are examples of the WHENEVER statement:

EXEC SQL WHENEVER NOTFOUND GOTO done;
EXEC SQL WHENEVER SQLERROR

{
PrintError(&sqlca);
return(FALSE);

};

WHILE statement [T-SQL]

330 Sybase IQ

Usage The WHENEVER statement is used to trap errors, warnings, and exceptional
conditions encountered by the database when processing SQL statements. The
statement can be put anywhere in an Embedded SQL C program, and does not
generate any code. The preprocessor generates code following each successive
SQL statement. The error action remains in effect for all Embedded SQL
statements from the source line of the WHENEVER statement until the next
WHENEVER statement with the same error condition, or the end of the source
file.

Note The error conditions are in effect based on positioning in the C language
source file and not on when the statements are executed.

The default action is CONTINUE.

WHENEVER is provided for convenience in simple programs. Most of the time,
checking the sqlcode field of the SQLCA (SQLCODE) directly is the easiest
way to check error conditions. In this case, WHENEVER would not be used. If
fact, all the WHENEVER statement does is cause the preprocessor to generate
an if (SQLCODE) test after each statement.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

WHILE statement [T-SQL]
Description Provides repeated execution of a statement or compound statement.

Syntax WHILE expression
... statement

CHAPTER 1 SQL Statements

Reference: Statements and Options 331

Examples Illustrates the use of WHILE:

WHILE (SELECT AVG(unit_price) FROM Products) < 30
BEGIN

DELETE FROM Products
WHERE UnitPrice = MAX(UnitPrice)
IF (SELECT MAX(UnitPrice) FROM Products) < 50

BREAK
END

The BREAK statement breaks the WHILE loop if the most expensive product has
a price less than $50. Otherwise the loop continues until the average price is
greater than $30.

Usage The WHILE conditional affects the performance of only a single SQL
statement, unless statements are grouped into a compound statement between
the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control
execution of the statements in the compound statement. The BREAK statement
terminates the loop, and execution resumes after the END keyword, marking
the end of the loop. The CONTINUE statement causes the WHILE loop to restart,
skipping any statements after the CONTINUE.

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions None

WHILE statement [T-SQL]

332 Sybase IQ

Reference: Statements and Options 333

C H A P T E R 2 Database Options

About this chapter This chapter describes the database and DBISQL options you can set to
customize and modify database behavior.

Contents

Introduction to database options
Database options control many aspects of database behavior. For example,
you can use database options for the purposes such as the following:

• Compatibility – lets you control how much like Adaptive Server
Enterprise your Sybase IQ database operates, and whether SQL that
does not conform to SQL92 generates errors.

• Error handling – lets you control what happens when errors, such as
dividing by zero or overflow errors, occur.

• Concurrency and transactions – lets you control the degree of
concurrency and details of COMMIT behavior using options.

Setting options
You set options with the SET OPTION statement. It has the following
general syntax:

SET [EXISTING] [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Topic Page

Introduction to database options 333

General database options 339

Transact-SQL compatibility options 345

DBISQL options 347

Alphabetical list of options 348

Introduction to database options

334 Sybase IQ

Specify a user ID or group name to set the option only for that user or group.
Every user belongs to the PUBLIC group. If no user ID or group is specified,
the option change is applied to the currently logged on user ID that issued the
SET OPTION statement.

For example, the following statement applies a change to the PUBLIC user ID,
a user group to which all users belong.

SET OPTION Public.login_mode = standard

Note For all database options that accept integer values, Sybase IQ truncates
any decimal option-value setting to an integer value. For example, the value 3.8
is truncated to 3.

The maximum length of option-value when set to a string is 127 bytes.

 Warning! Do not change option settings while fetching rows.

For more information, see the SET OPTION statement on page 307.

Finding option settings
You can obtain a list of option settings, or the values of individual options, in
a variety of ways.

Getting a list of option
values

• For the connected user, the sp_iqcheckoptions stored procedure displays a
list of the current value and the default value of database options that have
been changed from the default. sp_iqcheckoptions considers all Sybase IQ
and SQL Anywhere database options. Sybase IQ modifies some SQL
Anywhere option defaults, and these modified values become the new
default values. Unless the new Sybase IQ default value is changed again,
sp_iqcheckoptions does not list the option.

sp_iqcheckoptions also lists server start-up options that have been changed
from the default values.

When a DBA runs sp_iqcheckoptions, he or she sees all options set on a
permanent basis for all groups and users and sees temporary options set for
DBA. Users who are not DBAs see their own temporary options. All users
see nondefault server start-up options.

CHAPTER 2 Database Options

Reference: Statements and Options 335

The sp_iqcheckoptions stored procedure requires no parameters. In
Interactive SQL, run the following command:

sp_iqcheckoptions

For more information, see sp_iqcheckoptions procedure in Chapter 7,
“System Procedures”in Reference: Building Blocks, Tables, and
Procedures.

The system table DBA.SYSOPTIONDEFAULTS contains all of the
names and default values of the Sybase IQ and SQL Anywhere options.
You can query this table to see all option default values.

• Current option settings for your connection are available as a subset of
connection properties. You can list all connection properties using the
sa_conn_properties system procedure.

call sa_conn_properties

• In Interactive SQL, the SET statement with no arguments lists the current
setting of options.

SET

• In Sybase Central, right-click a database and select Options from the
submenu.

• Use the following query on the SYSOPTIONS system view:

SELECT *
FROM SYSOPTIONS

This shows all PUBLIC values, and those USER values that have been
explicitly set.

Getting individual
option values

You can obtain a single setting using the connection_property system function.
For example, the following statement reports the value of the Ansinull option:

SELECT connection_property ('Ansinull')

Scope and duration of database options
You can set options at three levels of scope: public, user, and temporary.

Temporary options take precedence over user and public settings. User-level
options take precedence over public settings. If you set a user-level option for
the current user, the corresponding temporary option is set as well.

Introduction to database options

336 Sybase IQ

Some options, such as COMMIT behavior, are database-wide in scope. Setting
these options requires DBA permissions. Other options, such as
ISOLATION_LEVEL, can also be applied to only the current connection, and
need no special permissions.

Changes to option settings take place at different times, depending on the
option. Changing a global option such as RECOVERY_TIME takes place the
next time the server is started. The following list contains some of the options
that take effect after the server is restarted.

Options that affect only the current connection generally take place
immediately. You can change option settings in the middle of a transaction, for
example.

 Warning! Changing options when a cursor is open can lead to unreliable
results. For example, changing DATE_FORMAT might not change the format
for the next row when a cursor is opened. Depending on the way the cursor is
being retrieved, it might take several rows before the change works its way to
the user.

Setting temporary
options

Adding the TEMPORARY keyword to the SET OPTION statement changes the
duration of the change. Ordinarily an option change is permanent: it will not
change until it is explicitly changed using the SET OPTION statement.

When the SET TEMPORARY OPTION statement is executed, the new option
value takes effect only for the current connection, and only for the duration of
the connection.

When the SET TEMPORARY OPTION is used to set a PUBLIC option, the
change is in place for as long as the database is running. When the database is
shut down, Temporary options for the PUBLIC user ID revert back to their
permanent value.

Database options that require restarting the server:

CACHE_PARTITIONS

CHECKPOINT_TIME

OS_FILE_CACHE_BUFFERING

OUT_OF_DISK_MESSAGE_REPEAT

OUT_OF_DISK_WAIT_TIME

PREFETCH_BUFFER_LIMIT

PREFETCH_BUFFER_PERCENT

RECOVERY_TIME

CHAPTER 2 Database Options

Reference: Statements and Options 337

Setting an option for the PUBLIC user ID temporarily offers a security
advantage. For example, when the LOGIN_MODE option is enabled the
database relies on the login security of the system on which it is running.
Enabling it temporarily means that a database relying on the security of a
Windows domain will not be compromised if the database is shut down and
copied to a local machine. In this case, the LOGIN_MODE option reverts to its
permanent value, which could be Standard, a mode where integrated logins are
not permitted.

Setting public options
Only users with DBA privileges have the authority to set an option for the
PUBLIC user ID.

Changing the value of an option for the PUBLIC user ID sets the value of the
option for all users who have not set their own value. An option value cannot
be set for an individual user ID unless there is already a PUBLIC user ID setting
for that option.

Deleting option settings
If option-value is omitted, the specified option setting is deleted from the
database. If option-value was a personal option setting, the value reverts back
to the PUBLIC setting. If a TEMPORARY option is deleted, the option setting
reverts back to the permanent setting.

For example, the following statement resets the ANSINULL option to its default
value:

SET OPTION ANSINULL =

If you incorrectly type the name of an option when you are setting the option,
the incorrect name is saved in the SYSOPTION table. You can remove the
incorrectly typed name from the SYSOPTION table by setting the option
PUBLIC with an equality after the option name and no value:

SET OPTION PUBLIC.a_mistyped_name=;

For example, if you set an option and incorrectly type the name, you can verify
that the option was saved by selecting from the SYSOPTIONS view:

SET OPTION PUBLIC.a_mistyped_name='ON';
SELECT * FROM SYSOPTIONS ORDER BY 2;

Introduction to database options

338 Sybase IQ

You can remove the incorrectly typed option by setting it to no value, then
verify that the option is removed:

SET OPTION PUBLIC.a_mistyped_name=;
SELECT * FROM SYSOPTIONS ORDER BY 2;

Option classification
Sybase IQ provides many options. It is convenient to divide them into a few
general classes. The classes of options are:

• General database options

• Transact-SQL compatibility database options

• Interactive SQL (DBISQL) options

Note Each class of options is listed in a separate table in the following sections.

Initial option settings
Connections to Sybase IQ can be made through the TDS (tabular data stream)
protocol (Open Client and jConnect™ for JDBC™ connections) or through the
Sybase IQ protocol (ODBC, Embedded SQL).

user_name option setting

PUBLIC a_mistyped_name ON

PUBLIC Abort_On_Error_File

PUBLIC Abort_On_Error_Line 0

PUBLIC Abort_On_Error_Number 0

...

user_name option setting

PUBLIC Abort_On_Error_File

PUBLIC Abort_On_Error_Line 0

PUBLIC Abort_On_Error_Number 0

...

CHAPTER 2 Database Options

Reference: Statements and Options 339

If users have both TDS and the Sybase IQ-specific protocol, you can configure
their initial settings using stored procedures. As it is shipped, Sybase IQ uses
this method to set Open Client connections and jConnect connections to reflect
default Adaptive Server Enterprise behavior.

The initial settings are controlled using the LOGIN_PROCEDURE option,
which is called after all the checks have been performed to verify that the
connection is valid. The LOGIN_PROCEDURE option names a stored
procedure to run when users connect. The default setting is to use the
sp_login_environment system stored procedure. You can specify a different
stored procedure.

The sp_login_environment procedure checks to see if the connection is being
made over TDS. If it is, it calls the sp_tsql_environment procedure, which sets
several options to new default values for the current connection.

For more information, see “LOGIN_PROCEDURE option” on page 411, or
“sp_login_environment system procedure” and “sp_tsql_environment system
procedure” in Chapter 7, “System Procedures” in Reference: Building Blocks,
Tables, and Procedures.

Deprecated database options
See Chapter 2, “Behavior Changes in Sybase IQ 15.0” in New Features in
Sybase IQ 15.0 for information about database options deprecated in this
release.

General database options
Table 2-1 lists database-specific options, their allowed values, and their default
settings.

 See the sections “Transact-SQL compatibility options” on page 345 and
“DBISQL options” on page 347 for lists of the other classes of options.

Note There are additional internal options not listed in this table that Sybase
Technical Support might ask you to use.

General database options

340 Sybase IQ

Table 2-1: General database options

OPTION VALUES DEFAULT

AGGREGATION_PREFERENCE -3 to 3 0

ALLOW_READ_CLIENT_FILE ON, OFF OFF

APPEND_LOAD ON, OFF OFF

AUDITING ON, OFF OFF

BIT_VECTOR_PINNABLE_CACHE_PERCENT* 0 – 100 40

BLOCKING OFF OFF

BT_PREFETCH_MAX_MISS 0 – 1000 2

BT_PREFETCH_SIZE 0 – 100 10

BTREE_PAGE_SPLIT_PAD_PERCENT 0 - 90 50

CACHE_PARTITIONS power of 2, 0 to 64 0

CHECKPOINT_TIME number of minutes 60

CIS_ROWSET_SIZE integer 50

CONVERSION_MODE 0, 1 0

CONVERT_VARCHAR_TO_1242 ON, OFF OFF

COOPERATIVE_COMMIT_TIMEOUT integer 250

COOPERATIVE_COMMITS ON, OFF ON

CURSOR_WINDOW_ROWS 20 – 100000 200

DATE_FIRST_DAY_OF_WEEK 0 – 6 0

DATE_FORMAT string 'YYYY-MM-DD'

DATE_ORDER 'YMD', 'DMY', 'MDY' 'YMD'

DBCC_LOG_PROGRESS ON, OFF OFF

DBCC_PINNABLE_CACHE_PERCENT 0 – 100 50

DEBUG_MESSAGES ON, OFF OFF

DEFAULT_DBSPACE string '' (empty string)

DEFAULT_DISK_STRIPING ON, OFF ON

DEDICATED_TASK ON, OFF OFF

DEFAULT_HAVING_SELECTIVITY_PPM 0 – 1000000 0

DEFAULT_KB_PER_STRIPE 1 – max unsigned
bigint

1

DEFAULT_LIKE_MATCH_SELECTIVITY_PPM 0 – 1000000 150000

DEFAULT_LIKE_RANGE_SELECTIVITY_PPM 1 – 1000000 150000

DELAYED_COMMIT_TIMEOUT integer 500

DELAYED_COMMITS OFF OFF

DISABLE_RI_CHECK ON, OFF OFF

EARLY_PREDICATE_EXECUTION ON, OFF ON

EXTENDED_JOIN_SYNTAX ON, OFF ON

CHAPTER 2 Database Options

Reference: Statements and Options 341

FORCE_DROP ON, OFF OFF

FORCE_NO_SCROLL_CURSORS ON, OFF OFF

FORCE_UPDATABLE_CURSORS ON, OFF OFF

FP_LOOKUP_SIZE 1 MB – 4096 MB 16 MB

FP_LOOKUP_SIZE_PPM 1 – 1000000 2500

FP_PREDICATE_WORKUNIT_PAGES integer 200

FP_PREFETCH_SIZE 0 – 100 10

FPL_EXPRESSION_MEMORY_KB 0 – 20000 1024

GARRAY_FILL_FACTOR_PERCENT 0 – 1000 25

GARRAY_INSERT_PREFETCH_SIZE 0 – 100 3

GARRAY_PAGE_SPLIT_PAD_PERCENT 0-100 25

GARRAY_RO_PREFETCH_SIZE 0 – 100 10

HASH_PINNABLE_CACHE_PERCENT* 0 – 100 20

HASH_THRASHING_PERCENT 0 – 100 10

HG_DELETE_METHOD 0 – 3 0

HG_SEARCH_RANGE integer 10

IDENTITY_ENFORCE_UNIQUENESS ON, OFF OFF

IDENTITY_INSERT string '' (empty string)

INDEX_ADVISOR ON, OFF OFF

INDEX_PREFERENCE -10 – 10 0

INFER_SUBQUERY_PREDICATES ON, OFF ON

IN_SUBQUERY_PREFERENCE -3 – 3 0

IQGOVERN_MAX_PRIORITY 1 – 3 2

IQGOVERN_PRIORITY 1 – 3 2

IQGOVERN_PRIORITY_TIME 1 – 1000000 seconds 0 (disabled)

ISOLATION_LEVEL 0, 1, 2, 3 0

JOIN_EXPANSION_FACTOR 0 – 100 30

JOIN_OPTIMIZATION ON, OFF ON

JOIN_PREFERENCE -7 – 7 0

JOIN_SIMPLIFICATION_THRESHOLD 1 – 64 15

LARGE_DOUBLES_ACCUMULATOR ON, OFF OFF

LF_BITMAP_CACHE_KB 1 – 8 4

LOAD_MEMORY_MB 0 – 2000 0

LOAD_ZEROLENGTH_ASNULL ON, OFF OFF

LOCKED ON, OFF OFF

LOG_CONNECT ON, OFF ON

LOG_CURSOR_OPERATIONS ON, OFF OFF

OPTION VALUES DEFAULT

General database options

342 Sybase IQ

LOGIN_MODE STANDARD, MIXED,
INTEGRATED

STANDARD

LOGIN_PROCEDURE string sp_login_environment

MAIN_RESERVED_DBSPACE_MB integer >= 200 in MB 200

MAX_CARTESIAN_RESULT integer 100000000

MAX_CLIENT_NUMERIC_PRECISION 0 – 126 0

MAX_CLIENT_NUMERIC_SCALE 0 – 126 0

MAX_CONNECTIONS 0 - 2147483647 Unlimited

MAX_CUBE_RESULT 0 – 4294967295 10000000

MAX_CURSOR_COUNT integer 50

MAX_DAYS_SINCE_LOGIN 0 - 2147483647 Unlimited

MAX_FAILED_LOGIN_ATTEMPTS 0 - 2147483647 Unlimited

MAX_HASH_ROWS integer to
4294967295

2500000

MAX_IQ_THREADS_PER_CONNECTION 3 – 10000 144

MAX_IQ_THREADS_PER_TEAM 1 – 10000 144

MAX_JOIN_ENUMERATION 1 – 64 15

MAX_NON_DBA_CONNECTIONS 0 - 2147483647 Unlimited

MAX_QUERY_PARALLELISM integer <= # CPUs 24

MAX_QUERY_TIME 0 – 232 - 1 0 (disabled)

MAX_STATEMENT_COUNT integer 100

MAX_TEMP_SPACE_PER_CONNECTION integer 0

MAX_WARNINGS integer 248 - 1

MINIMIZE_STORAGE ON, OFF OFF

MIN_PASSWORD_LENGTH integer >= 0 0 characters

MONITOR_OUTPUT_DIRECTORY string database directory

NOEXEC ON, OFF OFF

NON_ANSI_NULL_VARCHAR ON, OFF OFF

NOTIFY_MODULUS integer 100000

ODBC_DISTINGUISH_CHAR_AND_VARCHAR ON, OFF OFF

ON_CHARSET_CONVERSION_FAILURE string IGNORE

OS_FILE_CACHE_BUFFERING ON, OFF OFF

PASSWORD_GRACE_TIME 0 - 2147483647 0

PASSWORD_EXPIRY_ON_NEXT_LOGIN ON, OFF OFF

PASSWORD_LIFE_TIME 0 - 2147483647 Unlimited

POST_LOGIN_PROCEDURE string sp_iq_process_post_login

PRECISION 126 126

OPTION VALUES DEFAULT

CHAPTER 2 Database Options

Reference: Statements and Options 343

PREFETCH ON, OFF ON

PREFETCH_BUFFER_LIMIT integer 0

PREFETCH_BUFFER_PERCENT 0 – 100 40

PREFETCH_GARRAY_PERCENT 0 – 100 60

PREFETCH_SORT_PERCENT 0 – 100 20

PRESERVE_SOURCE_FORMAT ON, OFF ON

QUERY_DETAIL ON, OFF OFF

QUERY_NAME string '' (empty string)

QUERY_PLAN ON, OFF ON

QUERY_PLAN_AFTER_RUN ON, OFF OFF

QUERY_PLAN_AS_HTML ON, OFF OFF

QUERY_PLAN_AS_HTML_DIRECTORY string '' (empty string)

QUERY_PLAN_TEXT_ACCESS ON, OFF OFF

QUERY_PLAN_TEXT_CACHING ON, OFF OFF

QUERY_ROWS_RETURNED_LIMIT integer 0

QUERY_TEMP_SPACE_LIMIT integer 0

QUERY_TIMING ON, OFF OFF

RECOVERY_TIME number of minutes 2

RETURN_DATE_TIME_AS_STRING ON, OFF OFF

ROW_COUNT integer 0

SCALE 0 – 126 38

SIGNIFICANTDIGITSFORDOUBLEEQUALITY 0 – 15 0

SORT_COLLATION Internal,
collation_name, or
collation_id

Internal

SORT_PINNABLE_CACHE_PERCENT* 0 – 100 20

SUBQUERY_CACHING_PREFERENCE -3 – 3 0

SUBQUERY_FLATTENING_PERCENT 0, 1 - 232 -1 100

SUBQUERY_FLATTENING_PREFERENCE -3 – 3 0

SUBQUERY_PLACEMENT_PREFERENCE -1 – 1 0

SUPPRESS_TDS_DEBUGGING ON, OFF OFF

SWEEPER_THREADS_PERCENT 1 to 40 10

TDS_EMPTY_STRING_IS_NULL ON, OFF OFF

TEMP_DISK_PER_STRIPE integer > 0 in KB 1

TEMP_EXTRACT_APPEND ON, OFF OFF

TEMP_EXTRACT_BINARY ON, OFF OFF

TEMP_EXTRACT_COLUMN_DELIMITER string ','

OPTION VALUES DEFAULT

General database options

344 Sybase IQ

Data extraction
options

The data extraction facility allows you to extract data from a database by
redirecting the output of a SELECT statement from the standard interface to one
or more disk files or named pipes. Several database options listed in Table 2-1
(TEMP_EXTRACT_...) are used to control this feature. For details on the use of
these options, see “Data extraction options” in Chapter 7, “Moving Data In
and Out of Databases” in the System Administration Guide: Volume 1.

TEMP_EXTRACT_DIRECTORY string '' (empty string)

TEMP_EXTRACT_ESCAPE_QUOTES ON, OFF OFF

TEMP_EXTRACT_NAME1 –
TEMP_EXTRACT_NAME8

string '' (empty string)

TEMP_EXTRACT_NULL_AS_EMPTY ON, OFF OFF

TEMP_EXTRACT_NULL_AS_ZERO ON, OFF OFF

TEMP_EXTRACT_QUOTE string '' (empty string)

TEMP_EXTRACT_QUOTES ON, OFF OFF

TEMP_EXTRACT_QUOTES_ALL ON, OFF OFF

TEMP_EXTRACT_ROW_DELIMITER string '' (empty string)

TEMP_EXTRACT_SIZE1 – TEMP_EXTRACT_SIZE8 AIX & HP-UX:
0 – 64GB
Sun Solaris: & Linux
0 – 512GB
Windows:
0 – 128GB

0

TEMP_EXTRACT_SWAP ON, OFF OFF

TEMP_RESERVED_DBSPACE_MB integer >= 200 in MB 200

TEMP_SPACE_LIMIT_CHECK ON, OFF ON

TIME_FORMAT string 'HH:NN:SS.SSS'

TIMESTAMP_FORMAT string 'YYYY-
MM-DD HH:NN:SS.SSS'

TOP_NSORT_CUTOFF_PAGES 1 – 1000 1

TRIM_PARTIAL_MBC ON, OFF OFF

USER_RESOURCE_RESERVATION integer 1

VERIFY_PASSWORD_FUNCTION string '' (empty string)

WASH_AREA_BUFFERS_PERCENT 1 – 100 20

WAIT_FOR_COMMIT ON, OFF OFF

WD_DELETE_METHOD 0 – 3 0

OPTION VALUES DEFAULT

CHAPTER 2 Database Options

Reference: Statements and Options 345

Transact-SQL compatibility options
The following options allow Sybase IQ behavior to be compatible with
Adaptive Server Enterprise, or to both support old behavior and allow ISO
SQL92 behavior.

For further compatibility with Adaptive Server Enterprise, you can set some of
these options set for the duration of the current connection using the Transact-
SQL SET statement instead of the Sybase IQ SET OPTION statement. For a
listing of such options, see the SET statement [ESQL] on page 301.

Default settings The default setting for some of these options differs from the Adaptive Server
Enterprise default setting. To ensure compatible behavior, you should
explicitly set the options.

When a connection is made using the Open Client or JDBC interfaces, some
option settings are explicitly set for the current connection to be compatible
with Adaptive Server Enterprise. These options are listed in Table 2-2.

For information on how the settings are made, see Reference: Building Blocks,
Tables, and Procedures.

Table 2-2: Transact-SQL options set explicitly for ASE compatibility

List of options Table 2-3 lists the compatibility options, their allowed values, and their default
settings.

See “General database options” on page 339 and “DBISQL options” on page
347 for lists of the other classes of options.

Option ASE-compatible setting

ALLOW_NULLS_BY_DEFAULT OFF

ANSINULL OFF

CHAINED OFF

CONTINUE_AFTER_RAISERROR ON

DATE_FORMAT YYYY-MM-DD

DATE_ORDER MDY

ESCAPE_CHARACTER OFF

ISOLATION_LEVEL 1

ON_TSQL_ERROR CONDITIONAL

QUOTED_IDENTIFIER OFF

TIME_FORMAT HH:NN:SS.SSS

TIMESTAMP_FORMAT YYYY-MM-DD HH:NN:SS.SSS

TSQL_VARIABLES OFF

Transact-SQL compatibility options

346 Sybase IQ

Table 2-3: Transact-SQL compatibility options

Notes
An asterisk (*) next to the option name in Table 2-3 indicates an option
currently not supported by Sybase IQ.

Option Values Default

ALLOW_NULLS_BY_DEFAULT ON, OFF ON

ANSI_BLANKS* ON, OFF OFF

ANSI_CLOSE_CURSORS_ON_ROLLBACK ON ON

ANSI_INTEGER_OVERFLOW*

ANSI_PERMISSIONS ON, OFF ON

ANSINULL ON, OFF ON

ANSI_UPDATE_CONSTRAINTS OFF, CURSORS, STRICT CURSORS

ASE_BINARY_DISPLAY ON, OFF OFF

ASE_FUNCTION_BEHAVIOR ON, OFF OFF

CHAINED ON, OFF ON

CLOSE_ON_ENDTRANS ON ON

CONTINUE_AFTER_RAISERROR ON, OFF ON

CONVERSION_ERROR ON, OFF ON

ESCAPE_CHARACTER* Reserved Reserved

FIRE_TRIGGERS* ON, OFF ON

NEAREST_CENTURY 0 – 100 50

NON_KEYWORDS Comma-separated keywords list No keywords turned off

ON_TSQL_ERROR STOP, CONTINUE,
CONDITIONAL

CONDITIONAL

QUERY_PLAN_ON_OPEN*

QUOTED_IDENTIFIER ON, OFF ON

RI_TRIGGER_TIME*

SQL_FLAGGER_ERROR_LEVEL E, I, F, W W

SQL_FLAGGER_WARNING_LEVEL E, I, F, W W

STRING_RTRUNCATION ON, OFF ON

TEXTSIZE*

TSQL_HEX_CONSTANT*

TSQL_VARIABLES ON, OFF OFF

CHAPTER 2 Database Options

Reference: Statements and Options 347

DBISQL options
These options change how DBISQL interacts with the database.

Syntax 1 SET [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Syntax 2 SET PERMANENT

Syntax 3 SET

Parameters userid:
identifier, string or host-variable

option-name:
identifier, string or host-variable

option-value:
host-variable (indicator allowed), string, identifier,
or number

Description Syntax 1 with the TEMPORARY keyword cannot be used between the BEGIN
and END keywords of a compound statement.

SET PERMANENT (Syntax 2) stores all current DBISQL options in the
SYSOPTIONS system table. These settings are automatically established
every time DBISQL is started for the current user ID.

Syntax 3 is used to display all of the current option settings. If there are
temporary options set for DBISQL or the database server, these are displayed;
otherwise, the permanent option settings are displayed.

Table 2-4 lists the DBISQL options, their allowed values, and their default
settings.

See “General database options” on page 339 and “Transact-SQL compatibility
options” on page 345 for lists of the other classes of options.

Table 2-4: DBISQL options

Option Values Default

DEFAULT_ISQL_ENCODING Identifier or string empty string (use
system code page)

NULLS* String NULL

ON_ERROR* STOP, CONTINUE, PROMPT, EXIT,
NOTIFY_CONTINUE,
NOTIFY_STOP, NOTIFY_EXIT

PROMPT

OUTPUT_FORMAT* ASCII, DBASEII, DBASEIII,
EXCEL, FIXED, FOXPRO, HTML,
LOTUS, SQL, XML,

ASCII

OUTPUT_LENGTH* Non-negative integer 0 (no truncation)

Alphabetical list of options

348 Sybase IQ

Note An asterisk (*) next to the option name in Table 2-4 indicates an option
currently not supported by Sybase IQ.

Alphabetical list of options
This section lists options alphabetically.

Some option names are followed by an indicator in square brackets that
indicates the class of the option. These indicators are as follows:

• [DBISQL] – The option changes how DBISQL interacts with the
database.

• [TSQL] – The option allows Sybase IQ behavior to be made compatible
with Adaptive Server Enterprise, or to both support old behavior and allow
ISO SQL92 behavior.

AGGREGATION_PREFERENCE option
Function Controls the choice of algorithms for processing an aggregate.

Allowed values -3 to 3

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description For aggregation (GROUP BY, DISTINCT, SET functions) within a query, the
Sybase IQ optimizer has a choice of several algorithms for processing the
aggregate. This AGGREGATION_PREFERENCE option lets you override the
optimizer’s costing decision when choosing the algorithm. It does not override
internal rules that determine whether an algorithm is legal within the query
engine.

OUTPUT_NULLS* String 'NULL'

STATISTICS* 0, 3, 4, 5, 6 3

TRUNCATION_LENGTH* Integer 256

Option Values Default

CHAPTER 2 Database Options

Reference: Statements and Options 349

This option is normally used for internal testing and for manually tuning
queries that the optimizer does not handle well. Only experienced DBAs
should use it. Inform Sybase Technical Support if you need to set
AGGREGATION_PREFERENCE, as setting this option might mean that a
change to the optimizer is appropriate.

Table 2-5 describes the valid values and their actions for the
AGGREGATION_PREFERENCE option.

Table 2-5: AGGREGATION_PREFERENCE values

ALLOW_NULLS_BY_DEFAULT option [TSQL]
Function Controls whether new columns created without specifying either NULL or

NOT NULL are allowed to contain NULL values.

Allowed values ON, OFF

Default ON

OFF for Open Client and JDBC connections

Description The ALLOW_NULLS_BY_DEFAULT option is included for Transact-SQL
compatibility.

See also Appendix A, “Compatibility with Other Sybase Databases” in Reference:
Building Blocks, Tables, and Procedures

ANSI_CLOSE_CURSORS_ON_ROLLBACK option [TSQL]
Function Controls whether cursors that were opened WITH HOLD are closed when a

ROLLBACK is performed.

Allowed values ON

Value Action

0 Let the optimizer choose

1 Prefer aggregation with a sort

2 Prefer aggregation using IQ indexes

3 Prefer aggregation with a hash

-1 Avoid aggregation with a sort

-2 Avoid aggregation using IQ indexes

-3 Avoid aggregation with a hash

Alphabetical list of options

350 Sybase IQ

Default ON

Description The ANSI SQL/3 standard requires all cursors be closed when a transaction is
rolled back. This option forces that behavior and cannot be changed. The
CLOSE_ON_ENDTRANS option overrides this option.

ANSI_PERMISSIONS option [TSQL]
Function Controls permissions checking for DELETE and UPDATE statements.

Allowed values ON, OFF

Default ON

Description With ANSI_PERMISSIONS ON, SQL92 permissions requirements for DELETE
and UPDATE statements are checked. The default value is OFF in Adaptive
Server Enterprise. Table 2-6 outlines the differences.

Table 2-6: Effect of ANSI_PERMISSIONS option

The ANSI_PERMISSIONS option can be set only for the PUBLIC group. No
private settings are allowed.

SQL statement

Permissions required
with ANSI_PERMISSIONS
OFF

Permissions required
with ANSI_PERMISSIONS
ON

UPDATE UPDATE permission on the
columns where values are
being set

UPDATE permission on the
columns where values are
being set

SELECT permission on all
columns appearing in the
WHERE clause.

SELECT permission on all
columns on the right side of
the set clause.

DELETE DELETE permission on table DELETE permission on table.

SELECT permission on all
columns appearing in the
WHERE clause.

CHAPTER 2 Database Options

Reference: Statements and Options 351

ANSINULL option [TSQL]
Function Controls the interpretation of using = and != with NULL.

Allowed values ON, OFF

Default ON

Description With ANSINULL ON, results of comparisons with NULL using '=' or '!=' are
unknown. This includes results of comparisons implied by other operations
such as CASE.

Setting ANSINULL to OFF allows comparisons with NULL to yield results that
are not unknown, for compatibility with Adaptive Server Enterprise.

Note Unlike SQL Anywhere, Sybase IQ does not generate the warning “null
value eliminated in aggregate function” (SQLSTATE=01003) for aggregate
functions on columns containing NULL values.

ANSI_UPDATE_CONSTRAINTS option
Function Controls the range of updates that are permitted.

Allowed values OFF, CURSORS, STRICT

Default CURSORS

OFF in databases created before version 12.4.3.

Description Sybase IQ provides several extensions that allow updates that are not permitted
by the ANSI SQL standard. These extensions provide powerful, efficient
mechanisms for performing updates. However, in some cases, they cause
behavior that is not intuitive. This behavior might produce anomalies such as
lost updates if the user application is not designed to expect the behavior of
these extensions.

The ANSI_UPDATE_CONSTRAINTS option controls whether updates are
restricted to those permitted by the SQL92 standard.

If the option is set to STRICT, the following updates are prevented:

• Updates of cursors containing JOINS

• Updates of columns that appear in an ORDER BY clause

• The FROM clause is not allowed in UPDATE statements.

Alphabetical list of options

352 Sybase IQ

If the option is set to CURSORS, these same restrictions are in place, but only
for cursors. If a cursor is not opened with FOR UPDATE or FOR READ ONLY,
the database server determines whether updates are permitted based on the
SQL92 standard.

If the ANSI_UPDATE_CONSTRAINTS option is set to CURSORS or STRICT,
cursors containing an ORDER BY clause default to FOR READ ONLY;
otherwise, they continue to default to FOR UPDATE.

Example The following code has a different effect, depending on the setting of
ANSI_UPDATE_CONSTRAINTS.

CREATE TABLE mmg (a CHAR(3));
CREATE TABLE mmg1 (b CHAR(3));

INSERT INTO mmg VALUES ('001');
INSERT INTO mmg VALUES ('002');
INSERT INTO mmg VALUES ('003')
INSERT INTO mmg1 VALUES ('003');
SELECT * FROM mmg;
SELECT * FROM mmg1;

Option 1: Set ANSI_UPDATE_CONSTRAINTS to STRICT:

SET OPTION public.Ansi_update_constraints = 'strict';
DELETE MMG FROM MMG1 WHERE A=B;

This results in an error indicating that the attempted update operation is not
allowed.

Option 2: Set ANSI_UPDATE_CONSTRAINTS to CURSORS or OFF:

SET OPTION public.Ansi_update_constraints = 'CURSORS';
// or 'OFF'
DELETE mmg FROM mmg1 WHERE A=B;

In this case, the deletion should complete without the error.

See also UPDATE statement on page 322

ALLOW_READ_CLIENT_FILE option
Function Enables client-side data transfer. For details, see “allow_read_client_file

option [database]” in SQL Anywhere Server – Database Administration >
Configuring Your Database > Introduction to database options > Alphabetical
list of options.

CHAPTER 2 Database Options

Reference: Statements and Options 353

APPEND_LOAD option
Function Helps reduce space usage from versioned pages.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description The APPEND_LOAD option applies to LOAD, INSERT...SELECT, and
INSERT...VALUES statements. It takes effect on the next LOAD,
INSERT...SELECT, or INSERT...VALUES statement.

When the APPEND_LOAD option is OFF, Sybase IQ reuses row IDs from
deleted rows. Setting this option ON appends new data to the end of the table.

The APPEND_LOAD database option behaves differently for partitioned and
non-partitioned tables. Row ID ranges are assigned to each partition in a
partitioned table. For partitioned tables, when APPEND_LOAD is ON, new
rows are appended at the end of the appropriate partition. When
APPEND_LOAD is OFF, the load reuses the first available row IDs and space
from deleted rows.

For non-partitioned tables, when APPEND_LOAD is ON, new rows are added
after the maximum row ID that is at the end of the table rows. When
APPEND_LOAD is OFF, the load reuses the deleted row IDs. With non-
partitioned tables, you can also control where rows are inserted by using the
LOAD or INSERT START ROW ID clause to specify the row at which to start
inserting.

ASE_BINARY_DISPLAY option
Function Specifies that the display of Sybase IQ binary columns is consistent with the

display of Adaptive Server Enterprise binary columns.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description The ASE_BINARY_DISPLAY option affects the output of the SELECT
statement.

Alphabetical list of options

354 Sybase IQ

This option affects only columns in the IQ store. It does not affect variables,
catalog store columns or SQL Anywhere columns. When this option is ON,
Sybase IQ displays the column in readable ASCII format; for example,
0x1234567890abcdef. When this option is OFF, Sybase IQ displays the
column as binary output (not ASCII).

Set ASE_BINARY_DISPLAY OFF to support bulk copy operations on binary
data types. Sybase IQ supports bulk loading of remote data via the LOAD
TABLE USING CLIENT FILE statement.

See also LOAD TABLE statement on page 230

ASE_FUNCTION_BEHAVIOR option
Function Specifies that output of Sybase IQ functions, including INTTOHEX and

HEXTOINT, is consistent with the output of Adaptive Server Enterprise
functions.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When the ASE_BEHAVIOR_FUNCTION option is ON, some of the Sybase IQ
data type conversion functions, including HEXTOINT and INTTOHEX, return
output that is consistent with the output of Adaptive Server Enterprise
functions. The differences in the ASE and Sybase IQ output, with respect to
formatting and length, exist because ASE primarily uses signed 32-bit as the
default and Sybase IQ primarily uses unsigned 64-bit as the default.

Sybase IQ does not provide support for 64-bit integer, as ASE does not have a
64-bit integer data type.

For details on the behavior of the INTTOHEX and HEXTOINT functions when
the ASE_FUNCTION_BEHAVIOR option is enabled, see “INTTOHEX function
[Data type conversion]” and “HEXTOINT function [Data type conversion]”
in Chapter 4, “SQL Functions” in Reference: Building Blocks, Tables, and
Procedures.

Example In this example, the HEXTOINT function returns a different value based on
whether the ASE_FUNCTION_BEHAVIOR option is ON or OFF.

CHAPTER 2 Database Options

Reference: Statements and Options 355

The HEXTOINT function returns 4294967287 with
ASE_FUNCTION_BEHAVIOR OFF:

select hextoint(‘fffffff7’) from iq_dummy

The HEXTOINT function returns -9 with ASE_FUNCTION_BEHAVIOR ON:

select hextoint(‘fffffff7’) from iq_dummy

See also “HEXTOINT function [Data type conversion]” and “INTTOHEX function
[Data type conversion]” in Chapter 4, “SQL Functions” in Reference:
Building Blocks, Tables, and Procedures

“CONVERSION_ERROR option [TSQL]” on page 362

AUDITING option [database]
Function Enables and disables auditing in the database.

Allowed values ON, OFF

Default OFF

Description This option turns auditing on and off.

Auditing is the recording of details about many events in the database in the
transaction log. Auditing provides some security features, at the cost of some
performance. When you turn on auditing for a database, you cannot stop using
the transaction log. You must turn auditing off before you turn off the
transaction log. Databases with auditing on cannot be started in read-only
mode.

For the AUDITING option to work, you must set the auditing option to On, and
also specify which types of information you want to audit using the
sa_enable_auditing_type system procedure. Auditing will not take place if
either of the following are true:

• The AUDITING option is set to OFF

• Auditing options have been disabled

If you set the AUDITING option to On, and do not specify auditing options, all
types of auditing information are recorded. Alternatively, you can choose to
record any combination of the following: permission checks, connection
attempts, DDL statements, public options, and triggers using the
sa_enable_auditing_type system procedure.

Alphabetical list of options

356 Sybase IQ

Can be set for the PUBLIC group only. Takes effect immediately. DBA
authority required.

See also “sa_enable_auditing_type system procedure” in Chapter 7, “System
Procedures” in Reference: Building Blocks, Tables, and Procedures

BIT_VECTOR_PINNABLE_CACHE_PERCENT option
Function Maximum percentage of a user’s temp memory that a persistent bit-vector

object can pin.

Allowed values 0 – 100

Default 40

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description BIT_VECTOR_PINNABLE_CACHE_PERCENT controls the percentage of a
user’s temp memory allocation that any one persistent bit-vector object can pin
in memory. It defaults to 40%, and should not generally be changed by users.

This option is primarily for use by Sybase Technical Support. If you change the
value of BIT_VECTOR_PINNABLE_CACHE_PERCENT, do so with extreme
caution; first analyze the effect on a wide variety of queries.

See also “HASH_PINNABLE_CACHE_PERCENT option” on page 391

“SORT_PINNABLE_CACHE_PERCENT option” on page 445

BLOCKING option
Function Controls the behavior in response to locking conflicts.

Allowed values OFF

Default OFF

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description When BLOCKING is OFF, a transaction receives an error when it attempts a
write operation and it is blocked by another transaction’s read lock.

CHAPTER 2 Database Options

Reference: Statements and Options 357

BT_PREFETCH_MAX_MISS option
Function Controls the way Sybase IQ determines whether to continue prefetching B-tree

pages for a given query.

Allowed values 0 – 1000

Default 2

Scope Can be set for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description Use only if instructed to do so by Sybase Technical Support. For queries that
use HG (High_Group) indexes, Sybase IQ prefetches B-tree pages sequentially
until it determines that prefetching is no longer useful. For some queries, it
might turn off prefetching prematurely. Increasing the value of
BT_PREFETCH_MAX_MISS makes it more likely that Sybase IQ continues
prefetching, but also might increase I/O unnecessarily.

If queries using HG indexes run more slowly than expected, try gradually
increasing the value of this option.

Experiment with different settings to find the one that gives the best
performance. For most queries, useful settings are in the range of 1 to 10.

See also “BT_PREFETCH_SIZE option” on page 357

“PREFETCH_BUFFER_LIMIT option” on page 431

BT_PREFETCH_SIZE option
Function Restricts the size of the read-ahead buffer for the High_Group B-tree.

Allowed values 0 – 100. Setting to 0 disables B-tree prefetch.

Default 10

Scope Can be set only for an individual user. Takes effect immediately.

Description B-tree prefetch is activated by default for any sequential access to the
High_Group index such as INSERT, large DELETE, range predicates, and
DBCC (Database Consistency Checker commands).

Alphabetical list of options

358 Sybase IQ

This option limits the size of the read-ahead buffer for B-tree pages. Reducing
prefetch size frees buffers, but also degrades performance at some point.
Increasing prefetch size might have marginal returns. This option should be
used in conjunction with the options PREFETCH_GARRAY_PERCENT,
GARRAY_INSERT_PREFETCH_SIZE, and GARRAY_RO_PREFETCH_SIZE
for non-unique High_Group indexes.

BTREE_PAGE_SPLIT_PAD_PERCENT option
Function Determines per-page fill factor during page splits for B-Tree structures. B-Tree

structures are used by the HG, LF, DT, TIME, and DTTM indexes. Splits of a
B-Tree page try to leave the specified percentage empty to avoid splitting when
new keys are inserted into the index.

Allowed values 0 – 90

Default 50

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description Indexes reserve storage at the page level that can be allocated to new keys as
additional data is inserted. Reserving space consumes additional disk space,
but can help the performance of incremental inserts. If future plans include
incremental inserts, and the new rows do not have values that are already
present in the index, a nonzero value for the
GARRAY_PAGE_SPLIT_PAD_PERCENT option may improve incremental
insert performance.

If you do not plan to incrementally update the index, you can reduce the value
of this option to save disk space.

See also “GARRAY_FILL_FACTOR_PERCENT option” on page 389

“GARRAY_PAGE_SPLIT_PAD_PERCENT option” on page 390

CACHE_PARTITIONS option
Function Sets the number of partitions to be used for the main and temporary buffer

caches.

Allowed values 0, 1, 2, 4, 8, 16, 32, 64:

CHAPTER 2 Database Options

Reference: Statements and Options 359

Table 2-7: CACHE_PARTITIONS values

Default 0 (Sybase IQ computes the number of partitions automatically).

Scope Can be set for the PUBLIC group only. Takes effect for the current database the
next time you start the database server.

Description Partitioning the buffer cache can sometimes improve performance on systems
with multiple CPUs by reducing lock contention. Normally you should rely on
the value that Sybase IQ calculates automatically, which is based on the
number of CPUs on your system. However, if you find that load or query
performance in a multi-CPU configuration is slower than expected, you might
be able to improve it by setting a different value for CACHE_PARTITIONS.

Both the number of CPUs and the platform can influence the ideal number of
partitions. Experiment with different values to determine the best setting for
your configuration.

The value you set for CACHE_PARTITIONS applies to both the main and temp
buffer caches. The absolute maximum number of partitions is 64, for each
buffer cache.

The -iqpartition server option sets the partition limit at the server level. If
-iqpartition is specified at server start-up, it always overrides the
CACHE_PARTITIONS setting.

The number of partitions does not affect other buffer cache settings. It also does
not affect statistics collected by the IQ monitor; statistics for all partitions are
rolled up and reported as a single value.

Example In a system with 100 CPUs, if you do not set CACHE_PARTITIONS, Sybase IQ
automatically sets the number of partitions to 16 as follows:

100 cpus/8 = 12, rounded to 16.

With this setting, there are 16 partitions for the main cache and 16 partitions for
the temp cache.

In the same system with 100 CPUs, to explicitly set the number of partitions to
8, specify:

SET OPTION "PUBLIC".CACHE_PARTITIONS=8

Value Description

0 Sybase IQ computes the number of partitions
automatically as number_of_cpus/8, rounded to the nearest
power of 2, up to a maximum of 64.

1 1 partition only; this value disables partitioning.

2 – 64 Number of partitions; must be a power of 2.

Alphabetical list of options

360 Sybase IQ

See also -iqpartition in “Starting the database server” in Chapter 1, “Running the
Database Server” in the Utility Guide

“Managing lock contention,” Chapter 10, “Transactions and Versioning,” in
the System Administration Guide: Volume 1

CHAINED option [TSQL]
Function Controls transaction mode in the absence of a BEGIN TRANSACTION

statement.

Allowed values ON, OFF

OFF for Open Client and JDBC connections

Default ON

Description Controls the Transact-SQL transaction mode. In unchained mode (CHAINED =
OFF) each statement is committed individually unless an explicit BEGIN
TRANSACTION statement is executed to start a transaction. In chained mode
(CHAINED = ON) a transaction is implicitly started before any data retrieval or
modification statement. For Adaptive Server Enterprise, the default setting is
OFF.

CHECKPOINT_TIME option
Function Set the maximum length of time, in minutes, that the database server runs

without doing a checkpoint.

Allowed values Integer

Default 60

Scope Can be set only for the PUBLIC group. Requires DBA permissions to set the
option. You must shut down and restart the database server for the change to
take effect.

Description This option is used with the “RECOVERY_TIME option” on page 441 to
decide when checkpoints should be done.

CHAPTER 2 Database Options

Reference: Statements and Options 361

CIS_ROWSET_SIZE option
Function Set the number of rows that are returned from remote servers for each fetch.

Allowed values Integer

Default 50

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
when a new connection is made to a remote server.

Description This option sets the ODBC FetchArraySize value when you are using ODBC to
connect to a remote database server.

See also For information on remote data access, see Chapter 4, “Accessing Remote
Data” in the System Administration Guide: Volume 2.

CLOSE_ON_ENDTRANS option [TSQL]
Function Controls closing of cursors at the end of a transaction.

Allowed values ON

Default ON

Description When CLOSE_ON_ENDTRANS is set to ON (the default and only value
allowed), cursors are closed at the end of a transaction. With this option set ON,
it provides Transact-SQL compatible behavior.

CONTINUE_AFTER_RAISERROR option [TSQL]
Function Controls behavior following a RAISERROR statement.

Allowed values ON, OFF

Default ON

Description The RAISERROR statement is used within procedures to generate an error.
When the option is set to OFF, the execution of the procedure is stopped when
the RAISERROR statement is encountered.

Alphabetical list of options

362 Sybase IQ

When the CONTINUE_AFTER_RAISERROR switch is ON, the RAISERROR
statement no longer signals an execution-ending error. Instead, the
RAISERROR status code and message are stored and the most recent
RAISERROR is returned when the procedure completes. If the procedure that
caused the RAISERROR was called from another procedure, the RAISERROR
is not returned until the outermost calling procedure terminates.

Intermediate RAISERROR statuses and codes are lost after the procedure
terminates. If, at return time, an error occurs along with the RAISERROR, then
the error information is returned and the RAISERROR information is lost. The
application can query intermediate RAISERROR statuses by examining
@@error global variable at different execution points.

The setting of the CONTINUE_AFTER_RAISERROR option is used to control
behavior following a RAISERROR statement only if the ON_TSQL_ERROR
option is set to CONDITIONAL (the default). If you set the ON_TSQL_ERROR
option to STOP or CONTINUE, the ON_TSQL_ERROR setting takes
precedence over the CONTINUE_AFTER_RAISERROR setting.

See also “ON_TSQL_ERROR option [TSQL]” on page 427

CONVERSION_ERROR option [TSQL]
Function Controls reporting of data type conversion failures on fetching information

from the database.

Allowed values ON, OFF

Default ON

Description This option controls whether data type conversion failures, when data is
fetched from the database or inserted into the database, are reported by the
database as errors (CONVERSION_ERROR set to ON), or as warnings
(CONVERSION_ERROR set to OFF).

When CONVERSION_ERROR is set to ON, the SQLE_CONVERSION_ERROR
error is generated.

If the option is set to OFF, the warning SQLE_CANNOT_CONVERT is
produced. Each thread doing data conversion for a LOAD statement writes at
most one warning message to the .iqmsg file.

If conversion errors are reported as warnings only, the NULL value is used in
place of the value that could not be converted. In Embedded SQL, an indicator
variable is set to -2 for the column or columns that cause the error.

CHAPTER 2 Database Options

Reference: Statements and Options 363

CONVERSION_MODE option
Function Restricts implicit conversion between binary data types (BINARY, VARBINARY,

and LONG BINARY) and other non-binary data types (BIT, TINYINT, SMALLINT,
INT, UNSIGNED INT, BIGINT, UNSIGNED BIGINT, CHAR, VARCHAR, and
LONG VARCHAR) on various operations.

Allowed values 0, 1

Default 0

Scope Can be set either publicly or temporarily. DBA permissions are not required to
set this option.

Description The default value of 0 maintains implicit conversion behavior prior to version
12.7. Setting CONVERSION_MODE to 1 restricts implicit conversion of binary
data types to any other non-binary data type on INSERT, UPDATE, and in
queries. The restrict binary conversion mode also applies to LOAD TABLE
default values and CHECK constraint. The use of this option prevents implicit
data type conversions of encrypted data that would result in semantically
meaningless operations.

Implicit conversion
restrictions

The CONVERSION_MODE option restrict binary mode value of 1 restricts
implicit conversion for the following operations.

LOAD TABLE The restrict implicit binary conversion mode applies to LOAD
TABLE with CHECK constraint or default value.

For example:

CREATE TABLE t3 (c1 INT,
csi SMALLINT,
cvb VARBINARY(2),
CHECK (csi<cvb));

SET TEMPORARY OPTION CONVERSION_MODE = 1;

The following request:

LOAD TABLE t3(c1 ',', csi ',', cvb ',')
FROM '/s1/mydata/t3.inp'
QUOTES OFF ESCAPES OFF
ROW DELIMITED BY '\n'

fails with the message:

"Invalid data type comparison in predicate
(t3.csi < t3.cvb), [-1001013] ['QFA13']"

INSERT The restrict implicit binary conversion mode applies to
INSERT...SELECT, INSERT...VALUE, and INSERT...LOCATION.

Alphabetical list of options

364 Sybase IQ

For example:

CREATE TABLE t1 (c1 INT PRIMARY KEY,
cbt BIT NULL,
cti TINYINT,
csi SMALLINT,
cin INTEGER,
cui UNSIGNED INTEGER,
cbi BIGINT,
cub UNSIGNED BIGINT,
cch CHAR(10),
cvc VARCHAR(10),
cbn BINARY(8),
cvb VARBINARY(8),
clb LONG BINARY,
clc LONG VARCHAR);

CREATE TABLE t2 (c1 INT PRIMARY KEY,
cbt BIT NULL,
cti TINYINT,
csi SMALLINT,
cin INTEGER,
cui UNSIGNED INTEGER,
cbi BIGINT,
cub UNSIGNED BIGINT,
cch CHAR(10),
cvc VARCHAR(10),
cbn BINARY(8),
cvb VARBINARY(8),
clb LONG BINARY,
clc LONG VARCHAR);

CREATE TABLE t4 (c1 INT, cin INT DEFAULT 0x31);

SET TEMPORARY OPTION CONVERSION_MODE = 1;

The following request:

INSERT INTO t1(c1, cvb) SELECT 99, cin FROM T2
WHERE c1=1

fails with the message:

"Unable to convert column 'cvb' to the requested
datatype (varbinary) from datatype (integer).
[-1013043] ['QCA43']"

CHAPTER 2 Database Options

Reference: Statements and Options 365

UPDATE The restrict implicit binary conversion mode applies to the
following types of UPDATE:

UPDATE SET VALUE FROM expression (including constant)
UPDATE SET VALUE FROM other column
UPDATE SET VALUE FROM host variable
JOIN UPDATE SET VALUE FROM column of other table

For example, the following request:

UPDATE t1 SET cbi=cbn WHERE c1=1

fails with the message:

"Unable to implicitly convert column 'cbi' to datatype
(bigint) from datatype (binary). [-1000187] ['QCB87']"

Positioned INSERT and positioned UPDATE via updatable cursor The
restrict implicit binary conversion mode applies to the following types of
INSERT and UPDATE via updatable cursor:

PUT cursor-name USING … host-variable
Positioned UPDATE from another column
Positioned UPDATE from a constant
Positioned UPDATE from a host variable

Queries The restrict implicit binary conversion mode applies to all aspects of
queries in general.

1 Comparison Operators
When CONVERSION_MODE = 1, the restriction applies to the following
operators:

=, !=, <, <=, >=, <>, !>, !<
BETWEEN … AND
IN

used in a search condition for the following clauses:

WHERE clause
HAVING clause
CHECK clause
ON phrase in a join
IF/CASE expression

For example, the following query:

SELECT COUNT(*) FROM T1
WHERE cvb IN (SELECT csi FROM T2)

Alphabetical list of options

366 Sybase IQ

fails with the message:

"Invalid data type comparison in predicate
(t1.cvb IN (SELECT t1.csi ...)), [-1001013]
['QFA13']"

2 String Functions
When CONVERSION_MODE = 1, the restriction applies to the following
string functions:

CHAR
CHAR_LENGTH
DIFFERENCE
LCASE
LEFT
LOWER
LTRIM
PATINDEX
RIGHT
RTRIM
SIMILAR
SORTKEY
SOUNDEX
SPACE
STR
TRIM
UCASE
UPPER

For example, the following query:

SELECT ASCII(cvb) FROM t1 WHERE c1=1

fails with the message:

"Data exception - data type conversion is not
possible. Argument to ASCII must be string,
[-1009145] ['QFA2E']"

The following functions allow either a string argument or a binary
argument. When CONVERSION_MODE = 1, the restriction applies to
mixed type arguments, that is, one argument is string and the other
argument is binary.

CHAPTER 2 Database Options

Reference: Statements and Options 367

INSERTSTR
LOCATE
REPLACE
STRING
STUFF

For example, the following query:

SELECT STRING(cvb, cvc) FROM t1 WHERE c1=1

where the column cvb is defined as VARBINARY and the column cvc is
defined as VARCHAR, fails with the message:

"Data exception - data type conversion is not
possible. Arguments to STRING must be all binary
or all string, [-1009145] ['QFA2E']"

The restriction does not apply to the following string functions:

BIT_LENGTH
BYTE_LENGTH
CHARINDEX
LENGTH
OCTET_LENGTH
REPEAT
REPLICATE
SUBSTRING

3 Arithmetic Operations and Functions
When CONVERSION_MODE = 1, the restriction applies to the following
operators used in arithmetic operations:

+, -, *, /

The restriction applies to the following bitwise operators used in bitwise
expressions:

& (AND), | (OR), ^ (XOR)

The restriction also applies to integer arguments of the following
functions:

ROUND
“TRUNCATE”
TRUNCNUM

Alphabetical list of options

368 Sybase IQ

For example, the following query:

SELECT ROUND(4.4, cvb) FROM t1 WHERE C1=1

fails with the message:

"Data exception - data type conversion is not
possible. Second Argument to ROUND cannot be
converted into an integer, [-1009145] ['QFA2E']"

4 Integer Argument to Various Functions
When CONVERSION_MODE = 1, the restriction applies to integer
argument of the following functions:

ARGN
SUBSTRING
DATEADD
YMD

For example, the following query:

SELECT ARGN(cvb, csi, cti) FROM t1 WHERE c1=1

fails with the message:

"Data exception - data type conversion is not
possible. First Argument to ARGN cannot be converted
to an integer, [-1009145] ['QFA2E']"

5 Analytical Functions, Aggregate Functions, and Numeric Functions
When CONVERSION_MODE = 1, no further restriction applies to
analytical functions, aggregate functions, and numeric functions that
require numeric expressions as arguments.

See also For more information on data type conversion, see Chapter 7, “Moving Data
In and Out of Databases” in the System Administration Guide: Volume 1.

For more information on column encryption, see Advanced Security in Sybase
IQ. Users must be specifically licensed to use the encrypted column
functionality of the Sybase IQ Advanced Security Option.

CONVERT_VARCHAR_TO_1242 option
Function Converts pre-version 12.4.2 VARCHAR data to compressed format.

Allowed values ON, OFF

Default OFF

CHAPTER 2 Database Options

Reference: Statements and Options 369

Scope Can be set only for the PUBLIC group. Takes effect when you run sp_iqcheckdb
in any mode.

Description Helps further compress data and improve performance, especially for
databases with many variable character strings.

Set this option and then run sp_iqcheckdb only once, and only for VARCHAR
columns that were created before version 12.4.2.

COOPERATIVE_COMMIT_TIMEOUT option
Function Governs when a COMMIT entry in the transaction log is written to disk.

Allowed values Integer, in milliseconds

Default 250

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description This option only has meaning when COOPERATIVE_COMMITS is set to ON.
The database server waits for the specified number of milliseconds for other
connections to fill a page of the log before writing to disk. The default setting
is 250 milliseconds.

COOPERATIVE_COMMITS option
Function Controls when commits are written to disk.

Allowed values ON, OFF

Default ON

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description If COOPERATIVE_COMMITS is set to OFF, a COMMIT is written to disk as
soon as the database server receives it, and the application is then allowed to
continue.

If COOPERATIVE_COMMITS is set to ON, the default, the database server does
not immediately write the COMMIT to the disk. Instead, it requires the
application to wait for a maximum length set by the
COOPERATIVE_COMMIT_TIMEOUT option for something else to put on the
pages before the commit is written to disk.

Alphabetical list of options

370 Sybase IQ

Setting COOPERATIVE_COMMITS to ON, and increasing the
COOPERATIVE_COMMIT_TIMEOUT setting increases overall database server
throughput by cutting down the number of disk I/Os, but at the expense of a
longer turnaround time for each individual connection.

CURSOR_WINDOW_ROWS option
Function Defines the number of cursor rows to buffer.

Allowed values 20 – 100000

Default 200

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When an application opens a cursor, Sybase IQ creates a FIFO (first-in, first-
out) buffer to hold the data rows generated by the query.
CURSOR_WINDOW_ROWS defines how many rows can be put in the buffer.
If the cursor is opened in any mode other than NO SCROLL, Sybase IQ allows
for backward scrolling for up to the total number of rows allowed in the buffer
before it must restart the query. This is not true for NO SCROLL cursors as
they do not allow backward scrolling.

For example, with the default value for this option, the buffer initially holds
rows 1 through 200 of the query result set. If you fetch the first 300 rows, the
buffer holds rows 101 through 300. You can scroll backward or forward within
that buffer with very little overhead cost. If you scroll before row 101, Sybase
IQ restarts that query until the desired row is back in the buffer. This can be an
expensive operation to perform, so your application should avoid it where
possible. An option is to increase the value for CURSOR_WINDOW_ROWS to
accommodate a larger possible scrolling area; however, the default setting of
200 is sufficient for most applications.

DATE_FIRST_DAY_OF_WEEK option
Function Determines the first day of the week.

Allowed values 0 – 6

Default 0 (Sunday)

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

CHAPTER 2 Database Options

Reference: Statements and Options 371

Description This option can specify which day is the first day of the week. By default,
Sunday is day 1, Monday is day 2, Tuesday is day 3, and so on. Table 2-
9defines the valid values for the DATE_FIRST_DAY_OF_WEEK option.

Table 2-8: DATE_FIRST_DAY_OF_WEEK values

For example, if you change the value for the DATE_FIRST_DAY_OF_WEEK
option to 3, Wednesday becomes day 1, Thursday becomes day 2, and so on.
This option only affects the DOW and DATEPART functions, so its effect is
quite narrow.

See also The SQL Anywhere option FIRST_DAY_OF_WEEK performs the same
function but assigns the values 1 through 7 instead of 0 through 6. 1 stands for
Monday and 7 for Sunday (the default). If you receive unexpected results, see
“Ordering query results” in Chapter 1, “Selecting Data from Database Tables”
in Performance and Tuning Guide.

DATE_FORMAT option
Function Sets the format used for dates retrieved from the database.

Allowed values String

Default 'YYYY-MM-DD'. This corresponds to ISO date format specifications.

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description The format is a string using the following symbols:

Value First Day

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Alphabetical list of options

372 Sybase IQ

Table 2-9: Symbols used in DATE_FORMAT string

Note Multibyte characters are not supported in date format strings. Only
single-byte characters are allowed, even when the collation order of the
database is a multibyte collation order like 932JPN. Use the concatenation
operator to include multibyte characters in date format strings. For example, if
'?' represents a multibyte character, use the concatenation operator to move the
multibyte character outside of the date format string:

SELECT DATEFORMAT (StartDate, ‘yy’) + ‘?’
FROM Employees;

Each symbol is substituted with the appropriate data for the date being
formatted. Any format symbol that represents character rather than digit output
can be put in uppercase which causes the substituted characters to also be in
uppercase. For numbers, using mixed case in the format string suppresses
leading zeros.

Symbol Description

yy 2-digit year

yyyy 4-digit year

mm 2-digit month, or 2-digit minutes if following a colon (as in
'hh:mm')

mmm 3-character name of month

mmmm[m...] Character long form for months—as many characters as there
are m's, until the number of m’s specified exceeds the number
of characters in the month’s name.

d Single-digit day of week, (0 = Sunday, 6 = Saturday)

dd 2-digit day of month

ddd 3-character name of the day of week.

dddd[d...] Character long form for day of the week—as many characters
as there are d's, until the number of d’s specified exceeds the
number of characters in the day’s name.

hh 2-digit hours

nn 2-digit minutes

ss[.s...s] Seconds and parts of a second; up to six digits can follow the
decimal point

aa AM or PM (12 hour clock)

pp PM if needed (12 hour clock)

jjj Day of the year, from 1 to 366

CHAPTER 2 Database Options

Reference: Statements and Options 373

You can control the padding of numbers by changing the case of the symbols.
Same-case values (MM, mm, DD, or dd) all pad number with zeros. Mixed-
case (Mm, mM, Dd, or dD) cause the number to not be zero-padded; the value
takes as much room as required. For example:

SELECT dateformat (cast ('1998/01/01' as date), 'yyyy/
Mm/Dd')

returns the following value:

1998/1/1

Examples Table 2-10 illustrates DATE_FORMAT settings, together with the output from
the following statement, executed on Thursday May 21, 1998:

SELECT CURRENT DATE

Table 2-10: DATE_FORMAT settings

See also “Setting options” on page 333

“RETURN_DATE_TIME_AS_STRING option” on page 442

“TIME_FORMAT option” on page 466

DATE_ORDER option
Function Controls the interpretation of date formats.

Allowed values 'MDY', 'YMD', or 'DMY'

Default 'YMD'. This corresponds to ISO date format specifications.

Description The database option DATE_ORDER is used to determine whether 10/11/12 is
Oct 11 1912, Nov 12 1910, or Nov 10 1912. The option can have the value
'MDY', 'YMD', or 'DMY'.

DATE_FORMAT SELECT CURRENT DATE

yyyy/mm/dd/ddd 1998/05/21/thu

jjj 141

mmm yyyy may 1998

mm-yyyy 05-1998

Alphabetical list of options

374 Sybase IQ

DBCC_LOG_PROGRESS option
Function Reports the progress of the sp_iqcheckdb system stored procedure.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection or the PUBLIC group. Takes effect at
the next execution of sp_iqcheckdb.

Description When the DBCC_LOG_PROGRESS option is ON, the sp_iqcheckdb system
stored procedure sends progress messages to the IQ message file. These
messages allow the user to follow the progress of the sp_iqcheckdb operation.

Examples The following is sample progress log output of the command sp_iqcheckdb
‘check database’

IQ Utility Check Database
Start CHECK STATISTICS table: tloansf
Start CHECK STATISTICS for field: aqsn_dt
Start CHECK STATISTICS processing index:
IQ_IDX_T444_C1_FP
Start CHECK STATISTICS processing index:
tloansf_aqsn_dt_HNG
Done CHECK STATISTICS field: aqsn_dt

The following is sample progress log output of the command sp_iqcheckdb
‘allocation table nation’

Start ALLOCATION table: nation
Start ALLOCATION processing index: nationhg1
Done ALLOCATION table: nation
Done ALLCOATION processing index: nationhg1

See also Chapter 13, “System Recovery and Database Repair” in the System
Administration Guide: Volume 1

“sp_iqcheckdb procedure” in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

DBCC_PINNABLE_CACHE_PERCENT option
Function Controls the percent of the cache used by the sp_iqcheckdb system stored

procedure.

Allowed values 0 – 100

Default 50

CHAPTER 2 Database Options

Reference: Statements and Options 375

Scope Can be set for an individual connection or the PUBLIC group. Takes effect at
the next execution of sp_iqcheckdb.

Description The sp_iqcheckdb system stored procedure works with a fixed number of
buffers, as determined by this option. By Default, a large percentage of the
cache is reserved to maximize sp_iqcheckdb performance.

See also “sp_iqcheckdb procedure” in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

“Resource issues running sp_iqcheckdb” in Chapter 13, “System Recovery
and Database Repair”in the System Administration Guide: Volume 2

Chapter 13, “System Recovery and Database Repair”in the System
Administration Guide: Volume 1

DEBUG_MESSAGES option
Function Controls whether or not MESSAGE statements that include a DEBUG ONLY

clause are executed.

Allowed values ON, OFF

Default OFF

Description This option allows you to control the behavior of debugging messages in stored
procedures that contain a MESSAGE statement with the DEBUG ONLY clause
specified. By default, this option is set to OFF and debugging messages do not
appear when the MESSAGE statement is executed. By setting
DEBUG_MESSAGES to ON, you can enable the debugging messages in all
stored procedures.

Note
DEBUG ONLY messages are inexpensive when the DEBUG_MESSAGES
option is set to OFF, so these statements can usually be left in stored procedures
on a production system. However, they should be used sparingly in locations
where they would be executed frequently; otherwise, they might result in a
small performance penalty.

See also MESSAGE statement on page 257

Alphabetical list of options

376 Sybase IQ

DEDICATED_TASK option
Function Dedicates a request handling task to handling requests from a single

connection.

Allowed values ON, OFF

Default OFF

Scope Can be set as a temporary option only, for the duration of the current
connection. Requires DBA permissions to set this option.

Description When the DEDICATED_TASK connection option is set to ON, a request
handling task is dedicated exclusively to handling requests for the connection.
By pre-establishing a connection with this option enabled, you can gather
information about the state of the database server if it becomes otherwise
unresponsive.

DEFAULT_DBSPACE option
Function Changes the default dbspace where tables or join indexes are created. Allows

the administrator to set the default dbspace for a group or user or allows a user
to set the user’s own default dbspace.

Allowed values String containing a dbspace name

Default '' (the empty string)

Scope Can be set for an individual connection or PUBLIC group. Setting takes effect
immediately. Requires DBA permissions to set the option for groups or users
other than the current user. Takes effect immediately.

Description When a table is created without specifying a dbspace, the dbspace named by
this option setting is used for base tables and join indexes. If this option is not
set or is set to the empty string, the IQ_SYSTEM_MAIN dbspace is used. If
this option is set to a non-existent or read-only dbspace, the create statement
returns an error for base tables and join indexes. These rules also apply to tables
created implicitly via a SELECT INTO command.

IQ_SYSTEM_TEMP is always used for global temporary tables unless a table
IN clause is used that specifies SYSTEM, in which case an SA global
temporary table is created.

CHAPTER 2 Database Options

Reference: Statements and Options 377

At database creation, the system dbspace, IQ_SYSTEM_MAIN, is created and
is implied when the PUBLIC.DEFAULT_DBSPACE option setting is empty or
explicitly set to IQ_SYSTEM_MAIN. Immediately after creating the database,
Sybase recommends that the administrator create a second main dbspace,
revoke CREATE privilege in dbspace IQ_SYSTEM_MAIN from PUBLIC,
grant CREATE in dbspace for the new main dbspace to selected users or
PUBLIC, and set PUBLIC.DEFAULT_DBSPACE to the new main dbspace.

For example:

CREATE DBSPACE user_main USING FILE user_main
'user_main1' SIZE 10000;
GRANT CREATE ON user_main TO PUBLIC;
REVOKE CREATE ON IQ_SYSTEM_MAIN FROM PUBLIC;
SET OPTION PUBLIC.DEFAULT_DBSPACE = 'user_main';

Example In this example, CONNECT and RESOURCE privileges on all dbspaces are
granted to users usrA and usrB, and each of these users is granted CREATE
privilege on a particular dbspace:

GRANT CONNECT, RESOURCE TO usrA, usrB
IDENTIFIED BY pwdA, pwdB;

GRANT CREATE ON dbsp1 TO usrA;
GRANT CREATE ON dbsp3 TO usrB;
SET OPTION “usrA”.default_dbspace = ‘dbsp1’;
SET OPTION “usrB”.default_dbspace = ‘dbsp3’;
SET OPTION “PUBLIC”.default_dbspace = dbsp2;

CREATE TABLE “DBA”.t1(c1 int, c2 int);
INSERT INTO t1 VALUES (1, 1);
INSERT INTO t1 VALUES (2, 2);
COMMIT;

UsrA connects:

CREATE TABLE “UsrA”.t1(c1 int, c2 int);
INSERT INTO t1 VALUES (1, 1);
INSERT INTO t1 VALUES (2, 2);
COMMIT;

UsrB connects:

CREATE TABLE “UsrB”.t1(c1 int, c2 int);
INSERT INTO t1 VALUES (1, 1);
INSERT INTO t1 VALUES (2, 2);
COMMIT;

Alphabetical list of options

378 Sybase IQ

DBA connects:

SELECT Object, DbspaceName, ObjSize
FROM sp_iqindexinfo();

sp_iqindexinfo result:

DBA.t1 dbsp2 200k
DBA.t1.ASIQ_IDX_T730_C1_FP dbsp2 288k
DBA.t1.ASIQ_IDX_T730_C2_FP dbsp2 288k
usrA.t1 dbsp1 200k
usrA.t1.ASIQ_IDX_T731_C1_FP dbsp1 288k
usrA.t1.ASIQ_IDX_T731_C2_FP dbsp1 288k
usrB.t1 dbsp3 200k
usrB.t1.ASIQ_IDX_T732_C1_FP dbsp3 288k
usrB.t1.ASIQ_IDX_T732_C2_FP dbsp3 288k

See also Chapter 3, “Optimizing Queries and Deletions” in the Performance and
Tuning Guide

DEFAULT_DISK_STRIPING option
Function Sets default disk striping value for all dbspaces.

Allowed values ON, OFF

Default ON

Scope Can be set for the PUBLIC group only. Requires DBA permissions.

Description By default, disk striping is ON for all dbspaces in the IQ main store. This
option is used only by CREATE DBSPACE and defines the default striping
value, if CREATE DBSPACE does not specify striping.

DEFAULT_HAVING_SELECTIVITY_PPM option
Function Provides default selectivity estimates to the optimizer for most HAVING clauses

in parts per million.

Allowed values 0 – 1000000

Default 0

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

CHAPTER 2 Database Options

Reference: Statements and Options 379

Description DEFAULT_HAVING_SELECTIVITY_PPM sets the selectivity for HAVING
clauses, overriding optimizer estimates. A HAVING clause filters the results of
a GROUP BY clause or a query with a select list consisting solely of aggregate
functions. When DEFAULT_HAVING_SELECTIVITY_PPM is set to the default
of 0, the optimizer estimates how many rows are filtered by the HAVING clause.
Sometimes the IQ optimizer does not have sufficient information to choose an
accurate selectivity, and in these cases chooses a generic estimate of 40%.
DEFAULT_HAVING_SELECTIVITY_PPM allows a user to replace the optimizer
estimate for all HAVING predicates in a query.

Users can also specify the selectivity of individual HAVING clauses in the
query, as described in the section “User-supplied condition hints” in the
“Search conditions” section in Chapter 2, “SQL Language Elements” in
Reference: Building Blocks, Tables, and Procedures.

See also Chapter 3, “Optimizing Queries and Deletions” in the Performance and
Tuning Guide

DEFAULT_ISQL_ENCODING option [DBISQL]
Function Specifies the code page that should be used by READ and OUTPUT statements.

Allowed values identifier or string

Default Use system code page (empty string)

Scope Can only be set as a temporary option, for the duration of the current
connection.

Description DEFAULT_ISQL_ENCODING option is used to specify the code page to use
when reading or writing files. It cannot be set permanently. The default code
page is the default code page for the platform you are running on. On English
Windows machines, the default code page is 1252.

Interactive SQL determines the code page that is used for a particular OUTPUT
or READ statement as follows, where code page values occurring earlier in the
list take precedence over those occurring later in the list:

• The code page specified in the ENCODING clause of the OUTPUT or READ
statement

• The code page specified with the DEFAULT_ISQL_ENCODING option (if
this option is set)

• The code page specified with the -codepage command line option when
Interactive SQL was started

Alphabetical list of options

380 Sybase IQ

• The default code page for the computer Interactive SQL is running on

For a list of supported code pages, see “Supported and alternate collations” in
SQL Anywhere Server – Database Administration > Configuring Your
Database > International languages and character sets > Character set and
collation reference information.

Example Set the encoding to UTF-16 (for reading Unicode files):

SET TEMPORARY OPTION DEFAULT_ISQL_ENCODING = 'UTF-16'

See also READ statement [DBISQL] on page 275 and OUTPUT statement [DBISQL]
on page 263

“Overview of character sets, encodings, and collations” in SQL Anywhere
Server – Database Administration > Configuring Your Database >
International languages and character sets > Understanding character sets

DEFAULT_KB_PER_STRIPE option
Function Sets default size in KB for all dbspaces in the IQ main store.

Allowed values 1 to maximum integer

Default 1

Scope Can be set for the PUBLIC group only. Requires DBA permissions.

Description By default disk striping size is 1KB for all dbspaces in the IQ main store. This
option is used only by CREATE DBSPACE and defines the default disk
striping size for dbspaces in the IQ main store, if CREATE DBSPACE does not
specify a stripe size.

DEFAULT_LIKE_MATCH_SELECTIVITY_PPM option
Function Provides default selectivity estimates (in parts per million) to the optimizer for

most LIKE predicates.

Allowed values 0 to 1000000

Default 150000

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

CHAPTER 2 Database Options

Reference: Statements and Options 381

Description DEFAULT_LIKE_MATCH_SELECTIVITY_PPM sets the default selectivity for
generic LIKE predicates, for example, LIKE 'string%string' where % is
a wildcard character.

The optimizer relies on this option when other selectivity information is not
available and the match string does not start with a set of constant characters
followed by a single wildcard.

If the column has either an LF index or a 1- or 2- or 3-byte FP index, the
optimizer can get exact information and does not need to use this value.

Users can also specify selectivity in the query, as described in the section
“User-supplied condition hints” in the “Search conditions” section in Chapter
2, “SQL Language Elements” in Reference: Building Blocks, Tables, and
Procedures.

See also “DEFAULT_LIKE_RANGE_SELECTIVITY_PPM option” on page 381 and
“FP_LOOKUP_SIZE option” on page 386.

“The Fast Projection (FP) default index type” in Chapter 6, “Using Sybase IQ
Indexes” in System Administration Guide: Volume 1

“LIKE conditions” in Chapter 2, “SQL Language Elements” in Reference:
Building Blocks, Tables, and Procedures

Chapter 3, “Optimizing Queries and Deletions” in the Performance and
Tuning Guide

DEFAULT_LIKE_RANGE_SELECTIVITY_PPM option
Function Provides default selectivity estimates (in parts per million) to the optimizer for

leading constant LIKE predicates.

Allowed values 1 to 1000000

Default 150000

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description DEFAULT_LIKE_RANGE_SELECTIVITY_PPM sets the default selectivity for
LIKE predicates, of the form LIKE 'string%' where the match string is a set
of constant characters followed by a single wildcard character (%). The
optimizer relies on this option when other selectivity information is not
available.

Alphabetical list of options

382 Sybase IQ

If the column has either an LF index or a 1- or 2- or 3-byte FP index, the
optimizer can get exact information and does not need to use this value.

Users can also specify selectivity in the query, as described in “User-supplied
condition hints” on page 46 in Reference: Building Blocks, Tables, and
Procedures.

See also “DEFAULT_LIKE_MATCH_SELECTIVITY_PPM option” on page 380 and
“FP_LOOKUP_SIZE option” on page 386

“The Fast Projection (FP) default index type” in Chapter 6, “Using Sybase IQ
Indexes” in System Administration Guide: Volume 1

“LIKE conditions” in Chapter 2, “SQL Language Elements” in Reference:
Building Blocks, Tables, and Procedures

Chapter 3, “Optimizing Queries and Deletions” in the Performance and
Tuning Guide

DELAYED_COMMIT_TIMEOUT option
Function Determines when the server returns control to an application following a

COMMIT.

Allowed values Integer, in milliseconds.

Default 500

Description This option is ignored by Sybase IQ since DELAYED_COMMITS can only be set
OFF.

DELAYED_COMMITS option
Function Determines when the server returns control to an application following a

COMMIT.

Allowed values OFF

Default OFF. This corresponds to ISO COMMIT behavior.

Description When set to OFF (the only value allowed by Sybase IQ), the application must
wait until the COMMIT is written to disk. This option must be set to OFF for
ANSI/ISO COMMIT behavior.

CHAPTER 2 Database Options

Reference: Statements and Options 383

DISABLE_RI_CHECK option
Function Allows load, insert, update, or delete operations to bypass the referential

integrity check, improving performance.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description Users are responsible for ensuring that no referential integrity violation occurs
during requests while DISABLE_RI_CHECK is set to ON.

EARLY_PREDICATE_EXECUTION option
Function Controls whether simple local predicates are executed before query

optimization.

Allowed values ON or OFF

Default ON

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description If this option is ON (the default), the optimizer finds, prepares, and executes
predicates containing only local columns and constraints before query
optimization, including join ordering, join algorithm selection, and grouping
algorithm selection, so that the values of “Estimated Result Rows” in the query
plan are more precise. If this option is OFF, the optimizer finds and prepares
the simple predicates, but does not execute them before query optimization.
The resulting values of “Estimated Result Rows” are less precise, if the
predicates are not executed.

In general, the EARLY_PREDICATE_EXECUTION option should always be left
ON, as this results in improved query plans for many queries.

Note that when the EARLY_PREDICATE_EXECUTION option is ON, Sybase IQ
executes the local predicates for all queries before generating a query plan,
even when the NOEXEC option is ON. The generated query plan is the same
as the runtime plan.

Query plan root node information – The following information is included in
the query plan for the root node:

Alphabetical list of options

384 Sybase IQ

• Threads used for executing local invariant predicates: if greater than 1,
indicates parallel execution of local invariant predicates

• Early_Predicate_Execution: indicates if the option is OFF

• Time of Cursor Creation: the time of cursor creation

Query plan leaf node information – The simple predicates whose execution is
controlled by this option are referred to as invariant predicates in the query
plan.The following information is included in the query plan for a leaf node, if
there are any local invariant predicates on the node:

• Generated Post Invariant Predicate Rows: actual result after executing
local invariant predicate

• Estimated Post Invariant Predicate Rows: calculated by using estimated
local invariant predicates selectivity

• Time of Condition Start: starting time of the execution of local invariant
predicates

• Time of Condition Done: ending time of the execution of local invariant
predicates

• Elapsed Condition Time: elapsed time for executing local invariant
predicates

EXTENDED_JOIN_SYNTAX option
Function Controls whether queries with an ambiguous syntax for multi-table joins are

allowed, or reported as an error.

Allowed values ON, OFF

Default ON

Description This option reports a syntax error for those queries containing outer joins that
have ambiguous syntax due to the presence of duplicate correlation names on
a null-supplying table.

The following join clause illustrates the kind of query that is reported where C1
is a condition.

(R left outer join T , T join S on (C1))

If the EXTENDED_JOIN_SYNTAX option is set to ON, this query is interpreted
as follows, where C1 and C2 are conditions:

(R left outer join T on (C1)) join S on (C2)

CHAPTER 2 Database Options

Reference: Statements and Options 385

FORCE_DROP option
Function Causes Sybase IQ to leak, rather than reclaim, database disk space during a

DROP command.

Allowed values ON, OFF

Default OFF

Scope Requires DBA permissions to set this option. Can be set temporary for an
individual connection or for the PUBLIC group. Takes effect immediately.

Description You must drop a corrupt index, join index, column or table and set the
FORCE_DROP option to ON. This prevents the free list from being incorrectly
updated from incorrect or suspect file space allocation information in the object
being dropped. After dropping corrupt objects, you can reclaim the file space
using the -iqfrec and -iqdroplks server switches.

When force dropping objects, you must ensure that only the DBA is connected
to the database. The server must be restarted immediately after a force drop.

Do not attempt to force drop objects unless Sybase Technical Support has
instructed you to do so.

See also For important information on using the FORCE_DROP option, see Chapter 13,
“System Recovery and Database Repair”in the System Administration Guide:
Volume 1.

FORCE_NO_SCROLL_CURSORS option
Function Forces all cursors to be non-scrolling.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description By default, all cursors are scrolling. Scrolling cursors with no host variable
declared cause Sybase IQ to create a buffer for temporary storage of results.
Each row in the result set is stored to allow for backward scrolling.

Setting FORCE_NO_SCROLL_CURSORS to ON forces all cursors to be non-
scrolling, thereby saving on temporary storage requirements. This option can
be useful if you are retrieving very large numbers (millions) of rows, however
some front-end applications make use of scrolling cursor operations and
require this option to be set OFF.

Alphabetical list of options

386 Sybase IQ

If scrolling cursors are never used in your application, you should make this a
permanent public option. It uses less memory and makes a modest
improvement in query performance.

FORCE_UPDATABLE_CURSORS option
Function Controls whether cursors that have not been declared as updatable can be

updated.

Allowed values ON, OFF

Default OFF

Scope Can be set temporary for an individual connection for a group, or PUBLIC.
Does not require DBA permissions. Takes effect immediately.

Description When the FORCE_UPDATABLE_CURSORS option is ON, cursors which have
not been declared as updatable can be updated. This option allows updatable
cursors to be used in front-end applications without specifying the FOR
UPDATE clause of the DECLARE CURSOR statement.

Sybase does not recommend the use of the FORCE_UPDATABLE_CURSORS
option unless absolutely necessary.

FP_LOOKUP_SIZE option
The maximum number of lookup pages used in Sybase IQ.

Function To control amount of cache allocated to the creation of Lookup FP indexes,
particularly FP(3) Indexes.

Allowed values 1 MB – 4096 MB

Default 16 MB

Scope DBA permissions are required to set this option. Can be set temporary for an
individual connection or for the PUBLIC group. Takes effect immediately.

Description Controls the maximum number of lookup pages. For further details, see “The
Fast Projection (FP) default index type” in Chapter 6, “Using Sybase IQ
Indexes” in System Administration Guide: Volume 1.

The FP_LOOKUP_SIZE option must be set public, so the allowed syntax is:

SET OPTION public.FP_LOOKUP_SIZE = 1

CHAPTER 2 Database Options

Reference: Statements and Options 387

Other options The following options now support 3-byte indexes:

• INDEX_ADVISOR

• MINIMIZE_STORAGE

• FP_LOOKUP_SIZE_PPM

Stored procedures The following stored procedures now support 3-byte indexes:

• sp_iqcheckdb

• sp_iqcolumn

• sp_iqindexadvice

• sp_iqindexmetadata

• sp_iqindexsize

• sp_iqindex

• sp_iqindexfragmentation

• sp_iqrebuildindex

• sp_iqrowdensity

See also “FP_LOOKUP_SIZE_PPM option” on page 387

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1

“MINIMIZE_STORAGE option” on page 421

FP_LOOKUP_SIZE_PPM option
Restrict FP lookup storage size in Sybase IQ to this parts-per-million value of
main memory.

Function To control amount of main cache allocated to the creation of Lookup FP
indexes for all FP lookup indexes, but particularly for FP(3) indexes.

Allowed values 1 to 1000000

Default 2500

Scope DBA permissions are required to set this option. Can be set temporary for an
individual connection or for the PUBLIC group. Takes effect immediately.

Alphabetical list of options

388 Sybase IQ

Description Controls the maximum number of lookup pages and restricts this number to a
parts-per-million value of main memory, that is, the value of
FP_LOOKUP_SIZE_PPM * size of main memory / 1,000,000, where the size of
main memory is as specific by the -iqmc server startup parameter.

For further details, see “The Fast Projection (FP) default index type” in
Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1.

Other options The following options now support 3-byte indexes:

• FP_LOOKUP_SIZE

• INDEX_ADVISOR

• MINIMIZE_STORAGE

See also “FP_LOOKUP_SIZE option” on page 386

Chapter 6, “Using Sybase IQ Indexes” in System Administration Guide:
Volume 1

“MINIMIZE_STORAGE option” on page 421

FP_PREDICATE_WORKUNIT_PAGES option
Function Specifies degree of parallelism used in the default index.

Allowed values Integer

Default 200

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description The default index calculates some predicates such as SUM, RANGE, MIN,
MAX and COUNT DISTINCT in parallel.
FP_PREDICATE_WORKUNIT_PAGES affects the degree of parallelism used by
specifying the number of pages worked on by each thread. To increase the
degree of parallelism, decrease the value of this option.

CHAPTER 2 Database Options

Reference: Statements and Options 389

FPL_EXPRESSION_MEMORY_KB option
Function Controls the use of memory for the optimization of queries involving

functional expressions against columns having enumerated storage.

Allowed values 0 – 20000

Default 1024 kilobytes

Scope Can be set temporary for an individual connection or for the PUBLIC group.
Takes effect immediately.

Description FPL_EXPRESSION_MEMORY_KB option controls the use of memory for the
optimization of queries involving functional expressions against columns
having enumerated storage. The option enables the DBA to constrain the
memory used by this optimization and balance it with other Sybase IQ memory
requirements, such as caches and LOAD_MEMORY_MB. Setting this option to
0 switches off optimization.

GARRAY_FILL_FACTOR_PERCENT option
Function Specifies the percent of space on each HG garray pages to reserve for future

incremental inserts into existing groups. The garray tries to pad out each group
to include a pad of empty space set by the value.This space is used for rows
added to existing index groups.

Allowed values 0 – 1000

Default 25

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description An HG index can reserve some storage on a per-group basis (where group is
defined as a group of rows with equivalent values). Reserving space consumes
additional disk space but can help the performance of incremental inserts into
the HG index.

If you plan to do future incremental inserts into an HG index, and those new
rows have values that are already present in the index, a nonzero value for this
option might improve incremental insert performance.

If you do not plan to incrementally update the index, you can reduce the values
of this option to save disk space.

Alphabetical list of options

390 Sybase IQ

See also “GARRAY_PAGE_SPLIT_PAD_PERCENT option” on page 390

“sp_iqindexfragmentation procedure,” Chapter 7, “System Procedures,” in
Reference: Building Blocks, Tables, and Procedures

GARRAY_INSERT_PREFETCH_SIZE option
Function Specifies number of pages used for prefetch.

Allowed values 0 – 100

Default 3

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description This option defines the number of database pages read ahead during an insert
to a column that has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

GARRAY_PAGE_SPLIT_PAD_PERCENT option
Function Determines per-page fill factor during page splits on the garray and specifies

the percent of space on each HG garray page to reserve for future incremental
inserts. Splits of a garray page try to leave that percentage empty. This space is
used for rows added to new index groups.

Allowed values 0 – 100

Default 25

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description An HG index can reserve storage at the page level that can be allocated to new
groups when additional rows are inserted. Reserving space consumes
additional disk space but can help the performance of incremental inserts into
the HG index.

If future plans include incremental inserts into an HG index, and the new rows
do not have values that are already present in the index, a nonzero value for the
GARRAY_PAGE_SPLIT_PAD_PERCENT option could improve incremental
insert performance.

CHAPTER 2 Database Options

Reference: Statements and Options 391

If you do not plan to incrementally update the index, you can reduce the values
of this option to save disk space.

See also “GARRAY_FILL_FACTOR_PERCENT option” on page 389

“sp_iqindexfragmentation procedure,” Chapter 7, “System Procedures,” in
Reference: Building Blocks, Tables, and Procedures

GARRAY_RO_PREFETCH_SIZE option
Function Specifies number of pages used for prefetch.

Allowed values 0 – 100

Default 10

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description This option defines the number of database pages read ahead during a query to
a column that has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

HASH_PINNABLE_CACHE_PERCENT option
Function Maximum percentage of a user’s temp memory that a hash object can pin.

Allowed values 0 – 100

Default 20

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description HASH_PINNABLE_CACHE_PERCENT controls the percentage of a user’s temp
memory allocation that any one hash object can pin in memory. It defaults to
20%, but reduce this number to 10% for sites that run complex queries, or
increase to 50% for sites with simple queries that need a single large hash
object to run, such as a large IN subquery.

The HASH_PINNABLE_CACHE_PERCENToption is for use by primarily
Sybase Technical Support. If you change the value of it, do so with extreme
caution; first analyze the effect on a wide variety of queries.

Alphabetical list of options

392 Sybase IQ

See also “BIT_VECTOR_PINNABLE_CACHE_PERCENT option” on page 356

“SORT_PINNABLE_CACHE_PERCENT option” on page 445

HASH_THRASHING_PERCENT option
Function Specifies the percent of hard disk I/Os allowed during the execution of a

statement that includes a query involving hash algorithms, before the statement
is rolled back and an error message is reported.

Allowed values 0 – 100

Default 10

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description If a query that uses hash algorithms causes an excessive number of hard disk I/
Os (paging buffers from memory to disk), query performance is negatively
affected, and server performance might also be affected. The
HASH_THRASHING_PERCENT option controls the percentage of hard disk I/
Os allowed before the statement is rolled back and an error message is
returned. The text of the error message is either “Hash insert thrashing
detected” or “Hash find thrashing detected.”

The default value of HASH_THRASHING_PERCENT is 10%. Increasing it
permits more paging to disk before a rollback and decreasing it permits less
paging before a rollback.

See also For more information on controlling excessive paging and using the
HASH_THRASHING_PERCENT option, see “Unexpectedly long loads or
queries” in Chapter 14, “Troubleshooting Hints,” in the System Administration
Guide: Volume 1.

Also see “HASH_PINNABLE_CACHE_PERCENT option” on page 391

HG_DELETE_METHOD option
Function Specifies the algorithm used during a delete in a HG index.

Allowed values 0 – 3

Default 0

CHAPTER 2 Database Options

Reference: Statements and Options 393

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description This option chooses the algorithm used by the HG index during a delete
operation. The cost model considers the CPU related costs as well as I/O
related costs in selecting the appropriate delete algorithm. The cost model takes
into account:

• Rows deleted

• Index size

• Width of index data type

• Cardinality of index data

• Available temporary cache

• Machine related I/O and CPU characteristics

• Available CPUs and threads

• Referential integrity costs

To force a “small” method, set this option to 1. To force the “large” method, set
the option to 2. To force a “midsize” method, set the option to 3.

See also For more details about these methods, see “Optimizing delete operations” in
Performance and Tuning Guide.

HG_SEARCH_RANGE option
Function Specifies the maximum number of Btree pages used in evaluating a range

predicate in the HG index.

Allowed values Integer

Default 10

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description The default setting of this option is appropriate for most queries.

This option effectively controls the amount of time the optimizer spends
searching for the best index to use for a range predicate. Setting this option
higher may cause a query to spend more time in the optimizer, but as a result
may choose a better index to resolve a range predicate.

Alphabetical list of options

394 Sybase IQ

IDENTITY_ENFORCE_UNIQUENESS option
Function Creates a unique HG index on each Identity/Autoincrement column if the

column is not already a primary key.

Allowed values ON, OFF

Default OFF

Scope Can only be set temporary (for a connection), for a user, or for the PUBLIC
group. Takes effect immediately.

Description When option is set ON, HG indexes are created on future identity columns. The
index can only be deleted if the deleting user is the only one using the table and
the table is not a local temporary table.

See also “QUERY_PLAN option” on page 434

IDENTITY_INSERT option
Function Enables users to insert values into or to update an IDENTITY or

AUTOINCREMENT column.

Allowed values = 'tablename'

Default Option not set.

Scope Can be set only temporary (for a connection), for a user, or for the PUBLIC
group. Takes effect immediately.

Note If you set a user level option for the current option, the corresponding
temporary option is also set. For details, see “Scope and duration of database
options” on page 335.

Description When option is set, insert/update is enabled. A table name must be specified to
identify the column to insert or update. If you are not the table owner, qualify
the table name with the owner name.

To drop a table with an IDENTITY column, IDENTITY_INSERT must not be set
to that table.

Examples For example, if you use the table Employees to run explicit inserts:

SET TEMPORARY OPTION IDENTITY_INSERT = 'Employees'

CHAPTER 2 Database Options

Reference: Statements and Options 395

To turn the option off, specify the equals sign and an empty string:

SET TEMPORARY OPTION IDENTITY_INSERT = ''

To illustrate the effect of user level options on temporary options (see note
above), if you are connected to the database as DBA, and issue:

SET OPTION IDENTITY_INSERT = 'Customers'

the value for the option is set to Customers for the user DBA and temporary for
the current connection. Other users who subsequently connect to the database
as DBA find their option value for IDENTITY_INSERT is Customers also.

See also “QUERY_PLAN option” on page 434

INDEX_ADVISOR option
Function Generates messages suggesting additional column indexes that may improve

performance of one or more queries.

Allowed values ON, OFF

Default OFF

Scope Can be set temporary (for a connection), for a user, or for the PUBLIC group.
Takes effect immediately.

Description When set ON, the index advisor prints index recommendations as part of the
Sybase IQ query plan or as a separate message in the Sybase IQ message log
file if query plans are not enabled. These messages begin with the string “Index
Advisor:” and you can use that string to search and filter them from a Sybase
IQ message file. The output is in OWNER.TABLE.COLUMN format.

Set both INDEX_ADVISOR and INDEX_ADVISOR_MAX_ROWS to accumulate
index advice.

Note When INDEX_ADVISOR_MAX_ROWS is set ON, index advice will not
be written to the Sybase IQ message file as separate messages. Advice will,
however, continue to be displayed on query plans in the Sybase IQ message
file.

Alphabetical list of options

396 Sybase IQ

Table 2-11: Index Advisor

It is up to you to decide how many queries benefit from the additional index
and whether it is worth the expense to create and maintain the indexes. In some
cases, you cannot determine how much, if any, performance improvement
results from adding the recommended index.

For example, consider columns used as a join key. Sybase IQ uses metadata
provided by HG or LF indexes extensively to generate better/faster query plans
to execute the query. Putting an HG or LF index on a join column without one
makes the IQ optimizer far more likely to choose a faster join plan, but without
adding the index and running the query again, it is very hard to determine
whether query performance stays the same or improves with the new index.

Example Index advisor output with query plan set OFF.

I. 03/30 14:18:45. 0000000002 Advice: Add HG or LF index
on DBA.ta.c1 Predicate: (ta2.c1 < BV(1))

Index advisor output with query plan set ON.

Note This method accumulates index advisor information for multiple queries
so that advice for several queries can be tracked over time in a central location.

Situation Recommendation

Local predicates on a single column where an HG, LF, HNG, DATE,
TIME or DATETIME index would be desirable, as appropriate.

Recommend adding an <index-type>
index to column <col>

Single column join keys where an LF or HG index would be useful. Add an LF or HG index to join key <col>

Single column candidate key indexes where a HG exists, but could be
changed to a unique HG or LF

Change join key <col> to a unique LF or
HG index

Join keys have mismatched data types, and regenerating one column
with a matched data type would be beneficial.

Make join keys <col1> and <col2>
identical data types

Subquery predicate columns where an LF or HG index would be
useful.

Add an LF or HG index to subquery
column <col>

Grouping columns where an LF or HG index would be useful. Create an LF or HG index on grouping
column <col>

Single-table intercolumn comparisons where the two columns are
identical data types, a CMP index are recommended.

Create a CMP index on <col1>, <col2>

Columns where an LF or HG index exists, and the number of distinct
values allows, suggest converting the FP to a 1 or 2-byte FP index.

Rebuild <col> with ‘optimize
storage=on’

To support the lookup of default indexes three bytes wide Rebuild your FP Index as a 3-byte FP
with an IQ UNIQUE constraint value of
65537

CHAPTER 2 Database Options

Reference: Statements and Options 397

I. 03/30 14:53:24. 0000000008 [20535]: 6 ...#03: Leaf
I. 03/30 14:53:24. 0000000008 [20535]: Table Name: tb
I. 03/30 14:53:24. 0000000008 [20535]: Condition 1 (Invariant):
(tb.c3 =tb.c4)
I. 03/30 14:53:24. 0000000008 [20535]: Condition 1 Index Advisor:
Add a CMP index on DBA.tb (c3,c4)

See also “FP_LOOKUP_SIZE option” on page 386,
“INDEX_ADVISOR_MAX_ROWS option” on page 397,
“MINIMIZE_STORAGE option” on page 421, and “QUERY_PLAN option”
on page 434.

“sp_iqindexadvice procedure,” “sp_iqindexmetadata procedure,”
“sp_iqrebuildindex procedure,” and “sp_iqrowdensity procedure,” Chapter 7,
“System Procedures,” in Reference: Building Blocks, Tables, and Procedures

“The Fast Projection (FP) default index type” in Chapter 6, “Using Sybase IQ
Indexes” in System Administration Guide: Volume 1

Message logging in Chapter 1, “Overview of Sybase IQ System
Administration” in the System Administration Guide: Volume 1

“Using IQ UNIQUE constraint on columns,” Chapter 9, “Ensuring Data
Integrity,” in System Administration Guide: Volume 1

INDEX_ADVISOR_MAX_ROWS option
Function Sets the maximum number of unique advice messages stored to max_rows.

Allowed values

Default 0

Scope Can be set temporary (for the current connection), or persistent for a user/group
(such as PUBLIC or DBA). Takes effect immediately.

Description The INDEX_ADVISOR_MAX_ROWS option is used to limit the number of
messages stored by the index advisor. Once the specified limit has been
reached, the INDEX_ADVISOR will not store new advice. It will, however,
continue to update counts and timestamps for existing advice messages.

SET OPTION public.Index_Advisor_Max_Rows = max_rows;

Value Description

0 Minimum value disables collection of index advice

4294967295 Maximum value allowed

Alphabetical list of options

398 Sybase IQ

See also “FP_LOOKUP_SIZE option” on page 386 and “INDEX_ADVISOR option”
on page 395

sp_iqindexadvice procedure in Chapter 7, “System Procedures” in Reference:
Building Blocks, Tables, and Procedures

“The Fast Projection (FP) default index type” in Chapter 6, “Using Sybase IQ
Indexes” in System Administration Guide: Volume 1

INDEX_PREFERENCE option
Function Controls the choice of indexes to use for queries.

Allowed values -10 to 10

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description The Sybase IQ optimizer normally chooses the best index available to process
local WHERE clause predicates and other operations that can be done within an
IQ index. INDEX_PREFERENCE is used to override the optimizer choice for
testing purposes; under most circumstances, it should not be changed. Table 2-
12 describes the valid values for this option and their action.

CHAPTER 2 Database Options

Reference: Statements and Options 399

Table 2-12: INDEX_PREFERENCE values

INFER_SUBQUERY_PREDICATES option
Function Controls the optimizer’s inference of additional subquery predicates.

Allowed values ON, OFF

Default ON

Scope Can be set temporary for an individual connection or the PUBLIC group. Takes
effect immediately. DBA permissions are not required to set this option.

Description INFER_SUBQUERY_PREDICATES controls whether the optimizer is allowed
to infer additional subquery predicates from an existing subquery predicate
through transitive closure across a simple equality join predicate. In most cases
in which the optimizer chooses to make this inference, the query runs faster.
There are some exceptions to this performance improvement, so you may need
to experiment to be sure that this option is appropriate for your environment.

Value Action

0 Let the optimizer choose

1 Prefer LF indexes

2 Prefer HG indexes

3 Prefer HNG indexes

4 Prefer CMP indexes

5 Prefer the default index

6 Prefer WD indexes

8 Prefer DATE indexes

9 Prefer TIME indexes

10 Prefer DTTM indexes

-1 Avoid LF indexes

-2 Avoid HG indexes

-3 Avoid HNG indexes

-4 Avoid CMP indexes

-5 Avoid the default index

-6 Avoid WD indexes

-8 Avoid DATE indexes

-9 Avoid TIME indexes

-10 Avoid DTTM indexes

Alphabetical list of options

400 Sybase IQ

IN_SUBQUERY_PREFERENCE option
Function Controls the choice of algorithms for processing an IN subquery.

Allowed values -3 to 3

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description The IQ optimizer has a choice of several algorithms for processing IN
subqueries. This option allows you to override the optimizer's costing decision
when choosing the algorithm to use. It does not override internal rules that
determine whether an algorithm is legal within the query engine.

IN_SUBQUERY_PREFERENCE is normally used for internal testing and for
manually tuning queries that the optimizer does not handle well. Only
experienced DBAs should use it. The only reason to use this option is if the
optimizer seriously underestimates the number of rows produced by a
subquery, and the hash object is thrashing. Before setting this option, try to
improve the mistaken estimate by looking for missing indexes and dependent
predicates.

Inform Sybase Technical Support if you need to set
IN_SUBQUERY_PREFERENCE, as setting this option might mean that a
change to the optimizer is appropriate.

Table 2-13 describes the valid values for this option and their actions.

Table 2-13: IN_SUBQUERY_PREFERENCE values

Value Action

0 Let the optimizer choose

1 Prefer sort-based IN subquery

2 Prefer vertical IN subquery (where a subquery is a child of a
leaf node in the query plan)

3 Prefer hash-based IN subquery

-1 Avoid sort-based IN subquery

-2 Avoid vertical IN subquery

-3 Avoid hash-based IN subquery

CHAPTER 2 Database Options

Reference: Statements and Options 401

IQGOVERN_MAX_PRIORITY option
Function Limits the allowed IQGOVERN_PRIORITY setting.

Allowed values 1 – 3

Default 2

Scope Can be set temporary for an individual connection or for the PUBLIC group.
Requires DBA permissions to set. Takes effect immediately.

Description Limits the allowed IQGOVERN_PRIORITY setting, which affects the order in
which a user’s queries are queued for execution. In the range of allowed values,
1 indicates high priority, 2 (the default) medium priority, and 3 low priority.
Sybase IQ returns an error if a user sets IQGOVERN_PRIORITY higher than
IQGOVERN_MAX_PRIORITY.

IQGOVERN_PRIORITY option
Function Assigns a priority to each query waiting in the -iqgovern queue.

Allowed values 1 – 3

Default 2

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description Assigns a value that determines the order in which a user’s queries are queued
for execution. In the range of allowed values, 1 indicates high priority, 2 (the
default) medium priority, and 3 low priority. This switch can be set temporary
per user or public by any user. Queries with a lower priority will not run until
all higher priority queries have executed.

This option is limited by the per user or per group value of the option
IQGOVERN_MAX_PRIORITY.

IQGOVERN_PRIORITY_TIME option
Function Limits the time a high priority query waits in the queue before starting.

Allowed values 0 – 1,000,000 seconds. Must be lower than IQGOVERN_MAX_PRIORITY.

Default 0 (disabled)

Alphabetical list of options

402 Sybase IQ

Scope Can be set for the PUBLIC group only. Requires DBA permissions. Takes effect
immediately.

Description Limits the time a high priority (priority 1) query waits in the queue before
starting. When the limit is reached, the query is started even if it exceeds the
number of queries allowed by the -iqgovern setting. You must belong to group
DBA in order to change this switch. The range is from 1 to 1,000,000 seconds.
The default (0) disables this feature. IQGOVERN_PRIORITY_TIME must be set
PUBLIC.

ISOLATION_LEVEL option
Function Controls the locking isolation level for catalog store tables.

Allowed values 0, 1, 2, or 3

Default 0

Description Each locking isolation level is defined as follows:

• 0 – Allow dirty reads, nonrepeatable reads, and phantom rows.

• 1 – Prevent dirty reads. Allow nonrepeatable reads and phantom rows.

• 2 – Prevent dirty reads and guarantee repeatable reads. Allow phantom
rows.

• 3 – Serializable. Do not allow dirty reads, guarantee repeatable reads, and
do not allow phantom rows.

ISOLATION_LEVEL determines the isolation level for tables in the catalog
store. Sybase IQ always enforces level 3 for tables in the IQ store. Level 3 is
equivalent to ANSI level 4.

JOIN_EXPANSION_FACTOR option
Function Controls how conservative the optimizer’s join result estimates are in

unusually complex situations.

Allowed values 1 – 100

Default 30

Scope Can be set temporary for an individual connection or for the PUBLIC group.
Takes effect immediately.

CHAPTER 2 Database Options

Reference: Statements and Options 403

Description This option controls how conservative the join optimizer’s result size estimates
are in situations where an input to a specific join has already passed through at
least one intermediate join that can result in multiple copies of rows projected
from the table being joined.

A level of zero indicates that the optimizer should use the same estimation
method above intermediate expanding joins as it would if there were no
intermediate expanding joins.

This results in the most aggressive (small) join result size estimates.

A level of 100 indicates that the optimizer should be much more conservative
in its estimates whenever there are intermediate expanding joins, and this
results in the most conservative (large) join result size estimates.

Normally, you should not need to change this value. If you do, Sybase
recommends setting JOIN_EXPANSION_FACTOR as a temporary or user
option.

JOIN_OPTIMIZATION option
Function Enables or disables the optimization of the join order.

Allowed values ON, OFF

Default ON

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When the JOIN_OPTIMIZATION option is ON, Sybase IQ optimizes the join
order to reduce the size of intermediate results and sorts, and to balance the
system load. When the option is OFF, the join order is determined by the order
of the tables in the FROM clause of the SELECT statement.

JOIN_OPTIMIZATION should always be set ON.

The JOIN_OPTIMIZATION option controls the order of the joins, but not the
order of the tables. To show the distinction, consider this example FROM clause
with four tables:

FROM A, B, C, D

By default, this FROM clause creates a left deep plan of joins that could also be
explicitly represented as:

FROM (((A, B), C), D)

Alphabetical list of options

404 Sybase IQ

If JOIN_OPTIMIZATION is turned OFF, then the order of these joins on the sets
of tables is kept precisely as specified in the FROM clause. Thus A and B must
be joined first, then that result must be joined to table C, and then finally joined
to table D. This option does not control the left/right orientation at each join.
Even with JOIN_OPTIMIZATION turned OFF, the optimizer, when given the
above FROM clause, can produce a join plan that looks like:

FROM ((C, (A, B)), D)

 or

FROM (((B, A), C), D)

 or

FROM (D, ((A, B), C))

In all of these cases, A and B are joined first, then that result is joined to C, and
finally that result is joined to table D. The order of the joins remains the same,
but the order of the tables appears different.

In general, if JOIN_OPTIMIZATION is turned OFF, you probably should use
parentheses in the FROM clause, as in the above examples, to make sure that
you get the join order you want. If you want to join A and B to the join of C
and D, you can specify this join by using parentheses:

FROM ((A, B), (C, D))

Note that the above FROM clause is a different join order than the original
example FROM clause, even though all the tables appear in the same order.

JOIN_OPTIMIZATION should be set to OFF only to diagnose obscure join
performance issues or to manually optimize a small number of predefined
queries. With JOIN_OPTIMIZATION turned OFF, queries can join up to 128
tables, but might also suffer serious performance degradation.

 Warning! If you turn off JOIN_OPTIMIZATION, Sybase IQ has no way to
ensure optimal performance for queries containing joins. You assume full
responsibility for performance aspects of your queries.

CHAPTER 2 Database Options

Reference: Statements and Options 405

JOIN_PREFERENCE option
Function Controls the choice of algorithms when processing joins.

Allowed values -7 to 7

Default 0

Scope DBA permissions are not required to set JOIN_PREFERENCE. Can be set
temporary for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description For joins within a query, the IQ optimizer has a choice of several algorithms
for processing the join. JOIN_PREFERENCE allows you to override the
optimizer’s cost-based decision when choosing the algorithm to use. It does not
override internal rules that determine whether an algorithm is legal within the
query engine. If you set it to any nonzero value, every join in a query is
affected; you cannot use it to selectively modify one join out of several in a
query.

This option is normally used for internal testing, and only experienced DBAs
should use it. Table 2-14 describes the valid values for this option and their
action.

Alphabetical list of options

406 Sybase IQ

Table 2-14: JOIN_PREFERENCE values

Simple equality join predicates can be tagged with a predicate hint that allows
a join preference to be specified for just that one join. If the same join has more
than one join condition with a local join preference, and if those hints are not
the same value, then all local preferences are ignored for that join. Local join
preferences do not affect the join order chosen by the optimizer.

The following example requests a hash join:

AND (T.X = 10 * R.x, 'J:4')

JOIN_SIMPLIFICATION_THRESHOLD option
Function Controls the minimum number of tables being joined together before any join

optimizer simplifications are applied.

Allowed values 1 – 64

Default 15

Scope Can be set temporary for an individual connection or for the PUBLIC group.
Takes effect immediately.

Value Action

0 Let the optimizer choose

1 Prefer sort-merge

2 Prefer nested-loop

3 Prefer nested-loop push-down

4 Prefer hash

5 Prefer hash push-down

6 Prefer prejoin

7 Prefer sort-merge push-down

-1 Avoid sort-merge

-2 Avoid nested-loop

-3 Avoid nested-loop push-down

-4 Avoid hash

-5 Avoid hash push-down

-6 Avoid prejoin

-7 Avoid sort-merge push-down

CHAPTER 2 Database Options

Reference: Statements and Options 407

Description The query optimizer simplifies its optimization of join order by separate
handling of both lookup tables (that is, nonselective dimension tables) and
tables that are effective Cartesian products. After simplification, it optimizes
the remaining tables for join order, up to the limit set by
MAX_JOIN_ENUMERATION.

Setting this option to a value greater than the current value for
MAX_JOIN_ENUMERATION has no effect.

Setting this value below the value for MAX_JOIN_ENUMERATION might
improve the time required to optimize queries containing many joins, but may
also prevent the optimizer from finding the best possible join plan.

Normally, you should not need to change this value. If you do, Sybase
recommends setting JOIN_SIMPLIFICATION_THRESHOLD as a temporary or
user option, and to a value of at least 9.

LARGE_DOUBLES_ACCUMULATOR option
Function Controls which accumulator to use for SUM or AVG of floating-point

numbers.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description The small accumulator for floats and doubles is highly accurate for addends in
the range of magnitudes 1e-20 to 1e20. It loses some accuracy outside of this
range but is still good enough for many applications. The small accumulator
allows the optimizer to choose hash for faster performance more easily than the
large accumulator. The large accumulator is highly accurate for all floats and
doubles, but its size often precludes the use of hash optimization. The default
is the small accumulator.

LF_BITMAP_CACHE_KB option
Function Specifies the amount of memory to use for a load into a LF index.

Allowed values 1 – 8

Default 4

Alphabetical list of options

408 Sybase IQ

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description LF_BITMAP_CACHE_KB defines the amount of heap memory (in KB) per
distinct value used during a load into an LF index. The default allots 4KB. If
the sum of the distinct counts for all LF indexes on a particular table is
relatively high (greater than 10,000), then heap memory use might increase to
the point of impacting load performance due to system page faulting. If this is
the case, reduce the value of LF_BITMAP_CACHE_KB.

The following formula shows how to calculate the heap memory used (in
bytes) by a particular LF index during a load:

Heap-memory-used = (lf_bitmap_cache_kb * 1024)
* lf-distinct-count-for-column

Using the default of 4KB, an LF index with 1000 distinct values can use up to
4MB of heap memory during a load.

LOAD_MEMORY_MB option
Function Specifies an upper bound (in MB) on the amount of heap memory subsequent

loads can use.

Allowed values 0 – 2000

Default 0 (zero)

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description This option specifies an upper bound (in MB) on the amount of heap memory
subsequent loads can use. The default setting of 0 means that there is no upper
bound, and Sybase IQ can use as much heap memory as necessary to perform
the load. A nonzero value means that the user has set an upper bound. The
maximum upper bound is 2000MB (2GB). Use the SET OPTION command to
adjust the amount of heap memory used by load operations.

The Sybase IQ 15.0 load process has significantly reduced heap memory
usage; the LOAD_MEMORY_MB option is primarily for fixed-width loads.

If your system runs out of virtual memory, specify a value less than 2000 and
decrease the value until the load works. For insertions into wide tables, you
might need to set LOAD_MEMORY_MB to a low value (100-200 MB). If you
set the value too low, it may be physically impossible to load the data.

CHAPTER 2 Database Options

Reference: Statements and Options 409

The amount of virtual memory used can become quite large if many columns,
such as in a very wide table, are loaded at once. The wider the table, the more
the load memory. The more users doing loads, the more heap/load memory is
allocated outside IQ.

There are several courses of action you can take if you encounter the following
error:

"All available virtual memory has been used ..."

You can set an upper limit on the amount of virtual memory a LOAD command
can use by setting LOAD_MEMORY_MB to a non-zero value, with 2000MB the
maximum allowed value.

You can also adjust BLOCK FACTOR or BLOCK SIZE LOAD command options.
These command options default to 10000 and 500000, respectively, but you
can set them to any number. Setting them lower forces the load to use less
virtual memory.

You can also resort to loading a subset of the columns at a time, which is
referred to as a partial-width load.

See also “SET OPTION statement” on page 307

LOAD_ZEROLENGTH_ASNULL option
Function Specifies LOAD statement behavior under certain conditions.

Allowed values ON, OFF

DBA permissions are not required to set LOAD_ZEROLENGTH_ASNULL. Can
be set temporary for an individual connection or for the PUBLIC group. Takes
effect immediately.

Default OFF

Description This option specifies LOAD statement behavior under the following conditions:

• inserting a zero-length data value into a column of data type CHAR,
VARCHAR, LONG VARCHAR, BINARY, VARBINARY, or LONG BINARY

and

• a NULL column-spec; for example, NULL(ZEROS) or NULL(BLANKS)
is also given for that same column

Set LOAD_ZEROLENGTH_ASNULL ON to load a zero-length value as NULL
when the above conditions are met.

Alphabetical list of options

410 Sybase IQ

Set LOAD_ZEROLENGTH_ASNULL OFF to load a zero-length value as zero-
length, subject to the setting of option NON_ANSI_NULL_VARCHAR.

See also “NON_ANSI_NULL_VARCHAR option” on page 425

“LOAD TABLE statement” on page 230

LOCKED option
Function If set for a login policy, prevents users with that policy from establishing new

connections. For details, see SQL Anywhere Server – Database
Administration.

LOG_CONNECT option
Function Controls logging of user connections.

Allowed values ON, OFF

Default ON

Scope Can be set only for the PUBLIC group. Takes effect immediately.

Description When this option is ON, a message appears in the IQ message log (.iqmsg file)
every time a user connects to or disconnects from the Sybase IQ database.

Note If this option is set OFF (connection logging disabled) when a user
connects, and then turned on before the user disconnects, the message log
shows that user disconnecting but not connecting.

LOG_CURSOR_OPERATIONS option
Function Controls logging of cursor operations.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

CHAPTER 2 Database Options

Reference: Statements and Options 411

Description When this option is ON, a message appears in the IQ message log every time
you open or close a cursor. Normally this option should be OFF, which is the
default. Turn it ON only if you are having a problem and must provide
debugging data to Sybase Technical Support.

LOGIN_MODE option
Function Controls the use of integrated logins for the database.

Allowed values Standard, Mixed, or Integrated

Default Standard

Scope Can be set only for the PUBLIC group. Takes effect immediately.

Description This option specifies whether integrated logins are permitted. Values are case
insensitive:

• Standard – The default setting, which does not permit integrated logins.
An error occurs if an integrated login connection is attempted.

• Mixed – Both integrated logins and standard logins are allowed.

• Integrated – With this setting, all logins to the database must be made
using integrated logins.

 Warning! Setting the LOGIN_MODE database option to Integrated restricts
connections to only those users who have been granted an integrated login
mapping. Attempting to connect using a user ID and password generates an
error. The only exceptions to this are users with DBA authority (full
administrative rights).

See also For more information on integrated logins, see Chapter 3, “Sybase IQ
Connections” in the System Administration Guide: Volume 1.

LOGIN_PROCEDURE option
Function Specifies a login procedure that sets connection compatibility options at start-

up.

Allowed values String

Default sp_login_environment system procedure

Alphabetical list of options

412 Sybase IQ

Scope Can be set for an individual connection or the PUBLIC group. Requires DBA
permissions to set the option. Takes effect immediately.

Description The initial connection compatibility options settings are controlled using the
LOGIN_PROCEDURE option, which is called after all the checks have been
performed to verify that the connection is valid. The LOGIN_PROCEDURE
option names a stored procedure to run when users connect. The default setting
is to use the sp_login_environment system stored procedure. You can specify a
different stored procedure. The procedure specified by the
LOGIN_PROCEDURE option is not executed for event connections.

The sp_login_environment procedure checks to see if the connection is being
made over TDS. If the connection is made over TDS, sp_login_environment
calls the sp_tsql_environment procedure, which sets several options to new
default values for the current connection.

For more details on the LOGIN_PROCEDURE option and examples, see
“login_procedure option [database]” in SQL Anywhere Server – Database
Administration > Configuring Your Database > Database options >
Introduction to database options > Alphabetical list of options.

See also “Initial option settings” on page 338

“sp_login_environment system procedure” and “sp_tsql_environment system
procedure” in Chapter 7, “System Procedures” in Reference: Building Blocks,
Tables, and Procedures

“Managing IQ user accounts and connections” in Chapter 8, “Managing User
IDs and Permissions” in the System Administration Guide: Volume 1

MAIN_RESERVED_DBSPACE_MB option
Function Controls the amount of space Sybase IQ reserves in the IQ main store.

Allowed values Integer greater than or equal to 200, in megabytes

Default 200; Sybase IQ actually reserves a maximum of 50% and a minimum of 1% of
the last read-write file in IQ_SYSTEM_MAIN

Scope Can be set only for the PUBLIC group. Requires DBA permissions to set the
option. Takes effect immediately. The server does not need to be restarted in
order to change reserved space size.

CHAPTER 2 Database Options

Reference: Statements and Options 413

Description MAIN_RESERVED_DBSPACE_MB lets you control the amount of space Sybase
IQ sets aside in your IQ main store for certain small but critical data structures
used during release savepoint, commit, and checkpoint operations. For a
production database, set this value to between 200MB and 1GB. The larger
your IQ page size and number of concurrent connections, the more reserved
space you need.

Reserved space size is calculated as a maximum of 50% and a minimum of 1%
of the last read-write file in IQ_SYSTEM_MAIN.

See also “IQ main store and IQ temporary store space management” in Chapter 5,
“Working with Database Objects” in the System Administration Guide:
Volume 1

MAX_CARTESIAN_RESULT option
Function Limits the number of rows resulting from a Cartesian join.

Allowed values Any integer

Can be set temporary (for a connection), for a user, or for the PUBLIC group.
Takes effect immediately.

Default 100000000

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description MAX_CARTESIAN_RESULT limits the number of result rows from a query
containing a Cartesian join (usually the result of missing one or more join
conditions when creating the query). If Sybase IQ cannot find a query plan for
the Cartesian join with an estimated result under this limit, it rejects the query
and returns an error. Setting MAX_CARTESIAN_RESULT to 0 disables the
check for the number of result rows of a Cartesian join.

MAX_CLIENT_NUMERIC_PRECISION option
Function Controls the maximum precision for numeric data sent to the client.

Allowed values 0 – 126

Default 0

Scope Can be set by any user, at any level. This option takes effect immediately.

Alphabetical list of options

414 Sybase IQ

Description When Sybase IQ performs its calculation, it promotes data types to an
appropriate size that ensures accuracy. The promoted data type might be larger
in size than Open Client and some ODBC applications can handle correctly.

When MAX_CLIENT_NUMERIC_PRECISION is a nonzero value, Sybase IQ
checks that numeric result columns do not exceed this value. If the result
column is bigger than MAX_CLIENT_NUMERIC_PRECISION allows, and
Sybase IQ is unable to cast it to the specified precision, the query returns the
error:

Data Exception - data type conversion is not possible %1
SQLCODE = -1001006

See also “MAX_CLIENT_NUMERIC_SCALE option” on page 414

To control precision for queries on the catalog store, see “PRECISION option”
on page 430

MAX_CLIENT_NUMERIC_SCALE option
Function Controls the maximum scale for numeric data sent to the client.

Allowed values 0 – 126

Default 0

Scope Can be set by any user, at any level. This option takes effect immediately.

Description When Sybase IQ performs its calculation, it promotes data types to an
appropriate scale and size that ensure accuracy. The promoted data type might
be larger than the original defined data size. You can set this option to the scale
you want for numeric results.

Multiplication, division, addition, subtraction, and aggregate functions can all
have results that exceed the maximum precision and scale.

For example, when a DECIMAL(88,2) is multiplied with a DECIMAL(59,2),
the result could require a DECIMAL(147,4). With
MAX_CLIENT_NUMERIC_PRECISION of 126, only 126 digits are kept in the
result. If MAX_CLIENT_NUMERIC_SCALE is 4, the results are returned as a
DECIMAL(126,4). If MAX_CLIENT_NUMERIC_SCALE is 2, the result are
returned as a DECIMAL(126,2). In both cases, there is a possibility for
overflow.

CHAPTER 2 Database Options

Reference: Statements and Options 415

See also “MAX_CLIENT_NUMERIC_PRECISION option” on page 413

To control scale for queries on the catalog store, see “SCALE option” on page
443

MAX_CONNECTIONS option
Function Specifies the maximum number of concurrent connections allowed for a user.

For details, see SQL Anywhere Server – Database Administration.

MAX_CUBE_RESULT option
Function Sets the maximum number of rows that the IQ optimizer considers for a

GROUP BY CUBE operation.

Allowed values 0 – 4294967295

Default 10000000

Scope Can be set by any user, at any level. This option takes effect immediately.

Description When generating a query plan, the IQ optimizer estimates the total number of
groups generated by the GROUP BY CUBE hash operation. The IQ optimizer
uses a hash algorithm for the GROUP BY CUBE operation. This option sets an
upper boundary for the number of estimated rows the optimizer considers for
a hash algorithm that can be run. If the actual number of rows exceeds the
MAX_CUBE_RESULT option value, the optimizer stops processing the query
and returns the error message “Estimate number: nnn exceeds the default
MAX_CUBE_RESULT of GROUP BY CUBE or ROLLUP”, where nnn is the
number estimated by the IQ optimizer.

Set MAX_CUBE_RESULT to zero to override the default value. When this
option is set to zero, the IQ optimizer does not check the row limit and allows
the query to run. Setting MAX_CUBE_RESULT to zero is not recommended, as
the query might not succeed.

MAX_CURSOR_COUNT option
Function Specifies a resource governor to limit the maximum number of cursors that a

connection can use at once.

Allowed values Integer

Alphabetical list of options

416 Sybase IQ

Default 50

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately. Requires DBA permissions to set this option for any connection.

Description The specified resource governor allows a DBA to limit the number of cursors
per connection that a user can have. If an operation exceeds the limit for a
connection, an error is generated indicating that the limit has been exceeded.

If a connection executes a stored procedure, that procedure is executed under
the permissions of the procedure owner. However, the resources used by the
procedure are assigned to the current connection.

You can remove resource limits by setting MAX_CURSOR_COUNT to 0 (zero).

MAX_DAYS_SINCE_LOGIN option
Function Specifies the maximum number of days that can elapse between two successive

logins by the same user. For details, see “Managing login policies overview”
in SQL Anywhere Server – Database Administration > Configuring Your
Database > Managing user IDs, authorities, and permissions.

MAX_FAILED_LOGIN_ATTEMPTS option
Function Specifies the maximum number of failed attempts, since the last successful

attempt, to log into the user account before the account is locked. For details,
see “Managing login policies overview” in SQL Anywhere Server – Database
Administration > Configuring Your Database > Managing user IDs,
authorities, and permissions.

MAX_HASH_ROWS option
Function Sets the maximum number of rows that the IQ optimizer considers for a hash

algorithm.

Allowed values Integer up to 4294967295

Default 2500000

Scope Can be set temporary for an individual connection or the PUBLIC group. DBA
permissions are not required to set the option. This option takes effect
immediately.

CHAPTER 2 Database Options

Reference: Statements and Options 417

Description When generating a query plan, the IQ optimizer might have several algorithms
(hash, sort, indexed) to choose from when processing a particular part of a
query. These choices often depend on estimates of the number of rows to
process or generate from that part of the query. This option sets an upper
boundary for how many estimated rows are considered for a hash algorithm.

For example, if there is a join between two tables, and the estimated number of
rows entering the join from both tables exceeds the value of
MAX_HASH_ROWS, the optimizer does not consider a hash join. On systems
with more than 50 MB per user of temporary buffer cache space, you might
want to consider a higher value for this option.

MAX_IQ_THREADS_PER_CONNECTION option
Function Controls the number of threads for each connection.

Allowed values 3 – 10000

Default 144

Scope Can be temporary or permanent. Does not require DBA permissions to set. Can
be set for the PUBLIC group only. Takes effect immediately.

Description Allows you to constrain the number of threads (and thereby the amount of
system resources) the commands executed on a connection use. For most
applications, use the default.

MAX_IQ_THREADS_PER_TEAM option
Function Controls the number of threads allocated to perform a single operation (such as

a LIKE predicate on a column) executing within a connection.

Allowed values 1 – 10000

Default 144

Scope Can be temporary or permanent. Does not require DBA permissions to set. Can
be set for the PUBLIC group only. Takes effect immediately.

Description Allows you to constrain the number of threads (and thereby the amount of
system resources) allocated to a single operation. The total for all
simultaneously executing teams for this connection is limited by the related
option, MAX_IQ_THREADS_PER_CONNECTION. For most applications, use
the default.

Alphabetical list of options

418 Sybase IQ

MAX_JOIN_ENUMERATION option
Function Controls the maximum number of tables to be optimized for join order after

optimizer simplifications have been applied.

Allowed values 1 – 64

Default 15

Scope Can be set temporary for an individual connection or for the PUBLIC group.
Takes effect immediately.

Description The query optimizer simplifies its optimization of join order by separate
handling of both lookup tables (that is, nonselective dimension tables) and
tables that are effective Cartesian products. After simplification, it proceeds
with optimizing the remaining tables for join order, up to the limit set by
MAX_JOIN_ENUMERATION. If this limit is exceeded, the query is rejected with
an error. The user can then either simplify the query or try increasing the limit.

Normally, you should not need to change this value. If you do, Sybase
recommends setting MAX_JOIN_ENUMERATION as a temporary or user option.

MAX_QUERY_PARALLELISM option
Function Sets upper bound for parallel execution of GROUP BY operations and for arms

of a UNION.

Allowed values Integer less than or equal to number of CPUs.

Default 24

Scope Can be set temporary for an individual connection or for the PUBLIC group.
Takes effect immediately.

Description This parameter sets an upper bound which limits how parallel the optimizer
will permit query operators to go. This can influence the CPU usage for many
query join, GROUP BY, UNION, ORDER BY and other query operators.

Systems with more than 24 CPU cores often benefit from a larger value, up to
the total number of CPU cores on the system; you can experiment to find the
best value for this parameter for your system and queries.

Systems with 24 or fewer CPU cores should not need to reduce this value,
unless excessive system time is seen. In that case, you can try reducing this
value to determine if that adjustment can lower the CPU system time and
improve query response times and overall system throughput.

CHAPTER 2 Database Options

Reference: Statements and Options 419

MAX_QUERY_TIME option
Function Sets a time limit so that the optimizer can disallow very long queries.

Allowed values 0 to 232 - 1 minutes

Default 0 (disabled)

Scope Can be set at the session (temporary), user, or PUBLIC level.

Description If the query runs longer than the MAX_QUERY_TIME setting, Sybase IQ stops
the query and sends a message to the user and the IQ message file. For
example:

The operation has been cancelled -- Max_Query_Time
exceeded.

MAX_QUERY_TIME applies only to queries and not to any SQL statement that
is modifying the contents of the database.

MAX_STATEMENT_COUNT option
Function Specifies a resource governor to limit the maximum number of prepared

statements that a connection can use at once.

Allowed values Integer

Default 100

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately. Requires DBA permissions to set this option for any connection.

Description The specified resource governor allows a DBA to limit the number of prepared
statements per connection that a user can have. If an operation exceeds the limit
for a connection, an error is generated indicating that the limit has been
exceeded.

If a connection executes a stored procedure, that procedure is executed under
the permissions of the procedure owner. However, the resources used by the
procedure are assigned to the current connection.

You can remove resource limits by setting MAX_STATEMENT_COUNT to 0
(zero).

Alphabetical list of options

420 Sybase IQ

MAX_TEMP_SPACE_PER_CONNECTION option
Function Limits temporary store space used per connection.

Allowed values Integer (number of MB)

Default 0 (no limit on temporary store usage)

Scope DBA permissions are required to set this option. Can be set temporary for an
individual connection or for the PUBLIC group. Takes effect immediately.

Description By controlling space per connection, this option enables DBAs to manage the
space for both loads and queries. If the connection exceeds the run time quota
specified by MAX_TEMP_SPACE_PER_CONNECTION, Sybase IQ rolls back
the current statement and returns this message to the IQ message file or client
user:

“The current operation has been cancelled:
Max_Temp_Space_Per_Connection exceeded”

Conditions that may fill the buffer cache include read or write errors, lack of
main or temp space, or being out of memory. Sybase IQ may return the first
error encountered in these situations and the DBA must determine the
appropriate solution. For more information, see Error Messages and Chapter
14, “Troubleshooting Hints” in System Administration Guide: Volume 1.

Examples This statement sets a 500GB limit for all connections:

SET OPTION
PUBLIC.MAX_TEMP_SPACE_PER_CONNECTION = 512000

This statement sets a 10TB limit for all connections:

SET OPTION
PUBLIC.MAX_TEMP_SPACE_PER_CONNECTION = 10485760

This statement sets a 5000MB limit for user wilson:

SET OPTION
wilson.MAX_TEMP_SPACE_PER_CONNECTION = 5000

See also “QUERY_TEMP_SPACE_LIMIT option” on page 439

MAX_WARNINGS option
Function Controls the maximum number of warnings allowed.

Allowed values Any integer

Default 248 - 1

CHAPTER 2 Database Options

Reference: Statements and Options 421

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description This option can limit the number of warnings about rejected values, row
mismatches, and so on during DDL commands. The default does not restrict
the number you can receive.

MINIMIZE_STORAGE option
Function Minimize use of disk space for newly created columns.

Allowed Values ON, OFF

Default OFF

Scope Can be set for the PUBLIC group or for temporary use. DBA authority is not
required to set the option. This option takes effect immediately.

Description When MINIMIZE_STORAGE is ON, IQ optimizes storage for new columns by
using as little as one byte of disk space per row wherever appropriate. By
default, this option is OFF for the PUBLIC group, and the specialized storage
optimization does not occur for all newly created columns; when
MINIMIZE_STORAGE is OFF for the PUBLIC group but ON as a temporary user
option, one-byte storage is used for new columns created by that user ID.

MINIMIZE_STORAGE=ON is equivalent to placing an IQ UNIQUE 255
clause on every new column, with the exception of certain data types that are
by nature too wide for one-byte storage. When MINIMIZE_STORAGE is ON,
there is no need to specify IQ UNIQUE except for columns with more than
65536 unique values.

Note An IQ UNIQUE value greater than 65536 can allow the creation of 3-byte
indexes, whereas previously such values were used to prevent it with
MINIMIZE_STORAGE ON. If you want to prevent the specialized storage
optimization with MINIMIZE_STORAGE ON, give IQ UNIQUE a constraint
value greater than 16777216.

When the ratio of main memory to the number of columns is large, turning
MINIMIZE_STORAGE ON is beneficial. Otherwise, storage of new columns
generally benefits from turning this option OFF.

Specifying IQ UNIQUE explicitly in CREATE TABLE or ALTER TABLE ADD
COLUMN overrides the MINIMIZE_STORAGE option for that column.

Alphabetical list of options

422 Sybase IQ

See also “FP_LOOKUP_SIZE option” on page 386 and “INDEX_ADVISOR option”
on page 395

“The Fast Projection (FP) default index type” in Chapter 6, “Using Sybase IQ
Indexes” in System Administration Guide: Volume 1

Chapter 5, “Working with Database Objects” and Chapter 6, “Using Sybase
IQ Indexes” (particularly “FP(3) index”) in System Administration Guide:
Volume 1

MIN_PASSWORD_LENGTH option
Function Sets the minimum length for new passwords in the database.

Allowed values Integer greater than or equal to zero

The value is in bytes. For single-byte character sets, this is the same as the
number of characters.

Default 0 characters

Scope Can be set for the PUBLIC group. Takes effect immediately. Requires DBA
permissions to set this option.

Description This option allows the DBA to impose a minimum length on all new passwords
for greater security. Existing passwords are not affected.

Example • Sets the minimum length for new passwords to 6 bytes:

SET OPTION PUBLIC.MIN_PASSWORD_LENGTH = 6

MONITOR_OUTPUT_DIRECTORY option
Function The MONITOR_OUTPUT_DIRECTORY option controls placement of output

files for the IQ buffer cache monitor. All monitor output files are used for the
duration of the monitor runs, which cannot exceed the lifetime of the
connection. The output file still exists after the monitor run stops. A connection
can run up to two performance monitors simultaneously, one for main cache
and one for temp cache. A connection can run a monitor any number of times,
successively.

MONITOR_OUTPUT_DIRECTORY controls the directory in which the monitor
output files are created, regardless of what is being monitored or what monitor
mode is used.

CHAPTER 2 Database Options

Reference: Statements and Options 423

Allowed values String.

Default Same directory as the database.

Scope Can be set for the PUBLIC group. Takes effect immediately. Requires DBA
permissions to set this option.

Description The IQ monitor sends output to the directory specified by this option. The
dummy table used to start the monitor can be either a temporary or a permanent
table. The directory can be on any physical machine.

The DBA can use the PUBLIC setting to place all monitor output in the same
directory, or set different directories for individual users.

Example This example shows how you could declare a temporary table for monitor
output, set its location, and then have the monitor start sending files to that
location for the main and temp buffer caches.

Note In this example, the output directory string is set to both “/tmp” and “tmp/
”. The trailing slash (“/”) is correct and is supported by the interface. The
example illustrates that the buffer cache monitor does not require a permanent
table; a temporary table can be used.

declare local temporary table dummy_monitor
(dummy_column integer)

set option Monitor_Output_Directory = "/tmp"
iq utilities main into dummy_monitor start monitor '-
debug -interval 2'

set option Monitor_Output_Directory = "tmp/"
iq utilities private into dummy_monitor start monitor
'-debug -interval 2'

NEAREST_CENTURY option [TSQL]
Function Controls the interpretation of 2-digit years, in string to date conversions.

Allowed values 0 – 100

Default 50

Description NEAREST_CENTURY controls the handling of 2-digit years, when converting
from strings to dates or timestamps.

Alphabetical list of options

424 Sybase IQ

The NEAREST_CENTURY setting is a numeric value that acts as a rollover
point. Two-digit years less than the value are converted to 20yy, whereas years
greater than or equal to the value are converted to 19yy.

 Adaptive Server Enterprise and Sybase IQ behavior is to use the nearest
century, so that if the year value yy is less than 50, then the year is set to 20yy.

NOEXEC option
Function Generates the optimizer query plans instead of executing the plan.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When determining how to process a query, the IQ optimizer generates a query
plan to map how it plans to have the query engine process the query. If this
option is set ON, the optimizer sends the plan for the query to the IQ message
file rather than submitting it to the query engine. This option affects only
queries or commands that include a query.

Note Operations such as INSERT...VALUES, LOAD, and SYNCHRONIZE are
not affected by the NOEXEC option because they do not include a query.

When the EARLY_PREDICATE_EXECUTION option is ON, Sybase IQ executes
the local predicates for all queries before generating a query plan, even when
the NOEXEC option is ON. The generated query plan is the same as the runtime
plan.

See also “EARLY_PREDICATE_EXECUTION option” on page 383

“GRAPHICAL_PLAN function [String]” and “HTML_PLAN function
[String]” in Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures

CHAPTER 2 Database Options

Reference: Statements and Options 425

NON_ANSI_NULL_VARCHAR option
Function Controls whether zero-length varchars are treated as NULLs for insert/load/

update purposes.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description NON_ANSI_NULL_VARCHAR lets you revert to non-ANSI (Version 12.03.1)
behavior for treating zero-length VARCHAR data during load or update
operations. When this option is set to OFF, zero-length varchars are stored as
zero-length during load, insert, or update. When this option is set to ON, zero-
length VARCHAR data is stored as NULLs on load, insert, or update.

NON_KEYWORDS option [TSQL]
Function Turns off individual keywords, allowing their use as identifiers.

Allowed values String

Default '' (the empty string)

Description NON_KEYWORDS turns off individual keywords. If you have an identifier in
your database that is now a keyword, you can either add double quotes around
the identifier in all applications or scripts, or you can turn off the keyword
using the NON_KEYWORDS option.

The following statement prevents TRUNCATE and SYNCHRONIZE from being
recognized as keywords:

SET OPTION NON_KEYWORDS = 'TRUNCATE, SYNCHRONIZE'

Each new setting of this option replaces the previous setting. This statement
clears all previous settings:

SET OPTION NON_KEYWORDS =

A side effect of the options is that SQL statements using a turned-off keyword
cannot be used; they produce a syntax error.

Alphabetical list of options

426 Sybase IQ

NOTIFY_MODULUS option
Function Controls the default frequency of notify messages issued by certain commands.

Allowed values Any integer

Default 100000

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description This option sets the default number of notify messages Sybase IQ issues for
certain commands that produce them. The NOTIFY clause for some of the
commands (such as CREATE INDEX, LOAD TABLE, and DELETE) override this
value. Other commands that do not support the NOTIFY clause (such as
SYNCHRONIZE JOIN INDEX) always use this value. The default does not
restrict the number of messages you can receive.

ODBC_DISTINGUISH_CHAR_AND_VARCHAR option
Function Controls how the Sybase IQ and SQL Anywhere ODBC driver describes

CHAR columns.

Allowed values ON, OFF

Default OFF

Description When a connection is opened, the Sybase IQ and SQL Anywhere ODBC driver
uses the setting of this option to determine how CHAR columns are described.
If ODBC_DISTINGUISH_CHAR_AND_VARCHAR is set to OFF (the default),
then CHAR columns are described as SQL_VARCHAR. If this option is set to
ON, then CHAR columns are described as SQL_CHAR. VARCHAR columns are
always described as SQL_VARCHAR.

See also Chapter 3, “SQL Data Types” in Reference: Building Blocks, Tables, and
Procedures

ON_CHARSET_CONVERSION_FAILURE option
Function Controls what happens if an error is encountered during character conversion.

Allowed values String. See Description for allowed values.

Default IGNORE

CHAPTER 2 Database Options

Reference: Statements and Options 427

Description Controls what happens if an error is encountered during character conversion,
as follows:

• IGNORE Errors and warnings do not appear.

• WARNING Reports substitutions and illegal characters as warnings.
Illegal characters are not translated.

• ERROR Reports substitutions and illegal characters as errors.

Single-byte to single-byte converters are not able to report substitutions and
illegal characters, and must be set to IGNORE.

ON_TSQL_ERROR option [TSQL]
Function Controls error-handling in stored procedures.

Allowed values String. See Description for allowed values.

Default CONDITIONAL

Description This option controls error handling in stored procedures.

• STOP– Stops execution immediately upon finding an error.

• CONDITIONAL – If the procedure uses ON EXCEPTION RESUME, and
the statement following the error handles the error, continue, otherwise
exit.

• CONTINUE – Continue execution, regardless of the following statement.
If there are multiple errors, the first error encountered in the stored
procedure is returned. This option most closely mirrors Adaptive Server
Enterprise behavior.

Both CONDITIONAL and CONTINUE settings for ON_TSQL_ERROR are
used for Adaptive Server Enterprise compatibility, with CONTINUE most
closely simulating Adaptive Server Enterprise behavior. The CONDITIONAL
setting is recommended, particularly when developing new Transact-SQL
stored procedures, as it allows errors to be reported earlier.

When this option is set to STOP or CONTINUE, it supersedes the setting of the
CONTINUE_AFTER_RAISERROR option. However, when this option is set to
CONDITIONAL (the default), behavior following a RAISERROR statement is
determined by the setting of the CONTINUE_AFTER_RAISERROR option.

Alphabetical list of options

428 Sybase IQ

See also CREATE PROCEDURE statement on page 120

CREATE PROCEDURE statement [T-SQL] on page 127

“CONTINUE_AFTER_RAISERROR option [TSQL]” on page 361

“Transact-SQL procedure language overview” in Appendix A,
“Compatibility with Other Sybase Databases” in Reference: Building Blocks,
Tables, and Procedures

Appendix A, “Compatibility with Other Sybase Databases” in Reference:
Building Blocks, Tables, and Procedures

OS_FILE_CACHE_BUFFERING option
Function Controls use of file system buffering.

Allowed values ON, OFF

Default OFF; default affects newly created databases only.

Scope Can be set for the PUBLIC group only. You must shut down the database and
restart it for the change to take effect. Requires DBA permissions to set this
option.

Description This performance option is available on Solaris UFS file systems and Windows
file systems only. It does not affect databases on raw disk.

Setting OS_FILE_CACHE_BUFFERING OFF prevents file system buffering for
IQ store files. Turning off file system buffering saves a data copy from the file
system buffer cache to the main IQ buffer cache. Usually this reduces paging
caused by competition for memory between the IQ buffer manager and the
operating system’s file system buffer. When it reduces paging, this option
improves performance; however, if the IQ page size for the database is less
than the file system’s block size (typically only in the case in testing situations),
performance decreases, especially during multiuser operation.

Experiment with this option to determine the best setting for different
conditions. You must restart the database for the new setting to take effect.

See also Chapter 4, “Managing System Resources” in the Performance and Tuning
Guide

CHAPTER 2 Database Options

Reference: Statements and Options 429

PASSWORD_EXPIRY_ON_NEXT_LOGIN option
Function When a user is assigned a login policy and this option for the policy is set ON,

then the user’s password is marked for expiry immediately upon next login. For
details, see “CREATE LOGIN POLICY statement” in SQL Anywhere Server –
SQL Reference > Using SQL > SQL statements > SQL statements (A-D).

PASSWORD_GRACE_TIME option
Function The number of days before password expiration during which login is allowed

but the default post login procedure issues warnings. For details, see “CREATE
LOGIN POLICY statement” in SQL Anywhere Server – SQL Reference >
Using SQL > SQL statements > SQL statements (A-D).

PASSWORD_LIFE_TIME option
Function The maximum number of days before a password must be changed. For details,

see “CREATE LOGIN POLICY statement” in SQL Anywhere Server – SQL
Reference > Using SQL > SQL statements > SQL statements (A-D).

POST_LOGIN_PROCEDURE option
Function Specifies a login procedure whose result set contains messages that are

displayed by the client application immediately after a user successfully logs
in.

Allowed values String

Default dbo.sa_post_login_procedure

Scope Can be set for an individual connection or the PUBLIC group. DBA permissions
required to set this option.Takes effect immediately.

Description The default post login procedure, dbo.sa_post_login_procedure, executes
immediately after a user successfully logs in.

If you have DBA authority, you can customize the post login actions by
creating a new procedure and setting POST_LOGIN_PROCEDURE to call the
new procedure. Do not edit dbo.sa_post_login_procedure. The customized post
login procedure must be created in every database you use.

Alphabetical list of options

430 Sybase IQ

The post login procedure supports the client applications dbisql, dbisqlc, and the
IQ plug-in for Sybase Central.

See also “LOGIN_PROCEDURE option” on page 411

“Managing IQ user accounts and connections” in Chapter 8, “Managing User
IDs and Permissions” in the System Administration Guide: Volume 1

PRECISION option
Function Specifies the maximum number of digits in the result of any decimal

arithmetic, for queries on the catalog store only.

Allowed values 126

Default 126

Scope Only PUBLIC setting allowed.

Description Precision is the total number of digits to the left and right of the decimal point.
The default PRECISION value is fixed at 126. SCALE specifies the minimum
number of digits after the decimal point when an arithmetic result is truncated
to the maximum specified by PRECISION, for queries on the catalog store.

See also “SCALE option” on page 443

For queries on the IQ store, see “MAX_CLIENT_NUMERIC_PRECISION
option” on page 413

PREFETCH option
Function Allows you to turn fetching on or off or to use the ALWAYS value to prefetch

the cursor results even for SENSITIVE cursor types and for cursors that
involve a proxy table.

Allowed values ON, OFF, ALWAYS

Default ON

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

CHAPTER 2 Database Options

Reference: Statements and Options 431

Description For the catalog store only, PREFETCH controls whether rows are fetched to the
client side before being made available to the client application. Fetching a
number of rows at a time, even when the client application requests rows one
at a time (for example, when looping over the rows of a cursor) minimizes
response time and improves overall throughput by limiting the number of
requests to the database.

The setting of PREFETCH is ignored by Open Client and JDBC connections,
and for the IQ store.

PREFETCH_BUFFER_LIMIT option
Function Specifies the amount of memory used for prefetching.

Allowed values Integer

Default 0

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Shut down and restart the database server to have the change take
effect.

Description PREFETCH_BUFFER_LIMIT defines the number of cache pages available to
Sybase IQ for use in prefetching (the read-ahead of database pages).

Do not set this option unless advised to do so by Sybase Technical Support.

PREFETCH_BUFFER_PERCENT option
Function Specifies the percent of memory used for prefetching.

Allowed values 0 – 100

Default 40

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Shut down and restart the database server to have the change take
effect.

Description PREFETCH_BUFFER_PERCENT is an alternative to
PREFETCH_BUFFER_LIMIT, as it specifies the percentage of cache available
for use in prefetching.

Do not set this option unless advised to do so by Sybase Technical Support.

Alphabetical list of options

432 Sybase IQ

PREFETCH_GARRAY_PERCENT option
Function Specifies the percent of prefetch resources designated for inserts to HG

indexes.

Allowed values 0 – 100

Default 60

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description As with PREFETCH_SORT_PERCENT, this option designates a percentage
of prefetch resources for use when inserting into an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

PREFETCH_SORT_PERCENT option
Function Specifies the percent of prefetch resources designated for sorting objects.

Allowed values 0 – 100

Default 20

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description PREFETCH_SORT_PERCENT designates a percentage of prefetch resources
for use by a single sort object. Increasing this value can improve the single-user
performance of inserts and deletes, but may have detrimental effects on
multiuser operations.

Do not set this option unless advised to do so by Sybase Technical Support.

PRESERVE_SOURCE_FORMAT option [database]
Function Controls whether the original source definition of procedures, views, and event

handlers is saved in system files. If saved, it is saved in the column source in
SYSTABLE, SYSPROCEDURE, and SYSEVENT.

Allowed values ON, OFF

Default ON

Scope Only PUBLIC setting allowed.

CHAPTER 2 Database Options

Reference: Statements and Options 433

Description When PRESERVE_SOURCE_FORMAT is ON, the server saves the formatted
source from CREATE and ALTER statements on procedures, views, and events,
and puts it in the appropriate system table's source column.

Unformatted source text is stored in the same system tables, in the columns
proc_defn, and view_defn. However, these definitions are not easy to read in
Sybase Central. The formatted source column allows you to view the
definitions with the spacing, comments, and case that you want.

This option can be turned off to reduce space used to save object definitions in
the database. The option can be set only for the PUBLIC group.

QUERY_DETAIL option
Function Specifies whether or not to include additional query information in the Query

Detail section of the query plan.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When QUERY_DETAIL and QUERY_PLAN (or QUERY_PLAN_AS_HTML) are
both turned on, Sybase IQ displays additional information about the query
when producing its query plan. When QUERY_PLAN and
QUERY_PLAN_AS_HTML are OFF, this option is ignored.

When QUERY_PLAN is ON (the default), especially if QUERY_DETAIL is also
ON, you might want to enable message log wrapping or message log archiving
to avoid filling up your message log file. For details, see “Message log
wrapping” in Chapter 1, “Overview of Sybase IQ System Administration” of
the System Administration Guide: Volume 1.

See also “QUERY_PLAN option” on page 434

“QUERY_PLAN_AS_HTML option” on page 435

QUERY_NAME option
Function Gives a name to an executed query in its query plan.

Allowed values Quote-delimited string of up to 80 characters.

Alphabetical list of options

434 Sybase IQ

Default '' (the empty string)

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description You can assign the QUERY_NAME option any quote-delimited string value, up
to 80 characters; for example:

set temporary option Query_Name = 'my third query'

When this option is set, query plans that are sent to the .iqmsg file or .html file
include a line near the top of the plan that looks like:

Query_Name: 'my third query'

If you set the option to a different value before each query in a script, it is much
easier to identify the correct query plan for a particular query. The query name
is also added to the filename for HTML query plans. This option has no other
effect on the query.

QUERY_PLAN option
Function Specifies whether or not additional query plans are printed to the Sybase IQ

message file.

Allowed values ON, OFF

Default ON

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When this option is turned ON, Sybase IQ produces textual query plans in the
IQ message file. These query plans display the query tree topography, as well
as details about optimization and execution. When this option is turned OFF,
those messages are suppressed. The information is sent to the
<dbname>.iqmsg file.

See also “QUERY_DETAIL option” on page 433

“QUERY_PLAN_AS_HTML option” on page 435

“QUERY_PLAN_AFTER_RUN option” on page 435

CHAPTER 2 Database Options

Reference: Statements and Options 435

QUERY_PLAN_AFTER_RUN option
Function Prints the entire query plan after query execution is complete.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When QUERY_PLAN_AFTER_RUN is turned ON, the query plan is printed
after the query has finished running. This allows the query plan to include
additional information, such as the actual number of rows passed on from each
node of the query.

For this option to work, the QUERY_PLAN option must be set to ON (the
default). You can use this option in conjunction with QUERY_DETAIL to
generate additional information in the query plan report.

See also “QUERY_PLAN_AS_HTML option” on page 435

“GRAPHICAL_PLAN function [String]” and “HTML_PLAN function
[String]” in Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures

QUERY_PLAN_AS_HTML option
Function Generates graphical query plans in HTML format for viewing in a Web

browser.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description QUERY_PLAN_AS_HTML causes graphical query plans to be generated in
HTML format.

When you set this option, also set the QUERY_NAME option for each query, so
you know which query is associated with the query plan.

Sybase IQ writes the plans in the same directory as the .iqmsg file, in a file
named:

user-name_query-name_YYYYMMDD_HHMMSS_query-number.html

Alphabetical list of options

436 Sybase IQ

For example, if the user DBA sets the temporary option QUERY_NAME to
'Query_1123', a file created on May 18, 2009 at exactly 8:30 a.m. is called
DBA_Query_1123_20090518_083000_1.html. The date, time, and unique
number are appended to the file name automatically to ensure that existing files
are not overwritten.

Note If you use this feature, monitor your disk space usage so you leave
enough room for your .iqmsg and log files to grow. Enable IQ message log
wrapping or message log archiving to avoid filling up your message log file.
For details, see “Message log wrapping” in Chapter 1, “Overview of Sybase
IQ System Administration” of the System Administration Guide: Volume 1.

QUERY_PLAN_AS_HTML acts independently of the setting for the
QUERY_PLAN option. In other words, if QUERY_PLAN_AS_HTML is ON, you
get an HTML format query plan whether or not QUERY_PLAN is ON.

This feature is supported with newer versions of many commonly used
browsers. Some browsers might experience problems with plans generated for
very complicated queries.

See also “QUERY_PLAN_AFTER_RUN option” on page 435

“GRAPHICAL_PLAN function [String]” and “HTML_PLAN function
[String]” in Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures

QUERY_PLAN_AS_HTML_DIRECTORY option
Function Specifies the directory into which Sybase IQ writes the HTML query plans.

Allowed values String containing a directory path name

Default '' (the empty string)

Scope Can be set temporary for an individual connection or for the PUBLIC group.
DBA authority is required to set the option. Takes effect immediately.

Description When the QUERY_PLAN_AS_HTML option is turned ON and a directory is
specified with the QUERY_PLAN_AS_HTML_DIRECTORY option, Sybase IQ
writes the HTML query plans in the specified directory. This option provides
additional security by allowing HTML query plans to be produced outside of
the server directory. When the QUERY_PLAN_AS_HTML_DIRECTORY option
is not used, the query plans are sent to the default directory (the .iqmsg file
directory).

CHAPTER 2 Database Options

Reference: Statements and Options 437

If the QUERY_PLAN_AS_HTML option is ON and
QUERY_PLAN_AS_HTML_DIRECTORY is set to a directory that does not exist,
Sybase IQ does not save the HTML query plan and no error is generated. In
this case, the query continues to run and a message is logged to the IQ message
file, so the DBA knows that the HTML query plan was not written. If the
specified directory path or permissions on the directory are not correct, the
message “Error opening HTML Query plan: file-name” is written in the .iqmsg
file.

Example Create the example directory /system1/users/DBA/html_plans and set the
correct permissions on the directory. Then set the options and run the query:

SET TEMPORARY OPTION QUERY_PLAN_AS_HTML = ‘ON’;
SET TEMPORARY OPTION QUERY_PLAN_AS_HTML_DIRECTORY = ‘/
system1/users/DBA/html_plans’;
SELECT col1 FROM tab1;

The HTML query plan is written to a file in the specified directory /system1/
users/DBA/html_plans.

See also “QUERY_PLAN_AS_HTML option” on page 435

QUERY_PLAN_TEXT_ACCESS option
Function Enables or prevents users from accessing query plans from the Interactive SQL

(dbisql) client or from using SQL functions to get plans.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are required to modify this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When QUERY_PLAN_TEXT_ACCESS option is ON, users can view, save, and
print query plans from the dbisql client. When the option is OFF, query plans
are not cached, and other query plan-related database options have no affect on
the query plan display from the dbisql client. The following error message
displays:

No plan available. The database option
QUERY_PLAN_TEXT_ACCESS is OFF.

Alphabetical list of options

438 Sybase IQ

See also “QUERY_DETAIL option” on page 433

“QUERY_PLAN_AS_HTML option” on page 435

“QUERY_PLAN_AFTER_RUN option” on page 435

“QUERY_PLAN_TEXT_CACHING option” on page 438

“GRAPHICAL_PLAN function [String]” and “HTML_PLAN function
[String]” in Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures

“OUTPUT statement [DBISQL]” on page 263

“WRITE_CLIENT_FILE function [String]” and “PLAN function
[Miscellaneous]” in SQL Anywhere Server – SQL Reference > Using SQL >
SQL functions > SQL functions (P-Z)

“EXPLANATION function [Miscellaneous]” and “GRAPHICAL_PLAN
function [Miscellaneous]” in SQL Anywhere Server – SQL Reference > Using
SQL > SQL functions > SQL functions (E-O)

QUERY_PLAN_TEXT_CACHING option
Function Allow users to specify whether or not Sybase IQ generates and caches IQ plans

for queries executed by the user.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to modify this option. Can be set temporary
for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description IQ query plans vary in size and can become very large for complex queries.
Caching plans for display on the dbisql client can have high resource
requirements. The QUERY_PLAN_TEXT_CACHING option gives users a
mechanism to control resources for caching plans. With this option turned OFF
(the default), the query plan is not cached for that user connection.

Note If QUERY_PLAN_TEXT_ACCESS is turned OFF, the query plan is not
cached for the connections from that user, no matter how
QUERY_PLAN_TEXT_CACHING is set.

CHAPTER 2 Database Options

Reference: Statements and Options 439

See also “QUERY_DETAIL option” on page 433

“QUERY_PLAN_TEXT_ACCESS option” on page 437

“QUERY_PLAN_AS_HTML option” on page 435

“QUERY_PLAN_AFTER_RUN option” on page 435

“GRAPHICAL_PLAN function [String]” and “HTML_PLAN function
[String]” in Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures

“OUTPUT statement [DBISQL]” on page 263

“PLAN function [Miscellaneous]” in SQL Anywhere Server – SQL Reference
> Using SQL > SQL functions > SQL functions (P-Z)

“EXPLANATION function [Miscellaneous]” in SQL Anywhere Server – SQL
Reference > Using SQL > SQL functions > SQL functions (E-O)

QUERY_ROWS_RETURNED_LIMIT option
Function Sets the row threshold for rejecting queries based on estimated size of result

set.

Allowed values Any integer

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description If Sybase IQ receives a query that has an estimated number of result rows
greater than the value of QUERY_ROWS_RETURNED_LIMIT, it rejects the
query with this message:

Query rejected because it exceeds resource:
Query_Rows_Returned_Limit

If you set this option to zero (the default), there is no limit and no queries are
ever rejected based on the number of rows in their output.

QUERY_TEMP_SPACE_LIMIT option
Function Specifies the maximum estimated amount of temp space before a query is

rejected.

Alphabetical list of options

440 Sybase IQ

Allowed values Any integer

Default 0 (no limit)

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description If Sybase IQ receives a query that is estimated to require a temporary result
space larger than value of this option, it rejects the query with this message:

Query rejected because it exceeds total space resource
limit

When set to zero (the default), there is no limit on temporary store usage by
queries.

Users may override this option in their own environments to run queries that
can potentially fill up the entire temporary store. To prevent runaway queries
from filling up the temporary store, the DBA can set the option
MAX_TEMP_SPACE_PER_CONNECTION. The
MAX_TEMP_SPACE_PER_CONNECTION option monitors and limits actual
temporary store usage for all DML statements, not just queries.

See also “MAX_TEMP_SPACE_PER_CONNECTION option” on page 420

QUERY_TIMING option
Function Determines whether or not to collect specific timing statistics and display them

in the query plan.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description This option controls the collection of timing statistics on subqueries and some
other repetitive functions in the query engine. This parameter should normally
be OFF (the default) because for very short correlated subqueries, timing every
subquery execution can slow down a query.

Query timing is represented in the query plan detail as a series of timestamps.
These timestamps correspond to query operator phases (Conditions, Prepare,
Fetch, Complete). HTML and dbisql query plans display query timing
graphically as a timeline.

CHAPTER 2 Database Options

Reference: Statements and Options 441

QUOTED_IDENTIFIER option [TSQL]
Function Controls the interpretation of strings that are enclosed in double quotes.

Allowed values ON, OFF

OFF for Open Client connections.

Default ON

Description QUOTED_IDENTIFIER controls whether strings enclosed in double quotes are
interpreted as identifiers (ON) or as literal strings (OFF). This option is
included for Transact-SQL compatibility.

Sybase Central and Interactive SQL set QUOTED_IDENTIFER temporarily to
ON if it is set to OFF. A message is displayed informing you of this change.
The change is in effect only for the Sybase Central or Interactive SQL
connection. The JDBC driver also temporarily sets QUOTED_IDENTIFIER to
ON.

See also Appendix A, “Compatibility with Other Sybase Databases” in Reference:
Building Blocks, Tables, and Procedures

RECOVERY_TIME option
Function Sets the maximum length of time, in minutes, that the database server takes to

recover from system failure.

Allowed values Integer, in minutes

Default 2

Scope Can be set only for the PUBLIC group. Takes effect when the server is restarted.

Description Use this option with the CHECKPOINT_TIME option to decide when
checkpoints should be done.

A heuristic measures the recovery time based on the operations since the last
checkpoint. Thus, the recovery time is not exact.

See also Chapter 10, “Transactions and Versioning” in the System Administration
Guide: Volume 1

Alphabetical list of options

442 Sybase IQ

RETURN_DATE_TIME_AS_STRING option
Function Controls how a date, time, or timestamp value is passed to the client application

when queried.

Allowed values ON, OFF

Default OFF

Scope Can be set as a temporary option only, for the duration of the current
connection.

Description RETURN_DATE_TIME_AS_STRING indicates whether date, time, and
timestamp values are returned to applications as a date or time datatype or as a
string.

When this option is set to ON, the server converts the date, time, or timestamp
value to a string before it is sent to the client in order to preserve the
TIMESTAMP_FORMAT, DATE_FORMAT, or TIME_FORMAT option setting.

Sybase Central and Interactive SQL automatically turn the
RETURN_DATE_TIME_AS_STRING option ON.

See also “DATE_FORMAT option” on page 371

“TIME_FORMAT option” on page 466

“TIMESTAMP_FORMAT option” on page 466

ROW_COUNT option
Function Limits the number of rows returned from a query.

Allowed values Integer.

Default 0 (no limit on rows returned)

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When this runtime option is set to a nonzero value, query processing stops after
the specified number of rows.

This option affects only statements with the keyword SELECT. It does not
affect UPDATE and DELETE statements.

CHAPTER 2 Database Options

Reference: Statements and Options 443

The SELECT statement keywords FIRST and TOP also limit the number of
rows returned from a query. Using FIRST is the same as setting the
ROW_COUNT database option to 1. Using TOP is the same as setting the
ROW_COUNT option to the same number of rows. If both TOP and
ROW_COUNT are set, then the value of TOP takes precedence.

The ROW_COUNT option could produce non-deterministic results when used
in a query involving global variables, system functions or proxy tables. Such
queries are partly executed using CIS (Component Integrated Services). In
such cases, use SELECT TOP n instead of setting ROW_COUNT, or set the
global variable to a local one and use that local variable in the query.

See also “QUERY_ROWS_RETURNED_LIMIT option” on page 439

SELECT statement on page 291

SCALE option
Function Specifies the minimum number of digits after the decimal point when an

arithmetic result is truncated to the maximum PRECISION, for queries on the
catalog store only.

Allowed values Integer, with a maximum of 126.

Default 38

Scope Can be set only for PUBLIC.

Description This option specifies the minimum number of digits after the decimal point
when an arithmetic result is truncated to the maximum PRECISION, for queries
on the catalog store.

Multiplication, division, addition, subtraction, and aggregate functions may all
have results that exceed the maximum precision.

See also “PRECISION option” on page 430

For queries on the IQ store, see “MAX_CLIENT_NUMERIC_SCALE
option.”

SIGNIFICANTDIGITSFORDOUBLEEQUALITY option
Function Specifies the number of significant digits to the right of the decimal in

exponential notation that are used in equality tests between two complex
arithmetic expressions.

Alphabetical list of options

444 Sybase IQ

Allowed values 0 – 15

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description Because doubles are stored in binary (base 2) instead of decimal (base 10), this
setting gives the approximate number of significant decimal digits used. If set
to 0, all digits are used.

For example, when the option is set to 12, the following numbers compare as
equal. When set to 13, they do not:

• 1.23456789012345

• 1.23456789012389

This option affects equality tests between two complex arithmetic expressions,
not those done by the indexes.

SORT_COLLATION option
Function Allows implicit use of the SORTKEY function on ORDER BY expressions.

Allowed values Internal, collation_name, or collation_id

Default Internal

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description When the value of this option is Internal, the ORDER BY clause remains
unchanged.

When the value of this option is set to a valid collation name or collation ID,
any string expression in the ORDER BY clause is treated as if the SORTKEY
function has been invoked.

CHAPTER 2 Database Options

Reference: Statements and Options 445

Example Set the sort collation to binary:

SET TEMPORARY OPTION sort_collation='binary';

Setting the sort collation to binary transforms the following queries:

SELECT Name, ID
FROM Products
ORDER BY Name, ID;
SELECT Name, ID
FROM Products
ORDER BY 1, 2;

The queries are transformed into:

SELECT Name, ID
FROM Products
ORDER BY SORTKEY(Name, 'binary'), ID;

See also “SORTKEY function [String]” in Chapter 4, “SQL Functions” of Reference:
Building Blocks, Tables, and Procedures

SORT_PINNABLE_CACHE_PERCENT option
Function Specifies the maximum percentage of currently available buffers a sort object

tries to pin.

Allowed values 0 – 100

Default 20

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Description For very large sorts, a larger value might help reduce the number of merge
phases required by the sort. A larger number, however, might impact the sorts
and hashes of other users running on the system. If you change this option,
experiment to find the best value to increase performance, as choosing the
wrong value might decrease performance. Sybase recommends that you use the
default value for SORT_PINNABLE_CACHE_PERCENT.

This option is primarily for use by Sybase Technical Support. If you change the
value of SORT_PINNABLE_CACHE_PERCENT, do so with extreme caution.

Alphabetical list of options

446 Sybase IQ

SQL_FLAGGER_ERROR_LEVEL option [TSQL]
Function Controls the behavior in response to any SQL code that is not part of a specified

set of SQL92.

Allowed values E, I, F, or W

Default W

Description The SQL_FLAGGER_ERROR_LEVEL option flags as an error any SQL code
that is not part of a specified set of SQL92. Allowed values and meanings are
shown in Table 2-15.

Table 2-15: SQL_FLAGGER_ERROR_LEVEL values

SQL_FLAGGER_WARNING_LEVEL option [TSQL]
Function Controls the behavior in response to any SQL that is not part of a specified set

of SQL92.

Allowed values E, I, F, or W

Default W

Description SQL_FLAGGER_WARNING_LEVEL flags as a warning any SQL that is not part
of a specified set of SQL92. Allowed values of level and their meanings are
shown in Table 2-16:

Table 2-16: SQL_FLAGGER_WARNING_LEVEL values

Value Action

E Flag syntax that is not entry-level SQL92 syntax

I Flag syntax that is not intermediate-level SQL92
syntax

F Flag syntax that is not full-SQL92 syntax
W Allow all supported syntax

Value Action

E Flag syntax that is not entry-level SQL92 syntax

I Flag syntax that is not intermediate-level SQL92
syntax

F Flag syntax that is not full-SQL92 syntax
W Allow all supported syntax

CHAPTER 2 Database Options

Reference: Statements and Options 447

STRING_RTRUNCATION option [TSQL]
Function Determines whether an error is raised when an INSERT or UPDATE truncates a

CHAR or VARCHAR string.

Allowed values ON, OFF

Default ON

Description If the truncated characters consist only of spaces, no exception is raised. ON
corresponds to SQL92 behavior. When STRING_RTRUNCATION is OFF, the
exception is not raised and the character string is silently truncated. If the
option is ON and an error is raised, a ROLLBACK occurs.

This option was OFF by default prior to Sybase IQ 15.0. It can safely be set to
OFF for backward compatibility. However, the ON setting is preferable to
identify statements where truncation may cause data loss.

SUBQUERY_CACHING_PREFERENCE option
Function Controls which algorithm to use for processing correlated subquery predicates.

Allowed values -3 to 3

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately

Description For correlated subquery predicates, the IQ optimizer offers a choice of caching
outer references and subquery results that reduces subquery execution costs.
SUBQUERY_CACHING_PREFERENCE lets you override the optimizer’s
costing decision when choosing which algorithm to use. It does not override
internal rules that determine whether an algorithm is legal within the query
engine.

A setting of a non-zero value affects every subquery predicate in the query. A
non-zero value cannot be used selectively for one subquery predicate in a
query.

SUBQUERY_CACHING_PREFERENCE is normally used for internal testing by
experienced DBAs only. It does not apply to IN subqueries. See
“IN_SUBQUERY_PREFERENCE option” on page 400.

Table 2-17 illustrates the valid values for this option and their actions.

Alphabetical list of options

448 Sybase IQ

Table 2-17: SUBQUERY_CACHING_PREFERENCE values

See also “Disjunction of subquery predicates” in Chapter 2, “SQL Language
Elements” in Reference: Building Blocks, Tables, and Procedures

SUBQUERY_FLATTENING_PERCENT option
Function Allows the user to change the threshold at which the optimizer decides to

transform scalar subqueries into joins.

Allowed values 0: Let optimizer cost model decide
1 - (232 -1): Values greater than 0 set the percentage of references at which to
flatten

Default 100

Scope This option only applies to correlated scalar subqueries. DBA permissions are
not required to set SUBUERY_FLATTENING_PERCENT. This option can be set
by any user, at any level and takes effect immediately. If you set
SUBUERY_FLATTENING_PERCENT to a non-default value, every scalar
subquery predicate in the query is affected; this option cannot be used
selectively for one scalar subquery predicate in a query.

Description The Sybase IQ query optimizer can convert a correlated scalar subquery into
an equivalent join operation to improve query performance. The
SUBQUERY_FLATTENING_PERCENT option allows the user to adjust the
threshold at which this optimization occurs.

Value Action

1 Use sort-based processing for the first subquery predicate. Other
subquery predicates that do not have the same ordering key are
processed using a hash table to cache subquery results.

2 Use the hash table to cache results for all subquery predicates
when it is legal. If available temp cache cannot accommodate all
of the subquery results, performance may be poor.

3 Cache one previous subquery result. Does not use SORT and
HASH.

-1 Avoid using SORT. The IQ optimizer chooses HASH if it is legal.

-2 Avoid using HASH. The IQ optimizer chooses SORT or cache-one
value if it is legal.

-3 Avoid using cache-one value. The IQ optimizer chooses either
HASH or SORT if it is legal.

CHAPTER 2 Database Options

Reference: Statements and Options 449

SCALAR_FLATTENING_PERCENT represents a percent of estimated inner
distinct values to estimated outer distinct values in a scalar subquery. As the
estimated percent approaches 100%, the cost of evaluating the subquery as a
join is likely to be smaller than using individual index probes. The value may
be set larger than 100%, since the estimated inners are not guaranteed to be less
than estimated outers.

See also “SUBQUERY_FLATTENING_PREFERENCE option” on page 449

SUBQUERY_FLATTENING_PREFERENCE option
Function Allows a user to override the decisions of the optimizer when transforming

(flattening) scalar or EXISTS subqueries into joins.

Allowed values -3 to 3

-3: Avoid flattening both EXISTS and scalar subqueries to a join operation
-2: Avoid flattening a scalar subquery to a join operation
-1: Avoid flattening an EXISTS subquery to a join operation
0: Allow the IQ optimizer to decide to flatten subqueries
1: Ignore cost flattening EXIST, if possible
2: Ignore cost flattening scalar, if possible
3: Ignore cost of both EXISTS and scalar subquery

Default 0

Scope DBA permissions are not required to set this option.
SUBQUERY_FLATTENING_PREFERENCE can be set by any user at any level.
This option takes effect immediately. If you set the option to a non-zero value,
every subquery predicate in the query is affected; this option can not be used
selectively for one subquery predicate in a query.

Description The Sybase IQ optimizer may convert a correlated scalar subquery or an
EXISTS or NOT EXISTS subquery into an equivalent join operation to improve
query performance. This optimization is called subquery flattening. The
SUBQUERY_FLATTENING_PREFERENCE option allows you to override the
costing decision of the optimizer when choosing the algorithm to use.

Setting SUBQUERY_FLATTENING_PREFERENCE to 0 (allow the IQ
optimizer to decide to flatten subqueries) is equivalent to setting the now
deprecated FLATTEN_SUBQUERIES option to ON in earlier releases of Sybase
IQ.

See also “SUBQUERY_FLATTENING_PERCENT option” on page 448

Alphabetical list of options

450 Sybase IQ

SUBQUERY_PLACEMENT_PREFERENCE option
Function Controls the placement of correlated subquery predicate operators within a

query plan.

Allowed Values -1 to 1

Default 0

Scope Can be set for any scope, any user, takes immediate effect.

Description For correlated subquery operators within a query, the IQ optimizer may have a
choice of several different valid locations within that query’s plan.
SUBQUERY_PLACEMENT_PREFERENCE allows you to override the
optimizer’s cost-based decision when choosing the placement location. It does
not override internal rules that determine whether a location is valid, and in
some queries, there might be only one valid choice. If you set this option to a
nonzero value, it affects every correlated subquery predicate in a query; it
cannot be used to selectively modify the placement of one subquery out of
several in a query.

This option is normally used for internal testing, and only experienced DBAs
should use it. Table 2-18 describes the valid values for this option and their
actions.

Table 2-18: SUBQUERY_PLACEMENT_PREFERENCE values

The default setting of this option is almost always appropriate. Occasionally,
Sybase Technical Support might ask you to change this value.

SUPPRESS_TDS_DEBUGGING option
Function Determines whether TDS debugging information appears in the server

window.

Allowed values ON, OFF

Value Action

0 Let the optimizer choose.

1 Prefer the highest possible location in the query plan, thereby
delaying the execution of the subquery to as late as possible within
the query.

-1 Prefer the lowest possible location in the query plan, thereby
placing the execution of the subquery as early as possible within
the query.

CHAPTER 2 Database Options

Reference: Statements and Options 451

Default OFF

Description When the server is started with the -z option, debugging information appears in
the server window, including debugging information about the TDS protocol.

The SUPPRESS_TDS_DEBUGGING option restricts the debugging
information about TDS that appears in the server window. When this option is
set to OFF (the default), TDS debugging information appears in the server
window.

SWEEPER_THREADS_PERCENT option
Function Specifies the percentage of Sybase IQ threads used to sweep out buffer caches

Allowed Values 1 – 40

Default 10

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. You must shut down and restart the database server for the change to
take effect.

Description Sybase IQ uses a small percentage of its processing threads as sweeper threads.
These sweeper threads clean out dirty pages in the main and temp buffer
caches.

In the IQ Monitor -cache report, the GDirty column shows the number of times
the LRU buffer was grabbed in a “dirty” (modified) state. If GDirty is greater
than 0 for more than a brief time, you might need to increase
SWEEPER_THREADS_PERCENT or WASH_AREA_BUFFERS_PERCENT.

The default setting of this option is almost always appropriate. Occasionally,
Sybase Technical Support might ask you to increase this value.

See also “WASH_AREA_BUFFERS_PERCENT option” on page 471

Chapter 5, “Monitoring and Tuning Performance” in the Performance and
Tuning Guide

TDS_EMPTY_STRING_IS_NULL option [database]
Function Controls whether empty strings are returned as NULL or a string containing

one blank character for TDS connections.

Allowed values ON, OFF

Alphabetical list of options

452 Sybase IQ

Default OFF

Description By default, TDS_EMPTY_STRING_IS_NULL is set to OFF and empty strings
are returned as a string containing one blank character for TDS connections.
When this option is set to ON, empty strings are returned as NULL strings for
TDS connections. Non-TDS connections distinguish empty strings from
NULL strings.

TEMP_EXTRACT_APPEND option
Function Specifies that any rows extracted by the data extraction facility are added to the

end of an output file.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description This option specifies that any rows extracted by the data extraction facility are
added to the end of an output file. You create the output file in a directory where
you have WRITE/EXECUTE permissions and you set WRITE permission on
the directory and output file for the user name used to start Sybase IQ (for
example, sybase). You can give permissions on the output file to other users as
appropriate. The name of the output file is specified in the
TEMP_EXTRACT_NAME1 option. The data extraction facility creates the
output file, if the file does not already exist.

TEMP_EXTRACT_APPEND is not compatible with the
TEMP_EXTRACT_SIZEn options. If you try to restrict the size of the extract
append output file, Sybase IQ reports an error.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_NAMEn options” on page 456

TEMP_EXTRACT_BINARY option
Function In combination with the TEMP_EXTRACT_SWAP option, specifies the type of

extraction performed by the data extraction facility.

Allowed values ON, OFF

CHAPTER 2 Database Options

Reference: Statements and Options 453

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description Use this option with the TEMP_EXTRACT_SWAP option to specify the type of
extraction performed by the data extraction facility.

Table 2-19: Extraction option settings for extraction type

The default extraction type is ASCII.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_SWAP option” on page 463

TEMP_EXTRACT_COLUMN_DELIMITER option
Function Specifies the delimiter between columns in the output of the data extraction

facility for an ASCII extraction.

Allowed values String

Default ','

Scope Can be set for an individual connection. Takes effect immediately.

Description Use TEMP_EXTRACT_COLUMN_DELIMITER to specify the delimiter between
columns in the output of the data extraction facility. In the case of an ASCII
extraction, the default is to separate column values with commas. Strings are
unquoted by default.

The delimiter must occupy 1 – 4 bytes, and must be valid in the collation order
you are using, if you are using a multibyte collation order. Choose a delimiter
that does not occur in any of the data output strings themselves.

Extraction
type TEMP_EXTRACT_BINARY TEMP_EXTRACT_SWAP

binary ON OFF

binary/swap ON ON

ASCII OFF OFF

Alphabetical list of options

454 Sybase IQ

 If you set this option to the empty string '' for ASCII extractions, the extracted
data is written in fixed-width ASCII with no column delimiter. Numeric and
binary data types are right-justified on a field of n blanks, where n is the
maximum number of bytes needed for any value of that type. Character data
types are left-justified on a field of n blanks.

Note The minimum column width in a fixed-width ASCII extraction is 4 bytes
to allow the string “NULL” for a NULL value. For example, if the extracted
column is CHAR(2) and TEMP_EXTRACT_COLUMN_DELIMITER is set to the
empty string '', there are two spaces after the extracted data.

See also “TEMP_EXTRACT_QUOTE option” on page 459

“TEMP_EXTRACT_QUOTES option” on page 460

“TEMP_EXTRACT_ROW_DELIMITER option” on page 461

“TEMP_EXTRACT_QUOTES_ALL option” on page 461

For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

TEMP_EXTRACT_DIRECTORY option
Function Controls whether a user is allowed to use the data extraction facility. Also

controls the directory into which temp extract files are placed and overrides a
directory path specified in the TEMP_EXTRACT_NAMEn options.

Allowed values string

Default '' (the empty string)

Scope Can be set temporary for an individual connection or for the PUBLIC group.
DBA authority is required to set the option. This option takes effect
immediately.

Description If the TEMP_EXTRACT_DIRECTORY option is set to the string FORBIDDEN
(case insensitive) for a user, then that user is not allowed to perform data
extracts. An attempt by this user to use the data extraction facility results in an
error: “You do not have permission to perform Extracts”.

If TEMP_EXTRACT_DIRECTORY is set to FORBIDDEN for the PUBLIC
group, then no one can run data extraction.

CHAPTER 2 Database Options

Reference: Statements and Options 455

If TEMP_EXTRACT_DIRECTORY is set to a valid directory path, temp extract
files are placed in that directory, overriding a path specified in the
TEMP_EXTRACT_NAMEn options.

If TEMP_EXTRACT_DIRECTORY is set to an invalid directory path, an error
occurs: “Files does not exist File: <invalid path>”

If TEMP_EXTRACT_DIRECTORY is blank, then temp extract files are placed in
directories according to their specification in TEMP_EXTRACT_NAMEn. If no
path is specified as part of TEMP_EXTRACT_NAMEn, the extract files are by
default placed in the server startup directory.

This option provides increased security and helps control disk management by
restricting the creation of large data extraction files to the directories for which
a user has write access.

See also “TEMP_EXTRACT_NAMEn options” on page 456

For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

TEMP_EXTRACT_ESCAPE_QUOTES option
Function Specifies whether all quotes in fields containing quotes are escaped in the

output of the data extraction facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description This option is ignored unless TEMP_EXTRACT_QUOTE is the default or set to
the value of '"' (double quotes), and TEMP_EXTRACT_BINARY is OFF, and
either TEMP_EXTRACT_QUOTES or TEMP_EXTRACT_QUOTES_ALL is ON.

See also “TEMP_EXTRACT_BINARY option” on page 452

“TEMP_EXTRACT_QUOTES option” on page 460

“TEMP_EXTRACT_QUOTES_ALL option” on page 461

Alphabetical list of options

456 Sybase IQ

TEMP_EXTRACT_NAMEn options
Function Specifies the names of the output files or named pipes used by the data

extraction facility. There are eight options: TEMP_EXTRACT_NAME1 through
TEMP_EXTRACT_NAME8.

Allowed values string

Default '' (the empty string)

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_NAME1 through TEMP_EXTRACT_NAME8 specify the
names of the output files used by the data extraction facility. You must use
these options sequentially. For example, TEMP_EXTRACT_NAME3 has no
effect unless both the options TEMP_EXTRACT_NAME1 and
TEMP_EXTRACT_NAME2 are already set.

The most important of these options is TEMP_EXTRACT_NAME1. If
TEMP_EXTRACT_NAME1 is set to its default setting (the empty string ''),
extraction is disabled and no output is redirected. To enable extraction, set
TEMP_EXTRACT_NAME1 to a path name. Extract starts extracting into a file
with that name. Choose a path name to a file that is not otherwise in use. Sybase
recommends setting the TEMP_EXTRACT_NAME1 option as TEMPORARY.

You can also use TEMP_EXTRACT_NAME1 to specify the name of the output
file, when the TEMP_EXTRACT_APPEND option is set ON. In this case, before
you execute the SELECT statement, set WRITE permission for the user name
used to start Sybase IQ (for example, sybase) on the directory or folder
containing the named file and on the named file. In append mode, the data
extraction facility adds extracted rows to the end of the file and does not
overwrite the data that is already in the file. If the output file does not already
exist, the data extraction facility creates the file.

 Warning! If you choose the path name of an existing file and the
TEMP_EXTRACT_APPEND option is set OFF (the default), the file contents are
overwritten. This might be what you require if the file is for a weekly report,
for example, but not if the file is one of your database files.

The options TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 can
be used in addition to TEMP_EXTRACT_NAME1 to specify the names of
multiple output files.

CHAPTER 2 Database Options

Reference: Statements and Options 457

If you are extracting to a single disk file or a single named pipe, leave the
options TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 and
TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 at their default
values.

When TEMP_EXTRACT_NAME1 is set, you cannot perform these operations:

• LOAD, DELETE, INSERT, or INSERT...LOCATION to a table that is the top
table in a join

• SYNCHRONIZE JOIN INDEX (issued explicitly or executed as part of
CREATE JOIN INDEX)

• INSERT...SELECT

Also note the following restrictions on the data extraction facility:

• Extract works only with data stored in the IQ store.

• Extract does not work on system tables or cross database joins.

• Extract does not work with queries that use user-defined functions or
system functions, except for the system functions suser_id() and
suser_name().

• If you run DBISQL (Interactive SQL Java) with the -q (quiet mode) option
and the data extraction commands are in a command file, you must first set
and make permanent the DBISQL option “Show multiple result sets.” If
this option is not set, the output file is not created.

To set the “Show multiple result sets” option, select Tools → Options in
the DBISQL window, then check the box “Show multiple result sets” and
click “Make permanent.”

The directory path specified using the TEMP_EXTRACT_NAMEn options can
be overridden with the TEMP_EXTRACT_DIRECTORY option.

See also “TEMP_EXTRACT_DIRECTORY option” on page 454

“TEMP_EXTRACT_SIZEn options” on page 462

“TEMP_EXTRACT_APPEND option” on page 452

For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

Alphabetical list of options

458 Sybase IQ

TEMP_EXTRACT_NULL_AS_EMPTY option
Function Controls the representation of null values in the output of the data extraction

facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_NULL_AS_EMPTY controls the representation of null values
in the output of the data extraction facility for ASCII extractions. When the
TEMP_EXTRACT_NULL_AS_EMPTY option is set to ON, a null value is
represented as '' (the empty string) for all data types.

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT_NULL_AS_EMPTY option is set to OFF, the string 'NULL' is
used in all cases to represent a NULL value. OFF is the default value.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

TEMP_EXTRACT_NULL_AS_ZERO option
Function Controls the representation of null values in the output of the data extraction

facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_NULL_AS_ZERO controls the representation of null values
in the output of the data extraction facility for ASCII extractions. When
TEMP_EXTRACT_NULL_AS_ZERO is set to ON, a null value is represented as
follows:

• '0' for arithmetic type

• '' (the empty string) for the CHAR and VARCHAR character types

• '' (the empty string) for dates

• '' (the empty string) for times

• '' (the empty string) for timestamps

CHAPTER 2 Database Options

Reference: Statements and Options 459

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT_NULL_AS_ZERO option is set to OFF, the string 'NULL' is
used in all cases to represent a NULL value. OFF is the default value.

Note In Sybase IQ 12.5, an ASCII extract from a CHAR or VARCHAR column
in a table always returns at least four characters to the output file. This is
required if TEMP_EXTRACT_NULL_AS_ZERO is set to OFF, because Sybase
IQ needs to write out the word NULL for any row in a column that has a null
value. Reserving four spaces is not required if
TEMP_EXTRACT_NULL_AS_ZERO is set to ON.

In Sybase IQ 12.6, if TEMP_EXTRACT_NULL_AS_ZERO is set to ON, the
number of characters that an ASCII extract writes to a file for a CHAR or
VARCHAR column equals the number of characters in the column, even if that
number is less than four.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

TEMP_EXTRACT_QUOTE option
Function Specifies the string to be used as the quote to enclose fields in the output of the

data extraction facility for an ASCII extraction, when either the
TEMP_EXTRACT_QUOTES option or the TEMP_EXTRACT_QUOTES_ALL
option is set ON.

Allowed values String

Default '' (the empty string)

Scope Can be set for an individual connection. Takes effect immediately.

Description This option specifies the string to be used as the quote to enclose fields in the
output of the data extraction facility for an ASCII extraction, if the default
value is not suitable. TEMP_EXTRACT_QUOTE is used with the
TEMP_EXTRACT_QUOTES and TEMP_EXTRACT_QUOTES_ALL options.The
quote string specified in the TEMP_EXTRACT_QUOTE option has the same
restrictions as the row and column delimiters. The default for this option is the
empty string, which Sybase IQ converts to the single quote mark.

Alphabetical list of options

460 Sybase IQ

The string specified in the TEMP_EXTRACT_QUOTE option must occupy from
1 to a maximum of 4 bytes and must be valid in the collation order you are
using, if you are using a multibyte collation order. Be sure to choose a string
that does not occur in any of the data output strings themselves.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 453

“TEMP_EXTRACT_QUOTES option” on page 460

“TEMP_EXTRACT_QUOTES_ALL option” on page 461

“TEMP_EXTRACT_ROW_DELIMITER option” on page 461

TEMP_EXTRACT_QUOTES option
Function Specifies that string fields are enclosed in quotes in the output of the data

extraction facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description This option specifies that string fields are enclosed in quotes in the output of
the data extraction facility for an ASCII extraction. The string used as the quote
is specified in the TEMP_EXTRACT_QUOTE option, if the default is not
suitable.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 453

“TEMP_EXTRACT_QUOTES option” on page 460

“TEMP_EXTRACT_QUOTES_ALL option” on page 461

“TEMP_EXTRACT_ROW_DELIMITER option” on page 461

CHAPTER 2 Database Options

Reference: Statements and Options 461

TEMP_EXTRACT_QUOTES_ALL option
Function Specifies that all fields are enclosed in quotes in the output of the data

extraction facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_QUOTES_ALL specifies that all fields are enclosed in quotes
in the output of the data extraction facility for an ASCII extraction. The string
used as the quote is specified in TEMP_EXTRACT_QUOTE if the default is not
suitable.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 453

“TEMP_EXTRACT_QUOTES option” on page 460

“TEMP_EXTRACT_QUOTES_ALL option” on page 461

“TEMP_EXTRACT_ROW_DELIMITER option” on page 461

TEMP_EXTRACT_ROW_DELIMITER option
Function Specifies the delimiter between rows in the output of the data extraction facility

for an ASCII extraction.

Allowed values String

Default '' (the empty string)

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_ROW_DELIMITER specifies the delimiter between rows in
the output of the data extraction facility. In the case of an ASCII extraction, the
default is to end the row with a newline on UNIX platforms and with a carriage
return/newline pair on Windows platforms.

Alphabetical list of options

462 Sybase IQ

The delimiter must occupy 1 – 4 bytes and must be valid in the collation order
you are using, if you are using a multibyte collation order. Choose a delimiter
that does not occur in any of the data output strings. The default for the
TEMP_EXTRACT_ROW_DELIMITER option is the empty string. Sybase IQ
converts the empty string default for this option to the newline on UNIX
platforms and to the carriage return/newline pair on Windows platforms.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 453

“TEMP_EXTRACT_QUOTES option” on page 460

“TEMP_EXTRACT_QUOTES_ALL option” on page 461

“TEMP_EXTRACT_ROW_DELIMITER option” on page 461

TEMP_EXTRACT_SIZEn options
Function Specifies the maximum sizes of the corresponding output files used by the data

extraction facility. There are eight options: TEMP_EXTRACT_SIZE1 through
TEMP_EXTRACT_SIZE8.

Default 0

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 are used to specify
the maximum sizes of the corresponding output files used by the data
extraction facility. TEMP_EXTRACT_SIZE1 specifies the maximum size of the
output file specified by TEMP_EXTRACT_NAME1, TEMP_EXTRACT_SIZE2
specifies the maximum size of the output file specified by
TEMP_EXTRACT_NAME2, and so on.

Note The default for the data extraction size options is 0. Sybase IQ converts
this default to the values shown in the following table.

CHAPTER 2 Database Options

Reference: Statements and Options 463

*Tape devices currently are not supported.

When large file systems, such as JFS2, support file size larger than the default
value, set TEMP_EXTRACT_SIZEn to the value that the file system allows. For
example, to support lTB set option:

TEMP_EXTRACT_SIZE1 = 1073741824 KB

If you are extracting to a single disk file or a single named pipe, leave the
options TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 and
TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 at their default
values.

The TEMP_EXTRACT_SIZEn options are not compatible with
TEMP_EXTRACT_APPEND. If you try to restrict the size of the extract append
output file, Sybase IQ reports an error.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_NAMEn options” on page 456

TEMP_EXTRACT_SWAP option
Function In combination with the TEMP_EXTRACT_BINARY option, specifies the type

of extraction performed by the data extraction facility.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description Use this option with the TEMP_EXTRACT_BINARY option to specify the type
of extraction performed by the data extraction facility.

Device type Size

Disk file AIX and HP-UX: 0 – 64GB

Sun Solaris & Linux: 0 – 512GB

Windows: 0 – 128GB

Tape* 524288KB (0.5GB)

Other 9007199254740992KB (8192 Petabytes “unlimited”)

Alphabetical list of options

464 Sybase IQ

Table 2-20: Extraction option settings for extraction type

The default extraction type is ASCII.

See also For details on the data extraction facility and using the extraction options, see
“Data extraction options” in Chapter 7, “Moving Data In and Out of
Databases” in the System Administration Guide: Volume 1.

“TEMP_EXTRACT_BINARY option” on page 452

TEMP_RESERVED_DBSPACE_MB option
Function Controls the amount of space Sybase IQ reserves in the temporary IQ store.

Allowed values Integer greater than or equal to 200 in megabytes

Default 200; Sybase IQ actually reserves a maximum of 50% and a minimum of 1% of
the last read-write file in IQ_SYSTEM_TEMP

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Takes effect immediately. The server does not need to be restarted in
order to change reserved space size.

Description TEMP_RESERVED_DBSPACE_MB lets you control the amount of space
Sybase IQ sets aside in your temporary IQ store for certain small but critical
data structures used during release savepoint, commit, and checkpoint
operations. For a production database, set this value between 200MB and 1GB.
The larger your IQ page size and number of concurrent connections, the more
reserved space you need.

Reserved space size is calculated as a maximum of 50% and a minimum of 1%
of the last read-write file in IQ_SYSTEM_TEMP.

See also “IQ main store and IQ temporary store space management” in Chapter 5,
“Working with Database Objects” in the System Administration Guide:
Volume 1

Extraction
type TEMP_EXTRACT_BINARY TEMP_EXTRACT_SWAP

binary ON OFF

binary/swap ON ON

ASCII OFF OFF

CHAPTER 2 Database Options

Reference: Statements and Options 465

TEMP_SPACE_LIMIT_CHECK option
Function Checks for catalog store temporary space on a per connection basis.

Allowed values ON, OFF (no limit checking occurs)

Default ON

Scope Can be set only for the PUBLIC group. DBA authority required.

Description When TEMP_SPACE_LIMIT_CHECK is ON, the database server checks the
amount of catalog store temporary file space that a connection uses. If a
connection requests more than its quota of temporary file space when this
option is set to OFF, a fatal error can occur. When this option is set to ON, if a
connection requests more than its quota of temporary file space, the request
fails and the error “Temporary space limit exceeded” is returned.

Two factors are used to determine the temporary file quota for a connection:
the maximum size of the temporary file, and the number of active database
connections. The maximum size of the temporary file is the sum of the current
size of the file and the amount of disk space available on the partition
containing the file. When limit checking is turned on, the server checks a
connection for exceeding its quota when the temporary file has grown to 80%
or more of its maximum size, and the connection requests more temporary file
space. Once this happens, any connection fails that uses more than the
maximum temporary file space divided by the number of active connections.

Note This option is unrelated to IQ temporary store space. To constrain the
growth of IQ temporary space, see “QUERY_TEMP_SPACE_LIMIT option”
on page 439 and “MAX_TEMP_SPACE_PER_CONNECTION option” on
page 420.

Example A database is started with the temporary file on a drive with 100MB free and
no other active files on the same drive. The available temporary file space is
thus 100MB. The DBA issues:

SET OPTION PUBLIC.TEMP_SPACE_LIMIT_CHECK = 'ON'

As long as the temporary file stays below 80MB, the server behaves as it did
before. Once the file reaches 80MB, the new behavior might occur. Assume
that with 10 queries running, the temporary file needs to grow. When the server
finds that one query is using more than 8MB of temporary file space, that query
fails.

Alphabetical list of options

466 Sybase IQ

See also You can obtain information about the space available for the temporary file
using the sa_disk_free_space system procedure. For more information, see
“sa_disk_free_space system procedure” in SQL Anywhere Server – SQL
Reference > System Objects > System procedures > Alphabetical list of system
procedures.

TIME_FORMAT option
Function Sets the format used for times retrieved from the database.

Allowed values A string composed of the symbols HH, NN, MM, SS, separated by colons.

Default 'HH:NN:SS.SSS'

For Open Client and JDBC connections the default is also set to
HH:NN:SS.SSS.

Description The format is a string using the following symbols:

• hh – Two-digit hours (24 hour clock).

• nn – Two-digit minutes.

• mm – Two-digit minutes if following a colon (as in 'hh:mm').

• ss[.s...s] – Two-digit seconds plus optional fraction.

Each symbol is substituted with the appropriate data for the date being
formatted. Any format symbol that represents character rather than digit output
can be in uppercase, which causes the substituted characters also to be in
uppercase. For numbers, using mixed case in the format string suppresses
leading zeros.

Multibyte characters are not supported in format strings. Only single-byte
characters are allowed, even when the collation order of the database is a
multibyte collation order like 932JPN.

See also “DATE_FORMAT option” on page 371

“RETURN_DATE_TIME_AS_STRING option” on page 442

TIMESTAMP_FORMAT option
Function Sets the format used for timestamps retrieved from the database.

Allowed values A string composed of the symbols listed below.

CHAPTER 2 Database Options

Reference: Statements and Options 467

Default 'YYYY-MM-DD HH:NN:SS.SSS'

Description The format is a string using the following symbols:

Table 2-21: TIMESTAMP_FORMAT string symbols

Each symbol is substituted with the appropriate data for the date being
formatted. Any format symbol that represents character rather than digit output
can be in uppercase, which causes the substituted characters also to be in
uppercase. For numbers, using mixed case in the format string suppresses
leading zeros.

Multibyte characters are not supported in format strings. Only single-byte
characters are allowed, even when the collation order of the database is a
multibyte collation order like 932JPN.

See also “DATE_FORMAT option” on page 371

“RETURN_DATE_TIME_AS_STRING option” on page 442

Symbol Description

yy 2-digit year.

yyyy 4-digit year.

mm 2-digit month, or two digit minutes if following a colon (as in
'hh:mm').

mmm 3-character short form for name of the month of year

mmmm[m...] Character long form for month name—as many characters as
there are m's, until the number of m’s specified exceeds the
number of characters in the month’s name.

dd 2-digit day of month.

ddd 3-character short form for name of the day of week.

dddd[d...] Character long form for day name—as many characters as there
are d's, until the number of d’s specified exceeds the number of
characters in the day’s name.

hh 2-digit hours.

nn 2-digit minutes.

ss.SSS Seconds (ss) and fractions of a second (SSS), up to six decimal
places. Not all platforms support timestamps to a precision of six
places.

aa a.m. or p.m. (12-hour clock).

pp p.m. if needed (12-hour clock.)

Alphabetical list of options

468 Sybase IQ

TOP_NSORT_CUTOFF_PAGES option
Function Sets the result size threshold for TOP N algorithm selection.

Allowed values 1 – 1000

Default 1

Description The TOP_NSORT_CUTOFF_PAGES option sets the threshold, measured in
pages, where evaluation of a query that contains both a TOP clause and ORDER
BY clause switches algorithms from ordered list-based processing to sort-based
processing. Ordered list processing performs better in cases where the TOP N
value is smaller than the number of result rows. Sort-based processing
performs better for large TOP N values.

In some cases, increasing TOP_NSORT_CUTOFF_PAGES can improve
performance by avoiding sort-based processing.

See also “SELECT statement” on page 291

TRIM_PARTIAL_MBC option
Function Allows automatic trimming of partial multibyte character data.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can only be set for the
PUBLIC group. Takes effect immediately.

Description Provides consistent loading of data for collations that contain both single-byte
and multibyte characters. When TRIM_PARTIAL_MBC is ON:

• A partial multibyte character is replaced with a blank when loading into a
CHAR column.

• A partial multibyte character is truncated when loading into a VARCHAR
column.

When TRIM_PARTIAL_MBC is OFF, normal CONVERSION_ERROR semantics
are in effect.

See also “CONVERSION_ERROR option [TSQL]” on page 362

CHAPTER 2 Database Options

Reference: Statements and Options 469

TSQL_VARIABLES option [TSQL]
Function Controls whether the @ sign can be used as a prefix for Embedded SQL host

variable names.

Allowed values ON, OFF

ON for Open Client and JDBC connections

Default OFF

Description When TSQL_VARIABLES is set to ON, you can use the @ sign instead of the
colon as a prefix for host variable names in Embedded SQL. This is
implemented primarily for the Open Server Gateway.

USER_RESOURCE_RESERVATION option
Function Adjusts memory use for the number of current users.

Allowed values Integer

Scope DBA permissions are not required to set this option. Can be set temporary for
an individual connection or for the PUBLIC group. Takes effect immediately.

Default 1

Description Sybase IQ tracks the number of open cursors and allocates memory
accordingly. In certain circumstances, you can use this option to adjust the
minimum number of current cursors that Sybase IQ thinks is currently using
the product, and allocate memory from the temporary cache more sparingly.

Set this option only after careful analysis shows it is actually required. If you
need to set this parameter, contact Sybase Technical Support with details.

VERIFY_PASSWORD_FUNCTION option
Function Specifies a user-supplied authentication function that can be used to implement

password rules. The function is called on a GRANT CONNECT TO userid
IDENTIFIED BY password statement.

Allowed values String

Scope Can be set temporary for an individual connection or for the PUBLIC group.
DBA authority is required to set the option. This option takes effect
immediately.

Alphabetical list of options

470 Sybase IQ

Default '' (the empty string). (No function is called on GRANT CONNECT.)

Description When the VERIFY_PASSWORD_FUNCTION option value is set to a valid
string, the statement GRANT CONNECT TO userid IDENTIFIED BY password
calls the function specified by the option value.

The option value requires the form owner.function_name to prevent users from
overriding the function.

The function takes two parameters:

• user_name VARCHAR(128)

• new_pwd VARCHAR(255)

It returns a value of type VARCHAR(255).

Note Perform an ALTER FUNCTION function-name SET HIDDEN on the
function to ensure that a user cannot step through it using the procedure
debugger.

If the VERIFY_PASSWORD_FUNCTION option is set, you cannot specify more
than one userid and password with the GRANT CONNECT statement.

Example For example, this statement creates a function that requires the password to be
different from the user name:

CREATE FUNCTION DBA.f_verify_pwd
(user_name varchar(128),
new_pwd varchar(255))
RETURNS varchar(255)
BEGIN
-- enforce password rules
IF new_pwd = user_name then
RETURN('Password cannot be the same as the user name');
END IF;
-- return success
RETURN(NULL);
END;
ALTER FUNCTION DBA.f_verify_pwd set hidden;
GRANT EXECUTE on DBA.f_verify_pwd to PUBLIC;
SET OPTION PUBLIC.VERIFY_PASSWORD_FUNCTION =
'DBA.f_verify_pwd';

For an example that defines a table and a function and sets some login policy
options, see “verify_password_function option [database]” in SQL Anywhere
Server – Database Administration > Configuring Your Database > Database
options > Introduction to database options > Alphabetical list of options.

CHAPTER 2 Database Options

Reference: Statements and Options 471

To turn the option off, set it to the empty string:

SET OPTION PUBLIC.VERIFY_PASSWORD_FUNCTION = ''

WASH_AREA_BUFFERS_PERCENT option
Function Specifies the percentage of the buffer caches above the wash marker.

Allowed Values 1 – 100

Default 20

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Shut down and restart the database server to have the change take
effect.

Description Sybase IQ buffer caches are organized as a long MRU/LRU chain. The area
above the wash marker is used to sweep out (that is, write) dirty pages to disk.

In the IQ Monitor -cache report, the Gdirty column shows the number of times
the LRU buffer was grabbed in a “dirty” (modified) state. If GDirty is greater
than 0 for more than a brief time, you might need to increase
SWEEPER_THREADS_PERCENT or WASH_AREA_BUFFERS_PERCENT.

The default setting of this option is almost always appropriate. Occasionally,
Sybase Technical Support might ask you to increase this value.

See also Chapter 5, “Monitoring and Tuning Performance” in the Performance and
Tuning Guide

“SWEEPER_THREADS_PERCENT option” on page 451

WAIT_FOR_COMMIT option
Function Determines when foreign key integrity is checked as data is manipulated.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Alphabetical list of options

472 Sybase IQ

Description If this option is set to ON, the database does not check foreign key integrity
until the next COMMIT statement. Otherwise, all foreign keys not created with
the CHECK ON COMMIT option are checked as they are inserted, updated, or
deleted.

WD_DELETE_METHOD option
Function Specifies the algorithm used during a delete in a WD index.

Allowed values 0 – 3

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description This option chooses the algorithm used during a delete operation in a WD
index. When this option is not set or is set to 0, the delete method is selected
by the cost model. The cost model considers the CPU related costs as well as
I/O related costs in selecting the appropriate delete algorithm. The cost model
takes into account:

• Rows deleted

• Index size

• Width of index data type

• Cardinality of index data

• Available temporary cache

• Machine related I/O and CPU characteristics

• Available CPUs and threads

Allowed values for WD_DELETE_METHOD:

• 0: The delete method is selected by the cost model. Cost model only
selects either mid or large method for deletion.

• 1: Forces small method for deletion. Small method is useful when the
number of rows being deleted is a very small percentage of the total
number of rows in the table. Small delete can randomly access the index,
causing cache thrashing with large datasets.

CHAPTER 2 Database Options

Reference: Statements and Options 473

• 2: Forces large method for deletion. This algorithm scans the entire index
searching for rows to delete. Large method is useful when the number of
rows being deleted is a high percentage of the total number of rows in the
table.

• 3: Forces mid method for deletion. Mid method is a variation of the small
method that accesses the index in order and is generally faster than the
small method.

Example The following statement forces the large method for deletion from a WD index:

SET TEMPORARY OPTION WD_DELETE_METHOD = 2

See also For more details about these delete methods, see “Optimizing delete
operations” in Chapter 3, “Optimizing Queries and Deletions” in the
Performance and Tuning Guide.

Alphabetical list of options

474 Sybase IQ

Reference: Statements and Options 475

A
accessibility

documentation xvii
AES encryption algorithm

CREATE DATABASE statement 77
AGGREGATION_PREFERENCE option 348
aliases

for columns 295
in SELECT statement 293, 295
in the DELETE statement 169

ALL
keyword in SELECT statement 293

ALLOCATE DESCRIPTOR statement
syntax 4

ALLOW_NULLS_BY_DEFAULT option 349
ALLOW_READ_CLIENT_FILE option 352
ALTER DATABASE statement

syntax 6
ALTER DBSPACE statement

syntax 9
ALTER DOMAIN statement

syntax 13
ALTER EVENT statement

syntax 14
ALTER FUNCTION statement

syntax 16
ALTER INDEX statement

errors 18
syntax 17

ALTER LOGIN POLICY statement
syntax 19

ALTER PROCEDURE statement
syntax 20

ALTER SERVER statement
syntax 20

ALTER SERVICE statement
syntax 23

ALTER TABLE statement
syntax 25

ALTER USER statement 37
ALTER VIEW statement

RECOMPILE 31
syntax 38

altering
functions 16

ANSI_CLOSE_CURSORS_AT_ ROLLBACK option
349

ANSI_PERMISSIONS option 350
ANSI_UPDATE_CONSTRAINTS option 351
ANSINULL option 351
APPEND_LOAD option 353
archive backup

restoring 281
ASE_BINARY_DISPLAY

database option 353
ASE_FUNCTION_BEHAVIOR

database option 354
with HEXTOINT 354
with INTTOHEX 354

AT clause
CREATE EXISTING TABLE 95

AUDITING option 355
autoincrement

primary key values 187
AUTOINCREMENT column default 143

B
BACKUP statement

syntax 41
BEGIN DECLARE SECTION statement

syntax 157
BEGIN PARALLEL IQ statement 50
BEGIN TRANSACTION statement 51
BEGIN... END statement

syntax 47
binary data

controlling implicit conversion 363

Index

Index

476 Sybase IQ

bind variables
DESCRIBE statement 173
EXECUTE statement 187
OPEN statement 261

blanks
trimming trailing 240, 243

block fetches
FETCH statement 195

BLOCKING option 356, 357
BREAK statement

Transact-SQL 330
BT_PREFETCH_MAX_MISS option 357
B-tree pages 357
BTREE_PAGE_SPLIT_PAD_PERCENT option 358
buffer cache

partitioning 358
bulk load 230
BYE statement

syntax 192

C
CACHE_PARTITIONS option 358
CALL statement

syntax 55
Transact-SQL 188

case sensitivity 73
CASE statement

syntax 57
catalog store 204, 297
catalog temporary files

preventing connections from exceeding quota 465
certifications

documentation

updated xv
CHAINED option 360
chained transaction mode 53
character sets

client file bulk load 238
errors on conversions 426

CHECK conditions
about 144, 147

CHECK ON COMMIT clause
referential integrity 147

CHECKPOINT statement

syntax 58
CHECKPOINT_TIME option 360
CIS

remote data access 361
CIS_ROWSET_SIZE option

about 361
classes

installing 224
removing 277

CLEAR statement
syntax 59

client file bulk load
character sets 238
errors 238
rollback 238

CLOSE statement
syntax 59

CLOSE_ON_ENDTRANS option 361
code pages

DEFAULT_ISQL_ENCODING option 379
collation

CREATE DATABASE 75
SORT_COLLATION option 444

collations
client file bulk load 238

columns
aliases 295
altering 25
constraints 144
naming 1
renaming 34

command files
parameters 267

COMMENT ON LOGIN POLICY statement
syntax 61

COMMENT statement
syntax 61

COMMIT statement
syntax 62

COMMIT TRANSACTION statement
Transact-SQL 62

compatibility options
ASE_FUNCTION_BEHAVIOR 354
CONTINUE_AFTER_RAISERROR 361
CONVERSION_ERROR 362
ON_TSQL_ERROR 427

Index

Reference: Statements and Options 477

compliance
section 508 xvii

components
certifications xv

compound statements
about 47

concurrency
locking tables 252

CONFIGURE statement
syntax 64

CONNECT statement
syntax 65

connection_property function
about 334

connections
DBISQL 176
DEDICATED_TASK option 376
establishing 19, 410
logging 410

console
displaying messages on 257

CONTINUE statement
Transact-SQL 330

CONTINUE_AFTER_RAISE_ERROR option 361
control statements

CALL statement 55
CASE statement 57
IF statement 212
LEAVE statement 229
LOOP statement 255
Transact-SQL GOTO statement 205
Transact-SQL IF statement 213
Transact-SQL WHILE statement 330

conventions
documentation xvi, xvii
syntax xvi
typographic xvii

CONVERSION_ERROR option 362
CONVERSION_MODE option 363
CONVERT_VARCHAR_TO_1242 option 368
COOPERATIVE_COMMIT_TIMEOUT option 369
COOPERATIVE_COMMITS option 369
correlation names

in the DELETE statement 169
CREATE DATABASE

COLLATION clause 75

CREATE DATABASE statement
syntax 68

CREATE DBSPACE statement
syntax 81

CREATE DOMAIN statement
syntax 84

CREATE EVENT statement
syntax 86

CREATE EXISTING TABLE statement
proxy tables 93

CREATE EXTERNLOGIN statement
INSERT...LOCATION 218
syntax 96

CREATE FUNCTION statement
syntax 97

CREATE INDEX statement 50
syntax 105
table use 109

CREATE JOIN INDEX statement
syntax 114

CREATE LOGIN POLICY statement
syntax 117

CREATE MESSAGE statement
Transact-SQL 119

CREATE PROCEDURE statement
syntax 120
Transact-SQL 127

CREATE SCHEMA statement
syntax 129

CREATE SERVER statement
INSERT...LOCATION 218
syntax 130

CREATE SERVICE statement
syntax 132

CREATE TABLE statement
syntax 135

CREATE USER statement 151
CREATE VARIABLE statement

syntax 153
CREATE VIEW statement

syntax 155
creating

data types 84
proxy tables 93
stored procedures 120

creating as a group 50

Index

478 Sybase IQ

creator 2
CUBE operator 299

SELECT statement 299
CURSOR_WINDOW_ROWS option 370
cursors

closing 59
database options 335
declaring 159, 166
deleting rows from 171
DESCRIBE 173
fetching 193
FOR READ ONLY clause 160
FOR UPDATE clause 161
INSENSITIVE 159
inserting rows using 272
looping over 197
OPEN statement 260
sensitivity 163
updatable 163
WITH HOLD clause 261

D
data

exporting from tables into files 263
data type conversion

CONVERSION_MODE option 363
errors 362

data types
altering user-defined 13
creating 84
dropping user-defined 177
performance for joins 204

database
altering 6
upgrading 6

database files
altering 9
creating 81

database options
cursors 335
DEBUG_MESSAGES option 375
DEDICATED_TASK 376
duration 335
ESCAPE_CHARACTER 346

FLATTEN_SUBQUERIES 449
FORCE_DROP 385
FP_LOOKUP_SIZE_PPM 387
initial settings 338
maximum string length 310, 334
ODBC_DISTINGUISH_CHAR_AND_VARCHAR

426
ON_CHARSET_CONVERSION_FAILURE 426
POST_LOGIN_PROCEDURE 429
PRESERVE_SOURCE_FORMAT 432
RETURN_DATE_TIME_AS_STRING 442
SUBQUERY_FLATTENING_PERCENT 448
SUBQUERY_FLATTENING_PREFERENCE

449
SUPPRESS_TDS_DEBUGGING 450
TDS_EMPTY_STRING_IS_NULL 451

database servers
starting 314
stopping 317

databases
creating 68
deleting files 181
demo xvii
loading data into 230
sample xvii
starting 313
stopping 316

DATE_FIRST_DAY_OF_WEEK option 370
DATE_FORMAT option 371
DATE_ORDER option 373
DBCC_LOG_PROGRESS

database option 374
DBCC_PINNABLE_CACHE_PERCENT

database option 374
DBISQL

connecting to a database 67
options 310

dbo user ID
views owned by 178

dbspaces
altering 9
creating 81
dropping 177
setting offline 11
virtual backup 42

DEALLOCATE DESCRIPTOR

Index

Reference: Statements and Options 479

syntax 156
DEBUG_MESSAGES option

description 375
debugging

controlling MESSAGE statement behavior 257
DEBUG_MESSAGES option 375

declaration section 157
DECLARE CURSOR statement

syntax 159
Transact-SQL syntax 166

DECLARE LOCAL TEMPORARY TABLE statement
syntax 167

DECLARE statement
syntax 47, 158

DECLARE TEMPORARY TABLE statement
syntax 167

DEDICATED_TASK option
description 376

DEFAULT_DBSPACE option 376
DEFAULT_DISK_STRIPING option 378
DEFAULT_HAVING_SELECTIVITY_PPM option

378
DEFAULT_ISQL_ENCODING option

description 379
DEFAULT_KB__PER_STRIPE option 380
DEFAULT_LIKE_MATCH_SELECTIVITY_PPM

option 380
DEFAULT_LIKE_RANGE_SELECTIVITY_PPM

option 381
DELAYED_COMMIT_TIMEOUT option 382
DELAYED_COMMITS option 382
DELETE (positioned) statement

SQL syntax 171
DELETE statement

syntax 169
deleting

rows from cursors 171
deleting all rows from a table 319
delimiters

example 108
demo database xvii

iqdemo.db xvii
deprecated database options 339
DESCRIBE statement

long column names 175
syntax 173

descriptor
allocating memory 4
deallocating 156
DESCRIBE statement 173
EXECUTE statement 186
FETCH statement 193
getting 205
PREPARE statement 268

descriptor areas
UPDATE (positioned) statement 326

descriptors
setting 307

DISCONNECT statement
syntax 176

disjunction of subquery predicates 297, 448
DISK_STRIPING option 383
displaying

messages 257
DISTINCT keyword 293
documentation

accessibility features xvii
certifications xv
conventions xvi, xvii
on CD xiv
online xiv
SQL Anywhere xiii
Sybase IQ xi

domains 84
altering 13

DROP CONNECTION statement
syntax 180

DROP DATABASE statement
syntax 181

DROP DATATYPE statement
syntax 177

DROP DBSPACE statement
syntax 177

DROP DOMAIN statement
syntax 177

DROP EVENT
syntax 177

DROP EXTERNLOGIN statement
syntax 182

DROP FUNCTION statement
syntax 177

DROP INDEX statement

Index

480 Sybase IQ

syntax 177
DROP LOGIN POLICY statement

syntax 183
DROP MESSAGE

syntax 177
DROP PROCEDURE statement

syntax 177
DROP SERVER statement

syntax 183
DROP SERVICE statement

syntax 184
DROP statement

syntax 177
DROP STATEMENT statement

syntax 184
DROP TABLE

IDENTITY_INSERT option 178
DROP TABLE statement

syntax 177
DROP USER statement 185
DROP VARIABLE statement

syntax 186
DROP VIEW statement

restriction 178
syntax 177

dropping
users 287, 288
views 178

dropping partitions 33
dummy IQ table 204
DYNAMIC SCROLL cursors 159

E
EARLY_PREDICATE_EXECUTION option 383
EBFs xv
embedded SQL

DELETE (positioned) statement syntax 171
PUT statement syntax 272

encryption algorithms
CREATE DATABASE statement 77

END DECLARE STATEMENT
syntax 157

END keyword 47
END PARALLEL IQ statement 50

error handling
Transact-SQL procedures 427

errors
during character conversions 426
RAISERROR statement 274
SIGNAL statement 312
Transact-SQL procedures 427

escape character
OUTPUT SQL statement 263

ESCAPE_CHARACTER option 346
event handler

altering 14
creating 86
triggering 319

events
altering 14
creating 86
dropping 177
triggering 319

EXCEPTION statement
syntax 47

EXECUTE IMMEDIATE statement
syntax 190

EXECUTE statement
syntax 186
Transact-SQL 188

EXIT statement
syntax 192

exporting data
from tables into files 263
SELECT statement 291

EXTENDED_JOIN_SYNTAX option 384

F
Federal Rehabilitation Act

section 508 xvii
FETCH statement

syntax 193
files

dbspaces 9, 81
exporting data from tables into 263
setting offline 11
setting online 11

FIRST

Index

Reference: Statements and Options 481

to return one row 294
FLATTEN_SUBQUERIES option 449
FOR statement

syntax 197
FORCE_DROP option 385
FORCE_NO_SCROLL_CURSORS option 385
FORCE_UPDATABLE_CURSORS option 386
foreign keys

integrity constraints 146
unnamed 146

FORWARD TO statement
syntax 199

FP indexes
cache allocated 387

FP_LOOKUP_SIZE option 386
FP_LOOKUP_SIZE_PPM option 387
FP_PREDICATE_WORKUNIT_PAGES option

388
FPL_EXPRESSION_MEMORY_KB option 389
FROM clause 204, 297

SELECT statement 295
selects from stored procedure result sets 293
syntax 200

functions
altering 16
creating 97
dropping 177
user-defined 286

G
GARRAY_FILL_FACTOR_PERCENT option 389
GARRAY_PAGE_SPLIT_PAD_PERCENT option

390
GARRAY_PREFETCH_SIZE option 390, 391
GET DESCRIPTOR statement

syntax 205
Getting Started CD xiv
GOTO statement

Transact-SQL 205
GRANT statement

syntax 206
GROUP BY clause

SELECT statement 297
grouping 50

H
HASH_THRASHING_PERCENT option 392
heading name 295
HG index

multicolumn with NULL 112
NULL values 112

HG indexes
improving query performance 357

HG_DELETE_METHOD option 392
HG_SEARCH_RANGE option 393
host variables

declaring 157
syntax 1

I
IDENTITY column

and DROP TABLE 178
IDENTITY_ENFORCE_UNIQUENESS 394
IDENTITY_ENFORCE_UNIQUENESS option 394
IDENTITY_INSERT option

dropping tables 178
IF statement

syntax 212
Transact-SQL 213

IN_SUBQUERY_PREFERENCE option 400
INCLUDE statement

syntax 215
INDENTITY_INSERT option 394
INDEX_ADVISOR option 395
INDEX_ADVISOR_MAX_ROWS option 397
INDEX_PREFERENCE option 398
indexes 50

creating 105
dropping 177
lookup pages 387
multicolumn 110
multicolumn HG and NULL 112
naming 109
owner 109
table use 109
unique 107

indicator variables 1
INFER_SUBQUERY_PREDICATES option 399
INSERT

Index

482 Sybase IQ

syntax 216
wide 187

INSERT statement
ISOLATION LEVEL 220
WORD SKIP option 223

inserting
rows using cursors 272

INSTALL JAVA statement
syntax 224

Interactive SQL
OUTPUT statement syntax 263
specifying code page for reading and writing to files

379
Interactive SQL options

DEFAULT_ISQL_ENCODING 379
INTO clause

SELECT statement 295
IQ store

reserving space 412
reserving temporary space 464

IQ UNIQUE
alternative method 421

IQ UNIQUE column constraint 145
IQ UTILITIES statement

syntax 227
iq_dummy table 204
iqdemo.db

demo database xvii
IQGOVERN_PRIORITY option 401
IQGOVERN_PRIORITY_TIME option 401
ISOLATION LEVEL

INSERT statement 220
ISOLATION_LEVEL option 402
isysserver system table

remote servers for Component Integration Services
130

J
jar files

installing 224
removing 277

Java
installing classes 224
method signatures 125

removing classes 277
Java VM

starting 315
stopping 317

join columns
and data types 204

join indexes
creating 114
synchronizing 318

JOIN_EXPANSION_FACTOR option 402
JOIN_OPTIMIZATION option 403
JOIN_PREFERENCE option 405
JOIN_SIMPLIFICATION_THRESHOLD option 406
joins

deletes 169
FROM clause syntax 200
optimizing 402, 403, 406
optimizing join order 418
SELECT statement 295

K
Kerberos authentication

COMMENT ON KERBEROS LOGIN clause 61

L
labels

for statements 2, 205
LEAVE statement

syntax 229
LF_BITMAP_CACHE_KB option 407
LOAD TABLE statement

FROM clause deprecated 239
new syntax 243
ON PARTIAL INPUT ROW option 247
performance 243
QUOTES option 240
STRIP keyword 243
syntax 230
syntax changes 243
USING keyword 238
WORD SKIP option 246

LOAD_MEMORY_MB option 408

Index

Reference: Statements and Options 483

LOAD_ZEROLENGTH_ASNULL option 409
loads

scalability 358
LOCK TABLE

syntax 252
LOCKED option 410
locking

tables 252
locks

releasing with ROLLBACK 289
LOG_CONNECT database option 410
Login Management

POST_LOGIN_PROCEDURE option 429
Login Management facility 429
login policies

altering 19
commenting 61
creating 117
dropping 183

login policy options 410, 415, 416
login processing 429
LOGIN_MODE option 411
LOGIN_PROCEDURE option 411
logins

external 96
password expiration warning 429

logins. see connections
lookup pages

maximum 387
LOOP statement

syntax 255

M
MAIN_RESERVED_DBSPACE_MB option 412
maintenance

software xv
maintenance, product xv
MAX_CARTESIAN_RESULT option 413, 414,

415
MAX_CURSOR_COUNT option 415
MAX_DAYS_SINCE_LOGIN option 416
MAX_FAILED_LOGIN_ATTEMPTS option 416
MAX_HASH_ROWS option 416
MAX_IQ_GOVERN_PRIORITY option 401

MAX_IQ_THREADS_PER_CONNECTION option
417

MAX_IQ_THREADS_PER_TEAM option 417
MAX_JOIN_ENUMERATION option 418
MAX_QUERY_PARALLELISM option 418
MAX_STATEMENT_COUNT option 419
MAX_TEMP_SPACE_PER_CONNECTION option

420
examples 420

MAX_WARNINGS option 420
MDSR encryption algorithm

CREATE DATABASE statement 77
memory

prefetching 357
MESSAGE statement

setting DEBUG_MESSAGES option 375
SQL syntax 257

messages
creating 119
displaying 257
dropping 177

method signatures
Java 125

MIN_PASSWORD_LENGTH option 422
MINIMIZE_STORAGE option 421
monitor

in IQ UTILITIES statement 227
setting output file location 422
starting and stopping 227

MONITOR_OUTPUT_DIRECTORY option 422
multicolumn indexes 107, 110

deleting 33
multiplex databases

adding dbspaces 83
creating 73

multirow fetches
FETCH statement 195

multirow inserts 187
MySybase

creating personalized view xv
EBFs xv

N
named pipes 249

Index

484 Sybase IQ

NEAREST_CENTURY option 423
newline

WD index delimiter 108
NO RESULT SET clause 123
NO SCROLL cursors 159
NOEXEC option 424
NON_KEYWORDS database option 425
NOTIFY_MODULUS option 426
NULL

on multicolumn HG index 112
NULL value

in multicolumn HG index 112

O
ODBC

ODBC_DISTINGUISH_CHAR_AND_VARCHAR
option 426

static cursors 159
ODBC_DISTINGUISH_CHAR_AND_VARCHAR option

description 426
offline

dbspaces 11
ON EXCEPTION RESUME clause

about 124
stored procedures 427

ON_CHARSET_CONVERSION_FAILURE option
description 426

ON_TSQL_ERROR
database option 427

ON_TSQL_ERROR option
ON EXCEPTION RESUME 124

online
dbspaces 11

OPEN statement
syntax 260

optimization
defining existing tables and 94
MAX_HASH_ROWS option 416
MAX_JOIN_ENUMERATION option 418

option value
truncation 309, 334

options
AGGREGATION_PREFERENCE 348
ASE_FUNCTION_BEHAVIOR 354

CIS_ROWSET_SIZE 361
compatibility 345
CONTINUE_AFTER_RAISERROR 361
CONVERSION_ERROR 362
cursors 335
DEBUG_MESSAGES option 375
DEDICATED_TASK 376
DEFAULT_ISQL_ENCODING 379
deprecated 339
duration 335
ESCAPE_CHARACTER 346
EXTENDED_JOIN_SYNTAX 384
finding values 334
FLATTEN_SUBQUERIES 449
FORCE_DROP 385
FP_LOOKUP_SIZE 386
FP_LOOKUP_SIZE_PPM 387
general database 339
initial settings 338
introduction 333
list of 348
MAX_TEMP_SPACE_PER_CONNECTION 420
ODBC_DISTINGUISH_CHAR_AND_VARCHAR

426
ON_CHARSET_CONVERSION_FAILURE 426
ON_TSQL_ERROR 427
POST_LOGIN_PROCEDURE 429
precedence 335
PRESERVE_SOURCE_FORMAT 432
RETURN_DATE_TIME_AS_STRING 442
scope 335
setting 307, 333
setting DBISQL options 64
setting temporary 310, 347
SORT_COLLATION 444
sp_iqcheckoptions 334
SUBQUERY_CACHING_PREFERENCE 447
SUBQUERY_FLATTENING_PERCENT 448
SUBQUERY_FLATTENING_PREFERENCE

449
SUPPRESS_TDS_DEBUGGING 450
SYSOPTIONDEFAULTS system table 334
TDS_EMPTY_STRING_IS_NULL 451
Transact-SQL 303
unexpected behavior 204, 297

ORDER BY clause 300

Index

Reference: Statements and Options 485

OS_FILE_CACHE_BUFFERING option 428
out-of-space conditions

preventing 412
OUTPUT statement

SQL syntax 263
owner 2

P
packages

installing 224
removing 277

PARAMETERS statement
syntax 267

partition limit 358
partitions

dropping 33
PASSWORD_EXPIRY_ON_NEXT_LOGIN option

429
PASSWORD_GRACE_TIME option 429
PASSWORD_LIFE_TIME option 429
passwords

changing 208
encryption 219
expiration warning 429
minimum length 422

performance
getting more memory 357
impact of FROM clause 204

permissions
CONNECT authority 208
DBA authority 209
EXECUTE 210
GRANT statement 206
GROUP authority 209
MEMBERSHIP 209
RESOURCE authority 210
revoking 287

positioned DELETE statement
SQL syntax 171

POST_LOGIN_PROCEDURE option 429
PRECISION option 430
predicates

disjunction of 297, 448
PREFETCH option 430

PREFETCH_BUFFER_LIMIT option 431
PREFETCH_BUFFER_PERCENT option 431
PREFETCH_GARRAY_PERCENT option 432
PREFETCH_SORT_PERCENT option 432
prefetching

BT_PREFETCH_MAX_MISS 357
PREPARE statement

syntax 268
prepared statements

dropping 184
EXECUTE statement 186

PRESERVE_SOURCE_FORMAT option
description 432

primary keys
integrity constraints 145

PRINT statement
Transact-SQL syntax 270

procedures 269
creating 120
dropping 177
dynamic SQL statements 190
executing 188
proxy 124
RAISERROR statement 274
replicating 20
result sets 123
returning values from 286
sa_post_login_procedure 429
select from result sets 293
Transact-SQL CREATE PROCEDURE statement

127
variable result sets 122, 176

processing queries without 204, 297
product manuals xiv
projections

SELECT statement 293
PURGE clause

FETCH statement 195
PUT statement

SQL syntax 272
putting

rows into cursors 272

Index

486 Sybase IQ

Q
queries

for updatable cursors 163
improving performance 357
processing by Adaptive Server Anywhere 297
processing by SQL Anywhere 204
SELECT statement 291

QUERY_DETAIL option 419, 433
QUERY_PLAN option 433, 434
QUERY_PLAN_AFTER_RUN option 435
QUERY_PLAN_AS_HTML option 435
QUERY_PLAN_AS_HTML_DIRECTORY option 436
QUERY_PLAN_TEXT_ACCESS option 437
QUERY_PLAN_TEXT_CACHING option 438
QUERY_ROWS_RETURNED_LIMIT option 439
QUERY_TEMP_SPACE_LIMIT option 439
QUERY_TIMING option 440
querying tables 204, 297
QUIT statement

syntax 192
QUOTED_IDENTIFIER option 441

R
RAISERROR statement

CONTINUE_AFTER_RAISERROR option 361
syntax 274

read only
locking tables 252

READ statement
syntax 275

RECOVERY_TIME option 441
REFERENCES clause 31
RELEASE SAVEPOINT statement

syntax 276
remote data access 18, 21, 131, 326

CIS_ROWSET_SIZE 361
REMOVE statement

syntax 277
replication

of procedures 20
RESIGNAL statement

syntax 278
RESTORE statement

syntax 279

RESTRICT action 147
result sets

SELECT from 293
shape of 176
variable 122, 176, 269

RESUME statement
syntax 284

RETURN statement
syntax 286

RETURN_DATE_TIME_AS_STRING option
description 442

REVOKE statement
syntax 287

Rigndael encryption algorithm
CREATE DATABASE statement 77

ROLLBACK statement
syntax 289

ROLLBACK TO SAVEPOINT statement
syntax 290

ROLLUP operator 298
SELECT statement 298

ROW_COUNT option 442
rows

deleting from cursors 171
inserting using cursors 272

S
sa_conn_properties

using 334
sa_post_login_procedure 429
sample database xvii
SAVEPOINT statement

syntax 291
savepoints

name 2
RELEASE SAVEPOINT statement 276
ROLLBACK TO SAVEPOINT statement 290

SCALE option 443
scheduled events

WAITFOR statement 328
scheduling

WAITFOR 328
schema

creating 129

Index

Reference: Statements and Options 487

SCROLL cursors 159
section 508

compliance xvii
security

auditing 355
minimum password length 422

SELECT * 31
SELECT INTO

returning results in a base table 293
returning results in a host variable 293
returning results in a temporary table 293

select list
DESCRIBE statement 173
SELECT statement 295

SELECT statement
FIRST 294
FROM clause syntax 200
syntax 291
TOP 294

separators
in WD index 108

servers
altering web services 23
creating 130

services
adding 132

SET CONNECTION statement
syntax 306

SET DESCRIPTOR statement
syntax 307

SET OPTION statement
DBISQL syntax 347
syntax 307, 310
using 333

SET SQLCA statement
syntax 311

SET statement
syntax 301
Transact-SQL 303

SET TEMPORARY OPTION statement
DBISQL syntax 347
syntax 307, 310

setting dbspaces online 11
SIGNAL statement

syntax 312
signatures

Java methods 125
SORT_COLLATION

database option 444
sp_addmessage 119
sp_dropuser procedure 288
sp_iqcheckoptions system procedure 334
sp_login_environment procedure 411
sp_tsql_environment procedure 411
SQL

common syntax elements 1
statement indicators 4
syntax conventions 3

SQL descriptor area
inserting rows using cursors 272

SQL statements
ALTER FUNCTION syntax 16
DELETE (positioned) syntax 171
MESSAGE syntax 257
OUTPUT syntax 263
PUT syntax 272
UPDATE (positioned) syntax 326
WAITFOR syntax 328

SQL variables
creating 153
dropping 186
SET VARIABLE statement 301

SQL_FLAGGER_ERROR_LEVEL option 446
SQL_FLAGGER_WARNING_LEVEL option 446
SQLCA

INCLUDE statement 215
SET SQLCA statement 311

SQLDA
allocating memory 4
deallocating 156
DESCRIBE statement 173
Execute statement 186
INCLUDE statement 215
inserting rows using cursors 272
setting 307
UPDATE (positioned) statement 326

standards
section 508 compliance xvii

START DATABASE statement
syntax 313

START ENGINE statement
syntax 314

Index

488 Sybase IQ

START JAVA statement
syntax 315

starting
database servers 314
databases 313
Java VM 315

statement indicators 4
statement labels 2, 205
statements

ALTER FUNCTION syntax 16
DELETE (positioned) syntax 171
MESSAGE syntax 257
OUTPUT syntax 263
PUT syntax 272
UPDATE (positioned) syntax 326
WAITFOR syntax 328

static cursors
declaring 159

STOP DATABASE statement
syntax 316

STOP ENGINE statement
syntax 317

STOP JAVA statement
syntax 317

stopping
Java VM 317

stopping databases 316
storage space

minimizing 421
stored procedures

creating 120
proxy 124
selecting into result sets 293

STRING_RTRUNCATION option 447
strings

length for database options 310, 334
STRIP

LOAD TABLE keyword 243
STRIP option 240, 243
strong encryption

CREATE DATABASE statement 77
subqueries

disjunction of 297, 448
SUBQUERY_CACHING_PREFERENCE option 447
SUBQUERY_FLATTENING_PERCENT option 448

SUBQUERY_FLATTENING_PREFERENCE option
449

SUBQUERY_PLACEMENT_PREFERENCE database
option 450

support, technical xviii
SUPPRESS_TDS_DEBUGGING option

description 450
SWEEPER_THREADS_PERCENT database option

451
SyBooks CD xiv
SYNCHRONIZE JOIN INDEX statement

syntax 318
syntax

common elements 1
documentation conventions xvi

syntax conventions 3
syntax errors

joins 384
SYSTEM dbspace 204, 297
system tables

DUMMY 204
PRESERVE_SOURCE_FORMAT 432
source column 432
SYSFILE 284

SYSWEBSERVICE system table
adding servers 23

T
tab

WD index delimiter 108
table constraints 142
tables

altering 25
altering definition 32
creating 135
creating proxy 93
dropping 177
exporting data into files from 263
GLOBAL TEMPORARY 135
iq_dummy 204
loading 230
locking 252
renaming 34
temporary 150, 167

Index

Reference: Statements and Options 489

truncating 319
TDS_EMPTY_STRING_IS_NULL option

description 451
technical support xviii
TEMP_EXTRACT_APPEND option 452
TEMP_EXTRACT_BINARY option 452
TEMP_EXTRACT_COLUMN_DELIMITER option

453
TEMP_EXTRACT_DIRECTORY option 454
TEMP_EXTRACT_ESCAPE_QUOTES option 455
TEMP_EXTRACT_NAME1 option 456
TEMP_EXTRACT_NAME2 option 456
TEMP_EXTRACT_NAME3 option 456
TEMP_EXTRACT_NAME4 option 456
TEMP_EXTRACT_NAME5 option 456
TEMP_EXTRACT_NAME6 option 456
TEMP_EXTRACT_NAME7 option 456
TEMP_EXTRACT_NAME8 option 456
TEMP_EXTRACT_NAMEn option 456
TEMP_EXTRACT_NULL_AS_EMPTY option

458
TEMP_EXTRACT_NULL_AS_ZERO option 458
TEMP_EXTRACT_QUOTE option 459
TEMP_EXTRACT_QUOTES option 460
TEMP_EXTRACT_QUOTES_ALL option 461
TEMP_EXTRACT_ROW_DELIMITER option 461
TEMP_EXTRACT_SIZE1 option 462
TEMP_EXTRACT_SIZE2 option 462
TEMP_EXTRACT_SIZE3 option 462
TEMP_EXTRACT_SIZE4 option 462
TEMP_EXTRACT_SIZE5 option 462
TEMP_EXTRACT_SIZE6 option 462
TEMP_EXTRACT_SIZE7 option 462
TEMP_EXTRACT_SIZE8 option 462
TEMP_EXTRACT_SIZEn options 462
TEMP_EXTRACT_SWAP option 463
TEMP_RESERVED_DBSPACE_MB

database option 464
TEMP_SPACE_LIMIT_CHECK

database option 465
temporary dbspaces

creating 82
temporary files (Catalog)

TEMP_SPACE_LIMIT_CHECK 465
temporary options 333
temporary space

reserved for IQ store 464
temporary tables 150

creating 135
declaring 167
populating 292, 295

TIME_FORMAT option 466
TIMESTAMP_FORMAT option 466
TOP

specify number of rows 294
TOP_NSORT_CUTOFF_PAGES option 468
trailing blanks

trimming 240, 243
transaction log

TRUNCATE TABLE statement 320
transaction management 62

BEGIN TRANSACTION statement 51
in Transact-SQL 62

transaction modes
chained and unchained 53

transactions
committing 62
ROLLBACK statement 289
ROLLBACK TO SAVEPOINT statement 290
SAVEPOINT statement 291

Transact-SQL
COMMIT TRANSACTION 62
compatibility options 345
CREATE MESSAGE 119
CREATE PROCEDURE statement 127
CREATE SCHEMA statement 129
error handling in 274
executing stored procedures 188
procedures 127
SET statement 303

TRIGGER EVENT
syntax 319

TRIM_PARTIAL_MBC option 468
trimming trailing blanks 240, 243
TRUNCATE TABLE statement

syntax 319
TSQL_VARIABLES option 469
typographic

conventions xvii
typography

documentation xvi

Index

490 Sybase IQ

U
unchained transaction mode 53
UNION operation 321
unique

constraint 142, 143
unique indexes 107
updatable cursors 163
UPDATE (positioned) statement

SQL syntax 326
upgrading databases 6
user IDs

changing passwords 208
revoking 287

USER_RESOURCE_RESERVATION option 469
user-defined data types

altering 13
CREATE DOMAIN statement 84
dropping 177

user-defined functions
RETURN statement 286

users
altering 37
creating 151
dropping 185, 287

USING
LOAD TABLE keyword 238

USING FILE clause
LOAD TABLE statement 238

Utilities statement 227

V
VARCHAR data type

converting to compressed format 368
variable result sets

from procedures 122, 176, 269
variables

creating 153
declaring 158
dropping 186
select into 295
SET VARIABLE statement 301

VERIFY_PASSWORD_FUNCTION option 469
views

about 155

altered tables in 31
altering 38
creating 155
deleting 178
dropping 177
indexes 109
MySybase, creating personalized xv

W
WAIT_FOR_COMMIT option 471
WAITFOR statement

SQL syntax 328
WASH_AREA_BUFFERS_PERCENT database option

471
WD index

CHAR columns 109
delimiters 107

WD_DELETE_METHOD option 472
WHENEVER statement

syntax 329
WHERE clause

SELECT statement 297
WHILE statement

syntax 255
Transact-SQL 330

wide inserts 187
WITH HOLD clause

OPEN statement 260
WORD SKIP option

INSERT statement 223
LOAD TABLE statement 246

	Reference: Statements and Options
	About This Book
	CHAPTER 1 SQL Statements
	Using the SQL statement reference
	Common elements in SQL syntax
	Syntax conventions
	Statement applicability indicators

	ALLOCATE DESCRIPTOR statement [ESQL]
	ALTER DATABASE statement
	ALTER DBSPACE statement
	ALTER DOMAIN statement
	ALTER EVENT statement
	ALTER FUNCTION statement
	ALTER INDEX statement
	ALTER LOGIN POLICY statement
	ALTER PROCEDURE statement
	ALTER SERVER statement
	ALTER SERVICE statement
	ALTER TABLE statement
	ALTER USER statement
	ALTER VIEW statement
	BACKUP statement
	BEGIN … END statement
	BEGIN PARALLEL IQ … END PARALLEL IQ statement
	BEGIN TRANSACTION statement
	CALL statement
	CASE statement
	CHECKPOINT statement
	CLEAR statement [DBISQL]
	CLOSE statement [ESQL] [SP]
	COMMENT statement
	COMMIT statement
	CONFIGURE statement [DBISQL]
	CONNECT statement [ESQL] [DBISQL]
	CREATE DATABASE statement
	CREATE DBSPACE statement
	CREATE DOMAIN statement
	CREATE EVENT statement
	CREATE EXISTING TABLE statement
	CREATE EXTERNLOGIN statement
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE JOIN INDEX statement
	CREATE LOGIN POLICY statement
	CREATE MESSAGE statement [T-SQL]
	CREATE PROCEDURE statement
	CREATE PROCEDURE statement [T-SQL]
	CREATE SCHEMA statement
	CREATE SERVER statement
	CREATE SERVICE statement
	CREATE TABLE statement
	CREATE USER statement
	CREATE VARIABLE statement
	CREATE VIEW statement
	DEALLOCATE DESCRIPTOR statement [ESQL]
	Declaration section [ESQL]
	DECLARE statement
	DECLARE CURSOR statement [ESQL] [SP]
	DECLARE CURSOR statement [T-SQL]
	DECLARE LOCAL TEMPORARY TABLE statement
	DELETE statement
	DELETE (positioned) statement [ESQL] [SP]
	DESCRIBE statement [ESQL]
	DISCONNECT statement [DBISQL]
	DROP statement
	DROP CONNECTION statement
	DROP DATABASE statement
	DROP EXTERNLOGIN statement
	DROP LOGIN POLICY statement
	DROP SERVER statement
	DROP SERVICE statement
	DROP STATEMENT statement [ESQL]
	DROP USER statement
	DROP VARIABLE statement
	EXECUTE statement [ESQL]
	EXECUTE statement [T-SQL]
	EXECUTE IMMEDIATE statement [ESQL] [SP]
	EXIT statement [DBISQL]
	FETCH statement [ESQL] [SP]
	FOR statement
	FORWARD TO statement
	FROM clause
	GET DESCRIPTOR statement [ESQL]
	GOTO statement [T-SQL]
	GRANT statement
	IF statement
	IF statement [T-SQL]
	INCLUDE statement [ESQL]
	INSERT statement
	INSTALL JAVA statement
	IQ UTILITIES statement
	LEAVE statement
	LOAD TABLE statement
	LOCK TABLE statement
	LOOP statement
	MESSAGE statement
	OPEN statement [ESQL] [SP]
	OUTPUT statement [DBISQL]
	PARAMETERS statement [DBISQL]
	PREPARE statement [ESQL]
	PRINT statement [T-SQL]
	PUT statement [ESQL]
	RAISERROR statement [T-SQL]
	READ statement [DBISQL]
	RELEASE SAVEPOINT statement
	REMOVE statement
	RESIGNAL statement
	RESTORE statement
	RESUME statement
	RETURN statement
	REVOKE statement
	ROLLBACK statement
	ROLLBACK TO SAVEPOINT statement
	SAVEPOINT statement
	SELECT statement
	SET statement [ESQL]
	SET statement [T-SQL]
	SET CONNECTION statement [DBISQL] [ESQL]
	SET DESCRIPTOR statement [ESQL]
	SET OPTION statement
	SET OPTION statement [DBISQL]
	SET SQLCA statement [ESQL]
	SIGNAL statement
	START DATABASE statement [DBISQL]
	START ENGINE statement [DBISQL]
	START JAVA statement
	STOP DATABASE statement [DBISQL]
	STOP ENGINE statement [DBISQL]
	STOP JAVA statement
	SYNCHRONIZE JOIN INDEX statement
	TRIGGER EVENT statement
	TRUNCATE TABLE statement
	UNION operation
	UPDATE statement
	UPDATE (positioned) statement [ESQL] [SP]
	WAITFOR statement
	WHENEVER statement [ESQL]
	WHILE statement [T-SQL]

	CHAPTER 2 Database Options
	Introduction to database options
	Setting options
	Finding option settings
	Scope and duration of database options
	Setting public options
	Deleting option settings
	Option classification
	Initial option settings
	Deprecated database options

	General database options
	Transact-SQL compatibility options
	DBISQL options
	Alphabetical list of options
	AGGREGATION_PREFERENCE option
	ALLOW_NULLS_BY_DEFAULT option [TSQL]
	ANSI_CLOSE_CURSORS_ON_ROLLBACK option [TSQL]
	ANSI_PERMISSIONS option [TSQL]
	ANSINULL option [TSQL]
	ANSI_UPDATE_CONSTRAINTS option
	ALLOW_READ_CLIENT_FILE option
	APPEND_LOAD option
	ASE_BINARY_DISPLAY option
	ASE_FUNCTION_BEHAVIOR option
	AUDITING option [database]
	BIT_VECTOR_PINNABLE_CACHE_PERCENT option
	BLOCKING option
	BT_PREFETCH_MAX_MISS option
	BT_PREFETCH_SIZE option
	BTREE_PAGE_SPLIT_PAD_PERCENT option
	CACHE_PARTITIONS option
	CHAINED option [TSQL]
	CHECKPOINT_TIME option
	CIS_ROWSET_SIZE option
	CLOSE_ON_ENDTRANS option [TSQL]
	CONTINUE_AFTER_RAISERROR option [TSQL]
	CONVERSION_ERROR option [TSQL]
	CONVERSION_MODE option
	CONVERT_VARCHAR_TO_1242 option
	COOPERATIVE_COMMIT_TIMEOUT option
	COOPERATIVE_COMMITS option
	CURSOR_WINDOW_ROWS option
	DATE_FIRST_DAY_OF_WEEK option
	DATE_FORMAT option
	DATE_ORDER option
	DBCC_LOG_PROGRESS option
	DBCC_PINNABLE_CACHE_PERCENT option
	DEBUG_MESSAGES option
	DEDICATED_TASK option
	DEFAULT_DBSPACE option
	DEFAULT_DISK_STRIPING option
	DEFAULT_HAVING_SELECTIVITY_PPM option
	DEFAULT_ISQL_ENCODING option [DBISQL]
	DEFAULT_KB_PER_STRIPE option
	DEFAULT_LIKE_MATCH_SELECTIVITY_PPM option
	DEFAULT_LIKE_RANGE_SELECTIVITY_PPM option
	DELAYED_COMMIT_TIMEOUT option
	DELAYED_COMMITS option
	DISABLE_RI_CHECK option
	EARLY_PREDICATE_EXECUTION option
	EXTENDED_JOIN_SYNTAX option
	FORCE_DROP option
	FORCE_NO_SCROLL_CURSORS option
	FORCE_UPDATABLE_CURSORS option
	FP_LOOKUP_SIZE option
	FP_LOOKUP_SIZE_PPM option
	FP_PREDICATE_WORKUNIT_PAGES option
	FPL_EXPRESSION_MEMORY_KB option
	GARRAY_FILL_FACTOR_PERCENT option
	GARRAY_INSERT_PREFETCH_SIZE option
	GARRAY_PAGE_SPLIT_PAD_PERCENT option
	GARRAY_RO_PREFETCH_SIZE option
	HASH_PINNABLE_CACHE_PERCENT option
	HASH_THRASHING_PERCENT option
	HG_DELETE_METHOD option
	HG_SEARCH_RANGE option
	IDENTITY_ENFORCE_UNIQUENESS option
	IDENTITY_INSERT option
	INDEX_ADVISOR option
	INDEX_ADVISOR_MAX_ROWS option
	INDEX_PREFERENCE option
	INFER_SUBQUERY_PREDICATES option
	IN_SUBQUERY_PREFERENCE option
	IQGOVERN_MAX_PRIORITY option
	IQGOVERN_PRIORITY option
	IQGOVERN_PRIORITY_TIME option
	ISOLATION_LEVEL option
	JOIN_EXPANSION_FACTOR option
	JOIN_OPTIMIZATION option
	JOIN_PREFERENCE option
	JOIN_SIMPLIFICATION_THRESHOLD option
	LARGE_DOUBLES_ACCUMULATOR option
	LF_BITMAP_CACHE_KB option
	LOAD_MEMORY_MB option
	LOAD_ZEROLENGTH_ASNULL option
	LOCKED option
	LOG_CONNECT option
	LOG_CURSOR_OPERATIONS option
	LOGIN_MODE option
	LOGIN_PROCEDURE option
	MAIN_RESERVED_DBSPACE_MB option
	MAX_CARTESIAN_RESULT option
	MAX_CLIENT_NUMERIC_PRECISION option
	MAX_CLIENT_NUMERIC_SCALE option
	MAX_CONNECTIONS option
	MAX_CUBE_RESULT option
	MAX_CURSOR_COUNT option
	MAX_DAYS_SINCE_LOGIN option
	MAX_FAILED_LOGIN_ATTEMPTS option
	MAX_HASH_ROWS option
	MAX_IQ_THREADS_PER_CONNECTION option
	MAX_IQ_THREADS_PER_TEAM option
	MAX_JOIN_ENUMERATION option
	MAX_QUERY_PARALLELISM option
	MAX_QUERY_TIME option
	MAX_STATEMENT_COUNT option
	MAX_TEMP_SPACE_PER_CONNECTION option
	MAX_WARNINGS option
	MINIMIZE_STORAGE option
	MIN_PASSWORD_LENGTH option
	MONITOR_OUTPUT_DIRECTORY option
	NEAREST_CENTURY option [TSQL]
	NOEXEC option
	NON_ANSI_NULL_VARCHAR option
	NON_KEYWORDS option [TSQL]
	NOTIFY_MODULUS option
	ODBC_DISTINGUISH_CHAR_AND_VARCHAR option
	ON_CHARSET_CONVERSION_FAILURE option
	ON_TSQL_ERROR option [TSQL]
	OS_FILE_CACHE_BUFFERING option
	PASSWORD_EXPIRY_ON_NEXT_LOGIN option
	PASSWORD_GRACE_TIME option
	PASSWORD_LIFE_TIME option
	POST_LOGIN_PROCEDURE option
	PRECISION option
	PREFETCH option
	PREFETCH_BUFFER_LIMIT option
	PREFETCH_BUFFER_PERCENT option
	PREFETCH_GARRAY_PERCENT option
	PREFETCH_SORT_PERCENT option
	PRESERVE_SOURCE_FORMAT option [database]
	QUERY_DETAIL option
	QUERY_NAME option
	QUERY_PLAN option
	QUERY_PLAN_AFTER_RUN option
	QUERY_PLAN_AS_HTML option
	QUERY_PLAN_AS_HTML_DIRECTORY option
	QUERY_PLAN_TEXT_ACCESS option
	QUERY_PLAN_TEXT_CACHING option
	QUERY_ROWS_RETURNED_LIMIT option
	QUERY_TEMP_SPACE_LIMIT option
	QUERY_TIMING option
	QUOTED_IDENTIFIER option [TSQL]
	RECOVERY_TIME option
	RETURN_DATE_TIME_AS_STRING option
	ROW_COUNT option
	SCALE option
	SIGNIFICANTDIGITSFORDOUBLEEQUALITY option
	SORT_COLLATION option
	SORT_PINNABLE_CACHE_PERCENT option
	SQL_FLAGGER_ERROR_LEVEL option [TSQL]
	SQL_FLAGGER_WARNING_LEVEL option [TSQL]
	STRING_RTRUNCATION option [TSQL]
	SUBQUERY_CACHING_PREFERENCE option
	SUBQUERY_FLATTENING_PERCENT option
	SUBQUERY_FLATTENING_PREFERENCE option
	SUBQUERY_PLACEMENT_PREFERENCE option
	SUPPRESS_TDS_DEBUGGING option
	SWEEPER_THREADS_PERCENT option
	TDS_EMPTY_STRING_IS_NULL option [database]
	TEMP_EXTRACT_APPEND option
	TEMP_EXTRACT_BINARY option
	TEMP_EXTRACT_COLUMN_DELIMITER option
	TEMP_EXTRACT_DIRECTORY option
	TEMP_EXTRACT_ESCAPE_QUOTES option
	TEMP_EXTRACT_NAMEn options
	TEMP_EXTRACT_NULL_AS_EMPTY option
	TEMP_EXTRACT_NULL_AS_ZERO option
	TEMP_EXTRACT_QUOTE option
	TEMP_EXTRACT_QUOTES option
	TEMP_EXTRACT_QUOTES_ALL option
	TEMP_EXTRACT_ROW_DELIMITER option
	TEMP_EXTRACT_SIZEn options
	TEMP_EXTRACT_SWAP option
	TEMP_RESERVED_DBSPACE_MB option
	TEMP_SPACE_LIMIT_CHECK option
	TIME_FORMAT option
	TIMESTAMP_FORMAT option
	TOP_NSORT_CUTOFF_PAGES option
	TRIM_PARTIAL_MBC option
	TSQL_VARIABLES option [TSQL]
	USER_RESOURCE_RESERVATION option
	VERIFY_PASSWORD_FUNCTION option
	WASH_AREA_BUFFERS_PERCENT option
	WAIT_FOR_COMMIT option
	WD_DELETE_METHOD option

	Index

