
UltraLite®
C and C++ Programming

Version 12.0.1

January 2012

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Version 12.0.1
January 2012

Copyright © 2012 iAnywhere Solutions, Inc. Portions copyright © 2012 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the
documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... v

UltraLite C/C++ ... 1

System requirements and supported platforms ... 1
UltraLite C/C++ API architecture .. 1
Developing embedded SQL applications .. 2

Application development .. 5

UltraLite C++ application development ... 5
UltraLite C++ application development using embedded SQL 27
UltraLite application development for Windows Mobile 56

Tutorials .. 65

Tutorial: Building a Windows application using the C++ API 65
Tutorial: Building an iPhone application using the C++ API 75

API reference .. 101

UltraLite C/C++ common API reference ... 101
UltraLite C/C++ API reference ... 119
UltraLite Embedded SQL API reference .. 237

Index ... 285

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 iii

iv Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

About this book
This book describes UltraLite C and C++ programming interfaces. With UltraLite, you can develop and
deploy database applications to handheld, or mobile devices, including iPhone and iPad, and embedded
devices.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 v

vi Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

UltraLite C/C++
The C/C++ interfaces provide the following benefits for UltraLite developers:

● A small, high-performance database store with native synchronization.

● The power, efficiency, and flexibility of the C or C++ language.

● The ability to deploy applications on Windows Mobile, Windows desktop platforms, Linux desktop,
embedded Linux, iPhone and iPad.

All UltraLite C/C++ interfaces utilize the same UltraLite run time engine. The APIs each provide access
to the same underlying functionality.

See also
● “UltraLite database creation” [UltraLite - Database Management and Reference]

System requirements and supported platforms
Development platforms

To develop applications using UltraLite C++, you require the following:

● A Microsoft Windows, Linux, or Mac desktop as a development platform.

● A supported Microsoft or GNU C/C++ compiler.

Target platforms
UltraLite C/C++ supports the following target platforms:

● Windows Mobile 5.0 or later

● Windows XP or later

● Linux

● Embedded Linux

● iOS 3 and later (iPhone and iPad)

● Mac

UltraLite C/C++ API architecture
The UltraLite C/C++ API architecture is defined in the ulcpp.h header file. The following list describes
some of the commonly used objects:

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 1

● ULDatabaseManager Provides methods for managing database connections, such as
CreateDatabase and OpenConnection.

● ULConnection Represents a connection to an UltraLite database. You can create one or more
ULConnection objects.

● ULTable Provides direct access to tables in the database.

● ULPreparedStatement, ULResultSet, and ULResultSetSchema Create Dynamic SQL
statements, make queries and execute INSERT, UPDATE, and DELETE statements, and attain
programmatic control over database result sets.

See also
● “UltraLite C/C++ API reference” on page 119

Developing embedded SQL applications
When developing embedded SQL applications, you mix SQL statements with standard C or C++ source
code. To develop embedded SQL applications you should be familiar with the C or C++ programming
language.

The development process for embedded SQL applications is as follows:

1. Design your UltraLite database.

2. Write your source code in an embedded SQL source file, which typically has extension .sqc.

When you need data access in your source code, use the SQL statement you want to execute, prefixed
by the EXEC SQL keywords. For example:

EXEC SQL BEGIN DECLARE SECTION
 int cost
 char pname[31];
EXEC SQL END DECLARE SECTION
EXEC SQL SELECT price, prod_name
 INTO :cost, :pname
 FROM ULProduct
 WHERE prod_id= :pid;

3. Preprocess the .sqc files.

SQL Anywhere includes a SQL preprocessor (sqlpp), which reads the .sqc files and generates .cpp
files. These files hold function calls to the UltraLite runtime library.

4. Compile your .cpp files.

5. Link the .cpp files.

You must link the files with the UltraLite runtime library.

UltraLite C/C++

2 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Embedded SQL application building” on page 54
● “UltraLite C++ application development using embedded SQL” on page 27

Developing embedded SQL applications

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 3

4 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Application development
This section provides development notes for the UltraLite C/C++ API.

UltraLite C++ application development

Quick start to UltraLite C++ application development
The following procedure is generally used when creating an application using the UltraLite C++ API:

1. Initialize a ULDatabaseManager object.

2. (Optional) Enable features in the UltraLite runtime library.

3. Use an UltraLite database. You can open a connection to an existing database, create a new one, drop
an existing database, or validate that an existing database has no file corruption.

4. Finalize the ULDatabaseManager object.

The ULDatabaseManager object should only be initialized once in your application and then finalized
when your application is terminating. All methods on the ULDatabaseManager class are static. Use the
ULError class to get error information throughout your UltraLite application.

See also
● “ULDatabaseManager class [UltraLite C++]” on page 145
● “Build and deploy UltraLite C++ applications” on page 23

iPhone and Mac OS X considerations

Development environment
The development environment for iPhone and Mac OS X is Xcode.

Build settings
To reference the UltraLite header files and library it is convenient to create a user-defined build setting set
to the location of the SQL Anywhere installation directory. For example, set SQLANY_ROOT to /
Applications/SQLAnywhere12. To create this setting, open the project editor's Build pane and click Add
User-Defined Setting and enter the name and value.

Include files
To find the UltraLite include files, add $(SQLANY_ROOT)/sdk/include to the User Header Search Paths
(USER_HEADER_SEARCH_PATHS) build setting.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 5

Unsupported MobiLink client network protocol options
UltraLite for iPhone and/or Mac OS X does not support the following MobiLink client network protocol
options:

● certificate_company
● certificate_unit
● client_port
● identity
● identity_password
● network_leave_open
● network_name

Encryption
To use end-to-end encryption when synchronizing Mac OS X and iPhone UltraLite clients with a
MobiLink server, you must encapsulate your public keys in a PEM encoded X509 certificate (as opposed
to a PEM public key file) and supply an E2EE private key. To create a PEM encoded X509 certificate
with an E2EE private key, it is recommended that you use the certificate creation utility, createcert. After
you obtain an E2EE private key, specify the -x option when you start the MobiLink server and assign the
key to the e2ee_private_key option. To synchronize the UltraLite client database with the MobiLink
server, run the UltraLite synchronization utility, ulsync, and assign the E2EE public key to the
e2ee_public_key connection option. Extracting the public key from the certificate is necessary when using
both iPhone and non-iPhone clients together. When developing for iPhone UltraLite clients, the UltraLite
Synchronization utility searches for the certificate file in the Main Resource Bundle (mainBundle) of the
iPhone development package if the trusted_certificate or e2ee_public_key options are assigned. You must
include the certificate in the Resources folder in your Xcode project.

The following encryption standards are not supported:

● ECC encryption (only RSA)
● FIPS-certified encryption

Debugging iPhone applications
The Xcode debugger (GDB) has support for stepping through and breaking on longjmp() calls.
Applications typically do not use longjmp, but the UltraLite runtime library does internally (sometimes,
when an error is signaled, for instance). This may cause problems when tracing through application code
and stepping over UltraLite calls. If you step over an UltraLite call and get an error from the debugger:
Restart the program, set a breakpoint after the problematic line and, instead of stepping over the
problematic line, use the Continue command - this will have the same effect because the debugger will
stop at the following breakpoint, but should avoid problems related to longjmp calls. The most likely
place to encounter this is when using OpenConnection() to open an existing database or determine that
the database doesn't exist (an error is signaled when the database doesn't exist).

Application development

6 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “e2ee_public_key” [MobiLink - Client Administration]
● “Tutorial: Building an iPhone application using the C++ API” on page 75
● “MobiLink client network protocol options” [MobiLink - Client Administration]
● “UltraLite database security” [UltraLite - Database Management and Reference]
● “Certificate Creation utility (createcert)” [SQL Anywhere Server - Database Administration]
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “UltraLite Synchronization utility (ulsync)” [UltraLite - Database Management and Reference]

Connecting to an UltraLite database
UltraLite applications must connect to the database before performing operations on its data. This section
describes how to connect to an UltraLite database.

The ULDatabaseManager class is used to open a connection to a database. The ULDatabaseManager class
returns a non-null ULConnection object when a connection is established. Use the ULConnection object
to perform the following tasks:

● Commit or roll back transactions.

● Synchronize data with a MobiLink server.

● Access tables in the database.

● Work with SQL statements.

● Handle errors in your application.

Ensure you specify a writable path for the database file. Use the NSSearchPathForDirectoriesInDomains
function to query the NSDocumentDirectory, for example.

Note
You can find sample code in the %SQLANYSAMP12%\UltraLite\CustDB\ directory.

Connect to an UltraLite database

1. Initialize the ULDatabaseManager object and enable features in UltraLite using the following code:

if(!ULDatabaseManager::Init()) {
 return 0;
}
ULDatabaseManager::EnableAesDBEncryption();

// Use ULDatabaseManager.Fini() when terminating the app.

2. Open a connection to an existing database or create a new database if the specified database file does
not exist using the following code:

ULConnection * conn;
ULError ulerr;

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 7

conn =
ULDatabaseManager::OpenConnection("dbf=sample.udb;dbkey=aBcD1234",
&ulerr);
if(conn == NULL) {
 if(ulerr.GetSQLCode() == SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
 conn =
ULDatabaseManager::CreateDatabase("dbf=sample.udb;dbkey=aBcD1234",
&ulerr);
 if(conn == NULL) {
 // write code that uses ulerr to determine what happened
 return 0;
 }
 // add code to create the schema for your database
 } else {
 // write code that uses ulerr to determine what happened
 return 0;
 }
}
assert(conn != NULL);

In this step, you declare a ULError object that contains error information in case the connection is not
successful.

Multi-threaded applications
Each connection and all objects created from it should be used by a single thread. If an application
requires multiple threads accessing the UltraLite database, each thread requires a separate connection.

See also
● “ULConnection class [UltraLite C++]” on page 119
● “ULDatabaseManager class [UltraLite C++]” on page 145
● “ULError class [UltraLite C++]” on page 159

Data creation and modification using SQL statements

UltraLite applications can access table data by executing SQL statements or using the ULTable class. This
section describes data access using SQL statements.

This section explains how to perform the following tasks using SQL:

● Inserting, deleting, and updating rows.

● Retrieving rows to a result set.

● Scrolling through the rows of a result set.

This section does not describe the SQL language.

See also
● “UltraLite SQL statements” [UltraLite - Database Management and Reference]
● “Data creation and modification using the ULTable class” on page 15

Application development

8 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Modifying data using INSERT, UPDATE and DELETE

With UltraLite, you can perform SQL data manipulation by using the ExecuteStatement method, a
member of the ULPreparedStatement class.

Insert a row

Note
UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE
statement, each ? is referenced according to its ordinal position in the prepared statement. For example,
the first ? is referred to as parameter 1, and the second as parameter 2.

1. Declare a ULPreparedStatement using the following code:

ULPreparedStatement * prepStmt;

2. Prepare a SQL statement for execution.

The following code prepares an INSERT statement for execution:

prepStmt = conn->PrepareStatement("INSERT INTO MyTable(MyColumn1) VALUES
(?)");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}

4. Set values to replace ? characters in the prepared statement.

The following code sets ? characters to "some value" while error checking. For example, an error is
caught when the parameter ordinal is out of range for the number of parameters in the prepared
statement.

if(!prepStmt->SetParameterString(1, "some value")) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}

5. Execute the prepared statement, inserting the data into the database.

The following code checks for errors that could occur after executing the statement. For example, an
error is returned if a duplicate index value is found in a unique index.

bool success;
success = prepStmt->ExecuteStatement();

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 9

if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
} else {
 // Use the following line if you are interested in the number of rows
inserted ...
 ul_u_long rowsInserted = prepStmt->GetRowsAffectedCount();
}

6. Clean up the prepared statement resources.

The following code releases the resources used by the prepared statement object. This object should
no longer be accessed after the Close method is called.

prepStmt->Close();

7. Commit the data to the database.

The following code saves the data to the database and prevents data loss. The data from step 5 is lost
if the device application terminates unexpectedly before the application completes a commit call.

conn->Commit();

Delete a row

Note
UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE
statement, each ? is referenced according to its ordinal position in the prepared statement. For example,
the first ? is referred to as parameter 1, and the second as parameter 2.

1. Declare a ULPreparedStatement using the following code:

ULPreparedStatement * prepStmt;

2. Prepare a SQL statement for execution.

The following code prepares a DELETE statement for execution:

prepStmt = conn->PrepareStatement("DELETE FROM MyTable(MyColumn1) VALUES
(?)");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}

4. Set values to replace ? characters in the prepared statement.

Application development

10 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The following code sets ? characters to 7 while error checking. For example, an error is caught when
the parameter ordinal is out of range for the number of parameters in the prepared statement.

ul_s_long value_to_delete = 7;
if(!prepStmt->SetParameterInt(1, value_to_delete)) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error.
 return;
}

5. Execute the prepared statement, deleting the data from the database.

The following code checks for errors that could occur after executing the statement. For example, an
error is returned if you try deleting a row that has a foreign key referenced to it.

bool success;
success = prepStmt->ExecuteStatement();
if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
} else {
 // Use the following line if you are interested in the number of rows
deleted ...
 ul_u_long rowsDeleted = prepStmt->GetRowsAffectedCount();
}

6. Clean up the prepared statement resources.

The following code releases the resources used by the prepared statement object. This object should
no longer be accessed after the Close method is called.

prepStmt->Close();

7. Commit the data to the database.

The following code saves the data to the database and prevents data loss. The data from step 5 is lost
if the device application terminates unexpectedly before the application completes a commit call.

conn->Commit();

Update a row

Note
UltraLite indicates query parameters using the ? character. For any INSERT, UPDATE, or DELETE
statement, each ? is referenced according to its ordinal position in the prepared statement. For example,
the first ? is referred to as parameter 1, and the second as parameter 2.

1. Declare a ULPreparedStatement using the following code:

ULPreparedStatement * prepStmt;

2. Prepare a SQL statement for execution.

The following code prepares an UPDATE statement for execution:

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 11

prepStmt = conn->PrepareStatement("UPDATE MyTable SET MyColumn = ? WHERE
MyColumn = ?");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}

4. Set values to replace ? characters in the prepared statement.

The following code sets ? characters to integer values while error checking. For example, an error is
caught when the parameter ordinal is out of range for the number of parameters in the prepared
statement.

bool success;
success = prepStmt->SetParameterInt(1, 25);
if(success) {
 success = prepStmt->SetParameterInt(2, -1);
}
if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}

5. Execute the prepared statement, updating the data in the database.

The following code checks for errors that could occur after executing the statement. For example, an
error is returned if a duplicate index value is found in a unique index.

success = prepStmt->ExecuteStatement();
if(!success) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
} else {
 // if you are interested in the number of rows updated ...
 ul_u_long rowsUpdated = prepStmt->GetRowsAffectedCount();
}

6. Clean up the prepared statement resources.

The following code releases the resources used by the prepared statement object. This object should
no longer be accessed after the Close method is called.

prepStmt->Close();

7. Commit the data to the database.

The following code saves the data to the database and prevents data loss. The data from step 5 is lost
if the device application terminates unexpectedly before the application completes a commit call.

Application development

12 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

conn->Commit();

See also
● “ULPreparedStatement class [UltraLite C++]” on page 168

Retrieving data using SELECT

The SELECT statement allows you to retrieve information from the database. When you execute a
SELECT statement, the PreparedStatement.ExecuteQuery method returns a ResultSet object.

Execute a SELECT statement

1. Declare the required variables using the following code:

ULPreparedStatement * prepStmt;
ULResultSet * resultSet;

2. Prepare a SQL statement for execution.

The following code prepares a SELECT statement for execution:

prepStmt = conn->PrepareStatement("SELECT MyColumn1 FROM MyTable");

3. Check for errors when preparing the statement.

For example, the following code is useful when checking for SQL syntax errors:

if(prepStmt == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}

4. Execute the SQL and return a result set object that can be used to move the results of the query.

resultSet = prepStmt->ExecuteQuery();
if(resultSet == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 prepStmt->Close();
 return;
}

5. Traverse the rows by calling the Next method. Store the result as a string and store them in a buffer.

The Next method moves to the next row of the result set. The ULResultSet object is positioned on a
row if the call returns true; otherwise, if the call returns false, all the rows have been traversed.

while(resultSet->Next()) {
 char buffer[100];
 resultSet->GetString(1, buffer, 100);
 printf("MyColumn = %s\n", buffer);
}

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 13

6. Clean up the prepared statement and result set object resources.

The prepared statement object should not accessed after the Close method is called.

resultSet->Close();
prepStmt->Close();

See also
● “ULPreparedStatement.ExecuteQuery method [UltraLite C++]” on page 170

Schema description creation and retrieval

The GetResultSetSchema method allows you to retrieve schema information about a result set, such as
column names, total number of columns, column scales, column sizes, and column SQL types.

Example
The following example demonstrates how to use the GetResultSetSchema method to display schema
information in a command prompt:

const char * name;
int column_count;
const ULResultSetSchema & rss = prepStmt->GetResultSetSchema();
int column_count = rss.GetColumnCount();
for(int i = 1; i < column_count; i++) {
 name = rss.GetColumnName(i);
 printf("id = %d, name = %s\n", i, name);
}

In this example, required variables are declared and the ULResultSetSchema object is assigned. It is
possible to get a ULResultSetSchema object from the result set object itself, but this example
demonstrates how the schema is available after the statement is prepared and before the query is executed.
The number of rows in the result set are counted, and the name of each column is displayed.

See also
● “ULPreparedStatement.GetResultSetSchema method [UltraLite C++]” on page 173

SQL result set navigation

You can navigate through a result set using methods associated with the ULResultSet class.

The result set class provides you with the following methods to navigate a result set:

● AfterLast Position immediately after the last row.

● BeforeFirst Position immediately before the first row.

● First Move to the first row.

● Last Move to the last row.

Application development

14 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Next Move to the next row.

● Previous Move to the previous row.

● Relative(offset) Move a specified number of rows relative to the current row, as specified by the
signed offset value. Positive offset values move forward in the result set, relative to the current pointer
position in the result set. Negative offset values move backward in the result set. An offset value of
zero does not move the current location, but allows you to repopulate the row buffer.

See also
● “ULResultSet class [UltraLite C++]” on page 177

Data creation and modification using the ULTable class
UltraLite applications can access table data by executing SQL statements or using the ULTable class. This
section describes data access using the ULTable class.

This section explains how to perform the following tasks using the ULTable class:

● Scrolling through the rows of a table.

● Accessing the values of the current row.

● Using find and lookup methods to locate rows in a table.

● Inserting, deleting, and updating rows.

See also
● “Data creation and modification using SQL statements” on page 8

Row navigation

The UltraLite C++ API provides you with several methods to navigate a table to perform a wide range of
navigation tasks.

The ULTable object provides you with the following methods to navigate a table:

● AfterLast Position immediately after the last row.

● BeforeFirst Position immediately before the first row.

● First Move to the first row.

● Last Move to the last row.

● Next Move to the next row.

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 15

● Previous Move to the previous row.

● Relative(offset) Move a specified number of rows relative to the current row, as specified by the
signed offset value. Positive offset values move forward in the result set, relative to the current pointer
position in the result set. Negative offset values move backward in the result set. An offset value of
zero does not move the current location, but allows you to repopulate the row buffer.

See also
● “ULTable class [UltraLite C++]” on page 218

Example
The following example opens the table named MyTable and displays the value of the column named
MyColumn for each row:

char buffer[100];
ul_column_num column_id;
ULTable * tbl = conn->OpenTable("MyTable");
if(tbl == NULL) {
 const ULError * ulerr;
 ulerr = conn->GetLastError();
 // write code to handle the error
 return;
}
column_id = tbl->GetTableSchema().GetColumnID("MyColumn");
if(column_id == 0) {
 // the column "MyColumn" likely does not exist. Handle the error.
 tbl->Close();
 return;
}
while(tbl->Next()) {
 tbl->GetString(column_id, buffer, 100);
 printf("%s\n", buffer);
}
tbl->Close();

You expose the rows of the table to the application when you open the ULTable object. By default, the
rows are ordered by primary key value but you can specify an index when opening a table to access the
rows in a particular order.

Example
The following example moves to the first row of the MyTable table as ordered by the ix_col index:

ULTable * tbl = conn->OpenTable("MyTable", "ix_col");

UltraLite modes

The UltraLite mode determines how values in the buffer are used. You can set the UltraLite mode to one
of the following:

● Insert mode Data in the buffer is added to the table as a new row when the insert method is called.

● Update mode Data in the buffer replaces the current row when the update method is called.

Application development

16 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Find mode Locates a row whose value exactly matches the data in the buffer when one of the find
methods is called.

● Lookup mode Locates a row whose value matches or is greater than the data in the buffer when
one of the lookup methods is called.

The mode is set by calling the corresponding method to set the mode. For example, InsertBegin,
UpdateBegin, FindBegin, and so on.

Row insertion

The steps to insert a row are very similar to those for updating rows, except that there is no need to locate
a row in the table before carrying out the insert operation.

If you do not set a value for one of the columns, and that column has a default, the default value is used. If
the column has no default, one of the following entries is used:

● For nullable columns, NULL.
● For numeric columns that disallow NULL, zero.
● For character columns that disallow NULL, an empty string.
● To explicitly set a value to NULL, use the SetNull method.

Example
The following code demonstrates new row insertion:

ULTable * tbl = conn->OpenTable("MyTable");
bool success;
tbl->InsertBegin(); // enter "Insert mode"
tbl->SetInt("id", 3);
tbl->SetString("lname", "Smith");
tbl->SetString("fname", "Mary");
success = tbl->Insert();
conn->Commit();
tbl->Close();

In this example, the tbl variable is set to open MyTable. The values for each column are set in the current
row buffer; columns can be referenced name or ID. The Insert method causes the temporary row buffer
values to be inserted into the database. The results are then committed and displayed. Resources are freed
with the Close method.

Updating rows

The following procedure updates a row in a table.

Caution
Do not update the primary key of a row: delete the row and add a new row instead.

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 17

Update a row

1. Move to the row you want to update.

You can move to a row by scrolling through the table or by searching the table using find and lookup
methods.

2. Enter update mode.

For example, the following instruction enters update mode on table tbl.

tbl->UpdateBegin();

3. Set the new values for the row to be updated. For example, the following instruction sets the id
column in the buffer to 3.

tbl->SetInt("id", 3);

4. Execute the Update.

tbl->Update();

Caution
When using the Find and Update methods, your pointer may not be in the expected position after
updating a column that is involved in the search criteria. In some instances, it is recommended that
you use a SQL statement when updating several rows.

After the update operation, the current row is the row that has been updated.

The UltraLite C++ API does not commit changes to the database until use the Commit method.

See also
● “Managing transactions” on page 21

Search rows with find and lookup modes

UltraLite has different modes of operation for working with data. You can use two of these modes, find
and lookup, for searching. The ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Note
The columns you search with Find and Lookup methods must be in the index that is used to open the
table.

● Find methods Move to the first row that exactly matches specified search values, under the sort
order specified when the ULTable object was opened. If the search values cannot be found, the
application is positioned before the first or after the last row.

Application development

18 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Lookup methods Move to the first row that matches or is greater than a specified search value,
under the sort order specified when the ULTable object was opened.

Example
This example uses a table named MyTable that was created using the following SQL statements:

CREATE TABLE MyTable(id int primary key, lname char(100), fname char(100))
CREATE INDEX ix_lname ON MyTable (lname)

The following code displays all the fname column contents where lname column is "Smith":

ULTable * tbl = conn->OpenTable("MyTable", "ix_lname");
char buffer[100];
bool found;
tbl->FindBegin(); // enter "Find mode"
tbl->SetString("lname", "Smith"); // set pointer row buffer to "Smith"
found = tbl->FindFirst();
while(found) {
 tbl->GetString(3, buffer, 100);
 printf("%s\n", buffer);
 found = tbl->FindNext();
}
tbl->Close();

In this example, the tbl variable is set to open MyTable using the ix_lname index so that rows are returned
in same order as the lname column. ULTable objects use the values in the row buffer when they execute a
find. This buffer is specified as "Smith", as defined by the SetString method. The FindFirst method
indicates that traversal should begin at the first row that has lname set to "Smith"; the pointer is positioned
after the last row of the table if there are no rows where lname is set to "Smith". The fname is retrieved by
the GetString method because The fname has a column ID of 3. The results are then displayed, and the
resources are freed.

See also
● “ULTable class [UltraLite C++]” on page 218

Access values of the current row

A ULTable object is always located at one of the following positions:

● Before the first row of the table.
● On a row of the table.
● After the last row of the table.

If the ULTable object is positioned on a row, you can use one of a set of methods appropriate for the data
type to retrieve or modify the value of the columns in that row.

Retrieving column values
The ULTable object provides a set of methods for retrieving column values. These methods take the
column name or ID as the argument.

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 19

The following example demonstrates two ways to get an age value out of an open table, assuming that age
is the first column of the table:

ul_s_long age1 = tbl->GetInt(1);
ul_s_long age2 = tbl->GetInt("age");
assert(age1 == age2);

Using the column ID version of value retrieval has performance benefits when values are retrieved in a
loop.

Modifying column values
In addition to the methods for retrieving values, there are methods for setting values. These methods take
the column name or ID and the value as arguments.

For example demonstrates two ways to set a string value for a row with string columns of lname and
fname, assuming that lname is the first column in the table.

tbl->SetString(1, last_name);
tbl->SetString("fname", first_name);

By setting column values, you do not directly alter the data in the database. You can assign values to the
columns, even if you are before the first row or after the last row of the table. Do not attempt to access
data when the current row is undefined. For example, attempting to fetch the column value in the
following example is incorrect:

// This code is incorrect
tbl->BeforeFirst();
tbl = tbl.GetInt(cust_id);

Casting values
The method you choose should match the data type you want to assign. UltraLite automatically casts
database data types where they are compatible, so that you can use the GetString method to fetch an
integer value into a string variable, and so on.

See also
● “Converting data types explicitly” [UltraLite - Database Management and Reference]

Deleting rows

The steps to delete a row are simpler than inserting or updating rows.

The following procedure deletes a row.

Delete a row

1. Move to the row you want to delete.

2. Execute the Delete method.

tbl->Delete();

Application development

20 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Managing transactions

The UltraLite C++ API does not support AutoCommit mode. Transactions are started implicitly by the
first statement to modify the database, and must be explicitly committed or rolled back.

Commit a transaction

● Execute a conn->Commit statement, where conn is a valid ULConnection pointer.

Roll back a transaction

● Execute a conn->Rollback statement, where conn is a valid ULConnection pointer.

See also
● “ULConnection.Commit method [UltraLite C++]” on page 123
● “ULConnection.Rollback method [UltraLite C++]” on page 138
● “UltraLite transaction processing” [UltraLite - Database Management and Reference]

Schema information access

You can programmatically retrieve result set or database structure descriptions. These descriptions are
known as schema information, and this information is available through the UltraLite C API schema
classes.

Note
You cannot modify the schema using the UltraLite C API. You can only retrieve the schema information.

You can access the following schema objects and information:

● ULResultSetSchema Describes a query or data in a table. It exposes the identifier, name, and type
information of each column, and the number of columns in the table. ULResultSetSchema classes can
be retrieved from the following classes:

○ ULPreparedStatement
○ ULResultSet
○ ULTable

● ULDatabaseSchema Exposes the number and names of the tables and publications in the
database, and the global properties such as the format of dates and times. ULDatabaseSchema classes
can be retrieved from ULConnection classes.

● ULTableSchema Exposes information about the column and index configurations. The column
information in the ULTableSchema class complements the information available from the
ULResultSetSchema class. For example, you can determine whether columns have default values or
permit null values. ULTableSchema classes can be retrieved from ULTable classes.

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 21

● ULIndexSchema Returns information about the column in the index. ULIndexSchema classes can
be retrieved from ULTableSchema classes.

The ULResultSetSchema class is returned as a constant reference unlike the ULDatabaseSchema,
ULTableSchema and ULIndexSchema classes, which are returned as pointers. You cannot close a class
that returns a constant reference but you must close classes that are returned as pointers.

The following code demonstrates proper and improper use of schema class closure:

// This code demonstrates proper use of the ULResultSetSchema class:
const ULResultSetSchema & rss = prepStmt->GetResultSetSchema();
c_count = prepStmt->GetSchema().GetColumnCount();

// This code demonstrates proper use of the ULDatabaseSchema class:
ULDatabaseSchema * dbs = conn->GetResultSetSchema();
t_count = dbs->GetTableCount();
dbs->Close(); // This line is required.
// This code demonstrates improper use of the ULDatabaseSchema class
// because the object needs to be closed using the Close method:
t_count = conn->GetResultSetSchema()->GetTableCount();

See also
● “ULPreparedStatement class [UltraLite C++]” on page 168
● “ULResultSet class [UltraLite C++]” on page 177
● “ULTable class [UltraLite C++]” on page 218
● “ULConnection class [UltraLite C++]” on page 119

Error handling

The UltraLite C++ API includes a ULError object that should be used to retrieve error information.
Several methods in the API return a boolean value, indicating whether the method call was successful. In
some instances, null is returned when an error occurs. The ULConnection object contains a GetLastError
method, which returns a ULError object.

Use SQLCode to diagnose an error. In addition to the SQLCode, you can use the GetParameterCount and
GetParameter methods to determine whether additional parameters exist to provide additional information
about the error.

In addition to explicit error handling, UltraLite supports an error callback function. If you register a
callback function, UltraLite calls the function whenever an UltraLite error occurs. The callback function
does not control application flow, but does enable you to be notified of all errors. Use of a callback
function is particularly helpful during application development and debugging.

See also
● “Tutorial: Building a Windows application using the C++ API” on page 65
● “ULSetErrorCallback method [UltraLite Embedded SQL]” on page 268
● “SQL Anywhere error messages sorted by Sybase error code” [Error Messages]

Application development

22 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MobiLink data synchronization

UltraLite applications can synchronize data with a central database. Synchronization requires the
MobiLink synchronization software included with SQL Anywhere.

The UltraLite C++ API supports TCP/IP, TLS, HTTP, and HTTPS synchronization. Synchronization is
initiated by the UltraLite application. The methods and properties of the connection object can be used to
control synchronization.

See also
● “UltraLite clients” [UltraLite - Database Management and Reference]
● “ul_sync_info structure [UltraLite C and Embedded SQL datatypes]” on page 110
● “Synchronization parameters for UltraLite” [UltraLite - Database Management and Reference]

Closing the UltraLite database connection

It is important to release resources when they are no longer being used; otherwise, an UltraLite database
file remains in use as long as an application has a connection to the database.

Close an UltraLite database connection

1. Call the Close method to release resources.

Use the following code when the application no longer requires a connection to the database:

if(conn != NULL) {
 conn->Close(&ulerr);
}

2. Call the Fini method to finalize the ULDatabaseManager object.

Use the following code when closing the application.

ULDatabaseManager.Fini();

See also
● “ULConnection.Close method [UltraLite C++]” on page 123
● “ULDatabaseManager.Fini method [UltraLite C++]” on page 153

Build and deploy UltraLite C++ applications
When building a C/C++ application that does not use the UltraLite engine, you can either link to a static
UltraLite runtime library (this makes sure all the UltraLite code is linked into your application) or, on
Windows and Windows Mobile, you can link to an import library and load the UltraLite runtime code
dynamically when the application starts.

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 23

Deploy UltraLite for Windows and Windows Mobile devices when using static linkage

1. Specify the following connection and creation parameters:

● When using obfuscation, set the creation parameter obfuscate=1 when creating the database

● When using AES, or FIPS 140-2 AES encryption, set the connection parameter
DBKEY=encryption-key when creating or connecting to the database

2. Follow the appropriate steps for the synchronization type used in your UltraLite application:

Synchronization Type Parameter settings

TCP/IP Set the Stream synchronization parameter to "tcpip".

HTTP Set the Stream synchronization parameter to "http".

RSA TLS Set the Stream synchronization parameter to "tls".

RSA HTTPS Set the Stream synchronization parameter to "https".

ECC TLS Set the Stream synchronization parameter to "tls".

Set the protocol option tls_type=ecc.

When using ECC E2EE encryption, set the protocol option
e2ee_type=ecc.

ECC HTTPS Set the Stream synchronization parameter to "https".

Set the protocol option tls_type=ecc.

When using ECC E2EE encryption, set the protocol option
e2ee_type=ecc.

FIPS 140-2 RSA TLS Set the Stream synchronization parameter to "tls".

Set the protocol option fips=yes.

FIPS 140-2 RSA
HTTPS

Set the Stream synchronization parameter to "https".

Set the protocol option fips=yes.

3. When using RSA, ECC, or RSA FIPS 140-2 End-to-End encryption, set the protocol option
e2ee_public_key=key-file.

4. When using ZLIB compression, set the protocol option compression=zlib.

5. Link against the following files:

● ulrt.lib

Application development

24 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● ulbase.lib

● When using RSA TLS, or RSA HTTPS synchronization, ulrsa.lib

● When using ECC TLS, or ECC HTTPS synchronization, ulecc.lib

6. Call the following methods in your UltraLite application:

● When using AES encryption, the ULDatabaseManager.EnableAesDBEncryption method

● When using FIPS 140-2 AES encryption, the ULDatabaseManager.EnableAesFipsDBEncryption
method

7. Ensure that the following methods are called for they synchronization type used in your UltraLite
application:

● TCP/IP Call the EnableTcpipSynchronization method.

● HTTP Call the EnableHttpSynchronization method.

● TLS using RSA Call the EnableTlsSynchronization and EnableRsaSyncEncryption methods.

● HTTPS using RSA Call the EnableHttpsSynchronization and EnableRsaSyncEncryption
methods.

● TLS using ECC Call the EnableTlsSynchronization and EnableEccSyncEncryption methods.

● HTTPS using ECC Call the EnableHttpsSynchronization and EnableEccSyncEncryption
methods.

● TLS using FIPS 140-2 RSA Call the EnableTlsSynchronization and EnableRsaFipsEncryption
methods.

● HTTPS using FIPS 140-2 RSA Call the EnableHttpsSynchronization and
EnableRsaFipsSyncEncryption methods.

8. Deploy the following files:

● When using FIPS 140-2 AES encryption, ulfips12.dll and sbgse2.dll.

● When using RSA FIPS 140-2 TLS, or RSA FIPS 140-2 HTTPS synchronization, sbgsse2.dll, and
mlcrsafips12.dll.

Linker/compiler options to build and link runtimes for Linux deployment
The linker/compiler options for libulrt.a are:

-L<$SQLANY12>/ultralite/linux/x86/586/lib -lulrt -|ulbase

and for the engine:

-L<$SQLANY12>/ultralite/linux/x86/586/lib -lulrtc -|ulbase

The headers command line switch is:

-I<$SQLANY12>/sdk/include

UltraLite C++ application development

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 25

Build and link runtimes for iPhone deployment
UltraLite runtimes must be built after installation. Follow the instructions provided in install-dir/ultralite/
iphone/readme.txt

To link to the UltraLite runtime library, either:

Control-click the Frameworks group and click Add » Existing Files, then navigate to the install-dir/
ultralite/iphone directory and click libulrt.a.

OR

Add the following to the Other Linker Flags (OTHER_LDFLAGS) build setting:

-L$(SQLANY_ROOT)/ultralite/iphone
-lulrt

where SQLANY_ROOT is a custom build setting set to the SQL Anywhere installation directory.

In addition, the CFNetwork.framework and Security.framework frameworks are required. To add these,
control-click the Frameworks group and click Add » Existing Frameworks and select from the list.

Build and link runtimes for Mac OS X deployment
To link to the UltraLite runtime library, Control-click the Frameworks group and click Add » Existing
Files, then navigate to the /Applications/SQLAnywhere12/ultralite/macosx/x86_64 directory and click
libulrt.a and also libulbase.a.

In addition, the CoreFoundation.framework, CoreServices.framework, and Security.framework
frameworks are required. To add these, Control-click the Frameworks group and click Add » Existing
Frameworks and select from the list.

See also
● “UltraLite application build and deployment specifications” [UltraLite - Database Management and

Reference]

UltraLite C++ application deployment
There are two primary considerations for deploying your UltraLite C++ solution:

● Deploy the files that provide UltraLite functionality (the runtime files)
● Deploy the UltraLite database file or files (used by the runtime files and containing application data)

Ensure that you have linked to the appropriate libraries.

Build and deploy an application using the UltraLite runtime DLL

When compiling UltraLite applications for Windows Mobile, you can link the UltraLite runtime library
either statically or dynamically. If you link it dynamically, you must copy the UltraLite runtime library for
your platform to the target device.

Application development

26 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

1. Preprocess your code, then compile the output with UL_USE_DLL.

2. Link the UltraLite import library to your application.

3. Copy both your application executable and the UltraLite runtime DLL to your target device.

The UltraLite runtime DLL is in chip-specific directories under the \ultralite\ce subdirectory of your
SQL Anywhere installation directory.

To deploy the UltraLite runtime DLL for the Windows Mobile emulator, connect to the emulator using
ActiveSync and copy the DLL to the device using Windows Explorer.

See also
● “Deploying the ActiveSync provider for UltraLite” [UltraLite - Database Management and

Reference]
● “UltraLite C++ application development” on page 5
● “Configuring UltraLite clients to use transport-layer security” [SQL Anywhere Server - Database

Administration]

UltraLite C++ application development using
embedded SQL

This section describes how to write database access code for embedded SQL UltraLite applications.

See also
● “UltraLite C/C++” on page 1
● “UltraLite Embedded SQL API reference” on page 237
● “SQL preprocessor for UltraLite utility (sqlpp)” [UltraLite - Database Management and Reference]

Example of embedded SQL
Embedded SQL is an environment that is a combination of C/C++ program code and pseudo-code. The
pseudo-code that can be interspersed with traditional C/C++ code is a subset of SQL statements. A
preprocessor converts the embedded SQL statements into function calls that are part of the actual code
that is compiled to create the application.

Following is a very simple example of an embedded SQL program. It illustrates updating an UltraLite
database record by changing the surname of employee 195.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main()
{
 db_init(&sqlca);
 EXEC SQL WHENEVER SQLERROR GOTO error;
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";
 EXEC SQL UPDATE employee

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 27

 SET emp_lname = 'Johnson'
 WHERE emp_id = 195;
 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT;
 db_fini(&sqlca);
 return(0);
 error:
 printf("update unsuccessful: sqlcode = %ld\n",
 sqlca.sqlcode);
 return(-1);
}

Although this example is too simplistic to be useful, it illustrates the following aspects common to all
embedded SQL applications:

● Each SQL statement is prefixed with the keywords EXEC SQL.

● Each SQL statement ends with a semicolon.

● Some embedded SQL statements are not part of standard SQL. The INCLUDE SQLCA statement is
one example.

● In addition to SQL statements, embedded SQL also provides library functions to perform some specific
tasks. The functions db_init and db_fini are two examples of library function calls.

Initialization
The above sample code illustrates initialization statements that must be included before working with the
data in an UltraLite database:

1. Define the SQL Communications Area (SQLCA), using the following command:

EXEC SQL INCLUDE SQLCA;

This definition must be the first embedded SQL statement, so a natural place for it is the end of the
include list.

If you have multiple .sqc files in your application, each file must have this line.

2. The first database action must be a call to an embedded SQL library function named db_init. This
function initializes the UltraLite runtime library. Only embedded SQL definition statements can be
executed before this call.

3. You must use the SQL CONNECT statement to connect to the UltraLite database.

Preparing to exit
The above sample code demonstrates the sequence of calls required when preparing to exit:

1. Commit or rollback any outstanding changes.

2. Disconnect from the database.

3. End your SQL work with a call to a library function named db_fini.

When you exit, any uncommitted database changes are automatically rolled back.

Application development

28 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Error handling
There is virtually no interaction between the SQL and C code in this example. The C code only controls
the flow of the program. The WHENEVER statement is used for error checking. The error action, GOTO
in this example, is executed whenever any SQL statement causes an error.

See also
● “db_init method” on page 238

Embedded SQL program structure

All embedded SQL statements start with the words EXEC SQL and end with a semicolon. Normal C-
language comments are allowed in the middle of embedded SQL statements.

Every C program using embedded SQL must contain the following statement before any other embedded
SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

The first embedded SQL executable statement in the program must be a SQL CONNECT statement. The
CONNECT statement supplies connection parameters that are used to establish a connection to the
UltraLite database.

Some embedded SQL commands do not generate any executable C code, or do not involve
communication with the database. Only these commands are allowed before the CONNECT statement.
Most notable are the INCLUDE statement and the WHENEVER statement for specifying error
processing.

Initialize the SQL Communications Area

The SQL Communications Area (SQLCA) is an area of memory that is used for communicating statistics
and errors from the application to the database and back to the application. The SQLCA is used as a
handle for the application-to-database communication link. It is passed explicitly to all database library
functions that communicate with the database. It is implicitly passed in all embedded SQL statements.

UltraLite defines a SQLCA global variable for you in the generated code. The preprocessor generates an
external reference for the global SQLCA variable. The external reference is named sqlca and is of type
SQLCA. The actual global variable is declared in the import library.

The SQLCA type is defined in the header file %SQLANY12%\SDK\Include\sqlca.h.

After declaring the SQLCA (EXEC SQL INCLUDE SQLCA;), but before your application can perform
any operations on a database, you must initialize the communications area by calling db_init and passing
it the SQLCA:

db_init(&sqlca);

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 29

SQLCA provides error codes
You reference the SQLCA to test for a particular error code. The sqlcode field contains an error code
when a database request causes an error. Macros are defined for referencing the sqlcode field and some
other fields in the sqlca.

SQLCA fields

The SQLCA contains the following fields:

● sqlcaid An 8-byte character field that contains the string SQLCA as an identification of the
SQLCA structure. This field helps in debugging when you are looking at memory contents.

● sqlcabc A long integer that contains the length in bytes of the SQLCA structure.

● sqlcode A long integer that contains an error code when the database detects an error on a request.
Definitions for the error codes are in the header file %SQLANY12%\SDK\Include\sqlerr.h. The error
code is 0 (zero) for a successful operation, a positive value for a warning, and a negative value for an
error.

You can access this field directly using the SQLCODE macro.

● sqlerrml The length of the information in the sqlerrmc field.

UltraLite applications do not use this field.

● sqlerrmc May contain one or more character strings to be inserted into an error message. Some
error messages contain a placeholder string (%1) which is replaced with the text in this field.

UltraLite applications do not use this field.

● sqlerrp Reserved.

● sqlerrd A utility array of long integers.

● sqlwarn Reserved.

UltraLite applications do not use this field.

● sqlstate The SQLSTATE status value.

UltraLite applications do not use this field.

See also
● “SQL Anywhere error messages” [Error Messages]

Application development

30 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Connect to an UltraLite database
To connect to an UltraLite database from an embedded SQL application, include the EXEC SQL
CONNECT statement in your code after initializing the SQLCA.

The CONNECT statement has the following form:

EXEC SQL CONNECT USING
'uid=user-name;pwd=password;dbf=database-filename';

The connection string (enclosed in single quotes) may include additional database connection parameters.

See also
● “UltraLite connection parameters” [UltraLite - Database Management and Reference]
● “CONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Managing multiple connections

If you want more than one database connection in your application, you can either use multiple SQLCAs
or you can use a single SQLCA to manage the connections.

Use multiple SQLCAs
Managing multiple SQLCAs

1. Each SQLCA used in your program must be initialized with a call to db_init and cleaned up at the
end with a call to db_fini.

2. The embedded SQL statement SET SQLCA is used to tell the SQL preprocessor to use a specific
SQLCA for database requests. Usually, a statement such as the following is used at the top of your
program or in a header file to set the SQLCA reference to point at task specific data:

EXEC SQL SET SQLCA 'task_data->sqlca';

This statement does not generate any code and does not affect performance. It changes the state within
the preprocessor so that any reference to the SQLCA will use the given string.

Use a single SQLCA
As an alternative to using multiple SQLCAs, you can use a single SQLCA to manage more than one
connection to a database.

Each SQLCA has a single active or current connection, but that connection can be changed. Before
executing a command, use the SET CONNECTION statement to specify the connection on which the
command should be executed.

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 31

See also
● “db_init method” on page 238
● “SET SQLCA statement [ESQL]” [SQL Anywhere Server - SQL Reference]
● “SET CONNECTION statement [Interactive SQL] [ESQL]” [SQL Anywhere Server - SQL Reference]

Host variables
Embedded SQL applications use host variables to communicate values to and from the database. Host
variables are C variables that are identified to the SQL preprocessor in a declaration section.

Host variable declaration

Define host variables by placing them within a declaration section. Host variables are declared by
surrounding the normal C variable declarations with BEGIN DECLARE SECTION and END DECLARE
SECTION statements.

Whenever you use a host variable in a SQL statement, you must prefix the variable name with a colon (:)
so the SQL preprocessor knows you are referring to a (declared) host variable and distinguish it from
other identifiers allowed in the statement.

You can use host variables in place of value constants in any SQL statement. When the database server
executes the command, the value of the host variable is read from or written to each host variable. Host
variables cannot be used in place of table or column names.

The SQL preprocessor does not scan C language code except inside a declaration section. Initializers for
variables are allowed inside a declaration section, while typedef types and structures are not permitted.

The following sample code illustrates the use of host variables with an INSERT command. The variables
are filled in by the program and then inserted into the database:

/* Declare fields for personal data. */
EXEC SQL BEGIN DECLARE SECTION;
 long employee_number = 0;
 char employee_name[50];
 char employee_initials[8];
 char employee_phone[15];
EXEC SQL END DECLARE SECTION;
/* Fill variables with appropriate values. */
/* Insert a row in the database. */
EXEC SQL INSERT INTO Employee
 VALUES (:employee_number, :employee_name,
 :employee_initials, :employee_phone);

Data types

To transfer information between a program and the database server, every data item must have a data
type. You can create a host variable with any one of the supported types.

Application development

32 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Only a limited number of C data types are supported as host variables. Also, certain host variable types do
not have a corresponding C type.

Macros defined in the sqlca.h header file can be used to declare a host variable of type VARCHAR,
FIXCHAR, BINARY, DECIMAL, or SQLDATETIME. These macros are used as follows:

EXEC SQL BEGIN DECLARE SECTION;
 DECL_VARCHAR(10) v_varchar;
 DECL_FIXCHAR(10) v_fixchar;
 DECL_BINARY(4000) v_binary;
 DECL_DECIMAL(10, 2) v_packed_decimal;
 DECL_DATETIME v_datetime;
EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and treats the variable as the
appropriate type.

The following data types are supported by the embedded SQL programming interface:

● 16-bit signed integer

short int I;
unsigned short int I;

● 32-bit signed integer

long int l;
unsigned long int l;

● 4-byte floating-point number

float f;

● 8-byte floating-point number

double d;

● Packed decimal number

DECL_DECIMAL(p,s)
typedef struct TYPE_DECIMAL {
 char array[1];
} TYPE_DECIMAL;

● Null terminated, blank-padded character string

char a[n]; /* n > 1 */
char *a; /* n = 2049 */

Because the C-language array must also hold the NULL terminator, a char a[n] data type maps to a
CHAR(n - 1) SQL data type, which can hold -1 characters.

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 33

-Note
The SQL preprocessor assumes that a pointer to char points to a character array of size 2049 bytes
and that this array can safely hold 2048 characters, plus the NULL terminator. In other words, a char*
data type maps to a CHAR(2048) SQL type. If that is not the case, your application may corrupt
memory.

If you are using a 16-bit compiler, requiring 2049 bytes can make the program stack overflow.
Instead, use a declared array, even as a parameter to a function, to let the SQL preprocessor know the
size of the array. WCHAR and TCHAR behave similarly to char.

● NULL terminated UNICODE or wide character string Each character occupies two bytes of
space and so may contain UNICODE characters.

WCHAR a[n]; /* n > 1 */

● NULL terminated system-dependent character string A TCHAR is equivalent to a WCHAR
for systems that use UNICODE (for example, Windows Mobile) for their character set; otherwise, a
TCHAR is equivalent to a char. The TCHAR data type is designed to support character strings in
either kind of system automatically.

TCHAR a[n]; /* n > 1 */

● Fixed-length blank padded character string

char a; /* n = 1 */
DECL_FIXCHAR(n) a; /* n >= 1 */

● Variable-length character string with a two-byte length field When supplying information to
the database server, you must set the length field. When fetching information from the database
server, the server sets the length field (not padded).

DECL_VARCHAR(n) a; /* n >= 1 */
typedef struct VARCHAR {
 a_sql_ulen len;
 TCHAR array[1];
} VARCHAR;

● Variable-length binary data with a two-byte length field When supplying information to the
database server, you must set the length field. When fetching information from the database server,
the server sets the length field.

DECL_BINARY(n) a; /* n >= 1 */
typedef struct BINARY {
 a_sql_ulen len;
 unsigned char array[1];
} BINARY;

● SQLDATETIME structure with fields for each part of a timestamp

DECL_DATETIME a;
typedef struct SQLDATETIME {
 unsigned short year; /* for example: 1999 */
 unsigned char month; /* 0-11 */
 unsigned char day_of_week; /* 0-6, 0 = Sunday */
 unsigned short day_of_year; /* 0-365 */

Application development

34 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 unsigned char day; /* 1-31 */
 unsigned char hour; /* 0-23 */
 unsigned char minute; /* 0-59 */
 unsigned char second; /* 0-59 */
 unsigned long microsecond; /* 0-999999 */
} SQLDATETIME;

The SQLDATETIME structure is used to retrieve fields of the DATE, TIME, and TIMESTAMP type
(or anything that can be converted to one of these). Often, applications have their own formats and
date manipulation code. Fetching data in this structure makes it easier for you to manipulate this data.
Note that DATE, TIME, and TIMESTAMP fields can also be fetched and updated with any character
type.

If you use a SQLDATETIME structure to enter a date, time, or timestamp into the database, the
day_of_year and day_of_week members are ignored.

● DT_LONGVARCHAR Long varying length character data. The macro defines a structure, as
follows:

#define DECL_LONGVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }

The DECL_LONGVARCHAR struct may be used with more than 32KB of data. Data may be fetched
all at once, or in pieces using the GET DATA statement. Data may be supplied to the server all at
once, or in pieces by appending to a database variable using the SET statement. The data is not null
terminated.

● DT_LONGBINARY Long binary data. The macro defines a structure, as follows:

#define DECL_LONGBINARY(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size]; \
 }

The DECL_LONGBINARY struct may be used with more than 32KB of data. Data may be fetched
all at once, or in pieces using the GET DATA statement. Data may be supplied to the server all at
once, or in pieces by appending to a database variable using the SET statement.

The structures are defined in the %SQLANY12%\SDK\Include\sqlca.h file. The VARCHAR, BINARY,
and TYPE_DECIMAL types contain a one-character array and are not useful for declaring host variables.
However, they are useful for allocating variables dynamically or typecasting other variables.

DATE and TIME database types
There are no corresponding embedded SQL interface data types for the various DATE and TIME
database types. These database types are fetched and updated either using the SQLDATETIME structure
or using character strings.

There are no embedded SQL interface data types for LONG VARCHAR and LONG BINARY database
types.

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 35

See also
● “Database options” [SQL Anywhere Server - Database Administration]

Host variable usage

Host variables can be used in the following circumstances:

● In a SELECT, INSERT, UPDATE, or DELETE statement in any place where a number or string
constant is allowed.

● In the INTO clause of a SELECT or FETCH statement.

● In CONNECT, DISCONNECT, and SET CONNECT statements, a host variable can be used in place
of a user ID, password, connection name, or database name.

Host variables can never be used in place of a table name or a column name.

Host variable scope

A host-variable declaration section can appear anywhere that C variables can normally be declared,
including the parameter declaration section of a C function. The C variables have their normal scope
(available within the block in which they are defined). However, since the SQL preprocessor does not
scan C code, it does not respect C blocks.

Preprocessor assumes all host variables are global
As far as the SQL preprocessor is concerned, host variables are globally known in the source module
following their declaration. Two host variables cannot have the same name. The only exception to this
rule is that two host variables can have the same name if they have identical types (including any
necessary lengths).

The best practice is to give each host variable a unique name.

Examples
Because the SQL preprocessor can not parse C code, it assumes all host variables, no matter where they
are declared, are known globally following their declaration.

// Example demonstrating poor coding
EXEC SQL BEGIN DECLARE SECTION;
 long emp_id;
EXEC SQL END DECLARE SECTION;
long getManagerID(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 long manager_id = 0;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL SELECT manager_id
 INTO :manager_id
 FROM employee

Application development

36 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 WHERE emp_number = :emp_id;
 return(manager_number);
}
void setManagerID(long manager_id)
{
 EXEC SQL UPDATE employee
 SET manager_number = :manager_id
 WHERE emp_number = :emp_id;
}

Although the above code works, it is confusing because the SQL preprocessor relies on the declaration
inside getManagerID when processing the statement within setManagerID. You should rewrite this code
as follows:

// Rewritten example
#if 0
 // Declarations for the SQL preprocessor
 EXEC SQL BEGIN DECLARE SECTION;
 long emp_id;
 long manager_id;
 EXEC SQL END DECLARE SECTION;
#endif
long getManagerID(long emp_id)
{
 long manager_id = 0;
 EXEC SQL SELECT manager_id
 INTO :manager_id
 FROM employee
 WHERE emp_number = :emp_id;
 return(manager_number);
}
void setManagerID(long emp_id, long manager_id)
{
 EXEC SQL UPDATE employee
 SET manager_number = :manager_id
 WHERE emp_number = :emp_id;
}

The SQL preprocessor sees the declaration of the host variables contained within the #if directive because
it ignores these directives. However, it ignores the declarations within the procedures because they are not
inside a DECLARE SECTION. Conversely, the C compiler ignores the declarations within the #if
directive and uses those within the procedures.

These declarations work only because variables having the same name are declared to have exactly the
same type.

Expressions as host variables

Host variables must be simple names because the SQL preprocessor does not recognize pointer or
reference expressions. For example, the following statement does not work because the SQL preprocessor
does not understand the dot operator. The same syntax has a different meaning in SQL.

// Incorrect statement:
EXEC SQL SELECT LAST sales_id INTO :mystruct.mymember;

Although the above syntax is not allowed, you can still use an expression with the following technique:

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 37

● Wrap the SQL declaration section in an #if 0 preprocessor directive. The SQL preprocessor will read
the declarations and use them for the rest of the module because it ignores preprocessor directives.

● Define a macro with the same name as the host variable. Since the SQL declaration section is not seen
by the C compiler because of the #if directive, no conflict will arise. Ensure that the macro evaluates to
the same type host variable.

The following code demonstrates this technique to hide the host_value expression from the SQL
preprocessor.

#include <sqlerr.h>
#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
typedef struct my_struct {
 long host_field;
} my_struct;
#if 0
 // Because it ignores #if preprocessing directives,
 // SQLPP reads the following declaration.
 EXEC SQL BEGIN DECLARE SECTION;
 long host_value;
 EXEC SQL END DECLARE SECTION;
#endif
// Make C/C++ recognize the 'host_value' identifier
// as a macro that expands to a struct field.
#define host_value my_s.host_field

Since the SQLPP processor ignores directives for conditional compilation, host_value is treated as a long
host variable and will emit that name when it is subsequently used as a host variable. The C/C++ compiler
processes the emitted file and will substitute my_s.host_field for all such uses of that name.

With the above declarations in place, you can proceed to access host_field as follows.

void main(void)
{
 my_struct my_s;
 db_init(&sqlca);
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
 EXEC SQL DECLARE my_table_cursor CURSOR FOR
 SELECT int_col FROM my_table order by int_col;
 EXEC SQL OPEN my_table_cursor;
 for(; ;) {
 // :host_value references my_s.host_field
 EXEC SQL FETCH NEXT AllRows INTO :host_value;
 if(SQLCODE == SQLE_NOTFOUND) {
 break;
 }
 printf("%ld\n", my_s.host_field);
 }
 EXEC SQL CLOSE my_table_cursor;
 EXEC SQL DISCONNECT;
 db_fini(&sqlca);
}

You can use the same technique to use other lvalues as host variables:

● pointer indirections

Application development

38 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

*ptr
p_struct->ptr
(*pp_struct)->ptr

● array references

my_array[I]

● arbitrarily complex lvalues

Host variables in C++
A similar situation arises when using host variables within C++ classes. It is frequently convenient to
declare your class in a separate header file. This header file might contain, for example, the following
declaration of my_class.

typedef short a_bool;
#define TRUE ((a_bool)(1==1))
#define FALSE ((a_bool)(0==1))
public class {
 long host_member;
 my_class(); // Constructor
 ~my_class(); // Destructor
 a_bool FetchNextRow(void);
 // Fetch the next row into host_member
} my_class;

In this example, each method is implemented in an embedded SQL source file. Only simple variables can
be used as host variables. The technique introduced in the preceding section can be used to access a data
member of a class.

EXEC SQL INCLUDE SQLCA;
#include "my_class.hpp"
#if 0
 // Because it ignores #if preprocessing directives,
 // SQLPP reads the following declaration.
 EXEC SQL BEGIN DECLARE SECTION;
 long this_host_member;
 EXEC SQL END DECLARE SECTION;
#endif
// Macro used by the C++ compiler only.
#define this_host_member this->host_member
my_class::my_class()
{
 EXEC SQL DECLARE my_table_cursor CURSOR FOR
 SELECT int_col FROM my_table order by int_col;
 EXEC SQL OPEN my_table_cursor;
}
my_class::~my_class()
{
 EXEC SQL CLOSE my_table_cursor;
}
a_bool my_class::FetchNextRow(void)
{
 // :this_host_member references this->host_member
 EXEC SQL FETCH NEXT AllRows INTO :this_host_member;
 return(SQLCODE != SQLE_NOTFOUND);
}
void main(void)

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 39

{
 db_init(&sqlca);
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "SQL";
 {
 my_class mc; // Created after connecting.
 while(mc.FetchNextRow()) {
 printf("%ld\n", mc.host_member);
 }
 }
 EXEC SQL DISCONNECT;
 db_fini(&sqlca);
}

The above example declares this_host_member for the SQL preprocessor, but the macro causes C++
to convert it to this->host_member. The preprocessor would otherwise not know the type of this
variable. Many C/C++ compilers do not tolerate duplicate declarations. The #if directive hides the
second declaration from the compiler, but leaves it visible to the SQL preprocessor.

While multiple declarations can be useful, you must ensure that each declaration assigns the same variable
name to the same type. The preprocessor assumes that each host variable is globally known following its
declaration because it can not fully parse the C language.

Indicator variables

Indicator variables are C variables that hold supplementary information about a particular host variable.
You can use a host variable when fetching or putting data. Use indicator variables to handle NULL
values.

An indicator variable is a host variable of type a_sql_len that is placed immediately following a regular
host variable in a SQL statement. To detect or specify a NULL value, place the indicator variable
immediately following a regular host variable in a SQL statement.

Example
For example, in the following INSERT statement, :ind_phone is an indicator variable.

EXEC SQL INSERT INTO Employee
 VALUES (:employee_number, :employee_name,
 :employee_initials, :employee_phone:ind_phone);

On a fetch or execute where no rows are received from the database server (such as when an error or end
of result set occurs), then indicator values are unchanged.

Note
To allow for the future use of 32 and 64-bit lengths and indicators, the use of short int for embedded SQL
indicator variables is deprecated. Use a_sql_len instead.

Indicator variable values
The following table provides a summary of indicator variable usage:

Application development

40 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Indicator
value

Supplying value to
database

Receiving value from database

0 Host variable value Fetched a non-NULL value.

-1 NULL value Fetched a NULL value

Indicator variables to handle NULL

Do not confuse the SQL concept of NULL with the C-language constant of the same name. In the SQL
language, NULL represents either an unknown attribute or inapplicable information. The C-language
constant represents a pointer value that does not point to a memory location.

When NULL is used in the SQL Anywhere documentation, it refers to the SQL database meaning given
above. The C language constant is referred to as the null pointer (lowercase).

NULL is not the same as any value of the column's defined type. To pass NULL values to the database or
receive NULL results back, you require something beyond regular host variables. Indicator variables
serve this purpose.

Using indicator variables when inserting NULL
An INSERT statement can include an indicator variable as follows:

EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
a_sql_len ind_phone;
EXEC SQL END DECLARE SECTION;
/* set values of employee number, name,
 initials, and phone number */
if(/* phone number is known */) {
 ind_phone = 0;
} else {
 ind_phone = -1; /* NULL */
}
EXEC SQL INSERT INTO Employee
 VALUES (:employee_number, :employee_name,
 :employee_initials, :employee_phone:ind_phone);

If the indicator variable has a value of -1, a NULL is written. If it has a value of 0, the actual value of
employee_phone is written.

Using indicator variables when fetching NULL
Indicator variables are also used when receiving data from the database. They are used to indicate that a
NULL value was fetched (indicator is negative). If a NULL value is fetched from the database and an
indicator variable is not supplied, the SQLE_NO_INDICATOR error is generated.

See also
● “Initialize the SQL Communications Area” on page 29

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 41

Data fetching
Fetching data in embedded SQL is done using the SELECT statement. There are two cases:

1. The SELECT statement returns no rows or returns exactly one row.

2. The SELECT statement returns multiple rows.

Single row fetching

A single row query retrieves at most one row from the database. A single row query SELECT statement
may have an INTO clause following the select list and before the FROM clause. The INTO clause
contains a list of host variables to receive the value for each select list item. There must be the same
number of host variables as there are select list items. The host variables may be accompanied by
indicator variables to indicate NULL results.

When the SELECT statement is executed, the database server retrieves the results and places them in the
host variables.

● If the query returns more than one row, the database server returns the
SQLE_TOO_MANY_RECORDS error.

● If the query returns no rows, the SQLE_NOTFOUND warning is returned.

See also
● “Initialize the SQL Communications Area” on page 29

Example
For example, the following code fragment returns 1 if a row from the employee table is successfully
fetched, 0 if the row doesn't exist, and -1 if an error occurs.

EXEC SQL BEGIN DECLARE SECTION;
 long int emp_id;
 char name[41];
 char sex;
 char birthdate[15];
 a_sql_len ind_birthdate;
EXEC SQL END DECLARE SECTION;
int find_employee(long employee)
{
 emp_id = employee;
 EXEC SQL SELECT emp_fname || ' ' || emp_lname,
 sex, birth_date
 INTO :name, :sex, birthdate:ind_birthdate
 FROM "DBA".employee
 WHERE emp_id = :emp_id;
 if(SQLCODE == SQLE_NOTFOUND) {
 return(0); /* employee not found */
 } else if(SQLCODE < 0) {
 return(-1); /* error */
 } else {
 return(1); /* found */

Application development

42 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 }
}

Fetching multiple rows

You use a cursor to retrieve rows from a query that has multiple rows in the result set. A cursor is a
handle or an identifier for the SQL query result set and a position within that result set.

Manage a cursor in embedded SQL

1. Declare a cursor for a particular SELECT statement, using the DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Retrieve rows from the cursor one at a time using the FETCH statement.

● Fetch rows until the SQLE_NOTFOUND warning is returned. Error and warning codes are
returned in the variable SQLCODE, defined in the SQL communications area structure.

4. Close the cursor, using the CLOSE statement.

Cursors in UltraLite applications are always opened using the WITH HOLD option. They are never
closed automatically. You must explicitly close each cursor using the CLOSE statement.

The following is a simple example of cursor usage:

void print_employees(void)
{
 int status;
 EXEC SQL BEGIN DECLARE SECTION;
 char name[50];
 char sex;
 char birthdate[15];
 a_sql_len ind_birthdate;
 EXEC SQL END DECLARE SECTION;
 /* 1. Declare the cursor. */
 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT emp_fname || ' ' || emp_lname,
 sex, birth_date
 FROM "DBA".employee
 ORDER BY emp_fname, emp_lname;
 /* 2. Open the cursor. */
 EXEC SQL OPEN C1;
 /* 3. Fetch each row from the cursor. */
 for(;;) {
 EXEC SQL FETCH C1 INTO :name, :sex,
 :birthdate:ind_birthdate;
 if(SQLCODE == SQLE_NOTFOUND) {
 break; /* no more rows */
 } else if(SQLCODE < 0) {
 break; /* the FETCH caused an error */
 }
 if(ind_birthdate < 0) {
 strcpy(birthdate, "UNKNOWN");
 }
 printf("Name: %s Sex: %c Birthdate:

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 43

 %s\n",name, sex, birthdate);
 }
 /* 4. Close the cursor. */
 EXEC SQL CLOSE C1;
}

Cursor positioning
A cursor is positioned in one of three places:

● On a row

● Before the first row

● After the last row

Order of rows in a cursor
You control the order of rows in a cursor by including an ORDER BY clause in the SELECT statements
that defines that cursor. If you omit this clause, the order of the rows is unpredictable.

If you don't explicitly define an order, the only guarantee is that fetching repeatedly will return each row
in the result set once and only once before SQLE_NOTFOUND is returned.

Application development

44 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Repositioning a cursor
When you open a cursor, it is positioned before the first row. The FETCH statement automatically
advances the cursor position. An attempt to FETCH beyond the last row results in a SQLE_NOTFOUND
error, which can be used as a convenient signal to complete sequential processing of the rows.

You can also reposition the cursor to an absolute position relative to the start or end of the query results,
or you can move the cursor relative to the current position. There are special positioned versions of the
UPDATE and DELETE statements that can be used to update or delete the row at the current position of
the cursor. If the cursor is positioned before the first row or after the last row, a SQLE_NOTFOUND error
is returned.

To avoid unpredictable results when using explicit positioning, you can include an ORDER BY clause in
the SELECT statement that defines the cursor.

You can use the PUT statement to insert a row into a cursor.

Cursor positioning after updates
After updating any information that is being accessed by an open cursor, it is best to fetch and display the
rows again. If the cursor is being used to display a single row, FETCH RELATIVE 0 will re-fetch the
current row. When the current row has been deleted, the next row will be fetched from the cursor (or
SQLE_NOTFOUND is returned if there are no more rows).

When a temporary table is used for the cursor, inserted rows in the underlying tables do not appear at all
until that cursor is closed and reopened. It can be difficult to detect whether a temporary table is involved
in a SELECT statement without examining the code generated by the SQL preprocessor or by becoming
knowledgeable about the conditions under which temporary tables are used. Temporary tables can usually
be avoided by having an index on the columns used in the ORDER BY clause.

Inserts, updates, and deletes to non-temporary tables may affect the cursor positioning. Because UltraLite
materializes cursor rows one at a time (when temporary tables are not used), the data from a freshly
inserted row (or the absence of data from a freshly deleted row) may affect subsequent FETCH
operations. In the simple case where (parts of) rows are being selected from a single table, an inserted or
updated row will appear in the result set for the cursor when it satisfies the selection criteria of the
SELECT statement. Similarly, a freshly deleted row that previously contributed to the result set will no
longer be within it.

See also
● “FETCH statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference]
● “Working with cursors” [SQL Anywhere Server - Programming]
● “Use work tables in query processing (use All-rows optimization goal)” [SQL Anywhere Server - SQL

Usage]

User authentication
A complete sample can be found in the %SQLANYSAMP12%\UltraLite\esqlauth directory. The code
below is taken from %SQLANYSAMP12%\UltraLite\esqlauth\sample.sqc.

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 45

//embedded SQL
app() {
 ...
/* Declare fields */
 EXEC SQL BEGIN DECLARE SECTION;
 char uid[31];
 char pwd[31];
 EXEC SQL END DECLARE SECTION;
 db_init(&sqlca);
 ...
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";
 if(SQLCODE == SQLE_NOERROR) {
 printf("Enter new user ID and password\n");
 scanf("%s %s", uid, pwd);
 ULGrantConnectTo(&sqlca,
 UL_TEXT(uid), UL_TEXT(pwd));
 if(SQLCODE == SQLE_NOERROR) {
 // new user added: remove DBA
 ULRevokeConnectFrom(&sqlca, UL_TEXT("DBA"));
 }
 EXEC SQL DISCONNECT;
 }
 // Prompt for password
 printf("Enter user ID and password\n");
 scanf("%s %s", uid, pwd);
 EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

The code carries out the following tasks:

1. Initiate database functionality by calling db_init.

2. Attempt to connect using the default user ID and password.

3. If the connection attempt is successful, add a new user.

4. If the new user is successfully added, delete the DBA user from the UltraLite database.

5. Disconnect. An updated user ID and password is now added to the database.

6. Connect using the updated user ID and password.

See also
● “ULGrantConnectTo method [UltraLite Embedded SQL]” on page 262
● “ULRevokeConnectFrom method [UltraLite Embedded SQL]” on page 265

Encrypting data using UltraLite embedded SQL
You can encrypt or obfuscate your UltraLite database using UltraLite embedded SQL.

Encryption
When an UltraLite database is created (using Sybase Central for example), an optional encryption key
may be specified. The encryption key is used to encrypt the database. Once the database is encrypted, all
subsequent connection attempts must supply the encryption key. The supplied key is checked against the
original encryption key and the connection fails unless the key matches.

Application development

46 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Choose an encryption key value that cannot easily be guessed. The key can be of arbitrary length, but
generally a longer key is better, because a shorter key is easier to guess. Including a combination of
numbers, letters, and special characters decreases the chances of someone guessing the key.

Do not include semicolons in your key. Do not put the key itself in quotes, or the quotes will be
considered part of the key.

Connect to an encrypted UltraLite database

1. Specify the encryption key in the connection string used in the EXEC SQL CONNECT statement.

The encryption key is specified with the key= connection string parameter.

You must supply this key each time you want to connect to the database. Lost or forgotten keys result
in completely inaccessible databases.

2. Handle attempts to open an encrypted database with the wrong key.

If an attempt is made to open an encrypted database and the wrong key is supplied, db_init returns
ul_false and SQLCODE -840 is set.

Changing the encryption key

Change the encryption key on an UltraLite database

You can change the encryption key for a database. The application must already be connected to the
database using the existing key before the change can be made.

● Call the ULChangeEncryptionKey function, supplying the new key as an argument.

The application must already be connected to the database using the old key before this function is
called.

Obfuscation

Obfuscate an UltraLite database

● An alternative to using database encryption is to specify that the database is to be obfuscated.
Obfuscation is a simple masking of the data in the database that is intended to prevent browsing the
data in the database with a low level file examination utility. Obfuscation is a database creation option
and must be specified when the database is created.

See also
● “ULChangeEncryptionKey method [UltraLite Embedded SQL]” on page 244
● “Specify UltraLite creation parameters” [UltraLite - Database Management and Reference]

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 47

Adding synchronization to your application
Synchronization is a key feature of many UltraLite applications. This section describes how to add
synchronization to your application.

The synchronization logic that keeps UltraLite applications up to date with the consolidated database is
not held in the application itself. Synchronization scripts stored in the consolidated database, together
with the MobiLink server and the UltraLite runtime library, control how changes are processed when they
are uploaded and determines which changes are to be downloaded.

Overview
The specifics of each synchronization are controlled by a set of synchronization parameters. These
parameters are gathered into a structure, which is then supplied as an argument in a function call to
synchronize. The outline of the method is the same in each development model.

Add synchronization to your application

1. Initialize the structure that holds the synchronization parameters.

2. Assign the parameter values for your application.

3. Call the synchronization function, supplying the structure or object as argument.

You must ensure that there are no uncommitted changes when you synchronize.

Synchronization parameters
The ul_sync_info structure is documented in the C/C++ component chapter; however, members of the
structures are common to embedded SQL development as well.

See also
● “Initializing the synchronization parameters” on page 48
● “Network protocol options for UltraLite synchronization streams” [UltraLite - Database Management

and Reference]
● “Invoking synchronization” on page 49
● “ul_sync_info structure [UltraLite C and Embedded SQL datatypes]” on page 110
● “Synchronization parameters for UltraLite” [UltraLite - Database Management and Reference]

Initializing the synchronization parameters
The synchronization parameters are stored in a structure.

Initialize the synchronization parameters (embedded SQL)

The members of the structure are undefined on initialization. You must set your parameters to their initial
values with a call to a special function. The synchronization parameters are defined in a structure declared
in the UltraLite header file %SQLANY12%\SDK\Include\ulglobal.h.

● Call the ULInitSyncInfo function. For example:

Application development

48 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ul_sync_info synch_info;
ULInitSyncInfo(&synch_info);

Synchronization parameters

The following code initiates TCP/IP synchronization. The MobiLink user name is Betty Best, with
password TwentyFour, the script version is default, and the MobiLink server is running on the host
computer test.internal, on port 2439:

ul_sync_info synch_info;
ULInitSyncInfo(&synch_info);
synch_info.user_name = UL_TEXT("Betty Best");
synch_info.password = UL_TEXT("TwentyFour");
synch_info.version = UL_TEXT("default");
synch_info.stream = ULSocketStream();
synch_info.stream_parms =
 UL_TEXT("host=test.internal;port=2439");
ULSynchronize(&sqlca, &synch_info);

Invoking synchronization

The details of how to invoke synchronization depends on your target platform and on the synchronization
stream.

The synchronization process can only work if the device running the UltraLite application is able to
communicate with the MobiLink server. For some platforms, this means that the device needs to be
physically connected by placing it in its cradle or by attaching it to a server computer using the
appropriate cable. If the synchronization cannot be completed, add error handling code to your
application.

Invoke synchronization (TCP/IP, TLS, HTTP, or HTTPS streams)

● Call ULInitSyncInfo to initialize the synchronization parameters, and call ULSynchronize to
synchronize.

The synchronization call requires a structure that holds a set of parameters describing the specifics of the
synchronization. The particular parameters used depend on the stream.

Commit all changes before synchronizing

An UltraLite database cannot have uncommitted changes when it is synchronized. If you attempt to
synchronize an UltraLite database when any connection has an uncommitted transaction, the
synchronization fails, an exception is thrown and the SQLE_UNCOMMITTED_TRANSACTIONS error
is set. This error code also appears in the MobiLink server log.

See also
● “Download Only synchronization parameter” [UltraLite - Database Management and Reference]

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 49

Add initial data to your application

Many UltraLite applications need data to start working. You can download data into your application by
synchronizing. You may want to add logic to your application to ensure that, the first time it is run, it
downloads all necessary data before any other actions are carried out.

Tip
It is easier to locate errors if you develop an application in stages. When developing a prototype,
temporarily use INSERT statements in your application to provide data for testing and demonstration
purposes. Once your prototype is working correctly, replace the temporary INSERT statements with the
code to perform the synchronization.

See also
● “MobiLink development tips” [MobiLink - Server Administration]

Synchronization communications errors

The following code illustrates how to handle communications errors from embedded SQL applications:

if(psqlca->sqlcode == SQLE_MOBILINK_COMMUNICATIONS_ERROR) {
 printf(" Stream error information:\n"
 " stream_error_code = %ld\t(ss_error_code)\n"
 " error_string = \"%s\"\n"
 " system_error_code = %ld\n",
 (long)info.stream_error.stream_error_code,
 info.stream_error.error_string,
 (long)info.stream_error.system_error_code);
}

SQLE_MOBILINK_COMMUNICATIONS_ERROR is the general error code for communications
errors.

To keep UltraLite small, the runtime reports numbers rather than messages.

Synchronization monitoring and canceling

This section describes how to monitor and cancel synchronization from UltraLite applications.

Monitoring synchronization
● Specify the name of your callback function in the observer member of the synchronization structure

(ul_synch_info).

● Call the synchronization function or method to start synchronization.

● UltraLite calls your callback function whenever the synchronization state changes. The following
section describes the synchronization state.

Application development

50 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The following code shows how this sequence of tasks can be implemented in an embedded SQL
application:

ULInitSyncInfo(&info);
info.user_name = m_EmpIDStr;
...
//The info parameter of ULSynchronize() contains
// a pointer to the observer function
info.observer = ObserverFunc;
ULSynchronize(&sqlca, &info);

Synchronization status information

The callback function that monitors synchronization takes a ul_sync_status structure as parameter.

The ul_sync_status structure has the following members:

struct ul_sync_status {
 struct {
 ul_u_long bytes;
 ul_u_long inserts;
 ul_u_long updates;
 ul_u_long deletes;
 } sent;
 struct {
 ul_u_long bytes;
 ul_u_long inserts;
 ul_u_long updates;
 ul_u_long deletes;
 } received;
 p_ul_sync_info info;
 ul_sync_state state;
 ul_u_short db_tableCount;
 ul_u_short table_id;
 char table_name[];
 ul_wchar table_name_w2[];
 ul_u_short sync_table_count;
 ul_u_short sync_table_index;
 ul_sync_state state;
 ul_bool stop;
 ul_u_short flags;
 ul_void * user_data;
 SQLCA * sqlca;
}

● sent.inserts The number of inserted rows that have been uploaded so far.

● sent.updates The number of updated rows that have been uploaded so far.

● sent.deletes The number of deleted rows that have been uploaded so far.

● sent.bytes The number of bytes that have been uploaded so far.

● received.inserts The number of inserted rows that have been downloaded so far.

● received.updates The number of updated rows that have been downloaded so far.

● received.deletes The number of deleted rows that have been downloaded so far.

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 51

● received.bytes The number of bytes that have been downloaded so far.

● info A pointer to the ul_sync_info structure.

● db_tableCount Returns the number of tables in the database.

● table_id The current table number (relative to 1) that is being uploaded or downloaded. This
number may skip values when not all tables are being synchronized and is not necessarily increasing.

● table_name[] Name of the current table.

● table_name_w2[] Name of the current table (wide character version). This field is only populated
in the Windows (desktop and Mobile) environment.

● sync_table_count Returns the number of tables being synchronized.

● sync_table_index The number of the table that is being uploaded or downloaded, starting at 1 and
ending at the sync_table_count value. This number may skip values when not all tables are being
synchronized.

● state One of the following states:

○ UL_SYNC_STATE_STARTING No synchronization actions have yet been taken.

○ UL_SYNC_STATE_CONNECTING The synchronization stream has been built, but not yet
opened.

○ UL_SYNC_STATE_SENDING_HEADER The synchronization stream has been opened, and
the header is about to be sent.

○ UL_SYNC_STATE_SENDING_TABLE A table is being sent.

○ UL_SYNC_STATE_SENDING_DATA Schema information or data is being sent.

○ UL_SYNC_STATE_FINISHING_UPLOAD The upload stage is completed and a commit is
being carried out.

○ UL_SYNC_STATE_RECEIVING_UPLOAD_ACK An acknowledgement that the upload is
complete is being received.

○ UL_SYNC_STATE_RECEIVING_TABLE A table is being received.

○ UL_SYNC_STATE_RECEIVING_DATA Schema information or data is being received.

○ UL_SYNC_STATE_COMMITTING_DOWNLOAD The download stage is completed and a
commit is being carried out.

○ UL_SYNC_STATE_SENDING_DOWNLOAD_ACK An acknowledgement that download is
complete is being sent.

○ UL_SYNC_STATE_DISCONNECTING The synchronization stream is about to be closed.

Application development

52 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

○ UL_SYNC_STATE_DONE Synchronization has completed successfully.

○ UL_SYNC_STATE_ERROR Synchronization has completed, but with an error.

○ UL_SYNC_STATE_ROLLING_BACK_DOWNLOAD An error occurred during download and
the download is being rolled back.

● stop Set this member to true to interrupt the synchronization. The SQL exception
SQLE_INTERRUPTED is set, and the synchronization stops as if a communications error had
occurred. The observer is always called with either the DONE or ERROR state so that it can do proper
cleanup.

● flags Returns the current synchronization flags indicating additional information related to the
current state.

● user_data Returns the user data object that is passed as an argument to the
ULSetSynchronizationCallback function.

● sqlca Pointer to the connection's active SQLCA.

Example
The following code illustrates a very simple observer function:

extern void __stdcall ObserverFunc(
 p_ul_sync_status status)
{
 switch(status->state) {
 case UL_SYNC_STATE_STARTING:
 printf("Starting\n");
 break;
 case UL_SYNC_STATE_CONNECTING:
 printf("Connecting\n");
 break;
 case UL_SYNC_STATE_SENDING_HEADER:
 printf("Sending Header\n");
 break;
 case UL_SYNC_STATE_SENDING_TABLE:
 printf("Sending Table %d of %d\n",
 status->tableIndex + 1,
 status->tableCount);
 break;
 case UL_SYNCH_RECEIVING_UPLOAD_ACK:
 printf("Receiving Upload Ack\n");
 break;
 case UL_SYNC_STATE_RECEIVING_TABLE:
 printf("Receiving Table %d of %d\n",
 status->tableIndex + 1,
 status->tableCount);
 break;
 case UL_SYNC_STATE_SENDING_DOWNLOAD_ACK:
 printf("Sending Download Ack\n");
 break;
 case UL_SYNC_STATE_DISCONNECTING:
 printf("Disconnecting\n");
 break;
 case UL_SYNC_STATE_DONE:
 printf("Done\n");

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 53

 break;
 break;
...

This observer produces the following output when synchronizing two tables:

Starting
Connecting
Sending Header
Sending Table 1 of 2
Sending Table 2 of 2
Receiving Upload Ack
Receiving Table 1 of 2
Receiving Table 2 of 2
Sending Download Ack
Disconnecting
Done

CustDB example
An example of an observer function is included in the CustDB sample application. The implementation in
CustDB provides a window that displays synchronization progress and allows the user to cancel
synchronization. The user-interface component makes the observer function platform specific.

The CustDB sample code is in the %SQLANYSAMP12%\UltraLite\CustDB directory. The observer
function is contained in platform-specific subdirectories of the CustDB directory.

See also
● “ul_sync_info structure [UltraLite C and Embedded SQL datatypes]” on page 110
● “ul_sync_status structure [UltraLite C and Embedded SQL datatypes]” on page 113
● “The synchronization process” [MobiLink - Getting Started]

Embedded SQL application building
This section describes a general build procedure for UltraLite embedded SQL applications.

This section assumes a familiarity with the overall embedded SQL development model.

Understanding general build procedures

Sample code
You can find a makefile that uses this process in the %SQLANYSAMP12%\UltraLite\ESQLSecurity
directory.

Application development

54 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
Separately licensed component required.

ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Procedure
Build an UltraLite embedded SQL application

1. Run the SQL preprocessor on each embedded SQL source file.

The SQL preprocessor is the sqlpp command line utility. It preprocesses the embedded SQL source
files, producing C++ source files to be compiled into your application.

Caution
sqlpp overwrites the output file without regard to its contents. Ensure that the output file name does
not match the name of any of your source files. By default, sqlpp constructs the output file name by
changing the suffix of your source file to .cpp. When in doubt, specify the output file name explicitly,
following the name of the source file.

2. Compile each C++ source file for the target platform of your choice. Include:

● each C++ file generated by the SQL preprocessor

● any additional C or C++ source files required by your application

3. Link all these object files, together with the UltraLite runtime library.

See also
● “SQL preprocessor for UltraLite utility (sqlpp)” [UltraLite - Database Management and Reference]

Configuring development tools for embedded SQL development

Many development tools use a dependency model, sometimes expressed as a makefile, in which the
timestamp on each source file is compared with that on the target file (usually the object file) to decide
whether the target file needs to be regenerated.

With UltraLite development, a change to any SQL statement in a development project means that the
generated code needs to be regenerated. Changes are not reflected in the timestamp on any individual
source file because the SQL statements are stored in the reference database.

This section describes how to incorporate UltraLite application development, specifically the SQL
preprocessor, into a dependency-based build environment. The specific instructions provided are for
Visual C++, and you may need to modify them for your own development tool.

UltraLite C++ application development using embedded SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 55

SQL preprocessing
The first set of instructions describes how to add instructions to run the SQL preprocessor to your
development tool.

Add embedded SQL preprocessing into a dependency-based development tool

1. Add the .sqc files to your development project.

The development project is defined in your development tool.

2. Add a custom build rule for each .sqc file.

● The custom build rule should run the SQL preprocessor. In Visual C++, the build rule should have
the following command (entered on a single line):

"%SQLANY12%\Bin32\sqlpp.exe" -q -u $(InputPath) $(InputName).cpp

where SQLANY12 is an environment variable that points to your SQL Anywhere installation
directory.

● Set the output for the command to $(InputName).cpp.

3. Compile the .sqc files, and add the generated .cpp files to your development project.

You need to add the generated files to your project even though they are not source files, so that you
can set up dependencies and build options.

4. For each generated .cpp file, set the preprocessor definitions.

● Under General or Preprocessor, add UL_USE_DLL to the Preprocessor definitions.

● Under Preprocessor, add $(SQLANY12)\SDK\Include and any other include folders you require to
your include path, as a comma-separated list.

See also
● “SQL preprocessor for UltraLite utility (sqlpp)” [UltraLite - Database Management and Reference]

UltraLite application development for Windows
Mobile

Microsoft Visual Studio 2005 and later can be used to develop applications for the Windows Mobile
environment.

Applications targeting Windows Mobile should use the default setting for wchar_t and link against the
UltraLite runtime libraries in \Program Files\SQLAny12\ultralite\ce\arm.50\lib\.

You can test your applications under an emulator on most Windows Mobile target platforms.

Application development

56 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Supported platforms” [SQL Anywhere 12 - Introduction]

Building the CustDB sample application
CustDB is a simple sales-status application. It is located in the %SQLANYSAMP12%\UltraLite\ directory
of your SQL Anywhere installation.

The CustDB application is provided as a Visual Studio solution.

Note
The sample project uses environment variables wherever possible. It may be necessary to adjust the
project for the application to build properly. If you experience problems, try searching for missing files in
the Microsoft Visual C++ folder(s) and adding the appropriate directory settings.

Build the CustDB sample application

1. Start Visual Studio.

2. Open the project file that corresponds to your version of Visual Studio.

● %SQLANYSAMP12%\UltraLite\CustDB\VS8 for Visual Studio 2005.

● %SQLANYSAMP12%\UltraLite\CustDB\VS9 for Visual Studio 2008 or later.

3. Click Build » Set Configuration Manager to set the target platform.

● Set an active solution platform of your choice.

4. Build the application:

● Click Build » Deploy Solution to build and deploy CustDB.

When the application is built it will be uploaded automatically to the remote device.

5. Start the MobiLink server:

● To start the MobiLink server, click Start » Programs » SQL Anywhere 12 » MobiLink »
Synchronization Server Sample.

6. Run the CustDB application:

Before running the CustDB application, the custdb database must be copied to the root folder of the
device. Copy the database file named %SQLANYSAMP12%\UltraLite\CustDB\custdb.udb to the root
of the device.

On the device or simulator, execute CustDB.exe, which is located in the project folder under \Program
Files.

UltraLite application development for Windows Mobile

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 57

For embedded SQL, the build process uses the SQL preprocessor, sqlpp, to preprocess the file
CustDB.sqc into the file CustDB.cpp. This one-step process is useful in smaller UltraLite applications
where all the embedded SQL can be confined to one source module. In larger UltraLite applications, you
need to use multiple sqlpp invocations.

See also
● “The CustDB sample database application” [SQL Anywhere 12 - Introduction]
● “Embedded SQL application building” on page 54

Persistent data
The UltraLite database is stored in the Windows Mobile file system. The default file is \UltraLiteDB
\ul_store.udb. You can override this choice using the file_name connection parameter which specifies the
full path name of the file-based persistent store.

The UltraLite runtime carries out no substitutions on the file_name parameter. If a directory has to be
created for the file name to be valid, the application must ensure that any directories are created before
calling db_init.

As an example, you could make use of a flash memory storage card by scanning for storage cards and
prefixing a name by the appropriate directory name for the storage card. For example:

file_name = "\\Storage Card\\My Documents\\flash.udb"

Assigning class names for applications

Assign a window class name for MFC applications

When registering applications for use with ActiveSync you must supply a window class name. Assigning
class names is carried out at development time and your application development tool documentation is
the primary source of information on the topic.

Microsoft Foundation Classes (MFC) dialog boxes are given a generic class name of Dialog, which is
shared by all dialogs in the system. This section describes how to assign a distinct class name for your
application if you are using MFC.

1. Create and register a custom window class for dialog boxes, based on the default class.

Add the following code to your application's startup code. The code must be executed before any
dialogs get created:

WNDCLASS wc;
if(! GetClassInfo(NULL, L"Dialog", &wc)) {
 AfxMessageBox(L"Error getting class info");
}
wc.lpszClassName = L"MY_APP_CLASS";
if(! AfxRegisterClass(&wc)) {

Application development

58 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 AfxMessageBox(L"Error registering class");
}

where MY_APP_CLASS is the unique class name for your application.

2. Determine which dialog is the main dialog for your application.

If your project was created with the MFC Application Wizard, this is likely to be a dialog named
MyAppDlg.

3. Find and record the resource ID for the main dialog.

The resource ID is a constant of the same general form as IDD_MYAPP_DIALOG.

4. Ensure that the main dialog remains open any time your application is running.

Add the following line to your application's InitInstance function. The line ensures that if the main
dialog dlg is closed, the application also closes.

m_pMainWnd = &dlg;

For more information, see the Microsoft documentation for CWinThread::m_pMainWnd.

If the dialog does not remain open for the duration of your application, you must change the window
class of other dialogs as well.

5. Save your changes.

6. Modify the resource file for your project.

● Open your resource file (which has an extension of .rc) in a text editor such as Notepad.

Locate the resource ID of your main dialog.

● Change the main dialog's definition to use the new window class as in the following example. The
only change that you should make is the addition of the CLASS line:

IDD_MYAPP_DIALOG DIALOG DISCARDABLE 0, 0, 139, 103
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION
EXSTYLE WS_EX_APPWINDOW | WS_EX_CAPTIONOKBTN
CAPTION "MyApp"
FONT 8, "System"
CLASS "MY_APP_CLASS"
BEGIN
 LTEXT "TODO: Place dialog controls here.",IDC_STATIC,
13,33,112,17
END

where MY_APP_CLASS is the name of the window class you used earlier.

● Save the .rc file.

7. Add code to catch the synchronization message.

UltraLite application development for Windows Mobile

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 59

See also
● “Adding ActiveSync synchronization (MFC)” on page 61

Windows Mobile synchronization

UltraLite applications on Windows Mobile can synchronize through the following stream types:

● ActiveSync

● TCP/IP

● HTTP

The user_name and stream_parms parameters must be surrounded by the UL_TEXT() macro for
Windows Mobile when initializing, since the compilation environment is Unicode wide characters.

See also
● “Add ActiveSync synchronization to your application” on page 60
● “TCP/IP, HTTP, or HTTPS synchronization from Windows Mobile” on page 63
● “TCP/IP, HTTP, or HTTPS synchronization from Windows Mobile” on page 63
● “Synchronization parameters for UltraLite” [UltraLite - Database Management and Reference]

Add ActiveSync synchronization to your application

ActiveSync is software from Microsoft that handles data synchronization between a desktop computer
running Windows and a connected Windows Mobile handheld device. UltraLite supports ActiveSync
versions 3.5 and later.

This section describes how to add ActiveSync provider to your application, and how to register your
application for use with ActiveSync on your end users' computers.

If you use ActiveSync, synchronization can be initiated only by ActiveSync itself. ActiveSync
automatically initiates a synchronization when the device is placed in the cradle or when Synchronize is
selected from the ActiveSync window. The MobiLink provider starts the application, if it is not already
running, and sends a message to the application.

The ActiveSync provider uses the wParam parameter. A wParam value of 1 indicates that the MobiLink
provider for ActiveSync launched the application. The application must then shut itself down after it has
finished synchronizing. If the application was already running when called by the MobiLink provider for
ActiveSync, wParam is 0. The application can ignore the wParam parameter if it wants to keep running.

To determine which platforms the provider is supported on, see SQL Anywhere Components by Platform.

Adding synchronization depends on whether you are addressing the Windows API directly or whether
you are using the Microsoft Foundation Classes. Both development models are described here.

Application development

60 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1061806

See also
● “Deploying the ActiveSync provider for UltraLite” [UltraLite - Database Management and

Reference]

Add ActiveSync synchronization (Windows API)

If you are programming directly to the Windows API, you must handle the message from the MobiLink
provider in your application's WindowProc function, using the ULIsSynchronizeMessage function to
determine if it has received the message.

Here is an example of how to handle the message:

LRESULT CALLBACK WindowProc(HWND hwnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 if(ULIsSynchronizeMessage(uMsg)) {
 DoSync();
 if(wParam == 1) DestroyWindow(hWnd);
 return 0;
 }
 switch(uMsg) {
 // code to handle other windows messages
 default:
 return DefWindowProc(hwnd, uMsg, wParam, lParam);
 }
 return 0;
}

where DoSync is the method that actually calls ULSynchronize.

See also
● “ULIsSynchronizeMessage method [UltraLite Embedded SQL]” on page 262

Adding ActiveSync synchronization (MFC)

Add ActiveSync synchronization in the main dialog class

If you are using Microsoft Foundation Classes to develop your application, you can catch the
synchronization message in the main dialog class or in your application class.

Your application must create and register a custom window class name for notification.

1. Add a registered message and declare a message handler.

Find the message map in the source file for your main dialog (the name is of the same form as
CMyAppDlg.cpp). Add a registered message using the static and declare a message handler using
ON_REGISTERED_MESSAGE as in the following example:

UltraLite application development for Windows Mobile

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 61

static UINT WM_ULTRALITE_SYNC_MESSAGE =
 ::RegisterWindowMessage(UL_AS_SYNCHRONIZE);
BEGIN_MESSAGE_MAP(CMyAppDlg, CDialog)
 //{{AFX_MSG_MAP(CMyAppDlg)
 //}}AFX_MSG_MAP
 ON_REGISTERED_MESSAGE(WM_ULTRALITE_SYNC_MESSAGE,
 OnDoUltraLiteSync)
END_MESSAGE_MAP()

2. Implement the message handler.

Add a method to the main dialog class with the following signature. This method is automatically
executed any time the MobiLink provider for ActiveSync requests that your application synchronize.
The method should call ULSynchronize.

LRESULT CMyAppDlg::OnDoUltraLiteSync(
 WPARAM wParam,
 LPARAM lParam
);

The return value of this function should be 0.

Add ActiveSync synchronization in the Application class

If you are using Microsoft Foundation Classes to develop your application, you can catch the
synchronization message in the main dialog class or in your application class.

Your application must create and register a custom window class name for notification.

1. Open the Class Wizard for the application class.

2. In the Messages list, highlight PreTranslateMessage and then click Add Function.

3. Click Edit Code. The PreTranslateMessage function appears. Change it to read as follows:

BOOL CMyApp::PreTranslateMessage(MSG* pMsg)
{
 if(ULIsSynchronizeMessage(pMsg->message)) {
 DoSync();
 // close application if launched by provider
 if(pMsg->wParam == 1) {
 ASSERT(AfxGetMainWnd() != NULL);
 AfxGetMainWnd()->SendMessage(WM_CLOSE);
 }
 return TRUE; // message has been processed
 }
 return CWinApp::PreTranslateMessage(pMsg);
}

where DoSync is the function that actually calls ULSynchronize.

See also
● “Assigning class names for applications” on page 58
● “ULIsSynchronizeMessage method [UltraLite Embedded SQL]” on page 262
● “Assigning class names for applications” on page 58
● “ULIsSynchronizeMessage method [UltraLite Embedded SQL]” on page 262

Application development

62 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

TCP/IP, HTTP, or HTTPS synchronization from Windows Mobile

For TCP/IP, HTTP, or HTTPS synchronization, the application controls when synchronization occurs.
Your application should provide a menu item or user interface control so that the user can request
synchronization.

UltraLite application development for Windows Mobile

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 63

64 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorials
This section provides tutorials for the UltraLite C/C++ API.

Tutorial: Building a Windows application using the
C++ API

This tutorial guides you through the process of building an UltraLite C++ application. The application is
built for Windows desktop operating systems, and runs at a command prompt.

This tutorial is based on development using Microsoft Visual C++, although you can also use any C++
development environment.

The tutorial takes about 30 minutes if you copy and paste the code. The final section of this tutorial
contains the full source code of the program described in this tutorial.

Competencies and experience
This tutorial assumes:

● You are familiar with the C++ programming language

● You have a C++ compiler installed on your computer

● You know how to create an UltraLite database with the Create Database Wizard.

The goal for the tutorial is to gain competence with the process of developing an UltraLite C++
application.

See also
● “Creating an UltraLite database with the Create Database Wizard” [UltraLite - Database Management

and Reference]

Lesson 1: Creating and connecting to a database
In the first procedure, you create a local UltraLite database. You then write, compile, and run a C++
application that accesses the database you created.

Create an UltraLite database

1. Set the VCINSTALLDIR environment variable to the root directory of your Visual C++ installation
if the variable does not already exist.

2. Add %VCINSTALLDIR%\VC\atlmfc\src\atl to your INCLUDE environment variable.

3. Create a directory to contain the files you will create in this tutorial.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 65

The remainder of this tutorial assumes that this directory is C:\tutorial\cpp\. If you create a directory
with a different name, use that directory instead of C:\tutorial\cpp\.

4. Using UltraLite in Sybase Central, create a database named ULCustomer.udb in your new directory
with the default characteristics.

5. Add a table named ULCustomer to the database. Use the following specifications for the
ULCustomer table:

Column
name

Data type
(size)

Column allows
NULL values?

Default value Primary Key

cust_id integer No autoincrement ascending

cust_name varchar(30) No None

6. Disconnect from the database in Sybase Central, otherwise your executable will not be able to
connect.

Connect to the UltraLite database

1. In Microsoft Visual C++, click File » New.

2. On the Files tab, click C++ Source File.

3. Save the file as customer.cpp in your tutorial directory.

4. Include the UltraLite libraries.

Copy the code below into customer.cpp:

#include <tchar.h>
#include <stdio.h>
#include "ulcpp.h"
#define MAX_NAME_LEN 100

5. Define connection parameters to connect to the database.

In this code fragment, the connection parameters are hard coded. In a real application, the locations
might be specified at runtime.

Copy the code below into customer.cpp.

static ul_char const * ConnectionParms =
 "UID=DBA;PWD=sql;DBF=C:\\tutorial\\cpp\\ULCustomer.udb";

Note
A backslash character that appears in the file name location string must be escaped by a preceding
backslash character.

6. Define a method for handling database errors in the application.

Tutorials

66 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

UltraLite provides a callback mechanism to notify the application of errors. In a development
environment this method can be useful as a mechanism to handle errors that were not anticipated. A
production application typically includes code to handle all common error situations. An application
can check for errors after every call to an UltraLite method or can choose to use an error callback
function.

The following code is a sample callback function:

ul_error_action UL_CALLBACK_FN MyErrorCallBack(
 const ULError * error,
 ul_void * user_data)
{
 ul_error_action rc;
 an_sql_code code = error->GetSQLCode();

 (void) user_data;
 switch(code){
 // The following error is used for flow control - don't report it
here
 case SQLE_NOTFOUND:
 rc = UL_ERROR_ACTION_CONTINUE;
 break;
 default:
 if (code >= 0) { // warning or success
 rc = UL_ERROR_ACTION_DEFAULT;
 } else { // negative is real error
 ul_char etext[MAX_NAME_LEN];
 error->GetString(etext, MAX_NAME_LEN);
 _tprintf("Error %ld: %s\n", code, etext);
 rc = UL_ERROR_ACTION_CANCEL;
 }
 break;
 }
 return rc;
 }

In UltraLite, the error SQLE_NOTFOUND is often used to control application flow. That error is
signaled to mark the end of a loop over a result set. The generic error handler coded above does not
output a message for this error condition.

7. Define a method to open a connection to a database.

If the database file does not exist, an error message is displayed, otherwise a connection is established.

static ULConnection * open_conn(void)
{
 ULConnection * conn =
ULDatabaseManager::OpenConnection(ConnectionParms);
 if(conn == UL_NULL) {
 _tprintf("Unable to open existing database.\n");
 }
 return conn;
}

8. Implement the main method to perform the following tasks:

● Registers the error handling method.

Tutorial: Building a Windows application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 67

● Opens a connection to the database.

● Closes the connection and finalizes the database manager.

int main() {
 ULConnection * conn;
 ULDatabaseManager::Init();
 ULDatabaseManager::SetErrorCallback(MyErrorCallBack, NULL);
 conn = open_conn();
 if (conn == UL_NULL) {
 ULDatabaseManager::Fini();
 return 1;
 }
 // Main processing code goes here ...
 do_insert(conn);
 do_select(conn);
 do_sync(conn);
 conn->Close();
 ULDatabaseManager::Fini();
 return 0;
}

9. Compile and link the source file.

The method you use to compile the source file depends on your compiler. The following instructions
are for the Microsoft Visual C++ command line compiler using a makefile:

● Open a command prompt and change to your tutorial directory.

● Create a makefile named makefile.

● In the makefile, add directories to your include path.

IncludeFolders=/I"$(SQLANY12)\SDK\Include"
● In the makefile, add directories to your libraries path.

LibraryFolders=/LIBPATH:"$(SQLANY12)\UltraLite\Windows\x86\Lib\vs8"
● In the makefile, add libraries to your linker options.

Libraries=ulimp.lib

The UltraLite runtime library is named ulimp.lib.

● In the makefile, set compiler options. You must enter these options on a single line.

CompileOptions=/c /nologo /W3 /Od /Zi /DWIN32 /DUL_USE_DLL
● In the makefile, add an instruction for linking the application.

customer.exe: customer.obj
 link /NOLOGO /DEBUG customer.obj $(LibraryFolders) $(Libraries)

● In the makefile, add an instruction for compiling the application.

customer.obj: customer.cpp
 cl $(CompileOptions) $(IncludeFolders) customer.cpp

Tutorials

68 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Run vsvars32.bat.

%VCINSTALLDIR%\Tools\vsvars32.bat
● Run the makefile.

nmake

This creates an executable named customer.exe.

10. Run the application.

At a command prompt, enter customer.

The application connects to the database and then disconnects. The application runs successfully if
you do not see any error messages.

See also
● “Creating an UltraLite database with the Create Database Wizard” [UltraLite - Database Management

and Reference]
● “UltraLite connection parameters” [UltraLite - Database Management and Reference]
● “Error handling” on page 22

Lesson 2: Inserting data into the database
The following procedure demonstrates how to add data to a database.

Add rows to your database

1. Add the method below to customer.cpp immediately before the main method:

static bool do_insert(ULConnection * conn)
{
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 _tprintf("Table not found: ULCustomer\n");
 return false;
 }
 if(table->GetRowCount() == 0) {
 _tprintf("Inserting one row.\n");
 table->InsertBegin();
 table->SetString("cust_name", "New Customer");
 table->Insert();
 conn->Commit();
 } else {
 _tprintf("The table has %lu rows\n", table->GetRowCount());
 }
 table->Close();
 return true;
}

This method performs the following tasks.

● Opens the table using the connection->OpenTable() method. You must open a Table object to
perform operations on the table.

Tutorial: Building a Windows application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 69

● If the table is empty, adds a row to the table. To insert a row, the code changes to insert mode using
the InsertBegin method, sets values for each required column, and executes an insert to add the row
to the database.

● If the table is not empty, reports the number of rows in the table.

● Closes the Table object to free resources associated with it.

● Returns a boolean indicating whether the operation was successful.

2. Call the do_insert method you have created.

Add the following line to the main() method, immediately before the call to conn->Close.

do_insert(conn);

3. Compile your application by running nmake.

4. Run your application by typing customer at a command prompt.

Lesson 3: Selecting and listing rows from the table
The following procedure retrieves rows from the table and prints them on the command line.

List rows in the table

1. Add the method below to customer.cpp immediately after the do_insert method. This method carries
out the following tasks:

● Opens the Table object.

● Retrieves the column identifiers.

● Sets the current position before the first row of the table.

Any operations on a table are carried out at the current position. The position may be before the
first row, on one of the rows of the table, or after the last row. By default, as in this case, the rows
are ordered by their primary key value (cust_id). To order rows in a different way, you can add an
index to an UltraLite database and open a table using that index.

● For each row, the cust_id and cust_name values are written out. The loop carries on until the Next
method returns false, which occurs after the final row.

● Closes the Table object.

static bool do_select(ULConnection * conn)
{
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 return false;
 }
 ULTableSchema * schema = table->GetTableSchema();
 if(schema == UL_NULL) {
 table->Close();
 return false;

Tutorials

70 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 }
 ul_column_num id_cid =
 schema->GetColumnID("cust_id");
 ul_column_num cname_cid =
 schema->GetColumnID("cust_name");
 schema->Close();
 _tprintf("\n\nTable 'ULCustomer' row contents:\n");
 while(table->Next()) {
 ul_char cname[MAX_NAME_LEN];
 table->GetString(cname_cid, cname, MAX_NAME_LEN);
 _tprintf("id=%d, name=%s \n", (int)table->GetInt(id_cid),
cname);
 }
 table->Close();
 return true;
}

2. Add the following line to the main method immediately after the call to the insert method:

do_select(conn);

3. Compile your application by running nmake.

4. Run your application by typing customer at a command prompt.

Lesson 4: Adding synchronization to your application

This lesson synchronizes your application with a consolidated database running on your computer.

The following procedures add synchronization code to your application, start the MobiLink server, and
run your application to synchronize.

The UltraLite database you created in the previous lessons synchronizes with the UltraLite 12 Sample
database. The UltraLite 12 Sample database has a ULCustomer table whose columns include those in the
customer table of your local UltraLite database.

This lesson assumes that you are familiar with MobiLink synchronization.

Add synchronization to your application

1. Add the method below to customer.cpp. This method carries out the following tasks:

● Enables TCP/IP communications by invoking EnableTcpipSynchronization. Synchronization can
also be carried out over HTTP, HTTPS, and TLS.

● Sets the script version. MobiLink synchronization is controlled by scripts stored in the consolidated
database. The script version identifies which set of scripts to use.

● Sets the MobiLink user name. This value is used for authentication at the MobiLink server. It is
distinct from the UltraLite database user ID, although in some applications you may want to give
them the same value.

Tutorial: Building a Windows application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 71

● Sets the download_only parameter to true. By default, MobiLink synchronization is two-way. This
application uses download-only synchronization so that the rows in your table do not get uploaded
to the sample database.

static bool do_sync(ULConnection * conn)
{
 ul_sync_info info;
 ul_stream_error * se = &info.stream_error;

 ULDatabaseManager::EnableTcpipSynchronization();
 conn->InitSyncInfo(&info);
 info.stream = "TCPIP";
 info.version = "custdb 12.0";
 info.user_name = "50";
 info.download_only = true;
 if(!conn->Synchronize(&info)) {
 _tprintf("Synchronization error \n");
 _tprintf(" stream_error_code is '%lu'\n", se-
>stream_error_code);
 _tprintf(" system_error_code is '%ld'\n", se-
>system_error_code);
 _tprintf(" error_string is '");
 _tprintf("%s", se->error_string);
 _tprintf("'\n");
 return false;
 }
 return true;
}

2. Add the following line to the main method, immediately after the call to the insert method and before
the call to the select method:

do_sync(conn);

3. Compile your application by running nmake.

Synchronize data

1. Start the MobiLink server.

At a command prompt, run the following command:

mlsrv12 -c "dsn=SQL Anywhere 12 CustDB;uid=ml_server;pwd=sql" -v -vr -vs -
zu+ -o custdbASA.log

The -zu+ option provides automatic addition of users. The -v+ option turns on verbose logging for all
messages.

2. Run your application by typing customer at a command prompt.

The MobiLink server messages window displays status messages indicating the synchronization
progress. If synchronization is successful, the final message displays Synchronization
complete.

See also
● “UltraLite clients” [UltraLite - Database Management and Reference]
● “MobiLink server options” [MobiLink - Server Administration]

Tutorials

72 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Code listing for tutorial
The following is the complete code for the tutorial program described in the preceding sections.

#include <tchar.h>
#include <stdio.h>
#include "ulcpp.h"
#define MAX_NAME_LEN 100
static ul_char const * ConnectionParms =
 "UID=DBA;PWD=sql;DBF=c:\\tutorial\\cpp\\ULCustomer.udb";
ul_error_action UL_CALLBACK_FN MyErrorCallBack(
 const ULError * error,
 ul_void * user_data)
{
 ul_error_action rc;
 an_sql_code code = error->GetSQLCode();

 (void) user_data;
 switch(code){
 // The following error is used for flow control - don't report it
here
 case SQLE_NOTFOUND:
 rc = UL_ERROR_ACTION_CONTINUE;
 break;
 default:
 if (code >= 0) { // warning or success
 rc = UL_ERROR_ACTION_DEFAULT;
 } else { // negative is real error
 _tprintf("Error %ld: %s\n", code, error->GetString());
 rc = UL_ERROR_ACTION_CANCEL;
 }
 break;
 }
 return rc;
}
static ULConnection * open_conn(void) {
 ULConnection * conn =
ULDatabaseManager::OpenConnection(ConnectionParms);
 if(conn == UL_NULL) {
 _tprintf("Unable to open existing database.\n");
 }
 return conn;
}
static bool do_insert(ULConnection * conn) {
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 _tprintf("Table not found: ULCustomer\n");
 return false;
 }
 if(table->GetRowCount() == 0) {
 _tprintf("Inserting one row.\n");
 table->InsertBegin();
 table->SetString("cust_name", "New Customer");
 table->Insert();
 conn->Commit();

Tutorial: Building a Windows application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 73

 } else {
 _tprintf("The table has %lu rows\n",
 table->GetRowCount());
 }
 table->Close();
 return true;
}
static bool do_select(ULConnection * conn)
{
 ULTable * table = conn->OpenTable("ULCustomer");
 if(table == UL_NULL) {
 return false;
 }
 ULTableSchema * schema = table->GetTableSchema();
 if(schema == UL_NULL) {
 table->Close();
 return false;
 }
 ul_column_num id_cid =
 schema->GetColumnID("cust_id");
 ul_column_num cname_cid =
 schema->GetColumnID("cust_name");
 schema->Close();
 _tprintf("\n\nTable 'ULCustomer' row contents:\n");
 while(table->Next()) {
 ul_char cname[MAX_NAME_LEN];
 table->GetString(cname_cid, cname, MAX_NAME_LEN);
 _tprintf("id=%d, name=%s \n", (int)table->GetInt(id_cid), cname);
 }
 table->Close();
 return true;
}
static bool do_sync(ULConnection * conn)
{
 ul_sync_info info;
 ul_stream_error * se = &info.stream_error;

 ULDatabaseManager::EnableTcpipSynchronization();
 conn->InitSyncInfo(&info);
 info.stream = "TCPIP";
 info.version = "custdb 12.0";
 info.user_name = "50";
 info.download_only = true;
 if(!conn->Synchronize(&info)) {
 _tprintf("Synchronization error \n");
 _tprintf(" stream_error_code is '%lu'\n", se->stream_error_code);
 _tprintf(" system_error_code is '%ld'\n", se->system_error_code);
 _tprintf(" error_string is '");
 _tprintf("%s", se->error_string);
 _tprintf("'\n");
 return false;
 }
 return true;
}
int main()
{

Tutorials

74 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 ULConnection * conn;
 ULDatabaseManager::Init();
 ULDatabaseManager::SetErrorCallback(MyErrorCallBack, NULL);
 conn = open_conn();
 if(conn == UL_NULL){
 ULDatabaseManager::Fini();
 return 1;
 }

 // Main processing code goes here ...
 do_insert(conn);
 do_select(conn);
 do_sync(conn);
 conn->Close();
 ULDatabaseManager::Fini();
 return 0;
}

Tutorial: Building an iPhone application using the C
++ API

This tutorial guides you through the process of building an UltraLite C++ application for the iPhone using
the Apple development tools. Wherever possible, this tutorial provides links to more detailed information.

Required software
● Xcode 3.2

Note
The Names sample used in this tutorial is compatible with Xcode 4.2 but there are several graphical user
interface differences between Xcode 3.2 and Xcode 4.2. For a tutorial about developing iPhone
applications with the latest version of Xcode, see http://developer.apple.com/library/ios/#documentation/
iPhone/Conceptual/iPhone101/Articles/00_Introduction.html.

Competencies and experience
This tutorial assumes:

● You are familiar with Objective-C and C++ programming languages.

● You have a C++ compiler installed on your computer.

● You have the iPhone SDK installed on your computer.

● You have enrolled in the iPhone Developer Program (this is only required to run the program on a
physical device). Running on the iPhone Simulator does not require enrollment.

The goal for the tutorial is to gain competence with the process of developing an UltraLite C++ iPhone
application.

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 75

http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html
http://developer.apple.com/library/ios/#documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html

Compiling the UltraLite iPhone library
To use UltraLite on the iPhone, you must first compile the library.

Compile the library for the iPhone simulator

1. In a Terminal window, navigate to the SQL Anywhere ultralite/iphone directory.

2. If your environment is not set up for SQL Anywhere, source the sa_config shell script for your
Terminal's shell from the SQL Anywhere System/bin64 directory.

3. Run the following command to invoke the interactive build script:

./build.sh

4. Select the options you prefer.

5. Once compilation is complete, verify that the libulrt.a universal archive has been created in the
current directory.

Creating an UltraLite application on iPhone
The first part of this tutorial walks you through the process of creating an iPhone application that
maintains a list of names in a simple, single-table UltraLite database. The second part of the tutorial adds
synchronization with a SQL Anywhere database to the application.

Tip
All functions should be declared in the header file or declared before use.

See also
● “Lesson 6: Adding synchronization” on page 88

Lesson 1: Creating a new iPhone application project
Before you can start doing anything, you must first create an Xcode project.

Create an Xcode project

1. Launch Xcode.

2. Under the File menu, click New Project.

3. Click iPhone OS Application from the left side selection.

4. Click a Navigation-based Application, leaving the Use Core Data for Storage option cleared.

5. Click the Choose button and save the project names in the location of your choice.

Tutorials

76 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The Navigation-based project automatically creates an application with a UITableViewController inside
of a UINavigationController, as well as a UIApplicationDelegate that places the controllers in the
window when the application is launched. So far, the application only has an empty navigation bar at the
top and an empty table view. To fill the table with names, the application requests the data from an
UltraLite database on the device.

Setting up the project for an UltraLite library
Set up the project for the UltraLite library

1. To use the UltraLite library, you must configure the Xcode project.

2. Control-click the names project on the left side of the project window and click Get Info.

3. Under the Build tab of the Info window, search for the User Header Search Paths setting using the
search field and double-click the setting.

4. In the Finder, navigate to the SQL Anywhere sdk folder.

5. Click and drag the include folder into the modal window that opened when you double-clicked the
setting in the info window.

6. Click OK.

Compiling the project as C++
This tutorial uses the UltraLite C++ API. To eliminate the need to cast to C types, compile the source as C
++.

Compile the project as C++

1. In the Search in Build Settings box, enter Compile Sources As.

2. Click Objective-C++ from the options in the Value field.

Note
On some older versions of Xcode, this setting is only visible if a device target is selected for this
project.

3. Close the project info window.

Adding the UltraLite library to the project
The only step left to be able to use UltraLite in the application is to add the library itself to the project.

Add the UltraLite library to the project

1. In the Finder, navigate to the libulrt.a library you compiled earlier. It should be located in ultralite/
iphone in your SQL Anywhere folder.

2. Click and drag the libulrt.a library from the Finder into the names project in the project window
(where you control-clicked to get the project info window).

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 77

3. You should now have libulrt.a listed in the project files with a yellow toolbox icon.

Adding frameworks required by UltraLite
UltraLite requires the CFNetwork and Security frameworks in addition to the default frameworks.

Add the frameworks required by UltraLite

1. Control-click the Frameworks folder under the names project in the project window and click »
Add » Existing Frameworks.

2. Browse to the Security framework and click Add. From the list, click /Developer/Platforms/
iPhoneOS.platform/Developer/SDKs/iPhoneOS3.1.3.sdk/System/Library/Frameworks/
Security.framework.

3. Repeat these steps for the CFNetwork framework.

Lesson 2: Adding a database to the application

Tto interact with the database, the application follows the MVC pattern prescribed by the Apple
framework and defines a Model class.

Data Model Class
The Data Access class is the only class that interacts with the database. This way, if a schema change or
other database-related change is required, there is only one place where updates are required.

Set up the Data Model Class

1. Control-click the Classes folder in the Project window. Click Add » New File.

2. Click iPhone OS Cocoa Touch Class in the left selection.

3. Click a new Objective-C class.

4. Make sure the Subclass of selection is NSObject.

5. Click Next.

6. Name the file DataAccess.mm. The .mm extension is important as it signals to Xcode that the file
contains both Objective-C and C++.

7. Make sure Also create DataAccess.h is selected.

8. For Location, click the names/Classes subfolder.

9. Click Finish.

Tutorials

78 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The DataAccess singleton
When the application launches, it needs to initialize the UltraLite database manager and connect to the
local database. To do this, the class creates a singleton instance of this data access object which is used by
the RootViewController to display and manage the list of names.

In the DataAccess.mm file, add the following code in the implementation:

static DataAccess * sharedInstance = nil;
+ (DataAccess *)sharedInstance {
 // Create a new instance if none was created yet
 if (sharedInstance == nil) {
 sharedInstance = [[super alloc] init];
 [sharedInstance openConnection];
 }

 // Otherwise, just return the existing instance
 return sharedInstance;
}

Before you can use any UltraLite classes and methods, you must import the ulcpp header file. Add the
following line to the existing imports in DataAccess.h:

#import "ulcpp.h"

Open the connection to the database
Before the connection can be opened, the database manager's Init method is used to initialize the UltraLite
runtime. Once it is initialized, an attempt to connect to the database indicates whether the database exists.
Add the following instance variable to the DataAccess.h header inside the interface block:

ULConnection * connection;

In the DataAccess.mm file, add the following code in the implementation:

- (void)openConnection {
 NSLog(@"Connect to database.");
 if (ULDatabaseManager::Init()) {
 NSArray * paths = NSSearchPathForDirectoriesInDomains(

NSDocumentDirectory,

NSUserDomainMask,
 YES);
 NSString * documentsDirectory = [paths objectAtIndex:0];
 NSString * writableDBPath = [documentsDirectory
 stringByAppendingPathComponent:
 @"Names.udb"];
 ULConnection * conn = nil;
 const char * connectionParms;
 ULError error;
 connectionParms = [[NSString stringWithFormat:@"DBF=%@",
 writableDBPath]
 UTF8String];

 // Attempt connection to the database
 conn = ULDatabaseManager::OpenConnection(
 connectionParms,
 &error);

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 79

 // If database file not found, create it and create the schema
 if (error.GetSQLCode() == SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
 conn = [self createDatabase:connectionParms];
 }
 connection = conn;
 } else {
 NSLog(@"UL Database Manager initialization failed.");
 connection = nil;
 }
}

Database access
The database schema of the application is composed of a single table with two columns. The Names table
has an ID column that uses UUIDs and a name column that stores the names as VARCHARs. The ID
column uses UUIDs to easily support row insertions from remote databases using MobiLink.

Note
In the following code samples, openConnection uses createDatabase, so either createDatabase must
come before openConnection or its method signature must be added to the header file.

Displaying data in a table view requires that each row be accessible using a 1-based index. To do this, the
database uses an ascending index on the name column. Each row's index is equal to its position in the
alphabetical list of names.

In the DataAccess.mm file, add the following code in the implementation:

- (ULConnection *)createDatabase:(const char *)connectionParms {
 const char * CREATE_TABLE =
 "CREATE TABLE Names ("
 "id UNIQUEIDENTIFIER DEFAULT NEWID() PRIMARY KEY,"
 "name VARCHAR(254) NOT NULL)";
 const char * CREATE_INDEX =
 "CREATE UNIQUE INDEX namesIndex ON Names(name ASC)";
 const char * createParms =
 "page_size=4k;utf8_encoding=true;collation=UTF8BIN";
 ULError error;
 ULConnection * conn;
 conn = ULDatabaseManager::CreateDatabase(
 connectionParms,
 createParms,
 &error);
 if (!conn) {
 NSLog(@"Error code creating the database: %ld",
 error.GetSQLCode());
 } else {
 NSLog(@"Creating Schema.");
 conn->ExecuteStatement(CREATE_TABLE);
 conn->ExecuteStatement(CREATE_INDEX);
 }
 return conn;
}

Add a dealloc method to finalize the UltraLite runtime:

- (void)dealloc {
 NSLog(@"Finalizing DB Manager.");
 connection->Close();

Tutorials

80 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 ULDatabaseManager::Fini();

 [super dealloc];
}

And a fini method to release the instance:

+ (void)fini {
 [sharedInstance release];
}

Add the method signatures to the header file after the interface curly brace block:

// Release objects.
- (void)dealloc;
// Singleton instance of the DataAccess class.
+ (DataAccess*)sharedInstance;
// Finalize the Database Manager when done with the DB.
+ (void)fini;

Call the fini method from the NamesAppDelegate's applicationWillTerminate method:

- (void)applicationWillTerminate:(UIApplication *)application {
 // Save data if appropriate
 [DataAccess fini];
}

Also, since the application delegate is calling fini, it must import the DataAccess header file. Add the
following to namesAppDelegate.h:

#import "DataAccess.h"

Build the application
At this point you should build the application to test that it builds without errors. From the Build menu,
click Build.

Lesson 3: Adding data to the database
Now that the application has a database on the device with its schema initialized, it can start adding names
to the database. To do this, the application uses a new screen with a text field.

View controller for new names
To let the user input new names you create a new view controller.

Set up the view controller for new names

1. Ctrl-click Classes and from the Add File menu, click New File.

2. With the iPhone OS Cocoa Touch Class selected on the left selection, click UIViewController
subclass.

3. Do not click UITableViewController subclass option and click With XIB for user interface.

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 81

4. Click Next.

5. Name the file NewNameViewController.m.

6. Click the names/Classes/ location.

7. Click Finish.

This creates three files: the NewNameViewController (.h) header and implementation (.m) file, as well
as a XIB file that can be edited in Interface Builder. To group all the XIB files together, you can move it
to the Resources folder where two XIB files already exist (the MainWindow and RootViewController's
XIB files).

Before editing the XIB file to contain the text field, you must first add an Outlet property to the header so
that you can tie in the text field from the XIB file into the code as well as an action to perform when the
user has finished entering the name. Add the following to the NewNameViewController.h file

@interface NewNameViewController : UIViewController {
UITextField *newNameField;
}
@property (retain) IBOutlet UITextField *newNameField;
- (IBAction)doneAdding:(id)sender;
@end

Synthesize the property in the implementation file and release the text field in the dealloc method. You
define the action later, once the DataAccess object can insert new names. For now, simply create an
empty method stub in NewNameViewController.m to avoid compilation warnings.

@synthesize newNameField;
- (IBAction)doneAdding:(id)sender {}

The IBAction keyword lets Interface Builder know that the method should be made available for events
to call. Make sure to save the header so that Interface Builder knows about the method.

Now that the outlet is set up, double-click the NewNameViewController XIB file to edit it in Interface
Builder. In Interface Builder, you should see an empty view with a status bar showing the battery
charging. Since this view also has a navigation bar showing, simulate showing it by doing the following:

1. In the Document Window (Command-0), click View.

2. In the Attributes Inspector Window (Command-1), under the Simulated User Interface Elements,
set the Top Bar to Navigation Bar.

The view should now show an empty navigation bar just below the status bar.

To allow the user to input a new name, add a text field to the view:

1. In the Library window (Command-Shift-L), under Inputs & Values, click and drag a text field into
the view.

2. Position the text field in the upper half of the view, so that the keyboard in the lower half won't hide
it.

Tutorials

82 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. Make the text field a little wider so that a name would fit within it. Use a width of about 230 pixels.
To see the size and placement options, use the Size Inspector (Command-3) while the text field is
selected.

To make the text field more user-friendly, you can change a few properties:

1. Click the text field in the view.

2. With the text field selected, open the Attributes Inspector Window (Command-1).

3. Set the Placeholder to Name.

4. Make the font size 18 points.

5. Set Capitalize to Words.

6. Set the Return Key to Done.

For the controller to be made aware of when the user has finished entering the name, you must make
action connections in Interface Builder.

1. With the text field selected, open the Text Field Connections Inspector (Command-2).

2. Click and drag from the Did End on Exit event circle to the File's Owner in the Document
Window, and click done Adding to make the connection. If dragging and dropping over the File's
Owner doesn't provide a selection, make sure the NewNameViewController header is saved and has
the IBOutlet doneAdding. The File's Owner of this XIB file is the NewNameViewController class,
as the File's Owner's type indicates.

In order to refer to the text field in the code, you need to connect this text field to the IBOutlet property
you defined in the header earlier.

1. Click File's Owner in the Document Window. Open the Connections Inspector (Command-2).

2. Under Outlets, look for newNameField.

3. Click and drag from the newNameField circle to the actual name field in the view.

4. The view is now complete. Save the XIB file in Interface Builder and return to Xcode.

To finish the view, you need to set a few more properties in code. Uncomment the viewDidLoad method
template in the NewNameViewController implementation and replace it with the following code:

- (void)viewDidLoad {
 [super viewDidLoad];

 // Set the title to display in the nav bar
 self.title = @"Add Name";

 // Set the text field to the first responder to display the keyboard.
 // Without this the user needs to tap on the text field.
 [newNameField becomeFirstResponder];
}

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 83

Root view controller setup
To display the view controller you just created, the RootViewController needs to be configured. Import
the NewNameViewController and DataAccess headers in the RootViewController's implementation
file and add the following method signature to its header (RootViewController.h):

- (void)showAddNameScreen;

Implement the method in RootViewController.m with the following code:

- (void)showAddNameScreen {
 NewNameViewController * addNameScreen = [[NewNameViewController alloc]

initWithNibName:@"NewNameViewController" bundle:nil];
 [self.navigationController pushViewController:addNameScreen
animated:YES];
}

Set the title of the RootViewController (the same way you set the title for the
NewNameViewController), as well as add a plus-sign button to the right side of the navigation bar that
calls showAddNameScreen. Uncomment the viewDidLoad block and replace it with the following code:

- (void)viewDidLoad {
 [super viewDidLoad];
 // The Navigation Controller uses this to display the title in the nav
bar.
 self.title = @"Names";
 // Little button with the + sign on the right in the nav bar
 self.navigationItem.rightBarButtonItem =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self
 action:@selector(showAddNameScreen)];
}

Inserting new names into the database
To insert the new names into the database, you add functionality to the DataAccess object. Add the
following method signature to the DataAccess header:

// Adds the given name to the database.
- (void)addName:(NSString *)name;

Implement the addName method in the implementation file:

- (void)addName:(NSString *)name {
 const char * INSERT = "INSERT INTO Names(name) VALUES(?)";
 ULPreparedStatement * prepStmt = connection->PrepareStatement(INSERT);

 if (prepStmt) {
 // Convert the NSString to a C-Style string using UTF8 Collation
 prepStmt->SetParameterString(1, [name UTF8String], [name length]);
 prepStmt->ExecuteStatement();
 prepStmt->Close();
 connection->Commit();
 } else {
 NSLog(@"Could not prepare INSERT statement.");
 }
}

Tutorials

84 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Now that the addName method is complete, add the NewNameViewController's doneAdding method
to the implementation file. Replace the method with the following code:

- (IBAction)doneAdding:(id)sender {
 if (newNameField.text > 0) {
 [[DataAccess sharedInstance] addName:newNameField.text];
 }
 [self.navigationController popViewControllerAnimated:YES];
}

Import the DataAccess header in NewNameViewController.h. This allows the keyboard's Done button to
add the name to the database and return to the table view at runtime. However, the table view is not yet
configured to display what is in the database. See “Lesson 4: Displaying data from the database”
on page 85.

Build the application
At this point you should build the application to test that it builds without errors. From the Build menu,
click Build.

Lesson 4: Displaying data from the database
By default, the data source of a table view is its controller. In the case of this application, the
RootViewController is currently the data source for the table view. In this lesson, you implement the
UITableViewDataSource protocol in the DataAccess class. This way, the DataAccess class is
responsible for providing the table view with the data it requires.

To begin, add the UITableViewDataSource protocol to the interface.

@interface DataAccess : NSObject <UITableViewDataSource> {
 ULConnection * connection;
}

Getting the number of names in the database
The UITableViewDataSource protocol has two required methods. This section implements one of those
methods, namely, the tableView:numberOfRowsInSection: method. The table view has a single
section: a list of names. Therefore, this method simply returns the count of the rows in the database. Use
the following SQL statement:

 SELECT COUNT (*) FROM Names;

Add the following method to the DataAccess.mm implementation file to get the count:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 const char * COUNT = "SELECT COUNT (*) FROM Names";
 ULPreparedStatement * prepStmt = connection->PrepareStatement(COUNT);

 if (prepStmt) {
 ULResultSet *resultSet = prepStmt->ExecuteQuery();
 int numberOfNames;

 resultSet->First();

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 85

 numberOfNames = resultSet->GetInt(1);
 resultSet->Close();
 prepStmt->Close();
 return numberOfNames;
 } else {
 NSLog(@"Couldn't prepare COUNT.");
 }

 return 0;
}

Creating the table cells
The second required method in the protocol is the tableView:cellForRowAtIndexPath: method. This
method is responsible for creating the actual cell objects that the table view displays. The
RootViewController defines a good template to reuse cells. Table cells are usually recycled using the
pattern in the template to save memory and allow for fast scrolling. The only identifier the table view
provides is a 0-based integer index. However, the database does not normally keep an ordered list of the
names. To simulate an ordered list, the database uses an ordered index on the names and the application
uses a SELECT statement with a row limitation and an ORDER BY clause to select a given index.
Although this method doesn't require the FOR UPDATE clause, this same query is used to delete names
in “Lesson 5: Deleting data from the database” on page 87.

Add the following code to DataAccess.mm implementation file just below the import statements:

#define SELECT_STMT @"SELECT TOP 1 START AT %d name FROM Names ORDER BY name
FOR UPDATE"

To use this query in the method, add the following to the DataAccess.mm implementation file.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString * CellIdentifier = @"Cell";
 UITableViewCell * cell =
 [tableView dequeueReusableCellWithIdentifier: CellIdentifier];
 ULPreparedStatement * prepStmt;

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 // Make it so the cell cannot be selected.
 cell.selectionStyle = UITableViewCellSelectionStyleNone;

 // +1 to the index since the DB uses a 1-based index rather than 0-based
 prepStmt = connection->PrepareStatement(
 [[NSString stringWithFormat:SELECT_STMT, indexPath.row + 1]
UTF8String]);
 if (prepStmt) {
 ULResultSet * resultSet = prepStmt->ExecuteQuery();
 char name[255];

 resultSet->First();
 resultSet->GetString("name", name, 255);
 resultSet->Close();
 prepStmt->Close();

Tutorials

86 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 cell.textLabel.text = [NSString stringWithUTF8String:name];
 } else {
 NSLog(@"Couldn't prepare SELECT with index.");
 }

 return cell;
}

Setting the DataAccess object as the data source
Now that the DataAccess object is configured as a data source, you need to set the data source of the
table. To do this, add the following at the end of the viewDidLoad method of the RootViewController
class (in RootViewController.m):

 // Set the data source.
 [self.tableView setDataSource:[DataAccess sharedInstance]];

You also need to uncomment the viewWillAppear method and add the following statement (otherwise
changes are not picked up until the rows scroll out of view and back in again):

 [self.tableView reloadData];

Build and run the application
At this point you should build the application to test that it builds without errors. From the Build menu,
click Build and run. The application is now able to display names from the database, and the user is able
to add new names using a custom view.

Lesson 5: Deleting data from the database
The application is now able to display names from the database, and the user is able to add new names
using a custom view. It is not yet possible for the user to remove a name. This lesson adds the deletion
functionality using the swipe-to-delete functionality available in many iPhone applications.

Deleting the name from the database
To delete the name from the database, use the same SQL statement as the select, but open the result set for
update so that you can delete the selected row. Add the following method to the DataAccess class:

- (void)removeNameAtIndexPath:(NSIndexPath *)indexPath {
 // +1 to the index since the DB uses a 1-based index rather than 0-based
 ULPreparedStatement *prepStmt =
 connection->PrepareStatement(
 [[NSString stringWithFormat:SELECT_STMT, indexPath.row + 1]
UTF8String]);

 if (prepStmt) {
 ULResultSet *resultSet = prepStmt->ExecuteQuery();

 resultSet->First();
 resultSet->Delete();
 resultSet->Close();
 prepStmt->Close();
 connection->Commit(); // Commit the deletion.
 } else {
 NSLog(@"Couldn't prepare SELECT with index for delete.");

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 87

 }
}

Enabling swipe-to-delete
To enable the delete functionality, copy the comment template of the
tableView:commitEditingStyle:forRowAtIndexPath method from RootViewController into the
DataAccess class and call the removeNameAtIndexPath method you just created. Place this code after
the removeNameAtIndexPath method.

- (void)tableView:(UITableView *)tableView commitEditingStyle:
(UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:(NSIndexPath
*)indexPath {

 if (editingStyle == UITableViewCellEditingStyleDelete) {
 // Delete the row from the data source.
 [[DataAccess sharedInstance] removeNameAtIndexPath:indexPath];
 [tableView deleteRowsAtIndexPaths:[NSArray
arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 } else if (editingStyle == UITableViewCellEditingStyleInsert) {
 // Create a new instance of the appropriate class, insert it into
the array, and add a new row to the table view.
 }
}

The application is now complete. The table view displays the list of names in alphabetical order. New
names can be added using the NewNameViewController and names can be removed using the familiar
swipe-to-delete gesture.

Lesson 6: Adding synchronization

Prerequisites
To complete this lesson you must have SQL Anywhere installed on your computer. If you receive any
errors or warnings during this lesson, make sure you have configured your installation correctly and have
the proper environment variables set.

Now that the Names application can add and remove names from an UltraLite database, you add
synchronization to a consolidated database server on your computer.

Creating the consolidated database
1. Open Sybase Central.

2. From the Tools menu, click SQL Anywhere 12 » Create Database.

3. Click Next on the Welcome screen and the Select a Location screen.

4. Choose a location to save the database file and name it Names.db. Click Finish.

The rest of the options can remain at their defaults.

5. When the database has been created, close the popup window.

Tutorials

88 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Create the consolidated table
To synchronize, you first need to create a table on the consolidated database:

1. If the left selection is Tasks or Search, change it to Folders, by clicking Folders from the View
menu.

2. In the Folders pane, Control-click the Tables element under the Names database and click New »
Table.

3. Name the table Names and click Finish.

This creates the table and ready the cursor to name the primary key column of the table.

4. Name the primary key of the table id with a uniqueidentifier type.

5. Click the [...] button under the Value heading and set the default value to the User-defined value:
NEWID().

6. Make sure the Literal string option is cleared and click OK.

7. Add another column by clicking the New Column button on the toolbar.

8. Name the new column name of type VARCHAR and size 254.

9. Clear the Null option for the name column.

10. Click the Unique option for the name column.

11. Click the Save button on the toolbar.

12. Disconnect from the database.

Create an ODBC data source
To set up MobiLink, the system must have an ODBC data source for the consolidated database. Before
you can setup the ODBC data source, you must first install the SQL Anywhere ODBC driver:

1. Open a Terminal.

2. Run the following command to source the SQL Anywhere configuration file:

source ./sa_config.sh

Sourcing the configuration file allows you to use the dbdsn utility.

3. Run the following command to create the ODBC data source:

dbdsn -w "Names" -c "UID=dba;PWD=sql;DBF=/Users/user/Names.db"

If the location of your database is different than this, make sure to update the DBF option.

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 89

Creating a MobiLink synchronization model
In order for MobiLink to perform the synchronization, you need to configure the synchronization scripts.
To make configuration easier, Sybase Central provides script templates for many common forms of
synchronization.

1. Start Sybase Central.

2. Under the Tools menu, click MobiLink 12 » New Project.

3. Name the project NamesProject and click Next.

4. Check Add a consolidated database to the project. Provide a Database display name of
NamesCondb. Provide a connection string of UID=dba;PWD=sql;DSN=Names. You can also
build this string by clicking the Edit button. Click Next.

5. Click Create a new model and click Next.

6. Click Add a remote schema name to the project, enter a name, and, with UltraLite schema
selected, click Finish.

You are asked whether you want to install the MobiLink system setup. This remote schema is not
actually used, but since the remote schema is on the iPhone, this option is the simplest.

7. A message appears saying that MobiLink has not yet been installed and asks if it should be installed
now. Click Yes.

This creates the tables required by MobiLink in the database, as well as some stored procedures.

8. Type NamesModel as the model name and click Next.

9. Click all three checkboxes to acknowledge the MobiLink requirements, and click Next.

For synchronization to function correctly, MobiLink assumes a few things about the primary keys of
the tables. Since the Names application already abides by these assumptions, no changes are required.

10. Click the NamesCondb consolidated database and click Next.

11. Click No, create a new remote database schema and click Next.

12. Check the Names table from the list of tables and click Next.

Any other tables listed are used by MobiLink behind the scenes and can safely be ignored for
synchronization.

13. For the Download type, click Timestamp-based download.

This option provides a good default implementation of synchronization by only synchronizing
changes since the last synchronization. This option saves bandwidth for the iPhone since no
unnecessary data is transferred.

14. Since all other settings should be kept as their defaults, click Finish.

Tutorials

90 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

15. If you would like to see the other options available as MobiLink templates, you can click through all
of the steps in the wizard.

Deploying the MobiLink synchronization model
Now that the synchronization model has been created, it should be visible in the left side Folders view. If
the Folders view is not showing, click View » Folders.

To deploy the synchronization model:

1. Control-click the NamesModel in the Folder view and click Deploy.

2. Clear Remote database and synchronization client leaving Consolidated database and MobiLink
server selected and click Next.

3. Click Save changes to the following SQL file and Connect to the consolidated database to
directly apply the changes with NamesCondb selected in the list. Click Next.

4. Accept the creation of the new directory if prompted.

5. Enter a MobiLink user and password.

MobiLink users are distinct from SQL Anywhere database users. You should use a different
username than dba. This tutorial uses "user" and "password" respectively. These values are used later
in the tutorial.

6. Ensure that Register this user in the consolidated database for MobiLink authentication is
selected and click Finish.

7. Accept the creation of the new directory if prompted.

8. Once the deployment window shows the deployment completing, dismiss it by clicking Close.

Starting the MobiLink server
Now that the synchronization model has been deployed, the consolidated database contains all the
information required for MobiLink to function. The deployment also created scripts for launching the
MobiLink server:

1. Open a Terminal.

2. Navigate the Terminal session to where deployment saved the launch script. By default this should
be: ~/NamesProject/NamesModel/mlsrv.

3. Ensure the script is executable:

chmod u+x NamesModel_mlsrv.sh

4. Start the MobiLink server:

 ./NamesModel_mlsrv.sh "DSN=Names"

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 91

Adding synchronization to the iPhone application
You now have a consolidated database with a MobiLink server running.

For the application to be able to synchronize to it, you first have to enable synchronization. In the
openConnection method in the DataAccess class after the if-block that contains the database creation
(ULDatabaseManager::Init) add the following line:

ULDatabaseManager::EnableTcpipSynchronization();

Now that the database is expecting to be synchronized, you can add the following method to the
DataAccess class. Also add the method signature to the header file.

- (void)synchronize {
 NSString * result = nil;
 ul_sync_info info;
 // Initialize the sync info struct
 connection->InitSyncInfo(&info);

 // Set the sync parameters
 info.user_name = (char*)"user"; // Set to your username
 info.password = (char*)"password"; // Set to your password
 info.version = (char*)"NamesModel";
 info.stream = "tcpip";
 info.stream_parms = (char*)"host=localhost";

 // Display the network activity indicator in the status bar
 [[UIApplication sharedApplication]
 setNetworkActivityIndicatorVisible:YES];

 // Sync and get the result
 if (connection->Synchronize(&info)) {
 result = @"Sync was successful.";
 } else {
 // Get the error message and log it.
 char errorMsg[80];

 connection->GetLastError()->GetString(errorMsg, 80);
 NSLog(@"Sync failed: %s", errorMsg);
 result = [NSString stringWithFormat:@"Sync failed: %s", errorMsg];
 }

 // Stop showing the activity indicator
 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:NO];
 [[[[UIAlertView alloc]
 initWithTitle:@"Synchronization"
 message:result
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil] autorelease] show];
}

This is the simplest synchronization a client can perform. In an enterprise application, you would likely
want to set a callback method to get the progress of the synchronization and perform the synchronization
on a separate thread so as to not block the application.

Tutorials

92 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Also, in the current implementation, synchronization occurs on the main event thread. It is not
recommended to block the main thread this way. In the next lesson you use a separate thread to perform
the synchronization and add a callback method to observe the synchronization and display the progress.

To let the user choose when to synchronize, add a button to the navigation bar. Pressing the button calls
the following method in RootViewController:

- (void)sync {
 [[DataAccess sharedInstance] synchronize];
 [self.tableView reloadData];
}

To create the button, add the following to the RootViewController's viewDidLoad method:

 // Little button with the refresh sign on the left in the nav bar
 self.navigationItem.leftBarButtonItem =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self
 action:@selector(sync)];

You can now build and run the application. Whenever you press the Refresh button, the database on the
iPhone is synchronized with the consolidated SQL Anywhere database.

Note
Before synchronizing, you need to insert data to the consolidated database to see it on the iPhone, or insert
data on the iPhone to see it in the consolidated database.

Lesson 7: Adding a progress display
In the previous lesson, you added rudimentary synchronization that was performed on the main thread.
Blocking the main thread in such a way is not recommended. In this lesson you move the synchronization
to a background thread, and add a synchronization observing method to update a progress display.

Creating the progress toolbar
To show the progress of the synchronization, you use a progress bar with a label that is placed in the
bottom navigation toolbar, similar to the look of the Mail application when downloading new messages.
To recreate this look, you must create a custom view:

1. Control-click the Classes folder in the Groups & Files pane. From the Add menu click New File.

2. Under Cocoa Touch Class, click UIViewController subclass.

3. Clear UITableViewController subclass.

4. Click With XIB for user interface.

5. Click Next.

6. Name the file: ProgressToolbarViewController.m and place it in the Classes subdirectory. Click the
box to have a header file created.

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 93

7. Click Finish.

8. Move the ProgressToolbarViewController.xib file to the Resources directory.

Before creating the layout in Interface Builder, replace the interface definition with the following in
ProgressToolbarViewController:

@interface ProgressToolbarViewController : UIViewController {
 IBOutlet UILabel *label;
 IBOutlet UIProgressView *progressBar;
}
@end

Add the properties in the interface:

@property (readonly) IBOutlet UILabel *label;
@property (readonly) IBOutlet UIProgressView *progressBar;

Synthesize the properties in the implementation file:

@synthesize label;
@synthesize progressBar;

Add a release call in the dealloc method:

- (void)dealloc {
 [super dealloc];
 [label release];
 [progressBar release];
}

Open the ProgressToolbarViewController by double-clicking ProgressToolbarViewController.xib in
the Xcode Resources folder. Since this view is displayed in a toolbar, you must size it appropriately, and
set its background properties:

1. In the Document window (Command-0), click View.

2. In the Attributes Inspector (Command-1), set the simulated status bar to Unspecified.

3. Click Background and set Background opacity to 0%.

4. Clear the Opaque setting.

5. In the Size Inspector (Command-3), set the width to 232 and the height to 44.

Add the progress view

1. Click and drag a UIProgressView from the Library to the View.

2. In the Size Inspector (Command-3), set the position of the progress view to 26, 29.

3. Set the width of the progress view to 186.

4. In the Attributes Inspector (Command-1), set the style to Bar and the progress to zero.

Tutorials

94 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Add the label

1. Click and drag a UILabel from the Library to the View.

2. In the Size Inspector (Command-3), set the position of the label to 14, 5.

3. Set the size of the label to 210, 16.

4. In the Attribute Inspector (Command-1), set the text to Sync Progress.

5. Set the layout alignment to center.

6. Set the font to Helvetica Bold, size 12.

7. Set the text color to white.

8. Set the shadow color to RGB: (103, 114, 130), with 100% opacity.

Connect the new label and progress view to the outlets

1. Click File's Owner in the Document window.

2. In the Connectors Inspector (Command-2), link the label outlet to the UILabel you created in the
last steps.

3. Link the progress bar outlet to the UIProgressView you created in the last steps.

4. Save the XIB file and close Interface Builder.

The ProgressBar view is added to the RootViewController's toolbar. However, the DataAccess object
also uses a reference to it to display the progress of the synchronization. Add the following instance
variable to the interface:

ProgressToolbarViewController * progressToolbar;

and add the property to the DataAccess class:

 @property (retain, readwrite) IBOutlet ProgressToolbarViewController
* progressToolbar;

Import the ProgressToolbarViewController header into the DataAccess header:

#import "ProgressToolbarViewController.h"

Synthesize the property in the implementation.

@synthesize progressToolbar

To add the progress view to the toolbar, add the following to the RootViewController's viewDidLoad
method:

 // Create progress display
 ProgressToolbarViewController * progress =

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 95

 [[ProgressToolbarViewController alloc]
 initWithNibName:@"ProgressToolbarViewController"
 bundle:nil];
 // Register the toolbar with the DataAccess
 [[DataAccess sharedInstance] setProgressToolbar:progress];

 // Setup UIBarButtonItems
 UIBarButtonItem * space =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemFlexibleSpace
 target:nil
 action:nil];
 UIBarButtonItem * progressButtonItem =
 [[UIBarButtonItem alloc] initWithCustomView:progress.view];

 // Put them in the toolbar
 self.toolbarItems =
 [NSArray arrayWithObjects:space, progressButtonItem, space, nil];
 [space release];
 [progressButtonItem release];

The RootViewController now has a progress view in its toolbar, even though the toolbar is hidden. In the
next section, you move synchronization to a background thread and display the progress toolbar during
the synchronization.

Performing synchronization in a background thread
So far, everything the application does is performed on the main thread of the application. Since this is
also the thread used to draw the interface and process user event such as touches, blocking it is not
recommended.

The flow of the application during the sync is as follows:

1. The user clicks the sync button in RootViewController. The toolbar progress view appears.

2. RootViewController initiates the sync on a detached thread, passing itself as an argument to the
synchronization function. The main thread continues with the sync running in another thread.

3. The synchronization function updates the user interface using performSelectorOnMainThread to
update the progress display throughout the synchronization.

4. When synchronization is complete, the background thread displays an alert box showing the result of
the sync, with RootViewController set as the delegate to the alert so that it knows when the alert is
dismissed.

5. Once RootViewController is told the alert box is dismissed, the toolbar progress view is hidden.

Since the RootViewController must implement the UIAlertViewDelegate protocol to handle the
dismissing of the alert view, change its header file to the following:

@interface RootViewController : UITableViewController <UIAlertViewDelegate> {
}
// Displays the screen to add a name.
- (void)showAddNameScreen;
@end

Tutorials

96 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The only method from the UIAlertViewDelegate protocol that the RootViewController needs to
implement is the alertView:clickedButtonAtIndex: method. This method is called when the user presses
a button of the UIAlertView. Since the view only has a single button, you don't need to inspect which
button was pressed. Put the following code in the RootViewController.m file.

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {
 NSLog(@"User dismissed sync alert, refreshing table.");
 [self.tableView reloadData];
 [self.navigationController setToolbarHidden:YES animated: YES];
}

Also in RootViewController.m, change the sync method to do the synchronization call on a separate
thread by using detachNewThreadSelector:

- (void)sync {
 [self.navigationController setToolbarHidden:NO animated: YES];
 [NSThread detachNewThreadSelector:@selector(synchronize:)
 toTarget:[DataAccess sharedInstance]
 withObject:self];
}

Now that the synchronization is on a separate thread, you need to change a few things. As you might have
noticed in the RootViewController's sync method, DataAccess' synchronize method is being passed a
parameter. Change its signature to the following:

- (void)synchronize:(id<UIAlertViewDelegate>)sender;

Update the DataAccess.mm implementation file with the following:

// Since the synchronization method uses auto-released object instances, you
also need
// to create an NSAutoreleasePool and release it at the end of the
synchronization:
- (void)synchronize:(id<UIAlertViewDelegate>)sender {
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 // Rest of synchronize method...
 [pool release];
}

Still in the synchronize method, you also need to set the passed-in RootViewController as the alert
delegate. To do this, update the previously create UIAlertView and change the delegate from nil to
sender:

 // Set RootViewController as the alert delegate
 if (sender != nil) {
 NSLog(@"Showing Alert with sync result.");
 [[[[UIAlertView alloc]
 initWithTitle:@"Synchronization"
 message:result
 delegate:sender // changed from nil to sender
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil] autorelease] show];
 } else {
 NSLog(@"Not showing alert since sender was nil.");
 }

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 97

You now need to create the synchronization callback that updates the progress bar to the appropriate
completion and display the correct message.

However, since the synchronization callback is executed on a non-main thread (the synchronization thread
created by the RootViewController) you must use performSelectorOnMainThread to update the user
interface. This method only allows the passing of a single parameter, so in order to pass the progress, as
well as the message, create a Objective-C class named UpdateInfo with two properties, a float, and an
NSString in the header file:

@interface UpdateInfo : NSObject {
 NSString * message;
 float progress;
}
// Message to display in the progress view
@property (readonly) NSString * message;
// Progress of the sync [0.0-1.0]
@property (readonly) float progress;
// Preferred initializer
- (id)initWithMessage:(NSString*) message andProgress:(float)progress;
@end

Add the following to the implementation file:

// The implementation is a single constructor that takes both parameters:
@implementation UpdateInfo
@synthesize message;
@synthesize progress;
- (id)initWithMessage:(NSString*) msg andProgress:(float) syncProgress {
 if (self = [super init]) {
 message = msg;
 progress = syncProgress;
 }

 return self;
}
@end

Now that you can bundle all the information needed by the user interface updating method, you can define
it in the DataAccess class:

- (void)updateSyncProgress:(UpdateInfo *)info {
 progressToolbar.label.text = info.message;
 progressToolbar.progressBar.progress = info.progress;
}

Now import UpdateInfo.h in DataAccess.h.

#import "UpdateInfo.h"

You can also define the callback method in the DataAccess.mm implementation file along with the other
static methods:

Tutorials

98 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

static void UL_CALLBACK_FN progressCallback(ul_synch_status * status) {
 // Sync information for the GUI
 float percentDone = 0.0;
 NSString * message;

 // Note: percentDone is approximate.
 switch (status->state) {
 case UL_SYNCH_STATE_STARTING:
 percentDone = 0;
 message = @"Starting Sync";
 break;
 case UL_SYNCH_STATE_CONNECTING:
 percentDone = 5;
 message = @"Connecting to Server";
 break;
 case UL_SYNCH_STATE_SENDING_HEADER:
 percentDone = 10;
 message = @"Sending Sync Header";
 break;
 case UL_SYNCH_STATE_SENDING_TABLE:
 percentDone =
 10 + 25 *
 (status->sync_table_index / status->sync_table_count);
 message =
 [NSString stringWithFormat:@"Sending Table %s: %d of %d",
 status->table_name,
 status->sync_table_index,
 status->sync_table_count];
 break;
 case UL_SYNCH_STATE_SENDING_DATA:
 percentDone =
 10 + 25 *
 (status->sync_table_index / status->sync_table_count);
 message = @"Sending Name Changes";
 break;
 case UL_SYNCH_STATE_FINISHING_UPLOAD:
 case UL_SYNCH_STATE_RECEIVING_UPLOAD_ACK:
 percentDone = 50;
 message = @"Finishing Upload";
 break;
 case UL_SYNCH_STATE_RECEIVING_TABLE:
 case UL_SYNCH_STATE_RECEIVING_DATA:
 percentDone =
 50 + 25 *
 (status->sync_table_index / status->sync_table_count);
 message =
 [NSString
 stringWithFormat:@"Receiving Table %s: %d of %d",
 status->table_name,
 status->sync_table_index,
 status->sync_table_count];
 break;
 case UL_SYNCH_STATE_COMMITTING_DOWNLOAD:
 case UL_SYNCH_STATE_SENDING_DOWNLOAD_ACK:
 percentDone = 80;
 message = @"Committing Downloaded Updates";
 break;
 case UL_SYNCH_STATE_DISCONNECTING:
 percentDone = 90;
 message = @"Disconnecting from Server";
 break;
 case UL_SYNCH_STATE_DONE:
 percentDone = 100;
 message = @"Finished Sync";

Tutorial: Building an iPhone application using the C++ API

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 99

 break;
 case UL_SYNCH_STATE_ERROR:
 percentDone = 95;
 message = @"Error During Sync";
 break;
 case UL_SYNCH_STATE_ROLLING_BACK_DOWNLOAD:
 percentDone = 100;
 message = @"Rolling Back due to Error";
 break;
 default:
 percentDone = 100;
 NSLog(@"Unknown sync state: '%d'", status->state);
 break;
 }

 // Wrap the GUI info in an object and have the main thread update
 UpdateInfo * info = [[[UpdateInfo alloc]
 initWithMessage:message
 andProgress:percentDone / 100]
 autorelease];
 [[DataAccess sharedInstance]
 performSelectorOnMainThread:@selector(updateSyncProgress:)
 withObject:info waitUntilDone:YES];
}

With everything in place, you can now set the sync observer to the callback method in the synchronize
method in the DataAccess.mm file:

// Set the sync parameters
 info.user_name = (char*)"user"; // Set to your username
 info.password = (char*)"password"; // Set to your password
 info.version = (char*)"NamesModel";
 info.stream = "tcpip";
 info.stream_parms = (char*)"host=localhost";
 info.observer = progressCallback; // Add this line

Conclusion
The Names application is now a fully functioning iPhone application with an UltraLite database which
can monitor synchronization with a MobiLink server. Using this example application as a starting point,
you can use these concepts to develop applications that make use of UltraLite and MobiLink technologies.

Tutorials

100 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

API reference
This section provides the UltraLite C/C++ API.

UltraLite C/C++ common API reference
This section lists functions and macros that you can use with either the embedded SQL or C++ interface.
Most of the functions in this section require a SQL Communications Area.

Header file
● ulglobal.h

Macros and compiler directives for UltraLite C/C++
applications

Unless otherwise stated otherwise, directives apply to both embedded SQL and C++ API applications.

You can supply compiler directives:

● On your compiler command line. You commonly set a directive with the /D option. For example, to
compile an UltraLite application with user authentication, a makefile for the Microsoft Visual C++
compiler may look as follows:

CompileOptions=/c /DPRWIN32 /Od /Zi /DWIN32
/DUL_USE_DLL
IncludeFolders= \
/I"$(VCDIR)\include" \
/I"$(SQLANY12)\SDK\Include"
sample.obj: sample.cpp
 cl $(CompileOptions) $(IncludeFolders) sample.cpp

VCDIR is your Visual C++ directory and SQLANY12 is your SQL Anywhere installation directory.

● In the compiler settings window of your user interface.

● In source code. You supply directives with the #define statement.

UL_USE_DLL macro

Sets the application to use the runtime library DLL, rather than a static runtime library.

Remarks
Applies to Windows Mobile and Windows applications.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 101

UNDER_CE macro

By default, this macro is defined in all new Visual C++ Smart Device projects.

Remarks
Applies to Windows Mobile applications.

See also
● “UltraLite application development for Windows Mobile” on page 56

Example
/D UNDER_CE

UL_RS_STATE enumeration
Specifies possible result set or cursor states.

Syntax
public enum UL_RS_STATE

Members

Member name Description

UL_RS_STATE_ERROR Error.

UL_RS_STATE_UNPREPARED Not prepared.

UL_RS_STATE_ON_ROW On a valid row.

UL_RS_STATE_BEFORE_FIRST Before the first row.

UL_RS_STATE_AFTER_LAST After the last row.

UL_RS_STATE_COMPLETED Closed.

ul_column_sql_type enumeration
Represents the SQL types for a column.

Syntax
public enum ul_column_sql_type

API reference

102 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Members

Member name Description

UL_SQLTYPE_BAD_INDEX Represents that the column at the specified index does not exist.

UL_SQLTYPE_S_LONG Represents that the column contains a signed long.

UL_SQLTYPE_U_LONG Represents that the column contains an unsigned long.

UL_SQLTYPE_S_SHORT Represents that the column contains a signed short.

UL_SQLTYPE_U_SHORT Represents that the column contains an unsigned short.

UL_SQLTYPE_S_BIG Represents that the column contains a signed 64-bit integer.

UL_SQLTYPE_U_BIG Represents that the column contains an unsigned 64-bit integer.

UL_SQLTYPE_TINY Represents that the column contains an unsigned 8-bit integer.

UL_SQLTYPE_BIT Represents that the column contains a 1-bit flag.

UL_SQLTYPE_TIMESTAMP Represents that the column contains timestamp information.

UL_SQLTYPE_DATE Represents that the column contains date information.

UL_SQLTYPE_TIME Represents that the column contains time information.

UL_SQLTYPE_DOUBLE Represents that the column contains a double precision floating-
point number (8 bytes).

UL_SQLTYPE_REAL Represents that the column contains a single precision floating-
point number (4 bytes).

UL_SQLTYPE_NUMERIC Represents that the column contains exact numerical data, with
specified precision and scale.

UL_SQLTYPE_BINARY Represents that the column contains binary data with a specified
maximum length.

UL_SQLTYPE_CHAR Represents that the column contains character data with a speci-
fied length.

UL_SQLTYPE_LONGVARCHAR Represents that the column contains character data with varia-
ble length.

UL_SQLTYPE_LONGBINARY Represents that the column contains binary data with variable
length.

UL_SQLTYPE_UUID Represents that the column contains a UUID.

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 103

Member name Description

UL_SQLTYPE_ST_GEOMETRY Represents that the column contains spatial data in the form of
points.

UL_SQLTYPE_TIME-
STAMP_WITH_TIME_ZONE

Represents that the column contains timestamp and time zone
information.

Remarks
These values correspond to SQL column types.

ul_column_storage_type enumeration
Represents the host variable types for a column.

Syntax
public enum ul_column_storage_type

Members

Member name Description

UL_TYPE_BAD_INDEX Represents an invalid value.

UL_TYPE_S_LONG Represents a ul_s_long (32 bit signed int).

UL_TYPE_U_LONG Represents a ul_u_long (32 bit unsigned int).

UL_TYPE_S_SHORT Represents a ul_s_short (16 bit signed int).

UL_TYPE_U_SHORT Represents a ul_u_short (16 bit unsigned int).

UL_TYPE_S_BIG Represents a ul_s_big (64 bit signed int).

UL_TYPE_U_BIG Represents a ul_u_big (64 bit unsigned int).

UL_TYPE_TINY Represents a ul_byte (8 bit unsigned).

UL_TYPE_BIT Represents a ul_byte (8 bit unsigned, 1 bit used).

UL_TYPE_DOUBLE Represents a ul_double (double).

UL_TYPE_REAL Represents a ul_real (float).

UL_TYPE_BINARY Represents a ul_binary (2 byte length followed by byte array).

API reference

104 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member name Description

UL_TYPE_TIMESTAMP_STRUCT Represents a DECL_DATETIME.

UL_TYPE_TCHAR Represents a character array (string buffer).

UL_TYPE_CHAR Represents a char array (string buffer).

UL_TYPE_WCHAR Represents a ul_wchar (UTF16) array.

UL_TYPE_GUID Represents a GUID structure.

Remarks
These values are used to identify the host variable type required for a column, and to indicate how
UltraLite should fetch values.

ul_error_action enumeration
Specifies possible error actions returned from callback.

Syntax
public enum ul_error_action

Members

Member name Description

UL_ERROR_ACTION_DEFAULT Behave as if there is no error callback.

UL_ERROR_ACTION_CANCEL Cancel the operation that raised the error.

UL_ERROR_AC-
TION_TRY_AGAIN

Retry the operation that raised the error.

UL_ERROR_ACTION_CONTINUE Continue execution, ignoring the operation that raised the er-
ror.

Remarks
Not all actions apply to all error codes.

ul_sync_state enumeration
Indicates the current stage of synchronization.

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 105

Syntax
public enum ul_sync_state

Members

Member name Description

UL_SYNC_STATE_STARTING The synchronization is starting; initial parameter validation
is complete and synchronization result will be saved.

UL_SYNC_STATE_CONNECTING Connecting to the MobiLink server.

UL_SYNC_STATE_SEND-
ING_HEADER

The synchronization connection is established and initial da-
ta is about to be sent.

UL_SYNC_STATE_SENDING_TA-
BLE

A table is about to be sent.

UL_SYNC_STATE_SENDING_DA-
TA

Schema information or row data is being sent.

UL_SYNC_STATE_FINISHING_UP-
LOAD

The upload stage is complete and state information is about
to be committed.

UL_SYNC_STATE_RECEIV-
ING_UPLOAD_ACK

About to read data from the server, starting with the upload
acknowledgement.

UL_SYNC_STATE_RECEIV-
ING_TABLE

A table is about to be received.

UL_SYNC_STATE_RECEIV-
ING_DATA

Data for the most recently identified table is being received.

UL_SYNC_STATE_COMMIT-
TING_DOWNLOAD

The download stage is complete and downloaded rows are
about to be committed.

UL_SYNC_STATE_ROLL-
ING_BACK_DOWNLOAD

An error occurred during download and the download is be-
ing rolled back.

UL_SYNC_STATE_SEND-
ING_DOWNLOAD_ACK

An acknowledgement that the download is complete is being
sent.

UL_SYNC_STATE_DISCONNECT-
ING

About to disconnect from the server.

UL_SYNC_STATE_DONE Synchronization has completed successfully.

UL_SYNC_STATE_ERROR Synchronization has completed, but with an error.

API reference

106 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
You should not assume that the synchronization states occur in the order listed below.

ul_validate_status_id enumeration
Specifies possible status IDs for the UltraLite validation tool.

Syntax
public enum ul_validate_status_id

Members

Member name Description Value

UL_VALID_NO_ERROR No error occurred. 0

UL_VALID_START Start validation. 1

UL_VALID_END End validation.

Parm1 tracks the resulting sqlcode, which indicates success
or failure.

2

UL_VALID_CHECK-
ING_PAGE

Send a periodic status message while checking database pa-
ges.

Parm1 tracks a number associated with the page. The order
is not defined.

10

UL_VALID_CHECK-
ING_TABLE

Checking a table.

Parm1 tracks the table name.

20

UL_VALID_CHECKING_IN-
DEX

Checking an index.

Parm1 stores the table name and parm2 stores the index
name.

21

UL_VALID_HASH_REPORT Reporting on the index hash use.

(development version only) Parm1 tracks the table name,
parm2 tracks the index name, parm3 tracks the number of
visible rows, parm4 tracks the number of unique hash val-
ues, and parm5 tracks the maximum number of times a hash
entry appears.

30

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 107

Member name Description Value

UL_VALID_REDUN-
DANT_INDEX

A redundant index was found.

(development version only) Parm1 tracks the table name,
parm2 tracks the redundant index name, and parm3 tracks
the name of index that makes it redundant.

31

UL_VALID_DUPLI-
CATE_INDEX

Two indexes are the same.

(development version only) Parm1 tracks the table name,
parm2 tracks the name of first index, and parm3 tracks the
name of second index.

32

UL_VALID_DATA-
BASE_ERROR

An error occurred accessing the database.

Check the SQLCODE for more information.

100

UL_VALID_STARTUP_ER-
ROR

Error starting the database.

(for low-level access)

101

UL_VALID_CONNECT_ER-
ROR

Error connecting to the database. 102

UL_VALID_INTERRUPTED Validation process interrupted. 103

UL_VALID_COR-
RUPT_PAGE_TABLE

Page table is corrupt. 110

UL_VAL-
ID_FAILED_CHECKSUM

Page checksum failed.

Parm1 tracks a number associated with the page

111

UL_VALID_COR-
RUPT_PAGE

A page is corrupt.

Parm1 tracks a number associated with the page.

112

UL_VALID_ROW-
COUNT_MISMATCH

The number of rows in the index is different from the table
row count.

Parm1 tracks the table name, and parm2 tracks index name.

120

UL_VALID_BAD_ROWID There is an invalid row identifier in the index.

Parm1 tracks the table name, and parm2 tracks the index
name.

121

API reference

108 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ul_binary structure

Sets and fetches binary values from a table in the database.

Syntax
public typedef struct ul_binary

Members

Member name Type Description

data ul_byte The actual data to be set (for insert) or that was fetched (for select).

len ul_length The number of bytes in the value.

ul_error_info structure

Stores complete information about an UltraLite error.

Syntax
public typedef struct ul_error_info

Members

Member name Type Description

sqlcode an_sql_code The SQLCODE value.

sqlcount ul_s_long The SQLCOUNT value.

See also
● “ULErrorInfoString method [UltraLite Embedded SQL]” on page 255
● “ULErrorInfoURL method [UltraLite Embedded SQL]” on page 256
● “ULErrorInfoInitFromSqlca method [UltraLite Embedded SQL]” on page 254
● “ULErrorInfoParameterCount method [UltraLite Embedded SQL]” on page 255
● “ULErrorInfoParameterAt method [UltraLite Embedded SQL]” on page 254

ul_stream_error structure

Stores synchronization communication stream error information.

Syntax
public typedef struct ul_stream_error

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 109

Members

Member name Type Description

error_string char A string with additional information, if available, for the
stream_error_code value.

stream_er-
ror_code

ss_er-
ror_code

The specific stream error.

See the ss_error_code enumeration for possible values.

system_er-
ror_code

asa_int32 A system-specific error code.

For more information about error codes, see your platform docu-
mentation.

ul_sync_info structure
Stores synchronization data.

Syntax
public typedef struct ul_sync_info

Members

Member name Type Description

additional_parms const char * A string of name value pairs "name=value;" with extra pa-
rameters.

auth_parms const char * An array of authentication parameters in MobiLink events.

auth_status ul_auth_status The status of MobiLink user authentication. The MobiLink
server provides this information to the client.

auth_value ul_s_long The results of a custom MobiLink user authentication
script. The MobiLink server provides this information to
the client to determine the authentication status.

download_only ul_bool Do not upload any changes from the UltraLite database
during the current synchronization.

ignored_rows ul_bool The status of ignored rows. This read-only field reports true
if any rows were ignored by the MobiLink server during
synchronization because of absent scripts.

init_verify ul_sync_info * Initialize verification.

API reference

110 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member name Type Description

keep_partial_down-
load

ul_bool When a download fails because of a communications error
during synchronization, this parameter controls whether Ul-
traLite holds on to the partial download rather than rolling
back the changes.

new_password const char * A string specifying a new MobiLink password associated
with the user name. This parameter is optional.

num_auth_parms ul_byte The number of authentication parameters being passed to
authentication parameters in MobiLink events.

observer ul_sync_observ-
er_fn

A pointer to a callback function or event handler that moni-
tors synchronization. This parameter is optional.

partial_down-
load_retained

ul_bool When a download fails because of a communications error
during synchronization, this parameter indicates whether
UltraLite applied those changes that were downloaded rath-
er than rolling back the changes.

password const char * A string specifying the existing MobiLink password associ-
ated with the user name. This parameter is optional.

ping ul_bool Confirm communications between the UltraLite client and
the MobiLink server. When this parameter is set to true, no
synchronization takes place.

publications const char * A comma separated list of publications indicating what data
to include in the synchronization.

resume_parti-
al_download

ul_bool Resume a failed download. The synchronization does not
upload changes; it only downloads those changes that were
to be downloaded in the failed download.

send_column_names ul_bool Instructs the application that column names should be sent
to the MobiLink server in the upload.

send_download_ack ul_bool Instructs the MobiLink server whether or not the client pro-
vides download acknowledgements.

stream const char * The MobiLink network protocol to use for synchronization.

stream_error ul_stream_error The structure to hold communications error reporting infor-
mation.

stream_parms const char * The options to configure the network protocol you selected.

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 111

Member name Type Description

upload_ok ul_bool The status of data uploaded to the MobiLink server. This
field reports true if upload succeeded.

upload_only ul_bool Do not download any changes from the consolidated data-
base during the current synchronization. This can save
communication time, especially over slow communication
links.

user_data ul_void * Make application-specific information available to the syn-
chronization observer. This parameter is optional.

user_name const char * A string that the MobiLink server uses to identify a unique
MobiLink user.

version const char * The version string allows an UltraLite application to choose
from a set of synchronization scripts.

Remarks
Synchronization parameters control the synchronization behavior between an UltraLite database and the
MobiLink server. The Stream Type synchronization parameter, User Name synchronization parameter,
and Version synchronization parameter are required. If you do not set them, the synchronization method
returns an error (SQLE_SYNC_INFO_INVALID or its equivalent). You can only specify one of
Download Only, Ping, or Upload Only at a time. If you set more than one of these parameters to true, the
synchronization method returns an error (SQLE_SYNC_INFO_INVALID or its equivalent).

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

ul_sync_result structure
Stores the synchronization result so that appropriate action can be taken in the application.

Syntax
public typedef struct ul_sync_result

Members

Member name Type Description

auth_status ul_auth_status The synchronization authentication status.

auth_value ul_s_long The value used by the MobiLink server to determine the
auth_status result.

API reference

112 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member name Type Description

error_status ul_error_info The error status from the last synchronization.

ignored_rows ul_bool True if uploaded rows were ignored; false otherwise.

partial_down-
load_retained

ul_bool The value that tells you that a partial download was re-
tained. See keep_partial_download.

received ul_sync_stats Download statistics.

sent ul_sync_stats Upload statistics.

stream_error ul_stream_error The communication stream error information.

timestamp SQLDATETIME The time and date of the last synchronization.

upload_ok ul_bool True if the upload was successful; false otherwise.

ul_sync_stats structure
Reports the statistics of the synchronization stream.

Syntax
public typedef struct ul_sync_stats

Members

Member name Type Description

bytes ul_u_long The number of bytes currently sent.

deletes ul_u_long The number of deleted rows current sent.

inserts ul_u_long The number of rows currently inserted.

updates ul_u_long The number of updated rows currently sent.

ul_sync_status structure
Returns synchronization progress monitoring data.

Syntax
public typedef struct ul_sync_status

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 113

Members

Member name Type Description

db_table_count ul_u_short Returns the number of tables in database.

flags ul_u_short Returns the current synchronization flags indicating additional in-
formation relating to the current state.

info ul_sync_info * A pointer to the ul_sync_info_a structure.

received ul_sync_stats Returns download statistics.

sent ul_sync_stats Returns upload statistics.

sqlca SQLCA * The connection's active SQLCA.

state ul_sync_state One of the many supported states.

stop ul_bool A boolean that cancel synchronization. A value of true means that
synchronization is canceled.

sync_table_count ul_u_short Returns the number of tables being synchronized.

sync_table_index ul_u_short 1..sync_table_count

table_id ul_u_short The current table id which is being uploaded or downloaded (1-
based). This number may skip values when not all tables are be-
ing synchronized, and is not necessarily increasing.

table_name char Name of the current table.

table_name_w2 ul_wchar Name of the current table.

user_data ul_void * User data passed in to the ULSetSynchronizationCallback meth-
od or set in the ul_sync_info structure.

See also
● “ul_sync_state enumeration [UltraLite C and Embedded SQL datatypes]” on page 105

ul_validate_data structure
Stores validation status information for the callback.

Syntax
public typedef struct ul_validate_data

API reference

114 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Members

Member name Type Description

i ul_u_long Parameter as an integer.

parm_count ul_u_short The number of parameters in the structure.

parm_type enumeration The possible parameter types.

parms struct ul_vali-
date_data::@3

Array of parameters.

s char Parameter as a string (note that this is not a wide char)

status_id ul_validate_sta-
tus_id

Indicates what is being reported in the validation process.

stop ul_bool A boolean that cancels the validation. A value of true means
that validation is canceled.

type parm_type Type of parameter stored.

user_data ul_void * User-defined data pointer passed into validation routine.

ULVF_DATABASE variable
Used to validate database.

Syntax
#define ULVF_DATABASE

Remarks
Verify all database pages using page checksums and additional checks.

See also
● “ULDatabaseManager.ValidateDatabase method [UltraLite C++]” on page 155
● “ULConnection.ValidateDatabase method [UltraLite C++]” on page 144

ULVF_EXPRESS variable
Used to perform a faster, though less thorough, validation.

Syntax
#define ULVF_EXPRESS

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 115

Remarks
This flag modifies others specified.

See also
● “ULDatabaseManager.ValidateDatabase method [UltraLite C++]” on page 155
● “ULConnection.ValidateDatabase method [UltraLite C++]” on page 144

ULVF_FULL_VALIDATE variable
Performs all types of validation on the database.

Syntax
#define ULVF_FULL_VALIDATE

See also
● “ULDatabaseManager.ValidateDatabase method [UltraLite C++]” on page 155
● “ULConnection.ValidateDatabase method [UltraLite C++]” on page 144

ULVF_IDX_HASH variable
Reports effectiveness of the index hashes (development version only).

Syntax
#define ULVF_IDX_HASH

Remarks
Check that table and index row counts match.

See also
● “ULDatabaseManager.ValidateDatabase method [UltraLite C++]” on page 155
● “ULConnection.ValidateDatabase method [UltraLite C++]” on page 144

ULVF_IDX_REDUNDANT variable
Checks redundant indexes (development version only).

Syntax
#define ULVF_IDX_REDUNDANT

Remarks
Check that table and index row counts match.

API reference

116 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “ULDatabaseManager.ValidateDatabase method [UltraLite C++]” on page 155
● “ULConnection.ValidateDatabase method [UltraLite C++]” on page 144

ULVF_INDEX variable
Used to validate indexes.

Syntax
#define ULVF_INDEX

Remarks
Check the integrity of the index.

See also
● “ULDatabaseManager.ValidateDatabase method [UltraLite C++]” on page 155
● “ULConnection.ValidateDatabase method [UltraLite C++]” on page 144

ULVF_TABLE variable
Used to validate table(s).

Syntax
#define ULVF_TABLE

Remarks
Check that table and index row counts match.

See also
● “ULDatabaseManager.ValidateDatabase method [UltraLite C++]” on page 155
● “ULConnection.ValidateDatabase method [UltraLite C++]” on page 144

UL_AS_SYNCHRONIZE variable
Provides the name of the callback message used to indicate an ActiveSync synchronization.

Syntax
#define UL_AS_SYNCHRONIZE

Remarks
This applies to Windows Mobile applications that use ActiveSync only.

UltraLite C/C++ common API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 117

See also
● “Add ActiveSync synchronization to your application” on page 60

UL_SYNC_ALL variable
Synchronizes all tables in the database that are not marked as "no sync", including tables that are not in
any publication.

Syntax
#define UL_SYNC_ALL

See also
● “ul_sync_info structure [UltraLite C and Embedded SQL datatypes]” on page 110
● “UL_SYNC_ALL_PUBS variable [UltraLite C and Embedded SQL datatypes]” on page 118

UL_SYNC_ALL_PUBS variable
Synchronizes all tables in a publication.

Syntax
#define UL_SYNC_ALL_PUBS

See also
● “ul_sync_info structure [UltraLite C and Embedded SQL datatypes]” on page 110
● “UL_SYNC_ALL variable [UltraLite C and Embedded SQL datatypes]” on page 118

UL_SYNC_STATUS_FLAG_IS_BLOCKING variable
Defines a bit set in the ul_sync_status.flags field to indicate that the synchronization is blocked awaiting a
response from the MobiLink server.

Syntax
#define UL_SYNC_STATUS_FLAG_IS_BLOCKING

Remarks
Identical synchronization progress messages are generated periodically while this is the case.

UL_TEXT variable
Prepares constant strings to be compiled as single-byte strings or wide-character strings.

Syntax
#define UL_TEXT

API reference

118 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
Use this macro to enclose all constant strings if you plan to compile the application to use Unicode and
non-Unicode representations of strings. This macro properly defines strings in all environments and
platforms.

UL_VALID_IS_ERROR variable
Evaluates true if a given ul_validate_status_id is an error status.

Syntax
#define UL_VALID_IS_ERROR

UL_VALID_IS_INFO variable
Evaluates true if a given ul_validate_status_id is an informational status.

Syntax
#define UL_VALID_IS_INFO

UltraLite C/C++ API reference
This section lists functions that you can use with the C++ interface.

Note
This version of the UltraLite C/C++ API supersedes all previous versions which have been deprecated.
For more information, see “SQL Anywhere deprecated and discontinued features” [SQL Anywhere 12 -
Changes and Upgrading].

You can use the old implementation of the UltraLite C/C++ API by adding the %SQLANY12%\SDK\C
\ulcpp11.cpp file to your UltraLite application project, where SQLANY12 is an environment variable that
points to your SQL Anywhere installation directory.

Header file
● ulcpp.h

ULConnection class

Represents a connection to an UltraLite database.

Syntax
public class ULConnection

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 119

Members
All members of ULConnection class, including all inherited members.

Name Description

CancelGetNotification method Cancels any pending get-notification calls on all queues matching
the given name.

ChangeEncryptionKey method Changes the database encryption key for an UltraLite database.

Checkpoint method Performs a checkpoint operation, flushing any pending committed
transactions to the database.

Close method Destroys this connection and any remaining associated objects.

Commit method Commits the current transaction.

CountUploadRows method Counts the number of rows that need to be uploaded for synchroni-
zation.

CreateNotificationQueue meth-
od

Creates an event notification queue for this connection.

DeclareEvent method Declares an event which can then be registered for and triggered.

DestroyNotificationQueue meth-
od

Destroys the given event notification queue.

ExecuteScalar method Executes a SQL SELECT statement directly, returning a single re-
sult.

ExecuteScalarV method Executes a SQL SELECT statement string, along with a list of sub-
stitution values.

ExecuteStatement method Executes a SQL statement string directly.

GetChildObjectCount method Gets the number of currently open child objects on the connection.

GetDatabaseProperty method Obtains the value of a database property.

GetDatabasePropertyInt method Obtains the integer value of a database property.

GetDatabaseSchema method Returns an object pointer used to query the schema of the database.

GetLastDownloadTime method Obtains the last time a specified publication was downloaded.

GetLastError method Returns the error information associated with the last call.

GetLastIdentity method Gets the @@identity value.

API reference

120 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Description

GetNotification method Reads an event notification.

GetNotificationParameter meth-
od

Gets a parameter for the event notification just read by the GetNoti-
fication method.

GetSqlca method Gets the communication area associated with this connection.

GetSyncResult method Gets the result of the last synchronization.

GetUserPointer method Gets the pointer value last set by the SetUserPointer method.

GlobalAutoincUsage method Obtains the percent of the default values used in all the columns
that have global autoincrement defaults.

GrantConnectTo method Grants access to an UltraLite database for a new or existing user ID
with the given password.

InitSyncInfo method Initializes the synchronization information structure.

OpenTable method Opens a table.

PrepareStatement method Prepares a SQL statement.

RegisterForEvent method Registers or unregisters a queue to receive notifications of an event.

ResetLastDownloadTime meth-
od

Resets the last download time of a publication so that the applica-
tion resynchronizes previously downloaded data.

RevokeConnectFrom method Revokes access from an UltraLite database for a user ID.

Rollback method Rolls back the current transaction.

RollbackPartialDownload meth-
od

Rolls back the changes from a failed synchronization.

SendNotification method Sends a notification to all queues matching the given name.

SetDatabaseOption method Sets the specified database option.

SetDatabaseOptionInt method Sets a database option.

SetSynchronizationCallback
method

Sets the callback to be invoked while performing a synchroniza-
tion.

SetSyncInfo method Creates a synchronization profile using the given name based on
the given ul_sync_info structure.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 121

Name Description

SetUserPointer method Sets an arbitrary pointer value in the connection for use by the call-
ing application.

StartSynchronizationDelete
method

Sets START SYNCHRONIZATION DELETE for this connection.

StopSynchronizationDelete
method

Sets STOP SYNCHRONIZATION DELETE for this connection.

Synchronize method Initiates synchronization in an UltraLite application.

SynchronizeFromProfile method Synchronizes the database using the given profile and merge pa-
rameters.

TriggerEvent method Triggers a user-defined event and sends notifications to all regis-
tered queues.

ValidateDatabase method Validates the database on this connection.

CancelGetNotification method

Cancels any pending get-notification calls on all queues matching the given name.

Syntax
public virtual ul_u_long CancelGetNotification(const char * queueName)

Parameters
● queueName The name of the queue.

Returns
The number of affected queues. (not the number of blocked reads necessarily)

ChangeEncryptionKey method

Changes the database encryption key for an UltraLite database.

Syntax
public virtual bool ChangeEncryptionKey(const char * newKey)

Parameters
● newKey The new encryption key for the database.

API reference

122 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
True on success; otherwise, returns false.

Remarks
Applications that call this method must first ensure that the user has either synchronized the database or
created a reliable backup copy of the database. It is important to have a reliable backup of the database
because the ChangeEncryptionKey method is an operation that must run to completion. When the
database encryption key is changed, every row in the database is first decrypted with the old key and then
encrypted with the new key and rewritten. This operation is not recoverable. If the encryption change
operation does not complete, the database is left in an invalid state and you cannot access it again.

Checkpoint method

Performs a checkpoint operation, flushing any pending committed transactions to the database.

Syntax
public virtual bool Checkpoint()

Returns
True on success; otherwise, returns false.

Remarks
Any current transaction is not committed by calling the Checkpoint method. This method is used in
conjunction with deferring automatic transaction checkpoints (using the commit_flush connection
parameter) as a performance enhancement.

The Checkpoint method ensures that all pending committed transactions have been written to the
database.

Close method

Destroys this connection and any remaining associated objects.

Syntax
public virtual void Close(ULError * error)

Parameters
● error An optional ULError object to receive error information.

Commit method

Commits the current transaction.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 123

Syntax
public virtual bool Commit()

Returns
True on success; otherwise, returns false.

CountUploadRows method

Counts the number of rows that need to be uploaded for synchronization.

Syntax
public virtual ul_u_long CountUploadRows(
 const char * pubList,
 ul_u_long threshold
)

Parameters
● pubList A string containing a comma-separated list of publications to check. An empty string (the

UL_SYNC_ALL macro) implies all tables except tables marked as "no sync". A string containing just
an asterisk (the UL_SYNC_ALL_PUBS macro) implies all tables referred to in any publication. Some
tables may not be part of any publication and are not included if this value is "*".

● threshold Determines the maximum number of rows to count, thereby limiting the amount of time
taken by the call. A threshold of 0 corresponds to no limit (that is, count all rows that need to be
synchronized) and a threshold of 1 can be used to quickly determine if any rows need to be
synchronized.

Returns
The number of rows that need to be synchronized, either in a specified set of publications or in the whole
database.

Remarks
Use this method to prompt users to synchronize, or determine when automatic background
synchronization should take place.

The following call checks the entire database for the total number of rows to be synchronized:

count = conn->CountUploadRows(UL_SYNC_ALL, 0);

The following call checks publications PUB1 and PUB2 for a maximum of 1000 rows:

count = conn->CountUploadRows("PUB1,PUB2", 1000);

The following call checks to see if any rows need to be synchronized in publications PUB1 and PUB2:

anyToSync = conn->CountUploadRows("PUB1,PUB2", 1) != 0;

API reference

124 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

CreateNotificationQueue method

Creates an event notification queue for this connection.

Syntax
public virtual bool CreateNotificationQueue(
 const char * name,
 const char * parameters
)

Parameters
● name The name for the new queue.

● parameters Reserved. Set to NULL.

Returns
True on success; otherwise, returns false.

Remarks
Queue names are scoped per-connection, so different connections can create queues with the same name.
When an event notification is sent, all queues in the database with a matching name receive (a separate
instance of) the notification. Names are case insensitive. A default queue is created on demand for each
connection when calling the RegisterForEvent method if no queue is specified. This call fails with an
error if the name already exists or isn't valid.

See also
● “ULConnection.RegisterForEvent method [UltraLite C++]” on page 137

DeclareEvent method

Declares an event which can then be registered for and triggered.

Syntax
public virtual bool DeclareEvent(const char * eventName)

Parameters
● eventName The name for the new user-defined event.

Returns
True if the event was declared successfully; otherwise, returns false if the name is already used or not
valid.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 125

Remarks
UltraLite predefines some system events triggered by operations on the database or the environment. This
method declares user-defined events. User-defined events are triggered with the TriggerEvent method.
The event name must be unique. Names are case insensitive.

See also
● “ULConnection.TriggerEvent method [UltraLite C++]” on page 144

DestroyNotificationQueue method

Destroys the given event notification queue.

Syntax
public virtual bool DestroyNotificationQueue(const char * name)

Parameters
● name The name of the queue to destroy.

Returns
True on success; otherwise, returns false.

Remarks
A warning is signaled if unread notifications remain in the queue. Unread notifications are discarded. A
connection's default event queue, if created, is destroyed when the connection is closed.

ExecuteScalar method

Executes a SQL SELECT statement directly, returning a single result.

Syntax
public virtual bool ExecuteScalar(
 void * dstPtr,
 size_t dstSize,
 ul_column_storage_type dstType,
 const char * sql,
 ...
)

Parameters
● dstPtr A pointer to a variable of the required type to receive the value.

● dstSize The size of variable to receive value, if applicable.

● dstType The type of value to retrieve. This value must match the variable type.

API reference

126 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● sql The SELECT statement, optionally containing '?' parameters.

● ... String (char *) parameter values to substitute.

Returns
True if the query is successfully executed and a value is successfully retrieved; otherwise, returns false
when a value is not fetched. Check the SQLCODE error code to determine why false is returned. The
selected value is NULL if no warning or error (SQLE_NOERROR) is indicated.

Remarks
The dstPtr value must point to a variable of the correct type, matching the dstType value. The dstSize
parameter is only required for variable-sized values, such as strings and binaries, and is otherwise ignored.
The variable list of parameter values must correspond to parameters in the statement, and all values are
assumed to be strings. (internally, UltraLite casts the parameter values as required for the statement)

The following types are supported:

● UL_TYPE_BIT/UL_TYPE_TINY Use variable type ul_byte (8 bit, unsigned).

● UL_TYPE_U_SHORT/UL_TYPE_S_SHORT Use variable type ul_u_short/ul_s_short (16 bit).

● UL_TYPE_U_LONG/UL_TYPE_S_LONG Use variable type ul_u_long/ul_s_long (32 bit).

● UL_TYPE_U_BIG/UL_TYPE_S_BIG Use variable type ul_u_big/ul_s_big (64 bit).

● UL_TYPE_DOUBLE Use variable type ul_double (double).

● UL_TYPE_REAL Use variable type ul_real (float).

● UL_TYPE_BINARY Use variable type ul_binary and specify dstSize (as in GetBinary()).

● UL_TYPE_TIMESTAMP_STRUCT Use variable type DECL_DATETIME.

● UL_TYPE_CHAR Use variable type char [] (a character buffer), and set dstSize to the size of the
buffer (as in GetString()).

● UL_TYPE_WCHAR Use variable type ul_wchar [] (a wide character buffer), and set dstSize to the
size of the buffer (as in GetString()).

● UL_TYPE_TCHAR Same as UL_TYPE_CHAR or UL_TYPE_WCHAR, depending on which
version of the method is called.

The following example demonstrates integer fetching:

ul_u_long val;
ok = conn->ExecuteScalar(&val, 0, UL_TYPE_U_LONG,
 "SELECT count(*) FROM t WHERE col LIKE ?", "ABC%");

The following example demonstrates string fetching:

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 127

char val[40];
ok = conn->ExecuteScalar(&val, sizeof(val), UL_TYPE_CHAR,
 "SELECT uuidtostr(newid())");

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

ExecuteScalarV method

Executes a SQL SELECT statement string, along with a list of substitution values.

Syntax
public virtual bool ExecuteScalarV(
 void * dstPtr,
 size_t dstSize,
 ul_column_storage_type dstType,
 const char * sql,
 va_list args
)

Parameters
● dstPtr A pointer to a variable of the required type to receive the value.

● dstSize The size of variable to receive value, if applicable.

● dstType The type of value to retrieve. This value must match the variable type.

● sql The SELECT statement, optionally containing '?' parameters.

● args A list of string (char *) values to substitute.

Returns
True if the query is successfully executed and a value is successfully retrieved; otherwise, returns false
when a value is not fetched. Check the SQLCODE error code to determine why false is returned. The
selected value is NULL if no warning or error (SQLE_NOERROR) is indicated.

Remarks
The dstPtr value must point to a variable of the correct type, matching the dstType value. The dstSize
parameter is only required for variable-sized values, such as strings and binaries, and is otherwise ignored.
The variable list of parameter values must correspond to parameters in the statement, and all values are
assumed to be strings. (internally, UltraLite casts the parameter values as required for the statement)

The following types are supported:

● UL_TYPE_BIT/UL_TYPE_TINY Use variable type ul_byte (8 bit, unsigned).

● UL_TYPE_U_SHORT/UL_TYPE_S_SHORT Use variable type ul_u_short/ul_s_short (16 bit).

● UL_TYPE_U_LONG/UL_TYPE_S_LONG Use variable type ul_u_long/ul_s_long (32 bit).

API reference

128 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● UL_TYPE_U_BIG/UL_TYPE_S_BIG Use variable type ul_u_big/ul_s_big (64 bit).

● UL_TYPE_DOUBLE Use variable type ul_double (double).

● UL_TYPE_REAL Use variable type ul_real (float).

● UL_TYPE_BINARY Use variable type ul_binary and specify dstSize (as in GetBinary()).

● UL_TYPE_TIMESTAMP_STRUCT Use variable type DECL_DATETIME.

● UL_TYPE_CHAR Use variable type char [] (a character buffer), and set dstSize to the size of the
buffer (as in GetString()).

● UL_TYPE_WCHAR Use variable type ul_wchar [] (a wide character buffer), and set dstSize to the
size of the buffer (as in GetString()).

● UL_TYPE_TCHAR Same as UL_TYPE_CHAR or UL_TYPE_WCHAR, depending on which
version of the method is called.

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

ExecuteStatement method

Executes a SQL statement string directly.

Syntax
public virtual bool ExecuteStatement(const char * sql)

Parameters
● sql The SQL script to execute.

Returns
True on success; otherwise, returns false.

Remarks
Use this method to execute a SELECT statement directly and retrieve a single result.

Use the PrepareStatement method to execute a statement repeatedly with variable parameters, or to fetch
multiple results.

See also
● “ULConnection.PrepareStatement method [UltraLite C++]” on page 136

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 129

GetChildObjectCount method

Gets the number of currently open child objects on the connection.

Syntax
public virtual ul_u_long GetChildObjectCount()

Returns
The number of currently open child objects.

Remarks
This method can be used to detect object leaks.

GetDatabaseProperty method

Obtains the value of a database property.

Syntax
public virtual const char * GetDatabaseProperty(const char * propName)

Parameters
● propName The name of the property being requested.

Returns
A pointer to a string buffer containing the database property value is returned when run successfully;
otherwise, returns NULL.

Remarks
The returned value points to a static buffer whose contents may be changed by any subsequent UltraLite
call, so you must make a copy of the value if you need to save it.

See also
● “Reading database properties” [UltraLite - Database Management and Reference]

Example
The following example illustrates how to get the value of the CharSet database property.

const char * charset = GetDatabaseProperty("CharSet");

GetDatabasePropertyInt method

Obtains the integer value of a database property.

API reference

130 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public virtual ul_u_long GetDatabasePropertyInt(const char * propName)

Parameters
● propName The name of the property being requested.

Returns
If successful, the integer value of the property; otherwise, returns 0.

See also
● “Reading database properties” [UltraLite - Database Management and Reference]

Example
The following example illustrates how to get the value of the ConnCount database property.

unsigned connectionCount = GetDatabasePropertyInt("ConnCount");

GetDatabaseSchema method

Returns an object pointer used to query the schema of the database.

Syntax
public virtual ULDatabaseSchema * GetDatabaseSchema()

Returns
A ULDatabaseSchema object used to query the schema of the database.

GetLastDownloadTime method

Obtains the last time a specified publication was downloaded.

Syntax
public virtual bool GetLastDownloadTime(
 const char * publication,
 DECL_DATETIME * value
)

Parameters
● publication The publication name.

● value A pointer to the DECL_DATETIME structure to be populated. The value of January 1, 1900
indicates that the publication has yet to be synchronized, or the time was reset.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 131

Returns
True when the value is successfully populated by the last download time of the publication specified;
otherwise, returns false.

Remarks
The following call populates the dt structure with the date and time that the 'pub1' publication was
downloaded:

DECL_DATETIME dt;
ok = conn->GetLastDownloadTime("pub1", &dt);

GetLastError method

Returns the error information associated with the last call.

Syntax
public virtual const ULError * GetLastError()

Returns
A pointer to the ULError object with information associated with the last call.

Remarks
The error object whose address is returned remains valid while the connection is open, but not updated
automatically on subsequent calls. You must call GetLastError to retrieve updated status information.

See also
● “ULError class [UltraLite C++]” on page 159

GetLastIdentity method

Gets the @@identity value.

Syntax
public virtual ul_u_big GetLastIdentity()

Returns
The last value inserted into an autoincrement or global autoincrement column

Remarks
This value is the last value inserted into an autoincrement or global autoincrement column for the
database. This value is not recorded when the database is shutdown, so calling this method before any
autoincrement values have been inserted returns 0.

API reference

132 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
The last value inserted may have been on another connection.

GetNotification method

Reads an event notification.

Syntax
public virtual const char * GetNotification(
 const char * queueName,
 ul_u_long waitms
)

Parameters
● queueName The queue to read or NULL for the default connection queue.

● waitms The time, in milliseconds to wait (block) before returning.

Returns
The name of the event read or NULL on error.

Remarks
This call blocks until a notification is received or until the given wait period expires. To wait indefinitely,
set the waitms parameter to UL_READ_WAIT_INFINITE. To cancel a wait, send another notification to
the given queue or use the CancelGetNotification method. Use the GetNotificationParameter method after
reading a notification to retrieve additional parameters by name.

See also
● “ULConnection.CancelGetNotification method [UltraLite C++]” on page 122
● “ULConnection.GetNotificationParameter method [UltraLite C++]” on page 133

GetNotificationParameter method

Gets a parameter for the event notification just read by the GetNotification method.

Syntax
public virtual const char * GetNotificationParameter(
 const char * queueName,
 const char * parameterName
)

Parameters
● queueName The queue to read or NULL for default connection queue.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 133

● parameterName The name of the parameter to read (or "*").

Returns
The parameter value or NULL on error.

Remarks
Only the parameters from the most recently read notification on the given queue are available. Parameters
are retrieved by name. A parameter name of "*" retrieves the entire parameter string.

See also
● “ULConnection.GetNotification method [UltraLite C++]” on page 133

GetSqlca method

Gets the communication area associated with this connection.

Syntax
public virtual SQLCA * GetSqlca()

Returns
A pointer to the SQLCA object for this connection.

GetSyncResult method

Gets the result of the last synchronization.

Syntax
public virtual bool GetSyncResult(ul_sync_result * syncResult)

Parameters
● syncResult A pointer to the ul_sync_result structure to be populated.

Returns
True on success, otherwise false.

See also
● “ul_sync_result structure [UltraLite C and Embedded SQL datatypes]” on page 112

GetUserPointer method

Gets the pointer value last set by the SetUserPointer method.

API reference

134 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public virtual void * GetUserPointer()

See also
● “ULConnection.SetUserPointer method [UltraLite C++]” on page 141

GlobalAutoincUsage method

Obtains the percent of the default values used in all the columns that have global autoincrement defaults.

Syntax
public virtual ul_u_short GlobalAutoincUsage()

Returns
The percent of the global autoincrement values used by the counter.

Remarks
If the database contains more than one column with this default, this value is calculated for all columns
and the maximum is returned. For example, a return value of 99 indicates that very few default values
remain for at least one of the columns.

GrantConnectTo method

Grants access to an UltraLite database for a new or existing user ID with the given password.

Syntax
public virtual bool GrantConnectTo(const char * uid, const char * pwd)

Parameters
● uid A character array that holds the user ID. The maximum length is 31 characters.

● pwd A character array that holds the password for the user ID.

Returns
True on success; otherwise, returns false.

Remarks
This method updates the password for an existing user when you specify an existing user ID.

See also
● “ULConnection.RevokeConnectFrom method [UltraLite C++]” on page 138

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 135

InitSyncInfo method

Initializes the synchronization information structure.

Syntax
public virtual void InitSyncInfo(ul_sync_info * info)

Parameters
● info A pointer to the ul_sync_info structure that holds the synchronization parameters.

Remarks
Call this method before setting the values of fields in the ul_sync_info structure.

OpenTable method

Opens a table.

Syntax
public virtual ULTable * OpenTable(
 const char * tableName,
 const char * indexName
)

Parameters
● tableName The name of the table to open.

● indexName The name of the index to open the table on. Pass NULL to open on the primary key
and the empty string to open the table unordered.

Returns
The ULTable object when the call is successful; otherwise, returns NULL.

Remarks
The cursor position is set before the first row when the application first opens a table.

PrepareStatement method

Prepares a SQL statement.

Syntax
public virtual ULPreparedStatement * PrepareStatement(const char * sql)

Parameters
● sql The SQL statement to prepare.

API reference

136 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
The ULPreparedStatement object on success; otherwise, returns NULL.

RegisterForEvent method

Registers or unregisters a queue to receive notifications of an event.

Syntax
public virtual bool RegisterForEvent(
 const char * eventName,
 const char * objectName,
 const char * queueName,
 bool register_not_unreg
)

Parameters
● eventName The system- or user-defined event to register for.

● objectName The object to which the event applies. (for example, a table name).

● queueName NULL means use the default connection queue.

● register_not_unreg Set true to register, or false to unregister.

Returns
True if the registration succeeded; otherwise, returns false if the queue or event does not exist.

Remarks
If no queue name is supplied, the default connection queue is implied, and created if required. Certain
system events allow you to specify an object name to which the event applies. For example, the
TableModified event can specify the table name. Unlike the SendNotification method, only the specific
queue registered receives notifications of the event. Other queues with the same name on different
connections do not receive notifications, unless they are also explicitly registered.

The predefined system events are:

● TableModified Triggered when rows in a table are inserted, updated, or deleted. One notification is
sent per request, no matter how many rows were affected by the request. The object_name parameter
specifies the table to monitor. A value of "*" means all tables in the database. This event has a
parameter named table_name whose value is the name of the modified table.

● Commit Triggered after any commit completes. This event has no parameters.

● SyncComplete Triggered after synchronization completes. This event has no parameters.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 137

ResetLastDownloadTime method

Resets the last download time of a publication so that the application resynchronizes previously
downloaded data.

Syntax
public virtual bool ResetLastDownloadTime(const char * pubList)

Parameters
● pubList A string containing a comma-separated list of publications to reset. An empty string means

all tables except tables marked as "no sync". A string containing just an asterisk ("*") denotes all
publications. Some tables may not be part of any publication and are not included if this value is "*".

Returns
True on success; otherwise, returns false.

Remarks
The following method call resets the last download time for all tables:

conn->ResetLastDownloadTime("");

RevokeConnectFrom method

Revokes access from an UltraLite database for a user ID.

Syntax
public virtual bool RevokeConnectFrom(const char * uid)

Parameters
● uid A character array holding the user ID to be excluded from database access.

Returns
True on success, otherwise false.

Rollback method

Rolls back the current transaction.

Syntax
public virtual bool Rollback()

Returns
True on success, otherwise false.

API reference

138 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

RollbackPartialDownload method

Rolls back the changes from a failed synchronization.

Syntax
public virtual bool RollbackPartialDownload()

Returns
True on success, otherwise false.

Remarks
When using resumable downloads (synchronizing with the keep-partial-download option turned on), and
a communication error occurs during the download phase of synchronization, UltraLite retains the
changes which were downloaded (so the synchronization can resume from the place it was interrupted).
Use this method to discard this partial download when you no longer wish to attempt resuming.

This method has effect only when using resumable downloads.

SendNotification method

Sends a notification to all queues matching the given name.

Syntax
public virtual ul_u_long SendNotification(
 const char * queueName,
 const char * eventName,
 const char * parameters
)

Parameters
● queueName The target queue name (or "*").

● eventName The identity for notification.

● parameters Optional parameters option list.

Returns
The number of notifications sent. (the number of matching queues)

Remarks
This includes any such queue on the current connection. This call does not block. Use the special queue
name "*" to send to all queues. The given event name does not need to correspond to any system or user-
defined event; it is simply passed through to identify the notification when read and has meaning only to
the sender and receiver.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 139

The parameters value specifies a semicolon delimited name=value pairs option list. After the notification
is read, the parameter values are read with the GetNotificationParameter method.

See also
● “ULConnection.GetNotificationParameter method [UltraLite C++]” on page 133

SetDatabaseOption method

Sets the specified database option.

Syntax
public virtual bool SetDatabaseOption(
 const char * optName,
 const char * value
)

Parameters
● optName The name of the option being set.

● value The new value of the option.

Returns
True on success, otherwise false.

See also
● “UltraLite database options” [UltraLite - Database Management and Reference]

SetDatabaseOptionInt method

Sets a database option.

Syntax
public virtual bool SetDatabaseOptionInt(
 const char * optName,
 ul_u_long value
)

Parameters
● optName The name of the option being set.

● value The new value of the option.

Returns
True on success; otherwise, returns false.

API reference

140 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SetSynchronizationCallback method

Sets the callback to be invoked while performing a synchronization.

Syntax
public virtual void SetSynchronizationCallback(
 ul_sync_observer_fn callback,
 void * userData
)

Parameters
● callback The ul_sync_observer_fn callback.

● userData User context information passed to the callback.

SetSyncInfo method

Creates a synchronization profile using the given name based on the given ul_sync_info structure.

Syntax
public virtual bool SetSyncInfo(
 char const * profileName,
 ul_sync_info * info
)

Parameters
● profileName The name of the synchronization profile.

● info A pointer to the ul_sync_info structure that holds the synchronization parameters.

Returns
True on success; otherwise, returns false.

Remarks
The synchronization profile replaces any previous profile with the same name. The named profile is
deleted by specifying a null pointer for the structure.

SetUserPointer method

Sets an arbitrary pointer value in the connection for use by the calling application.

Syntax
public virtual void * SetUserPointer(void * ptr)

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 141

Returns
The previously set pointer value.

Remarks
This can be used to associate application data with the connection.

StartSynchronizationDelete method

Sets START SYNCHRONIZATION DELETE for this connection.

Syntax
public virtual bool StartSynchronizationDelete()

Returns
True on success, otherwise false.

StopSynchronizationDelete method

Sets STOP SYNCHRONIZATION DELETE for this connection.

Syntax
public virtual bool StopSynchronizationDelete()

Returns
True on success, otherwise false.

Synchronize method

Initiates synchronization in an UltraLite application.

Syntax
public virtual bool Synchronize(ul_sync_info * info)

Parameters
● info A pointer to the ul_sync_info structure that holds the synchronization parameters.

Returns
True on success; otherwise, returns false.

API reference

142 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
This method initiates synchronization with the MobiLink server. This method does not return until
synchronization is complete, however additional threads on separate connections may continue to access
the database during synchronization.

Before calling this method, enable the protocol and encryption you are using with methods in the
ULDatabaseManager class. For example, when using "HTTP", call the
ULDatabaseManager.EnableHttpSynchronization method.

ul_sync_info info;
conn->InitSyncInfo(&info);
info.user_name = "my_user";
info.version = "myapp_1_2";
info.stream = "HTTP";
info.stream_parms = "host=myserver.com";
conn->Synchronize(&info);

See also
● “ULDatabaseManager.EnableHttpSynchronization method [UltraLite C++]” on page 150
● “MobiLink client network protocol options” [MobiLink - Client Administration]

SynchronizeFromProfile method

Synchronizes the database using the given profile and merge parameters.

Syntax
public virtual bool SynchronizeFromProfile(
 const char * profileName,
 const char * mergeParms,
 ul_sync_observer_fn observer,
 void * userData
)

Parameters
● profileName The name of the profile to synchronize.

● mergeParms Merge parameters for the synchronization.

● observer The observer callback to send status updates to.

● userData User context data passed to callback.

Returns
True on success; otherwise, returns false.

Remarks
This method is identical to executing the SYNCHRONIZE statement.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 143

See also
● “ULConnection.Synchronize method [UltraLite C++]” on page 142
● “SYNCHRONIZE statement [UltraLite]” [UltraLite - Database Management and Reference]

TriggerEvent method

Triggers a user-defined event and sends notifications to all registered queues.

Syntax
public virtual ul_u_long TriggerEvent(
 const char * eventName,
 const char * parameters
)

Parameters
● eventName The name of the system or user-defined event to trigger.

● parameters Optional parameters option list.

Returns
The number of event notifications sent.

Remarks
The parameters value specifies a semicolon delimited name=value pairs option list. After the notification
is read, the parameter values are read with GetNotificationParameter().

See also
● “ULConnection.GetNotificationParameter method [UltraLite C++]” on page 133

ValidateDatabase method

Validates the database on this connection.

Syntax
public virtual bool ValidateDatabase(
 ul_u_short flags,
 ul_validate_callback_fn fn,
 void * user_data,
 const char * tableName
)

Parameters
● flags Flags controlling the type of validation. See the example below.

● fn Function to receive validation progress information.

API reference

144 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● user_data User data to send back to the caller via the callback.

● tableName Optional. A specific table to validate.

Returns
True on success; otherwise, returns false.

Remarks
Tables, indexes, and database pages can be validated depending on the flags passed to this routine. To
receive information during the validation, implement a callback function and pass the address to this
routine. To limit the validation to a specific table, pass in the table name or ID as the last parameter.

The flags parameter is combination of the following values:

● ULVF_TABLE

● ULVF_INDEX

● ULVF_DATABASE

● ULVF_EXPRESS

● ULVF_FULL_VALIDATE

See also
● “ULVF_TABLE variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_INDEX variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_DATABASE variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_EXPRESS variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_FULL_VALIDATE variable [UltraLite C and Embedded SQL datatypes]” on page 116

Example
The following example demonstrates table and index validation in express
mode:
flags = ULVF_TABLE | ULVF_INDEX | ULVF_EXPRESS;

ULDatabaseManager class

Manages connections and databases.

Syntax
public class ULDatabaseManager

Members
All members of ULDatabaseManager class, including all inherited members.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 145

Name Description

CreateDatabase method Creates a new database.

DropDatabase method Erases an existing database that is not currently running.

EnableAesDBEncryption method Enables AES database encryption.

EnableAesFipsDBEncryption method Enables FIPS 140-2 certified AES database encryption.

EnableEccE2ee method Enables ECC end-to-end encryption.

EnableEccSyncEncryption method Enables ECC synchronization encryption for SSL or TLS
streams.

EnableHttpsSynchronization method Enables HTTPS synchronization.

EnableHttpSynchronization method Enables HTTP synchronization.

EnableRsaE2ee method Enables RSA end-to-end encryption.

EnableRsaFipsE2ee method Enables FIPS 140-2 certified RSA end-to-end encryption.

EnableRsaFipsSyncEncryption method Enables FIPS 140-2 certified RSA synchronization encryp-
tion for SSL or TLS streams.

EnableRsaSyncEncryption method Enables RSA synchronization encryption.

EnableTcpipSynchronization method Enables TCP/IP synchronization.

EnableTlsSynchronization method Enables TLS synchronization.

EnableZlibSyncCompression method Enables Zlib compression for a synchronization stream.

Fini method Finalizes the UltraLite runtime.

Init method Initializes the UltraLite runtime.

OpenConnection method Opens a new connection to an existing database.

SetErrorCallback method Sets the callback to be invoked when an error occurs.

ValidateDatabase method Performs low level and index validation on a database.

Remarks
The Init method must be called in a thread-safe environment before any other calls can be made. The Fini
method must be called in a similarly thread-safe environment when finished.

API reference

146 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
This class is static. Do not create an instance of it.

CreateDatabase method

Creates a new database.

Syntax
public static ULConnection * CreateDatabase(
 const char * connParms,
 const char * createParms,
 ULError * error
)

Parameters
● connParms A semicolon separated string of connection parameters, which are set as

keyword=value pairs. The connection string must include the name of the database. These parameters
are the same set of parameters that can be specified when you connect to a database.

● createParms A semicolon separated string of database creation parameters, which are set as
keyword value pairs. For example: page_size=2048;obfuscate=yes.

● error An optional ULError object to receive error information.

Returns
A ULConnection object to the new database is returned if the database was created successfully. NULL is
returned if the method fails. Failure is usually caused by an invalid file name or denied access.

Remarks
The database is created with information provided in two sets of parameters.

The connParms parameter is a set of standard connection parameters that are applicable whenever the
database is accessed, such as the file name or the encryption key.

The createParms parameter is a set of parameters that are only relevant when creating a database, such as
checksum-level, page-size, collation, and time and date format.

The following code illustrates how to use the CreateDatabase method to create an UltraLite database as
the file mydb.udb:

ULConnection * conn;
conn = ULDatabaseManager::CreateDatabase("DBF=mydb.udb",
"checksum_level=2");
if(conn != NULL) {
 // success
} else {
 // unable to create
}

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 147

See also
● “UltraLite connection parameters” [UltraLite - Database Management and Reference]
● “UltraLite creation parameters” [UltraLite - Database Management and Reference]

DropDatabase method

Erases an existing database that is not currently running.

Syntax
public static bool DropDatabase(const char * parms, ULError * error)

Parameters
● parms The database identification parameters. (a connection string)

● error An optional ULError object to receive error information.

Returns
True if the database was successfully deleted; otherwise, returns false.

EnableAesDBEncryption method

Enables AES database encryption.

Syntax
public static void EnableAesDBEncryption()

Remarks
Call this method to use AES database encryption. Use the DBKEY connection parameter to specify the
encryption passphrase. You must call this method before opening the database connection.

See also
● “UltraLite DBKEY connection parameter” [UltraLite - Database Management and Reference]

EnableAesFipsDBEncryption method

Enables FIPS 140-2 certified AES database encryption.

Syntax
public static void EnableAesFipsDBEncryption()

API reference

148 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
Call this method to use FIPS AES database encryption. Use the DBKEY connection parameter to specify
the encryption passphrase.

You must specify 'fips=yes' in the database creation parameters string. You must call this method before
opening the database connection.

Note
Separately licensed component required.

ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

See also
● “ULDatabaseManager.EnableAesDBEncryption method [UltraLite C++]” on page 148
● “UltraLite DBKEY connection parameter” [UltraLite - Database Management and Reference]

EnableEccE2ee method

Enables ECC end-to-end encryption.

Syntax
public static void EnableEccE2ee()

Remarks
You must call this method before the Synchronize method.

To use end-to-end encryption, set the e2ee_public_key network protocol option. In this case, the
e2ee_type network protocol option must be "ECC".

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableEccSyncEncryption method

Enables ECC synchronization encryption for SSL or TLS streams.

Syntax
public static void EnableEccSyncEncryption()

Remarks
You must call this method before the Synchronize method.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 149

This method is required when you set the stream parameter to "TLS" or "HTTPS" for ECC encryption. In
this case, you must also set the tls_type network protocol option to "ECC".

Note
Separately licensed component required.

ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

See also
● “ULDatabaseManager.EnableZlibSyncCompression method [UltraLite C++]” on page 153
● “ULDatabaseManager.EnableRsaFipsSyncEncryption method [UltraLite C++]” on page 151
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableHttpsSynchronization method

Enables HTTPS synchronization.

Syntax
public static void EnableHttpsSynchronization()

Remarks
You must call this method before the Synchronize method.

When initiating synchronization, set the stream parameter to "HTTPS". Also set the network protocol
certificate options.

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableHttpSynchronization method

Enables HTTP synchronization.

Syntax
public static void EnableHttpSynchronization()

Remarks
You must call this method before the Synchronize method.

When initiating synchronization, set the stream parameter to "HTTP".

API reference

150 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableRsaE2ee method

Enables RSA end-to-end encryption.

Syntax
public static void EnableRsaE2ee()

Remarks
You must call this method before the Synchronize method.

To use end-to-end encryption, set the e2ee_public_key network protocol option. In this case, the network
protocol option e2ee_type must be "RSA" (the default).

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableRsaFipsE2ee method

Enables FIPS 140-2 certified RSA end-to-end encryption.

Syntax
public static void EnableRsaFipsE2ee()

Remarks
You must call this method before the Synchronize method.

To use end-to-end encryption, set the e2ee_public_key network protocol option. In this case, the
e2ee_type network protocol option must be "RSA" (the default), and fips must be set to "yes".

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableRsaFipsSyncEncryption method

Enables FIPS 140-2 certified RSA synchronization encryption for SSL or TLS streams.

Syntax
public static void EnableRsaFipsSyncEncryption()

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 151

Remarks
You must call this method before the Synchronize method.

This is required when setting the stream parameter to "TLS" or "HTTPS" for FIPS RSA encryption. In
this case, the tls_type network protocol option must be set to "RSA" (the default), and fips must be set to
"yes".

See also
● “ULDatabaseManager.EnableRsaSyncEncryption method [UltraLite C++]” on page 152
● “ULDatabaseManager.EnableEccSyncEncryption method [UltraLite C++]” on page 149
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableRsaSyncEncryption method

Enables RSA synchronization encryption.

Syntax
public static void EnableRsaSyncEncryption()

Remarks
You must call this method before the Synchronize method.

This is required when setting the stream parameter to "TLS" or "HTTPS" for RSA encryption. In this
case, the network protocol option tls_type must be "RSA" (the default).

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableTcpipSynchronization method

Enables TCP/IP synchronization.

Syntax
public static void EnableTcpipSynchronization()

Remarks
You must call this method before the Synchronize method.

When initiating synchronization, set the stream parameter to "TCPIP".

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

API reference

152 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

EnableTlsSynchronization method

Enables TLS synchronization.

Syntax
public static void EnableTlsSynchronization()

Remarks
You must call this method before the Synchronize method.

When initiating synchronization, set the stream parameter to "TLS". Also set the network protocol
certificate options.

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

EnableZlibSyncCompression method

Enables Zlib compression for a synchronization stream.

Syntax
public static void EnableZlibSyncCompression()

Remarks
You must call this method before the Synchronize method.

To use compression, set the compression network protocol option to "zlib".

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

Fini method

Finalizes the UltraLite runtime.

Syntax
public static void Fini()

Remarks
This method must be called only once by a single thread when the application is finished. This method is
not thread-safe.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 153

Init method

Initializes the UltraLite runtime.

Syntax
public static bool Init()

Returns
True on success; otherwise, returns false. False can also be returned if the method is called more than
once.

Remarks
This method must be called only once by a single thread before any other calls can be made. This method
is not thread-safe.

This method does not usually fail unless memory is unavailable.

OpenConnection method

Opens a new connection to an existing database.

Syntax
public static ULConnection * OpenConnection(
 const char * connParms,
 ULError * error,
 void * reserved
)

Parameters
● connParms The connection string.

● error An optional ULError object to return error information.

● reserved Reserved for internal use. Omit or set to null.

Returns
A new ULConnection object if the method succeeds; otherwise, returns NULL.

Remarks
The connection string is a set of option=value connection parameters (semicolon separated) that indicates
which database to connect to, and options to use for the connection. For example, after securely obtaining
your encryption passphrase, the resulting connection string might be:
"DBF=mydb.udb;DBKEY=iyntTZld9OEa#&G".

To get error information, pass in a pointer to a ULError object. The following is a list of possible errors:

● SQLE_INVALID_PARSE_PARAMETER connParms was not formatted properly.

API reference

154 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● SQLE_UNRECOGNIZED_OPTION A connection option name was likely misspelled.

● SQLE_INVALID_OPTION_VALUE A connection option value was not specified properly.

● SQLE_ULTRALITE_DATABASE_NOT_FOUND The specified database could not be found.

● SQLE_INVALID_LOGON You supplied an invalid user ID or an incorrect password.

● SQLE_TOO_MANY_CONNECTIONS You exceeded the maximum number of concurrent
database connections.

See also
● “UltraLite connection strings and parameters” [UltraLite - Database Management and Reference]
● “UltraLite connection parameters” [UltraLite - Database Management and Reference]

SetErrorCallback method

Sets the callback to be invoked when an error occurs.

Syntax
public static void SetErrorCallback(
 ul_cpp_error_callback_fn callback,
 void * userData
)

Parameters
● callback The callback function.

● userData User context information passed to the callback.

Remarks
This method is not thread-safe.

ValidateDatabase method

Performs low level and index validation on a database.

Syntax
public static bool ValidateDatabase(
 const char * connParms,
 ul_u_short flags,
 ul_validate_callback_fn fn,
 void * userData,
 ULError * error
)

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 155

Parameters
● connParms The parameters used to connect to the database.

● flags The flags controlling the type of validation; see the example below.

● fn A function to receive validation progress information.

● userData The user data to send back to the caller via the callback.

● error An optional ULError object to receive error information.

Returns
True if the validation succeeds; otherwise, returns false.

Remarks
The flags parameter is combination of the following values:

● ULVF_TABLE

● ULVF_INDEX

● ULVF_DATABASE

● ULVF_EXPRESS

● ULVF_FULL_VALIDATE

See also
● “ULVF_TABLE variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_INDEX variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_DATABASE variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_EXPRESS variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_FULL_VALIDATE variable [UltraLite C and Embedded SQL datatypes]” on page 116

Example
The following example demonstrates table and index validation in express mode:

flags = ULVF_TABLE | ULVF_INDEX | ULVF_EXPRESS;

ULDatabaseSchema class

Represents the schema of an UltraLite database.

Syntax
public class ULDatabaseSchema

API reference

156 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Members
All members of ULDatabaseSchema class, including all inherited members.

Name Description

Close method Destroys this object.

GetConnection method Gets the ULConnection object.

GetNextPublication method Gets the name of the next publication in the database.

GetNextTable method Gets the next table (schema) in the database.

GetPublicationCount method Gets the number of publications in the database.

GetTableCount method Returns the number of tables in the database.

GetTableSchema method Returns the schema of the named table.

Close method

Destroys this object.

Syntax
public virtual void Close()

GetConnection method

Gets the ULConnection object.

Syntax
public virtual ULConnection * GetConnection()

Returns
The ULConnection associated with this object.

GetNextPublication method

Gets the name of the next publication in the database.

Syntax
public virtual const char * GetNextPublication(
 ul_publication_iter * iter
)

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 157

Parameters
● iter A pointer to the iterator variable.

Returns
The name of the next publication. This value points to a static buffer whose contents may be changed by
any subsequent UltraLite call, so make a copy of the value if you need to retain it. NULL is returned when
the iteration is complete.

Remarks
Initialize the iter value to the ul_publication_iter_start constant before the first call.

See also
● “ul_publication_iter_start variable [UltraLite C++]” on page 237

GetNextTable method

Gets the next table (schema) in the database.

Syntax
public virtual ULTableSchema * GetNextTable(ul_table_iter * iter)

Parameters
● iter A pointer to the iterator variable.

Returns
A ULTableSchema object or NULL when the iteration is complete.

Remarks
Initialize the iter value to the ul_table_iter_start constant before the first call.

See also
● “ul_table_iter_start variable [UltraLite C++]” on page 237

GetPublicationCount method

Gets the number of publications in the database.

Syntax
public virtual ul_publication_count GetPublicationCount()

Returns
The number of publications in the database.

API reference

158 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
Publication IDs range from 1 to the number returned by this method.

GetTableCount method

Returns the number of tables in the database.

Syntax
public virtual ul_table_num GetTableCount()

Returns
An integer that represents the number of tables.

GetTableSchema method

Returns the schema of the named table.

Syntax
public virtual ULTableSchema * GetTableSchema(const char * tableName)

Parameters
● tableName The name of the table.

Returns
A ULTableSchema object for the given table; otherwise, returns UL_NULL if the table does not exist.

ULError class

Manages the errors returned from the UltraLite runtime.

Syntax
public class ULError

Members
All members of ULError class, including all inherited members.

Name Description

ULError constructor Constructs a ULError object.

Clear method Clears the current error.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 159

Name Description

GetErrorInfo method Returns a pointer to the underlying ul_error_info object.

GetParameter method Copies the specified error parameter into the provided buffer.

GetParameterCount method Returns the number of error parameters.

GetSQLCode method Returns the SQLCODE error code for the last operation.

GetSQLCount method Returns a value that depends on the last operation, and the result of that
operation.

GetString method Returns the description of the current error.

GetURL method Returns a URL to the documentation page for this error.

IsOK method Tests the error code.

ULError constructor

Constructs a ULError object.

Syntax
public ULError()

Clear method

Clears the current error.

Syntax
public void Clear()

Remarks
The current error is cleared automatically on most calls, so this is not normally called by applications.

GetErrorInfo method

Returns a pointer to the underlying ul_error_info object.

API reference

160 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Overload list

Name Description

GetErrorInfo() method Returns a pointer to the underlying ul_error_info object.

GetErrorInfo() method Returns a pointer to the underlying ul_error_info object.

GetErrorInfo() method
Returns a pointer to the underlying ul_error_info object.

Syntax
public const ul_error_info * GetErrorInfo()

Returns
A pointer to the underlying ul_error_info object.

See also
● “ul_error_info structure [UltraLite C and Embedded SQL datatypes]” on page 109

GetErrorInfo() method
Returns a pointer to the underlying ul_error_info object.

Syntax
public ul_error_info * GetErrorInfo()

Returns
A pointer to the underlying ul_error_info object.

See also
● “ul_error_info structure [UltraLite C and Embedded SQL datatypes]” on page 109

GetParameter method

Copies the specified error parameter into the provided buffer.

Syntax
public size_t GetParameter(ul_u_short parmNo, char * dst, size_t len)

Parameters
● parmNo A 1-based parameter number.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 161

● dst The buffer to receive the parameter.

● len The size of the buffer.

Returns
The size required to store the parameter, or zero if the ordinal is not valid. The parameter is truncated if
the return value is larger than the len value.

Remarks
The output string is always null-terminated, even when the buffer is too small and the string is truncated.

GetParameterCount method

Returns the number of error parameters.

Syntax
public ul_u_short GetParameterCount()

Returns
The number of error parameters.

GetSQLCode method

Returns the SQLCODE error code for the last operation.

Syntax
public an_sql_code GetSQLCode()

Returns
The sqlcode value.

GetSQLCount method

Returns a value that depends on the last operation, and the result of that operation.

Syntax
public ul_s_long GetSQLCount()

Returns
The value for the last operation, if applicable; otherwise, returns -1 if not applicable.

API reference

162 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
The following list outlines the possible operations, and their returned results:

● INSERT, UPDATE, or DELETE operation executed successfully Returns the number of rows
that were affected by the statement.

● SQL statement syntax error (SQLE_SYNTAX_ERROR) Returns the approximate character
position within the statement where the error was detected.

GetString method

Returns the description of the current error.

Syntax
public size_t GetString(char * dst, size_t len)

Parameters
● dst The buffer to receive the error description.

● len The size, in array elements, of the buffer.

Returns
The size required to store the string. The string is truncated when the return value is larger than the len
value.

Remarks
The string includes the error code and all parameters. A full description of the error can be obtained by
loading the URL returned by the ULError.GetURL method.

The output string is always null-terminated, even if the buffer is too small and the string is truncated.

See also
● “ULError.GetURL method [UltraLite C++]” on page 163

GetURL method

Returns a URL to the documentation page for this error.

Syntax
public size_t GetURL(char * buffer, size_t len, const char * reserved)

Parameters
● buffer The buffer to receive the URL.

● len The size of the buffer.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 163

● reserved Reserved for future use; you must pass NULL, the default.

Returns
The size required to store the URL. The URL is truncated if the return value is larger is larger than the len
value.

IsOK method

Tests the error code.

Syntax
public bool IsOK()

Returns
True if the current code is SQLE_NOERROR or a warning; otherwise, returns false if the current code
indicates an error.

ULIndexSchema class
Represents the schema of an UltraLite table index.

Syntax
public class ULIndexSchema

Members
All members of ULIndexSchema class, including all inherited members.

Name Description

Close method Destroys this object.

GetColumnCount method Gets the number of columns in the index.

GetColumnName method Gets the name of the column given the position of the column in
the index.

GetConnection method Gets the ULConnection object.

GetIndexColumnID method Gets the 1-based index column ID from its name.

GetIndexFlags method Gets the index property flags bit field.

GetName method Gets the name of the index.

API reference

164 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Description

GetReferencedIndexName method Gets the associated primary index name.

GetReferencedTableName method Gets the associated primary table name.

GetTableName method Gets the name of the table containing this index.

IsColumnDescending method Determines if the column is in descending order.

Close method

Destroys this object.

Syntax
public virtual void Close()

GetColumnCount method

Gets the number of columns in the index.

Syntax
public virtual ul_column_num GetColumnCount()

Returns
The number of columns in the index.

GetColumnName method

Gets the name of the column given the position of the column in the index.

Syntax
public virtual const char * GetColumnName(ul_column_num col_id_in_index)

Parameters
● col_id_in_index The 1-based ordinal number indicating the position of the column in the index.

Returns
The name of the column. This value points to a static buffer whose contents may be changed by any
subsequent UltraLite call, so make a copy of the value if you need to retain it.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 165

GetConnection method

Gets the ULConnection object.

Syntax
public virtual ULConnection * GetConnection()

Returns
The connection associated with this object.

GetIndexColumnID method

Gets the 1-based index column ID from its name.

Syntax
public virtual ul_column_num GetIndexColumnID(const char * columnName)

Parameters
● columnName The column name.

Returns
0, and sets SQLE_COLUMN_NOT_FOUND if the column name does not exist.

GetIndexFlags method

Gets the index property flags bit field.

Syntax
public virtual ul_index_flag GetIndexFlags()

See also
● “ul_index_flag enumeration [UltraLite C++]” on page 235

GetName method

Gets the name of the index.

Syntax
public virtual const char * GetName()

API reference

166 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
The name of the index. This value points to a static buffer whose contents may be changed by any
subsequent UltraLite call, so make a copy of the value if you need to retain it.

GetReferencedIndexName method

Gets the associated primary index name.

Syntax
public virtual const char * GetReferencedIndexName()

Returns
The name of the referenced index. This value points to a static buffer whose contents may be changed by
any subsequent UltraLite call, so make a copy of the value if you need to retain it.

Remarks
This method applies to foreign keys only.

GetReferencedTableName method

Gets the associated primary table name.

Syntax
public virtual const char * GetReferencedTableName()

Returns
The name of the referenced table. This value points to a static buffer whose contents may be changed by
any subsequent UltraLite call, so make a copy of the value if you need to retain it.

Remarks
This method applies to foreign keys only.

GetTableName method

Gets the name of the table containing this index.

Syntax
public virtual const char * GetTableName()

Returns
The name of the table containing this index. This value points to a static buffer whose contents may be
changed by any subsequent UltraLite call, so make a copy of the value if you need to retain it.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 167

IsColumnDescending method

Determines if the column is in descending order.

Syntax
public virtual bool IsColumnDescending(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
True if the column is in descending order; otherwise, returns false.

ULPreparedStatement class

Represents a prepared SQL statement.

Syntax
public class ULPreparedStatement

Members
All members of ULPreparedStatement class, including all inherited members.

Name Description

AppendParameterByteChunk method Sets a large binary parameter broken down into several
chunks.

AppendParameterStringChunk meth-
od

Sets a large string parameter broken down into several chunks.

Close method Destroys this object.

ExecuteQuery method Executes a SQL SELECT statement as a query.

ExecuteStatement method Executes a statement that does not return a result set, such as a
SQL INSERT, DELETE or UPDATE statement.

GetConnection method Gets the connection object.

GetParameterCount method Gets the number of input parameters for this statement.

GetParameterID method Get the 1-based ordinal for a parameter name.

GetParameterType method Gets the storage/host variable type of a parameter.

API reference

168 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Description

GetPlan method Gets a text-based description of the query execution plan.

GetResultSetSchema method Gets the schema for the result set.

GetRowsAffectedCount method Gets the number of rows affected by the last statement.

HasResultSet method Determines if the SQL statement has a result set.

SetParameterBinary method Sets a parameter to a ul_binary value.

SetParameterDateTime method Sets a parameter to a DECL_DATETIME value.

SetParameterDouble method Sets a parameter to a double value.

SetParameterFloat method Sets a parameter to a float value.

SetParameterGuid method Sets a parameter to a GUID value.

SetParameterInt method Sets a parameter to an integer value.

SetParameterIntWithType method Sets a parameter to an integer value of the specified integer
type.

SetParameterNull method Sets a parameter to null.

SetParameterString method Sets a parameter to a string value.

AppendParameterByteChunk method

Sets a large binary parameter broken down into several chunks.

Syntax
public virtual bool AppendParameterByteChunk(
 ul_column_num pid,
 const ul_byte * value,
 size_t valueSize
)

Parameters
● pid The 1-based ordinal of the parameter.

● value The byte chunk to append.

● valueSize The size of the buffer.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 169

Returns
True on success; otherwise, returns false.

AppendParameterStringChunk method

Sets a large string parameter broken down into several chunks.

Syntax
public virtual bool AppendParameterStringChunk(
 ul_column_num pid,
 const char * value,
 size_t len
)

Parameters
● pid The 1-based ordinal of the parameter.

● value The string chunk to append.

● len Optional. Set to the length of the string chunk in bytes or
UL_NULL_TERMINATED_STRING if the string chunk is null-terminated.

Returns
True on success; otherwise, returns false.

Close method

Destroys this object.

Syntax
public virtual void Close()

ExecuteQuery method

Executes a SQL SELECT statement as a query.

Syntax
public virtual ULResultSet * ExecuteQuery()

Returns
The ULResultSet object that contains the results of the query, as a set of rows.

API reference

170 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ExecuteStatement method

Executes a statement that does not return a result set, such as a SQL INSERT, DELETE or UPDATE
statement.

Syntax
public virtual bool ExecuteStatement()

Returns
True on success; otherwise, returns false.

GetConnection method

Gets the connection object.

Syntax
public virtual ULConnection * GetConnection()

Returns
The ULConnection object associated with this prepared statement.

GetParameterCount method

Gets the number of input parameters for this statement.

Syntax
public virtual ul_u_short GetParameterCount()

Returns
The number of input parameters for this statement.

GetParameterID method

Get the 1-based ordinal for a parameter name.

Syntax
public virtual ul_column_num GetParameterID(const char * name)

Parameters
● name The name of the host variable.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 171

Returns
The 1-based ordinal for a parameter name.

GetParameterType method

Gets the storage/host variable type of a parameter.

Syntax
public virtual ul_column_storage_type GetParameterType(
 ul_column_num pid
)

Parameters
● pid The 1-based ordinal of the parameter.

Returns
The type of the specified parameter.

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

GetPlan method

Gets a text-based description of the query execution plan.

Syntax
public virtual size_t GetPlan(char * dst, size_t dstSize)

Parameters
● dst The destination buffer for the plan text. Pass NULL to determine the size of the buffer required

to hold the plan.

● dstSize The size of the destination buffer.

Returns
The number of bytes copied to the buffer; otherwise, if the dst value is NULL, returns the number of bytes
required to store the plan, excluding the null-terminator.

Remarks
This method is intended primarily for use during development.

An empty string is returned if there is no plan. Plans exist when the prepared statement is a SQL query.

API reference

172 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When the plan is obtained before the associated query has been executed, the plan shows the operations
used to execute the query. The plan additionally shows the number of rows each operation produced when
the plan is obtained after the query has been executed. This plan can be used to gain insight about the
execution of the query.

GetResultSetSchema method

Gets the schema for the result set.

Syntax
public virtual const ULResultSetSchema & GetResultSetSchema()

Returns
A ULResultSetSchema object that can be used to get information about the schema of the result set.

GetRowsAffectedCount method

Gets the number of rows affected by the last statement.

Syntax
public virtual ul_s_long GetRowsAffectedCount()

Returns
The number of rows affected by the last statement. If the number of rows is not available (for instance, the
statement alters the schema rather than data) the return value is -1.

HasResultSet method

Determines if the SQL statement has a result set.

Syntax
public virtual bool HasResultSet()

Returns
True if a result set is generated when this statement is executed; otherwise, returns false if no result set is
generated.

SetParameterBinary method

Sets a parameter to a ul_binary value.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 173

Syntax
public virtual bool SetParameterBinary(
 ul_column_num pid,
 const p_ul_binary value
)

Parameters
● pid The 1-based ordinal of the parameter.

● value The ul_binary value.

Returns
True on success; otherwise, returns false.

SetParameterDateTime method

Sets a parameter to a DECL_DATETIME value.

Syntax
public virtual bool SetParameterDateTime(
 ul_column_num pid,
 DECL_DATETIME * value
)

Parameters
● pid The 1-based ordinal of the parameter.

● value The DECL_DATETIME value.

Returns
True on success; otherwise, returns false.

SetParameterDouble method

Sets a parameter to a double value.

Syntax
public virtual bool SetParameterDouble(
 ul_column_num pid,
 ul_double value
)

Parameters
● pid The 1-based ordinal of the parameter.

● value The double value.

API reference

174 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
True on success; otherwise, returns false.

SetParameterFloat method

Sets a parameter to a float value.

Syntax
public virtual bool SetParameterFloat(ul_column_num pid, ul_real value)

Parameters
● pid The 1-based ordinal of the parameter.

● value The float value.

Returns
True on success; otherwise, returns false.

SetParameterGuid method

Sets a parameter to a GUID value.

Syntax
public virtual bool SetParameterGuid(ul_column_num pid, GUID * value)

Parameters
● pid The 1-based ordinal of the parameter.

● value The GUID value.

Returns
True on success; otherwise, returns false.

SetParameterInt method

Sets a parameter to an integer value.

Syntax
public virtual bool SetParameterInt(ul_column_num pid, ul_s_long value)

Parameters
● pid The 1-based ordinal of the parameter.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 175

● value The integer value.

Returns
True on success; otherwise, returns false.

SetParameterIntWithType method

Sets a parameter to an integer value of the specified integer type.

Syntax
public virtual bool SetParameterIntWithType(
 ul_column_num pid,
 ul_s_big value,
 ul_column_storage_type type
)

Parameters
● pid The 1-based ordinal of the parameter.

● value The integer value.

● type The integer type to treat the value as.

Returns
True on success; otherwise, returns false.

Remarks
The following is a list of integer values that can be used for the value parameter:

● UL_TYPE_BIT

● UL_TYPE_TINY

● UL_TYPE_S_SHORT

● UL_TYPE_U_SHORT

● UL_TYPE_S_LONG

● UL_TYPE_U_LONG

● UL_TYPE_S_BIG

● UL_TYPE_U_BIG

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

API reference

176 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SetParameterNull method

Sets a parameter to null.

Syntax
public virtual bool SetParameterNull(ul_column_num pid)

Parameters
● pid The 1-based ordinal of the parameter.

Returns
True on success; otherwise, returns false.

SetParameterString method

Sets a parameter to a string value.

Syntax
public virtual bool SetParameterString(
 ul_column_num pid,
 const char * value,
 size_t len
)

Parameters
● pid The 1-based ordinal of the parameter.

● value The string value.

● len Optional. Set to the length of the string in bytes or UL_NULL_TERMINATED_STRING if the
string in null-terminated. SQLE_INVALID_PARAMETER is set if this parameter is greater than
32K. For large strings, call the AppendParameterStringChunk method instead.

Returns
True on success, otherwise false.

See also
● “ULPreparedStatement.AppendParameterStringChunk method [UltraLite C++]” on page 170

ULResultSet class
Represents a result set in an UltraLite database.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 177

Syntax
public class ULResultSet

Derived classes
● “ULTable class [UltraLite C++]” on page 218

Members
All members of ULResultSet class, including all inherited members.

Name Description

AfterLast method Moves the cursor after the last row.

AppendByteChunk method Appends bytes to a column.

AppendStringChunk method Appends a string chunk to a column.

BeforeFirst method Moves the cursor before the first row.

Close method Destroys this object.

Delete method Deletes the current row and moves it to the next valid row.

DeleteNamed method Deletes the current row and moves it to the next valid row.

First method Moves the cursor to the first row.

GetBinary method Fetches a value from a column as a ul_binary value.

GetBinaryLength method Gets the binary length of the value of a column.

GetByteChunk method Gets a binary chunk from the column.

GetConnection method Gets the connection object.

GetDateTime method Fetches a value from a column as a DECL_DATETIME.

GetDouble method Fetches a value from a column as a double.

GetFloat method Fetches a value from a column as a float.

GetGuid method Fetches a value from a column as a GUID.

GetInt method Fetches a value from a column as an integer.

GetIntWithType method Fetches a value from a column as the specified integer type.

GetResultSetSchema method Returns an object that can be used to get information about the result
set.

API reference

178 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Description

GetRowCount method Gets the number of rows in the table.

GetState method Gets the internal state of the cursor.

GetString method Fetches a value from a column as a null-terminated string.

GetStringChunk method Gets a string chunk from the column.

GetStringLength method Gets the string length of the value of a column.

IsNull method Checks if a column is NULL.

Last method Moves the cursor to the last row.

Next method Moves the cursor forward one row.

Previous method Moves the cursor back one row.

Relative method Moves the cursor by offset rows from the current cursor position.

SetBinary method Sets a column to a ul_binary value.

SetDateTime method Sets a column to a DECL_DATETIME value.

SetDefault method Sets a column to its default value.

SetDouble method Sets a column to a double value.

SetFloat method Sets a column to a float value.

SetGuid method Sets a column to a GUID value.

SetInt method Sets a column to an integer value.

SetIntWithType method Sets a column to an integer value of the specified integer type.

SetNull method Sets a column to null.

SetString method Sets a column to a string value.

Update method Updates the current row.

UpdateBegin method Selects the update mode for setting columns.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 179

AfterLast method

Moves the cursor after the last row.

Syntax
public virtual bool AfterLast()

Returns
True on success; otherwise, returns false.

AppendByteChunk method

Appends bytes to a column.

Overload list

Name Description

AppendByteChunk(const char *, const ul_byte *, size_t) method Appends bytes to a column.

AppendByteChunk(ul_column_num, const ul_byte *, size_t) method Appends bytes to a column.

AppendByteChunk(const char *, const ul_byte *, size_t) method
Appends bytes to a column.

Syntax
public virtual bool AppendByteChunk(
 const char * cname,
 const ul_byte * value,
 size_t valueSize
)

Parameters
● cname The name of the column.

● value The byte chunk to append.

● valueSize The size of the byte chunk in bytes.

Returns
True on success; otherwise, returns false.

Remarks
The given bytes are appended to the end of the column written so far by AppendBinaryChunk method
calls.

API reference

180 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “ULResultSet.AppendByteChunk method [UltraLite C++]” on page 180

AppendByteChunk(ul_column_num, const ul_byte *, size_t) method
Appends bytes to a column.

Syntax
public virtual bool AppendByteChunk(
 ul_column_num cid,
 const ul_byte * value,
 size_t valueSize
)

Parameters
● cid The 1-based ordinal column number.

● value The byte chunk to append.

● valueSize The size of the byte chunk in bytes.

Returns
True on success; otherwise, returns false.

Remarks
The given bytes are appended to the end of the column written so far by AppendBinaryChunk method
calls.

See also
● “ULResultSet.AppendByteChunk method [UltraLite C++]” on page 180

AppendStringChunk method

Appends a string chunk to a column.

Overload list

Name Description

AppendStringChunk(const char *, const char *, size_t) method Appends a string chunk to a column.

AppendStringChunk(ul_column_num, const char *, size_t)
method

Appends a string chunk to a column.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 181

AppendStringChunk(const char *, const char *, size_t) method
Appends a string chunk to a column.

Syntax
public virtual bool AppendStringChunk(
 const char * cname,
 const char * value,
 size_t len
)

Parameters
● cname The name of the column.

● value The string chunk to append.

● len Optional. The length of the string chunk in bytes or the UL_NULL_TERMINATED_STRING
constant if the string is null-terminated.

Returns
True on success; otherwise, returns false.

Remarks
This method appends the given string to the end of the string written so far by AppendStringChunk
method calls.

See also
● “ULResultSet.AppendStringChunk method [UltraLite C++]” on page 181

AppendStringChunk(ul_column_num, const char *, size_t) method
Appends a string chunk to a column.

Syntax
public virtual bool AppendStringChunk(
 ul_column_num cid,
 const char * value,
 size_t len
)

Parameters
● cid The 1-based ordinal column number.

● value The string chunk to append.

● len Optional. The length of the string chunk in bytes or the UL_NULL_TERMINATED_STRING
constant if the string is null-terminated.

API reference

182 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
True on success; otherwise, returns false.

Remarks
This method appends the given string to the end of the string written so far by AppendStringChunk
method calls.

See also
● “ULResultSet.AppendStringChunk method [UltraLite C++]” on page 181

BeforeFirst method

Moves the cursor before the first row.

Syntax
public virtual bool BeforeFirst()

Returns
True on success; otherwise, returns false.

Close method

Destroys this object.

Syntax
public virtual void Close()

Delete method

Deletes the current row and moves it to the next valid row.

Syntax
public virtual bool Delete()

Returns
True on success, otherwise false.

DeleteNamed method

Deletes the current row and moves it to the next valid row.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 183

Syntax
public virtual bool DeleteNamed(const char * tableName)

Parameters
● tableName A table name or its correlation (required when the database has multiple columns that

share the same table name).

Returns
True on success; otherwise, returns false.

First method

Moves the cursor to the first row.

Syntax
public virtual bool First()

Returns
True on success; otherwise, returns false.

GetBinary method

Fetches a value from a column as a ul_binary value.

Overload list

Name Description

GetBinary(const char *, p_ul_binary, size_t)
method

Fetches a value from a column as a ul_binary value.

GetBinary(ul_column_num, p_ul_binary, size_t)
method

Fetches a value from a column as a ul_binary value.

GetBinary(const char *, p_ul_binary, size_t) method
Fetches a value from a column as a ul_binary value.

Syntax
public virtual bool GetBinary(
 const char * cname,
 p_ul_binary dst,
 size_t len
)

API reference

184 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Parameters
● cname The name of the column.

● dst The ul_binary result.

● len The size of the ul_binary object.

Returns
True if the value was successfully fetched.

GetBinary(ul_column_num, p_ul_binary, size_t) method
Fetches a value from a column as a ul_binary value.

Syntax
public virtual bool GetBinary(
 ul_column_num cid,
 p_ul_binary dst,
 size_t len
)

Parameters
● cid The 1-based ordinal column number.

● dst The ul_binary result.

● len The size of the ul_binary object.

Returns
True if the value was successfully fetched.

GetBinaryLength method

Gets the binary length of the value of a column.

Overload list

Name Description

GetBinaryLength(const char *) method Gets the binary length of the value of a column.

GetBinaryLength(ul_column_num) method Gets the binary length of the value of a column.

GetBinaryLength(const char *) method
Gets the binary length of the value of a column.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 185

Syntax
public virtual size_t GetBinaryLength(const char * cname)

Parameters
● cname The name of the column.

Returns
The size of the column value as a binary

GetBinaryLength(ul_column_num) method
Gets the binary length of the value of a column.

Syntax
public virtual size_t GetBinaryLength(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
The size of the column value as a binary

GetByteChunk method

Gets a binary chunk from the column.

Overload list

Name Description

GetByteChunk(const char *, ul_byte *, size_t, size_t) method Gets a binary chunk from the column.

GetByteChunk(ul_column_num, ul_byte *, size_t, size_t)
method

Gets a binary chunk from the column.

GetByteChunk(const char *, ul_byte *, size_t, size_t) method
Gets a binary chunk from the column.

Syntax
public virtual size_t GetByteChunk(
 const char * cname,
 ul_byte * dst,
 size_t len,

API reference

186 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 size_t offset
)

Parameters
● cname The name of the column.

● dst The buffer to hold the bytes.

● len The size of the buffer in bytes.

● offset The offset into the value at which to start reading or the UL_BLOB_CONTINUE constant to
continue from where the last read ended.

Returns
The number of bytes copied to the destination buffer. If the dst value is NULL, then the number of bytes
left is returned. An empty string is returned in the dst parameter when the column is null; use the IsNull
method to differentiate between null and empty strings.

Remarks
The end of the value has been reached if 0 is returned.

See also
● “ULResultSet.IsNull method [UltraLite C++]” on page 200

GetByteChunk(ul_column_num, ul_byte *, size_t, size_t) method
Gets a binary chunk from the column.

Syntax
public virtual size_t GetByteChunk(
 ul_column_num cid,
 ul_byte * dst,
 size_t len,
 size_t offset
)

Parameters
● cid The 1-based ordinal column number.

● dst The buffer to hold the bytes.

● len The size of the buffer in bytes.

● offset The offset into the value at which to start reading or the UL_BLOB_CONTINUE constant to
continue from where the last read ended.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 187

Returns
The number of bytes copied to the destination buffer. If the dst value is NULL, then the number of bytes
left is returned. An empty string is returned in the dst parameter when the column is null; use the IsNull
method to differentiate between null and empty strings.

Remarks
The end of the value has been reached if 0 is returned.

See also
● “ULResultSet.IsNull method [UltraLite C++]” on page 200

GetConnection method

Gets the connection object.

Syntax
public virtual ULConnection * GetConnection()

Returns
The ULConnection object associated with this result set.

GetDateTime method

Fetches a value from a column as a DECL_DATETIME.

Overload list

Name Description

GetDateTime(const char *, DECL_DATE-
TIME *) method

Fetches a value from a column as a DECL_DATE-
TIME.

GetDateTime(ul_column_num, DECL_DATE-
TIME *) method

Fetches a value from a column as a DECL_DATE-
TIME.

GetDateTime(const char *, DECL_DATETIME *) method
Fetches a value from a column as a DECL_DATETIME.

Syntax
public virtual bool GetDateTime(const char * cname, DECL_DATETIME * dst)

API reference

188 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Parameters
● cname The name of the column.

● dst The DECL_DATETIME value.

Returns
True if the value was successfully fetched.

GetDateTime(ul_column_num, DECL_DATETIME *) method
Fetches a value from a column as a DECL_DATETIME.

Syntax
public virtual bool GetDateTime(ul_column_num cid, DECL_DATETIME * dst)

Parameters
● cid The 1-based ordinal column number.

● dst The DECL_DATETIME value.

Returns
True if the value was successfully fetched.

GetDouble method

Fetches a value from a column as a double.

Overload list

Name Description

GetDouble(const char *) method Fetches a value from a column as a double.

GetDouble(ul_column_num) method Fetches a value from a column as a double.

GetDouble(const char *) method
Fetches a value from a column as a double.

Syntax
public virtual ul_double GetDouble(const char * cname)

Parameters
● cname The name of the column.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 189

Returns
The column value as a double.

GetDouble(ul_column_num) method
Fetches a value from a column as a double.

Syntax
public virtual ul_double GetDouble(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
The column value as a double.

GetFloat method

Fetches a value from a column as a float.

Overload list

Name Description

GetFloat(const char *) method Fetches a value from a column as a float.

GetFloat(ul_column_num) method Fetches a value from a column as a float.

GetFloat(const char *) method
Fetches a value from a column as a float.

Syntax
public virtual ul_real GetFloat(const char * cname)

Parameters
● cname The name of the column.

Returns
The column value as a float.

GetFloat(ul_column_num) method
Fetches a value from a column as a float.

API reference

190 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public virtual ul_real GetFloat(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
The column value as a float.

GetGuid method

Fetches a value from a column as a GUID.

Overload list

Name Description

GetGuid(const char *, GUID *) method Fetches a value from a column as a GUID.

GetGuid(ul_column_num, GUID *) method Fetches a value from a column as a GUID.

GetGuid(const char *, GUID *) method
Fetches a value from a column as a GUID.

Syntax
public virtual bool GetGuid(const char * cname, GUID * dst)

Parameters
● cname The name of the column.

● dst The GUID value.

Returns
True if the value was successfully fetched.

GetGuid(ul_column_num, GUID *) method
Fetches a value from a column as a GUID.

Syntax
public virtual bool GetGuid(ul_column_num cid, GUID * dst)

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 191

Parameters
● cid The 1-based ordinal column number.

● dst The GUID value.

Returns
True if the value was successfully fetched.

GetInt method

Fetches a value from a column as an integer.

Overload list

Name Description

GetInt(const char *) method Fetches a value from a column as an integer.

GetInt(ul_column_num) method Fetches a value from a column as an integer.

GetInt(const char *) method
Fetches a value from a column as an integer.

Syntax
public virtual ul_s_long GetInt(const char * cname)

Parameters
● cname The name of the column.

Returns
The column value as an integer.

GetInt(ul_column_num) method
Fetches a value from a column as an integer.

Syntax
public virtual ul_s_long GetInt(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

API reference

192 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
The column value as an integer.

GetIntWithType method

Fetches a value from a column as the specified integer type.

Overload list

Name Description

GetIntWithType(const char *, ul_col-
umn_storage_type) method

Fetches a value from a column as the specified integer
type.

GetIntWithType(ul_column_num,
ul_column_storage_type) method

Fetches a value from a column as the specified integer
type.

GetIntWithType(const char *, ul_column_storage_type) method
Fetches a value from a column as the specified integer type.

Syntax
public virtual ul_s_big GetIntWithType(
 const char * cname,
 ul_column_storage_type type
)

Parameters
● cname The name of the column.

● type The integer type to fetch as.

Returns
The column value as an integer.

Remarks
The following is a list of integer values that can be used for the type parameter:

● UL_TYPE_BIT

● UL_TYPE_TINY

● UL_TYPE_S_SHORT

● UL_TYPE_U_SHORT

● UL_TYPE_S_LONG

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 193

● UL_TYPE_U_LONG

● UL_TYPE_S_BIG

● UL_TYPE_U_BIG

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

GetIntWithType(ul_column_num, ul_column_storage_type) method
Fetches a value from a column as the specified integer type.

Syntax
public virtual ul_s_big GetIntWithType(
 ul_column_num cid,
 ul_column_storage_type type
)

Parameters
● cid The 1-based ordinal column number.

● type The integer type to fetch as.

Returns
The column value as an integer.

Remarks
The following is a list of integer values that can be used for the type parameter:

● UL_TYPE_BIT

● UL_TYPE_TINY

● UL_TYPE_S_SHORT

● UL_TYPE_U_SHORT

● UL_TYPE_S_LONG

● UL_TYPE_U_LONG

● UL_TYPE_S_BIG

● UL_TYPE_U_BIG

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

API reference

194 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GetResultSetSchema method

Returns an object that can be used to get information about the result set.

Syntax
public virtual const ULResultSetSchema & GetResultSetSchema()

Returns
A ULResultSetSchema object that can be used to get information about the result set.

GetRowCount method

Gets the number of rows in the table.

Syntax
public virtual ul_u_long GetRowCount(ul_u_long threshold)

Parameters
● threshold The limit on the number of rows to count. Set to 0 to indicate no limit.

Returns
The number of rows in the table.

Remarks
This method is equivalent to executing the "SELECT COUNT(*) FROM table" statement.

GetState method

Gets the internal state of the cursor.

Syntax
public virtual UL_RS_STATE GetState()

Returns
The state of the cursor.

See also
● “UL_RS_STATE enumeration [UltraLite C and Embedded SQL datatypes]” on page 102

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 195

GetString method

Fetches a value from a column as a null-terminated string.

Overload list

Name Description

GetString(const char *, char *, size_t)
method

Fetches a value from a column as a null-terminated string.

GetString(ul_column_num, char *, size_t)
method

Fetches a value from a column as a null-terminated string.

GetString(const char *, char *, size_t) method
Fetches a value from a column as a null-terminated string.

Syntax
public virtual bool GetString(
 const char * cname,
 char * dst,
 size_t len
)

Parameters
● cname The name of the column.

● dst The buffer to hold the string value. The string is null-terminated even if truncated.

● len The size of the buffer in bytes.

Returns
True if the value was successfully fetched.

Remarks
The string is truncated in the buffer when it isn't large enough to hold the entire value.

GetString(ul_column_num, char *, size_t) method
Fetches a value from a column as a null-terminated string.

Syntax
public virtual bool GetString(ul_column_num cid, char * dst, size_t len)

Parameters
● cid The 1-based ordinal column number.

API reference

196 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● dst The buffer to hold the string value. The string is null-terminated even if truncated.

● len The size of the buffer in bytes.

Returns
True if the value was successfully fetched.

Remarks
The string is truncated in the buffer when it isn't large enough to hold the entire value.

GetStringChunk method

Gets a string chunk from the column.

Overload list

Name Description

GetStringChunk(const char *, char *, size_t, size_t) method Gets a string chunk from the column.

GetStringChunk(ul_column_num, char *, size_t, size_t) meth-
od

Gets a string chunk from the column.

GetStringChunk(const char *, char *, size_t, size_t) method
Gets a string chunk from the column.

Syntax
public virtual size_t GetStringChunk(
 const char * cname,
 char * dst,
 size_t len,
 size_t offset
)

Parameters
● cname The name of the column.

● dst The buffer to hold the string chunk. The string is null-terminated even if truncated.

● len The size of the buffer in bytes.

● offset The offset into the value at which to start reading or the UL_BLOB_CONTINUE constant to
continue from where the last read ended.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 197

Returns
The number of bytes copied to the destination buffer excluding the null-terminator. If the dst value is set
to NULL, then the number of bytes left in the string is returned. An empty string is returned in the dst
parameter when the column is null; use the IsNull method to differentiate between null and empty strings.

Remarks
The end of the value has been reached if 0 is returned.

See also
● “ULResultSet.IsNull method [UltraLite C++]” on page 200

GetStringChunk(ul_column_num, char *, size_t, size_t) method
Gets a string chunk from the column.

Syntax
public virtual size_t GetStringChunk(
 ul_column_num cid,
 char * dst,
 size_t len,
 size_t offset
)

Parameters
● cid The 1-based ordinal column number.

● dst The buffer to hold the string chunk. The string is null-terminated even if truncated.

● len The size of the buffer in bytes.

● offset Set to the offset into the value at which to start reading or set to the UL_BLOB_CONTINUE
constant to continue from where the last read ended.

Returns
The number of bytes copied to the destination buffer excluding the null-terminator. If the dst value is set
to NULL, then the number of bytes left in the string is returned. An empty string is returned in the dst
parameter when the column is null; use the IsNull method to differentiate between null and empty strings.

Remarks
The end of the value has been reached if 0 is returned.

See also
● “ULResultSet.IsNull method [UltraLite C++]” on page 200

API reference

198 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GetStringLength method

Gets the string length of the value of a column.

Overload list

Name Description

GetStringLength(const char *) method Gets the string length of the value of a column.

GetStringLength(ul_column_num) method Gets the string length of the value of a column.

GetStringLength(const char *) method
Gets the string length of the value of a column.

Syntax
public virtual size_t GetStringLength(const char * cname)

Parameters
● cname The name of the column.

Returns
The number of bytes or characters required to hold the string returned by one of the GetString methods,
not including the null-terminator.

Remarks
The following example demonstrates how to get the string length of a column:

len = result_set->GetStringLength(cid);
dst = new char[len + 1];
result_set->GetString(cid, dst, len + 1);

For wide characters, the usage is as follows:

len = result_set->GetStringLength(cid);
dst = new ul_wchar[len + 1];
result_set->GetString(cid, dst, len + 1);

See also
● “ULResultSet.GetString method [UltraLite C++]” on page 196

GetStringLength(ul_column_num) method
Gets the string length of the value of a column.

Syntax
public virtual size_t GetStringLength(ul_column_num cid)

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 199

Parameters
● cid The 1-based ordinal column number.

Returns
The number of bytes or characters required to hold the string returned by one of the GetString methods,
not including the null-terminator.

Remarks
The following example illustrates how to get the string length of a column:

len = result_set->GetStringLength(cid);
dst = new char[len + 1];
result_set->GetString(cid, dst, len + 1);

For wide characters, the usage is as follows:

len = result_set->GetStringLength(cid);
dst = new ul_wchar[len + 1];
result_set->GetString(cid, dst, len + 1);

See also
● “ULResultSet.GetString method [UltraLite C++]” on page 196

IsNull method

Checks if a column is NULL.

Overload list

Name Description

IsNull(const char *) method Checks if a column is NULL.

IsNull(ul_column_num) method Checks if a column is NULL.

IsNull(const char *) method
Checks if a column is NULL.

Syntax
public virtual bool IsNull(const char * cname)

Parameters
● cname The name of the column.

Returns
True if the value for the column is NULL.

API reference

200 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

IsNull(ul_column_num) method
Checks if a column is NULL.

Syntax
public virtual bool IsNull(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
True if the value for the column is NULL.

Last method

Moves the cursor to the last row.

Syntax
public virtual bool Last()

Returns
True on success; otherwise, returns false.

Next method

Moves the cursor forward one row.

Syntax
public virtual bool Next()

Returns
True, if the cursor successfully moves forward. Despite returning true, an error may be signaled even
when the cursor moves successfully to the next row. For example, there could be conversion errors while
evaluating the SELECT expressions. In this case, errors are also returned when retrieving the column
values. False is returned if it fails to move forward. For example, there may not be a next row. In this
case, the resulting cursor position is set after the last row.

Previous method

Moves the cursor back one row.

Syntax
public virtual bool Previous()

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 201

Returns
True, if the cursor successfully moves back one row. False, if it fails to move backward. The resulting
cursor position is set before the first row.

Relative method

Moves the cursor by offset rows from the current cursor position.

Syntax
public virtual bool Relative(ul_fetch_offset offset)

Parameters
● offset The number of rows to move.

Returns
True on success; otherwise, returns false.

SetBinary method

Sets a column to a ul_binary value.

Overload list

Name Description

SetBinary(const char *, p_ul_binary) method Sets a column to a ul_binary value.

SetBinary(ul_column_num, p_ul_binary) method Sets a column to a ul_binary value.

SetBinary(const char *, p_ul_binary) method
Sets a column to a ul_binary value.

Syntax
public virtual bool SetBinary(const char * cname, p_ul_binary value)

Parameters
● cname The name of the column.

● value The ul_binary value. Passing NULL is equivalent to calling the SetNull method.

Returns
True on success; otherwise, returns false.

API reference

202 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SetBinary(ul_column_num, p_ul_binary) method
Sets a column to a ul_binary value.

Syntax
public virtual bool SetBinary(ul_column_num cid, p_ul_binary value)

Parameters
● cid The 1-based ordinal column number.

● value The ul_binary value. Passing NULL is equivalent to calling the SetNull method.

Returns
True on success; otherwise, returns false.

SetDateTime method

Sets a column to a DECL_DATETIME value.

Overload list

Name Description

SetDateTime(const char *, DECL_DATETIME *)
method

Sets a column to a DECL_DATETIME value.

SetDateTime(ul_column_num, DECL_DATETIME *)
method

Sets a column to a DECL_DATETIME value.

SetDateTime(const char *, DECL_DATETIME *) method
Sets a column to a DECL_DATETIME value.

Syntax
public virtual bool SetDateTime(
 const char * cname,
 DECL_DATETIME * value
)

Parameters
● cname The name of the column.

● value The DECL_DATETIME value. Passing NULL is equivalent to calling the SetNull method.

Returns
True on success; otherwise, returns false.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 203

SetDateTime(ul_column_num, DECL_DATETIME *) method
Sets a column to a DECL_DATETIME value.

Syntax
public virtual bool SetDateTime(
 ul_column_num cid,
 DECL_DATETIME * value
)

Parameters
● cid The 1-based ordinal column number.

● value The DECL_DATETIME value. Passing NULL is equivalent to calling the SetNull method.

Returns
True on success; otherwise, returns false.

SetDefault method

Sets a column to its default value.

Overload list

Name Description

SetDefault(const char *) method Sets a column to its default value.

SetDefault(ul_column_num) method Sets a column to its default value.

SetDefault(const char *) method
Sets a column to its default value.

Syntax
public virtual bool SetDefault(const char * cname)

Parameters
● cname The name of the column.

Returns
True on success; otherwise, returns false.

SetDefault(ul_column_num) method
Sets a column to its default value.

API reference

204 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public virtual bool SetDefault(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
True on success; otherwise, returns false.

SetDouble method

Sets a column to a double value.

Overload list

Name Description

SetDouble(const char *, ul_double) method Sets a column to a double value.

SetDouble(ul_column_num, ul_double) method Sets a column to a double value.

SetDouble(const char *, ul_double) method
Sets a column to a double value.

Syntax
public virtual bool SetDouble(const char * cname, ul_double value)

Parameters
● cname The name of the column.

● value The double value.

Returns
True on success; otherwise, returns false.

SetDouble(ul_column_num, ul_double) method
Sets a column to a double value.

Syntax
public virtual bool SetDouble(ul_column_num cid, ul_double value)

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 205

Parameters
● cid The 1-based ordinal column number.

● value The double value.

Returns
True on success; otherwise, returns false.

SetFloat method

Sets a column to a float value.

Overload list

Name Description

SetFloat(const char *, ul_real) method Sets a column to a float value.

SetFloat(ul_column_num, ul_real) method Sets a column to a float value.

SetFloat(const char *, ul_real) method
Sets a column to a float value.

Syntax
public virtual bool SetFloat(const char * cname, ul_real value)

Parameters
● cname The name of the column.

● value The float value.

Returns
True on success; otherwise, returns false.

SetFloat(ul_column_num, ul_real) method
Sets a column to a float value.

Syntax
public virtual bool SetFloat(ul_column_num cid, ul_real value)

Parameters
● cid The 1-based ordinal column number.

API reference

206 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● value The float value.

Returns
True on success; otherwise, returns false.

SetGuid method

Sets a column to a GUID value.

Overload list

Name Description

SetGuid(const char *, GUID *) method Sets a column to a GUID value.

SetGuid(ul_column_num, GUID *) method Sets a column to a GUID value.

SetGuid(const char *, GUID *) method
Sets a column to a GUID value.

Syntax
public virtual bool SetGuid(const char * cname, GUID * value)

Parameters
● cname The name of the column.

● value The GUID value. Passing NULL is equivalent to calling the SetNull method.

Returns
True on success; otherwise, returns false.

SetGuid(ul_column_num, GUID *) method
Sets a column to a GUID value.

Syntax
public virtual bool SetGuid(ul_column_num cid, GUID * value)

Parameters
● cid The 1-based ordinal column number.

● value The GUID value. Passing NULL is equivalent to calling the SetNull method.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 207

Returns
True on success; otherwise, returns false.

SetInt method

Sets a column to an integer value.

Overload list

Name Description

SetInt(const char *, ul_s_long) method Sets a column to an integer value.

SetInt(ul_column_num, ul_s_long) method Sets a column to an integer value.

SetInt(const char *, ul_s_long) method
Sets a column to an integer value.

Syntax
public virtual bool SetInt(const char * cname, ul_s_long value)

Parameters
● cname The name of the column.

● value The signed integer value.

Returns
True on success; otherwise, returns false.

SetInt(ul_column_num, ul_s_long) method
Sets a column to an integer value.

Syntax
public virtual bool SetInt(ul_column_num cid, ul_s_long value)

Parameters
● cid The 1-based ordinal column number.

● value The signed integer value.

Returns
True on success; otherwise, returns false.

API reference

208 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SetIntWithType method

Sets a column to an integer value of the specified integer type.

Overload list

Name Description

SetIntWithType(const char *, ul_s_big,
ul_column_storage_type) method

Sets a column to an integer value of the specified integer
type.

SetIntWithType(ul_column_num,
ul_s_big, ul_column_storage_type)
method

Sets a column to an integer value of the specified integer
type.

SetIntWithType(const char *, ul_s_big, ul_column_storage_type) method
Sets a column to an integer value of the specified integer type.

Syntax
public virtual bool SetIntWithType(
 const char * cname,
 ul_s_big value,
 ul_column_storage_type type
)

Parameters
● cname The name of the column.

● value The integer value.

● type The integer type to treat the value as.

Returns
True on success; otherwise, returns false.

Remarks
The following is a list of integer values that can be used for the value parameter:

● UL_TYPE_BIT

● UL_TYPE_TINY

● UL_TYPE_S_SHORT

● UL_TYPE_U_SHORT

● UL_TYPE_S_LONG

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 209

● UL_TYPE_U_LONG

● UL_TYPE_S_BIG

● UL_TYPE_U_BIG

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

SetIntWithType(ul_column_num, ul_s_big, ul_column_storage_type) method
Sets a column to an integer value of the specified integer type.

Syntax
public virtual bool SetIntWithType(
 ul_column_num cid,
 ul_s_big value,
 ul_column_storage_type type
)

Parameters
● cid The 1-based ordinal column number.

● value The integer value.

● type The integer type to treat the value as.

Returns
True on success; otherwise, returns false.

Remarks
The following is a list of integer values that can be used for the value parameter:

● UL_TYPE_BIT

● UL_TYPE_TINY

● UL_TYPE_S_SHORT

● UL_TYPE_U_SHORT

● UL_TYPE_S_LONG

● UL_TYPE_U_LONG

● UL_TYPE_S_BIG

● UL_TYPE_U_BIG

API reference

210 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

SetNull method

Sets a column to null.

Overload list

Name Description

SetNull(const char *) method Sets a column to null.

SetNull(ul_column_num) method Sets a column to null.

SetNull(const char *) method
Sets a column to null.

Syntax
public virtual bool SetNull(const char * cname)

Parameters
● cname The name of the column.

Returns
True on success; otherwise, returns false.

SetNull(ul_column_num) method
Sets a column to null.

Syntax
public virtual bool SetNull(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
True on success; otherwise, returns false.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 211

SetString method

Sets a column to a string value.

Overload list

Name Description

SetString(const char *, const char *, size_t) method Sets a column to a string value.

SetString(ul_column_num, const char *, size_t) method Sets a column to a string value.

SetString(const char *, const char *, size_t) method
Sets a column to a string value.

Syntax
public virtual bool SetString(
 const char * cname,
 const char * value,
 size_t len
)

Parameters
● cname The name of the column.

● value The string value. Passing NULL is equivalent to calling the SetNull method.

● len Optional. The length of the string in bytes or the UL_NULL_TERMINATED_STRING
constant if the string is null-terminated. The SQLE_INVALID_PARAMETER constant is set if the
len value is set larger than 32K. For large strings, call the AppendStringChunk method instead.

Returns
True on success; otherwise, returns false.

See also
● “ULResultSet.AppendStringChunk method [UltraLite C++]” on page 181

SetString(ul_column_num, const char *, size_t) method
Sets a column to a string value.

Syntax
public virtual bool SetString(
 ul_column_num cid,
 const char * value,
 size_t len
)

API reference

212 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Parameters
● cid The 1-based ordinal column number.

● value The string value. Passing NULL is equivalent to calling the SetNull method.

● len Optional. The length of the string in bytes or the UL_NULL_TERMINATED_STRING
constant if the string is null-terminated. The SQLE_INVALID_PARAMETER constant is set if the
len value is set larger than 32K. For large strings, call the AppendStringChunk method instead.

Returns
True on success; otherwise, returns false.

See also
● “ULResultSet.AppendStringChunk method [UltraLite C++]” on page 181

Update method

Updates the current row.

Syntax
public virtual bool Update()

Returns
True on success, otherwise false.

UpdateBegin method

Selects the update mode for setting columns.

Syntax
public virtual bool UpdateBegin()

Returns
True on success, otherwise false.

Remarks
Columns in the primary key may not be modified when in update mode.

ULResultSetSchema class

Represents the schema of an UltraLite result set.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 213

Syntax
public class ULResultSetSchema

Derived classes
● “ULTableSchema class [UltraLite C++]” on page 226

Members
All members of ULResultSetSchema class, including all inherited members.

Name Description

GetColumnCount method Gets the number of columns in the result set or table.

GetColumnID method Gets the 1-based column ID from its name.

GetColumnName method Gets the name of a column given its 1-based ID.

GetColumnPrecision method Gets the precision of a numeric column.

GetColumnScale method Gets the scale of a numeric column.

GetColumnSize method Gets the size of the column.

GetColumnSQLType method Gets the SQL type of a column.

GetColumnType method Gets the storage/host variable type of a column.

GetConnection method Gets the ULConnection object.

IsAliased method Indicates whether the column in a result set was given an alias.

GetColumnCount method

Gets the number of columns in the result set or table.

Syntax
public virtual ul_column_num GetColumnCount()

Returns
The number of columns in the result set or table.

GetColumnID method

Gets the 1-based column ID from its name.

API reference

214 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public virtual ul_column_num GetColumnID(const char * columnName)

Parameters
● columnName The column name.

Returns
0 if the column does not exist; otherwise, returns SQLE_COLUMN_NOT_FOUND if the column name
does not exist.

GetColumnName method

Gets the name of a column given its 1-based ID.

Syntax
public virtual const char * GetColumnName(
 ul_column_num cid,
 ul_column_name_type type
)

Parameters
● cid The 1-based ordinal column number.

● type The desired column name type.

Returns
A pointer to a string buffer containing the column name, if found. The pointer points to a static buffer
whose contents may be changed by any subsequent UltraLite call, so you need to make a copy of the
value if you need to keep it for a while. If the column does not exist, NULL is returned and
SQLE_COLUMN_NOT_FOUND is set.

Remarks
Depending on the type selected and how the column was declared in the SELECT statement, the column
name may be returned in the form [table- name].[column-name].

The type parameter is used to specify what type of column name to return.

See also
● “ul_column_name_type enumeration [UltraLite C++]” on page 234

GetColumnPrecision method

Gets the precision of a numeric column.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 215

Syntax
public virtual size_t GetColumnPrecision(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
0 if the column is not a numeric type or if the column does not exist. SQLE_COLUMN_NOT_FOUND is
set if the column name does not exist. SQLE_DATATYPE_NOT_ALLOWED is set if the column type is
not numeric.

GetColumnScale method

Gets the scale of a numeric column.

Syntax
public virtual size_t GetColumnScale(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
0 if the column is not a numeric type or if the column does not exist. SQLE_COLUMN_NOT_FOUND is
set if the column name does not exist. SQLE_DATATYPE_NOT_ALLOWED is set if the column type is
not numeric.

GetColumnSize method

Gets the size of the column.

Syntax
public virtual size_t GetColumnSize(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
0 if the column does not exist or if the column type does not have a variable length.
SQLE_COLUMN_NOT_FOUND is set if the column name does not exist.
SQLE_DATATYPE_NOT_ALLOWED is set if the column type is not UL_SQLTYPE_CHAR or
UL_SQLTYPE_BINARY.

API reference

216 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GetColumnSQLType method

Gets the SQL type of a column.

Syntax
public virtual ul_column_sql_type GetColumnSQLType(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
UL_SQLTYPE_BAD_INDEX if the column does not exist.

See also
● “ul_column_sql_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 102

GetColumnType method

Gets the storage/host variable type of a column.

Syntax
public virtual ul_column_storage_type GetColumnType(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
UL_TYPE_BAD_INDEX if the column does not exist.

See also
● “ul_column_storage_type enumeration [UltraLite C and Embedded SQL datatypes]” on page 104

GetConnection method

Gets the ULConnection object.

Syntax
public virtual ULConnection * GetConnection()

Returns
The ULConnection object associated with this result set schema.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 217

IsAliased method

Indicates whether the column in a result set was given an alias.

Syntax
public virtual bool IsAliased(ul_column_num cid)

Parameters
● cid The 1-based ordinal column number.

Returns
True if the column is aliased; otherwise, returns false.

ULTable class
Represents a table in an UltraLite database.

Syntax
public class ULTable : ULResultSet

Base classes
● “ULResultSet class [UltraLite C++]” on page 177

Members
All members of ULTable class, including all inherited members.

Name Description

AfterLast method Moves the cursor after the last row.

AppendByteChunk method Appends bytes to a column.

AppendStringChunk method Appends a string chunk to a column.

BeforeFirst method Moves the cursor before the first row.

Close method Destroys this object.

Delete method Deletes the current row and moves it to the next valid row.

DeleteAllRows method Deletes all rows from a table.

DeleteNamed method Deletes the current row and moves it to the next valid row.

API reference

218 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Description

Find method Performs an exact match lookup based on the current index scanning
forward through the table.

FindBegin method Prepares to perform a new Find call on a table by entering find mode.

FindFirst method Performs an exact match lookup based on the current index scanning
forward through the table.

FindLast method Performs an exact match lookup based on the current index scanning
backward through the table.

FindNext method Gets the next row that exactly matches the index.

FindPrevious method Gets the previous row that exactly matches the index.

First method Moves the cursor to the first row.

GetBinary method Fetches a value from a column as a ul_binary value.

GetBinaryLength method Gets the binary length of the value of a column.

GetByteChunk method Gets a binary chunk from the column.

GetConnection method Gets the connection object.

GetDateTime method Fetches a value from a column as a DECL_DATETIME.

GetDouble method Fetches a value from a column as a double.

GetFloat method Fetches a value from a column as a float.

GetGuid method Fetches a value from a column as a GUID.

GetInt method Fetches a value from a column as an integer.

GetIntWithType method Fetches a value from a column as the specified integer type.

GetResultSetSchema method Returns an object that can be used to get information about the result
set.

GetRowCount method Gets the number of rows in the table.

GetState method Gets the internal state of the cursor.

GetString method Fetches a value from a column as a null-terminated string.

GetStringChunk method Gets a string chunk from the column.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 219

Name Description

GetStringLength method Gets the string length of the value of a column.

GetTableSchema method Returns a ULTableSchema object that can be used to get schema infor-
mation about the table.

Insert method Inserts a new row into the table.

InsertBegin method Selects the insert mode for setting columns.

IsNull method Checks if a column is NULL.

Last method Moves the cursor to the last row.

Lookup method Performs a lookup based on the current index scanning forward
through the table.

LookupBackward method Performs a lookup based on the current index scanning backward
through the table.

LookupBegin method Prepares to perform a new lookup on a table.

LookupForward method Performs a lookup based on the current index scanning forward
through the table.

Next method Moves the cursor forward one row.

Previous method Moves the cursor back one row.

Relative method Moves the cursor by offset rows from the current cursor position.

SetBinary method Sets a column to a ul_binary value.

SetDateTime method Sets a column to a DECL_DATETIME value.

SetDefault method Sets a column to its default value.

SetDouble method Sets a column to a double value.

SetFloat method Sets a column to a float value.

SetGuid method Sets a column to a GUID value.

SetInt method Sets a column to an integer value.

SetIntWithType method Sets a column to an integer value of the specified integer type.

SetNull method Sets a column to null.

API reference

220 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Description

SetString method Sets a column to a string value.

TruncateTable method Truncates the table and temporarily activates STOP SYNCHRONIZA-
TION DELETE.

Update method Updates the current row.

UpdateBegin method Selects the update mode for setting columns.

DeleteAllRows method

Deletes all rows from a table.

Syntax
public virtual bool DeleteAllRows()

Returns
True on success; otherwise, returns false. For example, false is returned when the table is not open, or a
SQL error occurred.

Remarks
In some applications, you may want to delete all rows from a table before downloading a new set of data
into the table. If you set the stop synchronization property on the connection, the deleted rows are not
synchronized.

Note
Any uncommitted inserts from other connections are not deleted. They are also not deleted if the other
connection performs a rollback after it calls the DeleteAllRows method.

If this table has been opened without an index, then it is considered read-only and data cannot be deleted.

Find method

Performs an exact match lookup based on the current index scanning forward through the table.

Syntax
public virtual bool Find(ul_column_num ncols)

Parameters
● ncols For composite indexes, the number of columns to use during the search.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 221

Returns
If no row matches the index value, the cursor position is set after the last row and the method returns
false.

Remarks
To specify the value to search for, set the column value for each column in the index. The cursor is
positioned on the first row that exactly matches the index value.

FindBegin method

Prepares to perform a new Find call on a table by entering find mode.

Syntax
public virtual bool FindBegin()

Returns
True on success; otherwise, returns false.

Remarks
You may only set columns in the index that the table was opened with. This method cannot be called if
the table was opened without an index.

FindFirst method

Performs an exact match lookup based on the current index scanning forward through the table.

Syntax
public virtual bool FindFirst(ul_column_num ncols)

Parameters
● ncols For composite indexes, the number of columns to use during the search.

Returns
If no row matches the index value, the cursor position is set after the last row and the method returns
false.

Remarks
To specify the value to search for, set the column value for each column in the index. The cursor is
positioned on the first row that exactly matches the index value.

API reference

222 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

FindLast method

Performs an exact match lookup based on the current index scanning backward through the table.

Syntax
public virtual bool FindLast(ul_column_num ncols)

Parameters
● ncols For composite indexes, the number of columns to use during the search.

Returns
If no row matches the index value, the cursor position is set before the first row and the method returns
false.

Remarks
To specify the value to search for, set the column value for each column in the index. The cursor is
positioned on the first row that exactly matches the index value.

FindNext method

Gets the next row that exactly matches the index.

Syntax
public virtual bool FindNext(ul_column_num ncols)

Parameters
● ncols For composite indexes, the number of columns to use during the search.

Returns
False if no more rows match the index. In this case, the cursor is positioned after the last row.

FindPrevious method

Gets the previous row that exactly matches the index.

Syntax
public virtual bool FindPrevious(ul_column_num ncols)

Parameters
● ncols For composite indexes, the number of columns to use during the search.

Returns
False if no more rows match the index. In this case, the cursor is positioned before the first row.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 223

GetTableSchema method

Returns a ULTableSchema object that can be used to get schema information about the table.

Syntax
public virtual ULTableSchema * GetTableSchema()

Returns
A ULTableSchema object that can be used to get schema information about the table.

Insert method

Inserts a new row into the table.

Syntax
public virtual bool Insert()

Returns
True on success; otherwise returns false.

InsertBegin method

Selects the insert mode for setting columns.

Syntax
public virtual bool InsertBegin()

Returns
True on success; otherwise, returns false.

Remarks
All columns are set to their default value during an insert unless an alternative value is supplied via Set
method calls.

Lookup method

Performs a lookup based on the current index scanning forward through the table.

Syntax
public virtual bool Lookup(ul_column_num ncols)

API reference

224 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Parameters
● ncols For composite indexes, the number of columns to use in the lookup.

Returns
False if the resulting cursor position is set after the last row.

Remarks
To specify the value to search for, set the column value for each column in the index. The cursor is
positioned on the last row that matches or is less than the index value. For composite indexes, the ncols
parameter specifies the number of columns to use in the lookup.

LookupBackward method

Performs a lookup based on the current index scanning backward through the table.

Syntax
public virtual bool LookupBackward(ul_column_num ncols)

Parameters
● ncols For composite indexes, the number of columns to use in the lookup.

Returns
False if the resulting cursor position is set before the first row.

Remarks
To specify the value to search for, set the column value for each column in the index. The cursor is
positioned on the last row that matches or is less than the index value. For composite indexes, the ncols
parameter specifies the number of columns to use in the lookup.

LookupBegin method

Prepares to perform a new lookup on a table.

Syntax
public virtual bool LookupBegin()

Returns
True on success; otherwise, returns false.

Remarks
You may only set columns in the index that the table was opened with. If the table was opened without an
index, this method cannot be called.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 225

LookupForward method

Performs a lookup based on the current index scanning forward through the table.

Syntax
public virtual bool LookupForward(ul_column_num ncols)

Parameters
● ncols For composite indexes, the number of columns to use in the lookup.

Returns
False if the resulting cursor position is set after the last row.

Remarks
To specify the value to search for, set the column value for each column in the index. The cursor is
positioned on the last row that matches or is less than the index value. For composite indexes, the ncols
parameter specifies the number of columns to use in the lookup.

TruncateTable method

Truncates the table and temporarily activates STOP SYNCHRONIZATION DELETE.

Syntax
public virtual bool TruncateTable()

Returns
True on success; otherwise, returns false.

ULTableSchema class
Represents the schema of an UltraLite table.

Syntax
public class ULTableSchema : ULResultSetSchema

Base classes
● “ULResultSetSchema class [UltraLite C++]” on page 213

Members
All members of ULTableSchema class, including all inherited members.

API reference

226 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Description

Close method Destroys this object.

GetColumnCount method Gets the number of columns in the result set or table.

GetColumnDefault method Gets the default value for the column if it exists.

GetColumnDefaultType method Gets the type of column default.

GetColumnID method Gets the 1-based column ID from its name.

GetColumnName method Gets the name of a column given its 1-based ID.

GetColumnPrecision method Gets the precision of a numeric column.

GetColumnScale method Gets the scale of a numeric column.

GetColumnSize method Gets the size of the column.

GetColumnSQLType method Gets the SQL type of a column.

GetColumnType method Gets the storage/host variable type of a column.

GetConnection method Gets the ULConnection object.

GetGlobalAutoincPartitionSize meth-
od

Gets the partition size.

GetIndexCount method Gets the number of indexes in the table.

GetIndexSchema method Gets the schema of an index, given the name.

GetName method Gets the name of the table.

GetNextIndex method Gets the next index (schema) in the table.

GetOptimalIndex method Determines the best index to use for searching for a column
value.

GetPrimaryKey method Gets the primary key for the table.

GetPublicationPredicate method Gets the publication predicate as a string.

GetTableSyncType method Gets the table synchronization type.

InPublication method Checks whether the table is contained in the named publica-
tion.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 227

Name Description

IsAliased method Indicates whether the column in a result set was given an
alias.

IsColumnInIndex method Checks whether the column is contained in the named index.

IsColumnNullable method Checks whether the specified column is nullable.

Close method

Destroys this object.

Syntax
public virtual void Close()

GetColumnDefault method

Gets the default value for the column if it exists.

Syntax
public virtual const char * GetColumnDefault(ul_column_num cid)

Parameters
● cid A 1-based ordinal column number.

Returns
The default value. An empty string is returned if the column has no default value. This value points to a
static buffer whose contents may be changed by any subsequent UltraLite call, so make a copy of the
value if you need to retain it.

GetColumnDefaultType method

Gets the type of column default.

Syntax
public virtual ul_column_default_type GetColumnDefaultType(
 ul_column_num cid
)

Parameters
● cid A 1-based ordinal column number.

API reference

228 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
The type of column default.

See also
● “ul_column_default_type enumeration [UltraLite C++]” on page 233

GetGlobalAutoincPartitionSize method

Gets the partition size.

Syntax
public virtual bool GetGlobalAutoincPartitionSize(
 ul_column_num cid,
 ul_u_big * size
)

Parameters
● cid A 1-based ordinal column number.

● size An output parameter. The partition size for the column. All global autoincrement columns in a
given table share the same global autoincrement partition.

Returns
True on success; otherwise, returns false.

GetIndexCount method

Gets the number of indexes in the table.

Syntax
public virtual ul_index_num GetIndexCount()

Returns
The number of indexes in the table.

Remarks
Index IDs and counts may change during a schema upgrade. To correctly identify an index, access it by
name or refresh any cached IDs and counts after a schema upgrade.

GetIndexSchema method

Gets the schema of an index, given the name.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 229

Syntax
public virtual ULIndexSchema * GetIndexSchema(const char * indexName)

Parameters
● indexName The name of the index.

Returns
A ULIndexSchema object for the specified index, or NULL if the object does not exist.

GetName method

Gets the name of the table.

Syntax
public virtual const char * GetName()

Returns
The name of the table. This value points to a static buffer whose contents may be changed by any
subsequent UltraLite call, so make a copy of the value if you need to retain it.

GetNextIndex method

Gets the next index (schema) in the table.

Syntax
public virtual ULIndexSchema * GetNextIndex(ul_index_iter * iter)

Parameters
● iter A pointer to the iterator variable.

Returns
A ULIndexSchema object, or NULL when the iteration is complete.

Remarks
Initialize the iter value to the ul_index_iter_start constant before the first call.

See also
● “ul_index_iter_start variable [UltraLite C++]” on page 237

GetOptimalIndex method

Determines the best index to use for searching for a column value.

API reference

230 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public virtual const char * GetOptimalIndex(ul_column_num cid)

Parameters
● cid A 1-based ordinal column number.

Returns
The name of the index or NULL if the column isn't indexed. This value points to a static buffer whose
contents may be changed by any subsequent UltraLite call, so make a copy of the value if you need to
keep it for a while.

GetPrimaryKey method

Gets the primary key for the table.

Syntax
public virtual ULIndexSchema * GetPrimaryKey()

Returns
a ULIndexSchema object for the table's primary key.

GetPublicationPredicate method

Gets the publication predicate as a string.

Syntax
public virtual const char * GetPublicationPredicate(
 const char * pubName
)

Parameters
● pubName The name of the publication.

Returns
The publication predicate string for the specified publication. This value points to a static buffer whose
contents may be changed by any subsequent UltraLite call, so make a copy of the value if you need to
retain it.

GetTableSyncType method

Gets the table synchronization type.

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 231

Syntax
public virtual ul_table_sync_type GetTableSyncType()

Returns
The table synchronization type.

Remarks
This method indicates how the table participates in synchronization, and is defined when the table is
created with the SYNCHRONIZE constraint clause of the CREATE TABLE statement.

See also
● “ul_table_sync_type enumeration [UltraLite C++]” on page 236

InPublication method

Checks whether the table is contained in the named publication.

Syntax
public virtual bool InPublication(const char * pubName)

Parameters
● pubName The name of the publication.

Returns
True if the table is contained in the publication; otherwise, returns false.

IsColumnInIndex method

Checks whether the column is contained in the named index.

Syntax
public virtual bool IsColumnInIndex(
 ul_column_num cid,
 const char * indexName
)

Parameters
● cid A 1-based ordinal column number.

● indexName The name of the index.

Returns
True if the column is contained in the index; otherwise, returns false.

API reference

232 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

IsColumnNullable method

Checks whether the specified column is nullable.

Syntax
public virtual bool IsColumnNullable(ul_column_num cid)

Parameters
● cid A 1-based ordinal column number.

Returns
True if the column is nullable; otherwise, returns false.

ul_column_default_type enumeration
Identifies a column default type.

Syntax
public enum ul_column_default_type

Members

Member name Description

ul_column_default_none The column has no default value.

ul_column_default_autoincrement The column default is AUTOINCREMENT.

ul_column_default_global_autoincrement The column default is GLOBAL AUTOINCREMENT.

ul_column_default_current_timestamp The column default is CURRENT TIMESTAMP.

ul_column_default_current_utc_timestamp The column default is CURRENT UTC TIMESTAMP.

ul_column_default_current_time The column default is CURRENT TIME.

ul_column_default_current_date The column default is CURRENT DATE.

ul_column_default_newid The column default is NEWID().

ul_column_default_other The column default is a user-specified constant.

See also
● “ULTableSchema.GetColumnDefaultType method [UltraLite C++]” on page 228

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 233

ul_column_name_type enumeration
Specifies values that control how a column name is retrieved when describing a result set.

Syntax
public enum ul_column_name_type

Members

Member name Description

ul_name_type_sql For SELECT statements, returns the alias or correlation name.

For tables, returns the column name.

ul_name_type_sql_col-
umn_only

For SELECT statements, returns the alias or correlation name and ex-
clude any table names that were specified.

For tables, returns the column name.

ul_name_type_base_table Returns the underlying table name if it can be determined.

If the table does not exist in the database schema, returns an empty string.

ul_name_type_base_col-
umn

Returns the underlying column name if it can be determined.

If the column does not exist in the database schema, returns an empty
string.

ul_name_type_qualified Returns the underlying qualified column name, if it can be determined,
when used in conjunction with the ULResultSetSchema.GetColumnName
method.

The returned name can be one of the following values, and is determined
in this order:

1. The represented correlated table

2. The name of the represented table column

3. The alias name of the column

4. An empty string

API reference

234 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member name Description

ul_name_type_base Indicates that a column name qualified with its table name should be re-
turned when used with the GetColumnName method.

If the column name being retrieved is associated with a base table in the
query, then the base table name is used as the column qualifier (that is,
the base_table_name.column_name value is returned). If the column
name being retrieved refers to a column in a correlated table in the query,
then the correlation name is used as the column qualifier (that is, the cor-
rel_table_name.col_name value is returned). If the column has an alias,
then the qualified name of the column being aliased is returned; the alias
is not part of the qualified name. Otherwise, an empty string is returned.

See also
● “ULResultSetSchema.GetColumnName method [UltraLite C++]” on page 215

ul_index_flag enumeration
Flags (bit fields) which identify properties of an index.

Syntax
public enum ul_index_flag

Members

Member name Description

ul_index_flag_primary_key The index is a primary key.

ul_index_flag_unique_key The index is a primary key or index created for a unique con-
straint (nulls not allowed).

ul_index_flag_unique_index The index was created with the UNIQUE flag (or is a primary
key).

ul_index_flag_foreign_key The index is a foreign key.

ul_index_flag_foreign_key_nullable The foreign key allows nulls.

ul_index_flag_for-
eign_key_check_on_commit

Referential integrity checks are performed on commit (rather
than on insert/update).

See also
● “ULIndexSchema.GetIndexFlags method [UltraLite C++]” on page 166

UltraLite C/C++ API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 235

ul_table_sync_type enumeration
Identifies a table synchronization type.

Syntax
public enum ul_table_sync_type

Members

Member name Description

ul_table_sync_on All changed rows are synchronized, which is the default behavior.

This initializer corresponds to the SYNCHRONIZE ON clause in a CREATE
TABLE statement.

ul_table_sync_off Table is never synchronized.

This initializer corresponds to the SYNCHRONIZE OFF clause in a CRE-
ATE TABLE statement.

ul_table_sync_up-
load_all_rows

Always upload every row, including unchanged rows.

This initializer corresponds to the SYNCHRONIZE ALL clause in a CRE-
ATE TABLE statement.

ul_table_sync_down-
load_only

Changes are never uploaded.

This initializer corresponds to the SYNCHRONIZE DOWNLOAD clause in a
CREATE TABLE statement.

See also
● “ULTableSchema.GetTableSyncType method [UltraLite C++]” on page 231

UL_BLOB_CONTINUE variable
Used when reading data with the ULResultSet.GetStringChunk or ULResultSet.GetByteChunk methods.

Syntax
#define UL_BLOB_CONTINUE

Remarks
This value indicates that the chunk of data to be read should continue from where the last chunk was read.

API reference

236 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “ULResultSet.GetStringChunk method [UltraLite C++]” on page 197
● “ULResultSet.GetByteChunk method [UltraLite C++]” on page 186

ul_index_iter_start variable
Used by the GetNextIndex method to initialize index iteration in a table.

Syntax
#define ul_index_iter_start

See also
● “ULTableSchema.GetNextIndex method [UltraLite C++]” on page 230

ul_publication_iter_start variable
Used by the GetNextPublication method to initialize publication iteration in a database.

Syntax
#define ul_publication_iter_start

See also
● “ULDatabaseSchema.GetNextPublication method [UltraLite C++]” on page 157

ul_table_iter_start variable
Used by the GetNextTable method to initialize table iteration in a database.

Syntax
#define ul_table_iter_start

See also
● “ULDatabaseSchema.GetNextTable method [UltraLite C++]” on page 158

UltraLite Embedded SQL API reference
This section lists functions that support UltraLite functionality in embedded SQL applications.

For general information about SQL statements that can be used, see “UltraLite C++ application
development using embedded SQL” on page 27.

Use the EXEC SQL INCLUDE SQLCA command to include prototypes for the functions in this chapter.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 237

Header files
● mlfiletransfer.h

● ulprotos.h

db_fini method

Frees resources used by the UltraLite runtime library.

Syntax
unsigned short db_fini(SQLCA * sqlca);

Returns
● 0 if an error occurs during processing. The error code is set in SQLCA.

● Non-zero if there are no errors.

Remarks
You must not make any other UltraLite library call or execute any embedded SQL command after db_fini
is called.

Call db_fini once for each SQLCA being used.

See also
● “db_init method” on page 238

db_init method

Initializes the UltraLite runtime library.

Syntax
unsigned short db_init(SQLCA * sqlca);

Returns
● 0 if an error occurs during processing (for example, during initialization of the persistent store). The

error code is set in SQLCA.

● Non-zero if there are no errors. You can begin using embedded SQL commands and functions.

Remarks
You must call this function before you make any other UltraLite library call, and before you execute any
embedded SQL command.

API reference

238 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Usually you should only call this function once, passing the address of the global sqlca variable (as
defined in the sqlca.h header file). If you have multiple execution paths in your application, you can use
more than one db_init call, as long as each one has a separate sqlca pointer. This separate SQLCA pointer
can be a user-defined one, or could be a global SQLCA that has been freed using db_fini.

In multi-threaded applications, each thread must call db_init to obtain a separate SQLCA. Carry out
subsequent connections and transactions that use this SQLCA on a single thread.

Initializing the SQLCA also resets any settings from previously called ULEnable functions. If you re-
initialize a SQLCA, you must issue any ULEnable functions the application requires.

See also
● “db_fini method” on page 238

MLFTEnableEccE2ee method
Enables you to specify the ECC end-to-end encryption feature.

Syntax
public void MLFTEnableEccE2ee(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

MLFTEnableEccEncryption method
Enables you to specify the ECC encryption feature.

Syntax
public void MLFTEnableEccEncryption(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 239

MLFTEnableRsaE2ee method
Enables you to specify the RSA end-to-end encryption feature.

Syntax
public void MLFTEnableRsaE2ee(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

MLFTEnableRsaEncryption method
Enables you to specify the RSA encryption feature.

Syntax
public void MLFTEnableRsaEncryption(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

MLFTEnableRsaFipsE2ee method
Enables you to specify the RSAFIPS end-to-end encryption feature.

Syntax
public void MLFTEnableRsaFipsE2ee(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

API reference

240 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MLFTEnableRsaFipsEncryption method
Enables you to specify the RSAFIPS encryption feature.

Syntax
public void MLFTEnableRsaFipsEncryption(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

MLFTEnableZlibCompression method
Enables you to specify the ZLIB compression feature.

Syntax
public void MLFTEnableZlibCompression(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

MLFileDownload method
Downloads a file from a MobiLink server with the MobiLink interface.

Syntax
public bool MLFileDownload(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

Remarks
You must set the source location of the file to be transferred. This location must be specified as a
MobiLink user's directory on the MobiLink server (or in the default directory on that server). You can
also set the intended target location and file name of the file.

For example, you can program your application to download a new or replacement database from the
MobiLink server. You can customize the file for specific users, since the first location that is searched is a

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 241

specific user's subdirectory. You can also maintain a default file in the root folder on the server, since that
location is used if the specified file is not found in the user's folder.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

Example
The following example illustrates how to use the MLFileDownload method:

ml_file_transfer_info info;
MLInitFileTransferInfo(&info);
MLFTEnableZlibCompression(&info);
info.filename = "myfile";
info.username = "user1";
info.password = "pwd";
info.version = "ver1";
info.stream = "HTTP";
info.stream_parms = "host=myhost.com;compression=zlib";
if(! MLFileDownload(&info)) {
 // file download failed
}
MLFiniFileTransferInfo(&info);

MLFileUpload method

Uploads a file from a MobiLink server with the MobiLink interface.

Syntax
public bool MLFileUpload(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

Remarks
You must set the source location of the file to be transferred. This location must be specified as a
MobiLink user's directory on the MobiLink server (or in the default directory on that server). You can
also set the intended target location and file name of the file.

For example, you can program your application to upload a new or replacement database from the
MobiLink server. You can customize the file for specific users, since the first location that is searched is a
specific user's subdirectory. You can also maintain a default file in the root folder on the server, since that
location is used if the specified file is not found in the user's folder.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

Example
The following example illustrates how to use the MLFileUpload method:

API reference

242 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ml_file_transfer_info info;
MLInitFileTransferInfo(&info);
MLFTEnableZlibCompression(&info);
info.filename = "myfile";
info.username = "user1";
info.password = "pwd";
info.version = "ver1";
info.stream = "HTTP";
info.stream_parms = "host=myhost.com;compression=zlib";
if(! MLFileUpload(&info)) {
 // file upload failed
}
MLFiniFileTransferInfo(&info);

MLFiniFileTransferInfo method
Finalizes any resources allocated in the ml_file_transfer_info structure when it is initialized.

Syntax
public void MLFiniFileTransferInfo(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

Remarks
This method should be called after the file upload/download has completed.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

MLInitFileTransferInfo method
Initializes the ml_file_transfer_info structure.

Syntax
public bool MLInitFileTransferInfo(ml_file_transfer_info * info)

Parameters
● info A structure containing the file transfer information.

Remarks
This method should be called before starting the file upload/download.

See also
● “ml_file_transfer_info structure [UltraLite Embedded SQL]” on page 278

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 243

ULCancelGetNotification method
Cancels any pending get-notification calls on all queues matching the given name.

Syntax
public ul_u_long ULCancelGetNotification(
 SQLCA * sqlca,
 char const * queue_name
)

Parameters
● sqlca A pointer to the SQLCA.

● queue_name The name of the queue.

Returns
The number of affected queues (not the number of blocked reads necessarily).

ULChangeEncryptionKey method
Changes the encryption key for an UltraLite database.

Syntax
public ul_bool ULChangeEncryptionKey(
 SQLCA * sqlca,
 char const * new_key
)

Parameters
● sqlca A pointer to the SQLCA.

● new_key The new encryption key.

Remarks
Applications that call this method must first ensure that the user has either synchronized the database or
created a reliable backup copy of the database. It is important to have a reliable backup of the database
because this method is an operation that must run to completion. When the database encryption key is
changed, every row in the database is first decrypted with the old key and then encrypted with the new
key and rewritten. This operation is not recoverable. If the encryption change operation does not
complete, the database is left in an invalid state and you cannot access it again.

ULCheckpoint method
Performs a checkpoint operation, flushing any pending committed transactions to the database.

API reference

244 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public ul_ret_void ULCheckpoint(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Remarks
Any current transaction is not committed by calling this method. This method is used in conjunction with
deferring automatic transaction checkpoints as a performance enhancement.

This method ensures that all pending committed transactions have been written to the database.

ULCountUploadRows method
Counts the number of rows that need to be uploaded for synchronization.

Syntax
public ul_u_long ULCountUploadRows(
 SQLCA * sqlca,
 char const * pub_list,
 ul_u_long threshold
)

Parameters
● sqlca A pointer to the SQL.

● pub_list A string containing a comma-separated list of publications to check. An empty string (the
UL_SYNC_ALL macro) implies all tables except tables marked as "no sync". A string containing just
an asterisk (the UL_SYNC_ALL_PUBS macro) implies all tables referred to in any publication. Some
tables may not be part of any publication and are not included if the pub_list string is "*".

● threshold Determines the maximum number of rows to count, thereby limiting the amount of time
taken by the call. A threshold of 0 corresponds to no limit (that is, the method counts all the rows that
need to be synchronized), and a threshold of 1 can be used to quickly determine if any rows need to be
synchronized.

Returns
The number of rows that need to be synchronized, either in a specified set of publications or in the whole
database.

Remarks
Use this method to prompt users to synchronize, or determine when automatic background
synchronization should take place.

The following call checks the entire database for the total number of rows to be synchronized:

count = ULCountUploadRows(sqlca, UL_SYNC_ALL, 0);

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 245

The following call checks the PUB1 and PUB2 publications for a maximum of 1000 rows:

count = ULCountUploadRows(sqlca, UL_TEXT("PUB1,PUB2"), 1000);

The following call checks if any rows need to be synchronized in the PUB1 and PUB2 publications:

count = ULCountUploadRows(sqlca, UL_TEXT("PUB1,PUB2"), 1);

ULCreateDatabase method
Creates an UltraLite database.

Syntax
public ul_bool ULCreateDatabase(
 SQLCA * sqlca,
 char const * connect_parms,
 char const * create_parms,
 void * reserved
)

Parameters
● sqlca A pointer to the initialized SQLCA.

● connect_parms A semicolon-separated string of connection parameters, which are set as
keyword=value pairs. The connection string must include the name of the database. These parameters
are the same set of parameters that can be specified when you connect to a database.

● create_parms A semicolon-separated string of creation parameters, a set as keyword=value pairs,
such as page_size=2048;obfuscate=yes.

● reserved This parameter is reserved for future use.

Returns
ul_true if database was successfully created; otherwise, returns ul_false. Typically ul_false is caused by
an invalid file name or denied access.

Remarks
The database is created with information provided in two sets of parameters.

The connect_parms parameter is a list of connection parameters that are applicable whenever the database
is accessed. Some examples include file name, user ID, password, or optional encryption key.

The create_parms parameter is a list of parameters that are only relevant when creating a database. Some
examples include obfuscation, page-size, and time and date format).

Applications can call this method after initializing the SQLCA.

The following code illustrates how to use the ULCreateDatabase method to create an UltraLite database
as the file C:\myfile.udb:

API reference

246 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

if(ULCreateDatabase(&sqlca
 ,UL_TEXT("DBF=C:\myfile.udb;uid=DBA;pwd=sql")
 ,ULGetCollation_1250LATIN2()
 ,UL_TEXT("obfuscate=1;page_size=8192")
 ,NULL)
{
 // success
};

See also
● “UltraLite connection parameters” [UltraLite - Database Management and Reference]
● “UltraLite creation parameters” [UltraLite - Database Management and Reference]

ULCreateNotificationQueue method
Creates an event notification queue for this connection.

Syntax
public ul_bool ULCreateNotificationQueue(
 SQLCA * sqlca,
 char const * name,
 char const * parameters
)

Parameters
● sqlca A pointer to the SQLCA.

● name The name for the new queue.

● parameters Currently unused. Set to NULL.

Returns
True on success; otherwise, returns false.

Remarks
Queue names are scoped per-connection, so different connections can create queues with the same name.
When an event notification is sent, all queues in the database with a matching name receive (a separate
instance of) the notification. Names are case insensitive. A default queue is created on demand for each
connection when calling the ULRegisterForEvent method if no queue is specified. This call fails with an
error if the name already exists or isn't valid.

ULDeclareEvent method
Declares an event which can then be registered for and triggered.

Syntax
public ul_bool ULDeclareEvent(SQLCA * sqlca, char const * event_name)

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 247

Parameters
● sqlca A pointer to the SQLCA.

● event_name The name for the new user-defined event.

Returns
True if the event was declared successfully; otherwise, returns false if the name is already used or not
valid.

Remarks
UltraLite predefines some system events triggered by operations on the database or the environment. This
function declares user-defined events. User-defined events are triggered with ULTriggerEvent method.
The event name must be unique. Names are case insensitive.

See also
● “ULTriggerEvent method [UltraLite Embedded SQL]” on page 272

ULDeleteAllRows method

Deletes all rows from a table.

Syntax
public ul_ret_void ULDeleteAllRows(SQLCA * sqlca, ul_table_num number)

Parameters
● sqlca A pointer to the SQLCA.

● number The ID of the table to truncate.

Returns
True on success; otherwise, returns False. For example, the table is not open, or there was a SQL error,
and so on.

Remarks
In some applications, you may want to delete all rows from a table before downloading a new set of data
into the table. If you set the stop synchronization property on the connection, the deleted rows are not
synchronized.

Note
Any uncommitted inserts from other connections are not deleted. Also, any uncommitted deletes from
other connections are not deleted, if the other connection does a rollback after it calls the DeleteAllRows
method.

If this table has been opened without an index, then it is considered read-only and data cannot be deleted.

API reference

248 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ULDestroyNotificationQueue method
Destroys the given event notification queue.

Syntax
public ul_bool ULDestroyNotificationQueue(
 SQLCA * sqlca,
 char const * name
)

Parameters
● sqlca A pointer to the SQLCA.

● name The name of the queue to destroy.

Returns
True on success; otherwise, returns false.

Remarks
A warning is signaled if unread notifications remain in the queue. Unread notifications are discarded. A
connection's default event queue, if created, is destroyed when the connection is closed.

ULECCLibraryVersion method
Returns the version number of the ECC encryption library.

Syntax
public char const * ULECCLibraryVersion(void)

Returns
The version number of the ECC encryption library.

ULEnableAesDBEncryption method
Enables AES database encryption.

Syntax
public ul_ret_void ULEnableAesDBEncryption(SQLCA * sqlca)

Parameters
● sqlca A pointer to the initialized SQLCA.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 249

Remarks
You can use this method in C++ API applications and embedded SQL applications. You must call this
method before calling the ULInitDatabaseManager method.

Note
Calling this method causes the encryption routines to be included in the application and increases the size
of the application code.

ULEnableAesFipsDBEncryption method

Enables FIPS 140-2 certified AES database encryption.

Syntax
public ul_ret_void ULEnableAesFipsDBEncryption(SQLCA * sqlca)

Parameters
● sqlca A pointer to the initialized SQLCA.

Remarks

Note
Calling this method causes the appropriate routines to be included in the application and increases the size
of the application code.

You can use this method in C++ API applications and embedded SQL applications. You must call this
method before the Synchronize method. If you attempt to synchronize without a preceding call to enable
the synchronization type, the SQLE_METHOD_CANNOT_BE_CALLED error occurs.

Note
Separately licensed component required.

ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

See also
● “ULEnableAesDBEncryption method [UltraLite Embedded SQL]” on page 249

ULEnableEccE2ee method

Enables ECC end-to-end encryption.

API reference

250 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public ul_ret_void ULEnableEccE2ee(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

ULEnableEccSyncEncryption method

Enables ECC encryption for SSL or TLS streams.

Syntax
public ul_ret_void ULEnableEccSyncEncryption(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Remarks
This method is required when you set a stream parameter to TLS or HTTPS. In this case, you must also
set the tls_type synchronization parameter as ECC.

You can use this method in C++ API applications and embedded SQL applications. You must call this
method before the Synchronize method. If you attempt to synchronize without a preceding call to enable
the synchronization type, the SQLE_METHOD_CANNOT_BE_CALLED error occurs.

Note
Separately licensed component required.

ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

See also
● “ULEnableZlibSyncCompression method [UltraLite Embedded SQL]” on page 254
● “ULEnableRsaFipsSyncEncryption method [UltraLite Embedded SQL]” on page 252

ULEnableHttpSynchronization method

Enables HTTP synchronization.

Syntax
public ul_ret_void ULEnableHttpSynchronization(SQLCA * sqlca)

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 251

Parameters
● sqlca A pointer to the SQLCA.

Remarks
You can use this method in C++ API applications and embedded SQL applications. You must call this
method before the Synchronize method. If you attempt to synchronize without a preceding call to enable
the synchronization type, the SQLE_METHOD_CANNOT_BE_CALLED error occurs.

ULEnableRsaE2ee method
Enables RSA end-to-end encryption.

Syntax
public ul_ret_void ULEnableRsaE2ee(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

ULEnableRsaFipsE2ee method
Enables FIPS 140-2 certified RSA end-to-end encryption.

Syntax
public ul_ret_void ULEnableRsaFipsE2ee(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

ULEnableRsaFipsSyncEncryption method
Enables RSA FIPS encryption for SSL or TLS streams.

Syntax
public ul_ret_void ULEnableRsaFipsSyncEncryption(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Remarks
This is required when setting a stream parameter to TLS or HTTPS. In this case, you must also set the
tls_type synchronization parameter as RSA.

API reference

252 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

You can use this method in C++ API applications and embedded SQL applications. You must call this
method before the Synchronize method. If you attempt to synchronize without a preceding call to enable
the synchronization type, the SQLE_METHOD_CANNOT_BE_CALLED error occurs.

See also
● “ULEnableRsaSyncEncryption method [UltraLite Embedded SQL]” on page 253
● “ULEnableEccSyncEncryption method [UltraLite Embedded SQL]” on page 251

ULEnableRsaSyncEncryption method
Enables RSA encryption for SSL or TLS streams.

Syntax
public ul_ret_void ULEnableRsaSyncEncryption(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Remarks
This is required when setting a stream parameter to TLS or HTTPS. In this case, you must also set the
synchronization parameter tls_type as RSA.

You can use this method in C++ API applications and embedded SQL applications. You must call this
method before the Synchronize method. If you attempt to synchronize without a preceding call to enable
the synchronization type, the SQLE_METHOD_CANNOT_BE_CALLED error occurs.

See also
● “ULEnableEccSyncEncryption method [UltraLite Embedded SQL]” on page 251
● “ULEnableRsaFipsSyncEncryption method [UltraLite Embedded SQL]” on page 252

ULEnableTcpipSynchronization method
Enables TCP/IP synchronization.

Syntax
public ul_ret_void ULEnableTcpipSynchronization(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 253

Remarks
You can use this method in C++ API applications and embedded SQL applications. You must call this
method before the Synchronize method. If you attempt to synchronize without a preceding call to enable
the synchronization type, the SQLE_METHOD_CANNOT_BE_CALLED error occurs.

ULEnableZlibSyncCompression method
Enables ZLIB compression for a synchronization stream.

Syntax
public ul_ret_void ULEnableZlibSyncCompression(SQLCA * sqlca)

Parameters
● sqlca A pointer to the initialized SQLCA.

Remarks
You can use this method in C++ API applications and embedded SQL applications. You must call this
method before calling the Synchronize method. If you attempt to synchronize without a preceding call to
enable the synchronization type, the SQLE_METHOD_CANNOT_BE_CALLED error occurs.

ULErrorInfoInitFromSqlca method
Copies the error information from the SQLCA to the ul_error_info object.

Syntax
public void ULErrorInfoInitFromSqlca(
 ul_error_info * errinf,
 SQLCA const * sqlca
)

Parameters
● sqlca A pointer to the SQLCA.

● errinf The ul_error_info object.

ULErrorInfoParameterAt method
Retrieves an error parameter by ordinal.

Syntax
public size_t ULErrorInfoParameterAt(
 ul_error_info const * errinf,
 ul_u_short parmNo,

API reference

254 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 char * buffer,
 size_t bufferSize
)

Parameters
● errinf The ul_error_info object.

● parmNo The 1-based parameter ordinal.

● buffer The buffer to receive parameter string.

● bufferSize The size of the buffer.

Returns
The size, in bytes, required to store the parameter, or zero if the ordinal isn't valid. If the return value is
larger than the bufferSize value, the parameter was truncated.

ULErrorInfoParameterCount method
Retrieves the number of error parameters.

Syntax
public ul_u_short ULErrorInfoParameterCount(
 ul_error_info const * errinf
)

Parameters
● errinf The ul_error_info object.

Returns
The number of error parameters.

ULErrorInfoString method
Retrieves a description of the error.

Syntax
public size_t ULErrorInfoString(
 ul_error_info const * errinf,
 char * buffer,
 size_t bufferSize
)

Parameters
● errinf The ul_error_info object.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 255

● buffer The buffer to receive the error description.

● bufferSize The size, in bytes, of the buffer.

Returns
The size, in bytes, required to store the string. If the return value is larger than the len value, the string
was truncated.

ULErrorInfoURL method
Retrieves a URL to the documentation page for this error.

Syntax
public size_t ULErrorInfoURL(
 ul_error_info const * errinf,
 char * buffer,
 size_t bufferSize,
 char const * reserved
)

Parameters
● errinf The ul_error_info object.

● buffer The buffer to receive the URL.

● bufferSize The size, in bytes, of the buffer.

● reserved Reserved for future use.

Returns
The size, in bytes, required to store the URL. If the return value is larger than the len value, the URL was
truncated.

ULGetDatabaseID method
Gets the current database ID used for global autoincrement.

Syntax
public ul_u_long ULGetDatabaseID(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

API reference

256 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
The value set by the last call to the SetDatabaseID method, or UL_INVALID_DATABASE_ID if the ID
was never set.

ULGetDatabaseProperty method
Obtains the value of a database property.

Syntax
public void ULGetDatabaseProperty(
 SQLCA * sqlca,
 ul_database_property_id id,
 char * dst,
 size_t buffer_size,
 ul_bool * null_indicator
)

Parameters
● sqlca A pointer to the SQLCA.

● id The identifier for the database property.

● dst A character array to store the value of the property.

● buffer_size The size of the character array dst.

● null_indicator An indicator that the database parameter is null.

ULGetErrorParameter method
Retrieve error parameter via an ordinal parameter number.

Syntax
public size_t ULGetErrorParameter(
 SQLCA const * sqlca,
 ul_u_long parm_num,
 char * buffer,
 size_t size
)

Parameters
● sqlca A pointer to the SQLCA.

● parm_num The ordinal parameter number.

● buffer A pointer to a buffer that contains the error parameter.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 257

● size The size, in bytes, of the buffer.

Returns
This method returns the number of characters copied to the supplied buffer.

See also
● “ULGetErrorParameterCount method [UltraLite Embedded SQL]” on page 258

ULGetErrorParameterCount method
Obtains a count of the number of error parameters.

Syntax
public ul_u_long ULGetErrorParameterCount(SQLCA const * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Returns
The number of error parameters. Unless the result is zero, values from 1 through this result can be used to
call the ULGetErrorParameter method to retrieve the corresponding error parameter value.

See also
● “ULGetErrorParameter method [UltraLite Embedded SQL]” on page 257

ULGetIdentity method
Gets the @identity value.

Syntax
public ul_u_big ULGetIdentity(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Returns
The last value inserted into an autoincrement or global autoincrement column.

ULGetLastDownloadTime method
Obtains the last time a specified publication was downloaded.

API reference

258 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public ul_bool ULGetLastDownloadTime(
 SQLCA * sqlca,
 char const * pub_name,
 DECL_DATETIME * value
)

Parameters
● sqlca A pointer to the SQLCA.

● pub_name A string containing a publication name for which the last download time is retrieved.

● value A pointer to the DECL_DATETIME structure to be populated. For example, the value of
January 1, 1990 indicates that the publication has yet to be synchronized.

Returns
True when the value is successfully populated by the last download time of the publication specified by
the pub_name value; Otherwise, returns false.

Remarks
The following call populates the dt structure with the date and time that the UL_PUB_PUB1 publication
was downloaded:

DECL_DATETIME dt;
ret = ULGetLastDownloadTime(&sqlca, UL_TEXT("UL_PUB_PUB1"), &dt);

ULGetNotification method
Reads an event notification.

Syntax
public ul_bool ULGetNotification(
 SQLCA * sqlca,
 char const * queue_name,
 char * event_name_buf,
 ul_length event_name_buf_len,
 ul_u_long wait_ms
)

Parameters
● sqlca A pointer to the SQLCA.

● queue_name The queue to read or NULL for the default connection queue.

● event_name_buf A buffer to hold the name of the event.

● event_name_buf_len The size of the buffer in bytes.

● wait_ms The time, in milliseconds, to wait (block) before returning.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 259

Returns
True on success; otherwise, returns false.

Remarks
This call blocks until a notification is received or until the given wait period expires. Pass
UL_READ_WAIT_INFINITE to the wait_ms parameter to wait indefinitely. To cancel a wait, send
another notification to the given queue or use the ULCancelGetNotification method. After reading a
notification, use the ULGetNotificationParameter method to retrieve additional parameters by name.

See also
● “ULCancelGetNotification method [UltraLite Embedded SQL]” on page 244
● “ULGetNotificationParameter method [UltraLite Embedded SQL]” on page 260

ULGetNotificationParameter method
Gets a parameter for the event notification just read by the ULGetNotification method.

Syntax
public ul_bool ULGetNotificationParameter(
 SQLCA * sqlca,
 char const * queue_name,
 char const * parameter_name,
 char * value_buf,
 ul_length value_buf_len
)

Parameters
● sqlca A pointer to the SQLCA.

● queue_name The queue to read or NULL for default connection queue.

● parameter_name The name of the parameter to read (or "*").

● value_buf A buffer to hold the parameter value.

● value_buf_len The size of the buffer in bytes.

Returns
True on success; otherwise, returns false.

Remarks
Only the parameters from the most recently read notification on the given queue are available. Parameters
are retrieved by name. A parameter name of "*" retrieves the entire parameter string.

API reference

260 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ULGetSyncResult method
Gets the result of the last synchronization.

Syntax
public ul_bool ULGetSyncResult(
 SQLCA * sqlca,
 ul_sync_result * sync_result
)

Parameters
● sqlca A pointer to the SQLCA.

● sync_result A pointer to the ul_sync_result structure that holds the synchronization results.

Returns
True on success; otherwise, returns false.

See also
● “ul_sync_result structure [UltraLite C and Embedded SQL datatypes]” on page 112

ULGlobalAutoincUsage method
Obtains the percent of the default values used in all the columns that have global autoincrement defaults.

Syntax
public ul_u_short ULGlobalAutoincUsage(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Returns
The percent of the global autoincrement values used by the counter.

Remarks
If the database contains more than one column with this default, this value is calculated for all columns
and the maximum is returned. For example, a return value of 99 indicates that very few default values
remain for at least one of the columns.

See also
● “ULSetDatabaseID method [UltraLite Embedded SQL]” on page 267

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 261

ULGrantConnectTo method
Grants access to an UltraLite database for a new or existing user ID with the given password.

Syntax
public ul_ret_void ULGrantConnectTo(
 SQLCA * sqlca,
 char const * uid,
 char const * pwd
)

Parameters
● sqlca A pointer to the SQLCA.

● uid A character array that holds the user ID.

● pwd A character array that holds the password for the user ID.

Remarks
This method updates the password for an existing user when you specify an existing user ID.

See also
● “ULRevokeConnectFrom method [UltraLite Embedded SQL]” on page 265

ULInitSyncInfo method
Initializes the synchronization information structure.

Syntax
public ul_ret_void ULInitSyncInfo(ul_sync_info * info)

Parameters
● info A synchronization structure.

ULIsSynchronizeMessage method
Checks a message to see if it is a synchronization message from the MobiLink provider for ActiveSync,
so that code to handle such a message can be called.

Syntax
public ul_bool ULIsSynchronizeMessage(ul_u_long number)

API reference

262 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
When the processing of a synchronization message is complete, the ULSignalSyncIsComplete method
should be called.

You should include a call to this method in the WindowProc function of your application. This applies to
Windows Mobile for ActiveSync.

The following code snippet illustrates how to use the ULIsSynchronizeMessage method to handle a
synchronization message:

LRESULT CALLBACK WindowProc(HWND hwnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 if(ULIsSynchronizeMessage(uMsg)) {
 // execute synchronization code
 if(wParam == 1) DestroyWindow(hWnd);
 return 0;
 }
 switch(uMsg) {
 // code to handle other windows messages
 default:
 return DefWindowProc(hwnd, uMsg, wParam, lParam);
 }
 return 0;
}

See also
● “ULSignalSyncIsComplete method [UltraLite Embedded SQL]” on page 269

ULLibraryVersion method
Returns the version number of the UltraLite runtime library.

Syntax
public char const * ULLibraryVersion(void)

Returns
The version number of the UltraLite runtime library.

ULRSALibraryVersion method
Returns the version number of the RSA encryption library.

Syntax
public char const * ULRSALibraryVersion(void)

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 263

Returns
The version number of the RSA encryption library.

ULRegisterForEvent method
Registers or unregisters a queue to receive notifications of an event.

Syntax
public ul_bool ULRegisterForEvent(
 SQLCA * sqlca,
 char const * event_name,
 char const * object_name,
 char const * queue_name,
 ul_bool register_not_unreg
)

Parameters
● sqlca A pointer to the SQLCA.

● event_name The system- or user-defined event to register for.

● object_name The object to which the event applies, such as a table name.

● queue_name The connection queue name. NULL denotes the default connection queue.

● register_not_unreg True to register; false to unregister.

Returns
True if the registration succeeded; false if the queue or event does not exist.

Remarks
If no queue name is supplied, the default connection queue is implied, and created if required. Certain
system events allow you to specify an object name to which the event applies. For example, the
TableModified event can specify the table name. Unlike the ULSendNotification method, only the
specific queue registered receives notifications of the event. Other queues with the same name on
different connections do not receive notifications, unless they are also explicitly registered.

The predefined system events are:

● TableModified Triggered when rows in a table are inserted, updated, or deleted. One notification is
sent per request, no matter how many rows were affected by the request. The object_name parameter
specifies the table to monitor. A value of "*" means all tables in the database. This event has a
parameter named table_name whose value is the name of the modified table.

● Commit Triggered after any commit completes. This event has no parameters.

● SyncComplete Triggered after synchronization completes. This event has no parameters.

API reference

264 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ULResetLastDownloadTime method
Resets the last download time of a publication so that the application resynchronizes previously
downloaded data.

Syntax
public ul_ret_void ULResetLastDownloadTime(
 SQLCA * sqlca,
 char const * pub_list
)

Parameters
● sqlca A pointer to the SQLCA

● pub_list A string containing a comma-separated list of publications to reset. An empty string
assigns all tables except tables marked as "no sync". A string containing just an asterisk ("*") assigns
all publications. Some tables may not be part of any publication and are not included if the pub_list
string is "*".

Remarks
The following method call resets the last download time for all tables:

ULResetLastDownloadTime(&sqlca, UL_TEXT("*"));

ULRevokeConnectFrom method
Revokes access from an UltraLite database for a user ID.

Syntax
public ul_ret_void ULRevokeConnectFrom(SQLCA * sqlca, char const * uid)

Parameters
● sqlca A pointer to the SQLCA.

● uid A character array holding the user ID to be excluded from database access.

ULRollbackPartialDownload method
Rolls back the changes from a failed synchronization.

Syntax
public ul_ret_void ULRollbackPartialDownload(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 265

Remarks
When a communication error occurs during the download phase of synchronization, UltraLite can apply
the downloaded changes, so that the application can resume the synchronization from the place it was
interrupted. If the download changes are not needed (the user or application does not want to resume the
download at this point), the ULRollbackPartialDownload method rolls back the failed download
transaction.

ULSendNotification method
Sends a notification to all queues matching the given name.

Syntax
public ul_u_long ULSendNotification(
 SQLCA * sqlca,
 char const * queue_name,
 char const * event_name,
 char const * parameters
)

Parameters
● sqlca A pointer to the SQLCA.

● queue_name The connection queue name. NULL indicates the default connection queue.

● event_name The system or user-defined event to register for.

● parameters Currently unused. Set to NULL.

Returns
The number of notifications sent (the number of matching queues).

Remarks
This includes any such queue on the current connection. This call does not block. Use the special queue
name "*" to send to all queues. The given event name does not need to correspond to any system or user-
defined event; it is simply passed through to identify the notification when read and has meaning only to
the sender and receiver.

The parameters value specifies a semicolon delimited name=value pairs option list. After the notification
is read, the parameter values are read with the ULGetNotificationParameter method.

See also
● “ULGetNotificationParameter method [UltraLite Embedded SQL]” on page 260

API reference

266 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ULSetDatabaseID method

Sets the database identification number.

Syntax
public ul_ret_void ULSetDatabaseID(SQLCA * sqlca, ul_u_long value)

Parameters
● sqlca A pointer to the SQLCA.

● value A positive integer that uniquely identifies a particular database in a replication or
synchronization setup.

See also
● “ULGlobalAutoincUsage method [UltraLite Embedded SQL]” on page 261

ULSetDatabaseOptionString method

Sets a database option from a string value.

Syntax
public void ULSetDatabaseOptionString(
 SQLCA * sqlca,
 ul_database_option_id id,
 char const * value
)

Parameters
● sqlca A pointer to the SQLCA.

● id The identifier for the database option to be set.

● value The value of the database option.

ULSetDatabaseOptionULong method

Sets a numeric database option.

Syntax
public void ULSetDatabaseOptionULong(
 SQLCA * sqlca,
 ul_database_option_id id,
 ul_u_long value
)

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 267

Parameters
● sqlca A pointer to the SQLCA.

● id The identifier for the database option to be set.

● value The value of the database option.

ULSetErrorCallback method
Sets the callback to be invoked when an error occurs.

Syntax
public ul_ret_void ULSetErrorCallback(
 SQLCA * sqlca,
 ul_error_callback_fn_a callback,
 ul_void * user_data,
 char * buffer,
 size_t len
)

Parameters
● sqlca A pointer to the SQLCA.

● callback The callback function.

● user_data User context information passed to the callback.

● buffer A user-supplied buffer that contains the error parameters when the callback is invoked.

● len The size, in bytes, of the buffer.

See also
● “Error handling” on page 22

ULSetSyncInfo method
Creates a synchronization profile using the given name based on the given ul_sync_info structure.

Syntax
public ul_bool ULSetSyncInfo(
 SQLCA * sqlca,
 char const * profile_name,
 ul_sync_info * sync_info
)

Parameters
● sqlca A pointer to the SQLCA.

API reference

268 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● profile_name The name of the synchronization profile.

● sync_info A pointer to the ul_sync_info structure that holds the synchronization parameters.

Returns
True on success; otherwise, returns false.

Remarks
The synchronization profile replaces any previous profile with the same name. The named profile is
deleted by specifying a null pointer for the structure.

ULSetSynchronizationCallback method
Sets the callback to be invoked while performing a synchronization.

Syntax
public ul_ret_void ULSetSynchronizationCallback(
 SQLCA * sqlca,
 ul_sync_observer_fn callback,
 ul_void * user_data
)

Parameters
● sqlca A pointer to the SQLCA.

● callback The callback.

● user_data User context information that is passed to the callback.

ULSignalSyncIsComplete method
Indicates that processing a synchronization message is complete.

Syntax
public ul_ret_void ULSignalSyncIsComplete()

Remarks
Applications that are registered with the ActiveSync provider need to call this method in their
WNDPROC when processing a synchronization message is complete.

ULStartSynchronizationDelete method
Sets START SYNCHRONIZATION DELETE for this connection.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 269

Syntax
public ul_ret_void ULStartSynchronizationDelete(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA.

Returns
True on success; otherwise, returns false.

ULStaticFini method
Performs finalization of the UltraLite runtime for embedded SQL applications.

Syntax
public void ULStaticFini()

Remarks
This method should be called once and only once per application, after which no other UltraLite method
should be called.

ULStaticInit method
Performs initialization of the UltraLite runtime for embedded SQL applications.

Syntax
public void ULStaticInit()

Remarks
This method should be called once and only once per application, before any other UltraLite methods
have been called.

ULStopSynchronizationDelete method
Sets STOP SYNCHRONIZATION DELETE for this connection.

Syntax
public ul_bool ULStopSynchronizationDelete(SQLCA * sqlca)

Parameters
● sqlca A pointer to the SQLCA

API reference

270 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Returns
True on success; otherwise, returns false.

ULSynchronize method
Initiates synchronization in an UltraLite application.

Syntax
public ul_ret_void ULSynchronize(SQLCA * sqlca, ul_sync_info * info)

Parameters
● sqlca A pointer to the SQLCA.

● info A pointer to the ul_sync_info structure that holds the synchronization parameters.

Remarks
For TCP/IP or HTTP synchronization, the ULSynchronize method initiates synchronization. Errors during
synchronization that are not handled by the handle_error script are reported as SQL errors. Application
programs should test the SQLCODE return value of this method.

The following example demonstrates database synchronization:

ul_sync_info info;
ULInitSyncInfo(&info);
info.user_name = UL_TEXT("user_name");
info.version = UL_TEXT("test");
ULSynchronize(&sqlca, &info);

ULSynchronizeFromProfile method
Synchronizes the database using the given profile and merge parameters.

Syntax
public ul_ret_void ULSynchronizeFromProfile(
 SQLCA * sqlca,
 char const * profile_name,
 char const * merge_parms,
 ul_sync_observer_fn observer,
 ul_void * user_data
)

Parameters
● sqlca A pointer to the SQLCA.

● profile_name The name of the profile to synchronize.

● merge_parms Merge parameters for the synchronization.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 271

● observer Observer callback to send status updates to.

● user_data User context data passed to callback.

Remarks
This method is identical to executing the SYNCHRONIZE statement.

See also
● “SYNCHRONIZE statement [UltraLite]” [UltraLite - Database Management and Reference]

ULTriggerEvent method
Trigger a user-defined event (and send notification to all registered queues).

Syntax
public ul_u_long ULTriggerEvent(
 SQLCA * sqlca,
 char const * event_name,
 char const * parameters
)

Parameters
● sqlca A pointer for the SQLCA.

● event_name The system or user-defined event to register for.

● parameters Currently unused. Set to NULL.

Returns
The number of event notifications sent.

Remarks
The parameters value specifies a semicolon delimited name=value pairs option list. After the notification
is read, the parameter values are read with the ULGetNotificationParameter method.

See also
● “ULGetNotificationParameter method [UltraLite Embedded SQL]” on page 260

ULTruncateTable method
Truncates the table and temporarily activates the STOP SYNCHRONIZATION DELETE statement.

Syntax
public ul_ret_void ULTruncateTable(SQLCA * sqlca, ul_table_num number)

API reference

272 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Parameters
● sqlca A pointer to the SQLCA.

● number The ID of the table to truncate.

Returns
True on success; otherwise, returns false.

ULValidateDatabase method
Validates the database on this connection.

Syntax
public ul_bool ULValidateDatabase(
 SQLCA * sqlca,
 char const * start_parms,
 ul_table_num table_id,
 ul_u_short flags,
 ul_validate_callback_fn callback_fn,
 void * user_data
)

Parameters
● sqlca A pointer to the SQLCA.

● start_parms The parameter used to start the database.

● table_id The ID of a specific table to validate.

● flags Flags controlling the type of validation.

● callback_fn The function to receive validation progress information.

● user_data User data to send back to the caller via the callback.

Returns
True on success; otherwise, returns false.

Remarks
Depending on the flags passed to this routine, the low level store and/or the indexes can be validated. To
receive information during the validation, implement a callback function and pass the address to this
routine. To limit the validation to a specific table, pass in the table name or ID as the last parameter.

The flags parameter is combination of the following values:

● ULVF_TABLE

● ULVF_INDEX

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 273

● ULVF_DATABASE

● ULVF_EXPRESS

● ULVF_FULL_VALIDATE

See also
● “ULVF_TABLE variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_INDEX variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_DATABASE variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_EXPRESS variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_FULL_VALIDATE variable [UltraLite C and Embedded SQL datatypes]” on page 116

ULValidateDatabaseTableName method
Validates the database on this connection.

Syntax
public ul_bool ULValidateDatabaseTableName(
 SQLCA * sqlca,
 char const * start_parms,
 char const * table_name,
 ul_u_short flags,
 ul_validate_callback_fn callback_fn,
 void * user_data
)

Parameters
● sqlca A pointer to the SQLCA.

● start_parms The parameter used to start the database.

● table_name The name of a specific table to validate.

● flags Flags controlling the type of validation.

● callback_fn The function to receive validation progress information.

● user_data User data to send back to the caller via the callback.

Returns
True on success; otherwise, returns false.

Remarks
Depending on the flags passed to this routine, the low level store and/or the indexes can be validated. To
receive information during the validation, implement a callback function and pass the address to this
routine. To limit the validation to a specific table, pass in the table name or ID as the last parameter.

API reference

274 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The flags parameter is combination of the following values:

● ULVF_TABLE

● ULVF_INDEX

● ULVF_DATABASE

● ULVF_EXPRESS

● ULVF_FULL_VALIDATE

See also
● “ULVF_TABLE variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_INDEX variable [UltraLite C and Embedded SQL datatypes]” on page 117
● “ULVF_DATABASE variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_EXPRESS variable [UltraLite C and Embedded SQL datatypes]” on page 115
● “ULVF_FULL_VALIDATE variable [UltraLite C and Embedded SQL datatypes]” on page 116

ul_database_option_id enumeration
Specifies possible database options that users can set.

Syntax
public enum ul_database_option_id

Members

Member name Description

ul_option_global_data-
base_id

The global database ID is set using an unsigned long integer.

ul_option_ml_remote_id The remote ID is set using a string.

ul_option_com-
mit_flush_timeout

The database commit flush timeout is set as an integer, representing a
time threshold measured in milliseconds.

ul_option_com-
mit_flush_count

The database commit flush count is set as integer, representing a commit
count threshold.

ul_option_isolation_level The connection isolation level is set as string.

(read_committed/read_uncommitted)

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 275

Member name Description

ul_option_cache_alloca-
tion

Set to resize the database file cache.

The value is an integer in the range 0 to 100, representing the amount of
cache allocated of the minimum to maximum size range.

Remarks
These database options are used with the ULConnection.SetDatabaseOption method.

See also
● “ULConnection.SetDatabaseOption method [UltraLite C++]” on page 140

ul_database_property_id enumeration
Specifies possible database properties that users can retrieve.

Syntax
public enum ul_database_property_id

Members

Member name Description

ul_property_date_format Date format.

(date_format)

ul_property_date_order Date order.

(date_order)

ul_property_nearest_century Nearest century.

(nearest_century)

ul_property_precision Precision.

(precision)

ul_property_scale Scale.

(scale)

API reference

276 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member name Description

ul_property_time_format Time format.

(time_format)

ul_property_timestamp_format Timestamp format.

(timestamp_format)

ul_property_timestamp_increment Timestamp increment.

(timestamp_increment)

ul_property_name Name.

(Name)

ul_property_file File.

(File)

ul_property_encryption Encryption.

(Encryption)

ul_property_global_database_id Global database ID.

(global_database_id)

ul_property_ml_remote_id Remote ID.

(ml_remote_id)

ul_property_char_set Character set.

(CharSet)

ul_property_collation collation sequence.

(Collation)

ul_property_page_size Page size.

(PageSize)

ul_property_case_sensitive CaseSensitive.

(CaseSensitive)

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 277

Member name Description

ul_property_conn_count Connection count.

(ConnCount)

ul_property_max_hash_size Default maximum index hash.

(MaxHashSize)

ul_property_checksum_level Database checksum level.

(ChecksumLevel)

ul_property_checkpoint_count Database checkpoint count.

(CheckpointCount)

ul_property_commit_flush_timeout Database commit flush timeout.

(commit_flush_timeout)

ul_property_commit_flush_count Database commit flush count.

(commit_flush_count)

ul_property_isolation_level Connection isolation level.

(isolation_level)

ul_property_time-
stamp_with_time_zone_format

Timestamp with time zone format.

(timestamp_with_time_zone_format)

ul_property_cache_allocation The current database file cache size, as a percentage val-
ue of the minimum to maximum range.

Remarks
These properties are used with the ULConnection.GetDatabaseProperty method.

See also
● “ULConnection.GetDatabaseProperty method [UltraLite C++]” on page 130

ml_file_transfer_info structure
A structure containing the parameters to the file upload/download.

API reference

278 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
public typedef struct ml_file_transfer_info

Members

Member name Type Description

auth_parms const char * Supplies parameters to authentication parameters in MobiLink
events.

For more information, see “Additional Parameters synchroni-
zation parameter” [UltraLite - Database Management and
Reference].

auth_status asa_uint16 Supplies parameters to authentication parameters in MobiLink
events.

For more information, see “Additional Parameters synchroni-
zation parameter” [UltraLite - Database Management and
Reference].

auth_value asa_uint32 Reports results of a custom MobiLink user authentication
script.

The MobiLink server provides this information to the client.

For more information, see “Authentication Value synchroni-
zation parameter” [UltraLite - Database Management and
Reference].

enable_resume bool If set to true, the MLFileDownload method resumes a previ-
ous download that was interrupted due to a communications
error or if it was canceled by the user.

If the file on the server is newer than the partial local file, the
partial file is discarded and the new version is downloaded
from the beginning. The default is true.

error mlft_stream_error Contains information about any error that occurs.

file_auth_code asa_uint16 Contains the return code of the optional authenti-
cate_file_transfer script on the server.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 279

Member name Type Description

filename const char * The file name to be transferred from the server running Mobi-
Link.

MobiLink searches the username subdirectory first, before de-
faulting to the root directory.

For more information, see “-ftr mlsrv12 option” [MobiLink -
Server Administration].

local_filename const char * The local name for the downloaded file.

If this parameter is empty, the value in file name is used.

local_path const char * The local path to store the downloaded file.

If this parameter is empty (the default), the downloaded file is
stored in the current directory.

On Windows Mobile, if dest_path is empty, the file is stored
in the root (\) directory of the device.

On the desktop, if the dest_path is empty, the file is stored in
the user's current directory.

num_auth_parms asa_uint8 The number of authentication parameters being passed to au-
thentication parameters in MobiLink events.

For more information, see “Number of Authentication Param-
eters parameter” [UltraLite - Database Management and Ref-
erence].

observer ml_file_trans-
fer_observer_fn

A callback can be provided to observe file download progress
through the 'observer' field.

For more details, see description of the callback function that
follows.

password const char * The password for the MobiLink user name.

remote_key const char * The MobiLink remote key.

stream const char * The protocol can be one of: TCPIP, TLS, HTTP, or HTTPS.

This field is required.

For more information, see “Stream Type synchronization pa-
rameter” [UltraLite - Database Management and Reference].

API reference

280 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member name Type Description

stream_parms const char * The protocol options for a given stream.

For more information, see “Network protocol options for Ul-
traLite synchronization streams” [UltraLite - Database Man-
agement and Reference].

transfered_file asa_uint16 1 if the file was successfully transferred, and 0 if an error oc-
curs.

An error occurs if the file is already up-to-date when MLFi-
leUpload is invoked. In this case, the function returns true
rather than false.

user_data void * The application-specific information made available to the
synchronization observer.

For more information, see “User Data synchronization param-
eter” [UltraLite - Database Management and Reference].

username const char * The MobiLink user name.

This field is required.

version const char * The MobiLink script version.

This field is required.

ml_file_transfer_status structure
A structure containing status/progress information while the file upload/download is in progress.

Syntax
public typedef struct ml_file_transfer_status

Members

Member name Type Description

bytes_transfered asa_uint64 Indicates how much of the file has been downloaded so far, in-
cluding previous synchronizations, if the download is resumed.

file_size asa_uint64 Indicates the total size, in bytes, of the file being downloaded.

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 281

Member name Type Description

flags asa_uint16 Provides additional information.

The MLFT_STATUS_FLAG_IS_BLOCKING value is set when
the MLFileDownload method is blocking on a network call and
the download status has not changed since the last time the ob-
server method was called.

info ml_file_trans-
fer_info *

Points to the information object passed to the MLFileDownload
method.

You can access the user_data parameter through this pointer.

resumed_at_size asa_uint64 Used with download resumption and indicates at what point the
current download resumed.

stop asa_uint8 Set to true to cancel the current download.

You can resume the download in a subsequent call to the MLFi-
leDownload method, but only if you have set the enable_resume
parameter.

mlft_stream_error structure
A structure containing status/progress information while the file upload or download is in progress.

Syntax
public typedef struct mlft_stream_error

Members

Member name Type Description

error_string char A string with additional information, if available, for the
stream_error_code value.

stream_er-
ror_code

ss_er-
ror_code

The specific stream error.

For a list of possible values, see the ss_error_code enumeration in
the %SQLANY12%\SDK\Include\sserror.h header file.

system_er-
ror_code

asa_int32 A system-specific error code.

API reference

282 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “MobiLink communication error messages sorted by error code” [Error Messages]

mlft_stream_error_w structure
A structure containing status/progress information while the file upload or download is in progress.

Syntax
public typedef struct mlft_stream_error_w

Members

Member name Type Description

error_string wchar_t A string with additional information, if available, for the
stream_error_code value.

stream_er-
ror_code

ss_er-
ror_code

The specific stream error.

For a list of possible values, see the ss_error_code enumeration in
the %SQLANY12%\SDK\Include\sserror.h header file.

system_er-
ror_code

asa_int32 A system-specific error code.

Remarks

Note
This structure prototype is used internally when you refer to the mlft_stream_error structure and #define
the UNICODE macro on Win32 platforms. Typically, you would not reference this structure directly
when creating an UltraLite application.

See also
● “mlft_stream_error structure [UltraLite Embedded SQL]” on page 282
● “MobiLink communication error messages sorted by error code” [Error Messages]

MLFT_STATUS_FLAG_IS_BLOCKING variable
Defines a bit set in the ml_file_transfer_status.flags field to indicate that the file transfer is blocked
awaiting a response from the MobiLink server.

Syntax
#define MLFT_STATUS_FLAG_IS_BLOCKING

UltraLite Embedded SQL API reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 283

Remarks
Identical file transfer progress messages are generated periodically while this is the case.

API reference

284 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Index
Symbols
#define

UltraLite applications, 101
16-bit signed integer UltraLite embedded SQL data
type

about, 33
32-bit signed integer UltraLite embedded SQL data
type

about, 33
4-byte floating-point UltraLite embedded SQL data
type

about, 33
8-byte floating-point UltraLite embedded SQL data
type

about, 33

A
accessing data

UltraLite C++ API, 15
accessing schema information

UltraLite C++ about, 21
ActiveSync

class names, 58
UltraLite MFC requirements, 61
UltraLite synchronization for Windows Mobile, 60
UltraLite versions for Windows Mobile, 60
UltraLite Windows Mobile applications, 60
WindowProc function, 61

AES encryption algorithm
UltraLite embedded SQL databases, 46

AfterLast method
ULResultSet class [UltraLite C++ API], 180

Android
disconnecting from a database, 23

AppendByteChunk method
ULResultSet class [UltraLite C++ API], 180

AppendParameterByteChunk method
ULPreparedStatement class [UltraLite C++ API],
169

AppendParameterStringChunk method
ULPreparedStatement class [UltraLite C++ API],
170

AppendStringChunk method
ULResultSet class [UltraLite C++ API], 181

applications
building UltraLite embedded SQL, 54
compiling UltraLite embedded SQL, 54
developing for iOS, 5
preprocessing UltraLite embedded SQL, 54
writing UltraLite embedded SQL, 27

architectures
UltraLite C/C++, 1

AutoCommit mode
UltraLite C++ development, 21

B
BeforeFirst method

ULResultSet class [UltraLite C++ API], 183
binary UltraLite embedded SQL data type

about, 34
BlackBerry

disconnecting from a database, 23
build processes

embedded SQL applications, 54
UltraLite embedded SQL applications, 54

building
UltraLite embedded SQL applications, 54

C
CancelGetNotification method

ULConnection class [UltraLite C++ API], 122
canceling monitoring

in UltraLite embedded SQL, 50
canceling synchronization

in UltraLite embedded SQL, 50
casting

UltraLite C++ API data types in, 20
ChangeEncryptionKey method

ULConnection class [UltraLite C++ API], 122
changeEncryptionKey method

UltraLite embedded SQL, 47
character string UltraLite embedded SQL data type

fixed length, 34
variable length, 34

Checkpoint method
ULConnection class [UltraLite C++ API], 123

class names
ActiveSync synchronization, 58

Clear method
ULError class [UltraLite C++ API], 160

Close method

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 285

ULConnection class [UltraLite C++ API], 123
ULDatabaseSchema class [UltraLite C++ API],
157
ULIndexSchema class [UltraLite C++ API], 165
ULPreparedStatement class [UltraLite C++ API],
170
ULResultSet class [UltraLite C++ API], 183
ULTableSchema class [UltraLite C++ API], 228

CLOSE statement
UltraLite embedded SQL, 43

columns
UltraLite C++ API modification of values , 20
UltraLite C++ API retrieval of values , 19

Commit method
ULConnection class [UltraLite C++ API], 123
UltraLite C++ transactions, 21

committing
UltraLite C++ transactions, 21
UltraLite changes with embedded SQL, 49

communications errors
UltraLite embedded SQL, 50

compile options
UltraLite applications for Windows Mobile, 26

compiler directives
UltraLite applications, 101
UNDER_CE, 102

compiler options
UltraLite C++ development, 26

compilers
UltraLite applications for Windows Mobile, 26

compiling
UltraLite applications for Windows Mobile, 26
UltraLite embedded SQL applications, 54

configuring
development tools for UltraLite embedded SQL, 55

CONNECT statement
UltraLite embedded SQL, 31

connecting
UltraLite databases, 7

Connection object
UltraLite C++, 7

connections
UltraLite embedded SQL, 31

CountUploadRows method
ULConnection class [UltraLite C++ API], 124

CreateDatabase method
ULDatabaseManager class [UltraLite C++ API],
147

CreateNotificationQueue method
ULConnection class [UltraLite C++ API], 125

cursors
UltraLite fetching multiple rows, 43
UltraLite order of rows, 44
UltraLite positioning, 44
UltraLite positioning after updates, 45
UltraLite repositioning, 45

CustDB application
UltraLite building for Windows Mobile, 57

D
data manipulation

UltraLite C++ API, 15
data modification

UltraLite C++ with SQL, 8
data types

UltraLite C++ API accessing and casting, 19
UltraLite embedded SQL, 32

database files
UltraLite encrypting and obfuscating (embedded
SQL), 46
UltraLite for Windows Mobile, 58

database schemas
UltraLite C++ API access, 21

DatabaseManager object
UltraLite C++, 7

db_fini method [UltraLite Embedded SQL API]
description, 238

db_init method [UltraLite Embedded SQL API]
description, 238

decimal UltraLite embedded SQL data type
about, 33

DECL_BINARY macro
UltraLite embedded SQL, 33

DECL_DATETIME macro
UltraLite embedded SQL, 33

DECL_DECIMAL macro
UltraLite embedded SQL, 33

DECL_FIXCHAR macro
UltraLite embedded SQL, 33

DECL_VARCHAR macro
UltraLite embedded SQL, 33

declaration section
UltraLite embedded SQL declaration of, 32

DECLARE statement
UltraLite embedded SQL, 43

Index

286 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

DeclareEvent method
ULConnection class [UltraLite C++ API], 125

declaring
UltraLite host variables, 32

Delete method
ULResultSet class [UltraLite C++ API], 183

DeleteAllRows method
ULTable class [UltraLite C++ API], 221

DeleteNamed method
ULResultSet class [UltraLite C++ API], 183

deleting
UltraLite C++ API table rows, 20

dependencies
UltraLite embedded SQL, 55

deploying
in-process version of UltraLite, 26
UltraLite for Windows Mobile, 26

DestroyNotificationQueue method
ULConnection class [UltraLite C++ API], 126

development
UltraLite C++, 5

development platforms
UltraLite C++, 1

development process
UltraLite embedded SQL, 2

development tools
UltraLite embedded SQL, 55

directives
UltraLite applications, 101

DML
UltraLite C++, 9

DropDatabase method
ULDatabaseManager class [UltraLite C++ API],
148

DT_LONGBINARY UltraLite embedded SQL data
type

about, 35
DT_LONGVARCHAR UltraLite embedded SQL data
type

about, 35
dynamic libraries

UltraLite C++ applications, 26

E
E2EE private key

iPhone, 6
Mac OS X, 6

e2ee_public_key
iPhone, 6
Mac OS X, 6

emulator
UltraLite for Windows Mobile, 26

EnableAesDBEncryption method
ULDatabaseManager class [UltraLite C++ API],
148

EnableAesFipsDBEncryption method
ULDatabaseManager class [UltraLite C++ API],
148

EnableEccE2ee method
ULDatabaseManager class [UltraLite C++ API],
149

EnableEccSyncEncryption method
ULDatabaseManager class [UltraLite C++ API],
149

EnableHttpsSynchronization method
ULDatabaseManager class [UltraLite C++ API],
150

EnableHttpSynchronization method
ULDatabaseManager class [UltraLite C++ API],
150

EnableRsaE2ee method
ULDatabaseManager class [UltraLite C++ API],
151

EnableRsaFipsE2ee method
ULDatabaseManager class [UltraLite C++ API],
151

EnableRsaFipsSyncEncryption method
ULDatabaseManager class [UltraLite C++ API],
151

EnableRsaSyncEncryption method
ULDatabaseManager class [UltraLite C++ API],
152

EnableTcpipSynchronization method
ULDatabaseManager class [UltraLite C++ API],
152

EnableTlsSynchronization method
ULDatabaseManager class [UltraLite C++ API],
153

EnableZlibSyncCompression method
ULDatabaseManager class [UltraLite C++ API],
153

encryption
changing keys in UltraLite embedded SQL, 47
iPhone, 6
Mac OS X, 6

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 287

PEM encoded X509 certificate, 6
UltraLite databases using embedded SQL, 46
UltraLite embedded SQL databases, 46

end-to-end encryption
iPhone, 6
Mac OS X, 6

environment variables
INCLUDE, 65

error handling
UltraLite C++, 22

errors
UltraLite C++ API handling , 22
UltraLite codes, 30
UltraLite embedded SQL communications errors,
50
UltraLite SQLCODE, 30
UltraLite sqlcode SQLCA field, 30

EXEC SQL
UltraLite embedded SQL development, 29

ExecuteQuery method
ULPreparedStatement class [UltraLite C++ API],
170

ExecuteScalar method
ULConnection class [UltraLite C++ API], 126

ExecuteScalarV method
ULConnection class [UltraLite C++ API], 128

ExecuteStatement method
ULConnection class [UltraLite C++ API], 129
ULPreparedStatement class [UltraLite C++ API],
171

F
FETCH statement

UltraLite embedded SQL multi-row queries, 43
UltraLite embedded SQL single-row queries, 42

fetching
UltraLite embedded SQL, 42

Find method
ULTable class [UltraLite C++ API], 221

find methods
UltraLite C++, 18

find mode
UltraLite C++, 16

FindBegin method
ULTable class [UltraLite C++ API], 222

FindFirst method
ULTable class [UltraLite C++ API], 222

FindLast method
ULTable class [UltraLite C++ API], 223

FindNext method
ULTable class [UltraLite C++ API], 223

FindPrevious method
ULTable class [UltraLite C++ API], 223

Fini method
ULDatabaseManager class [UltraLite C++ API],
153

First method
ULResultSet class [UltraLite C++ API], 184

functions
UltraLite embedded SQL, 237

G
GetBinary method

ULResultSet class [UltraLite C++ API], 184
GetBinaryLength method

ULResultSet class [UltraLite C++ API], 185
GetByteChunk method

ULResultSet class [UltraLite C++ API], 186
GetChildObjectCount method

ULConnection class [UltraLite C++ API], 130
GetColumnCount method

ULIndexSchema class [UltraLite C++ API], 165
ULResultSetSchema class [UltraLite C++ API],
214

GetColumnDefault method
ULTableSchema class [UltraLite C++ API], 228

GetColumnDefaultType method
ULTableSchema class [UltraLite C++ API], 228

GetColumnID method
ULResultSetSchema class [UltraLite C++ API],
214

GetColumnName method
ULIndexSchema class [UltraLite C++ API], 165
ULResultSetSchema class [UltraLite C++ API],
215

GetColumnPrecision method
ULResultSetSchema class [UltraLite C++ API],
215

GetColumnScale method
ULResultSetSchema class [UltraLite C++ API],
216

GetColumnSize method
ULResultSetSchema class [UltraLite C++ API],
216

Index

288 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GetColumnSQLType method
ULResultSetSchema class [UltraLite C++ API],
217

GetColumnType method
ULResultSetSchema class [UltraLite C++ API],
217

GetConnection method
ULDatabaseSchema class [UltraLite C++ API],
157
ULIndexSchema class [UltraLite C++ API], 166
ULPreparedStatement class [UltraLite C++ API],
171
ULResultSet class [UltraLite C++ API], 188
ULResultSetSchema class [UltraLite C++ API],
217

GetDatabaseProperty method
ULConnection class [UltraLite C++ API], 130

GetDatabasePropertyInt method
ULConnection class [UltraLite C++ API], 130

GetDatabaseSchema method
ULConnection class [UltraLite C++ API], 131

GetDateTime method
ULResultSet class [UltraLite C++ API], 188

GetDouble method
ULResultSet class [UltraLite C++ API], 189

GetErrorInfo method
ULError class [UltraLite C++ API], 160

GetFloat method
ULResultSet class [UltraLite C++ API], 190

GetGlobalAutoincPartitionSize method
ULTableSchema class [UltraLite C++ API], 229

GetGuid method
ULResultSet class [UltraLite C++ API], 191

GetIndexColumnID method
ULIndexSchema class [UltraLite C++ API], 166

GetIndexCount method
ULTableSchema class [UltraLite C++ API], 229

GetIndexFlags method
ULIndexSchema class [UltraLite C++ API], 166

GetIndexSchema method
ULTableSchema class [UltraLite C++ API], 229

GetInt method
ULResultSet class [UltraLite C++ API], 192

GetIntWithType method
ULResultSet class [UltraLite C++ API], 193

GetLastDownloadTime method
ULConnection class [UltraLite C++ API], 131

GetLastError method

ULConnection class [UltraLite C++ API], 132
GetLastIdentity method

ULConnection class [UltraLite C++ API], 132
GetName method

ULIndexSchema class [UltraLite C++ API], 166
ULTableSchema class [UltraLite C++ API], 230

GetNextIndex method
ULTableSchema class [UltraLite C++ API], 230

GetNextPublication method
ULDatabaseSchema class [UltraLite C++ API],
157

GetNextTable method
ULDatabaseSchema class [UltraLite C++ API],
158

GetNotification method
ULConnection class [UltraLite C++ API], 133

GetNotificationParameter method
ULConnection class [UltraLite C++ API], 133

GetOptimalIndex method
ULTableSchema class [UltraLite C++ API], 230

GetParameter method
ULError class [UltraLite C++ API], 161

GetParameterCount method
ULError class [UltraLite C++ API], 162
ULPreparedStatement class [UltraLite C++ API],
171

GetParameterID method
ULPreparedStatement class [UltraLite C++ API],
171

GetParameterType method
ULPreparedStatement class [UltraLite C++ API],
172

GetPlan method
ULPreparedStatement class [UltraLite C++ API],
172

GetPrimaryKey method
ULTableSchema class [UltraLite C++ API], 231

GetPublicationCount method
ULDatabaseSchema class [UltraLite C++ API],
158

GetPublicationPredicate method
ULTableSchema class [UltraLite C++ API], 231

GetReferencedIndexName method
ULIndexSchema class [UltraLite C++ API], 167

GetReferencedTableName method
ULIndexSchema class [UltraLite C++ API], 167

GetResultSetSchema method

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 289

ULPreparedStatement class [UltraLite C++ API],
173
ULResultSet class [UltraLite C++ API], 195

GetRowCount method
ULResultSet class [UltraLite C++ API], 195

GetRowsAffectedCount method
ULPreparedStatement class [UltraLite C++ API],
173

GetSqlca method
ULConnection class [UltraLite C++ API], 134

GetSQLCode method
ULError class [UltraLite C++ API], 162

GetSQLCount method
ULError class [UltraLite C++ API], 162

GetState method
ULResultSet class [UltraLite C++ API], 195

GetString method
ULError class [UltraLite C++ API], 163
ULResultSet class [UltraLite C++ API], 196

GetStringChunk method
ULResultSet class [UltraLite C++ API], 197

GetStringLength method
ULResultSet class [UltraLite C++ API], 199

GetSyncResult method
ULConnection class [UltraLite C++ API], 134

GetTableCount method
ULDatabaseSchema class [UltraLite C++ API],
159

GetTableName method
ULIndexSchema class [UltraLite C++ API], 167

GetTableSchema method
ULDatabaseSchema class [UltraLite C++ API],
159
ULTable class [UltraLite C++ API], 224

GetTableSyncType method
ULTableSchema class [UltraLite C++ API], 231

GetURL method
ULError class [UltraLite C++ API], 163

GetUserPointer method
ULConnection class [UltraLite C++ API], 134

GlobalAutoincUsage method
ULConnection class [UltraLite C++ API], 135

GrantConnectTo method
ULConnection class [UltraLite C++ API], 135

H
HasResultSet method

ULPreparedStatement class [UltraLite C++ API],
173

host variables
UltraLite embedded SQL, 32
UltraLite embedded SQL expressions, 37
UltraLite scope, 36
UltraLite usage, 36

I
import libraries

UltraLite C++, 26
INCLUDE statement

UltraLite SQLCA, 29
indexes

UltraLite C++ API schema information in , 22
indicator variables

UltraLite embedded SQL, 40
UltraLite NULL, 41

Init method
ULDatabaseManager class [UltraLite C++ API],
154

InitSyncInfo method
ULConnection class [UltraLite C++ API], 136

InPublication method
ULTableSchema class [UltraLite C++ API], 232

Insert method
ULTable class [UltraLite C++ API], 224

insert mode
UltraLite C++, 16

InsertBegin method
ULTable class [UltraLite C++ API], 224

inserting
UltraLite C++ API table rows, 17

installing
UltraLite Windows Mobile applications, 56

iOS
about UltraLite C++ applications, 1
creating and connecting to a database, 7
database schemas, 21
developing applications, 5
handling errors, 22
UltraLite C++ development, 26

iPhone
access databases, 78
adding data to databases, 81
adding databases to applications, 78
build settings for UltraLite C++, 5

Index

290 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

compiling UltraLite library for, 76
creating an application project, 76
data model class, 78
DataAccess singleton, 78
deleting data from databases, 87
displaying data, 85
frameworks, 78
include files for UltraLite C++, 5
interface builder, 81
MobiLink synchronization model, 88
ODBC data source, 88
open connection, 78
root view controller setup, 81
swipe-to-delete, 87
synchronization, 88
thread management, 93
tutorial, 75
UltraLite runtime libraries for, 26
view controller, 81

IsAliased method
ULResultSetSchema class [UltraLite C++ API],
218

IsColumnDescending method
ULIndexSchema class [UltraLite C++ API], 168

IsColumnInIndex method
ULTableSchema class [UltraLite C++ API], 232

IsColumnNullable method
ULTableSchema class [UltraLite C++ API], 233

IsNull method
ULResultSet class [UltraLite C++ API], 200

IsOK method
ULError class [UltraLite C++ API], 164

L
Last method

ULResultSet class [UltraLite C++ API], 201
libraries

UltraLite applications for Windows Mobile, 26
UltraLite compiling and linking in C++, 26
UltraLite DLL for Windows Mobile, 26
UltraLite linking example in C++, 66

library functions
UltraLite embedded SQL, 237

libulrt.lib
UltraLite C++ development, 25

linking
UltraLite applications for Windows Mobile, 26

UltraLite C++ applications, 26
Linux

UltraLite runtime libraries for, 25
Lookup method

ULTable class [UltraLite C++ API], 224
lookup methods

UltraLite C++, 18
lookup mode

UltraLite C++, 16
LookupBackward method

ULTable class [UltraLite C++ API], 225
LookupBegin method

ULTable class [UltraLite C++ API], 225
LookupForward method

ULTable class [UltraLite C++ API], 226

M
Mac OS X

about UltraLite C++ applications, 1
include files for UltraLite C++, 5
UltraLite C++ development, 26
UltraLite runtime libraries for, 26

macros
UL_USE_DLL, 101
UltraLite applications, 101

makefiles
UltraLite embedded SQL, 55

managing
UltraLite C++ transactions, 21

MFC
UltraLite applications ActiveSync requirements, 61

MFC applications
UltraLite for Windows Mobile, 58

ml_file_transfer_info structure [UltraLite Embedded
SQL API]

description, 278
ml_file_transfer_status structure [UltraLite Embedded
SQL API]

description, 281
MLFileDownload method [UltraLite Embedded SQL
API]

description, 241
mlfiletransfer.h header file

UltraLite Embedded SQL API, 237
MLFileUpload method [UltraLite Embedded SQL
API]

description, 242

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 291

MLFiniFileTransferInfo method [UltraLite Embedded
SQL API]

description, 243
mlft_stream_error structure [UltraLite Embedded
SQL API]

description, 282
mlft_stream_error_w structure [UltraLite Embedded
SQL API]

description, 283
MLFTEnableEccE2ee method [UltraLite Embedded
SQL API]

description, 239
MLFTEnableEccEncryption method [UltraLite
Embedded SQL API]

description, 239
MLFTEnableRsaE2ee method [UltraLite Embedded
SQL API]

description, 240
MLFTEnableRsaEncryption method [UltraLite
Embedded SQL API]

description, 240
MLFTEnableRsaFipsE2ee method [UltraLite
Embedded SQL API]

description, 240
MLFTEnableRsaFipsEncryption method [UltraLite
Embedded SQL API]

description, 241
MLFTEnableZlibCompression method [UltraLite
Embedded SQL API]

description, 241
MLInitFileTransferInfo method [UltraLite Embedded
SQL API]

description, 243
MobiLink synchronization

iPhone, 88
modes

UltraLite C++, 16
multi-row queries

UltraLite cursors, 43
multi-threaded applications

UltraLite C++, 8
UltraLite embedded SQL, 31

N
namespaces

UltraLite C++ example, 66
navigating

UltraLite C++ API, 15
navigating SQL result sets

UltraLite C++, 14
network protocols

UltraLite for Windows Mobile, 63
Next method

ULResultSet class [UltraLite C++ API], 201
next method

UltraLite C++ data retrieval example, 13
NULL

UltraLite indicator variables, 40
Null terminated string UltraLite embedded SQL data
type

about, 33
null-terminated TCHAR character string UltraLite
SQL data type

about, 34
null-terminated UNICODE character string UltraLite
SQL data type

about, 34
null-terminated WCHAR character string UltraLite
SQL data type

about, 34
null-terminated wide character string UltraLite SQL
data type

about, 34

O
obfuscating

UltraLite embedded SQL databases, 46
obfuscation

UltraLite databases using embedded SQL, 47
UltraLite embedded SQL databases, 46

observer synchronization parameter
UltraLite embedded SQL example, 53

ODBC data source
iPhone, 88

offsets
UltraLite C++ relative, 15

OPEN statement
UltraLite embedded SQL, 43

OpenConnection method
ULDatabaseManager class [UltraLite C++ API],
154

OpenTable method
ULConnection class [UltraLite C++ API], 136

Index

292 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

P
packed decimal UltraLite embedded SQL data type

about, 33
PEM encoded X509 certificate

iPhone, 6
Mac OS X, 6

performance
UltraLite using DLL for economical memory use,
26
UltraLite using INSERT statements , 50

permissions
UltraLite embedded SQL, 29

persistent storage
UltraLite for Windows Mobile, 58

platform requirements
UltraLite for Windows Mobile, 56

platforms
supported in UltraLite C++, 1

prepared statements
UltraLite C++, 9

PrepareStatement method
ULConnection class [UltraLite C++ API], 136

preprocessing
UltraLite embedded SQL applications, 54
UltraLite embedded SQL development tool
settings, 55

Previous method
ULResultSet class [UltraLite C++ API], 201

previous method
UltraLite C++ data retrieval example, 13

program structure
UltraLite embedded SQL, 29

protocols
UltraLite for Windows Mobile, 63

Q
queries

UltraLite embedded SQL multi-row queries, 43
UltraLite embedded SQL single-row queries, 42

R
RegisterForEvent method

ULConnection class [UltraLite C++ API], 137
Relative method

ULResultSet class [UltraLite C++ API], 202
relative offset

UltraLite C++ API, 15

ResetLastDownloadTime method
ULConnection class [UltraLite C++ API], 138

result set schemas
UltraLite C++, 14

result sets
UltraLite C++ API schema information in , 21
UltraLite C++ navigation of, 14

RevokeConnectFrom method
ULConnection class [UltraLite C++ API], 138

Rollback method
ULConnection class [UltraLite C++ API], 138
UltraLite C++ transactions, 21

RollbackPartialDownload method
ULConnection class [UltraLite C++ API], 139

rollbacks
UltraLite C++ transactions, 21

rows
accessing in UltraLite C++ API tutorial, 70
UltraLite C++ table access of current, 19
UltraLite C++ table navigation, 15
UltraLite deletions with C++ API, 20
UltraLite insertions with C++ API, 17
UltraLite updates with C++ API, 17

runtime libraries
UltraLite applications for Windows Mobile, 26
UltraLite C++, 26
UltraLite for C++, 26

runtime library
Windows Mobile, 101

S
sample applications

UltraLite building for Windows Mobile, 57
schemas

UltraLite C++ API access, 21
UltraLite C++ API schema information in , 21

scrolling
UltraLite C++ API, 15

searching
UltraLite rows with C++, 18

security
changing the encryption key in UltraLite embedded
SQL, 47
obfuscation in UltraLite embedded SQL, 46
UltraLite database encryption, 46

SELECT statement
UltraLite C++ data retrieval example, 13

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 293

UltraLite embedded SQL single row, 42
selecting data from database tables

UltraLite C++, 13
SendNotification method

ULConnection class [UltraLite C++ API], 139
SET CONNECTION statement

multiple connections in UltraLite embedded SQL,
31

SetBinary method
ULResultSet class [UltraLite C++ API], 202

SetDatabaseOption method
ULConnection class [UltraLite C++ API], 140

SetDatabaseOptionInt method
ULConnection class [UltraLite C++ API], 140

SetDateTime method
ULResultSet class [UltraLite C++ API], 203

SetDefault method
ULResultSet class [UltraLite C++ API], 204

SetDouble method
ULResultSet class [UltraLite C++ API], 205

SetErrorCallback method
ULDatabaseManager class [UltraLite C++ API],
155

SetFloat method
ULResultSet class [UltraLite C++ API], 206

SetGuid method
ULResultSet class [UltraLite C++ API], 207

SetInt method
ULResultSet class [UltraLite C++ API], 208

SetIntWithType method
ULResultSet class [UltraLite C++ API], 209

SetNull method
ULResultSet class [UltraLite C++ API], 211

SetParameterBinary method
ULPreparedStatement class [UltraLite C++ API],
173

SetParameterDateTime method
ULPreparedStatement class [UltraLite C++ API],
174

SetParameterDouble method
ULPreparedStatement class [UltraLite C++ API],
174

SetParameterFloat method
ULPreparedStatement class [UltraLite C++ API],
175

SetParameterGuid method
ULPreparedStatement class [UltraLite C++ API],
175

SetParameterInt method
ULPreparedStatement class [UltraLite C++ API],
175

SetParameterIntWithType method
ULPreparedStatement class [UltraLite C++ API],
176

SetParameterNull method
ULPreparedStatement class [UltraLite C++ API],
177

SetParameterString method
ULPreparedStatement class [UltraLite C++ API],
177

SetString method
ULResultSet class [UltraLite C++ API], 212

SetSynchronizationCallback method
ULConnection class [UltraLite C++ API], 141

SetSyncInfo method
ULConnection class [UltraLite C++ API], 141

SetUserPointer method
ULConnection class [UltraLite C++ API], 141

simple encryption
UltraLite database simple encryption, 47

SQL Communications Area
UltraLite embedded SQL, 29

SQL preprocessor utility (sqlpp)
UltraLite embedded SQL applications, 54

SQLCA
UltraLite embedded SQL, 29
UltraLite embedded SQL multiple SQLCA, 31
UltraLite fields, 30

sqlcabc SQLCA field
UltraLite embedded SQL, 30

sqlcaid SQLCA field
UltraLite embedded SQL, 30

SQLCODE
UltraLite C++ error handling, 22

sqlcode SQLCA field
UltraLite embedded SQL, 30

sqlerrd SQLCA field
UltraLite embedded SQL, 30

sqlerrmc SQLCA field
UltraLite embedded SQL, 30

sqlerrml SQLCA field
UltraLite embedded SQL, 30

sqlerrp SQLCA field
UltraLite embedded SQL, 30

sqlpp utility
UltraLite embedded SQL applications, 54

Index

294 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

UltraLite usage, 54
sqlstate SQLCA field

UltraLite embedded SQL, 30
sqlwarn SQLCA field

UltraLite embedded SQL, 30
StartSynchronizationDelete method

ULConnection class [UltraLite C++ API], 142
static libraries

UltraLite C++ applications, 26
StopSynchronizationDelete method

ULConnection class [UltraLite C++ API], 142
string UltraLite embedded SQL data type

about, 33
fixed length, 34
variable length, 34

strong encryption
UltraLite embedded SQL, 46

supported platforms
UltraLite C++, 1

swipe-to-delete
iPhone, 87

synchronization
adding to UltraLite embedded SQL applications,
48
canceling in UltraLite embedded SQL, 50
for UltraLite for Windows Mobile menu control,
63
initial in UltraLite embedded SQL, 50
invoking in UltraLite embedded SQL, 49
iPhone, 88
monitoring in UltraLite embedded SQL, 50
UltraLite C++ API tutorial, 71
UltraLite embedded SQL, 48
UltraLite embedded SQL committing changes in ,
49
UltraLite embedded SQL example, 49
UltraLite for Windows Mobile introduction, 60

synchronization errors
UltraLite embedded SQL communications errors ,
50

Synchronize method
ULConnection class [UltraLite C++ API], 142

SynchronizeFromProfile method
ULConnection class [UltraLite C++ API], 143

synchronizing
iPhone, 88
UltraLite C++, 23

T
tables

UltraLite C++ API schema information in , 21
target platforms

UltraLite C++, 1
threads

UltraLite C++ API multi-threaded applications, 8
UltraLite embedded SQL, 31

timestamp structure UltraLite embedded SQL data
type

about, 34
tips

UltraLite development, 50
transaction processing

UltraLite C++ management, 21
transactions

committing in UltraLite with embedded SQL, 49
UltraLite C++ management, 21

TriggerEvent method
ULConnection class [UltraLite C++ API], 144

troubleshooting
UltraLite C++ handling errors, 22
UltraLite development, 50
UltraLite synchronization with embedded SQL, 49
UltraLite using reference expressions in SQL
preprocessor, 37

TruncateTable method
ULTable class [UltraLite C++ API], 226

truncation
UltraLite FETCH, 41

tutorials
building an iPhone application, 75
UltraLite C++ API, 65
UltraLite C/C++ API, 75

U
ul_binary structure [UltraLite C and Embedded SQL
datatypes API]

description, 109
ul_column_default_type enumeration [UltraLite C++
API]

description, 233
ul_column_name_type enumeration [UltraLite C++
API]

description, 234
ul_column_sql_type enumeration [UltraLite C and
Embedded SQL datatypes API]

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 295

description, 102
ul_column_storage_type enumeration [UltraLite C
and Embedded SQL datatypes API]

description, 104
ul_database_option_id enumeration [UltraLite
Embedded SQL API]

description, 275
ul_database_property_id enumeration [UltraLite
Embedded SQL API]

description, 276
ul_error_action enumeration [UltraLite C and
Embedded SQL datatypes API]

description, 105
ul_error_info structure [UltraLite C and Embedded
SQL datatypes API]

description, 109
ul_index_flag enumeration [UltraLite C++ API]

description, 235
UL_RS_STATE enumeration [UltraLite C and
Embedded SQL datatypes API]

description, 102
ul_stream_error structure [UltraLite C and Embedded
SQL datatypes API]

description, 109
ul_sync_info structure

about, 48
ul_sync_info structure [UltraLite C and Embedded
SQL datatypes API]

description, 110
ul_sync_result structure [UltraLite C and Embedded
SQL datatypes API]

description, 112
ul_sync_state enumeration [UltraLite C and
Embedded SQL datatypes API]

description, 105
ul_sync_stats structure [UltraLite C and Embedded
SQL datatypes API]

description, 113
ul_sync_status structure

UltraLite embedded SQL, 51
ul_sync_status structure [UltraLite C and Embedded
SQL datatypes API]

description, 113
ul_table_sync_type enumeration [UltraLite C++ API]

description, 236
UL_USE_DLL macro

about, 101

ul_validate_data structure [UltraLite C and Embedded
SQL datatypes API]

description, 114
ul_validate_status_id enumeration [UltraLite C and
Embedded SQL datatypes API]

description, 107
ULActiveSyncStream function

Windows Mobile usage, 60
ulbase.lib

UltraLite C++ development, 26
ULCancelGetNotification method [UltraLite
Embedded SQL API]

description, 244
ULChangeEncryptionKey function [UL ESQL]

using, 47
ULChangeEncryptionKey method [UltraLite
Embedded SQL API]

description, 244
ULCheckpoint method [UltraLite Embedded SQL
API]

description, 244
ULConnection class [UltraLite C++ API]

CancelGetNotification method, 122
ChangeEncryptionKey method, 122
Checkpoint method, 123
Close method, 123
Commit method, 123
CountUploadRows method, 124
CreateNotificationQueue method, 125
DeclareEvent method, 125
description, 119
DestroyNotificationQueue method, 126
ExecuteScalar method, 126
ExecuteScalarV method, 128
ExecuteStatement method, 129
GetChildObjectCount method, 130
GetDatabaseProperty method, 130
GetDatabasePropertyInt method, 130
GetDatabaseSchema method, 131
GetLastDownloadTime method, 131
GetLastError method, 132
GetLastIdentity method, 132
GetNotification method, 133
GetNotificationParameter method, 133
GetSqlca method, 134
GetSyncResult method, 134
GetUserPointer method, 134
GlobalAutoincUsage method, 135

Index

296 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GrantConnectTo method, 135
InitSyncInfo method, 136
OpenTable method, 136
PrepareStatement method, 136
RegisterForEvent method, 137
ResetLastDownloadTime method, 138
RevokeConnectFrom method, 138
Rollback method, 138
RollbackPartialDownload method, 139
SendNotification method, 139
SetDatabaseOption method, 140
SetDatabaseOptionInt method, 140
SetSynchronizationCallback method, 141
SetSyncInfo method, 141
SetUserPointer method, 141
StartSynchronizationDelete method, 142
StopSynchronizationDelete method, 142
Synchronize method, 142
SynchronizeFromProfile method, 143
TriggerEvent method, 144
ValidateDatabase method, 144

ULCountUploadRows method [UltraLite Embedded
SQL API]

description, 245
ulcpp.h header file

UltraLite C/C++ API reference, 119
ULCreateDatabase method [UltraLite Embedded SQL
API]

description, 246
ULCreateNotificationQueue method [UltraLite
Embedded SQL API]

description, 247
ULDatabaseManager class [UltraLite C++ API]

CreateDatabase method, 147
description, 145
DropDatabase method, 148
EnableAesDBEncryption method, 148
EnableAesFipsDBEncryption method, 148
EnableEccE2ee method, 149
EnableEccSyncEncryption method, 149
EnableHttpsSynchronization method, 150
EnableHttpSynchronization method, 150
EnableRsaE2ee method, 151
EnableRsaFipsE2ee method, 151
EnableRsaFipsSyncEncryption method, 151
EnableRsaSyncEncryption method, 152
EnableTcpipSynchronization method, 152
EnableTlsSynchronization method, 153

EnableZlibSyncCompression method, 153
Fini method, 153
Init method, 154
OpenConnection method, 154
SetErrorCallback method, 155
ValidateDatabase method, 155

ULDatabaseSchema class [UltraLite C++ API]
Close method, 157
description, 156
GetConnection method, 157
GetNextPublication method, 157
GetNextTable method, 158
GetPublicationCount method, 158
GetTableCount method, 159
GetTableSchema method, 159

ULDatabaseSchema object
UltraLite C++ development, 21

ULDeclareEvent method [UltraLite Embedded SQL
API]

description, 247
ULDeleteAllRows method [UltraLite Embedded SQL
API]

description, 248
ULDestroyNotificationQueue method [UltraLite
Embedded SQL API]

description, 249
ulecc.lib

UltraLite C++ development, 26
ULECCLibraryVersion method [UltraLite Embedded
SQL API]

description, 249
ULEnableAesDBEncryption method [UltraLite
Embedded SQL API]

description, 249
ULEnableAesFipsDBEncryption method [UltraLite
Embedded SQL API]

description, 250
ULEnableEccE2ee method [UltraLite Embedded SQL
API]

description, 250
ULEnableEccSyncEncryption method [UltraLite
Embedded SQL API]

description, 251
ULEnableHttpSynchronization method [UltraLite
Embedded SQL API]

description, 251
ULEnableRsaE2ee method [UltraLite Embedded SQL
API]

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 297

description, 252
ULEnableRsaFipsE2ee method [UltraLite Embedded
SQL API]

description, 252
ULEnableRsaFipsSyncEncryption method [UltraLite
Embedded SQL API]

description, 252
ULEnableRsaSyncEncryption method [UltraLite
Embedded SQL API]

description, 253
ULEnableTcpipSynchronization method [UltraLite
Embedded SQL API]

description, 253
ULEnableZlibSyncCompression method [UltraLite
Embedded SQL API]

description, 254
ULError class [UltraLite C++ API]

Clear method, 160
description, 159
GetErrorInfo method, 160
GetParameter method, 161
GetParameterCount method, 162
GetSQLCode method, 162
GetSQLCount method, 162
GetString method, 163
GetURL method, 163
IsOK method, 164
ULError constructor, 160

ULError constructor
ULError class [UltraLite C++ API], 160

ULErrorInfoInitFromSqlca method [UltraLite
Embedded SQL API]

description, 254
ULErrorInfoParameterAt method [UltraLite
Embedded SQL API]

description, 254
ULErrorInfoParameterCount method [UltraLite
Embedded SQL API]

description, 255
ULErrorInfoString method [UltraLite Embedded SQL
API]

description, 255
ULErrorInfoURL method [UltraLite Embedded SQL
API]

description, 256
ulfips.lib

UltraLite C++ development, 26

ULGetDatabaseID method [UltraLite Embedded SQL
API]

description, 256
ULGetDatabaseProperty method [UltraLite
Embedded SQL API]

description, 257
ULGetErrorParameter method [UltraLite Embedded
SQL API]

description, 257
ULGetErrorParameterCount method [UltraLite
Embedded SQL API]

description, 258
ULGetIdentity method [UltraLite Embedded SQL
API]

description, 258
ULGetLastDownloadTime method [UltraLite
Embedded SQL API]

description, 258
ULGetNotification method [UltraLite Embedded SQL
API]

description, 259
ULGetNotificationParameter method [UltraLite
Embedded SQL API]

description, 260
ULGetSyncResult method [UltraLite Embedded SQL
API]

description, 261
ULGlobalAutoincUsage method [UltraLite Embedded
SQL API]

description, 261
ULGrantConnectTo method [UltraLite Embedded
SQL API]

description, 262
ulimp.lib

UltraLite C++ development, 26
ULIndexSchema class [UltraLite C++ API]

Close method, 165
description, 164
GetColumnCount method, 165
GetColumnName method, 165
GetConnection method, 166
GetIndexColumnID method, 166
GetIndexFlags method, 166
GetName method, 166
GetReferencedIndexName method, 167
GetReferencedTableName method, 167
GetTableName method, 167
IsColumnDescending method, 168

Index

298 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ULIndexSchema object
UltraLite C++ development, 22

ULInitSyncInfo function [UL ESQL]
about, 48

ULInitSyncInfo method [UltraLite Embedded SQL
API]

description, 262
ULIsSynchronizeMessage function [UL ESQL]

ActiveSync usage, 60
ULIsSynchronizeMessage method [UltraLite
Embedded SQL API]

description, 262
ULLibraryVersion method [UltraLite Embedded SQL
API]

description, 263
ULPreparedStatement class

UltraLite C++, 9
ULPreparedStatement class [UltraLite C++ API]

AppendParameterByteChunk method, 169
AppendParameterStringChunk method, 170
Close method, 170
description, 168
ExecuteQuery method, 170
ExecuteStatement method, 171
GetConnection method, 171
GetParameterCount method, 171
GetParameterID method, 171
GetParameterType method, 172
GetPlan method, 172
GetResultSetSchema method, 173
GetRowsAffectedCount method, 173
HasResultSet method, 173
SetParameterBinary method, 173
SetParameterDateTime method, 174
SetParameterDouble method, 174
SetParameterFloat method, 175
SetParameterGuid method, 175
SetParameterInt method, 175
SetParameterIntWithType method, 176
SetParameterNull method, 177
SetParameterString method, 177

ulprotos.h header file
UltraLite Embedded SQL API, 237

ULRegisterForEvent method [UltraLite Embedded
SQL API]

description, 264
ULResetLastDownloadTime method [UltraLite
Embedded SQL API]

description, 265
ULResultSet class [UltraLite C++ API]

AfterLast method, 180
AppendByteChunk method, 180
AppendStringChunk method, 181
BeforeFirst method, 183
Close method, 183
Delete method, 183
DeleteNamed method, 183
description, 177
First method, 184
GetBinary method, 184
GetBinaryLength method, 185
GetByteChunk method, 186
GetConnection method, 188
GetDateTime method, 188
GetDouble method, 189
GetFloat method, 190
GetGuid method, 191
GetInt method, 192
GetIntWithType method, 193
GetResultSetSchema method, 195
GetRowCount method, 195
GetState method, 195
GetString method, 196
GetStringChunk method, 197
GetStringLength method, 199
IsNull method, 200
Last method, 201
Next method, 201
Previous method, 201
Relative method, 202
SetBinary method, 202
SetDateTime method, 203
SetDefault method, 204
SetDouble method, 205
SetFloat method, 206
SetGuid method, 207
SetInt method, 208
SetIntWithType method, 209
SetNull method, 211
SetString method, 212
Update method, 213
UpdateBegin method, 213

ULResultSetSchema class [UltraLite C++ API]
description, 213
GetColumnCount method, 214
GetColumnID method, 214

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 299

GetColumnName method, 215
GetColumnPrecision method, 215
GetColumnScale method, 216
GetColumnSize method, 216
GetColumnSQLType method, 217
GetColumnType method, 217
GetConnection method, 217
IsAliased method, 218

ULResultSetSchema object
UltraLite C++, 21

ULRevokeConnectFrom method [UltraLite
Embedded SQL API]

description, 265
ULRollbackPartialDownload method [UltraLite
Embedded SQL API]

description, 265
ulrsa.lib

UltraLite C++ development, 26
ULRSALibraryVersion method [UltraLite Embedded
SQL API]

description, 263
ulrt.lib

UltraLite C++ development, 26
ulrt12.dll

UltraLite C++ development, 26
ulrtc.lib

UltraLite C++ development, 26
ULSendNotification method [UltraLite Embedded
SQL API]

description, 266
ULSetDatabaseID method [UltraLite Embedded SQL
API]

description, 267
ULSetDatabaseOptionString method [UltraLite
Embedded SQL API]

description, 267
ULSetDatabaseOptionULong method [UltraLite
Embedded SQL API]

description, 267
ULSetErrorCallback method [UltraLite Embedded
SQL API]

description, 268
ULSetSynchronizationCallback method [UltraLite
Embedded SQL API]

description, 269
ULSetSyncInfo method [UltraLite Embedded SQL
API]

description, 268

ULSignalSyncIsComplete method [UltraLite
Embedded SQL API]

description, 269
ULStartSynchronizationDelete method [UltraLite
Embedded SQL API]

description, 269
ULStaticFini method [UltraLite Embedded SQL API]

description, 270
ULStaticInit method [UltraLite Embedded SQL API]

description, 270
ULStopSynchronizationDelete method [UltraLite
Embedded SQL API]

description, 270
ULSynchronize method [UltraLite Embedded SQL
API]

description, 271
ULSynchronizeFromProfile method [UltraLite
Embedded SQL API]

description, 271
ULTable class

UltraLite C++ introduction, 15
ULTable class [UltraLite C++ API]

DeleteAllRows method, 221
description, 218
Find method, 221
FindBegin method, 222
FindFirst method, 222
FindLast method, 223
FindNext method, 223
FindPrevious method, 223
GetTableSchema method, 224
Insert method, 224
InsertBegin method, 224
Lookup method, 224
LookupBackward method, 225
LookupBegin method, 225
LookupForward method, 226
TruncateTable method, 226

ULTable object
UltraLite C++ data retrieval example, 13

ULTableSchema class [UltraLite C++ API]
Close method, 228
description, 226
GetColumnDefault method, 228
GetColumnDefaultType method, 228
GetGlobalAutoincPartitionSize method, 229
GetIndexCount method, 229
GetIndexSchema method, 229

Index

300 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GetName method, 230
GetNextIndex method, 230
GetOptimalIndex method, 230
GetPrimaryKey method, 231
GetPublicationPredicate method, 231
GetTableSyncType method, 231
InPublication method, 232
IsColumnInIndex method, 232
IsColumnNullable method, 233

ULTableSchema object
UltraLite C++ development, 21

UltraLite
compiling library for iPhone, 76
creating an iPhone application project, 76
iPhone frameworks, 78

UltraLite C and Embedded SQL datatypes API
ul_binary structure, 109
ul_column_sql_type enumeration, 102
ul_column_storage_type enumeration, 104
ul_error_action enumeration, 105
ul_error_info structure, 109
UL_RS_STATE enumeration, 102
ul_stream_error structure, 109
ul_sync_info structure, 110
ul_sync_result structure, 112
ul_sync_state enumeration, 105
ul_sync_stats structure, 113
ul_sync_status structure, 113
ul_validate_data structure, 114
ul_validate_status_id enumeration, 107

UltraLite C++
accessing schema information, 21
data modification, 9
data modification with SQL, 8
data retrieval, 13
development, 5
iPhone build settings, 5
iPhone include files, 5
Mac OS X include files, 5
quick start, 5
synchronizing data, 23
transaction processing, 21

UltraLite C++ API
ul_column_default_type enumeration, 233
ul_column_name_type enumeration, 234
ul_index_flag enumeration, 235
ul_table_sync_type enumeration, 236
ULConnection class, 119

ULDatabaseManager class, 145
ULDatabaseSchema class, 156
ULError class, 159
ULIndexSchema class, 164
ULPreparedStatement class, 168
ULResultSet class, 177
ULResultSetSchema class, 213
ULTable class, 218
ULTableSchema class, 226

UltraLite C/C++
about, 1
application tutorial, 65
architecture, 1
building a Windows application, 65
building an iPhone application, 75
INCLUDE environment variable, 65
iPhone tutorial, 75
obfuscating UltraLite databases, 47
supported platforms, 1
tutorials, 65, 75

UltraLite C/C++ API reference
ulcpp.h header file, 119

UltraLite C/C++ Common API
alphabetical listing, 101

UltraLite databases
connecting in UltraLite C++, 7
encrypting in embedded SQL, 46
UltraLite C++ API information access , 21
UltraLite for Windows Mobile, 58

UltraLite embedded SQL
authorization, 29
building CustDB application, 57
cursors, 43
developing applications, 27
fetching data, 42
functions, 237
host variables, 32
synchronization, 48
using, 237

UltraLite Embedded SQL API
db_fini method, 238
db_init method, 238
ml_file_transfer_info structure, 278
ml_file_transfer_status structure, 281
MLFileDownload method, 241
MLFileUpload method, 242
MLFiniFileTransferInfo method, 243
mlft_stream_error structure, 282

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 301

mlft_stream_error_w structure, 283
MLFTEnableEccE2ee method, 239
MLFTEnableEccEncryption method, 239
MLFTEnableRsaE2ee method, 240
MLFTEnableRsaEncryption method, 240
MLFTEnableRsaFipsE2ee method, 240
MLFTEnableRsaFipsEncryption method, 241
MLFTEnableZlibCompression method, 241
MLInitFileTransferInfo method, 243
ul_database_option_id enumeration, 275
ul_database_property_id enumeration, 276
ULCancelGetNotification method, 244
ULChangeEncryptionKey method, 244
ULCheckpoint method, 244
ULCountUploadRows method, 245
ULCreateDatabase method, 246
ULCreateNotificationQueue method, 247
ULDeclareEvent method, 247
ULDeleteAllRows method, 248
ULDestroyNotificationQueue method, 249
ULECCLibraryVersion method, 249
ULEnableAesDBEncryption method, 249
ULEnableAesFipsDBEncryption method, 250
ULEnableEccE2ee method, 250
ULEnableEccSyncEncryption method, 251
ULEnableHttpSynchronization method, 251
ULEnableRsaE2ee method, 252
ULEnableRsaFipsE2ee method, 252
ULEnableRsaFipsSyncEncryption method, 252
ULEnableRsaSyncEncryption method, 253
ULEnableTcpipSynchronization method, 253
ULEnableZlibSyncCompression method, 254
ULErrorInfoInitFromSqlca method, 254
ULErrorInfoParameterAt method, 254
ULErrorInfoParameterCount method, 255
ULErrorInfoString method, 255
ULErrorInfoURL method, 256
ULGetDatabaseID method, 256
ULGetDatabaseProperty method, 257
ULGetErrorParameter method, 257
ULGetErrorParameterCount method, 258
ULGetIdentity method, 258
ULGetLastDownloadTime method, 258
ULGetNotification method, 259
ULGetNotificationParameter method, 260
ULGetSyncResult method, 261
ULGlobalAutoincUsage method, 261
ULGrantConnectTo method, 262

ULInitSyncInfo method, 262
ULIsSynchronizeMessage method, 262
ULLibraryVersion method, 263
ulprotos.h header file, 237
ULRegisterForEvent method, 264
ULResetLastDownloadTime method, 265
ULRevokeConnectFrom method, 265
ULRollbackPartialDownload method, 265
ULRSALibraryVersion method, 263
ULSendNotification method, 266
ULSetDatabaseID method, 267
ULSetDatabaseOptionString method, 267
ULSetDatabaseOptionULong method, 267
ULSetErrorCallback method, 268
ULSetSynchronizationCallback method, 269
ULSetSyncInfo method, 268
ULSignalSyncIsComplete method, 269
ULStartSynchronizationDelete method, 269
ULStaticFini method, 270
ULStaticInit method, 270
ULStopSynchronizationDelete method, 270
ULSynchronize method, 271
ULSynchronizeFromProfile method, 271
ULTriggerEvent method, 272
ULTruncateTable method, 272
ULValidateDatabase method, 273
ULValidateDatabaseTableName method, 274

UltraLite runtime
deploying Windows Mobile libraries, 26
UltraLite C++ libraries, 26

UltraLite runtime libraries
iPhone, 26
Linux, 25
Mac OS X, 26

ULTriggerEvent method [UltraLite Embedded SQL
API]

description, 272
ULTruncateTable method [UltraLite Embedded SQL
API]

description, 272
ULValidateDatabase method [UltraLite Embedded
SQL API]

description, 273
ULValidateDatabaseTableName method [UltraLite
Embedded SQL API]

description, 274
uncommitted transactions

UltraLite embedded SQL, 49

Index

302 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

UNDER_CE compiler directive
about, 102

Update method
ULResultSet class [UltraLite C++ API], 213

update mode
UltraLite C++, 16

UpdateBegin method
ULResultSet class [UltraLite C++ API], 213

updating
UltraLite C++ API table rows, 17

user authentication
UltraLite embedded SQL applications, 45

V
ValidateDatabase method

ULConnection class [UltraLite C++ API], 144
ULDatabaseManager class [UltraLite C++ API],
155

values
UltraLite C++ API accessing, 19

Visual C++
UltraLite for Windows Mobile development, 56

W
WindowProc function

ActiveSync usage, 61
Windows Mobile

UltraLite application development overview, 56
UltraLite application synchronization, 60
UltraLite class names, 58
UltraLite platform requirements, 56
UltraLite synchronization menu control, 63

winsock.lib
UltraLite Windows Mobile applications, 56

X
x509 certificate

iPhone, 6
Mac OS X, 6

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 303

304 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

	UltraLite - C and C++ Programming
	Contents
	About this book
	UltraLite C/C++
	System requirements and supported platforms
	UltraLite C/C++ API architecture
	Developing embedded SQL applications

	Application development
	UltraLite C++ application development
	Quick start to UltraLite C++ application development
	iPhone and Mac OS X considerations
	Connecting to an UltraLite database
	Data creation and modification using SQL statements
	Modifying data using INSERT, UPDATE and DELETE
	Retrieving data using SELECT
	Schema description creation and retrieval
	SQL result set navigation

	Data creation and modification using the ULTable class
	Row navigation
	UltraLite modes
	Row insertion
	Updating rows
	Search rows with find and lookup modes
	Access values of the current row
	Deleting rows

	Managing transactions
	Schema information access
	Error handling
	MobiLink data synchronization
	Closing the UltraLite database connection
	Build and deploy UltraLite C++ applications
	UltraLite C++ application deployment

	UltraLite C++ application development using embedded SQL
	Example of embedded SQL
	Embedded SQL program structure

	Initialize the SQL Communications Area
	SQLCA fields

	Connect to an UltraLite database
	Managing multiple connections

	Host variables
	Host variable declaration
	Data types
	Host variable usage
	Host variable scope
	Expressions as host variables
	Host variables in C++
	Indicator variables
	Indicator variables to handle NULL

	Data fetching
	Single row fetching
	Fetching multiple rows

	User authentication
	Encrypting data using UltraLite embedded SQL
	Adding synchronization to your application
	Initializing the synchronization parameters
	Synchronization parameters
	Invoking synchronization
	Commit all changes before synchronizing
	Add initial data to your application
	Synchronization communications errors
	Synchronization monitoring and canceling
	Synchronization status information

	Embedded SQL application building
	Understanding general build procedures
	Configuring development tools for embedded SQL development

	UltraLite application development for Windows Mobile
	Building the CustDB sample application
	Persistent data
	Assigning class names for applications
	Windows Mobile synchronization
	Add ActiveSync synchronization to your application
	Add ActiveSync synchronization (Windows API)
	Adding ActiveSync synchronization (MFC)
	TCP/IP, HTTP, or HTTPS synchronization from Windows Mobile

	Tutorials
	Tutorial: Building a Windows application using the C++ API
	Lesson 1: Creating and connecting to a database
	Lesson 2: Inserting data into the database
	Lesson 3: Selecting and listing rows from the table
	Lesson 4: Adding synchronization to your application
	Code listing for tutorial

	Tutorial: Building an iPhone application using the C++ API
	Compiling the UltraLite iPhone library
	Creating an UltraLite application on iPhone
	Lesson 1: Creating a new iPhone application project
	Lesson 2: Adding a database to the application
	Lesson 3: Adding data to the database
	Lesson 4: Displaying data from the database
	Lesson 5: Deleting data from the database
	Lesson 6: Adding synchronization
	Lesson 7: Adding a progress display
	Conclusion

	API reference
	UltraLite C/C++ common API reference
	Macros and compiler directives for UltraLite C/C++ applications
	UL_USE_DLL macro
	UNDER_CE macro

	UL_RS_STATE enumeration
	ul_column_sql_type enumeration
	ul_column_storage_type enumeration
	ul_error_action enumeration
	ul_sync_state enumeration
	ul_validate_status_id enumeration
	ul_binary structure
	ul_error_info structure
	ul_stream_error structure
	ul_sync_info structure
	ul_sync_result structure
	ul_sync_stats structure
	ul_sync_status structure
	ul_validate_data structure
	ULVF_DATABASE variable
	ULVF_EXPRESS variable
	ULVF_FULL_VALIDATE variable
	ULVF_IDX_HASH variable
	ULVF_IDX_REDUNDANT variable
	ULVF_INDEX variable
	ULVF_TABLE variable
	UL_AS_SYNCHRONIZE variable
	UL_SYNC_ALL variable
	UL_SYNC_ALL_PUBS variable
	UL_SYNC_STATUS_FLAG_IS_BLOCKING variable
	UL_TEXT variable
	UL_VALID_IS_ERROR variable
	UL_VALID_IS_INFO variable

	UltraLite C/C++ API reference
	ULConnection class
	CancelGetNotification method
	ChangeEncryptionKey method
	Checkpoint method
	Close method
	Commit method
	CountUploadRows method
	CreateNotificationQueue method
	DeclareEvent method
	DestroyNotificationQueue method
	ExecuteScalar method
	ExecuteScalarV method
	ExecuteStatement method
	GetChildObjectCount method
	GetDatabaseProperty method
	GetDatabasePropertyInt method
	GetDatabaseSchema method
	GetLastDownloadTime method
	GetLastError method
	GetLastIdentity method
	GetNotification method
	GetNotificationParameter method
	GetSqlca method
	GetSyncResult method
	GetUserPointer method
	GlobalAutoincUsage method
	GrantConnectTo method
	InitSyncInfo method
	OpenTable method
	PrepareStatement method
	RegisterForEvent method
	ResetLastDownloadTime method
	RevokeConnectFrom method
	Rollback method
	RollbackPartialDownload method
	SendNotification method
	SetDatabaseOption method
	SetDatabaseOptionInt method
	SetSynchronizationCallback method
	SetSyncInfo method
	SetUserPointer method
	StartSynchronizationDelete method
	StopSynchronizationDelete method
	Synchronize method
	SynchronizeFromProfile method
	TriggerEvent method
	ValidateDatabase method

	ULDatabaseManager class
	CreateDatabase method
	DropDatabase method
	EnableAesDBEncryption method
	EnableAesFipsDBEncryption method
	EnableEccE2ee method
	EnableEccSyncEncryption method
	EnableHttpsSynchronization method
	EnableHttpSynchronization method
	EnableRsaE2ee method
	EnableRsaFipsE2ee method
	EnableRsaFipsSyncEncryption method
	EnableRsaSyncEncryption method
	EnableTcpipSynchronization method
	EnableTlsSynchronization method
	EnableZlibSyncCompression method
	Fini method
	Init method
	OpenConnection method
	SetErrorCallback method
	ValidateDatabase method

	ULDatabaseSchema class
	Close method
	GetConnection method
	GetNextPublication method
	GetNextTable method
	GetPublicationCount method
	GetTableCount method
	GetTableSchema method

	ULError class
	ULError constructor
	Clear method
	GetErrorInfo method
	GetErrorInfo() method
	GetErrorInfo() method

	GetParameter method
	GetParameterCount method
	GetSQLCode method
	GetSQLCount method
	GetString method
	GetURL method
	IsOK method

	ULIndexSchema class
	Close method
	GetColumnCount method
	GetColumnName method
	GetConnection method
	GetIndexColumnID method
	GetIndexFlags method
	GetName method
	GetReferencedIndexName method
	GetReferencedTableName method
	GetTableName method
	IsColumnDescending method

	ULPreparedStatement class
	AppendParameterByteChunk method
	AppendParameterStringChunk method
	Close method
	ExecuteQuery method
	ExecuteStatement method
	GetConnection method
	GetParameterCount method
	GetParameterID method
	GetParameterType method
	GetPlan method
	GetResultSetSchema method
	GetRowsAffectedCount method
	HasResultSet method
	SetParameterBinary method
	SetParameterDateTime method
	SetParameterDouble method
	SetParameterFloat method
	SetParameterGuid method
	SetParameterInt method
	SetParameterIntWithType method
	SetParameterNull method
	SetParameterString method

	ULResultSet class
	AfterLast method
	AppendByteChunk method
	AppendByteChunk(const char *, const ul_byte *, size_t) method
	AppendByteChunk(ul_column_num, const ul_byte *, size_t) method

	AppendStringChunk method
	AppendStringChunk(const char *, const char *, size_t) method
	AppendStringChunk(ul_column_num, const char *, size_t) method

	BeforeFirst method
	Close method
	Delete method
	DeleteNamed method
	First method
	GetBinary method
	GetBinary(const char *, p_ul_binary, size_t) method
	GetBinary(ul_column_num, p_ul_binary, size_t) method

	GetBinaryLength method
	GetBinaryLength(const char *) method
	GetBinaryLength(ul_column_num) method

	GetByteChunk method
	GetByteChunk(const char *, ul_byte *, size_t, size_t) method
	GetByteChunk(ul_column_num, ul_byte *, size_t, size_t) method

	GetConnection method
	GetDateTime method
	GetDateTime(const char *, DECL_DATETIME *) method
	GetDateTime(ul_column_num, DECL_DATETIME *) method

	GetDouble method
	GetDouble(const char *) method
	GetDouble(ul_column_num) method

	GetFloat method
	GetFloat(const char *) method
	GetFloat(ul_column_num) method

	GetGuid method
	GetGuid(const char *, GUID *) method
	GetGuid(ul_column_num, GUID *) method

	GetInt method
	GetInt(const char *) method
	GetInt(ul_column_num) method

	GetIntWithType method
	GetIntWithType(const char *, ul_column_storage_type) method
	GetIntWithType(ul_column_num, ul_column_storage_type) method

	GetResultSetSchema method
	GetRowCount method
	GetState method
	GetString method
	GetString(const char *, char *, size_t) method
	GetString(ul_column_num, char *, size_t) method

	GetStringChunk method
	GetStringChunk(const char *, char *, size_t, size_t) method
	GetStringChunk(ul_column_num, char *, size_t, size_t) method

	GetStringLength method
	GetStringLength(const char *) method
	GetStringLength(ul_column_num) method

	IsNull method
	IsNull(const char *) method
	IsNull(ul_column_num) method

	Last method
	Next method
	Previous method
	Relative method
	SetBinary method
	SetBinary(const char *, p_ul_binary) method
	SetBinary(ul_column_num, p_ul_binary) method

	SetDateTime method
	SetDateTime(const char *, DECL_DATETIME *) method
	SetDateTime(ul_column_num, DECL_DATETIME *) method

	SetDefault method
	SetDefault(const char *) method
	SetDefault(ul_column_num) method

	SetDouble method
	SetDouble(const char *, ul_double) method
	SetDouble(ul_column_num, ul_double) method

	SetFloat method
	SetFloat(const char *, ul_real) method
	SetFloat(ul_column_num, ul_real) method

	SetGuid method
	SetGuid(const char *, GUID *) method
	SetGuid(ul_column_num, GUID *) method

	SetInt method
	SetInt(const char *, ul_s_long) method
	SetInt(ul_column_num, ul_s_long) method

	SetIntWithType method
	SetIntWithType(const char *, ul_s_big, ul_column_storage_type) method
	SetIntWithType(ul_column_num, ul_s_big, ul_column_storage_type) method

	SetNull method
	SetNull(const char *) method
	SetNull(ul_column_num) method

	SetString method
	SetString(const char *, const char *, size_t) method
	SetString(ul_column_num, const char *, size_t) method

	Update method
	UpdateBegin method

	ULResultSetSchema class
	GetColumnCount method
	GetColumnID method
	GetColumnName method
	GetColumnPrecision method
	GetColumnScale method
	GetColumnSize method
	GetColumnSQLType method
	GetColumnType method
	GetConnection method
	IsAliased method

	ULTable class
	DeleteAllRows method
	Find method
	FindBegin method
	FindFirst method
	FindLast method
	FindNext method
	FindPrevious method
	GetTableSchema method
	Insert method
	InsertBegin method
	Lookup method
	LookupBackward method
	LookupBegin method
	LookupForward method
	TruncateTable method

	ULTableSchema class
	Close method
	GetColumnDefault method
	GetColumnDefaultType method
	GetGlobalAutoincPartitionSize method
	GetIndexCount method
	GetIndexSchema method
	GetName method
	GetNextIndex method
	GetOptimalIndex method
	GetPrimaryKey method
	GetPublicationPredicate method
	GetTableSyncType method
	InPublication method
	IsColumnInIndex method
	IsColumnNullable method

	ul_column_default_type enumeration
	ul_column_name_type enumeration
	ul_index_flag enumeration
	ul_table_sync_type enumeration
	UL_BLOB_CONTINUE variable
	ul_index_iter_start variable
	ul_publication_iter_start variable
	ul_table_iter_start variable

	UltraLite Embedded SQL API reference
	db_fini method
	db_init method
	MLFTEnableEccE2ee method
	MLFTEnableEccEncryption method
	MLFTEnableRsaE2ee method
	MLFTEnableRsaEncryption method
	MLFTEnableRsaFipsE2ee method
	MLFTEnableRsaFipsEncryption method
	MLFTEnableZlibCompression method
	MLFileDownload method
	MLFileUpload method
	MLFiniFileTransferInfo method
	MLInitFileTransferInfo method
	ULCancelGetNotification method
	ULChangeEncryptionKey method
	ULCheckpoint method
	ULCountUploadRows method
	ULCreateDatabase method
	ULCreateNotificationQueue method
	ULDeclareEvent method
	ULDeleteAllRows method
	ULDestroyNotificationQueue method
	ULECCLibraryVersion method
	ULEnableAesDBEncryption method
	ULEnableAesFipsDBEncryption method
	ULEnableEccE2ee method
	ULEnableEccSyncEncryption method
	ULEnableHttpSynchronization method
	ULEnableRsaE2ee method
	ULEnableRsaFipsE2ee method
	ULEnableRsaFipsSyncEncryption method
	ULEnableRsaSyncEncryption method
	ULEnableTcpipSynchronization method
	ULEnableZlibSyncCompression method
	ULErrorInfoInitFromSqlca method
	ULErrorInfoParameterAt method
	ULErrorInfoParameterCount method
	ULErrorInfoString method
	ULErrorInfoURL method
	ULGetDatabaseID method
	ULGetDatabaseProperty method
	ULGetErrorParameter method
	ULGetErrorParameterCount method
	ULGetIdentity method
	ULGetLastDownloadTime method
	ULGetNotification method
	ULGetNotificationParameter method
	ULGetSyncResult method
	ULGlobalAutoincUsage method
	ULGrantConnectTo method
	ULInitSyncInfo method
	ULIsSynchronizeMessage method
	ULLibraryVersion method
	ULRSALibraryVersion method
	ULRegisterForEvent method
	ULResetLastDownloadTime method
	ULRevokeConnectFrom method
	ULRollbackPartialDownload method
	ULSendNotification method
	ULSetDatabaseID method
	ULSetDatabaseOptionString method
	ULSetDatabaseOptionULong method
	ULSetErrorCallback method
	ULSetSyncInfo method
	ULSetSynchronizationCallback method
	ULSignalSyncIsComplete method
	ULStartSynchronizationDelete method
	ULStaticFini method
	ULStaticInit method
	ULStopSynchronizationDelete method
	ULSynchronize method
	ULSynchronizeFromProfile method
	ULTriggerEvent method
	ULTruncateTable method
	ULValidateDatabase method
	ULValidateDatabaseTableName method
	ul_database_option_id enumeration
	ul_database_property_id enumeration
	ml_file_transfer_info structure
	ml_file_transfer_status structure
	mlft_stream_error structure
	mlft_stream_error_w structure
	MLFT_STATUS_FLAG_IS_BLOCKING variable

	Index

